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Preface

The subject of regression, or of the linear model, is central to the subject of
statistics. It concerns what can be said about some quantity of interest, which
we may not be able to measure, starting from information about one or more
other quantities, in which we may not be interested but which we can measure.
We model our variable of interest as a linear combination of these variables
(called covariates), together with some error. It turns out that this simple
prescription is very flexible, very powerful and useful.

If only because regression is inherently a subject in two or more dimensions,
it is not the first topic one studies in statistics. So this book should not be
the first book in statistics that the student uses. That said, the statistical
prerequisites we assume are modest, and will be covered by any first course on
the subject: ideas of sample, population, variation and randomness; the basics
of parameter estimation, hypothesis testing, p–values, confidence intervals etc.;
the standard distributions and their uses (normal, Student t, Fisher F and chi-
square – though we develop what we need of F and chi-square for ourselves).

Just as important as a first course in statistics is a first course in probability.
Again, we need nothing beyond what is met in any first course on the subject:
random variables; probability distribution and densities; standard examples of
distributions; means, variances and moments; some prior exposure to moment-
generating functions and/or characteristic functions is useful but not essential
(we include all we need here). Our needs are well served by John Haigh’s book
Probability models in the SUMS series, Haigh (2002).

Since the terms regression and linear model are largely synonymous in statis-
tics, it is hardly surprising that we make extensive use of linear algebra and
matrix theory. Again, our needs are well served within the SUMS series, in the
two books by Blyth and Robertson, Basic linear algebra and Further linear

algebra, Blyth and Robertson (2002a), (2002b). We make particular use of the
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viii Preface

material developed there on sums of orthogonal projections. It will be a plea-
sure for those familiar with this very attractive material from pure mathematics
to see it being put to good use in statistics.

Practical implementation of much of the material of this book requires
computer assistance – that is, access to one of the many specialist statistical
packages. Since we assume that the student has already taken a first course in
statistics, for which this is also true, it is reasonable for us to assume here too
that the student has some prior knowledge of and experience with a statistical
package. As with any other modern student text on statistics, one is here faced
with various choices. One does not want to tie the exposition too tightly to any
one package; one cannot cover all packages, and shouldn’t try – but one wants
to include some specifics, to give the text focus. We have relied here mainly on
S-Plus/R�.1

Most of the contents are standard undergraduate material. The boundary
between higher-level undergraduate courses and Master’s level courses is not
a sharp one, and this is reflected in our style of treatment. We have generally
included complete proofs except in the last two chapters on more advanced
material: Chapter 8, on Generalised Linear Models (GLMs), and Chapter 9,
on special topics. One subject going well beyond what we cover – Time Series,
with its extensive use of autoregressive models – is commonly taught at both
undergraduate and Master’s level in the UK. We have included in the last
chapter some material, on non-parametric regression, which – while no harder
– is perhaps as yet more commonly taught at Master’s level in the UK.

In accordance with the very sensible SUMS policy, we have included exer-
cises at the end of each chapter (except the last), as well as worked examples.
One then has to choose between making the book more student-friendly, by
including solutions, or more lecturer-friendly, by not doing so. We have nailed
our colours firmly to the mast here by including full solutions to all exercises.
We hope that the book will nevertheless be useful to lecturers also (e.g., in
inclusion of references and historical background).

Rather than numbering equations, we have labelled important equations
acronymically (thus the normal equations are (NE ), etc.), and included such
equation labels in the index. Within proofs, we have occasionally used local
numbering of equations: (∗), (a), (b) etc.

In pure mathematics, it is generally agreed that the two most attractive sub-
jects, at least at student level, are complex analysis and linear algebra. In statis-
tics, it is likewise generally agreed that the most attractive part of the subject is

1 S+, S-PLUS, S+FinMetrics, S+EnvironmentalStats, S+SeqTrial, S+SpatialStats,
S+Wavelets, S+ArrayAnalyzer, S-PLUS Graphlets, Graphlet, Trellis, and Trellis
Graphics are either trademarks or registered trademarks of Insightful Corporation
in the United States and/or other countries. Insightful Corporation1700 Westlake
Avenue N, Suite 500Seattle, Washington 98109 USA.
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regression and the linear model. It is also extremely useful. This lovely combina-
tion of good mathematics and practical usefulness provides a counter-example,
we feel, to the opinion of one of our distinguished colleagues. Mathematical
statistics, Professor x opines, combines the worst aspects of mathematics with
the worst aspects of statistics. We profoundly disagree, and we hope that the
reader will disagree too.

The book has been influenced by our experience of learning this material,
and teaching it, at a number of universities over many years, in particular by
the first author’s thirty years in the University of London and by the time both
authors spent at the University of Sheffield. It is a pleasure to thank Charles
Goldie and John Haigh for their very careful reading of the manuscript, and
Karen Borthwick and her colleagues at Springer for their kind help throughout
this project. We thank our families for their support and forbearance.

NHB, JMF

Imperial College, London and the University of East London, March 2010
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1
Linear Regression

1.1 Introduction

When we first meet Statistics, we encounter random quantities (random
variables, in probability language, or variates, in statistical language) one at
a time. This suffices for a first course. Soon however we need to handle more
than one random quantity at a time. Already we have to think about how they
are related to each other.

Let us take the simplest case first, of two variables. Consider first the two
extreme cases.

At one extreme, the two variables may be independent (unrelated). For
instance, one might result from laboratory data taken last week, the other might
come from old trade statistics. The two are unrelated. Each is uninformative
about the other. They are best looked at separately. What we have here are
really two one-dimensional problems, rather than one two-dimensional problem,
and it is best to consider matters in these terms.

At the other extreme, the two variables may be essentially the same, in that
each is completely informative about the other. For example, in the Centigrade
(Celsius) temperature scale, the freezing point of water is 0o and the boiling
point is 100o, while in the Fahrenheit scale, freezing point is 32o and boiling
point is 212o (these bizarre choices are a result of Fahrenheit choosing as his
origin of temperature the lowest temperature he could achieve in the laboratory,
and recognising that the body is so sensitive to temperature that a hundredth
of the freezing-boiling range as a unit is inconveniently large for everyday,

N.H. Bingham and J.M. Fry, Regression: Linear Models in Statistics, 1
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-969-5 1,
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2 1. Linear Regression

non-scientific use, unless one resorts to decimals). The transformation formulae
are accordingly

C = (F − 32) × 5/9, F = C × 9/5 + 32.

While both scales remain in use, this is purely for convenience. To look at
temperature in both Centigrade and Fahrenheit together for scientific purposes
would be silly. Each is completely informative about the other. A plot of one
against the other would lie exactly on a straight line. While apparently a two–
dimensional problem, this would really be only one one-dimensional problem,
and so best considered as such.

We are left with the typical and important case: two–dimensional data,
(x1, y1), . . . , (xn, yn) say, where each of the x and y variables is partially but
not completely informative about the other.

Usually, our interest is on one variable, y say, and we are interested in what
knowledge of the other – x – tells us about y. We then call y the response
variable, and x the explanatory variable. We know more about y knowing x

than not knowing x; thus knowledge of x explains, or accounts for, part but
not all of the variability we see in y. Another name for x is the predictor variable:
we may wish to use x to predict y (the prediction will be an uncertain one, to
be sure, but better than nothing: there is information content in x about y,
and we want to use this information). A third name for x is the regressor, or
regressor variable; we will turn to the reason for this name below. It accounts
for why the whole subject is called regression.

The first thing to do with any data set is to look at it. We subject it to
exploratory data analysis (EDA); in particular, we plot the graph of the n

data points (xi, yi). We can do this by hand, or by using a statistical package:
Minitab�,1 for instance, using the command Regression, or S-Plus/R� by
using the command lm (for linear model – see below).

Suppose that what we observe is a scatter plot that seems roughly linear.
That is, there seems to be a systematic component, which is linear (or roughly
so – linear to a first approximation, say) and an error component, which we
think of as perturbing this in a random or unpredictable way. Our job is to fit
a line through the data – that is, to estimate the systematic linear component.

For illustration, we recall the first case in which most of us meet such a task
– experimental verification of Ohm’s Law (G. S. Ohm (1787-1854), in 1826).
When electric current is passed through a conducting wire, the current (in
amps) is proportional to the applied potential difference or voltage (in volts),
the constant of proportionality being the inverse of the resistance of the wire

1 Minitab�, Quality Companion by Minitab�, Quality Trainer by Minitab�, Quality.
Analysis. Results� and the Minitab logo are all registered trademarks of Minitab,
Inc., in the United States and other countries.



1.2 The Method of Least Squares 3

(in ohms). One measures the current observed for a variety of voltages (the
more the better). One then attempts to fit a line through the data, observing
with dismay that, because of experimental error, no three of the data points are
exactly collinear. A typical schoolboy solution is to use a perspex ruler and fit
by eye. Clearly a more systematic procedure is needed. We note in passing that,
as no current flows when no voltage is applied, one may restrict to lines through
the origin (that is, lines with zero intercept) – by no means the typical case.

1.2 The Method of Least Squares

The required general method – the Method of Least Squares – arose in a rather
different context. We know from Newton’s Principia (Sir Isaac Newton (1642–
1727), in 1687) that planets, the Earth included, go round the sun in elliptical
orbits, with the Sun at one focus of the ellipse. By cartesian geometry, we
may represent the ellipse by an algebraic equation of the second degree. This
equation, though quadratic in the variables, is linear in the coefficients. How
many coefficients p we need depends on the choice of coordinate system – in
the range from two to six. We may make as many astronomical observations of
the planet whose orbit is to be determined as we wish – the more the better, n

say, where n is large – much larger than p. This makes the system of equations
for the coefficients grossly over-determined, except that all the observations are
polluted by experimental error. We need to tap the information content of the
large number n of readings to make the best estimate we can of the small
number p of parameters.

Write the equation of the ellipse as

a1x1 + a2x2 + . . . = 0.

Here the aj are the coefficients, to be found or estimated, and the xj are those
of x2, xy, y2, x, y, 1 that we need in the equation of the ellipse (we will always
need 1, unless the ellipse degenerates to a point, which is not the case here).
For the ith point, the left-hand side above will be 0 if the fit is exact, but εi say
(denoting the ith error) in view of the observational errors. We wish to keep the
errors εi small; we wish also to put positive and negative εi on the same footing,
which we may do by looking at the squared errors ε2i . A measure of the discrep-
ancy of the fit is the sum of these squared errors,

∑n
i=1ε

2
i . The Method of Least

Squares is to choose the coefficients aj so as to minimise this sums of squares,

SS :=
∑n

i=1
ε2i .

As we shall see below, this may readily and conveniently be accomplished.
The Method of Least Squares was discovered independently by two workers,

both motivated by the above problem of fitting planetary orbits. It was first
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published by Legendre (A. M. Legendre (1752–1833), in 1805). It had also been
discovered by Gauss (C. F. Gauss (1777–1855), in 1795); when Gauss published
his work in 1809, it precipitated a priority dispute with Legendre.

Let us see how to implement the method. We do this first in the simplest
case, the fitting of a straight line

y = a + bx

by least squares through a data set (x1, y1), . . . , (xn, yn). Accordingly, we choose
a, b so as to minimise the sum of squares

SS :=
∑n

i=1
ε2i =

∑n

i=1
(yi − a − bxi)2.

Taking ∂SS/∂a = 0 and ∂SS/∂b = 0 gives

∂SS/∂a := −2
∑n

i=1
ei = −2

∑n

i=1
(yi − a − bxi),

∂SS/∂b := −2
∑n

i=1
xiei = −2

∑n

i=1
xi(yi − a − bxi).

To find the minimum, we equate both these to zero:
∑n

i=1
(yi − a − bxi) = 0 and

∑n

i=1
xi(yi − a − bxi) = 0.

This gives two simultaneous linear equations in the two unknowns a, b, called
the normal equations. Using the ‘bar’ notation

x :=
1
n

∑n

i=1
xi.

Dividing both sides by n and rearranging, the normal equations are

a + bx = y and ax + bx2 = xy.

Multiply the first by x and subtract from the second:

b =
xy − x.y

x2 − (x)2
,

and then
a = y − bx.

We will use this bar notation systematically. We call x := 1
n

∑n
i=1xi the sample

mean, or average, of x1, . . . , xn, and similarly for y. In this book (though not
all others!), the sample variance is defined as the average, 1

n

∑n
i=1(xi − x)2, of

(xi − x)2, written s2
x or sxx. Then using linearity of average, or ‘bar’,

s2
x = sxx = (x − x)2 = x2 − 2x.x + x2 = (x2) − 2x.x + (x)2 = (x2) − (x)2,
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since x.x = (x)2. Similarly, the sample covariance of x and y is defined as the
average of (x − x)(y − y), written sxy. So

sxy = (x − x)(y − y) = xy − x.y − x.y + x.y

= (xy) − x.y − x.y + x.y = (xy) − x.y.

Thus the slope b is given by the sample correlation coefficient

b = sxy/sxx,

the ratio of the sample covariance to the sample x-variance. Using the alterna-
tive ‘sum of squares’ notation

Sxx :=
∑n

i=1
(xi − x)2, Sxy :=

∑n

i=1
(xi − x)(yi − y),

b = Sxy/Sxx, a = y − bx.

The line – the least-squares line that we have fitted – is y = a + bx with this a

and b, or
y − y = b(x − x), b = sxy/sxx = Sxy/Sxx. (SRL)

It is called the sample regression line, for reasons which will emerge later.
Notice that the line goes through the point (x, y) – the centroid, or centre

of mass, of the scatter diagram (x1, y1), . . . , (xn, yn).

Note 1.1

We will see later that if we assume that the errors are independent and iden-
tically distributed (which we abbreviate to iid) and normal, N(0, σ2) say, then
these formulas for a and b also give the maximum likelihood estimates. Further,
100(1 − α)% confidence intervals in this case can be calculated from points â

and b̂ as

a = â ± tn−2(1 − α/2)s

√∑
x2

i

nSxx
,

b = b̂ ± tn−2(1 − α/2)s√
Sxx

,

where tn−2(1−α/2) denotes the 1−α/2 quantile of the Student t distribution
with n − 2 degrees of freedom and s is given by

s =

√
1

n − 2

(

Syy −
S2

xy

Sxx

)

.
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Example 1.2

We fit the line of best fit to model y = Height (in inches) based on x = Age
(in years) for the following data:
x=(14, 13, 13, 14, 14, 12, 12, 15, 13, 12, 11, 14, 12, 15, 16, 12, 15, 11, 15),
y=(69, 56.5, 65.3, 62.8, 63.5, 57.3, 59.8, 62.5, 62.5, 59.0, 51.3, 64.3, 56.3, 66.5,
72.0, 64.8, 67.0, 57.5, 66.5).

11 12 13 14 15 16

55
60

65
70

Age (Years)

H
ei

gh
t (

In
ch

es
)

Figure 1.1 Scatter plot of the data in Example 1.2 plus fitted straight line

One may also calculate Sxx and Sxy as

Sxx =
∑

xiyi − nxy,

Sxy =
∑

x2
i − nx2.

Since
∑

xiyi = 15883, x̄ = 13.316, ȳ = 62.337,
∑

x2
i = 3409, n = 19, we have

that

b =
15883− 19(13.316)(62.337)

3409 − 19(13.3162)
= 2.787 (3 d.p.).

Rearranging, we see that a becomes 62.33684 − 2.787156(13.31579) = 25.224.
This model suggests that the children are growing by just under three inches
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per year. A plot of the observed data and the fitted straight line is shown in
Figure 1.1 and appears reasonable, although some deviation from the fitted
straight line is observed.

1.2.1 Correlation version

The sample correlation coefficient r = rxy is defined as

r = rxy :=
sxy

sxsy
,

the quotient of the sample covariance and the product of the sample standard
deviations. Thus r is dimensionless, unlike the other quantities encountered so
far. One has (see Exercise 1.1)

−1 ≤ r ≤ 1,

with equality if and only if (iff) all the points (x1, y1), . . . , (xn, yn) lie on a
straight line. Using sxy = rxysxsy and sxx = s2

x, we may alternatively write
the sample regression line as

y − y = b(x − x), b = rxysy/sx. (SRL)

Note also that the slope b has the same sign as the sample covariance and sample
correlation coefficient. These will be approximately the population covariance
and correlation coefficient for large n (see below), so will have slope near zero
when y and x are uncorrelated – in particular, when they are independent,
and will have positive (negative) slope when x, y are positively (negatively)
correlated.

We now have five parameters in play: two means, μx and μy, two variances
σ2

x and σ2
y (or their square roots, the standard deviations σx and σy), and one

correlation, ρxy. The two means are measures of location, and serve to identify
the point – (μx, μy), or its sample counterpart, (x, y) – which serves as a natural
choice of origin. The two variances (or standard deviations) are measures of
scale, and serve as natural units of length along coordinate axes centred at this
choice of origin. The correlation, which is dimensionless, serves as a measure
of dependence, or linkage, or association, and indicates how closely y depends
on x – that is, how informative x is about y. Note how differently these behave
under affine transformations, x �→ ax + b. The mean transforms linearly:

E(ax + b) = aEx + b;

the variance transforms by

var(ax + b) = a2var(x);

the correlation is unchanged – it is invariant under affine transformations.
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1.2.2 Large-sample limit

When x1, . . . , xn are independent copies of a random variable x, and x has
mean Ex, the Law of Large Numbers says that

x → Ex (n → ∞).

See e.g. Haigh (2002), §6.3. There are in fact several versions of the Law of Large
Numbers (LLN). The Weak LLN (or WLLN) gives convergence in probability
(for which see e.g. Haigh (2002). The Strong LLN (or SLLN) gives convergence
with probability one (or ‘almost surely’, or ‘a.s.’); see Haigh (2002) for a short
proof under stronger moment assumptions (fourth moment finite), or Grimmett
and Stirzaker (2001), §7.5 for a proof under the minimal condition – existence
of the mean. While one should bear in mind that the SLLN holds only off some
exceptional set of probability zero, we shall feel free to state the result as above,
with this restriction understood. Note the content of the SLLN: thinking of a
random variable as its mean plus an error, independent errors tend to cancel
when one averages. This is essentially what makes Statistics work: the basic
technique in Statistics is averaging.

All this applies similarly with x replaced by y, x2, y2, xy, when all these
have means. Then

s2
x = sxx = x2 −

(
x2

)
→ E

(
x2

)
− (Ex)2 = var(x),

the population variance – also written σ2
x = σxx – and

sxy = xy − x.y → E(xy) − Ex.Ey = cov(x, y),

the population covariance – also written σxy. Thus as the sample size n in-
creases, the sample regression line

y − y = b(x − x), b = sxy/sxx

tends to the line

y − Ey = β(x − Ex), β = σxy/σxx. (PRL)

This – its population counterpart – is accordingly called the population regres-
sion line.

Again, there is a version involving correlation, this time the population
correlation coefficient

ρ = ρxy :=
σxy

σxσy
:

y − Ey = β(x − Ex), β = ρxyσy/σx. (PRL)
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Note 1.3

The following illustration is worth bearing in mind here. Imagine a school
Physics teacher, with a class of twenty pupils; they are under time pressure
revising for an exam, he is under time pressure marking. He divides the class
into ten pairs, gives them an experiment to do over a double period, and with-
draws to do his marking. Eighteen pupils gang up on the remaining two, the
best two in the class, and threaten them into agreeing to do the experiment for
them. This pair’s results are then stolen by the others, who to disguise what
has happened change the last two significant figures, say. Unknown to all, the
best pair’s instrument was dropped the previous day, and was reading way too
high – so the first significant figures in their results, and hence all the others,
were wrong. In this example, the insignificant ‘rounding errors’ in the last sig-
nificant figures are independent and do cancel – but no significant figures are
correct for any of the ten pairs, because of the strong dependence between the
ten readings. Here the tenfold replication is only apparent rather than real, and
is valueless. We shall see more serious examples of correlated errors in Time
Series in §9.4, where high values tend to be succeeded by high values, and low
values tend to be succeeded by low values.

1.3 The origins of regression

The modern era in this area was inaugurated by Sir Francis Galton (1822–1911),
in his book Hereditary genius – An enquiry into its laws and consequences of
1869, and his paper ‘Regression towards mediocrity in hereditary stature’ of
1886. Galton’s real interest was in intelligence, and how it is inherited. But intel-
ligence, though vitally important and easily recognisable, is an elusive concept
– human ability is infinitely variable (and certainly multi–dimensional!), and
although numerical measurements of general ability exist (intelligence quotient,
or IQ) and can be measured, they can serve only as a proxy for intelligence
itself. Galton had a passion for measurement, and resolved to study something
that could be easily measured; he chose human height. In a classic study, he
measured the heights of 928 adults, born to 205 sets of parents. He took the
average of the father’s and mother’s height (‘mid-parental height’) as the pre-
dictor variable x, and height of offspring as response variable y. (Because men
are statistically taller than women, one needs to take the gender of the offspring
into account. It is conceptually simpler to treat the sexes separately – and focus
on sons, say – though Galton actually used an adjustment factor to compen-
sate for women being shorter.) When he displayed his data in tabular form,
Galton noticed that it showed elliptical contours – that is, that squares in the
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(x, y)-plane containing equal numbers of points seemed to lie approximately on
ellipses. The explanation for this lies in the bivariate normal distribution; see
§1.5 below. What is most relevant here is Galton’s interpretation of the sample
and population regression lines (SRL) and (PRL). In (PRL), σx and σy are
measures of variability in the parental and offspring generations. There is no
reason to think that variability of height is changing (though mean height has
visibly increased from the first author’s generation to his children). So (at least
to a first approximation) we may take these as equal, when (PRL) simplifies to

y − Ey = ρxy(x − Ex). (PRL)

Hence Galton’s celebrated interpretation: for every inch of height above (or
below) the average, the parents transmit to their children on average ρ inches,
where ρ is the population correlation coefficient between parental height and
offspring height. A further generation will introduce a further factor ρ, so the
parents will transmit – again, on average – ρ2 inches to their grandchildren.
This will become ρ3 inches for the great-grandchildren, and so on. Thus for
every inch of height above (or below) the average, the parents transmit to their
descendants after n generations on average ρn inches of height. Now

0 < ρ < 1

(ρ > 0 as the genes for tallness or shortness are transmitted, and parental
and offspring height are positively correlated; ρ < 1 as ρ = 1 would imply
that parental height is completely informative about offspring height, which is
patently not the case). So

ρn → 0 (n → ∞):

the effect of each inch of height above or below the mean is damped out with
succeeding generations, and disappears in the limit. Galton summarised this as
‘Regression towards mediocrity in hereditary stature’, or more briefly, regres-
sion towards the mean (Galton originally used the term reversion instead, and
indeed the term mean reversion still survives). This explains the name of the
whole subject.

Note 1.4

1. We are more interested in intelligence than in height, and are more likely
to take note of the corresponding conclusion for intelligence.

2. Galton found the conclusion above depressing – as may be seen from his
use of the term mediocrity (to call someone average may be factual, to call
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them mediocre is disparaging). Galton had a typically Victorian enthusiasm
for eugenics – the improvement of the race. Indeed, the senior chair in
Statistics in the UK (or the world), at University College London, was
originally called the Galton Chair of Eugenics. This was long before the
term eugenics became discredited as a result of its use by the Nazis.

3. The above assumes random mating. This is a reasonable assumption to
make for height: height is not particularly important, while choice of mate
is very important, and so few people choose their life partner with height
as a prime consideration. Intelligence is quite another matter: intelligence
is important. Furthermore, we can all observe the tendency of intelligent
people to prefer and seek out each others’ company, and as a natural conse-
quence, to mate with them preferentially. This is an example of assortative
mating. It is, of course, the best defence for intelligent people who wish
to transmit their intelligence to posterity against regression to the mean.
What this in fact does is to stratify the population: intelligent assortative
maters are still subject to regression to the mean, but it is to a different
mean – not the general population mean, but the mean among the social
group in question – graduates, the learned professions or whatever.

1.4 Applications of regression

Before turning to the underlying theory, we pause to mention a variety of
contexts in which regression is of great practical use, to illustrate why the
subject is worth study in some detail.

1. Examination scores.

This example may be of particular interest to undergraduates! The context
is that of an elite institution of higher education. The proof of elite status
is an excess of well-qualified applicants. These have to be ranked in merit
order in some way. Procedures differ in detail, but in broad outline all
relevant pieces of information – A Level scores, UCAS forms, performance
in interview, admissions officer’s assessment of potential etc. – are used,
coded in numerical form and then combined according to some formula
to give a numerical score. This is used as the predictor variable x, which
measures the quality of incoming students; candidates are ranked by score,
and places filled on merit, top down, until the quota is reached. At the
end of the course, students graduate, with a classified degree. The task of
the Examiners’ Meeting is to award classes of degree. While at the margin
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this involves detailed discussion of individual cases, it is usual to table
among the papers for the meeting a numerical score for each candidate,
obtained by combining the relevant pieces of information – performance on
the examinations taken throughout the course, assessed course-work etc. –
into a numerical score, again according to some formula. This score is y, the
response variable, which measures the quality of graduating students. The
question is how well the institution picks students – that is, how good a
predictor of eventual performance y the incoming score x is. Of course, the
most important single factor here is the innate ability and personality of the
individual student, plus the quality of their school education. These will be
powerfully influential on both x and y. But they are not directly measurable,
while x is, so x serves here as a proxy for them. These underlying factors
remain unchanged during the student’s study, and are the most important
determinant of y. However, other factors intervene. Some students come to
university if anything under-prepared, grow up and find their feet, and get
steadily better. By contrast, some students arrive if anything over-prepared
(usually as a result of expensively purchased ‘cramming’) and revert to
their natural level of performance, while some others arrive studious and
succumb to the temptations of wine, women (or men) and song, etc. The
upshot is that, while x serves as a good proxy for the ability and intelligence
which really matter, there is a considerable amount of unpredictability, or
noise, here.

The question of how well institutions pick students is of great interest, to
several kinds of people:

a) admissions tutors to elite institutions of higher education,

b) potential students and their parents,

c) the state, which largely finances higher education (note that in the
UK in recent years, a monitoring body, OFFA – the Office for Fair
Access, popularly referred to as Oftoff – has been set up to monitor
such issues).

2. Height.

Although height is of limited importance, proud parents are consumed
with a desire to foresee the future for their offspring. There are various
rules of thumb for predicting the eventual future height as an adult of a
small child (roughly speaking: measure at age two and double – the details
vary according to sex). This is of limited practical importance nowadays,
but we note in passing that some institutions or professions (the Brigade
of Guards etc.) have upper and lower limits on heights of entrants.
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3. Athletic Performance

a) Distance.

Often an athlete competes at two different distances. These may be
half-marathon and marathon (or ten miles and half-marathon) for the
longer distances, ten kilometres and ten miles – or 5k and 10k – for the
middle distances; for track, there are numerous possible pairs: 100m
and 200m, 200m and 400m, 400m and 800m, 800m and 1500m, 1500m
and 5,000m, 5,000m and 10,000m. In each case, what is needed – by the
athlete, coach, commentator or follower of the sport – is an indication of
how informative a time x over one distance is on time y over the other.

b) Age.

An athlete’s career has three broad phases. In the first, one completes
growth and muscle development, and develops cardio-vascular fitness
as the body reacts to the stresses of a training regime of running. In the
second, the plateau stage, one attains one’s best performances. In the
third, the body is past its best, and deteriorates gradually with age.
Within this third phase, age is actually a good predictor: the Rule of
Thumb for ageing marathon runners (such as the first author) is that
every extra year costs about an extra minute on one’s marathon time.

4. House Prices and Earnings.

Under normal market conditions, the most important single predictor vari-
able for house prices is earnings. The second most important predictor
variable is interest rates: earnings affect the purchaser’s ability to raise fi-
nance, by way of mortgage, interest rates affect ability to pay for it by
servicing the mortgage. This example, incidentally, points towards the use
of two predictor variables rather than one, to which we shall return below.
(Under the abnormal market conditions that prevail following the Crash
of 2008, or Credit Crunch, the two most relevant factors are availability
of mortgage finance (which involves liquidity, credit, etc.), and confidence
(which involves economic confidence, job security, unemployment, etc.).)
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1.5 The Bivariate Normal Distribution

Recall two of the key ingredients of statistics:

(a) The normal distribution, N(μ, σ2):

f(x) =
1

σ
√

2π
exp

{

− (x − μ)2

2σ2

}

,

which has mean EX = μ and variance varX = σ2.

(b) Linear regression by the method of least squares – above.

This is for two-dimensional (or bivariate) data (X1, Y1), . . . , (Xn, Yn). Two
questions arise:

(i) Why linear?

(ii) What (if any) is the two-dimensional analogue of the normal law?

Writing

φ(x) :=
1√
2π

exp
{

−1
2
x2

}

for the standard normal density,
∫

for
∫ ∞
−∞, we shall need

(i) recognising normal integrals:

a)
∫

φ(x)dx = 1 (‘normal density’),

b)
∫

xφ(x)dx = 0 (‘normal mean’ - or, ‘symmetry’),

c)
∫

x2φ(x)dx = 1 (‘normal variance’),

(ii) completing the square: as for solving quadratic equations!

In view of the work above, we need an analogue in two dimensions of the
normal distribution N(μ, σ2) in one dimension. Just as in one dimension we
need two parameters, μ and σ, in two dimensions we must expect to need five,
by the above.

Consider the following bivariate density:

f(x, y) = c exp
{

−1
2
Q(x, y)

}

,
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where c is a constant, Q a positive definite quadratic form in x and y. Specifi-

cally:

c =
1

2πσ1σ2

√
1 − ρ2

,

Q =
1

1 − ρ2

[(x − μ1

σ1

)2

− 2ρ
(x − μ1

σ1

)(y − μ2

σ2

)
+

(y − μ2

σ2

)2
]

.

Here σi > 0, μi are real, −1 < ρ < 1. Since f is clearly non-negative, to show
that f is a (probability density) function (in two dimensions), it suffices to
show that f integrates to 1:

∫ ∞

−∞

∫ ∞

−∞
f(x, y) dx dy = 1, or

∫ ∫

f = 1.

Write
f1(x) :=

∫ ∞

−∞
f(x, y) dy, f2(y) :=

∫ ∞

−∞
f(x, y) dx.

Then to show
∫ ∫

f = 1, we need to show
∫ ∞
−∞ f1(x) dx = 1 (or

∫ ∞
−∞ f2(y) dy =

1). Then f1, f2 are densities, in one dimension. If f(x, y) = fX,Y (x, y) is the
joint density of two random variables X , Y , then f1(x) is the density fX(x)
of X , f2(y) the density fY (y) of Y (f1, f2, or fX , fY , are called the marginal
densities of the joint density f , or fX,Y ).

To perform the integrations, we have to complete the square. We have the
algebraic identity

(1 − ρ2)Q ≡
[(y − μ2

σ2

)
− ρ

(x − μ1

σ1

)]2

+
(
1 − ρ2

) (x − μ1

σ1

)2

(reducing the number of occurrences of y to 1, as we intend to integrate out y

first). Then (taking the terms free of y out through the y-integral)

f1(x) =
exp

(
− 1

2 (x − μ1)2/σ2
1

)

σ1

√
2π

∫ ∞

−∞

1
σ2

√
2π

√
1 − ρ2

exp
(− 1

2 (y − cx)2

σ2
2 (1 − ρ2)

)

dy,

(∗)
where

cx := μ2 + ρ
σ2

σ1
(x − μ1).

The integral is 1 (‘normal density’). So

f1(x) =
exp

(
− 1

2 (x − μ1)2/σ2
1

)

σ1

√
2π

,

which integrates to 1 (‘normal density’), proving
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Fact 1. f(x, y) is a joint density function (two-dimensional), with marginal
density functions f1(x), f2(y) (one-dimensional).

So we can write

f(x, y) = fX,Y (x, y), f1(x) = fX(x), f2(y) = fY (y).

Fact 2. X, Y are normal: X is N(μ1, σ
2
1), Y is N(μ2, σ

2
2). For, we showed

f1 = fX to be the N(μ1, σ
2
1) density above, and similarly for Y by symmetry.

Fact 3. EX = μ1, EY = μ2, var X = σ2
1 , var Y = σ2

2 .
This identifies four out of the five parameters: two means μi, two

variances σ2
i .

Next, recall the definition of conditional probability:

P (A|B) := P (A ∩ B)/P (B).

In the discrete case, if X, Y take possible values xi, yj with probabilities
fX(xi), fY (yj), (X, Y ) takes possible values (xi, yj) with corresponding proba-
bilities fX,Y (xi, yj):

fX(xi) = P (X = xi) = ΣjP (X = xi, Y = yj) = ΣjfX,Y (xi, yj).

Then the conditional distribution of Y given X = xi is

fY |X(yj |xi) =
P (Y = yj , X = xi)

P (X = xi)
=

fX,Y (xi, yj)∑
jfX,Y (xi, yj)

,

and similarly with X, Y interchanged.
In the density case, we have to replace sums by integrals. Thus the condi-

tional density of Y given X = x is (see e.g. Haigh (2002), Def. 4.19, p. 80)

fY |X(y|x) :=
fX,Y (x, y)

fX(x)
=

fX,Y (x, y)
∫ ∞
−∞ fX,Y (x, y) dy

.

Returning to the bivariate normal:
Fact 4. The conditional distribution of y given X = x is

N

(

μ2 + ρ
σ2

σ1
(x − μ1), σ2

2

(
1 − ρ2

)
)

.

Proof

Go back to completing the square (or, return to (∗) with
∫

and dy deleted):

f(x, y) =
exp

{
− 1

2 (x − μ1)
2
/σ2

1

}

σ1

√
2π

.
exp

{
− 1

2 (y − cx)2 /
(
σ2

2

(
1 − ρ2

))}

σ2

√
2π

√
1 − ρ2

.
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The first factor is f1(x), by Fact 1. So, fY |X(y|x) = f(x, y)/f1(x) is the second
factor:

fY |X(y|x) =
1√

2πσ2

√
1 − ρ2

exp
{

−(y − cx)2

2σ2
2(1 − ρ2)

}

,

where cx is the linear function of x given below (∗).

This not only completes the proof of Fact 4 but gives
Fact 5. The conditional mean E(Y |X = x) is linear in x:

E(Y |X = x) = μ2 + ρ
σ2

σ1
(x − μ1).

Note 1.5

1. This simplifies when X and Y are equally variable, σ1 = σ2:

E(Y |X = x) = μ2 + ρ(x − μ1)

(recall EX = μ1, EY = μ2). Recall that in Galton’s height example, this
says: for every inch of mid-parental height above/below the average, x−μ1,
the parents pass on to their child, on average, ρ inches, and continuing in
this way: on average, after n generations, each inch above/below average
becomes on average ρn inches, and ρn → 0 as n → ∞, giving regression
towards the mean.

2. This line is the population regression line (PRL), the population version
of the sample regression line (SRL).

3. The relationship in Fact 5 can be generalised (§4.5): a population regression
function – more briefly, a regression – is a conditional mean.
This also gives

Fact 6. The conditional variance of Y given X = x is

var(Y |X = x) = σ2
2

(
1 − ρ2

)
.

Recall (Fact 3) that the variability (= variance) of Y is varY = σ2
2 . By

Fact 5, the variability remaining in Y when X is given (i.e., not accounted for
by knowledge of X) is σ2

2(1 − ρ2). Subtracting, the variability of Y which is
accounted for by knowledge of X is σ2

2ρ2. That is, ρ2 is the proportion of the
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variability of Y accounted for by knowledge of X . So ρ is a measure of the
strength of association between Y and X .

Recall that the covariance is defined by

cov(X, Y ) := E[(X − EX)(Y − EY )] = E[(X − μ1)(Y − μ2)],

= E(XY ) − (EX)(EY ),

and the correlation coefficient ρ, or ρ(X, Y ), defined by

ρ = ρ(X, Y ) :=
cov(X, Y )√
varX

√
varY

=
E[(X − μ1)(Y − μ2)]

σ1σ2

is the usual measure of the strength of association between X and Y (−1 ≤
ρ ≤ 1; ρ = ±1 iff one of X, Y is a function of the other). That this is consistent
with the use of the symbol ρ for a parameter in the density f(x, y) is shown by
the fact below.
Fact 7. If (X, Y )T is bivariate normal, the correlation coefficient of X, Y is ρ.

Proof

ρ(X, Y ) := E

[(
X − μ1

σ1

) (
Y − μ2

σ2

)]

=
∫ ∫ (x − μ1

σ1

)(y − μ2

σ2

)
f(x, y)dxdy.

Substitute for f(x, y) = c exp(− 1
2Q), and make the change of variables u :=

(x − μ1)/σ1, v := (y − μ2)/σ2:

ρ(X, Y ) =
1

2π
√

1 − ρ2

∫ ∫

uv exp

(
−

[
u2 − 2ρuv + v2

]

2(1 − ρ2)

)

du dv.

Completing the square as before, [u2 − 2ρuv + v2] = (v − ρu)2 + (1− ρ2)u2. So

ρ(X, Y ) =
1√
2π

∫

u exp
(

−u2

2

)

du.
1√

2π
√

1 − ρ2

∫

v exp
(

− (v − ρu)2

2(1 − ρ2)

)

dv.

Replace v in the inner integral by (v−ρu)+ρu, and calculate the two resulting
integrals separately. The first is zero (‘normal mean’, or symmetry), the second
is ρu (‘normal density’). So

ρ(X, Y ) =
1√
2π

.ρ

∫

u2 exp
(

−u2

2

)

du = ρ

(‘normal variance’), as required.

This completes the identification of all five parameters in the bivariate nor-
mal distribution: two means μi, two variances σ2

i , one correlation ρ.
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Note 1.6

1. The above holds for −1 < ρ < 1; always, −1 ≤ ρ ≤ 1, by the Cauchy-
Schwarz inequality (see e.g. Garling (2007) p.15, Haigh (2002) Ex 3.20
p.86, or Howie (2001) p.22 and Exercises 1.1-1.2). In the limiting cases
ρ = ±1, one of X, Y is then a linear function of the other: Y = aX + b, say,
as in the temperature example (Fahrenheit and Centigrade). The situation
is not really two-dimensional: we can (and should) use only one of X and
Y , reducing to a one-dimensional problem.

2. The slope of the regression line y = cx is ρσ2/σ1 = (ρσ1σ2)/(σ2
1), which

can be written as cov(X, Y )/varX = σ12/σ11, or σ12/σ2
1 : the line is

y − EY =
σ12

σ11
(x − EX).

This is the population version (what else?!) of the sample regression line

y − y =
sXY

sXX
(x − x),

familiar from linear regression.

The case ρ = ±1 – apparently two-dimensional, but really one-dimensional
– is singular; the case −1 < ρ < 1 (genuinely two-dimensional) is non-
singular, or (see below) full rank.

We note in passing
Fact 8. The bivariate normal law has elliptical contours.

For, the contours are Q(x, y) = const, which are ellipses (as Galton found).

Moment Generating Function (MGF). Recall (see e.g. Haigh (2002), §5.2) the
definition of the moment generating function (MGF) of a random variable X .
This is the function

M(t), or MX(t) := E exp{tX}

for t real, and such that the expectation (typically a summation or integration,
which may be infinite) converges (absolutely). For X normal N(μ, σ2),

M(t) =
1

σ
√

2π

∫

etx exp
(

−1
2
(x − μ)2/σ2

)

dx.

Change variable to u := (x − μ)/σ:

M(t) =
1√
2π

∫

exp
(

μt + σut − 1
2
u2

)

du.
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Completing the square,

M(t) = eμt 1√
2π

∫

exp
(

−1
2
(u − σt)2

)

du.e
1
2 σ2t2 ,

or MX(t) = exp(μt + 1
2σ2t2) (recognising that the central term on the right is

1 – ‘normal density’) . So MX−μ(t) = exp(1
2σ2t2). Then (check)

μ = EX = M ′
X(0), var X = E[(X − μ)2] = M ′′

X−μ(0).

Similarly in the bivariate case: the MGF is

MX,Y (t1, t2) := E exp(t1X + t2Y ).

In the bivariate normal case:

M(t1, t2) = E(exp(t1X + t2Y )) =
∫ ∫

exp(t1x + t2y)f(x, y) dx dy

=
∫

exp(t1x)f1(x) dx

∫

exp(t2y)f(y|x) dy.

The inner integral is the MGF of Y |X = x, which is N(cx, σ2
2 , (1 − ρ2)), so is

exp(cxt2 + 1
2σ2

2(1 − ρ2)t22). By Fact 5

cxt2 = [μ2 + ρ
σ2

σ1
(x − μ1)]t2,

so M(t1, t2) is equal to

exp
(

t2μ2 − t2
σ2

σ1
μ1 +

1
2
σ2

2

(
1 − ρ2

)
t22

)∫

exp
([

t1 + t2ρ
σ2

σ1

]

x

)

f1(x) dx.

Since f1(x) is N(μ1, σ
2
1), the inner integral is a normal MGF, which is thus

exp(μ1[t1 + t2ρ
σ2

σ1
] +

1
2
σ2

1 [. . .]
2).

Combining the two terms and simplifying, we obtain
Fact 9. The joint MGF is

MX,Y (t1, t2) = M(t1, t2) = exp
(

μ1t1 + μ2t2 +
1
2

[
σ2

1t21 + 2ρσ1σ2t1t2 + σ2
2t22

]
)

.

Fact 10. X, Y are independent iff ρ = 0.

Proof

For densities: X, Y are independent iff the joint density fX,Y (x, y) factorises as
the product of the marginal densities fX(x).fY (y) (see e.g. Haigh (2002), Cor.
4.17).

For MGFs: X, Y are independent iff the joint MGF MX,Y (t1, t2) factorises
as the product of the marginal MGFs MX(t1).MY (t2). From Fact 9, this occurs
iff ρ = 0.
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Note 1.7

1. X, Y independent implies X, Y uncorrelated (ρ = 0) in general (when the
correlation exists). The converse is false in general, but true, by Fact 10,
in the bivariate normal case.

2. Characteristic functions (CFs). The characteristic function, or CF, of X is

φX(t) := E(eitX).

Compared to the MGF, this has the drawback of involving complex num-
bers, but the great advantage of always existing for t real. Indeed,

|φX(t)| =
∣
∣E(eitX)

∣
∣≤E

∣
∣
(
eitX

)∣
∣ = E1 = 1.

By contrast, the expectation defining the MGF MX(t) may diverge for
some real t (as we shall see in §2.1 with the chi-square distribution.) For
background on CFs, see e.g. Grimmett and Stirzaker (2001) §5.7. For our
purposes one may pass from MGF to CF by formally replacing t by it

(though one actually needs analytic continuation – see e.g. Copson (1935),
§4.6 – or Cauchy’s Theorem – see e.g. Copson (1935), §6.7, or Howie (2003),
Example 9.19). Thus for the univariate normal distribution N(μ, σ2) the
CF is

φX(t) = exp
{

iμt − 1
2
σ2t2

}

and for the bivariate normal distribution the CF of X, Y is

φX,Y (t1, t2) = exp
{

iμ1t1 + iμ2t2 −
1
2

[
σ2

1t21 + 2ρσ1σ2t1t2 + σ2t
2
2

]
}

.

1.6 Maximum Likelihood and Least Squares

By Fact 4, the conditional distribution of y given X = x is

N(μ2 + ρ
σ2

σ1
(x − μ1), σ2

2(1 − ρ2)).

Thus y is decomposed into two components, a linear trend in x – the systematic
part – and a normal error, with mean zero and constant variance – the random
part. Changing the notation, we can write this as

y = a + bx + ε, ε ∼ N(0, σ2).
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With n values of the predictor variable x, we can similarly write

yi = a + bxi + εi, εi ∼ N(0, σ2).

To complete the specification of the model, we need to specify the dependence
or correlation structure of the errors ε1, . . . , εn. This can be done in various ways
(see Chapter 4 for more on this). Here we restrict attention to the simplest and
most important case, where the errors εi are iid:

yi = a + bxi + εi, εi iid N(0, σ2). (∗)

This is the basic model for simple linear regression.
Since each yi is now normally distributed, we can write down its density.

Since the yi are independent, the joint density of y1, . . . , yn factorises as the
product of the marginal (separate) densities. This joint density, regarded as a
function of the parameters, a, b and σ, is called the likelihood, L (one of many
contributions by the great English statistician R. A. Fisher (1890-1962), later
Sir Ronald Fisher, in 1912). Thus

L =
1

σn(2π)
1
2 n

∏n

i=1
exp{−1

2
(yi − a − bxi)2/σ2}

=
1

σn(2π)
1
2 n

exp{−1
2

∑n

i=1
(yi − a − bxi)2/σ2}.

Fisher suggested choosing as our estimates of the parameters the values that
maximise the likelihood. This is the Method of Maximum Likelihood; the re-
sulting estimators are the maximum likelihood estimators or MLEs. Now max-
imising the likelihood L and maximising its logarithm � := log L are the same,
since the function log is increasing. Since

� := log L = −1
2
n log 2π − n log σ − 1

2

∑n

i=1
(yi − a − bxi)2/σ2,

so far as maximising with respect to a and b are concerned (leaving σ to one
side for the moment), this is the same as minimising the sum of squares SS :=
∑n

i=1(yi − a − bxi)2 – just as in the Method of Least Squares. Summarising:

Theorem 1.8

For the normal model (∗), the Method of Least Squares and the Method
of Maximum Likelihood are equivalent ways of estimating the parameters a

and b.
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It is interesting to note here that the Method of Least Squares of Legendre
and Gauss belongs to the early nineteenth century, whereas Fisher’s Method of
Maximum Likelihood belongs to the early twentieth century. For background
on the history of statistics in that period, and an explanation of the ‘long pause’
between least squares and maximum likelihood, see Stigler (1986).

There remains the estimation of the parameter σ, equivalently the variance
σ2. Using maximum likelihood as above gives

∂�/∂σ =
−n

σ
+

1
σ3

∑n

i=1
(yi − a − bxi)2 = 0,

or
σ2 =

1
n

∑n

i=1
(yi − a − bxi)2.

At the maximum, a and b have their maximising values â, b̂ as above, and then
the maximising value σ̂ is given by

σ̂2 =
1
n

∑n

1
(yi − â − b̂xi)2 =

1
n

∑n

1
(yi − ŷi)2.

Note that the sum of squares SS above involves unknown parameters, a

and b. Because these are unknown, one cannot calculate this sum of squares
numerically from the data. In the next section, we will meet other sums of
squares, which can be calculated from the data – that is, which are functions
of the data, or statistics. Rather than proliferate notation, we will again denote
the largest of these sums of squares by SS; we will then break this down into
a sum of smaller sums of squares (giving a sum of squares decomposition). In
Chapters 3 and 4, we will meet multidimensional analogues of all this, which
we will handle by matrix algebra. It turns out that all sums of squares will be
expressible as quadratic forms in normal variates (since the parameters, while
unknown, are constant, the distribution theory of sums of squares with and
without unknown parameters is the same).

1.7 Sums of Squares

Recall the sample regression line in the form

y = y + b(x − x), b = sxy/sxx = Sxy/Sxx. (SRL)

We now ask how much of the variation in y is accounted for by knowledge of x

– or, as one says, by regression. The data are yi. The fitted values are ŷi, the
left-hand sides above with x on the right replaced by xi. Write

yi − y = (yi − ŷi) + (ŷi − y),
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square both sides and add. On the left, we get

SS :=
∑n

i=1
(yi − y)2,

the total sum of squares or sum of squares for short. On the right, we get three
terms:

SSR :=
∑

i
(ŷi − y)2,

which we call the sum of squares for regression,

SSE :=
∑

i
(yi − ŷi)2,

the sum of squares for error (since this sum of squares measures the errors
between the fitted values on the regression line and the data), and a cross term

∑

i
(yi − ŷi)(ŷi − y) = n

1
n

∑

i
(yi − ŷi)(ŷi − y) = n.(y − ŷ)(y − y).

By (SRL), ŷi − y = b(xi − x) with b = Sxy/Sxx = Sxy/S2
x, and

yi − ŷ = (yi − y) − b(xi − x).

So the right above is n times

1
n

∑

i
b(xi − x)[(yi − y) − b(xi − x)] = bSxy − b2S2

x = b
(
Sxy − bS2

x

)
= 0,

as b = Sxy/S2
x. Combining, we have

Theorem 1.9

SS = SSR + SSE.

In terms of the sample correlation coefficient r2, this yields as a corollary

Theorem 1.10

r2 = SSR/SS, 1 − r2 = SSE/SS.

Proof

It suffices to prove the first.

SSR

SS
=

∑
(ŷi − y)2

∑
(yi − y)2

=
∑

b2(xi − x)2
∑

(yi − y)2
=

b2S2
x

S2
y

=
S2

xy

S4
x

.
S2

x

S2
y

=
S2

xy

S2
xS2

y

= r2,

as b = Sxy/S2
x.
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The interpretation is that r2 = SSR/SS is the proportion of variability in y

accounted for by knowledge of x, that is, by regression (and 1− r2 = SSE/SS

is that unaccounted for by knowledge of x, that is, by error). This is just
the sample version of what we encountered in §1.5 on the bivariate normal
distribution, where (see below Fact 6 in §1.5) ρ2 has the interpretation of the
proportion of variability in y accounted for by knowledge of x. Recall that r2

tends to ρ2 in the large-sample limit, by the Law of Large Numbers, so the
population theory of §1.5 is the large-sample limit of the sample theory here.

Example 1.11

We wish to predict y, winning speeds (mph) in a car race, given the year x, by
a linear regression. The data for years one to ten are y=(140.3, 143.1, 147.4,
151.4, 144.3, 151.2, 152.9, 156.9, 155.7, 157.7). The estimates for a and b now
become â = 139.967 and b̂ = 1.841. Assuming normally distributed errors in
our regression model means that we can now calculate confidence intervals for
the parameters and express a level of uncertainty around these estimates. In
this case the formulae for 95% confidence intervals give (135.928, 144.005) for
a and (1.190, 2.491) for b.

Distribution theory. Consider first the case b = 0, when the slope is zero, there
is no linear trend, and the yi are identically distributed, N(a, σ2). Then y and
yi − y are also normally distributed, with zero mean. It is perhaps surprising,
but true, that

∑
(yi − y)2 and y are independent; we prove this in §2.5 below.

The distribution of the quadratic form
∑

(yi−y)2 involves the chi-square distri-
bution; see §2.1 below. In this case, SSR and SSE are independent chi-square
variates, and SS = SSR + SSE is an instance of chi-square decompositions,
which we meet in §3.5.

In the general case with the slope b non-zero, there is a linear trend, and a
sloping regression line is more successful in explaining the data than a flat one.
One quantifies this by using a ratio of sums of squares (ratio of independent
chi-squares) that increases when the slope b is non-zero, so large values are
evidence against zero slope. This statistic is an F-statistic (§2.3: F for Fisher).
Such F-tests may be used to test a large variety of such linear hypotheses
(Chapter 6).

When b is non-zero, the yi − y are normally distributed as before, but with
non-zero mean. Their sum of squares

∑
(yi − y)2 then has a non-central chi-

square distribution. The theory of such distributions is omitted here, but can
be found in, e.g., Kendall and Stuart (1979), Ch. 24.
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1.8 Two regressors

Suppose now that we have two regressor variables, u and v say, for the re-
sponse variable y. Several possible settings have been prefigured in the discus-
sion above:

1. Height.

Galton measured the father’s height u and the mother’s height v in each
case, before averaging to form the mid-parental height x := (u+v)/2. What
happens if we use u and v in place of x?

2. Predicting grain yields.

Here y is the grain yield after the summer harvest. Because the price that
the grain will fetch is determined by the balance of supply and demand, and
demand is fairly inflexible while supply is unpredictable, being determined
largely by the weather, it is of great economic and financial importance
to be able to predict grain yields in advance. The two most important
predictors are the amount of rainfall (in cm, u say) and sunshine (in hours,
v say) during the spring growing season. Given this information at the end
of spring, how can we use it to best predict yield in the summer harvest?
Of course, the actual harvest is still subject to events in the future, most
notably the possibility of torrential rain in the harvest season flattening the
crops. Note that for the sizeable market in grain futures, such predictions
are highly price-sensitive information.

3. House prices.

In the example above, house prices y depended on earnings u and interest
rates v. We would expect to be able to get better predictions using both
these as predictors than using either on its own.

4. Athletics times.

We saw that both age and distance can be used separately; one ought to
be able to do better by using them together.

5. Timber.

The economic value of a tree grown for timber depends on the volume
of usable timber when the tree has been felled and taken to the sawmill.
When choosing which trees to fell, it is important to be able to estimate
this volume without needing to fell the tree. The usual predictor variables
here are girth (in cm, say – measured by running a tape-measure round the
trunk at some standard height – one metre, say – above the ground) and
height (measured by use of a surveyor’s instrument and trigonometry).



1.8 Two regressors 27

With two regressors u and v and response variable y, given a sample of size
n of points (u1, v1, y1), . . . , (un, vn, yn) we have to fit a least-squares plane –
that is, we have to choose parameters a, b, c to minimise the sum of squares

SS :=
∑n

i=1
(yi − c − aui − bvi)2.

Taking ∂SS/∂c = 0 gives

∑n

i=1
(yi − c − aui − bvi) = 0 : c = y − au − bv.

We rewrite SS as

SS =
∑n

i=1
[(yi − y) − a(ui − u) − b(vi − v)]2.

Then ∂SS/∂a = 0 and ∂SS/∂b = 0 give

∑n

i=1
(ui − u)[(yi − y) − a(ui − u) − b(vi − v)] = 0,

∑n

i=1
(vi − v)[(yi − y) − a(ui − u) − b(vi − v)] = 0.

Multiply out, divide by n to turn the sums into averages, and re-arrange using
our earlier notation of sample variances and sample covariance: the above equa-
tions become

asuu + bsuv = syu,

asuv + bsvv = syv.

These are the normal equations for a and b. The determinant is

suusvv − s2
uv = suusvv(1 − r2

uv)

(since ruv := suv/(susv)). This is non-zero iff ruv �= ±1 – that is, iff the points
(u1, v1), . . . , (un, vn) are not collinear – and this is the condition for the normal
equations to have a unique solution.

The extension to three or more regressors may be handled in just the same
way: with p regressors we obtain p normal equations. The general case is best
handled by the matrix methods of Chapter 3.

Note 1.12

As with the linear regression case, under the assumption of iid N(0, σ2) errors
these formulas for a and b also give the maximum likelihood estimates. Further,



28 1. Linear Regression

100(1 − α)% confidence intervals can be returned routinely using standard
software packages, and in this case can be calculated as

c = ĉ ± tn−3(1 − α/2)s

√ ∑
u2

i

∑
v2

i − (
∑

uivi)
2

n
∑

u2
i Svv + n

∑
uivi [2nuv −

∑
uivi] − n2u2

∑
v2

i

,

a = â ± tn−3(1 − α/2)s

√
Svv

∑
u2

i Svv +
∑

uivi [2nuv −
∑

uivi] − nu2
∑

v2
i

,

b = b̂ ± tn−3(1 − α/2)s

√
Suu

∑
u2

i Svv +
∑

uivi [2nuv −
∑

uivi] − nu2
∑

v2
i

,

where

s =

√
1

n − 3

(
Syy − âSuy − b̂Svy

)
;

see Exercise 3.10.

Note 1.13 (Joint confidence regions)

In the above, we restrict ourselves to confidence intervals for individual param-
eters, as is done in e.g. S-Plus/R�. One can give confidence regions for two
or more parameters together, we refer for detail to Draper and Smith (1998),
Ch. 5.

EXERCISES

1.1. By considering the quadratic

Q(λ) :=
1
n

∑n

i=1
(λ(xi − x) + (yi − y))2,

show that the sample correlation coefficient r satisfies
(i) −1 ≤ r ≤ 1;
(ii) r = ±1 iff there is a linear relationship between xi and yi,

axi + byi = c (i = 1, . . . , n).

1.2. By considering the quadratic

Q(λ) := E[(λ(x − x) + (y − y))2],

show that the population correlation coefficient ρ satisfies
(i) −1≤ρ≤1;
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(ii) ρ = ±1 iff there is a linear relationship between x and y,
ax + by = c with probability 1.

(These results are both instances of the Cauchy–Schwarz inequality
for sums and integrals respectively.)

1.3. The effect of ageing on athletic performance. The data in Table 1.1
gives the first author’s times for the marathon and half-marathon
(in minutes).
(i) Fit the model log(time) = a + b log(age) and give estimates and

Age Half-marathon Age Marathon
46 85.62 46.5 166.87
48 84.90 47.0 173.25
49 87.88 47.5 175.17
50 87.88 49.5 178.97
51 87.57 50.5 176.63
57 90.25 54.5 175.03
59 88.40 56.0 180.32
60 89.45 58.5 183.02
61 96.38 59.5 192.33
62 94.62 60.0 191.73

Table 1.1 Data for Exercise 1.3

95% confidence intervals for a and b.
(ii) Compare your results with the runners’ Rule of Thumb that, for
ageing athletes, every year of age adds roughly half a minute to the
half-marathon time and a full minute to the marathon time.

1.4. Look at the data for Example 1.11 on car speeds. Plot the data along
with the fitted regression line. Fit the model y = a + bx + cx2 and
test for the significance of a quadratic term. Predict the speeds for
x=(-3, 13) and compare with the actual observations of 135.9 and
158.6 respectively. Which model seems to predict best out of sample?
Do your results change much when you add these two observations
to your sample?

1.5. Give the solution to the normal equations for the regression model
with two regressors in §1.8

1.6. Consider the data in Table 1.2 giving the first author’s half-marathon
times:
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Age (x) Time (y) Age (x) Time (y)
42 92.00 51 87.57
43 92.00 57 90.25
44 91.25 59 88.40
46 85.62 60 89.45
48 84.90 61 96.38
49 87.88 62 94.62
50 87.88 63 91.23

Table 1.2 Data for Exercise 1.6

(i) Fit the models y = a + bx and y = a + bx + cx2. Does the extra
quadratic term appear necessary?
(ii) Effect of club membership upon performance. Use the following
proxy v = (0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) to gauge the effect of club
membership. (v = 1 corresponds to being a member of a club).
Consider the model y = a+ bx+ cv. How does membership of a club
appear to affect athletic performance?

1.7. The following data, y = (9.8, 11.0, 13.2, 15.1, 16.0) give the price in-
dex y in years one to five.
(i) Which of the models y = a + bt, y = Aebt fits the data best?
(ii) Does the quadratic model, y = a + bt + ct2 offer a meaningful
improvement over the simple linear regression model?

1.8. The following data in Table 1.3 give the US population in millions.
Fit a suitable model and interpret your findings.

Year Population Year Population
1790 3.93 1890 62.90
1800 5.31 1900 76.00
1810 7.24 1910 92.00
1820 9.64 1920 105.70
1830 12.90 1930 122.80
1840 17.10 1940 131.70
1850 23.20 1950 151.30
1860 31.40 1960 179.30
1870 39.80 1970 203.20
1880 50.20

Table 1.3 Data for Exercise 1.8.
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1.9. One-dimensional change-of-variable formula. Let X be a continuous
random variable with density fX(x). Let Y = g(X) for some mono-
tonic function g(·).
(i) Show that

fY (x) = fX

(
g−1(x)

)
∣
∣
∣
∣
dg−1(x)

dx

∣
∣
∣
∣ .

(ii) Suppose X∼N(μ, σ2). Show that Y = eX has probability density
function

fY (x) =
1√
2πσ

exp
{

− (logx − μ)2

2σ2

}

.

[Note that this gives the log-normal distribution, important in the
Black–Scholes model of mathematical finance.]

1.10. The following exercise motivates a discussion of Student’s t distri-
bution as a normal variance mixture (see Exercise 1.11). Let U∼χ2

r

be a chi-squared distribution with r degrees of freedom (for which
see §2.1), with density

fU (x) =
x

1
2 r−1e−

1
2 x

2
1
2 rΓ ( r

2 )
.

(i) Show, using Exercise 1.9 or differentiation under the integral sign
that Y = r/U has density

fY (x) =
r

1
2 rx−1− 1

2 re−
1
2 rx−1

2
1
2 rΓ ( r

2 )
.

(ii) Show that if X∼Γ (a, b) with density

fX(x) =
xa−1bae−bx

Γ (a)
,

then Y = X−1 has density

fY (x) =
bax−1−ae−b/x

Γ (a)
.

Deduce the value of
∫ ∞

0

x−1−ae−b/xdx.
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1.11. Student’s t distribution. A Student t distribution t(r) with r degrees
of freedom can be constructed as follows:
1. Generate u from fY (·).
2. Generate x from N(0, u),
where fY (·) is the probability density in Exercise 1.10 (ii). Show that

ft(r)(x) =
Γ

(
r
2 + 1

2

)

√
πrΓ ( r

2 )

(

1 +
x2

r

)− 1
2 (r+1)

.

The Student t distribution often arises in connection with the chi-
square distribution (see Chapter 2). If X∼N(0, 1) and Y ∼χ2

r with
X and Y independent then

X
√

Y/r
∼t(r).



2
The Analysis of Variance (ANOVA)

While the linear regression of Chapter 1 goes back to the nineteenth century,
the Analysis of Variance of this chapter dates from the twentieth century, in
applied work by Fisher motivated by agricultural problems (see §2.6). We begin
this chapter with some necessary preliminaries, on the special distributions of
Statistics needed for small-sample theory: the chi-square distributions χ2(n)
(§2.1), the Fisher F -distributions F (m, n) (§2.3), and the independence of nor-
mal sample means and sample variances (§2.5). We shall generalise linear re-
gression to multiple regression in Chapters 3 and 4 – which use the Analysis
of Variance of this chapter – and unify regression and Analysis of Variance in
Chapter 5 on Analysis of Covariance.

2.1 The Chi-Square Distribution

We now define the chi-square distribution with n degrees of freedom (df), χ2(n).
This is the distribution of

X2
1 + . . . + X2

n,

with the Xi iid N(0, 1).
Recall (§1.5, Fact 9) the definition of the MGF, and also the definition of

the Gamma function,

Γ (t) :=
∫ ∞

0

e−xxt−1dx (t > 0)

N.H. Bingham and J.M. Fry, Regression: Linear Models in Statistics, 33
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(the integral converges for t > 0). One may check (by integration by parts)
that

Γ (n + 1) = n! (n = 0, 1, 2, . . .),

so the Gamma function provides a continuous extension to the factorial. It is
also needed in Statistics, as it comes into the normalisation constants of the
standard distributions of small-sample theory, as we see below.

Theorem 2.1

The chi-square distribution χ2(n) with n degrees of freedom has
(i) mean n and variance 2n,
(ii) MGF M(t) = 1/(1 − 2t)

1
2 n for t < 1

2 ,
(iii) density

f(x) =
1

2
1
2 nΓ

(
1
2n

) .x
1
2 n−1 exp

(

−1
2
x

)

(x > 0).

Proof

(i) For n = 1, the mean is 1, because a χ2(1) is the square of a standard normal,
and a standard normal has mean 0 and variance 1. The variance is 2, because
the fourth moment of a standard normal X is 3, and

var
(
X2

)
= E

[(
X2

)2
]
−

[
E

(
X2

)]2
= 3 − 1 = 2.

For general n, the mean is n because means add, and the variance is 2n because
variances add over independent summands (Haigh (2002), Th 5.5, Cor 5.6).
(ii) For X standard normal, the MGF of its square X2 is

M(t) :=
∫

etx2
φ(x) dx =

1√
2π

∫ ∞

−∞
etx2

e−
1
2 x2

dx =
1√
2π

∫ ∞

−∞
e−

1
2 (1−2t)x2

dx.

So the integral converges only for t < 1
2 ; putting y :=

√
1 − 2t.x gives

M(t) = 1/
√

1 − 2t

(

t <
1
2

)

for X∼N(0, 1).

Now when X , Y are independent, the MGF of their sum is the product of their
MGFs (see e.g. Haigh (2002), p.103). For etX , etY are independent, and the
mean of an independent product is the product of the means. Combining these,
the MGF of a χ2(n) is given by

M(t) = 1/(1 − 2t)
1
2 n

(

t <
1
2

)

for X∼χ2(n).
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(iii) First, f(.) is a density, as it is non-negative, and integrates to 1:

∫

f(x) dx =
1

2
1
2 nΓ

(
1
2n

)

∫ ∞

0

x
1
2 n−1 exp

(

−1
2
x

)

dx

=
1

Γ
(

1
2n

)

∫ ∞

0

u
1
2 n−1 exp(−u) du (u :=

1
2
x)

= 1,

by definition of the Gamma function. Its MGF is

M(t) =
1

2
1
2 nΓ

(
1
2n

)

∫ ∞

0

etxx
1
2 n−1 exp

(

−1
2
x

)

dx

=
1

2
1
2 nΓ

(
1
2n

)

∫ ∞

0

x
1
2 n−1 exp

(

−1
2
x(1 − 2t)

)

dx.

Substitute u := x(1 − 2t) in the integral. One obtains

M(t) = (1 − 2t)−
1
2 n 1

2
1
2 nΓ

(
1
2n

)

∫ ∞

0

u
1
2 n−1e−u du = (1 − 2t)−

1
2 n,

by definition of the Gamma function.

Chi-square Addition Property. If X1, X2 are independent, χ2(n1) and χ2(n2),
X1 + X2 is χ2(n1 + n2).

Proof

X1 = U2
1 + . . . + U2

n1
, X2 = U2

n1+1 + . . . + U2
n1+n2

, with Ui iid N(0, 1).
So X1 + X2 = U2

1 + · · · + U2
n1+n2

, so X1 + X2 is χ2(n1 + n2).

Chi-Square Subtraction Property. If X = X1 + X2, with X1 and X2 indepen-
dent, and X ∼ χ2(n1 + n2), X1 ∼ χ2(n1), then X2 ∼ χ2(n2).

Proof

As X is the independent sum of X1 and X2, its MGF is the product of their
MGFs. But X , X1 have MGFs (1 − 2t)−

1
2 (n1+n2), (1 − 2t)−

1
2 n1 . Dividing, X2

has MGF (1 − 2t)−
1
2 n2 . So X2 ∼ χ2(n2).
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2.2 Change of variable formula and Jacobians

Recall from calculus of several variables the change of variable formula for
multiple integrals. If in

I :=
∫

. . .

∫

A

f(x1, . . . , xn) dx1 . . . dxn =
∫

A

f(x) dx

we make a one-to-one change of variables from x to y — x = x(y) or xi =
xi(y1, . . . , yn) (i = 1, . . . , n) — let B be the region in y-space corresponding
to the region A in x-space. Then

I =
∫

A

f(x) dx =
∫

B

f(x(y))
∣
∣
∣
∣
∂x
∂y

∣
∣
∣
∣ dy =

∫

B

f(x(y))|J | dy,

where J , the determinant of partial derivatives

J :=
∂x
∂y

=
∂(x1, · · · , xn)
∂(y1, · · · , yn)

:= det
(

∂xi

∂yj

)

is the Jacobian of the transformation (after the great German mathematician
C. G. J. Jacobi (1804–1851) in 1841 – see e.g. Dineen (2001), Ch. 14). Note that
in one dimension, this just reduces to the usual rule for change of variables:
dx = (dx/dy).dy. Also, if J is the Jacobian of the change of variables x → y
above, the Jacobian ∂y/∂x of the inverse transformation y → x is J−1 (from
the product theorem for determinants: det(AB) = detA.detB – see e.g. Blyth
and Robertson (2002a), Th. 8.7).

Suppose now that X is a random n-vector with density f(x), and we wish
to change from X to Y, where Y corresponds to X as y above corresponds to
x: y = y(x) iff x = x(y). If Y has density g(y), then by above,

P (X ∈ A) =
∫

A

f(x) dx =
∫

B

f(x(y))
∣
∣
∣
∣
∂x
∂y

∣
∣
∣
∣ dy,

and also
P (X ∈ A) = P (Y ∈ B) =

∫

B

g(y)dy.

Since these hold for all B, the integrands must be equal, giving

g(y) = f(x(y))|∂x/∂y|

as the density g of Y.
In particular, if the change of variables is linear:

y = Ax+b, x = A−1y−A−1b, ∂y/∂x = |A|, ∂x/∂y = |A−1| = |A|−1
.
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2.3 The Fisher F-distribution

Suppose we have two independent random variables U and V , chi–square dis-
tributed with degrees of freedom (df) m and n respectively. We divide each by
its df, obtaining U/m and V/n. The distribution of the ratio

F :=
U/m

V/n

will be important below. It is called the F -distribution with degrees of freedom
(m, n), F (m, n). It is also known as the (Fisher) variance-ratio distribution.

Before introducing its density, we define the Beta function,

B(α, β) :=
∫ 1

0

xα−1(1 − x)β−1dx,

wherever the integral converges (α > 0 for convergence at 0, β > 0 for conver-
gence at 1). By Euler’s integral for the Beta function,

B(α, β) =
Γ (α)Γ (β)
Γ (α + β)

(see e.g. Copson (1935), §9.3). One may then show that the density of F (m, n) is

f(x) =
m

1
2 mn

1
2 n

B(1
2m, 1

2m)
.

x
1
2 (m−2)

(mx + n)
1
2 (m+n)

(m, n > 0, x > 0)

(see e.g. Kendall and Stuart (1977), §16.15, §11.10; the original form given by
Fisher is slightly different).

There are two important features of this density. The first is that (to within
a normalisation constant, which, like many of those in Statistics, involves ra-
tios of Gamma functions) it behaves near zero like the power x

1
2 (m−2) and near

infinity like the power x− 1
2 n, and is smooth and unimodal (has one peak). The

second is that, like all the common and useful distributions in Statistics, its
percentage points are tabulated. Of course, using tables of the F -distribution
involves the complicating feature that one has two degrees of freedom (rather
than one as with the chi-square or Student t-distributions), and that these
must be taken in the correct order. It is sensible at this point for the reader
to take some time to gain familiarity with use of tables of the F -distribution,
using whichever standard set of statistical tables are to hand. Alternatively,
all standard statistical packages will provide percentage points of F , t, χ2, etc.
on demand. Again, it is sensible to take the time to gain familiarity with the
statistical package of your choice, including use of the online Help facility.

One can derive the density of the F distribution from those of the χ2 distri-
butions above. One needs the formula for the density of a quotient of random
variables. The derivation is left as an exercise; see Exercise 2.1. For an intro-
duction to calculations involving the F distribution see Exercise 2.2.
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2.4 Orthogonality

Recall that a square, non-singular (n × n) matrix A is orthogonal if its inverse
is its transpose:

A−1 = AT .

We now show that the property of being independent N(0, σ2) is preserved
under an orthogonal transformation.

Theorem 2.2 (Orthogonality Theorem)

If X = (X1, . . . , Xn)T is an n-vector whose components are independent ran-
dom variables, normally distributed with mean 0 and variance σ2, and we
change variables from X to Y by

Y := AX

where the matrix A is orthogonal, then the components Yi of Y are again
independent, normally distributed with mean 0 and variance σ2.

Proof

We use the Jacobian formula. If A = (aij), since ∂Yi/∂Xj = aij , the Jacobian
∂Y/∂X = |A|. Since A is orthogonal, AAT = AA−1 = I. Taking determi-
nants, |A|.|AT | = |A|.|A| = 1: |A| = 1, and similarly |AT | = 1. Since length is
preserved under an orthogonal transformation,

∑n

1
Y 2

i =
∑n

1
X2

i .

The joint density of (X1, . . . , Xn) is, by independence, the product of the
marginal densities, namely

f(x1, . . . , xn) =
∏n

i=1

1√
2π

exp
{

−1
2
x2

i

}

=
1

(2π)
1
2 n

exp
{

−1
2

∑n

1
x2

i

}

.

From this and the Jacobian formula, we obtain the joint density of (Y1, . . . , Yn)
as

f(y1, . . . , yn) =
1

(2π)
1
2 n

exp
{

−1
2

∑n

1
y2

i

}

=
∏n

1

1√
2π

exp
{

−1
2
y2

i

}

.

But this is the joint density of n independent standard normals – and so
(Y1, . . . , Yn) are independent standard normal, as claimed.
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Helmert’s Transformation.
There exists an orthogonal n × n matrix P with first row

1√
n

(1, . . . , 1)

(there are many such! Robert Helmert (1843–1917) made use of one when
he introduced the χ2 distribution in 1876 – see Kendall and Stuart (1977),
Example 11.1 – and it is convenient to use his name here for any of them.) For,
take this vector, which spans a one-dimensional subspace; take n−1 unit vectors
not in this subspace and use the Gram–Schmidt orthogonalisation process (see
e.g. Blyth and Robertson (2002b), Th. 1.4) to obtain a set of n orthonormal
vectors.

2.5 Normal sample mean and sample variance

For X1, . . . , Xn independent and identically distributed (iid) random variables,
with mean μ and variance σ2, write

X :=
1
n

∑n

1
Xi

for the sample mean and

S2 :=
1
n

∑n

1
(Xi − X)2

for the sample variance.

Note 2.3

Many authors use 1/(n − 1) rather than 1/n in the definition of the sample
variance. This gives S2 as an unbiased estimator of the population variance
σ2. But our definition emphasizes the parallel between the bar, or average,
for sample quantities and the expectation for the corresponding population
quantities:

X =
1
n

∑n

1
Xi ↔ EX,

S2 =
(
X − X

)2 ↔ σ2 = E
[
(X − EX)2

]
,

which is mathematically more convenient.
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Theorem 2.4

If X1, . . . , Xn are iid N(μ, σ2),
(i) the sample mean X and the sample variance S2 are independent,
(ii) X is N(μ, σ2/n),
(iii) nS2/σ2 is χ2(n − 1).

Proof

(i) Put Zi := (Xi − μ)/σ, Z := (Z1, . . . , Zn)T ; then the Zi are iid N(0, 1),

Z = (X − μ)/σ, nS2/σ2 =
∑n

1
(Zi − Z)2.

Also, since
∑n

1
(Zi − Z)2 =

∑n

1
Z2

i − 2Z
∑n

1
Zi + nZ

2

=
∑n

1
Z2

i − 2Z.nZ + nZ
2

=
∑n

1
Z2

i − nZ
2

:
∑n

1
Z2

i =
∑n

1
(Zi − Z)2 + nZ

2
.

The terms on the right above are quadratic forms, with matrices A, B say, so
we can write ∑n

1
Z2

i = ZT AZ + ZT BX. (∗)
Put W := PZ with P a Helmert transformation – P orthogonal with first row
(1, . . . , 1)/

√
n:

W1 =
1√
n

∑n

1
Zi =

√
nZ; W 2

1 = nZ
2

= ZT BZ.

So
n∑

2

W 2
i =

n∑

1

W 2
i −W 2

1 =
n∑

1

Z2
i −ZT BZ = ZT AZ =

n∑

1

(Zi−Z)2 = nS2/σ2.

But the Wi are independent (by the orthogonality of P ), so W1 is independent
of W2, . . . , Wn. So W 2

1 is independent of
∑n

2W 2
i . So nS2/σ2 is independent of

n(X − μ)2/σ2, so S2 is independent of X, as claimed.
(ii) We have X = (X1 + . . . + Xn)/n with Xi independent, N(μ, σ2), so
with MGF exp(μt + 1

2σ2t2). So Xi/n has MGF exp(μt/n + 1
2σ2t2/n2), and X

has MGF
n∏

1

exp
(

μt/n +
1
2
σ2t2/n2

)

= exp
(

μt +
1
2
σ2t2/n

)

.

So X is N(μ, σ2/n).
(iii) In (∗), we have on the left

∑n
1Z2

i , which is the sum of the squares of n

standard normals Zi, so is χ2(n) with MGF (1−2t)−
1
2 n. On the right, we have
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two independent terms. As Z is N(0, 1/n),
√

nZ is N(0, 1), so nZ
2

= ZT BZ

is χ2(1), with MGF (1 − 2t)−
1
2 . Dividing (as in chi-square subtraction above),

ZT AZ =
∑n

1 (Zi − Z)2 has MGF (1 − 2t)−
1
2 (n−1). So ZT AZ =

∑n
1 (Zi − Z)2

is χ2(n − 1). So nS2/σ2 is χ2(n − 1).

Note 2.5

1. This is a remarkable result. We quote (without proof) that this property
actually characterises the normal distribution: if the sample mean and sample
variance are independent, then the population distribution is normal (Geary’s
Theorem: R. C. Geary (1896–1983) in 1936; see e.g. Kendall and Stuart (1977),
Examples 11.9 and 12.7).
2. The fact that when we form the sample mean, the mean is unchanged, while
the variance decreases by a factor of the sample size n, is true generally. The
point of (ii) above is that normality is preserved. This holds more generally: it
will emerge in Chapter 4 that normality is preserved under any linear operation.

Theorem 2.6 (Fisher’s Lemma)

Let X1, . . . , Xn be iid N(0, σ2). Let

Yi =
∑n

j=1
cijXj (i = 1, . . . , p, p < n),

where the row-vectors (ci1, . . . , cin) are orthogonal for i = 1, . . . , p. If

S2 =
∑n

1
X2

i −
∑p

1
Y 2

i ,

then
(i) S2 is independent of Y1, . . . , Yp,
(ii) S2 is χ2(n − p).

Proof

Extend the p × n matrix (cij) to an n × n orthogonal matrix C = (cij) by
Gram–Schmidt orthogonalisation. Then put

Y := CX,

so defining Y1, . . . , Yp (again) and Yp+1, . . . , Yn. As C is orthogonal, Y1, . . . , Yn

are iid N(0, σ2), and
∑n

1Y 2
i =

∑n
1X2

i . So

S2 =
(∑n

1
−

∑p

1

)
Y 2

i =
∑n

p+1
Y 2

i

is independent of Y1, . . . , Yp, and S2/σ2 is χ2(n − p).
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2.6 One-Way Analysis of Variance

To compare two normal means, we use the Student t-test, familiar from your
first course in Statistics. What about comparing r means for r > 2?

Analysis of Variance goes back to early work by Fisher in 1918 on math-
ematical genetics and was further developed by him at Rothamsted Exper-
imental Station in Harpenden, Hertfordshire in the 1920s. The convenient
acronym ANOVA was coined much later, by the American statistician John W.
Tukey (1915–2000), the pioneer of exploratory data analysis (EDA) in Statis-
tics (Tukey (1977)), and coiner of the terms hardware, software and bit from
computer science.

Fisher’s motivation (which arose directly from the agricultural field trials
carried out at Rothamsted) was to compare yields of several varieties of crop,
say – or (the version we will follow below) of one crop under several fertiliser
treatments. He realised that if there was more variability between groups (of
yields with different treatments) than within groups (of yields with the same
treatment) than one would expect if the treatments were the same, then this
would be evidence against believing that they were the same. In other words,
Fisher set out to compare means by analysing variability (‘variance’ – the term
is due to Fisher – is simply a short form of ‘variability’).

We write μi for the mean yield of the ith variety, for i = 1, . . . , r. For each i,
we draw ni independent readings Xij . The Xij are independent, and we assume
that they are normal, all with the same unknown variance σ2:

Xij ∼ N(μi, σ
2) (j = 1, . . . , ni, i = 1, . . . , r).

We write

n :=
∑r

1
ni

for the total sample size.
With two suffices i and j in play, we use a bullet to indicate that the suffix

in that position has been averaged out. Thus we write

Xi•, or Xi, :=
1
ni

∑ni

j=1
Xij (i = 1, . . . , r)

for the ith group mean (the sample mean of the ith sample)

X••, or X, :=
1
n

∑r

i=1

∑ni

j=1
Xij =

1
n

∑r

i=1
niXi•
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for the grand mean and,

S2
i :=

1
ni

∑ni

j=1
(Xij − Xi•)2

for the ith sample variance.
Define the total sum of squares

SS :=
∑r

i=1

∑ni

j=1
(Xij − X••)2 =

∑

i

∑

j
[(Xij − Xi•) + (Xi• − X••)]2.

As
∑

j
(Xij − Xi•) = 0

(from the definition of Xi• as the average of the Xij over j), if we expand the
square above, the cross terms vanish, giving

SS =
∑

i

∑

j
(Xij − Xi•)2

+
∑

i

∑

j
(Xij − Xi•)(Xi• − X••)

+
∑

i

∑

j
(Xi• − X••)2

=
∑

i

∑

j
(Xij − Xi•)2 +

∑

i

∑

j
Xi• − X••)2

=
∑

i
niS

2
i +

∑

i
ni(Xi• − X••)2.

The first term on the right measures the amount of variability within groups.
The second measures the variability between groups. We call them the sum of
squares for error (or within groups), SSE, also known as the residual sum of
squares, and the sum of squares for treatments (or between groups), respectively:

SS = SSE + SST,

where
SSE :=

∑

i
niS

2
i , SST :=

∑

i
ni(Xi• − X••)2.

Let H0 be the null hypothesis of no treatment effect:

H0 : μi = μ (i = 1, . . . , r).

If H0 is true, we have merely one large sample of size n, drawn from the
distribution N(μ, σ2), and so

SS/σ2 =
1
σ2

∑

i

∑

j
(Xij − X••)2 ∼ χ2(n − 1) under H0.

In particular,
E[SS/(n − 1)] = σ2 under H0.
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Whether or not H0 is true,

niS
2
i /σ2 =

1
σ2

∑

j
(Xij − Xi•)2 ∼ χ2(ni − 1).

So by the Chi-Square Addition Property

SSE/σ2 =
∑

i
niS

2
i /σ2 =

1
σ2

∑

i

∑

j
(Xij − Xi•)2 ∼ χ2(n − r),

since as n =
∑

ini, ∑r

i=1
(ni − 1) = n − r.

In particular,
E[SSE/(n− r)] = σ2.

Next,

SST :=
∑

i

ni(Xi• −X••)2, where X•• =
1
n

∑

i

niXi•, SSE :=
∑

i

niS
2
i .

Now S2
i is independent of Xi•, as these are the sample variance and sample

mean from the ith sample, whose independence was proved in Theorem 2.4.
Also S2

i is independent of Xj• for j �= i, as they are formed from different
independent samples. Combining, S2

i is independent of all the Xj•, so of their
(weighted) average X••, so of SST , a function of the Xj• and of X••. So
SSE =

∑
iniS

2
i is also independent of SST .

We can now use the Chi-Square Subtraction Property. We have, under H0,
the independent sum

SS/σ2 = SSE/σ2 +ind SST/σ2.

By above, the left-hand side is χ2(n − 1), while the first term on the right is
χ2(n − r). So the second term on the right must be χ2(r − 1). This gives:

Theorem 2.7

Under the conditions above and the null hypothesis H0 of no difference of
treatment means, we have the sum-of-squares decomposition

SS = SSE +ind SST,

where SS/σ2 ∼ χ2(n − 1), SSE/σ2 ∼ χ2(n − r) and SSE/σ2 ∼ χ2(r − 1).
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When we have a sum of squares, chi-square distributed, and we divide by
its degrees of freedom, we will call the resulting ratio a mean sum of squares,
and denote it by changing the SS in the name of the sum of squares to MS.
Thus the mean sum of squares is

MS := SS/df(SS) = SS/(n − 1)

and the mean sums of squares for treatment and for error are

MST := SST/df(SST ) = SST/(r − 1),

MSE := SSE/df(SSE) = SSE/(n − r).

By the above,
SS = SST + SSE;

whether or not H0 is true,

E[MSE] = E[SSE]/(n − r) = σ2;

under H0,

E[MS] = E[SS]/(n − 1) = σ2, and so also E[MST ]/(r − 1) = σ2.

Form the F -statistic
F := MST/MSE.

Under H0, this has distribution F (r− 1, n− r). Fisher realised that comparing
the size of this F -statistic with percentage points of this F -distribution gives
us a way of testing the truth or otherwise of H0. Intuitively, if the treatments
do differ, this will tend to inflate SST , hence MST , hence F = MST/MSE.
To justify this intuition, we proceed as follows. Whether or not H0 is true,

SST =
∑

i
ni(Xi• − X••)2 =

∑

i
niX

2
i• − 2X••

∑

i
niXi• + X2

••
∑

i
ni

=
∑

i
niX

2
i• − nX2

••,

since
∑

iniXi• = nX•• and
∑

ini = n. So

E[SST ] =
∑

i
niE

[
X2

i•
]
− nE

[
X2

••
]

=
∑

i
ni

[
var(Xi•) + (EXi•)2

]
− n

[
var(X••) + (EX••)2

]
.

But var(Xi•) = σ2/ni,

var(X••) = var(
1
n

∑r

i=1
niXi•) =

1
n2

∑r

1
n2

i var(Xi•),

=
1
n2

∑r

1
n2

i σ
2/ni = σ2/n



46 2. The Analysis of Variance (ANOVA)

(as
∑

ini = n). So writing

μ :=
1
n

∑

i
niμi = EX•• = E

1
n

∑

i
niXi•,

E(SST ) =
∑r

1
ni

[
σ2

ni
+ μ2

i

]

− n

[
σ2

n
+ μ2

]

= (r − 1)σ2 +
∑

i
niμ

2
i − nμ2

= (r − 1)σ2 +
∑

i
ni(μi − μ)2

(as
∑

ini = n, nμ =
∑

iniμi). This gives the inequality

E[SST ] ≥ (r − 1)σ2,

with equality iff

μi = μ (i = 1, . . . , r), i.e. H0 is true.

Thus when H0 is false, the mean of SST increases, so larger values of SST , so of
MST and of F = MST/MSE, are evidence against H0. It is thus appropriate
to use a one-tailed F -test, rejecting H0 if the value F of our F -statistic is too
big. How big is too big depends, of course, on our chosen significance level α,
and hence on the tabulated value Ftab := Fα(r − 1, n − r), the upper α-point
of the relevant F -distribution. We summarise:

Theorem 2.8

When the null hypothesis H0 (that all the treatment means μ1, . . . , μr are
equal) is true, the F -statistic F := MST/MSE = (SST/(r−1))/(SSE/(n−r))
has the F -distribution F (r − 1, n − r). When the null hypothesis is false, F

increases. So large values of F are evidence against H0, and we test H0 using
a one-tailed test, rejecting at significance level α if F is too big, that is, with
critical region

F > Ftab = Fα(r − 1, n− r).

Model Equations for One-Way ANOVA.

Xij = μi + εij (i = 1, . . . , r, j = 1, . . . , r), εij iid N(0, σ2).

Here μi is the main effect for the ith treatment, the null hypothesis is H0:
μ1 = . . . = μr = μ, and the unknown variance σ2 is a nuisance parameter. The
point of forming the ratio in the F -statistic is to cancel this nuisance parameter
σ2, just as in forming the ratio in the Student t-statistic in one’s first course
in Statistics. We will return to nuisance parameters in §5.1.1 below.
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Calculations.
In any calculation involving variances, there is cancellation to be made,

which is worthwhile and important numerically. This stems from the definition
and ‘computing formula’ for the variance,

σ2 := E
[
(X − EX)2

]
= E

[
X2

]
− (EX)2

and its sample counterpart

S2 := (X − X)2 = X2 − X
2
.

Writing T , Ti for the grand total and group totals, defined by

T :=
∑

i

∑

j
Xij , Ti :=

∑

j
Xij ,

so X•• = T/n, nX2
•• = T 2/n:

SS =
∑

i

∑

j
X2

ij − T 2/n,

SST =
∑

i
T 2

i /ni − T 2/n,

SSE = SS − SST =
∑

i

∑

j
X2

ij −
∑

i
T 2

i /ni.

These formulae help to reduce rounding errors and are easiest to use if carrying
out an Analysis of Variance by hand.

It is customary, and convenient, to display the output of an Analysis of
Variance by an ANOVA table, as shown in Table 2.1. (The term ‘Error’ can be
used in place of ‘Residual’ in the ‘Source’ column.)

Source df SS Mean Square F

Treatments r − 1 SST MST = SST/(r − 1) MST/MSE

Residual n − r SSE MSE = SSE/(n − r)
Total n − 1 SS

Table 2.1 One-way ANOVA table.

Example 2.9

We give an example which shows how to calculate the Analysis of Variance
tables by hand. The data in Table 2.2 come from an agricultural experiment. We
wish to test for different mean yields for the different fertilisers. We note that
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Fertiliser Yield
A 14.5, 12.0, 9.0, 6.5
B 13.5, 10.0, 9.0, 8.5
C 11.5, 11.0, 14.0, 10.0
D 13.0, 13.0, 13.5, 7.5
E 15.0, 12.0, 8.0, 7.0
F 12.5, 13.5, 14.0, 8.0

Table 2.2 Data for Example 2.9

we have six treatments so 6−1 = 5 degrees of freedom for treatments. The total
number of degrees of freedom is the number of observations minus one, hence
23. This leaves 18 degrees of freedom for the within-treatments sum of squares.
The total sum of squares can be calculated routinely as

∑
(yij − y2) =

∑
y2

ij −
ny2, which is often most efficiently calculated as

∑
y2

ij − (1/n) (
∑

yij)
2. This

calculation gives SS = 3119.25 − (1/24)(266.5)2 = 159.990. The easiest next
step is to calculate SST , which means we can then obtain SSE by subtraction
as above. The formula for SST is relatively simple and reads

∑
iTi/ni −T 2/n,

where Ti denotes the sum of the observations corresponding to the ith treatment
and T =

∑
ijyij . Here this gives SST = (1/4)(422 + 412 + 46.52 + 472 + 422 +

482)−1/24(266.5)2 = 11.802. Working through, the full ANOVA table is shown
in Table 2.3.

Source df Sum of Squares Mean Square F

Between fertilisers 5 11.802 2.360 0.287
Residual 18 148.188 8.233
Total 23 159.990

Table 2.3 One-way ANOVA table for Example 2.9

This gives a non-significant p-value compared with F3,16(0.95) = 3.239.
R calculates the p-value to be 0.914. Alternatively, we may place bounds on
the p-value by looking at statistical tables. In conclusion, we have no evidence
for differences between the various types of fertiliser.

In the above example, the calculations were made more simple by having
equal numbers of observations for each treatment. However, the same general
procedure works when this no longer continues to be the case. For detailed
worked examples with unequal sample sizes see Snedecor and Cochran (1989)
§12.10.
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S-Plus/R�.
We briefly describe implementation of one-way ANOVA in S-Plus/R�. For

background and details, see e.g. Crawley (2002), Ch. 15. Suppose we are study-
ing the dependence of yield on treatment, as above. [Note that this requires that
we set treatment to be a factor variable, taking discrete rather than continuous
values, which can be achieved by setting treatment <- factor(treatment).]
Then, using aov as short for ‘Analysis of Variance’, <- for the assignment op-
erator in S-Plus (read as ‘goes to’ or ‘becomes’) and ∼ as short for ‘depends
on’ or ‘is regressed on’, we use

model <- aov (yield ~ treatment)

to do the analysis, and ask for the summary table by

summary(model)

A complementary anova command is summarised briefly in Chapter 5.2.1.

2.7 Two-Way ANOVA; No Replications

In the agricultural experiment considered above, problems may arise if the
growing area is not homogeneous. The plots on which the different treatments
are applied may differ in fertility – for example, if a field slopes, nutrients tend
to leach out of the soil and wash downhill, so lower-lying land may give higher
yields than higher-lying land. Similarly, differences may arise from differences
in drainage, soil conditions, exposure to sunlight or wind, crops grown in the
past, etc. If such differences are not taken into account, we will be unable to
distinguish between differences in yield resulting from differences in treatment,
our object of study, and those resulting from differences in growing conditions
– plots, for short – which are not our primary concern. In such a case, one
says that treatments are confounded with plots – we would have no way of
separating the effect of one from that of the other.

The only way out of such difficulties is to subdivide the growing area into
plots, each of which can be treated as a homogeneous growing area, and then
subdivide each plot and apply different treatments to the different sub-plots or
blocks. In this way we will be ‘comparing like with like’, and avoid the pitfalls
of confounding.

When allocating treatments to blocks, we may wish to randomise, to avoid
the possibility of inadvertently introducing a treatment-block linkage. Relevant
here is the subject of design of experiments; see §9.3.
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In the sequel, we assume for simplicity that the block sizes are the same
and the number of treatments is the same for each block. The model equations
will now be of the form

Xij = μ + αi + βj + εij (i = 1, . . . , r, j = 1, . . . , n).

Here μ is the grand mean (or overall mean); αi is the ith treatment effect (we
take

∑
iαi = 0, otherwise this sum can – and so should – be absorbed into μ;

βj is the jth block effect (similarly, we take
∑

jβj = 0); the errors εij are iid
N(0, σ2), as before.

Recall the terms Xi• from the one-way case; their counterparts here are
similarly denoted X•j . Start with the algebraic identity

(Xij − X••) = (Xij − Xi• − X•j + X••) + (Xi• − X••) + (X•j − X••).

Square and add. One can check that the cross terms cancel, leaving only the
squared terms. For example, (Xij−Xi•−X•j +X••) averages over i to −(X•j−
X••), and over j to −(X•j − X••), while each of the other terms on the right
involves only one of i and j, and so is unchanged when averaged over the other.
One is left with

∑r

i=1

∑n

j=1
(Xij − X••)2 =

∑r

i=1

∑n

j=1
(Xij − Xi• − X•j + X••)2

+n
∑r

i=1
(Xi• − X••)2

+r
∑n

j=1
(X•j − X••)2.

We write this as
SS = SSE + SST + SSB,

giving the total sum of squares SS as the sum of the sum of squares for error
(SSE), the sum of squares for treatments (SST ) (as before) and a new term,
the sum of squares for blocks, (SSB). The degrees of freedom are, respectively,
nr − 1 for SS (the total sample size is nr, and we lose one df in estimating σ),
r − 1 for treatments (as before), n − 1 for blocks (by analogy with treatments
– or equivalently, there are n block parameters βj , but they are subject to one
constraint,

∑
jβj = 0), and (n− 1)(r− 1) for error (to give the correct total in

the df column in the table below). Independence of the three terms on the right
follows by arguments similar to those in the one-way case. We can accordingly
construct a two-way ANOVA table, as in Table 2.4.

Here we have two F -statistics, FT := MST/MSE for treatment effects
and FB := MSB/MSE for block effects. Accordingly, we can test two null
hypotheses, one, H0(T ), for presence of a treatment effect and one, H0(B), for
presence of a block effect.
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Source df SS Mean Square F

Treatments r − 1 SST MST = SST
r−1 MST/MSE

Blocks n − 1 SSB MSB = SSB
n−1 MSB/MSE

Residual (r − 1)(n − 1) SSE MSE = SSE
(r−1)(n−1)

Total rn − 1 SS

Table 2.4 Two-way ANOVA table

Note 2.10

In educational psychology (or other behavioural sciences), ‘treatments’ might
be different questions on a test, ‘blocks’ might be individuals. We take it for
granted that individuals differ. So we need not calculate MSB nor test H0(B)
(though packages such as S-Plus will do so automatically). Then H0(T ) as
above tests for differences between mean scores on questions in a test. (Where
the questions carry equal credit, such differences are undesirable – but may
well be present in practice!)

Implementation. In S-Plus, the commands above extend to

model <- aov(yield ~ treatment + block)

summary(model)

Example 2.11

We illustrate the two-way Analysis of Variance with an example. We return
to the agricultural example in Example 2.9, but suppose that the data can be
linked to growing areas as shown in Table 2.5. We wish to test the hypoth-
esis that there are no differences between the various types of fertiliser. The

Fertiliser Area 1 Area 2 Area 3 Area 4
A 14.5 12.0 9.0 6.5
B 13.5 10.0 9.0 8.5
C 11.5 11.0 14.0 10.0
D 13.0 13.0 13.5 7.5
E 15.0 12.0 8.0 7.0
F 12.5 13.5 14.0 8.0

Table 2.5 Data for Example 2.11
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sum-of-squares decomposition for two-way ANOVA follows in an analogous
way to the one-way case. There are relatively simple formulae for SS, SST ,
and SSB, meaning that SSE can easily be calculated by subtraction. In detail,
these formulae are

SS =
∑

ij
X2

ij −
1
nr

(∑
Xij

)2

,

SST =
(
X2

1• + . . . + X2
r•

)
/n − 1

nr

(∑
Xij

)2

,

SSB =
(
X2

•1 + . . . + X2
•n

)
/r − 1

nr

(∑
Xij

)2

,

with SSE = SS − SST − SSB. Returning to our example, we see that

SS = 3119.25− (1/24)(266.5)2 = 159.990,

SST = (422 + 412 + 46.52 + 472 + 422 + 482)/4 − (1/24)(266.5)2 = 11.802,

SSB = (802 + 71.52 + 67.52 + 47.52)/6 − (1/24)(266.5)2 = 94.865.

By subtraction SSE = 159.9896 − 11.80208 − 94.86458 = 53.323. These cal-
culations lead us to the ANOVA table in Table 2.6. Once again we have no
evidence for differences amongst the 6 types of fertiliser. The variation that
does occur is mostly due to the effects of different growing areas.

Source df S.S. MS F p

Fertilisers 5 11.802 2.360 0.664 0.656
Area 3 94.865 31.622 8.895 0.001

Residual 15 53.323 3.555
Total 23 159.990

Table 2.6 Two-way ANOVA table for Example 2.11

2.8 Two-Way ANOVA: Replications and

Interaction

In the above, we have one reading Xij for each cell, or combination of the
ith treatment and the jth block. But we may have more. Suppose we have
m replications – independent readings – per cell. We now need three suffices
rather than two. The model equations will now be of the form

Xijk = μ+αi +βj +γij + εijk (i = 1, . . . , r, j = 1, . . . , n, k = 1, . . . , m).
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Here the new parameters γij measure possible interactions between treatment
and block effects. This allows one to study situations in which effects are not
additive. Although we use the word interaction here as a technical term in
Statistics, this is fully consistent with its use in ordinary English. We are all
familiar with situations where, say, a medical treatment (e.g. a drug) may in-
teract with some aspect of our diet (e.g. alcohol). Similarly, two drugs may
interact (which is why doctors must be careful in checking what medication
a patient is currently taking before issuing a new prescription). Again, differ-
ent alcoholic drinks may interact (folklore wisely counsels against mixing one’s
drinks), etc.

Arguments similar to those above lead to the following sum-of-squares de-
composition:
∑r

i=1

∑n

j=1
(Xijk − X•••)2 =

∑

i

∑

j

∑

k
(Xijk − Xij•)2

+nm
∑

i
(Xi•• − X•••)2

+rm
∑

j
(X•j• − X•••)2

+m
∑

i

∑

j
(Xij• − Xi•• − X•j• + X•••)2.

We write this as
SS = SSE + SST + SSB + SSI,

where the new term is the sum of squares for interactions. The degrees of free-
dom are r−1 for treatments as before, n−1 for blocks as before, (r−1)(n−1)
for interactions (the product of the effective number of parameters for treat-
ments and for blocks), rnm−1 in total (there are rnm readings), and rn(m−1)
for error (so that the df totals on the right and left above agree).
Implementation. The S-Plus/R� commands now become

model <- aov(yield ~ treatment * block)

summary(model)

This notation is algebraically motivated, and easy to remember. With ad-
ditive effects, we used a +. We now use a ∗, suggestive of the possibility of
‘product’ terms representing the interactions. We will encounter many more
such situations in the next chapter, when we deal with multiple regression.

The summary table now takes the form of Table 2.7. We now have three
F -statistics, FT and FB as before, and now FI also, which we can use to test
for the presence of interactions.
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Source df SS Mean Square F

Treatments r − 1 SST MST = SST
r−1 MST/MSE

Blocks n − 1 SSB MSB = SSB
n−1 MSB/MSE

Interaction (r − 1)(n − 1) SSI MSI = SSI
(r−1)(n−1) MSI/MSE

Residual rn(m − 1) SSE MSE = SSE
rn(m−1)

Total rmn − 1 SS

Table 2.7 Two-way ANOVA table with interactions

Example 2.12

The following example illustrates the procedure for two-way ANOVA with
interactions. The data in Table 2.8 link the growth of hamsters of different
coat colours when fed different diets.

Light coat Dark coat
Diet A 6.6, 7.2 8.3, 8.7
Diet B 6.9, 8.3 8.1, 8.5
Diet C 7.9, 9.2 9.1, 9.0

Table 2.8 Data for Example 2.12

The familiar formula for the total sum of squares gives SS = 805.2 −
(97.82/12) = 8.13. In a similar manner to Example 2.11, the main effects sum-
of-squares calculations give

SST =
∑ y2

i••
nm

−

(∑
ijkyijk

)2

rmn
,

SSB =
y2
•j•
rm

−

(∑
ijkyijk

)2

rmn
,

and in this case give SST = (1/4)(30.82 + 31.82 + 35.22) − (97.82/12) = 2.66
and SSB = (1/6)(46.12 + 51.72) − (97.82/12) = 2.613. The interaction sum of
squares can be calculated as a sum of squares corresponding to every cell in
the table once the main effects of SST and SSB have been accounted for. The
calculation is

SSI =
1
m

∑
y2

ij• − SST − SSB −

(∑
ijkyijk

)2

rmn
,
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which in this example gives SSI = (1/2)(13.82 + 172 + 15.22 + 16.62 + 17.12 +
18.12) − 2.66 − 2.613 − (97.82/12) = 0.687. As before, SSE can be calculated
by subtraction, and the ANOVA table is summarised in Table 2.9. The results

Source df SS MS F p

Diet 2 2.66 1.33 3.678 0.091
Coat 1 2.613 2.613 7.226 0.036

Diet:Coat 2 0.687 0.343 0.949 0.438
Residual 5 2.17 0.362

Total 11 8.13

Table 2.9 Two-way ANOVA with interactions for Example 2.12.

suggest that once we take into account the different types of coat, the effect of
the different diets is seen to become only borderline significant. The diet:coat
interaction term is seen to be non-significant and we might consider in a sub-
sequent analysis the effects of deleting this term from the model.

Note 2.13 (Random effects)

The model equation for two-way ANOVA with interactions is

yijk = μ + αi + βj + γij + εijk,

with
∑

iαi =
∑

jβj =
∑

ijγij = 0. Here the αi, βj , γij are constants, and the
randomness is in the errors εijk. Suppose, however, that the βi were themselves
random (in the examination set-up above, the suffix i might refer to the ith
question, and suffix j to the jth candidate; the candidates might be chosen at
random from a larger population). We would then use notation such as

yijk = μ + αi + bj + cij + εijk.

Here we have both a fixed effect (for questions, i) and a random effect (for
candidates, j). With both fixed and random effects, we speak of a mixed model;
see §9.1.

With only random effects, we have a random effects model, and use notation
such as

yijk = μ + ai + bj + cij + εijk.

We restrict for simplicity here to the model with no interaction terms:

yijk = μ + ai + bj + εijk.
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Assuming independence of the random variables on the right, the variances add
(see e.g. Haigh (2002), Cor. 5.6):

σ2
y = σ2

a + σ2
b + σ2

ε ,

in an obvious notation. The terms on the right are called variance components;
see e.g. Searle, Casella and McCulloch (1992) for a detailed treatment.

Variance components can be traced back to work of Airy in 1861 on as-
tronomical observations (recall that astronomy also led to the development of
Least Squares by Legendre and Gauss).

EXERCISES

2.1. (i) Show that if X, Y are positive random variables with joint density
f(x, y) their quotient Z := X/Y has density

h(z) =
∫ ∞

0

yf(yz, y) dy (z > 0).

So if X, Y are independent with densities f, g,

h(z) =
∫ ∞

0

yf(yz)g(y) dy (z > 0).

(ii) If X has density f and c > 0, show that X/c has density

fX/c(x) = cf(cx).

(iii) Deduce that the Fisher F-distribution F (m, n) has density

h(z) = m
1
2 mn

1
2 n Γ (1

2m + 1
2n)

Γ (1
2m)Γ (1

2n)
· z

1
2 m−1

(n + mz)
1
2 (m+n)

(z > 0).

2.2. Using tables or S-Plus/R� produce bounds or calculate the exact
probabilities for the following statements. [Note. In S-Plus/R� the
command pf may prove useful.]
(i) P(X < 1.4) where X∼F5,17,
(ii) P(X > 1) where X∼F1,16,
(iii) P(X < 4) where X∼F1,3,
(iv) P(X > 3.4) where X∼F19,4,
(v) P(ln X > −1.4) where X∼F10,4.
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Fat 1 Fat 2 Fat 3 Fat 4
164 178 175 155
172 191 193 166
168 197 178 149
177 182 171 164
156 185 163 170
195 177 176 168

Table 2.10 Data for Exercise 2.3.

2.3. Doughnut data. Doughnuts absorb fat during cooking. The following
experiment was conceived to test whether the amount of fat absorbed
depends on the type of fat used. Table 2.10 gives the amount of fat
absorbed per batch of doughnuts. Produce the one-way Analysis of
Variance table for these data. What is your conclusion?

2.4. The data in Table 2.11 come from an experiment where growth is
measured and compared to the variable photoperiod which indicates
the length of daily exposure to light. Produce the one-way ANOVA
table for these data and determine whether or not growth is affected
by the length of daily light exposure.

Very short Short Long Very long
2 3 3 4
3 4 5 6
1 2 1 2
1 1 2 2
2 2 2 2
1 1 2 3

Table 2.11 Data for Exercise 2.4

2.5. Unpaired t-test with equal variances. Under the null hypothesis the
statistic t defined as

t =
√

n1n2

n1 + n2

(
X1 − X2 − (μ1 − μ2)

)

s

should follow a t distribution with n1 + n2 − 2 degrees of freedom,
where n1 and n2 denote the number of observations from samples 1
and 2 and s is the pooled estimate given by

s2 =
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
,
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where

s2
1 =

1
n1 − 1

(
∑

x2
1 − (n1 − 1)x2

1),

s2
2 =

1
n2 − 1

(
∑

x2
2 − (n2 − 1)x2

2).

(i) Give the relevant statistic for a test of the hypothesis μ1 = μ2

and n1 = n2 = n.
(ii) Show that if n1 = n2 = n then one-way ANOVA recovers the
same results as the unpaired t-test. [Hint. Show that the F -statistic
satisfies F1,2(n−1) = t22(n−1)].

2.6. Let Y1, Y2 be iid N(0, 1). Give values of a and b such that

a(Y1 − Y2)2 + b(Y1 + Y2)2∼χ2
2.

2.7. Let Y1, Y2, Y3 be iid N(0, 1). Show that

1
3

[
(Y1 − Y2)

2 + (Y2 − Y3)
2 + (Y3 − Y1)

2
]
∼χ2

2.

Generalise the above result for a sample Y1, Y2, . . ., Yn of size n.

2.8. The data in Table 2.12 come from an experiment testing the num-
ber of failures out of 100 planted soyabean seeds, comparing four
different seed treatments, with no treatment (‘check’). Produce the
two-way ANOVA table for this data and interpret the results. (We
will return to this example in Chapter 8.)

Treatment Rep 1 Rep 2 Rep 3 Rep 4 Rep 5
Check 8 10 12 13 11
Arasan 2 6 7 11 5
Spergon 4 10 9 8 10

Semesan, Jr 3 5 9 10 6
Fermate 9 7 5 5 3

Table 2.12 Data for Exercise 2.8

2.9. Photoperiod example revisited. When we add in knowledge of plant
genotype the full data set is as shown in Table 2.13. Produce the
two-way ANOVA table and revise any conclusions from Exercise 2.4
in the light of these new data as appropriate.
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Genotype Very short Short Long Very Long
A 2 3 3 4
B 3 4 5 6
C 1 2 1 2
D 1 1 2 2
E 2 2 2 2
F 1 1 2 3

Table 2.13 Data for Exercise 2.9

2.10. Two-way ANOVA with interactions. Three varieties of potato are
planted on three plots at each of four locations. The yields in bushels
are given in Table 2.14. Produce the ANOVA table for these data.
Does the interaction term appear necessary? Describe your conclu-
sions.

Variety Location 1 Location 2 Location 3 Location 4
A 15, 19, 22 17, 10, 13 9, 12, 6 14, 8, 11
B 20, 24, 18 24, 18, 22 12, 15, 10 21, 16, 14
C 22, 17, 14 26, 19, 21 10, 5, 8 19, 15, 12

Table 2.14 Data for Exercise 2.10

2.11. Two-way ANOVA with interactions. The data in Table 2.15 give
the gains in weight of male rats from diets with different sources
and different levels of protein. Produce the two-way ANOVA table
with interactions for these data. Test for the presence of interactions
between source and level of protein and state any conclusions that
you reach.

Source High Protein Low Protein
Beef 73, 102, 118, 104, 81, 90, 76, 90, 64, 86,

107, 100, 87, 117, 111 51, 72, 90, 95, 78
Cereal 98, 74, 56, 111, 95, 107, 95, 97, 80, 98,

88, 82, 77, 86, 92 74, 74, 67, 89, 58
Pork 94, 79, 96, 98, 102, 49, 82, 73, 86, 81,

102, 108, 91, 120, 105 97, 106, 70, 61, 82

Table 2.15 Data for Exercise 2.11



3
Multiple Regression

3.1 The Normal Equations

We saw in Chapter 1 how the model

yi = a + bxi + εi, εi iid N(0, σ2)

for simple linear regression occurs. We saw also that we may need to consider
two or more regressors. We dealt with two regressors u and v, and could deal
with three regressors u, v and w similarly. But in general we will need to be
able to handle any number of regressors, and rather than rely on the finite
resources of the alphabet it is better to switch to suffix notation, and use the
language of vectors and matrices. For a random vector X, we will write EX for
its mean vector (thus the mean of the ith coordinate Xi is E(Xi) = (EX)i),
and var(X) for its covariance matrix (whose (i, j) entry is cov(Xi, Xj)). We
will use p regressors, called x1, . . . , xp, each with a corresponding parameter
β1, . . . , βp (‘p for parameter’). In the equation above, regard a as short for a.1,
with 1 as a regressor corresponding to a constant term (the intercept term in
the context of linear regression). Then for one reading (‘a sample of size 1’) we
have the model

y = β1x1 + . . . + βpxp + ε, εi ∼ N(0, σ2).

In the general case of a sample of size n, we need two suffices, giving the model
equations

yi = β1xi1 + . . . + βpxip + εi, εi iid N(0, σ2) (i = 1, . . . , n).

N.H. Bingham and J.M. Fry, Regression: Linear Models in Statistics, 61
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-969-5 3,
c© Springer-Verlag London Limited 2010
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Writing the typical term on the right as xijβj , we recognise the form of a matrix
product. Form y1, . . . , yn into a column vector y, ε1, . . . , εn into a column vector
ε, β1, . . . , βp into a column vector β, and xij into a matrix X (thus y and ε are
n × 1, β is p × 1 and X is n × p). Then our system of equations becomes one
matrix equation, the model equation

y = Xβ + ε. (ME)

This matrix equation, and its consequences, are the object of study in this
chapter. Recall that, as in Chapter 1, n is the sample size – the larger the
better – while p, the number of parameters, is small – as small as will suffice.
We will have more to say on choice of p later. Typically, however, p will be at
most five or six, while n could be some tens or hundreds. Thus we must expect
n to be much larger than p, which we write as

n >> p.

In particular, the n×p matrix X has no hope of being invertible, as it is not
even square (a common student howler).

Note 3.1

We pause to introduce the objects in the model equation (ME) by name.
On the left is y, the data, or response vector. The last term ε is the error or
error vector; β is the parameter or parameter vector. Matrix X is called the
design matrix. Although its (i, j) entry arose above as the ith value of the jth
regressor, for most purposes from now on xij is just a constant. Emphasis shifts
from these constants to the parameters, βj .

Note 3.2

To underline this shift of emphasis, it is often useful to change notation and
write A for X , when the model equation becomes

y = Aβ + ε. (ME)

Lest this be thought a trivial matter, we mention that Design of Experiments
(initiated by Fisher) is a subject in its own right, on which numerous books
have been written, and to which we return in §9.3.

We will feel free to use either notation as seems most convenient at the
time. While X is the natural choice for straight regression problems, as in this
chapter, it is less suitable in the general Linear Model, which includes related
contexts such as Analysis of Variance (Chapter 2) and Analysis of Covariance
(Chapter 5). Accordingly, we shall usually prefer A to X for use in developing
theory.
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We make a further notational change. As we shall be dealing from now on
with vectors rather than scalars, there is no need to remind the reader of this
by using boldface type. We may thus lighten the notation by using y for y,
etc.; thus we now have

y = Aβ + ε, (ME)

for use in this chapter (in Chapter 4 below, where we again use x as a scalar
variable, we use x for a vector variable).

From the model equation

yi =
∑p

j=1
aijβj + εi, εi iid N(0, σ2),

the likelihood is

L =
1

σn(2π)
1
2 n

∏n

i=1
exp

{

−1
2

(
yi −

∑p

j=1
aijβj

)2

/σ2

}

=
1

σn(2π)
1
2 n

exp
{

−1
2

∑n

i=1

(
yi −

∑p

j=1
aijβj

)2

/σ2

}

,

and the log-likelihood is

� := log L = const − n log σ − 1
2

[∑n

i=1

(
yi −

∑p

j=1
aijβj

)2
]

/σ2.

As before, we use Fisher’s Method of Maximum Likelihood, and maximise with
respect to βr: ∂�/∂βr = 0 gives

∑n

i=1
air

(
yi −

∑p

j=1
aijβj

)
= 0 (r = 1, . . . , p),

or
∑p

j=1

(∑n

i=1
airaij

)
βj =

∑n

i=1
airyi.

Write C = (cij) for the p × p matrix

C := AT A,

(called the information matrix – see Definition 3.10 below), which we note is
symmetric: CT = C. Then

cij =
∑n

k=1
(AT )ikAkj =

∑n

k=1
akiakj .

So this says ∑p

j=1
crjβj =

∑n

i=1
airyi =

∑n

i=1
(AT )riyi.
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In matrix notation, this is

(Cβ)r = (AT y)r (r = 1, . . . , p),

or combining,
Cβ = AT y, C := AT A. (NE)

These are the normal equations, the analogues for the general case of the normal
equations obtained in Chapter 1 for the cases of one and two regressors.

3.2 Solution of the Normal Equations

Our next task is to solve the normal equations for β. Before doing so, we need
to check that there exists a unique solution, the condition for which is, from
Linear Algebra, that the information matrix C := AT A should be non-singular
(see e.g. Blyth and Robertson (2002a), Ch. 4). This imposes an important
condition on the design matrix A. Recall that the rank of a matrix is the
maximal number of independent rows or columns. If this is as big as it could
be given the size of the matrix, the matrix is said to have full rank, otherwise it
has deficient rank. Since A is n×p with n >> p, A has full rank if its rank is p.

Recall from Linear Algebra that a square matrix C is non-negative definite if

xT Cx ≥ 0

for all vectors x, while C is positive definite if

xT Cx > 0 ∀x �= 0

(see e.g. Blyth and Robertson (2002b), Ch. 8). A positive definite matrix is
non-singular, so invertible; a non-negative definite matrix need not be.

Lemma 3.3

If A (n × p, n > p) has full rank p, C := AT A is positive definite.

Proof

As A has full rank, there is no vector x with Ax = 0 other than the zero vector
(such an equation would give a non-trivial linear dependence relation between
the columns of A). So

(Ax)T Ax = xT AT Ax = xT Cx = 0
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only for x = 0, and is > 0 otherwise. This says that C is positive definite, as
required.

Note 3.4

The same proof shows that C := AT A is always non-negative definite, regard-
less of the rank of A.

Theorem 3.5

For A full rank, the normal equations have the unique solution

β̂ = C−1AT y = (AT A)−1AT y. (β̂)

Proof

In the full-rank case, C is positive definite by Lemma 3.3, so invertible, so we
may solve the normal equations to obtain the solution above.

From now on, we restrict attention to the full-rank case: the design matrix
A, which is n×p, has full rank p.

Note 3.6

The distinction between the full- and deficient-rank cases is the same as that
between the general and singular cases that we encountered in Chapter 1 in
connection with the bivariate normal distribution. We will encounter it again
later in Chapter 4, in connection with the multivariate normal distribution. In
fact, this distinction bedevils the whole subject. Linear dependence causes rank-
deficiency, in which case we should identify the linear dependence relation, use it
to express some regressors (or columns of the design matrix) in terms of others,
eliminate the redundant regressors or columns, and begin again in a lower
dimension, where the problem will have full rank. What is worse is that near-
linear dependence – which when regressors are at all numerous is not uncommon
– means that one is close to rank-deficiency, and this makes things numerically
unstable. Remember that in practice, we work numerically, and when one is
within rounding error of rank-deficiency, one is close to disaster. We shall return
to this vexed matter later (§4.4), in connection with multicollinearity. We note
in passing that Numerical Linear Algebra is a subject in its own right; for a
monograph treatment, see e.g. Golub and Van Loan (1996).
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Just as in Chapter 1, the functional form of the normal likelihood means
that maximising the likelihood minimises the sum of squares

SS := (y − Aβ)T (y − Aβ) =
∑n

i=1

(
yi −

∑p

j=1
aijβj

)2

.

Accordingly, we have as before the following theorem.

Theorem 3.7

The solutions (β̂) to the normal equations (NE) are both the maximum-
likelihood estimators and the least-squares estimators of the parameters β.

There remains the task of estimating the remaining parameter σ. At the
maximum, β = β̂. So taking ∂SS/∂σ = 0 in the log-likelihood

� := log L = const − n log σ − 1
2

[∑n

i=1

(
yi −

∑p

j=1
aijβj

)2
]

/σ2

gives, at the maximum,

−n

σ
+

1
σ3

∑n

i=1

(
yi −

∑p

j=1
aijβj

)2

= 0.

At the maximum, β = β̂; rearranging, we have at the maximum that

σ2 =
1
n

∑n

i=1

(
yi −

∑p

j=1
aij β̂j

)2

.

This sum of squares is, by construction, the minimum value of the total sum
of squares SS as the parameter β varies, the minimum being attained at the
least-squares estimate β̂. This minimised sum of squares is called the sum of
squares for error, SSE:

SSE =
∑n

i=1

(
yi −

∑p

j=1
aij β̂j

)2

=
(
y − Aβ̂

)T (
y − Aβ̂

)
,

so-called because, as we shall see in Corollary 3.23 below, the unbiased estima-
tor of the error variance σ2 is σ̂2 = SSE/(n − p).

We call
ŷ := Aβ̂

the fitted values, and
e := y − ŷ,

the difference between the actual values (data) and fitted values, the residual
vector. If e = (e1, . . . , en), the ei are the residuals, and the sum of squares for
error

SSE =
∑n

i=1
(yi − ŷi)2 =

∑n

i=1
e2

i

is the sum of squared residuals.
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Note 3.8

We pause to discuss unbiasedness and degrees of freedom (df). In a first course
in Statistics, one finds the maximum-likelihood estimators (MLEs) μ̂, σ̂2 of the
parameters μ, σ2 in a normal distribution N(μ, σ2). One finds

μ̂ = x, σ̂2 = s2
x :=

1
n

∑n

i=1
(xi − x)2

(and the distributions are given by x ∼ N(μ, σ2/n) and nσ̂2/σ2 ∼ χ2(n − 1)).
But this is a biased estimator of σ2; to get an unbiased estimator, one has to
replace n in the denominator above by n−1 (in distributional terms: the mean
of a chi-square is its df). This is why many authors use n − 1 in place of n in
the denominator when they define the sample variance (and we warned, when
we used n in Chapter 1, that this was not universal!), giving what we will call
the unbiased sample variance,

s2
u :=

1
(n − 1)

∑n

i=1
(xi − x)2.

The problem is that to estimate σ2, one has first to estimate μ by x. Every time
one has to estimate a parameter from the data, one loses a degree of freedom.
In this one-dimensional problem, the df accordingly decreases from n to n− 1.

Returning to the general case: here we have to estimate p parameters,
β1, . . . , βp. Accordingly, we lose p degrees of freedom, and to get an unbiased
estimator we have to divide, not by n as above but by n−p, giving the estimator

σ̂2 =
1

(n − p)
SSE.

Since n is much larger than p, the difference between this (unbiased) estimator
and the previous (maximum-likelihood) version is not large, but it is worth-
while, and so we shall work with the unbiased version unless otherwise stated.
We find its distribution in §3.4 below (and check it is unbiased – Corollary 3.23).

Note 3.9 (Degrees of Freedom)

Recall that n is our sample size, that p is our number of parameters, and that
n is much greater than p. The need to estimate p parameters, which reduces
the degrees of freedom from n to n− p, thus effectively reduces the sample size
by this amount. We can think of the degrees of freedom as a measure of the
amount of information available to us.

This interpretation is in the minds of statisticians when they prefer one
procedure to another because it ‘makes more degrees of freedom available’ for



68 3. Multiple Regression

the task in hand. We should always keep the degrees of freedom of all relevant
terms (typically, sums of squares, or quadratic forms in normal variates) in
mind, and think of keeping this large as being desirable.

We rewrite our conclusions so far in matrix notation. The total sum of
squares is

SS :=
∑n

i=1

(
yi −

∑p

j=1
aijβj

)2

= (y − Aβ)T (y − Aβ) ;

its minimum value with respect to variation in β is the sum of squares for error

SSE =
∑n

i=1

(
yi −

∑p

j=1
aij β̂j

)2

=
(
y − Aβ̂

)T (
y − Aβ̂

)
,

where β̂ is the solution to the normal equations (NE). Note that SSE is a
statistic – we can calculate it from the data y and β̂ = C−1AT y, unlike SS

which contains unknown parameters β.
One feature is amply clear already. To carry through a regression analysis in

practice, we must perform considerable matrix algebra – or, with actual data,
numerical matrix algebra – involving in particular the inversion of the p × p

matrix C := AT A. With matrices of any size, the calculations may well be
laborious to carry out by hand. In particular, matrix inversion to find C−1 will
be unpleasant for matrices larger than 2×2, even though C – being symmetric
and positive definite – has good properties. For matrices of any size, one needs
computer assistance. The package MATLAB�1 is specially designed with ma-
trix operations in mind. General mathematics packages such as Mathematica�2

or Maple�3 have a matrix inversion facility; so too do a number of statistical
packages – for example, the solve command in S-Plus/R�.
QR Decomposition

The numerical solution of the normal equations ((NE) in §3.1, (β̂) in The-
orem 3.5) is simplified if the design matrix A (which is n × p, and of full rank
p) is given its QR decomposition

A = QR,

where Q is n × p and has orthonormal columns – so

QT Q = I

1 MATLAB�, Simulink� and Symbolic Math ToolboxTM are trademarks of The
MathWorks, Inc., 3 Apple Hill Drive, Natick, MA, 01760-2098, USA, http://www.
mathworks.com

2 Mathematica� is a registered trademark of Wolfram Research, Inc., 100 Trade
Center Drive, Champaign, IL 61820-7237, USA, http://www.wolfram.com

3 MapleTM is a trademark of Waterloo Maple Inc., 615 Kumpf Drive, Waterloo,
Ontario, Canada N2V 1K8, http://www.maplesoft.com

http://www.mathworks.com
http://www.mathworks.com
http://www.wolfram.com
http://www.maplesoft.com


3.2 Solution of the Normal Equations 69

– and R is p × p, upper triangular, and non-singular (has no zeros on the
diagonal). This is always possible; see below. The normal equations AT Aβ̂ =
AT y then become

RT QT QRβ̂ = RT QT y,

or
RT Rβ̂ = RT QT y,

as QT Q = I, or
Rβ̂ = QT y,

as R, and so also RT , is non-singular. This system of linear equations for
β̂ has an upper triangular matrix R, and so may be solved simply by back-
substitution, starting with the bottom equation and working upwards.

The QR decomposition is just the expression in matrix form of the process
of Gram–Schmidt orthogonalisation, for which see e.g. Blyth and Robertson
(2002b), Th. 1.4. Write A as a row of its columns,

A = (a1, . . . , ap);

the n-vectors ai are linearly independent as A has full rank p. Write q1 :=
a1/‖a1‖, and for j = 2, . . . , p,

qj := wj/‖wj‖, where wj := aj −
∑j−1

k=1
(aT

k qk)qk.

Then the qj are orthonormal (are mutually orthogonal unit vectors), which
span the column-space of A (Gram-Schmidt orthogonalisation is this process
of passing from the aj to the qj). Each qj is a linear combination of a1, . . . , aj ,
and the construction ensures that, conversely, each aj is a linear combination
of q1, . . . , qj . That is, there are scalars rkj with

aj =
∑j

k=1
rkjqk (j = 1, . . . , p).

Put rkj = 0 for k > j. Then assembling the p columns aj into the matrix A as
above, this equation becomes

A = QR,

as required.

Note 3.10

Though useful as a theoretical tool, the Gram–Schmidt orthogonalisation pro-
cess is not numerically stable. For numerical implementation, one needs a stable
variant, the modified Gram-Schmidt process. For details, see Golub and Van
Loan (1996), §5.2. They also give other forms of the QR decomposition (House-
holder, Givens, Hessenberg etc.).
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3.3 Properties of Least-Squares Estimators

We have assumed normal errors in our model equations, (ME) of §3.1. But
(until we need to assume normal errors in §3.5.2), we may work more generally,
and assume only

Ey = Aβ, var(y) = σ2I. (ME∗)

We must then restrict ourselves to the Method of Least Squares, as without
distributional assumptions we have no likelihood function, so cannot use the
Method of Maximum Likelihood.

Linearity. The least-squares estimator

β̂ = C−1AT y

is linear in the data y.

Unbiasedness.

Eβ̂ = C−1AT Ey = C−1AT Aβ = C−1Cβ = β :

β̂ is an unbiased estimator of β.

Covariance matrix.

var(β̂) = var(C−1AT y) = C−1AT (var(y))(C−1AT )T

= C−1AT .σ2I.AC−1 (C = CT )

= σ2.C−1AT .AC−1

= σ2C−1 (C = AT A).

We wish to keep the variances of our estimators of our p parameters βi small,
and these are the diagonal elements of the covariance matrix above; similarly
for the covariances (off-diagonal elements). The smaller the variances, the more
precise our estimates, and the more information we have. This motivates the
next definition.

Definition 3.11

The matrix C := AT A, with A the design matrix, is called the information
matrix.
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Note 3.12

1. The variance σ2 in our errors εi (which we of course wish to keep small) is
usually beyond our control. However, at least at the stage of design and plan-
ning of the experiment, the design matrix A may well be within our control;
hence so will be the information matrix C := AT A, which we wish to maximise
(in some sense), and hence so will be C−1, which we wish to minimise in some
sense. We return to this in §9.3 in connection with Design of Experiments.
2. The term information matrix is due to Fisher. It is also used in the context of
parameter estimation by the method of maximum likelihood. One has the like-
lihood L(θ), with θ a vector parameter, and the log-likelihood �(θ) := log L(θ).
The information matrix is the negative of the Hessian (matrix of second deriva-
tives) of the log-likelihood: I(θ) := (Iij(θ))

p
i,j=1 , when

Iij(θ) := − ∂2

∂θi∂θj
�(θ).

Under suitable regularity conditions, the maximum likelihood estimator θ̂ is
asymptotically normal and unbiased, with variance matrix (nI(θ))−1; see e.g.
Rao (1973), 5a.3, or Cramér (1946), §33.3.

Unbiased linear estimators. Now let β̃ := By be any unbiased linear estimator
of β (B a p × n matrix). Then

Eβ̃ = BEy = BAβ = β

– and so β̃ is an unbiased estimator for β – iff

BA = I.

Note that
var(β̃) = Bvar(y)BT = B.σ2I.BT = σ2BBT .

In the context of linear regression, as here, it makes sense to restrict at-
tention to linear estimators. The two most obviously desirable properties of
such estimators are unbiasedness (to get the mean right), and being minimum
variance (to get maximum precision). An estimator with both these desirable
properties may be termed a best estimator. A linear one is then a best linear
unbiased estimator or BLUE (such acronyms are common in Statistics, and
useful; an alternative usage is minimum variance unbiased linear estimate, or
MVULE, but this is longer and harder to say). It is remarkable that the least-
squares estimator that we have used above is best in this sense, or BLUE.
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Theorem 3.13 (Gauss–Markov Theorem)

Among all unbiased linear estimators β̃ = By of β, the least-squares estimator
β̂ = C−1AT y has the minimum variance in each component. That is β̂ is the
BLUE.

Proof

By above, the covariance matrix of an arbitrary unbiased linear estimate β̃ =
By and of the least-squares estimator β̂ are given by

var(β̃) = σ2BBT and var(β̂) = σ2C−1.

Their difference (which we wish to show is non-negative) is

var(β̃) − var(β̂) = σ2[BBT − C−1].

Now using symmetry of C, C−1, and BA = I (so AT BT = I) from above,

(B − C−1AT )(B − C−1AT )T = (B − C−1AT )(BT − AC−1).

Further,

(B − C−1AT )(BT − AC−1) = BBT − BAC−1 − C−1AT BT + C−1AT AC−1

= BBT − C−1 − C−1 + C−1 (C = AT A)

= BBT − C−1.

Combining,

var(β̃) − var(β̂) = σ2(B − C−1AT )(B − C−1AT )T .

Now for a matrix M = (mij),

(MMT )ii =
∑

k
mik(MT )ki =

∑

k
m2

ik,

the sum of the squares of the elements on the ith row of matrix M . So the ith
diagonal entry above is

var(β̃i) = var(β̂i) + σ2(sum of squares of elements on ith row of B − C−1AT ).

So
var(β̃i) ≥ var(β̂i),

and
var(β̃i) = var(β̂i)

iff B−C−1AT has ith row zero. So some β̃i has greater variance than β̂i unless
B = C−1AT (i.e., unless all rows of B − C−1AT are zero) – that is, unless
β̃ = By = C−1AT y = β̂, the least-squares estimator, as required.
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One may summarise all this as: whether or not errors are assumed normal,
LEAST SQUARES IS BEST.

Note 3.14

The Gauss–Markov theorem is in fact a misnomer. It is due to Gauss, in the
early eighteenth century; it was treated in the book Markov (1912) by A. A.
Markov (1856–1922). A misreading of Markov’s book gave rise to the impression
that he had rediscovered the result, and the name Gauss–Markov theorem has
stuck (partly because it is useful!).

Estimability. A linear combination cT β =
∑p

i=1ciβi, with c = (c1, . . . , cp)T

a known p-vector, is called estimable if it has an unbiased linear estimator,
bT y =

∑n
i=1biyi, with b = (b1, . . . , bn)T a known n-vector. Then

E(bT y) = bT E(y) = bT Aβ = cT β.

This can hold identically in the unknown parameter β iff

cT = bT A,

that is, c is a linear combination (by the n-vector b) of the n rows (p-vectors)
of the design matrix A. The concept is due to R. C. Bose (1901–1987) in 1944.

In the full-rank case considered here, the rows of A span a space of full
dimension p, and so all linear combinations are estimable. But in the defective
rank case with rank k < p, the estimable functions span a space of dimension
k, and non-estimable linear combinations exist.

3.4 Sum-of-Squares Decompositions

We define the sum of squares for regression, SSR, by

SSR := (β̂ − β)T C(β̂ − β).

Since this is a quadratic form with matrix C which is positive definite, we
have SSR ≥ 0, and SSR > 0 unless β̂ = β, that is, unless the least-squares
estimator is exactly right (which will, of course, never happen in practice).

Theorem 3.15 (Sum-of-Squares Decomposition)

SS = SSR + SSE. (SSD)
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Proof

Write
y − Aβ = (y − Aβ̂) + A(β̂ − β).

Now multiply the vector on each side by its transpose (that is, form the sum
of squares of the coordinates of each vector). On the left, we obtain

SS = (y − Aβ)T (y − Aβ),

the total sum of squares. On the right, we obtain three terms. The first squared
term is

SSE = (y − Aβ̂)T (y − Aβ̂),

the sum of squares for error. The second squared term is

(A(β̂ − β))T A(β̂ − β) = (β̂ − β)T AT A(β̂ − β) = (β̂ − β)T C(β̂ − β) = SSR,

the sum of squares for regression. The cross terms on the right are

(y − Aβ̂)T A(β̂ − β)

and its transpose, which are the same as both are scalars. But

AT (y − Aβ̂) = AT y − AT Aβ̂ = AT y − Cb̂ = 0,

by the normal equations (NE) of §3.1-3.2. Transposing,

(y − Aβ̂)T A = 0.

So both cross terms vanish, giving SS = SSR + SSE, as required.

Corollary 3.16

We have that

SSE = min
β

SS,

the minimum being attained at the least-squares estimator β̂ = C−1AT y.

Proof

SSR ≥ 0, and = 0 iff β = β̂.
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We now introduce the geometrical language of projections, to which we
return in e.g. §3.5.3 and §3.6 below. The relevant mathematics comes from
Linear Algebra; see the definition below. As we shall see, doing regression with p

regressors amounts to an orthogonal projection on an appropriate p-dimensional
subspace in n-dimensional space. The sum-of-squares decomposition involved
can be visualised geometrically as an instance of Pythagoras’s Theorem, as in
the familiar setting of plane or solid geometry.

Definition 3.17

Call a linear transformation P : V →V a projection onto V1 along V2 if V is the
direct sum V = V1⊕V2, and if x = (x1, x2)T with Px = x1.

Then (Blyth and Robertson (2002b), Ch.2, Halmos (1979), §41) V1 =
Im P = Ker (I − P ), V2 = Ker P = Im (I − P ).

Recall that a square matrix is idempotent if it is its own square M2 = M .
Then (Halmos (1979), §41), M is idempotent iff it is a projection.

For use throughout the rest of the book, with A the design matrix and
C := AT A the information matrix, we write

P := AC−1AT

(‘P for projection’ – see below). We note that P is symmetric. Note also

Py = AC−1AT y = Aβ̂,

by the normal equations (NE).

Lemma 3.18

P and I − P are idempotent, and so are projections.

Proof

P 2 = AC−1AT .AC−1AT = AC−1AT = P :

P 2 = P.

(I − P )2 = I − 2P + P 2 = I − 2P + P = I − P.
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We now rewrite the two terms SSR and SSE on the right in Theorem 3.15
in the language of projections. Note that the first expression for SSE below
shows again that it is a statistic – a function of the data (not involving unknown
parameters), and so can be calculated from the data.

Theorem 3.19

SSE = yT (I − P )y = (y − Aβ)T (I − P )(y − Aβ),

SSR = (y − Aβ)T P (y − Aβ).

Proof

As SSE :=
(
y − Aβ̂

)T (
y − Aβ̂

)
, and Aβ̂ = Py,

SSE =
(
y − Aβ̂

)T (
y − Aβ̂

)

= (y − Py)T (y − Py) = yT (I − P )(I − P )y = yT (I − P )y,

as I − P is a projection.
For SSR, we have that

SSR :=
(
β̂ − β

)T

C
(
β̂ − β

)
=
(
β̂ − β

)T

AT A
(
β̂ − β

)
.

But
(
β̂ − β

)
= C−1AT y − β = C−1AT y − C−1AT Aβ = C−1AT (y − Aβ),

so

SSR = (y − Aβ)T AC−1.AT A.C−1AT (y − Aβ)

= (y − Aβ)T AC−1AT (y − Aβ) (AT A = C)

= (y − Aβ)T P (y − Aβ),

as required. The second formula for SSE follows from this and (SSD) by
subtraction.

Coefficient of Determination
The coefficient of determination is defined as R2, where R is the (sample)
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correlation coefficient of the data and the fitted values that is of the pairs
(yi, ŷi):

R :=
∑

(yi − y)
(
ŷi − ŷ

)
/

√
∑

(yi − y)2
∑(

ŷi − ŷ
)2

.

Thus −1 ≤ R ≤ 1, 0 ≤ R2 ≤ 1, and R2 is a measure of the goodness of fit of
the fitted values to the data.

Theorem 3.20

R2 = 1 − SSE
∑

(yi − y)2
.

For reasons of continuity, we postpone the proof to §3.4.1 below. Note that
R2 = 1 iff SSE = 0, that is, all the residuals are 0, and the fitted values are the
exact values. As noted above, we will see in §3.6 that regression (estimating p

parameters from n data points) amounts to a projection of the n-dimensional
data space onto an p-dimensional hyperplane. So R2 = 1 iff the data points lie
in an p-dimensional hyperplane (generalising the situation of Chapter 1, where
R2 = 1 iff the data points lie on a line). In our full-rank (non-degenerate) case,
this will not happen (see Chapter 4 for the theory of the relevant multivariate
normal distribution), but the bigger R2 is (or the smaller SSE is), the better
the fit of our regression model to the data.

Note 3.21

R2 provides a useful summary of the proportion of the variation in a data set
explained by a regression. However, as discussed in Chapters 5 and 11 of Draper
and Smith (1998) high values of R2 can be misleading. In particular, we note
that the values R2 will tend to increase as additional terms are added to the
model, irrespective of whether those terms are actually needed. An adjusted
R2 statistic which adds a penalty to complex models can be defined as

R2
a = 1 − (1 − R2)

(
n − 1
n − p

)

,

where n is the number of parameters and n−p is the number of residual degrees
of freedom; see Exercises 3.3, and §5.2 for a treatment of models penalised for
complexity.

We note a result for later use.
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Proposition 3.22 (Trace Formula)

E(xT Ax) = trace(A.var(x)) + ExT .A.Ex.

Proof

xT Ax =
∑

ij
aijxixj ,

so by linearity of E,
E[xT Ax] =

∑

ij
aijE[xixj ].

Now cov(xi, xj) = E(xixj) − (Exi)(Exj), so

E
[
xT Ax

]
=

∑

ij
aij [cov(xixj) + Exi.Exj ]

=
∑

ij
aijcov(xixj) +

∑

ij
aij .Exi.Exj .

The second term on the right is ExT AEx. For the first, note that

trace(AB) =
∑

i
(AB)ii =

∑

ij
aijbji =

∑

ij
aijbij ,

if B is symmetric. But covariance matrices are symmetric, so the first term on
the right is trace(A var(x)), as required.

Corollary 3.23

trace(P ) = p, trace(I − P ) = n − p, E(SSE) = (n − p)σ2.

So σ̂2 := SSE/(n − p) is an unbiased estimator for σ2.

Proof

By Theorem 3.19, SSE is a quadratic form in y − Aβ with matrix I − P =
I − AC−1AT . Now

trace(I − P ) = trace(I − AC−1AT ) = trace(I) − trace(AC−1AT ).

But trace(I) = n (as here I is the n × n identity matrix), and as trace(AB) =
trace(BA) (see Exercise 3.12),

trace(P ) = trace(AC−1AT ) = trace(C−1AT A) = trace(I) = p,
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as here I is the p × p identity matrix. So

trace(I − P ) = trace(I − AC−1AT ) = n − p.

Since Ey = Aβ and var(y) = σ2I, the Trace Formula gives

E(SSE) = (n − p)σ2.

This last formula is analogous to the corresponding ANOVA formula
E(SSE) = (n − r)σ2 of §2.6. In §4.2 we shall bring the subjects of regres-
sion and ANOVA together.

3.4.1 Coefficient of determination

We now give the proof of Theorem 3.20, postponed in the above.

Proof

As at the beginning of Chapter 3 we may take our first regressor as 1, cor-
responding to the intercept term (this is not always present, but since R is
translation-invariant, we may add an intercept term without changing R). The
first of the normal equations then results from differentiating

∑
(yi − β1 − a2iβ2 − . . . − apiβp)2 = 0

with respect to β1, giving
∑

(yi − β1 − a2iβ2 − . . . − apiβp) = 0.

At the minimising values β̂j , this says
∑

(yi − ŷi) = 0.

So
y = ŷ, (a)

and also
∑

(yi − ŷi)(ŷi − y) =
∑

(yi − ŷi)ŷi

= (y − ŷ)T ŷ

= (y − Py)T Py

= yT (I − P )Py

= yT (P − P 2)y,
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so ∑
(yi − ŷi)(ŷi − y) = 0, (b)

as P is a projection. So
∑

(yi − y)2 =
∑

[(yi − ŷi) + (ŷi − y)]2 =
∑

(yi − ŷi)2 +
∑

(ŷi − y)2, (c)

since the cross-term is 0. Also, in the definition of R,
∑

(yi − y)(ŷi − ŷ) =
∑

(yi − y)(ŷi − y) (by (a))

=
∑

[(yi − ŷi) + (ŷi − y)](ŷi − y)

=
∑

(ŷi − y)2 (by (b)).

So

R2 =

[∑
(ŷi − y)2

]2

(
∑

(yi − y)2
∑

(ŷi − y)2)
=
∑

(ŷi − y)2
∑

(yi − y)2
.

By (c),

R2 =
∑

(ŷi − y)2
∑

(yi − ŷi)2 +
∑

(ŷi − y)2

= 1 −
∑

(yi − ŷi)2∑
(yi − ŷi)2 +

∑
(ŷi − y)2

= 1 − SSE
∑

(yi − y)2
,

by (c) again and the definition of SSE.

3.5 Chi-Square Decomposition

Recall (Theorem 2.2) that if x = x1, . . . , xn is N(0, I) – that is, if the xi are
iid N(0, 1) – and we change variables by an orthogonal transformation B to

y := Bx,

then also y ∼ N(0, I). Recall from Linear Algebra (e.g. Blyth and Robert-
son (2002a) Ch. 9) that λ is an eigenvalue of a matrix A with eigenvector
x (�= 0) if

Ax = λx

(x is normalised if xT x = Σix
2
i = 1, as is always possible).
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Recall also (see e.g. Blyth and Robertson (2002b), Corollary to Theorem
8.10) that if A is a real symmetric matrix, then A can be diagonalised by an
orthogonal transformation B, to D, say:

BT AB = D

(see also Theorem 4.12 below, Spectral Decomposition) and that (see e.g. Blyth
and Robertson (2002b), Ch. 9) if λ is an eigenvalue of A,

|D − λI| =
∣
∣BT AB − λI

∣
∣ =

∣
∣BT AB − λBT B

∣
∣ =

∣
∣BT

∣
∣ |A − λI| |B| = 0.

Then a quadratic form in normal variables with matrix A is also a quadratic
form in normal variables with matrix D, as

xT Ax = xT BDBT x = yT Dy, y := BT x.

3.5.1 Idempotence, Trace and Rank

Recall that a (square) matrix M is idempotent if M2 = M .

Proposition 3.24

If B is idempotent,

(i) its eigenvalues λ are 0 or 1,

(ii) its trace is its rank.

Proof

(i) If λ is an eigenvalue of B, with eigenvector x, Bx = λx with x �= 0. Then

B2x = B(Bx) = B(λx) = λ(Bx) = λ(λx) = λ2x,

so λ2 is an eigenvalue of B2 (always true – that is, does not need idempo-
tence). So

λx = Bx = B2x = . . . = λ2x,

and as x �= 0, λ = λ2, λ(λ − 1) = 0: λ = 0 or 1.

(ii)

trace(B) = sum of eigenvalues

= # non-zero eigenvalues

= rank(B).
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Corollary 3.25

rank(P ) = p, rank(I − P ) = n − p.

Proof

This follows from Corollary 3.23 and Proposition 3.24.

Thus n = p + (n− p) is an instance of the Rank–Nullity Theorem (‘dim source
=dim Ker + dim Im’): Blyth and Robertson (2002a), Theorem 6. 4) applied
to P , I − P .

3.5.2 Quadratic forms in normal variates

We will be interested in symmetric projection (so idempotent) matrices P .
Because their eigenvalues are 0 and 1, we can diagonalise them by orthogonal
transformations to a diagonal matrix of 0s and 1s. So if P has rank r, a quadratic
form xT Px can be reduced to a sum of r squares of standard normal variates.
By relabelling variables, we can take the 1s to precede the 0s on the diagonal,
giving

xT Px = y2
1 + . . . + y2

r , yi iid N(0, σ2).

So xT Px is σ2 times a χ2(r)-distributed random variable.
To summarise:

Theorem 3.26

If P is a symmetric projection of rank r and the xi are independent N(0, σ2),
the quadratic form

xT Px ∼ σ2χ2(r).

3.5.3 Sums of Projections

As we shall see below, a sum-of-squares decomposition, which expresses a sum
of squares (chi-square distributed) as a sum of independent sums of squares
(also chi-square distributed) corresponds to a decomposition of the identity I
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as a sum of orthogonal projections. Thus Theorem 3.13 corresponds to I =
P + (I −P ), but in Chapter 2 we encountered decompositions with more than
two summands (e.g., SS = SSB + SST + SSI has three). We turn now to the
general case.

Suppose that P1, . . . , Pk are symmetric projection matrices with sum the
identity:

I = P1 + . . . + Pk.

Take the trace of both sides: the n × n identity matrix I has trace n. Each Pi

has trace its rank ni, by Proposition 3.24, so

n = n1 + . . . + nk.

Then squaring,

I = I2 =
∑

i
P 2

i +
∑

i<j
PiPj =

∑

i
Pi +

∑

i<j
PiPj .

Taking the trace,

n =
∑

ni +
∑

i<j
trace(PiPj) = n +

∑

i<j
trace(PiPj) :

∑

i<j
trace(PiPj) = 0.

Hence

trace(PiPj) = trace(P 2
i P 2

j ) (since Pi, Pj projections)

= trace((PjPi).(PiPj)) (trace(AB) = trace(BA))

= trace((PiPj)T .(PiPj)),

since (AB)T = BT AT and Pi, Pj symmetric and where we have defined
A = PiPiPj , B = Pj . Hence we have that

trace(PiPj)≥0,

since for a matrix M

trace(MT M) =
∑

i
(MT M)ii

=
∑

i

∑

j
(MT )ij(M)ji

=
∑

i

∑

j
m2

ij

≥ 0.

So we have a sum of non-negative terms being zero. So each term must be zero.
That is, the square of each element of PiPj must be zero. So each element of
PiPj is zero, so matrix PiPj is zero:

PiPj = 0 (i �= j).
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This is the condition that the linear forms P1x, . . . , Pkx be independent (The-
orem 4.15 below). Since the Pix are independent, so are the (Pix)T (Pix) =
xT PT

i Pix, that is, xT Pix as Pi is symmetric and idempotent. That is, the
quadratic forms xT P1x, . . . , xT Pkx are also independent.

We now have
xT x = xT P1x + . . . + xT Pkx.

The left is σ2χ2(n); the ith term on the right is σ2χ2(ni).
We summarise our conclusions.

Theorem 3.27 (Chi-Square Decomposition Theorem)

If
I = P1 + . . . + Pk,

with each Pi a symmetric projection matrix with rank ni, then

(i) the ranks sum:
n = n1 + . . . + nk;

(ii) each quadratic form Qi := xT Pix is chi-square:

Qi ∼ σ2χ2(ni);

(iii) the Qi are mutually independent.

(iv)
PiPj = 0 (i �=j).

Property (iv) above is called orthogonality of the projections Pi; we study or-
thogonal projections in §3.6 below.

This fundamental result gives all the distribution theory that we shall use.
In particular, since F -distributions are defined in terms of distributions of in-
dependent chi-squares, it explains why we constantly encounter F -statistics,
and why all the tests of hypotheses that we encounter will be F -tests. This
is so throughout the Linear Model – Multiple Regression, as here, Analysis of
Variance, Analysis of Covariance and more advanced topics.

Note 3.28

The result above generalises beyond our context of projections. With the pro-
jections Pi replaced by symmetric matrices Ai of rank ni with sum I, the
corresponding result (Cochran’s Theorem) is that (i), (ii) and (iii) are equiva-
lent. The proof is harder (one needs to work with quadratic forms, where we
were able to work with linear forms). For monograph treatments, see e.g. Rao
(1973), §1c.1 and 3b.4 and Kendall and Stuart (1977), §15.16 – 15.21.
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3.6 Orthogonal Projections and Pythagoras’s
Theorem

The least-squares estimators (LSEs) are the fitted values

ŷ = Aβ̂ = A(AT A)−1AT y = AC−1AT y = Py,

with P the projection matrix (idempotent, symmetric) above. In the alternative
notation, since P takes the data y into ŷ, P is called the hat matrix, and written
H instead. Then

e := y − ŷ = y − Py = (I − P )y

(‘e for error’) is the residual vector. Thus

y = Aβ + ε = Aβ̂ + e = ŷ + e,

or in words,
data = true value + error = fitted value + residual.

Now

eT ŷ = yT (I − P )T Py

= yT (I − P )Py (P symmetric)

= yT (P − P 2)y

= 0,

as P is idempotent. This says that e, ŷ are orthogonal. They are also both
Gaussian (= multinormal, §4.3), as linear combinations of Gaussians are Gaus-
sian (§4.3 again). For Gaussians, orthogonal = uncorrelated = independent
(see § 4.3):

The residuals e and the fitted values ŷ are independent
(see below for another proof). This result is of great practical importance, in the
context of residual plots, to which we return later. It says that residual values
ei plotted against fitted values ŷi should be patternless. If such a residual plot
shows clear pattern on visual inspection, this suggests that our model may be
wrong – see Chapter 7.

The data vector y is thus the hypotenuse of a right-angled triangle in n-
dimensional space with other two sides the fitted values ŷ = (I − P )y and the
residual e = Py. The lengths of the vectors are thus related by Pythagoras’s
Theorem in n-space (Pythagoras of Croton, d. c497 BC):

‖y‖2 = ‖ŷ‖2 + ‖e‖2
.

In particular, ‖ŷ‖2≤‖y‖2 :
‖P̂ y‖2 ≤ ‖y‖2
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for all y. We summarise this by saying that

‖P‖ ≤ 1

that is P has norm < 1, or P is length-diminishing. It is a projection from
data-space (y-space) onto the vector subspace spanned by the least-squares
estimates β̂.

Similarly for I − P : as we have seen, it is also a projection, and by above,
it too is length-diminishing. It projects from y-space onto the orthogonal com-
plement of the vector subspace spanned by the LSEs.

For real vector spaces (as here), a projection P is symmetric (P = PT )
iff P is length-diminishing (‖P‖≤1) iff P is an orthogonal, or perpendicular,
projection – the subspaces Im P and Ker P are orthogonal, or perpendicular,
subspaces (see e.g. Halmos (1979), §75). Because our P := AC−1AT (C :=
AT A) is automatically symmetric and idempotent (a projection), this is the
situation relevant to us.

Note 3.29

1. The use of the language, results and viewpoint of geometry – here in n

dimensions – in statistics is ubiquitous in the Linear Model. It is very
valuable, because it enables us to draw pictures and visualise, or ‘see’,
results.

2. The situation in the Chi-Square Decomposition Theorem takes this further.
There we have k (≥ 2) projections Pi summing to I, and satisfying the
conditions

PiPj = 0 (i �= j).

This says that the projections Pi are mutually orthogonal: if we perform
two different projections, we reduce any vector to 0 (while if we perform
the same projection twice, this is the same as doing it once). The Pi are or-
thogonal projections; they project onto orthogonal subspaces, Li say, whose
linear span is the whole space, L say:

L = L1 ⊕ . . . ⊕ Lk,

in the ‘direct sum’ notation ⊕ of Linear Algebra.

3. The case k = 2 is that treated above, with P , I −P orthogonal projections
and L = L1⊕L2, with L1 = Im P = ker (I − P ) and L2 = Im (I − P ) =
ker P .

Theorem 3.30

(i) ŷ = Py ∼ N(Aβ, σ2P ).
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(ii) e := y − ŷ = (I − P )y ∼ N(0, σ2(I − P )).

(iii) e, ŷ are independent.

Proof

(i) ŷ is a linear transformation of the Gaussian vector y, so is Gaussian. We
saw earlier that the LSE b̂ is unbiased for β, so ŷ := Ab̂ is unbiased for A β.

var(ŷ) = Pvar(y)PT

= σ2PPT (var(y) = σ2I)

= σ2P 2 (P symmetric)

= σ2P (P idempotent).

(ii) Similarly e is Gaussian, mean 0 as Ee = Ey − Eŷ = Aβ − Aβ = 0.

var(e) = (I − P )var(y)(I − P )T

= σ2(I − P )(I − PT ) (var(y) = σ2I)

= σ2(I − P )2 (I − P symmetric)

= σ2(I − P ) (I − P idempotent).

(iii)

cov(ŷ, e) = E
[
(ŷ − Eŷ)T (e − Ee)

]

= E
[
(ŷ − Aβ)T e

]
(Eŷ = Aβ, Ee = 0)

= E
[
(Py − Aβ)T (I − P )y

]

= E
[(

yT P − βT AT
)
(y − Py)

]

= E[yT Py] − E[yT P 2y] − βT AT Ey + βT AT A(AT A)−1AT Ey

= 0,

using the idempotence of P . So e, ŷ are uncorrelated, so independent
(§4.3).

Theorem 3.31

(i) β̂ ∼ N(β, σ2C−1).

(ii) β̂ and SSE (or β̂ and σ̂2) are independent.
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Proof

(i) β is Gaussian; the mean and covariance were obtained in §3.3.

(ii) β̂ − β = C−1AT (y − Ey) = C−1AT (y − Aβ) and SSE = (y − Aβ)T (I −
P )(y − Aβ), above. Now since (I − P )2 = I − P ,

((I −P )(y−Aβ))T ((I −P )(y−Aβ)) = (y−Aβ)T (I −P )(y−Aβ) = SSE,

so it suffices to prove that C−1AT (y − Aβ) and (I − P )(y − Aβ) are inde-
pendent. Since the covariance matrix of y − Aβ is σ2I, and

C−1AT .(I − P ) = C−1AT − C−1AT .AC−1AT = 0,

this follows from the criterion for independence of linear forms in §4.3
below.

This yields another proof of:

Corollary 3.32

SSR and SSE are independent.

Proof

SSR := (β̂ − β)T C(β̂ − β) is a function of β̂, so this follows from (ii) above.

Finally, Theorem 3.31 also gives, when combined with Theorem 3.26, a
method for calculating one-dimensional confidence intervals for the individual
elements of β. We have

Corollary 3.33

Let βi denote the ith element of β and C−1
ii the ith diagonal element of C−1.

We have

βi − β̂i

σ̂
√

C−1
ii

∼ tn−p.
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Proof

From Theorem 3.26 we have that

σ̂2∼ σ2χ2

n − p
.

Further β − β̂ is N(0, σ2C−1) and is independent of σ̂. The stochastic
representation

β − β̂

σ̂
=

N(0, C−1)
√

χ2
n−p/(n − p)

,

where N(0, C−1) and χ2
n−p denote independent random variables with the mul-

tivariate normal and univariate χ2
n−p distributions, can be seen to lead to a

multivariate Student t distribution (Exercise 3.10). The full result follows by
considering the properties of the univariate marginals of this distribution and
is left to the reader (Exercise 3.10).

3.7 Worked examples

We turn below to various examples. The first thing to do is to identify the
design matrix A, and then find the various matrices – particularly the projection
matrix P – associated with it. The first example is small enough to do by hand,
but large enough to be non-trivial and to illustrate the procedure.

Example 3.34

Two items A and B are weighed on a balance, first separately and then together,
to yield observations y1, y2, y3.

1. Find the LSEs of the true weights βA, βB.

We have

y1 = βA + ε1,

y2 = βB + ε2,

y1 + y2 = βA + βB + ε3,



90 3. Multiple Regression

with errors εi iid N(0, σ2). So

Ey =

⎛

⎝
1 0
0 1
1 1

⎞

⎠ .

(
βA

βB

)

.

The design matrix is thus

A =

⎛

⎝
1 0
0 1
1 1

⎞

⎠ .

So

C = AT A =
(

1 0 1
0 1 1

)

.

⎛

⎝
1 0
0 1
1 1

⎞

⎠ =
(

2 1
1 2

)

.

So |C| = 3, and

C−1 =
1
3

(
2 −1
−1 2

)

,

AT y =
(

1 0 1
0 1 1

)

.

⎛

⎝
y1

y2

y3

⎞

⎠ =
(

y1 + y3

y2 + y3

)

,

β̂ = C−1AT y =
1
3

(
2 −1
−1 2

)(
y1 + y3

y2 + y3

)

,

=
1
3

(
2y1 − y2 + y3

−y1 + 2y2 + y3

)

.

The first and second components of this 2-vector are the required LSEs of
βA and βB.

2. Find the covariance matrix of the LSE.

This is

var(β̂) = σ2C−1 =
σ2

3

(
2 −1
−1 2

)

.

3. Find SSE and estimate σ2.

P = A.C−1AT =

⎛

⎝
1 0
0 1
1 1

⎞

⎠ .
1
3

(
2 −1
−1 2

)(
1 0 1
0 1 1

)

=
1
3

⎛

⎝
2 −1 1
−1 2 1
1 1 2

⎞

⎠ ,
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I − P =
1
3

⎛

⎝
1 1 −1
1 1 −1
−1 −1 1

⎞

⎠ .

So

SSE = yT (I − P )y,

=
1
3
(

y1 y2 y3

)
⎛

⎝
1 1 −1
1 1 −1
−1 −1 1

⎞

⎠ .

⎛

⎝
y1

y2

y3

⎞

⎠ ,

=
1
3
(y1 + y2 − y3)2.

Since n = 3, p = 2, n − p = 1 here, this is also σ̂2:

σ̂2 =
1
3
(y1 + y2 − y3)2.

Example 3.35 (Simple linear regression via multiple linear regression)

We illustrate how multiple regression generalises the simple linear regression
model of Chapter 1. In the notation of Lemma 3.3 and since yi = α + βxi + εi

(i = 1, . . ., n)

y = Aβ + ε,

where A =

⎛

⎜
⎝

1 x1

...
...

1 xn

⎞

⎟
⎠ and β =

(
α

β

)

. We see that

C = AT A =
(

1 . . . 1
x1 . . . xn

)
⎛

⎜
⎝

1 x1

...
...

1 xn

⎞

⎟
⎠ =

(
n

∑
x

∑
x
∑

x2

)

.

Further, we can deduce from the fact that |C| = n
∑

x2 − (
∑

x)2 that |C| > 0
by the Cauchy–Schwarz inequality. Hence C is invertible with

C−1 =
1

n
∑

x2 − (
∑

x)2

( ∑
x2 −

∑
x

−
∑

x n

)

.

It follows that

AT y =
(

1 . . . 1
x1 . . . xn

)
⎛

⎜
⎝

y1

...
yn

⎞

⎟
⎠ =

( ∑
y

∑
xy

)

.
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The solution for β̂ becomes

β̂ = C−1AT y =
1

n
∑

x2 − (
∑

x)2

( ∑
x2 −

∑
x

−
∑

x n

)( ∑
y

∑
xy

)

,

=
1

∑
x2 − nx2

( ∑
x2y − x

∑
xy

∑
xy − nxy

)

,

=
1

(x2) − (x)2

(
(x2)y − x(xy)

(xy) − xy

)

,

dividing top and bottom by n. The second coordinate gives

β̂ = sxy/sxx,

as before. Adding and subtracting y(x)2, the first coordinate gives

α̂ =
(
ȳ
[
(x2) − (x)2

]
− x

[
(xy) − xy

])
/sxx = (y − xsxy)/sxx

= y − xsxy/sxx = y − β̂x,

as before.

We illustrate multiple regression models with two ‘more statistical’ examples.

Example 3.36 (Athletics times: snapshot data)

While athletic performance is much more variable within sexes than between
sexes, men are nevertheless faster on average than women. This gender effect
is caused by basic physiology, such as pelvis design. As regular competitors in
distance races will know, there is also a club effect: club members are on average
faster than non-club members (mainly because of the benefits of training with
club mates, but there may also be selection bias, in that the better athletes
are more likely to join a club). Age is also important. There are three phases
in an athlete’s life: development, plateau, and eventual decline with age. For
distance running, as remarked earlier, there is for this age effect a well-known
runner’s Rule of Thumb: for every year into the decline phase, one can expect
to lose a minute a year on the marathon through age alone (and pro rata for
shorter distances).

One may seek to use regression to do two things:
(i) confirm and quantify these gender, club and age effects;
(ii) assess the proportion of variability in athletes’ performance accounted for
by knowledge of sex, club status and age.

We take as the basis of our discussion the analysis in Bingham and Rashid
(2008). This study uses six years of data (2002-2007) for the Berkhamsted Half



3.7 Worked examples 93

Marathon and regresses time in minutes against age and indicator variables
representing gender (0=Male) and club status (1=Member) see (Exercise 1.6).
Summary results for analysis of this data are given in Table 3.1.

Year Intercept Club Gender Age R2

2002 75.435 -7.974 15.194 0.504 0.231
2003 74.692 -9.781 14.649 0.534 0.200
2004 75.219 -9.599 17.362 0.406 0.274
2005 74.401 -10.638 16.788 0.474 0.262
2006 86.283 -9.762 13.002 0.312 0.198
2007 91.902 -11.401 14.035 0.192 0.177

Table 3.1 Regression results for Example 3.36

It is clear that most of the variability observed is variability between ath-
letes, caused by innumerable factors, principally innate ability and training,
rather than age. Nonetheless a non-trivial proportion of the observed variabil-
ity (≈22%) can be explained by knowledge of club status, age and gender.
The estimates in Table 3.1 lead to sensible conclusions and suggest that club
members tend to be faster than non-club members (by 9 to 10 minutes), men
tend to be faster than women (by 13 to 15 minutes) and increased age leads to
slower times.

Example 3.37 (Athletics times: One athlete)

One way to focus on the age effect is to reduce the data to one athlete over
time, where ageing can be studied directly and there is no between-athlete
variability. For convenience, we use the data set in Table 1.1. We consider a
power-law model

t = cdb1ab2 ,

with t, d, a, representing time, distance and age respectively, b1, b2 the expo-
nents and c a parameter measuring the individual athlete’s quality or speed. So

∂t

∂a
= b2

t

a
.

This may be handled via a linear model by setting

log t = log c + b1 log d + b2 log a + ε.
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Estimates for this model are summarised in Table 3.2.

Value Std. Error t value
Intercept 0.547 0.214 2.551
log(age) 0.332 0.051 6.471

log(distance) 1.017 0.015 66.997

Table 3.2 Regression results for Example 3.37

Here, t is about 90, a is about 60. So t/a is about 3/2, but from the model
output in Table 3.2, b2 is about 1/3, so ∂t/∂a is about 1/2. Thus (at least for
athletes of about this age and quality) one can expect to lose half a minute
on the half-marathon per year through ageing alone, or a minute a year in the
marathon – in good agreement with the Rule of Thumb.

EXERCISES

3.1. An athlete runs 800m in a time trial. Three time keepers time him,
for the first 400m (y1), the second 400m (y2), and for the whole 800m
(y3). Estimate

a) his true times for each of the two laps,

b) the accuracy of the time keepers.

This is the balance example (Example 3.34) in a different guise.

3.2. A castle, which stands on a flat base, has four towers. Six inde-
pendent readings were taken – five differences in height and the
height of the shortest tower G – measured in metres. The data were
D − G = 12.29, F − D = 24.46, E − D = 20.48, F − E = 3.59,
F − G = 36.32 and D = 46.81. Calculate
(i) The matrices A, C = AT A, P = AC−1AT ,
(ii) The least squares estimates of the true tower heights, together
with an unbiased estimate of the standard deviation σ.

3.3. Adjusted R2 statistic.

R2
a = 1 − (1 − R2)

(
n − 1
n − p

)

.

(i) Using the definition, show that if model 1 has p parameters and
model 2 has p + 1 parameters, the criterion for rejecting model 1 in
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favour of model 2 becomes

R2
2 > 1 − (1 − R2

1)(n − 1 − p)
(n − p)

.

(ii) What does this condition become when model 2 has j additional
parameters?

3.4. Artificial data set. A simulated data set linking a response variable
Y to explanatory variables X and Z is shown in Table 3.3.
(i) Plot Y against Z. Does a quadratic term in Z appear reasonable?
(ii) Fit the model Y = a+bX+cZ+dZ2 and comment on the results.
(A more in-depth approach to finding a suitable model will require
the methods of Chapter 7.)

3.5. Cherry tree data. The volumes of 31 cherry trees were recorded along
with their girths and heights. The data are shown in Table 3.4. It is
desired to predict volume v based on measurements of girth g and
height h.
(i) Does it seem necessary to include quadratic terms in g and h in
the model? Consider both t-statistics and exploratory plots.
(ii) By thinking of trees as roughly cylindrical, suggest a possible
model for v. Fit this model and compare with the models in (i).

3.6. Matrix calculus. From first principles derive the relations

(i)
∂aT x

∂x
= aT ,

∂(Ax)
∂x

= A;

(ii)
∂(xT Ax)

∂x
= xT (AT + A).

3.7. Derivation of normal equations/ordinary least squares solution via
matrix calculus. Show that this can be achieved by minimising the
sum of squares

SS := (y − Aβ)T (y − Aβ)

as a function of β. You may use Exercise 3.6 as appropriate.

3.8. Gram–Schmidt process. Use the Gram–Schmidt process to produce
an orthonormal basis of the linear subspace spanned by a1 =
(−2,−1,−2, 0)T , a2 = (2, 2, 2, 1)T , a3 = (−2,−2,−1,−1)T .

3.9. QR decomposition. Using the QR decomposition provide an alter-
native derivation of the estimates of a and b in the simple linear
regression model in Chapter 1.
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Y X Z Y X Z Y X Z

15.42 5.0 3.05 82.75 8.0 3.91 15.42 11.5 2.94
47.33 5.0 5.77 37.03 8.5 3.00 49.94 11.5 3.73
34.36 5.0 4.29 43.38 8.5 3.28 68.40 11.5 4.36
44.44 5.0 3.99 23.92 8.5 2.31 20.03 12.0 2.94
11.04 5.0 2.66 24.50 8.5 2.64 72.20 12.0 4.75
9.67 5.5 1.46 16.53 8.5 2.47 14.85 12.0 1.69
39.29 5.5 3.15 18.92 9.0 2.74 115.36 12.0 4.81
13.14 5.5 2.83 22.57 9.0 2.72 21.09 12.0 2.72
30.33 5.5 3.01 0.30 9.0 3.41 51.02 12.5 4.23
14.56 5.5 2.63 18.00 9.0 2.94 22.40 12.5 3.10
11.22 6.0 2.03 31.88 9.0 3.54 24.11 12.5 3.24
15.58 6.0 2.63 37.09 9.5 3.20 21.45 12.5 2.59
11.59 6.0 2.09 20.90 9.5 2.70 48.62 12.5 3.88
10.53 6.0 1.49 73.03 9.5 4.03 21.21 13.0 2.42
17.09 6.0 2.70 32.38 9.5 3.04 22.82 13.0 3.31
64.46 6.5 3.88 28.98 9.5 3.15 24.34 13.0 2.87
66.16 6.5 4.54 25.34 10.0 2.78 15.02 13.0 2.44
21.94 6.5 2.74 19.18 10.0 2.62 12.92 13.0 1.93
32.46 6.5 3.78 30.38 10.0 3.62 22.43 13.5 2.30
28.25 6.5 3.87 43.87 10.0 3.69 56.61 13.5 3.21
26.68 7.0 3.39 12.77 10.0 2.31 16.54 13.5 1.86
19.99 7.0 3.03 40.32 10.5 3.53 36.38 13.5 3.25
81.67 7.0 3.78 33.31 10.5 3.72 20.95 13.5 2.17
46.84 7.0 3.31 18.11 10.5 2.24 44.77 14.0 3.90
12.42 7.0 1.90 26.25 10.5 2.47 18.25 14.0 2.24
22.98 7.5 2.50 58.39 10.5 4.28 33.23 14.0 3.30
44.86 7.5 4.60 4.65 11.0 2.99 41.20 14.0 3.60
33.33 7.5 3.51 13.45 11.0 1.97 26.55 14.0 2.17
49.80 7.5 3.91 36.55 11.0 4.10 13.38 14.5 3.16
16.75 7.5 2.24 14.04 11.0 1.49 28.82 14.5 2.30
18.43 8.0 2.18 31.63 11.0 3.20 28.06 14.5 2.99
46.13 8.0 3.42 54.46 11.5 3.56 17.57 14.5 2.50
23.97 8.0 2.73 38.06 11.5 3.37 18.71 14.5 2.33
38.75 8.0 3.49

Table 3.3 Data for Exercise 3.4

3.10. Analogously to Exercise 1.11, and using the same notation, one can
define an r-dimensional multivariate t-distribution by
1. Generate u from fY

2. Generate x from N(0, uΔ) for some ‘correlation’ matrix Δ.
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Volume 0.7458, 0.7458, 0.7386, 1.1875, 1.3613, 1.4265, 1.1296, 1.3179,
1.6365, 1.4410, 1.7524, 1.5206, 1.5496, 1.5424, 1.3831, 1.6075,
2.4475, 1.9841, 1.8610, 1.8030, 2.4982, 2.2954, 2.6285, 2.7734,
3.0847, 4.0116, 4.0333, 4.2216, 3.7292, 3.6930, 5.5757

Girth 66.23, 68.62, 70.22, 83.79, 85.38, 86.18, 87.78, 87.78,
88.57, 89.37, 90.17, 90.97, 90.97, 93.36, 95.76, 102.94,
102.94, 106.13, 109.32, 110.12, 111.71, 113.31, 115.70, 127.67,
130.07, 138.05, 139.64, 142.84, 143.63,143.63, 164.38

Height 21.0, 19.5, 18.9, 21.6, 24.3, 24.9, 19.8, 22.5,
24.0, 22.5, 23.7, 22.8, 22.8, 20.7, 22.5, 22.2,
25.5, 25.8, 21.3, 19.2, 23.4, 24.0, 22.2, 21.6,
23.1, 24.3, 24.6, 24.0, 24.0, 24.0, 26.1

Table 3.4 Data for Exercise 3.5.

(i) Using the construction in Exercise 1.11 show that the univariate
marginals of this distribution satisfy

xi√
Δii

∼ tr.

The above argument can be used to show that

βi − β̂i√
(XT X)−1

ii

∼ tn−p.

Derive the estimated standard errors (e.s.e.) for parameters in the
following models:
(ii) The simple linear regression model.
(iii) The bivariate regression model.

3.11. Prediction intervals for a future observation. In the linear regres-
sion model, the underlying mean corresponding to an observation
X = XT

0 is E[Y ] = XT
0 β. In practice, we estimate E[Y ] = XT

0 β̂

with associated variance σ2(XT
0 (XT X)−1X0). 100(1 − α)% confi-

dence intervals for the underlying mean can be constructed to give

XT
0 β̂ ± tn−p(1 − α/2)σ̂

√
XT

0 (XT X)−1X0.

Suppose a future observation is to be taken as X = XT
0 . Amend the

above procedure to produce an appropriate confidence interval.

3.12. Commutativity of matrix trace. Show that

trace(AB) = trace(BA).
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Further Multilinear Regression

4.1 Polynomial Regression

For one regressor x, simple linear regression is fine for fitting straight-line
trends. But what about more general trends – quadratic trends, for exam-
ple? (E.g. height against time for a body falling under gravity is quadratic.) Or
cubic trends? (E.g.: the van der Waals equation of state in physical chemistry.)
Or quartic? – etc.

We can use the successive powers x0 = 1, x, x2, . . . as regressors, so that a
polynomial is a special case of multilinear regression.

It is important to note that, although a polynomial of degree higher than
one is non-linear in the variable x, it is linear in the coefficients, which serve
here as the parameters. Indeed, we encountered an instance of this in §1.2, in
connection with the work of Legendre and Gauss – fitting elliptical orbits by
least squares.

Recall that in a regression model, we are seeking to decompose our data into
a systematic component and a random component. We will only go beyond the
linear regression of Chapter 1 if a linear fit is poor. We then seek to improve
the fit by adding more terms. However, it is very important to notice that one
should not go too far here. Let us assume for the moment that all the x-values
x1, . . . , xn are distinct. Then we can achieve an exact fit with a polynomial of
degree n − 1, which contains n coefficients. Of course, if there are coincident
x-values an exact fit is clearly impossible, as the corresponding y-value can
only fit one of the x-values. The fact that with distinct x-values an exact fit is

N.H. Bingham and J.M. Fry, Regression: Linear Models in Statistics, 99
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-969-5 4,
c© Springer-Verlag London Limited 2010
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indeed possible is a result from the important subject of Interpolation, a branch
of Numerical Analysis. But fitting exactly with an (n − 1)-degree polynomial
would be very foolish. For, n is large, so n − 1 is also large, and polynomials
of large degree have very bad numerical properties. One way to see this is to
examine the tendency of characteristic polynomials – used to find eigenvalues –
to change their roots dramatically with only small changes in their coefficients
(such as are inevitably caused by numerical rounding error). For a monograph
treatment of this subject, we refer to the classic Wilkinson (1965).

Note 4.1

One can combine the good numerical properties of polynomials of low degree
with the many degrees of freedom of polynomials of high degree by using splines.
These are separate polynomials on separate ranges of the x-variable, spliced
together at the points separating the sub-intervals – the knots – so as to be
continuous, and have k−1 derivatives continuous, where k is the degree of poly-
nomial in use; see §9.2. Thus for k = 1 a linear spline is a piecewise-continuous
linear function (a ‘broken line’); for a quadratic spline we have one derivative
continuous also, and for the cubic splines, in very common use, we have two
derivatives continuous. Splines are extensively used in non-linear regression and
smoothing in Statistics, in Numerical Analysis, and elsewhere. We will return
to splines later in §9.2 on non–parametric regression. In fact smoothing splines
have now largely replaced polynomials in regression in practice, but we need
to learn to walk before we learn to run.

Recall that in regression we have

data = signal + noise = trend + error.

Our job is to reveal the trend by removing the error – or as much of it as
we can. In the context of polynomial regression, we are caught between two
opposing dangers. If we take the degree of the polynomial too low – fit a linear
trend through data which comes from a perturbed quadratic, say – we distort
the trend. If on the other hand we take the degree too high, we leave in too
much error, and instead obscure the trend. This is called over-interpretation,
or over-fitting. It has the effect of treating the data – which, being obtained by
sampling, inevitably contains random sampling error – with ‘too much respect’.
Instead, we should exploit our main advantage – that n is large, and so the
Law of Large Numbers, the tendency of independent errors to cancel, works on
our side.

The question raised by all this is how to choose the degree p− 1 (p param-
eters). The formal question of testing the hypothesis that the leading term is
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actually needed we defer to Chapter 6. An informal treatment suffices for our
present purposes. First, by EDA as usual, plot the data, inspect visually, and
decide what is the highest order of polynomial we would be prepared to con-
sider (four or five – corresponding to five or six parameters – would be as high
as one would normally be prepared to go). Then use a statistical package to
perform the regression, and inspect the printout for significance of coefficients.
A good standard package – Minitab� or S-Plus/R�, for example – will print
out, by the side of each coefficient estimate, a probability that it could be as
big as this by chance alone. A probability that vanishes to several places of
decimals indicates a term that is highly significant, and that we clearly need.
A probability of 0.3, say, indicates a term that could easily have arisen by
chance alone, and this suggests that our model could do better without it –
and so, would be better without it (see §4.1.1 below).

Example 4.2 (Polynomial regression)

The data in Table 4.1 link the yield X to the percentage protein content Y of
an agricultural experiment. The layout below clearly shows that a nonlinear
model in X can be handled by a model that remains linear in the parameters.

X 5, 8, 10, 11, 14, 16, 17, 17, 18, 20,
22, 24, 26, 30, 32, 34, 36, 38, 43

X2 25, 64, 100, 121, 196, 256, 289, 289, 400,
484, 576, 676, 900, 1024, 1156, 1296, 1444, 1849

X3 125, 512, 1000, 1331, 2744, 4096, 4913, 4913, 5832, 8000,
10648, 13824, 17576, 27000, 32768, 39304, 46656, 54872, 79507

Y 16.2, 14.2, 14.6, 18.3, 13.2, 13.0, 13.0, 13.4, 10.6, 12.8,
12.6, 11.6, 11.0, 9.8, 10.4, 10.9, 12.2, 9.8, 10.7

Table 4.1 Data for Example 4.2

A plot of the data is shown in Figure 4.1 and there is at least some indication
of a nonlinear relationship between X and Y .
Simple linear regression model: Y = a + bX . The t-test gives a p-value of
0.000, indicating that the X term is needed in the model. The R2 value is a
reasonably high 0.61.
Quadratic regression model: Y = a + bX + cX2. The R2 value increases to
0.701. The univariate t-test gives a p-value of 0.004 that b = 0, and p = 0.043
that c = 0. Thus it appears that both quadratic and linear terms are needed
in the model.



102 4. Further Multilinear Regression

Cubic regression model: Y = a + bX + cX2 + dX3. The univariate t-test
gives a p-value of 0.733 that d = 0. The R2 value is 0.703, only a marginal
improvement on the quadratic model.

In conclusion we have some suggestion of a nonlinear relationship between
X and Y , and a skeleton analysis suggests a quadratic model might be appro-
priate.

10 20 30 40

10
12

14
16

18

X

Y

Figure 4.1 Plot of Y against X together with lines of best fit for both linear
and quadratic models.

4.1.1 The Principle of Parsimony

The great Albert Einstein (1879–1955) had a famous dictum: Physics should
be made as simple as possible, but not simpler. Einstein’s Dictum applies of
course with as much force to Mathematics, to Statistics, or to any other branch
of science. It is prefigured by Occam’s Razor: Entities are not to be multiplied
without necessity (William of Ockham (d. c1349), quoted from Jeffreys (1983),
342). In brief: if we can do without something, we should do without it.
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The modern form of this admirable precept is known in Statistics as the
Principle of Parsimony. It encourages us to use simple models for preference,
thus gaining in both clarity and in protection against the danger of over-
interpretation. It also suggests the idea of penalising models for complexity,
which we formalise in the Akaike Information Criterion (AIC) of §5.2.1 below.

4.1.2 Orthogonal polynomials

Suppose we begin with a linear regression, but then decide to change to a
quadratic – or wish to increase from a quadratic to a cubic, etc. We have to
begin again from scratch. It would be preferable to have a situation in which
adding an extra term merely refined the model – by increasing its order of
accuracy – rather than changing it completely. (In pre-computer days this was
even more important – calculation had to be done by hand and was time-
consuming. This is less important nowadays, with computer packages taking
care of the calculation, but is still important conceptually.) We can do this
by using, not the powers x0 = 1, x, x2, x3, . . . in succession, but a system of
orthogonal polynomials (OPs), the kth of which has degree k. These may be
constructed by the process of Gram–Schmidt orthogonalisation (used in Linear
Algebra to turn a spanning set into an orthogonal basis). For details, see e.g.
Plackett (1960), Ch. 6. This idea is also developed in §5.1.1 below on orthogonal
parameters.

Note 4.3

The reader has probably already encountered orthogonal polynomials of spe-
cial kinds in other contexts. The classical cases of Legendre, Hermite and
Tchebycheff polynomials, for example, are commonly used in Applied Math-
ematics. These are all examples of continuous orthogonal polynomials (where
the orthogonality relation involves integrating), whereas in our situation we
have discrete orthogonal polynomials (where the orthogonality relation involves
summation). The two cases may be handled together. Orthogonal polynomi-
als are very useful and have an extensive and interesting theory; the classic
monograph is Szegö (1959).

4.1.3 Packages

In Minitab�, one declares the powers one wishes to use as regressors. For a
detailed worked example of polynomial regression in Minitab�, see e.g. Joiner
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and Ryan (2000) §10.6 and §10.7. In S-Plus, one uses lm for regression as usual,
and poly, specifying the degree. Thus

lm(y ∼ poly(x, 3))

fits a polynomial in x of degree 3 to the data y. The default option in S-Plus
uses orthogonal polynomials. If we wish to work with ordinary powers, one uses
poly.transform, thus:

xylm < −lm(y ∼ poly(x, 3))

poly.transform(poly(x, 3), coef(xylm))

A worked example is included in the online S-Plus Help facility, p. 275 (for plot)
and 278–9 (for S-Plus output and discussion). Here y is NO (nitric oxide), x is
E (ethanol); the plot looks quadratic, but with ‘turned-up ends’, and analysis
indicates using a quartic fit.

4.2 Analysis of Variance

We illustrate the richness of the class of linear models by illustrating how the
Analysis of Variance of Chapter 2 can be reformulated as a regression model
within the linear models framework of Chapter 3. Suppose that we have a
one-way ANOVA model with k groups:

yij = μ + αi + εij (j = 1, . . . , k).

If we define yi to be the vector of observations yij from treatment i, we might
imagine that this might be formulated as a regression model using

y =

⎛

⎜
⎜
⎝

y1

y2

. . .

yk

⎞

⎟
⎟
⎠, A =

⎛

⎜
⎜
⎝

1n1 1n1 0n1 . . . 0n1

1n2 0n2 1n2 . . . 0n2

. . . . . . . . . . . . . . .

1nk
0nk

0nk
0nk

1nk

⎞

⎟
⎟
⎠, β =

⎛

⎜
⎜
⎝

μ

α1

. . .

αk

⎞

⎟
⎟
⎠,

where 1ni is a ni vector of 1s corresponding to the ni observations in treatment
group i. Note, however, that under this formulation AT A is not invertible. (If
we let a be the n-dimensional column vector a = (−1, 1, . . . , 1)T then Aa = 0. If
C = AT A, aT Ca = 0 and C is not positive definite.) There are a number of ways
in which this model can be reparametrised to remove the linear dependency in
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the columns of the X matrix (see Exercise 4.2). One way of doing this is to set
μ = 0. Under this formulation we have that

A =

⎛

⎜
⎜
⎝

1n1 0n1 . . . 0n1

0n2 1n2 . . . 0n2

. . . . . . . . . . . .

0nk
0nk

. . . 1nk

⎞

⎟
⎟
⎠, β =

⎛

⎜
⎜
⎝

α1

α2

. . .

αk

⎞

⎟
⎟
⎠.

We proceed to show that this formulation returns exactly the same results
for Analysis of Variance as in Chapter 2. From Theorem 3.31 it follows that
SSE = yT (I − AC−1AT )y. We see that

C =

⎛

⎜
⎜
⎝

n1 0 . . . 0
0 n2 . . . 0
0 0 . . . 0
0 0 . . . nk

⎞

⎟
⎟
⎠, AT y =

⎛

⎝
n1y1

. . .

nkyk

⎞

⎠.

From the above it follows that C−1 is the diagonal matrix with elements 1/ni

and that the fitted values are given by β̂ = C−1AT y = (y1, . . . , yk)T , which are
intuitive and correspond to the fitted values given by ANOVA. The appropriate
F -test to test for the difference in the mean values can be recovered by the
methods of Chapter 6 (Exercise 6.8).

Alternatively, one could have proceeded by retaining μ and setting one of
the αi, α1 say, equal to zero. See Exercise 4.2. Both approaches give a general
technique through which categorical or discrete variables can be incorporated
into these and related models. The comment is made in Draper and Smith
(1998) Ch. 23 that in practice it is usually expedient to use specialist soft-
ware and methods to fit Analysis of Variance models. However, the comparison
with linear models reinforces that Analysis of Variance models are subject to
exactly the same kind of model checks and scrutiny as other linear models;
see Chapter 7. Further, this approach also motivates an extension – Analysis
of Covariance – which includes discrete and continuous variables in the same
model (see Chapter 5).

4.3 The Multivariate Normal Distribution

With one regressor, we used the bivariate normal distribution as in Chapter 1.
Similarly for two regressors, we used – implicitly – the trivariate normal. With
any number of regressors, as here, we need a general multivariate normal, or
‘multinormal’, or Gaussian distribution in n dimensions. We must expect that
in n dimensions, to handle a random n-vector X = (X1, · · · , Xn)T , we will
need
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(i) a mean vector μ = (μ1, . . . , μn)T with μi = EXi, μ = EX,

(ii) a covariance matrix Σ = (σij), with σij = cov(Xi, Xj), Σ = covX.

First, note how mean vectors and covariance matrices transform under linear
changes of variable:

Proposition 4.4

If Y = AX + b, with Y,b m-vectors, A an m × n matrix and X an n-vector,

(i) the mean vectors are related by EY = AEX + b = Aμ + b,

(ii) the covariance matrices are related by ΣY = AΣXAT .

Proof

(i) This is just linearity of the expectation operator E: Yi =
∑

jaijXj + bi, so

EYi =
∑

j
aijEXj + bi =

∑

j
aijμj + bi,

for each i. In vector notation, this is EY = Aμ + b.

(ii) Write Σ = (σij) for ΣX . Then Yi−EYi =
∑

kaik(Xk−EXk) =
∑

kaik(Xk−
μk), so

cov(Yi, Yj) = E
[∑

r
air(Xr − μr)

∑

s
ajs(Xs − μs)

]

=
∑

rs
airajsE[(Xr − μr)(Xs − μs)]

=
∑

rs
airajsσrs =

∑

rs
AirΣrs

(
AT
)
sj

=
(
AΣAT

)
ij

,

identifying the elements of the matrix product AΣAT .

The same method of proof gives the following result, which we shall need
later in connection with mixed models in §9.1.

Proposition 4.5

If Z = AX+BY with constant matrices A, B and uncorrelated random vectors
X, Y with covariance matrices ΣX, ΣY, Z has covariance matrix

cov Z = AΣXAT + BΣYBT .
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Corollary 4.6

Covariance matrices Σ are non-negative definite.

Proof

Let a be any n × 1 matrix (row-vector of length n); then Y := aX is a scalar.
So Y = Y T = XaT . Taking a = AT ,b = 0 above, Y has variance aT Σa (a
1× 1 covariance matrix). But variances are non-negative. So aT Σa ≥ 0 for all
n-vectors a. This says that Σ is non-negative definite.

We turn now to a technical result, which is important in reducing n-
dimensional problems to one-dimensional ones.

Theorem 4.7 (Cramér-Wold device)

The distribution of a random n-vector X is completely determined by the set of
all one-dimensional distributions of linear combinations tT X =

∑
itiXi, where

t ranges over all fixed n-vectors.

Proof

When the MGF exists (as here), Y := tT X has MGF

MY (s) := E exp{sY } = E exp{stTX}.

If we know the distribution of each Y , we know its MGF MY (s). In particular,
taking s = 1, we know E exp{tT X}. But this is the MGF of X = (X1, . . . , Xn)T

evaluated at t = (t1, . . . , tn)T . But this determines the distribution of X.
When MGFs do not exist, replace t by it (i =

√
−1) and use characteristic

functions (CFs) instead.

Thus by the Cramér–Wold device, to define an n-dimensional distribution
it suffices to define the distributions of all linear combinations.

The Cramér–Wold device suggests a way to define the multivariate normal
distribution. The definition below seems indirect, but it has the advantage of
handling the full-rank and singular cases together (ρ = ±1 as well as −1 < ρ <

1 for the bivariate case).

Definition 4.8

An n-vector X has an n-variate normal distribution iff aT X has a univariate
normal distribution for all constant n-vectors a.
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First, some properties resulting from the definition.

Proposition 4.9

(i) Any linear transformation of a multinormal n-vector is multinormal.

(ii) Any vector of elements from a multinormal n-vector is multinormal.
In particular, the components are univariate normal.

Proof

(i) If Y = AX + c (A an m× n matrix, c an m-vector) is an m-vector, and b
is any m-vector,

bT Y = bT (AX + c) = (bT A)X + bT c.

If a = AT b (an m-vector), aT X = bT AX is univariate normal as X is
multinormal. Adding the constant bT c, bT Y is univariate normal. This
holds for all b, so Y is m-variate normal.

(ii) Take a suitable matrix A of 1s and 0s to pick out the required sub-vector.

Theorem 4.10

If X is n-variate normal with mean μ and covariance matrix Σ, its MGF is

M(t) := E exp
{
tT X

}
= exp

{

tT μ +
1
2
tT Σt

}

.

Proof

By Proposition 4.4, Y := tT X has mean tT μ and variance tT Σt. By definition
of multinormality, Y = tT X is univariate normal. So Y is N(tT μ, tT Σt). So Y

has MGF

MY (s) := E exp{sY } = exp
{

stT μ +
1
2
s2tT Σt

}

.

But E(esY ) = E exp{stT X}, so taking s = 1 (as in the proof of the Cramér–
Wold device),

E exp
{
tT X

}
= exp

{

tT μ +
1
2
tT Σt

}

,

giving the MGF of X as required.
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Corollary 4.11

The components of X are independent iff Σ is diagonal.

Proof

The components are independent iff the joint MGF factors into the product of
the marginal MGFs. This factorisation takes place, into

∏
i exp{μiti + 1

2σiit
2
i },

in the diagonal case only.

Recall that a covariance matrix Σ is always

(i) symmetric: (σij = σji, as σij = cov(Xi, Xj)),

(ii) non-negative definite: aT Σa ≥ 0 for all n-vectors a.

Suppose that Σ is, further, positive definite:

aT Σa > 0 unless a = 0.

(We write Σ > 0 for ‘Σ is positive definite’, Σ ≥ 0 for ‘Σ is non-negative
definite’.)

Recall

a) a symmetric matrix has all its eigenvalues real (see e.g. Blyth and Robert-
son (2002b), Theorem 8.9, Corollary),

b) a symmetric non-negative definite matrix has all its eigenvalues non-
negative (Blyth and Robertson (2002b) Th. 8.13),

c) a symmetric positive definite matrix is non-singular (has an inverse), and
has all its eigenvalues positive (Blyth and Robertson (2002b), Th. 8.15).

We quote (see e.g. Halmos (1979), §79, Mardia, Kent and Bibby (1979)):

Theorem 4.12 (Spectral Decomposition)

If A is a symmetric matrix, A can be written

A = ΓΛΓT ,

where Λ is a diagonal matrix of eigenvalues of A and Γ is an orthogonal matrix
whose columns are normalised eigenvectors.

Corollary 4.13

(i) For Σ a covariance matrix, we can define its square root matrix Σ
1
2 by

Σ
1
2 := ΓΛ

1
2 Γ T , Λ

1
2 := diag(λ

1
2
i ), with Σ

1
2 Σ

1
2 = Σ.
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(ii) For Σ a non-singular (that is positive definite) covariance matrix, we can
define its inverse square root matrix Σ− 1

2 by

Σ− 1
2 := ΓΛ− 1

2 Γ T , Λ− 1
2 := diag(λ− 1

2 ), with Λ− 1
2 Λ− 1

2 = Λ−1.

Theorem 4.14

If Xi are independent (univariate) normal, any linear combination of the Xi is
normal. That is, X = (X1, . . . , Xn)T , with Xi independent normal, is multi-
normal.

Proof

If Xi are independent N(μi, σ
2
i ) (i = 1, . . . , n), Y :=

∑
iaiXi + c is a linear

combination, Y has MGF

MY (t) := E exp
{
t(c +

∑

i
aiXi)

}

= etcE
∏

i
exp{taiXi} (property of exponentials)

= etcE
∏

i
E exp{taiXi} (independence)

= etc
∏

i
exp

{

μi(ait) +
1
2
σ2

i (ait)
2

}

(normal MGF)

= exp
{[

c +
∑

i
aiμi

]
t +

1
2

[∑

i
a2

i σ
2
i

]
t2
}

,

so Y is N(c +
∑

iaiμi,
∑

ia
2
i σ

2
i ), from its MGF.

Independence of Linear Forms. Given a normally distributed random vector
x ∼ N(μ, Σ) and a matrix A, one may form the linear form Ax. One often
encounters several of these together, and needs their joint distribution – in
particular, to know when these are independent.

Theorem 4.15

Linear forms Ax and Bx with x ∼ N(μ, Σ) are independent iff

AΣBT = 0.

In particular, if A, B are symmetric and Σ = σ2I, they are independent iff

AB = 0.
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Proof

The joint MGF is

M(u,v) := E exp
{
uT Ax + vT Bx

}
= E exp

{(
AT u + BT v

)T
x
}

.

This is the MGF of x at argument t = AT u + BT v, so M(u,v) is given by

exp{(uT A+vT B)μ+
1
2
[uT AΣAT u+uT AΣBT v+vT BΣAT u+vT BΣBT v]}.

This factorises into a product of a function of u and a function of v iff the
two cross terms in u and v vanish, that is, iff AΣBT = 0 and BΣAT = 0; by
symmetry of Σ, the two are equivalent.

4.4 The Multinormal Density

If X is n-variate normal, N(μ, Σ), its density (in n dimensions) need not exist
(e.g. the singular case ρ = ±1 with n = 2 in Chapter 1). But if Σ > 0 (so Σ−1

exists), X has a density. The link between the multinormal density below and
the multinormal MGF above is due to the English statistician F. Y. Edgeworth
(1845–1926).

Theorem 4.16 (Edgeworth’s Theorem, 1893)

If μ is an n-vector, Σ > 0 a symmetric positive definite n × n matrix, then

(i)

f(x) :=
1

(2π)
1
2n|Σ|

1
2

exp
{

−1
2
(x − μ)T Σ−1(x − μ)

}

is an n-dimensional probability density function (of a random n-vector X,
say),

(ii) X has MGF M(t) = exp
{
tT μ + 1

2t
T Σt

}
,

(iii) X is multinormal N(μ, Σ).

Proof

Write Y := Σ− 1
2 X (Σ− 1

2 exists as Σ > 0, by above). Then Y has covariance
matrix Σ− 1

2 Σ(Σ− 1
2 )T . Since Σ = ΣT and Σ = Σ

1
2 Σ

1
2 , Y has covariance

matrix I (the components Yi of Y are uncorrelated).
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Change variables as above, with y = Σ− 1
2 x, x = Σ

1
2 y. The Jacobian is

(taking A = Σ− 1
2 ) J = ∂x/∂y = det(Σ

1
2 ), = (detΣ)

1
2 by the product theorem

for determinants. Substituting,

exp
{

−1
2
(x − μ)T Σ−1(x − μ)

}

is

exp
{

−1
2

(
Σ

1
2 y − Σ

1
2

(
Σ− 1

2 μ
))T

Σ−1
(
Σ

1
2 y − Σ

1
2

(
Σ− 1

2 μ
))}

,

or writing ν := Σ− 1
2 μ,

exp
{

−1
2
(y − ν)T Σ

1
2 Σ−1Σ

1
2 (y − ν)

}

= exp
{

−1
2
(y − ν)T (y − ν)

}

.

So by the change of density formula, Y has density g(y) given by

1

(2π)
1
2n|Σ|

1
2
|Σ|

1
2 exp{−1

2
(y − ν)T (y − ν)} =

∏n

i=1

1
(2π)

1
2

exp{−1
2
(yi − νi)2}.

This is the density of a multivariate vector y∼N(ν, I) whose components
are independent N(νi, 1) by Theorem 4.14.

(i) Taking A = B = R
n in the Jacobian formula,

∫

Rn

f(x)dx =
1

(2π)
1
2 n

|Σ| 12
∫

Rn

exp
{

−1
2
(x − μ)T Σ−1(x − μ)

}

dx

=
1

(2π)
1
2 n

∫

Rn

exp
{

−1
2
(y − ν)T (y − ν)

}

dy

=
∫

Rn

g(y)dy = 1.

So f(x) is a probability density (of X say).

(ii) X = Σ
1
2 Y is a linear transformation of Y, and Y is multivariate normal,

so X is multivariate normal.

(iii) EX = Σ
1
2 EY = Σ

1
2 ν = Σ

1
2 .Σ− 1

2 μ = μ, covX = Σ
1
2 covY(Σ

1
2 )T =

Σ
1
2 IΣ

1
2 = Σ. So X is multinormal N(μ, Σ). So its MGF is

M(t) = exp
{

tT μ +
1
2
tT Σt

}

.
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4.4.1 Estimation for the multivariate normal

Given a sample x1, . . . , xn from the multivariate normal Np(μ, Σ), Σ > 0, form
the sample mean (vector)

x :=
1
n

∑n

i=1
xi,

as in the one-dimensional case, and the sample covariance matrix

S :=
1
n

∑n

i=1
(xi − x)(xi − x)T .

The likelihood for a sample of size 1 is

L = (2π)−p/2|Σ|−1/2 exp
{

−1
2
(x − μ)T Σ−1(x − μ)

}

,

so the likelihood for a sample of size n is

L = (2π)−np/2|Σ|−n/2 exp
{

−1
2

∑n

1
(xi − μ)T Σ−1(xi − μ)

}

.

Writing
xi − μ = (xi − x) − (μ − x),

∑n

1
(xi −μ)T Σ−1(xi −μ) =

∑n

1
(xi −x)T Σ−1(xi −x)+n(x−μ)T Σ−1(x−μ)

(the cross terms cancel as
∑

(xi − x) = 0). The summand in the first term
on the right is a scalar, so is its own trace. Since trace(AB) = trace(BA) and
trace(A + B) = trace(A) + trace(B) = trace(B + A),

trace
(∑n

1
(xi − x)T Σ−1(xi − x)

)
= trace

(
Σ−1

∑n

1
(xi − x)(xi − x)T

)

= trace
(
Σ−1.nS

)
= n trace

(
Σ−1S

)
.

Combining,

L = (2π)−np/2|Σ|−n/2 exp
{

−1
2
n trace

(
Σ−1S

)
− 1

2
n(x − μ)T Σ−1(x − μ)

}

.

This involves the data only through x and S. We expect the sample mean
x to be informative about the population mean μ and the sample covariance
matrix S to be informative about the population covariance matrix Σ. In fact
x, S are fully informative about μ, Σ, in a sense that can be made precise
using the theory of sufficient statistics (for which we must refer to a good book
on statistical inference – see e.g. Casella and Berger (1990), Ch. 6) – another
of Fisher’s contributions. These natural estimators are in fact the maximum
likelihood estimators:
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Theorem 4.17

For the multivariate normal Np(μ, Σ), x and S are the maximum likelihood
estimators for μ, Σ.

Proof

Write V = (vij) := Σ−1. By above, the likelihood is

L = const.|V |n/2 exp
{

−1
2
n trace(V S) − 1

2
n(x − μ)T V (x − μ)

}

,

so the log-likelihood is

� = c +
1
2
n log |V | − 1

2
n trace(V S) − 1

2
n(x − μ)T V (x − μ).

The MLE μ̂ for μ is x, as this reduces the last term (the only one involving μ)
to its minimum value, 0. Recall (see e.g. Blyth and Robertson (2002a), Ch. 8)
that for a square matrix A = (aij), its determinant is

|A| =
∑

j
aijAij

for each i, or
|A| =

∑

i
aijAij

for each j, expanding by the ith row or jth column, where Aij is the cofactor
(signed minor) of aij . From either,

∂|A|/∂aij = Aij ,

so
∂ log |A|/∂aij = Aij/|A| = (A−1)ij ,

the (i, j) element of A−1, recalling the formula for the matrix inverse. Also, if
B is symmetric,

trace(AB) =
∑

i

∑

j
aijbji =

∑

i,j
aijbij ,

so
∂ trace(AB)/∂aij = bij .

Using these, and writing S = (sij),

∂ log |V |/∂vij = (V −1)ij = (Σ)ij = σij (V := Σ−1),

∂ trace(V S)/∂vij = sij .

So
∂ �/∂ vij =

1
2
n(σij − sij),

which is 0 for all i and j iff Σ = S. This says that S is the MLE for Σ, as
required.
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4.5 Conditioning and Regression

Recall from §1.5 that the conditional density of Y given X = x is

fY |X(y|x) := fX,Y (x, y)/
∫

fX,Y (x, y) dy.

Conditional means. The conditional mean of Y given X = x is

E(Y |X = x),

a function of x called the regression function (of Y on x). So, if we do not specify
the value x, we get E(Y |X). This is random, because X is random (until we
observe its value, x; then we get the regression function of x as above). As
E(Y |X) is random, we can look at its mean and variance. For the next result,
see e.g. Haigh (2002) Th. 4.24 or Williams (2001), §9.1.

Theorem 4.18 (Conditional Mean Formula)

E[E(Y |X)] = EY.

Proof

EY =
∫

yfY (y)dy =
∫

ydy

∫

fX,Y (x, y) dx

=
∫

y dy

∫

fY |X(y|x)fX(x) dx (definition of conditional density)

=
∫

fX(x) dx

∫

yfY |X(y|x) dx,

interchanging the order of integration. The inner integral is E(Y |X = x). The
outer integral takes the expectation of this over X , giving E[E(Y |X)].

Discrete case: similarly with summation in place of integration.

Interpretation.

– EY takes the random variable Y , and averages out all the randomness to
give a number, EY .

– E(Y |X) takes the random variable Y knowing X , and averages out all the
randomness in Y NOT accounted for by knowledge of X .
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– E[E(Y |X)] then averages out the remaining randomness, which IS accounted
for by knowledge of X , to give EY as above.

Example 4.19 (Bivariate normal distribution)

N(μ1, μ2; σ2
1 , σ2

2 ; ρ), or N(μ, Σ),

μ = (μ1, μ2)T , Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

=
(

σ2
11 σ12

σ12 σ2
22

)

.

By §1.5,

E(Y |X = x) = μ2 + ρ
σ2

σ1
(x − μ1), so E(Y |X) = μ2 + ρ

σ2

σ1
(X − μ1).

So

E[E(Y |X)] = μ2 + ρ
σ2

σ1
(EX − μ1) = μ2 = EY, as EX = μ1.

As with the bivariate normal, we should keep some concrete instance in
mind as a motivating example, e.g.:

X = incoming score of student [in medical school or university, say], Y =
graduating score;

X = child’s height at 2 years (say), Y = child’s eventual adult height,
or

X = mid-parental height, Y = child’s adult height, as in Galton’s study.

Conditional variances. Recall varX := E[(X −EX)2]. Expanding the square,

varX = E
[
X2 − 2X.(EX) + (EX)2

]
= E

(
X2
)
− 2(EX)(EX) + (EX)2,

= E
(
X2
)
− (EX)2.

Conditional variances can be defined in the same way. Recall that E(Y |X) is
constant when X is known (= x, say), so can be taken outside an expectation
over X , EX say. Then

var(Y |X) := E(Y 2|X) − [E(Y |X)]2.

Take expectations of both sides over X :

EX [var(Y |X)] = EX [E(Y 2|X)] − EX [E(Y |X)]2.

Now EX [E(Y 2|X)] = E(Y 2), by the Conditional Mean Formula, so the right
is, adding and subtracting (EY )2,

{E(Y 2) − (EY )2} − {EX [E(Y |X)]2 − (EY )2}.
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The first term is var Y , by above. Since E(Y |X) has EX -mean EY , the second
term is varXE(Y |X), the variance (over X) of the random variable E(Y |X)
(random because X is). Combining, we have (Williams (2001), §9.1, or Haigh
(2002) Ex 4.33):

Theorem 4.20 (Conditional Variance Formula)

varY = EXvar(Y |X) + varXE(Y |X).

Interpretation.

– varY = total variability in Y,

– EXvar(Y |X) = variability in Y not accounted for by knowledge of X,

– varXE(Y |X) = variability in Y accounted for by knowledge of X.

Example 4.21 (The Bivariate normal)

Y |X = x is N

(

μ2 + ρ
σ2

σ1
(x − μ1), σ2

2

(
1 − ρ2

)
)

, varY = σ2
2 ,

E(Y |X = x) = μ2 + ρ
σ2

σ1
(x − μ1), E(Y |X) = μ2 + ρ

σ2

σ1
(X − μ1),

which has variance

var E(Y |X) = (ρσ2/σ1)2varX = (ρσ2/σ1)2σ2
1 = ρ2σ2

2 ,

var(Y |X = x) = σ2
2

(
1 − ρ2

)
for all x, var(Y |X) = σ2

2

(
1 − ρ2

)
,

(as in Fact 6 of §1.5):

EXvar(Y |X) = σ2
2

(
1 − ρ2

)
.

Corollary 4.22

E(Y |X) has the same mean as Y and smaller variance (if anything) than Y .

Proof

From the Conditional Mean Formula, E[E(Y |X)] = EY . Since var(Y |X) ≥ 0,
EXvar(Y |X) ≥ 0, so

varE[Y |X ] ≤ varY

from the Conditional Variance Formula.
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Note 4.23

This result has important applications in estimation theory. Suppose we are
to estimate a parameter θ, and are considering a statistic X as a possible
estimator (or basis for an estimator) of θ. We would naturally want X to con-
tain all the information on θ contained within the entire sample. What (if
anything) does this mean in precise terms? The answer lies in Fisher’s con-
cept of sufficiency (‘data reduction’), that we met in §4.4.1. In the language
of sufficiency, the Conditional Variance Formula is seen as (essentially) the
Rao–Blackwell Theorem, a key result in the area.

Regression. In the bivariate normal, with X = mid-parent height, Y = child’s
height, E(Y |X = x) is linear in x (regression line). In a more detailed analysis,
with U = father’s height, V = mother’s height, Y = child’s height, one would
expect E(Y |U = u, V = v) to be linear in u and v (regression plane), etc.

In an n-variate normal distribution Nn(μ, Σ), suppose that we partition
X = (X1, . . . , Xn)T into X1 := (X1, . . . , Xr)T and X2 := (Xr+1, . . . , Xn)T . Let
the corresponding partition of the mean vector and the covariance matrix be

μ =
(

μ1

μ2

)

, Σ =
(

Σ11 Σ12

Σ21 Σ22

)

,

where EXi = μi, Σ11 is the covariance matrix of X1, Σ22 that of X2, Σ12 = ΣT
21

the covariance matrix of X1 with X2.
For clarity, we restrict attention to the non-singular case, where Σ is positive

definite.

Lemma 4.24

If Σ is positive definite, so is Σ11.

Proof

xT Σx > 0 as Σ is positive definite. Take x = (x1,0)T , where x1 has the same
number of components as the order of Σ11 (that is, in matrix language, so
that the partition of x is conformable with those of μ and Σ above). Then
x1Σ11x1 > 0 for all x1. This says that Σ11 is positive definite, as required.
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Theorem 4.25

The conditional distribution of X2 given X1 = x1 is

X2|X1 = x1 ∼ N
(
μ2 + Σ21Σ

−1
11 (x1 − μ1), Σ22 − Σ21Σ

−1
11 Σ12

)
.

Corollary 4.26

The regression of X2 on X1 is linear:

E(X2|X1 = x1) = μ2 + Σ21Σ
−1
11 (x1 − μ1).

Proof

Recall from Theorem 4.16 that AX, BX are independent iff AΣBT = 0, or as
Σ is symmetric, BΣAT = 0. Now

X1 = AX where A = (I, 0),

X2 − Σ21Σ
−1
11 X1 =

(
−Σ21Σ

−1
11 I

)
(
X1

X2

)

= BX, where B =
(
−Σ21Σ

−1
11 I

)
.

Now

BΣAT =
(
−Σ21Σ

−1
11 I

)
[

Σ11 Σ12

Σ21 Σ22

] [
I

0

]

= =
(
−Σ21Σ

−1
11 I

)
[

Σ11

Σ21

]

= −Σ21Σ
−1
11 Σ11 + Σ21 = 0,

so X1 and X2 −Σ21Σ
−1
11 X1 are independent. Since both are linear transforma-

tions of X, which is multinormal, both are multinormal. Also,

E(BX) = BEX =
(
−Σ21Σ

−1
11 I

) (
μ1 μ2

)
= μ2 − Σ21Σ

−1
11 μ1.

To calculate the covariance matrix, introduce C := −Σ21Σ
−1
11 , so B = (C I),

and recall ΣT
12 = Σ21, so CT = −Σ−1

11 Σ12:

var(BX) = BΣBT =
(

C I
)
[

Σ11 Σ12

Σ21 Σ22

] [
CT

I

]

=
(
C I

)
[

Σ11C
T + Σ12

Σ21C
T + Σ22

]

= CΣ11C
T + CΣ12 + Σ21C

T + Σ22

= Σ21Σ
−1
11 Σ11Σ

−1
11 Σ12 − Σ21Σ

−1
11 Σ12 − Σ21Σ

−1
11 Σ12 + Σ22

= Σ22 − Σ21Σ
−1
11 Σ12.
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By independence, the conditional distribution of BX given X1 = AX is the
same as its marginal distribution, which by above is N(μ2 −Σ21Σ

−1
11 μ1, Σ22 −

Σ21Σ
−1
11 Σ12). So given X1, X2 − Σ21Σ

−1
11 X1 is N(μ2 − Σ21Σ

−1
11 μ1, Σ22 −

Σ21Σ
−1
11 Σ12).

It remains to pass from the conditional distribution of X2 − Σ21Σ
−1
11 X1

given X1 to that of X2 given X1. But given X1, Σ21Σ
−1
11 X1 is constant, so we

can do this simply by adding Σ21Σ
−1
11 X1. The result is again multinormal, with

the same covariance matrix, but (conditional) mean μ2 + Σ21Σ
−1
11 (X1 − μ1).

That is, the conditional distribution of X2 given X1 is

N
(
μ2 + Σ21Σ

−1
11 (X1 − μ1), Σ22 − Σ21Σ

−1
11 Σ12

)
,

as required.

Note 4.27

Here Σ22 −Σ21Σ
−1
11 Σ12 is called the partial covariance matrix of X2 given X1.

In the language of Linear Algebra, it is called the Schur complement of Σ22 in
Σ (Issai Schur (1875–1941) in 1905; see Zhang (2005)). We will meet the Schur
complement again in §9.1 (see also Exercise 4.10).

Example 4.28 (Bivariate normal)

Here n = 2, r = s = 1 :

Σ =
(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

)

=
(

Σ11 Σ12

Σ21 Σ22

)

,

Σ21Σ
−1
11 (X1 − μ1) =

ρσ1σ2

σ2
1

(X1 − μ1) =
ρσ2

σ1
(X1 − μ1),

Σ22 − Σ21Σ
−1
11 Σ12 = σ2

2 − ρσ1σ2.σ
−2
1 .ρσ1σ2 = σ2

2(1 − ρ2),

as before.

Note 4.29

The argument can be extended to cover the singular case as well as the non-
singular case, using generalised inverses of the relevant matrices. For details,
see e.g. Rao (1973), §8a.2v, 522–523.

Note 4.30

The details of the matrix algebra are less important than the result: conditional
distributions of multinormals are multinormal. To find out which multinormal,



4.6 Mean-square prediction 121

we then only need to get the first and second moments – mean vector and
covariance matrix – right.

Note 4.31

The result can actually be generalised well beyond the multivariate normal
case. Recall (bivariate normal, Fact 8) that the bivariate normal has elliptical
contours. The same is true in the multivariate normal case, by Edgeworth’s
Theorem – the contours are Q(x) := (x− μ)T Σ−1(x− μ) = constant. It turns
out that this is the crucial property. Elliptically contoured distributions are
much more general than the multivariate normal but share most of its nice
properties, including having linear regression.

4.6 Mean-square prediction

Chapters 3 and 4 deal with linear prediction, but some aspects are more general.
Suppose that y is to be predicted from a vector x, by some predictor f(x). One
obvious candidate is the regression function

M(x) := E[y|x],

(‘M for mean’). Then

E[(y − M(x))(M(x) − f(x))] = E[E[(y − M(x))(M(x) − f(x))|x]],

by the Conditional Mean Formula. But given x, M(x)− f(x) is known, so can
be taken through the inner expectation sign (like a constant). So the right is

E[(M(x) − f(x))E[(y − M(x))|x]].

But the inner expression is 0, as M = E(y|x). So

E
[
(y − f)2

]
= E

[
((y − M) + (M − f))2

]

= E
[
(y − M)2

]
+ 2E[(y − M)(M − f)] + E

[
(M − f)2

]

= E
[
(y − M)2

]
+ E

[
(M − f)2

]
,

by above. Interpreting the left as the mean-squared error – in brief, prediction
error – when predicting y by f(x), this says:
(i) E[(y − M)2]≤E[(y − f)2] : M has prediction error at most that of f .
(ii) The regression function M(x) = E[y|x] minimises the prediction error over
all predictors f .
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Now

cov(y, f) = E[(f − EF )(y − Ey)] (definition of covariance)

= E[(f − Ef)E[(y − Ey)|x]] (Conditional Mean Formula)

= E[(f − Ef)(M − EM)] (definition of M)

= cov(M, f).

So

corr2(f, y) =
cov2(f, y)

var f var y
=

cov2(f, y)
varfvarM

.
varM
var y

= corr2(M, f).
varM
var y

.

When the predictor f is M , one has by above

cov(y, M) = cov(M, M) = varM.

So

corr2(y, M) =
cov2(y, M)
var y var M

=
var M

var y
.

Combining,

corr2(f, y) = corr2(f, M).corr2(M, y).

Since correlation coefficients lie in [−1, 1], and so their squares lie in [0, 1], this
gives

corr2(f, y) ≤ corr2(M, y),

with equality iff

f = M.

This gives

Theorem 4.32

The regression function M(x) := E(y|x) has the maximum squared correlation
with y over all predictors f(x) of y.

Note 4.33

1. One often uses the alternative notation ρ(·, ·) for the correlation corr(·, ·).
One then interprets ρ2 = ρ2(M, y) as a measure of how well the regression
M explains the data y.
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2. The simplest example of this is the bivariate normal distribution of §1.5.

3. This interpretation of ρ2 reinforces that it is the population counterpart of
R2 and its analogous interpretation in Chapter 3.

4. Since corr2(y, M)≤1, one sees again that var M≤var y, as in the Condi-
tional Variance Formula and the Rao–Blackwell Theorem, Theorem 4.20,
Corollary 4.22 and Note 4.23.

5. This interpretation of regression as maximal correlation is another way
of looking at regression in terms of projection, as in §3.6. For another
treatment see Williams (2001), Ch. 8.

4.7 Generalised least squares and weighted
regression

Suppose that we write down the model equation

y = Xβ + ε, (GLS)

where it is assumed that

ε∼N(0, σ2V ),

with V �=I in general. We take V full rank; then V −1 exists, XT V −1X is full
rank, and (XT V −1X)−1 exists. (GLS) is the model equation for generalised
least squares. If V is diagonal (GLS) is known as weighted least squares. By
Corollary 4.13 (Matrix square roots) we can find P non-singular and symmetric
such that

PT P = P 2 = V.

Theorem 4.34 (Generalised Least Squares)

Under generalised least squares (GLS), the maximum likelihood estimate β̂ of
β is

β̂ =
(
XT V −1X

)−1
XT V −1y.

This is also the best linear unbiased estimator (BLUE).
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Proof

Pre–multiply by P−1 to reduce the equation for generalised least squares to
the equation for ordinary least squares:

P−1y = P−1Xβ + P−1ε. (OLS)

Now by Proposition 4.4 (ii)

cov(P−1ε) = P−1cov(ε)(P−1)T = P−1σ2V P−1 = σ2.P−1PPP−1 = σ2I.

So (OLS) is now a regression problem for β within the framework of ordinary
least squares. From Theorem 3.5 the maximum likelihood estimate of β can
now be obtained from the normal equations as

[(
P−1X

)T (
P−1X

)]−1 (
P−1X

)T
y =

(
XT P−2X

)−1
XT P−2y

=
(
XT V −1X

)−1
XT V −1y,

since
(
XT V −1X

)−1 is non–singular. By Theorem 3.13 (Gauss–Markov
Theorem), this is also the BLUE.

Note 4.35

By §3.3 the ordinary least squares estimator β̂ = (XT X)−1XT y is unbiased
but by above is no longer the Best Linear Unbiased Estimator (BLUE).

Note 4.36

Theorem 4.34 is the key to a more general setting of mixed models (§9.1), where
the BLUE is replaced by the best linear unbiased predictor (BLUP).

Note 4.37

In practice, if we do not assume that V = I then the form that V should
take instead is often unclear even if V is assumed diagonal as in weighted least
squares. A pragmatic solution is first to perform the analysis of the data assum-
ing V = I and then to use the residuals of this model to provide an estimate
V̂ of V for use in a second stage analysis if this is deemed necessary. There ap-
pear to be no hard and fast ways of estimating V , and doing so in practice
clearly depends on the precise experimental context. As an illustration, Draper
and Smith (1998), Ch. 9, give an example of weighted regression assuming a
quadratic relationship between a predictor and the squared residuals. See also
Carroll and Ruppert (1988).
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EXERCISES

4.1. Polynomial regression The data in Table 4.2 give the percentage
of divorces caused by adultery per year of marriage. Investigate
whether the rate of divorces caused by adultery is constant, and
further whether or not a quadratic model in time is justified. Inter-
pret your findings.

Year 1 2 3 4 5 6 7
% 3.51 9.50 8.91 9.35 8.18 6.43 5.31

Year 8 9 10 15 20 25 30
% 5.07 3.65 3.80 2.83 1.51 1.27 0.49

Table 4.2 Data for Exercise 4.1.

4.2. Corner-point constraints and one-way ANOVA. Formulate the re-
gression model with k treatment groups as

A =

⎛

⎜
⎜
⎜
⎜
⎝

1n1 0n2 0n3 . . . 0n1

1n2 1n2 0n3 . . . 0n2

1n3 0n2 1n3 . . . 0n3

. . . . . . . . . . . . . . .

1nk
0nk

0nk
. . . 1nk

⎞

⎟
⎟
⎟
⎟
⎠

,

AT A =

⎛

⎜
⎜
⎝

n1 + n2 + . . . + nk n2 . . . nk

n2 n2 . . . 0
. . . . . . . . . . . .

nk 0 . . . nk

⎞

⎟
⎟
⎠,

where nj denotes the number of observations in treatment group j,
1nj is an associated nj column vector of 1s and yj denotes a column
vector of observations corresponding to treatment group j.
(i) Show that

AT y =

⎛

⎜
⎜
⎝

n1y1 + n2y2 + . . . + nkyk

n2y2

. . .

nkyk

⎞

⎟
⎟
⎠.

(ii) In the case of two treatment groups calculate β̂ and calculate
the fitted values for an observation in each treatment group.
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(iii) Show that

M = (AT A)−1 =

⎛

⎜
⎜
⎜
⎝

1
n1

−1
n1

. . . −1
n1−1

n1

1
n2

+ 1
n1

. . . 1
n1

. . . . . . . . . . . .
−1
n1

1
n1

. . . 1
nk

+ 1
n1

⎞

⎟
⎟
⎟
⎠

.

Calculate β̂, give the fitted values for an observation in treatment
group j and interpret the results.

4.3. Fit the model in Example 2.9 using a regression approach.

4.4. Fit the model in Example 2.11 using a regression approach.

4.5. Define, Y0∼N(0, σ2
0), Yi = Yi−1 + εi, where the εi are iid N(0, σ2).

What is the joint distribution of
(i) Y1, Y2, Y3,
(ii) Y1, . . . , Yn?

4.6. Let Y ∼N3(μ, Σ) with Σ =

⎛

⎝
1 a 0
a 1 b

0 b 1

⎞

⎠. Under what conditions

are Y1 + Y2 + Y3 and Y1 − Y2 − Y3 independent?

4.7. Mean-square prediction. Let Y ∼ U(−a, b), a, b > 0, X = Y 2.
(i) Calculate E(Y n).
(ii) Find the best mean-square predictors of X given Y and of Y

given X .
(iii) Find the best linear predictors of X given Y and of Y given X .

4.8. If the mean μ0 in the multivariate normal distribution is known,
show that the MLE of Σ is

Σ̂ =
1
n

∑n

1
(xi − μ0)T (xi − μ0) = S + (x − μ0)T (x − μ0).

[Hint: Define the precision matrix Λ = Σ−1 and use the differential
rule ∂/∂A ln |A| =

(
A−1

)T .]

4.9. Background results for Exercise 4.11.
(i) Let X∼N(μ, Σ). Show that

fX(x) ∝ exp
{
xT Ax + xT b

}
,

where A = − 1
2Σ−1 and b = Σ−1μ.

(ii) Let X and Y be two continuous random variables. Show that
the conditional density fX|Y (x|y) can be expressed as KfX,Y (x, y)
where K is constant with respect to x.
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4.10. Inverse of a partitioned matrix. Show that the following formula
holds for the inverse of a partitioned matrix:
(

A B

C D

)−1

=
(

M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)

,

where M = (A − BD−1C)−1. See e.g. Healy (1956), §3.4.

4.11. Alternative derivation of conditional distributions in the multivariate
normal family. Let X∼N(μ, Σ) and introduce the partition

x =
(

xA

xB

)

, μ =
(

μA

μB

)

, Σ =
(

ΣAA ΣAB

ΣBA ΣBB

)

.

Using Exercise 4.9 show that the conditional distribution of xA|xB

is multivariate normal with

μA|B = μA + ΣABΣ−1
BB(xB − μB),

ΣA|B = ΣAA − ΣABΣ−1
BBΣBA.



5
Adding additional covariates

and the Analysis of Covariance

5.1 Introducing further explanatory variables

Suppose that having fitted the regression model

y = Xβ + ε, (M0)

we wish to introduce q additional explanatory variables into our model. The
augmented regression model, MA, say becomes

y = Xβ + Zγ + ε. (MA)

We rewrite this as

y = Xβ + Zγ + ε = (X, Z) (β, γ)T + ε,

= Wδ + ε,

say, where

W := (X, Z), δ :=
(

β

γ

)

.

Here X is n×p and assumed to be of rank p, Z is n×q of rank q, and the columns
of Z are linearly independent of the columns of X . This final assumption means
that there is a sense in which the q additional explanatory variables are adding

N.H. Bingham and J.M. Fry, Regression: Linear Models in Statistics, 129
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-969-5 5,
c© Springer-Verlag London Limited 2010
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genuinely new information to that already contained in the pre-existing X

matrix. The least squares estimator δ̂ can be calculated directly, by solving the
normal equations as discussed in Chapter 3, to give

δ̂ = (WT W )−1WT y.

However, in terms of practical implementation, the amount of computation can
be significantly reduced by using the estimate β̂ obtained when fitting the model
(M0). We illustrate this method with an application to Analysis of Covariance,
or ANCOVA for short. The results are also of interest as they motivate formal
F -tests for comparison of nested models in Chapter 6.

Note 5.1

ANCOVA is an important subject in its own right and is presented here to
illustrate further the elegance and generality of the general linear model as
presented in Chapters 3 and 4. It allows one to combine, in a natural way,
quantitative variables with qualitative variables as used in Analysis of Variance
in Chapter 2. The subject was introduced by Fisher in 1932 (in §49.1 of the
fourth and later editions of his book, Fisher (1958)). We proceed with the
following lemma (where P is the projection or hat matrix, P = X(XT X)−1XT

or P = A(AT A)−1AT = AC−1AT in our previous notation).

Lemma 5.2

If R = I − P = I − X(XT X)−1XT , then ZT RZ is positive definite.

Proof

Suppose xT ZT RZx = 0 for some vector x. We have

xT ZT RZx = xT ZT RT RZx = 0,

since R is idempotent from Lemma 3.18. It follows that RZx = 0, which we
write as Zx = PZx = Xy say, for some vector y. This implies x = 0 as, by
assumption, the columns of Z are linearly independent of the columns of X .
Since x = 0, it follows that ZT RZ is positive definite.

Theorem 5.3

Let RA = I − W (WT W )−1WT , L = (XT X)−1XT Z and

δ̂ =
(

β̂A

γ̂A

)

.
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Then

(i) γ̂A = (ZT RZ)−1ZT Ry,

(ii) β̂A = (XT X)−1XT (y − Zγ̂A) = β̂ − Lγ̂A,

(iii) The sum of squares for error of the augmented model is given by

yT RAy = (y − Zγ̂A)T R(y − Zγ̂A) = yT Ry − γ̂AZT Ry.

Proof

(i) We write the systematic component in the model equation (MA) as

Xβ + Zγ = Xβ + PZγ + (I − P )Zγ,

= X
[
β + (XT X)−1XT Zγ

]
+ RZγ,

=
(

X RZ
)
(

α

γ

)

,

= V λ

say, where α = β + (XT X)−1XT Zγ. Suppose V λ = 0 for some λ. This
gives Xβ + Zγ = 0, with both β = γ = 0 by linear independence of the
columns of X and Z. Hence V has full rank p + q, since its null space
is of dimension 0. From the definition R = I − X(XT X)−1XT , one has
XT R = RX = 0. From Theorem 3.5, the normal equations can be solved
to give

λ̂ = (V T V )−1V T y,

=
(

XT X XT RZ

ZT RX ZT RZ

)−1(
XT

ZT R

)

y.

As XT R = RX = 0, this product is

λ̂ =
(

XT X 0
0 ZT RZ

)−1(
XT

ZT R

)

y

=
(

(XT X)−1XTy
(ZT RZ)−1ZT Ry

)

.

We can read off from the bottom row of this matrix

γ̂A = (ZT RZ)−1ZT Ry.
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(ii) From the top row of the same matrix,

α̂ = (XT X)−1XTy = β̂,

since β̂ = (XT X)−1XT y. Since we defined α = β + (XT X)−1XT Zγ, it
follows that our parameter estimates for the augmented model must satisfy

α̂ = β̂A +
(
XT X

)−1
XT Zγ̂A = β̂,

and the result follows.

(iii) We have that

RAy = y − Xβ̂A − Zγ̂A

= y − X
(
XT X

)−1
XT (y − Zγ̂) − Zγ̂A (by (ii) and (NE))

=
(
I − X

(
XT X

)−1
XT
)

(y − Zγ̂A)

= R(y − Zγ̂A)

= Ry − RZ
(
ZT RZ

)−1
ZT Ry (by (i)).

So by the above,

yT RAy = yT RZ
(
ZT RZ

)−1
ZT Ry,

= γ̂T
AZT Ry.

Since the matrices RA and R are symmetric and idempotent (Lemma
3.18), the result can also be written as

yT RT
ARAy = yT RAy

= (y − Zγ̂A)T RT R(y − Zγ̂A)

= (y − Zγ̂A)T R(y − Zγ̂A).

Sum of squares decomposition. We may rewrite (iii) as

SSE = SSEA + γ̂AZT Ry.

That is, the sum of squares attributable to the new explanatory variables Z is

γ̂AZT Ry.

Linear hypothesis tests and an Analysis of Variance formulation based on a
decomposition of sums of squares are discussed at length in Chapter 6. The
result above gives a practical way of performing these tests for models which
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are constructed in a sequential manner. In particular, the result proves useful
when fitting Analysis of Covariance models (§5.2–5.3).

One Extra Variable. The case with only one additional explanatory is worth
special mention. In this case the matrix Z is simply a column vector, x(p) say.
We have that ZT RZ = xT

(p)Rx(p) is a scalar and the above formulae simplify
to give

γ̂A =
xT

(p)Ry

xT
(p)Rx(p)

,

β̂A = β̂ − (XT X)−1XT x(p)β̂A,

yT RAy = yT Ry − γ̂xT
(p)Ry.

5.1.1 Orthogonal parameters

From Theorem 5.2(ii), the difference in our estimates of β in our two models,
(M0) and (MA), is Lγ̂A, where

L := (XT X)−1XT Z.

Now L = 0 iff
XT Z = 0 (orth)

(recall X is n × p, Z is n × q, so XT Z is p × q, the matrix product being
conformable). This is an orthogonality relation, not between vectors as usual
but between matrices. When it holds, our estimates β̂ and β̂A of β in the
original and augmented models (M0) and (MA) are the same. That is, if we
are considering extending our model from (M0) to (MA), that is in extending
our parameter from β to δ, we do not have to waste the work already done
in estimating β, only to estimate the new parameter γ. This is useful and
important conceptually and theoretically. It is also important computationally
and in calculations done by hand, as was the case before the development of
statistical packages for use on computers. As our interest is in the parameters
(β, γ, δ) rather than the design matrices (X , Z, W ), we view the orthogonality
relation in terms of them, as follows:

Definition 5.4

In the above notation, the parameters β, γ are orthogonal (or β, γ are orthogonal
parameters) if

XT Z = 0. (orth)
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Note 5.5

1. We have met such orthogonality before, in the context of polynomial regres-
sion (§4.1) and orthogonal polynomials (§4.1.2).
2. Even with computer packages, orthogonality is still an advantage from the
point of view of numerical stability, as well as computational efficiency (this is
why the default option in S-Plus uses orthogonal polynomials – see §4.1.3). Nu-
merical stability is very important in regression, to combat one of the standing
dangers – multicollinearity (see §7.4).
3. Orthogonal polynomials are useful in Statistics beyond regression. In statis-
tical models with several parameters, it often happens that we are interested
in some but not all of the parameters needed to specify the model. In this case,
the (vector) parameter we are interested in – β, say – is (naturally) called the
parameter of interest, or interest parameter, while the complementary para-
meter we are not interested in – γ, say – is called the nuisance parameter. The
simplest classical case is the normal model N(μ, σ2). If we are interested in
the mean μ only, and not the variance σ2, then σ is a nuisance parameter.
The point of the Student t-statistic

t :=
√

n − 1(X − μ)/S ∼ t(n − 1)

familiar from one’s first course in Statistics is that it cancels out σ:
√

n(X − μ)/σ ∼ N(0, 1), nS2/σ2 ∼ χ2(n − 1), X and S independent.

The tasks of estimating μ with σ known and with σ unknown are fundamentally
different (and this is reflected in the difference between the normal and the t

distributions).
Again, it may happen that with two parameters, θ1 and θ2 say, we have two

statistics S1 and S2, such that while S2 is uninformative about θ1 on its own,
(S1, S2) is more informative about θ1 than S1 alone is. One then says that the
statistic S2 is ancillary for inference about θ1. Ancillarity (the concept is again
due to Fisher) is best studied in conjunction with sufficiency, which we met
briefly in §4.4.1. and §4.5.

With such issues in mind, one may seek to find the simplest, or most
tractable, way to formulate the problem. It can be very helpful to reparametrise,
so as to work with orthogonal parameters. The relevant theory here is due to
Cox and Reid (1987) (D. R. Cox (1924–) and Nancy Reid (1952–)). Loosely
speaking, orthogonal parameters allow one to separate a statistical model into
its component parts.
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5.2 ANCOVA

Recall that in regression (Chapters 1, 3, and 4) we have continuous (quantita-
tive) variables, whilst in ANOVA (Chapter 2) we have categorical (qualitative)
variables. For questions involving both qualitative and quantitative variables, we
need to combine the methods of regression and ANOVA. This hybrid approach
is Analysis of Covariance (ANCOVA).

Example 5.6

Suppose we want to compare two treatments A, B for reducing high blood
pressure. Now blood pressure y is known to increase with age x (as the arteries
deteriorate, by becoming less flexible, or partially blocked with fatty deposits,
etc.). So we need to include age as a quantitative variable, called a covariate
or concomitant variable, while we look at the treatments (qualitative variable),
the variable of interest.

Suppose first that we inspect the data (EDA). See Figure 5.1, where x is
age in years, y is blood pressure (in suitable units), the circles are those with
treatment A and the triangles are those with treatment B.

This suggests the model

yi =
{

β0A + β1xi + εi for Treatment A;
β0B + β1xi + εi for Treatment B.

This is the full model (of parallel-lines type in this example): there is a common
slope, that is increase in age has the same effect for each treatment.

Here the parameter of interest is the treatment effect, or treatment difference,
β0A − β0B, and the hypothesis of interest is that this is zero: H0 : β0A = β0B .

Now see what happens if we ignore age as a covariate. In effect, this projects
the plot above onto the y-axis. See Figure 5.2. The effect is much less clear!

Rewrite the model as (μi := Eyi; Eεi = 0 as usual)

μi =
{

β0 + β1xi for Treatment A;
β0 + β1xi + β2 for Treatment B

and test
H0 : β2 = 0.

The full model is: β2 unrestricted.
The reduced model is: β2 = 0.
Thus we are testing a linear hypothesis β2 = 0 here.
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x

y

Figure 5.1 EDA plot suggests model with two different intercepts

We can put the quantitative variable x and the qualitative variable treat-
ment on the same footing by introducing an indicator (or Boolean) variable,

zi :=

{
0 if the ith patient has Treatment A,

1 if the ith patient has Treatment B.

Then

– Full model: μi = β0 + β1xi + β2z,

– Reduced model: μi = β0 + β1xi,

– Hypothesis: H0 : β2 = 0.

As with regression and ANOVA, we might expect to test hypotheses using
an F -test (‘variance-ratio test’), with large values of an F -statistic significant
against the null hypothesis. This happens with ANCOVA also; we come to the
distribution theory later.

Interactions. The effect above is additive – one treatment simply shifts the
regression line vertically relative to the other – see Figure 5.1. But things may
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x

y

Figure 5.2 Ignorance of covariate blurs the ease of interpretation

be more complicated. For one of the treatments, say, there may be a decreasing
treatment effect – the treatment effect may decrease with age, giving rise to
non-parallel lines. The two lines may converge with age (when the treatment
that seems better for younger patients begins to lose its advantage), may cross
(when one treatment is better for younger patients, the other for older patients),
or diverge with age (when the better treatment for younger patients looks better
still for older ones). See Figure 5.3.

The full model now has four parameters (two general lines, so two slopes
and two intercepts):

μi = β0 + β1xi + β2zi + β3zixi (general lines),

the interaction term in β3 giving rise to separate slopes.
The first thing to do is to test whether we need two separate slopes, by

testing

H0 : β3 = 0.

If we do not, we simplify the model accordingly, back to

μi = β0 + β1xi + β2zi (parallel lines).
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x

y

x

y

Figure 5.3 Top panel: Interaction term leads to convergence and then cross-
over for increasing x. Bottom panel: Interaction term leads to divergence of
treatment effects.
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We can then test for treatment effect, by testing

H0 : β2 = 0.

If the treatment (β2z) term is not significant, we can reduce again, to

μi = β0 + β1xi (common line).

We could, for completeness, then test for an age effect, by testing

H0 : β1 = 0

(though usually we would not do this – we know blood pressure does increase
with age). The final, minimal model is

μi = β0.

These four models – with one, two, three and four parameters – are nested
models. Each is successively a sub-model of the ‘one above’, with one more
parameter. Equally, we have nested hypotheses

β3 = 0,

β2(= β3) = 0,

β1(= β2 = β3) = 0.

Note 5.7

In the medical context above, we are interested in treatments (which is the
better?). But we are only able to test for a treatment effect if there is no
interaction. Otherwise, it is not a question of the better treatment, but of which
treatment is better for whom.

5.2.1 Nested Models

Update. Using a full model, we may wish to simplify it by deleting non-
significant terms. Some computer packages allow one to do this by using a
special command. In S-Plus/R� the relevant command is update. F -tests for
nested models may simply be performed as follows:
m1.lm<-lm(y∼x variables)

m2.lm<-update(a.lm, ∼. -x variables to be deleted)

anova(m1.lm, m2.lm, test="F")
Note the syntax: to delete a term, use update and

, ∼ . - “comma tilde dot minus”.
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Akaike Information Criterion (AIC). If there are p parameters in the model,

AIC := −2log-likelihood + 2(p + 1)

(p parameters, plus one for σ2, the unknown variance). We then choose between
competing models by trying to minimise AIC. The AIC is a penalised log-
likelihood, penalised by the number of parameters (H. Akaike (1927–) in 1974).

The situation is like that of polynomial regression (§4.1). Adding more
parameters gives a better fit. But, the Principle of Parsimony tells us to use as
few parameters as possible. AIC gives a sensible compromise between

bad fit, over-simplification, too few parameters, and
good fit, over-interpretation, too many parameters.

Step. One can test the various sub-models nested within the full model au-
tomatically in S-Plus, by using the command step. This uses AIC to drop
non-significant terms (Principle of Parsimony: the fewer terms, the better).
The idea is to start with the full model, and end up with the minimal adequate
model.

Unfortunately, it matters in what order the regressors or factors are speci-
fied in our current model. This is particularly true in ill-conditioned situations
(Chapter 7), where the problem is numerically unstable. This is usually caused
by multicollinearity (some regressors being nearly linear combinations of oth-
ers). We will discuss multicollinearity and associated problems in more detail in
Chapter 7. F -tests for nested models and stepwise methods for model selection
are further discussed in Chapter 6.

5.3 Examples

Example 5.8 (Photoperiod example revisited)

Here we suppose that the data in Exercises 2.4 and 2.9 can be laid out as
in Table 5.1 – we assume we have quantitative rather than purely qualita-
tive information about the length of time that plants are exposed to light. We
demonstrate that Analysis of Covariance can lead to a flexible class of mod-
els by combining methods from earlier chapters on regression and Analysis of
Variance.

The simplest model that we consider is Growth∼Genotype+Photoperiod.
This model has a different intercept for each different genotype. However, length
of exposure to light is assumed to have the same effect on each plant irrespective
of genotype. We can test for the significance of each term using an Analysis of
Variance formulation analogous to the construction in Chapter 2. The sums-of-
squares calculations are as follows. The total sum of squares and the genotype
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Photoperiod 8h 12h 16h 24h
Genotype A 2 3 3 4
Genotype B 3 4 5 6
Genotype C 1 2 1 2
Genotype D 1 1 2 2
Genotype E 2 2 2 2
Genotype F 1 1 2 3

Table 5.1 Data for Example 5.8

sum of squares are calculated in exact accordance with the earlier analysis-of-
variance calculations in Chapter 2:

SS = 175 − (1/24)572 = 39.625,

SSG = (1/4)(122 + 182 + 62 + 62 + 82 + 72) − (1/24)572 = 27.875.

As before we have 23 total degrees of freedom and 5 degrees of freedom for
genotype. In Chapter 1 we saw that the sum of squares explained by regression
is given by

SSR :=
∑

i
(ŷi − y)2 =

S2
xy

Sxx
.

Since photoperiod is now assumed to be a quantitative variable, we have only
one degree of freedom in the ANOVA table. The sum-of-squares calculation for
photoperiod becomes 772/840 = 7.058. As before, the residual sum of squares
is calculated by subtraction.
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In the notation of Theorem 5.3 we find that

Z =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 8
1 12
1 16
1 24
1 8
1 12
1 16
1 24
1 8
1 12
1 16
1 24
1 8
1 12
1 16
1 24
1 8
1 12
1 16
1 24
1 8
1 12
1 16
1 24

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Using γ̂A = (ZT RZ)−1ZT RY gives

γ̂A =

⎛

⎜
⎜
⎜
⎜
⎝

1.5
−1.5
−1.5
−1

−1.25

⎞

⎟
⎟
⎟
⎟
⎠

.

The regression sum of squares for genotype can then be calculated as
γ̂AZT RY =27.875 and we obtain, by subtraction, the resulting ANOVA table
in Table 5.2. All terms for photoperiod and genotype are significant and we
appear to need a different intercept term for each genotype.

A second model that we consider is Photoperiod∼Genotype*Photoperiod.
This model is a more complicated extension of the first, allowing for the pos-
sibility of different intercepts and different slopes, dependent on genotype. As
before, the degrees of freedom multiply to give five degrees of freedom for this
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Source df Sum of Squares Mean Square F p

Photoperiod 1 7.058 7.058 25.576 0.000
Genotype 5 27.875 5.575 20.201 0.000
Residual 17 4.692 0.276

Total 23 39.625

Table 5.2 ANOVA table for different intercepts model

interaction term. The sum-of-squares term of the Genotype:Photoperiod inter-
action term can be calculated as follows. In the notation of Theorem 5.3, we
now have

Z =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
8 0 0 0 0
12 0 0 0 0
16 0 0 0 0
24 0 0 0 0
0 8 0 0 0
0 12 0 0 0
0 16 0 0 0
0 24 0 0 0
0 0 8 0 0
0 0 12 0 0
0 0 16 0 0
0 0 24 0 0
0 0 0 8 0
0 0 0 12 0
0 0 0 16 0
0 0 0 24 0
0 0 0 0 8
0 0 0 0 12
0 0 0 0 16
0 0 0 0 24

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, X =

⎛

⎜
⎜
⎜
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⎜
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⎜
⎜
⎜
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⎜
⎜
⎜
⎜
⎜
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⎜
⎜
⎜
⎜
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⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 8 0 0 0 0 0
1 12 0 0 0 0 0
1 16 0 0 0 0 0
1 24 0 0 0 0 0
1 8 1 0 0 0 0
1 12 1 0 0 0 0
1 16 1 0 0 0 0
1 24 1 0 0 0 0
1 8 0 1 0 0 0
1 12 0 1 0 0 0
1 16 0 1 0 0 0
1 24 0 1 0 0 0
1 8 0 0 1 0 0
1 12 0 0 1 0 0
1 16 0 0 1 0 0
1 24 0 0 1 0 0
1 8 0 0 0 1 0
1 12 0 0 0 1 0
1 16 0 0 0 1 0
1 24 0 0 0 1 0
1 8 0 0 0 0 1
1 12 0 0 0 0 1
1 16 0 0 0 0 1
1 24 0 0 0 0 1

⎞

⎟
⎟
⎟
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⎟
⎠

.
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γ̂A = (ZT RZ)−1ZT RY gives

γ̂A =

⎛

⎜
⎜
⎜
⎜
⎝

0.071
−0.071
−0.043
−0.114
0.021

⎞

⎟
⎟
⎟
⎟
⎠

.

The sum of squares for the Genotype:Photoperiod term (Gen:Phot.) can then
be calculated as γ̂AZT RY = 3.149 and we obtain the ANOVA table shown in
Table 5.3. We see that the Genotype:Photoperiod interaction term is significant
and the model with different slopes and different intercepts offers an improve-
ment over the simpler model with just one slope but different intercepts.

Source df Sum of Squares Mean Square F p

Photoperiod 1 7.058 7.058 54.898 0.000
Genotype 5 5.575 43.361 0.000
Gen:Phot. 5 3.149 0.630 4.898 0.011

(Different slopes)
Residual 12 1.543 0.129

Total 23 39.625

Table 5.3 ANOVA table for model with different intercepts and different
slopes

Example 5.9 (Exercise 1.6 revisited)

We saw a covert Analysis of Covariance example as early as the Exercises at
the end of Chapter 1, in the half-marathon times in Table 1.2. The first model
we consider is a model with different intercepts. The sum of squares for age is
114.7952/747.5 = 17.629. Fitting the model suggested in part (ii) of Exercise
1.6 gives a residual sum of squares of 43.679. The total sum of squares is
SS = 136.114. Substituting gives a sum of squares of 136.114−43.679−17.629 =
74.805 for club status. This result can alternatively be obtained as follows. We
have that

Z = (0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)T,

X =
(

1 1 1 1 1 1 1 1 1 1 1 1 1 1
42 43 44 46 48 49 50 51 57 59 60 61 62 63

)T

.

We have that γ̂A = (ZT RZ)−1ZT RY = −7.673 and the sum of squares for
club status can be calculated as γ̂A(ZT RY ) = (−7.673)(−9.749) = 74.805.
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The ANOVA table obtained is shown in Table 5.4. The term for club status is
significant, but the age term is borderline insignificant. The calculations for the
model with two different slopes according to club status is left as an exercise
(see Exercise 5.1).

Source df Sum of squares Mean Square F p

Age 1 17.629 17.629 4.440 0.059
Club membership 1 74.805 74.805 18.839 0.001

Residual 11 43.679 3.971
Total 13 136.114

Table 5.4 ANOVA table for different intercepts model

EXERCISES

5.1. Produce the ANOVA table for the model with different slopes for
the data in Example 5.9.

5.2. In the notation of Theorem 5.3 show that

var
(
δ̂A

)
=
(

(XT X)−1 − LMLT +LM

−MLT M

)

,

where M = (ZT RZ)−1.

5.3. Suppose Y1, . . ., Yn are iid N(α, σ2).
(i) Find the least-squares estimate of α.
(ii) Use Theorem 5.3 to estimate the augmented model

Yi = α + βxi + εi,

and verify the formulae for the estimates of the simple linear regres-
sion model in Chapter 1.

5.4. Repeat the analysis in Chapter 5.3 in S-Plus/R� using the com-
mands update and anova.

5.5. The data in Table 5.5 come from an experiment measuring enzymatic
reaction rates for treated (State=1) and untreated (State=0) cells
exposed to different concentrations of substrate. Fit an Analysis of
Covariance model to this data and interpret your findings.
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State=0 State=1
Concentration Rate Concentration Rate

0.02 67 0.02 76
0.02 51 0.02 47
0.06 84 0.06 97
0.06 86 0.06 107
0.11 98 0.11 123
0.11 115 0.11 139
0.22 131 0.22 159
0.22 124 0.22 152
0.56 144 0.56 191
0.56 158 0.56 201
1.10 160 1.10 207

1.10 200

Table 5.5 Data for Exercise 5.5

5.6. ANCOVA on the log-scale. Plot the data in Exercise 5.5. Does the as-
sumption of a linear relationship appear reasonable? Log-transform
both the independent variable and the response and try again. (This
suggests a power-law relationship; these are extremely prevalent in
the physical sciences.) Fit an Analysis of Covariance model and write
out your final fitted model for the experimental rate of reaction.

5.7. The data in Table 5.6 is telephone usage (in 1000s) in various parts
of the world. Fit an Analysis of Covariance model to the logged data,
with time as an explanatory variable, using a different intercept term
for each region. Test this model against the model with a different
intercept and a different slope for each country.

N. Am. Europe Asia S. Am. Oceania Africa Mid Am.
51 45939 21574 2876 1815 1646 89 555
56 60423 29990 4708 2568 2366 1411 733
57 64721 32510 5230 2695 2526 1546 773
58 68484 35218 6662 2845 2691 1663 836
59 71799 37598 6856 3000 2868 1769 911
60 76036 40341 8220 3145 3054 1905 1008
61 79831 43173 9053 3338 3224 2005 1076

Table 5.6 Data for Exercise 5.7
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5.8. Quadratic Analysis of Covariance model. Suppose we have one ex-
planatory variable X but that the data can also be split into two
categories as denoted by a dummy variable Z. Write

Y = β0 + β1X + β2X
2 + γ0Z + γ1ZX + γ2ZX2 + ε.

In addition to the possibility of different intercepts and different
slopes this model allows for additional curvature, which can take
different forms in each category. Suppose the first k observations are
from the first category (Z = 0) and the remaining n − k are from
the second category (Z = 1).
(i) Write down the X matrix for this model.
Suggest appropriate F -tests to test:
(ii) The need for both quadratic terms,
(iii) The hypothesis γ2 = 0 assuming β2 �=0.

5.9. Probability plots/normal probability plots. Given an ordered sample
xi, an approximate test of normality can be defined by equating the
theoretical and empirical cumulative distribution functions (CDFs):

i

n
= Φ

(
xi − μ

σ

)

,

where Φ(·) is the standard normal CDF. In practice, to avoid bound-
ary effects, the approximate relation

i − 1
2

n
= Φ

(
xi − μ

σ

)

is often used (a ‘continuity correction’; cf. Sheppard’s correction,
Kendall and Stuart (1977) §3.18–26).
(i) Use this approximate relation to derive a linear relationship and
suggest a suitable graphical test of normality.
(ii) The following data represent a simulated sample of size 20 from
N(0, 1). Do these values seem reasonable using the above?

−2.501, −1.602, −1.178, −0.797, −0.698, −0.428, −0.156, −0.076,
−0.032, 0.214, 0.290, 0.389, 0.469, 0.507, 0.644, 0.697, 0.820, 1.056,
1.145, 2.744

[Hint: In S-Plus/R� you may find the commands ppoints and
qqnorm helpful.]
(iii) A random variable on [0, L] has a power-law distribution if it

has probability density f(x) = axb. Find the value of a and derive



148 5. Adding additional covariates and the Analysis of Covariance

an approximate goodness-of-fit test for this distribution by equating
theoretical and empirical CDFs.

5.10. Segmented/piecewise linear models. Suppose we have the following
data:

x = (1, 2, 3, 4, 5, 6, 7, 8, 9),

y = (1.8, 4.3, 5.6, 8.2, 9.1, 10.7, 11.5, 12.2, 14.0).

Suppose it is known that a change-point occurs at x = 5, so that
observations 1–4 lie on one straight line and observations 5–9 lie on
another.
(i) Using dummy variables express this model as a linear model.
Write down the X matrix. Fit this model and interpret the fitted
parameters.
(ii) Assume that the location of the change-point is unknown and
can occur at each of x = {4, 5, 6, 7}. Which choice of change-point
offers the best fit to data?
(iii) Show that for a linear regression model the maximised likeli-
hood function can be written as ∝ SSE. Hence, show that AIC is
equivalent to the penalty function

n ln(SSE) + 2p.

Hence, compare the best fitting change-point model with linear and
quadratic regression models with no change-point.



6
Linear Hypotheses

6.1 Minimisation Under Constraints

We have seen several examples of hypotheses on models encountered so far.
For example, in dealing with polynomial regression §4.1 we met, when dealing
with a polynomial model of degree k, the hypothesis that the degree was at
most k − 1 (that is, that the leading coefficient was zero). In Chapter 5, we
encountered nested models, for example two general lines, including two parallel
lines. We then met the hypothesis that the slopes were in fact equal (and so
the lines were parallel). We can also conduct a statistical check of structural
constraints (for instance, that the angles of a triangle sum to two right-angles –
see Exercise 6.5).

We thus need to formulate a general framework for hypotheses of this kind,
and for testing them. Since the whole thrust of the subject of regression is
linearity, it is to be expected that our attention focuses on linear hypotheses.

The important quantities are the parameters βi, i = 1, . . . , p. Thus one
expects to be testing hypotheses which impose linear constraints on these pa-
rameters. We shall be able to test k such constraints, where k ≤ p. Assembling
these into matrix form, we shall test a linear hypothesis (with respect to the
parameters) of the matrix form

Bβ = c. (hyp)

Here B is a k×p matrix, β is the p×1 vector of parameters, and c is a k×1 vector
of constants. We assume that matrix B has full rank: if not, there are linear

N.H. Bingham and J.M. Fry, Regression: Linear Models in Statistics, 149
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-969-5 6,
c© Springer-Verlag London Limited 2010
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dependencies between rows of B; we then avoid redundancy by eliminating
dependent rows, until remaining rows are linearly independent and B has full
rank. Since k ≤ p, we thus have that B has rank k.

We now seek to minimise the total sum of squares SS, with respect to
variation of the parameters β, subject to the constraint (hyp). Now by (SSD)
of §3.4,

SS = SSR + SSE.

Here SSE is a statistic, and can be calculated from the data y; it does not
involve the unknown parameters β. Thus our task is actually to

minimise SSR = (β̂ − β)T C(β̂ − β) under Bβ = c.

This constrained minimisation problem is solved by introducing Lagrange mul-
tipliers, λ1, . . . , λk, one for each component of the constraint equation (hyp).
We solve instead the unconstrained mimimisation problem

min
1
2
SSR + λT (Bβ − c),

where λ is the k-vector with ith component λi. Readers unfamiliar with
Lagrange multipliers are advised to take the method on trust for the moment:
we will soon produce our minimising value, and demonstrate that it does in-
deed achieve the minimum – or see e.g. Dineen (2001), Ch. 3 or Ostaszewski
(1990), §15.6. (See also Exercises 6.4–6.6.) That is, we solve

min
1
2

∑∑p

i,j=1
cij

(
β̂i − βi

)(
β̂j − βj

)
+

∑k

i=1
λj

(∑p

j=1
bijβj − ci

)
.

For each r = 1, . . . , k, we differentiate partially with respect to βr and equate
the result to zero. The double sum gives two terms, one with i = r and one
with j = r; as C = (cij) is symmetric, we obtain

−
∑

j
cjr

(
β̂j − βj

)
+

∑

i
λibir = 0.

The terms above are the rth elements of the vectors −C(β̂ − β) and BT λ. So
we may write this system of equations in matrix form as

BT λ = C
(
β̂ − β

)
. (a)

Now C is positive definite, so C−1 exists. Pre-multiply by BC−1 (B is k × p,
C−1 is p × p):

BC−1BT λ = B
(
β̂ − β

)
= Bβ̂ − c,

by (hyp). Since C−1 is positive definite (p × p) and B is full rank (k × p),
BC−1BT is positive definite (k × k). So we may solve for λ, obtaining

λ =
(
BC−1BT

)−1
(Bβ̂ − c). (b)
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We may now solve (a) and (b) for β, obtaining

β = β̂ − C−1BT
(
BC−1BT

)−1
(
Bβ̂ − c

)
.

This is the required minimising value under (hyp), which we write as β†:

β† = β̂ − C−1BT
(
BC−1BT

)−1
(
Bβ̂ − c

)
. (c)

In SSR = (β̂ − β)T C(β̂ − β), replace β̂ − β by (β̂ − β†) + (β† − β). This gives
two squared terms, and a cross term,

2(β† − β)T C(β̂ − β†),

which by (a) is
2(β† − β)T Bλ.

But Bβ = c and Bβ† = c, by (hyp). So B(β† − β) = 0, (β† − β)T B = 0, and
the cross term is zero. So

SSR = (β̂ − β)T C(β̂ − β) = (β̂ − β†)T C(β̂ − β†) + (β† − β)T C(β† − β). (d)

The second term on the right is non-negative, and is zero only for β = β†,
giving

Theorem 6.1

Under the linear constraint (hyp), the value

β† = β̂ − C−1BT (BC−1BT )−1(Bβ̂ − c)

is the unique minimising value of the quadratic form SSR in β.
(i) The unique minimum of SS under (hyp) is

SS∗ = SSR + (β̂ − β†)T C(β̂ − β†).

Multiplying (c) by B confirms that Bβ† = c – that is, that β† does satisfy
(hyp). Now (d) shows directly that β† is indeed the minimising value of SSR

and so of SS. Thus those unfamiliar with Lagrange multipliers may see directly
from (d) that the result of the theorem is true.

Proposition 6.2

E(SS∗) = (n − p + k)σ2.
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Proof

The matrix B is k × p (k ≤ p), and has full rank k. So some k × k sub–matrix
of B is non-singular. We can if necessary relabel columns so that the first k

columns form this non-singular k× k sub–matrix. We can then solve the linear
system of equations

Bβ = c

to find β1, . . . , βk – in terms of the remaining parameters βk+1, . . . , βk+p. We
can then express SS as a function of these p − k parameters, and solve by
ordinary least squares. This is then unconstrained least squares with p − k

parameters. We can then proceed as in Chapter 3 but with p− k in place of p,
obtaining E(SS∗) = (n − p + k)σ2.

6.2 Sum-of-Squares Decomposition and F-Test

Definition 6.3

The sum of squares for the linear hypothesis, SSH , is the difference between
the constrained minimum SS∗ and the unconstrained minimum SSE of SS.
Thus

SSH := SS∗ − SSE = (β̂ − β†)T C(β̂ − β†).

We proceed to find its distribution. As usual, we reduce the distribution theory
to matrix algebra, using symmetric projections.

Now
β̂ − β† = C−1BT

(
BC−1BT

)−1
(
Bβ̂ − c

)
,

by (i) of the Theorem above. So

Bβ̂ − c = B
(
β̂ − β

)
+ (Bβ − c) = B

(
β̂ − β

)
,

under the constraint (hyp). But

β̂ − β = C−1AT y − β

= C−1AT y − C−1AT Aβ

= C−1AT (y − Aβ).

Combining,

β̂ − β† = C−1BT
(
BC−1BT

)−1
BC−1AT (y − Aβ),
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so we see that
(
β̂ − β†

)T

C = (y − Aβ)T AC−1BT
(
BC−1BT

)
BC−1C

= (y − Aβ)T AC−1BT
(
BC−1BT

)
B.

Substituting these two expressions into the definition of SSH above, we see
that SSH is

(y − Aβ)T AC−1BT
(
BC−1BT

)−1
B.C−1BT

(
BC−1BT

)−1
BC−1AT (y − Aβ),

which simplifies, giving

SSH = (y − Aβ)T D(y − Aβ),

say, where
D := AC−1BT

(
BC−1BT

)−1
BC−1AT .

Now matrix D is symmetric, and

D2 = AC−1BT
(
BC−1BT

)−1
BC−1AT .AC−1BT

(
BC−1BT

)−1
BC−1AT

which simplifies to

D2 = AC−1BT
(
BC−1BT

)−1
BC−1AT

= D,

so D is also idempotent. So its rank is its trace, and D is a symmetric projection.
By the definition of SS∗, we have the sum-of-squares decomposition

SS∗ := SSE + SSH.

Take expectations:
E(SS∗) = E(SSE) + E(SSH).

But
E(SSE) = (n − p)σ2,

by §3.4, and
E(SS∗) = (n − p + k)σ2,

by Proposition 6.2 above. Combining,

E(SSH) = kσ2.

Since SSH is a quadratic form in normal variates with matrix D, a symmetric
projection, this shows as in §3.5.1, that D has rank k:

rank(D) = trace(D) = k,

the number of (scalar) constraints imposed by the (matrix) constraint (hyp).
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Theorem 6.4 (Sum of Squares for Hypothesis, SSH)

(i) In the sum-of-squares decomposition

SS∗ := SSE + SSH,

the terms on the right are independent.

(ii) The three quadratic forms are chi-square distributed, with

SS∗/σ2 ∼ χ2(n− p + k), SSE/σ2 ∼ χ2(n− p), SSH/σ2 ∼ χ2(k).

Proof

Since the ranks n− p and k of the matrices of the quadratic forms on the right
sum to the rank n−p+k of that on the left, and we already know that quadratic
forms in normal variates are chi-square distributed, the independence follows
from Chi-Square Decomposition, §3.5.

We are now ready to formulate a test of our linear hypothesis (hyp). This
use of Fisher’s F distribution to test a general linear hypothesis is due to S.
Ko�lodziejcyzk (d. 1939) in 1935.

Theorem 6.5 (Ko�lodziejcyzk’s Theorem)

We can test our linear hypothesis (hyp) by using the F -statistic

F :=
SSH/k

SSE/(n − p)
,

with large values of F evidence against (hyp). Thus at significance level α, we
use critical region

F > Fα(k, n − p),

the upper α-point of the Fisher F -distribution F (k, n − p).

Proof

By the result above and the definition of the Fisher F -distribution as the ratio
of independent chi-square variates divided by their degrees of freedom, our
F -statistic has distribution F (k, n− p). It remains to show that large values of
F are evidence against (hyp) – that is, that a one-tailed test is appropriate.

Write
w = Bβ − c.
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Thus w = 0 iff the linear hypothesis (hyp) is true; w is non-random, so constant
(though unknown, as it involves the unknown parameters β). Now

Bβ̂ − c = B
(
β̂ − β

)
+ (Bβ − c) = B

(
β̂ − β

)
+ w.

Here β̂ − β = C−1AT (y − Aβ) has mean zero and covariance matrix σ2C−1

(Proposition 4.4). So Bβ̂−c and B(β̂−β) have covariance matrix σ2BC−1BT ;
B(β̂ − β) has mean zero (as β̂∗ is unbiased), and Bβ − c has mean w. Now by
Theorem 6.1,

SSH = (β̂ − β†)T C(β̂ − β†)

= [C−1BT
(
BC−1BT

)−1
(Bβ̂ − c)]T C[C−1BT (BC−1BT )−1(Bβ̂ − c)].

This is a quadratic form in Bβ̂ − c (mean w, covariance matrix σ2BC−1BT )
with matrix

(BC−1BT )−1.BC−1.C.C−1BT (BC−1BT )−1 = (BC−1BT )−1.

So by the Trace Formula (Prop. 3.22),

E(SSH) = trace[(BC−1BT )−1.σ2BC−1BT ] + wT (BC−1BT )−1w.

The trace term is σ2trace(Ik) (B is k × p, C−1 is p × p, BT is p × k), or σ2k,
giving

E(SSH) = σ2k + wT (BC−1BT )−1w.

Since C is positive definite, so is C−1, and as B has full rank, so is (BC−1BT )−1.
The second term on the right is thus non-negative, and positive unless w = 0;
that is, unless the linear hypothesis (hyp) is true. Thus large values of E(SSH),
so of SSH , so of F := (SSH/k)/(SSE/(n−p)), are associated with violation of
(hyp). That is, a one-tailed test, rejecting (hyp) if F is too big, is appropriate.

Note 6.6

The argument above makes no mention of distribution theory. Thus it holds
also in the more general situation where we do not assume normally distributed
errors, only uncorrelated errors with the same variance. A one-tailed F -test is
indicated there too. However, the difficulty comes when choosing the critical
region – the cut-off level above which we will reject the null hypothesis – the lin-
ear hypothesis (hyp). With normal errors, we know that the F -statistic has the
F -distribution F (k, n− p), and we can find the cut-off level Fα(k, n− p) using
the significance level α and tables of the F -distribution. Without the assump-
tion of normal errors, we do not know the distribution of the F -statistic – so
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although we still know that large values are evidence against (hyp), we lack a
yardstick to tell us ‘how big is too big’. In practice, we would probably still
use tables of the F -distribution, ‘by default’. This raises questions of how close
to normality our error distribution is, and how sensitive to departures from
normality the distribution of the F -statistic is – that is, how robust our proce-
dure is against departures from normality. We leave such robustness questions
to the next chapter, but note in passing that Robust Statistics is an impor-
tant subject in its own right, on which many books have been written; see e.g.
Huber (1981).

Note 6.7

To implement this procedure, we need to proceed as follows.

(i) Perform the regression analysis in the ‘big’ model, Model 1 say, obtaining
our SSE, SSE1 say.

(ii) Perform the regression analysis in the ‘little’ model, Model 2 say, obtaining
similarly SSE2.

(iii) The big model gives a better fit than the little model; the difference in fit
is SSH := SSE2 − SSE1.

(iv) We normalise the difference in fit SSH by the number k of degrees of
freedom by which they differ, obtaining SSH/k.

(v) This is the numerator of our F -statistic. The denominator is SSE1 divided
by its df.

This procedure can easily be implemented by hand – it is after all little more
than two regression analyses. Being both so important and so straightforward, it
has been packaged, and is automated in most of the major statistical packages.

In S-Plus/R�, for example, this procedure is embedded in the software used
whenever we compare two nested models, and in particular in the automated
procedures update and step of §5.2. As we shall see in §6.3 the theory motivates
a host of sequential methods to automatically select from the range of possible
models.

Example 6.8 (Brownlee’s stack loss data)

This data set is famous in statistics for the number of times it has been analysed.
The data in Table 6.1 relate stack loss – a measure of inefficiency – to a series
of observations. Exploratory data analysis suggests close relationships between
Stack Loss and Air Flow and between Water Temperature and Stack Loss.
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We wish to test whether or not Acid Concentration can be removed from the
model. This becomes a test of the hypothesis α3 = 0 in the model

Y = α0 + α1X1 + α2X2 + α3X3 + ε.

Air Flow X1 Water Temp X2 Acid Conc. X3 Stack Loss Y

80 62 50 27 24 18 89 93 89 42 20 8
80 58 50 27 23 18 88 87 86 37 15 7
75 58 50 25 18 19 90 80 72 37 14 8
62 58 50 24 18 19 87 89 79 28 14 8
62 58 50 22 17 20 87 88 80 18 13 9
62 58 56 23 18 20 87 82 82 18 11 15
62 58 70 24 19 20 93 93 91 19 12 15

Table 6.1 Data for Example 6.8

Fitting the model with all three explanatory variables gives a residual sum
of squares of 178.83 on 17 df The model with acid concentration excluded has
a residual sum of squares of 188.795 on 16 df Our F -statistic becomes

F =
(

188.795− 178.83
1

) (
16

188.795

)

= 0.85.

Testing against F1,16 gives a p-value of 0.372. Thus, we accept the null hypoth-
esis and conclude that Acid Concentration can be excluded from the model.

6.3 Applications: Sequential Methods

6.3.1 Forward selection

We start with the model containing the constant term. We consider all the
explanatory variables in turn, choosing the variable for which SSH is largest.
The procedure is repeated for p = 2, 3, . . . , selecting at each stage the variable
not currently included in the model with largest F statistic. The procedure
terminates when either all variables are included in the model or the maximum
F value fails to exceed some threshold FIN .
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Example 6.9

We illustrate forward selection by returning to the data in Example 6.8.

Step 1
We compute SSE(Air Flow) = 319.116, SSE(Water Temperature) = 483.151,
SSE(Acid concentration) = 1738.442. Air flow is the candidate for entry into
the model. F = 104.201 against F1,19 to give p = 0.000 so air flow enters the
model.

Step 2
The computations give SSE(Air Flow+Water Temperature) = 188.795 and
SSE(Air Flow+Acid Concentration) = 309.1376. Thus, water temperature
becomes our candidate for entry into the model. We obtain that F = 12.425
and testing against F1,18 gives p = 0.002 so water temperature enters the model.

Step 3
The F -test of Example 6.8 shows that acid concentration does not enter the
model.

6.3.2 Backward selection

Backward selection is an alternative to forward selection. We start using the full
model using all p variables (recall p << n) and compute the F -statistic with
k = 1 for each of the p-variables in turn. We eliminate the variable having small-
est F -statistic from the model, provided F is less than some threshold FOUT .
The procedure is continued until either all the variables are excluded from the
model or the smallest F fails to become less than FOUT . When performing
forward or backward selection the thresholds FIN and FOUT may change as
the algorithms proceed. The most obvious approach is to choose an appropriate
formal significance level, e.g. p = 0.05, and set the thresholds according to the
critical values of the corresponding F -test.

Example 6.10

We illustrate backward selection by returning to the example.

Step 1
The F -test of Example 6.8 excludes acid concentration from the model.
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Step 2
The calculations show that SSE(Air Flow +Water Temperature) = 188.795,
SSE(Air Flow) = 319.116, SSE(Water Temperature) = 483.151. Thus water
temperature becomes our candidate for exclusion. The resulting F -test is the
same as in Step 2 of Example 6.9, and we see that no further terms can be
excluded from the model.

6.3.3 Stepwise regression

In forward selection, once a variable is included in the model it is not removed.
Similarly, in backward selection once a variable is excluded it is never reintro-
duced. The two algorithms may also give very different results when applied to
the same data set. Stepwise regression aims to resolve these issues by combining
forward selection and backward selection.

The algorithm starts with the simple model consisting solely of a constant
term. The first step is a forward selection stage, followed by a backward se-
lection step. The algorithm then alternates between forward and backward
selection steps until no further variables are introduced at the forward selec-
tion stage. It is shown in Seber and Lee (2003) Ch. 12 that if FOUT≤FIN then
the algorithm must eventually terminate.

Example 6.11 (Example 6.8 re-visited)

The forward selection steps see first Air Flow and then Water Temperature
enter the model. Example 6.10 then shows that neither of these variables
can be excluded at the backward selection phase. Example 6.8 then shows
that Acid Concentration cannot enter the model in the final forward selection
phase.

Note 6.12

Some additional discussion of stepwise methods can be found in Seber and
Lee (2003), Ch. 12. The S-Plus/R� command step uses a variant of the above
method based on AIC (§5.2.1), which works both with Linear Models (Chapters
1–7) and Generalised Linear Models (Chapter 8). The command step can also
be used to perform forward and backward selection by specifying direction.
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EXERCISES

6.1. Fit regression models to predict fuel consumption for the data set
shown in Table 6.2 using
(i) Forward selection
(ii) Backward selection
(iii) Stepwise regression.
T is a qualitative variable taking the value 1 specifying a manual
rather than an automatic gearbox. G denotes the number of gears,
C denotes the number of carburettors. RAR is the rear-axle ratio,
1/4M t is the time taken to complete a quarter of a mile circuit. Cyls.
gives the number of cylinders and Disp. is the car’s displacement.
(This is a classical data set extracted from the 1974 Motor Trend
US magazine, and available as part of the mtcars dataset in R�.)

6.2. Show that the first step in forward selection is equivalent to choosing
the variable most highly correlated with the response.

6.3. All-subsets regression.
(i) Suppose that we have p non-trivial explanatory variables and we
always include a constant term. Show that the number of possible
models to consider in all–subsets regression is 2p − 1.
(ii) How many possible models are suggested in Exercise 6.1?
(iii) Suppose it is feasible to fit no more than 100 regression models.
How large does p have to be in order for all-subsets regression to
become infeasible?

6.4. Lagrange multipliers method. Using the Lagrange multipliers method
maximise f(x, y) := xy subject to the constraint x2 +8y2 = 4. [Hint:
Set L = xy + λ(x2 + 8y2 − 4), where λ is the Lagrange multiplier,
and differentiate with respect to x and y. The resulting solution for λ

transforms the constrained problem into an unconstrained problem.]

6.5. Angles in a triangle. A surveyor measures three angles of a triangle,
α, β, γ (α + β + γ = π). Given one measurement of each of these
angles, find the constrained least–squares solution to this problem
by using Lagrange multipliers.

6.6. Angles in a cyclic quadrilateral. A surveyor measures four angles α,
β, γ, δ which are known to satisfy the constraint α+β +γ + δ = 2π.
If there is one observation for each of these angles Y1, Y2, Y3, Y4 say,
find the constrained least–squares solution to this problem using
Lagrange multipliers.
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Mpg Cyls. Disp. Hp RAR Weight 1/4M t v/s T. G. C.
21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
4.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

Table 6.2 Data for Exercise 6.1
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6.7. Show that the regression treatment of one-way ANOVA and the F -
test for linear hypotheses returns the original F -test in Theorem 2.8.

6.8. Use a regression formulation and a suitable F -test to test the hy-
pothesis of no differences between treatments in Example 2.9.

6.9. Repeat Exercise 6.1, this time treating the 1/4M time as the depen-
dant variable.

6.10. Mixtures. Often chemical experiments involve mixtures of ingredi-
ents. This introduces a constraint into the problem, typically of the
form

x1 + x2 + . . . + xp = 1.

Suppose x1, . . . , xp are from a mixture experiment and satisfy the
above constraint.
(i) Reformulate the full main effects model

yi = β0 + β1x1,i + . . . + βpxp,i + εi,

using this constraint.
(ii) Suppose p = 3. The usual full second-order model is

y = β0 + β1x1 + β2x2 + β3x3 + β11x
2
1 + β12x1x2 + β13x1x3

+ β22x
2
2 + β23x2x3 + β33x

2
3 + ε.

Using your answer to (i) suggest a possible way to estimate this
model. What is the general solution to this problem for p �=3?

6.11. Testing linear hypotheses.
(i) Test for the need to use a quadratic model in order to describe
the following mixture experiment. x1 = (1, 0, 0, 0.5, 0.5, 0, 0.2, 0.3),
x2 = (0, 1, 0, 0.5, 0, 0.5, 0.6, 0.5), x3 = (0, 0, 1, 0, 0.5, 0.5, 0.2, 0.2),
y = (40.9, 25.5, 28.6, 31.1, 24.9, 29.1, 27.0, 28.4).
(ii) Suppose we have the following data x1 = (−1,−1, 0, 1, 1),

x2 = (−1, 0, 0, 0, 1), y = (7.2, 8.1, 9.8, 12.3, 12.9). Fit the model
y = β0 + β1x1 + β2x2 + ε. Test the hypothesis that β1 = 2β2. Ex-
plain how this constrained model may be fitted using simple linear
regression.



7
Model Checking and Transformation

of Data

7.1 Deviations from Standard Assumptions

In the above, we have assumed several things:

(i) the mean μ = Ey is a linear function of the regressors, or of the parameters;

(ii) the errors are additive;

(iii) the errors are independent;

(iv) the errors are normally distributed (Gaussian);

(v) the errors have equal variance.

Any or all of these assumptions may be inadequate. We turn now to a discussion
of how to assess the adequacy of our assumptions, and to what we can do when
they are inadequate.

Residual Plots. We saw in §3.6 that the residuals ei and fitted values y∗
i are

independent. So a residual plot of ei against y∗
i should not show any particular

pattern. If it does, then this suggests that the model is inadequate.

Scatter Plots. Always begin with EDA. With one regressor, we look at the
scatter plot of yi against xi. With more than one regressor, one can look at
all scatter plots of pairs of variables. In S-Plus, this can be done by using
the command pairs. For details, see for example the S-Plus Help facility, or
Crawley (2002), Ch. 24 (especially p. 432–3).

N.H. Bingham and J.M. Fry, Regression: Linear Models in Statistics, 163
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-969-5 7,
c© Springer-Verlag London Limited 2010
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With two regressors, we have a data cloud in three dimensions. This is
a highly typical situation: real life is lived in three spatial dimensions, but we
represent it – on paper, or on computer screens – in two dimensions. The math-
ematics needed for this – the mathematics of computer graphics, or of virtual
reality – is based on projective geometry. In S-Plus, the command brush allows
one, in effect, to ‘pick up the data cloud and rotate it’ (see the S-Plus Help
facility, or Venables and Ripley (2002), for details). This may well reveal im-
portant structural features of our data. For example, if the data appears round
from one direction, but elliptical from another, this tells one something valu-
able about its distribution, and may suggest some appropriate transformation
of the data.

In higher dimensions, we lose the spatial intuition that comes naturally
to us in three dimensions. This is a pity, but is unavoidable: many practical
situations involve more than two regressors, and so more than three dimensions.
One can still use pairs to look at two-dimensional scatter plots, but there are
many more of these to look at, and combining these different pieces of visual
information is not easy.

In higher dimensions, the technique of Projection Pursuit gives a systematic
way of searching for adequate low-dimensional descriptions of the data.

Non-constant Variance. In Figure 7.2 the points ‘fan out’ towards the right,
suggesting that the variance increases with the mean. One possibility is to use
weighted regression (§4.7). Another possibility is to transform the data (see
below and Draper and Smith (1998) Ch. 13 for further details).

Unaccounted-for Structure. If there is visible structure present, e.g. curvature,
in the residual plot, this suggests that the model is not correct. We should
return to the original scatter plot of y against x and reinspect. One possibility
is to consider adding an extra term or terms to the model – for example, to try
a quadratic rather than a linear fit, etc.

Outliers. These are unusual observations that do not conform to the pattern
of the rest of the data. They are always worth checking (e.g., has the value been
entered correctly, has a digit been mis-transcribed, has a decimal point been
slipped, etc.?)

Such outliers may be unreliable, and distort the reliable data. If so, we can
trim the data to remove them. On the other hand, such points, if genuine, may
be highly informative.

The subject of how to get protection against such data contamination by
removing aberrant data points is called Robust Statistics (touched on in §5.3).
In particular, we can use Robust Regression.
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Example 7.1 (Median v Mean)

As a measure of location (or central tendency), using medians rather than
means gives us some protection against aberrant data points. Indeed, medians
can withstand gross data contamination – up to half the data wrong – without
failing completely (up to half the data can go off to infinity without dragging
the median off to infinity with them). We say that the median has breakdown
point 1/2, while the mean has breakdown point zero.

Detecting outliers via residual analysis. Residual analysis can be useful in
gauging the extent to which individual observations may be expected to devi-
ate from the underlying fitted model. As above, large residuals may point to
problems with the original data. Alternatively they may indicate that a better
model is needed, and suggest ways in which this may be achieved. The raw
residuals are given by

ei = yi − xiβ̂.

Scaled residuals are defined as

e∗i =
ei√
mii

,

where the mii are the diagonal elements of the matrix M , where M = I −
P = I − X(XT X)−1XT . Under this construction the scaled residuals should
now have equal variances (see Theorem 3.30). Scaled residuals can be further
modified to define standardised or internally studentised residuals defined as

si =
e∗i
σ̂

.

The distribution of the internally studentised residuals is approximately tn−p.
However, the result is not exact since the numerator and denominator are
not independent. There is one further type of residual commonly used: the
standardised deletion or externally studentised residual. Suppose we wish to test
the influence that observation i has on a fitted regression equation. Deleting
observation i and refitting we obtain a deletion residual

e−i = yi − xT
i β̂−i,

where β̂−i is the estimate obtained excluding observation i. Working as above
we can define a standardised deletion residual s−i. It can be shown, see e.g.
Seber and Lee (2003) Ch. 10, that

s−i =
si

√
n − p − 1

√
n − p − s2

i

.
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Further, if the model is correctly defined, these externally studentised residuals
have an exact tn−p−1 distribution. Residual plots can be generated automat-
ically in S-Plus/R� using the command plot. In R� this produces a plot of
residuals against fitted values, a normal probability plot of standardised resid-
uals (the relevant command here is qqnorm), a plot of the square root of the
absolute standardised residuals against fitted values, and a plot of standardised
residuals versus leverage with control limits indicating critical values for Cook’s
distances. (See below for further details.)

Influential Data Points. A point has high leverage if omitting it causes a
big change in the fit. For example, with one regressor x, an xi far from x̄

with an atypical yi will have high leverage. The leverage of observation i is
given by hii – the diagonal elements of the hat matrix H or projection ma-
trix P . In R� the leverages can be retrieved using the command hat. As
an illustration we consider an admittedly contrived example in Huber (1981)
and also cited in Atkinson (1985). Data consist of x = −4,−3,−2,−1, 0, 10,
y = 2.48, 0.73,−0.04,−1.44,−1.32, 0.00 and the effect of including or excluding
the apparent outlier at x = 10 has a dramatic impact upon the line of best fit
(see Figure 7.1).

x

y

Figure 7.1 Effect of influential observation on line of best fit
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Cook’s distance. The Cook’s distance Di of observation i combines leverage
and residuals – as can be seen from the definition (here H = (hij) = P )

Di =
s2

i hii

p(1 − hii)
.

Large values of Cook’s distance occur if an observation is both outlying (large
si) with high leverage (large hii). Plots of Cook’s distance can be obtained as
part of the output automatically generated in S-Plus/R� using the command
plot. It can be shown that

Di =

(
β̂ − β̂−i

)T

XT X
(
β̂ − β̂−i

)

pσ̂2
,

where β̂−i is the parameter estimate β̂ obtained when the ith observation is ex-
cluded. Thus Di does indeed serve as a measure of the influence of observation i.
It provides an appropriate measure of the ‘distance’ from β̂ to β̂−i.

Note 7.2

1. For further background on Cook’s distance and related matters, we refer
to Cook and Weisberg (1982).

2. This ‘leave one out’ idea is often useful in statistics. It leads to the method
of cross-validation (CV).

Bias and Mallows’s Cp statistic. Suppose we fit the model

y = X1β1 + ε.

This leads to the least-squares estimate β̂1 = (XT
1 X1)−1XT

1 y. If our postulated
model is correct then this estimate is unbiased (§3.3). Suppose however that
the true underlying relationship is

y = X1β1 + X2β2 + ε.

Our least-squares estimate β̂1 now has expected value β1+(XT
1 X1)−1XT

1 X2β2.
Omitting X2 leads to a bias of (XT

1 X1)−1XT
1 X2β2. Note that this is 0 if

XT
1 X2 = 0, the orthogonality relation we met in §5.1.1 on orthogonal pa-

rameters.
Mallows’s Cp statistic is defined as

Cp =
SSE

s2
− (n − 2p),
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where p is the number of model parameters and s2 is an estimate of σ2 obtained
from a subjective choice of full model. We consider sub-models of the full model.
If a model is approximately correct

E(Cp) ≈
(n − p)σ2

σ2
− (n − 2p) = p.

If the model is incorrectly specified it is assumed E(SSE) > σ2 and E(Cp) > p.
Models can be compared using this method by plotting Cp against p. Suitable
candidate models should lie close to the line Cp = p. Note, however that by
definition Cp = p for the full model.

Non-additive or non-Gaussian errors. These may be handled using Gener-
alised Linear Models (see Chapter 8). Generalised Linear Models can be fitted
in S-Plus and R� using the command glm. For background and details, see
McCullagh and Nelder (1989).

Correlated Errors. These are always very dangerous in Statistics! Independent
errors tend to cancel. This is the substance of the Law of Large Numbers (LLN),
that says

x̄ → Ex (n → ∞)

– sample means tend to population means as sample size increases. Similarly for
sample variances and other sample quantities. This is basically why Statistics
works. One does not even need to have independent errors: weakly dependent
errors (which may be defined precisely, in a variety of ways) exhibit similar
cancellation behaviour. By contrast, strongly dependent errors need not cancel.
Here, increasing the sample size merely replicates existing readings, and if these
are way off this does not help us (as in Note 1.3).

Correlated errors may have some special structure – e.g., in time or in space.
Accordingly, one would then have to use special methods to reflect this – Time
Series or Spatial Statistics; see Chapter 9. Correlated errors may be detected
using the Durbin–Watson test or, more crudely, using a runs test (see Draper
and Smith (1998), Ch. 7).

7.2 Transformation of Data

If the residual plot ‘funnels out’ one may try a transformation of data, such as
y �→ log y or y �→ √

y (see Figure 7.2).
If on the other hand the residual plot ‘funnels in’ one may instead try

y �→ y2, etc (see Figure 7.3).
Is there a general procedure? One such approach was provided in a famous

paper Box and Cox (1964). Box and Cox proposed a one-parameter family of
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Figure 7.2 Plot showing ‘funnelling out’ of residuals

power transformations that included a logarithmic transformation as a special
case. With λ as parameter, this is

y �→
{

(yλ − 1)/λ if λ �= 0,

log y if λ = 0.

Note that this is an indeterminate form at λ = 0, but since

yλ − 1
λ

=
eλ log y − 1

λ
,

d

dλ

(
eλ log y − 1) = log y.eλ log y = log y if λ = 0,

L’Hospital’s Rule gives

(yλ − 1)/λ → log y (λ → 0).

So we may define (yλ − 1)/λ as log y for λ = 0, to include λ = 0 with λ �= 0
above.

One may – indeed, should – proceed adaptively by allowing the data to
suggest which value of λ might be suitable. This is done in S-Plus by the
command boxcox.
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Figure 7.3 Plot showing ‘funnelling in’ of residuals

Example 7.3 (Timber Example)

The value of timber yielded by a tree is the response variable. This is measured
only when the tree is cut down and sawn up. To help the forestry worker decide
which trees to fell, the predictor variables used are girth (‘circumference’ –
though the tree trunks are not perfect circles) and height. These can be easily
measured without interfering with the tree – girth by use of a tape measure (at
some fixed height above the ground), height by use of a surveying instrument
and trigonometry.

Venables and Ripley (2002) contains a data library MASS, which includes
a data set timber:

attach(timber)

names(timber)

[1] “volume” “girth” “height”
boxcox(volume) ∼ (girth + height)



7.3 Variance-Stabilising Transformations 171

Dimensional Analysis. The data-driven choice of Box–Cox parameter λ seems
to be close to 1/3. This is predictable on dimensional grounds: volume is in
cubic metres, girth and height in metres (or centimetres). It thus always pays
to be aware of units.

There is a whole subject of Dimensional Analysis devoted to such things
(see e.g. Focken (1953)). A background in Physics is valuable here.

7.3 Variance-Stabilising Transformations

In the exploratory data analysis (EDA), the scatter plot may suggest that
the variance is not constant throughout the range of values of the predictor
variable(s). But, the theory of the Linear Model assumes constant variance.
Where this standing assumption seems to be violated, we may seek a systematic
way to stabilise the variance – to make it constant (or roughly so), as the theory
requires.

If the response variable is y, we do this by seeking a suitable function g (suf-
ficiently smooth – say, twice continuously differentiable), and then transforming
our data by

y �→ g(y).

Suppose y has mean μ:
Ey = μ.

Taylor expand g(y) about y = μ:

g(y) = g(μ) + (y − μ)g′(μ) +
1
2
(y − μ)2g′′(μ) + . . .

Suppose the bulk of the response values y are fairly closely bunched around
the mean μ. Then, approximately, we can treat y − μ as small; then (y − μ)2

is negligible (at least to a first approximation, which is all we are attempting
here). Then

g(y) ∼ g(μ) + (y − μ)g′(μ).

Take expectations: as Ey = μ, the linear term goes out, giving Eg(y) ∼ g(μ).
So

g(y) − g(μ) ∼ g(y) − Eg(y) ∼ g′(μ)(y − μ).

Square both sides:

[g(y) − g(μ)]2 ∼ [g′(μ)]2(y − μ)2.

Take expectations: as Ey = μ and Eg(y) ∼ g(μ), this says

var(g(y)) ∼ [g′(μ)]2var(y).
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Regression. So if
E(yi|xi) = μi, var(yi|xi) = σ2

i ,

we use EDA to try to find some link between the means μi and the variances
σ2

i . Suppose we try σ2
i = H(μi), or

σ2 = H(μ).

Then by above,

var(g(y)) ∼ [g′(μ)]2σ2 = [g′(μ)]2H(μ).

We want constant variance, c2 say. So we want

[g′(μ)]2H(μ) = c2, g′(μ) =
c

√
H(μ)

, g(y) = c

∫
dy

√
H(y)

.

Note 7.4

The idea of variance-stabilising transformations (like so much else in Statistics!)
goes back to Fisher. He found the density of the sample correlation coefficient
r2 in the bivariate normal distribution – a complicated function involving the
population correlation coefficient ρ2, simplifying somewhat in the case ρ = 0
(see e.g. Kendall and Stuart (1977), §16.27, 28). But Fisher’s z transformation
of 1921 (Kendall and Stuart (1977), §16.33)

r = tanh z, z =
1
2

log
(

1 + r

1 − r

)

, ρ = tanh ζ, ζ =
1
2

log
(

1 + ρ

1 − ρ

)

gives z approximately normal, with variance almost independent of ρ:

z ∼ N(0, 1/(n− 1)).

Taylor’s Power Law. The following empirical law was proposed by R. L. Taylor
in 1961 (Taylor (1961)):
log variance against log mean is roughly linear with slope γ between 1 and 2.

Both these extreme cases can occur. An example of slope 1 is the Poisson
distribution, where the mean and the variance are the same. An example of
slope 2 occurs with a Gamma-distributed error structure, important in Gener-
alised Linear Models (Chapter 8).

With H(μ) = μγ above, this gives variance

v = σ2 = H(μ) = μγ .

Transform to

g(y) = c

∫
dy

√
H(y)

= c

∫
dy

y
1
2 γ

= c
(
y1− 1

2 γ − y
1− 1

2 γ
0

)
.
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This is of Box–Cox type, with

λ = 1 − 1
2
γ.

Taylor’s suggested range 1 ≤ γ ≤ 2 gives

0 ≤ 1 − 1
2
γ ≤ 1

2
.

Note that this range includes the logarithmic transformation (Box–Cox, λ =
0), and the cube–root transformation (λ = 1/3) in the timber example.
Partly for dimensional reasons as above, common choices for λ include λ =
−1/2, 0, 1/3, 1/2, (1), 3/2 (if λ = 1 we do not need to transform). An empiri-
cal choice of λ (e.g. by Box–Cox as above) close to one of these may suggest
choosing λ as this value, and/or a theoretical examination with dimensional
considerations in mind.

Delta Method. A similar method applies to reparametrisation. Suppose we
choose a parameter θ. If the true value is θ0 and the maximum-likelihood es-
timator is θ̂, then under suitable regularity conditions a central limit theorem
(CLT) will hold:

√
n

(
θ̂ − θ0

)
/σ → N(0, 1) (n → ∞).

Now suppose that one wishes to change parameter, and work instead with φ,
where

φ := g(θ).

Then the same method (Taylor expansion about the mean) enables one to
transfer this CLT for our estimate of θ to a CLT for our estimate of φ:

√
n

(
φ̂ − φ0

)
/ (g′ (θ0)σ) → N(0, 1) (n → ∞).

Example 7.5 (Variance and standard deviation)

It is convenient to be able to change at will from using variance σ2 as a param-
eter to using standard deviation σ. Mathematically the change is trivial, and it
is also trivial computationally (given a calculator). Using the delta-method, it
is statistically straightforward to transfer the results of a maximum-likelihood
estimation from one to the other.
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7.4 Multicollinearity

Recall the distribution theory of the bivariate normal distribution (§1.5). If we
are regressing y on x, but y is (exactly) a linear function of x, then ρ = ±1,
the bivariate normal density does not exist, and the two-dimensional setting
is wrong – the situation is really one-dimensional. Similar remarks apply for
the multivariate normal distribution (§4.3). When we assume the covariance
matrix Σ is non-singular, the density exists and is given by Edgeworth’s The-
orem; when Σ is singular, the density does not exist. The situation is similar
again in the context of Multiple Regression in Chapter 3. There, we assumed
that the design matrix A (n × p, with n >> p) has full rank p. A will have
defective rank (< p) if there are linear relationships between regressors. In all
these cases, we have a general situation which is non-degenerate, but which
contains a special situation which is degenerate. The right way to handle this
is to identify the degeneracy and its cause. By reformulating the problem in a
suitably lower dimension, we can change the situation which is degenerate in
the higher-dimensional setting into one which is non-degenerate if handled in
its natural dimension. To summarise: to escape degeneracy, one needs to iden-
tify the linear dependence relationship which causes it. One can then eliminate
dependent variables, begin again with only linearly independent variables, and
avoid degeneracy.

The problem remains that in Statistics we are handling data, and data are
uncertain. Not only do they contain sampling error, but having sampled our
data we have to round them (to the number of decimal places or significant
figures we – or the default option of our computer package – choose to work to).
We may well be in the general situation, where things are non-degenerate, and
there are no non-trivial linear dependence relations. Nevertheless, there may be
approximate linear dependence relations. If so, then rounding error may lead us
close to degeneracy (or even to it): our problem is then numerically unstable.
This phenomenon is known as multicollinearity.

Multiple Regression is inherently prone to problems of this kind. One reason
is that the more regressors we have, the more ways there are for some of them
to be at least approximately linearly dependent on others. This will then cause
the problems mentioned above. Our best defence against multicollinearity is
to be alert to the danger, and in particular to watch for possible approximate
linear dependence relations between regressors. If we can identify such, we have
made two important gains:

(i) we can avoid the numerical instability associated with multicollinearity,
and reduce the dimension and thus the computational complexity,

(ii) we have identified important structural information about the problem by
identifying an approximate link between regressors.
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The problem of multicollinearity in fact bedevils the whole subject of Multiple
Regression, and is surprisingly common. It is one reason why the subject is ‘an
art as well as a science’. It is also a reason why automated computer procedures
such as the S-Plus commands step and update produce different outcomes
depending on the order in which variables are declared in the model.

Example 7.6 (Concrete example)

The following example is due to Woods et al. (1932). It is a very good illustra-
tion of multicollinearity and how to handle it.

In a study of the production of concrete, the response variable Y is the
amount of heat (calories per gram) released while the concrete sets. There are
four regressors X1, . . . , X4 representing the percentages (by weight rounded
to the nearest integer) of the chemically relevant constituents from which the
concrete is made. The data are shown in Table 7.1 below.

n Y X1 X2 X3 X4

1 78.5 7 26 6 60
2 74.3 1 29 15 52
3 104.3 11 56 8 20
4 87.6 11 31 8 47
5 95.9 7 52 6 33
6 109.2 11 55 9 22
7 102.7 3 71 17 6
8 72.5 1 31 22 44
9 93.1 2 54 18 22
10 115.9 21 47 4 26
11 83.8 1 40 23 34
12 113.3 11 66 9 12
13 109.9 10 68 8 12

Table 7.1 Data for concrete example

Here the Xi are not exact percentages, due to rounding error and the pres-
ence of between 1% and 5% of other chemically relevant compounds. However,
X1, X2, X3, X4 are rounded percentages and so sum to near 100 (cf. the mixture
models of Exercise 6.10). So, strong (negative) correlations are anticipated, and
we expect that we will not need all of X1, . . . , X4 in our chosen model. In this
simple example we can fit models using all possible combinations of variables
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and the results are shown in Table 7.2. Here we cycle through, using as an
intuitive guide the proportion of the variability in the data explained by each
model as defined by the R2 statistic (see Chapter 3).

Model 100R2 Model 100R2 Model 100R2

X1 53.29 X1 X2 97.98 X1 X2 X3 98.32
X2 66.85 X1 X3 54.68 X1 X2 X4 98.32
X3 28.61 X1 X4 97.28 X1 X3 X4 98.2
X4 67.59 X2 X3 84.93 X2 X3 X4 97.33

X2 X4 68.18 X1 X2 X3 X4 98.32
X3 X4 93.69

Table 7.2 All-subsets regression for Example 7.6

The multicollinearity is well illustrated by the fact that omitting either X3

or X4 from the full model does not seem to have much of an effect. Further, the
models with just one term do not appear sufficient. Here the t-tests generated
as standard output in many computer software packages, in this case R�1 using
the summary.lm command, prove illuminating. When fitting the full model X1

X2 X3 X4 we obtain the output in Table 7.3 below:

Coefficient Estimate Standard Error t-value p-value
Intercept 58.683 68.501 0.857 0.417

X1 1.584 0.728 2.176 0.061
X2 0.552 0.708 0.780 0.458
X3 0.134 0.738 0.182 0.860
X4 -0.107 0.693 -0.154 0.882

Table 7.3 R output for Example 7.6

So despite the high value of R2, tests for individual model components in
the model are non-significant. This in itself suggests possible multicollinearity.
Looking at Table 7.2, model selection appears to come down to a choice between
the best two-term model X1 X2 and the best three-term models X1 X2 X3 and
X1 X2 X4. When testing X1 X2 X3 versus X1 X2 we get a t-statistic of 0.209
for X3 suggesting that X3 can be safely excluded from the model. A similar
analysis for the X1 X2 X4 gives a p-value of 0.211 suggesting that X4 can also
be safely omitted from the model. Thus, X1 X2 appears to be the best model
and the multicollinearity inherent in the problem suggests that a model half the
1 R�: A language and environment for statistical computing. c© 2009 R Foundation

for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0 http://www.
R-project.org

http://www.R-project.org
http://www.R-project.org
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size of the full model will suffice. In larger problems one might suggest using
stepwise regression or backward selection starting with the full model, rather
than the all-subsets regression approach we considered here.

Regression Diagnostics. A regression analysis is likely to involve an iterative
process in which a range of plausible alternative models are examined and com-
pared, before our final model is chosen. This process of model checking involves,
in particular, looking at unusual or suspicious data points, deficiencies in model
fit, etc. This whole process of model examination and criticism is known as Re-
gression Diagnostics. For reasons of space, we must refer for background and
detail to one of the specialist monographs on the subject, e.g. Atkinson (1985),
Atkinson and Riani (2000).

EXERCISES

7.1. Revisit the concrete example using,
(i) stepwise selection starting with the full model,
(ii) backward selection starting with the full model,
(iii) forward selection from the null constant model.

7.2. Square root transformation for count data. Counts of rare events are
often thought to be approximately Poisson distributed. The trans-
formation

√
Y or

√
Y + 1, if some counts are small, is often thought

to be effective in modelling count data. The data in Table 7.4 give
a count of the number of poppy plants in oats.
(i) Fit an Analysis of Variance model using the raw data. Does a
plot of residuals against fitted values suggest a transformation?
(ii) Interpret the model in (i).
(iii) Re-fit the model in (i-ii) using a square–root transformation.
How do your findings change?

Treatment A B C D E
Block 1 438 538 77 17 18
Block 2 442 422 61 31 26
Block 3 319 377 157 87 77
Block 4 380 315 52 16 20

Table 7.4 Data for Exercise 7.2
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7.3. Arc sine transformation for proportions. If we denote the empirical
proportions by p̂, we replace p̂ by introducing the transformation
y = sin−1(

√
p̂). In this angular scale proportions near zero or one

are spread out to increase their variance and make the assumption
of homogenous errors more realistic. (With small values of n < 50
the suggestion is to replace zero or one by 1

4n or 1 − 1
4n .) The data

in Table 7.5 give the percentage of unusable ears of corn.
(i) Fit an Analysis of Variance model using the raw data. Does a
plot of residuals against fitted values suggest a transformation?
(ii) Interpret the model in (i).
(iii) Re-fit the model in (i–ii) using the suggested transformation.
How do your findings change?

Block 1 2 3 4 5 6
Treatment A 42.4 34.4 24.1 39.5 55.5 49.1
Treatment B 33.3 33.3 5.0 26.3 30.2 28.6
Treatment C 8.5 21.9 6.2 16.0 13.5 15.4
Treatment D 16.6 19.3 16.6 2.1 11.1 11.1

Table 7.5 Data for Exercise 7.3

7.4. The data in Table 7.6 give the numbers of four kinds of plankton
caught in different hauls.
(i) Fit an Analysis of Variance model using the raw data. Does a
plot of residuals against fitted values suggest a transformation of
the response?
(ii) Calculate the mean and range (max(y)−min(y)) for each species
and repeat using the logged response. Comment.
(iii) Fit an Analysis of Variance model using both raw and logged
numbers, and interpret the results.

7.5. Repeat Exercise 7.4 using
(i) The square-root transformation of Exercise 7.2.
(ii) Taylor’s power law.

7.6. The delta method: Approximation formulae for moments of trans-
formed random variables. Suppose the random vector U satisfies
E(U) = μ, var(U) = ΣU , V = f(U) for some smooth function
f . Let Fij be the matrix of derivatives defined by

Fij(u) =
(

∂u

∂v

)

ij

=
(

∂f

∂v

)

ij

=
∂fi

∂vj
.



7.4 Multicollinearity 179

Haul Type I Type II Type III Type IV
1 895 1520 43300 11000
2 540 1610 32800 8600
3 1020 1900 28800 8260
4 470 1350 34600 9830
5 428 980 27800 7600
6 620 1710 32800 9650
7 760 1930 28100 8900
8 537 1960 18900 6060
9 845 1840 31400 10200
10 1050 2410 39500 15500
11 387 1520 29000 9250
12 497 1685 22300 7900

Table 7.6 Data for Exercise 7.4

We wish to construct simple estimates for the mean and variance of
V . Set

V ≈ f(μ) + F (μ)(u − μ).

Taking expectations then gives

E(V ) ≈ f(μ).

(i) Show that ΣV ≈ F (μ)ΣUF (μ)T .
(ii) Let U∼Po(μ) and V =

√
U . Give approximate expressions for

the mean and variance of V .
(iii) Repeat (ii) for V = log(U + 1). What happens if μ >> 1?

7.7. Show, using the delta method, how you might obtain parameter
estimates and estimated standard errors for the power-law model
y = αxβ .

7.8. Analysis using graphics in S-Plus/R�. Re-examine the plots shown
in Figures 7.2 and 7.3. The R�-code which produced these plots is
shown below. What is the effect of the commands xaxt/yaxt="n"?
Use ?par to see other options. Experiment and produce your own
examples to show funnelling out and funnelling in of residuals.
Code for funnels out/in plot
y2<-(x2+rnorm(60, 0, 0.7))∧2/y2<-(1+x2+rnorm(60, 0,

0.35))∧0.5
a.lm<-lm(y2∼x2)
plot(y2-a.lm$resid, a.lm$resid, xaxt‘"n", yaxt="n",

ylab="Residual", xlab="Fitted value")
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7.9. For the simple linear model in Exercise 1.6, calculate leverage, Cook’s
distances, residuals, externally studentised residuals and internally
studentised residuals.

7.10. Revisit the simulated data example in Exercise 3.4 using techniques
introduced in this chapter.



8
Generalised Linear Models

8.1 Introduction

In previous chapters, we have studied the model

y = Aβ + ε,

where the mean Ey = Aβ depends linearly on the parameters β, the errors are
normal (Gaussian), and the errors are additive. We have also seen (Chapter 7)
that in some situations, a transformation of the problem may help to correct
some departure from our standard model assumptions. For example, in §7.3
on variance-stabilising transformations, we transformed our data from y to
some function g(y), to make the variance constant (at least approximately).
We did not there address the effect on the error structure of so doing. Of
course, g(y) = g(Aβ + ε) as above will not have an additive Gaussian error
structure any more, even approximately, in general.

The function of this chapter is to generalise linear models beyond our earlier
framework, so as to broaden our scope and address such questions. The material
is too advanced to allow a full treatment here, and we refer for background and
detail to the (numerous) references cited below, in particular to McCullagh and
Nelder (1989) and to Venables and Ripley (2002), Ch. 7.

We recall that in earlier chapters the Method of Least Squares and the
Method of Maximum Likelihood were equivalent. When we go beyond this
framework, this convenient feature is no longer present. We use the Method of
Maximum Likelihood (equivalent above to the Method of Least Squares, but no

N.H. Bingham and J.M. Fry, Regression: Linear Models in Statistics, 181
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-969-5 8,
c© Springer-Verlag London Limited 2010
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longer so in general). This involves us in finding the maximum of the likelihood
L, or equivalently the log-likelihood � := log L, by solving the likelihood equation

�′ = 0.

Unfortunately, this equation will no longer have a solution in closed form.
Instead, we must proceed as we do when solving a transcendental (or even
algebraic) equation

f(x) = 0,

and proceed numerically. The standard procedure is to use an iterative method:
to begin with some starting value, x0 say, and improve it by finding some better
approximation x1 to the required root. This procedure can be iterated: to go
from a current approximation xn to a better approximation xn+1. The usual
method here is Newton–Raphson iteration (or the tangent method):

xn+1 := xn − f(xn)/f ′(xn).

This effectively replaces the graph of the function f near the point x = xn by its
tangent at xn. In the context of statistics, the derivative �′ of the log-likelihood
function is called the score function, s, and the use of iterative methods to solve
the likelihood equation is called Fisher’s method of scoring (see e.g. Kendall
and Stuart (1979), §18.21).

Implementation of such an iterative solution by hand is highly laborious,
and the standard cases have been programmed and implemented in statistical
packages. One consequence is that (at least at the undergraduate level relevant
here) in order to implement procedures involving Generalised Linear Models
(GLMs), one really needs a statistical package which includes them. The pack-
age GLIM�1 is designed with just this in mind (Aitkin et al. (1989), or Crawley
(1993)), and also GenStat�2 (McConway et al. (1999)). For S-Plus for GLMs,
we refer to Venables and Ripley (2002), Ch. 7, Crawley (2002), Ch. 27. Unfor-
tunately, the package Minitab� (admirably simple, and very useful for much
of the material of this book) does not include GLMs.

Generalised Linear Models, or GLMs, arise principally from the work of the
English statistician John A. Nelder (1924–2010); the term is due to Nelder and
Wedderburn in 1972; the standard work on the subject is McCullagh and Nelder
(1989). As noted above, GLMs may be implemented in GLIM� or GenStat�;
the relevant command in S-Plus/R� is glm, with the family of error distribu-
tions specified, as well as the regressors; see below for examples.

1 GLIM� is a registered trademark of The Royal Statistical Society.
2 GenStat� is a registered trademark of VSN International Limited, 5 The Water-

house, Waterhouse Street, Hemel Hempstead, HP1 1ES, UK.
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8.2 Definitions and examples

Just as with a linear model, we have regressors, or stimulus variables, x1, . . . , xp

say, and a response variable y, which depends on these via a linear predictor

η = β1x1 + . . . + βpxp,

where the βi are parameters. The mean μ = Ey depends on this linear predictor
η, but whereas in the linear case μ = η, we now allow μ to be some smooth
invertible function of η, and so also, η is a smooth invertible function of μ. We
write

μ = m(η), η = m−1(μ) = g(μ),

where the function g is called the link function – it links the linear predictor to
the mean. In the linear case, the link g is the identity; we shall see a range of
other standard links below.

To complete the specification of the model, we need the distribution of the
response variable y, not just its mean μ; that is, we need to specify the error
structure. We assume that each observation yi is independent and has a density
f of the form

exp
{

ωi(yiθi − b(θi))
φ

+ c(y, φ)
}

,

where the parameter θi depends on the linear predictor η, φ is a scale parameter
(which may or may not be known), the ωi are a sequence of known weights,
and b(.) and c(.) are functions. It is further assumed that

var(yi) =
φ

ωi
V (μi),

where V (·) is a variance function relating the variance of the yi to the mean
μi. It can be shown that in the notation above

E(yi) = b′(θi),

var(yi) =
φ

ωi
b′′(θi).

This functional form derives from the theory of exponential families, which
lies beyond the scope of this book. For a monograph treatment, see e.g. Brown
(1986). Suffice it here to say that the parametric families which have a fully sat-
isfactory inference theory are the exponential families. So the assumption above
is not arbitrary, but is underpinned by this theory, and GLMs are tractable be-
cause of it.

The case when
θ = η
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is particularly important. When it occurs, the link function is called canonical.
(See also Exercise 8.1).

Example 8.1 (Canonical forms)

1. Normal. Here f(y; θ, φ) is given by

1√
2πσ2

exp{−1
2
(y − μ)2/σ2} = exp{(yμ− μ2/2)/σ2 − 1

2
(y2/σ2 + log(2πσ2))}.

So θ = μ, the scale parameter is simply the variance σ2, and the link function
g is the identity function:

g(μ) = μ.

This of course merely embeds the general linear model, with normal error struc-
ture, into the generalised linear model as a special case, and was to be expected.
The normal distribution is the obvious choice – the ‘default option’ – for mea-
surement data on the whole line.
2. Poisson. Here the mean μ is the Poisson parameter λ, and f(k; λ) =
e−λλk/k!. Writing y for k to conform with the above,

f(y; λ) = exp{y log λ − λ − log y!}.

So θ = log λ. So the canonical link, when θ = η = log λ, is the logarithm:

η = log λ.

This explains the presence of the logarithm in §8.3 below on log-linear models.
The Poisson distribution is the default option for count data (on the non-
negative integers). Note also that in this case the scale parameter φ is simply
φ = 1.
3. Gamma. The gamma density Γ (λ, α) is defined, for parameters α, λ > 0, as

f(x) =
λα

Γ (α)
e−λxxα−1.

The mean is
μ = α/λ,

and as

f(x) = exp{−λx + (α − 1) log x + α log λ − log Γ (α)}

= exp
{

(−α)
x

μ
+ . . .

}

,

the canonical link is the inverse function:

η = 1/μ,
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and we can also read off that the scale parameter is given by

φ = 1/α.

The gamma density is the default option for measurement data on the positive
half-line. It is often used with the log-link

η = log μ

and we shall meet such examples below (see Exercises 8.7).

Other standard examples, included in S-Plus/R�, are the inverse Gaussian
family (Exercise 8.9), the binomial (whose special case the Bernoulli, for bi-
nary data, we discuss below in §8.3), and the logit, probit and complementary
log-log cases (see §8.3 also).

One other pleasant feature of the general linear (normal) case that does not
carry over to GLMs is the distribution theory – independent sums of squares,
chi-square distributed, leading to F -tests and Analysis of Variance. The dis-
tribution theory of GLMs is less simple and clear-cut. Instead of Analysis of
Variance, one has analysis of deviance. This gives one a means of assessing
model fit, and of comparing one model with another – and in particular, of
choosing between two or more nested models. For further background and de-
tail, we refer to McCullagh and Nelder (1989), Venables and Ripley (2002),
Ch. 7, but we outline the basic procedures in the following two subsections.

8.2.1 Statistical testing and model comparisons

The scaled deviance metric is a measure of the distance between the observed
yi and the fitted μ̂i of a given model, and is defined as

S(y, μ̂) = 2 (l(y; φ, y) − l(μ̂; φ, y)) ,

=
2
φ

∑

i
ωi

[
yi

(
θ(yi) − θ̂i

)
−
(
b(θ(yi)) − b

(
θ̂i

))]
,

where l denotes log-likelihood. We define the residual deviance or deviance
which is the scaled deviance multiplied by the scale parameter φ:

D(y, μ̂) = φS(y, μ̂) = 2
∑

i
ωi

[
yi

(
θ(yi) − θ̂i

)
−
(
b(θ(yi)) − b

(
θ̂i

))]
.

Both the scaled deviance and the residual deviance are important and enable
both statistical testing of hypotheses and model comparisons. (Note that the
scaled deviance retains the scale parameter φ, which is then eliminated from
the residual deviance by the above.)
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Example 8.2

In the case of the normal linear model, the residual deviance leads to the
residual sum of squares:

D(y, μ̂) = SSE =
∑

i
(yi − μ̂)2.

To see this we note that, written as a function of the μi, the log-likelihood
function is

l(μ|φ, y) =
1
2φ

∑

i
(yi − μi)2 + C,

where C is constant with respect to μ. We have that

D(μ̂|φ, y) = 2φ

[
−
∑

(yi − yi)2 +
∑

(yi − μ̂i)2

2φ

]

=
∑

(yi − μ̂i)2.

The residual deviance can also be calculated for a range of common probability
distributions (see Exercise 8.2).

Nested models. Nested models can be formally compared using generalised
likelihood ratio tests. Suppose Model 1 is η = Xβ and Model 2 is η = Xβ +Zγ

with rank(Z) = r. Model 1 has dimension p1 and Model 2 has dimension
p2 = p1 + r. The test statistic is

2(l2 − l1) = S(y; μ̂1) − S(y; μ̂2),

=
D(y; μ̂1) − D(y; μ̂2)

φ
.

If the scale parameter φ is known, then the asymptotic distribution of this test
statistic should be χ2

r. This likelihood ratio test also suggests an admittedly
rough measure of absolute fit by comparing the residual deviance to χ2

n−p, with
high values indicating lack of fit. If φ is unknown, one suggestion is to estimate
φ using Model 2 and then treat φ as known. Alternatively, it is often customary
to use the F -test

D(y; μ̂1) − D(y; μ̂2)
φ̂r

∼ Fr,n−p2 ,

by analogy with the theory of Chapter 6. However, this must be used with
caution in non-Gaussian cases. A skeleton analysis of deviance is outlined in
Table 8.1, and should proceed as follows:
(i) Test S(y; μ2) versus χ2

n−p−1 for an admittedly rough test of model accuracy
for model 2.
(ii) Test S(y; μ1) − S(y; μ2) versus χ2

r to test the hypothesis Z = 0.
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Source Scaled Deviance df
Model 2 after fitting Model 1 S(y; μ1)-S(y; μ2) r

Model 2 S(y; μ2) n − p1 − r

Model 1 S(y; μ1) n − p1

Table 8.1 Skeleton analysis of deviance

Usually more than two models would be compared in the same way. The
reader should also note that methods of model selection similar to those dis-
cussed in Chapter 6 – namely forward and backward selection and sequential
methods – also apply here.

t-tests. Approximate t-tests for individual parameters can be constructed
by comparing

T =
β̂j − βj

e.s.e(β̂j)

to tn−p where β̂j is the estimate of βj and e.s.e denotes the associated estimated
standard error. This is partly by analogy with the theory of the Gaussian
linear model but also as a way of treating a near-Gaussian situation more
robustly. Approximate inference can also be conducted using the delta method
of Exercise 7.6. Whilst useful in model simplification, tests based on analysis
of deviance are usually preferred when testing between different models. Non-
nested models may be compared using the following generalisation of AIC:

AIC(μ̂) = D(y; μ̂) + 2pφ̂,

where μ denotes the fitted values and p the number of parameters of a given
model.

8.2.2 Analysis of residuals

There are four types of residuals commonly encountered in Generalised Linear
Models and roughly analogous to the various types of residuals defined for the
general linear model in Chapter 7. The response or raw residuals are simply
given by

ei = yi − μ̂i.

The Pearson residuals are defined as

eP,i =
√

ωi
yi − μ̂i
√

V (μ̂i)
=
√

φ
yi − μ̂i
√

V̂ (yi)
,
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since var(yi) = (φ/ωi)V (μi) by assumption. This is simply (yi − μ̂i)/
√

V̂ (yi)
appropriately scaled so as to remove the dispersion parameter φ. A Pearson χ2

statistic can be defined as

χ2 = χ2(y, μ̂) =
∑

e2
P,i,

and can be shown to be asymptotically equivalent to the deviance D. Working
residuals are defined as

eW,i =
(yi − μ̂i)
dμi/dηi

,

and are derived as part of the iterative model fitting process. Deviance residuals
are defined as

eD,i = sgn(yi − μ̂i)2ωi

[
yi

(
θ(yi) − θ̂i

)
−
(
b(θ(yi)) − b

(
θ̂i

))]
,

where the sign function sgn (or signum) is defined by

sgn(x) =

⎧
⎨

⎩

−1 x < 0
0 x = 0
1 x > 0.

This definition ensures that
∑

e2
D,i = D. If φ is not equal to one, the residuals

may be multiplied by
√

φ or its estimate to produce scaled versions of these
residuals. Plots of residuals can be used in the usual way to check model ad-
equacy – testing for nonlinearity, outliers, autocorrelation, etc – by plotting
against individual covariates or against the μ̂i or the η̂i. However, in contrast
to the general linear model, a Normal probability plot of residuals is unlikely
to be helpful. Also, aspects of the data, e.g. Poisson data for small counts, may
cause naturally occurring patterns in the residuals which should not then be
interpreted as indicating model inadequacy.

8.2.3 Athletics times

Example 8.3

We give a further illustrative example of a gamma Generalised Linear Model
by returning to our discussion of athletics times. For distance races, speed
decreases with distance, and so the time t taken increases faster than the
distance d. Because there are no natural units here, of distance or time, and the
relationship between t and d is smooth, Fechner’s Law applies (Gustav Fechner
(1801–1887) in 1860), according to which the relationship should be a power
law:

t = adb



8.2 Definitions and examples 189

(see e.g. Hand (2004), §5.6, where it is attributed to Stevens). Here a is pace,
or time per unit distance (traditionally reckoned in minutes and seconds per
mile, or per kilometre), and so is an indicator of the quality of the athlete,
while b is dimensionless (and is thought to be much the same for all ath-
letes – see Bingham and Rashid (2008) for background). This is an instance of
Buckingham’s Pi Theorem (Edgar Buckingham (1867–1940) in 1914), accord-
ing to which a physically meaningful relationship between n physical variables,
k of which are independent, can be expressed in terms of p = n− k dimension-
less quantities; here n = 3 (t, a, d), k = 2 (t, d), p = 1 (b).

Taking this relationship for the mean t = ET for the actual running time
T , one has

t = ET = adb, log(ET ) = log a + b log d = α + b log d,

say, giving a linear predictor (in (1, log d)) with coefficients α, b. This gives the
systematic part of the model; as η = log μ (with μ = ET the mean), the link
function is log. As time and distance are positive, we take the random part of
the model (or error law) as Gamma distributed:

T ∼ Γ (λ, μ).

An alternative would be to use an ordinary linear model with Gaussian errors,
as in Chapter 3:

log T = α + b log d + ε, ε ∼ N(0, σ2).

With age also present, one needs an age-dependent version of the above:
using c in place of a above,

ET = c(a)tb,

where in view of our earlier studies one uses a linear model for c(a):

Ec(a) = α1 + α2a.

The resulting compound model is of hierarchical type, as in Nelder, Lee and
Pawitan (2006). Here, an approximate solution is possible using the simpler
gamma Generalised Linear Model if instead we assume

log(ET ) = α1 + α2 log a + b logd.

In this case we can use a Gamma Generalised Linear Model with log-link. In
S-Plus/R� the relevant syntax required is

m1.glm<-glm(time∼log(age)+log(distance),family=Gamma(link="log"))
summary(m1.glm)
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The results obtained for the marathon/half-marathon data (Table 1.1,
Exercise 1.3) are shown in Table 8.2, and give similar results to those using
a log-transformation and a normal linear model in Example 3.37. As there, the
log(age) value of about 1/3 is consistent (for age∼60, ET∼180) with the Rule
of Thumb: expect to lose a minute a year on the marathon through ageing
alone.

Value Std. Error t value
Intercept 0.542 0.214 2.538
log(age) 0.334 0.051 6.512

log(distance) 1.017 0.015 67.198

Table 8.2 Regression results for Example 8.3

8.3 Binary models

Logits.
Suppose that we are dealing with a situation where the response y is success

or failure (or, life or death) or of zero-one, or Boolean, type. Then if

Ey = p,

p ∈ [0, 1], and in non-trivial situations, p ∈ (0, 1). Then the relevant distribution
is Bernoulli, with parameter p, B(p):

p = P (y = 1), q := 1 − p = P (Y = 0),

var(y) = pq = p(1 − p).

Interpreting p as the probability of success and q = 1− p as that of failure, the
odds on success are p/q = p/(1− p), and the log-odds, more natural from some
points of view, are

log
(

p

1 − p

)

.

Thinking of success or failure as survival or death in a medical context of
treatment for some disease, the log-odds for survival may depend on covariates:
age might well be relevant, so too might length of treatment, how early the
disease was diagnosed, treatment type, gender, blood group etc. The simplest
plausible model is to assume that the log-odds of survival depend on some
linear predictor η – a linear combination η =

∑
jajβj of parameters βj , just
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as before (cf. §9.5 below on survival analysis). With data y1, . . . , yn as before,
and writing

Eyi = pi (i = 1, . . . , n),

we need a double-suffix notation just as before, obtaining

log{pi/(1 − pi)} =
∑p

j=1
aijβj , (i = 1, . . . , n).

There are three salient features here:
(i) The function

g(p) = log{p/(1 − p)},

the link function, which links mean response p = Ey to the linear predictor.
(ii) The distributions (‘error structure’), which belong to the Bernoulli family
B(p), a special case of the binomial family B(n, p), under which

P (X = k) =
(

n

k

)

pk(1 − p)n−k (k = 0, 1, . . . , n).

(iii) The function V giving the variance in terms of the mean:

V (p) = p(1 − p),

called the variance function.
The model above is called the logit model (from log-odds), or logistic model

(as if η = log{p(1−p)}, p = eη/(1+ eη), the logistic function). Binary data are
very important, and have been studied at book length; see e.g. McCullagh and
Nelder (1989) Ch. 13, Cox and Snell (1989), and Collett (2003). The relevant
S-Plus/R� commands are of the form

glm(y ∼ ..., family = binomial)

We draw an illustrative example (as usual) from athletics times. The ‘time
to beat’ for a club runner of reasonable standard in the marathon is three
hours; let us interpret ‘success’ as breaking three hours. The sample version of
the expected frequency p of success is the observed frequency, the proportion
of successful runners. For a mass event (such as the London Marathon), which
we suppose for simplicity has reached a steady state in terms of visibility, pres-
tige etc., the systematic component of the observed variability in frequency of
success from year to year is governed principally by the weather conditions:
environmental factors such as temperature, humidity, wind and the like. At
too high a temperature, the body is prone to dehydration and heat-stroke; at
too low a temperature, the muscles cannot operate at peak efficiency. Perfor-
mance thus suffers on either side of the optimum temperature, and a quadratic
in temperature is suggested. On the other hand, humidity is simply bad: the
more humid the air is, the harder it is for sweat to evaporate – and so perform
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its function, of cooling the body (heat is lost through evaporation). In an en-
durance event in humid air, the body suffers doubly: from fluid loss, and rise
in core temperature. Thus a linear term in humidity is suggested.
Probits.

A very different way of producing a mean response in the interval (0, 1)
from a linear predictor is to apply the (standard) normal probability distribu-
tion function Φ. The model

p = Φ(α + βx)

(or some more complicated linear predictor) arises in bioassay, and is called a
probit model. Writing η =

∑
jβjxj for the linear predictor, the link function is

now
η = g(p) = Φ−1(p).

Complementary log-log link.
In dilution assay, the probability p of a tube containing bacteria is related

to the number x = 0, 1, 2, . . . of dilutions by

p = 1 − e−λx

for some parameter λ (the number of bacteria present is modelled by a Poisson
distribution with this parameter). The link function here is

η = g(p) = log(− log(1 − p)) = log λ + log x.

Example 8.4

The data in Table 8.3 show the number of insects killed when exposed to
different doses of insecticide.

Dose Number Number killed % killed
10.7 50 44 88
8.2 49 42 86
5.6 46 24 52
4.3 48 16 33
3.1 50 6 12
0.5 49 0 0

Table 8.3 Data for Example 8.4

We wish to model these data using a Generalised Linear Model. A sen-
sible starting point is to plot the empirical logits defined here as ηe,i =
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log(yi + 1/2) − log(1 − yi + 1/2), where the 1/2 guards against singularities
in the likelihood function if yi = 0 or yi = 1. Here, a plot of the ηe,i against
log(dose) appears roughly linear suggesting a logarithmic term in dose. The
model can be fitted in R� as follows. First, the count data needs to be stored
as two columns of successes and failures (the command cbind is helpful here).
The model is fitted with the following commands:

a.glm<-glm(data∼log(dose), family=binomial)

summary(a.glm)

This gives a residual deviance of 1.595 with 4 df The deviance of the null model
with only a constant term is 163.745 on 5 df Testing 1.595 against χ2

4 gives
a p-value of 0.810, so no evidence of lack of fit. The log(dose) term is highly
significant. The analysis of deviance test gives 163.745− 1.595 = 162.149 on 1
df with p = 0.000. Probit and complementary log-log models can be fitted in
S-Plus/R� using the following syntax (see Exercise 8.4):

a.glm<-glm(data∼log(dose), family=binomial(link=probit))

a.glm<-glm(data∼log(dose), family=binomial(link=cloglog))

8.4 Count data, contingency tables

and log-linear models

Suppose we have n observations from a population, and we wish to study a
characteristic which occurs in r possible types. We classify our observations,
and count the numbers n1, . . . , nr of each type (so n1 + . . . + nr = n). We may
wish to test the hypothesis H0 that type k occurs with probability pk, where

∑r

k=1
pk = 1.

Under this hypothesis, the expected number of type k is ek = npk; the observed
number is ok = nk. Pearson’s chi-square goodness-of-fit test (Karl Pearson
(1857–1936), in 1900) uses the chi-square statistic

X2 :=
∑r

k=1
(nk − npk)2/(npk) =

∑
(ok − ek)2/ek.

Then for large samples, X2 has approximately the distribution χ2(r − 1), the
chi-square distribution with r df; large values of X2 are evidence against H0.
The proof proceeds by using the multidimensional Central Limit Theorem to
show that the random vector (x1, . . . , xr), where

xk := (nk − npk)/
√

npk,
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is asymptotically multivariate normal, with mean zero and (symmetric) covari-
ance matrix

A = I − ppT ,

where p is the column vector

(
√

p1, . . . ,
√

pr)T .

Since
∑

kpk = 1, A is idempotent; its trace, and so its rank, is r − 1. This loss
of one degree of freedom corresponds to the one linear constraint satisfied (the
nk sum to n; the pk sum to 1). From this, the limiting distribution χ2(r − 1)
follows by Theorem 3.16. For details, see e.g. Cramér (1946), §30.1.

Now the distribution of the vector of observations (n1, . . . , nr) (for which
∑

ini = n) is multinomial:

P (n1 = k1, . . . , nr = kr) =
(

n

k1, . . . , kr

)

pk1
1 . . . pkr

r ,

for any non-negative integers k1, . . . , kr with sum n (the multinomial coefficient
counts the number of ways in which the k1 observations of type 1, etc., can be
chosen; then pk1

1 . . . pkr
r is the probability of observing these types for each such

choice.
According to the conditioning property of the Poisson process (see e.g.

Grimmett and Stirzaker (2001), §6.12–6.13), we obtain multinomial distribu-
tions when we condition a Poisson process on the number of points (in some
region).

These theoretical considerations lie behind the use of GLMs with Poisson
errors for the analysis of count data. The basic observation here is due to Nelder
in 1974. In the linear model of previous chapters we had additive normal er-
rors, and – regarded as a GLM – the identity link. We now have multiplicative
Poisson errors, the multiplicativity corresponding to the logarithmic link.

We assume that the logarithm of the ith data point, μi = Eyi, is given by
a linear combination of covariates:

log μi = ηi = βT xi (i = 1, . . . , n).

We shall refer to such models as log-linear models. For them, the link function
is the logarithm:

g(μ) = log μ.

Example 8.5 (Poisson modelling of sequences of small counts)

Suppose that we have the following (artificial) data in Table 8.4 and we wish
to model this count data using a Poisson Generalised Linear Model.
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x 1 2 3 4 5 6 7 8 9 10 11 12 13 14
y 1 0 2 5 6 9 12 12 25 25 22 30 52 54

Table 8.4 Data for Example 8.5

A plot of the guarded logs, log(yi +0.5), against xi seems close to a straight
line although there is perhaps a slight suggestion of curvature. The model with
x on its own gives a residual deviance of 24.672 on 12 df The χ2 goodness-of-fit
test gives a p-value of 0.016, suggesting that the fit of this model is poor. The
model with a quadratic term has a residual deviance of 13.986 on 11 df This
model seems to fit better; the χ2 goodness of fit test gives a p-value of 0.234,
and the AIC of this model is 75.934. A plot of the guarded logs against log(xi)
also appears close to linear and log(x) thus seems a suitable candidate model.
Fitting this model gives a residual deviance of 14.526 on 12 df and appears
reasonable (χ2 test gives p = 0.268). The AIC for this model is 74.474 and thus
log(x) appears to be the best model.

All of this continues to apply when our counts are cross-classified by more
than one characteristic. We consider first the case of two characteristics, partly
because it is the simplest case, partly because we may conveniently display
count data classified by two characteristics in the form of a contingency table.
We may then, for example, test the null hypothesis that the two characteris-
tics are independent by forming an appropriate chi-square statistic. For large
samples, this will (under the null hypothesis) have approximately a chi-square
distribution with df (r−1)(s−1), where r and s are the numbers of forms of the
two characteristics. For proof, and examples, see e.g. Cramér (1946), Ch. 30.

We may very well have more than two characteristics. Similar remarks ap-
ply, but the analysis is more complicated. Such situations are common in the
social sciences – sociology, for example. Special software has been developed:
SPSS�3 (statistical package for the social sciences). Such multivariate count
data is so important that it has been treated at book length; see e.g. Bishop et
al. (1995), Plackett (1974), Fienberg (1980).

Another application area is insurance. A motor insurer might consider, when
assessing the risk on a policy, the driver’s age, annual mileage, sex, etc; also the
type of vehicle (sports cars are often charged higher premiums), whether used
for work, whether kept off-road, etc. A house insurer might consider number
of rooms (or bedrooms), indicators of population density, postal code (infor-
mation about soil conditions, and so subsidence risk, for buildings; about the
ambient population, and so risk of burglary, for contents, etc.). The simplest

3 SPSS� is a registered trademark of SPSS Inc., 233 S. Wacker Drive, 11th Floor,
Chicago, IL 60606, USA, http://www.spss.com

http://www.spss.com
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way to use such information is to use a linear regression function, or linear
predictor, as above, whence the relevance of GLMs. The S-Plus commands are
much as before:

glm(y ∼ ..., family = poisson).
We note in passing that the parameter λ in the Poisson distribution P (λ),

giving its mean and also its variance, is most naturally viewed as a rate, or
intensity, of a stochastic process – the Poisson point process with rate λ (in
time, or in space) – which corresponds to a risk in the insurance context. Thus
this material is best studied in tandem with a study of stochastic processes, for
which we refer to, e.g., Haigh (2002), Ch. 8, as well as Grimmett and Stirzaker
(2001), Ch. 6 cited earlier.

Example 8.6 (Skeleton analysis of 2×2 contingency tables)

For technical reasons, it can be important to distinguish between two cases of
interest.
Two response variables. Both variables are random, only the total sample size
∑

ijyij is fixed. The data in Exercise 7.4 are an example with two response
variables.
One response variable and one observed variable. The setting here is a con-
trolled experiment rather than an observational study. The design of the ex-
periment fixes row or column totals before the full results of the experiment
are known. One example of this is medical trials where patients are assigned
different treatment groups, e.g. placebo/vaccine, etc. The interested reader is
referred to Dobson and Barnett (2003), Ch. 9.

A range of different possible hypotheses applies in each of these two cases.
Apart from unrealistic or very uncommon examples, the main interest lies in
testing the hypothesis of no association between the two characteristics A and
B. It can be shown that this reduces to testing the adequacy of the log-linear
model

log(Y ) = const. + A + B.

The data in Table 8.5 give hair and eye colours for a group of subjects. We use
Poisson log-linear models to test for an association between hair and eye colour.
Fitting the model we obtain a residual deviance of 146.44 on 9 df leading to a
p-value of 0.000 and we reject the null hypothesis of no association.
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Brown Blue Hazel Green
Black hair 68 20 15 5
Brown hair 119 84 54 29
Red hair 26 17 14 14

Blond hair 7 94 10 16

Table 8.5 Data for Example 8.6

8.5 Over-dispersion and the Negative Binomial
Distribution

The fact that a Poisson mean and variance coincide gives a yardstick by which
to judge variability, or dispersion, of count data. If the variance-to-mean ratio
observed is > 1, the data are called over-dispersed (if < 1, they are called
under-dispersed, though this is less common). Equivalently, one may also use
the ratio of standard error to mean (coefficient of variation), often preferred to
the variance-mean ratio as it is dimensionless.

One model used for over-dispersion is to take a Gamma mixture of Poissons:
take a Poisson distribution with random mean, M say, where M is Gamma
distributed. Thus

P (Y = n|M = λ) = e−λλn/n!,

but (it is convenient here to reparametrise, from λ, α > 0 to ν, τ > 0) M ∼
Γ (ν/τ, ν): M has density

f(y) =
1

Γ (ν)

(νy

τ

)ν

e−νy/τ 1
y

(y > 0).

Then unconditionally

P (Y = n) =
∫ ∞

0

e−yyn

n!
1

Γ (ν)

(νy

τ

)ν

e−νy/τyn+ν−1 dy

=
νν

τν

1
n!Γ (ν)

1
(1 + ν/τ)n+ν

∫ ∞

0

e−uun+ν−1 du (y(1 + ν/τ) = u)

=
νν

τν(1 + ν/τ)n+ν

Γ (n + ν)
n!Γ (ν)

.

This is the Negative Binomial distribution, NB(ν, τ), in one of several
parametrisations (compare McCullagh and Nelder (1989), p237 and p373).
The mean is

μ = τ.

The variance is
V (μ) = τ + τ2/ν = μ + μ2/ν.

The model is thus over-dispersed.
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Since Γ (1 + x) = xΓ (x),

Γ (n + ν)
n!Γ (ν)

=
(n + ν − 1)(n + ν − 2) . . . ν

n!
,

and when ν is a positive integer, r say, this has the form of a binomial coefficient
(

n + r − 1
n

)

=
(

n + r − 1
r − 1

)

.

In this case,

P (Y = n) =
(

n + r − 1
n

)

prqn (n = 0, 1, . . .),

writing
p := r/(τ + r), q := 1 − p = τ/(τ + r).

The case r = 1 gives the geometric distribution, G(p):

P (Y = n) = qnp (n = 0, 1, . . .),

the distribution of the number of failures before the first success in Bernoulli
trials with parameter p (‘tossing a p-coin’). This has mean q/p and variance
q/p2 (over-dispersed, since p ∈ (0, 1), so 1/p > 1). The number of failures
before the rth success has the negative binomial distribution in the form just
obtained (the binomial coefficient counts the number of ways of distributing
the n failures over the first n + r − 1 trials; for each such way, these n failures
and r − 1 successes happen with probability qnpr−1; the (n + r)th trial is a
success with probability p). So the number of failures before the rth success
(i) has the negative binomial distribution (which it is customary and convenient
to parametrise as NB(r, p) in this case);
(ii) is the sum of r independent copies of geometric random variables with dis-
tribution G(p);
(iii) so has mean rq/p and variance rq/p2 (agreeing with the above with r = ν,
p = r/(τ + r), q = τ/(τ + r)).
The Federalist.

The Federalist Papers were a series of essays on constitutional matters, pub-
lished in 1787–1788 by Alexander Hamilton, John Jay and James Madison to
persuade the citizens of New York State to ratify the U.S. Constitution. Author-
ship of a number of these papers, published anonymously, was later disputed
between Hamilton and Madison. Their authorship has since been settled by a
classic statistical study, based on the use of the negative binomial distribution
for over-dispersed count data (for usage of key indicator words – ‘whilst’ and
‘while’ proved decisive); see Mosteller and Wallace (1984).
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8.5.1 Practical applications: Analysis of over-dispersed
models in R�

For binomial and Poisson families, the theory of Generalised Linear Models
specifies that the dispersion parameter φ = 1. Over-dispersion can be very
common in practical applications and is typically characterised by the residual
deviance differing significantly from its asymptotic expected value given by the
residual degrees of freedom (Venables and Ripley (2002)). Note, however, that
this theory is only asymptotic. We may crudely interpret over-dispersion as
saying that data varies more than if the underlying model really were from a
Poisson or binomial sample. A solution is to multiply the variance functions
by a dispersion parameter φ, which then has to be estimated rather than sim-
ply assumed to be fixed at 1. Here, we skip technical details except to say
that this is possible using a quasi-likelihood approach and can be easily im-
plemented in R� using the Generalised Linear Model families quasipoisson

and quasibinomial. We illustrate the procedure with an application to over-
dispersed Poisson data.

Example 8.7

We wish to fit an appropriate Generalised Linear Model to the count data
of Exercise 7.2. Fitting the model with both blocks and treatments gives a
residual deviance of 242.46 on 12 df giving a clear indication of over-dispersion.
A quasi-poisson model can be fitted with the following commands:

m1.glm<-glm(data∼blocks+treatments, family=quasipoisson)

summary(m1.glm)

Since we have to estimate the dispersion parameter φ we use an F -test to
distinguish between the models with blocks and treatments and the model with
blocks only. We have that

F =
ΔResidual deviance

Δdf(φ̂)
=

3468.5− 242.46
4(21.939)

= 36.762.

Testing against F4,12 gives a p-value of 0.000. Similar procedures can be used
to test the effectiveness of blocking (see Exercise 8.5).
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EXERCISES

8.1. Canonical forms. Show that these common probability distributions
can be written in the canonical form of a Generalised Linear Model
as shown in Table 8.6:

Normal Poisson Binomial Gamma

N(θ, φ) Po(eθ) ny∼Bi
(
n, eθ

1+eθ

)
Γ
(

1
φ ,− θ

φ

)

φ
ω φ 1 n−1 φ

b(θ) θ2

2 eθ log
(
1 + eθ

)
− log(−θ)

c(y, θ) − y2

2φ − φ log(2π)
2 − log(y!) log

(
n

ny

) (
1
φ − 1

)
log y

− log φ
φ + log φ

μ = b′(θ) θ eθ eθ

1+eθ − 1
θ

b′′(θ) 1 μ μ(1 − μ) μ2

Table 8.6 Canonical forms for Exercise 8.1

8.2. (Residual) deviance calculations. Show that for the following com-
mon probability distributions the residual deviances can be calcu-
lated as follows:

Poisson

2
∑

i

(

yi log
(

yi

μ̂i

)

− (yi − μ̂i)
)

,

Binomial

2
∑

i
ni

{

yi log
(

yi

μ̂i

)

+ (1 − yi) log
(

1 − yi

1 − μ̂i

)}

,

Gamma

2
∑

i
log
(

μ̂i

yi

)

+
yi − μ̂i

μ̂i
.

8.3. Test the hypothesis of no association between haul and number for
the data in Exercise 7.4 using
(i) a Poisson log-linear model,
(ii) the Pearson χ2 test of no association,
and comment on your findings.

8.4. Re-fit the data in Example 8.4 using
(i) a probit model,
(ii) a complementary log-log model,
(iii) an approximate method using general linear models.
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8.5. Re-fit the data in Exercise 7.2 using a Poisson Generalised Linear
Model, before switching to an over-dispersed Poisson model if this
seems appropriate. Test for the effectiveness of blocking by seeing if
the model with just the blocks term offers an improvement over the
null model.

8.6. Suppose that we have the following data for the number of unusable
ears of corn shown in Table 8.7. (Assume totals are out of 36.) Anal-
yse these data by fitting a binomial Generalised Linear Model, using
a quasi-binomial model if it appears that we have over-dispersion.
Compare your results with an approximation using General Linear
Models on similar data in Exercise 7.3 and interpret the results.

Block 1 2 3 4 5 6
Treatment A 15 12 9 14 20 18
Treatment B 12 12 2 9 11 10
Treatment C 3 8 2 6 5 6
Treatment D 6 7 6 1 4 4

Table 8.7 Data for Exercise 8.6

8.7. Generalised Linear Model with Gamma errors. Using the data in
Exercise 1.6 fit a Gamma Generalised Linear Model. Interpret your
findings and compare both with Exercise 1.6 and the analyses in
§5.3. Write down the equation of your fitted model.

8.8. Inverse Gaussian distribution. The inverse Gaussian distribution is
the distribution on the positive half-axis with probability density

f(y) =

√
λ

2πy3
exp

(−λ(y − μ)2

2μ2y

)

.

Show that this density lies in the exponential family (see Exercise
8.1).

8.9. Generalised Linear Model with inverse Gaussian errors. Repeat Ex-
ercise 8.7 using an inverse Gaussian Generalised Linear Model.

8.10. The effect of ageing on athletic performance. Using the fitted equa-
tions obtained in Exercises 8.7 and 8.9 and using x = 63, comment
on the effect of
(i) ageing,
(ii) club status.
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Other topics

9.1 Mixed models

In §5.1 we considered extending our initial model (M0), with p parameters, to
an augmented model MA with a further q parameters. Here, as in Chapter 2,
we have p + q << n, there are many fewer parameters than data points. We
now turn to a situation with some similarities but with important contrasts.
Here our initial model has fixed effects, but our augmented model adds random
effects, which may be comparable in number to the sample size n.

We mention some representative situations in which such mixed models
occur.
1. Longitudinal studies (or panel data). Suppose we wish to monitor the effect
of some educational initiative. One may choose some representative sample
or cohort of school children or students, and track their progress over time.
Typically, the resulting data set consists of a large number (the size of the
cohort) of short time series (the longer the time the more informative the
study, but the more expensive it is, and the longer the delay before any useful
policy decisions can be made). For background on longitudinal data, see Diggle
et al. (2002).

Here one takes for granted that the children in the cohort differ – in
ability, and in every other aspect of their individuality. One needs information
on between-children variation (that is, on cohort variance); this becomes a
parameter in the mixed model. The child effects are the random effects: if
one repeated the study with a different cohort, these would be different. The
educational aspects one wishes to study are the fixed effects.

N.H. Bingham and J.M. Fry, Regression: Linear Models in Statistics, 203
Springer Undergraduate Mathematics Series, DOI 10.1007/978-1-84882-969-5 9,
c© Springer-Verlag London Limited 2010
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2. Livestock studies. One may wish to follow the effect of some treatments – a
diet, or dietary supplements, say – over time, on a cohort of livestock (cattle,
sheep or pigs, say). Again, individual animals differ, and these give the random
effects. The fixed effects are the objects of study.

The field of mixed models was pioneered in the US dairy industry by
C. R. Henderson (1911–1989) from 1950 on, together with his student
S. R. Searle (1928–). Searle is the author of standard works on linear models
(Searle (1991)), variance components (Searle, Casella and McCulloch (1992)),
and matrix theory for statisticians (Searle (1982)). Henderson was particularly
interested in selection of sires (breeding bulls) in the dairy industry. His work
is credited with having produced great gains in yields, of great economic value.
3. Athletics times. One may wish to study the effect of ageing on athletes past
their peak. One way to do this is to extract from the race results of a particular
race over successive years the performances of athletes competing repeatedly.
Again, individual athletes differ; these are the random effects. Fixed effects
one might be interested in include age, sex and club status. For background,
see Bingham and Rashid (2008).

We shall follow the notation of §5.1 fairly closely. Thus we write

W = (X, Z)

for the new design matrix (n × (p + q)). It is convenient to take the random
effects – which as is customary we denote by u – to have zero mean (any additive
terms coming from the mean Eu can be absorbed into the fixed effects). Thus
the linear mixed model is defined by

y = Xβ + Zu + ε, (LMM)

where (both means are zero and) the covariance matrices are given by

Eε = Eu = 0, cov(ε, u) = 0, R := var ε, D := var u,

(‘R for regresssion, D for dispersion’). One can write (LMM) as an ordinary
linear model,

y = Xβ + ε∗, ε∗ := Zu + ε.

By Proposition 4.5, this has covariance matrix

V := cov ε∗ = ZDZT + R

(‘V for variance’). So by Theorem 3.5, the generalised least-squares solution is

β̂ = (XT V −1X)−1XT V −1y. (GLS)
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We now specify the distributions in our model by assuming that u is multi-
variate normal (multinormal), and that the conditional distribution of y given
u is also multinormal:

y|u ∼ N(Xβ + Zu, R), u ∼ N(0, D). (NMM)

Then the (unconditional) distribution of y is a normal mean mixture, whence
the name (NMM). Now the joint density f(y, u) is

f(y, u) = f(y|u)f(u),

the product of the conditional density of y given u and the density of u. So

f(y, u) = const. exp{−1
2
(y−Xβ−Zu)TR−1(y−Xβ−Zu)}. exp

{

−1
2
uT D−1u

}

.

Thus to maximise the likelihood (with respect to β and u), we maximise f(y, u),
that is, we minimise:

min (y − Xβ − Zu)T R−1(y − Xβ − Zu) + uT D−1u. (pen)

Note the different roles of the two terms. The first, which contains the data,
comes from the likelihoood; the second comes from the random effects. It serves
as a penalty term (the penalty we pay for not knowing the random effects). So
we have here a penalised likelihood (recall we encountered penalised likelihood
in §5.2.1, in connection with nested models and AIC).

The least-squares solution of Chapters 3, 4 gives the best linear unbiased
estimator or BLUE (see §3.3). It is conventional to speak of predictors, rather
than estimators, with random effects. The solution is thus a best linear unbiased
predictor, or BLUP.

Theorem 9.1

The BLUPs – the solutions β̂, û, of the minimisation problem (MME) – satisfy

XR−1Xβ̂ + XT R−1Zû = XT R−1y,

ZR−1Xβ̂ +
[
ZT R−1Z + D−1

]
û = ZT R−1y

}

(MME)

(Henderson’s mixed model equations of 1950).

Proof

We use the vector calculus results of Exercises 3.6–3.7. If we expand the first
term in (pen) above, we obtain nine terms, but the quadratic form in y does
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not involve β or u, so we discard it; this with the second term above gives nine
terms, all scalars, so all their own transposes. This allows us to combine three
pairs of terms, reducing to six terms, two linear in β, two linear in u and two
cross terms in β and u; there is also a quadratic term in β, and two quadratic
terms in u, which we can combine. Setting the partial derivatives with respect
to β and u equal to zero then gives

−2yT R−1X + 2uT ZT R−1X + 2βT XT R−1X = 0,

−2yT R−1Z + 2βT XT R−1Z + 2uT
[
ZT R−1Z + D−1

]
= 0,

or
XT R−1Xβ + XT R−1Zu = XT R−1y,

ZT R−1Xβ + [ZT R−1Z + D−1]u = ZT R−1y,

}

(MME)

as required.

9.1.1 Mixed models and Generalised Least Squares

To proceed, we need some matrix algebra. The next result is known as the
Sherman–Morrison–Woodbury formula, or Woodbury’s formula (of 1950).

Lemma 9.2 (Woodbury’s Formula)

(A + UBV )−1 = A−1 − A−1U.(I + BV A−1U)−1.BV A−1,

if all the matrix products are conformable and all the matrix inverses exist.

Proof

We have to show that if we pre-multiply or post-multiply the right by A+UBV

we get the identity I.
Pre-multiplying, we get four terms. Taking the first two as those from (A+

UBV )A−1, these are

I + UBV A−1 − U(I + BV A−1U)−1BV A−1

−UBV A−1U(I + BV A−1U)−1BV A−1.

The third and fourth terms combine, to give

I + UBV A−1 − U.BV A−1 = I,

as required. The proof for post-multiplying is similar.
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Applied in the context of §9.1 (where now V := ZDZT +R, as above), this
gives

Corollary 9.3

(i)

V −1 := (ZDZT + R)−1 = R−1 − R−1Z(ZT R−1Z + D−1)−1ZR−1.

(ii)
DZT V −1 = (ZT R−1Z + D−1)−1ZT R−1.

Proof

For (i), we use Woodbury’s Formula with R, Z, D, ZT for A, U , B, V :

(R + ZDZT )−1 = R−1 − R−1Z.(I + DZT R−1Z)−1.DZT R−1

= R−1 − R−1Z.[D(D−1 + ZT R−1Z)]−1.DZT R−1

= R−1 − R−1Z.(D−1 + ZT R−1Z)−1.ZT R−1.

For (ii), use Woodbury’s Formula with D−1, ZT , R−1, Z for A, U , B, V :

(D−1 + ZT R−1Z)−1 = D − DZT .(I + R−1ZDZT )−1.R−1ZD,

so
(D−1+ZTR−1Z)−1ZT R−1 =DZ T R−1−DZT(I+R−1ZDZ T )−1R−1ZDZT R−1.

The right is equal to DZT [I − (I + R−1ZDZT )−1R−1ZDZT ]R−1, or equiva-
lently, to DZT [I − (I +R−1ZDZT )−1{(I +R−1ZDZT )− I}]R−1. Combining,
we see that

(D−1 + ZT R−1Z)−1ZT R−1 = DZT [I − I + (I + R−1ZDZT )−1]R−1

= DZT (R + ZDZT )−1

= DZT V −1,

as required.

Theorem 9.4

The BLUP β̂ in Theorem 9.1 is the same as the generalised least-squares esti-
mator:

β̂ =
(
XT V −1X

)−1
XT V −1y. (GLS)
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The BLUP û is given by either of

û =
(
ZT R−1Z + D−1

)−1
ZT R−1

(
y − Xβ̂

)

or
û = DZT V −1

(
y − Xβ̂

)
.

Proof

We eliminate û between the two equations (MME). To do this, pre-multiply
the second by XT R−1Z(ZT R−1Z + D−1)−1 and subtract. We obtain that

XT R−1Xβ̂ − XT R−1Z
(
ZT R−1Z + D−1

)−1
ZT R−1Xβ̂ =

XT R−1y − XT R−1Z
(
ZT R−1Z + D−1

)−1
ZT R−1y. (a)

Substitute the matrix product on the right of Corollary 9.3(i) into both sides
of (a):

XT R−1Xβ̂ − XT
{
R−1 − V −1

}
Xβ̂ = XT R−1y − XT

{
R−1 − V −1

}
y,

or
XT V −1Xβ̂ = XT V −1y,

which is
β̂ = (XT V −1X)−1XT V −1y,

as in (GLS).
The first form for û follows from the second equation in (MME). The

second follows from this by Corollary 9.3(ii).

The conditional density of u given y is

f(u|y) = f(y, u)/f(y) = f(y|u)f(u)/f(y)

(an instance of Bayes’s Theorem: see e.g. Haigh (2002), §2.2). We obtain f(y)
from f(y, u) by integrating out u (as in §1.5 on the bivariate normal). By above
(below (NMM)), f(y, u) is equal to a constant multiplied by

exp{−1
2
[uT (ZT R−1Z+D−1)u−2uTZT R−1(y−Xβ)+(y−Xβ)TR−1(y−Xβ)]}.

This has the form of a multivariate normal. So by Theorem 4.25, u|y is also
multivariate normal. We can pick out which multivariate normal by identifying
the mean and covariance from Edgeworth’s Theorem, Theorem 4.16 (see also
Note 4.30). Looking at the quadratic term in u above identifies the covariance
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matrix as (ZT R−1Z + D−1)−1. Then looking at the linear term in u identifies
the mean as (

ZT R−1Z + D−1
)−1

ZT R−1(y − Xβ).

Here β on the right is unknown; replacing it by its BLUP β̂ gives the first form
for û (recall from §4.5 that a regression is a conditional mean; this replacement
of β by β̂ is called a plug-in estimator). The interpretation of the second form
of û, in terms of the regression of u on y with β̂ plugged in for β, is similar (as
in (GLS), with (XT V −1X)−1 replaced by (IT D−1I)−1 = D, XT by ZT and
y by y − Xβ̂.

Note 9.5

1. The use of Bayes’s Theorem above is very natural in this context. In Bayesian
Statistics, parameters are no longer unknown constants as here. Our initial un-
certainty about them is expressed in terms of a distribution, given here by a
density, the prior density. After sampling and obtaining our data, one uses
Bayes’s Theorem to update this prior density to a posterior density. From this
Bayesian point of view, the distinction between fixed and random effects in the
mixed model above evaporates. So one can expect simplification, and unifica-
tion, in a Bayesian treatment of the Linear Model. However, one should first
meet a treatment of Bayesian Statistics in general, and for this we must refer
the reader elsewhere. For a Bayesian treatment of the Linear Model (fixed ef-
fects), see Williams (2001), §8.3.

Bayes’s Theorem stems from the work of Thomas Bayes (1702–1761, posthu-
mously in 1764). One of the founders of modern Bayesian Statistics was I. J.
Good (1916–2009, from 1950 on). Good also pioneered penalised likelihood,
which we met above and will meet again in §9.2 below.
2. In Henderson’s mixed model equations (MME), one may combine β and u

into one vector, v say, and express (MME) as one matrix equation, Mv = c

say. This may be solved as v = M−1c. Here, one needs the inverse of the par-
titioned matrix M . We have encountered this in Exercise 4.10. The relevant
Linear Algebra involves the Schur complement, and gives an alternative to the
approach used above via Woodbury’s Formula.

Example 9.6 (Mixed model analysis of ageing athletes)

We give a brief illustration of mixed models with an application to the athletics
data in Table 9.1.

In S-Plus/R� the basic command is lme, although in R� this requires load-
ing the package nlme. We fit a model using Restricted Maximum Likelihood
(REML) with fixed effects for the intercept, age and club status, and a random
intercept depending on each athlete.
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Athlete Age Club Time Athlete Age Club Time
1 38 0 91.500 4 41 0 91.167
1 39 0 89.383 4 42 0 90.917
1 40 0 93.633 4 43 0 90.883
1 41 0 93.200 4 44 0 92.217
1 42 0 93.533 4 45 1 94.283
1 43 1 92.717 4 46 0 99.100
2 53 1 96.017 5 54 1 105.400
2 54 1 98.733 5 55 1 104.700
2 55 1 98.117 5 56 1 106.383
2 56 1 91.383 5 57 1 106.600
2 58 1 93.167 5 58 1 107.267
2 57 1 88.950 5 59 1 111.133
3 37 1 83.183 6 57 1 90.250
3 38 1 83.500 6 59 1 88.400
3 39 1 83.283 6 60 1 89.450
3 40 1 81.500 6 61 1 96.380
3 41 1 85.233 6 62 1 94.620
3 42 0 82.017

Table 9.1 Data for Example 9.6. The times are taken from athletes regularly
competing in the Berkhamsted Half–Marathon 2002–2007.

m1.nlme<-lme(log(time)∼club+log(age), random=∼1|athlete)
summary(m1.nlme)

From the output, t-statistics show that the fixed effects term for age is
significant (p = 0.045) but suggest that a fixed effects term for club status
is not needed (p = 0.708). We repeat the analysis, excluding the fixed effects
term for club status:

m2.nlme<-lme(log(time)∼log(age), random=∼1|athlete)

Next we fit a model with a fixed effect term for age, but allow for the
possibility that this coefficient can vary randomly between athletes:

m3.nlme<-lme(log(time)∼log(age), random=∼1+log(age)|athlete)
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The AIC for these latter two models are −114.883 and −112.378 respec-
tively, so the most appropriate model appears to be the model with a random
intercept term and a fixed age-effect term. Log(age) is significant in the cho-
sen model – a t-test gives a p-value of 0.033. A 95% confidence interval for
the coefficient of log(age) is 0.229 ± 0.209, consistent with earlier estimates in
Examples 3.37 and 8.3, although this time this estimate has a higher level of
uncertainty attached to it.

One reason why the ageing effect appears to be weaker here is that the
Berkhamsted Half-Marathon (in March) is often used as a ‘sharpener’ for the
London Marathon in April. One could allow for this by using a Boolean variable
for London Marathon status (though full data here would be hard to obtain
for any data set big enough for the effort to be worthwhile).

9.2 Non-parametric regression

In §4.1 on polynomial regression, we addressed the question of fitting a func-
tion f(x) more general than a straight line through the data points in the
least-squares sense. Because polynomials of high degree are badly behaved nu-
merically, we restricted attention there to polynomials of low degree. This is a
typical parametric setting.

However, we may need to go beyond this rather restricted setting, and if we
do the number of parameters we use can increase. This provides more flexibility
in fitting. We shall see below how spline functions are useful in this context.
But the point here is that we can now move to a function-space setting, where
the dimensionality of the function space is infinite. We will use only finitely
many parameters. Nevertheless, because the number of parameters available
is infinite, and because one usually uses the term non-parametric to describe
situations with infinitely many parameters, this area is referred to as non-
parametric regression.

The idea is to choose some suitable set of basic, or simple, functions, and
then represent functions as finite linear combinations of these. We have met this
before in §4.1, where the basic functions are powers, and §4.1.2, where they are
orthogonal polynomials. The student will also have met such ideas in Fourier
analysis, where we represent functions as series of sines and cosines (infinite
series in theory, finite series in practice). Many other sets of basic functions
are in common use – splines, to which we now turn, radial basis functions,
wavelets, etc. The relevant area here is Approximation Theory, and we must
refer to a text in that area for details and background; see e.g. Ruppert, Wand
and Carroll (2003).
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The above deals with functions of one variable, or problems with one covari-
ate, but in Chapter 3 we already have extensive experience of problems with
several covariates. A similar extension of the treatment to higher dimensions
is possible here too. For brevity, we will confine such extensions to two di-
mensions. Non-parametric regression in two dimensions is important in Spatial
Statistics, to which we return in the next subsection.

Recall that in §4.1 on polynomial regression we found that polynomials of
high degree are numerically unstable. So if a polynomial of low degree does
not suffice, one needs functions of some other kind, and a suitable function
class is provided by splines. A spline of degree p is a continuous function f

that is piecewise polynomial of degree p, that is, polynomial of degree p on
subintervals [xi, xi+1], where f and its derivatives f ′, . . . , f (p−1) are continuous
at the points xi, called the knots of the spline. Typical splines are of the form

(x − a)k
+, xk

+ :=
{

xk, x≥0,

0, x < 0.

We shall restrict ourselves here to cubic splines, with p = 3; here f , f ′ and f ′′

are continuous across the knots xi. These may be formed by linear combinations
of functions of the above type, with k ≤ 3 and a the knots xi. It is possible and
convenient, to restrict to basic splines, or B-splines. These are of local character,
which is convenient numerically, and one can represent any spline as a linear
combination of B-splines. For background and details, see e.g. de Boor (1978).

Suppose now we wish to approximate data yi at points xi. As with poly-
nomial regression, we can approximate arbitrarily closely in the least-squares
sense, but this is no use to us as the approximating functions are unsuitable.
This is because they oscillate too wildly, or are insufficiently smooth. To control
this, we need to penalise functions that are too rough. It turns out that a suit-
able measure of roughness for cubic splines is provided by the integral

∫
(f ′′)2

of the squared second derivative. We are led to the minimisation problem

min
∑n

i=1
(yi − f(xi))

2 + λ2

∫

(f ′′(x))2 dx.

Here the first term is the sum of squares as before, the integral term is a rough-
ness penalty, and λ2 is called a smoothing parameter. (As the sum is of the
same form as in the likelihood theory of earlier chapters, and the integral is
a penalty term, the method here is called penalised likelihood or penalised log-
likelihood.) With λ small, the roughness penalty is small and the minimiser is
close to the least-squares solution as before; with λ large, the roughness penalty
is large, and the minimiser will be smooth, at the expense of giving a worse
least-squares fit. Since λ is under our control, we have a choice as to how much
smoothness we wish, and at what cost in goodness of fit.
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It turns out that the minimising function f above is necessarily a cubic
spline with knots at the points xi. This will be a linear combination of B-splines
Bj(x), with coefficients βj say. Forming the βj into a vector β also, the approx-
imating f is then

f(x) = βT B(x),

and the mimimisation problem is of the form

min
∑n

i=1

(
yi − βT B(xi)

)2
+ λ2βT Dβ,

for some symmetric positive semi-definite matrix D whose entries are integrals
of products of derivatives of the basic splines.

This minimisation problem is of the same form as that in §9.1 for BLUPS,
and may be solved in the same way: smoothing splines are BLUPs. Let X be
the matrix with ith row B(xi)T . One obtains the minimising β and fitted values
ŷ as

β̂ = (XT X + λ2D)−1XT y, ŷ = X(XT X + λ2D)−1XT y = Sλy,

say, where Sλ is called the smoother matrix. Use of smoothing splines can
be implemented in S-Plus/R� by the command smooth.spline; see Venables
and Ripley (2002), §8.7. For background and details, see Green and Silverman
(1994), Ruppert, Wand and Carroll (2003).

Splines were studied by I. J. Schoenberg (1903–1990) from 1946 on, and
were used in Statistics by Grace Wahba (1934–) from 1970 on. The term spline
derives from the flexible metal strips used by draughtsmen to construct smooth
curves interpolating fixed points, in the days before computer-aided design
(CAD). Penalised likelihood and roughness penalties go back to I. J. Good
(with his student R. A. Gaskins) in 1971 (preceding the AIC in 1974).

9.2.1 Kriging

Kriging describes a technique for non-parametric regression in spatial prob-
lems in multiple (commonly three) dimensions. The original motivation was to
model ore deposits in mining, though applications extend beyond geology and
also typically include remote sensing and black-box modelling of computer ex-
periments. The name kriging derives from the South African mining engineer
D. G. Krige (1919–), and was further developed in the 1960s by the French
mathematician G. Matheron (1930–2000) at the Paris School of Mines. The
basic idea behind kriging is as follows. We observe data

(x1, y1), . . . , (xn, yn),
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where the xi ∈ R
d and the yi ∈ R. We might imagine the xi as a sequence of

co-ordinates and the yi as corresponding to observed levels of mineral deposits.
If d = 2, this picture corresponds to a three-dimensional plot in which y is the
height. Given the observed sequence of (xi, yi) we wish to estimate the y values
corresponding to a new set of data x0. We might, for example, envisage this
set-up corresponding to predicting the levels of oil or mineral deposits, or some
environmental pollutant etc., at a set of new locations given a set of historical
measurements. The set-up for our basic kriging model is

yi = μ + S(xi) + εi,

where S(x) is a zero-mean stationary stochastic process in R
d with covariance

matrix C independent of the εi, which are assumed iid N(0, σ2). However, this
formulation can be made more general by choosing μ = μ(x) (Venables and
Ripley (2002), Ch. 15). It is usually assumed that

Cij = cov (S(xi,xj)) = C(||xi − xj||), (Isotropy)

although more general models which do not make this assumption are possible.
Suppose that the εi and S(·) are multivariate normal. By §4.6 the mean square
error is minimised by the Conditional Mean Formula given by Theorem 4.25.
We have that

(
y(x0)
y(x0)

)

∼ N

((
μ1
μ

)

,

( (
C + σ2I

)
c0

cT
0 σ2

))

,

where 1 denotes a column vector of 1s. It follows that the optimal prediction
(best linear predictor) for the unobserved y(x0) given the observed y(x0) is
given by

ŷ(x0) = μ + cT
0

(
C + σ2I

)−1
(y(x0) − μ1). (BLP )

From first principles, it can be shown that this still gives the best linear predictor
(BLP) when we no longer assume that S(x) and εi are Gaussian. In practice C
can be estimated using either maximum likelihood or variogram methods (some
details can be found in Ruppert, Wand and Carroll (2003), Ch. 13 or Venables
and Ripley (2002), Ch. 15). As presented in Ruppert, Wand and Carroll (2003)
the full kriging algorithm is as follows:

1. Estimate the covariance function C, σ2 and set μ = y.

2. Construct the estimated covariance matrix Ĉ = C(||xi − xj ||).

3. Set up a mesh of x0 values in the region of interest.

4. Using (BLP ) construct a set of predicted values ŷ(x0).

5. Plot ŷ(x0) against x0 to estimate the relevant spatial surface.
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As briefly discussed in Ruppert, Wand and Carroll (2003), Ch. 13.3–4. it is
possible to relate kriging to the non-parametric regression models with a non-
parametric regression model using cubic splines. In particular, two-dimensional
kriging can be shown to be equivalent to minimising

∑n

i=1
(yi − f(x1, x2))

2 + λ

∫ ∫
(
f2

x1x1
+ 2f2

x1x2
+ f2

x2x2

)
dx1 dx2.

This gives an integral of the sum of squares of second derivatives to generalise
cubic splines; see e.g. Cressie (1993) §3.4.5 for further details.

The end product of a kriging study may well be some computer graphic,
perhaps in (a two-dimensional representation of) three dimensions, perhaps in
colour, etc. This would be used to assist policy makers in decision taking – e.g.
whether or not to drill a new oil well or mine shaft in some location, whether or
not to divert traffic, or deny residential planning permission, for environmental
reasons, etc. Specialist software is needed for such purposes.

9.3 Experimental Design

9.3.1 Optimality criteria

We have already seen in §7.1 how to identify unusual data points, in terms of
their leverage and influence. For example, Cook’s distance Di is defined by a
quadratic form in the information matrix C = AT A formed from the design
matrix A. Before conducting the statistical experiment that leads to our data y,
the design matrix A is still at our disposal, and it is worth considering whether
we can choose A in some good way, or better still, in some optimal way. This
is indeed so, but there are a number of different possible optimality criteria.
One criterion in common use is to maximise the determinant of the information
matrix C, the determinant |C| serving as a measure of quantity of information
(recall from vector algebra that the volume of a parallelepiped with sides three
3-vectors is the determinant of their co-ordinates).

The situation is similar to that in our first course in Statistics, when we
discussed estimation of parameters. Here two important measures of quality of
an estimator θ̂ of a parameter θ are bias, Eθ̂ − θ, and precision, measured by
the inverse of the variance var θ; we can think of this variance as a measure
of sampling error, or noise. We want to keep both noise and bias low, but it is
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pointless to diminish one at the expense of increasing the other. One thus has a
noise–bias tradeoff, typical in Statistics. To choose how to make this trade–off,
one needs some optimality criterion. This is usually done by choosing some loss
function (or alternatively, some utility function). One then minimises expected
loss (or maximises expected utility). This area of Statistics is called Decision
Theory.

The situation here is similar. One needs some optimality criterion for the
experimental design (there are a number in common use) – maximising the
determinant as above corresponds to D-optimality – and seeks to optimise the
design with respect to this criterion. For further detail, we must refer to a book
on Optimal Experimental Design, for example Atkinson and Donev (1992).

9.3.2 Incomplete designs

In addition to the profoundly mathematical criteria above, there are also more
tangible ways in which experimental design can bring benefits to experimenters
by reducing the sample size requirements needed in order to perform a full anal-
ysis. It is frequently impractical, say in an agricultural experiment, to grow or
include every combination of treatment and block. (Recall that in §2.7 every
combination of treatment and block occurred once, with multiple replications
possible in §2.8.)

Rather than admitting defeat and returning to one-way ANOVA (hence
confounding treatment effects with block effects) we need some incomplete de-
sign which nonetheless enables all treatment and block effects to be estimated.
The factors of treatment and block need to be balanced, meaning that any two
treatments occur together in the same block an equal number of times. This
leads to a set of designs known as balanced incomplete block designs (BIBD).
These designs are usually tabulated, and can even be used in situations where
the blocks are of insufficient size to accommodate one whole treatment alloca-
tion (provided that the allocation of experimental units is appropriately ran-
domised). For full details and further reference we refer to Montgomery (1991),
Ch. 6. Analysis of large experiments using fractions of the permissible factor
combinations is also possible in so-called factorial experiments using fractional
factorial designs (see Montgomery (1991) Ch. 9–12).

Example 9.7 (Latin Squares)

We consider briefly the simplest type of incomplete block design. Suppose we
have (e.g.) five types of treatment (fertiliser) to apply to five different varieties
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of wheat on five different types of soil. This simple experiment leads to 125
different factor combinations in total. It is economically important to be able
to test

H0 : The treatment (fertiliser) means are all equal,

in such two-factor experiments (variety and soil type) with fewer than 125
readings. We can make do with 25 readings by means of a 5×5 Latin square
(see Table 9.2). Each cell contains each fertiliser type once, showing that the
design is indeed balanced. Given experimental observations, an ANOVA table
with three factors (Soil type, Variety and Fertiliser) can be constructed by using
the general methods of Chapter 2.

Variety
Soil Type 1 2 3 4 5

1 1 2 3 4 5
2 5 1 2 3 4
3 4 5 1 2 3
4 3 4 5 1 2
5 2 3 4 5 1

Table 9.2 5×5 Latin square design. Fertiliser allocations by Soil Type and
Variety.

Analysis of n×n Latin squares. We show how to perform a skeleton ANOVA
for a n×n Latin square design. The approach follows the same general outline
laid out in Chapter 2, but generalises §2.6–2.7 by including three factors. In
effect, we isolate treatment effects by ‘blocking’ over rows and columns. The
model equation can be written as

Xijk = μ + ri + cj + tk + εijk, εijk iid N(0, σ2),

for i, j = 1. . ., n, where k = k(i, j) is the entry in the Latin square in position
(i, j) in the matrix. Note k = 1, . . ., n also. The ri, cj , tk denote row, column
and treatment effects respectively and satisfy the usual constraints:

∑

i
ri =

∑

j
cj =

∑

k
tk = 0.

Write

Ri = ith row total, Xi• = Ri/n = ith row mean,

Cj = jth column total, X•j = Cj/n = jth column mean,
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Tk = kth treatment total, X(k) = Tk/n = kth treatment mean,

G = grand total =
∑

i

∑

j

∑

k
Xijk, X = G/n grand mean.

The following algebraic identity can be verified:

SS := SSR + SSC + SST + SSE,

where

SS :=
∑

i

∑

j

∑

k

(
Xijk − X

)2
=

∑

i

∑

j

∑

k
X2

ijk − G2

n2
,

SSR := n
∑

i

(
Xi• − X

)2
=

1
n

∑

i
R2

i − G2

n2
,

SSC := n
∑

j

(
X•j − X

)2
=

1
n

∑

j
C2

j − G2

n2
,

SST := n
∑

k

(
X(k) − X

)2
=

1
n

∑

k
T 2

k − G2

n2
,

SSE :=
∑

i

∑

j

∑

k

(
Xijk − Xi• − X•j − X(k) + 2X

)2
,

with SSE = SS − SSR − SSC − SST as before. An Analysis of Variance of
this model can be performed as laid out in Table 9.3.

Source df SS Mean Square F

Rows n − 1 SSR MSR = SSR
n−1 MSR/MSE

Columns n − 1 SSC MSC = SSC
n−1 MSC/MSE

Treatments n − 1 SST MST = SST
n−1 MST/MSE

Residual (n − 1)(n − 2) SSE MSE = SSE
(n−1)(n−2)

Total n2 − 1 SS

Table 9.3 ANOVA table for n×n Latin square

Note 9.8

While Experimental Design is a very useful and practical subject, it also uses
a lot of interesting pure mathematics. One area important here is projective
geometry over finite fields; see e.g. Hirschfeld (1998). Whereas the mathematics
here is discrete, as one would expect since matrix theory is involved, important
insights can be gained by using a continuous framework, and so analysis rather
than algebra; see e.g. Wynn (1994).

Experimental Design is one of a number of areas pioneered by Fisher in
his time at Rothamsted in the 1920s, and by his Rothamsted colleague Frank
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Yates (1902–1994). Fisher published his book The Design of Experiments in
1935.

9.4 Time series

It often happens that data arrive sequentially in time. This may result in mea-
surements being taken at regular intervals – for example, daily temperatures
at noon at a certain meteorological recording station, or closing price of a par-
ticular stock, as well as such things as monthly trade figures and the like. We
may suppose here that time is measured in discrete units, and that the nth
reading is Xn. Then the data set X = (Xn) is called a time series (TS).

One often finds in time series that high values tend to be followed by high
values, or low values by low values. Typically this is the case when the un-
derlying system has some dynamics (probably complicated and unknown) that
tends to fluctuate about some mean value, but intermittently undergoes some
perturbation away from the mean in some direction, this perturbation showing
a marked tendency to persist for some time, rather than quickly die away.

In such cases one has a persistence of memory phenomenon; the question
is how long does memory persist? Sometimes memory persists indefinitely, and
the infinitely remote past continues to exert an influence (rather as the mag-
netism in a rock reflects the conditions when the rock solidified, in a former
geological era, or tempered steel locks in its thermal history as a result of the
tempering process). But more commonly only the recent past really influences
the present. Using p for the number of parameters as usual, we may repre-
sent this by a model in which the present value Xt is influenced by the last p

values Xt−1, . . . , Xt−p. The simplest such model is a linear regression model,
with these as covariates and Xt as dependent variable. This gives the model
equation

Xt = φ1Xt−1 + . . . + φpXt−p + εt. (AR(p))

Here the φi are the parameters, forming a vector φ, and the εt are independent
errors, normally distributed with mean 0 and common variance σ2. This gives
an autoregressive model of order p, AR(p), so called because the process X is
regressed on itself.

For simplicity, we centre at means (that is, assume all EXt = 0) and restrict
to the case when X = (Xn) is stationary (that is, its distribution is invariant
under shifts in time). Then the covariance depends only on the time difference
– or rather, its modulus, as the covariance is the same for two variables, either
way round; similarly for the correlation, on dividing by the variance σ2. Write
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this as ρ(k) at lag k:

ρ(k) = ρ(−k) = E[XtXt−k].

Multiplying (AR(p)) by Xk and taking expectations gives

ρ(k) = φ1ρ(k − 1) + . . . + φpρ(k − p) (k > 0). (Y W )

These are the Yule–Walker equations (G. Udny Yule in 1926, Sir Gilbert Walker
in 1931). One has a difference equation of order p, with characteristic polynomial

λp − φ1λ
p−1 − . . . − φp = 0.

If λ1, ..., λp are the roots of this polynomial, then the general solution is

ρ(k) = c1λ
k
1 + . . . + cpλ

k
p

(if the roots are distinct, with appropriate modification for repeated roots).
Since ρ(.) is a correlation, one has |ρ(k)| ≤ 1 for all k, which forces

|λi| ≤ 1 (i = 1, . . . , p).

One may instead deal with moving average processes of order q,

Xt = θ1εt−1 + . . . + θqεt−q + εt, (MA(q))

or with a combination,

Xt = φ1Xt−1 + . . . + φpXt−p + θ1εt−1 + . . . + θqεt−q + εt. (ARMA(p, q))

The class of autoregressive moving average models, or ARMA(p, q) processes,
is quite rich and flexible, and is widely used. We refer to e.g. Box and Jenkins
(1970), Brockwell and Davis (2002) for details and background.

9.4.1 Cointegration and spurious regression

Integrated processes. One standard technique used to reduce non-stationary
time series to the stationary case is to difference them repeatedly (one differ-
encing operation replaces Xt by Xt − Xt−1). If the series of dth differences is
stationary but that of (d − 1)th differences is not, the original series is said to
be integrated of order d; one writes

(Xt) ∼ I(d).

Cointegration. If (Xt) ∼ I(d), we say that (Xt) is cointegrated with cointegra-
tion vector α if (αT Xt) is (integrated of) order less than d.
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A simple example of cointegration arises in random walks. Suppose Xn =
∑n

i=1ξi with the ξn iid random variables, and Yn = Xn + εn, with the εn

iid errors as above, is a noisy observation of Xn. Then the bivariate process
(X, Y ) = (Xn, Yn) is integrated of order 1, with cointegration vector (1,−1)T .

Cointegrated series are series that tend to move together, and commonly
occur in economics. These concepts arose in econometrics, in the work of
R. F. Engle (1942–) and C. W. J. (Sir Clive) Granger (1934–2009) in 1987.
Engle and Granger gave (in 1991) an illustrative example – the prices of toma-
toes in North Carolina and South Carolina. These states are close enough for
a significant price differential between the two to encourage sellers to transfer
tomatoes to the state with currently higher prices to cash in; this movement
would increase supply there and reduce it in the other state, so supply and
demand would move the prices towards each other.

Engle and Granger received the Nobel Prize in Economics in 2003. The
citation included the following:

Most macroeconomic time series follow a stochastic trend, so that
a temporary disturbance in, say, GDP has a long-lasting effect. These
time series are called nonstationary; they differ from stationary series
which do not grow over time, but fluctuate around a given value. Clive
Granger demonstrated that the statistical methods used for station-
ary time series could yield wholly misleading results when applied to
the analysis of nonstationary data. His significant discovery was that
specific combinations of nonstationary time series may exhibit station-
arity, thereby allowing for correct statistical inference. Granger called
this phenomenon cointegration. He developed methods that have be-
come invaluable in systems where short-run dynamics are affected by
large random disturbances and long-run dynamics are restricted by
economic equilibrium relationships. Examples include the relations be-
tween wealth and consumption, exchange rates and price levels, and
short and long-term interest rates.

Spurious regression. Standard least-squares models work perfectly well if they
are applied to stationary time series. But if they are applied to non-stationary
time series, they can lead to spurious or nonsensical results. One can give
examples of two time series that clearly have nothing to do with one another,
because they come from quite unrelated contexts, but nevertheless have quite
a high value of R2. This would normally suggest that a correspondingly high
proportion of the variability in one is accounted for by variability in the other
– while in fact none of the variability is accounted for. This is the phenomenon
of spurious regression, first identified by Yule in 1927, and later studied by
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Granger and Newbold in 1974. We can largely avoid such pitfalls by restricting
attention to stationary time series, as above.
ARCH and GARCH.
The terms homoscedastic and heteroscedastic are used to describe processes
where the variance is constant or is variable. With Zi independent and normal
N(0, 1), the autoregressive conditionally heteroscedastic (ARCH) model of order
p, or ARCH(p), is defined by the model equations

Xt = σtZt, σ2
t = α0 +

∑p

i=1
αiX

2
t−i, (ARCH(p))

for α0 > 0 and αi ≥ 0. The AR(p) character is seen on the right of the second
equation; the conditional variance of Xt given the information available at time
t − 1 is σ2

t , a function of Xt−1, . . . , Xt−p, and so varies, hence the conditional
heteroscedasticity. In the generalised ARCH model GARCH(p, q), the variance
becomes

σ2
t = α0 +

∑p

i=1
αiX

2
t−i +

∑q

j=1
βjXσ2

t−j . (GARCH(p, q))

Both ARCH and GARCH models are widely used in econometrics; see e.g.
Engle’s Nobel Prize citation. We must refer to a specialist time series or econo-
metrics textbook for more details; the point to note here is that regression
methods are widely used in economics and econometrics.

Note 9.9

We observed in §1.2.2 and §7.1 that, while independent errors tend to cancel as
in the Law of Large Numbers, strongly dependent errors need not do so and are
very dangerous in Statistics. The time series models above, which can model
the tendency of high or low values to follow each other, reflect this – though
there we separate out the terms giving rise to this and put them in the main
part of the model, rather than the error.

9.5 Survival analysis

We return to the Poisson point process, Ppp(λ) say, first discussed in §8.4. In
the sequel the parameter λ has the interpretation of an intensity or rate as
follows. For an interval I of length |I|, the number of points of the process
(the number of Poisson points) is Poisson distributed with parameter λ|I|; the
counts in disjoint intervals are independent. This use of an intensity parameter
to measure exposure to risk (of mortality) is generalised below.
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Suppose now we have a population of individuals, whose lifetimes are inde-
pendent, each with distribution function F on (0,∞), which we will suppose
to have density f . If T is the lifetime of a given individual, the conditional
probability of death in a short interval (t, t + h) given survival to time t is,
writing F (t) := 1 − F (t) = P (T > t) for the tail of F ,

P (T ∈ (t, t + h)|T > t) = P (T ∈ (t + h))/P (T > t) = hf(t)/F (t),

to first order in h. We call the coefficient of h on the right the hazard function,
h(t). Thus

h(t) = f(t)/
∫ ∞

t

f(u) du = −D

(∫ ∞

t

f

)

/

∫ ∞

t

f,

and integrating one has

log
(∫ ∞

t

f

)

= −
∫ t

0

h :
∫ ∞

t

f(u) du = exp
{

−
∫ t

0

h(u) du

}

(since f is a density,
∫ ∞
0

f = 1, giving the constant of integration).

Example 9.10

1. The exponential distribution. If F is the exponential distribution with pa-
rameter λ, E(λ) say, f(t) = λe−λt, F (t) = e−λt, and h(t) = λ is constant. This
property of constant hazard rate captures the lack of memory property of the
exponential distributions (for which see e.g. the sources cited in §8.4), or the
lack of ageing property: given that an individual has survived to date, its fur-
ther survival time has the same distribution as that of a new individual. This
is suitable for modelling the lifetimes of certain components (lightbulbs, etc.)
that fail without warning, but of course not suitable for modelling lifetimes of
biological populations, which show ageing.
2. The Weibull distribution.

Here
f(t) = λν−λtλ−1 exp{−(t/λ)ν},

with λ, ν positive parameters; this reduces to the exponential E(λ) for ν = 1.
3. The Gompertz-Makeham distribution.

This is a three-parameter family, with hazard function

h(t) = λ + aebt.

This includes the exponential case with a = b = 0, and allows one to model
a baseline hazard (the constant term λ), with in addition a hazard growing
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exponentially with time (which can be used to model the winnowing effect of
ageing in biological populations).

In medical statistics, one may be studying survival times in patients with
a particular illness. One’s data is then subject to censoring, in which patients
may die from other causes, discontinue treatment, leave the area covered by
the study, etc.

9.5.1 Proportional hazards

One is often interested in the effect of covariates on survival probabilities. For
example, many cancers are age-related, so the patient’s age is an obvious co-
variate. Many forms of cancer are affected by diet, or lifestyle factors. Thus
the link between smoking and lung cancer is now well known, and similarly
for exposure to asbestos. One’s chances of contracting certain cancers (of the
mouth, throat, oesophagus etc.) are affected by alcohol consumption. Breast
cancer rates are linked to diet (western women, whose diets are rich in dairy
products, are more prone to the disease than oriental women, whose diets are
rich in rice and fish). Consumption of red meat is linked to cancer of the bowel,
etc., and so is lack of fibre. Thus in studying survival rates for a particular
cancer, one may identify a suitable set of covariates z relevant to this cancer.
One may seek to use a linear combination βT z of such covariates with coef-
ficients β, as in the multiple regression of Chapters 3 and 4. One might also
superimpose this effect on some baseline hazard, modelled non-parametrically.
One is led to model the hazard function by

h(t; z) = g(βT z)h0(t),

where the function g contains the parametric part βT z and the baseline hazard
h0 the non-parametric part. This is the Cox proportional hazards model (D. R.
Cox in 1972). The name arises because if one compares the hazards for two
individuals with covariates z1, z2, one obtains

h(t; z1)/h(t; z2) = g(βT z1)/g(βT z2),

as the baseline hazard term cancels.
The most common choices of g are:

(i) Log-linear : g(x) = ex (if g(x) = eax, one can absorb the constant a into β);
(ii) Linear : g(x) = 1 + x;
(iii) Logistic: g(x) = log(1 + x).
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We confine ourselves here to the log-linear case, the commonest and most im-
portant. Here the hazard ratio is

h(t; z1)/h(t; z2) = exp
{
βT (z1 − z2)

}
.

Estimation of β by maximum likelihood must be done numerically (we
omit the non-parametric estimation of h0). For a sample of n individuals, with
covariate vectors z1, . . . , zn, the data consist of the point events occurring – the
identities (or covariate values) and times of death or censoring of non-surviving
individuals; see e.g. Venables and Ripley (2002), §13.3 for use of S-Plus here,
and for theoretical background see e.g. Cox and Oakes (1984).

9.6 p >> n

We have constantly emphasised that the number p of parameters is to be kept
small, to give an economical description of the data in accordance with the
Principle of Parsimony, while the sample size n is much larger – the larger
the better, as there is then more information. However, practical problems in
areas such as bioinformatics have given rise to a new situation, in which this
is reversed, and one now has p much larger than n. This happens with, for
example, data arising from microarrays. Here p is the number of entries in a
large array or matrix, and p being large enables many biomolecular probes to be
carried out at the same time, so speeding up the experiment. But now new and
efficient variable-selection algorithms are needed. Recent developments include
that of LASSO (least absolute shrinkage and selection operator) and LARS
(least angle regression). One seeks to use such techniques to eliminate most
of the parameters, and reduce to a case with p << n that can be handled by
traditional methods. That is, one seeks systematic ways to take a large and
complex problem, in which most of the parameters are unimportant, and focus
in on the small subset of important parameters.



Solutions

Chapter 1

1.1

Q(λ) = λ2 1
n

∑n

1
(xi − x)2 + 2λ

1
n

∑n

1
(xi − x)(yi − y) +

1
n

∑n

1
(yi − y)2

= λ2(x − x)2 + 2λ(x − x)(y − y) + (y − y)2

= λ2Sxx + 2λSxy + Syy.

Now Q(λ)≥0 for all λ, so Q(·) is a quadratic which does not change sign. So
its discriminant is ≤0 (if it were > 0, there would be distinct real roots and a
sign change in between). So (‘b2 − 4ac ≤ 0’):

s2
xy≤sxxsyy = s2

xs2
y, r2 := (sxy/sxsy)2≤1.

So

−1 ≤ r ≤ + 1,

as required.
The extremal cases r = ±1, or r2 = 1, have discriminant 0, that is Q(λ)

has a repeated real root, λ0 say. But then Q(λ0) is the sum of squares of
λ0(xi − x) + (yi − y), which is zero. So each term is 0:

λ0(xi − x) + (yi − y) = 0 (i = 1, . . ., n).

That is, all the points (xi, yi) (i = 1, . . ., n), lie on a straight line through the
centroid (x, y) with slope −λ0.

227
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1.2
Similarly

Q(λ) = E
[
λ2(x − Ex)2 + 2λ(x − Ex)(y − Ey) + (y − Ey)2

]

= λ2E[(x − Ex)2] + 2λE[(x − Ex)(y − Ey)] + E
[
(y − Ey)2

]

= λ2σ2
x + 2λσxy + σ2

y.

(i) As before Q(λ)≥0 for all λ, as the discriminant is ≤0, i.e.

σ2
xy ≤ σ2

xσ2
y, ρ := (σxy/σxσy)2 ≤ 1, − 1 ≤ ρ ≤ + 1.

The extreme cases ρ = ±1 occur iff Q(λ) has a repeated real root λ0. Then

Q(λ0) = E[(λ0(x − Ex) + (y − Ey))2] = 0.

So the random variable λ0(x−Ex)+(y−Ey) is zero (a.s. – except possibly on
some set of probability 0). So all values of (x, y) lie on a straight line through
the centroid (Ex,Ey) of slope −λ0, a.s.

1.3
(i) Half-marathon: a = 3.310 (2.656, 3.964). b = 0.296 (0.132, 0.460).
Marathon: a = 3.690 (2.990, 4.396). b = 0.378 (0.202, 0.554).
(ii) Compare rule with model y = eatb and consider, for example, dy

dt (t). Should
obtain a reasonable level of agreement.

1.4
A plot gives little evidence of curvature and there does not seem to be much
added benefit in fitting the quadratic term. Testing the hypothesis c = 0 gives
a p-value of 0.675. The predicted values are 134.44 and 163.89 for the linear
model and 131.15 and 161.42 for the quadratic model.

1.5
The condition in the text becomes

(
Suu Suv

Suv Svv

)(
a

b

)

=
(

Syu

Syv

)

.

We can write down the solution for (a b)T as
(

Suu Suv

Suv Svv

)−1(
Syu

Syv

)

=
1

SuuSvv − S2
uv

(
Svv −Suv

−Suv Suu

)(
Syu

Syv

)

,

giving

a =
SvvSyu − SuvSyv

SuuSvv − S2
uv

, b =
SuuSyv − SuvSyu

SuuSvv − S2
uv

.
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1.6
(i) A simple plot suggests that a quadratic model might fit the data well
(leaving aside, for the moment, the question of interpretation). An increase
in R2, equivalently a large reduction in the residual sum of squares, suggests
the quadratic model offers a meaningful improvement over the simple model
y = a + bx. A t-test for c = 0 gives a p-value of 0.007.
(ii) t-tests give p-values of 0.001 (in both cases) that b and c are equal to zero.
The model has an R2 of 0.68, suggesting that this simple model explains a rea-
sonable amount, around 70%, of the variability in the data. The estimate gives
c = −7.673, suggesting that club membership has improved the half-marathon
times by around seven and a half minutes.

1.7
(i) The residual sums of squares are 0.463 and 0.852, suggesting that the linear
regression model is more appropriate.
(ii) A t-test gives a p-value of 0.647, suggesting that the quadratic term is not
needed. (Note also the very small number of observations.)

1.8
A simple plot suggests a faster-than-linear growth in population. Sensible sug-
gestions are fitting an exponential model using log(y) = a + bt, or a quadratic
model y = a+bt+ct2. A simple plot of the resulting fits suggests the quadratic
model is better, with all the terms in this model highly significant.

1.9
(i) Without loss of generality assume g(·) is a monotone increasing function.
We have that FY (x) = P(g(X)≤x) = P(X≤g−1(x)). It follows that

fY (x) =
d

dx

∫ g−1(x)

−∞
fX(u) du,

= fX

(
g−1(x)

)
(

dg−1(x)
dx

)

.

(ii)

P(Y ≤x) = P(eX≤x) = P(X≤ log x),

fY (x) =
d

dx

∫ logx

∞

1√
2πσ

e−
(y−μ)2

2σ2 dy,

=
1√
2πσ

x−1 exp
{

− (log x − μ)2

2σ2

}

.
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1.10
(i) P (Y ≤x) = P (r/U≤x) = P (U≥r/x). We have that

fY (x) =
d

dx

∫ ∞

r/x

(
1
2

) r
2 u

r
2−1e−

u
2 du

Γ ( r
2 )

,

=

(
r
x2

) (
1
2

) r
2
(

r
x

) r
2−1

e−
r
2x

Γ
(

r
2

) ,

=
r

r
2 x−1− r

2 e−
r
2x

2
r
2 Γ
(

r
2

) .

(ii) P(Y ≤x) = P(X≥1/x), and this gives

fY (x) =
d

dx

∫ ∞

1
x

ua−1bae−bu du

Γ (a)
,

=

(
1
x2

)
ba
(

1
x

)a−1
e−b/x

Γ (a)
,

=
bax−1−ae−b/x

Γ (a)
.

Since the above expression is a probability density, and therefore integrates to
one, this gives

∫ ∞

0

x−1−ae−b/x dx =
Γ (a)
ba

.

1.11
We have that f(x, u) = fY (u)φ(x|0, u) and ft(r)(x) =

∫∞
0

f(x, u)du, where φ(·)
denotes the probability density of N(0, u). Writing this out explicitly gives

ftr
(x) =

∫ ∞

0

r
r
2 u−1− r

2 e−
r
2u

2
r
2 Γ
(

r
2

) .
e−

x2
2u

√
2πu

1
2

du,

=
r

r
2

2
r
2 Γ ( r

2 )
√

2π

∫ ∞

0

u− 3
2− r

2 e
−
[

r
2+ x2

2

]
1
u du,

=
r

r
2

2
r
2 Γ ( r

2 )
√

2π

Γ
(

r
2 + 1

2

)

[
r
2 + x2

2

]( 1
2+ r

2 )
,

=
Γ
(

r
2 + 1

2

)

√
πrΓ ( r

2 )

(

1 +
x2

r

)− 1
2 (r+1)

.
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Chapter 2

2.1
(i)

∫ z

0

h(u) du = P (Z≤z) = P (X/Y ≤z) =
∫ ∫

x/y≤z

f(x, y) dx dy

=
∫ ∞

0

dy

∫ yz

0

dx f(x, y).

Differentiate both sides w.r.t. z:

h(z) =
∫ ∞

0

dy yf(yz, y) (z > 0),

as required (assuming enough smoothness to differentiate under the integral
sign, as we do here).
(ii)

∫ x

0
fX/c(u) du = P (X/c≤x) = P (X≤cx) =

∫ cx

0
fX(u) du. Differentiate

w.r.t. x:

fX/c(x) = cfX(cx),

as required.
(iii) As χ2(n) has density

e−
1
2 xx

1
2 n−1

2
1
2 nΓ ( 1

2n)
,

χ2/n has density, by (ii),

ne−
1
2 nx(nx)

1
2 n−1

2
1
2 nΓ ( 1

2n)
=

n
1
2 ne−

1
2 nxx

1
2 n−1

2
1
2 nΓ ( 1

2n)
.

So F (m,n) := χ2(m)/m
χ2(n)/n (independent quotient) has density, by (i),

h(z) =
∫ ∞

0

y.
m

1
2 m

2
1
2 mΓ ( 1

2m)
e−

1
2 myzz

1
2 m−1y

1
2 m−1 n

1
2 n

2
1
2 nΓ ( 1

2n)
e−

1
2 nyy

1
2 n−1 dy

=
m

1
2 mn

1
2 nz

1
2 m−1

2
1
2 (m+n)Γ ( 1

2m)Γ ( 1
2n)

∫ ∞

0

e−
1
2 (n+mz)yy

1
2 (m+n)−1 dy.

Put 1
2 (n + mz)y = u in the integral, which becomes

1
(

1
2

)(m+n)

∫ ∞

0

e−uu
1
2 (m+n)−1 du

(n + mz)
1
2 (m+n)

=
Γ ( 1

2 (m + n))
(

1
2

)(m+n) (n + mz)
1
2 (m+n)

.
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Combining,

h(z) = m
1
2 mn

1
2 n Γ ( 1

2 (m + n))
Γ ( 1

2m)Γ ( 1
2n)

z
1
2 m−1

(n + mz)
1
2 (m+n)

,

as required.

2.2
(i) 0.726. (ii) 0.332. (iii) 0.861. (iv) 0.122. (v) 0.967.

2.3
The ANOVA table obtained is shown in Table 1. The significant p-value ob-
tained (p = 0.007) gives strong evidence that the absorption levels vary between
the different types of fats. The mean levels of fat absorbed are Fat 1 172g,
Fat 2 185g, Fat 3 176g, Fat 4 162g. There is some suggestion that doughnuts
absorb relatively high amounts of Fat 2, and relatively small amounts of Fat 4.

Source df Sum of Squares Mean Square F

Between fats 3 1636.5 545.5 5.406
Residual 20 2018.0 100.9
Total 23 3654.5

Table 1 One-way ANOVA table for Exercise 2.3

2.4
The one-way ANOVA table is shown in Table 2. The p-value obtained, p =
0.255, suggests that the length of daily light exposure does not affect growth.

Source df Sum of Squares Mean Square F

Photoperiod 3 7.125 2.375 1.462
Residual 20 32.5 1.625
Total 23 39.625

Table 2 One-way ANOVA table for Exercise 2.4

2.5
(i) The statistic becomes

t =
√

n(X1 − X2)√
2s

,
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where s2 is the pooled variance estimate given by

s2 =
[
s2
1 + s2

2

2

]

.

(ii) The total sum of squares SS can be calculated as
∑

X2
ij −

n

2
(
X1 + X2

)2
=
∑

X2
1 +
∑

X2
2 − n

2

(
X

2

1 + 2X1X2 + X
2

2

)
.

Similarly,

SSE =
(∑

X2
1 − nX

2

1

)
+
(∑

X2
2 − nX

2

2

)
.

This leaves the treatments sum of squares to be calculated as

SST =
n

2

(
X

2

1 − 2X1X2 + X
2

2

)
=

n

2
(
X1 − X2

)2
,

on 1 degree of freedom since there are two treatments. Further, since by sub-
traction we have 2(n − 1) residual degrees of freedom, the F statistic can be
constructed as

F =

n
2 (X1−X2)2

1
2(n−1)s2

2(n−1)

=
n
(
X1 − X2

)2

2s2
,

and can be tested against F1,2(n−1). We see from (i) that F is the square of
the usual t statistic.

2.6
By definition Y 2

1 + Y 2
2 ∼χ2

2. Set

a (Y1 − Y2)
2 + b (Y1 + Y2)

2 = Y 2
1 + Y 2

2 .

It follows that aY 2
1 + bY 2

1 = Y 2
1 , aY 2

2 + bY 2
2 = Y 2

2 , −2aY1Y2 + 2bY1Y2 = 0.
Hence a = b = 1/2.

2.7
By Theorem 2.4

[

Y 2
1 + Y 2

2 + Y 2
3 − (Y1 + Y2 + Y3)

2

3

]

∼ χ2
2.

The result follows since the LHS can be written as

1
3
[
2Y 2

1 + 2Y 2
2 + 2Y 2

3 − 2 (Y1Y2 + Y1Y3 + Y2Y3)
]
,
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or equivalently as

1
3

[
(Y1 − Y2)

2 + (Y2 − Y3)
2 + (Y2 − Y3)

2
]
.

Continuing, we may again apply Theorem 2.4 to obtain
[
∑n

i=1
Y 2

i − (
∑n

i=1Yi)
2

n

]

∼ χ2
n−1.

The LHS can be written as
[
n − 1

n

∑n

i=1
Y 2

i − 2
n

∑

i<j
YiYj

]

=
1
n

[∑

i<j
(Yi − Yj)

2
]
,

and the result generalises as

1
n

[∑

i<j
(Yi − Yj)

2
]
∼ χ2

n−1.

2.8
The two-way ANOVA table is shown in Table 3. We have significant evidence
for differences between the five treatments. The mean numbers of failures for
each treatment are: Check 10.8, Arasan 6.2, Spergon 8.2, Semesan Jr. 6.6,
Fermate 5.8. It appears that we have greater numbers of failures under the
Check and Spergon treatments, with the remaining treatments approximately
equally effective. The p-value for the replications term is borderline significant.
However, the F -ratio is greater than 2, a result that is usually taken to mean
that replication is successful in reducing the residual sum of squares and im-
proving the precision with which treatment effects can be estimated.

Source df Sum of Squares Mean Square F p

Treatment 4 83.84 20.96 3.874 0.022
Replication 4 49.84 12.46 2.303 0.103
Residual 16 86.56 5.41

Total 24 220.24

Table 3 Two-way ANOVA table for Exercise 2.8

2.9
The two-way ANOVA is shown in Table 4. Note that in the light of additional
data both Photoperiod and Genotype are seen to be highly significant. With
reference to Exercise 2.4 Photoperiod is important, but only once the effects
of different Genotypes are accounted for. Exercises 2.4 and 2.9 nicely illustrate
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the principles of blocking. Variation due to differing Genotypes is identified
and removed from the residual sum of squares in Table 2. When the F ratio
is calculated using this much smaller residual mean square, the Photoperiod
term is clearly seen to be significant.

Source df Sum of Squares Mean Square F p

Photoperiod 3 7.125 2.375 7.703 0.002
Genotype 5 27.875 5.575 18.081 0.000
Residual 15 4.625 0.308

Total 23 39.625

Table 4 Two-way ANOVA table for Exercise 2.9

2.10
The two-way ANOVA table is shown in Table 5. Both variety and location
appear highly significant, but the interaction term is non-significant. A two-
way ANOVA table without interactions is shown in Table 6. Here, both the
variety and location terms remain highly significant and there is a sense in
which conclusions are resistant to the inclusion of interaction terms. The mean
yields for each variety are: A 12.17 bushels, B 17.83 bushels, C 15.67 bushels.
In conclusion, both variety and location affect yield. Variety B appears to give
the highest yield.

Source df Sum of Squares Mean Square F p

Variety 2 196.22 98.11 9.150 0.001
Location 3 468.22 156.07 14.556 0.000

Location:Variety 6 78.406 13.068 1.219 0.331
Residual 23 257.33 10.72

Total 35 1000.22

Table 5 Two-way ANOVA table with interactions for Exercise 2.10

2.11
The two-way ANOVA table with interactions is shown in Table 7. We have
strong evidence for differences between high and low levels of protein. High
protein diets appear to lead to larger weight gains. We have no evidence for
differences between the different sources of protein, although a borderline sig-
nificant p-value gives at least some suggestion that there may be an interaction
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Source df Sum of Squares Mean Square F p

Variety 2 196.22 98.11 9.150 0.001
Location 3 468.22 156.07 13.944 0.000
Residual 30 335.78 11.19

Total 35 1000.22

Table 6 Two-way ANOVA table, restricted to main effects, for Exercise 2.10

between level and source of protein. Tabulated mean values per cell are shown
in Table 8 and these appear to reinforce the earlier interpretation of higher
weight gains under the high protein diets.

Source df Sum of Squares Mean Square F p

Protein level 1 3168.3 3168.3 14.767 0.000
Protein source 2 266.5 133.3 0.621 0.541
Level:source 2 1178.1 589.1 2.746 0.073

Residual 54 11586.0 214.6
Total 59 16198.93

Table 7 Two-way ANOVA table with interactions for Exercise 2.11

Source High Protein Low Protein
Beef 100 79.2

Cereal 85.9 83.9
Pork 99.5 78.7

Table 8 Mean weight gains per cell for Exercise 2.11
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Chapter 3

3.2

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 −1
−1 0 1 0
−1 1 0 0
0 −1 1 0
0 0 1 −1
0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, C = AT A =

⎛

⎜
⎜
⎝

3 −1 −1 −1
−1 2 −1 0
−1 −1 3 −1
−1 0 −1 3

⎞

⎟
⎟
⎠ .

C−1 =
1
8

⎛

⎜
⎜
⎝

13 12 11 8
12 16 12 8
11 12 13 8
8 8 12 8

⎞

⎟
⎟
⎠ , C−1AT =

1
8

⎛

⎜
⎜
⎝

5 −2 −1 −1 3 8
4 0 4 −4 4 8
3 2 1 1 5 8
0 0 0 0 0 8

⎞

⎟
⎟
⎠ .

P = AC−1AT =
1
8

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

5 −2 −1 −1 3 0
−2 4 2 2 2 0
−1 2 5 −3 1 0
−1 2 −3 5 1 0
3 2 1 1 5 0
0 0 0 0 0 8

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

β̂ = C−1AT y =

⎛

⎜
⎜
⎝

58.988
79.56
83.243
46.81

⎞

⎟
⎟
⎠ .

Fitted values can be calculated as

AC−1AT y = (12.178, 24.255, 20.573, 3.683, 36.433, 46.81)T .

Continuing, SSE = 0.08445, giving

σ̂ =

√
SSE

n − p
=

√
0.08445
6 − 4

= 0.205m.

3.3
(i) Set R2

1,a < R2
2,a.

(ii) Replace (n − 1 − p) with (n − j − p).
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3.4
(i) A plot of Y against Z suggests that some kind of curvature in the relation-
ship between Y and Z might be appropriate. However, once we superimpose
the fitted values of the simple model Y = a + bZ, it becomes clear that this
apparent curvature may simply be as a result of non-constant variance. Rather
than considering exotic model formulae with high-order terms in Z we are led
to consider the transformation methods of Chapter 7 (See Exercise 7.10).
(ii) Fitting this model, it does not appear that the quadratic term in Z is
necessary (see computer output in Table 9). A natural next step is to fit the
model Y = a + bX + cZ. In this case t-statistics suggest that X is not needed
(p = 0.134) and we are left with the simple model Y = a + bZ. Again, see
Exercise 7.10 for a re-analysis in the light of later theory.

Parameter Estimate E.S.E. t-value p-value
a -16.241 14.537 -1.117 0.267
b 0.720 0.441 1.632 0.106
c 7.932 8.916 0.890 0.376
d 1.579 1.359 1.162 0.248

Table 9 Computer output obtained for Exercise 3.4

3.5
(i) In neither case does a quadratic term appear necessary. A linear relation-
ship between volume and girth appears reasonable. A plot of volume against
height seems to suggest non-homogeneity of variance rather than a quadratic
relationship. We start by considering the full model including quadratic terms
in girth and height. The t-statistics in Table 10 give the following p-values:

Variable p-value (full model) p-value (reduced model)
Girth 0.068 0.036
Height 0.947 0.000
Girth2 0.000 0.000
Height2 0.887 –

Table 10 Computer output obtained for Exercise 3.5

Next, we consider the model including only a linear term in h. Here all the
t-statistics give significant p-values, see the third column of Table 10, suggest-
ing h + g + g2 is a useful candidate model.
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(ii) The model is v = hg2, no intercept, by analogy with the formula for the
volume of a cylinder. Results obtained for a variety of models are shown in
Table 11. We see that not only is this model more interpretable and more
parsimonious, it also produces fitted values in better agreement with the ex-
perimental data and leading to lower residual sum of squares.

Model Residual SS
I + g 2.749
I + h 27.292
I + g + h + g2 + h2 0.974
I + g + h + g2 0.975
hg2 0.948

Table 11 Residual sum of squares for a variety of competing models (‘I’
denotes intercept).

3.6
(i) aT x =

∑
iaixi, so ∂(aT x)/∂xr = ar. The first part follows on assembling

these scalars as a vector, and the second on assembling these vectors as a
matrix.
(ii) xT Ax =

∑
ijaijxixj =

∑
iaiix

2
i +
∑

i�=jaijxixj . So

∂(xT Ax)/∂xr = 2arrxr +
∑

j �=r
arjxj +

∑

i�=r
airxi,

as xixj contributes twice, first from i = r and second from j = r. Split the first
term on the right into two, and use each to complete one of the incomplete
sums. Then the right is

∑

j
arjxj +

∑

i
airxi =

∑

i
xi(air + ari) =

(
xT
(
A + AT

))
r
,

and the result follows on assembling these into a vector.

3.7

SS : = (y − Aβ)T (y − Aβ)

= yT y − yT Aβ − βT AT y + βT AT Aβ

= yT y − 2yT Aβ + βT AT Aβ,

since yT Aβ is a scalar. Differentiating with respect to β gives

∂SS

∂β
= −2yT A + 2βT AT A,
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which when set equal to zero and taking the matrix transpose gives

(AT A)β = AT y.

3.8
‖a1‖2 = 9, so normalising gives q1 = (−2/3,−1/3,−2/3, 0)T and a2q1 = −10/3.
This gives

w2 = a2 − (aT
2 q1)q1 =

(

−2
9
,
8
9
,−2

9
, 1
)T

.

‖w2‖2 = 153/81, so appropriate normalisation gives

q2 =
1√
153

(−2, 8,−2, 9)T
.

We have that (aT
3 q1) = 8/3, (aT

3 q2) = −19/
√

153, a3−(aT
3 q1)q1 = a3−(8/3)q1 =

(−2/9,−10/9, 7/9,−1)T . Similarly, we find that

−(aT
3 q2)q2 =

1
153

(−38, 152,−38, 171)T .

Combining gives

w3 =
1

153
(−55,−18, 81, 18)T

,

and on normalisation,

q3 =
153√
10234

(−55,−18, 81, 18)T
.

3.9
We have that

X =
(

1 . . . 1
x1 . . . xn

)T

=
(

1
x

)T

.

q1 = 1/
√

n where 1 denotes a column vector of 1s. w2 = a2 − (aT
2 q1)q1 =

x − (xT q1)q1 = x − x. This gives

q2 =
x − x

√∑
(xi − x)2

.

We have that a1 =
√

n q1 and a2 =
√

n xq1 +
√∑

(xi − x)2 q2, which allows
us to read off

Q =
(

1√
n

x−x√∑
(xi−x)2

)
, R =

( √
n

√
nx

0
√∑

(xi − x)2

)

,

R−1 =
1

√
n
∑

(xi − x)2

( √∑
(xi − x)2 −√

nx

0
√

n

)

.
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Performing the matrix multiplications gives

QT y =

( √
ny

∑
xiyi−nxy√∑

(xi−x)2

)

,

R−1QT y =

⎛

⎝
y − x

∑
xiyi−nxy√∑
(xi−x)2∑

xiyi−nxy∑
(xi−x)2

⎞

⎠ .

3.10
(i) This follows from 1. and 2. in Exercise 1.11 since conditionally on u xi/Δii

is N(0, u).
(ii) 100(1 − α)% confidence intervals are produced by multiplying estimated
standard errors by tn−p(1−α/2). For the simple linear regression model p = 2.
We have that

σ̂ =

√
1

n − 2

(

Syy −
S2

xy

Sxx

)

.

XT X =

⎛

⎜
⎝

1 x1

...
...

1 xn

⎞

⎟
⎠

T ⎛

⎜
⎝

1 x1

...
...

1 xn

⎞

⎟
⎠ =

(
n nx

nx
∑

x2
i

)

,

(XT X)−1 =
1

nSxx

( ∑
x2

i −nx

−nx n

)

.

This gives,

e.s.e(â) = σ̂

√∑
x2

i

nSxx
, e.s.e(b̂) =

σ̂√
Sxx

,

where e.s.e represents estimated standard error.
(iii) For the bivariate regression model p = 3. We have that

σ̂ =

√
1

n − 3
(Syy − aSuy − bSvy).

XT X =

⎛

⎜
⎝

1 1 1
...

...
...

1 un vn

⎞

⎟
⎠

T ⎛

⎜
⎝

1 1 1
...

...
...

1 un vn

⎞

⎟
⎠ =

⎛

⎝
n nu nv

nu
∑

u2
i

∑
uivi

nv
∑

uivi

∑
v2

i

⎞

⎠ .

The determinant of this matrix can be calculated as

|XT X| = n
[∑

u2
i

∑
v2

i −
(∑

uivi

)]
− nu

[
nu
∑

v2
i − nv

∑
uivi

]

+ nv
[
nu
∑

uivi − nv
∑

u2
i

]
,
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which can be simplified slightly to give

|XT X| = n
∑

u2
i Svv + n

∑
uivi

[
2nuv −

∑
uivi

]
− n2u2

∑
v2

i .

In order to calculate estimated standard errors we need the diagonal elements of
(XT X)−1. These can be calculated directly as co-factor/determinant without
inverting the whole matrix. These calculations then directly give

e.s.e(ĉ) = σ̂

√ ∑
u2

i

∑
v2

i − (
∑

uivi)
2

n
∑

u2
i Svv + n

∑
uivi [2nuv −

∑
uivi] − n2u2

∑
v2

i

,

e.s.e(â) = σ̂

√
Svv

∑
u2

i Svv +
∑

uivi [2nuv −
∑

uivi] − nu2
∑

v2
i

,

e.s.e(b̂) = σ̂

√
Suu

∑
u2

i Svv +
∑

uivi [2nuv −
∑

uivi] − nu2
∑

v2
i

.

3.11
E(Y (XT

0 )) = XT
0 β and var(Y (XT

0 )) = σ2. The appropriate point estimate
remains XT

0 β̂, but the variance associated with this estimate is var(XT
0 β̂)+σ2 =

σ2(1 + XT
0 (XT X)−1X0). The appropriate confidence interval should thus be

constructed as

XT
0 β̂ ± tn−p(1 − α/2)σ̂

√(
1 + XT

0 (XT X)−1X0

)
.

3.12

(AB)ii =
∑

j
AijBji,

trace(AB) =
∑

i,j
AijBji =

∑

i,j
BjiAij =

∑

i,j
BijAji = trace(BA).

Chapter 4

4.1
Linear model Y = a+ bX. The t-test gives a p-value of 0.000, indicating that
the X term is needed in the model. The R2 is a reasonably high 0.65.
Quadratic model Y = a + bX + cX2. The t-test gives a p-value of 0.394,
suggesting that the X2 term is not needed in the model.
Proceeding in this manner, the t-test also suggests a cubic term is not needed
in the model. In conclusion, a simple linear regression model seems adequate.
The parameter estimates with estimated standard errors are a = 7.886 (0.787)
and b = −0.280 (0.058). The percentage of divorces caused by adultery appears
to decrease by 0.28% per year of marriage.
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4.2
(i) Result follows using y = (y1, y2, . . . , yk)T .
(ii) β̂ =

(
y1 y2 − y1

)T
. Fitted values are

(
1
0

)T (
y1

y2 − y1

)

= y1;
(

1
1

)T (
y1

y2 − y1

)

= y2.

(iii) Consider AT AMij . W.l.o.g. assume i≤j (AT AM is symmetric).

AT AMij =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ni

0
. . .

0
ni

0
. . .

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T ⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 1
n1

.

.

.
1

n1

.

.

.

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 0,

AT AMii =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ni

0
. . .

0
ni

0
. . .

0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

T ⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

− 1
n1

.

.

.
1

n1
+ 1

ni

.

.

.

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= 1.

Hence AT AM = I. β̂ =
(

y1, y2 − y1, . . . , yk − y1

)T
. β1 gives the mean

of treatment group 1, which acts as a baseline. βj is an offset and gives the
difference between group j and group 1, so that the mean of group j is βj +β1.
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4.3
Under a regression formulation (and corner–point constraints) we have that

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 0
1 0 1 0 0 0
1 0 1 0 0 0
1 0 1 0 0 0
1 0 0 1 0 0
1 0 0 1 0 0
1 0 0 1 0 0
1 0 0 1 0 0
1 0 0 0 1 0
1 0 0 0 1 0
1 0 0 0 1 0
1 0 0 0 1 0
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1
1 0 0 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, AT A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

24 4 4 4 4 4
4 4 0 0 0 0
4 0 4 0 0 0
4 0 0 4 0 0
4 0 0 0 4 0
4 0 0 0 0 4

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

(AT A)−1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0.25 −0.25 −0.25 −0.25 −0.25 −0.25
−0.25 0.5 0.25 0.25 0.25 0.25
−0.25 0.25 0.5 0.25 0.25 0.25
−0.25 0.25 0.25 0.5 0.25 0.25
−0.25 0.25 0.25 0.25 0.5 0.25
−0.25 0.25 0.25 0.25 0.25 0.5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

AT y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

266.5
41

46.5
47
42
48

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, β̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

10.5
−0.25
1.125
1.25
0

1.5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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4.4

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 0 0 0 0 0 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0
1 0 0 0 0 0 0 0 1
1 1 0 0 0 0 0 0 0
1 1 0 0 0 0 1 0 0
1 1 0 0 0 0 0 1 0
1 1 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0
1 0 1 0 0 0 1 0 0
1 0 1 0 0 0 0 1 0
1 0 1 0 0 0 0 0 1
1 0 0 1 0 0 0 0 0
1 0 0 1 0 0 1 0 0
1 0 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 1
1 0 0 0 1 0 0 0 0
1 0 0 0 1 0 1 0 0
1 0 0 0 1 0 0 1 0
1 0 0 0 1 0 0 0 1
1 0 0 0 0 1 0 0 0
1 0 0 0 0 1 1 0 0
1 0 0 0 0 1 0 1 0
1 0 0 0 0 1 0 0 1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and we calculate

AT A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

24 4 4 4 4 4 6 6 6
4 4 0 0 0 0 1 1 1
4 0 4 0 0 0 1 1 1
4 0 0 4 0 0 1 1 1
4 0 0 0 4 0 1 1 1
4 0 0 0 0 4 1 1 1
6 1 1 1 1 1 6 0 0
6 1 1 1 1 1 0 6 0
6 1 1 1 1 1 0 0 6

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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with (AT A)−1 given by
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3/8 −1/4 −1/4 −1/4 −1/4 −1/4 −1/6 −1/6 −1/6
−1/4 1/2 1/4 1/4 1/4 1/4 0 0 0
−1/4 1/4 1/2 1/4 1/4 1/4 0 0 0
−1/4 1/4 1/4 1/2 1/4 1/4 0 0 0
−1/4 1/4 1/4 1/4 1/2 1/4 0 0 0
−1/4 1/4 1/4 1/4 1/4 1/2 0 0 0
−1/6 0 0 0 0 0 1/3 1/6 1/6
−1/6 0 0 0 0 0 1/6 1/3 1/6
−1/6 0 0 0 0 0 1/6 1/6 1/3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

AT y =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

266.5
41

46.5
47
42
48

71.5
67.5
47.5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, β̂ =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

12.729
−0.25
1.125
1.25
0

1.5
−1.417
−2.083
−5.417

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

4.5

(i) N3(0, Σ), Σ =

⎛

⎝
σ2

0 + σ2 σ2
0 + σ2 σ2

0 + σ2

σ2
0 + σ2 σ2

0 + 2σ2 σ2
0 + 2σ2

σ2
0 + σ2 σ2

0 + 2σ2 σ2
0 + 3σ2

⎞

⎠

(ii) Nn(0, Σ), Σjj = σ2
0 + jσ2, Σij = σ2

0 + min(i, j)σ2.

4.6
Let

X =
(

1 1 1
1 −1 −1

)
⎛

⎝
Y1

Y2

Y3

⎞

⎠ .

By the linear transformation property, X is multivariate normal with mean
vector

(
1 1 1
1 −1 −1

)
⎛

⎝
μ1

μ2

μ3

⎞

⎠ =
(

μ1 + μ2 + μ3

μ1 − μ2 − μ3

)

,
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and covariance matrix
⎛

⎝
1 1
1 −1
1 −1

⎞

⎠

T ⎛

⎝
1 a 0
a 1 b

0 b 1

⎞

⎠

⎛

⎝
1 1
1 −1
1 −1

⎞

⎠ =
(

3 + 2a + 2b −1 − 2b

−1 − 2b 3 + 2b − 2a

)

.

The components of X are independent iff the covariance matrix is diagonal,
which occurs iff b = −1/2.

4.7

(i)

E(Y n) =
bn+1 + (−1)nan+1

(n + 1)(a + b)
.

(ii) E(X|Y = y) = y2. E(Y |X = x) = ((b − a)
√

x)/(a + b).
(iii) The problem is to find α and β to minimise E(Y 2 − α − βY )2 and
E(Y − α − βY 2)2.

E(Y 2 − α − βY )2 = E(Y 4 − 2αY 2 − 2βY 3 + α2 + β2Y 2 + 2αβY ),

which gives

b5 + a5

5(b + a)
+

(β2 − 2α)b3 + a3

3(b + a)
− 2β(b4 − a4)

4(b + a)
+ α2 + αβ(b − a).

Differentiating and equating to zero gives
(

2 b − a

b − a 2(b3+a3)
3(b+a)

)(
α

β

)

=

(
2(b3+a3)
3(b+a)
(b4−a4)
2(b+a)

)

,

with solution

α =
4(b2 − ab + a2)(b3 + a3)

3(a + b)3
− 3(b − a)(b4 − a4)

2(a + b)3
,

β =
3(b4 − a4)
(a + b)3

− 2(b − a)(b3 + a3)
(a + b)3

.

In the second case similar working gives
(

2 2(b3+a3)
3(b+a)

2(b3+a3)
3(b+a)

2(b5+a5)
5(b+a)

)(
α

β

)

=

(
b − a

(b4−a4)
2(b+a)

)

,
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with solution

α =
3(b4 − a4)

4(a + b)(b2 − ab − 3 + a2)
− 3(b − a)

2(b2 − ab − 3 + a2)
,

β =
3(b − a)

2(b2 − ab − 3 + a2)
− 9(b4 − a4)

4(b + a)(b2 − ab + a2)(b2 − ab − 3 + a2)
.

4.8
The log-likelihood function is

l =
nr

2
log(2π) +

n

2
log |Λ| − 1

2

∑n

i=1
(xi − μ0)T Λ(xi − μ0),

where r is the dimension. We have that

∂l

∂Λ
=

nΣ

2
− 1

2

∑n

i=1
(xi − μ0)T (xi − μ0).

Equating to zero gives

Σ̂ =
∑n

i=1(xi − μ0)T (xi − μ0)
n

.

Continuing, we see that

Σ̂ =
∑n

i=1

(xi − x − μ0 + x)T (xi − x − μ0 + x)
n

,

=
∑n

i=1

(xi − x)T (xi − x) + (x − μ0)T (xi − x − μ0 + x)
n

,

= S +
n(x − μ0)

n
,

since
∑n

i=1(xi − x) = 0.

4.9
(i)

fX(x) ∝ exp
{

−1
2
(x − μ)T Σ−1(x − μ)

}

,

from which it follows that A = −1/2Σ−1 and b = −(1/2)(−2)Σ−1μ.
(ii) We have that

fX|Y (x|y) =
fX,Y (x, y)

fY (y)
,

giving K = 1/fY (y).
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4.10
We calculate the matrix product

(
A B

C D

)(
M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)

,

as
(

AM − BD−1CM [I − AM + BD−1CM ]BD−1

CM − DD−1CM −CMBD−1 + I + CMBD−1

)

=
(

I 0
0 I

)

.

Similarly the matrix product
(

M −MBD−1

−D−1CM D−1 + D−1CMBD−1

)(
A B

C D

)

is
(

M [A − BD−1C] MB − MB

D−1C[I − I] −D−1CMB + I + D−1CMB

)

=
(

I 0
0 I

)

.

4.11
Define Λ = Σ−1. From the formula for inverses of partitioned matrices we see
that Λ can be partitioned as

Λ11 =
(
ΣAA − ΣABΣ−1

BBΣBA

)−1
,

Λ12 = −
(
ΣAA − ΣABΣ−1

BBΣBA

)−1
ΣABΣ−1

BB ,

Λ21 = −Σ−1
BBΣBA

(
ΣAA − ΣABΣ−1

BBΣBA

)−1
,

Λ22 = Σ−1
BB + Σ−1

BBΣBA

(
ΣAA − ΣABΣ−1

BBΣBA

)−1
ΣABΣ−1

BB .

fxA|xB
∝ exp

(

−1
2
xT

AΛAAxA + xT
AΛAAμA − xT

AΛAB(xB − μB)
)

.

It follows that

ΣA|B = Λ−1
AA = ΣAA − ΣABΣ−1

BBΣBA.

Continuing, we see that

Σ−1
A|BμA|B = ΛAAμA − ΛAB(xB − μB),

giving

μA|B = Λ−1
AA (ΛAAμA − ΛAB(xB − μB)) = μA + ΣABΣ−1

BB(xB − μB).
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Source df SS Mean Square F p

Age 1 17.269 17.269 4.165 0.069
Club membership 1 74.805 74.805 17.674 0.002

Age:Club membership 1 1.355 1.355 0.320 0.584
(Different slopes)

Residual 10 42.324 4.232
Total 13

Table 12 Exercise 5.1. ANOVA table for model with different intercepts and
different slopes

Chapter 5

5.1
The completed ANOVA table is shown in Table 12.
5.2
We have that var(λ̂) = σ2(V T V )−1, which gives var(γ̂A) = σ2(ZT RZ)−1. Since
cov(α̂, γ) = cov(β̂, γ̂) + (XT X)−1(XT Z)var(γ̂) = 0, this gives cov(β̂, γ̂) =
−σ2(XT X)−1(XT Z)(ZT RZ), with cov(γ̂, β̂) = cov(β̂, γ̂)T . Finally, since β̂ =
α̂− (XT X)−1XT Zγ, with both α̂ and β̂ independent, we can calculate var(β̂)
as

var(β̂) = var(α̂) + (XT X)−1XT Zvar(γ̂)ZT X(XT X)−1,

= (XT X)−1 + (XT X)−1XT Z(ZT RZ)−1ZT X(XT X)−1.

5.3
(i) α̂ = Y .
(ii) We have that RY = (Y1 − Y , . . ., Yn − Y )T , X = (1, . . . , 1)T , xp =
(x1, . . ., xn)T . We have that

β̂A =
xT

(p)RY

xT
(p)Rx(p)

=

⎛

⎜
⎝

x1

...
xn

⎞

⎟
⎠

T ⎛

⎜
⎝

Y1 − Y
...

Yn − Y

⎞

⎟
⎠

⎛

⎜
⎝

x1

...
xn

⎞

⎟
⎠

T ⎛

⎜
⎝

x1 − x
...

xn − x

⎞

⎟
⎠

=
Sx(p)Y

Sx(p)x(p)

,

α̂A = Y − (XT X)−1XT x(p)β̂A,
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= Y − 1
n

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠

T ⎛

⎜
⎝

x1

...
xn

⎞

⎟
⎠ β̂A,

= Y − 1
n

nx(p)β̂A = Y − x(p)β̂A.

5.5
Fitting the model with different slopes leads to a residual sum of squares of
13902 on 19 df The model with different slopes leads to a residual sum of
squares of 14206.4 on 20 df We obtain that F = 0.416 and a p-value of 0.527
when comparing against F1,19. Fitting the model with just a single slope gives
a residual sum of squares of 17438.9 on 21 df We obtain that F = 4.551 and a
p-value of 0.045 when comparing against F1,20. Thus, two different intercepts
are required but not two different slopes.

5.6
The plot shows definite signs of curvature. The assumption of a linear rela-
tionship on the log-scale seems altogether more reasonable, although there is
still perhaps an element of curvature that remains. On the log scale, fitting the
model with different slopes leads to a residual sum of squares of 0.365 on 19
df The model with different slopes leads to a residual sum of squares of 0.379
on 20 df We obtain F = 0.746 and a p-value of 0.399 when comparing against
F1,19. Fitting the model with just a single slope gives a residual sum of squares
of 0.546 on 21 df We obtain F = 8.801 and a p-value of 0.008 when comparing
against F1,20. The fitted equation reads

rate = 220.0027×0.843I(untreated)concentration0.287,

where I(·) is an indicator representing lack of treatment. Thus there is an
approximate power-law relationship between rate and concentration and treat-
ment does increase the rate of reaction.

5.7
Fitting the model with different slopes gives a residual sum of squares of 4.630
on 41 df. Further, t-tests for all the different intercept terms are significant,
suggesting all these terms really are needed in the model. Fitting the model
with different slopes gives a residual sum of squares of 1.369 on 35 df We obtain
F = 13.895 and a p-value of 0.000 when compared to F6,41. Using corner-point
constraints, parameter estimates for Asia and Africa are both positive, and
using the t-test are borderline significant and significant respectively. This
suggests the rate of increase in phone usage is roughly the same across the
world, but rapidly increasing in both Asia and Africa.
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5.8
(i)

X =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 x1 x2
1 0 0 0

...
...

...
...

...
...

1 xk x2
k 0 0 0

1 xk+1 x2
k+1 1 xk+1 x2

k+1
...

...
...

...
...

...
1 xn x2

n 1 xn x2
n

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(ii) This is a test of the hypothesis β2 = γ2 = 0. Let SSEβ2 �=0 be the residual
sum of squares for the full quadratic Analysis of Covariance model, SSEβ2=γ2=0

be the residual sum of squares for the Analysis of Covariance model with dif-
ferent slopes and different intercepts. The appropriate F -test is

(SSEβ2=γ2=0 − SSEβ2 �=0)/2
(SSEβ2 �=0)/(n − 6)

∼F2,n−6.

(iii) Let SSEβ2=0 be the residual sum of squares for the full Analysis of Co-
variance model without a separate quadratic term. The appropriate F -test is

SSEβ2=0 − SSEβ2 �=0

(SSEβ2 �=0)/(n − 6)
∼F1,n−6.

5.9
(i) Set

i − 1
2

n
= Φ

(
xi − μ

σ

)

, Φ−1

(
i − 1

2

n

)

=
xi − μ

σ
.

Plot Φ−1((i− 1/2)/n) against xi. This should be a straight line with slope 1/σ

and intercept μ/σ.
(ii) Let Yi = Φ−1((i − 1/2)/n) and X denote the simulated sample. The plot
appears reasonably linear. As a rough guide, t-tests give a p-value of 0.217
that the intercept is zero and a p-value of 0.011 that the slope is 1. So the
plot appears reasonably linear, but the slope seems a little far away from the
theoretical value of 1 that we might expect.
(iii) a = (b + 1)L−(b+1), from which it follows that F (x) = (x/L)b+1. Arrange
the xi into increasing order of size. Set

i − 1
2

n
=
(xi

L

)b+1

, log
(

i − 1
2

n

)

= (b + 1) log xi − (b + 1) log L.



Solutions 253

Plot log((i − 1/2)/n) against log xi. The resulting plot should be a straight
line with slope b + 1 and intercept −(b + 1) log L.

5.10
(i) Write Y = β0 + β1X + γ0Z + γ1XZ + ε, where Z is a dummy variable
indicating whether or not X > 4. The X-matrix is

X =

⎛

⎜
⎜
⎝

1 1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9
0 0 0 0 1 1 1 1 1
0 0 0 0 5 6 7 8 9

⎞

⎟
⎟
⎠

T

.

Using β̂ = (XT X)−1XT y gives the estimates (−0.15, 2.05, 3.74,−0.92)T . The
first fitted straight line is y = −0.15 + 2.05x. The second fitted straight line is
y = (−0.15 + 3.75) + (2.05 − 0.92)x = 3.59 + 1.13x.
(ii) Using trial and error, a simple table of residual sums of squares (Table 13)
suggests that the model with a change-point at x = 4 is best.

Change-point 4 5 6 7
SSE 0.615 0.686 1.037 1.118

Table 13 Change-point models for Exercise 5.10

(iii) The likelihood function can be written as

1
(√

2πσ̂2
)n exp

{

− 1
2σ̂2

∑n

i=1
(yi − XT

i β̂)T (yi − XT
i β̂)
}

,

which we write as
[
2πSSE

n

]−n
2

exp

{
−SSE
2SSE

n

}

=
(

2πe

n

)−n
2

SSE−n
2 .

It follows that the AIC is equivalent to the penalty function

−2
(
−n

2
ln(SSE)

)
+ 2(p + 1) ∝ nln(SSE) + 2p.

The residual sums of squares for the linear, quadratic and change-point models
are 3.509, 1.072 and 0.615, giving 15.298, 6.626 and 3.625 respectively. The
change-point model is best.
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Chapter 6

6.1
Stepwise regression and forward selection both choose the model

Mpg=Weight+Cylinders+Hp.

Alternatively, backward selection chooses the model

Mpg=Weight+(1/4)M time+Transmission.

The models are slightly different but both seem reasonable and to offer sensible
interpretations.

6.2
The first step is to choose the one-variable model with the highest F statistic
given by

F =
K − x
√

x
n−2

,

where K denotes the residual sum-of-squares of the null model and x denotes
the residual sum of squares of the candidate model. We have that

dF

dx
=

√
n − 2

(

−1
2
Kx− 3

2 − 1
2
x− 1

2

)

,

which is negative and hence a decreasing function of x. Thus we choose the
model with lowest residual sum of squares, or equivalently the model with the
highest regression sum of squares. In a simple linear regression model we have
SSR = corr(X,Y )2, which gives the result.

6.3
(i)

#models = #1-term models + #2-term models + . . . + #p-term models,

=
(

p

1

)

+
(

p

2

)

+ · · · +
(

p

p

)

,

= (1 + 1)n − 1,

by the Binomial Theorem.
(ii) 2047.
(iii) Since 26 = 64 and 27 = 128, too large for comfort, this suggests all-subsets
regression becomes infeasible in problems with seven or more explanatory
variables (in addition to the constant term).
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6.4
Set ∂L/∂x = ∂L/∂y = 0. This gives y + 2λx = 0 and x + 16λy = 0. This gives
two possible cases to consider: λ = −y/(2x) and λ = −x/16y. Either gives the
right solution. Here we concentrate upon λ = −y/(2x). This gives

L =
xy

2
− 4y3

x
+

2y

x
,

∂L

∂x
=

y

2
+

4y3 − 2y

x2
,

∂L

∂y
=

x

2
− 12y2

x
+

2
x

.

∂L/∂x = 0 gives y(x2/2 + 4y2 − 2) = 0 or y2 = 1/2 − x2/8. ∂L/∂y = 0 then
gives x2/2−12[1/2−x2/8]+2 = 0 or x2 = 2. The final solution to our problem
becomes ±(

√
2, 1/2).

6.5
We seek to minimise the functional

S := (Y1 − α)2 + (Y2 − β)2 + (Y3 − γ)2 + λ(π − α − β − γ).

Differentiating with respect to each of α, β, γ and equating to zero gives

−2(Y − 1 − α) = −2(Y2 − β) = −2(Y − 3 − γ) = λ

and sum to obtain

λ =
2
3
[π − Y1 − Y2 − Y3].

The functional S becomes

S := (Y1 − α)2 + (Y2 − β)2 + (Y3 − γ)2 +
2
3
[π − Y1 − Y2 − Y3][π − α − β − γ].

The problem reduces to three one-dimensional problems with solution

α =
π

3
+

2
3
Y1 −

1
3
Y2 −

1
3
Y3,

β =
π

3
+

2
3
Y2 −

1
3
Y1 −

1
3
Y3,

γ =
π

3
+

2
3
Y3 −

1
3
Y1 −

1
3
Y2.
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6.6
We seek to minimise the following functional:

S := (Y1 − α)2 + (Y2 − β)2 + (Y3 − γ)2 + (Y4 − δ)2 + λ(2π − α − β − γ − δ).

Differentiating with respect to each of α, β, γ, δ in turn and equating to zero
gives

−2(Y1 − α) = −2(Y2 − β) = −2(Y3 − γ) = −2(Y4 − δ) = λ.

Summing,

4λ = −2(Y1 + Y2 + Y3 + Y4) + 2(α + β + γ + δ) = 2(Y1 + Y2 + Y3 + Y4) + 4π,

giving

λ = π − (Y1 + Y2 + Y3 + Y4)
2

.

The functional S becomes

S : = (Y1 − α)2 + (Y2 − β)2 + (Y3 − γ)2 + (Y4 − δ)2

+
(

π − (Y1 + Y2 + Y3 + Y4)
2

)

(2π − α − β − γ − δ).

The remaining optimisation reduces to four one-dimensional problems, giving

α = π/2 + (3/4)Y1 − (1/4)Y2 − (1/4)Y3 − (1/4)Y4,

β = π/2 + (3/4)Y2 − (1/4)Y1 − (1/4)Y3 − (1/4)Y4,

γ = π/2 + (3/4)Y3 − (1/4)Y1 − (1/4)Y2 − (1/4)Y4,

δ = π/2 + (3/4)Y4 − (1/4)Y1 − (1/4)Y2 − (1/4)Y3.

6.7
We saw in Exercise 4.2 that a regression treatment of the one-way ANOVA
model leads to the fitted values Y i for observations from treatment i. The
null model has fitted value Y . The additional sum of squares captured by the
treatments model is given by the difference in residual sum of squares:

r∑

i=1

ni∑

j=1

[
(Yij − Y )2 − (Yij − Y i)2

]
=

r∑

i=1

−2Y niYi + niY
2

+ 2niY
2

i − niY
2

i ,

=
r∑

i=1

ni(Y i − Y )2,

=
r∑

i=1

ni

(
Ti

ni
− T

n

)2

,

=
∑

i

T 2
i

ni
− T 2

n
,

= SST.
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The residual sum of squares for the larger model is
∑r

i=1

∑ni

j=1
(Yij − Y i)2 =

∑r

i=1

∑ni

j=1
Y 2

ij −
∑r

i=1
Y

2

i ,

=
∑

i,j
Y 2

ij −
∑r

i=1

T 2
i

n
,

= SSE.

The F -statistic becomes MST/MSE which is Fr−1,n−r under the null hypoth-
esis, as before.

6.8
Fitting a regression model with fertiliser as a factor variable gives a residual
sum of squares of 148.188 on 18 df The null model has a residual sum of squares
of 159.990 on 23 df Our F -statistic becomes (1/5)(159.990− 148.188)/8.233 =
0.287, giving a p-value of 0.914 as before.

6.9
(i) Forward selection:
(1/4)M t=v/s+gears+Hp+Weight+Cylinders+Transmission.
(ii) Backward selection:
(1/4)Mt=Cylinders+Displacement+Weight+v/s+Transmission+

Carburettors.
(iii) Stepwise regression:
(1/4)M t=v/s+Hp+Weight+Cylinders+Transmission.

6.10
(i) Fit the model without an intercept term.

yi = β0 + β1x1,i + . . . + βpxp,i + εi,

= β0(x1,i + x2,i + . . . + xp,i) + β1x1,i + . . . + βpxp,i + εi,

= (β0 + β1) x1,i + (β0 + β2) x2,i + . . . + (β0 + βp) xp,i + εi.

(ii) As (i) we can write 1 = x1 + x2 + x3. Further x2
1 = x1(1 − x2 − x3),

x2
2 = x2(1− x1 − x3), x2

3 = x3(1− x1 − x2). The full quadratic model can thus
be written

y = (β0 + β1)x1 + (β0 + β2)x2 + (β0 + β3)x3 + (β12 − β11 − β22)x1x2

+ (β13 − β11 − β33)x1x3 + (β23 − β22 − β33)x2x3 + ε.

For general p the quadratic model becomes

y = β1x1 + β2x2 + . . . + βpxp + β12x1x2 + . . . + βp−1pxp−1xp + ε.
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6.11
(i) The quadratic terms are significant. An Analysis of Variance is shown in
Table 14.

Source df SS MS F p

Quadratic terms 3 77.011 25.670 91.379 0.011*
Linear terms 3 100.506 33.502 119.257

Residual 2 0.562 0.281
Total 8 178.079

Table 14 ANOVA for Exercise 6.11(i)

(ii) If β1 = 2β2 it follows that β2 = β1/2, and the constrained model can be
fitted by using x3 = x1 + x2/2 in a simple linear regression model for y. A
full Analysis of Variance in given in Table 15. We retain the null hypothesis of
β1 = 2β2 with p = 0.416.

Source df SS MS F p

Unconstrained 1 0.055 0.055 1.035 0.416
β1 = β2 1 22.685 22.685 424.009
Residual 2 0.107 0.054

Total 4 25.172

Table 15 ANOVA for Exercise 6.11 (ii)

Chapter 7

7.1
(i) and (ii) produce exactly the same results (see Table 16).

Model F -test Action
X1,X2,X3,X4 p = 0.289 Remove X3

X1,X2,X3 p = 0.007 Retain X4 and all other terms

Table 16 Stepwise and backward selection for Exercise 7.1

(iii) The results for forward selection are shown in Table 17. Note that the three
methods do not produce the same results. Note also that whilst the results of
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these automated algorithms are interesting, they are probably insufficient in
themselves to determine final model choice. Here, one might suggest X1,X2

offers a better choice of model.

Model F -test Action
Constant p = 0.000 Add X4

X4 p = 0.000 Add X1

X4,X1 p = 0.06 Do not add X3

Table 17 Forward selection results for Exercise 7.1

7.2
(i) The plot of residuals versus fitted values is rather difficult to interpret (there
are not really enough data). Really, it is only pragmatic experience which mo-
tivates this choice of square-root transformation.
(ii–iii) The Analysis of Variance table is shown in Table 18. We have conclusive
evidence for differences between the treatments, but blocking does not appear
to be particularly effective at reducing the experimental error. These conclu-
sions are largely reinforced once we repeat the analysis using the square-root
transformation (Table 19), although there is some suggestion that blocking is
now more effective in this case.

Source df SS MS F p

Treatment 4 597514 149379 45.898 0.000
Block 3 10244 3415 1.049 0.406

Residual 12 39055 3255
Total 19 646813

Table 18 ANOVA for Exercise 7.2

Source df SS MS F p

Treatment 4 866.96 216.74 53.300 0.000
Block 3 22.61 7.54 1.854 0.191

Residual 12 4.07
Total 19 938.365

Table 19 ANOVA for Exercise 7.2 after square-root transformation
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7.3
(i) A plot of fitted values against residuals gives some suggestion of ‘funnelling
out’ of residuals and hence that a transformation might be appropriate.
(ii-iii) Using the raw data, the constructed ANOVA table is shown in Table
20, and using the transformation, in Table 21. In both cases we return broadly
the same conclusions. We have strong evidence for differences between the
Treatments, with Treatments C and D seeming to lead to fewer spoiled plants.
In both cases the term for blocks is non-significant, although in both cases
F ≈ 2, suggesting that blocking is at least partially successful in reducing
residual variation.

Source df SS MS F p

Treatment 3 3116.56 1038.85 17.204 0.000
Block 5 626.66 125.33 2.076 0.126

Residual 15 905.77 60.38
Total 23 4648.99

Table 20 ANOVA for Exercise 7.3

Source df SS MS F p

Treatment 3 0.445 0.148 13.378 0.000
Block 5 0.109 0.022 1.969 0.142

Residual 15 0.166 0.011
Total 23 0.721

Table 21 ANOVA for Exercise 7.3 using transformed data.

7.4
(i) Residual plot shows clear ‘funnelling out’ of residuals.
(ii) The means (and ranges in brackets) for each type are Type I 670.75 (663),
Type II 1701.25 (1430), Type III 30775 (24400), Type IV 9395.883 (9440). On
taking logs, these numbers become Type I 6.453 (0.998), Type II 7.417 (0.900),
Type III 10.312 (0.829), Type IV 9.123 (0.939). These findings are interpreted
in Snedecor and Cochran (1989) to mean that the log-transformation is suc-
cessful in making, at least approximately, the ranges of the transformed data
equal and uncorrelated with the means.
(iii) The ANOVA tables obtained are shown in Tables 22–23. We have sig-
nificant evidence for differences in the numbers of the four different types of
plankton. It appears that in order of increasing numbers we have Type III,
Type IV, Type II, Type I. The different hauls also seem to account for a sub-
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stantial amount of the variation observed, particularly when we consider the
logged data.

Source df SS MS F p

Type 3 7035039590 2345013197 228.708 0.000
Haul 11 215279055 19570823 1.909 0.075

Residual 33 338358557 10253290
Total 47 7588677202

Table 22 ANOVA for Exercise 7.4

Source df SS MS F p

Type 3 106.938 35.646 965.745 0.000
Haul 11 1.789 0.163 4.407 0.000

Residual 33 1.218 0.037
Total 47 109.945

Table 23 ANOVA for Exercise 7.4 using logged data

7.5
Both transformations yield ANOVA tables similar to Table 23 in that both
type and haul are seen to be highly significant (see Tables 24–25). However,
in the case of the square-root transformation, there remains the suggestion of
funnelling out of residuals.
Taylor’s transformation. The mean (and variance) by type are Type I 670.75
(54719.46), Type II 1701.25 (127118.77), Type III 30775 (447711662.68), Type
IV 9395.833 (5410443.47). This leads to the estimate γ = 1.832, which is close
to the logarithmic transformation recovered in the case γ = 2. The Box–Cox
transformation gives λ = 0.084. Residual plots for both Taylor’s and the loga-
rithmic transformation appear reasonable.

Source df SS MS F p

Type 3 163159 54386 617.821 0.000
Haul 11 3052 277 4.407 0.005

Residual 33 2905 88
Total 47 169116.3

Table 24 ANOVA for Exercise 7.5. Square-root transformation
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Source df SS MS F p

Type 3 441.16 147.05 1062.616 0.000
Haul 11 7.09 0.64 4.656 0.000

Residual 33 4.57 0.14
Total 47 452.818

Table 25 ANOVA for Exercise 7.5: Taylor’s power law

7.6
(i) Since it is assumed V − f(μ) = F (μ)(U − μ), it follows that

E(V − f(μ))(V − f(μ))T = E(F (μ)(U − μ))(F (μ)(U − μ))T ,

= F (μ)E
(
(U − μ)(U − μ)T

)
F (μ)T ,

= F (μ)ΣUF (μ)T .

(ii) E(V ) ≈ √
μ, var(V ) ≈ 1.

(iii) E(V ) ≈ log(μ + 1), var(V ) ≈ μ
(1+μ)2 , var(V ) ≈ 1

μ for large μ.

7.7
Transform to a linear model using log(y) = log(α) + β log(x). The resulting
linear model gives parameter estimates and estimated standard errors for
a = log(α) and β. We wish to estimate α = ea. We have that α̂ = exp{â} with
e.s.e exp{â}(e.s.e(a)).

7.9
See Table 26.

7.10
Repeating the analysis of Exercise 3.4 leaves us with the model Y = a + bZ.
Plotting residuals against fitted values suggests funnelling out of residuals,
with some suggestion that the standard deviation is proportional to the mean
(a plot of absolute residuals against fitted values can be helpful here). This
suggests a logarithmic transformation of the response to stabilise variances.
Analysis using t-statistics again suggests the simple model log(Y ) = a + bZ.

A plot of residuals versus fitted values suggests horizontal banding of resid-
uals apart from three apparently outlying observations (observations 2, 43, 61).
A plot of standardised residuals shows reasonable normality. A plot of residuals
against leverage shows that of these outlying observations only observation 2
appears to have a relatively large leverage. All observations have Cook’s dis-
tances within the control limits in the R plot. There are no short cuts, and if we
want to be really thorough we should examine the effect of deleting each of the
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Residual Int. Stud. Res. Ext. Stud Res. Leverage Cook’s Dist.
3.653 1.315 1.361 0.219 2.216
3.500 1.239 1.270 0.192 1.901
2.596 0.906 0.899 0.168 0.986
-3.341 -1.139 -1.154 0.128 1.487
-4.368 -1.464 -1.547 0.099 2.378
-1.542 -0.514 -0.497 0.088 0.289
-1.695 -0.562 -0.546 0.080 0.344
-2.159 -0.714 -0.699 0.074 0.551
-0.400 -0.134 -0.129 0.099 0.020
-2.558 -0.872 -0.862 0.128 0.871
-1.661 -0.572 -0.556 0.147 0.384
5.115 1.785 1.994 0.168 3.829
3.202 1.134 1.149 0.192 1.591
-0.342 -0.123 -0.118 0.219 0.019

Table 26 Results for Exercise 7.9

three putative outliers in turn. It appears that deleting observations does not
have a particularly large effect (the regions constructed by taking two e.s.e’s
either side of each estimate all intersect – see Table 27). In summary, it appears
that the model log(Y ) = a + bZ and estimated using all given observations is
the most sensible approach.

Deleted observations Parameter estimates (e.s.e)
None a = 1.613 (0.232), b = 0.530 (0.073)

2 a = 1.504 (0.242), b = 0.569 (0.077)
43 a = 1.583 (0.139), b = 0.555 (0.043)
61 a = 1.637 (0.223), b = 0.528 (0.070)

2, 43 a = 1.456 (0.140), b = 0.600 (0.045)
2, 61 a = 1.523 (0.233), b = 0.568 (0.074)
43, 61 a = 1.607 (0.121), b = 0.553 (0.038)

2, 43, 61 a = 1.478 (0.120), b = 0.599 (0.038)

Table 27 Effects of deleting observations in Exercise 7.10
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Chapter 8

8.1
Normal

f(y; θ, φ) =
1√
2πφ

exp
(
−(y − θ)2

2φ2

)

,

= exp
(
−y2 + 2θy + θ2

2φ2
− 1

2
log(2πφ)

)

,

= exp
(

yθ − θ2/2
φ

− 1
2
(
y2 + log(2πφ)

)
)

.

Poisson
If Y ∼Po(λ) then f(y; θ, φ) = exp (−λ + ylog(λ) − log(y!)).
Binomial
If ny∼Bi(n, p) then

f(y; θ, φ) = exp
(

log
(

n

ny

)

+ ny log(p) + (n − ny) log(1 − p)
)

= exp
(

ny log
(

p

1 − p

)

+ n log(1 − p) + log
(

n

ny

))

.

Setting φ/ω = n−1 it follows that log(p/(1 − p)) = θ giving p = eθ/(1 + eθ).
Further, we see that −b(θ) = log(1 − p) giving b(θ) = log(1 + eθ).
Gamma
From the form of a Γ (α, β) density we have that

f(y; θ, φ) = exp (−βy + (α − 1) log(y) + α log β − log Γ (α)) .

Comparing coefficients, we see that −β = θ/φ to give

exp
(

θy

φ
+ (α − 1)logy + α log

(
−θ

φ

)

− log Γ (α)
)

.

Set φ = 1/α to give

exp
(

θy + log(−θ)
φ

+
(

1
φ
− 1
)

logy − log φ

φ
− log Γ

(
1
φ

))

.

The stated result follows, with b(θ) = − log(−θ).

8.2
Poisson
Written as a function of the μi the log-likelihood function is

l(μ|φ, y) =
∑

i
− μi + yi log(μi) + C.
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D(μ̂|φ, y) = 2
[∑

i
− yi + yi log(yi) −

(∑

i
− μ̂i + yi log(μ̂i)

)]

= 2
[∑

i
yi log

(
yi

μ̂i

)

− (yi − μ̂i)
]

.

Binomial
We have that niyi∼Bi(ni, μi) and written as a function of the μi the log-
likelihood function is

l(μ|φ, y) =
∑

i
niyi log(μi) + ni(1 − yi) log(1 − μi) + C.

We can write D(μ̂|φ, y) as

2
∑

i
ni [yi log(yi) + (1 − yi) log(1 − yi) − yi log(μ̂i) − (1 − yi) log(1 − μ̂i)] ,

which simplifies to give

2
∑

i
ni

{

yi log
(

yi

μ̂i

)

+ (1 − yi) log
(

1 − yi

1 − μ̂i

)}

.

Gamma
The likelihood function can be written as

∏

i

(
α
μi

)α

yα−1
i e−(α/μi)yi

Γ (α)
.

The log-likelihood function becomes

l(μ|φ, y) =
∑

i
− α log(μi) −

(
α

μi

)

yi + C.

D(μ̂|φ, y) =
2
α

∑

i

[

−α log(yi) −
(

α

yi

)

yi + α log(μ̂i) +
(

α

μ̂i

)

yi

]

,

= 2
∑

i
log
(

μ̂i

yi

)

+
yi − μ̂i

μ̂i
.

8.3
The Poisson log-linear model gives a residual deviance of 3606.4 on 33 df with
p-value of 0.000. The χ2 test statistic is 3712.452 also on 33 df Results are
similar in both cases and give overwhelming evidence of an association between
haul and number caught, in common with the results of Exercise 7.4.

8.4
(i) Residual deviance = 1.923. Null deviance = 163.745. χ2 goodness–of–fit test
gives p = 0.750. Test for significance of log(dose) gives χ2 = 161.821, p = 0.000.
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(ii) Residual deviance = 5.261. Null deviance = 163.744. χ2 goodness–of–fit
test gives p = 0.262. Test for significance of log(dose) gives χ2 = 158.484,
p = 0.000.
(iii) Transform to a linear model using the arc-sine transformation (Exer-
cise 7.3). The resulting fit appears reasonable and the t-test is significant
(p = 0.001). In summary, all three models give conclusive evidence that mor-
tality is increasing with dose.

8.5
The residual deviance is 3468.5, φ̂ = 204.03 and the residual deviance of the
null model is 3523.3. The F -statistic is (3523.3 − 3468.5)/(612.09) = 0.090
and comparing to F3,16 gives a p-value of 0.965. Similar to Exercise 7.2, we
conclude that blocking does not seem to be particularly effective at reducing
the experimental error.

8.6
The model with blocks and treatments gives a residual deviance of 20.458 on
15 df which is not really large enough to suggest over-dispersion. The χ2 test
of goodness-of-fit gives a p-value of 0.155. The model with blocks only gives a
residual deviance of 81.250 on 18 df The χ2 test then gives χ2 = 60.792 on 3
df and a p-value of 0.000. The null model has a residual deviance of 94.723 on
23 df The χ2 test then gives 13.473 on 5 df and a p-value of 0.019, suggesting
that blocking is effective in reducing experimental error. Using corner-point
constraints, the parameter estimates obtained are shown in Table 28. Since
these are greater than 3 in absolute size, these are clearly significant when
compared to normal or t-distributions. The suggestion is that Treatments B-D
give lower probabilities of unusable corn than Treatment A, with Treatments
C and D best. Conclusions from Exercise 7.3 are broadly similar.

Parameter Estimate e.s.e t/z

Treatment B -0.690 0.210 -3.279
Treatment C -1.475 0.243 -6.078
Treatment D -1.556 0.248 -6.286

Table 28 Parameter estimates and e.s.e for Exercise 8.6

8.7
The full model is age∗club, with a residual deviance of 0.005 on 10 df with
φ̂ = 5.03×10−4. The null model has residual deviance of 0.017 on 13 df The
F -test gives F = 7.754, and a p-value of 0.006 when compared to F3,10. Thus
the full model offers an improvement over the null model. Next we test for
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the significance of the interaction term. The age+club model gives a residual
deviance of 0.005 on 11 df with φ̂ = 4.73×10−4. The F -test gives F = 0.340,
and a p-value of 0.573 when compared to F1,10, so there is no evidence for
an interaction between age and club status. Next we test for the need for two
intercepts. The model with age alone gives a residual deviance of 0.015 on 12
df The F -test gives F = 19.780 and a p-value of 0.001 against F1,11. Thus the
chosen model is linear in time but with different intercepts according to club
status. The fitted equation, using the canonical reciprocal link, is

1
time

= 1.331×10−2 − 5.597×10−5(age) + 9.643×10−4(club status).

8.8
The density function can be written as

exp
(
−λy

2μ2
+

λ

μ
− λ

2y
+

1
2

log
(

λ

2πy3

))

.

This gives θ/φ = −λμ−2 and −b(θ)/φ = λ/μ. Set φ = λ−1. It follows that
θ = −μ−2, and since −b(θ) = 1/μ that b(θ) = −

√
−2θ. Finally we can read off

that

c(y, φ) = −1
2

(

log
(

λ

2πy3

)

+
φ

y

)

.

8.9
The full model is age∗club with a residual deviance of 5.445×10−5 on 10 df
with φ̂ = 5.498×10−6. The null model has residual deviance of 1.854×10−4 on
12 df The F -test gives F = 7.937, and a p-value of 0.005 when compared to
F3,10. Thus the full model offers an improvement over the null model. Next we
test for the significance of the interaction term. The age+club model gives a
residual deviance of 5.637×10−5 on 11 df with φ̂ = 5.175×10−6. The F -test
gives F = 0.350, and a p-value of 0.567 when compared to F1,10, so there is no
evidence for an interaction between age and club status. Next we test for the
need for two intercepts. The model with only age gives a residual deviance of
1.611×10−5 on 12 df The F -test gives F = 20.251 and a p-value of 0.001 against
F1,11. Thus the chosen model is linear in time but with different intercepts
according to club status. The fitted equation, using the canonical μ−2 link is

1
time2 = 1.727×10−4 − 1.254×10−6(age) + 2.163×10−5(club status).
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8.10
Gamma model. We set 1/t = (a + bx + c), where c corresponds to a dummy
variable indicating club membership. We have that t = (a + bx + c)−1. Differ-
entiating we obtain

dt

dx
=

−b

(a + bx + c)2
.

Plugging in the values of a, b, and c suggested by Exercise 8.7 gives

dt

dx
(63) = 0.48 when c = 1,

and

dt

dx
(63) = 0.58 when c = 0,

This implies that the first author is losing around 29 seconds a year on the
half-marathon through age alone, very close to the Rule of Thumb.
Inverse Gaussian model. Set 1/t2 = (a + bx + c) so that t = (a + bx + c)−1/2.
Differentiating gives

dt

dx
= − b

2
(a + bx + c)−

3
2 .

Plugging in the values of a, b, and c suggested by Exercise 8.9 gives

dt

dx
(63) = 0.506 when c = 1,

and

dt

dx
(63) = 0.691 when c = 0,

This suggests losing around 30 seconds a year through age alone, very close to
the above.
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Harald Cramér (1893–1985), Cramér–Wold device, 1936 [§4.3].
Albert Einstein (1879–1955), Principle of Parsimony [§4.1.1].
Francis Ysidro Edgeworth (1845–1926), Edgeworth’s Theorem, 1893 [§4.4].
Robert F. Engle (1942–), cointegration, 1991 [§9.4].
Gustav Fechner (1801–1887), Fechner’s Law (power law), 1860 [§8.2].
R. A. (Sir Ronald) Fisher (1890–1962), likelihood, 1912 [§1.6], density of r2,
1915 [§7.3], F -distribution, 1918 [§2.6], ANOVA, 1918 [Ch. 2], sufficiency,
1920 [§4.4.1], z-transformation, 1921 [§7.3], method of maximum likelihood,
1922 [§1.6], Fisher’s Lemma, 1925 [§2.5], ANCOVA, 1932 [§5.2], ancillarity,
1934 [§5.1], information matrix, 1934 [§3.3], design of experiments, 1935 [§9.3],
method of scoring, 1946 [§8.1].
Sir Francis Galton (1822–1911), Hereditary genius, 1869 [§1.3].
Carl Friedrich Gauss (1777–1855), least squares, 1795 [§1.2], Gauss–Markov
Theorem, 1823 [§3.3].

269
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Roy C. Geary (1896–1983), Geary’s Theorem, 1936 [§2.5].
Irving John Good (1916–2009), penalised likelihood, roughness penalty, 1971
[§9.1], Bayesian statistics, 1950 on [§9.1]. (Jack Good was Alan Turing’s statis-
tical assistant working on deciphering German radio traffic at Bletchley Park
in World War II, and one of the fathers of both Bayesian statistics and artificial
intelligence.)
C. W. J. (Sir Clive) Granger (1934–2009), cointegration, 1991 [§9.4].
Friedrich Robert Helmert (1843–1917), Helmert’s transformation, 1876 [§2.4].
Charles Roy Henderson (1911–1989), mixed models, 1950 on [§9.1].
Carl Gustav Jacob Jacobi (1804–1851), Jacobian, 1841 [§2.2].
S. Ko�lodziejczyk (-1939), Ko�lodziejczyk’s Theorem: F -test for linear hypothe-
ses, 1935 [§6.2]. (Stanis�law Ko�lodziejczyk (pronounced ‘Kowodjaychick’), a
pupil of Jerzy Neyman, was killed fighting in the Polish Army against the
German invasion at the beginning of World War II.)
Daniel Gerhardus Krige (1919–), kriging (spatial regression), 1951 [§9.2.1].
Joseph Louis Lagrange (1736–1813), Lagrange multipliers, 1797 [§6.1].
Adrien-Marie Legendre (1752–1833), least squares, 1805 [§1.2].
Andrei Andreyevich Markov (1856-1922), Gauss–Markov Theorem, 1912 [§3.3].
Georges Matheron (1930–2000), kriging, 1960s [§9.2.1].
John Ashworth Nelder (1924–2010), GenStat�, 1966 on, Generalised Linear
Models, 1972, GLIM�, 1974 on, Hierarchical GLMs, 1996 [Ch. 8].
Sir Isaac Newton (1642–1727), Principia, 1687 [§1.2].
William of Ockham (d. c1349), Occam’s Razor [§4.4.1].
Georg Simon Ohm (1787–1854), Ohm’s Law, 1826 [§1.1].
Karl Pearson (1857–1936), Chi-squared test, 1900 [§8.4].
Pythagoras of Croton (d. c497 BC), Pythagoras’s Theorem [§3.6].
Calyampudi Radhakrishna Rao (1920–), Rao–Blackwell Theorem, 1945 [§4.5].
Nancy Reid (1952–), orthogonal parameters, 1987 [§5.1].
Isaac J. Schoenberg (1903–1990), splines, 1946 on [§9.2].
Issai Schur (1875–1941), Schur complement, 1905 [§4.5, §9.1].
Shayle Robert Searle (1928–), mixed models, 1950s on [§9.1].
John Wilder Tukey (1915–2000), exploratory data analysis (EDA), 1977 [§1.1,
§2.6].
Grace Wahba (1934–), Splines in statistics, 1970s [§9.2].
Sir Gilbert Walker (1868–1958), Yule–Walker equations, 1931 [§9.4].
Hermann Wold (1908–1992), Cramér–Wold device, 1936 [§4.3].
Frank Yates (1902–1994), design of experiments, 1930s on [§9.3].
George Udny Yule (1871–1951), Yule–Walker equations, 1926 [§9.4] spurious
regression, 1927 [§9.4].
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Index

Akaike Information Criterion (AIC),
140, 148, 159, 187, 195, 211

All-subsets regression, 160, 177
Analysis of Covariance (ANCOVA), 62,

105, 130, 133, 135, 144–147
Analysis of deviance, 185, 187
Analysis of Variance (ANOVA), 33, 62,

104, 130, 132, 135
– Latin square, 218
– One-way, 42, 125, 162
– Table, 47, 51, 54, 218
– Two-way, 49
– Two-way with interactions, 52, 59
Analytic continuation, 21
Ancillary statistic, 134
AR(p), see Time series
ARCH(p), see Time series
ARMA(p, q), see Time series
Assortative mating, 11

Backward selection, 158, 160, 177
Bayes’s Theorem, 208, 209
Bayesian statistics, 209
Bernoulli distribution, 190
Best Linear Predictor (BLP ), 214
Best Linear Unbiased Estimator

(BLUE), 71, 123, 124, 205
Best Linear Unbiased Predictor (BLUP),

124, 205, 208, 209, 213

(β̂): Solution of the normal equations, 65
Beta function, 37
Bias, 167
Binomial distribution, 191, 200

Bivariate normal distribution, 10, 14, 19,
20, 116, 117, 120, 174

Block, 49
Block effect, 50
(BLP ), see Best Linear Predictor
Boolean variable, 136, 190, 211
Box–Cox transformation, 168, 173
Breakdown point, 165
Buckingham’s Pi Theorem, 189

Cauchy’s Theorem, 21
Cauchy–Schwarz inequality, 19, 29, 91
Centroid, 5
Change-of-variable formula, 31, 36, 112
Characteristic function (CF), 21, 107
Characteristic polynomial, 100, 220
Chi-square addition, 35, 44
Chi-square decomposition, 25, 84, 86,

154
Chi-square distribution, 25, 33
Chi-square goodness-of-fit test, 193
Chi-square subtraction, 35, 41, 44
Cochran’s Theorem, 84
Cointegration, 220
Complementary log-log, 185, 192, 193,

200
Completing the square, 14–16
Complex numbers, 21, 107
Conditional density, 16, 115, 208
Conditional distribution, 16, 119, 120,

127
Conditional mean, 17, 115
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Conditional Mean Formula, 17, 115, 117,
121, 122, 214

Conditional probability, 16
Conditional Variance Formula, 17, 117,

123
Conditioning, 16, 115, 194
Confidence interval, 5, 28, 88
– For underlying mean, 97
Confounded, 49
Contingency table, 193, 195–197
Cook’s distance, 167, 215
Corner-point constraints, 125
Correlated errors, 168
Correlation coefficient, 18
Covariance, 18
Covariance matrix, 61, 106, 107, 111
Cox proportional hazards, 224
Cramér–Wold device, 107, 108
Cross–validation (CV), 167
Cumulative Distribution Function

(CDF), 147

Data vector, 62
Datasets
– Ageing athletes, 210
– Artificial, 96
– Brownlee’s stack loss, 157
– Car speeds, 25
– Cars, 161
– Cherry Tree, 97
– Concrete, 175
– Corn, 178, 201
– Counts, 195
– Divorces, 125
– Doughnuts, 57
– Enzymatic reaction rates, 146
– Fertilisers, 48, 51
– Hair and eye colour, 197
– Half-marathon, 30
– Half-marathon and marathon, 29
– Hamsters, 54
– Height, 6
– Insects, 192
– Photoperiod, 57, 59, 141
– Plankton, 179
– Poppies, 177
– Potatoes, 59
– Price, 30
– Protein content, 101
– Rats, 59
– Soyabean, 58
– Telephone usage, 146
– US population, 30

Decision Theory, 216
Deficient rank, 64, 65
Degrees of freedom, 33, 37, 67
Delta method, 173, 178
Density:
– Bivariate normal, 14
– Chi square, 34
– Conditional, 16, 115, 208
– Exponential, 223
– Exponential family, 183
– F , 37, 56
– Gamma, 184
– Inverse Gaussian, 201
– Joint, 15, 205
– Marginal, 15
– Multivariate normal, 111
– Normal, 14
– Power-law, 147
– Quotient, 56
– Student’s t, 32
– Weibull, 223
Design matrix, 62, 215
Design of experiments, see Experimental

design
Deviance, see Residual deviance
Difference, 220
Difference equation, 220
Dimensional analysis, 171
Distribution function, see Cumulative

Distribution Function (CDF)

EDA, 2, 101, 135, 156, 163, 172
Edgeworth’s Theorem, 111, 121, 174,

208
Eigenvalue, 80, 100, 109
Eigenvector, 80, 109
Elliptical contours, 9, 19, 121
Elliptically contoured distributions, 121
Error structure, 181, 183
Error vector, 62
Estimable, 73
Experimental design, 71, 215, 218
– Balanced incomplete block designs

(BIBD), 216
– Factorial designs, 216
– Incomplete designs, 216
– Latin Square, 216
– Optimality criteria, 215
Experimental mixture models, 162
Explanatory variable, 2
Exponential distribution, 223
Exponential families, 183, 201
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F distribution, 37, 56
F statistic, 25
F–test, one-tailed, 46, 136, 139, 154, 155
Fechner’s Law, 188
Federalist, 198
Fisher’s method of scoring, 182
Fisher, R. A., 22, 25, 42, 62, 71, 113,

118, 130, 134, 172, 182, 218
Fixed effects, 203, 204
Forward selection, 157, 160, 177
Full rank, 64, 68, 131, 149, 174

Gamma distribution, 172, 184, 189, 197,
200, 201

Gamma function, 33, 37
GARCH(p, q), see Time series
Gauss–Markov Theorem, 72, 73
Gaussian distribution, 85, 105
Geary’s Theorem, 41
Generalised inverse, 120
Generalised least squares (GLS), 123,

204, 207
Generalised Linear Model, 159, 168, 172,

181, 182, 185, 189, 192, 196, 200, 201
GenStat�, 182
GLIM�, 182
(GLS), see Generalised least squares
Gompertz-Makeham distribution, 223
Gram–Schmidt orthogonalisation, 39,

41, 69, 95, 103
Grand mean, 43, 50
Group mean, 42

Hat matrix, 85, 166
Hazard function, 223
Helmert’s transformation, 39, 40
Heteroscedastic, 222
Homoscedastic, 222
(hyp), see Linear hypothesis

Idempotent, 75, 81, 130, 153
Indicator variable, 136
Influence, 166, 167, 215
Information matrix, 63, 64, 70, 215
Intensity, 196, 222
Interaction, 53, 136, 137
Inverse Gaussian distribution, 185, 201
Inverse of a partitioned matrix, 127
Inverse square root matrix, 110
Isotropy, 214
Iterative method, 182

Jacobian, 36, 38, 112
Joint density, 15

Ko�lodziejcyzk’s Theorem, 154
Kriging, 213–215

Lagrange multipliers, 150, 151, 160
Latin square, 216, 217
Law of Large Numbers, 8, 25, 100, 168,

222
Least-Squares Estimators, 70, 85
Leverage, 166, 215
Likelihood, 22, 113, 114
Linear constraint, 149–151, 194
Linear form, 84, 110
Linear hypothesis, 132, 135, 149, 154,

162
Linear mixed model (LMM), 55, 203,

204
Linear model, 86, 130, 159
Linear predictor, 183, 190
Link function, 183
– Canonical, 184, 200
(LMM), see Linear mixed model
Log-linear model, 184, 193
Log-normal distribution, 31
Logit, 185, 190, 191
Longitudinal studies, 203
Loss function, 216

(M0): Null model, 129
(MA): Augmented model, 129
MA(q), see Time series
Main effect, 46
Mallows’s Cp, 167
Marginal density, 15
Matrix calculus, 95
Matrix inversion, 68
Maximum likelihood, 22, 63, 113, 114,

181, 205
Maximum squared correlation, 122, 123
(ME), see Model equation(s)
Mean sum of squares, 45
Mean vector, 61, 106
Mean-square prediction, 121, 126
Median, 165
Method of Least Squares, 3
Minitab�, 2, 101, 103
– Regression, 2
Mixed model, 55, 203, 204
Mixed model equation (MME), 205
(MME), see Mixed model equation
Model equation(s) (ME):
– AR(p), 219
– ARCH, 222
– ARMA(p, q), 220
– GARCH, 222



282 Index

– Generalised least squares, 123
– Latin squares, 217
– MA(q), 220
– Multiple regression, 61, 62
– One-way ANOVA, 46, 104
– Two-way ANOVA, 50
– Two-way ANOVA with interactions

and replications, 52
– Weighted least squares, 123
Moment generating function (MGF), 19,

34, 41, 107–111
Multicollinearity, 65, 140, 174–176
Multinomial distribution, 194
Multivariate normal distribution, 105,

107, 108, 110–112, 118, 119, 121, 126,
127, 174, 208

– Estimation, 113, 114

(NE), see Normal equation(s)
Negative binomial distribution, 197, 198
Nested models, 139, 186
Newton–Raphson iteration, 182
(NMM), see Normal mean mixture
Noise-bias tradeoff, 216
Non-additive errors, 168
Non-Gaussian errors, 168
Non-negative definite, 64, 107, 109
Non-parametric regression, 211
Non-singular, 64
Normal distribution, 14, 184
Normal equations (NE), 4, 27, 29, 64,

65, 69, 74, 95
Normal mean mixture (NMM), 205
Normal probability plot, 147
Nuisance parameter, 46, 134

Ohm’s Law, 2
(OLS), see Ordinary least squares
Optimality criteria, 216
Ordinary least squares (OLS), 124
(orth), see Orthogonal parameters
Orthogonal matrix, 38, 40, 80, 109
Orthogonal parameters (orth), 133, 134
Orthogonal polynomials, 103, 134
Orthogonal projection, 75, 83, 85, 86
Outliers, 164, 165
Over-dispersion, 197, 199, 201
Over-fitting, 100
Over-interpretation, 100

p >> n, 225
Panel data, 203
Parameter vector, 62
Partial covariance matrix, 120

Pearson’s χ2 statistic, 188, 193, 200
(pen), see Penalised log-likelihood
Penalised log-likelihood (pen), 140, 205,

212
Persistence of memory, 219
Piecewise linear model, 148
Poisson distribution, 172, 184, 194, 196,

197, 200, 222
Poisson process, 194, 196
Polynomial regression, 101, 125
Population correlation coefficient, 8, 28
Population covariance, 8
Population regression line (PRL), 8, 10,

17, 19
Population variance, 8
Positive definite, 64, 109, 118
Prediction interval, 97
Predictor, 2
Principle of Parsimony, 103, 140
(PRL), see Population regression line
Probability density function, see Density
Probability plot, 147
Probit, 185, 192, 193, 200
Projection, 75, 83, 84, 153
Projection Pursuit, 164
Pythagoras’s Theorem, 75, 85

QR decomposition, 68, 69, 95
Quadratic form, 40, 81, 82, 84, 153
Quasi-likelihood, 199
– Quasi-binomial, 199
– Quasi-poisson, 199

R�, see S-Plus/R�

R-squared, 76, 176
R-squared, adjusted, 77, 94
Random effects, 55, 203, 204
Random mating, 11
Rank, 64, 81
Rank–Nullity Theorem, 82
Rao–Blackwell Theorem, 118, 123
Regression, 2
Regression diagnostics, 177
Regression function, 115, 121
Regression towards the mean, 10
Regressor, 2
Reparametrisation, 134, 173
Replications, 52
Residual analysis, 165
Residual deviance, 185, 186, 200
Residual plots, 85, 163
Residuals
– Deviance, 188
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– Pearson, 187
– Scaled, 165
– Standardised, 165
– Standardised deletion, 165
– Vector, 85
– Working, 188
Response variable, 2
Response vector, 62
Restricted maximum likelihood (REML),

209
Risk, 196
Robust Statistics, 156, 164
Roughness penalty, 212

S-Plus/R�, 2, 49, 101
– anova, 49, 139
– aov, 49, 51, 53
– boxcox, 170
– brush, 164
– cbind, 193
– glm, 168, 182, 189, 191, 193, 196, 199
– lme, 209
– Graphics, 179
– hat, 166
– lm, 2, 104
– pairs, 163, 164
– pf, 56
– plot, 166
– poly, 104
– poly.transform, 104
– ppoints, 147
– qqnorm, 147, 166
– smooth.spline, 213
– solve, 68
– step, 140, 156, 159, 175
– summary.lm, 176
– update, 139, 156, 175
Sample correlation coefficient, 5, 7, 24,

28
Sample covariance, 5, 113
Sample mean, 4, 39, 113
Sample regression line (SRL), 5, 7, 8,

10, 17, 19, 23
Sample variance, 4, 39
Scale parameter, 185
Scaled deviance, 185
Schur complement, 120, 209
Score function, 182
Segmented model, 148
Sequential methods, 157
Sherman–Morrison–Woodbury formula,

206, 209
Simple linear regression, 22, 91
Smoother matrix, 213

Smoothing parameter, 212
Spatial Statistics, 212
Spectral Decomposition, 109
Splines, 100, 212, 213, 215
Spurious regression, 221
Square root matrix, 109
(SRL), see Sample regression line
(SSD), see Sum-of-Squares

Decomposition
Stepwise regression, 159, 177
Student’s t distribution, 5, 32, 58, 89,

96, 134
Sufficient statistic, 113, 118, 134
Sum of Squares, 23, 24
– Decomposition (SSD), 23, 24, 44, 53,

73, 132, 150
– For blocks, 50
– For error, 24, 43, 50, 66, 74, 87, 88
– For hypothesis, 152–154
– For interactions, 53
– For regression, 24, 74, 88
– For treatments, 43, 50
– Total, 24, 43, 50, 68, 74
Survival analysis, 222

t–test, unpaired, 58
Tangent method, 182
Taylor’s power law, 172, 178
Time series, 219
– AR(p), 219
– ARCH, 222
– ARMA(p, q), 220
– GARCH, 222
– Integrated processes, 220
– MA(q), 220
– Non-stationary, 221
– Stationary, 221
Trace, 78, 81, 83, 97, 113
Trace formula, 78, 79, 155
Transformation of data, 168
Transformations
– Arc sine, 178
– Box–Cox, 168
– Fisher’s z, 172
– Square-root, 177, 178
– Variance-stabilising, 171, 172
Treatment, 49
Treatment effect, 50, 135

Unbiased estimator, 39, 67
Unbiased sample variance, 67
Utility function, 216
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Variance (variability), 17, 42
Variance components, 56
Variance function, 183, 191
Variance-stabilising transformation, 171,

172

Weibull distribution, 223
Weighted least squares, 123, 124

Weighted regression, see Weighted least
squares

Woodbury’s formula, 206, 209

Yule–Walker equations (Y W ), 220

z transformation, 172
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