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Preface

In writing this book, we had two overriding goals. The first was to provide a textbook from
which graduate and advanced undergraduate students could really learn about data analysis.
Over the years we have experimented with various organizations of the content and have
concluded that bottom-up is better than top-down learning. In view of this, most chapters
begin with an informal intuitive discussion of key concepts to be covered, followed by the
introduction of a real data set along with some informal discussion about how we propose to
analyze the data. At that point, having given the student a foundation on which to build, we
provide a more formal justification of the computations that are involved both in exploring
and in drawing conclusions about the data, as well as an extensive discussion of the relevant
assumptions. The strategy of bottom-up presentation extends to the organization of the
chapters. Although it is tempting to begin with an elegant development of the general linear
model and then treat topics such as the analysis of variance as special cases, we have found
that students learn better when we start with the simpler, less abstract, special cases, and then
work up to more general formulations. Therefore, after we develop the basics of statistical
inference, we treat the special case of analysis of variance in some detail before developing
the general regression approach. Then, the now-familiar analyses of variance, covariance,
and trend are reconsidered as special cases. We feel that learning statistics involves many
passes; that idea is embodied in our text, with each successive pass at a topic becoming
more general.

Our second goal was to provide a source book that would be useful to researchers.
One implication of this is an emphasis on concepts and assumptions that are necessary
to describe and make inferences about real data. Formulas and statistical packages are not
enough. Almost anybody can run statistical analyses with a user-friendly statistical package.
However, it is critically important to understand what the analyses really tell us, as well as
their limitations and their underlying assumptions. No text can present every design and
analysis that researchers will encounter in their own research or in their readings of the
research literature. In view of this, we build a conceptual foundation that should permit the
reader to generalize to new situations, to comprehend the advice of statistical consultants,
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and to understand the content of articles on statistical methods. We do this by emphasizing
such basic concepts as sampling distributions, expected mean squares, design efficiency,
and statistical models. We pay close attention to assumptions that are made about the
data, the consequences of their violation, the detection of those violations, and alternative
methods that might be used in the face of severe violations. Our concern for alternatives
to standard analyses has led us to integrate nonparametric procedures into relevant design
chapters rather than to collect them together in a single last chapter, as is often the case.
Our approach permits us to explicitly compare the pros and cons of alternative data analysis
procedures within the research context to which they apply.

Our concern that this book serve the researcher has also influenced its coverage. In our
roles as consultants to colleagues and students, we are frequently reminded that research
is not just experimental. Many standard textbooks on research design have not adequately
served the needs of researchers who observe the values of independent variables rather
than manipulate them. Such needs are clearly present in social and clinical psychology,
where sampled social and personality measures are taken as predictors of behavior. Even in
traditionally experimental areas, such as cognitive psychology, variables are often sampled.
For example, the effects of word frequency and length on measures of reading are often of
interest. The analysis of data from observational studies requires knowledge of correlation
and regression analysis. Too often, ignorant of anything other than analysis of variance,
researchers take quantitative variables and arbitrarily turn them into categorical variables,
thereby losing both information and power. Our book provides extensive coverage of these
research situations and the proper analyses.

This second edition of Research Design and Statistical Analysis is a major revision of the
earlier work. Although it covers many of the same research designs and data analyses as
the earlier book, there have been changes in content and organization. Some new chapters
have been added; some concepts not mentioned in the first edition have been introduced,
and the coverage of some concepts that were previously discussed has been expanded. We
have been motivated in part by our sense that data analysis too often consists of merely
tabling means or correlation coefficients, and doing time-honored analyses on them without
really looking at the data. Our sense that we can learn more from our data than we often do
has been reinforced by the recent publication of the American Psychological Association's
guidelines for statistical methods (Wilkinson, 1999). Among other things, these guidelines
urge researchers to plot and examine their data, to find confidence intervals, to use power
analyses to determine sample size, and to calculate effect sizes. We illustrate these, and
other, procedures throughout this book. It may be helpful to consider the changes from the
first to the second edition in greater detail.

Statistics and Graphics. One change from the first edition is the expansion of the
section, Sample Distributions: Displaying the Data, into two chapters in the present edition.
Because it would take an entire volume to do justice to the array of statistics and graphic
devices available in many statistical computer packages, Chapters 2 and 3 provide only
some of the more basic ways of displaying univariate and bivariate data. However, these
should provide more insight into data than is usually the case. Furthermore, we believe that

MAJOR CHANGES IN THE SECOND EDITION
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an important contribution of the present text is that we then present such displays in many
subsequent chapters, using them to inform subsequent decisions about, and interpretation
of, the data analyses.

Confidence Intervals. Although we presented confidence intervals and discussed
their interpretation in the first edition, we now emphasize them in two ways. First, in our
chapters on inferences based on normal and t distributions, we present confidence intervals
before we present hypothesis tests. This is in accord with our belief that they deserve priority
because—as we point out—they provide the information available from hypothesis tests,
and more. Furthermore, they focus on the right question: What is the size of the effect?
rather than Is there an effect? Second, we make the calculation of confidence intervals a part
of the data analysis process in many of the subsequent chapters, illustrating their application
in various designs and with various statistics.

Standardized Effect Size. The calculation of standardized effect sizes has been
urged by several statisticians, most notably Cohen (1977). The standardized effect, in con-
trast to the raw effect, permits comparisons across experiments and dependent variables,
and it is a necessary input to power analyses. This new edition introduces the standardized
effect size early in the book (Chapter 6), and then it routinely illustrates its calculation in
subsequent chapters featuring different research designs and analyses.

Power Analyses. Power analyses, both to determine the required sample size and
to assess the power of an experiment already run, were discussed in the earlier edition.
There, we relied on charts that provided approximate power values. Currently, however,
several statistical software packages either provide direct calculations of power or provide
probabilities under noncentral distributions, which in turn allow the calculation of power.
Individuals lacking access to such programs can instead access software available on the
Internet that is easy to use and is free. We use two such programs in illustrations of power
analyses. In view of the ready accessibility of exact power analyses in both commercial
packages such as SAS, SPSS, and SYSTAT and in free programs such as GPOWER and
UCLA's statistical calculators, we have dropped the power charts, which are cumbersome to
use and at best provide approximate results. As with graphic displays, confidence intervals,
and effect size calculations, we present several examples of power calculations in the present
edition.

Tests of Contrasts. We believe that much research is, or should be, directed at focused
questions. Although we present all the usual omnibus tests of main effects and interactions,
we deal extensively with contrasts. We discuss measures of effect size and power analyses
for contrasts, and how to control Type 1 errors when many contrasts are considered. We
illustrate the calculation of tests of contrasts earlier (Chapter 6), presenting such tests as
merely a special case of t tests. We believe this simplifies things, paving the way for
presenting calculations for more complex designs in later chapters.

Elementary Probability. We have added a chapter on probability to review basic
probability concepts and to use the binomial distribution to introduce hypothesis testing. For
some students, reviewing the material in Chapter 4 may be unnecessary, but we have found
that many students enter the course lacking a good understanding of basic concepts such
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as independence, or of the distinction between p(A\B) and p(B\A). The latter distinction
is particularly important because a, b, statistical power, and the p values associated with
hypothesis tests are all examples of conditional probabilities. The chapter also serves the
purpose of introducing hypothesis testing in a relatively transparent context in which the
student can calculate probabilities, rather than take them as given from some table.

Correlation and Regression. The section on correlation and regression has been
reorganized and expanded. The basic concepts are introduced earlier, in Chapter 3, and are
followed up in Chapters 18-21. A major emphasis is placed on the kinds of misinterpre-
tations that are frequently made when these analyses are used. The treatment of power for
correlation and regression, and of interaction effects in multiple regression, is consider-
ably expanded. Significance tests for dependent correlations have been addressed both by
calculations and by software available on the Internet. Trend analysis and analysis of co-
variance are presented in Chapters 10 and 15 in ways that require only a limited knowledge
of regression, and then they are revisited as instances of multiple regression analyses in
Chapters 20 and 21. Nonorthogonal analysis of variance is first addressed in Chapter 12,
and then it is considered within the multiple regression framework in Chapter 21. We be-
lieve that the coverage of multiple regression can be more accessible, without sacrificing
the understanding of basic concepts, if we develop the topic without using matrix notation.
However, there is a development that uses matrix notation on the accompanying CD.

Data Sets. The CD-ROM accompanying the book contains several real data sets in
the Data Sets folder. These are provided in SPSS (.sav), SYSTAT (.syd), and ASCII (.txt)
formats, along with readme files (in Word and ASCII formats) containing information about
the variables in the data sets. The Seasons folder contains a file with many variables, as
well as some smaller files derived from the original one. The file includes both categorical
variables (e.g., sex, occupation, and employment status) and continuous variables (e.g.,
age, scores in each season on various personality scales, and physical measures such as
cholesterol level). The Royer folder contains files with accuracy and response time scores
on several arithmetic skills for boys and girls in first to eighth grades. The Wiley_Voss folder
contains a number of measures from an experiment that compares learning from text with
learning from Web sites. The Probability Learning folder contains a file from an experiment
that compares various methods of teaching elementary probability. In addition, there is an
Exercises folder containing artificial data sets designed for use with many of the exercises
in the book.

The "real-data" files have provided examples and exercises in several chapters. They
should make clear that real data often are very different from idealized textbook exam-
ples. Scores are often missing, particularly in observational studies, variables are often not
normally distributed, variances are often heterogeneous, and outliers exist. The use of real
data forces us to consider both the consequences of violations of assumptions and the re-
sponses to such violations in a way that abstract discussions of assumptions do not. Because
there are several dependent variables in these files, instructors may also find them useful in
constructing additional exercises for students.

Supplementary Material. We have also included three files in the Supplementary
Materials folder of the accompanying CD to supplement the presentation in the text. As we
note in Chapter 6, confidence intervals can be obtained for standardized effect sizes. We
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provided references to recently published articles that describe how to find these confidence
intervals in the text, and we illustrate the process in the "Confidence Intervals for Effect
Sizes" file in the Supplementary Materials folder. In addition, as we note in Chapter 20,
although not necessary for understanding the basic concepts, matrix algebra can greatly
simplify the presentation of equations and calculations for multiple regression. To keep the
length of the book within bounds, we have not included this material in the text; however; we
have added a file, "Chapter 20A, Developing Multiple Regression Using Matrix Notation,"
to the folder. Finally, when we discussed testing for the interaction between two quantitative
variables in multiple regression in the text, we mentioned that if we do not properly specify
the model, we might wind up thinking that we have an interaction when, in fact, we have
curvilinearity. We discuss this issue in the "Do We Have an Interaction or Do We Have
Curvilinearity or Do We Have Both?" file.

Chapter Appendices. Although we believe that it is useful to present some deriva-
tions of formulas to make them less "magical" and to show where assumptions are required,
we realize that many students find even the most basic kinds of mathematical derivations
intimidating and distracting. In this edition, we still include derivations. However, most
have been placed in chapter appendices, where they are available for those who desire a
more formal development, leaving the main text more readable for those who do not.

Instructors' Solutions Manual. In the "Answers to Selected Exercises" contained
in the text, we usually have provided only short answers, and we have done that only for
the odd-numbered exercises. The Solutions Manual contains the intermediate steps, and in
many cases further discussion of the answers, and does so for all exercises.

Many individuals have influenced our thinking of, and teaching of, statistics. Discussions
with our colleague Alexander Pollatsek have been invaluable, as has been the feedback of our
teaching assistants over the years. Most recently these have included Kristin Asplin, Mary
Bryden-Miller, Joseph DiCecco, Patricia Collins, Katie Franklin, Jill Greenwald, Randall
Hansen, Pam Hardiman, Celia Klin, Susan Lima, Jill Lohmeier, Laurel Long, Robert Lorch,
Edward O'Brien, David Palmer, Jill Shimabukuro, Scott Van Manen, and Sarah Zemore. We
would also like to thank the students in our statistics courses who encouraged us in this effort
and made useful suggestions about earlier drafts of the book. Special thanks go to those
individuals who reviewed early chapters of the book and made many useful suggestions that
improved the final product: Celia M. Klin, SUNY Binghamton; Robert F. Lorch, University
of Kentucky; Jay Maddock, University of Hawaii at Manoa; Steven J. Osterlind, University
of Missouri at Columbia; and Thomas V. Petros, University of North Dakota.

We wish to thank Mike Royer for making the Royer data available, Jenny Wiley and Jim
Voss for the Wiley_Voss data, and Ira Ockene for permission to use the Seasons data. The
Seasons research was supported by National Institutes of Health, National Heart, Lung, and
Blood Institute Grant HL52745 awarded to University of Massachusetts Medical School,
Worcester, Massachusetts.

We would like to express our gratitude to Debra Riegert, a senior editor at Erlbaum,
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Chapter 1
Introduction

Empirical research is undertaken to answer questions that often take the form of whether,
and to what extent, several variables of interest are related. For example, an educator may
be interested in whether the whole language method of teaching reading is more effective
than another method based mostly on phonics; that is, whether reading performance is
related to teaching method. A political scientist may investigate whether preference for a
political party is related to gender. A social psychologist may want to determine the relation
between income and attitude toward minorities. In each case, the researcher tries to answer
the question by first collecting relevant measures and then analyzing the data. For example,
the educator may decide to measure the effectiveness of reading training by first obtaining
scores on a standard test of reading comprehension and then determining whether the scores
are better for one of the teaching methods than for the other.

A major problem in answering the research question is that there is variability in the
scores. Even for a single teaching method, the reading comprehension scores will differ
from one another for all sorts of reasons, including individual differences and measurement
errors. Some children learn to read faster than others, perhaps because they are brighter,
are more motivated, or receive more parental support. Some simply perform better than
others on standardized tests. All this within-treatment variability presents a number of
major challenges. Because the scores differ from one another, even within a single treatment
group, the researcher has to consider how to describe and characterize sets of scores before
they can be compared. Considerable attention will be given in this book to discussing how
best to display, summarize, and compare distributions of scores. Usually, there are certain
summary measures that are of primary interest. For example, the educational researcher
may be primarily interested in the average reading test score for each method of teaching
reading. The political scientist may want to know the proportion of males and females who
vote for each political party. The social psychologist may want a numerical index, perhaps

1.1 VARIABILITY AND THE NEED FOR STATISTICS
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2 1 / INTRODUCTION

a correlation or regression coefficient, that reflects the relation between income and some
attitude score. Although each of these summary statistics may provide useful information,
it is important to bear in mind that each tells only part of the story. In Chapters 2 and 3,
we return to this point, considering statistics and data plots that provide a fuller picture of
treatment effects.

A major consequence of all the within-treatment variability is that it causes us to
refine the research question in a way that distinguishes between samples and populations. If
there was no within-treatment variability, research would be simple. If we wanted to compare
two teaching methods, we would only have to find the single reading comprehension score
associated with each teaching method and then compare the two scores. However, in a world
awash with variability, there is no single score that completely characterizes the teaching
method. If we took two samples of students who had been taught by one of the methods, and
then found the average reading comprehension score for each sample, these averages would
differ from one another. The average of a sample of comprehension scores is an imperfect
indicator of teaching effectiveness because it depends not only on the teaching method but
also on all the sources of variability that cause the scores to differ from one another. If we
were to find that a sample of scores from students taught by one teaching method had a
higher average than a sample from students taught by the other, how could we tell whether
the difference was due to teaching method or just to uncontrolled variability? What score
could be used to characterize reading performance for each teaching method to answer the
question?

We generally try to answer the research question by considering the populations of
scores associated with each of the teaching methods; that is, all the scores that are relevant to
the question. To answer the question about teaching methods, we would ideally like to know
the comprehension scores for all the students who might be taught by these methods, now
and in the future. If we knew the population parameters, that is, the summary measures
of the populations of scores, such as the average, we could use these to answer questions
about the effectiveness of the teaching methods.

Obviously, we usually do not have access to the entire population of scores. In the
current example, the populations of comprehension scores are indefinitely large, so there is
no way that we can measure the population means directly. However, we can draw inferences
about the population parameters on the basis of samples of scores selected from the relevant
populations. If the samples are appropriately chosen, summary measures of the sample—the
sample statistics—can be used to estimate the corresponding population parameters. Even
though the sample statistics are imperfect estimators of the population parameters, they do
provide evidence about them. The quality of this evidence depends on a host of factors,
such as the sizes of the samples and the amount and type of variability. The whole field of
inferential statistics is concerned with what can be said about population parameters on
the basis of samples selected from the population. Most of this book is about inferential
statistics.

It should be emphasized that, for population parameters to be estimated, the sam-
ples must be chosen appropriately. The statistical procedures we discuss in this book as-
sume the use of what are called simple random samples; these samples are obtained
by methods that give all possible samples of a given size an equal opportunity to be se-
lected. If we can assume that all samples of a given size are equally likely, we can use
the one sample we actually select to calculate the likelihood of errors in the inferences we
make.
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Even when randomly selected, the sample is not a miniature replica of the population.
As another example, consider a study of the change in arithmetic skills of third graders who
are taught arithmetic by use of computer-assisted instruction (CAI). In such a study, we are
likely to want to estimate the size of the change. We might address this by administering two
tests to several third-grade classes. One test would be given at the beginning of third grade,
and one would follow a term of instruction with CAI. The sample statistic of interest, the
average change in the sample, is unlikely to be exactly the same as the population parameter,
the average change that would have been observed if measurements were available for the
entire population of third graders. This is because there will be many sources of variability
that will cause the change scores to vary from student to student. Some students are brighter
than others and would learn arithmetic skills faster no matter how they were taught. Some
may have had experience with computers at home, or may have a more positive attitude
toward using a computer. If the variability of scores is large, even if we choose a random
sample, then the sample may look very different from the population because we just may
happen, by chance, to select a disproportionate number of high (or low) scores. We can
partly compensate for variability by increasing sample size, because larger samples of data
are more likely to look like the population. If there were no, or very little, variability in the
population, samples could be small, and we would not need inferential statistical procedures
to enable us to draw inferences about the population.

Because of variability, the researcher has a task similar to that of someone trying to
understand a spoken message embedded in noise. Statistical procedures may be thought of
as filters, as methods for extracting the message in a noisy background. No one procedure is
best for every, or even for most, research questions. How well we understand the message
in our data will depend on choosing the research design and method of data analysis most
appropriate in each study. Much of this book is about that choice.

In the example of the study of CAI, the researcher might want to contrast CAI with a more
traditional instructional method. We can contrast two different types of approaches to the
research: experimental and observational. In an experiment, the researcher assigns subjects
to the treatment groups in such a way that there are no systematic differences between the
groups except for the treatment. One way to do this is to randomly assign students to each
of the two instructional methods. In contrast, in an observational or correlational study,
the researcher does not assign subjects to treatment conditions, but instead obtains scores
from subjects who just happen to be exposed to the different treatments. For example, in
an observational approach to the study of CAI, we might examine how arithmetic is taught
in some sample of schools, finding some in which CAI is used, others where it is not,
and comparing performances across the two sets of schools. In either the experimental or
the observational study, the instructional method is the independent variable. However,
in an experiment, we say that the independent variable is manipulated, whereas in an
observational study, we say the independent variable is observed. The dependent variable
in both approaches would be the score on a test of arithmetic skills. A problem with the
observational approach is that the treatment groups may differ systematically from one
another because of factors other than the treatment. These systematic differences often
make it very difficult or impossible to assess the effect of the treatment.

1.2 SYSTEMATIC VERSUS RANDOM VARIABILITY
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As we previously indicated, variables other than the independent variable could influ-
ence the arithmetic test scores. In both the experimental and the observational approaches,
the groups might differ by chance in ability level, exposure to computers outside of the
classroom, or parental encouragement. We will refer to these as nuisance variables. Al-
though they influence performance, and may be of interest in other studies, they are not
the variables of current interest and will produce unwanted, nuisance, variability. In an
experiment, we might account for the influence of nuisance variables by assigning students
to the teaching methods by using randomization; that is, by employing a procedure that
gave each student an equal chance of being assigned to each teaching method. Random
assignment does not perfectly match the experimental groups on nuisance variables; the
two groups may still differ on such dimensions as previous experience with computers,
or ability level. However, random assignment does guard against systematic differences
between the groups. When assignment to experimental conditions is random, differences
between groups on nuisance variables are limited to "chance" factors. If the experiment is
repeated many times, in the long run neither of the instructional methods will have an ad-
vantage caused by these factors. The statistical analyses that we apply to the data have been
developed to take chance variability into account; they allow us to ask whether differences
in performance between the experimental groups are more than would be expected if they
were due only to the chance operation of nuisance variables. Thus, if we find very large
differences on the arithmetic skills test, we can reasonably conclude that the variation in
instructional methods between experimental groups was the cause.

In an observational study we observe the independent variable rather than manipulate
it. This would involve seeking students already being taught by the two teaching methods
and measuring their arithmetic performance. If we did this, not only would the instructional
groups differ because of chance differences in the nuisance variables, it is possible that
some of them might vary systematically across instructional conditions, yielding systematic
differences between groups that are not readily accounted for by our statistical procedures.
For example, school districts that have the funds to implement CAI may also have smaller
class sizes, attract better teachers with higher salaries, and have students from more affluent
families, with parents who have more time and funds to help children with their studies. If
so, it would be difficult to decide whether superior performance in the schools using CAI
was due to the instructional method, smaller class size, more competent teachers, or greater
parental support. We describe this situation by saying that CAI is confounded with income
level. Because there is often greater difficulty in disentangling the effects of nuisance and
independent variables in observational studies, the causal effects of the independent variable
are more readily assessed in experiments.

Although we can infer causality more directly in experiments, observational studies
have an important place in the research process. There are many situations in which it is
difficult or impossible to manipulate the independent variable of interest. This is often the
case when the independent variable is a physical, mental, or emotional characteristic of
individuals. An example of this is provided in a study conducted by Rakkonen, Matthews,
Flory, Owens, and Gump (1999). Noting that ambulatory blood pressure (BP) had been
found to be correlated with severity of heart disease, they investigated whether it in turn
might be influenced by certain personality characteristics, specifically, the individual's level
of optimism or pessimism and general level of anxiety. These two predictor variables were
assessed by tests developed in earlier studies of personality. The dependent variable, BP, was
monitored at 30-minute intervals over 3 days while the 50 male and 50 female participants
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went about their usual activities. An important aspect of the study was that participants kept
diaries that enabled the investigators to separate out the effects of several nuisance variables,
including mood, physical activity, posture (sitting and standing versus reclining), and intake
of caffeinated beverages such as coffee. By doing so, and by applying sophisticated statistical
procedures to analyze their data, the investigators were able to demonstrate that stable
personality characteristics (optimism, pessimism, and general anxiety level) influenced
BP beyond the transient effects of such variables as mood. Thus, it is possible to collect
data on all the important variables and to test causal models. However, such analyses are
more complicated and inferences are less direct than those that follow from performing an
experiment.

Let's review some of the concepts introduced in Section 1.1, using some of the terms we
introduced in Section 1.2. Even if subjects have been randomly assigned to experimental
conditions, the presence of nuisance variables will result in error variance, variability
among scores that cannot be attributed to the effects of the independent variable. Scores
can be thought of as consisting of two components: a treatment component determined by
the independent variable and an error component determined by nuisance variables. Error
components will always exhibit some variability, even when scores have been obtained
under the same experimental treatment. This error variance may be the result of individual
differences in such variables as age, intelligence, and motivation. Error variance may also
be the result of within-individual variability when measures are obtained from the same
individuals at different times, and it is influenced by variables such as attentiveness, practice,
and fatigue.

Error variance tends to obscure the effects of the independent variable. For example,
in the CAI experiment, if two groups of third graders differ in their arithmetic scores,
the difference could be due, at least in part, to error variance. Similarly, if BP readings
are higher in more pessimistic individuals, as Rakkonen et al. (1999) found, we must ask
whether factors other than pessimism could be responsible. The goal of data analysis is to
divide the observed variation in performance into variability attributable to variation in the
independent variable, and variability attributable to nuisance variables. As we stated at the
beginning of this chapter, we have to extract the message (the effects of the independent
variable) from the noise in which it is embedded (error variance). Much of the remainder
of this book deals with principles and techniques of inferential statistics that have been
developed to help us decide whether variation in a dependent variable has been caused by
the independent variable or is merely a consequence of error variability.

If we can reduce error variance through the design of the research, it becomes easier for
us to assess the influence of the independent variable. One basic step is to attempt to hold
nuisance variables constant. For example, Rakkonen et al. (1999) took BP measurements
from all subjects on the same 3 days of the week; 2 were workdays and 1 was not. In this
way, they minimized any possible effects of the time at which measurements were taken.

1.3 ERROR VARIANCE AGAIN

1.4 REDUCING ERROR VARIANCE
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In a study such as the CAI experiment, it is important that teachers have similar levels of
competence and experience, and, if possible, classes should be similar in the distribution of
ability levels. If only one level of a nuisance variable is present, it cannot give any advantage
to any one level of the independent variable, nor can it contribute to the variability among
the scores. Each research study will have its own potential sources of error variance, but,
by careful analysis of each situation, we can eliminate or minimize many of them.

We can also minimize the effects of error variance by choosing an efficient research
design; that is, we can choose a design that permits us to assess the contribution of one or
more nuisance variables and therefore to remove that contribution from the error variance.
One procedure that is often used in experiments is blocking, sometimes also referred to as
stratification. Typically, we divide the pool of subjects into blocks on the basis of some
variable whose effects are not of primary interest to us, such as gender or ability level. Then
we randomly assign subjects within each block to the different levels of the independent
variable. In the CAI experiment, we could divide the pool of third graders into three levels of
arithmetic skill (low, medium, and high) based on a test administered at the start of the school
year. We might then randomly assign students at each skill level to the two instructional
methods, yielding six combinations of instruction and initial skill level. The advantage of
this design is that it permits us to remove some of the contribution of initial skill level from
the total variability of scores, thus reducing error variance. The blocking design is said to
be more efficient than the design that randomly assigns subjects to instructional methods
without regard to ability level. Chapter 12 presents the analysis of data when a blocking
design has been used. For some independent variables (instructional method is not one of
them), even greater efficiency can be achieved if we test the same subject at each level of the
independent variable. This repeated-measures design is discussed in Chapter 13. Other
designs that enable us to remove some sources of error variance from the total variability
are the Latin Squares of Chapter 17.

Often, blocking is not practical. Morrow and Young (1997) studied the effects of
exposure to literature on reading scores of third graders. Although reading scores were
obtained before the start of the school year (pretest scores), the composition of the third-
grade classes was established by school administrators prior to the study. Therefore, the
blocking design we just described was not a possibility. However, the pretest score could
still be used to reduce error variance. Morrow and Young adjusted the posttest scores,
the dependent variable, essentially removing that portion of the score that was predictable
from the pretest score. In this way, much, though not all, of the variability caused by the
initial level of ability was removed from the final data set. This statistical adjustment, called
analysis of covariance, is presented in Chapter 15. Both blocking designs and analysis of
covariance use measures that are not affected by the independent variable but are related
to the dependent variable to reduce the error variance, thus making it easier to assess the
variability caused by the independent variable.

Usually the greater efficiency that comes with more complicated designs and analyses
has a cost. For example, additional information is required for both blocking and the analysis
of covariance. Furthermore, the appropriate statistical analysis associated with more efficient
approaches is usually based on more stringent assumptions about the nature of the data.
In view of this, a major theme of this book is that there are many possible designs and
analyses, and many considerations in choosing among them. We would like to select our
design and method of data analysis with the goal of reducing error variance as much as
possible. However, our decisions in these matters may be constrained by the resources and
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subjects that are available and by the assumptions that must be made about the data. Ideally,
the researcher should be aware of the pros and cons of the different designs and analyses,
and the trade-offs that must be considered in making the best choice.

Although most researchers tend to compute a few summary statistics and then carry out
statistical tests, data analyses should begin by exploring the data more thoroughly than is
usually done. This means not only calculating alternative statistics that tell us something
about the location, variability, and shape of the distribution of data, but also graphing the data
in various ways. Chapter 2 presents useful statistics and methods of graphing for univariate
data, that is, for cases involving a single variable. Chapter 3 does the same for bivariate
data, cases in which the relation between two variables is of interest.

Theoretical distributions play a central role in procedures for drawing inferences about
population parameters. These can be divided into two types: discrete and continuous. A
variable is discrete if it assumes a finite, countable, number of values; the number of indi-
viduals who solve a problem is an example. In contrast, a continuous variable can take on
any value in an interval. Chapter 4 presents an important discrete distribution, the binomial
distribution, and uses it to review some basic concepts involved in testing hypotheses about
population parameters. Chapter 5 provides a similar treatment of an important continuous
distribution, the normal distribution, extending the treatment of inference to concepts in-
volved in estimating population parameters, and intervals in which they may lie. Chapter 6
continues the treatment of continuous distributions and their applications to inferences about
population parameters in the context of the t distribution, and it also introduces the concept
of standardized effect size, a measure that permits comparisons of treatment effects ob-
tained in different experiments or with different measures. Chapter 7 concludes our review
of continuous distributions with a discussion of the chi-square (x2) and F distributions.

As we noted in the preceding section, there are many different experimental designs.
We may assign subjects to blocks on the basis of a pretest score, or age, or gender, or some
other variable. We may test the same subject under several levels of an independent variable.
We may sequence the presentation of such levels randomly or in an arbitrary order designed
to balance practice or fatigue effects across treatments. These various experimental designs,
and the analyses appropriate for each, are discussed in Chapters 8-17.

Most of the analyses presented in the experimental design chapters are usually referred
to as analyses of variance. An analysis of variance, or ANOVA, is a special case of multiple
regression analysis, or MRA, a general method of analyzing changes in the dependent
variable that are associated with changes in the independent variable. Chapters 18-21
develop this regression framework, including estimation and statistical tests, and its relation
to ANOVA.

In the initial draft of a report of a special task force of the American Psychological
Association (Task Force on Statistical Inference, 1996, posted at the APA Web site; see
also Wilkinson, 1999), the committee noted that "the wide array of quantitative techniques

1.5 OVERVIEW OF THE BOOK

1.6 CONCLUDING REMARKS
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and the vast number of designs available to address research questions leave the researcher
with the non-trivial task of matching analysis and design to the research question." The goal
of this book is to aid in that task by providing the reader with the background necessary to
make these decisions. No text can present every design and analysis that researchers will
encounter in their own work or in the research literature. We do, however, consider many
common designs, and we attempt to build a conceptual framework that permits the reader to
generalize to new situations and to comprehend both the advice of statistical consultants and
articles on statistical methods. We do this by emphasizing basic concepts; by paying close
attention to the assumptions on which the statistical methods rest and to the consequences
of violations of these assumptions; and by considering alternative methods that may have
to be used in the face of severe violations.

The special task force gave their greatest attention to "approaches to enhance the quality
of data usage and to protect against potential misrepresentation of quantitative results."
One result of their concern about this topic was a recommendation "that more extensive
descriptions of the data be provided. . . ." We believe this is important not only as a way
to avoid misrepresentation to reviewers and readers of research reports, but also as the
researcher's first step in understanding the data, a step that should precede the application
of any inferential procedure. In the next two chapters, we illustrate some of the descriptive
methods that are referred to in the report.

KEY CONCEPTS

Boldfaced terms in the text are important to understand. In this chapter, many concepts were
only briefly introduced. Nevertheless, it will be useful to have some sense of them even at
a basic level. They are listed here for review.

within-treatment variability population
sample population parameter
sample statistic inferential statistics
random sample experiment
observational study independent variable
dependent variable nuisance variables
random assignment treatment component
error component error variance
blocking design efficiency
repeated-measures design analysis of covariance
discrete variable continuous variable

1.1 A researcher requested volunteers for a study comparing several methods to reduce
weight. Participants were told that if they were willing to be in the study, they would be
assigned randomly to one of three methods. Thirty individuals agreed to this condition
and participated in the study,
(a) Is this an experiment or an observational study?

EXERCISES
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(b) Is the sample random? If so, characterize the likely population.
(c) Describe and discuss an alternative research design.

1.2 A study of computer-assisted learning of arithmetic in third-grade students was carried
out in a private school in a wealthy suburb of a major city.
(a) Characterize the population that this sample represents. In particular, consider

whether the results permit generalizations about CAI for the broad population of
third-grade students. Present your reasoning.

(b) This study was done by assigning one class to CAI and one to a traditional method.
Discuss some potential sources of error variance in this design.

1.3 Investigators who conducted an observational study reported that children who spent
considerable time in day care were more likely than other children to exhibit aggressive
behavior in kindergarten (Stolberg, 2001). Although this suggests that placement in
day care may cause aggressive behavior—either because of the day-care environment
or because of the time away from parents—other factors may be involved.
(a) What factors other than time spent in day care might affect aggressive behavior in

the study cited by Stolberg?
(b) If you were carrying out such an observational study, what could you do to try to

understand the effects on aggression of factors other than day care?
(c) An alternative approach to establishing the effects of day care on aggressive be-

havior would be to conduct an experiment. How would you conduct such an
experiment and what are the pros and cons of this approach?

1.4 It is well known that the incidence of lung cancer in individuals who smoke cigarettes
is higher than in the general population.
(a) Is this evidence that smoking causes lung cancer?
(b) If you were a researcher investigating this question, what further lines of evidence

would you seek?
1.5 In the Seasons study (the data are in the Seasons file in the Seasons folder on the

CD accompanying this book), we found that the average depression score was higher
for men with only a high school education than for those with at least some college
education. Discuss the implications of this finding. In particular, consider whether the
data demonstrate that providing a college education will reduce depression.

1.6 In a 20-year study of cigarette smoking and lung cancer, researchers recorded the
incidence of lung cancer in a random sample of smokers and nonsmokers, none of
whom had cancer at the start of the study.
(a) What are the independent and dependent variables?
(b) For each, state whether the variable is discrete or continuous.
(c) What variables other than these might be recorded in such a study? Which of these

are discrete or continuous?



Chapter 2
Looking at Data:
Univariate Distributions

2.1 INTRODUCTION

This chapter and the next are primarily concerned with how to look at and describe data.
Here, we consider how to characterize the distribution of a single variable; that is, what
values the variable takes on and how often these values occur. We consider graphic displays
and descriptive statistics that tell us about the location, or central tendency, of the distribution,
about the variability of the scores that make up the distribution, and about the shape of
the distribution. Although we present examples of real-life data sets that contain many
different variables, and sometimes compare several of them, in this chapter our focus is on
the description of single variables. In Chapter 3 we consider relations among variables and
present plots and statistics that characterize relations among two or more variables.

Data analyses should begin with graphs and the calculation of descriptive statistics. In
some instances, description is an end in itself. A school district superintendent may wish
to evaluate the scores on a standardized reading test to address various questions, such as
What was the average score? How do the scores in this district compare with those in the
state as a whole? Are most students performing near the average? Are there stragglers who
require added help in learning? If so, which schools do they come from? Do boys and girls
differ in their average scores or in the variability of their scores? We must decide which
statistics to compute to answer these and other questions, and how to graph the data to find
the most salient characteristics of the distribution and to reveal any unusual aspects.

In other instances, we may want to draw inferences about a population of scores on the
basis of a sample selected from it. Summarizing and graphing the data at hand is important
for that purpose as well. The exploration of the data may suggest hypotheses that we might
not otherwise have considered. For example, we may have begun the study with an interest in
comparing treatment averages but find that one treatment causes greater variability than the
others. A close look at our data may also suggest potential problems for the statistical tests
we planned. For example, the validity of many standard statistical tests depends on certain

10
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assumptions about the distributions of scores. Many tests assume that the distributions of
scores associated with each treatment are bell shaped; that is, they have a so-called normal
distribution.1 Some tests make the assumption that the variability of scores is the same for
each treatment. If these assumptions are not supported by the data, we may wish to consider
alternative procedures.

2.2 EXPLORING A SINGLE SAMPE

Suppose we have carried out a study of arithmetic performance by elementary school
students. Given the data set, there are many questions we could ask, but the first might be,
How well are the students doing? One way to answer this is to calculate some average value
that typifies the distribution of scores. "Typifies" is a vague concept, but usually we take as
a typical value the mean or median. These measures provide a sense of the location, or the
central tendency, of the distribution. We calculate the arithmetic mean for our sample by
adding together the students' scores and dividing by the number of students. To obtain the
median value, we rank order the scores and find the middle one if the number of scores is
odd, or we average the two middle scores if the number of scores is even. No matter which
average we decide to calculate, it provides us with limited information. For example, in a
study of the arithmetic skills of elementary school children conducted by Royer, Tronsky,
and Chan (1999; see the Royer data file in the Royer folder on the CD), the mean percentage
correct addition score for 28 second-grade students was 84.607 and the median was 89.2 This
tells us that, on the average, the students did quite well. What it does not tell us is whether
everyone scored close to the mean or whether there was considerable variability. Nor does
the average tell us anything about the shape of the distribution. If most students have scored
near the median but a few students have much lower scores, than we should know this
because it alerts us to the fact that there are children having problems with simple addition.

Table 2.1 presents the scores for the 28 students in the Royer study under the label
"Royer" together with a second set of 28 scores (Y) that we created that has the same mean
and median. A quick glance at the numbers suggests that, despite the fact that the two data
sets have the same means and medians, there are differences between the distributions.
Specifying the differences on the basis of an examination of the numbers is difficult, and
would be even more so if we had not placed them in order, or if the data sets were larger. We
need a way of getting a quick impression of the distributions of the scores—their location.

TABLE 2.1 THE ROYER GRADE 2 ADDITION SCORES AND AN ARTIFICIAL SET (Y ) WITH
THE SAME MEAN AND MEDIAN

Royer

Y

47

84
94

31
87
91

50

85
95

32
89
91

50
88
95

79
89

91

69

89
100

83
89
92

72

89
100

83
89
92

74

90
100

85
89
93

76

93
100

85
89
95

82

94
100

85
90

95

82
94

87
90

83
94

87
91
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variability, and shape. Histograms, graphs of the frequency of groups of scores, provide one
way to view the data quickly. They can be generated by any one of several statistical (e.g.,
SPSS, SAS, or SYSTAT) or graphic (e.g., Sigma Plot, StatGraphics, or PsiPlot) programs
or spread sheets (e.g., Excel or Quattro Pro). Figure 2.1 presents such histograms for the
two data sets of Table 2.1.

2.2.1 Histograms of the Data
In these histograms, the X axis (the abscissa) has been divided into intervals of 5 points
each. The label on the left-hand Y axis (the ordinate) is the frequency, the number of
scores represented by each bar; the label on the right side is the proportion of the 28 scores
represented by each bar. Important characteristics of each distribution, as well as similarities
and differences among the distributions, should now be more evident than they would be
from a listing of the scores. For example, whereas the modal (most frequent) category in the
Royer data is the interval 96-100, the modal category in the Y data is the interval 86-90,
and the bar corresponding to the Y mode is noticeably higher than that of the Royer mode.
Another difference is that, despite being equal in both means and medians, theY distribution
contains two scores much lower than any in the Royer data.

The gap we observe in both the Y and Royer distributions is typical of many real
data sets, as is the obvious asymmetry in both distributions. Micceri (1989) examined 440
distributions of achievement scores and other psychometric data and noted the prevalence
of such departures from the classic bell shape as asymmetry (or skew), and "lumpiness,"
or more than one mode (the most frequently observed value). Similarly, after analyzing
many data distributions based on standard chemical analyses of blood samples, Hill and
Dixon (1982) concluded that their real-life data distributions were "asymmetric, lumpy,
and have relatively few unique values" (p. 393). We raise this point because the inferential
procedures most commonly encountered in journal reports rest on strong assumptions about
the shape of the distribution of data in the population. It is worth keeping in mind that these
assumptions are often not met, and it is therefore important to understand the consequences
of the mismatch between assumptions and the distribution of data. We consider those
consequences when we take up each inferential procedure.

Most statistical packages enable the user to determine the number of histogram intervals
and their width. There is no one perfect choice for all data sets. We chose to display

Fig. 2.1 Histograms of the data in Table 2.1.
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Fig. 2.2 Stem-and-leaf plot of the Royer data in
Table 2.1.

For example, if

Y = 1,3,4,9,12, 13, 18

14 intervals between 30 and 100, each 5 points wide. We had previously constructed the
histograms with 7 intervals, each 10 points wide. However, this construction lost certain
interesting differences among the distributions. For example, because scores from 91 to 100
were represented by a single bar, the distributions looked more similar than they actually
were at the upper end. It is often helpful to try several different options. This is easily done
because details such as the interval width and number of intervals, or the upper and lower
limits on the axes, can be quickly changed by most computer graphics programs.

Histograms provide only one way to look at our data. For a more detailed look at the
numerical values in the Royer Grade 2 data, while still preserving information about the
distribution's shape, we next consider a different kind of display.

2.2.2 Stem-and-Leaf Displays

Figure 2.2 presents a stem-and-leaf display of the Royer data. The display consists of two
parts. The first part contains five values, beginning with the minimum and ending with the
maximum. This first part is sometimes referred to as the 5-point summary. The minimum
and maximum are the smallest and largest values in the data set. Before we consider the
second part of the display, the actual stem-and-leaf plot, let's look at the remaining 3 points
in the 5-point summary.

The Median. If the number of scores, N, is an odd number, the median is the middle
value in a set of scores ordered by their values. If N is an even number, the median is the
value halfway between the middle two scores. Another way of thinking about this is to
define the position of the median in an ordered set of scores; this is its depth, dM, where
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then N = 7, dM = 4, and the median is the fourth score, 9. If the preceding set contained
an additional score, say 19, we would have N= 8 and dM = 4.5. This indicates that the
median would be the mean of the fourth and fifth scores, 9 and 12, or 10.5. In the Royer
data, there are 28 scores; therefore dM = 14.5, and, because the 14th and 15th scores are
both 89, the median is 89.

The Hinges. There are many possible measures of the spread of scores that are based
on calculating the difference between scores at two positions in an ordered set of scores. The
range, the difference between the largest and the smallest scores, has intuitive appeal, but its
usefulness is limited because it depends only on two scores and is therefore highly variable
from sample to sample. Other measures of spread are based on differences between other
positions in the ordered data set. The interquartile range, or IQR, is one such measure.
The first quartile is that value which equals or exceeds one fourth of the scores (it is also
referred to as the 25th percentile). The second quartile is the median (the 50th percentile),
and the third quartile is the value that equals or exceeds three fourths of the scores (the 75th
percentile). The IQR is the difference between the first and third quartile. Calculating the
first or third quartile value is often awkward, requiring linear interpolation. For example,
if there are seven scores, the first quartile is the value at the 1.75 position, or three fourths
of the distance between the first and second score. Somewhat simpler to calculate, but close
to the first and third quartile, are the hinges. As an example of their calculation, and of
the interhinge distance, or H spread, consider the Royer data of Table 2.1. Then take the
following steps:

1. Find the location, or depth, of the median dM = (N + l)/2. With 28 scores,
dM = 14.5.

2. When dM has a fractional value—that is, when N is an even number—drop the
fraction. We use brackets to represent the integer; that is, [ d M ] = 14. The lower
and upper hinges are simply the medians of the lower and of the upper 14 scores.

3. Find the depth of the lower hinge, dm. This is given by

In our example, dLH = 7.5; this means that the lower hinge will be the score midway
between the seventh score (76) and the eighth score (82), or 79. The upper hinge
will lie midway between the seventh and eighth scores from the top; this is 94.5 in
the Royer data. The H spread is therefore 94.5 — 79, or 15.5.

The 5-point summary provides a rough sense of the data. The median tells us that at
least half of the Grade 2 students have a good grasp of addition. When we consider the
minimum and maximum together with the median, it is clear that there are some stragglers;
the distance from the minimum to the median is almost four times greater than that of
the maximum to the median. However, that distance could be due to just one student
with a low score. More telling is the comparison of the top and bottom fourths; 25%
of the students have scores between 95 and 100, whereas another 25% fall between 47
and 79.

Most of our readers are probably more familiar with the arithmetic mean than with
the median, and with the variance (or its square root, the standard deviation) than with the
H spread. It is worth noting that the mean and variance are more sensitive to individual
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scores than the median and H spread. If we replaced the 47 in the data set with a score of
67, the median and H spread would be unchanged but the mean would be increased and the
variance would be decreased. Because they change less when the values of individual scores
are changed, we say that the median and H spread are resistant statistics. This does not
necessarily mean that they are better measures of location and variability than the mean and
variance. The choice of measures should depend on our purpose. The median and H spread
are useful when describing location and variability. However, the mean and variance play
a central role in statistical inference.

The Stem-and-Leaf Plot. The plot in Fig. 2.2 is essentially a histogram laid on its
side. The length of each row gives a sense of the frequency of a particular range of scores,
just as in the histogram. However, this plot provides somewhat more information because
it allows us to reconstruct the actual numerical values of Table 2.1. The left-hand column
of values, beginning with 4 and ending with 10, is called the stem. For the Royer data,
to obtain a score, we multiply the stem by 10 and add the leaf, the value to the right of
the stem. Thus the first row of the plot represents the score of 47. The next row informs
us that there are two scores of 50. The next two rows contain the scores 69, 72, and 74.
The row following this indicates the score of 76 and has an H between the stem (7) and
the sole leaf (6). The H indicates that the (lower) hinge lies in the range of scores from
75 to 79. Note that it does not mean that the lower hinge is 76; the hinges and the median do
not necessarily correspond to observed scores; in this case, the actual hinge is 79, midway
between the observed scores of 76 and 82.

The stem-and-leaf plot provides a sense of the shape of the distribution, although the
gap between 50 and 71 is not as immediately evident as it was in the histogram. The trade-off
between the histogram and the stem-and-leaf plot is that the former usually provides a more
immediate sense of the overall shape whereas the latter provides more detail about the nu-
merical values. In addition, it provides summary statistics in the hinges and median, and, as
we discuss shortly, it also clearly marks outliers, scores that are very far from most of the data.

The values by which the stem and leaf should be multiplied depend on the numerical
scale. Consider a set of 30 Standardized Achievement Test (SAT) scores, the first 10 of which
are 394, 416, 416, 454, 482, 507, 516, 524, 530, and 542. Figure 2.3 presents SYSTAT's
stem-and-leaf display for the entire data set. To obtain an approximation to the actual scores,
multiply the stem by 100 and the leaf by 10. Thus the first row tells us that there is a score
between 390 and 399, actually 394. The next row tells us that there are two scores between
410 and 419; both are actually 416. Although we cannot tell the exact score from this plot,
we clearly have more information than the histogram would have provided, and we still
have a sense of the shape of the distribution.

Outliers. In both Figs. 2.2 and 2.3, H marks the intervals within which the hinges fall
and M marks the interval that contains the median. The values above the "Outside Values"
line in the Royer plot, and outside the two such lines in Fig 2.3, are called outliers. In the
Royer data, the outliers call our attention to students whose performances are far below
those of the rest of the class; these students may require remedial help. Of course, there
are other possible reasons for outliers in data sets. The students who produced the scores
of 47 and 50 may have been ill on the day the test was administered, or have performed
below their capabilities for other reasons. In some cases, outliers may reflect clerical errors.
In situations in which interest resides primarily in the individuals tested, it is important
to identify outliers and try to ascertain whether the score truly represents the ability or
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Fig. 2.3 Stem-and-leaf plot of 30 SAT scores.

where HL and Hu are the lower and upper hinges, respectively. Outer fences may be
calculated by multiplying the H spread by 3, rather than 1.5. The lower outer fence would
be 524 - 234, or 290, and the upper outer fence would be 602 + 234, or 836. Values beyond
these two points would be labeled extreme outliers.

characteristic being assessed. In studies in which we are primarily interested in drawing
inferences about a population—for example, in deciding which of two treatments of a
medical condition is superior—outliers should also be considered. If they are due to clerical
errors in transcribing data, they can distort our understanding of the results, and therefore
should be corrected. In some cases, there is no obvious reason for an outlier. It may reflect a
subject's lack of understanding of instructions, a momentary failure to attend, or any number
of other factors that distort the behavioral process under investigation. Unfortunately, there
is no clear consensus about how to deal with such data. Some researchers do nothing about
such nonclerical outliers. Most either replace the outlier by the nearest nonoutlying score,
or just drop the outlier from the data set.

Our present concern is to understand how outliers are defined. The criterion for the
outside values in Fig. 2.3 was calculated in the following steps:

1. Calculate the H spread. In Fig. 2.3, this is 602 - 524, or 78.
2. Multiply the H spread by 1.5. The result is 117.
3. Subtract 117 from the lower hinge and add 117 to the upper hinge. The resulting

values, 407 and 719, are called inner fences. Scores below 407 and above 719 are
outliers.

Equation 2.3 represents these steps: a score, Y, is an outlier if
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Fig. 2.4 Box plots of the data in Table 2.1.

Histograms and stem-and-leaf displays provide considerable information about the
shape of the distribution. A less detailed view, but one that provides a quick snapshot of the
main characteristics of the data, may be obtained by still another type of plot, which we
consider next.

2.2.3 Box Plots
Figure 2.4 presents box plots of the Royer Grade 2 addition accuracy data and of the Y data
of Table 2.1. The top and bottom sides of the "boxes" are at the hinges. The lines somewhat
above the middle of the boxes are at the medians. The lines extending vertically from the
boxes are sometimes referred to as "whiskers." Their endpoints are the most extreme scores
that are not outliers.

For the Royer data, the 5-point summary of Fig. 2.2 informs us that the hinges are at
79 and 94.5. Therefore, the H spread is 15.5, and the lower fence is 79 — 1.5 x 15.5, or
55.75. The asterisks represent outliers, scores below 55; in this example, these are the 47
and the two 50s in Table 2.1. There are no extreme outliers in the Royer data but there are
two in the Y data (scores of 31 and 32; see Table 2.1); these are represented by small circles
rather than asterisks. The bottom whisker in the Royer data extends to 69, the lowest value
in Table 2.1 that was not an outlier. Note that the whisker does not extend to the fence; the
fence is not represented in the plot.

The box plot quickly provides information about the main characteristics of the dis-
tribution. The crossbar within the box locates the median, and the length of the box gives
us an approximate value for the H spread. The box plot for the Royer data tells us that the
distribution is skewed to the left because the bottom whisker is longer than the top, and
there are three low outliers. Thus, at a glance, we have information about location, spread,
skewness, tail length, and outliers. Furthermore, we can see at a glance that the H spread
is much smaller for the Y data, that the two medians are similar, and, with the exception of
the two extreme outliers, the Y data are less variable than the Royer data. To sum up, the
stem-and-leaf and box plots provide similar information. However, the stem-and-leaf plot
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gives us numerical values of hinges, medians, and outliers, and it provides a more precise
view of the distribution, In contrast, the box plot makes the important characteristics of
the distribution immediately clear and provides an easy way of comparing two or more
distributions with respect to those characteristics.

2.3 COMPARING TWO DATA SETS

Suppose we have measures of anxiety for male and female samples. We might wish to know
whether men and women differ with respect to this measure. Typically, researchers translate
this into a question of whether the mean scores differ, but there may be more to be learned
by also comparing other characteristics of the distributions. For example, researchers at the
University of Massachusetts Medical School collected anxiety measures, as well as several
other personality measures, during each season of the year, from male and female patients
of various ages.3 We calculated the average of the four seasonal anxiety scores for each
participant in the study for whom all four scores were available. The means for the two
groups are quite similar: 4.609 for female participants and 4.650 for male participants. Nor
is there a marked difference in the medians: 4.750 for female participants and 4.875 for
male participants. However, plotting the distributions suggested that there is a difference.
Figure 2.5 contains box plots and histograms created with the data from 183 female and
171 male participants. If we look first at the box plots, it appears that the H spread (the
length of the box) is slightly greater for women, suggesting greater variability in their
anxiety scores. We further note that there are more outlying high scores for the women.
Turning to the histograms, we confirm this impression. Why this difference in variability

Fig. 2.5 Box plots and histograms of anxiety data.
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occurs and what the implications are for the treatment of anxiety, if any, is something best
left to the medical investigators. We only note that plotting the data reveals a difference
in the distributions that may be of interest, a difference not apparent in statistics reflecting
location.

This is not to suggest that we disregard measures of location, but that we supplement
them with other statistics and with plots of the data. With respect to measures of location, it
is a good idea to bear in mind that there are many situations in which the mean and median
will differ. In any salary dispute between labor and management, management may argue
that salaries are already high, pointing to the mean as evidence. Workers, recognizing that
a few highly paid individuals have pushed the mean upward, may prefer to negotiate on the
basis of a lower value, the median, arguing that 50% of employees have salaries below that
figure. Similar discrepancies between mean and median also arise with many behavioral
measures. The data in the Seasons file (Seasons folder in the CD) present one illustration.
In examining Beck depression scores for the winter season for men of various ages, we
found a difference between the mean (over seasons) of the youngest group (<40 years,
mean = 6.599) and that of a group between 50 and 59 years old (mean = 5.502). However,
the medians were identical at 4.500.

Plotting the Beck depression data for the two groups is a first step in clarifying why
the means are further apart than the medians. The upper panel of Fig. 2.6 presents box
plots for the two groups. As in all plots of Beck depression scores, most of the scores are
at the low (normal) end of the scale in the histograms for both age groups. We say that
the distributions are skewed to the right because of the straggling right-hand (upper) tails.
The explanation for the difference in means is readily apparent. The younger group has

Fig. 2.6 Box plots and histograms of winter depression scores for two age
groups of men.
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several individuals with scores above 18; these are depicted as outliers in the box plot for
that group. Some of the outliers, depicted by open circles, are extreme outliers according
to the definition of Subsection 2.2.2. No score is an outlier in the older group. Although the
medians are identical, the greater number of extreme high scores in the younger group has
moved that mean higher than the mean of the older group. The histograms in the lower panel
of Fig. 2.6 provide a complementary view of the data. Again, the more pronounced right-
hand tail in the younger group is evident. Just why there are more extremely depressed
men in the under-40 group is not clear. It may be due to chance, in which case other
samples from the same population may not exhibit the pattern of medians and means we
have noted. It may be that, for some reason, more depressed older men are not in the pool
of patients included in the study. For now, we withhold judgment about the cause of the
pattern we have observed, while noting that calculating both the mean and the median, and
plotting the data, may be more informative than calculating only one of the two measures of
location.

2.4 OTHER MEASURES OF LOCATION AND SPREAD:
THE MEAN AND STANDARD DEVIATION

Thus far, using stem-and-leaf and box plots has focused our attention on the median and
the H spread. However, there are many other statistics that can aid us in understanding
our data, and these are readily obtained from most statistical packages. For example, a
sequence of clicks ("Analyze," "Descriptive Statistics," and "Explore") in SPSS provides
the statistics in Table 2.2, summarizing the data of Table 2.1. We have already considered
several of these statistics—the median, minimum, maximum, range, and IQR. Others, such
as the confidence interval, are explained in Chapter 5. In this section, we focus on the
mean, standard deviation, and variance; although we suspect that they are familiar from
an introductory course, it may be useful to review their definitions and properties. We also
discuss the standard errors (labeled Std. Error in Table 2.2) of Table 2.1. Later in this chapter,
we consider skewness and kurtosis, statistics that summarize aspects of the shape of the data
distribution. In presenting some statistical formulas, we occasionally use a summation sign,
a capital Greek sigma, £. The use of notation provides a shorthand; if a picture is worth a
thousand words, a Greek symbol, or an equation, is often worth at least a dozen. Although
our use of notation is intended to be easily understood, readers may find it helpful to refer
to Appendix A, which reviews the algebra of summation and derives several properties of
statistics that we state in this chapter.

2.4.1 The Arithmetic Mean

The familiar arithmetic mean, symbolized by Y (Y bar), is just the sum of all scores divided
by the number of scores. Expressing this as an equation, we have

where N represents the number of scores in a sample. For example, the mean of Y = 1, 2,
3, 5, 9, 10, 12 is Y = 42/7 = 6. The widespread use of the mean reflects two advantages it
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TABLE 2.2 SUMMARY STATISTICS FOR THE DATA OF TABLE 2.1

Score Set

Royer

Y

Descriptives

Mean
95% confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

Mean
95% confidence
Interval for Mean

5% Trimmed Mean
Median
Variance
Std. Deviation
Minimum
Maximum
Range
Interquartile Range
Skewness
Kurtosis

Lower Bound
Upper Bound

Lower Bound
Upper Bound

Statistic

84.61
78.68
90.54

85.79
89.00

234.025
15.30

47
100
53

17.25
-1.326

1.124

84.61
78.62
90.59

86.99
89.00

238.099
15.43

31
95
64

6.00
-3.195

9.664

Std. Error

2.89

.441

.858

2.92

.441

.858

Note. Table is output from SPSS's Explore module.

TABLE 2.3 EXAMPLE OF MEANS BASED ON DIFFERENT SAMPLE SIZES

Clinics

Parameter

Mean
Sample size (n)

A

17.5
26

B

18.3
17

C

19.2
31

D

22.6
24

has over other measures of location. First, we can manipulate it algebraically, and, second,
it has certain properties that are desirable when we estimate the mean of the population
from which the sample was drawn. The role of the sample mean as an estimator of the
population mean is discussed in Chapter 5. In this chapter, we summarize several useful
algebraic properties. These properties can be proven by using the rules of summation in
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Appendix A. They can be demonstrated by using the preceding set of numbers, or any other
numbers you choose.

1. Adding a constant, k, to every score in the sample results in the mean being increased
by the amount k; that is, E(Y + k}/N = Y + k. For example, if we add 10 to each
of the values in the preceding set of 7 numbers, the mean increases from 6 to 16.

2. Multiplying every score in the sample by a constant, k, results in the mean being
multiplied by k; that is, E(kY)/N = kY. For example, multiplying each of the
scores in the example by 2 increases the mean from 6 to 12.

3. Perhaps most importantly, means can be combined. For example, given the means
of depression scores and the sample sizes from several clinics, we are able to
calculate the mean based on the combined data sets.

The means and sample sizes (n) for each of four clinics are presented in Table 2.3. It is
tempting to add the four means and divide by 4 to get the mean of the combined data sets.
However, because the four ns vary, this will not do. The mean for Clinic C should carry
more weight and that for Clinic B less weight in combining the means because of their
relative sample sizes. The correct approach requires us to obtain the sum of all the scores
in all four data sets and then divide by N, the sum of the ns. We obtain the sum of scores for
each clinic by multiplying the clinic mean by the number of scores for that clinic. Summing
these four sums, and dividing the grand total by N, the total number of scores, we have the
grand mean of all the scores:

We might have rewritten this slightly:

Equation 2.5 suggests that the mean can be represented as a sum of weighted values
where the weights are proportions or probabilities. The weight for Clinic A is 26/98 because
26 of the 98 depression scores come from Clinic A. To take a somewhat different example,
consider a student who has spent two semesters in College A and compiles a 3.2 grade
point average (GPA). She then transfers to College B, where she earns a 3.8 GPA for the
next three semesters. The student's overall GPA for the five semesters is calculated as in
the preceding example of the clinic means. The overall GPA is a weighted mean in which
the weights are 2/5 and 3/5:

In general, the preceding calculations may be represented by

Equation 2.6 is the formula for a weighted mean. It indicates that each distinct value of
Y is to be multiplied by its weight, p(y), the proportion of all scores with that value. All
of these products are then added together. Note that the usual expression for the arithmetic
mean Y = E Y/N is a special case of the preceding formula for the weighted mean; here
each of the N scores in the sample is given a weight of 1 / N .
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Two other properties of the mean, proven in Appendix A at the end of the book, may
help convey the sense in which it reflects the central tendency of a data set:

4. The mean is the balance point of the data in the sense that the sum of the deviations
about the mean is zero; that is, E(y — Y) = 0.

5. The sum of squared deviations of scores from the mean is smaller than the sum
of squared differences taken from any point other than the mean; that is, E(Y —
(Y + k)]2 has its smallest value when k = 0.

Every value in a set of scores is incorporated into the calculation of the mean. One
benefit of this is that, as in our example of the four clinics, means can be combined without
access to the individual values on which they are based. This strength is, however, also a
potential weakness. A few extreme scores can bias the value of the mean, and they may
result in the mean's taking on a value that does not typify the distribution of scores. As we
discussed earlier in this chapter, the median provides an alternative measure of location that
is resistant to the influence of extreme scores.

and summing the squared deviations, we have E(Y — Y)2 = 112. Then, s2 = 112/6 =
18.667. Because the variance is based on the squared deviations of the scores about the
mean, the standard deviation, the square root of the variance, is usually preferred as a
measure of spread. In the preceding example, s = \/18.667 = 4.320.

2.4.2 The Standard Deviation and the Variance
We group these statistics together because the variance is the square of the standard devia-
tion. The sample variance, S2, is the average squared deviation of scores about their mean;
that is, S2 = ^2(Y — Y)2/N. However, as most statistical packages do, we will divide
by N — 1, rather than N. The divisor N — 1 is used, rather than N, because it results in a
better estimate of the population variance. We delay further consideration of this point to
the discussion of estimation in Chapter 5. We denote this revised definition by s2, rather
than S2, to indicate that we are dividing by N — 1. Thus, our formula for s2 is

The calculation of 52 is illustrated with the following set of seven scores:

The sum of the scores is 42, and, therefore, Y = 42/7 = 6. Finding the deviations from the
mean, we have

squaring these deviations, we have



24 2 / UNIVARIATE DISTRIBUTIONS

Two properties of the standard deviation should be noted:

1. When a constant is added to all scores in a distribution, the standard deviation is
unchanged. That is, if Y' = Y + k, where k is a constant, then sy = SY . Intuitively,
each score is increased (or decreased) by the same amount so the spread of scores
is unchanged. The range and the H spread also are unchanged when a constant is
added, and it is a desirable property of any measure of variability.

2. When each score is multiplied by a positive constant, k, the standard deviation of
the new scores is k times the old standard deviation. If k is negative, multiplying
each score by k is equivalent to multiplying the standard deviation by — k; the
reason for this is that the standard deviation must always be a positive number.
You can verify these multiplication properties by multiplying the preceding values
of Y by 10, and then by —10, and recalculating both s and s2 in each case. The
new standard deviation is 43.2, 10 times the original value, and the new variance
is 1866.7, 100 times the value on the original scale.

We can summarize the properties of the standard deviation as follows:

1. l f Y ' = Y +£, then SY> =SY.
2. If Y' = kY, then sy = ksy when k > 0 and sy = —ksY when k < 0.

These properties are proven in Appendix A at the back of the book.
Although the standard deviation is less intuitive than other measures of variability, it has

two important advantages. First, the standard deviation is important in drawing inferences
about populations from samples. It is a component of formulas for many significance tests,
for procedures for estimating population parameters, and for measures of relations among
variables. Second, it (and its square, the variance) can be manipulated arithmetically in
ways that other measures cannot. For example, knowing the standard deviations, means, and
sample sizes of two sets of scores, we can calculate the standard deviation of the combined
data set without access to the individual scores. This relation between the variability within
groups of scores and the variability of the total set plays an important role in data analysis.
Both of the properties just noted will prove important throughout this book.

The main drawback of the standard deviation is that, like the mean, it can be greatly
influenced by a single outlying score. Recall that for Y = 1, 2, 3, 5, 9, 10, and 12, Y = 6
and s = 4.320. Suppose we add one more score. If that score is 8, a value within the range
of the scores, then the new mean and standard deviation are 6.25 and 4.062, a fairly small
change. However, if the added score is 20, then we now have Y =7.75 and s = 6.364. The
standard deviation has increased by almost 50% with the addition of one extreme score.
The H spread (or its fraternal twin, the IQR) is resistant to extreme scores and is often a
more useful measure for describing the variability in a data set. We again emphasize that
there is no one best measure of variability (or for that matter, of location or shape), but that
there is a choice, and that different measures may prove useful for different purposes, or
may sometimes supplement each other.

2.4.3 The Standard Error of the Mean

Among the many statistics commonly available from statistical packages is one labeled the
standard error ("Std. Error" in the SPSS output of Table 2.2), or standard error of the mean



To understand the SEM, assume that many random samples of size N are drawn from the
same population, and that the mean is calculated each time. The distribution of these means
is the sampling distribution of the mean for samples of size N. The SEM that is calculated
from a single sample is an estimate of the standard deviation of the sampling distribution of
the mean. In other words, it is an estimate of how much the mean would vary over samples.
If the SEM is small, the one sample mean we have is likely to be a good estimate of the
population mean because the small SEM suggests that the mean will not vary greatly across
samples, and therefore any one sample mean will be close to the population mean. We have
considerably more to say about the SEM and its role in drawing inferences in later chapters.
At this point, we introduced it because of its close relation to the standard deviation, and
because it provides an index of the variability of the sample mean.

2.4.4 The 5% Trimmed Mean
The SPSS output of Table 2.2 includes the value of the 5% trimmed mean. This is calculated
by rank ordering the scores, dropping the highest and lowest 5%, and recalculating the mean.
The potential advantage of trimming is that the SEM will be smaller than for the untrimmed
mean in distributions that have long straggling tails, or have so-called "heavy" tails that
contain more scores than in the normal distribution. In view of the preceding discussion
of the SEM, this suggests that in some circumstances the trimmed mean will be a better
estimator of the population mean. However, decisions about when to trim and how much to
trim are not simple. Rosenberger and Gasko (1983) and Wilcox (1997) have written good
discussions on this topic.

2.4.5 Displaying Means and Standard Errors
A graph of the means for various conditions often provides a quick comparison of those
conditions. When accompanied by a visual representation of variability, such as s, or the
SEM, the graph is still more useful. How best to graph the data should depend on the nature of
the independent variable. Although graphics programs will provide a choice, the American
Psychological Association's Publication Manual (2001) recommends that "Bar graphs are
used when the independent variable is categorical" and "Line graphs are used to show the
relation between two quantitative variables" (p. 178). We believe this is good advice. When
the independent variable consists of categories that differ in type, rather than in amount, we
should make it clear that the shape of a function relating the independent and dependent
variables is not a meaningful concept. Figure 2.7 presents mean depression scores4 from
the Seasons data set as a function of marital status and sex; the numbers on the x axis are
the researchers' codes: 1 = single; 2 = married; 3 = living with partner; 4 = separated;
5 — divorced; 6 = widowed. At least in this sample, depression means are highest for
single men and women, and for divorced women, and the means are low for those living
with a partner. Without a more careful statistical analysis, and without considering the
size of these samples, we hesitate to recommend living with a partner without marriage,
but we merely note that the bar graph presents a starting point for comparing the groups.
The vertical lines at the top of each bar represent the SEMs. Note that the SEM bars
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(SEM). The SEM is a simple function of the standard deviation:
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Fig. 2.7 Bar graph of mean depression
scores as a function of marital status and
sex.

Fig. 2.8 Line graph of subtraction response times as a function
of grade and gender.

indicate that the male data are more variable than the female data, particularly in categories
3 and 6.

Figure 2.8 presents mean times in seconds to do subtraction problems (labeled "Subrt")
from the Royer data set as a function of grade and gender. Because grade level is quantitative,
it is useful to plot the data as line curves, providing a sense of the shape of the functional
relation. It appears that response times for both genders decrease as a function of grade and
seem to level off near the sixth grade. It also appears that variability decreases with grade, as
indicated by the general decrease in the length of the SEM bars. Comparing across panels,
we see that the main difference between boys' and girls' times appears to be in the early
grades. We plotted these data in two panels because the two curves are close together and
the error bars are difficult to disentangle if presented within a single panel.

Software capable of bar and line plots usually offer several options such as the choice
of placing different plots in one panel (as in Fig. 2.7) or in separate panels (as in Fig. 2.8),
or choosing the error bars to represent standard deviations, standard errors, or confidence
intervals. The best advice is to become thoroughly familiar with the software being used,



STANDARDIZED (z) SCORES 27

and then to think carefully about which options will enable you to best communicate the
points you believe are important.

For example, if the mean is 75 and the standard deviation is 15, for a score of 90, we would
have ZQO = (90 — 75)/15 — 1; thus, this score is one standard deviation above the mean.
Statistical packages generally include an option such as SPSS's Descriptive Statistics (in
the "Analyze" menu) for calculating z scores.

Standardizing a group of scores changes the scale to one of standard deviation units, thus
permitting comparisons with scores that were originally on a different scale. Nevertheless,
there are aspects of the original distribution that remain unchanged. The following are two
things that remain constant:

1. An individual's z score has the same percentile rank as did that individual's original
score. This is because subtracting a constant, 7, from every score does not change
the rank order of the scores; nor is the order changed by dividing all scores by a
constant, s.

2. The shape of the distribution of z scores is the same as that of the original data.
Subtraction of Y shifts the original distribution and division by s squeezes the
points closer together, but shape information is preserved. If the original dis-
tribution was symmetric, the distribution of z scores will be also. However, if
the original distribution was skewed, this will also be true of the distribution of
z scores.

As we see in Chapter 5, z scores are used in drawing inferences when scores can
reasonably be assumed to be normally distributed. However, the preceding point should
make clear that z scores are not necessarily (or even usually) normally distributed. Their
distribution depends on the distribution of the scores prior to the z transformation.

Two other characteristics of z scores should be noted:

3. The mean (and therefore also the sum) of a set of z scores is zero. We stated earlier
that when a constant is subtracted from every score, the mean is also changed

2.5 STANDARDIZED (z) SCORES

An individual's score, by itself, is not very informative. If a student earns a score of 70
on a math test, is that good or bad? On one hand, if told that a score of 70 was at the
90th percentile—that it had been exceeded by only 10% of all scores—we would probably
feel that the performance was quite good. On the other hand, we would be considerably
less impressed if the same raw score fell at the 40th percentile. Although information
about percentile values tells us where a score ranks relative to other scores, it provides no
information about distances among scores. For example, a score at the 90th percentile could
be many points higher than the average or only a little higher; it depends on how variable
the scores are. Standardized, or z, scores tell us more about where the score is located
within the distribution—specifically, how many standard deviation units the score is above
or below the mean. Given a distribution of scores with mean, Y, and standard deviation, s,
the z score corresponding to a score Y is calculated as
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Standardized scores can be useful in our understanding of a data set because they
provide a way of comparing performances on different scales. For example, the mean and
standard deviation of the subtraction accuracy scores in the Royer data set were 88.840
and 11.457, respectively; the corresponding values for multiplication accuracy scores were
87.437 and 13.996. Even though a subtraction score of 70 is higher than a multiplication
score of 65, it is actually worse, relative to the other scores in the distribution. You may
verify that, for subtraction, Z70 is — 1.64 (that is, the score of 70 is 1.64 standard deviations
below the mean of the subtraction scores), whereas for multiplication, z65 is —1.60.

Standardized scores play other roles as well. In Chapter 5, we discuss how z scores pro-
vide percentile information when the population distribution has an approximate bell shape.
More immediately, in Chapter 3, we consider the correlation coefficient as an average prod-
uct of z scores. The underlying reason that z scores play a role in deriving a statistic reflecting
the relation between two variables is that such a statistic should not be influenced by differ-
ences in the scales of the two variables. This criterion can be met by converting the original
values to z scores. We show in Appendix 2.1 that the magnitudes of z scores are unchanged
if we change scales by adding a constant to each score and/or by multiplying each score by
a constant. For example, if we measure the weights of each student in a class, the z score of
an individual student will be the same whether we measure weights in pounds or kilograms.

2.6 MEASURES OF THE SHAPE OF A DISTRIBUTION

Early in this chapter, we displayed addition accuracy scores for second graders in a study
by Royer, together with an artificial data set that had the same mean and median as the
Royer data (Table 2.1 and Fig. 2.1). Table 2.2 presented those statistics, as well as several
others, for the Royer data and for the artificial set, Y. Note that not only are the means and
medians of the Y and Royer data identical, but the standard deviations are very similar.
Nevertheless, a look back at Fig. 2.1 suggests that there are differences in the shapes of
the two distributions. These differences are reflected in the skewness and kurtosis values
in Table 2.2. We will consider those values shortly, but first we consider why measures of
shape should interest us.

by that constant. In the case of z scores, Y is subtracted from each of the Y values.
Therefore the mean of the z scores is 7 — 7, or 0.

4. The variance of a group of z scores is 1.0, and, therefore, so is the standard deviation.
Because the average z score is zero, we need only square each member of the group
of z scores, sum the squared values, and divide by N — 1 to obtain the variance.
Doing so yields
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As Fig. 2.1 and the statistics of Table 2.2 indicate, measures of location and spread
may fail to fully characterize a distribution, or differences between distributions. It is useful
to have summary numbers that reflect aspects of the shape of the distribution. Although,
as with measures of location and spread, there are several measures of shape and none are
perfect, they do extend our ability to describe the distribution of data.

Improved description is not the only reason for being interested in numerical indices
of aspects of shape. Many of the most widely used inferential procedures rest on the as-
sumption that the sampled population of scores can be described by a particular equation
that describes a family of bell-shaped, or normal, curves. If the population distribution from
which a researcher samples can be adequately described by this equation, there are many
useful inferential procedures that require only information about sample means and standard
deviations. This assumption of a normally distributed population accounts for the emphasis
on the mean and standard deviation, and on the procedures that use them, in statistical texts
and research reports. In recent years, however, it has become clear that real data are rarely
normally distributed; as we noted, the Royer data and the Beck depression data are not
unusual in their departures from normality. In cases in which there are marked departures
from normality, the reliance on the mean and standard deviation may be inappropriate.
For example, although the mean and median of a symmetric population distribution are
identical, the sample mean is usually considered the better estimate of the location of the
population distribution. However, if the population distribution has long straggling tails,
the sample median, or a trimmed mean, is more likely to have a value close to that of the
center of the population distribution (Rosenberger & Gasko, 1983), and therefore it would
be a better estimate of the location of the population.

The preceding discussion points to two reasons for calculating measures of shape: we
may wish to describe the data we have collected more precisely, or to assess the validity of
the assumption of normality underlying inferential procedures under consideration. There
is a third reason for our interest in measures of shape. An important stage in understanding
the processes that underlie behavior is the construction of mathematical or computer mod-
els, models precise enough to predict the behavior in question. Comparing predicted and
observed measures of the shape of the data distribution provides additional tests of such
models.

Two aspects of shape have received the most attention from statisticians: the degree of
skewness, or departure from symmetry; and tail weight, or the proportion of data in the
extreme tails of the distribution. Indices of these two attributes of shape can be obtained
from various computer packages; those in Table 2.2 were generated by SPSS 10, but most
packages will provide the same results. We next consider the skewness and kurtosis values
in Table 2.2.

2.6.1 Skewness

Skewness statistics are designed to reflect departures from symmetry. The standard defini-
tion of skewness, generally denoted by ^/b\, is the average cubed deviation of scores from
the mean divided by the cubed standard deviation: For a sample, the formula is
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Table 2.2 reports Gl, a modified version of this formula that provides a better estimate
of the population skewness parameter. There are several points to consider. First, both the
Y and Royer skewness values are negative, indicating that the distributions are skewed to the
left. This reflects the fact that the left tails in Fig. 2.1 are considerably longer than the right
tails of their respective distributions. If the distributions had been perfectly symmetric, the
skewness values would have been zero. Second, the artificial Y data have a more negative
value than the actual Royer data. Recall that the Y data contained two scores that were
much lower than any in the Royer data; these increased the absolute value of the skewness
statistic. Third, note how much larger the absolute skewness values are than their standard
errors, the SE skewness values. The standard error of skewness, like the SE of the mean
encountered earlier, is based on the idea of drawing many random samples of size N from
the same population, and then calculating Gl for each sample. The SE is an estimate of
the standard deviation of those Gl values. A ratio of skewness (ignoring the sign) to its SE
greater than 2 suggests that asymmetry is present in the population that we sampled from,
and did not occur just by chance in the sample.

2.6.2 Midsummary Scores Based on Different Tail Cutoffs

A problem with Equation 2.10 (or the closely related G1) is that, like the mean and standard
deviation, its value may be distorted by a single outlying point. Several more intuitively
appealing alternatives have been suggested (Hill & Dixon, 1982; Elashoff & Elashoff, 1978;
Hogg, 1974). These typically involve ratios of distances among points in the left and right
tails.

Our own preference involves somewhat more (but simple) calculations and does not
provide a single number, but it does yield a comprehensive picture of the distribution that
can be easily understood (see Hoaglin, 1983, for a more extensive presentation). The basic
idea is to find midsummary scores; these are scores midway between values that cut off
different fractions of the data in the upper and lower tails of the distribution. For example,
one midsummary score might be midway between values cutting off the upper and lower
eighths of the distribution; another might be midway between values cutting off the upper
and lower fourths. If all of these midsummary scores equal the median, it indicates that the
distribution is symmetrical. If they are not all the same, the way they vary provides us with
information about how the distribution departs from symmetry.

We begin by recalling the definition of the median, presented earlier. For the Royer and
Y data, the depth of the median is

Thus, the median is the mean of the 14th and 15th scores when the scores are rank ordered.
Also, recall that the depth of the hinges was

where the brackets imply dropping any fraction. Therefore, when N = 28,

The hinge is sometimes referred to as the "fourth," because roughly one fourth of the data
will always lie below the lower fourth and one fourth will lie above the upper fourth. For
example, if dfourth is 7.5, the lower fourth value for the Royer data is the mean of the 7th and
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TABLE 2.4 LETTER VALUES AND MIDSUMMARIES FOR TABLE 2. 1 ROYER DATA

Letter

Median

F (4th)

E (8th)
D(16th)

Letter Depth

14.5

7.5
4
2.5

Lower Value

79
69
50

Midsummary

89
86.75

84.5

75

Upper Value

94.5

100
100

Table 2.4 presents the depths for fourths (F), eighths (£), and sixteenths (D), the upper
and lower values, and the midsummaries for the Royer data. Note the use of letter values
to stand for the various positions in the distribution.

If a distribution is perfectly symmetric, all of its midsummaries should equal the median
of the distribution. The midsummaries for the Royer data decline in an orderly fashion as
we move further from the median, indicating that the distribution is not symmetric, but is
skewed to the left.

2.6.3 Kurtosis

The values reported in Table 2.2 are designated G2 and are modifications of b2 derived to
improve the estimate of the population kurtosis value. Turning back once again to Fig. 2.1,
note that the Y data have a very pronounced peak in the interval 86-90, as well as several
scores in the extreme left tail. These two characteristics contribute to the G2 value for Y
that is much higher than that for the Royer data, and much larger than its own SE. G2 has a
value of zero for the normal distribution (b2 is 3 in that case, and the reported value is often
b2 — 3 to provide a simpler comparison with the normal distribution). Distributions with

8th scores from the bottom, or 79, and the upper fourth value is the mean of the 21st and
22nd scores (i.e., the 7th and 8th scores from the top), or 94.5. The midsummary score is
the mean of these upper and lower values; here it is 86.75.

We can define other, more extreme fractions of the distribution in the same way. We
can talk about upper and lower eighths or sixteenths, where, for example,

The general formula for the depth of the next fraction is

For example,

Kurtosis values reflect departures from the normal distribution, and they are generally
sensitive to the height of the peak and to the tail weight of a distribution. The standard
kurtosis statistic, b2, is defined as
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high peaks and heavy tails (relative to the normal distribution) will have positive G2 values,
whereas the G2 values will be negative for flatter, shorter-tailed distributions. Heavy-tailed
distributions are of particular interest because inferences based on the assumption of
normality have often been shown to be affected by this departure from normality. With
such data, increasing the sample size or removing extreme scores (trimming) may improve
the quality of our inferences. We elaborate on this point in future chapters. For now, we
note that high kurtosis values may signal the need for remedial action. However, kurtosis
is sensitive to more than just the tails of the distribution, and therefore interpretation is
often difficult. Good discussions of kurtosis, together with figures illustrating various
shapes and the accompanying effect on bi, are provided in several sources (e.g., Balanda &
MacGillivray, 1988; DeCarlo, 1997). These and other articles and chapters (e.g., Hogg,
1974; Rosenberger & Gasko, 1983) also suggest alternative measures of tail weight that
are often more resistant to outlying points and that are more readily interpreted.

2.6.4 A Graphic Check on Normality
Because so many commonly used statistical procedures are based on the assumption that the
data were sampled from a normally distributed population, it is helpful to have several ways
of looking at possible violations of this assumption. Skewness and heavy tails in stem-and-
leaf and box plots indicate nonnormality. However, a more direct indication is available in
various computing packages. Basically, those programs rank order the scores and then plot
their expected z scores (assuming normality) against the actual scores. Figure 2.9 presents
two such plots. The left panel presents the plot for multiplication response times for students
in the fifth through eighth grades; the right panel presents the plot for response speeds that
are obtained by taking the reciprocals of the response times. If the data are sampled from a
normally distributed population, the data points fall reasonably close to a straight line. This
is clearly not the case in the left panel. The points in the right panel, except for the lowest
speeds, do fall quite close to the line, indicating that if the population of response speeds
is not normal, it is more nearly so than the population of response times. In Chapter 8, we
present other evidence that data analyses might better be based on the speed than on the
time measure.

Investigators who have precise enough theoretical models to predict distribution func-
tions other than the normal, or who seek to fit the distribution as part of an effort to better

Fig. 2.9 Normal probability (Q-Q) plots of multiplication response
times (MULTRT) and speeds (SPEEDMRT).
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understand their data, will find the Q-Q plot options helpful. There are many options other
than the normal distribution. For each, the expected value, assuming that distribution, is
plotted against the observed values.

2.7 CONCLUDING REMARKS

The first step in any data analysis should be an examination of the data. The point seems
obvious, but our experience suggests that many, perhaps most, researchers note only means
and (sometimes) standard deviations, and, when a measure of relation between two variables
is of interest, correlation coefficients. Our view of this first step is that it should provide more
information. Researchers should plot their data, perhaps using a variety of graphic devices.
Such plots should not only involve means but also provide a sense of the distribution of data.
Alternative indices of location, spread, and shape should be obtained. This wealth of infor-
mation is available at the click of a mouse, and the payoff can be large. Multiple modes in
a histogram may suggest subpopulations differing in the effect of the independent variable.
Outliers in a box plot may suggest individuals whose performance should be examined
further, and perhaps excluded from further analyses. Differences in shape statistics for two
different experimental conditions may suggest different processes underlying behavior in
these conditions. Marked departures from the theoretical normal distribution may indicate
either that more data should be collected or that the researcher should consider alternatives
to the planned analysis that are less dependent on the assumption of normality. Knowledge
of the shape of the distribution can inform the development of theoretical models. All these,
and more, are possible consequences of exploring data sets. The present chapter introduced
some basic ways in which such exploration can be carried out. More extensive discussions
and other types of graphs may be found in many sources. In particular, we recommend the
three volumes edited by Hoaglin, Mosteller, and Tukey (1983, 1985, 1991). They provide
a clear presentation of many topics beyond the scope of this book, as well as further
discussion and examples of topics we have introduced. Other suggestions of possible ways
of plotting data, and references to useful sources, may be found in the report of the American
Psychological Association's Task Force on Statistical Inference (Wilkinson, 1999).

KEY CONCEPTS

distribution central tendency (location)
arithmetic mean median
histogram stem-and-leaf display
minimum maximum
5-point summary median
du hinges
range interquartile range (IQR)
percentile H spread
resistant statistics outliers
inner fences outer fences
extreme outliers box plot
weighted mean standard deviation
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sampling distribution standard error of the
trimmed means mean (SEM)
line graphs bar graphs
skewness standardized scores (z scores)
midsummary scores tail weight
kurtosis letter values

EXERCISES

2.1 We have scores for 16 individuals on a measure of problem-solving ability: Y =21,
40, 34, 34, 16, 37, 21, 38, 32, 11, 34, 38, 26, 27, 33, 47. Without using statistical
software, find (a) the mean; (b) the median; (c) (]T\ yi)

2; (d) ̂ . Y2; (e) the standard
deviation; and (f) the upper and lower hinges for these data. Then check your results,
using any software of your choice.

2.2 (a) Transform the scores in Exercise 2.1 to a new scale so that they have a mean of
100 and a standard deviation of 15.

(b) What will the new values of the median and hinges be?
2.3 Following are several sets of scores in ranked order. For each data set, is there any

indication that it does not come from a normal distribution? Explain, presenting
descriptive statistics and graphs to support your conclusion.
(a) X = 10 16 50 50 50 55 55 55 57 61 61 62 63 72 73 75 83 85 107 114
(b) X = 15 25 26 37 37 39 45 45 48 49 49 52 53 61 61 63 68 70 72 76
(c) X = 9 9 10 12 14 14 15 16 16 16 17 18 24 28 31 32 32 35 47 59

2.4 For Exercise 2.3 (c), find the median, fourths, and eighths (E and F letter values),
and midsummary values. Are these consistent with the conclusion you drew about
normality? Explain.

2.5 Given the five scores 37, 53, 77, 30, and 28,
(a) what sixth score must be added so that all six scores together have a mean of 47?
(b) What sixth score should be added so that the set of six scores has the smallest

possible variance?
In order to do the following two problems, you may wish to review Appendix A at
the back of the book.

2.6 Given: Y1 = 7 , Y 2 = 1 1 , Y 3 = 14, Y4 = 21, Y5 = 9, X1 = 6, X2 = 5, X3 = 7,
X4 = 1, X5 = 11, a = 3, and b = 9, find (a) £*=1 (Xi + Yi); (b) E,Li Xi

2;
(c) (£?=1 X,)2; (d) £?=i X,Y,- and (e) £?=1 (X,- + aY2 + ab\

2.7 We have the following three groups of scores:

Cond 1

7
31
16
21
35

Cond 2

11
15
40
42
45

Cond 3

3
12
15
19
4
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Given that Yij is the ith score in the j'th column, find (a) Y,1; (b) Y2.', (c) Y ; (d)

ELiE^and^E^F2,.
2.8 This problem uses the Ex2_8 data set on the CD accompanying this book. Using

any statistical package that you like, explore the distributions and their relationships
by displaying (a) histograms, (b) box plots, (c) stem-and-leaf plots, (d) descrip-
tive statistics (include the median, as well as measures of skewness and kurtosis),
and (e) probability plots. Summarize what you have learned about the distributions
of X, Y, and Z. Be sure to refer to such concepts as the location, spread, and
shapes of the distributions, in particular whether or not they seem to be normally
distributed.

2.9 Suppose we standardized X, Y, and Z (i.e., converted to standard or z
scores) in the Ex2_8 data set. How would this affect the characteristics of the
distributions?

2.10 Find the Royer multiplication accuracy and response time data (Royer Mult Data
in the Royer folder) on your CD. Using whichever descriptive statistics and graphs
you find useful, describe any differences in location, variability, and shape of male
and female distributions in the third and fourth grades. In particular, comment on
whether gender differences change from third to fourth grade. Also comment on
whether the patterns you note are the same or different for accuracy and for reaction
time (RT). Finally, consider whether outlying scores may have an influence on any
of these comparisons.

2.11 The Seasons study was carried out to see if there was variation in the physical or
psychological characteristics of the sampled population over seasons.
(a) Using the data in the Seasons file (Seasons folder in the CD), plot Beck_A (anx-

iety) means as a function of seasons for each age group (Agegrp). Use either a
bar or line graph. Which do you think is preferable? Why?

(b) Discuss the graph in part (a), noting any effects of age, seasons, or both.
(c) Box or stem-and-leaf plots reveal a skewed distribution with many out-

liers. Do you think the pattern of outliers contributed to your conclusions
in part (b)?

2.12 On the CD, in the Seasons folder, find the Sayhlth data set. This includes self-ratings
from 1 (excellent health) to 4 (fair); only three participants rated themselves in
poor health and they were excluded from this file. The file also includes Beck_D
(depression) scores for each season. It is reasonable to suspect that individuals who
feel less healthy will be more depressed.
(a) Selecting any statistics and graphs you believe may help, evaluate this hypothesis.
(b) Discuss any trends over seasons. Are there differences in trends as a function of

self-ratings of health?
2.13 Scores for 30 students on two tests may be found in the Ex2_l 3 file.

One student received a score of 41 on Test 1 and a score of 51 on Test 2. She was
delighted with the improvement.
(a) Should she have been? Explain.
(b) What score on Test 2 would be an improvement for this student, given your

answer to (a)?
(c) Graph the data for each test and describe the distributions.
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APPENDIX 2.1

Additional Properties of z Scores

Suppose we have a set of scores Y\, ¥2, ̂ 3 , . . . , Y^. The mean of these scores is Y =
]T, Yi/N and the variance is Sy = ^ (7, - Y}2/(N — 1). The z score corresponding to the
score Yf is zy, = (Yi — Y)/sy, where sy =^/sl is the standard deviation of the Y scores.

If we multiply each Y score by the constant b and add the constant a to each of the
resulting products, then the transformed scores can be expressed as Y- = a + bYj. From
the properties of the mean stated in Subsection 2.4.1, we know that adding a constant to
each score increases the mean by that constant, and multiplying each score by a constant
results in multiplication of the mean by that constant. Therefore, Y' = a + bY = a +bY.
From the properties of the standard deviation stated in Subsection 2.4.2, we know that the
addition of a constant to each score does not change the standard deviation. Subsection
2.4.2 also demonstrated that if Y' = kY, then sy> = ksY when k > 0 and sy — —ksy when
k < 0. Therefore, sa+hy = +b sy when b is positive and sa+by = —b SY when b is negative.

Putting this all together, we find that the z score of a transformed score a + bYi is given
by

Thus the z score of the transformed score is identical to that of the untransformed score if
b is positive, and it is identical in magnitude, but opposite in sign, if b is negative.



Chapter 3
Looking at Data: Relations
Between Quantitative Variables

3.1 INTRODUCTION

In Chapter 2 we considered how to graph and summarize distributions of single variables.
However, we rarely study individual variables in isolation; rather, we usually are interested
in how variables are related to one another. For example, we may wish to know if depression
varies with the season of the year, how cholesterol level changes with age, or whether math
skills are related to verbal skills in children. Because variability is always present, it is
important to emphasize that, when variables are related, they are usually not perfectly
related. Tall fathers tend to have tall sons, but because of a host of factors, the tallest fathers
do not always have the tallest sons. There is a relation between educational level and income,
but some uneducated people are wealthy and many educated people are not. Variables may
be related in ways that vary in type and degree. Therefore, the major goals of this chapter are
to discuss how to graph the data in ways that help us see how, and how strongly, the variables
are related, and to present statistics that summarize important aspects of the relation.

Also, if two variables are related, it should be possible to use information about one
variable to predict the other. For example, knowing a father's height will be useful in
predicting the height of his son. If we make lots of predictions, even though any single
prediction may not be very accurate, on the average we can predict a son's height more
accurately if we use information about the father's height than if we do not. Clearly, the
stronger the relation, the better our ability to predict. But no matter how strongly the variables
are related, we wish to make the best predictions that are possible with the information that
we have available. Equations that use information about one variable to make predictions
about a second variable are referred to as bivariate regression equations.

3.2 SOME EXAMPLES

Let's first consider two variables from the Royer data set that is on the accompanying CD—
subtraction and multiplication accuracy scores (percentage of correct answers) for third

37
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TABLE 3. 1 DESCRIPTIVE STATISTICS FOR THIRD-GRADE
SUBTRACTION AND MULTIPLICATION ACCURACY

No. of cases

Median

Mean

SE
Std. dev.
Skewness (Gl)
SE skewness

Kurtosis (G2)

SE kurtosis

Subtraction

32
89.182

87.014

2.081
11.770

-1.430

0.414

3.078

0.809

Multiplication

28
79.447

78.469

3.426

18.127

-0.835

0.441
0.813

0.858

graders. The basic statistics for each variable are given in Table 3.1, and their histograms
are presented in Fig. 3.1. For subtraction accuracy, the median and mean are both high,
89.182 and 87.014, respectively. The distribution of scores is negatively skewed, Gl =
— 1.430; most scores are high, but there is a "tail" of lower scores. For multiplication,
performance is less good, with both the median and mean approximately 10 points lower
than in the subtraction data. The distribution is again negatively skewed, but less so than for
subtraction (Gl = -0.835). The distribution is flatter; G2 = 0.813 as compared with 3.078
for subtraction. There is less of a pileup of scores toward the high end for multiplication,
and, because the scores are more spread out, measures of variability have larger values. The
standard deviation is 18.127 for multiplication, compared with 11.770 for subtraction. The
multiplication scores not only tend to be smaller than subtraction scores, but also exhibit
greater variability.

3.2.1 Scdtterplofrs

But how are subtraction and multiplication accuracy related in this sample of third graders?
We might expect that children with larger subtraction scores will also have larger multipli-
cation scores, because we know that some children are better at arithmetic than others. The
most common way of displaying the relation between two variables is to use a scatterplot,

Fig. 3.1 Histograms for subtraction and multiplication accuracy for third graders.
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Fig. 3.2 Scatterplot for subtraction and
multiplication accuracy for the 28 third-grade
children having both scores; box plots for each
variable appear on the borders.

Fig. 3.3 Scatterplot for response time and
multiplication accuracy for third grade.

which is simply a plot in which each point has coordinates corresponding to paired values
on each of the variables. The Scatterplot for the 28 third graders for whom we have both
multiplication accuracy and subtraction accuracy scores is presented in Fig. 3.2. Note that
some statistical packages, in this case SYSTAT, allow us to present the univariate distribu-
tions such as histograms or box plots along the borders of the scatterplot, so we can see
information about both the univariate and joint distributions in the same display.

What we see in the scatterplot is a tendency for larger multiplication scores to go
together with larger subtraction scores; when this happens we say there is a positive relation
or association between the two variables. If larger scores on one variable tend to go together
with smaller scores on the other, we have a negative relation. The scatterplot in Fig. 3.3,
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Fig. 3.4 Scatterplot for TC score and age.

in which mean time to answer multiplication problems is plotted against multiplication
accuracy, shows a strong negative relation, reflecting the tendency for children who are
more accurate to take less time to answer. A notable exception is the child represented by
the data point in the lower left of the display, who took the least time to answer but also had
the lowest accuracy. We can also see from the box plots on the axes that this data point is
labeled as an outlier with respect to the multiplication accuracy distribution.

We conclude this section with two additional examples of scatterplots to which we
refer later in the chapter. To obtain the first, presented in Fig. 3.4, we found the mean of
the four seasonal total cholesterol (TC) scores for each of the 431 individuals who had
scores in all four seasons in the Seasons study conducted by researchers at the University
of Massachusetts Medical School; we then plotted TC against age. Although there is a
great deal of variability in the cholesterol scores, there seems to be a positive relation
between cholesterol level and age; that is, there is a tendency for older people to have
higher cholesterol scores.

The second example uses data obtained from an elementary statistics class. Table 3.2
contains two scores for each of 18 students—the score on a math-skills pretest taken during
the first week of class and the score on the final exam. The scatterplot for the 18 data points
is presented in Fig. 3.5. Not surprisingly, the pretest and final scores covary. We would like
to be able to develop ways to summarize how the two variables are related and to use the
pretest scores to predict final exam performance. If we could find the equation that did the
best job in predicting the 18 final exam scores from the pretest scores, it could be useful in
predicting final exam performance for students who take the pretest in other classes.

3.2.2 Extracting the Systematic Relation Between
Two Variables

Scatterplots can be very useful in helping us understand how, and to what extent, the variables
are related. For example, it is quite clear in Fig. 3.3 that there is a strong tendency for the
time taken to perform multiplication to decrease as accuracy improves. However, real data
are often extremely messy. Any systematic relation that exists between the variables may be
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TABLE 3.2 STATISTICS CLASS EXAMPLE DATA

Pretest Score Final

(X)

29
34
27
34
33
31
32
33
32
35
36
34
35
29
32
34
36
25

Exam Score

(Y)

47
93
49
98
83
59
70
93
79
79
93
90
77
81
79
85
90
66

obscured by variability caused by factors such as individual differences and measurement
error. In such cases we try to see through the "noise" in order to extract the "signal," that is,
the underlying systematic relation, if one exists. This can be difficult to do by eye, especially
when there are many data points and a great deal of variability, as in the plot of cholesterol
level against age in Fig. 3.4.

Fig. 3.5 Scatterplot for pretest and final exam
scores in a statistics class.
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Fig. 3.6 Scatterplot for TC and age with
LOWESS curve.

One way of trying to get at the underlying relation is to use some type of averaging
to reduce the complexity of the display. In Chapter 2 we used the average to represent a
univariate distribution of scores. Here we can find the average cholesterol score for each age
and plot it against age. Some statistical packages assist us in understanding the relation by
fitting curves called smoothers to the data points in the scatterplot. We can use these curves
to smooth out some of the random variability by plotting a "moving average" of cholesterol
scores against age, such that the height of the curve for a particular age represents the
mean or the median of the cholesterol scores corresponding to a range of neighboring ages.
There are different types of smoothing functions available in both SAS and SYSTAT, some
of which have the desirable property of being resistant in the sense that they give less
weight to outlying data points than to those near the average. We can choose not to put any
preconditions on the curve, or we can plot the best-fitting curve of a particular type, such
as the best-fitting straight line or logarithmic function.

An example of one kind of smoothing is provided by Fig. 3.6, which displays the
scatterplot for cholesterol and age with local weighted scatterplot smoothing (LOWESS;
Cleveland, 1979) by using SYSTAT 10. For each value of X, LOWESS smoothing plots
the Y score predicted by a procedure that gives more weight to data points near the value of
X than to data points that are further away (for details, see Cook & Weisberg, 1999). The
resulting curve indicates a positive relation between cholesterol and age that approximates
a straight line.

In practice, we usually first look to see whether there is a systematic tendency for the
variables to have a straight line relation, because this is the simplest and most common
way that two variables can be related. We then look further to see whether there are also
systematic departures from linearity. The most common numerical measures that are used
to summarize the relation between two quantitative variables are those that (a) indicate how
well a straight line captures the scatterplot, and (b) describe the straight line that gives the
best fit. In Section 3.4 we introduce the first type of measure, the Pearson correlation
coefficient, which is a measure of the extent to which two variables are linearly related.
In Section 3.5 we introduce the idea of linear regression, which provides a way to find
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the straight line equation that fits the data points best, in the sense that it allows the best
prediction of one of the variables from the other. We first take a closer look at what it means
for two variables to be linearly related.

3.3 LINEAR RELATIONS

Each of the scatterplots in Fig. 3.7 contains a number of (X,Y) data points. If all of the data
points fall exactly on a straight line, we say there is a perfect linear relation between X

Fig. 3.7 Examples of scatterplots.
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and Y. This linear relation is said to be positive if the slope of the line is positive; that is, if
Y increases as X increases as in panel (a). The linear relation is negative if Y decreases as
X increases as in panel (b). In panel (c), there is a systematic increase in 7 as X increases.
However, not all the data points fall on the straight line that seems to best capture this
systematic increase, although they cluster closely around it. In this case, we say that there
is a strong positive linear relation between X and Y but not a perfect one. In panel (d) there
is less clustering around the line, indicating a weaker linear relation. In panel (e) there is a
linear component to the relation between X and Y; that is, the best-fitting straight line seems
to capture part of how Y and X are related. However, not only do the points fail to cluster
closely around the line, but also there seems to be a systematic nonlinear component to the
relation. In panels (f) and (g), there is no overall linear relation between X and Y; no straight
line passing through the center of either "cloud" of data points is better at characterizing
the overall relation between X and Y than a line parallel to the X axis. In (g), however, X
and Y are positively related for small values of X but negatively related for large values,
whereas in (f) there does not seem to be any indication of a linear relation for any part of
the X distribution.

A straight line can be represented by an equation of the form

where bo and b\ are constants, because all points (X, Y) that satisfy this linear equation
fall on a straight line. The constant b\ is called the slope of the line and indicates the rate
of change of Y with X. We can see in Equation 3.1 that, for every one-unit change in X, Y
changes by b\ units. The constant b0 is the Y intercept, the value of Y when X is equal to
zero. We show later that the regression line for Fig. 3.4 that best predicts cholesterol level
from age is

cholesterol level = 171.702 + 0.945 x age

For this line, the slope is 0.945; that is, the predicted cholesterol level increases by 0.945
units for each additional year of age.

3.4 THE PEARSON PRODUCT-MOMENT CORRELATION
COEFFICIENT

3.4.1 Obtaining the Correlation Coefficient

The Pearson correlation is a measure of the extent to which two quantitative variables are
linearly related. We indicated in the previous section that the more tightly the data points
are clustered about the best-fitting straight line, the stronger the degree of linear relation.
The notion of clustering around a straight line leads directly to a useful measure of linear
relation. However, in developing this idea further, we consider standardized or z scores
instead of raw scores. When raw scores are used, the appearance of the scatterplot and the
apparent degree of clustering around the best-fitting straight line depends on the units in
which X and Y are measured. This is not true for z scores.
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In Section 2.5 we indicated that each member of a set of scores X1, X2 , X3 , .... XN

can be converted to a z score by using

where X is the mean of the set of scores and sx is the standard deviation. The z score that
corresponds to a raw score just tells us the number of standard deviations the raw score is
above or below the mean of the distribution. In Section 2.5 we showed that the mean of a
complete set of z scores is zero, and that the standard deviation and variance both have a
value of 1. An equation that will be useful in understanding the correlation coefficient is

This equation follows from the fact that the variance of a set of z scores is 1 and the
expression for this variance is

because zx, the mean of a set of z scores, is equal to 0.
If X and Y are positively related, larger scores in the Y distribution will tend to be

paired with larger scores in the X distribution and smaller scores in the Y distribution
will tend to be paired with the smaller Xs. This means that large positive values of zy

will tend to be paired with large positive values of zx, small values of zy will tend to be
paired with small values of zx, and large negative values of ZY will tend to be paired with
large negative values of zx. It can be shown (see Appendix 3.1) that, if there is a perfect
positive linear relation between X and Y, ZY is exactly equal to zx, and if there is a perfect
negative linear relation, zy is exactly equal to —zx. If there is no linear relation between
X and Y, there is no overall tendency for larger zy scores to be paired with either larger
or smaller zx scores, or for positive zy scores to be paired with either positive or negative
zx scores.

The Pearson product-moment correlation coefficient for two variables, X and Y, is
defined as

The letter r is used to denote the Pearson correlation coefficient in a sample, and p (the Greek
letter rho) denotes the correlation in a population. The correlation coefficient is basically
the average of the cross products of the corresponding z scores (it would be exactly the
average if we divided by N instead of N — 1 when we obtained the standard deviations of
X and Y). We can think of rxy as a measure of how similar, on the average, ZYi, is to zxi,.. If
there is a perfect positive relation between X and 7, then for each data point (X,Y), ZY = zx .
so that the correlation is
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from Equation 3.3. If there is a perfect negative relation, ZY = -zx, so that rXY = — 1. If
there is no linear relation between Y and X, there will be no tendency for Zyi, and zXi to
have the same or different signs. Their cross products zxi, ZYi, should be equally likely to be
positive (when zXi and zyi have the same sign) or negative (when zXi and zyi have opposite
signs). Therefore we would expect the cross products to sum to 0, so that rXY = 0.

In summary, rXY provides a numerical measure of the degree to which X and Y are
linearly related. It takes on a value of +1 when there is a perfect positive linear relation,
a value of — 1 when there is a perfect negative linear relation, and a value of 0 when there
is no overall linear relation between X and 7. Intermediate values provide measures of
the "strength" of the linear relation. Going back to the examples we introduced earlier
in the chapter, for multiplication and subtraction accuracy for third graders (Fig. 3.2),
r = .594; for multiplication accuracy and the time taken to answer (Fig. 3.3), r = — .487; for
cholesterol level and age (Fig. 3.4), r = .286; and for final exam and pretest score (Fig. 3.5),
r = .725.

3.4.2 Interpreting the Correlation Coefficient

Although it is easy to calculate a correlation coefficient, we must be cautious in how we
interpret it. Rodgers and Nicewander (1988) discussed 13 different ways to look at the
correlation coefficient, and others (e.g., Falk & Well, 1996, 1998; Rovine & Von Eye, 1997)
have considered additional interpretations. Although we have a good deal more to say about
the correlation coefficient in Chapter 18, here we list some basic things to keep in mind
when interpreting a correlation coefficient.

First, how large must a correlation coefficient be in order to indicate that there is a
"meaningful" linear relation? Cohen (1977, 1988) discussed guidelines according to which
rs of .10, .30, and .50 correspond to small, medium, and large effects. Cohen arrived at
these values by noting the sizes of correlations encountered in the behavioral sciences and
by considering how strong a correlation would have to be before the relation could be
perceived by an observer. These values should be considered only as loose guidelines and
not as criteria for importance. As we discuss later, in some contexts, even small correlations
might be of great practical significance. We should also emphasize that unless the sample
is large, the correlation may be quite different in the sample than in the population from
which the sample was selected. Later we discuss what the sample allows us to say about
the population.

Second, we must always keep in mind the fact that the Pearson correlation coefficient
is a measure of strength of the linear relation between X and Y. The correlation coefficient
is not a measure of relation in general, because it provides no information about whether
or not there is a systematic nonlinear relation between the two variables. As can be seen in
panels (e) and (g) of Fig. 3.7, two variables can have a systematic curvilinear component
to their relation in addition to, or instead of, a linear one. Therefore, finding a correlation
of 0 does not necessarily mean that the variables are independent. The data points in all
four panels of Fig. 3.8 (see Table 3.3) have identical correlations and best-fitting straight
lines. However, whereas panel (a) displays a moderate linear relation with no curvilinear
component, panel (b) displays a strong curvilinear relation that has a linear component. It
cannot be emphasized strongly enough that, to understand how variables are related, one
must plot them and not simply rely on statistics such as the correlation coefficient or the
slope of the best-fitting straight line.
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TABLE 3.3 FOUR HYPOTHETICAL DATA SETS

Case No.

1
2
3
4
5
6
7
8
9

10
11

a-c

X

10.0

8.0
13.0
9.0

11.0
14.0
6.0
4.0

12.0
7.0
5.0

a

Y

8.04
6.95
7.58
8.81
8.33
9.96
7.24
4.26

10.84
4.82
5.68

Data Set

b
Variable

Y

9.14
8.14
8.74
8.77
9.26
8.10
6.13
3.10
9.13
7.26
4.74

c

Y

7.46
6.77

12.74
7.11
7.81
8.84
6.08
5.39
8.15
6.42
5.73

d

X

8.0
8.0
8.0
8.0
8.0
8.0
8.0

19.0
8.0
8.0
8.0

d

Y

6.58
5.76
7.71
8.84
8.47
7.04
5.25

12.50
5.56
7.91
6.89

Note. From "Graphs in Statistical Analysis," by F. J. Anscambe, 1973, American Statis-
tician, 27, pp. 17-21. Copyright 1973 by The American Statistical Association.

Fig. 3.8 Scatterplots for the data sets in Table 3.3.
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Third, expressions for the correlation coefficient are symmetric in X and Y. The cor-
relation of X with Y is the same as the correlation of Y with X. The correlation between
cholesterol level and age is the same as the correlation between age and cholesterol level.

Fourth, although a nonzero correlation coefficient indicates that there is a linear com-
ponent to the relation between two variables, it generally doesn't describe the best-fitting
straight line. Figure 3.9 displays several scatterplots that all have the same correlation even
though the slopes of the best-fitting straight lines vary considerably. We show later on that
the correlation between X and Y depends not only on the slope but also on the standard
deviations of X and Y.

Fifth, the Pearson correlation coefficient is not a resistant statistic. It can often be
changed considerably by the presence of just a few extreme data points. In Fig. 3.10 we
used SYSTAT to display the influence plot for multiplication and subtraction accuracy
for the sample of third graders. The influence plot is just a scatterplot in which each case
is plotted as an open or filled circle that can vary in size. The size of the circle indicates
how much the correlation would change if that point was omitted, and whether the circle is
filled or open indicates whether omitting the data point would make the correlation larger or
smaller. The very large open circle in the left of the plot indicates that the corresponding data
point has a large effect on the correlation. If we omit this one data point, the correlation drops
from .594 to .388. It is important to identify these influential data points because we would
have less confidence in the value of a correlation coefficient if it was strongly influenced by
a few extreme data points. There are measures of correlation that are more resistant than the
Pearson coefficient because they diminish the importance of extreme scores. An example
is the Spearman rho coefficient, for which the X and Y scores are first ranked, and then
the ranks are correlated. We have more to say about such measures in Chapter 18.

Sixth, because the correlation coefficient is defined in terms of z scores, the size of the
correlation coefficient does not change if we change the units in which we measure either
of the variables by a linear transformation (i.e., if we multiply each score by a constant or
add a constant to each score, as when we change units from ounces to kilograms, or from
degrees Fahrenheit to degrees Celsius - see Appendix 2.1, in which we showed that such
transformations do not change the sizes of the z scores). It follows from this that knowing
the correlation between two variables tells us nothing about the mean or variance of either
variable.

Seventh, because correlation is a measure of strength of relation, it is tempting to
consider the correlation coefficient as a measure of the extent to which changes in X cause
changes in Y. However, correlation does not imply causation—in fact, no statistic implies
causation. Just because two variables are correlated does not necessarily mean that they
are causally related. For example, the fact that in elementary school there is a positive
correlation between shoe size and verbal ability does not mean that foot growth causes
enhanced verbal ability or vice versa. Rather, the correlation follows from the fact that both
physical and mental growth occur as children get older.

3.4.3 Some Other Ways of Expressing the Pearson
Correlation Coefficient

The value of the Pearson correlation coefficient can always be obtained from Equation 3.4.
However, other expressions are often encountered. If we substitute the expressions for
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Fig. 3.9 Scatterplots with the same r values but different values of sx and SY .
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Fig. 3.10 Influence plot for third-grade multiplication and subtraction
accuracy.

z scores (Equation 3.2) into Equation 3.4, we get

where

is the sample covariance of X and Y.
Although the covariance, SXY (i-e., the amount of variance shared by X and 7), plays

an important role in statistics, it is not usually employed as a measure of relation because
it changes value when we change the units of measurement. For example, if we measured
the heights and weights of a number of people and then found the covariance of height and
weight, the covariance would be 12 times larger if we measured height in inches than if
we measured it in feet. The correlation coefficient would be the same in either case. The
correlation can be thought of as the standardized covariance; that is, the covariance of the
z scores.

Another expression that is commonly encountered in elementary textbooks is the so-
called computational formula for the Pearson correlation coefficient:

The computational formula gives the same result as Equation 3.4, within rounding error,
but it is less "transparent" than Equation 3.4; that is, the interpretation of the expression
is less readily apparent. However, it has the advantage of allowing simpler calculations
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and less rounding error if it is used to calculate the correlation by hand or with a simple
calculator. Although computational ease may have been an important factor in the past when
researchers used simple calculators, it is not today, when almost all serious computation is
performed by computer, and even inexpensive hand calculators can calculate the correlation
at the press of a button. Therefore, we generally do not deal with computational formulas
in this book, but instead concentrate on conceptual (or definitional) formulas that are
expressed in ways that make their meanings most apparent.

3.5 LINEAR REGRESSION

3.5.1 Predicting Y From X With the Least-Squares
Criterion

How do we find the best-fitting straight line for a set of data points (X, Y) represented in
a scatterplot? What we usually mean by the "best-fitting straight line" is the line that best
predicts the value of Y corresponding to each value of X, the linear regression equation.
The linear regression equation that predicts Y from X has the form

where Yi, is the predicted value of Y when X — Xi, and bo and b\ are constants chosen in a
way that results in the smallest amount of prediction error. Before we can find bo and b\ we
must decide what to use as the measure of error. If, on a given trial, we predict that Y has
a value of Yi and it actually has a value of Yi, then the error in prediction is ei = Yi — Yi.
The mean of these errors for a set of N predictions is not a good index of error because
positive and negative errors cancel, so the mean error could be small even if there were large
positive and negative errors. An index of error that is often used is the mean of the squared
prediction error. This measure is equal to zero only if prediction is perfect for the entire
set of data points and it is also easy to work with mathematically.1 Regression equations
that minimize the mean of the squared errors are said to be optimal or best according to the
least-squares criterion.

Thus, to find the best linear regression equation according to the least-squares criterion,
we must find values of b0 and b1 that minimize the mean of the squared errors, MSE, where

It can be shown (see Appendix 3.2) that these values are given by

Applying Equations 3.8 and 3.9 to the statistics class data in Table 3.2 allows us to find
the linear equation that best predicts final exam performance from pretest score. Substituting
into the expressions for b1 and b0, or obtaining the output from a computer package, when
we regress Y on X (i.e., when we predict Y from X), we find that the regression equation is
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A difference of 1 point on the pretest translates into a predicted difference of about 3.6
points on the final exam. Our prediction for the final exam score of a student who scored
30 on the pretest would be -36.08 + (3.55)(30) = 70.42, or 70, rounding to the nearest
integer.

Note that in the general case for which sx = sy, the regression equation and the corre-
lation coefficient tell us different things about the linear relation. In Equation 3.6, X and Y
play different roles: X is the predictor variable and Y is the criterion variable, the vari-
able that is predicted. In contrast, the correlation coefficient is symmetric in X and Y; both
variables are treated in the same way. The regression equation describes the straight line
that is best for predicting Y from X, whereas the correlation coefficient serves as a measure
of the extent to which Y and X are linearly related. If we solve for r in Equation 3.8, we get

From this equation we can see that the same correlation may arise from different com-
binations of the slope and the standard deviations of X and Y. For example, both of the
combinations b1 = 1, sx = 3, sy = 5 and b1= .5, sx = 6, sy = 5 will correspond to rs
of .6. Because of this, we have to be extremely cautious if we wish to compare the relation
between X and Y in different groups. Two groups that have the same slope may have differ-
ent correlations, and two groups that have the same correlation may have different slopes.
If we are primarily concerned with the rate of change of Y with X, we should compare the
slopes, not the correlation coefficients.

We conclude this section by pointing out that there are several additional ways of
writing the regression equation that can be useful. Substituting the expression for bo in
Equation 3.9 into Equation 3.6 yields

Note that, in Equation 3.11, if Xi = X, then Y = Y. This tells us that the least-squares
regression line always must pass through (X, Y). In addition, if we subtract Y from both
sides of Equation 3.11 and divide both sides by sy , we get

or

the z score form of the regression equation. Note that the regression line that predicts zy

has slope r and passes through the origin.

3.5.2 Predicting X From Y

So far, we have discussed the regression equation for predicting Y from X that is optimal
in the sense that it minimizes £](Y — Y)2/N; see panel (a) of Fig. 3.11. Exactly the same
reasoning can be used to find the regression equation for predicting X from Y. In this case,
the index of error that is minimized is E (Xi — X i )

2 /N, the mean of the squared prediction
errors when Y is used to predict X. These prediction errors are indicated in panel (b) of
Fig. 3.11.
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Fig. 3.11 Graphical representation of (a) the regression of Y on X and (b) the regression
of X on Y.

The expressions that have been developed for predicting Y from X can be transformed
into expressions for predicting X from Y by simply interchanging X and Y. For example,

or

Of course, whether it makes any sense to predict X from Y depends on the nature of the
variables. It is unlikely that we would want to predict pretest scores from final exam scores
because pretest scores are available first.

Figure 3.12 indicates how the regression lines that best predict ZY from zx and zx from
zy differ from one another. Imagine that the elliptical "envelope" that has been drawn in
the figure to represent an imperfect linear relation contains a large number of data points.
Imagine further that the ellipse is divided into a number of narrow vertical strips. Notice
that even though the envelope is symmetrical about a straight line with a slope of 1 drawn
through the origin (i.e., ZY = zx), the mean value of ZY associated with any given value
of zx is closer to 0 than zx is. The line that best fits the points representing the mean
values of ZY in the vertical strips will approximate ZY = rzx, the regression equation2 for
predicting ZY from zx.

In contrast, if we divide the ellipse into a large number of narrow horizontal strips,
the line that best fits the mean values of zx in the strips will approximate the regression
equation for predicting zx from zy, zx = rzY. It should be apparent from Fig. 3.12 that
these two regression lines are not the same.
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Fig. 3.12 Regression lines for predicting (a) ZY from zx and (b) zx

from ZY when there is an imperfect relation between X and Y.

3.6 THE COEFFICIENT OF DETERMINATION, r2

The square of the correlation coefficient, r2, called the coefficient of determination, is
another commonly encountered measure of strength of linear relation. The r2 measure is
usually defined as "the proportion of the variance in Y accounted for by X.,.3 What this
actually means is that r2 is the proportion by which prediction error is reduced if the
regression equation is used to predict the Y scores instead of using Y to predict each of the
Ys. The specific interpretation is as follows:

1. If we do not use any information about X in predicting the corresponding value of
Y, the best prediction for each Y can be shown to be Y, the mean of the Y scores.
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In this case, the sum of the squared prediction errors for the set of NY scores is the
total variability in the Y scores, the sum of squares of Y, SSy = Ei (Yi —Y)2.

2. If we use the regression equation to predict the Ys, the sum of the squared prediction
errors is SSerror

 = E (Yi - Yi)
2, where the Yis are obtained by using the regression

equation. Substituting the expression for Yi, from Equation 3.11 and simplifying,
we can show the sum of the squared prediction errors to be SSerror = (1 — r2 )SSy.

3. The amount by which prediction error is reduced when the regression equation is
used is, therefore, SSregression = SSY - SSerror = SSY - (1 - r2 ) SSY = r2 SSY .
Therefore, the proportion by which prediction error is reduced (or the proportion
of the variability in Y accounted for by the regression on X) is

Therefore, r2 is simply a measure of how well the linear regression equation fits
the data. According to the Cohen (1977, 1988) guidelines introduced in Subsection
3.4.2, r2 values of .01, .09, and .25 correspond to small, medium, and large linear
relations, respectively.

For the statistics class data, the correlation between the pretest and the final exam score
is .725, so the coefficient of determination is (.725)2 = .53. This tells us that the variability
of the Y scores about the regression line is (1 —.53) = .47 of their variability about their
mean. Therefore, if we use the regression equation to predict Y instead of using Y, we will
reduce the squared prediction error by approximately one half. However, measures of the
actual variability about the regression line such as the variance of estimate (basically, the
mean of the squared prediction errors) or its square root, the standard error of estimate,
provide more useful information than either r or r2 about the accuracy of the predictions
of Y based on X. Such measures are available in most statistical software and are discussed
further in Chapter 19.

We conclude this section by noting that r2 has frequently been misinterpreted, and
that some of these misinterpretations have resulted in inappropriate claims being made. For
example, the statement has been made in a number of psychology textbooks that children
achieve about 50% of their adult intelligence by the age of 4 years. The origin of this
statement can be traced to a misinterpretation of the data from a longitudinal study that
found IQ scores at age 17 to have a correlation of about .7 with IQ at age 4. The resulting
r2 of about .5 (or 50%) provides an indication of how predictable adult IQ is from IQ at age
4, using a linear equation. However, it says nothing about the relative levels of intelligence
at age 4 and age 17, and therefore provides no evidence for the statement.

3.7 INFLUENTIAL DATA POINTS AND RESISTANT MEASURES
OF REGRESSION

Although the least-squares procedures described here are easy to work with, they produce
best-fitting straight lines that are sensitive to the effects of extreme scores. All of the major
statistics packages provide diagnostics that allow us to identify unduly influential data points
and assess how much the regression statistics would change if the extreme data points were
not present. We describe these diagnostics in Chapter 19. There are also "robust" regression
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procedures that provide better fits to the majority of data points than ordinary least-squares
procedures because they are resistant to the effects of extreme data points. They are resistant
because they somehow reduce the influence of extreme scores by trimming them or giving
them less weight, by using ranks, or by using more resistant measures of prediction error
such as the median of the squared errors or the mean of the absolute errors. Some of
these procedures are discussed by Hoaglin et al. (1985), Neter, Kutner, Nachtscheim, and
Wasserman (1996), and Rousseeuw and Leroy (1987).

3.8 DESCRIBING NONLINEAR RELATIONS

In the past few sections, we focused on describing the linear component of the relation
between two variables, and on measures of its strength. Indeed, correlation coefficients
and regression slopes are by far the mostly commonly reported measures of relation for
quantitative variables. This is reasonable, given that an approximately linear relation is
the simplest and most common way that two variables can be related. However, there will
certainly be situations in which it is apparent from the scatterplot and the smoothers that the
relation has a nonlinear component. How are we to describe and measure the strength of
this component or to describe the overall function that best seems to fit the data? We address
this question when we discuss trend analysis in Chapter 10, and again after we extend our
knowledge of regression in Chapter 20.

3.9 CONCLUDING REMARKS

When we explore how two quantitative variables are related in a sample of data, the first
step is to plot the data and look at both the scatterplot and the univariate distributions.
Inspecting the scatterplot by eye and using smoothers, we can try to extract, and describe,
any underlying systematic relation. We can use the Pearson correlation as a measure of the
strength of linear relation and the regression equation as a description of the straight line
that allows the best prediction of one variable from the other. We can then try to determine
if there are any systematic departures from linearity, and, if so, we can describe them. Later
we discuss how to assess the fit of various kinds of functions to the scatterplot.

We must also consider the variability in the distribution of data points. The processes
that determine how the variables are related may not be the same for all cases. Separate
clusters of points may suggest the presence of subpopulations for which the variables
are related differently or have different means (more about this later). Outliers or "ex-
treme" data should be examined closely because they may have a very large influence on
statistics such as the correlation or regression slope. Extreme data points may come from
subjects who perform in ways that are qualitatively different from the majority of sub-
jects. Extreme data points may also arise because of errors in data collection or copying.
If there are a few extreme outliers, we should examine our data records for errors, and
we may wish to describe the data both when the extreme scores are included and when
they are not. Statistical packages make it easy to identify outliers and to perform these
analyses.

As Wilkinson (1999) states in his guidelines for statistical methods in psychology
journals:
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As soon as you have collected your data, before you compute any statistics, look at your data. Data
screening is not data snooping. It is not an opportunity to discard data or change values to favor
your hypotheses. However, if you assess hypotheses without examining your data, you run the risk
of publishing nonsense Computer malfunctions tend to be catastrophic: A system crashes; a file
fails to import; data are lost. Less well-known are the more subtle bugs that can be more catastrophic
in the long run. For example, a single value in a file may be corrupted in reading or writing (often
the first or last record). This circumstance usually produces a major value error, the kind of singleton
that can make large correlations change sign and small correlations become large. (p. 597)

Finally, it should be noted that, in Chapters 2 and 3, we have been concerned with
describing samples of data. We have yet to address the issue of what we can infer about the
populations from which these samples were selected. In Chapter 4, we begin to develop a
framework for statistical inference that will allow us to do this.

KEY CONCEPTS

scatterplot positive relation
negative relation smoothers
resistant measures Pearson correlation coefficient
linear relation linear equation
slope Y intercept
influence plot covariance of X and Y
conceptual formula computational formula
linear regression equation least-squares criterion
predictor variable criterion variable
coefficient of determination the sum of squares of Y, SSy
variance of estimate standard error of estimate

EXERCISES

(a) Draw a scatterplot.
(b) What is the correlation between Y and X?
(c) What is the least-squares equation for the regression of Y on X?
(d) What is the proportion of variance in Y accounted for by X?
(e) Find the equation for the regression of X on Y.
(f) What is the proportion of the variance in X accounted for by 7?

3.1 Given the following data,

X

1
2
3
4
5
6

Y

11
3
7
9
9

21
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3.2 Given the following data for three variables X, Y, and W,

W

12
8
4

17
18

X

4
6

11
12
13

Y

7
9
3

14
16

and, using a statistical package, find the correlations among W, X, and Y. Standardize
the variables and recompute the correlations. They should be identical. Why?

3.3 (a) Using the Royer data set on the CD, find the correlation between multiplication
accuracy (MULTACC) and the time taken to solve multiplication problems (MUL-
TRT) for third graders.

(b) Generate the influence plot for these variables.
(c) What is the correlation coefficient if the single most influential point is removed?

3.4 (a) A psychologist is interested in predicting Y from X in two distinct situations and
finds the following results:

Sit. 1

b1 = 38.41
SY =512.31
sx = 2.00

Sit. 2

b1 = 0.25
SY = 8.44
sx = 23.17

In which situation is the correlation between X and Y higher?
(b) You are given a large number of data points (X,Y) and find that the correlation

between X and Y is rxy = 0.70. You now add 10 to each of the X scores. What
happens to the correlation coefficient (i.e., what is the new correlation between Y
and the transformed X)?

(c) You have the same situation as in (b)—except instead of adding 10 to each of the
X scores, you multiply each of the Y scores by 3. Now what is the value of the
correlation coefficient?

(d) Now perform both operations: multiply each Y score by 3 and add 10 to the product.
What happens to the correlation coefficient?

3.5 For parts (a)—(c), indicate whether the use of the correlation coefficient is reasonable.
If it is not, indicate why not.
(a) A social critic has long held the view that providing enriched programs for disad-

vantaged students is a waste of money. As evidence to support this position, the
critic describes the following study:

Two thousand 8-year-old children were selected from economically deprived homes, given
a battery of mental tests, and then randomly assigned to either Group 1 or Group 2. The
1,000 children in Group 1 entered special enriched programs, whereas the 1,000 children
in Group 2 continued in their regular classes. After 3 years, another battery of mental tests
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was given to all the children. It was found that the correlations between children's IQ scores
at age 8 and their IQ scores at age 11 was just about the same in Group 1 as it was in
Group 2.

Our critic claims that finding very similar correlations in the enriched and regular
groups proves that the enriched classes are ineffective in improving IQ.

(b) The research division of the Old Southern Casket and Tobacco Corporation has
just released the results of a study that they argue is inconsistent with the nega-
tive health claims made against cigarette smoking. For a large sample of heavy
smokers, a substantial positive correlation was found between the total number of
cigarettes smoked during a lifetime and length of life, a result they claim leads to
the conclusion that cigarette smoking is beneficial to health.

(c) It is found that, for eighth-grade children, there is a fairly strong negative correlation
between the amount of television watched and school performance as measured
by grades. It is claimed that this finding constitutes proof that watching television
interferes with intellectual ability and has a negative effect on the ability to focus
attention. Does this argument seem valid?

3.6 In a large study of income (Y) as a function of years on job (X), the data for 2,000
men and 2,000 women in a certain profession are

Mean
s2

s2

rxY

Men

Income (Y)

80
324

.333

Years (X)

15
100

Women

Income

76
289

.235

Years

10
25

Note that income is recorded in thousands of dollars.

(a) Find byx (i-e., bIncome,Years, the regression coefficient for the regression of Income
on Years of Service) for men and for women. What is your best estimate of the
amount by which salary increases per year for males and females? Is this result
consistent with differences in the correlations? Explain.

(b) Using separate regression equations for men and women, what salary would you
predict for men and women with 10 years of experience? With 20 years of expe-
rience?

3.7 Using the Seasons data file on the CD, correlate height with weight, and then correlate
height with weight separately for men and women. How might you account for the
discrepencies among the three correlations?

3.8 SSerror = E (Yi - Yi )2 is the sum of the squared errors in prediction for a set of N data
points. Starting with Equations 3.10 and 3.11, show that SSemT = (1 — r2)SSy =
SSy — b2SSx, where r is the correlation of X and Y, b\ is the slope of the regres-
sion of Y on X, SSY = E (Yi - Y)2, and SSX = £ (Xi– X)2.

3.9 Given that rXY = .60, and starting with Equations 3.10 and 3.11, find the correlations
between (a) Y and Y, (b) Y and Y - Y, and (c) Y and Y - Y.
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APPENDIX 3.1

Proof that zY = ±zx when Y= b0 + b1 X

We want to show that if X and Y have a perfect linear relation, ZY = zX when the relation
is positive and zY = –zx when the relation is negative.

For any data point (X, 7) that falls on a straight line, we have Y = b0 + b1 X. Substitut-
ing into the usual expressions for the mean and standard deviation and simplifying, we have
Y = b0 + b\X and SY = ±b1sx, with sy = +b1sx when b\ is positive and sy = –b1sx

when b\ is negative (see Appendix 2.1). Therefore, if there is a perfect linear relation
between X and Y,

APPENDIX 3.2

Where Do the Expressions for bo and b1 Come From?

Here we sketch out the procedures that produce Equations 3.8 and 3.9, although knowing the
details is not necessary for understanding any of the rest of the chapter. Finding expressions
for b0 and b1 , the Y intercept and slope of the regression line, is just a minimization problem
in calculus—we want to find the equation of the straight line that minimizes prediction error.
We first take partial derivatives of the error measure (the mean of the squared prediction
errors, MSE) with respect to both bo and b1; that is, we find

Setting these partial derivatives equal to zero and simplifying, we obtain a set of what are
called normal equations:

Solving the normal equations for b1 and b0 yields Equations 3.8 and 3.9. Note that b1 can
be expressed in any of a number of equivalent ways, including

where SXY is the covariance of X and Y, SSY = EN
i=1 (Yi - Y)2, SSX = EN

i=1 (Xi–X)2

and sy and sx are the standard deviations of Y and X, respectively.



Chapter 4
Probability and the
Binomial Distribution

4.1 INTRODUCTION

In a study of long-term memory for childhood events, N. A. Myers and Chen (1996)
tested 20 teenagers who had previously participated in an experiment at the University of
Massachusetts as 3- to 5-year-old children 12 years earlier. In the earlier experiment, the
children had been exposed to a number of objects. The teenagers were presented with four
objects, only one of which they had seen as children. They were asked to decide which of
the four objects they had seen 12 years earlier.1 At one level, the question is whether the
teenagers remember the earlier event. But just what does this mean? We need to frame this
question more precisely if we are to use the data to answer it. A more precise statement
of the question requires us to place the experiment in a clear conceptual framework, one
which we introduced in Chapter 1.

We begin by noting that the 20 teenagers may be viewed as a sample from a population
of participants of similar age and experience. Accordingly, the responses in the experiment
are viewed as a sample of responses in the population. The researchers are interested in
whether the responses of the 20 participants provide evidence of memory in the population.
We restate this question as, Is the proportion of correct responses in the population greater
than we would expect by chance? We are closer to the goal of stating the question precisely
enough that we may use the data to answer it, but now we need a definition of "chance."

We can think of chance performance as that which would occur if none of the teenagers
retained any memory of the objects they were exposed to 12 years earlier. When they were
required to choose one of the objects, we assume they would simply "guess" in such a way
that each of the four objects would be equally likely to be chosen. Therefore, assuming
chance performance, the probability of a correct choice is 1/4, or .25. If the experiment was
performed many times, each time employing a new random sample of 20 teenagers from
a population that had experienced the correct object in childhood, we would expect that,
"on the average," 5 of the 20 would choose correctly. Note that this assumption of chance

61
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responding does not mean that in any one replication of the experiment there will be exactly
five correct responses, but that the average number of correct responses will be five if the
experiment were carried out many times.

However, the experiment is performed only once. Given that the probability of a correct
choice is .25, finding exactly 5 correct responses would be consistent with the assumption
of chance responding. But suppose 6 of the 20 teenagers responded correctly. Would this
demonstrate that the probability of a correct response in the population was greater than .25?
Not necessarily. It is at best weak evidence in favor of memory because 6 correct responses
out of 20 could easily occur if the probability of a correct choice was .25. Suppose, however,
that 18 of the 20 choices were correct. This would seem to be strong evidence that more
than chance is involved, because it seems very unlikely that this result could occur if the
probability of a correct choice was .25. How much evidence does it take to convince us that
the probability of a correct response is greater than .25—8 correct? 10 correct? In order to
make a reasonable decision about whether or not there is evidence of long-term memory
for the childhood experience, we need two things:

1. We need to know the probability distribution, assuming only chance responding.
If the members of the population had no memory for the childhood event, and if
the experiment was performed many times, each time employing a new random
sample of teenagers from a population that had experienced the correct object in
childhood, what proportion of such experiments would yield 11 correct? Or 12
correct? Or any other number of correct responses from 0 to 20?

2. We need a decision rule for deciding whether the observed number of correct
responses is so much greater than 5, the number expected by chance, that we are
willing to reject the hypothesis that only chance factors (and not memory) are
involved.

In summary, our inferences are fallible because performances vary as a function of
many factors beyond the researcher's control. Statistics such as the proportion of correct
responses in a sample, or the sample mean and variance, will rarely, if ever, exactly match
the population parameters they estimate. However, despite this uncertainty, inferences about
population parameters can be made. The data from the sample, together with certain as-
sumptions about the population of scores, provide a basis for such inferences. Understanding
the process by which inferences are drawn requires understanding random variables, their
distributions, and probability. In the next part of this chapter, we present these topics. Given
that conceptual foundation, we can then return to the question of whether the participants in
the Chen and Myers experiment exhibited better than chance memory. To develop a statisti-
cal test to address this question, we will make use of a particular probability distribution, the
binomial. Although the applicability of the statistical test we present is somewhat limited,
it should be easy to understand. Furthermore, the issues raised, and the concepts defined,
are basic to inferential processes in general.

4.2 DISCRETE RANDOM VARIABLES

Continuing with our example of the memory experiment, we state that the number of
participants (out of 20) who correctly choose the object seen in the earlier experiment
might be symbolized by Y. Y is referred to as a random variable; in this example, the
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variable Y can take on any of the 21 integer values in the range from 0 to 20. 7 is a discrete
random variable because there are values within the range of Y that cannot occur. Although
only whole numbers can be observed in the preceding example, the potential values of a
variable need not be integer or even equally spaced for the variable to be discrete. We might
discuss the results of the experiment in terms of the proportion of participants who were
correct, in which case the random variable would take on the fractional values 0, 1/20,
2/20,..., 20/20.

Variables that can take on any value within their range are called continuous random
variables. Consider the time it takes a participant to make a response in some experimental
task. Typically, in this era of high-speed microcomputers, response time can be measured
to the nearest millisecond. Although we may not be able to observe response times more
accurately, response time is a continuous random variable. The clock may not be capable of
recording it, but any time can occur; the limitation is in the measuring instrument and not
in the variable itself. Considerably more will be said about continuous random variables
in Chapter 5 and, in fact, throughout this book. In this chapter, the focus is on discrete
random variables simply because the ideas we wish to develop about inference are more
easily understood in this context.

As we indicated in Section 4.1, we are frequently interested in whether scores that are
actually observed, or statistics based on these scores, differ very much from what would
be expected by chance. In this section, we begin to clarify what we mean by the expres-
sion "expected by chance." Consider the participants in a memory experiment similar to
the one just described, but, to simplify things at this stage, assume that each participant
is presented with only two objects, one of which is the correct (i.e., previously presented)
one. In this simplified memory experiment, if a participant were to make a response by
guessing, the probability of being correct on any problem would be .5. For now we also
restrict our discussion to only 4 participants in this memory experiment. An appropri-
ate random variable reflecting the performance of this group of participants would be 7,
the number of participants responding correctly. Given that each response must either be
correct (C) or in error (E), and assuming 4 participants, there are only 24 (or 16) pos-
sible patterns of correct and error responses; each of these is associated with a value
of 7. These patterns are presented in Table 4.1, together with the corresponding values
of 7.

If the participants are guessing, any of the possible values of 7 may occur, although
some values are more likely to occur than others. The set of probabilities corresponding to
each possible value of 7 is called the probability distribution of 7. The column labeled
p ( y ) in Table 4.1 contains the probabilities associated with guessing, assuming that there
are only two choices. These probabilities are also plotted in Fig. 4.1.

Where do these probabilities come from? How can they be used in answering questions
that may be of interest to us? We will consider each of these issues in turn.

The probability distribution is derived by beginning with a statistical model, a set of
assumptions about how responses are generated that is explicit enough for probabilities
to be calculated. Different sets of assumptions will lead to different values of p(y) . In the
current situation, a desirable model would be one that allows the calculation of probabilities

4.3 PROBABILITY DISTRIBUTIONS
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TABLE 4. 1 POSSIBLE PATTERNS OF C AND E RESPONSES
FOR 4 PARTICIPANTS

Pattern

(E 1 E 2 E 3 E 4 )

( E1E2 E3 C4 )

(E
1

E
2

C
3

E
4

}
( E 1 C 2 E 3 E 4 )
( C 1 E 2 E 3 E 4 )

(E1E2C3C4)
(E 1 C 2 E 3 C 4 )
(E 1 C 2 C 3 E 4 )
(C 1 E 2 E,C 4 )
(C1E2C3E4)
(C 1 C 2 E 3 E 4 )

(C 1 C 2 C 3 E 4 )
(C1C2E3C4)
(C1E2C3C4)
(E1C2C3C4)

(C1C2C3C4)

No. Correct (y)

0

1
1
1
1

2
2
2
2
2
2

3
3
3
3

4

p(y)
1/16 = .0625

4/16 = .25

6/16 = .375

4/16 = .25

1/16 = .0625

EP(y) = 1

Note. The subscripts denote the 4 different individuals.

Fig. 4.1 Theoretical distribution of the number of correct
responses when p(C) = .5.
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to be relatively simple, yet captures the essential features of what we mean by guessing.
We employ the following model:

1. On each trial (in the example, for each participant) the probability of a correct
response is .5.

2. The responses are independent of one another; that is, the probability of a correct
response on any trial does not depend on the outcomes of any other trials. In our
example, the probability that any one participant makes a particular choice does
not depend on the choice of any other participant.

The first assumption seems reasonable given that each participant has only two possible
responses. It is equivalent to assuming that participants perform as though they are randomly
selecting responses from a box containing two slips of paper, one marked with the word
"correct" and the other with "error." Each participant shakes the box vigorously and one
of the slips of paper is selected. The second assumption requires that after selecting a slip
of paper, the participant replaces it so that the next participant is not influenced by the
preceding participant's response.

Given these assumptions, it makes sense that all 16 patterns in Table 4.1 are equally
likely to occur. Therefore, the probability of 0 correct responses is 1/16 or .0625; we
usually write p(Y = 0) = .0625. Similarly, because we know there are four equally likely
sequences with one correct response, we know that p(Y = 1) = 4/16 or .25. We have
just assigned numbers called probabilities to the events Y = 0 and Y = 1. In general, we
calculate p(Y = y), where Y is the random variable and y is a specific value that Y can
take. As we noted earlier, these values, which we collectively refer to as p(y), are presented
in Table 4.1 and are also graphed in Fig. 4.1, in which the height of each bar indicates the
probability of the corresponding value of Y.

It should be emphasized that different assumptions lead to different probability dis-
tributions. If, as in the Chen and Myers memory experiment, there were four alternatives
rather than two, assumption 1 would have to be modified to state that the probability of a
correct response on each problem was .25 (as though there were now four slips of paper in
the box, one marked "correct" and three marked "error"). All the response patterns and the
corresponding values of Y listed in Table 4.1 would still be possible, although the proba-
bilities associated with them would change. As you might guess, the probability of getting
three or four problems correct would now be much less than indicated in Table 4.1. If the
participants were not guessing and we could assume that the probability of a correct re-
sponse was, for example, .8, still another probability distribution would be indicated. Later
in the chapter, we develop a general formula for calculating values of p(Y = y).

Keep in mind why we generated the probability distribution of Table 4.1: to answer
questions about whether or not the participants were guessing, we had to get some idea of
what kind of data to expect if they were, in fact, guessing. The probability distribution we
generated is called a theoretical probability distribution because it was generated on the
basis of a statistical model. In this case, our statistical model was a theory we had about
how people would respond if they were guessing. If the assumptions we made were valid,
and if we performed many random replications of the memory experiment (assuming four
participants and two choices), in 1/16 of the experiments no one would be correct; in 1/4
of the experiments one participant would be correct; and so on. In short, the proportions of
experiments yielding various values of Y would match the theoretical values in Table 4.1.
We can see this, and get a better sense of what we mean by "many random replications
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TABLE 4.2 PROPORTION OF SIMULATED EXPERIMENTS IN WHICH
THERE WERE Y CORRECT RESPONSES

No. Correct (y)

0
1
2
3
4

No. of Experiments

10

.1

.2

.4

.3
0

100

.09

.25

.34

.28

.04

Note. p(c) = .5 and n = 4.

1,000

.058

.256

.389

.237

.060

10,000 1

.0603

.2493

.3772

.2552

.0580

Theoretical Prob.

.0625

.2500

.3750

.2500

.0625

of the experiment," by considering the results of computer simulations of the experiments.
We simulated participants performing according to our model in either 10, 100, or 10,000
"experiments," each of which had four participants for whom the probability of a correct
response was .5. We then recorded a value of Y for each simulated experiment; recall that Y
is the number of correct responders out of four participants. The observed probability dis-
tributions of Y are presented in Table 4.2, together with the theoretical values of p(y). The
numbers in each column are the proportions of experiments in which there were y correct
responses; note that each column sums to 1.0. When there are only 10 simulated experi-
ments, the probabilities clearly differ from those for the theoretical distribution, though the
distribution shapes have some similarity. The observed proportions more closely approach
the theoretical probabilities as the sample size increases. Thus, the theoretical probabilities
may be viewed as the proportions of an infinitely large set of experiments having a particular
value of Y, assuming the statistical model is correct.

The idea of repeating an experiment many times and obtaining the value of some
statistic (here Y, the number of correct responses in the example) from each experiment
is basic to the inferential procedures described throughout this book and used by most
researchers. The idea is important enough for us to summarize the general steps:

1. A statistical model is formulated.
2. On the basis of this model, a theoretical distribution of a statistic of the experiment is

derived; this distribution is called a sampling distribution. This is the distribution
we would obtain if our model is correct and we were to repeat the experiment
many times, plotting the distribution of the statistic (Y in the example) over the
many replications of the experiment.

3. The sampling distribution is then employed, together with the data from our exper-
iment, to draw inferences about the population.

We have our statistical model and a theoretical sampling distribution (Table 4.1) for four
trials (participants) and p = .5. Now we can use this theory together with observed data to
investigate whether people in the memory experiment are simply guessing. To accomplish
this, we have to be clearer about the question. We can formulate it this way: Is the probability
of a correct response in the sampled population .5 or does our experimental evidence indicate
it is higher than .5? One possible decision rule is to conclude that performance is better
than chance if 3 or 4 responders—more than 50% of the sample of responders—are correct.
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However, the values in Table 4.1 suggest that 3 or 4 correct is not strong evidence that
performance is better than we would expect by chance. As we can see from that table,
assuming our model of chance guessing, the chance a sample would have 3 or 4 correct
responses is .3125 (that is, .25 + .0625). In other words, even if participants were guessing,
there is almost one chance in three of getting at least 3 correct responses. Stronger evidence
of memory would be provided if we require all 4 participants to be correct. According to
our model, if people are guessing, only 1/16 of similar experiments (.0625) would yield 4
correct responses. Therefore, if all 4 participants are correct, either they are guessing and
a relatively unlikely event has occurred, or performance in the population is better than
chance.

We can now outline the rationale underlying statistical testing. If in the context of
a particular experiment we wish to examine the hypothesis that only chance is involved,
a model of chance performance is used to generate a probability distribution. There are
certain outcomes, consistent with an alternative hypothesis (e.g., that the probability of a
correct response is above the chance level), that will be very unlikely if the model is valid.
If one of this set of outcomes is obtained in the experiment, we will conclude that the model
is not valid and that something other than chance is involved. Although these basic ideas
are involved in a variety of statistical tests, the advantage of first developing ideas about
inference by using a discrete random variable is that the relevant probabilities are easier to
understand and calculate. Although we will not have to deal with very complicated aspects
of probability, a thorough understanding of a few basic concepts will be required. The next
section provides an introduction to some of these concepts. Following that, we present a
class of probability distributions of which the one in Fig. 4.1 is a member. These are then
used to demonstrate further how inferences can be drawn from data.

4.4 SOME ELEMENTARY PROBABILITY

Suppose we have a class of 100 students, of whom 60 are men and 40 are women. The
instructor, a kindly statistician, gives no grades lower than C. The number of male and
female students receiving each grade is presented in Table 4.3. Suppose further that the
sex of each student, along with his or her grade, is written on a separate slip of paper. The
100 slips are placed in a box. If a slip of paper is randomly selected from the box, we can
determine the probability that the slip drawn belongs to a particular sex and has a particular
grade written on it. We can use this very simple "probability experiment" to introduce some
basic ideas about probability.

TABLE 4.3 DISTRIBUTION OF GRADES FOR MEN
AND WOMEN

Sex

Female
Male

Total

A

12
15
27

Grade

B

24
36
60

C

4
9

13

Total

40
60

100
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First, by random selection, we mean selecting a slip of paper in such a way that each
slip is equally likely to be chosen. We might achieve this by vigorously shaking the box
before selecting the slip. There are 100 slips of paper and one of them will be selected.
There are only 100 possible outcomes, each corresponding to a value of sex and grade.
The possible outcomes of a probability experiment are called elementary events, and the
complete set of elementary events is called the sample space for the experiment. Here, if
we assume random selection, each of the 100 elementary events has an equal probability
of occurring.

We are frequently not so much interested in the probability of a particular elementary
event as we are in the probability of meaningful collections of elementary events, which
are usually called event classes or simply events. We might be interested in the probability
of the event "getting a grade of A," which we can denote by p(A). When the probabilities
of elementary events are equal, the probability of an event is easily computed. In this case,

where n(A) is the number of elementary events in A and n(S) is the number of elementary
events in the entire sample space. For our probability experiment,

because there are only 100 elementary events and 27 of them belong to the event A. It should
be clear that p(A) cannot take on any values greater than one or less than zero. Similarly, if
the event of interest is M, "being male," p(M) = 60/100 = .60. Because events like A and
M contain all the elementary events in a row or a column of the table, their probabilities
are often referred to as marginal probabilities.

4.4.1 Joint Probabilities

The probability of obtaining a particular combination of events is referred to as a joint
probability. For example, p(A and M), which is read as "the probability of A and M," is
the probability of the joint event (A, M); that is, it is the probability of selecting a slip of
paper with both "A" and "male" written on it. If the probabilities of the elementary events
are equal, p(A and M) can be obtained by using

where n(A and M) is the number of elementary events that belong to both events A and M.
For the data of Table 4.3, p(A and M) = . 15, because 15 of the 100 slips of paper correspond
to grades of A obtained by male students. Similarly, if the events B and F correspond to
"getting a grade of B" and "being female," respectively, p(B and F) = 24/100 = .24. Note
that p(A) must always be at least as large as p(A and M) because event A will always
contain at least as many elementary events as joint event (A, M). These ideas may be
clarified by reconsidering Table 4.3. Each column represents the event of a letter grade and
has two nonoverlapping parts. For example, the column representing event A consists of
joint events (A, M) and (A, F). Note that n(A) = n(A and M) + n(A and F), and it follows
from Equations 4.1 and 4.2 that p(A) = p(A and M) + p(A and F). An additional fact to
note is that, because of the way in which it is defined, p(A and M) = p(M and A).



SOME ELEMENTARY PROBABILITY 69

4.4.2 Probabilities of Unions of Events

The union of two elementary events consists of all the elementary events belonging to either
of them. The elementary events forming the union of events A and M are the following cells
of Table 4.3: (A, F), (A, M), (B, M), and (C, M). The expression p(A U M), or p(A or
M) refers to the probability of obtaining an elementary event belonging to either A or M,
that is, falling into any of the four cells just noted. Therefore,

because 72 of the 100 elementary events belong either to A or to M. Note that n(A or M)
does not equal the sum of n(A) and n(M). As should be clear from Table 4.3, this sum
counts twice the 15 elementary events that belong to both A and M. Verify for yourself that
p(A or M) = p(A) + p(M) - p(A and M). Also verify that p(A or F) = 55/100 = .55.
In general, if E1 and E2 are two events of interest,

4.4.3 Conditional Probabilities

We may be interested in the probability of obtaining a grade of A when only the male students
in the class are considered. This probability is called a conditional probability because it
is the probability of A given the condition that M occurs. It is denoted by p ( A | M ) , and it
is read as "the probability of A given M." There are 60 slips of paper labeled "male" and
15 of them correspond to grades of A. Therefore, p ( A | M ) = 15/60 = .25. More generally,
p ( A | M ) is the proportion of all elementary events in M that also belong to A, or

Verify that, for the current example, p(B|M) = 36/60 = .60;/?(M|A) = 15/27 = .56; and
p(A|fl) = 0/60 = 0.

Two important ideas about conditional probabilities should be noted. First, people
have a tendency to confuse conditional probabilities with joint probabilities. Look care-
fully at Equations 4.2 and 4.5. The conditional probability p(A\M) is the probability of
selecting a slip of paper that is labeled "A" if a selection is made from only the 60 slips
labeled "male." The joint probability p(A and M) is the probability of selecting a slip
labeled both "A" and "male" if selection is randomly made from all 100 slips of paper.
A conditional probability has to be at least as large as, and generally is larger than, the
corresponding joint probability because the set from which we sample is a subset of the en-
tire sample. For example, when we calculate p ( A | M ) , we are dividing by only the number
of male students, a number less than the total sample. Bear in mind, however, that al-
though joint and conditional probabilities are not the same, they are related, as Equation 4.5
demonstrates.

The second idea is that for any two events A and M, there are two conditional probabil-
ities, p ( A | M ) and p(M|A). These two conditional probabilities will generally not have the
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same values; in our current example, p( A \ Af) = 15/60 = .25andjp(M|A) = 15/27 = .56.
As this example illustrates, the denominators are based on different subsets of the entire
sample, and these often will have different numbers of elementary events.

An important extension of the ideas about joint and conditional probability is incorpo-
rated into Bayes' Rule, a mathematical formulation that has implications for understanding
the relations among conditional and joint probabilities, and that has also provided the foun-
dation for an entirely different approach to statistics, Bayesian analysis. An introduction to
Bayes' Rule and an example of its application may be found in Appendix 4.3 at the end of
this chapter.

4.4.4 Mutually Exclusive/ Exhaustive/
and Independent Events

Two events E\ and £2 are mutually exclusive if they are incompatible; that is, if an
elementary event belongs to E\, it cannot belong to E2. It follows that if E\ and £2 are
mutually exclusive, p(E\ and £2) = 0, p (E 1 |E 2 ) = 0, and p (E 2 |E 1 ) = 0. In our current
example (Table 4.3), p(A and B) = 0, because if a student received a grade of A in the
course, he or she did not receive a B; p(A and M) is not equal to 0 because some of the
men in the course did receive As.

A set of events is exhaustive if it accounts for all of the elementary events in the sample
space. In our example, the events A, B, and C collectively account for all the students in
the class and are also mutually exclusive. Therefore, p(A or B or C) = 1.00 and we can say
that A, B, and C constitute an exhaustive and mutually exclusive set of events.

Two events E1 and £2 are independent if p(E\ | E2) = p(E\)', that is, if the probability
of event E1 is the same whether or not event £2 occurs. We may wish to ask questions such
as, Is getting a grade of A independent of sex? This is another way of asking whether the
probability of getting an A is the same for male and female students. If there is independence,
p ( A | M ) = p ( A | F ) = p (A) Returning to Table 4.3, we see that p ( A | M ) = 15/60 = .25;
p ( A | F ) - 12/40 - .30; and p(A) = .27. Clearly, for these data, getting an A is not
independent of being a male or female student, so (A, M) and (A, F) are pairs of events
that are not independent. In contrast, p ( B | M } = p ( B | F ) = p ( B ) so getting a grade of B
is independent of the student's sex. For both male and female students, the probability of
getting a B is .60.

We may also wish to ask more general questions, such as Are the variables grade and
sex independent of each other? For the answer to be yes, each of the six pairs of events
formed by combining levels of sex and grade, specifically, (A, M), (A, F), (B, M}, (B, F),
(C, M), and (C, F), would have to be independent. The variables, sex and grade, are not
independent of each other in this example.

Several important concepts concerning independence should be noted. First, if E1 and
E2 are two independent events, p ( E 1 and E2) = p ( E 1 ) x p(E2). To see why this is so,
consider the definition of conditional probability, given by Equation 4.5:

p ( E 1 | E 2 ) = p ( E 1 and E2)/p(E2)

Multiplying both sides of this equation by p ( E 2 ) yields

p(E\\E2) x p(E2) = p(E\ and£2)
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However, we know that if E1 and E2 are independent, p(E1|£2) = p ( E 1 ) . Replacing
p ( E 1 \ E 2 ) by p ( E 1 ) in the last equation, we have, if E1 and £2 are independent events,

It is important to understand that if events E1 and £2 are mutually exclusive, they cannot
be independent. If E1 and £2 are mutually exclusive, E1 cannot occur if £2 does. There-
fore, if E1 and £2 are mutually exclusive, then their joint probability and both conditional
probabilities must be zero; that is,

However, p ( E 1 ) and p(E2 )may be greater than zero, so the basic condition for indepen-
dence—that p (E 1 |£2) = P (E 1 ) or p (E 2 \E 1 ) = p(E2)—is not met.

4.4.5 Rules of Probability
We can now summarize the basic rules of elementary probability.

The Multiplication Rule. If £1 and £2 are two independent events,

In Table 4.3, the events B and M are independent, so p(B and M) = p(B)p(M) =
(.60)(.60) = .36. Note that Equation 4.6 does not hold if the events are not independent;
for example, A and M are not independent and p(A and M) = .15, but p(A)p(M) =
(.27)(.60) = .162. As indicated in the last section, Equation 4.6 follows directly from the
definitions of independence and conditional probability. The rule can be extended to any
number of independent events; for example, if three events E1, E2, and £3 are independent
of one another,

Although in this chapter we are concerned with independent events, the multiplication
rule can be extended to events that are not independent. In this case,

Equation 4.8 follows directly from the definition of conditional probability (Equation 4.5):

Multiplying both sides of this last equation by p(E2) yields

For example, applying Equation 4.8 to the data of Table 4.3, we can see that p(A and M) =
p(M) p(A\M) = (.60)(15/60) = .15.

The Addition Rule. If E1 and £2 are two mutually exclusive events,



For example, in Table 4.3, p(A or M) = p(A) + p ( M ) - p(A and M) = .27 + .60 -
.15 = .72.

Table 4.4 summarizes much of what has been presented in Section 4.4 to this point. It
includes important definitions and the rules embodied in Equations 4.6-4.10.

Although the multiplication and addition rules are very simple, people often mix them
up. It should be emphasized that the multiplication rule tells us how to calculate p ( E 1 and
£2), the probability of the joint occurrence of E1 and E2. The addition rule tells us how to
calculate p ( E 1 or £2), the probability that E1 or £2 occurs. This union of E1 and £2 (E1 or
£2) will include the joint event (E1 and £2), but it also includes occurrences of E\ without
£2 and of £2 without E1.

4.4.6 The Sample Space for an Experiment

In the previous few sections, we discussed a sample space in which the elementary events
were the 100 combinations of sex and grade that could be sampled from a class. We now
apply some of the ideas that we have developed about probability to the memory experiment
that was introduced earlier. In the terminology we have developed, each of the possible
patterns of 4 correct and error responses presented earlier in Table 4.1 may be viewed as an
elementary event. These elementary events are mutually exclusive and exhaust the sample
space for an experiment with four participants, each making either a correct or incorrect
response. Figure 4.2 represents the events of Table 4.1 in a tree diagram.

As we explained in Subsection 4.4.2 (and see Table 4.3), if events E1 and £2 are not mutually
exclusive,

This can be extended to any number of mutually exclusive events; for example, if E1, £2,
and £3 are mutually exclusive events,
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TABLE 4.4 SOME PROBABILITY DEFINITIONS AND RULES

Definition or Rule

Some probability definitions
Probability of event A
Probability of joint event A and B
Probability of the union of events A and B
Conditional probability of A given B

Some probability rules
The addition rule for unions of events
Special case of the addition rule if the

events are mutually exclusive
The multiplication rule for joint events

Special case of the multiplication rule
for independent events

Formula

p(A) = n(A)/n(S)
p(A and 5) = n(A and B)/n(S)

p(A or B) = n(A or B)/n(S)
p(A\B) = p(A and B)/p(B)

= n(A and B)/n(B)

p(A or B) = p(A) + p(B)-p(A and B)

p(A or B) = p(A) + p(B)
p(A and B and C)

= p(A)p(B\A) p(C\A and B)
p(A and B and C) = p(A)p(B)p(C)
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Fig. 4.2 Tree diagram for four trials (C = correct, E = error).

In Fig. 4.2, the top branch corresponds to the pattern (C 1 , C2, C3, C 4 ) , the next is (C 1 ,
C2, C3, E4), and so on. The subscripts indicate the 4 individuals in the experiment. The
16 patterns are mutually exclusive and exhaust the possibilities that can occur. If we assume
independent outcomes for the 4 participants, we can find the probability of each pattern by
using the multiplication rule. If p (C j ) = 1/2 for j = 1,2,3, and 4, then

and the probabilities for each of the other 15 sequences are also 1/16.
We can now obtain the probability distribution of Y, the number of correct responses,

using the addition rule as necessary; for example,

and similarly for the rest of the possible values of Y. The rules of probability allow us to
generate the theoretical probability distribution that was presented in Table 4.1 and Fig. 4.1.

The outcome probabilities can easily be calculated, no matter what the probability of
a correct answer is for either problem. In the Chen and Myers experiment, each participant
had to select one of four objects. Assuming guessing, p(C), the probability of a correct



4.4.7 Sampling With and Without Replacement
Suppose we select two individuals from the sample summarized by Table 4.3. What is the
probability that both will be men? When sampling is done with replacement, if a man is
selected on the first draw, he is put back into the sample (i.e., replaced) and is therefore
eligible to be selected again on the second draw. This means that if sampling is performed
with replacement, selecting a man on the first draw (M1) and selecting a man on the second
draw (M2) are independent events, so p ( M 1 and M2) = p(M 1 ) p(M2) = (60/100)(60/100) =
.360. However, when sampling is performed without replacement, if a man is selected on
the first draw, he is not replaced, so there is one less man eligible for selection on the second
draw. Consequently, the events M1 and M2 are not independent. Now, p ( M 1 and M2) =
p ( M 1 ) p ( M 2 \ M 1 ) = (60/100)(59/99) = .358. Note that here, even though the events are
not independent, the probability is similar to that calculated by assuming independence,
because the sample is fairly large (see Appendix 4.2).

This concludes our introduction to probability. It is brief and far from complete. Nev-
ertheless, it provides the basis for discussing a particular type of probability distribution
known as the binomial. In turn, the binomial distribution provides a context within which we
can introduce aspects of inference involved in the use of many other statistical distributions.
So, without further ado, let's consider the binomial distribution.

It should be evident from the definition of probability in Equation 4.1 that a probability
must have a value within the range from zero to one. More precisely,

The sample space can always be partitioned into two mutually exclusive and exhaustive
sets of elementary events; call these A and A ("not A" and called the complement of A).
For example, let A be "zero correct responses" in the 4-participant memory experiment.
Then A is "1 or more correct." We could calculate p( 1 or more correct) by using the addition
rule; that is, we could add p(1 correct) + p(2 correct) + p(3 correct) + p(4 correct). It is
simpler to note that, because p(S) = 1, p(1 or more correct) must equal 1— p(0 correct).
In general,

Before ending this introduction to probability, we should emphasize several points.
The sample space, S, consists of all of the elementary events, and the probabilities of the
elementary events must sum to 1. This must be the case because the elementary events are
by definition mutually exclusive and exhaustive. In the memory experiment example, the
events 0, 1,2, 3, and 4 correct responses are also mutually exclusive and exhaustive and so
their probabilities must also sum to 1. In general,

response is 1/4 and p ( E ) = 3/4. Then, for example, the probability of exactly 1 correct
response is now
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4.5 THE BINOMIAL DISTRIBUTION

Figure 4.1 and the p(y) column of Table 4.1 present the distribution of one random variable,
the number of correct responses, for the special case in which there are four trials and the
probability of a correct response on each trial is .5. It would be useful to have a general
formula for the probability distribution for any number of trials and for any probability of a
correct response. For example, in the Chen and Myers experiment, 20 teenage participants
were presented with four objects, one of which they had been exposed to in a laboratory
task when they were preschoolers. In order to decide whether memory for the previously
seen object was at a better than chance level, the chance probability distribution had to be
determined. The question becomes, If the participants are guessing, what is the probability
distribution? In this example, p(C) = .25, and n, the number of trials (participants), is 20.
Once we have the chance distribution, we can formulate a decision rule. For example, using
an equation that we develop in the next two sections, we can calculate that if p(C) = .25
andrc = 20, the probability of 9 or more correct responses is less than .05 (.041). Therefore,
if 9 or more participants are correct, either they are guessing and are very lucky, or p is
actually greater than .25. Given that guessing is very unlikely to produce 9 or more correct
responses, we might form the following decision rule: If 9 or more responses are correct,
reject the hypothesis that the true probability of a correct response is .25 in favor of the
hypothesis that it is greater than .25. To form such decision rules for any experiment of
this type, we need to be able to calculate the theoretical probability distribution assuming
chance performance. We now develop a formula to enable us to do just that.

4.5.1 Basic Assumptions

Look again at Figs. 4.1 and 4.2. They represent specific instances of a general experimental
situation that has the following three characteristics:

1. Bernoulli Trials. On a Bernoulli trial, there are exactly two possible outcomes;
examples would be "correct" or "error," "head" or "tail," and "success" or "failure."
The two outcomes possible on each trial will be referred to as A and A ("not A")
and their respective probabilities will be denoted by p and q. Because A and A
exhaust the possible outcomes on a trial, p + q = 1.

2. Stationarity. This is the assumption that p and q stay constant ("stationary") over
trials. Thus, if the probability of a correct response is 1/4 on trial 1, it is 1/4 on all
trials.

3. Independence. In the example of the memory experiment, we assumed that the
probability that a participant responded correctly was the same regardless of how
other participants responded. In general, the assumption of independence is that
the probability of an outcome of any trial does not depend on the outcome of any
other trial.

The preceding assumptions justify the probability calculations that yield the binomial
distribution. If that distribution is used to draw inferences about some population, and
the underlying assumptions are not correct, the inferences may not be valid. We will have
more to say about the consequences of violating assumptions after illustrating the use of
the binomial distribution in testing hypotheses about the population.
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4.5.2 The Binomial Function

Consider an experiment with n Bernoulli trials, each with possible outcomes A and A. The
outcome probabilities, p andq, are stationary over trials and do not depend on the outcomes
of other trials. We want a formula for p(Y= y), where Y is a discrete random variable and
the values it can take on are the possible number of A responses that can occur in n trials.
In an n-trial experiment, Y can take on the values 0, 1,2, . . . , n. Suppose that n and p are
specified and we calculate p(Y = y) for each possible value of Y in turn. The result is a
probability distribution; the distribution in Fig. 4.1 is a specific example obtained by setting
n at 4 and p at .5. An infinite number of distributions that belong to this general family can
be generated by using different combinations of p and n. Any distribution in this family is
referred to as a binomial distribution. In this section, we develop a formula for calculating
the probability of y responses as a function of n and p. This binomial probability function
will be denoted by p(y; n, p) to indicate that it is the probability of y responses of type A
when there are n trials with p(A) = p on each trial.

Table 4.1 and Fig. 4.2 present the 16 possible sequences for a four-trial experiment.
Note that the trial outcomes, A and A, need not come from different individuals as they
did in the example of the memory experiment. For example, A and A could represent
correct and error responses by an individual on four multiple-choice questions. Then each
pattern would represent a sequence of such responses for the four questions and p would
be the proportion of correct responses in a population of such items. From now on, we
will use the more general term combination to refer to a sequence or pattern of A and
A responses.

Suppose we wish to find the probability of obtaining exactly three A responses in
four trials. Assuming that the responses A and A are independently distributed over tri-
als, we can use the multiplication rule developed earlier to calculate the probability for
each combination of A and A responses. For example, the probability of the combination
(A, A, A, A) would be ( p ) ( p ) ( p ) ( q ) or p3q. What we want, however, is p(3, 4, p), the
probability of exactly 3 A responses in four trials. That is, p((A, A, A, A) or (A, A, A. A)
or (A, A, A, A) or (A, A, A, A)). These four combinations are mutually exclusive (i.e.,
exactly one will occur in a four-trial experiment in which there are three A responses and
one A response). Therefore, the probability of three A and one A response in any order
is the sum of the probabilities of the combinations, or 4p3q. In general, we calculate the
probability of a combination having y A responses; we then multiply by the number of such
combinations.

The approach can be generalized to any value of n. The probability of any one specific
combination of y A responses and n — y A responses is p y q n - y . The probability of exactly
y A responses and n — y A responses is

where k is the number of combinations consisting of y A and n — y A responses. We just
about have our binomial function; all we still need is a formula for k, the number of ways
in which y A and (n — y) A responses can be combined. This number of combinations is
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This is referred to as the binomial coefficient. The derivation of this coefficient is presented
in Appendix 4.1 at the end of this chapter. Its formula is

where n! = (n)(n - 1)(n - 2) ... (3)(2)(1) and 0! = 1. Also, note that

have the same value. Substituting y = 0, 1,2,3, and 4 in turn into Equation 4.15, verify that
the formula yields the values 1, 4, 6, 4, and 1, respectively; these are the numbers of com-
binations that appear in Table 4.1. Of course, writing out and counting all the combinations
becomes rather tedious when there are many trials. For large ns, Equation 4.14 becomes
quite useful.

Replacing k in Equation 4.14 with the formula for k in Equation 4.15 yields the binomial
probability function:

Numerical values of this probability for various values of n, p, and y are contained in
Appendix C at the back of the book (Table C.I). You may use the values contained there
to verify our statement that the probability of 9 or more correct in 20 trials is .041 if
p = .25.

Figure 4.3 presents several binomial distributions for various values of n and p. For
easier comparison across different values of n, the outcome probability is plotted as a
function of the proportion of A responses, Y/n. For example, when n= 10 and p = .5,
we expect to observe 40% correct responding (4 A responses in 10 trials) with probability
.2051. In the long run (i.e., if the experiment were repeated many times), the proportion of
experiments with 4 A and 6 A responses should equal .2051, if the binomial model is correct.
Several points should be noted about these distributions. First, when p = .5, the distributions
are symmetric. Second, when p = .25 and skewness (asymmetry) is present, as n increases
the distribution becomes more symmetric about the value of Y/n that corresponds to p.
Third, the distributions appear more continuous in form as n increases. The importance
of these observations lies in the fact that if n is sufficiently large, particularly when p is
close to .5, the binomial distribution looks much like the normal distribution, which then
can be used to get binomial probabilities with considerably easier calculations. This point
is developed in Chapter 5.

A fourth detail to note about Fig. 4.3 is that the probability of getting a value of Y/n
close to p increases with n. Consider the probability if p = .5 that Y/ n lies in the range from
.4 to .6; that is, p(A < Y/n < .6). When n is 10, p(.4 <Y/n< .6) is the probability that Y =
4, 5, or 6, which is .2051 + .2461 + .2051, or .6563. When n is 20, p(.4 < Y/n < .6) is the
probability that Y = 8, 9, 10, 11, or 12, which is .1201 + .1602 + .1762 + .1602 + .1201,
or .7368. When n is 40, the probability is .8461. This point is very important; it means that
as n grows larger, the proportion of A responses observed in a single experiment is more
likely to be close to the population parameter. We do not prefer larger data sets to smaller
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Fig. 4.3 Binomial distributions as a function of sample size and
probability.

ones because of some deeply ingrained work ethic; we do so because it is more likely to
result in a sample statistic that is closer to the population parameter of interest. Statistics that
have a higher probability of being within any fixed range of the population parameter as n
increases are called consistent estimators of the parameter. We have more to say about this
desirable property of sample statistics, and about other properties important to estimating
population parameters, in Chapter 5.
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4.6 MEANS AND VARIANCES OF DISCRETE DISTRIBUTIONS

In drawing statistical inferences, we are concerned with the parameters of a theoretical pop-
ulation of scores; quite often the population mean and variance will be the parameters of
interest. Equations 2.4 and 2.7 for the sample mean and variance are not directly applicable to
the calculation of the population mean and variance, because the individual scores in the pop-
ulation usually are not available for summing and the number of such scores is often infinite.
However, when the random variable is discretely distributed, we usually know its possible
values, and, assuming some theoretical distribution such as the binomial, we also know the
probability of each value. This provides us with a way of defining the mean and variance for
discrete distributions. We present the necessary equations in the following section, using the
binomial distribution to illustrate. In Chapter 5, we present analogs to these equations, suit-
able for dealing with the mean and variance of continuously distributed random variables.

4.6.1 The Population Mean

Now that we have developed the probability distribution of a discrete random variable,
we can take the opportunity to demonstrate how to find the mean of the distribution. The
concept of a weighted average provides a good way to think about population means. For
example, reconsider Table 4.1, which presents the probability distribution of the number of
correct responses (Y) when there are four independent trials and p is .5 on each trial. We can
conceive of doing this four-trial experiment many times, each time recording the number
of successes. Thus, we have a hypothetical population of numbers from 0 to 4 and we wish
to know what the mean of that population is: Over an infinite number of replications of the
experiment, what will the average number of successes be? This population mean will be
referred to as the expected value of Y and denoted as E(Y), and often by the Greek letter,
u (mu). In our example, Y can take on the values 0, 1,2, 3, and 4, and we can calculate the
proportion of each of these values in the population by using the binomial formula.

The equation for E(Y) is the same as Equation 2.5 for the weighted mean of an observed
set of numbers; the proportions are replaced byp(y) , the theoretical probabilities of each
value of Y. Then we define the expected value as

Appendix B at the back of the book presents some useful information about expectations.
If n = 4 and p = .5, Equation 4.17 yields the following result for the mean of a binomial

distribution:

In words, take each possible value of Y (zero through four in the example of the four-trial
experiment), multiply it by its probability of occurrence, and sum the products. The prob-
abilities in this example are given by the binomial equation, 4.16, and appear in Table 4.2.
It is as if we had a very large number of people, each tossing four fair coins. We note the
number of heads obtained by each person. The average number should be two. In Appendix



Applying this equation to our example of the binomial distribution with n = 4 and
p = .5, and recalling that u = 2 in this case, we have

p2 = (0 - 2)2(.0625) + (1 - 2)2(.25) + (2 - 2)2(.375) + (3 - 2)2(.25) + (4 - 2)2(.0625)

= 1

In the case of the binomial distribution, this result can be obtained more simply; p2 =
p(1 — p)n, as we demonstrate in Appendix B.

4.7 HYPOTHESIS TESTING

4.7.1 A Significance Test

Now that we have a probability distribution, the binomial, we can apply it to the example
presented at the beginning of this chapter. Recall that there were 20 participants, each of
whom had been exposed to a set of objects in the University of Massachusetts laboratory
12 years earlier, and who were now required to choose the one object from a set of four that
they had seen in the earlier experiment. The sample statistic of interest will be the number
of participants who make a correct response. In the language developed earlier, we have
20 independent Bernoulli trials; n = 20 and Y is the number of correct responses.

Before proceeding with the actual significance test, a review of the conceptual frame-
work is helpful. Imagine a population of 15- to 17-year-olds who had been in the experiment
12 years previously. Further imagine that a lottery has been held such that each individual in
the population had an equal chance to appear in our study. In this sense, the 20 students who
participated in our study can be viewed as a random sample from a hypothetical population
of 15- to 17-year-olds. The 20 responses actually obtained in the study can be regarded as
having been sampled from the hypothetical population of responses that could be obtained
from this population. Our estimate of the probability of a correct response in the population
will be p, the proportion of correct responders in the sample. We denote the population
probability by the Greek letter TT (pi). From now on we will use Greek letters to stand for
population parameters and the more common Latin letters to stand for sample statistics in
order to lessen confusion between the two.

We now must decide between two hypotheses about IT: the null hypothesis, H0, and
the alternative hypothesis, H1. Here, the null hypothesis states that the members of the
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B, which presents the algebra of expectations, we demonstrate that the mean number of
successes in n independent Bernoulli trials is pn, where p is the probability of a success on
a single trial. In the preceding example, p = .5 and n = 4 and (.5)(4) = 2.

4.6.2 The Population Variance

Analogous to the sample variance, the population variance is the average squared deviation
of scores about their mean, or E(Y — u)2. We denote this quantity by a2 (the Greek letter,
sigma).We can calculate this population variance by



population are guessing; that is, the probability of a correct response is .25:

TABLE 4.5 THE BINOMIAL DISTRIBUTION

No. Correct
y

0
1
2

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

n = .25

.0032

.0211

.0669

.1339

.1897

.2023

.1686

.1124

.0609

.0271

.0099

.0030

.0008

.0002

.0000

.0000

.0000

.0000

.0000

.0000

.0000

P(y)
n = .35

.0002

.0020

.0100

.0323

.0738

.1272

.1712

.1844

.1614

.1158

.0686

.0336

.0136

.0045

.0012

.0003

.0000

.0000

.0000

.0000

.0000

7T = .50

.0000

.0000

.0002

.0011

.0046

.0148

.0370

.0739

.1201

.1602

.1762

.1602

.1201

.0739

.0370

.0148

.0046

.0011

.0002

.0000

.0000

Note. The binomial distribution is shown for n = 20 and
TT = .25, .35, and .50.
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The alternative hypothesis states that the probability of a correct response is higher than the
chance level; that is, p is greater than .25:

If we assume that the null hypothesis is true, we can specify the probability distribution of
the random variable, Y, the number of correct responses out of 20 responses. We use the
theoretical distribution that Y should have if the null hypothesis is true to assess whether
we have enough evidence to reject the null hypothesis. Letting n be 20 and replacing p by
p (.25 if H0 is true) in Equation 4.16, we can generate the values of p ( y ) found in the
p = .25 column of Table 4.5.

The next step is to determine those values of Y that, if obtained in the study, would lead
to rejection of H0 in favor of H1. Such values constitute a rejection region. This is a set of
possible values of Y that are consistent with H\ and very improbable if H0 is assumed to be
true. Indeed, these values are so unlikely if H0 is assumed that their occurrence leads us to
reject H0. An arbitrarily chosen value, a (alpha), defines exactly how unlikely "so unlikely"
is. Traditionally, researchers have set a at .05. We want very strong evidence against H0

before we reject it.
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We will now establish a rejection region for the Chen and Myers experiment. Turn
to the p = .25 column of Table 4.5 and sum the probabilities, beginning at the bottom of
the column. We begin at the bottom (larger values of Y) because these are the values of Y
consistent with H1 ; values of Y at the top of the table are consistent with HO being true. If
HO is true, the probability that Y has a value between 9 and 20 is

Note that if we included Y = 8 in the rejection region, the probability of obtaining a value
of Y in that region (assuming H0 to be true) would be .1019, which is greater than the value
of a we had set. Therefore, our decision rule for this experiment is to reject H0 if 9 or more
subjects in the experiment make the correct response.

The logic of our approach underlies the application of many other statistical tests.
Therefore, it is worth reviewing the basic steps in hypothesis testing:

1. State a null and alternative hypothesis.
2. Obtain the distribution of the test statistic assuming HO to be true. In our example,

HO implies p = .25. The test statistic is 7, the number of correct responses. In
general, the test statistic (a) is a quantity calculated from the data that is sensitive
to the truth or falsity of the null hypothesis; and (b) has a known probability
distribution when HO is assumed to be true.

3. Decide on a value of a and establish a rejection region. If H0 is true, the probability
that the experiment yields a value of the test statistic within the rejection region
should be less than or equal to a. Typically, this significance level is .05. Because
we are dealing with a discrete distribution, that value of a. was not available to us,
so in our example a was .041.

4. Run the experiment and calculate the value of the test statistic. If it lies within the
rejection region, HO is rejected in favor of H\. Otherwise, fail to reject H1.

A statistically significant result means that a value of the test statistic has occurred that
is unlikely if HO is true. Of course, "unlikely" is not the same as "impossible." We may be
rejecting a true null hypothesis. Such incorrect rejections of the null hypothesis are called
Type 1 errors. Alpha (a) is the probability of such errors; that is, a =p(reject H0|H0 true).
Note that a is a conditional probability, the probability of rejecting HO given that HO is true.
A useful way to conceptualize this is that if the individuals in the population are actually
guessing (Ho is true), and if we were to replicate the experiment many times, we can expect
to obtain a value of y in the rejection region in .041 of these experiments. By setting a at
this level, we express a level of risk of a Type 1 error that we are willing to tolerate.

Statistical packages usually report an exact p value, that is, the probability that a result
at least as "extreme" as that obtained in the experiment would occur, if the null hypothesis
was true. A result is statistically significant if p is less than the value of a that has been
chosen. For example, if Y was 12, p = p(Y > 12|p = .25); that is,

The result is statistically significant because p is less than the alpha value of .05. Researchers
have tended to misinterpret these p values in at least two ways. First, they often view the
reported p value as the probability that the null hypothesis is true. This amounts to viewing
p as p ( H 0 true | data). But, in fact, p is the probability of the observed data given that the null
hypothesis is true, or p(data|H0 true). It would be nice if we could calculate the probability
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of the status of H0 from our analysis of the data, but we cannot. What we can do is calculate
the probability of the data under the assumption that the null hypothesis is true, and that is
a very different thing. Second, there is a tendency to compare p values across experiments
or experimental conditions, concluding that if one p value is smaller than another, it must
represent a larger, or more important, effect. However, p values depend on sample size and
variability as well as effect size, and direct comparisons are rarely valid. This is one reason
why we present ways to estimate effect sizes in the following chapters, and emphasize the
importance of such methods.

4.7.2 One- and Two-Tailed Tests

The test we just described for the Chen and Myers study is referred to as a one-tailed test,
or directional test. Because we were interested in whether the sampled population performs
better than chance, the rejection region consisted of only the largest values of Y. On one
hand, in the context of this research example, that makes sense. On the other hand, one
can conceive of many situations in which a departure from the null hypothesis in either
direction would be of interest. For example, in the case of Royer's data on arithmetic skills
(see Chapter 2), we might wish to know if there is a significant difference in performance on
arithmetic and subtraction; if there was, it might influence the way in which these skills were
taught. We might assign a plus to each student who had a higher addition than subtraction
score, and we might assign a minus if the subtraction score was higher. Then we ask if
the probability of a plus (or, equivalently, a minus) was significantly different from .5. As
another example, as described in Chapter 2, University of Massachusetts medical school
researchers collected data on seasonal variation in clinical states such as depression and
anxiety. Comparing depression scores in winter and summer, we might assign a plus if the
winter score was higher, or a minus if it was lower. In both of these examples, H0 would be

The alternative hypothesis would be

Suppose n is again 20. Turning to the column labeled p = .50 in Table 4.5, and assuming
that equal weight is given to both directions and a is close to .05, we would reject H0 if
Y <5orY > 15. This is usually referred to as a two-tailed or nondirectional test. Note that,
if we use these rejection regions, the actual probability of a Type 1 error is .021 + .021 =
.042. A larger, but still symmetric, rejection region would include the next value of Y in
each tail; then a would be .042 + .037 + .037, or .116.

4.7.3 The Power of a Statistical Test

In deciding whether or not to reject a null hypothesis, a researcher can make two types of
errors. If the null hypothesis is true, rejecting it is called a Type 1 error. The probability
of such an error is alpha and it is determined by the experimenter in the way we have
illustrated. Suppose the null hypothesis is false. Failure to reject a false null hypothesis is
called a Type 2 error, and its probability is referred to as p (the Greek letter beta). The
probability of rejecting a false null hypothesis, that is, p(reject H0 \H0 is false), is called the
power of the test. The sum of power and B is one.
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The rows represent two mutually exclusive events: H0 is either true or false. Given either
of these two events, the researcher may make one of two mutually exclusive decisions:
reject or do not reject H0. The cell probabilities are conditional probabilities representing
the probability of the decision given the event. Because one of the two decisions must be
made, the probabilities in each row sum to one.

The Chen and Myers experiment on memory for a childhood event will serve to illustrate
the general principles involved in computing power and should clarify the relation between
power and other quantities such as a and n. We begin by noting that the power of a statistical
test depends on how false H0 is. If the probability of a correct response in the sampled
population is .9, it is very likely that the sample of 20 subjects will yield a value of Y in the
rejection region; therefore, the statistical test has high power. In contrast, if the true value
of p is only .6, the probability of a large value of Y is much less and so, therefore, is power.

Of course, the true value of the population parameter is never known. However, if
some value of the parameter is assumed, the power of the test against that alternative can
be calculated. For example, suppose we wish to test H0: p = .25 against the alternative
hypothesis, H1: p > .25. We can calculate the power of the test for different assumed values
of p. If we assume a specific alternative hypothesis, say,

we can determine the power of the statistical test of H0 against HA . In other words, we can
calculate the probability of rejecting H0 if the probability of a correct response is .35 in the
sampled population.

Table 4.5 can be used to obtain the value of power for this example. On the basis of
H0, H1, and a, the rejection region was determined to be Y >9. Power is the probability of
obtaining a value in this region when HA is true. The actual steps in this calculation are as
follows:

1. Calculate the probability distribution of Y, assuming H0 to be true. In this example,
the distribution is presented in the p = .25 column of Table 4.5.

2. Determine the rejection region. In this example (n = 20,a = .05, H1: p >.25), the
rejection region is Y >9.

3. Calculate the probability distribution of Y, assuming HA is true. In this example,
p in Equation 4.16 is replaced by .35. The results are presented in the p = .35
column of Table 4.5.

4. Sum the probabilities for Y >9 (the rejection region) in the .35 column. This
sum is p(Y > 9\HA = .35), the power of the test of H0 against HA. In this case,
power = .1158 + .0686 + .0336 + .0136 + .0045 + .0012 + .0003 = .2376.

The following table may help to clarify the meanings of a, B, and power:

Decision

H0

True
False

Reject

a
power = 1 — B

Fail to Reject

1-a

P



Fig. 4.4 Power functions based on the binomial distribution.

The Type 2 error probability, B, is 1 — .238, or .762. These calculations mean that a
test of H0: p = .25 has .238 probability of yielding a significant result if p is actually .35.
If the true value of p is even greater than .35, the power of the test will be greater than .238.
Using the p = .5 column, verify that power against this alternative to the null hypothesis is
.748.

The approach just illustrated underlies power calculations for all statistical tests. The
possible values of the test statistic are divided into rejection and nonrejection regions; this
division is determined by the value of the parameter under H0 and the nature of H1 (one
or two tailed). Then the probability of obtaining a value of the test statistic that falls in the
rejection region is obtained, with the assumption that a specific alternative distribution is
the true one.

It is important to be clear about the distinction between H1 and HA. H1 is the class
of alternative hypotheses that determines where the rejection region is placed (right or left
tail, or in both tails). HA is a specific alternative; power is calculated for the test of H0 by
assuming HA to be true.

Figure 4.4 presents the power of the binomial test of H0: p= .50 against several
alternatives. The power functions have been plotted for three conditions: (1)n = 20, a =. 15;
(2) n = 20, a = .06; and (3) n = 15, a — .06; HA represents specific alternative values
of p. The left panel presents power for a one-tailed alternative and the right panel presents
power for a two-tailed alternative. Three points should be noted that are typical for power
functions for all statistical tests. First, power increases as a increases. This is because the
increase in a requires an increase in the rejection region. For example, when n = 20 and the
alternative is one tailed, the rejection region increases from Y > 14 to Y > 13 as a increases
from .06 to .15. Because power is also calculated for this larger set of Y values, it too is
increased. Second, power is affected by the nature of H0 and H1. In the left panel of Fig.
4.4, the alternative hypothesis is H1: p >.5. This one-tailed test has more power than the
two-tailed test in the right panel whenever p is greater than .5. This is because the rejection
region is concentrated in that tail of the distribution in the case of the one-tailed test, whereas
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it is divided in half and distributed over the two tails in the case of the two-tailed test. In
contrast, the one-tailed test has virtually no power against specific alternatives of the form
TT <.5, whereas the two-tailed test does have power to reject H0 against these alternatives.

The third aspect of power illustrated in Fig. 4.4 is that increased sample size, n, results
in increased power. This follows from the discussion of Fig. 4.3 in which it was noted that
Y/n is a consistent estimator of IT. This means that as n increases, Y/n is more likely to
be close to the true value of the parameter. Therefore, if H0 is false, a larger n increases
the probability of getting values of Y consistent with the alternative hypothesis; therefore,
power is increased.

The study of power functions has other implications for researchers. First, power func-
tions for different statistical tests of the same H0 can be compared. Assuming that the choice
among tests is not dictated by some other factor (such as validity of assumptions, ease of cal-
culations, or availability of tables), the test with the higher power function should be chosen.
Second, the effects of violations of assumptions on power functions can be assessed. For
example, when the population of scores is normally distributed, the t test is more powerful
than other tests that can be used to compare two experimental conditions. However, when
the population of scores is not normally distributed, other tests may achieve markedly more
power (Blair & Higgins, 1980, 1985). Finally, and most important, the relation between
power and sample size can be used to decide how much data should be collected. Suppose
we want power of at least .90 to reject H0 if TT is at least .75. We can derive power functions
for various values of n similar to those depicted in Fig. 4.4. The n we want for our study is
the one that gives rise to a power function such that there is an ordinate value (power) of at
least .90 when the abscissa value (TT) is .75.

The last point deserves further comment. The null hypothesis is almost always false.
If we collect enough data, we are likely to obtain statistically significant results. Whether
the results will be of practical importance or theoretical significance is another matter. The
effect may be trivially small, or in a direction that makes no sense in terms of any theory,
or practical concern. Therefore, it makes good sense before we collect data to ask these
questions: What is the smallest size effect that would be of interest? and What power do we
want to detect such an effect? The answer to these two questions will be major factors in
determining the sample size for our research. Sometimes the required n will be impractically
large and we will have to compromise, have less power, or target a larger effect; or we may
be able to redesign the research so that a smaller sample will achieve the desired power
against the specific alternative hypothesis we had in mind. We return to these issues in
discussions of power in subsequent chapters.

4.8 INDEPENDENCE AND THE SIGN TEST

Throughout the preceding sections on hypothesis testing and power, we have assumed that
Y has a binomial distribution. All the computed probabilities have been based on Equation
4.16. The derivation of that equation rests on the assumption that p is constant across trials
(stationarity) and that the probability of an outcome on any one trial is independent of the
outcome on any other trial. The assumption of independence is of particular importance for
several reasons. First, it is frequently violated in psychological research. Several measures
taken from the same participant will usually be correlated. In addition, whenever responses
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are obtained from members of the same discussion group, school class, or litter of animals,
the responses obtained are likely to be correlated. Social, environmental, and biological
factors will tend to affect the members of such units in a similar way. Second, violation
of the independence assumption frequently will result in a Type 1 error rate very different
from the alpha assumed by the experimenter. Some assumptions can be violated with
minor consequences, but the independence assumption is often quite critical. Third, the
independence assumption plays some role in all statistical test procedures. The binomial
test is used to illustrate the consequences of its violation, but the implications are much
more general.

Consider a study in which 10 pairs of participants discuss a topic. After the discussion,
each of the 20 participants casts a "yes" or "no" vote on the issue under consideration.
Previous research has established that votes are evenly divided between the two positions
when there is no discussion. However, theoretical principles lead the researcher to believe
that "yes" votes will be more frequent than "no" votes following discussion. Thus, the null
hypothesis is H0: p(yes) = .5 and the alternative hypothesis is H1: p(yes) >.5. If alpha
is set equal to .06, the binomial table indicates that H0 should be rejected if the observed
number of "yes" responses is 14 or more.

There is a problem with this procedure: the two individuals in each discussion pair may
have influenced each other and their responses may not be independent. Let's see what this
means and then attempt to understand the implications for our testing procedure. We begin
with a case in which the independence assumption is valid. Suppose we had a population
of such discussion pairs. Randomly label one member of each pair M1 and the other M2.
Over all pairs in the population, the joint probabilities of "yes" and "no" responses might
look like this:

In .49 of the pairs, both members voted "yes," in .21 of the pairs, M\ voted "yes"
and M2 voted "no," and so on. Comparing the products of the marginal probabilities with
the joint probabilities (e.g., .7 x .7 = .49), we should find it apparent that the response of
each member in a pair is independent of that made by the other member. We can verify
this by calculating conditional probabilities; the probability of one member's response is .7
regardless of whether the other member responded "yes" or "no."

Unfortunately, this independence result is not the usual outcome in studies of social
interaction. The joint probabilities in the population are more likely to look something like
this:

M2

yes

no

M1

yes

.49

.21

.70

no

.21

.09

.30

.70

.30



A check of the products of the marginal probabilities against the joint probabilities reveals
that the independence assumption no longer holds. Calculate conditional probabilities and
verify that the probability that a pair member votes "yes" is higher when the partner also
votes "yes" than when the partner votes "no."

In order to make clear what the consequences of this dependency within pairs is for the
binomial test, we consider an extreme example. Suppose the joint probabilities of votes were
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M2

M]
yes

yes .30

no .20

.50

no

.20

.30

.50

.50

.50

M2

M1

yes

yes .50

no 0

.50

no

0

.50

.50

.50

.50

In this case, the dependence within pairs is complete: The conditional probability of a "yes"
vote is 1 when the partner votes "yes" and 0 when the partner votes "no." Note, however,
that the null hypothesis [p(yes) = .5] is true.

Recall that the researcher had sampled 10 pairs from this population and, on the basis
of the binomial distribution table, had decided to reject H0 if there were 14 or more "yes"
votes from the 20 individuals; the researcher assumed a .06 significance level. Unknown to
the researcher, the two members of each pair vote the same way. Therefore, the probability
of 14 or more "yes" votes is really the probability that 7, 8, 9, or 10 pairs vote "yes." There
are only 10 independent events; they are the pair (not the individual) votes. If this violation
of the independence assumption occurs, the probability of a Type 1 error is not the .058
assumed by the researcher; rather it is the probability that Y = 7, 8, 9, or 10 when n= 10
and p(yes) = .5. Using Equation 4.15, we can show that probability to be .172. The Type 1
error rate is much higher than the researcher believed. Most researchers would feel that it
is an unacceptably high Type 1 error rate.

Although complete dependence between the members of the pair is improbable in a real
experiment, some dependence is often likely. Consequently, the distortion in Type 1 error
rate will be smaller than in our example, but there will be distortion. Frequently, the true
error rate will be intolerably high. The opposite result occurs when responses are negatively
related. For example, suppose that the null hypothesis is false, but in a high proportion of
pairs, the partners agree to split their votes. In cases such as this, power will be greatly
reduced. Thus, depending on the nature of the dependency, either Type 1 or Type 2 error
rates will be increased. Positive dependencies are far more likely, and, therefore, the greatest
danger is an increased rate of rejection of true null hypotheses.
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4.9 MORE ABOUT ASSUMPTIONS AND STATISTICAL TESTS

Independence is only one assumption that plays a role in many statistical tests. In general,
the consequences of failures of assumptions are not simple and have to be thought through in
each research situation. Many factors affect error rates. The example in the preceding section
illustrates two of these—the magnitude and direction of the failure of the assumption. A
third factor is which assumption is violated. Some assumptions, despite being used in the
derivation of the test statistic, are less critical; their violation has little effect on error rates.
A fourth factor is sample size; certain assumptions (but not all) are less critical when there
are many observations. Appendix 4.2 provides an example of the interaction of assumptions
and sample size.

In summary, every inferential procedure involves some statistical distribution, and the
derivation of that distribution rests on certain assumptions. The consequences of violat-
ing these assumptions will vary depending on the factors noted herein. Throughout this
book, we emphasize the statistical model underlying each inferential procedure, detailing
the conditions that cause assumptions to be violated, the results of such violations, and al-
ternative analyses that remedy the situation when the violations are severe enough to make
the proposed analysis untrustworthy.

4.10 CONCLUDING REMARKS

The only thing certain about the inferences we draw from samples of data is that there is
no certainty. As a consequence, one cornerstone of inferential statistics is probability. Ac-
cordingly, this chapter provided a brief review of elementary probability. Inferences from
a sample to a population require a statistical model, a set of assumptions that underlie the
probabilities associated with our conclusions. Chapter 4 has illustrated this, developing
the relation between assumptions of independence and stationarity and an important the-
oretical distribution, the binomial. Finally, we used the binomial distribution to illustrate
how a theoretical distribution can be used in one kind of inferential process, significance
testing. In doing so, we introduced many of the concepts and much of the machinery of
hypothesis testing in general. Throughout this chapter, we focused on discrete random
variables because the relationship between the assumptions and the resulting theoretical
probability distribution is quite transparent. In subsequent chapters, continuous random vari-
ables are introduced, and the role of their probability distributions in making inferences is
discussed.

A limitation of this chapter has been its focus on hypothesis testing. In the example
of the memory experiment, we asked whether the true probability of a correct response
was greater than .25. We might have asked a related but different question: What is the
actual value of p, the population probability of a correct response? Our best estimate
of that parameter is the sample proportion of correct responses, p. However, such a point
estimate of a population parameter is of limited value. It is a best guess about the population
parameter, but we do not know how good a guess it is. If we ran the experiment several
times, we would have as many estimates as experimental replications. If the estimates were
close to each other, we might feel confident that any one estimate was close to the population
parameter. Unfortunately, like most researchers, we will run our study only once. From that
one data set, we would like an idea of how good our estimate is, how close it is likely to
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be to the parameter being estimated. The statistic we calculate to accomplish this is called
a confidence interval. In future chapters, we develop formulas for confidence intervals
for various population parameters, illustrate their interpretation and use, and discuss their
relation to significance tests.

KEY CONCEPTS

probability distribution
discrete random variable
theoretical probability distribution
random selection
sample space
marginal probability
union of events
mutually exclusive events
independent events
complement of an event
sampling without replacement
stationarity
binomial distribution
binomial probability function
null hypothesis
rejection region
significance level
Type 1 error
one- and two-tailed tests
power of a test
sign test
decision rule

continuous random variable
statistical model
sampling distribution
elementary event
event classes (events)
joint probability
conditional probability
exhaustive set of events
tree diagram
sampling with replacement
Bernoulli trial
independence
combination of events
significance test
alternative hypothesis
test statistic
statistically significant result
p value
Type 2 error
specific alternative hypothesis
point estimate

EXERCISES

4.1 Suppose an experiment is designed to test for the existence of ESP (extrasensory
perception—the supposed ability to be aware of events in the environment through
means that do not use the normal sensory channels). An experimenter is seated in
a room with a deck of five different cards, which we can refer to as 1, 2, 3, 4, and
5. On each trial of the experiment, the experimenter shuffles the cards well and
then randomly selects one of them. A participant, P, who is seated in a room in a
different building, knows when each trial of the experiment is to occur and tries to
"perceive" and then record each card that was chosen by the experimenter. Evidence
that P does better than would be expected by chance will be taken as support for
ESP. Therefore, it is important to be able to calculate what we could expect as a
result of pure chance. Suppose P has no ESP and simply picks one of the five
cards on each trial. Assuming independence, what is the probability that P is (a)
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correct on the first trial? (b) correct on each of the first three trials? (c) correct
on the second trial but wrong on the first and third? (d) correct on exactly one of
the first three trials? (e) correct on at least one of the first three trials? (f) correct
on exactly two of the first three trials? (g) correct for the first time on the fifth
trial?

4.2 Suppose a certain trait is associated with eye color. Three hundred randomly selected
individuals are studied with the following results:

Trait

Yes

No

Blue

70

20

Eye Color

Brown

30

110

Other

20

50

Suppose a person is chosen at random from the 300 in the study.
(a) For each of the following pairs of events, indicate whether or not they are ex-

haustive, whether or not they are mutually exclusive, and whether or not they
are independent: (i) "yes" and "no," (ii) "blue" and "brown," and (iii) "yes" and
"brown."

(b) Find: (i) p(blue|yes); (ii) p(yes)blue); (iii) p(yes or blue); and (iv) p(yes and
blue).
Suppose two people are chosen at random from the 300.

(c) What is the probability that the first person has the trait and has brown eyes?
(d) What is the probability that both people have the trait and have brown eyes if

they are selected with replacement?
(e) What is the probability that both people have the trait and have brown eyes if

they are selected without replacement?
4.3 The following demonstrates why it is hard to screen populations for the presence

of low-incidence diseases: enzyme-linked immunosorbent assay (ELISA) tests are
used to screen donated blood for the presence of the HIV virus. The test actually
detects antibodies, substances that the body produces when the virus is present.
However, the test is not completely accurate. It can be wrong in two ways: first, by
giving a positive result when there are no antibodies (false positive), and second, by
giving a negative result when there actually are antibodies (false negative).

When antibodies are present, ELISA gives a positive result with a probabil-
ity of about .997 and a negative result (false negative) with a probability of about
.003. When antibodies are not present, ELISA gives a positive result (false positive)
with a probability of about .015 and a negative result with a probability of .985.
That is,

p (correct positive) = p (positive | HIV) = .997

p(false negative) = p(negative|HIV) = -003
p(false positive) = p(positive|no HIV) = .015

p(correct negative) = p (negative | no HIV) = .985



(a) What is the probability that someone is for if that person is male?
(b) What is the probability that a randomly selected individual is a female who has

no opinion?
(c) What is the probability that a female student would have no opinion?
(d) What is the probability that a student would have no opinion?
(e) What is the probability that someone with no opinion is male?

4.5 Assume that, in a particular research area, .30 of the null hypotheses tested are true.
Suppose a very large number of experiments are conducted, each with a = .05 and
power = .80.
(a) What proportion of true null hypotheses will be rejected?
(b) What proportion of false null hypotheses will not be rejected?
(c) What proportion of nonrejected null hypotheses will actually be true?
(d) What proportion of all null hypotheses will be rejected?
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Suppose 100,000 blood samples are obtained from a population for which the inci-
dence of HIV infection is 1.0%; that is, p(HIV) = .01.
(a) Using the information given here, fill in the cells in the following 2x2

table:

(b) Given that a randomly chosen sample tests positive, what is the probability that
the donor is infected?

(c) Given that a randomly chosen sample tests negative, what is the probability that
the donor is not infected?

4.4 We are often able to use key words such as "and," "or," and "given" to decide among
probability rules. In the following problem, we use more everyday language, so read
carefully and for each part think about whether the wording dictates marginal, joint,
or conditional probability.

Suppose that a survey of 200 people in a college town has yielded the following
data on attitudes toward liberalizing rules on the sale of liquor:

Test Results HIV No HIV Total

Positive
Negative

Total

Male

Attitude

For
Against
No opin.

Col. total

Student

70
5
5

80

Nonstudent

10
30
0

40

Female

Student

40
10
10
60

Nonstudent

0
20
0

20

Row Total

120
65
15

200
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4.6 A study reported in the local newspapers indicated that a psychological test has been
developed with the goal of predicting whether elderly people are at high risk for
developing dementia in the near future. For healthy people at age 79, the probability
of developing dementia within the next 4 years is approximately .20. In the study, a
group of healthy 79-year-olds was given the test. For those who went on to develop
dementia within the next 4 years, the probability of a positive test at age 79 was
found to be .17; that is, p(positive|dementia) = .17. For those who did not develop
dementia within the next 4 years, the probability of a positive test was .008; that is,
p (positive | no dementia) = .008.
(a) What is p (negative | dementia)?
(b) What is p(negative|no dementia )?
From the data given here, find the predictive accuracy of the test. That is, find the
probability that a 79-year-old who takes the test will develop dementia within the
next 4 years (c) if the test result is positive and (d) if the test result is negative. Bayes'
rule (Appendix 4.3) can be used to answer parts (c) and (d); alternatively, see our
answer to Exercise 4.5.

4.7 For each of the following, state the null and alternative hypotheses.
(a) The recovery rate for a disease is known to be .25. A new drug is tried with a

sample of people who have the disease in order to determine if the probability of
recovering is increased.

(b) An experiment such as that described in Exercise 4.1 is conducted to provide
evidence for the existence of ESP.

(c) In the ESP experiment of Exercise 4.1, a proponent of ESP (Claire Voyant?)
claims that she will be successful on more than 60% of the trials.

4.8 Use the binomial table (Appendix Table C.I) to find the rejection region in each of
the following cases (IT is the population probability):

Case

(a)
(b)
(c)
(d)

Ho

IT = .25
IT = .25
TT = .25

TT = .5

HI
p > .25

TT > .25

7T < .25

TT #.5

n

20
5

20
20

a

.01

.01

.05

.01

In an experiment, data are collected such that, when a hypothesis test is conducted,
the null hypothesis is rejected with p = .003.
(a) Can you conclude that H0 is true with probability .003? Why or why not?
(b) Can you conclude that H\ is true with probability .997? Why or why not?
In each of the following, (i) State the null and alternative hypotheses; (ii) state n; and
(iii) state the appropriate rejection region assuming a = .05.
(a) An important quality in clinical psychologists is empathy, the ability to perceive

others as they perceive themselves. In a simplified version of one investigation
of empathy, 5 first-year graduate students were asked to rate a target individual
on a particular trait as they believed the individual would rate himself or herself

4.9

4.10
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A 4-point scale was used. The question of interest was whether the raters would
do better than chance.

(b) In a study of group problem solving, the investigator uses the solution rate for
individuals in a previous study to predict that 40% of 3-person groups will reach
the correct solution. Fifteen groups are run in the study. The question of interest
is whether the theory is correct.

4.11 Suppose a sign test is to be done with H0: p = .50, H1: p <.50, n = 20, and a =
.060.
(a) What is the rejection region?
(b) What is the power of the test if p is actually .35?
(c) What would the rejection region be if the alternative hypothesis was nondirec-

tional, that is, if H1 : p# .50 ?
(d) What is the power with an assumption of a two-tailed rejection region and an

alternative of p= .35?
4.12 Ten students took a course to improve reasoning skills. Before the course they took a

pretest designed to measure reasoning ability, and after the course they took a posttest
of equal difficulty. The results for the 10 students are as follows:

Student
Pretest score
Posttest score

1
25
28

2
27
29

3
28
33

4
31
36

5
29
32

6
30
34

7
32
31

8
21
18

9
25
32

10
20
25

The instructors of the course try to decide whether performance on the posttest is
significantly different from performance on the pretest by looking at the signs of the
difference scores, on the reasoning that if the course had no effect whatsoever, each
student would be equally likely to get a plus or minus.
(a) State H0 and H1 .
(b) Perform a sign test on these data (a = .06) and report your conclusion.
(c) The researchers believe that if at least 75% of the population sampled improves

on the posttest, the reasoning course is worth using more widely. They redo the
analysis, testing the null hypothesis that TT = .75 against the alternative that it is
less than .75. Do you see a problem with this approach? Explain.

4.13 A researcher studying memory performs an experiment that compares two strategies
for remembering pairs of words. Twelve students are each given a number of sets of
word pairs to learn. They learn half the sets by using rote memorization and the other
half by using imagery. The order of conditions is counterbalanced appropriately. It
is found that 9 students do better with the imagery strategy and 3 do better with rote
memorization.
(a) Using the binomial distribution, test the null hypothesis that both strategies are

equally effective using a = .05. Write down the appropriate null and alternative
hypothesis and describe the steps you take in testing the null hypothesis. What is
the result of the significance test?

(b) What is the power of this test if the probability of doing better using the imagery
strategy is actually .9 in the population (so that the probability of doing better
using the rote strategy would be .1)?



APPENDIX 4.1 95

4.14 Reconsider the study of empathy described in Exercise 4.10, part (a).
(a) If the true probability of an empathetic response is .5, what is the power of the

significance test in your answer to the earlier question?
(b) What is meant by "true probability"?

4.15 Consider the hypothetical population that corresponds to a random variable Y where
Y takes on each of the values 2, 4, 6, and 8 with probability .25.
(a) What are the values of E(Y) and var(F)?
(b) Samples consisting of two scores are drawn with replacement from this popula-

tion, and the mean of each sample, Y, is obtained. Complete the following table,
generating the sampling distribution of 7:

Y = 2 3 4 5 6 7 8

P(Y) = ?

(c) Find E(Y) and var(Y) for the distribution in (b). How do these values relate to
your answer to part (a)?

4.16 Given a parent population that consists of just five scores, 2, 4, 6, 8, and 10:
(a) What is the mean, u, and the variance, a2, of the population?
(b) Consider all the samples of two scores that can be selected with replacement from

the population. Generate the sampling distribution. That is, state each possible
value of the sample mean and its probability of occurrence.

(c) Find the mean and variance of this sampling distribution.
4.17 It is known that, in a school with several thousand students, the mean IQ is 100.

You select a random sample of 5 students. The first student you select has an IQ of
150. Given the above information, answer the following questions and justify your
answers.
(a) What is your best estimate of the mean IQ of the next 4 students you select?
(b) What is your best estimate of the mean IQ of all 5 students in the sample?
(c) Do either of your answers to (a) and (b) change if the sample size is increased to

10? If so, what is the nature of the change?
4.18 Suppose we draw all samples of size 2 without replacement from the population of

five scores in Exercise 4.16.
(a) Generate the sampling distribution of the mean.
(b) What is the mean and variance of this sampling distribution?

APPENDIX 4.1

Understanding the Combinatorial Formula (Equation 4.15)

Consider five individuals who are running for positions on the city council; the two top vote
getters will be elected. First consider all the possible assignments of individuals to ranks
where the ranks are the position in the final vote. There are five possibilities for the first
position in the vote count, and four possibilities for the second position (e.g., A could be
followed by B, C, D, or E). The total number of sequences is (5)(4)(3)(2)( 1) or 5! In general,
there are n\ sequences of n objects.
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Suppose the question is, How many outcomes can this election have? Here, by "out-
come" we mean patterns of election and nonelection. For example, A and B might be
elected and C, D, and E fail to be elected. Notice that the order of finish within each
of the two classes (elected and nonelected) is irrelevant. The following sequences are all
equivalent in that they constitute the same outcome: A and B elected, and C, D, and E not
elected:

A,B/C,D,E B,A/C,D,E
A,B/C,E,D B,A/C,E,D
A,B/D,C,E B,A/D,C,E
A,B/D,E,C B,A/D,E,C
A,B/E,C,D B,A/E,C,D
A,B/E,D,C B,A/E,D,C

Note that the two (2!) possible sequences of A and B, paired with the six (3!) possible
combinations of C, D, and E, correspond to one combination (A and B elected; C, D, and
E not elected). In general, r!(n — r)! sequences will correspond to a single combination
when n items are split into one class with r items and one with n — r items. Therefore, the
number of combinations is n! /r ! (n — r}! In our example, the number of ways the election
can turn out is

In general, the number of different ways of selecting r items from n items is

APPENDIX 4.2

Sample Size and Violations of the Independence
Assumption

Although violations of assumptions can often lead to erroneous inferences, the consequences
can sometimes (though not always) be minimized by using large samples. The violation
of the independence assumption in calculating probabilities provides a nice illustration of
this point. Consider an urn containing five red and five black balls. We draw a marble three
times from the urn. If we assume that the marble is replaced and the urn is thoroughly
shaken after each draw, so that we have independence, according to the multiplication rule,
the probability of drawing three red marbles is p ( R 1 and R2 and R3) = p(R)p(R)p(R) =
(5/10)3 = . 125. However, suppose that the drawn marble has not been replaced each time.
This violates our assumption of independence. We can see this by the following analysis:
If a red ball is drawn on trial 1, the probability of drawing a second red ball is now 4/9,
whereas if a black ball is drawn on the first draw, the probability of a red on the second
draw is 5/9. In fact, the probability of drawing a red (or black) ball on any trial depends on
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Bayes' Rule

We defined conditional probability in Subsection 4.4.3. For any two events, X and Y, there
are two conditional probabilities: the probability of event X given event F,

and the probability of Y given X,

We also mentioned that people tend to confuse the opposite conditional probabilities,
p(X\Y) and p(Y\X), and to confuse both of them with the joint probability p(X and Y).
Bayes' rule provides a way of expressing one conditional probability in terms of the other.
Because p(Y and X) = p(X and Y), from Equations 4.19 and 4.20 we have

Also, because when X occurs, Y either occurs or does not occur, we can write
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the sequence of preceding draws. So, although our assumption of independence leads us to
conclude that p ( R 1 and R2 and R3) = .125, the true probability is p (R 1 and R2 and R3) =
p(R 1 )p (R 2 \R 1 )p (R 3 \R 1 and R2) = (5/10)(4/9)(3/8) = .063, roughly half the inferred
probability.

Suppose the urn consists of 50 red and 50 black balls. Our assumption of independence
leads us to the same probability, .125. This time, however, the true probability if we select
without replacement is p (R 1 and R2 and R3) = (50/100)(49/99)(48/98) = .121, and the
true and inferred probabilities are quite close; that is, the violation of the independence
assumption did not lead to a very large error.

There are two implications of our examples that extend beyond simple probability
calculations and violations of the independence assumption. First, violations may lead to
very wrong conclusions, as the urn with 10 marbles attests. Second, the consequences of
violations of assumptions may be less damaging when sample size is large. Neither of these
statements will be true for every inferential procedure, but they are often true and therefore
worth bearing in mind.
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where Y represents "not K" Combining Equations 4.21 and 4.22, we can write Bayes' rule
as

These equations tell us a number of useful things. From Equation 4.21, we see that p ( X \ Y } =
p ( Y \ X ) only if p(X) = p(Y). Equation 4.23 provides a way to find p(Y X), given that
we know the opposite conditional probability, p ( X \ Y ) , and have some appropriate addi-
tional information. Equation 4.23 can also be thought of as providing a way of updating
probabilities in the light of additional information. Suppose you know p ( Y ) and are now
given information about X. Equation 4.23 gives you a way of updating your estimate of
the probability of Y given the information X, resulting in p(Y\X). When the equation is
used in this way, p ( Y ) is called the prior probability and p ( Y \ X ) is called the posterior
probability.

The importance of distinguishing between opposite conditional probabilities is illus-
trated by the following example. For diagnostic tests, one can distinguish between the
predictive accuracy, p(disease(positive result), and the retrospective accuracy, p(positive
result|disease), of the test. Consider the ELISA test that is used to detect the presence of
HIV antibodies in samples of donated blood. The test is not completely accurate, and it
can be wrong in two ways: it can give a positive result when there are no antibodies (false
positive), and it can give a negative result when there actually are antibodies (false negative).

Although accuracy varies somewhat from laboratory to laboratory, when antibodies
are present, the ELISA test gives a positive result with a probability of about .997 and a
negative result (false negative) with a probability of about .003 (these two numbers have to
add to 1). When antibodies are not present, ELISA gives a positive result (false positive)
with a probability of about .015 and a negative result with a probability of .985. That is,

p (correct positive) = p (positive! HIV) = .997

Xfalse negative) = p (negative! HIV) = .003

p(false positive) = p (positive| no HIV) = .015

p(correct negative) = p(negative|no HIV) = .985

Suppose a blood sample is randomly selected from a population known to have an HIV
infection rate of 2%. Before the blood sample is tested, p(HIV) = .02. Now suppose the
ELISA test is performed on a sample and gives a positive result. What is the probability
that the sample contains HIV antibodies given that we know the test was positive, p(HIV|
positive)?

According to Bayes' rule,
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Note that whereas p(positive)HIV) = .997, p(HIV|positive) is only .576 given the infor-
mation presented here. The two conditional probabilities would be equal only if the rate of
HIV infection was 50%; that is, p(HIV) = p(no HIV).

Even though the probability of a positive test is much higher when antibodies are
present than when they are not, with only a 2% infection rate, almost half the positive tests
will come from samples that do not contain antibodies because there are so many more of
them. To see this more clearly, suppose we tested 100,000 blood samples. Of the expected
2,000 samples with antibodies, we would expect (.997)(2,000) = 1994 positive tests. Of
the expected 98,000 samples without antibodies, we would expect (.015)(98,000) = 1,470
positive tests. Therefore, of the 1,994 + 1,470 = 3,464 positive tests, 1,994 would come
from samples with HIV antibodies, so that p(HlV[positive) = 1,994/3,464 = .576. Bayes'
rule is just a way of formalizing this type of reasoning.



Chapter 5
Estimation and Hypothesis
Tests: The Normal Distribution

5.1 INTRODUCTION

In this chapter, we review many of the concepts introduced in Chapter 4, but with new
procedures. For example, we again consider hypothesis tests and the errors associated with
them. However, whereas we previously employed the binomial distribution as a basis for
our inferences, we now use the normal distribution for that purpose.

The general outline of this chapter is as follows. Because the normal distribution is
continuous, we begin by expanding on the brief statement in Chapter 4 about continuous
distributions. Next, we consider the normal distribution and some reasons for its central
role in much of statistical inference. Following that, we discuss sampling distributions (also
introduced in Chapter 4), and we provide several illustrations. This enables us to address
questions such as, What do the statistics of our data set tell us about the parameters of the
population? What are the characteristics of a "good" estimate of a population parameter?
How do we set limits on our estimate so that we have an interval within which we are rea-
sonably confident the parameter falls? We then analyze several measures from the Seasons
data set (Seasons folder on the CD) collected at the University of Massachusetts Medical
School to illustrate interval estimation and hypothesis testing, basing probabilities on the
normal distribution. In Chapter 6, we consider smaller samples and introduce additional
concepts; our inferences there are based on the t distribution.

5.2 CONTINUOUS RANDOM VARIABLES

5.2.1 The Density Function

A continuous random variable is one that can take any value within a given interval. A
common example in psychological research is response time, which theoretically takes on
any value from zero to infinity. Of course, observed response times usually fall between some

100
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Fig. 5.1 Example of a continuous distribution.

bounds such as 200 ms and 10 s. Even within such bounds, continuity is more theoretical
than real because the best laboratory timing devices rarely record in units smaller than
thousandths of a second. Not all the possible values of a continuous random variable can
be recorded. Nevertheless, the concept is important because many inferential procedures
assume continuously distributed random variables.

A logical problem arises when we try to deal with the probabilities of values of a
continuous random variable. We can see this by considering a relatively crude clock, one
capable of registering response times within a tenth of a second. Times longer than .95 but
shorter than 1.05 s will be registered as 1 s. Suppose we now substitute a more accurate
clock capable of measuring to the nearest hundredth of a second. Only response times in
the interval from .995 to 1.005 s now will be registered as 1 s. Of course, there will be fewer
times between .995 and 1.005 s than between .95 and 1.05 s; the probability of registering 1 s
is lower with the more accurate clock. Extending the argument, we should find it apparent
that the probability of a response time with a duration of exactly 1 s is essentially zero.

We may understand the issue better by considering Fig. 5.1. The distribution in the figure
is continuous. The area segment between y1 and y2 represents the proportion of observations
that falls between these two values. If y1 and y2 are placed closer together, the probability
of a score between these two values becomes smaller. Theoretically, we could make that
probability as close to zero as we desired by just reducing the separation between y1 and y2.

This line of reasoning suggests that it is not sensible to speak of the probability of some
exact value of Y when Y is a continuous random variable. To distinguish among continuous
random variables having different distributions, we need to represent the distribution by
some function of Y other than its probability. One function we can define is F(y), the
cumulative probability function. For example, F(y1) is the probability of getting a value
less than y1; in terms of Fig. 5.1, it is the area to the left of y1. The area in the segment
between y1 and y2 is F(y2) - F(y1). This is the probability that y takes on a value between
y1 and y2. This probability forms the basis for another function often used to characterize
a distribution: let

when y2 — y1 is very small. This ratio is the probability density function for continuous
distributions. We can view f(y) as the height of the curve at the value y. To see why
this is so, realize that we are dividing an area (between y1 and y2) by its width (y2 — y1);
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area/width = height. Even though the area gets increasingly close to zero as the width gets
smaller, the ratio approaches a constant value that ordinarily is greater than zero. The value
of f(y) will depend on just what the value of y is, but the formula for f(y) will allow us
to calculate the probability density for any y. In other words, if we had a formula for f(y)
for the distribution of Fig. 5.1, we could plug values of y into it and plot the distribution in
that figure.

In contrast to f(y), F(y) is a probability, a proportion of the curve up to the point
y. It will be of primary interest in most inferential procedures; recall, for example, that
the hypothesis test in Chapter 4 involved evaluating the area in the tails of the binomial
distribution. Nevertheless, f(y) is important because continuous probability distributions
are characterized not by p(y), the probability that the variable, Y, has the value y, but by
f(y), the probability density function. This function represents the limiting ratio obtained
when the probability of a very small interval is divided by the width of that interval. The
density function is different for different distributions and provides a way of characterizing
a continuous distribution, just as Equation 4.16 characterizes the binomial distribution.

5.2.2 Expected Values

The expected value of a discrete random variable was defined in Chapter 4 as E(Y) =
E y p ( y ) . Because p(y) is essentially zero when Y is continuously distributed, the definition
for the continuous case involves the calculus. We present that definition, together with rules
for defining expected values, in Appendix B at the back of the book. For now, it is only
important to understand that the expected value of a population distribution is its average.
We use the notation E(Y), or the Greek letter mu (u), to indicate the mean of the population
of Y scores. The variance of the distribution is, as in discrete distributions, the average
squared deviation of scores from the mean:

where Y is the obtained score, u is the mean of the population of test takers, and e (Greek
letter epsilon) is a sum of "errors," positive and negative deviations from the population
mean that are due to many random factors that affect the obtained performance. Such
factors would include test-taking skills, amount of knowledge relevant to the test, amount

This can also be written as (see Appendix B for the derivation)

5.3 THE NORMAL DISTRIBUTION

The assumption that scores are normally distributed plays a central role in many inferential
procedures. In large part, this is because the derivations of other distributions such as the
chi-square, t, and F rest on that assumption. There is some justification for the assumption
of normality; many random variables do have at least an approximately normal distribution.
Consideration of an individual's score on a test such as the SAT may clarify why this is so.
The score might be represented as
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As we showed in Chapter 2, the mean of the distribution of z scores is zero and its standard
deviation is one. This is true of any complete set of z scores. In addition, if the variable Y
is normally distributed, the corresponding distribution of z scores also will be normal. In
this case, the variable z is often referred to as a standardized normal deviate.

Standardization provides information about the relative position of an individual score,
and it is very helpful. For example, assume a normally distributed population of scores
with u = 500 and p = 15. A value Y of 525 would correspond to a z score of 1.67; z =
(525 - 500)/15 = 1.67. Turning to Appendix Table C.2, we find that F(z) = .9525 when z
is 1.67. F(z) is the proportion of standardized scores less than z in a normally distributed
population of such scores. In this example, we may conclude that the score of 525 exceeds
.9525 of the population. Of course, this conclusion may not be valid if our values of u and
p are incorrect or if Y is not normally distributed.

Equation 5.6 defined a z score as (Y — u)/cr . In fact, this is just a special case of a general
formula for a z score. Instead of Y, we could have any observed quantity; examples would

and type of preparation, motivation, and the current state of alertness. There is an important
theorem, the central limit theorem, which says that the sum of many such effects will
be normally distributed. Therefore, if e can be viewed as a sum of many independent
random effects, such as the ones we have indicated, it (and therefore Y) will tend to be
normally distributed. Another consequence of the central limit theorem is that even if Y is
not normally distributed, the distribution of the sample mean will tend toward the normal
as the sample size increases. Because of this, tests on means may be valid even when the
data are not normally distributed.

Although the normal distribution is a reasonable approximation to the distribution of
many variables, many others are not normally distributed. We cited published reviews of data
sets in Chapter 2 and presented examples from the Royer and Seasons data sets that make this
point. With this in mind, in several chapters, we consider the consequences of nonnormality
and the alternatives to those classical statistical procedures that rest on the assumption of
normality. Nevertheless, because of its central role in statistical inference, we devote much
of this chapter to considering the normal distribution. The normal distribution also merits
our consideration because it provides a relatively simple context within which to continue
our presentation of inferential procedures such as interval estimation and hypothesis testing.

The normal distribution is characterized by its density function:

where u and or are the mean and standard deviation of the population and p and e are
mathematical constants. The random variable Y can take on any value between — i and
+i, and the curve is symmetric about its mean, u.

Infinitely many normal distributions are possible, one for each combination of mean
and variance. However, inferences based on these normal distributions are aided by the
fact that all of the possible normal distributions are related to a single distribution. This
standardized normal distribution is obtained by subtracting the distribution mean from
each score and dividing the difference by the distribution standard deviation; specifically,
it is the distribution of the z score:
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The variable zv will be normally distributed if (and only if) Vis normally distributed. In
that case, we can assess the probability that V exceeds some specified value by referring to
Appendix Table C.2, which tables probabilities under the normal distribution. We illustrate
the application of the table and Equation 5.7 for drawing inferences about means in Sections
5.5-5.8, but first we consider the general issue of estimating population parameters.

5.4 POINT ESTIMATES OF POPULATION PARAMETERS

The basic problem in using the statistics of a single study to draw inferences about population
parameters is that the values of the statistics are not identical to those of the parameters they
estimate. The sample mean will vary over independent replications of a study, as will all
other statistics we can compute from a sample. This raises many questions, among which
are the following: What does the sampling distribution of a given statistic look like? Can
more than one statistic be used to estimate a particular population parameter? If so, how do
we decide between these possible estimates? These are some of the issues we deal with in
the following subsections.

5.4.1 What Is a Sampling Distribution?

The concept of a sampling distribution, introduced in Chapter 4, is implicit in statistical
inference. For example, consider the following marketing study. Fifty individuals are sam-
pled from some well-defined population and asked to rate a new brand of breakfast cereal.
The ratings range from 1 ("strongly dislike") to 11 ("strongly like") with 6 as the neutral
point. We might wish to test whether the mean of the sampled population is different from
the midpoint of the scale, 6. The mean of the sampled ratings is 8.6. On one hand, if the
sample mean changed little from one sample to another, this value would provide strong
evidence against the hypothesis that u = 6. On the other hand, if the sample mean was
quite variable over samples, then a sample value of 8.6 could well have occurred even
when the population mean was 6. The critical point is that it is useful to picture many
random replications of the 50-subject sampling experiment with each replication giving
rise to a value of Y. This hypothetical probability distribution of Y is called the sampling
distribution of the mean for samples of size 50. As we can see from our example, knowing
the properties of this sampling distribution may help us evaluate inferences made on the
basis of a single sampled value of Y. If we know that the sampling distribution has little
variability, we have considerable confidence that our one estimate is close to the population
parameter; conversely, we are less satisfied with an estimate when the variability of the
sampling distribution is high. Furthermore, as we shall see, if we have knowledge of the

be the sample mean, the difference between two sample means, or some other statistic. Call
this V for observed variable. To transform V into a z score, subtract its expected value from
it. Then divide the difference by pv. To conceptualize ov, assume that many samples have
been drawn from a population and a value of the statistic V is calculated for each sample.
The standard deviation of these values is (TV , which we refer to as the standard error of
the sampling distribution of V. Thus, a general formula for z is
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shape of the sampling distribution—for example, that it can be described by the normal
density function—we can draw various inferences about the parameter. Every statistic has
a sampling distribution, because, each time a new sample is drawn from a population, the
sample statistic is based on a new set of values. For now, we focus on the mean and variance
of the sampling distribution of Y. These two properties of the sampling distribution of the
mean will prove useful to know when we study subsequent developments.

5.4.2 The Sampling Distribution of the Mean
We can never observe the sampling distribution of a statistic, because we never take a large
number of samples from the same population. Fortunately, we can derive properties of the
sampling distribution without actually drawing even one sample. This point may be clearer
if we consider some examples.

Sampling from a Population with Equiprobable Values. Assume that we
toss a single die. As usual, the die has six sides, each with a different one of the values from
1 to 6. If this experiment is carried out many times, and the resulting number is recorded
each time, we have the distribution displayed in Fig. 5.2(a); in the long run, each possible

Fig. 5.2 (a) A discrete population distribution and (b) the
sampling distribution of the mean for n = 2.
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In words, the expected, or average, value of the sample means equals the population mean.
In Appendix 5.1, we show that Equation 5.8 must be true for all sampling distributions
regardless of the shape of the population distribution. Also note that, when there are two
scores (e.g., two dice are thrown) in the sample, the variance of the sample means, p2/Y, is 1/2
the population variance. In general, if the scores are independently distributed, p2/Y = p2

Y/N,
where N is the sample size (see Appendix 5.1 for examples). For example, in panel (a), the
population variance is 2.917, and in panel (b), which depicts the sampling distribution of
means of samples of size 2, the variance is 2.917/2, or 1.458. If we construct the sampling
distribution of means for samples of size 10, the variance would be .2917.

In summary, (a) the average of many sample means will be the same as the population
mean, and (b) the sample-to-sample variability of the sample mean will be less when N is
large. Therefore, a single sample mean is more likely to be close to the population mean it
estimates when the sample is large than when it is small. This makes sense; the larger the
sample, the more likely it is to resemble other samples from the same population and the
closer its mean will be to those of other samples.

Sampling from a More Representative Population Distribution. As
Micceri (1989) and others have noted, distributions of many, perhaps most, variables mea-
sured by psychologists and educators are not normally distributed; they tend to be skewed,
or have pronounced peaks, or marked gaps among values, or some combination of these.
To consider a distribution with some of these characteristics, we created a distribution with
mean, standard deviation, skewness, and kurtosis similar to that of the sample of Beck de-
pression seasonal change (winter — spring) scores in the Seasons data set. This population
distribution is displayed in Fig. 5.3(a). There is a slight asymmetry and a marked peak

integer from 1 to 6 will occur on 1/6 of the trials, if we assume that the trial outcomes are
independent and that each value has probability 1/6 of occurring.

Now let's change the experiment slightly so that a trial consists of tossing two dice. If
we record the mean of the two numbers that come up on each of many trials, then—still
assuming independence and equal probability of the six values for each die—the sampling
distribution of the trial mean will be that depicted in Fig. 5.2(b). The distribution now has
a definite peak. For example, the sample mean is more likely to equal 3.5 than 1 or 6. The
reason for this follows from the multiplication rule for independent events. The mean will
equal 1 only if both dice on a trial result in a 1, an event that occurs with probability p =
1/6 x 1/6. In contrast, the mean will equal 3.5 if one die shows a 1 and the other shows a 6,
or if either die has a 2 while the other shows a 5, or if the result is a 3 and a 4. Therefore,
there are six outcomes that can yield a sum of 7, or a mean of 3.5. Each outcome has a
probability of 1/36, so the probability of a mean of 3.5 is 6 x 1/36. If we were to further
increase the number of dice tossed in each replication of the experiment, consistent with
the central limit theorem, the resulting sampling distribution of the mean would be more
closely approximated by the normal density function of Equation 5.5.

Figure 5.2(a) includes values of the population mean and variance, and Fig. 5.2(b)
includes the mean and variance of the sampling distribution when two dice are thrown; that
is, when n = 2. Note that the mean of the sampling distribution of the mean, uy, is identical
to the mean of the population, uY; that is,



Fig. 5.3 (a) A population distribution, and sampling
distributions of the mean for (b) n = 2 and (c) n = 25.
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near the mean, as well as several outliers, all characteristics present in the Seasons data.
Another salient characteristic is the presence of several large gaps among the values. We
drew 2,000 samples of size 2 from this population; the sampling distribution of the 2,000
means is displayed in panel (b). The sampling distribution is still slightly skewed to the right
but there are now fewer gaps, and the peak and outliers are less prominent. Averaging the
infrequent high scores with the more frequently occurring zero values has produced these
effects. Panel (c) displays the sampling distribution of 2,000 means, each based on samples
of 25 scores. Now we can see the central limit theorem at work; the gaps have been filled
in and the distribution is beginning to look more like that described by the normal density
function. Skewness and kurtosis values are quite close to the theoretical value of zero for
the normal density function. This does not mean that a sample of size 25 will always suffice
to yield a sampling distribution approximated by the normal density function. With a very
skewed population distribution, a still larger n would be required.

In summary, the following points should be kept in mind:

1. The sampling distribution of the mean approaches the normal distribution as sample
size increases. This approach will be slower when the population distribution is not
symmetric.

2. The mean of the sampling distribution of the mean equals the mean of the pop-
ulation. Because of this, we say that the sample mean is an unbiased estimate
of the population mean. This and other properties of estimators are discussed in
Subsection 5.4.3.

3. The variance of the sampling distribution of the mean of a sample of size N equals
the population variance divided by N. The square root of this variance is known
as the standard error of the mean (SEM) and plays an important role in many
inferential procedures.

4. Not all sampling distributions are described by the normal density function when n
is large. The central limit theorem applies only to linear combinations1 of variables,
and even then an N so large as to be impractical may be required before the normal
distribution is a good fit to the sampling distribution.

The mean of the sampling distribution and its standard deviation (the SEM) provide
the key to understanding the estimation of population parameters. Having developed some
basic ideas about sampling distributions, we can now consider the properties of estimators.

5.4.3 Some Properties of Estimators

An infinite number of possible estimators of any single population parameter exist. The
population mean might, for example, be estimated by the sample mean, the sample median,
or even the first score drawn from the sample. The choice of an estimator may seem
intuitively obvious. Why not just estimate the population mean by the sample mean, the
population variance by the sample variance, and so on? The answer is that the "obvious"
estimator may not be a very good estimator. For example, suppose we wanted to estimate
the height of the tallest man in a country; call this parameter G. Intuitively, we might use g,
the tallest height in a sample of men, to estimate G. However, it is unlikely that the tallest
man in the country will be included in a random sample of men; g usually will be less than
G. Why use an estimator that, on the average, will give a value that is systematically too
small?
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and E(S2) < a2. In other words, s2 is an unbiased estimator of the population variance but
S2 is a biased estimate. Equations 5.10 and 5.11 together convey this message: If we were
to take many samples, and compute S2 and s2 each time, the average value of S2 would be
smaller than the population variance, a2, whereas the average value of s2 would equal p2.
Because S2 tends to underestimate a2, we follow the usual practice of calculating s2 rather
than S2 for the sample variance.

Bias, or the lack of it, cannot be the sole, or even the most important, property of an
estimator. Suppose we took the first score, Y1, in a sample as an estimate of u. If we drew
many samples, discarded all but the first score each time, and then calculated the mean of
the sampling distribution of Y\, that mean would equal u. Thus, the first score (or, for that
matter, any single score) drawn from a sample is an unbiased estimate of u. Nevertheless,
this estimator does not feel right. For one thing, it violates our work ethic; collecting more
data in the sample does not improve our estimate because we are discarding all but one
score. This line of reasoning suggests the next criterion for an estimator.

Consistency. Again, let 6 be some estimator of 0. It is a consistent estimator of
6 if its value is more likely to be close to t as N increases.2 A familiar example of a
consistent estimator is the sample mean; because O2/y = O2

y/N, it is evident that the sampling

where s2 = £ (Y - Y)2/(N - 1). Therefore, because S2 = [(N - 1 ) / N ) ] s 2 ,

If Equation 5.9 holds for an estimator, the average of many independent estimates will
equal the population parameter. Estimators conforming to Equation 5.9 are called unbiased
estimators. One example of biased estimation is the use of the largest score in a sample (g)
to estimate the largest score in a population (G). We noted earlier that E(g) < G. A second
example is S2 as an estimator of a2, where S2 = E(Yi — Y)2/N. In Appendix B, we show
that

Sometimes intuition suggests competing choices for estimators. Suppose a sample is
taken from a symmetrically distributed population of scores. Then, the population mean
and median are identical. In that case, intuition leaves two choices for an estimator. Do
we take the sample mean as the estimate? The sample median? Does it matter? Clearly,
we need something more than intuition to guide us in estimating (and testing hypotheses
about) population parameters. The decision about which quantity best estimates a particular
population parameter can be made by establishing criteria for good estimators, and then
examining how closely various estimators meet these criteria. The criteria that are generally
agreed on are based on knowledge of the sampling distribution of the estimator. We consider
three important criteria for selecting estimates in turn.

Unbiasedness. Suppose we wish to estimate some population parameter, 9 (theta); 0
might be a mean, a variance, or any other quantity of interest. A statistic, 0, is calculated
from a sampled set of N scores. One desirable quantity for a good estimator is that the mean
of its sampling distribution should equal the parameter being estimated; that is,
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variability of Y about u decreases as N increases. Because inferences based on consistent
estimators are more likely to be correct as sample size increases, consistency is an important
property of an estimator. Nevertheless, even consistency combined with unbiasedness is not
a sufficient basis for selecting between possible estimators of a parameter. A very important
consideration in selecting an estimator of a parameter is its variance about the parameter
being estimated. The less variable the sampling distribution is, the more likely it is that any
single estimate will have a value close to that of the population parameter. We consider this
criterion next.

Relative Efficiency. Assume that a sample of size n has been drawn from a symmetric
population. In that case, the sample mean and median are both unbiased estimators of the
population mean because the population mean and median have the same value in any
symmetric distribution. Furthermore, both the sample mean and median are consistent
estimates of u. They do differ in one respect, however. For any sample of size n, the
sampling distributions of the median and mean will differ in their variances. Assume that
many samples are drawn from a normally distributed population and the average squared
deviations of the sample means and medians about u are then calculated. For large samples,
the variance of the sample means will be approximately 64% of the variance of the sample
medians when the population is normally distributed. This smaller variance of the mean
relative to that of the median is expressed by saying that the relative efficiency (RE) of the
median to the mean as estimators of the mean of a normally distributed population is .64.
Conversely, the relative efficiency of the mean to the median is 1/.64 or 157%. Because of
its greater efficiency, the mean is preferred to the median as an estimator of the mean of a
normally distributed population.

In general, assume a population parameter, t, which can be estimated by either of two
statistics, t1 or t2. The RE of t1 to t2 is

5.4.4 Which Estimator?

Most of the estimation and hypothesis testing procedures presented in this and similar books,
and in published journal articles, make use of the sample mean, Y, and the unbiased variance
estimate, s2. If the population from which the data are drawn has a normal distribution, these
statistics will be efficient relative to their competitors. Consequently, estimates based on
them are more likely to be close to the true value of the parameter being estimated, and
hypothesis tests are more likely to lead to correct inferences. But what if the population
distribution is not normal? We address this question by considering the relative efficiencies
of several estimators of u for different population distributions.

To examine the efficiencies of various estimators, we used a computer to draw 2.000
random samples of size 20 from a normally distributed population that had u = 0 and a =
1. Three statistics were calculated for each sample. These were the mean (F), the median

Thus, RE is the ratio of two averages of squared deviations of estimates about the same
population parameter. Note that this is a measure of the efficiency of the estimator in the
denominator relative to that in the numerator.
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(Y), and the 10% trimmed mean (Y.10); this last statistic is obtained by rank ordering the
scores in the sample, discarding the highest and lowest 10% (the top and bottom two scores
for n = 20), and then calculating the arithmetic mean. The variances of the 2,000 values
of these three statistics are presented in the first column of Table 5.1. The column also
contains the efficiencies of Y and Y.10 relative to Y; these are obtained by taking ratios of
the variances, as in Equation 5.12. It appears that, when the population of scores is normal,
the mean is the more efficient statistic and therefore the better estimator of the population
mean. The situation is quite different if we make one change. Suppose 19 of the 20 scores in
each sample were drawn from the population with u = 0 and a = 1; however, one score is
drawn from a population with u = 0 and cr = 3. This second population looks much like the
first except that extreme scores are more likely. Think of the extreme scores as coming from
those rare individuals who come to the experiment hung over from the previous night's party.
Such scores might contribute to the variance, increasing the proportion of very small and
very large scores. Variances of the three statistics and efficiencies relative to the mean are
presented in the second column of Table 5.1. The interesting result here is that the variances
of the sampling distributions of both the trimmed mean and the median are markedly less
than that of the mean, and their relative efficiencies, accordingly, are greater.

Contrary to popular mythology and intuition, the sample mean is not always the best
estimator of the population mean. Other estimators may be more efficient when the popula-
tion is skewed, or is symmetric but with long tails, or when there are a few outlying scores,
as in the example of Table 5.1. This happens because the sampling variance of the mean is
increased much more than that of the trimmed mean or median by the inclusion of even a
few extreme scores. The sampling procedure we used to generate the results in the second
column of Table 5.1 is probably representative of what happens in many studies. The result
of the occasional inclusion of a deviant score is that we have less confidence in our inferences
about population parameters. In many cases, it might be best to use inferential procedures
that do not rest on the sample mean. Several nonparametric, or distribution free, procedures
are presented in this book; these procedures will be particularly useful in fairly simple de-
signs, but less so in more complex designs involving several independent variables. Another
possible approach implicit in the results presented in Table 5.1 is to trim data from the tails
of sample distributions. This involves adjusting estimates of population variances. Hogg,
Fisher, and Randies (1975) describe a t test based on trimming, and they compare it with
several nonparametric tests (as well as with the standard t test) for distributions exhibiting
various degrees of tail weight and skew. They also suggest ways of estimating tail weight
and skew and of using these estimates to select the best hypothesis-testing procedure.

TABLE 5.1 VARIANCES AND REs OF THREE ESTIMATES OF A POPULATION MEAN

Statistic

Y

Y

Y.10

Normal Distribution

Variance

.051

.073

.054

RE

1.000
0.700

0.952

Mixed-Normal Distribution

Variance RE

.260 1.000

.079 3.293

.061 4.238

Note. RE for each statistic is its sampling variance relative to that of the sample mean.
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To sum up the developments of this section, we state that unbiasedness, consistency,
and efficiency are desirable properties in the statistics we use in drawing inferences. The
prevalent use of inferential procedures based on Y and pY reflect the fact that these statistics
are known to have these properties under many conditions. However, there will be situations
in which we encounter distributions for which other statistics will be more efficient. The
researcher should be aware of this and, when such situations arise, consider alternative
approaches to inference.

5.5 INFERENCES ABOUT POPULATION MEANS:
THE ONE-SAMPLE CASE

One of the measures available to us in the Seasons data set is the seasonal total cholesterol
score (TCI, . . . , TC4). We calculated the average over the four seasons (the variable labeled
TC) for those participants who had been measured in all four seasons (some participants
missed at least one of the four sessions); the data are in the TC file in the Seasons folder on
the CD; We decided to use our sample data to estimate the mean TC of a subpopulation—
namely, male participants who were 50 years of age or older (Agegrps 3 and 4 in the file).
Keeping in mind that doctors frequently recommend that TC levels should be at 200 or
less, we also wanted to know if the subpopulation mean differed from this recommended
maximum level. In what follows, we analyze the TC data of 117 male participants in
Agegrps 3 and 4 to estimate the mean of a population of such individuals, and to test the
null hypothesis that the population mean equals 200.

5.5.1 A First Look at the Data

Figure 5.4 presents a plot of the data obtained from SYSTAT's t-test module. Several aspects
of the plot are of interest. First consider the box plot of the TC scores. Because the median
approximately bisects the box, and the whiskers are of about equal length, it appears that the
distribution is symmetric. Note that the median is clearly above the recommended maximum
TC level of 200. Furthermore, the lower hinge is to the right of the dashed line that represents
this level; therefore, at least 75% of the participants have TC scores above the recommended

Fig. 5.4 SYSTAT graphs of the
TC data for 117 male subjects in
Agegrps 3 and 4 (50 years of age
or older in the Seasons study).
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maximum. There is some good news, however. None of the participants have a TC level as
high as 300, a value that would clearly signal a high-risk patient. Nevertheless, the box plot
warns us that cholesterol level may be a problem for many of these patients. One other point
should be noted in the box plot. There are two extreme outliers, TC scores close to 100.
Such scores are very unusual, and it might be wise to consider rechecking these patients'
cholesterol levels. One possibility that should be considered is that the scores represents
clerical errors.

The dot plot at the bottom of the figure shows the distribution of scores in a very
detailed manner. Our impression of symmetry is confirmed and we again see the low
outliers. The curve above the dot plot is a normal distribution having the same mean and
standard deviation as the sample of 117 TC scores. Because the normal distribution is
symmetric, the peak is at its mean, and again we can see that the mean is clearly above the
recommended maximum level indicated by the dashed line. Comparing the dot plot and the
theoretical normal distribution, we find it evident that the distribution in the sample is flatter
and "shorter tailed" than the normal distribution. In the following sections, in which we
draw inferences from our data, we comment on the consequences of this apparent departure
from normality.

To draw inferences about the population mean, based on the normal distribution, we
need three pieces of information: the sample size (N), the sample mean (7), and the sample
standard deviation (s). The mean and standard deviation are readily obtained from any
statistical package; in this example, we have

We are now ready to estimate an interval containing the population mean and to test
whether that mean differs significantly from the theoretical value of 200. The calculations
that follow are based on the normal probability distribution. Strictly speaking, because we
do not know a, but instead have estimated it, the t distribution provides more valid infer-
ences. However, because N is large, there will be little difference between the results based
on the normal and on the t distributions. We have used the normal probability distribu-
tion in this chapter to postpone certain complexities in our discussion of inferences about
means.

5.5.2 A Confidence Interval for u
The sample mean, Y = 224.684, provides a point estimate of u, the population mean TC
score for male participants older than 50 years. However, the sample mean might be close
to the parameter, or it might be considerably in error. To have a sense of the reliability of
such estimates, we calculate a confidence interval (CI), a pair of numbers that provide
bounds for the parameter being estimated. How is this confidence interval calculated? What
assumptions underlie the calculations? How should we interpret the results? We consider
these questions next, first noting that although our example involves the confidence interval
for the population mean, the interpretation of confidence intervals for other parameters is
similar to that for the mean.

Assume that many samples of 117 TC scores are drawn from a population of such
scores. Further assume that the mean of each sample is converted into a standardized (z)
score by subtracting the mean of the sampling distribution and then dividing the remainder
by the standard error of the mean. If the scores are independently sampled from a normal
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Consistent with our earlier look at plots of the data, we see that the lower limit of the CI
is above the recommended maximum TC of 200, but we are reasonably confident that the
population mean is not dangerously high for the population of over-50 males from which
we have sampled.

What exactly do these numerical limits mean? In what sense do we have .95 confidence
that the population mean is contained within them? We cannot say that "the probability is
.95 that u lies between 219 and 230"; ^ is either in this interval or it is not. Equation 5.14
tells us that, if we were to select many samples and find the .95 CI for each sample, in the
long run, .95 of these intervals will contain u. Therefore, our confidence is .95 that the one
interval calculated for this data set contains u.

Ideally, the narrower the interval, the better our estimate of u. Returning to Equation
5.14, we can see that the interval width depends on the SE; the smaller the variability
of the sample mean, the smaller the distance between the two limits. If we recall that
pY = p/RN, it follows that the interval decreases with increased sample size and with
decreased variability. In short, we can increase the precision of our estimate by doing
whatever we can to reduce error variance, and by collecting as many observations as is
practical. A third factor, not immediately obvious in Equation 5.14, also affects the width

Putting it all together, we have

we arrive at

Similarly, we can solve for the lower bound. From the inequality

Solving for u, we have the upper bound:

To obtain the bounds on u, consider each inequality separately. First, consider

population, Appendix Table C.2 tells us that .95 of the sampled z values will lie between
-1.96 and 1.96. That is,

Recall that Y = 224.684 and 5 = 31.302. Dividing s by the square root of N, R117, we
have 2.894, an estimate of pY. Because N is large and the statistic s is a consistent estimate
of p, we expect s to be very close in value to p, and we feel justified in using it in our
calculations.3 Substituting into Equation 5.14, we find that the upper and lower bounds of
the .95 confidence interval for u are
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of the CI. We refer to the level of confidence. Turning to Appendix Table C.2, note that if
the level of confidence is set at .90, rather than .95, the critical z score is 1.645. Replacing
1.96 by 1.645, we see that the new limits are 219.92 and 229.44; we have less confidence
but a slightly narrower interval. There is a trade-off between confidence and interval width.

5.5.3 A Test of the Null Hypothesis

We originally asked whether the mean of the sampled population of TC scores differed from
a value of 200. The CI limits we just calculated suggest that the answer is that there is a
significant difference. We reason as follows: First, we have .95 confidence that the computed
interval, which has the limits 219 and 230, contains the population mean. Second, that
interval does not contain 200. Thus, we conclude with .95 confidence that the population
mean TC score differs from 200.

Most researchers tend not to calculate the CI and instead directly test whether the pop-
ulation mean equals the theoretical value. We believe this is a mistake because it addresses
the question, Is the mean 200? rather than the question, What is the mean? Nevertheless, the
practice of hypothesis testing is widespread. Furthermore, a presentation of the test permits
us to again address related concepts such as Type 1 and Type 2 errors. For these reasons, we
use the standardized normal distribution to test whether u differs from 200. In Section 5.8.
we present a more detailed discussion of the relation between the CI and the significance
test.

As in our discussion of the binomial test in Chapter 4, we establish a null and alternative
hypothesis; these are again designated H0 and H1, respectively. Letting uTC represent the
mean of the population of TC scores, we can restate our two hypotheses. The null hypothesis
is that u = 200 and is stated as

This z score informs us that the observed mean is more than 8 standard deviation units
above the hypothesized mean of 200.

The alternative hypothesis is

Once these two hypotheses have been formulated, we need a test statistic whose value will
enable us to decide between them. Recall the general form of the z statistic (Equation 5.7):

To test whether the mean TC score is significantly different from 200, we replace V by
YTC, E(V) by the population mean specified by H0 (uhyp), and pv by the SEM. Conse-
quently, we have

Substituting the values presented in Subsection 5.5.2, we have
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Now that we have a numerical value for our test statistic, we must use it to decide
between H0 and H1. We do this by determining those values of z that would lead to rejection
of H0 in favor of H1. Such values constitute the rejection region, the set of possible values
of z that are consistent with H1 and very improbable if H0 is assumed to be true. Indeed,
those values are so improbable if H0 is assumed that their occurrence leads us to reject
H0. An arbitrarily chosen value, a (alpha), defines exactly how unlikely "so unlikely" is.
Traditionally, researchers have set a at .05. Again, we want very strong evidence against
H0 before we reject it.

Once we have decided on a value of a, we can establish a rejection region for our study.
Turning to Appendix Table C.2, we find that 1.96 is exceeded by .025 of the standardized
normal curve; because the curve is symmetric, .025 of the area also lies below — 1.96. Thus,
if the null hypothesis is true, there is only a 5% probability of obtaining a value greater than
1.96 or less than —1.96. Equivalently, we reject H0 if the absolute value of z, |z|, is greater
than 1.96. Obviously, the z we calculated is much larger than 1.96 and therefore we reject
H0.

To summarize the steps in testing the null hypothesis (also see Chapter 4):

1. State the null and alternative hypotheses.
2. Decide on a test statistic; in the present example, this is the z defined by Equation

5.15.
3. Decide on a value of alpha and establish a rejection region. If a = .05, and the test

is two tailed, reject H0 when z > 1.96 or z < —1.96.

The obtained value of the test statistic falls well into the rejection region, so we can reject
the null hypothesis.

Alternatively, in step 3 we can find the p value, the probability that the value of the
test statistic would be at least as extreme as we actually obtained, if the null hypothesis was
true. We reject the null hypothesis if p < a. Here, the p is p(z > 8.53) + p(z < — 8.53); to
three decimal places, p = .000.

The two-tailed rejection region was selected because we tested whether cholesterol
scores were significantly different from (lower or higher than) 200. However, we might
have decided that low cholesterol scores are good and our interest lies only in detecting
high values. In that case the rejection region would have been one tailed and the null and
alternative hypotheses would have been

In this situation, if the population of scores is normally and independently distributed, and
we know the population variance, we again can use the z test. Accordingly, we turn to
Appendix Table C.2. Again, the rejection region consists of those extreme values of z that
are consistent with the alternative hypothesis. In this case, because our test is one tailed,
the region consists only of the largest 5% of the z distribution. Therefore, again assuming
that a = .05, we will reject H0 if the z calculated from our data is greater than 1.645. Also,
in the one-tailed case, the p value is determined only by the part of the distribution beyond
the value of the test statistic in the direction consistent with the alternative hypothesis.

The choice between one- and two-tailed tests should be made before the data are
collected. To understand why, consider the following scenario. Suppose we originally hy-
pothesized that the average TC score should be above 200; we have a one-tailed hypothesis.
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However, upon examining the data, we find that the sample mean is less than 200, and
we now restate our hypotheses, testing at the .05 level for a significant difference in the
direction opposite to that originally hypothesized. Because we have already considered one
tail (mean TC scores above 200) and are now considering the other tail (the mean is below
200), the true alpha level is greater than .05. In essence, we failed to find evidence for one
alternative hypothesis at the .05 level and are now seeking evidence for a different alterna-
tive, again at the .05 level. But 2 x .05 = .10, the true alpha level in this approach to the
data.

Why not always carry out the two-tailed test? Doing so would allow us to test for
departures from the null hypothesis in both directions. The answer lies in a consideration
of power. Note that the two-tailed test requires a cutoff of 1.96 in the right-hand tail of the
normal distribution, whereas the one-tailed test requires a cutoff of 1.645. In other words,
if the alternative hypothesis is that the population mean is greater than 200, the one-tailed
test has a more lenient criterion for rejection. Therefore, as we illustrated with the binomial
distribution of Chapter 4 (see Fig. 4.4), when the null hypothesis is true the one-tailed test
has more power against that alternative. We illustrate the calculation of the power of the
normal probability (z) test and discuss the factors affecting it in Section 5.7. Before doing
this, and also before considering the assumptions underlying the inferences we have drawn,
we first consider a second example.

5.6 INFERENCES ABOUT POPULATION MEANS:
THE CORRELATED-SAMPLES CASE

A major purpose of the study carried out by researchers at the University of Massachusetts
Medical School was to determine whether changes in the seasons affect various personality
and physical attributes. One measure that might reflect seasonal change is the Beck depres-
sion score. We subtracted the depression score obtained in the spring from that obtained in
the winter for each participant in the Seasons study who had scores in both seasons. Note
that once we have carried out this subtraction and obtained the sample of change (or differ-
ence) scores, our data set resembles the set of TC scores. That is, although we began with
two samples (winter and spring depression scores), we now have a single sample of change
scores. We refer to this as the correlated-scores case because each participant contributes
a winter and spring score to the change score, and the seasonal scores are therefore likely to
be correlated. Correlated scores also are a product of research designs in which individuals
are matched on some measure other than the dependent variable (such as IQ or a pretest
score), or are paired because they are siblings (or, often, twins), and each member of the
pair is randomly assigned to one of two treatments. In these cases, difference scores are
obtained for each pair, and CI and significance test calculations reduce to those previously
illustrated in Section 5.5. In summary, the correlated-scores case is really a one-sample case
in which the sample consists of difference scores. Because one-sample data sets are most
common in studies in which two measures are taken from one individual, or individuals are
matched on the basis of some variable, we focus on the example of seasonal change scores
for the rest of this chapter.

Summary statistics based on the seasonal Beck depression change scores are presented
separately for male and female participants in Table 5.2. These statistics are based on the
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TABLE 5.2 DEPRESSION SEASONAL CHANGE (WINTER - SPRING)
SCORES BY GENDER

No. of cases
Minimum
Maximum
Median
Mean
95% CI upper
95% CI lower
Std. error
Standard dev.
Variance
Skewness(Gl)
SE skewness
Kurtosis(G2)
SE kurtosis

Males

211
-13.054

22.054
0.000
0.028
0.588

-0.532
0.284
4.126

17.028
1.096
0.167
6.527
0.333

Females

215
-16.205

16.500
0.026
0.557
1.080
0.033
0.266
3.897

15.185
0.235
0.166
2.548
0.330

Note. Output is from SYSTAT.

These values differ slightly from those in Table 5.2 (.033, 1.080). Because the population
standard deviation is not known, but is estimated, our statistical package used critical values
of the t distribution rather than the normal. For large N, the normal and t distributions are
very similar. If we had substituted the critical value of t, 1.911, rather than 1.96 into Equation
5.14, we would have obtained the confidence limits shown in Table 5.2.

The CI limits we just calculated suggest that there is a significant change in depression
scores between the winter and spring seasons because the computed interval, which has
the limits .04 and 1.08, does not contain zero. Thus, we conclude with .95 confidence that
there is an average difference in the population; the mean depression score is higher in
the sampled population in the winter than in the spring. As in our analysis of cholesterol
scores in Section 5.5, we can carry out a direct test. Letting uchange represent the mean of
the population of change scores, we can state two hypotheses. Assuming that we wish to
determine whether there is a difference in either direction, the hypothesis that the mean
change is zero is the null hypothesis,

difference between winter and spring (Beck_Dl — Beck_D2) scores in the Beck_D file in
the Seasons folder of the CD. We first use these statistics to draw inferences about the mean
difference in depression scores in the female population. In Section 5.10, we investigate the
difference between the mean change scores of the male and female populations.

Substituting the values of the sample statistics for female participants into Equation
5.14 yields the following CI on the mean change score:



Setting a = .05, we see that the rejection region is z > 1.96 or z < —1.96, and we reject H0

because 2.09 > 1.96. Alternatively, we can find the p value, which is .036. Because .036 is
less than our a, .05, we again conclude that the null hypothesis is false. Note that uhyp need
not be zero. The value of the mean under the null hypothesis might be some other value,
perhaps based on a mathematical model or on norms gathered from a different population,
or in previous studies.

5.7 THE POWER OF THE ZTEST

Following a data analysis in which the null hypothesis was not rejected, the researcher
might wish to know what power the test had, given the effect size that was observed, the
variability of the data, and the number of observations. Another investigator might wish
to know what the power would be if a different sample size were used. In these cases, N,
a (or an estimate), and a specific effect size (such as the mean change score) are known
and power is to be determined. Ideally, researchers should take power into consideration
when planning the experiment. We should ask what sample size we need to have a specified
level of power to reject H0, assuming a specific effect size. In this case, power, CT, and the
effect size are known and TV is to be determined. To reinforce our understanding of what
power means, we provide an example of how power is calculated when N, CT, and a specific
effect size are given. Further examples of the determination of power, and also of N, using
software available on the Internet, are presented in Chapter 6.

5.7.1 Determining the Power of the
Normal Probability (z) Test

Suppose that a research group in another part of the country wants to know if the effects of
seasonal change on female depression scores can be replicated in their area, an area in which
seasonal climates differ from those in Massachusetts. Further suppose that their sample of
female participants is limited to an N of 100. This is a smaller sample than the 215 tested by
the University of Massachusetts researchers. Would this second group of researchers have
reasonable power to reject the null hypothesis if it is false? To answer this question, we have
to follow the steps outlined in Chapter 4, in which power was discussed in the context of
the binomial test. We first have to establish a specific alternative hypothesis. A reasonable
approach is to test H0 against an alternative suggested by the results of the Seasons study;

Substituting the mean and SE values from Table 5.2 yields

Once these two hypotheses have been formulated, we need a test statistic whose value will
enable us to decide between them. As in Section 5.5,

and the alternative hypothesis is

THE POWER OF THE Z TEST 119
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Figure 5.5 presents two standardized normal distributions. The left one is the distribution
assuming the null hypothesis to be true; its mean is at zero, and the rejection region is the
shaded area to the right of 1.645, the cutoff established when we selected our alpha level.
The right distribution has its mean at uA, which we have just shown is 1.429 standard errors
to the right of uhyp. The power of the hypothesis test is the proportion of this distribution
to the right of z = 1.645 in this alternative distribution. To find the size of this area, do the
following:

1. Find the z score of the cutoff with respect to the alternative distribution. This value
is .216, because if we look at the null distribution, the critical z score is 1.645 —
1.429 = .216 units greater than the z of uA.

2. Turn to Appendix Table C.2 and find the area to the right of a z of .216.

Fig. 5.5 Null and alternative distributions (shaded areas are
rejection regions).

therefore, we will base the specific hypothesis, HA, on the observed mean change, .557.
Furthermore, we decide on a one-tailed test. Then, the null hypothesis is H0:uChange = 0,
the alternative hypothesis is H1: uchange > 0, and the specific alternative is HA: uchange =
.557. Having specified a one-tailed test, and setting a = .05, we see that the decision rule
is to reject if z > 1.645.

The basic principles in computing power are the same that dictated the power cal-
culations of Subsection 4.7.3. Simply put, we have to calculate the area in the rejection
region assuming HA is true. We do this by finding the distance in SE units between the
mean assuming the alternative hypothesis and the mean assuming the null hypothesis; the
alternative value, uA, is .557 and the value assuming the null hypothesis, uhyp, is zero.
If Y represents the mean change score, its SE is py = pchange/RN. In words, the SEM
is the standard deviation of the change scores divided by the square root of the sample
size. To find the numerical value of the SE, we assume that pchange = 3.897, the value
of Change obtained in the Seasons study. Therefore, SE = 3.897/10, or .390. Now we can
calculate the distance in standardized error units between uA and uhyp. This is a z score;
specifically,
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In our example, this area, the power of our test, is approximately .41. In words, if the
mean change score in the population is .557, the probability is .41 of rejecting the null
hypothesis that the mean change is zero. The rather low value of power serves to remind
us of the critical effect variability has on our inferences. Despite what many laboratory
scientists would consider to be a large sample, power is low against what appears to be a
reasonable alternative hypothesis (on the basis of an actual study), and, accordingly, the
Type 2 error rate is very high. The situation is considerably better—though hardly great—
in the actual study in which the N was larger; power against the specific alternative (u =
.557) with an N of 215 instead of 100 is approximately .67. Clearly, the variability in Beck
depression scores makes it difficult to achieve precise parameter estimates or high power
to test hypotheses, even with relatively large samples.

5.7.2 Factors Affecting Power

In general, the power of a test depends on several factors, all of which have effects qualita-
tively similar to those noted in the discussion of power in Chapter 4. First, power increases
as a increases because the increase in a requires an increase in the range of values included
in the rejection region. If alpha is. 10, the critical value in Fig. 5.5 shifts from 1.645 to
1.28, increasing the rejection region, and consequently the area above it. Second, power is
affected by the nature of H0 and H1. If the statement of H\ is two tailed, with alpha still
at .05, the decision is to reject H0 if z < —1.96 or z > 1.96. Then there would be two
critical values in Fig. 5.5: —1.96 and 1.96. Power would correspond to the areas to the right
of 1.96 and to the left of —1.96 under the HA distribution. As we can see in Fig. 5.5, the
probability of z < —1.96 if HA is true is essentially zero and the probability that z > 1.96
is less than the probability that z > 1.645. Therefore, the one-tailed test is more powerful
against the specific alternative, uA =.557. In contrast, this one-tailed test has virtually no
power against specific alternatives of the form u < uhyp, whereas the two-tailed test has
the same probability of rejecting H0 against these alternatives as against those of the form
H- > uhyp.

Two other factors affecting power are the population variance and the sample size;
reduced variance and larger N yield smaller SEMs. As the SEM decreases, the sample mean
is more likely to be close to the true parameter value. As we have noted previously, a smaller
SEM increases the probability of getting values of Y close to the true population mean. Thus
a decreased SEM will result in increased power to reject false null hypotheses. Of course,
as we pointed out in Chapter 4, most null hypotheses are false at least to some extent. We
should always consider whether we have had so large an N that an effect of little practical
or theoretical importance was detected. This is one reason why CIs are an important part of
our analyses. Very large sample sizes may sometimes result in rejection of a null hypothesis
even if the effect is trivial, but the CI, by providing a bounded estimate of the effect, enables
us to assess its importance.

We can influence variability by our choice of measures and experimental design, as
well as by controlling extraneous factors that might contribute to chance variability. How
large an N we need will depend on the other factors noted herein and the power we want,
as well as the smallest size effect we want to be able to reject with that power. A sample
size of as little as 40 would have provided more than the .41 power we calculated if the
variance of the depression scores had been smaller, or if uA had been larger than .557. Many
sources, including books (e.g., Cohen, 1988; Kraemer & Thiemann, 1987), software, and
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Web sites, enable researchers to calculate the sample size needed to have a certain level
of power against a specified alternative. We illustrate this important application of power
analyses in later chapters.

Examining power as a function of the variables that affect it has proven useful in decid-
ing between alternative methods of analyses (e.g., Blair & Higgins, 1980, 1985; Levine &
Dunlap, 1982; Ratcliff, 1993; Zimmerman & Zumbo, 1993). For example, power functions
for different statistical tests can be compared. Assuming that the choice among tests is
not dictated by some other factor (such as validity of assumptions, ease of calculations, or
availability of tables), we should choose the test with the higher power function. We can
also consider the effects of violations of assumptions on the power of various statistical
tests. For example, the t test is more powerful than other tests that can be used to compare
two experimental conditions when the population is normally distributed. However, when
the population of scores is not normally distributed, other tests may achieve markedly more
power, particularly when a one-tailed hypothesis is tested (Sawilosky & Blair, 1992). One
way to increase power is to increase sample size when practical. Other approaches to the
problem are discussed at various points in this book.

However, Y ± 1.96 OY are the lower and upper limits of a 95% CI on u. Therefore, the
null hypothesis will be rejected at the .05 level (two tailed) whenever the hypothesized
value of the population mean is less than the lower bound, or more than the upper bound
of a .95 CI. In the example of the seasonal change in depression scores, the value zero was
below the lower limit of the .95 CI, allowing us to reject at the .05 level of significance the
hypothesis of no mean change in the sampled population. Note that the CI permits evaluation
of any null hypothesis; any hypothesized parameter value that falls outside the limits will
lead to rejection by a significance test (assuming a is set at one minus the confidence
level), whereas null hypotheses that assert values of the parameter within the CI will not be
rejected.

We can also use the confidence interval to carry out one-tailed tests of significance. We
might wish to test the null hypothesis of no seasonal change in depression scores against
the one-tailed alternative that the winter-spring difference is positive; that is, that the mean
depression score for women is higher in winter than in spring. Then we test H0: u = 0
against the directional alternative, H1: u > 0. Because the lower bound of our .95 CI is .03,
we have .975 confidence that the true population mean is greater than .03. Therefore, H0:
u = 0 is very unlikely to be true. In fact, we can reject this null hypothesis at the .025 level
of significance. The .90 CI would provide a one-tailed test of the null hypothesis at the .05
level.

Some algebra will show that this is equivalent to the following rule: Reject if

5.8 HYPOTHESIS TESTS AND CIs

The relation between CIs and significance tests may be understood by considering the usual
decision rule for a two-tailed test: Assuming a = .05, reject H0 if
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A CI provides several advantages over a hypothesis test. First, it provides a bounded
estimate of the population parameter, thus focusing attention on the parameter value rather
than on whether that parameter has one specific value. Second, the CI permits tests of all
possible null hypotheses simultaneously, thus providing considerably more information than
does the hypothesis test. Finally, the interval width provides information about the precision
of the research. A significant result, coupled with a very narrow interval, may suggest that
power was so great as to enable us to reject even a trivial effect. In contrast, a nonsignificant
result, together with a wide interval, suggests that our experiment lacked precision, pointing
to the need for either a less variable measure, more careful application of experimental
procedures, or a larger sample. Note that the width of the interval is influenced by the same
variables that influence power. The narrower the interval, the more powerful a test of any
particular null hypothesis will be. The interval narrows, and power increases, as TV increases
and as s decreases. Furthermore, increasing a and decreasing confidence have parallel
effects. An increase in ct increases power at the cost of increasing the Type 1 error rate.
There is a similar trade-off between confidence and the interval width; decreasing confidence
yields a narrower interval providing a more precise estimate but with less confidence in that
estimate.

5.9 VALIDITY OF ASSUMPTIONS

The validity of the inferences we made based on the calculations of CIs and hypothesis tests
in the preceding sections rests on three assumptions. Scores are assumed to be independently
and normally distributed, and they have a known standard deviation, a. Let's consider each
of these assumptions in turn.

5.9.1 The Independence Assumption

Two scores, Yi and Yj, are independent of each other if the probability of any value of
one is independent of the value of the other. In the notation of Chapter 4, we have two
independent scores if p ( Y j \ Y i ) = p ( Y j ) . In simple English, two scores are independent if
knowing one score provides no information about the value of any other score. If scores
are not independently distributed, the CI for u may be invalid and Type 1 error rates and
power associated with tests of hypotheses about u may be seriously affected. In the Seasons
data, spring and winter scores are likely to be correlated, and therefore not independent;
individuals who are more depressed than others in the winter will also tend to be so in the
spring. For this reason we cannot treat the winter and spring samples as independent of each
other. To draw inferences about the difference in the winter and spring mean depression
scores, we created a single change score for each participant in the study. The statistics of
Table 5.2 are based on these change scores. We have one such score for each participant in the
study, and the assumption of independence is that these change scores are independently
distributed. Assuming that our participants were randomly sampled, we can analyze the
change scores to provide inferences about uchange, the mean of the population of change
scores.

If we treat the spring and winter scores as though they were independent of each other,
using calculations we present later in Section 5.10, we find that the CI will be overly wide
and power will be low relative to that in the correct analysis. The reason for this is that the



124 5 / NORMAL DISTRIBUTION

standard error of the difference between two independent means is larger than that for two
dependent means.4 By treating the means as independent when they are not, we use too
large an estimate of the variability in this research design. In other research designs, the
result of a failure to take nonindependence into account in the data analysis may result in
an inflation of Type 1 error rate. Chapter 16 presents an example of this.

5.9.2 The Normality Assumption

The skewness and kurtosis values in Table 5.2 indicate that the change scores are not
normally distributed. As we noted in Chapter 2, Gl is zero if the distribution is perfectly
symmetric and G2 is zero for the normal distribution. In Table 5.2, both of these statistics
have values more than twice as large as their SEs, providing evidence against the assumption
that the population of change scores is normally distributed. However, the issue for any
assumption is not whether it is correct but rather whether it is sufficiently close to being
correct that our inferences are valid. In the example of the depression change scores, the
departure from normality is not likely to be a problem. Our inferences are based on the
assumption that the sampling distribution of the mean change score is normal. Even if
the population of scores is not normal, because we have a large number (215) of change
scores, the central limit theorem leads us to believe that the sampling distribution of the
mean is approximately normal. This approach to normality with increasing sample size was
illustrated in Fig. 4.3.

5.9.3 The Assumption of a Known Value
of the Standard Deviation

Although we can be certain that the population standard deviation is not exactly 3.90, the
value of s in Table 5.2 is an unbiased estimate of a, and a consistent one. Consistency
implies that, as the sample grows larger, the probability increases that s lies close to a.
Because our sample size is large, using the sample value of the standard deviation in our
calculations in place of the true (unknown) population value should not present a problem.
We have one indication that this is the case when we compare the CI calculated by using
values from the table of normal probabilities with those in Table 5.2, which were based on
the t distribution. Although the t distribution assumes an estimate of a rather than a known
value, the two sets of results are very similar.

Further evidence that violations of the normality and known-a assumptions are not
critical when N is large derives from a computer study we conducted. We drew 2,000 samples
of 215 scores each from the population distribution in Fig. 5.3(a) and we calculated a CI
for each sample. This population was constructed to have characteristics—mean, standard
deviation, skewness, and kurtosis—similar to those of the sample of 215 scores.5 The
proportion of samples yielding limits containing the mean of the simulated population was
.945, quite close to the theoretical value of .95.6 In terms of a two-tailed test of the null
hypothesis, this implies a rejection rate of .055. The close approximation of confidence
and significance values to the theoretical values indicates that even if the population is not
normally distributed, the normal probability function and an estimate of the population
standard deviation can provide adequate inferences when the sample is large. This raises
the question of how large is large. There is no simple answer to this. Using the population
of Fig. 5.3 and drawing samples of size 30 instead of 215, we found that .940 of the
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2,000 CIs contained the true value of the population mean, a reasonable approximation to
the theoretical value of .95. However, the results may not be quite as satisfactory with small
samples if the population distribution deviates more markedly from normality.

5.10 COMPARING MEANS OF TWO INDEPENDENT
POPULATIONS

In the developments thus far, we had winter and spring depression scores for 215 women who
participated in the Seasons study. Because each participant's depression score was obtained
twice, once in each season, the scores are correlated; r= .819. Consequently, although
we estimated and tested the difference between two means, we did this by first obtaining a
single distribution of scores. A change score was obtained for each participant and the mean
of the population of change scores was estimated and submitted to a hypothesis test. In this
section, we consider a comparison of two means that are based on two independently (and
therefore uncorrelated) distributed sets of scores. Specifically, we consider the difference
between the effect of the seasons on changes in male and female depression scores.

The change scores for the women and men are displayed in histograms in Fig. 5.6. The
data are from the Beck_D file. Both distributions are roughly symmetric, although the right
tail is more pronounced than the left, particularly in the sample of male scores. The other
notable difference is that there are more scores in the male than in the female histogram
in the two most frequent categories. These differences are reflected in Table 5.2, presented
earlier in this chapter. The fact that the right tail extends further for the male histograms is
consistent with the higher skewness value for men, and the difference in the peaks of the
distributions is also reflected in the higher kurtosis value. The difference in the right tails
is also reflected in the difference in the maximum values in the table. In summary, there
are proportionately more men than women in the categories close to zero change, and also
slightly more in the most extreme right tail. Turning to measures of location in Table 5.2,
we find the medians either at zero (men) or very close to zero (women). The means present
a somewhat different picture. The mean change score is higher for women, suggesting that,
on the average, they exhibit a greater increase in depression scores from spring to winter.
Also note that the male CI contains zero, whereas the lower limit of the female CI is greater
than zero. Nevertheless, the difference in the mean change scores (.028 vs. .557) seems
small relative to the range of scores. Before we draw any conclusions, it would be wise to
consider this difference further.

Fig. 5.6 Histograms of winter-spring Beck depression scores by gender.
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5.10.1 Assumptions
We continue to use the normal distribution, tabled in Appendix Table C.2, as the basis for our
inferences. More specifically, we assume two populations of independently and normally
distributed depression change (winter-spring ) scores, one for men and one for women.
We assume that many pairs of samples of size 211 (male) and 215 (female) are drawn
at random from the two populations. Following each draw, the difference in the sample
means, YF — YM, is computed. Consequently, we generate a sampling distribution of these
differences. The mean and SE of that sampling distribution are uF — uM and pYF-YM,
respectively.

5.10.2 Interval Estimation
Let uM and uF be the means for the male and female populations of change scores,
respectively. We want a .95 CI that bounds uF — uM. It is helpful in deriving that interval
to consider a general form for the CI:

and, substituting the values in Table 5.2, we have

We may now rewrite Equation 5.16 for the special case in which V = Y F — YM:

To obtain the .95 CI for uF - uM, V = YF- YM = .551 - .028 = .529 and E(V) =
uF - uM. All that remains is to calculate pv. We begin by noting that pv is pYF-YM, and
Y F— YM is a linear combination of the two means; that is,

In Appendix 5.1 we prove that the variance of the difference between two independently
distributed quantities is the sum of their variances. Therefore,

Substituting numerical values, the lower and upper limits for uF — uM are

Because the variance of the sampling distribution of the mean is the population variance
divided by the sample size, the SE of the sampling distribution of the difference between
the means is
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From our work with the Cl for uF - uM, we know that V = YF — YM — .557 - .028 = .529,
E(V) = uF — uM, and pv =R(P2

M/nM)+(P2
F / n F ) = -389. To test H0: uF —uM = 0 against the

alternative uF — uM # 0, assuming the sampling distribution of the difference in means
is normal, we form the decision rule: Reject H0 if \z\ > 1.96. Substituting numbers into
Equation 5.7, we find that z = (.529 - 0) /.389 = 1.36. As the confidence limits indicated,
H0 cannot be rejected.

There is an apparent inconsistency if we consider results obtained when CIs (or signif-
icance tests) are calculated for the mean change scores for men and for women separately.
This can be seen by reviewing the results obtained in each case. Table 5.3 presents the mean
and SE of the sampling distribution, and the upper and lower .95 confidence limits, for each
of three variables: the mean change score for women, the mean change score for men, and
the difference in gender means. Considering the confidence limits, we conclude that there
is a significant seasonal change in mean depression scores for women, but not for men. This
implies that there is a difference between the genders in their mean change scores. However,
the confidence limits for the difference between genders fail to support the inference that
the male and female populations differ in their mean change scores.

This pattern of results raises two issues. The first is why separate tests on the male and
female samples indicate that the null hypothesis of no seasonal change can be rejected for
women but not for men, whereas a test of the mean female change score minus the mean
male change score does not support the hypothesis that the change is greater in the female
population. The explanation lies in consideration of the SEs and the interval widths. Note
that the SE and the interval is larger for the sampling distribution of YF — YM than for
either YF or Y'M. We have less precision in estimating the difference in population means
than in estimating either population mean alone. Consistent with the wider interval for

We have .95 confidence that the difference between male and female seasonal change scores
lies between -.23 and 1.29. It appears that the difference between the male and female
populations is quite small. In fact, the confidence interval is consistent with the hypothesis
that there is no gender difference; uF — uM = 0 lies within the interval. As usual, that
hypothesis can be tested directly and we consider such a test before further discussing the
relation of seasonal depression score changes to gender.

5.10.3 The Hypothesis Test

Testing the null hypothesis that the difference between two population means has some
specified value (usually, but not always, zero) follows directly from the developments of
the preceding section. Equation 5.7 stated that

TABLE 5.3 SUMMARY STATISTICS FOR SEASONAL CHANGE SCORES

Cl Limit

Sex

Men

Women
Gender diff.

Mean

.028

.557

.529

SE

.284

.266

.389

Lower

-.532
.033

-.233

Upper

0.588
1.080
1.291
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u F - u M , hypothesis tests about the difference between population means have less power
than hypothesis tests about either population mean alone.

The second issue raised by the results in Table 5.3 is, What can we conclude? Is the
mean greater in the population of female seasonal change scores than in the male population,
or isn't it? Problems similar to this frequently arise when the results of data analyses are
reviewed, but there is no simple answer. In the current example, we calculated the power to
reject a specific alternative based on the observed difference in change scores; despite the
large sample sizes, power was low, approximately .27. Consequently, it is difficult to reach a
conclusion about the difference in the mean change scores of the two populations. We have
sufficient evidence to reject the null hypothesis of no seasonal change in the female popula-
tion but lack sufficient evidence to reject the hypothesis of no difference between the mean
changes of the male and female populations. However, given the lack of power in the test
of the difference, there is no support for concluding that the population means are the same.

The medians of the change scores provide a complementary picture of the relation
between the two distributions. Note that the male and female medians in Table 5.2, unlike
the means, are quite similar and are both very close to zero. This suggests that there is no
median change in either population. The significant mean change for women may reflect
a few extreme positive change scores, a suggestion that is supported if we delete all eight
(positive and negative) outliers from the data set; in that analysis, the mean change for
women is no longer significant and both medians and means suggest no difference in
location between the male and female populations. In this particular instance, the medians
seem more representative of the data and we would be inclined to conclude that (a) the
population midpoints (i.e., the medians) are close to zero and differ very little, if at all,
and (b) the female mean change score, although significantly different from zero, probably
reflects a few scores that are considerably more depressed in winter than in spring.

Although the statistics at hand, and the further calculations based on them, are important
in influencing our conclusions, other factors may also play a role. Consider a situation in
which behavioral changes are recorded with two drugs in order to select one to be marketed.
Assume the change is significant with one drug and not with the other but, as in the direct
comparison of men and women, there is no significant difference between the drugs. We
might be inclined to market the drug that produced the significant change. However, the
situation becomes more complicated if we stipulate that the other drug is considerably less
expensive to manufacture. Should we go ahead with the more expensive drug if the direct
comparison does not provide clear evidence of its superiority? This example suggests that
there will be situations in which results will be inconclusive and further research, perhaps
with larger samples or with less variable measures, may be desirable.

5.11 THE NORMAL APPROXIMATION TO THE BINOMIAL
DISTRIBUTION

When we worked with the binomial distribution in Chapter 4, probabilities were obtained
either by calculation or by using tables of the binomial distribution. However, for large
samples this is unnecessary, because we can estimate binomial probabilities by using tables
of the normal distribution. In Chapter 4, we showed that as the number of trials increased, the
binomial distribution began to look more symmetric, and more like the normal distribution
(see Fig. 4.3), particularly when the probability of a success on a trial, p, was .5. In fact.
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TABLE 5.4 TAIL PROBABILITIES, P(Y > y), FOR THE BINOMIAL
AND NORMAL DISTRIBUTIONS (N = 20)

y

11
12
13
14
15
16
17
18
19
20

p=.5

Binomial

.4119

.2517

.1316

.0577

.0207

.0059

.0013

.0002

.0000

.0000

Normal

.4115

.2512

.1318

.0588

.0221

.0070

.0018

.0004

.0001

.0000

p=.75

Binomial

.9861

.9591

.8982

.7858

.6172

.4148

.2252

.0913

.0243

.0032

Normal

.9899

.9646

.9016

.7807

.6019

.3981

.2193

.0984

.0354

.0101

with N as small as 20, the normal distribution provides an excellent approximation to the
tail probabilities of the binomial. To use the normal probability table of Appendix Table
C.2 to get the probability of y or more successes when y is greater than pN, calculate

where pN is the mean value of Y, p( 1 —p)N is the variance of Y, and the .5 is a correction
for continuity. The correction reflects the fact that the binomial is a discrete distribution.
Suppose we want the probability of 15 or more successes in 20 trials. Because 15 may be
viewed as representing a point from 14.5 to 15.5 along a continuum, we "correct" 15 by
subtracting .5; in other words, we find the area above 14.5 under the normal distribution. If
y < pN, we add the .5 instead of subtracting it.

Table 5.4 presents tail probabilities [p(Y > y)] when N = 20, p = .5 or .75, for values
of y from 11 to 20. The normal approximation to the binomial is almost perfect when
p = .5 and it is fair when p = .75. The approximation when p = .75 can be improved by
increasing N. A rough rule of thumb is that in order to use the normal approximation to the
binomial, the smaller of Np and N(1 — p) should be greater than 5.

5.12 CONCLUDING REMARKS

We have focused on two inferential procedures—CIs and hypothesis tests. Once again, we
emphasize that CIs have inherent advantages. They provide a bounded estimate of the size
of the effect and, at the same time, a sense of the precision of the research through the width
of the interval. Furthermore, the very act of defining a null and alternative hypothesis invites
the researcher to make a dichotomous decision between the existence and nonexistence of
an effect, whereas the establishment of a .95 interval should serve to remind us that the true
effect may lie outside the calculated confidence limits. When hypothesis tests are carried
out, they should be accompanied by power calculations. The result of such calculations can
influence our view of hypothesis test (or CI) results. If power is low (or the interval is wide),
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we should be skeptical of nonsignificant results. If we have very high power (or a very
narrow interval) to detect a very small effect, we should consider whether the effect is large
enough to be of interest, or whether statistical significance merely reflects the collection
of a very large amount of data. The minimum effect size of interest can be determined on
the basis of practical considerations in applied research or, in more theoretical work, on the
basis of theory and previous research. Determining this targeted effect size, and therefore
the specific alternative hypothesis, has the healthy consequence of forcing us to think about
how large an effect should be before it is important to detect. We have much more to say
about effect sizes, and we provide some guidelines for what is small, medium, or large, in
the next chapter.

The development of CIs and hypothesis tests has been carried out within the context
of the normal distribution because it allowed us to focus on basic concepts and procedures,
postponing certain complexities to subsequent chapters. In addition, although the normal
density function rarely plays a direct role in data analyses, the assumption that the population
is normally distributed underlies procedures based on the T, chi-square, and F distributions.
This assumption is rarely true; data distributions in psychological and educational research
tend to be skewed, or have longer tails than the normal, or have gaps, or lumps. Several of
these characteristics were present in the Seasons data analyzed in this chapter, and those data
are quite typical of other psychometric measures in those respects. Despite this, distributions
of means and of differences among means will tend to be symmetric, and with large samples
will be adequately approximated by the normal density function. With smaller samples, the
consequences of violating assumptions are not readily summarized because they depend
on many factors—for example, the actual shape of the population distribution, the sample
size, and whether the hypothesis test is one or two tailed. We consider these factors further
in subsequent chapters.

A critically important concept that underlies all the developments in this chapter is
that of the sampling distribution. We usually have a single data set from which to draw
inferences about the population of scores that has been sampled. The concept of the sampling
distribution provides a bridge between the sample and the population. Our interpretation of
the confidence level is based on the proposition that if we were to take many random samples,
computing a CI for each, the proportion of intervals containing the parameter of interest
would match the nominal confidence level. Similarly, when we say that the probability of
a Type 1 error is .05, we say in effect that if the null hypothesis is true, .05 of independent
replications of the experiment will result in rejecting that hypothesis. Furthermore, our
criteria for estimates of parameters—unbiasedness, consistency, and relative efficiency—
are based on properties of the sampling distribution.

Another important concept introduced in this chapter was that of linear combinations,
that is, weighted sums or averages. Linear combinations will play an important role in future
developments. Appendix 5.1 notes several important linear combinations such as the mean,
sum, and weighted average. Still another application is provided when the mean of one set
of conditions is pitted against the mean of another set of conditions, as, for example, in a test
of whether depression scores are higher in the fall and winter than they are in the spring and
summer. These more general linear combinations, or contrasts, together with their CIs and
significance tests, are introduced in Chapter 6, and they are discussed further in Chapters 9
and 10.

Although this chapter focused on the inferential process, exemplified by CIs and hy-
pothesis tests based on the normal density function, it is important to be aware that we
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begin to have an understanding of the data by looking at the data. This means a consid-
eration not just of arithmetic means but of the diverse statistics that summarize location,
spread, and shape of the distribution. It means viewing graphs that provide an insight into
the spread among scores, the shape of the distribution, and the presence or absence of
outliers that may influence summary statistics. A close examination of the data will often
influence the interpretation of the results, sometimes suggesting the presence of effects
we did not anticipate, or influencing the interpretation of the results of inferential proce-
dures. In some circumstances, it may indicate that critical assumptions have been violated,
providing a spur to consider other forms of analysis, or to at least qualify conclusions.
Researchers typically invest considerable thought, time, and effort into data collection. Too
often, the data analysis involves considerably less thought, consisting of significance tests
or correlation coefficients commonly calculated with similar data. The data analysis process
should be more extensive, and we should begin it by tabulating and graphing more than
means.

KEY CONCEPTS

continuous random variable cumulative probability function
probability density function central limit theorem
standardized normal distribution z score
standardized normal deviate standard error
unbiased estimator consistent estimator
relative efficiency dot plot
point estimate confidence interval
correlated scores correction for continuity

In some of the following problems, it may be helpful to consult Appendix 5.1, which
contains equations for the variances of linear combinations.

EXERCISES

5.1 A standard IQ test yields scores that are normally distributed with (JL = 100 and a =
15. Y is a randomly selected score on the test.
(a) (i) What is p(Y > 130)? (ii) p(85 < Y < 145)? (iii) p(Y > 70)? (iv) p(70 <

Y < 80)?
(b) What scores define the middle 80% of the distribution?
(c) What is the 75th percentile (score such that it exceeds 75% of the scores)?
(d) What is the probability that a randomly selected student will have a score greater

than 115?
(e) What is the probability that the mean IQ of a group of 10 randomly selected

students will be greater than 115?
5.2 On a new test of logical reasoning, the mean and standard deviations for a population

of men are jx = 170 and cr = 50; for women, |x = 200 and CT = 60.
(a) What is the probability that a randomly selected woman will have a score greater

than 170?
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(b) What is the probability that the mean of a group of 9 randomly sampled women
will be greater than 170?

(c) Assume that many pairs of female (F) and male (M) scores are drawn from their
respective populations and a difference score, d = F — M, is calculated for each
pair. What is the mean and standard deviation of the population of such difference
scores?

(d) What is the probability that a randomly selected woman will have a higher score
than a randomly selected man? Note: p(F > M) = p(F — M > 0).

5.3 Assume that X and Y are independently and normally distributed variables. For
X, |JL = 30 and CT = 20; for Y, & = 20 and CT = 16.
(a) What is the probability of sampling an X score (i) <25? (ii) >60? (iii) between

15 and 40?
(b) What is p(X > jx)?
(c) Let W = X + Y. What is p(W > 35)?
(d) An individual's X score is at the 85th percentile (i.e., it exceeds .85 of the pop-

ulation of X scores); this person's Y score is at the 30th percentile of the Y
distribution. What percentage of the population of W scores does the individ-
ual's W score exceed?

5.4 Assume that a population of scores is uniformly distributed between 0 and 1. This
means that f(y) is a line bounded by 0 and 1 with a slope of zero and that F(y), the
probability of sampling a score less than y, equals y. For example, p(Y < .8) = .8.
The mean and standard deviation of this uniformly distributed population are .5 and
1/12.
(a) (i) What is p(Y < .6)? (ii) What is the probability that a sample of two scores

are both less than .6? Express your answer as a probability raised to a power.
(iii) What is the probability that a sample of 20 scores are all less than .6?

(b) Assume we draw many samples of 20 scores and calculate the mean of each
sample. Describe the shape of the sampling distribution. What is its mean and
variance?

(c) On the basis of your answer to part (b), what is the probability that the mean of
a sample of 20 scores is less than .6?

(d) Briefly state your justification for your approach to part (c). Would the same
approach be appropriate in answering part (a), (iii)? Explain.

5.5 In this problem, we use the normal probability distribution to test a hypothesis about
a proportion.

A population of individuals has a disease, is treated, and symptoms are no longer
present. However, .4 of this population suffers a reoccurrence of the symptoms within
1 year. A new drug developed to prevent recurrence of the disease is tried on a sample
of 48 patients. We wish to determine whether the probability of failure (i.e., recurrence
of symptoms) is less than .4.
(a) Let IT equal the probability of failure in the population sampled. State H0 and

H1.
(b) Let p equal the probability of failure in the sample. If H0 is true, the mean of

the sampling distribution of p is IT = .4 and its variance is ir(l — ir)/N. In the
study, only 12 of the 48 participants suffered a recurrence of symptoms after
1 year. Use the normal probability distribution to test the null hypothesis. State
your conclusions.
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(c) In part (b), we used the normal probability (z) table to test a hypothesis about a
population probability. (i) What assumption about the sampling probability of p
is implied by this procedure? (ii) What justifies this assumption? (iii) Would the
assumption of normality be as justifiable if the sample had only 10 people in it?
Explain.

5.6 A national survey of a large number of college students in 1983 yielded a mean
"authoritarianism" score of 52.8 and a standard deviation of 10.5. For all practical
purposes, we may view these as population parameters.
(a) Suppose we wish to examine whether authoritarian attitudes have increased in

the years since the survey by examining a random sample of 50 students. State
H0, H1, and the rejection region, assuming a = .05.

(b) Assume that the mean of the sample of 50 scores is 56.0. Carry out the significance
test and state your conclusion.

(c) Suppose the true population mean is now 57.00. What is the power of your
significance test?

(d) On the basis of your sample (and assuming the population variance has stayed the
same), what is the 95% CI for the current population mean of authoritarianism
scores?

(e) In part (d) you found the 95% CI. What exactly is a 95% CI? What exactly is
supposed to happen 95% of the time?

5.7 We have a population in which p(X = 0) = .8 and p(X = 1) — .2. Let TT = p(X —
1) and 1 - IT = p(X = 0).
(a) (i) Calculate the population mean, ^x, and variance, crx [E(X) and var(X)]. Note

that var(X) = E(X2)- (E(X)]2 and E(X) = (ir)(l) + (1 - ir)(0). (ii) Assume
we draw samples of size 3 from this population. What would be the variance of
the sampling distribution of the mean [var(X)]?

(b) Assume we draw samples of size 3. If we define the outcome of the experiment
as a value of Y where Y = £]X, there are four possible outcomes. Complete the
following table (S2 is the sum of squares divided by N, whereas s2 is the sum of
squares divided by N — 1):

Y

0
1
2
3

P(Y)

83

.0 —

(3)(.82)(.2) =
(3)(.8)(.22) =
.23

X

.512

.384

.096

.008

S2 S2
 S2b* bx sx

(c) Using the entries in this table, find (i) E(Y), (ii) E ( X ) , (iii) E ( S 2 ) , and (iv) E(s£).
(d) How do E(Y) and E(X} compare with the value of E(X) obtained in part (a)?
(e) How do E(S^) and E(s^) compare with the value of var(X) obtained in part (a)?
(f) What do your answers to parts (d) and (e) say about which sample statistics are

biased or unbiased estimators?
5.8 Two random samples are available from a population with unknown mean. Sample

1 has n1 scores and has a mean of Y1 sample 2 has n2 scores and a mean of y2.
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(a) Is UM an unbiased estimator of the population mean? Show why or why not.
(b) Is WM an unbiased estimator of the population mean? Show why or why not.
(c) Calculate the variance of UM if n1 =20 and n2 = 80, and the population vari-

ance, o~2, equals 4.
(d) Calculate the variance of WM if n 1 = 2 0 and n2 = 80, and the population vari-

ance, a2, equals 4.
(e) Is UM or WM a better estimate of the population mean? Why?
(f) Are either UM or WM better estimators of the population mean than Y1 or Y2?

Why?
5.9 Assume that we have a treatment (T) and a control (C) population for which \LJ is

larger than JJLC . Assume that both populations are normally distributed and have the
same variance, cr2.
(a) Let T and C be randomly sampled scores from their respective populations. If ^T

is .5(7 larger than JJLC, express the mean and variance of the sampling distribution
of T — C in terms of (JLJ-, (JLC, and CT.

(b) What is the probability that a randomly chosen score from the treatment popula-
tion will be larger than a randomly chosen score from the control population? It
is not necessary to have numerical values for (xj-, JJLC, and a.

(c) Cohen (1988) has suggested that, for two independent groups, we should consider
a medium-sized effect to correspond to a difference of .5o~ between the population
means. He also suggested that small and large effects be considered to correspond
to differences between the population means of .2a and .8a, respectively. We
have assumed a medium effect in parts (a) and (b). Given this assumption, (i) what
is the probability that the mean of 9 randomly chosen scores from the treatment
population will be larger than the mean of 9 randomly chosen scores from the
control population? (ii) What is the probability if the effect is small?

5.10 A population of voters consists of equal numbers of conservatives and liberals.
Furthermore, .9 of the liberals prefer the Democratic candidate in the upcoming
election, whereas only .3 of the conservatives prefer the Democratic candidate.
(a) What is PD, the probability of sampling an individual from the entire population

who prefers the Democratic candidate?
(b) The variance of a proportion p is p(1 — p)/N (see Appendix B for the proof).

With this in mind, what is the variance of the sampling distribution of pD, the
proportion of Democratic voters in a sample of 50 individuals who are randomly
selected from the population of voters?

(c) Suppose you are a pollster who knows that the population is equally divided
between liberals and conservatives, but you do not know what the propor-
tion of Democratic voters is. You sample 50 individuals with the constraint

Consider two possible estimates of the population mean, (xy, that are based on both
samples: One estimate is the unweighted mean of the sample means, UM, where

and the other is the weighted mean of the sample means, WM, where
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that 25 are liberals and 25 are conservatives; this is referred to as stratified
sampling.

(i) From the information presented at the start of this problem, what is the
variance of the sampling distribution of PD\L, the proportion of Democratic
voters in a sample of 25 liberals?

(ii) What is the variance of the sampling distribution of PD\C, the proportion of
Democratic voters in a sample of 25 conservatives?

(iii) The proportion of Democrats in the stratified sample is pD = ( 1 / 2 ) ( p D | L +
PD\C). What is the variance of the sampling distribution of P when stratifi-
cation is employed?

(iv) In view of your answers to (b) and (c), (iii) discuss the effect of stratification.
5.11 Following are summary statistics for the total cholesterol scores for the winter (TC1)

and spring (TC2) seasons for men; the data are in the TC file of the Seasons folder
on the CD.

(a) Find the SE of the difference in the means. Reference to Appendix 5.1 may be
helpful.

(b) Using the result in part (a), find the .95 CI for the difference in the two seasonal
means.

(c) Carry out the z test of the null hypothesis of no seasonal effect; a. = .05.
(d) Using any statistical package you have, check your results for parts (b) and (c),

using the data set in the TC file in the Seasons folder on your CD. Note: there
will be a slight difference because most packages conduct a t test, but with large
N, as in this case, the results should be very close.

5.12 (a) Assuming on the basis of the analysis of the winter-spring TC data (Exercise 5.11)
that (Jd = 20, how large should N be to have a .95 CI of 4 points?

(b) Cohen (1988) has defined a standardized effect as d / s d , and he suggested that
effects of .2, .5, and .8 be viewed as small, medium, and large, respectively.
For the data in Exercise 5.11, the standardized effect = 5.241/21.779 = .24, a
fairly small effect although quite significant. Assume that we wish to replicate
our study of cholesterol differences in a new sample of men. If we have only 100
participants available, what is the power to detect a standardized effect of .24?
Assume a one-tailed test with a = .05.

5.13 In the TC file, we created an educational level (EL) variable. If Schoolyr = 1, 2, or
3, EL = 1; if Schoolyr = 4, 5, or 6, EL = 2; and if Schoolyr = 7 or 8, EL = 3. El = 1
corresponds to individuals with a high school education or less, EL = 2 corresponds
to those with education beyond high school but not including a bachelor's degree,
and EL = 3 corresponds to those with a college or graduate school education.
(a) Calculate a .95 CI for the difference in the TC population means between the

EL = 1 and the EL = 2 groups. What can you conclude about this difference
based on the CI?

(b) Another researcher elsewhere in the country wishes to replicate the study of
effects of education on cholesterol levels (TC). The researcher has two EL groups,
each with 100 participants. Assuming that the each population has a = 40, that
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a = .05, that the test is one-tailed, and that the investigator wants to detect a
difference of at least 15 points, what power will the test have?

5.14 We decide to run a study of cholesterol levels in a population of patients. On the basis
of the TC data in the present Seasons study, we assume that the population standard
deviation is 30. We would like power = .80 to detect effects of small size (.2o or
6 points) above a level of 200.
(a) What are the null and alternative hypotheses for the proposed study?
(b) What is the specific alternative hypothesis?
(c) How many participants should we recruit for our study? Assume a = .05.

5.15 In this exercise, we use the Mean D variable in the Beck_D file of the Seasons folder.
This is an average of the four seasonal depression scores for those individuals who
were tested in all four seasons. Note that there are missing values of the Mean _D
measure because not all individuals were tested in all four seasons.
(a) Tabulate descriptive statistics separately for male and female participants, and

compare these. Then graph the two data sets any way you choose, relating
characteristics of the plots to the statistics. Comment on location, spread, and
shape.

(b) Using the statistics you obtained, construct a .95 CI for JJIF — JJLM (female - male
Beck_D population means) and decide whether the male and female means differ
significantly at the .05 level. Do you think the assumption of normality is valid?

(c) Outlying scores frequently influence our conclusions. Considering the male and
female data separately, what values would be outliers?

(d) Redo parts (a) and (b) with the outliers excluded. How does this affect the results
in parts (a) and (b)? Note: If the file is sorted by sex and then by Mean_D, outliers
can more easily be extracted.

APPENDIX 5.1

Linear Combinations

So far, we have considered the means and variances of individual distributions of scores.
However, we are often interested in combinations of scores. For example, suppose each of
the N students in a class takes three tests. We refer to the score of the ith student on test
1 as Yi1, where the first subscript indicates the student and the second indicates the test.
Similarly, Yi2 indicates the score of the ith student on test 2, and so on. From Chapter 2, we
know that the mean of all the scores on test 1 is

where the subscript ".1" indicates that we are averaging over all N of the scores on test 1.
The variance of the scores on test 1 is given by
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Now suppose we want the total score on the three tests for each student. We can express
this as Ti = (+1)Y,1 + (+1)^2 + (+1)7/3; or we might want the average score of the three
tests, 7/. = (+1/3)7,1 + (+1/3)7,2 + (+l/3)7,3; here the subscript"i." means that we are
averaging over all the scores for the ith student. Perhaps we want the difference between test
land test 2. We can express this difference as Di = (+l)7,1 + (—l)7,-2.Or the final grade, G,
might give test 3 twice the weight of test 1 and test 2; G, = (+1)7/1 + (+1)7,2 + (+2)7,3-
All of the above are examples of linear combinations of the 7 variables. They are all of
the form

The quantity Yj is the mean score on the jth variable. Equation 5.22 indicates that the
mean of a set of linear combinations is a linear combination of the variable means.

The same general rule holds for a population of values of L. The mean of the population
can be represented as the linear combination of the population means. That is,

or simply L = £]. Wj Yj, where, for example, in the equation for G, the weights are w\ —
1, vv2 = 1, and n>3 = 2. L is referred to as a linear combination of the 7s because the 7s
are not raised to a power other than 1 or multiplied by one another. The weights can be any
numbers. As the preceding examples illustrate, they need not be equal to one another, or be
integers, or even be positive numbers.

Many statistics of interest to researchers are linear combinations. For example, the
mean of the three test scores for a student is a linear combination for which the weights
each have the value 1/3. To draw inferences about the population parameters estimated by
these statistics, we need to know something about means and standard deviations of linear
combinations. Therefore, we consider these next.

MEANS OF LINEAR COMBINATIONS

Suppose we want the mean of the Li scores in Equation 5.21. This is



VARIANCES OF LINEAR COMBINATIONS

The Variance of the Sums and Differences of Two Variables

The variance of a linear combination depends both on the variances of the variables and on
the covariance of each pair of variables. To keep things as simple as possible, first consider
two linear combinations of the variables X and Y — T = X + Y and D = X — Y. The
variance of any linear combination, L, is £]( (L, — L)2/(N — 1).Therefore, for the variance
of X + Y,
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We can now show why Equation 5.11, |Xy = E(Y) = (Jty, must be true. We know that

so that

because the expected value of each score drawn in a sample is the population mean. There-
fore,£(F) = (l/AO(A^y) = |Jir.

But

Therefore,

where SXY — FXYSX^Y, the covariance of X and Y (see Equation 3.5). Therefore,

The variance of the difference scores has a similar form:
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The only difference in the two expressions is in the sign of the covariance term. Note that
if the two variables are uncorrelated, both the variance of X + Y and X — Y is sjf + Sy, the
sum of the variances of X and Y.

Analogous expressions hold when we consider population parameters. The population
variances for X + Y and X — Y are

Because the variance of the ith score over many samples is a2, the preceding equation
becomes

If X and Y are uncorrelated, the variances of both X + Y and X — Y are <r| + a$. These
expressions are important in the development of many inferential procedures.

The General Case

So far we have considered the variances of only very simple linear combinations: only
two variables have been considered, and they have either been added or subtracted. We
now generalize to linear combinations that deal with any number of variables and weights
other than +1 and — 1. Consider N individuals with a scores each, Y1, Y2,..., Ya. The
general linear combination was defined by Equation 5.21 and its mean by Equation 5.22.
The variance of a linear combination, L, can be proven to be

If the variables are independently distributed, all the covariance terms are all 0, and

The corresponding expression for population parameters is

Of particular interest is the variance of the sampling distribution of the mean. Assuming
that the individual scores are independently distributed, and letting wi = 1/N for all i, we
find that substitution into Equation 5.30 yields



Chapter 6
Estimation, Hypothesis
Tests, and Effect Size:
The t Distribution

6.1 INTRODUCTION

When we analyze large data sets, such as those used in Chapter 5, it makes little differ-
ence whether inferences are based on the normal or the t distribution. However, in many
studies, either we have a more limited pool of participants available, or we are interested
in a smaller subset of the entire sample. In those cases, the t distribution of Appendix
Table C.3 is better suited to the data analysis. The primary purposes of this chapter are
to review the applications of the t distribution and to discuss the standardized effect size,
a measure of the importance of the difference between means that we observe in our
sample.

To illustrate applications of the t distribution, we again consider only the winter and
spring Beck depression scores in the Seasons data set. More precisely, we subtracted the
score obtained in the spring from that obtained in the winter to get a single change score
for each participant. Whereas in Chapter 5 we drew inferences from a large sample of
such change scores, in this chapter we limit our attention to change scores of partici-
pants under 36 years of age. Seasonal Beck depression scores for both men (sex = 0) and
women (sex = 1) in this age bracket can be found in the Under 36 file in the Seasons
folder on the CD. Table 6.1 presents the depression change score (the Diffl_2 variable
in the file) statistics for the male and female subgroups that meet this age criterion. A
comparison with the values in Table 5.2 will reveal several differences, but our initial
concern is with the differences in sample size. With over 200 participants, we felt justi-
fied in using the normal probability distribution as the basis for calculations of confidence
intervals (CI) and for testing hypotheses. However, with the smaller number of partici-
pants, the standard error (SE) is likely to be considerably more in error as an estimate
of the standard deviation of the sampling distribution of the mean, and, consequently, the
denominator of the z statistic will be in error. The t statistic provides a remedy for this
problem.

140



INFERENCES ABOUT A POPULATION MEAN 141

TABLE 6.1 STATISTICS FOR MALE AND FEMALE WINTER - SPRING
DEPRESSION CHANGE SCORES

Gender =

N of cases

Minimum

Maximum

Median

Mean

95% CI Upper

95% CI Lower

Std. Error

Standard Dev

Variance

Skewness(Gl)

SE Skewness

Kurtosis(G2)

SE Kurtosis

Male

30
-8.825
15.838

-0.178
-0.745

0.901
-2.391

0.805
4.407

19.425
1.490
0.427
6.260
0.833

Female

32
-6.197

8.009
0.000
0.747
2.093

-0.599
0.660
3.733

13.934
0.121
0.414

-0.582
0.809

Note. From SYSTAT for subjects under 36 years of age.

6.2 INFERENCES ABOUT A POPULATION MEAN

6.2.1 The t Statistic

In Chapter 5, we considered statistics that had the general form of [V — E(V)]crv. In this
expression, V represents a statistic such as the sample mean, or the difference between two
means, and ov is the standard error (SE) of the sampling distribution of that statistic. If
we assume that ov is a constant, only the numerator of the ratio will vary over samples. If
that numerator has a normally distributed sampling distribution, the ratio will be normally
distributed. If N is large, say more than 40, an estimate of ov based on the data will vary
only slightly across samples. In that case, we can replace ov by the estimate and the normal
distribution of Table C.2 will adequately approximate the sampling distribution of the test
statistic. In many experiments, N is not large; consequently, the estimate of the standard
error of the mean (SEM) will vary considerably over samples. In that case, the distribution
of the ratio is the t distribution tabled in Appendix C.3. The t distribution has a more
prominent peak than the standardized normal, and more of the t distribution's area is in its
tails. This means that if CT is estimated from a relatively small sample, inferences based on
the normal distribution may be in error.

The t statistic has the general definition

where, as before, V refers to an observed variable that estimates a population parameter,
E(V) , and sv is the sample statistic that estimates the SE of the sampling distribution of V.
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Note that the t statistic is identical to the z statistic, except that the denominator of Equation
6.1 is an estimate of the SE of V rather than its actual value. As in the case of z, it is assumed
that scores are independently and normally distributed.

With respect to the example of Table 6.1, E (V) is the mean of the population of change
scores, |xchange (i.e., (JLwinter — ̂ spring), V is Ychange, and Sy is the sample standard deviation,
schange, divided by \/N. There is no single t distribution; rather, there is a family of t
distributions whose members look more like the normal distribution as sample size increases.
This increasing approximation to the normal distribution with increasing N reflects the fact
that sv is a consistent estimator of av; as N increases, the statistic sv becomes less variable
over samples and approaches the parameter, <rv. For large N, values of t closely approximate
the values of the standardized normal deviate, z.

It is a slight oversimplification to tie the shape of the t distribution to N. It really depends
on something called degrees of freedom, frequently referred to as df. The concept of
degrees of freedom is closely related to sample size but is not quite the same thing. Because
degrees of freedom are a parameter of other distributions that play a role in data analysis,
they deserve further discussion.

6.2.2 Degrees of Freedom ( d f ) and the t Distribution

The degrees of freedom associated with any quantity are the number of independent ob-
servations on which that quantity is based. The meaning of "independent observations" is
best illustrated by using an example. Suppose that we are asked to choose 10 numbers that
sum to 50. We can freely choose any 9 values, but the 10th must be 50 minus the sum of
the first 9. In this case, there are 10 scores, but because only 9 can be chosen independently,
there are only 9 df. There is a restriction, because the numbers must sum to 50 and that
costs us a "degree of freedom." The same situation occurs when we calculate a sample
standard deviation. This requires us to subtract each score from the mean. However, as we
noted in Chapter 2, the sum of deviations of all scores about their mean must be zero; that
is, Y^ (Y — Y) — 0. Rewriting this last result, we have £] Y = NY. If the sample mean is
5 and N is 10, we have the original example in which the sum of 10 scores must equal 50.
Therefore, the sample standard deviation is based on 10 — 1, or 9, df.

At this point, it looks as if the degrees of freedom are always just N — 1. That is true
if the statistic of interest involves only one restriction. But suppose we draw two samples
from some population; one sample is of size n 1 and the other of size n2. We want to estimate
the population variance but we have two estimates. As we will see shortly, these can be
averaged; however, the point now is that there are two restrictions if two sample variances
are computed: the sum of the n1 scores in the first sample must equal n1 Y1 and the sum
of the n2 scores in the second sample must equal n2Y2. There are n\ — 1 df associated with
the variance for the first sample and n2 — 1 df associated with that for the second sample.
The degrees of freedom associated with a statistic involving some combination of these two
variances will be df= (n1 — 1) -f («2 ~ 1) = n\ + n-i — 2. The message is that the degrees,
of freedom are not necessarily the number of scores minus 1. Rather

df = number of independent observations

= total number of observations minus number of restrictions on those

observations
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In the two-sample example, there are n\ + n2 observations and two restrictions caused by
taking deviations about each of the sample means.

Turn again to Table C. 3. Each row of the table corresponds to a different value of degrees
of freedom. The columns are proportions of the sampling distribution of t exceeding some
cutoff; note that each column is headed by one-tailed and two-tailed proportions. Find the
column corresponding to a one-tailed proportion of .025 (and a two-tailed proportion of
.05) and the row for df= 9. The critical value in the cell is 2.262. This value is exceeded
by .025 of the sampling distribution of t when there are 9 df; .05 of the distribution is
greater than 2.262 or less than —2.262. Now look down the same column to the row labeled
"infinity." The critical value in that cell is 1.96. This means that the probability is .025 of
exceeding 1.96, and the probability of t > 1.96 or t < —1.96 is .05. This is exactly the
critical value in Table C.2, the normal probability table. In general, the critical value of t
decreases as the degrees of freedom increase, rapidly approaching the critical value in Table
C.2 for the normal distribution. The reason for this is that our estimate of a exhibits less
sampling variability as N increases. In short, as N increases, s more closely approximates cr,
and therefore the distribution of t more closely approximates that of a normally distributed
z score. In general, Table C.3 will provide more accurate inferences than Table C.2, although
there is little difference when sample sizes are large. For example, on the basis of the normal
distribution of Table C.2, we calculated the .95 confidence limits for the mean change score
for the 215 female participants to be .035 and .078. If we use the t distribution on 214 df
instead of the normal distribution, the critical value is 1.971 instead of 1.96, the value in
Table C.2—and the confidence limits are .033 and .080.

6.2.3 Confidence Intervals and t Tests:
The One-Sample Case

We first consider a single sample of scores. Specifically, we draw inferences based on the
sample of seasonal depression change scores for women under the age of 36 years in the
Seasons study. Before considering the confidence interval (CI) for the mean change score,
and the test of the null hypothesis of no change, look at the plots of the data in Fig. 6.1.
Both the box and dot plots suggest that the data distribution is not symmetric; in addition,
the dot plot appears flat, in contrast to the theoretical normal distribution having the same
mean and standard deviation. Looking back at Table 6.1, neither the skewness (Gl) nor the
kurtosis (G2) values are very different from the value of zero that would be appropriate
for normally distributed data; neither statistic exceeds its SE by a ratio of 2 or more. This
suggests that the departure from normality may not be a problem. We discuss the possible
consequences of nonnormality later in this chapter.

Let's turn now to the statistics presented in Fig. 6.1. In this one-sample case, confidence
intervals (CIs) and significance tests follow the procedures developed in Chapter 5. The only
difference is that critical values are obtained from the t, rather than the z, distribution. The
general form of the CI in the one-sample case is

where r/v-i,a/2 is the value of t such that a/2 of the distribution on N — 1 dj'lies to the
right of it. In the example of seasonal changes in Beck depression scores, with 32 female
participants under the age of 36, JJL represents the mean of the population of change scores,
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Data for the following results were selected according to:

(AGE < 36) AND (SEX= "FEMALE")

One-sample t test of DIFF with 32 cases; Ho: Mean = 0.000

Mean = 0.747 95.00% Cl = -0.599 to 2.093

SD= 3.733 t= 1.132

c/f= 31 Prob= 0.266

Fig. 6.1 Data plots, CI, and /-test results based
on the female data of Table 6.1 (from SYSTAT).

Completing the calculations, we obtain the values reported in Table 6.1 and Fig. 6.1: —.599
and 2.093.

Note that the CI for the sample of women under 36 years of age is much wider than
that obtained for the entire sample of 215 women (those limits were .033 and 1.080). One
contributing factor to the reduced precision of the estimate is the slightly larger value of s
in the analysis of the smaller data set. A more important factor is the difference in sample
sizes, which affects the CIs in two ways. First, with the smaller sample, the critical / value
is 2.04, rather than 1.97. Second, and more important, s is divided by 14.663 (the square
root of 215) in the earlier analysis, but by only 5.657 (the square root of 32) in the analysis
of the under-36 group. Therefore, even if s were the same in both analyses, the SE would
be roughly 2.6 times larger for the smaller sample and the CI would be that much larger.
To improve our estimates of population parameters, we need to do all we can to reduce
variability and we should collect as much data as is practical.

df — 31, and the critical t value for a .95 CI is approximately 2.04 (by linear interpolation
between 2.042 and 2.021). Substituting the sample mean and SE of the change scores into
Equation 6.2, we have
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and, if the test is two tailed, reject HQ if \t\ > fy/-i,a/2- In the present example, jLihyp = 0, and
the denominator is .660, the SE in Table 6.1. Therefore, t = .747/.660 =1.132, which is
much smaller than the critical value of 2.040. As reported in Fig. 6.1, the actual probability
of obtaining a value oft greater than 1.132 or less than —1.132, assuming HQ to be true, is
.266 . If we were to reject HQ based on these results, there would be more than a one in four
chance of making a Type 1 error. Generally, researchers consider these rather poor odds.

6.3 THE STANDARDIZED EFFECT SIZE

The mean difference between the winter and spring depression scores for women under
the age of 36 years (.747) is the raw effect size. The advantage of the raw effect size is
that the units are on the original scale and therefore differences on that scale should be
meaningful to the researcher. The disadvantage of the raw effect size is that it is on the
original scale, and therefore it is difficult to make comparisons with results of research
conducted with other measures of depression. When comparing effects across groups, even
if the same measurement scale is used, we often find it useful to consider differences
between group means relative to their standard deviations. Because differences in variability
and in the measurement scale make direct comparisons of raw effect sizes difficult to
interpret, the standardized effect size,1 Es, is an important tool for understanding our
data. It provides a scale-free index of the importance of the effect, something that neither
CIs on the raw effect nor the p values associated with t tests can do. Furthermore, Es

provides information required for estimates of the power of hypotheses tests, and it is used
in meta-analyses, analyses that combine results from several studies. The CI for the raw
effect, although informative, is dependent on the original measurement scale. The p value
is often misleading; very small effects, perhaps unimportant in any practical sense, may be
very significant because the sample sizes are large and, conversely, large effects may not be
significant because the sample was too small, or variability too great, to have much power.
It is not unusual to find in a comparison of two variables that the one associated with the
lower p value actually has the smaller effect size.

There is increasing agreement that measures of effect size are important and should
be reported along with the results of statistical tests. A growing number of journals now
explicitly require that measures of effect size be reported, and the fifth edition of the Publi-
cation Manual of the American Psychological Association (2001) states, "For the reader to
fully understand the importance of your findings, it is almost always necessary to include
some index of effect size or strength of relationship in your Results section" (p. 25).

6.3.1 Estimating ES

In the example of the seasonal change scores, we conceived of a population of such scores.
The mean of that population is ^change (i.e., M-winter — ̂ spring), and its standard deviation is

Because the CI contains zero, it should be evident that a two-tailed test of //o: ^change = 0
at the .05 level will not yield a significant result. The direct test parallels that developed in
Chapter 5; the only difference is that we replace a by an estimate, s. We calculate



A rough rule of thumb suggested by Cohen (1988), and widely adopted, is that effect sizes of
.2, .5, and .8 should be considered small, medium, and large, respectively. According to that
guideline, the seasonal change in the mean Beck scores is small relative to the variability in
the change scores. Note that "small" does not necessarily mean "unimportant." If we were
testing a new cancer treatment, even a small improvement in remission rate, or increase in
life expectancy, might be worthwhile. In theoretical work, small effects—particularly when
unexpected, or not predicted by a competing theory—might prove important. Cohen's
guidelines are just that—guides, not mandates, and each effect size should be evaluated in
terms of the researcher's goals and knowledge of the relevant research and theory.

Confidence limits for E$ may aid our evaluation of the effect size. For example, if E'$ is
.75, Cohen's guidelines would suggest it is large. However, it is just an estimate; we would
feel surer that the population effect size was large if confidence limits were close to this
value than if they were widely separated. Steiger and Fouladi (1997; also see Gumming &
Finch, 2001) describe one method for calculating limits on Es. We have included a brief
illustration of this method in the Supplementary Materials folder of the accompanying CD.
Hedges and Olkin (1985) describe a second, approximate method, and the entire August,
2001 issue of Educational and Psychological Measurement is devoted to the topic of CIs
for measures of effect size. Interested readers may consult these sources.

6.3.2 p Values and Effect Sizes

As we suggested earlier, the significance level, or p value, obtained in a study can be
misleading about the importance of an effect, or about the relative size of effects in two
studies. Table 6.2 presents the results of two experiments that differed only in the number
of participants and in the dependent variable; in both cases, two scores were obtained
from each participant, allowing a comparison of two treatments. The higher t and lower
p values in Experiment 2 might lead us to believe that the measure in Experiment 2 was
more sensitive; the larger raw effect in Experiment 2 would seem to support that inference.
However, the standardized effect size is almost twice as large in Experiment 1, indicating
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^change- In general in the one-sample case, we define the standardized effect score as

where (jLhyp is the mean assuming the null hypothesis to be true and \IA is the mean under
an alternative hypothesis. In the example of the change scores, |Xhyp = 0, and JJL^ is the true
mean of the population of change scores, |xchange- In the example summarized by Table 6.1
and Fig. 6.1, Es = ((^change — 0)/achange and is estimated as

In the example of the seasonal change scores for the sample of 32 women under the age
of 36, we substitute the mean and standard deviation of the seasonal change scores (from
Table 6.1 or Fig. 6.1) into Equation 6.5; then,

In the one-sample case, there is a simple relation between£5 and t:
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TABLE 6.2 COMPARISON OF (TWO-TAILED) P VALUES
AND EFFECT SIZES

N
F,-F2
s
t
P
Es

Experiment 1

16
15
33

1.818
.089
.455

Experiment 2

64
40

152
2.105

.039

.263

that Experiment 1 may have lacked power to reject the null hypothesis because of the
relatively small sample. Note that, according to Cohen's (1988) guidelines, the effect in
Experiment 1 is medium whereas that in Experiment 2 is small.

6.4 POWER OF THE ONE-SAMPLE f TEST

Here we consider two uses of power functions: The post hoc calculation of power refers
to the calculation of the power of the hypothesis test to detect an effect estimated from
previously collected data; the a priori calculation of power refers to the estimation of the
sample sizes needed to achieve a specified level of power to detect a specific value of Es. In
terms of the example of the seasonal depression change scores of the 32 women under age
36, we might wish to know what power our experiment had to reject HQ if the population
effect size was .2, the value of Es we estimated from our data. Once we find that value of
power, assuming it is lower than we wish, we might determine what sample size would be
needed in subsequent research to achieve a specific value of power that was higher than
that in the study already run. Of course, a priori calculations do not require that we have
previously collected data. Any basis for specifying an effect size can be used. If effect sizes
in an area of the literature are all small, we might specify the effect size for a new study as
.2, and calculate the sample size needed to achieve some desired level of power.

Power can be calculated by several standard software programs, including SAS's
CDF module, SYSTAT's Design of Experiments (under "Statistics") module, and SPSS's
NCDF.F program (under "Compute"). Those lacking access to these packages will find
programs for calculating power freely available from several Internet sources.2 We describe
the use of two such sources—a Web site developed by the UCLA statistics department,
and a downloadable program, GPOWER. However, before illustrating the calculations, we
consider the concept of the power of the t test.

6.4.1 The Noncentral t Distribution

As with the binomial (Chapter 4) and normal probability (Chapter 5) tests, we can conceive
of two distributions: one when the null hypothesis is true and one when it is false by a
specifiable amount. For example, we have one distribution corresponding to H0: Es = 0
and an alternative distribution corresponding to HA: Es = .2. When the null hypothesis is
true, the t distribution has a mean of zero. The area exceeding any particular value of t
depends on the degree of freedom, and this "tail probability" may be found in Appendix
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Table C.3. We refer to the distribution of t under the null hypothesis as the central t
distribution. To calculate the power to reject a specific alternative hypothesis, we also
must consider the alternative distribution; for example, we must consider the distribution
of t when Es = .2. In this case, the mean of the t distribution is no longer at zero, and
the distribution of t is referred to as a noncentral t distribution. As with other statistical
tests, we first determine the critical region—the values of t that lead to rejection of the
null hypothesis. The critical value can be obtained from Table C.3, or from most statistical
software packages. Once we know the rejection region, we can calculate power by finding the
probabilities of the values in that region, assuming the alternative distribution. This second
step is more difficult than it was with the normal probability test because the noncentral t
distribution is not merely displaced from the null distribution; it has a different variance and
shape.

The location, variance, and shape of the noncentral t distribution is determined by
the degree of freedom and a noncentrality parameter, 8 (the Greek letter delta). This
parameter incorporates information about variability (a), sample size (N), and the effect
size under the alternative hypothesis. Assuming a sample of N difference scores, as in the
example of the change between winter and spring depression scores, we see that the formula
for 8 is

6.4.2 Post Hoc Power Calculations

Previously, we found that the standardized effect of the change in seasons (from winter to
spring) on the depression scores of 32 women under 36 years of age was .2. We determine
the power of the experiment to detect this effect size by using two different methods based
on software freely available on the Internet.

The UCLA Calculator. One useful Internet site provided by the UCLA department of
statistics at this time is http://www.stat.ucla.edu/calculators/cdf/. When you enter this site,
a table appears. The rows provide a choice of distributions, including the normal and the
central t (labeled "Student"), and the columns allow calculations or plots based on either

where (JLChange is the mean of the sampled population of difference, or change, scores and
o~change is the standard deviation of that population. The noncentrality parameter is closely
related to the standardized effect size; when considering a population of change scores, we
see that ES = M-change/o"; therefore, we can rewrite Equation 6.7 as

Some software programs require a value of 8 in order to calculate power, whereas others
require ES (or, equivalently, Cohen's d) and the value of N (or the degree of freedom). In
either case, we need to estimate the effect size. We can estimate 8 by first estimating ES
and then using Equation 6.8. However, from Equations 6.6 and 6.8, we can see that 8 is also
estimated by the value of the test statistic, t.
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the cumulative or probability density functions. Assuming that we have already obtained
the critical value from Appendix Table C.3 (if not, we can obtain it by clicking on the cell
in the "Student" row and "CDF" column), click on the CDF (cumulative distribution func-
tion) calculator in the "Noncentral Student" (noncentral t distribution) row of the table.
Then, follow these steps:

1. For the "X value," provide the critical t required for significance. For 31 df, a — .05,
and a one-tailed test of H0: (x = 0 versus HI: jx > 0, the critical t is 1.696.

2. Type the degrees of freedom (31) in the "Degrees of Freedom" row.
3. Type the estimate of 8 in the "Noncentrality Parameter" row. In the current example,

ES = .20 and N = 32; then from Equation 6.8 our estimate of 8 is 1.1314. Power
is the probability of exceeding the "X value" in a noncentral t distribution whose
location is determined by the value of 8.

4. Type ? in the "Probability" row and click on "Complete Me!"

The probability returned is always the probability of a value less than the critical t. If we were
to look at a plot of the alternative (noncentral) t distribution we specified, the probability
returned would correspond to the area to the left of the critical value of t. If the critical t is
positive, this probability is (b, the probability of accepting a false null hypothesis. Therefore,
power is obtained by subtracting that value from 1. If the critical t is negative, the values to
the left of the critical t form the rejection region and, in this case, the probability returned
will correspond directly to power. In the current example, completing the table returns the
value .705 in the Probability row, so the power is 1 — .705 = .295. Verify that if we estimate
the power for Es = .2 with a new N of 120, we obtain a value of .703 (remember that
the critical t should be based on the new degrees of freedom, and 8 will also change because
of the change in N).

GPOWER. An alternative that is versatile, simple to use, and can be down-
loaded to your own computer is the free software, GPOWER, available at the
Web site http://www.psychologie.uni-trier.de:8000/projects/gpower.html. Documentation
(Erdfelder, Faul, & Buchner, 1996) is available at this site but the software is quite simple
to use. It can be downloaded from the World Wide Web, and it requires less than half of
the space of a standard diskette. Both Macintosh and PC versions are available. We illus-
trate GPOWER's use, continuing with the example of the hypothesis test based on seasonal
change scores. Figure 6.2 presents a reproduction of the screen for a post hoc calculation
in the one-sample (or correlated-scores) case.

Moving to the main screen, we click on "Tests," which brings up a menu that includes
the t for two means, the t test of the correlation coefficient, "Other t Tests," chi-square tests,
and F tests. In the present instance, although we have two seasonal means, they are not
independent because they are based on the same set of participants. We really have a single
sample of change scores. Therefore, click on "Other t Tests." Then:

1. Click on "Post hoc" under "Analysis" to determine what power the t test had to
reject H0: |xchange = 0 against the specific alternative Es = .2 (the effect size we
estimated from our data).

2. Select "One tailed" from the choice of one and two tails.
3. In the choice between "Speed" and "Accuracy," choose "Accuracy" unless you

have a very slow computer.
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Fig. 6.2 GPOWER screen for a post hoc analysis.

4. Double click on "Effect size"3 and type ".2."
5. Enter the values of alpha (.05), N (32), and df(31).
6. Click on "Calculate" and the question marks on the screen are replaced by

Delta = 1.1314

Critical t(31) = 1.6955

Power = .2952

The delta value is the noncentrality parameter that we obtained by using Equation 6.8 and
entered into the UCLA calculator. The power is the same low value obtained with the UCLA
software. To increase power, we must either use a less variable measure of depression than
the Beck scale or increase the sample size.

6.4.3 A Priori Power Calculations

At this point, we have an estimated standardized effect size that was not large enough to
allow rejection of H0. We might wish to ask the following question: If the actual effect was
.2, what sample size should we use in future research in this area to achieve a power of,
say, .8? With N = 32, power was about .3; it is evident that to increase power to .8, we will
need many more participants. Let's see just how many "many more" is.

GPOWER has an a priori option under "Analysis" but this is not available for "Other
t Tests." However, by trying various values of N and degrees of freedom (= N — 1) in the
"Post hoc" analysis, we quickly find that N = 155 provides .80 (actually .7979) power.
Although the UCLA calculator does not calculate the N needed directly, as with GPOWER
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we can try various values to obtain the desired power. Note that for each value of N we
try with the UCLA calculator, we would have to insert values of the critical t, degrees of
freedom, and estimated 8 based on that value.

Our calculations indicate that if we are serious about studying seasonal depression
score changes, either we are going to have to collect a large data sample, or we are going to
have to improve our measuring instrument so as to reduce variability. Another possibility
is to attempt to standardize data collection to reduce variability. For example, some of the
winter scores were collected early in the winter; others were collected later. The same is
true, of course, for depression scores placed in the spring category.

6.4.4 Consequences of Violations of Assumptions

The inferences we have drawn thus far in this chapter rest on two assumptions: first, the
scores are independently distributed, and second, the population distribution is normal. We
discussed these assumptions in Chapter 5 with respect to the use of the normal probability
tables. As we noted there, it is reasonable to view the seasonal change (winter- spring) scores
as independently distributed. We also noted in Chapter 5 that, although the population was
unlikely to be normally distributed, the sampling distribution of the mean would tend to be
normal because each mean was based on 215 scores. However, the sampling distribution of
the mean will be less well approximated by the normal distribution in the current example, in
which we have only 32 scores. In general, with samples of approximately this size, problems
may arise if the population distribution is very skewed. We have drawn 10,000 samples of
sizes 10 and 40 from the right-skewed exponential distribution depicted in Fig. 6.3. This
distribution has a high peak at its minimum point and then the density quickly decreases
as the scores increase. The population from which we sampled had a mean of one and we
tested H0: |x = 1 at the .05 level. The results of these computer experiments can be seen in
Table 6.3. In each case, the theoretical error rate is .05. We can see that when the alternative
was H\: JJL > 1, there were far too few rejections. When the alternative hypothesis was H1:

Fig. 6.3 An exponential distribution.
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TABLE 6.3 TYPE 1 ERROR RATES FOR THE DISTRIBUTION OF FIG. 6.3 (a = .05)

Sample Size (N)

10
10
10
40
40
40

Alternative Hypothesis

|JL > 1

IJL < 1

u=1
IJL > 1

J X < 1

M=l

Type 1 Error Rate

.014

.131

.097

.025

.096

.072

(JL < 0, there were many more than .05 rejections. Two-tailed tests also resulted in inflated
Type 1 error rates.

Although our data are frequently skewed, they are rarely as skewed as in the exponential
distribution plotted in Fig. 6.3. The resulting Type 1 error rates of Table 6.3 represent a worst-
case scenario. Furthermore, the situation is clearly better when N = 40 than when N = 10.
If we used still larger samples, the empirical error rates would eventually stabilize at .05
even in the exponential condition; this is a consequence of the central limit theorem. Larger
data sets not only yield increased power and narrower CIs, but also tend to offset clear
violations of the normality assumption.

If there is evidence of extreme skew, efforts should be made to collect larger samples.
If small samples are drawn from very skewed populations, there are few remedies. One
possibility is to transform the data by performing some operation on all the scores and then
applying the t test. For example, the logarithm of exponentially distributed scores will tend
to be more nearly normally distributed than will the original scores. We have more to say
about transformations in Chapter 8.

Departures from normality may also affect the power of the t test and the precision of
interval estimates. For example, if the distribution of scores is symmetric but has a longer
tail than the normal distribution, the SEM may be large and, consequently, power may be
low and CIs may be wide. Precision of estimation and the power of hypothesis tests are
often improved by "trimming" the data, which consists of deleting the most extreme scores
prior to calculating a modified t statistic (Wilcox, 1997). An alternative to the t test based
on the ranks of the scores, the Wilcoxon Signed Rank Test, may also improve power. This
alternative to the standard one-sample t test is discussed in Chapter 13.

6.5 THE t DISTRIBUTION; TWO INDEPENDENT GROUPS

Looking back at Table 6.1, we see that the average change scores for men and women seem
quite different. The mean winter-spring change in the Beck depression score is —.745 for
men but .747 for women. In other words, the means of the seasonal change scores suggest
that men in this age group are more depressed in spring than in winter, but women are more
depressed in winter than in spring. The medians, however, suggest a different picture; the
male median is negative (—.18) but close to zero and the female median is zero. Figure 6.4
presents box plots of the seasonal change scores for the two groups that should help clarify
the reasons for the discrepancy between comparisons of medians and means. Recall that the
horizontal line dividing the box into two segments represents the median and that the ends of
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the box are the hinges, approximately the 25th and 75th percentiles. In the female data, the
25% of the scores between the median and the lower hinge are mainly negative but close to
zero, whereas the 25% of the scores between the median and the upper hinge include values
further from the median, thus moving the mean in the positive direction. The situation is
reversed in the male data, where the scores between the median and the upper hinge tend to
be closer to zero (with the exception of one extreme outlier represented by a small circle)
than the mostly negative values between the median and the lower hinge. The other aspect
of the box plot that merits our attention is that there is a considerable range of scores, and
there are outliers in both directions in the male data. In view of the apparent variability, and
the somewhat conflicting picture presented by means and medians, we will further analyze
the data.

Before we can calculate confidence limits or conduct significance tests, we need to
consider the relevant sampling distribution, its SE, and how that SE should be estimated.
We turn next to these matters.

6.5.1 The SE of the Difference Between Two
Independent Means

Suppose we drew many independent random samples of size n1 and n2 from two inde-
pendently and normally distributed populations of scores. If we carried out this sampling
procedure, we could compute a difference between the means for each pair of samples
drawn. The standard deviation of the sampling distribution of this difference, the SE, is the
quantity to be estimated by the denominator of the t in the two-group study. The issue is
how to calculate that estimate.

In Chapter 5, we noted that if the n1 + n2 scores are independently distributed, the SE
of the sampling distribution of the difference between the two group means is (Equation
5.18)

Fig. 6.4 Box plots of male and female seasonal
change scores.
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The t distributions of Appendix Table C.3 require one additional assumption, that the two
population variances are equal; that is,

This is usually referred to as the assumption of homogeneity of variance, or homoscedas-
ticity. Given this assumption, we can rewrite the SE of the sampling distribution of the
difference between the means as

We have a single population variance (a2) and two possible estimates of it—the variances
of the two groups sampled in an experiment. To obtain the best single estimate of CT, we need
to average the two group variances and take the square root of the result. Because variance
estimates are consistent statistics, the estimate based on the larger group is more likely to
be close to the true variance. Therefore, the best estimate of cr2 is a weighted average of the
two group variances. This is often referred to as the pooled-variance estimate, or spooled,
and it is calculated as

Note that the weight on each group variance in Equation 6.9 is obtained by dividing the
degrees of freedom for that group by the sum of the degrees of freedom for the two groups
[(n1 — 1) + (n2 — 1)]• The degrees of freedom rather than the ns are used in these weights
because this yields an unbiased estimate of o-y { _y, • The pooled-variance estimate can also
be written as

where the SS for the j th group is a sum of squared deviations of the scores about the mean
of the group; that is,

This quantity is usually referred to as the sum of squares, and it plays an important role in
the remaining chapters.

We can now state the expression for the estimate of the SE of the sampling distribution
of the difference of two independent means:

When n1 = n2 = n, as is frequently the case in experimental research, Equations 6.10 and
6.12 simplify:
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To illustrate the calculation of Sdiff, let's substitute values from Table 6.1. In other
words, let's get a numerical estimate of the SE of the sampling distribution of the difference
between the means of the male and female change scores. From Equation 6.12,

The interval bounds give a sense of the likely range of differences between the male and
female change scores. The interval is wide, more than 4 points, indicating that our estimate
of the difference in mean change scores is not very reliable. We also note that the interval
contains zero. Therefore, despite the fact that the mean seasonal change score was positive

6.5.2 CIs and t Tests

With a formula for the SE of the difference between the means, we can estimate confidence
limits on the difference in mean change scores for the under-36 groups of men and women.
We begin by stating the general form of the CI; if the confidence level is 1 — a , then

and the confidence limits are

where, as usual, V is the statistic that estimates the relevant population parameter, sv is the
estimate of the SE of the sampling distribution of V, and r^/ a/2 is the value of t exceeded
by a/2 of the t distribution on n1 + n2 — 2 df. Replacing the V in Equation 6.14 by the
difference between the male and female change means, we have

We can now substitute values from Table 6.1 to obtain the .95 limits on |xf — JJLM, the
difference between the means of the two populations of change scores. The difference in
the group means is YF - YM = .747 - (-.745) = 1.492, and the estimate of the SE of
this difference, Sdiff, was computed previously as 1.035.

Turning to Appendix Table C.3, we see that the two-tailed t required for significance
at the .05 level when df = 60 is 2.000. Substituting these values into Equation 6.15, we find
that the confidence limits are
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Because this value is less than 2.00, the result is clearly not significant. However, the
CI is quite wide, wider than any encountered previously in either Chapter 5 or 6, indicating
that the point estimate of the difference between the sexes may be in considerable error. The
wide CI also suggests that power to reject H0 will be low, if we assume the current group
sizes and the estimated values of the population parameters. In the following sections, we
proceed as we did in Sections 6.3 and 6.4, calculating first the standardized effect size for
the two sample case and then the power of the significance test.

Following Cohen's (1988) guidelines, we find that the standardized effect size of gender
on the seasonal change in Beck depression scores for individuals less than 36 years of age
falls somewhere between small and medium.

Although the measure of effect size we have presented is the most common one, others
are possible and, particularly when homogeneity of variance is suspect, such alternatives
should be considered. Grissom and Kim (2001) provide an excellent review of the as-
sumptions involved in calculating effect size, and they discuss the pros and cons of several
alternatives to Es.

6.6 STANDARDIZED EFFECT SIZE FOR TWO
INDEPENDENT MEANS

Following the developments of Section 6.3, we define the standardized effect size Es as

where |j>1 and 1x2 are the actual population means, and A (Greek uppercase delta) is the
population difference assuming H0 is true; A is usually, but not always, zero. In the two-
sample case, ES is estimated as

In the example of the contrast of male and female seasonal change scores, we previously
determined that YF — YM = 1-492 and spooled

 = 4.073. Therefore,

for women and negative for men, we cannot reject the null hypothesis of no difference.
However, the wide interval suggests that power may be less than desirable. We consider the
power of the significance test in Section 6.7.

A direct test of H0: [i\ — (Jt2 = 0 against the alternative H1: |xi — 1^2 =£ 0 follows from
the preceding developments. The test statistic is

Substituting numerical values, we have
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6.7 POWER OF THE TEST OF TWO INDEPENDENT MEANS

If the actual effect size in the population equals the estimate, .37, what is the probability
of rejecting the null hypothesis? In other words, if the experiment was replicated many
times and the true Es was .37, in what proportion of those replications would the null
hypothesis be rejected? The underlying process of obtaining a numerical value of power
involves the same two stages involved in finding power for the normal probability and
one-sample t tests. Assuming H0 to be true, and given the nature of the alternative (one
or two tailed) and the value of a, we use Appendix Table C.3 to decide on the criti-
cal region, those values of t that will lead to rejection of H0. Then, we find the proba-
bility of obtaining a value of t that falls within that region under a specified alternative
distribution.

Power calculations can be performed by several standard statistical software packages,
as well as by programs at the UCLA Web site or by using GPOWER. With GPOWER,
use the default "t test for means." As in the one-sample case, we again need to specify
an effect size. One possibility is to use the value of Es determined from the data (.37 in
our example). This is the practice followed by many researchers. Alternatively, because
.37 falls about midway between Cohen's (1988) guidelines for small and medium effects,
we might compute power by assuming ES = .2 or .5. Whatever value is used, the process
of calculating power is straightforward with GPOWER. Indicate that the calculation is
post hoc and enter the effect size value. The default value of alpha is .05, but this can
be changed if we want to test at a different significance level. Complete the input by
inserting the values of n1 and n2, and by indicating whether a one- or two-tailed test is
desired. Then click on "Calculate." For a two-tailed test against the specific alternative,
HA- Es = .37, power = .29. It appears that even if the null hypothesis was false, we had
little power to reject it. This is consistent with the wide interval we noted when the CI was
calculated.

Using the noncentral Student CDF calculator at the UCLA Web site to calculate power
yields the same result. For the two-tailed test with 60 df, the critical values of the t distribution
are ±2.00. Entering 2.00 for "X Value," ? for "Probability," 60 for "Degrees of Freedom,"
and the observed t, 1.44, for "Noncentrality Parameter" returns a probability value of .71.
Because this is (3, the area below the cutoff, the power associated with the upper region
of rejection is 1 — .71 = .29, the same value obtained by using GPOWER. No additional
power is obtained by using the lower region of rejection. If we insert —2.00 instead of
+2.00 for "X Value," the probability returned is .000. In this instance, because a negative
value of t was inserted, the probability returned corresponds directly to power. No power
is gained by considering the area below the lower critical value.

Ideally, we should determine the n required to obtain a specific level of power prior
to collecting our data. From previous work with the Beck depression scores, we might be
aware that small effects were generally obtained. In that case, using GPOWER, we set the
effect size parameter at .2, select "A priori" under "Analysis," indicate the desired level of
power, and click on "Calculate." For a two-tailed test with a = .05, if Es = .2, GPOWER
estimates that we will need n = 394 in order for the power to equal .80. No a priori power
calculations are directly available with UCLA's noncentral Student calculator, although
we could use it to find the power for different sample sizes. If we wish to use the UCLA
noncentral t calculator (or the noncentral t functions in statistical packages such as SPSS)
to calculate a priori power for two-group t tests, we should note that the noncentrality
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6.8 ASSUMPTIONS UNDERLYING THE TWO-GROUP f TEST

When using the t distribution as a basis for inferences about two independent population
means, we assume that the two populations of scores are independently and normally dis-
tributed and have the same variance. As we discussed earlier, violation of the independence
assumption will often result in distorted Type 1 error rates. Nonnormality is less of a prob-
lem, at least in large samples. The impact of heterogeneity of variance also depends on the
absolute sample sizes, as well as on the relative sizes of the two samples. Let's consider
these issues more closely.

6.8.1 The Assumption of Normality
From our discussion of the central limit theorem, we know that the sampling distribution
of the difference of means approaches normality as the combined sample size (n1 + n2)
increases. As a consequence, the actual Type 1 error rates associated with the test statistic
will closely approximate the values for the t distribution in Table C.3 if the combined
sample size is moderately large. "Moderately large" may be as small as 20 if n\ — n2 and
if the two populations have symmetric distributions, or even if they are skewed but have the
same direction and degree of skewness. Our rather liberal attitude with respect to skewness
may seem surprising in view of the fact that the one-sample t required quite large ns to
achieve honest Type 1 error rates when the parent population was skewed. However, here
we are concerned with the sampling distribution of the difference between independent
means. If two populations are skewed in the same direction, and if the samples are equal in
size, then the differences in sample means are as likely to be positive as negative, and the
sampling distribution of those differences will tend to be symmetric. For most situations the
researcher will encounter, combined sample sizes of 40 should be sufficient to guarantee
an honest Type 1 error rate.

When populations are skewed or have outliers, the sampling distribution of Y \ —Y 2
will tend to be long tailed. In such cases, estimates of the difference between population
means will be less precise, and the t test will be less powerful than when the normality
assumption holds. As in the one-sample case, trimming extreme scores (Wilcoxon, 1997)
and tests based on ranks often will be more powerful than the t test. We consider the latter
approach in Chapter 13.

6.8.2 The Assumption of Homogeneity of Variance
The denominator of the equation for the two-sample t test is based on the pool of two vari-
ance estimates (Equation 6.9); the underlying assumption is that the two group variances
estimate the same population variance. If this is not true—if the population variances are
heterogeneous—then the sampling distribution of the t statistic of Equation 6.16 may not

parameter can be estimated from
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TABLE 6.4 TYPE 1 ERROR RATES FOR THE f TEST AS A FUNCTION
OF POPULATION VARIANCES AND SAMPLE SIZES

HI

5
5
5

15
15
15
5
5

10
10
10
10
20
20

r>2

5
5
5

15
15
15
10
10
15
15
20
20
30
30

cr,2/a2
2

4

16
100

4
16

100
4

.25
4

.25
4

.25
4

.25

a =.05

.060

.061

.066

.056

.054

.059

.095

.021

.073

.040

.091

.021

.067

.037

a = .01

.014

.019

.024

.010

.015

.017

.031

.003

.023

.006

.031

.003

.027

.004

have a true / distribution. Table 6.4 gives some sense of what may happen in this case.
We drew 2,000 pairs of samples of various sizes from two normal populations with iden-
tical means but different variances. Proportions of rejections for a = .01 and a = .05 are
presented.

Several points about the results should be noted. First, if the two sample sizes are
equal, the difference between the empirical and theoretical Type 1 alpha rates tends to
be at most 1%, except when n is very small (i.e., n = 5) and the variance ratio is very
large (i.e., of/cr^ = 100). Second, when ns are unequal, whether the Type 1 error rate
is inflated or deflated depends on the direction of the relation between sample size and
population variance. The reason for this can be understood by considering the fact that the
denominator of the t is based on a weighted average of two variance estimates; the weights
are proportions of degrees of freedom. Therefore, when the larger group is drawn from
the population with the larger variance, the larger variance estimate receives more weight
than the smaller estimate. The denominator of the t test tends to be large and the t small;
the rejection rate is less than it should be. Conversely, when sample size and population
variance are negatively correlated, the smaller variance estimate gets the larger weight;
the denominator of the t statistic tends to be small and the t large; the rejection rate is
inflated.

Unequal sample sizes should be avoided when possible. However, we recognize that
there will be many cases in which sample sizes will differ, often markedly. For example,
the response rate to questionnaires may be quite different for two populations such as male
and female, or college and noncollege educated. We do not advocate discarding data from
the larger sample; this would increase sampling variability for statistics computed from that
sample. Instead, we recommend an alternative to the standard t test. One such alternative
is a t that does not use the pooled estimate of the population variance. The denominator of
this statistic would be that of the z test for two independent groups with variance estimates
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This statistic is sometimes referred to as Welch's t (Welch, 1938). If the scores have been
drawn from normally distributed populations, t' is distributed approximately as t but not
with the usual degrees of freedom. The degrees of freedom are

where s4 is the square of the variance, s2. The degrees of freedom are rounded to the nearest
integer when the value of t' is evaluated or when CIs are obtained.

Most statistical packages compute values of both t' and t when an independent-groups
t test is performed. For example, SYSTAT outputs both a separate-variance t and a pooled-
variance t, and SPSS outputs a result for "Equal variances not assumed" and "Equal vari-
ances assumed." The former is the t' of Equation 6.19 and the pooled-variance t is the
standard t statistic of Equation 6.16. Tables 6.5a and 6.5b present SPSS's output of the t
statistics and CIs for the comparison of mean seasonal depression change scores of men and

TABLE 6.5a THE t TEST COMPARING MEAN SEASONAL CHANGE SCORES FOR MEN AND
WOMEN: GROUP STATISTICS

SEX

DIFF MALE
FEMALE

N

30
32

Mean

-.7450
.7469

Std. Deviation

4.4074
3.7328

Std. Error
Mean

.8047

.6599

Note. Output is from SPSS.

TABLE 6.5b THE t TEST COMPARING MEAN SEASONAL CHANGE SCORES FOR MEN AND WOMEN: INDEPENDENT
SAMPLES TEST

Levene's Test for
Equality of Variances

F

DIFF Equal variances
assumed

Equal variances
not assumed

.038

Sig.

.847

t

-1.441

- 1.434

df

60

57.003

t-test for Equality of Means

Sig. (2-tailed)

.155

.157

Mean
Difference

-1.4919

-1.4919

Std. Error
Difference

1.0350

1.0406

95% Confidence
Interval of the

Difference
Lower Upper

-3.5623

-3.5758

.5785

.5920

Note Output is from SPSS.

instead of known population variances. We define
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with the added condition that the weights sum to zero; that is,

where J is the number of conditions in the contrast (two in our example), and the Wj are
the weights on the means (1 and —1 in our example). Note that when the total number of
groups is more than two, some weights may be zero.

Suppose we wanted to estimate the contrast between the average winter score and the
average score in the other three seasons. This would be a repeated-measures contrast because
several seasonal measures are obtained from each participant in the study. An example of
a contrast involving several independent group means might be the difference between
the mean depression score for college graduates and the combined mean for high school
and vocational school graduates. Because the repeated-measures and independent-group
contrasts involve slightly different calculations, we consider them separately.

6.9.1 Repeated-Measures Contrasts

The contrast between the population mean of Beck depression scores obtained in the winter
season and the mean for the other three seasons is

which, following the form of Equation 6.21, we can rewrite as a linear combination of the
population means:

women under 36 years of age. The values of the t based on the pooled-variance estimate
("Equal variances assumed") and that of t' ("Equal variances not assumed") are almost
identical. This is because the group sizes are very similar, as are the standard deviations.
Further evidence of homogeneity of variance is provided by Levene's (1960) test, which
has a clearly nonsignificant result. This test evaluates the difference between groups with
respect to the average absolute deviation of scores about their respective means. We have
more to say about this test in subsequent chapters, in which we also discuss the Brown-
Forsythe test of homogeneity of variance (Brown & Forsythe, 1974a). That test is similar to
Levene's but is based on the average absolute deviation of scores about the median instead
of the mean.

Contrasts are linear combinations in which the weights sum to zero; for example, the
contrast between the winter and spring mean depression scores may be represented by
(1)(uWinter) + (—1) U-spring)- Occasionally, we are interested in contrasts involving more
than two means. We designate contrasts by U (the Greek letter, psi); all contrasts have the
general form

6.9 CONTRASTS INVOLVING MORE THAN TWO MEANS
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Because this exceeds the critical t value on 23 df (2.07), we again have evidence that
the mean winter depression score is higher than the mean of scores in the other three
seasons.

Converting u to an estimate of the standardized contrast, Us, requires only that
we divide U by its standard deviation. In our example, Us = 1.289/3.030 = .425. The
effect is slightly less than half the standard deviation greater than zero, a medium sized
effect.

We may wish to assess the power of the test of H0: U =0 against the alternative, HA:
U = .425, with a = .05. Many software programs for calculating power require a value of
the noncentrality parameter, 8. In the repeated-measures design, this was defined in Equation
6.8 as

162

Substituting our estimate of Us (.425), and the N (24), we find that 8 = 2.082, the value
we calculated for t. Using the UCLA calculator (or any other available software that has
the noncentral t function such as SAS's CDF module), we can find the power of the test.
Assuming a one-tailed test of H0, enter 1.714, the critical value that cuts off the upper .05
of the t distribution with 23 df in the "X value" row. Also enter 23 in the "Degrees of
Freedom" row and 2.082 in the "Noncentrality Parameter" row. The value of "Probability"
returned is .354. This is (3, the probability of a Type 2 error; therefore, the power of the t
test is 1 — .354 = .646. GPOWER returns the same result. The only procedural difference
is that the values of Es and a, rather than 8 and the critical t, are input to the program.
Using either of these programs, or any other software, verify that if we obtained the same

To obtain a CI for U, we first must estimate the contrast:

To carry out the calculations for the CI, we obtain a contrast score for each participant,
subtracting the average of the depression means for spring, summer, and fall from the
individual's winter score. These scores can be found in the column labeled PSI_D in the
Under 36 file. Most statistical packages perform transformations such as this (and more
complicated ones) quite easily. Once we have the set of contrast scores, the mean and
standard deviation are obtained. Then CIs are constructed, and a hypothesis test is conducted,
using Equations 6.2 and 6.3 for a single sample. We calculated contrast scores from the
depression data for 24 female participants under 36 years of age; 8 under-36 participants
did not have a score for all four seasons and their data were therefore omitted from the
analysis. The mean contrast score, U, was 1.289 and its SE was 3.030A/24, or .619. The
critical t value, t23,.025, is 2.069, and, after substitution into Equation 6.2, the .95 confidence
limits on u are

The CI provides limits for our estimate of the contrast, indicating that the mean depression
score for the under-36 population of women is higher in winter than in the remainder of the
year because zero is not contained in the interval.

If only the null hypothesis H0: u = 0 is of interest, we can calculate the t statistic
directly. The t for these data is u divided by its SE. Therefore,
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effect size with 60 participants, the noncentrality parameter would be (.425) S60 = 3.292,
and the test of the null hypothesis would have a power of about .95.

We sometimes lose track of just what we are doing when we use these programs.
With any statistical test, power is the probability of exceeding some critical value (e.g.,
1.714) when we have a specific alternative to the distribution hypothesized under H0. Es

or 8, specifies the alternative distribution. No matter how we obtain a value of power, we
basically go through the same steps: first, decide on a critical region based on the null
hypothesis, the direction of the alternative (that is, is it one or two tailed?), the value of a,
and degrees of freedom (or sample size in the case of some tests); second, find the probability
that the test statistic will fall within that critical region when the true distribution is a specific
alternative to the null distribution.

6.9.2 Independent-Groups Contrasts

Myers, Hansen, Robson, and McCann (1983) investigated the relative effectiveness of three
methods of teaching elementary probability. They wrote three texts, which they referred
to as the Standard (S), the Low Explanatory (LE), and the High Explanatory (HE) texts.
Each text was studied by a different group of 16 undergraduates, none of whom had any
previous formal exposure to probability . The participants were then tested on two series of
problems—formula problems and story problems. The data are in the PL_data file in the PL
folder. The means and variances of the proportion of story problems correct are presented
in Table 6.6.

The mean proportion of correct responses is higher in the HE group than in the other
two groups, which differ only slightly from one another. Myers et al. carried out a test of
the HE mean against the average of the other two means. In terms of the three population
means, the implied contrast is

TABLE 6.6 MEANS AND VARIANCES FROM THE
MYERS ET AL. STUDY

Mean
Variance

S

.396

.031

Condition

LE

.406

.038

HE

.531

.023
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Replacing population means by sample means, we estimate the contrast:

The CI for U follows the general form of CIs developed in this chapter; specifically,
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Equation 6.22 provides a basis for calculating U, and a formula for the SE of U was
derived in Appendix 6.1 (Equation 6.32):

where

Using these equations, we can calculate the .95 confidence limits on U. The calculations
are presented in Table 6.7. The CI does not contain zero and therefore a two-tailed test of
HO can reject the null hypothesis. The t statistic has also been calculated in Table 6.7 and
leads to the same conclusion.

A sense of the magnitude of the effect can be obtained by estimating the standardized
contrast, Us. This also provides a basis for comparison with the effects of other methods,
or with the effects of these methods on other types of problems. The standardized contrast

TABLE 6.7 CALCULATIONS OF CONFIDENCE LIMITS, t TEST, AND STANDARDIZED CONTRAST

1. First calculate an estimate of the population contrast:

U = [.531 - (1/2)(.396 + .406)] = .130

2. Because the ns are equal, the formula for the pooled standard deviation simplifies to

Spooled = S E S 2 / J , where J is the number of groups. Therefore

3. Then,

4. The critical values of t on 45 df for a = .05, two tailed, can be obtained by linear
interpolation in Table C.3. The critical value that cuts off the upper .025 of the distribution is
2.015. Substituting this and the results of the previous steps into Equation 6.23, we find that
the .95 confidence limits are CI = .130 ± (2.015)(.054) = .02, .24.

5. To conduct the t test,
t = U/sU = .130/.054 = 2.41

The result is clearly larger than the critical value of 2.015, and so we reject the null
hypothesis of no difference between performance with the HE text and the average
performance with the other two texts.

6. Finally, we calculate the standardized contrast: U s = U/spool = .130/. 175 = .74.

Note. Calculations are based on the statistics of Table 6.6.
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is defined as

Assuming homogeneity of variance, we estimate Us by

Numerical values have been substituted into Equation 6.25 as indicated in Table 6.7. Accord-
ing to Cohen's (1977,1988) guidelines, the standardized contrast, .767, would be considered
large.

We can use a program such as SAS's CDF function or the UCLA calculator to find
the power of the test of the null hypothesis. Suppose we wish to assess the power of a two-
tailed t test of H0: Us = 0 against the specific alternative H A : U S = .743. Using the UCLA
program, we provide the "X value," the "Degrees of Freedom," and the "Noncentrality
Parameter." Because the test is two tailed, we reject H0 when t > 2.015 or t < —2.015. For
the "X value," enter 2.015, and also the df, 45. The noncentrality parameter is, as before, a
function of the standardized effect, and it is defined as

Substituting values from Table 6.7, we find 8 = 2.407. When the three numbers (2.015,
45, and 2.407) are entered, a "Probability" of .347 is returned. This is the area below
2.015 in the noncentral t distribution determined by 8 = 2.307. The area above 2.015
plus the area below —2.015 is power, the probability of rejecting HO when the test is two
tailed. The area above 2.015 is 1 — .347, or .653. The area below —2.015 may be found
by replacing the "X value" with —2.015. That area is essentially zero, so the power is
approximately .65.

In Chapters 5 and 6, we encountered analyses of data sets in which each participant con-
tributed more than one score, such as a score for each of two or more seasons. The scores
for the different seasons will be correlated. Such designs are often referred to as repeated-
measures or within-subjects designs. Correlated scores will also result from matched-pair
designs. For example, we might wish to compare the effects of two instructional methods on
a participant pool of 40 students. The scores of the students might be ordered on the basis of
a pretest of ability. The students would then be divided into 20 pairs, with the members of
each pair having approximately equal scores on the pretest. In an independent-groups
or between-subjects design, scores in the different conditions are independent of each
other. This was the case in our analyses of gender and educational effects. The study of
instructional methods could also be carried out in an independent-groups design. In that

6.10 CORRELATED SCORES OR INDEPENDENT GROUPS?
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situation, assignment to instructional methods would be completely random except for the
restriction that there would be 20 children in each condition. What are the advantages and
disadvantages of the two designs?

When both types of design are feasible, the independent-groups design has two advan-
tages. First, it involves more degrees of freedom in the t test. Because each group provides
an independent estimate of the population variance, each based on n scores, the t is dis-
tributed on 2(n — 1 ) d f . The matched-pairs design involves only n — 1 df because there is a
single set of n difference scores. Looking at Appendix Table C.3, we find it evident that the
critical value of t becomes smaller as degrees of freedom increase. In fact, the power of the
t test increases and the CI is narrower for larger degrees of freedom. A second advantage of
the independent-groups design is that it does not require an additional measure for matching
participants. Sometimes, such a measure can be difficult to obtain.

Why, then, should we use a repeated-measures or matched-pairs design? The answer
lies in a comparison of the denominators of the t statistics (the SE of the difference between
the means) for the two designs. In the independent-groups design, the SE is based on the
pooled variability of the individual scores, whereas in the repeated-measures design, the
SE is based on the variability of the n difference scores. The latter SE will generally be
smaller. To understand why, consider a data set in which the scores are perfectly correlated.
For example, the scores for 10 subjects tested under both an experimental (E) and control
(C) condition might be

Note that when two sets of scores are perfectly correlated, the difference is constant across
subjects. In the repeated-measures design, the variance of the difference is the denominator
of the t. In the preceding example, this variance would be zero, and any difference between
the E and C means would be significant. This would be true no matter how variable the
scores within a condition are. Although we never have correlations this high, the correlations
usually achieved by testing each subject under both conditions, or by matching subjects, will
usually reduce the SE of the mean difference considerably compared with the variability of
the individual scores.

A more formal argument is as follows. From Appendix 5.1, we may write the variance
of the sampling distribution of the difference of two means as

where p is the correlation between the means. Because a2 = a2/n, and assuming homoge-
neous variances, we can rewrite the equation as

That correlation should be zero for the independent-groups design but greater than zero
in both matched-pairs and repeated-measures designs. As a result, a2 will be smaller in

Subject

Group

E
C

1

5
7

2

10
12

3

3
5

4

7
9

5

12
14

6

13
15

7 8

9 4
11 6

9 10

8 15
10 17
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correlated-scores designs (acor) than in independent-groups designs (aind). In fact, acor/aind

will equal 1 — p. Therefore, correlated-scores designs will have smaller denominators and
consequently larger t ratios than independent-group designs. There will be some trade-off
because the t statistic for the correlated-scores design is distributed on fewer degrees of
freedom than that for the independent-groups design. Nevertheless, if the same participants
are tested under both conditions, or if participants are matched on the basis of a measure
that is related to the dependent variable in the experiment, p usually will be large enough to
more than offset the loss in degrees of freedom. Ordinarily, the t test will be more powerful
and the CI narrower when scores are correlated than when scores are independent. The
repeated-measures design is used extensively in behavioral research, largely for the reasons
just presented. However, not all variables can be manipulated in this way. It would make no
sense to use both methods of arithmetic instruction on the same participants. Nor is gender
readily manipulated within participants. Furthermore, the researcher should be aware of
the possibility of "contrast effects." Some experimental treatments (e.g., one amount of
reward) have a very different effect when the same participant has been exposed to other
treatments (e.g., other amounts of reward) than when the participant has experienced only
that treatment.

6.11 CONCLUDING REMARKS

This chapter focused on various applications of the t distribution and on concepts related
to the t statistic. We discussed CIs and t tests for differences between means, together
with formulas for effect size, with examples for both repeated-measures and independent-
groups designs. Examples of the use of computer software to perform post hoc and a
priori power calculations were also presented. Attention to all of these tools should help
researchers to understand their data. To focus only on significance tests is to risk ignoring
considerable additional information that is readily available. CIs focus on estimates of
population effect sizes and provide a sense of the precision of those estimates. Standardized
effect sizes, Es, permit comparisons of results obtained under different conditions, or from
different measurement scales, or from different experiments or laboratories. As a result of
Cohen's (1988) work, we also have guidelines to judge whether the effect is small, large,
or somewhere in between. Finally, Es provides an input needed for calculating power, and
the n required to achieve a specified level of power. Such power calculations can now be
easily carried out with one of several statistical packages or with programs freely available
on the Internet. In this chapter, we illustrated the use of two of these, GPOWER (which can
be downloaded to your computer) and the UCLA calculator. We have occasion to refer to
these again in future chapters.

KEY CONCEPTS

t statistic
raw effect size
post hoc calculation of power
central t distribution
noncentrality parameter, 8

degrees of freedom
standardized effect size
a priori calculation of power
noncentral t distribution
homogeneity of variance (homoscedasticity)
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pooled-variance estimate
separate-variance t
Welch's t statistic
standardized contrast
matched-pairs design

sum of squares
pooled-variance t
contrast
repeated-measures (within-subjects) designs
independent-groups (between-subjects) design

EXERCISES

6.1 An investigator wants to determine whether the difficulty of material to be learned
influences the anxiety of college students. A random sample of 10 students is given
both hard and easy material to learn (order of presentation is counterbalanced). After
part of each task is completed, anxiety level is measured by using a questionnaire.
The anxiety scores are as follows:

(a) Find the 95% CI for the difference in the population means corresponding to the
two conditions.

(b) Test whether anxiety is significantly different in the two difficulty conditions by
using a matched-group t test. State H0 and HI and indicate the rejection region
for a = .05.

(c) Redo parts (a) and (b), assuming that the experiment had been done with two in-
dependent groups of 12 participants each. What are the strengths and weaknesses
of each design? Note any differences in results of the analyses and the reasons
for them in your answer, as well as any other considerations that you believe are
important.

6.2 A sample of nine 30-day-old protein-deficient infants are given a motor skills test.
The mean for a normal population is 60. The data are

40 69 75 42 38 47 37 52 31

(a) Find a .90 CI for the mean of the protein-deficient population.
(b) Is the mean score of the protein-deficient children significantly below that of a

normal population?
(c) Our estimate of the mean of the protein-deficient population is very imprecise.

Using the value of 5 calculated in part (a), estimate the sample size needed to
have a CI width of only 12 points.

(d) After 3 months on a normal diet, the nine children have scores of

48 68 77 46 47 46 41 51 34

Task

Hard
Easy

1

48
40

2

71
59

3

65
58

4

47
51

5

53
49

Student

6

55
55

7

68
70

8

71
61

9

59
57

10

31
32

11

80
70

12

77
69
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Estimate the mean of the population after 3 months of a normal diet. Calculate
the .90 CI and test whether this population mean is below the normal value of
60. Assume a = .05.

(e) Calculate difference scores and test whether there has been an improvement from
the first test to the second. Assume a = .05.

(f) Calculate the standardized effect of the normal diet.
6.3 For a matched-group design, we wish to test H0: UD = 0 against H 1 : U D > 0 at

a = .05. Using a sample of 16 participants, we find D — 2.0 and SD = 5.6.
(a) Carry out the t test.
(b) Calculate the standardized effect size.
(c) What power did the t test have to reject the null hypothesis, given the value of

Es calculated in part (b)?
(d) What power would the t test have to reject the null hypothesis, given the value

of Es calculated in part (b) and N = 36 instead of 16?
(e) What N would be required to have power equal to or greater than .80?
(f) In parts (c) and (d), you should have found the power of the t test. Redo the power

calculations in part (c), using the standardized normal distribution (see Chapter 5
for a review of the method) for N = 16 and for the N in your answer to part (e).
How good an approximation are these results to the results you obtained with the
t distribution? Is the approximation better or worse as n increases? Why might
this be?

6.4 In an independent-groups design, we find

(a) Find the 95% CI for u1 — u2. Assuming we wish to test H0: u1 = u2 against a
two-tailed alternative, what can we conclude?

(b) Calculate the standardized effect size. With this effect size, what power did the
experiment have to reject the null hypothesis?

(c) Suppose we wished to redo the study with equal n and want .8 power to reject
H0, assuming the effect size calculated in part (b). What size n would we need?

(d) Using the n from part (c), and assuming the variances given in part (a), what
would the width of the new CI be?

6.5 In an independent-groups design we have

Group 1

n1 = 18
s2 = 16
Y1 =30.1

Group 2

n2 = 14
s2 = 20
Y2 = 27.7

Group 1

n1 =21
s2 = 8
Y1 =30.2

Group 2

n2 = 11
s2 = 30
Y2 = 27.0
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(a) Test the null hypothesis at a = .05 against a two-tailed alternative by using the
pooled-variance t test.

(b) Test the null hypothesis at a = .05 against a two-tailed alternative by using the
separate-variance (Welch) t test.

(c) Explain any differences in your conclusions in parts (a) and (b).
6.6 An arithmetic skills test is given to 8- and 10-year-old boys and girls. There are

10 children in each of the four cells of this research design. The means and standard
deviations are given as follows:

(a) (i) Calculate a .90 CI for the difference in population means for 8- and 10-year-
old girls (u10.G — u8,G)- (ii) Assume you wish to test the null hypothesis against
H1: u10,G > u8,G. What can you conclude on the basis of the CI?

(b) There is considerable data showing that boys do better than girls on tests such as
this arithmetic test. An interesting question is whether this advantage increases
with age. In other words, is the difference between boys and girls greater at age 10
than at age 8? (i) State H0 and H1 in terms of a linear combination of the four
population means, (ii) Carry out a t test of your null hypothesis, briefly reporting
the conclusion.

6.7 Three groups of participants are required to solve problems under varying levels of
environmental stress (noise: low, medium, and high). The experimenter has hypothe-
sized an inverted U-shaped function, with the belief that performance should be best
under medium stress and about equal for the high- and low-stress conditions. The
necessary information for the three groups is presented as follows:

To test his or her theory, the experimenter carries out two statistical tests. In each
case, state H0, H1, and the rejection region, and carry out the test, reporting your
conclusion.
(a) According to the theory, the average performance of low and high populations

should not differ from each other.

Children

Boys

Y
s

Girls

Y
s

8 Years

58 ,
2.7

53
2.9

10 Years

72
2.1

60
2.2

n
Y
s

Low

15
67.333

6.102

Medium

18
70.611

6.137

High

21
66.048

6.128
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(b) According to the theory, the average of a medium population should be higher
than the average of the combined low and high populations.

(c) Calculate the standardized effect associated with each of the two contrasts.
6.8 Several researchers have compared laboratory reading (participants knew they would

be tested for recall) with natural reading (participants read material without knowing
they would be tested). In one such study, two groups of 9 participants each (lab, natural
groups) were tested twice on the same materials, once on each of two different days.
Free-recall percentages (correct responses) were as follows:

(a) For each group, find the .95 CI for the population mean of the change in recall
over the 2 days.

(b) We wish to compare the two groups on Day 2. Assuming a two-tailed test, can
we reject H0 at the .05 level?

(c) From part (a), we have a change score for each subject. We wish to test whether
the amount of change is the same for the two populations of readers. State the
null and alternative hypotheses. Do the test at the .05 level.

6.9 The data for this problem are in the TC file in the Seasons folder of the CD.
(a) Calculate the standardized effect size (Es) for the winter - spring difference in

TC scores (TC1 - TC2) for the sayhlth = 2 (very good) and for the sayhlth = 4
(fair) group. How would you characterize the effects in terms of Cohen's guide-
lines? (See Chapter 6 to review the guidelines.)

(b) Calculate the winter - spring CIs for the two sayhlth groups of part (a). In which
is the CI narrower? Also calculate the t statistic for each. Which has the larger t?
The lower p value?

(c) Considering the various statistics, discuss the effects of seasons (winter versus
spring) on TC level.
The next problems are open ended but represent the task faced by the investigator
with a large data set.

6.10 The Royer_acc file on the CD contains subtraction, addition, multiplication, and mean
percentage correct for male and female third to eighth graders who had accuracy
scores for all three arithmetic operations. Considerable attention has been given to
the relative quantitative skills of male and female students. What differences, if any,
are there between the sexes in performance? Support your conclusions with graphs,
and any statistics—including significance test results, CIs, and effect sizes—that you
find relevant.

Group

Lab
Day 1
Day 2

Natural
Day 1
Day 2

45
43

60
38

Percentage

42
28

57
40

63
47

38
23

36
16

51
32

64
21

51
38

44
19

48
16

49
24

55
27

32
22

31
35
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6.11 Using the Royer_rt file, which provides response times paralleling the accuracy scores
in this exercise, discuss differences, if any, between the sexes, again supporting your
answer with graphs and statistics.

The SE of a Contrast

To obtain a CI, or to test the null hypothesis about u, we require an estimate of the SE
of the sampling distribution of U. To derive an expression for that estimate, we note that
u is a linear combination of the sample means. In Appendix 5.1, we proved that a linear
combination (L) of independently distributed variables (V) of the form

has variance

where the Wk are weights and a2 is the variance of Vk. Replacing L by U and substituting
parameter estimators into Equation 6.27, we have

Assuming homogeneity of variance, we may rewrite Equation 6.29 as

where spooled is the weighted (by degrees of freedom) average of the group variances; that
is,

and / is the number of groups. Substituting the pooled-variance estimate into Equation 6.30
and taking the square root yields an expression for the estimate of the SE of U :

APPENDIX 6.1
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The chi-square (x2) distribution is of interest both because of its role in data analyses and
its relation to the normal, t, and F distributions. With respect to data analyses, the most
common application is to frequency data. In such applications, the x2 distribution is used
to determine how well a theoretical distribution fits an observed distribution, and in testing
whether two or more categorical variables are independent. An example of the goodness-
of-fit application would be in testing whether the distribution of letter grades in a class
conformed to some theoretical distribution such as 15% As and Fs, 20% Bs and Ds, and
30% Cs. An example of the test of independence would be one in which we ask whether the
distribution of letter grades is the same in the populations of male and female students. That
is, is the distribution of grades independent of gender? An introduction to these applications
of the chi-square statistic may be found in almost every introductory statistics textbook, and
entire textbooks have presented detailed treatments, particularly of tests of independence
in multifactor designs (e.g., Bishop, Fienberg, & Holland, 1975; Fienberg, 1977; Fliess,
1973).

In this chapter, we limit our presentation of x2 to defining the distribution and illustrat-
ing how it can be used to draw inferences about population variances. If the scores in the
population are distributed independently and normally, confidence intervals (CI) may be
calculated for the variance, and hypothesis tests about the variance may also be carried out.
We also consider the consequences of violating the assumptions upon which the chi-square
test rests. After this discussion of the application of the chi-square statistic to inferences
about variances, we develop the relation of x2 to the F distribution. Whereas the x2 distri-
bution allows us to draw inferences about a single population variance, the F distribution
provides a basis for inferences about the ratio of two population variances.

Perhaps the most common application of the F distribution is in analysis of variance
(ANOVA), a focus of much of this book. In an ANOVA, the numerator of the F ratio is a
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variance of a set of sample means, and the denominator is a measure of chance, or error,
variance. The F test in an ANOVA addresses the question of whether the variability of the
group means is greater than what could reasonably be attributed to chance. If the F ratio is
large enough, the null hypothesis that the population means are all equal can be rejected.
In the present chapter, we define the F statistic, and we apply it to situations in which we
compare the variances of two independent samples in order to test the null hypothesis that
the two sampled population variances are equal. We also develop relations that exist among
the chi-square, t, and F statistics.

Assume that N scores are randomly sampled from a population of scores that are indepen-
dently and normally distributed with mean u and standard deviation a. Each of the sampled
scores is transformed into a z score by first subtracting U and then dividing the result by
a. These z scores are then squared and summed. Translating our verbal description into an
equation for the chi-square statistic, we have

Second, the sum of independently distributed x 2 variables also has a x 2 distribution. The
degrees of freedom associated with the sum is the sum of the degrees of freedom for the
component values of x 2 . For example, a quantity obtained by summing a chi-square statistic
with 2 df and one with 3 df will have 5 df. This is the additive property for independent
chi-square statistics.

Appendix Table C.4 presents critical values of x 2 for various numbers of degrees of
freedom. Because ax2 with 1 df is just a squared z score, the values in the first row of
Table C.4 are related to those in Table C.2 for the normal distribution. For example, .95 of a
normally distributed population of scores lies between z = —1.96 and z — 1.96. Therefore,
.95 of x2 values on 1 df should lie between 0 and 1.962, that is, between 0 and 3.8416. This
in turn implies that .05 of scores should exceed 3.8416. This is, in fact, the .05 critical value
of x2 when df= 1 in Table C.4. Note that the mean of any x2 distribution is equal to its

If many such random samples of size N are drawn from a normal population, and x2 is
calculated for each sample, the sampling distribution will have a characteristic density that
will depend on degrees of freedom. The quantity in Equation 7.1 has N df(as indicated
by the subscript on x2) because N independent values of Y have entered into the statistic.
Because the values of U and a are values of population parameters, there are no constraints
on the N values of Y and therefore no degrees of freedom are lost.

As Figure 7.1 illustrates, the x2 distribution is skewed; the skew is less pronounced
as the degrees of freedom increase. Several other properties of the distribution should be
noted. First, the mean of the distribution is equal to its degrees of freedom and its variance
is twice the degrees of freedom:

174 7 / CHI-SQUARE AND F DISTRIBUTIONS



INFERENCES ABOUT THE POPULATION VARIANCE 175

degrees of freedom. Therefore, as the degrees of freedom increase, the distribution shifts to
the right and the critical values of x2 for any a level become larger.

In Equation 7.1, we subtracted the population mean from each of the N scores in
the sample. Suppose we repeated our sampling experiment but, this time, we subtract the
sample mean from each score instead of the population mean. In other words, we draw a
sample of N scores from a normally distributed population. For each score, we subtract
the sample mean, square the result, and then divide by the population variance. Then we
sum these transformed scores. Equation 7.2 summarizes these operations:

Because

we often find Equation 7.2 written as

Fig. 7.1 Two x2 distributions. For a = .05, the critical values are 3.84 (df= 1) and 25.00 (df= 10).

This statistic is also distributed as x 2, but on N — 1 df in contrast to the quantity in Equation
7.1, which is distributed on N df. The loss of a degree of freedom is caused by taking
deviations of N scores about their mean; because the sum of these deviations must equal
zero, 1 df is lost. By capitalizing on the additive property of x2, Appendix 7.1 demonstrates
more formally why the statistic in Equation 7.2, or 7.3, is distributed on N — 1 df.

Equation 7.3 provides the basis for drawing inferences about variances. We consider that
application of the chi-square statistic next. In the example we present, we have a hypothesis

7.3 INFERENCES ABOUT THE POPULATION VARIANCE



that predicts both the mean and variance of a set of scores. The t test of Chapter 6 provides
a test of the prediction about the mean. Here we illustrate the application of the chi-square
statistic to a test of the prediction about the variance.

7.3.1 An Example
Consider a population of chronically ill patients whose symptoms fluctuate unpredictably
over time, even when the patients are maintained on standard drug therapy. When given
monthly tests, the patients are equally likely to have "good" and "bad" months; that is,
they are equally likely to exhibit symptom levels that are better or worse than their baseline
levels. Thirty of these patients are selected for a study in which they are given a new drug
and tested monthly for 1 year. If the new drug is no more effective than the old one, and
if month-to-month fluctuations can be considered to be independent of one another, the
number of "good" months for each patient tested should follow a binomial distribution
with P = .5. From Chapter 4, we know that the mean number of good months for patients
should be Pm, where m is the number of monthly tests. In this example, that would be
(.5)(12), or 6. We know something else as well about the binomial distribution; the variance
is P(l — P)m. Therefore, the theoretical variance of the number of good months out of the
12 months tested is (.5)(.5)(12), or 3. In summary, the hypothesis that the new drug produces
the same chance variation over months that the old one did implies two null hypotheses: H01 :
U = 6, and H02: a

2 = 3, where U is the mean number of "good" months in the population
of patients, and a2 is the variance of the number of "good" months.

The observed mean number of good months (Y), averaging over the 30 patients, is 6.4,
and the observed variance (s2) is 5.1. A t statistic on 29 df provides a test of H01 : U = 6;

Thus, the observed number of good months is not large enough to cause us to reject the
hypothesis that the new and old drugs are equally effective.

We can also use the sample variance to further investigate the effectiveness of the new
drug. We first construct a CI for a2. Assume that the population of scores (in our example,
a score is the number of "good" months in the 12 months tested) is normally distributed.
Then it follows from Equation 7.3 that (N — 1)s2/a2 is a chi-square statistic and therefore

where X N - 1 a / 2 is exceeded by a/2 of the x2 distribution on N — 1 df. For example, if we
want a .95 CI, a = .05, and xN-1, a/2 is the value of X2 exceeded by .025 of the distribution
for 29 (because we have 30 patients) df. The value of x2-1,1-a/2 is that value exceeded
by .975 of the x 2 distribution. Finding the .975 and .025 critical x 2 values from Appendix
Table C.4, and replacing N by 30 and s2 by the observed value, 5.1, we can rewrite Equation
7.4 as
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What we want, however, are bounds on a2 . Algebraic manipulation of Equation 7.4 yields
the general form of the CI:

Substituting numerical values into this equation, we have

and, doing the arithmetic,

Two points are worth noting about the preceding result. First, in Chapters 5 and 6,
CIs based on the normal and t distributions were symmetric about the statistic estimating
the population parameter; for example, in the estimation of U, the bounds were equidistant
from Y. However, because the x2 distribution is not symmetric, the CI just calculated is
not symmetric about s2, our estimate of a2. The second point is that because the theoretical
variance, 3, does not fall within the .95 CI, we may reject at the .05 level the null hypothesis,
H02: a

2 = 3, in favor of the two-tailed alternative, H1 : a
2 = 3. We can also test H02 directly.

Table 7.1 presents the test statistic and summarizes the test procedure against three possible
forms of the alternative hypothesis.

The test of the null hypothesis against a two-tailed alternative indicates that the variance
is larger than we would expect it to be if the test and standard drugs were equally effective
and the use of the binomial distribution was appropriate. Because the sample mean is
consistent with the hypothesis that the drugs are equally effective, one possibility is that
the new drug is more effective than the standard drug for some patients, but less effective
for other patients—leading to a situation in which, on the average, the drugs are equally
effective, but with too much variance for the drugs to be equally effective for each patient. If
this was the case, a next step in the research would be to look for differences in two subsets
of patients—those who improved with the new drug therapy and those who did not. Another
possibility is that the assumption of random short-term fluctuations of symptoms over time
is not valid, but rather that during the course of the disease, the patients have periods during
which either good months or bad months occur more frequently. If this is the case, the use
of the binomial distribution to calculate the theoretical variance is not appropriate, because
the assumption of independence does not hold. To obtain a more definitive answer about
drug effectiveness, we would really need to also have a control group of patients treated
with the standard drug, and we would have to look at the variances and the sequences of
good and bad months in both groups. Although our example is an artificial one, medical
treatments may have positive effects for some individuals and negative effects for others.
In such cases, the mean may be little affected but the treatment may increase variability.

The model testing procedure we have just illustrated has certain risks. Failing to reject
the null hypothesis that the population variance (or any other parameter whose value is
predicted by the model) has the predicted value provides support for the model. Sloppy
researchers who have small Ns may find support for their position because of a lack of
power. Confidence intervals are helpful in assessing the validity of a conclusion based
on a statistical test. If the interval containing the population variance is wide, we should
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TABLE 7.1 USING THE CHI-SQUARE STATI:

1. If H1 is

a2 > ahyp
a2 < ahyp

a2 = ahyp

where

STIC TO TEST HYPOTHESES ABOUT

Reject HO if

x2 > xa
X2 < X1-a

X2 < X1-a/2 or X2 > X a / 2

, (N - 1 ) ( s 2 )
x2 =

ahyp

VARIANCES

If a = .05, and df= 29 (as in our example),

If H1, is

a2 > ahyp

a2 < ahyp

a2= ahyp

Reject H0 if

X2 > 42.557

X2 < 17.708

X2 < 16.047 or x2 > 45.722

2. Now calculate the value of x 2 based on the data. In the example presented in the text,

X2 = [(29)(5.1)]/3

= 49.30

Note that the value of a2 is the value assumed under H0.

3. Compare the result with the appropriate critical value. If the alternative hypothesis is

a2 > ahyp, or if the test is two tailed, the null hypothesis can be rejected. If the null

hypothesis is true, the probability of exceeding 49.3, the observed value of x 2 in our

example, is .011. This exact probability can be obtained from many sources, including the

transformation menus in SYSTAT or SPSS, or from the UCLA Web site described in

Chapter 6.

view a failure to reject the null hypothesis with some skepticism; a wide range of predicted
parameter values would also have been consistent with the data. If the interval is very narrow,
and the observed variance is close to the theoretical value, rejection of H0 may imply high
statistical power; we may be rejecting a model that—although not perfect—does a very
good job of accounting for the data.

7.3.2 Violation of the Normality Assumption

We calculated the CI and conducted the hypothesis test of Table 7.1 under the assumption
that the population distribution was normal. However, in the example of this section, we
were dealing with a binomial distribution. Does this invalidate the inferences drawn?

The answer is that in this application we have no problem. The reason lies in the central
limit theorem, which states that sums, and more generally linear combinations, tend to be
normally distributed as N increases. Each of the scores in our study is actually a sum of ones
(correct responses) and zeros (errors); because there are 12 responses contributing to each
score, they will tend to be normally distributed. Consequently, the true Type 1 error rate
will tend to be approximately .05 when the significance test is carried out at the .05 level.
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What about the validity of the test in other situations? There are many mathematical
models that yield numerical predictions for means and variances of various statistics, and
a test of whether the observed variance is consistent with that predicted by the model
would contribute to an assessment of the model. Unfortunately, in many of these cases,
the distribution whose variance is of interest may well be very skewed. Frequently, the
theoretical distribution of interest looks much like the exponential distribution of Fig. 6.3
(see, e.g., Bower, 1961). In such cases, the true Type 1 error rate may be much greater
than the nominal significance level. This returns us to one of our favorite themes: always
plot the data or, when testing a theoretical model, plot the theoretical distribution of the
variable of interest. If either the theory, or the data, indicate a clearly nonnormal population
distribution, inferences about variances based on the chi-square statistic are likely to be
invalid. Alternative procedures exist that do not depend on the normality assumption. The
jackknife and bootstrap methods are two possible alternatives that are described in several
sources (Efron, 1982; Efron & Gong, 1983; Miller, 1974; Mosteller & Tukey, 1977).

To understand the F distribution, we begin with a sampling experiment. Assume the exis-
tence of two independently and normally distributed populations with variances of and a2,
respectively. Suppose we draw a random sample of size n 1 from the first population and a
sample of size n2 from the second population. The F statistic is the ratio

If the two population variances are the same, we may write the preceding ratio as

This provides the basis for tests of whether the population variances estimated by the sample
variances are the same. If the ratio in Equation 7.7 is much smaller or much larger than one,
it suggests that the sampled populations have different variances. We will shortly consider
how we can determine whether the ratio is very large or small. The distribution of the F ratio
is determined by both the degrees of freedom of the numerator, d f 1 , and of the denominator,
df2.

Equation 7.6 provides a way of relating F to x2. Recall that

Dividing the left and right side by the degrees of freedom, n — 1, we have

Comparing this with the components that form the F ratio of Equation 7.6, we find that
it follows that the F statistic is essentially a ratio of two independent chi-square statistics,

7.4 THE F DISTRIBUTION
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each divided by its degrees of freedom. Therefore, we can also write the F ratio as

where the subscripts refer to the populations being sampled.
If we repeatedly draw random samples of sizes n1 and n2 from their respective pop-

ulations, the sampling distribution of the ratio of sample variances will be distributed as
F. Turning to Appendix Table C.5, we find critical values of the F distribution for various
values of a, df1 and df2. The tabled values are those exceeded by a of the samples, as-
suming that the sampled populations are independently and normally distributed and have
equal variances. The df1 are the degrees of freedom associated with the numerator of the
F distribution, and df2 are those associated with the denominator. When we form a ratio of
sample variances from two populations, as in Equation 7.6, the numerator and denominator
degrees of freedom are n1 — 1 and n2 — 1, respectively. In future chapters in which we
consider other applications of the F ratio, the degrees of freedom take on other values.

From the fact that the critical values of F depend on the degrees of freedom, it should
be evident that the F, like the t and x2 distributions, is not one distribution but a family
of distributions, one for each possible combination of numerator and denominator degrees
of freedom. If we were to repeatedly draw samples, computing the F ratio each time,
the average of the Fs would be a function of the denominator degrees of freedom; more
precisely,

As the denominator degrees of freedom increase, the expected value of F approaches one.
Therefore, ratios of sample variances much less than, or much greater than, one indicate that
the two sample variances are not estimating the same population variance. How different they
must be in order to draw this conclusion depends on the degrees of freedom. For example,
if df1 = 8 and df2 — 10, from Table C.5 we find that an F of 3.07 will be exceeded with
probability .05 when the two sample variances estimate the same population variance. In
terms of the hypothesis testing logic applied in previous chapters, an F larger than 3.07
suggests that either the population variances are equal and by chance a large value of F has
been obtained, or the null hypothesis of equal variances is false.

Although Table C.5 provides critical values, at best it provides only a rough sense of the
F distribution. We can improve our sense of the distribution by viewing the two examples
in Fig. 7.2. Several points should be noted. First, as is typical for the F distribution, the
distributions are skewed to the right. Second, the values of F are positive because F is a ratio
of variances, and variances are sums of squared quantities. Third, the value of F exceeded
by .05 of the distribution is smaller when there are 20 denominator degrees of freedom
than when there are 5. In general, a smaller critical value is required as either numerator
or denominator degrees of freedom increase. If we think about this for a moment, it makes
good sense. If our samples were very large, the ratio of sample variances would closely
approximate the ratio of population variances, and therefore even an F only slightly different
from one would suggest that the population variances differed.

One other point, not evident from the figure, should be noted. Because we are usually
interested in whether the F is significantly large, tables such as Table C.5 present only
critical values in the right tail. We may occasionally be interested in probabilities associated
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Fig. 7.2 Two F distributions. For a = .05, the critical values are 6.39 (d f 1 ,
df2 = 5) and 2.90 ( d f 1 = 5, df2 = 20).

with very small F ratios. For example, in subsequent chapters on the ANOVA, the logic is
such that very small Fs would suggest a failure of certain assumptions. More immediately,
a CI on the ratio of two population variances requires a lower bound and depends on finding
a critical value in the left (lower) tail. One way to find critical values from the lower tail of
the distribution is to note that such critical values are related to those in the upper tail. Let
the critical value that is exceeded with probability a be designated as Fadf1 ,df2 and the value
that is exceeded with probability 1 — a be designated as F \ -a ,d f 1 , d f 2 The relation between
these is

Suppose that a = .05, df1 = 8, and df2 = 12. Then the critical value in the right tail is
F.05,8,12 = 2.85. From Equation 7.9 we have

F.95,8,12 = 1/F.05,12,8 = 1/3.28 = .305

With access to various software packages such as SYSTAT, SPSS, and SAS, or to
the Internet, we find that the solution to the "lower-tail problem" is simpler. If you do not
have software capable of providing exact p values, access to the Internet can solve the
problem. One solution is to use the F CDF calculator at the UCLA Web site referenced in
Chapter 6. Supply a question mark for "X Value," and .05, 8, and 12 for the probability,
and numerator and denominator degrees of freedom slots, and the answer, .3045, is quickly
provided. The UCLA calculator is also useful for data sets for which one or both degrees of
freedom values are not in Table C.5. GPOWER, the downloadable program we described
in Chapter 6, provides a second solution. Select "Other F Tests" from the "Tests" menu,
and then (ignoring other inputs) input the a, and the numerator and denominator degrees
of freedom. For the .05 lower-tail value to be obtained, the a should be .95. Note that the
UCLA calculator requires that p be the area below the F you want, whereas GPOWER
requires that you enter the area above the required F.



We are usually interested in comparing measures of the location of distributions, in par-
ticular, means. Nevertheless, there are times when a comparison of measures of variability
may be of interest. The reason usually given for such comparisons is to determine whether
the population variances meet the assumption of homogeneity of variance underlying the
t test (and the ANOVA). However, that rationale is not very compelling. As we saw in
Chapter 6, the variances must be very unequal, or the ns must differ, before the error rate of
the t test is distorted. In those cases, the separate-variance t test is available. Of greater inter-
est is the possibility that two treatments differ in their effects on variability. For example, we
may find little difference in the mean of a behavioral measure for two groups given different
medication for depression, but greater variability in the scores of one of the groups. This
would raise the possibility that the more variable data set represents some individuals who
improved and others who became more depressed, something certainly worth investigating
further. In some areas of research, we may be able to formulate precise enough theories to
predict the effects of certain factors on variability as well as on averages, thus providing a
more sensitive test of the theory. In such situations, comparisons of measures of variability
in different conditions should be made. In what follows, we will use a subset of the Seasons
data to illustrate some approaches to drawing inferences about population variances.

7.5.1 A Confidence Interval

Table 7.2 presents summary statistics based on the anxiety scores of men and women over
60 years of age. These data were extracted from the Seasons data file. Figure 7.3 presents
histograms of the means over seasons. From Table 7.2, we see that the variance of the female
mean scores is more than twice as great as that of the male mean scores. The histogram
in Fig. 7.3 reinforces our sense that variability is greater in the sample of female anxiety
scores. Confidence limits on the ratio of variances will provide a better sense of the possible
range of values of this ratio.

7.5 INFERENCES ABOUT POPULATION VARIANCE RATIOS
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TABLE 7.2 ANXIETY STATISTICS FOR MEN AND
WOMEN OVER 60 YEARS OF AGE

Sex =

N of cases
Minimum

Maximum

Median

Mean

Standard Dev

Variance
Skewness(G1)

SE Skewness

Kurtosis(G2)

SE Kurtosis

Male

55
2.000
6.500
4.875
4.618
0.927
0.860

-0.836
0.322
0.903
0.634

Female

41
1.250
7.750
4.625
4.451
1.356
1.840

-0.280
0.369
0.985
0.724

Note. Output is from SYSTAT.
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Fig. 7.3 Histograms of anxiety data for men and women over 60 years of age.

We begin by establishing limits on the variance ratio of Equation 7.6. From that defi-
nition of the F statistic, we have

Algebraic manipulation and application of Equation 7.9 yields the general form of the CI:

Table 7.3 illustrates the application of Equation 7.10 by using the variances and sample
sizes in Table 7.2. The confidence bounds indicate that the variance of the population of
female anxiety scores is at least somewhat larger than that for the males.

Note that for the degrees of freedom in this data set, critical F values are not available
in Appendix Table C.5. In the past, researchers had to resort to linear interpolation in tables,
or to obtaining an approximate p value. With the availability of various statistical packages,
such approximations are no longer necessary. As we pointed out in Section 7.4, The UCLA
CDF calculator or GPOWER, as well as many other programs, can provide the necessary
F values. Commonly used packages such as SYSTAT, SPSS, and SAS will also provide
the exact probability associated with many statistics such as F, t, z, and X2.

TABLE 7.3 CI FOR THE RATIO OF THE VARIANCES IN TABLE 7.2

In our example, let a2 be the variance of the female population and a2 be the variance of the male
population. The F ratio, s2

F/s2
M, = 2.14 and is distributed on 40 numerator df and 54 df. From the

UCLA Web site (see Chapter 6), we find the F values required by Equation 7.1 1:

F.925.54.40 = .564 and F.025, 54.40 = 1-819

Substituting these values and the values of the variances from Table 7.2 into Equation 7.10, we have

Completing the arithmetic, we find that the upper and lower confidence limits are 1.207 and 3.892,
respectively. Because the lower bound is greater than one, we can reject the null hypothesis of
homogeneous variances at the .05 level.
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7.5.2 The F Test

We can directly test the null hypothesis of equal variances. To illustrate the application
of the F test of variances, we again apply it to the Seasons anxiety scores of men and
women over 60 years of age. Table 7.4 presents decision rules for the test, and calculations
based on the statistics of Table 7.2. We again conclude that the population variances are
not equal. It may not be immediately obvious, but, as is the case with other statistical tests,
the test of the null hypothesis derived from the confidence limits in Table 7.3 and the direct
test in Table 7.4 are equivalent. We illustrate the relation between the two procedures in
Appendix 7.2.

7.5.3 The Normality Assumption

The validity of the F test of the variance ratio illustrated in Table 7.4 rests on the assump-
tion that the two populations are normally distributed. When the population distributions
are skewed or have longer tails than the normal distribution, Type 1 error rates associated
with this test are often inflated. This distortion increases as sample sizes increase because
the shapes of the sample distributions more closely approximate those of the populations.
Deciding whether a sample may reasonably be viewed as drawn from a normally distributed

TABLE 7.4 APPLYING THE F RATIO TO TEST HOMOGENEITY OF VARIANCE

1. Let F = s2/s2 . Then
IfH1, is

a2 > a2

a2 < a2

a2 < a2

a2 = a2

Reject H0 if

F > Fa

F < F1-a

F > Fa/2orF < F1_a/2

In our example, let a2 be the variance of the female population and a2 be the variance of
the male population. The F ratio, s2

F/s2
M, is distributed on 40 numerator df and

54 denominator df. From the UCLA Web site, we find that

F.05,40.54 = 1.617, F.95.40,54 = 0.606, F.025.40.54 = 1.773, and F.975.40.54 = 0.550.

Therefore, the decision rule for this example is

If H1 is

a2 > a2

a2 > a2

a2 < a2
a2 = a2

a2 = a2

Reject H0 if

F > 1.617

F < .606

F > 1.773 or F < .550

2. From the statistics in Table 7.2, the F ratio in our example is

F = 1.840/.86 = 2.14

Because we have no prior reason to expect greater variability in the scores of either gender,
the test in our example is two tailed. Because 2.14 > 1.773, the null hypothesis of equal
population variances is rejected. With df1 = 40 and df2 = 54, the two-tailed p = .01.
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population is difficult. A useful graphic device is the normal probability plot that we de-
scribed and illustrated in Chapter 2. As previously noted, such plots are available in many
statistical packages. The expected values under the normality assumption are plotted as
a function of the observed scores, and marked departures from linearity indicate nonnor-
mality. In addition, it can be helpful to plot box plots and histograms, looking for obvious
discrepancies between sample means and medians, and seeing if kurtosis and skewness
values are large relative to their standard errors (SE). For confirmation, researchers can test
for nonnormality by using the Shapiro-Wilk W test, available in SPSS and SAS (Shapiro &
Wilk, 1965). This test has good power for samples of 50 smaller. For larger samples,
D'Agostino, Belanger, and D'Agostino (1990) describe alternative tests that take kurtosis
and skewness statistics as inputs.

When the investigator is interested in assessing differences between conditions in vari-
ability and when the validity of the normality assumption is in doubt, the Levene (1960) or
Brown-Forsythe (1974a) tests described in Chapter 6 provide an alternative to the F test
of variances. Although neither directly tests whether the population variances are equal,
they do permit a comparison of the average spread of scores. As described in Chapter 6,
the Levene test is based on the average absolute deviation of scores about the group mean,
and the Brown-Forsythe test is based on the average absolute deviation of scores about
the median. If the normality assumption is valid, these tests will be less powerful than
the F test of the variances. However, the Levene and Brown-Forsythe tests are less af-
fected by violations of the normality assumption than the F test based on the sample
variances. The Brown-Forsythe test has been found to be more powerful than the Levene
test under some conditions and therefore provides a reasonable alternative when normality
is suspect, though users should be aware that when the population distributions differ in
shape from one another, the actual Type 1 error rate may differ from the nominal error
rate.

7.6 RELATIONS AMONG DISTRIBUTIONS

In this chapter, we have noted the relation of x2 and F to each other, and to the normal
distribution. Both are also related to the t distribution. We consider these relations next. We
may write the one-sample t statistic of Chapter 6 as

In order to show the relation of t to x 2
, we rearrange the quantities in Equation 7.11, divide

numerator and denominator by a2, and then square the result:

If Y is normally distributed, the numerator on the right-hand side of Equation 7.12 is
distributed as x2 on 1 df; the denominator is distributed as x2 on N — 1 df, divided by
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N — 1. Therefore,

The t statistic for the two-sample case has a similar form. Beginning with the square
of the usual formula for t, we have

Dividing the numerator and denominator of Equation 7.14by a2(l/n1 + 1/n2), we have

If the two population variances are the same, then a2(1/n1 + l/n2) is the variance of the
sampling distribution of Y1 — ¥2- If, in addition, Y is normally distributed, the numerator
of Equation 7.15 is distributed as x2 on 1 df.

Under the assumptions of normality and homogeneity of variance, the denominator of
Equation 7.15 is also related to x2. We can rewrite the denominator as

If the sums of squares (the SS quantities) are numerators of estimates of the same population
variance, this quantity is distributed as x 2 divided by its degrees of freedom. In that case,
the two-sample t statistic is of the same form as Equation 7.13.

If we square the right-hand side of Equation 7.13 and slightly rewrite the numerator,
we have

In other words, t2 is the ratio of two chi-squared variables, each divided by its degrees of
freedom. But this is exactly the definition of F given by Equation 7.8. Therefore, a squared t
statistic is an F with one numerator degree of freedom.

7.7 CONCLUDING REMARKS

This chapter had two major goals: first, to introduce the x 2 and F distributions, two promi-
nent players in statistical inference; second, to consider applications of these distributions
to inferences about variances. With respect to the latter goal, it is worth repeating that when
evaluating the effects of an independent variable, researchers focus on means or, less often,
other measures of location, almost exclusively. However, knowledge of how other aspects
of the data distributions are affected can contribute to both practical applications and the
development of theory. This chapter provided one set of tools for investigating one aspect
of a distribution's shape—its variance.
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Inferential procedures based on the distributions considered thus far in the book play
a major role in data analysis. The t and F distributions, in particular, have starring roles
throughout the remainder of this book. This reflects the prominence of these distributions
in data analyses reported in the research literature, a prominence resulting from ease of
calculation, applicability to data from many research designs, and a reliance on statistics
that are good estimators of population parameters under many conditions. Perhaps most
importantly, when their underlying assumptions are met, the tests based on these distri-
butions are uniformly most powerful tests; no alternative test will have greater power
to reject the null hypothesis. Bear in mind, however, that when assumptions are violated,
other procedures may provide more valid inferences. These may be tests based on other
distributions, such as alternatives to the t test based on ranked data, or modifications of
the usual test statistic, such as t' when variances are heterogeneous. With this in mind,
we emphasize that there are several considerations prior to choosing a method of analysis:
First, do the data indicate departures from assumptions? Second, if so, are these departures
severe enough to distort CIs, increase Type 1 error rate, or decrease power? Third, if so,
are there alternative procedures that are likely to yield more valid inferences? Answering
these questions requires that we begin our data analysis by looking at the data. Summary
statistics and data plots available in most statistical packages will aid this process.

KEY CONCEPTS

goodness-of-fit
analysis of variance (ANOVA)
additive property of x2

uniformly most powerful tests

test of independence
chi-square statistic
F statistic

7.1 Equation 7.5 states that (N — I)s2/a2 is distributed as a chi-square variable if each
score in the sample is randomly drawn from an independently and normally dis-
tributed population of scores. Let's see what this implies.
(a) Suppose we draw many samples of size N from a normally distributed population.

We calculate the ratio, (N — 1)s2/a2, for each sample. If N = 6, (i) what is the
probability that this ratio is less than 9.236? (ii) What is the probability that the
ratio lies between 1.145 and 6.626?

(b) The population sampled in part a has a variance of 10. If we still assume N = 6,
in what proportion of samples will s2 be less than 8.703?

7.2 We are interested in a new method of teaching arithmetic. We use the new method with
a sample of 31 students, and at the end of a trial period we give them a standardized
test. In the past, the population of scores on the test has been approximately normally
distributed with a mean of 64 and a variance of 10. Following the training period,
the mean test score is 66 and the variance is 14.
(a) Has the new method of teaching led to a significant improvement in test scores?

Let a = .05.
(b) One interpretation of the increased variability on the test is that the new method

helps some students but hurts the learning of other students. Is the increase in
variability significant? Let a = .05.

EXERCISES
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(c) We might better consider the variability under the new method by obtaining a CI.
Find the .90 CI for a2.

7.3 On the basis of a review of large amounts of data, it is well established that the
variance of a population of ratings of the quality of a particular wine is 12.64. A
new method for training raters is established in hopes of reducing the variance. In a
sample of 10 judges trained under the new method, s2 is 3.51.
(a) Would you conclude that the new method has effectively reduced the variance of

ratings? Explain your reasoning.
(b) Suppose the population of scores was not normally distributed. Why is this a

problem for the approach you took in part (a)? Would it be less of a problem if
your sample size were larger? Explain.

7.4 A sample of 7 scores is selected randomly from a normally distributed population.
The scores are 22, 2, 0, 30, 28, 26, and 32.
(a) Find the 90% CI for the population variance.
(b) Assuming a = .05, test the null hypothesis that the population standard deviation

is 10 against the alternative hypothesis that it is greater than 10. Relate your
conclusion to the confidence limits you calculated in part (a).

7.5 We have samples of reading scores from 5 boys and 11 girls. We form a ratio of the
variances of the two samples, s 2 / s 2 ; call this F in accord with Equation 7.7.
(a) If many samples of sizes 5 and 11 are drawn, (i) what is the proportion of F values

greater than 2.61 that we should expect? (ii) What is the proportion less than 4.47?
(b) What assumptions are implied in your approach to answering part (a)?

7.6 Samples of scores are obtained from 9 male and 13 female subjects. Assuming
a = .05, answer the follwing.
(a) What is the rejection region if the researcher wishes to detect a difference in the

variances?
(b) How large must s 2 / s 2 be for you to conclude that the variance is greater in the

population of boys' scores?
7.7 In Exercise 6.5, we carried out a test of the means against a two-tailed alternative,

using the pooled- and separate-variance t test. It is of interest to decide whether
the separate-variance test is justified. Assuming that the scores were sampled from
a normal population, test whether the variances are equal against the alternative
hypothesis that they are not. The ns were 21 and 11, and the variances were 8 and
30, respectively.

7.8 An experimenter drew four independent random samples each of size 5 from one
normally distributed population. The variance of the four sample means about their
grand mean is 84.
(a) (i) Estimate the variance of the population from which the samples were drawn,

(ii) How many degrees of freedom are associated with your estimate?
The experimenter also has a sample of 15 independent observations that are
believed to be from the same population from which the original four samples
were taken. The variance of the 15 scores is 384.

(b) Perform a statistical test to determine whether the 15 scores do come from the
same population as the four samples of 5.

7.9 In viewing summary statistics for multiplication accuracy in the Royer data
(Royer_acc file in the Royer folder), we noted that in the fourth grade the male
multacc scores seemed to be considerably more variable than the female scores.
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(a) Find the .95 CI for the ratio of population variances (s2
M/s2

F) for fourth-grade
multiplication accuracy.

(b) Is there a significant difference in the variances? State the null and alternative
hypotheses.

(c) Plot the two density distributions in any way you find helpful. This can include
box plots, density plots, histograms, or stem-and-leaf plots. Does the plot provide
any insight into the reason for the difference in variances? If so, can you suggest
a further analysis of the data?

(d) Do you see any problem in the calculation of confidence limits and significance
tests for this data set?

7.10 Further analyzing the Royer_acc data of Exercise 7.10, calculate the Brown-Forsythe
t statistic to test whether there is a significant effect of gender on the variability of
the fourth-grade multiplication accuracy scores.

7.11 The Royer_rt file contains response times for addition, subtraction, and multiplica-
tion, a well as a variable labeled rt; this is the mean of the three measures.
(a) Plot the mean and standard deviations of the rt variable as a function of grade,

from Grade 3 to Grade 8. Describe the two functions.
(b) Test whether the variances of the sixth- and eighth-grade response times (RTs)

differ at the .05 level. State H0 and H1.

Chi-Square and Degrees of Freedom

We begin with the identity

Squaring both sides of the equation, summing the N quantities, and applying the summation
rules of Appendix A, we have

Because E (Y — Y) = 0, the preceding equation reduces to

Rearranging terms, and dividing both sides by the population variance, a2, yields

or

However, the leftmost quantity is a chi-square statistic distributed on N df. The quantity
subtracted from it is a chi-square statistic on 1 df because a single value (Y) is subtracted

APPENDIX7.1
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from its expected value (U), and divided by the variance of its sampling distribution. From
the additive property of chi square, it follows that the rightmost term is distributed on N — 1
df. That is, x 2 - X 2 =xN-1

APPENDIX 7.2

Relation Between the F test and the Confidence
Interval for a2/a2

Equation 7.10 established confidence limits on the ratio of population variances:

Let Fobs stand for the observed F ratio, s2/s2. Let FL and FU stand for the lower and upper
critical F values. Then we can rewrite the preceding equation:

With respect to the CI, we reject H0 if the value 1.00 does not fall within the interval.
That is, we reject the null hypothesis if 1 < FLFobs or 1 > FUFobS. Note that we can
rewrite 1 < FLF0bS as 1 / F L < F0bs. However, 1/FL = FU is the upper critical value of the
F distribution; therefore, asking if one is less than the lower limit of the CI is the same as
asking if the upper critical value of the F distribution is less than the observed F computed
from the data. Similarly, asking whether the upper bound of the CI is less than one is
equivalent to asking whether the observed F is less than the lower critical value of the
F distribution. In summary, we can reject H0 (that the population variances are equal) if
the observed F is greater than the upper critical value of the F distribution or less than the
lower critical value.
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Between-Subjects Designs:
One Factor

8.1 INTRODUCTION

This chapter deals with the analysis of data from a research design that serves as a building
block for the more complex designs we consider in subsequent chapters. In the one-factor,
between-subjects design, the scores of several groups of participants are analyzed in order
to decide whether the means of the treatment populations, the populations represented
by the groups, are equal. In such studies, participants may either be selected from existing
populations or be randomly assigned to one of several experimental conditions, or treatment
levels. An example of the former is the Seasons study in which individuals were sampled
from populations differing with respect to several factors, including gender, educational
level, and occupation. Strictly speaking, that study would be classified as an observational
study. True experiments involve random assignment of participants to levels of an indepen-
dent variable; the independent variable is said to be manipulated and the design is often
referred to as completely randomized. An example we mentioned in Chapter 6 was the
experiment by Myers et al. (1983). In that experiment, participants were randomly assigned
to study one of three texts presenting elementary rules of probability.

Whether the levels of the independent variable are observed or manipulated, the data
analysis has much the same form and the underlying assumptions are the same. What
characterizes the designs of this and the following chapter is that each participant yields a
single score. These designs are between-subjects designs; all the variability in the data is
due to differences between participants. In within-subjects designs the same participants
are tested under several conditions, and there is variability within each participant's set of
scores. Within-subject designs are also called repeated-measures designs. In later chapters
we also consider mixed designs, in which there are both between- and within-subjects
factors.

Between-subjects designs have the advantage of simplicity. Inferences require fewer
assumptions than are required by designs in which each participant responds on several
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trials or under several conditions. Each additional assumption underlying the derivation of
the test statistic is one more assumption that may be violated, possibly undermining the
validity of the statistical inference. The between-subjects design also has the advantage
of computational simplicity relative to other designs. This is less important in the present
era of electronic calculators and fast computers than it was in the past. Nevertheless, it
is useful to be able to obtain and check results quickly. The chief disadvantage of the
between-subjects design is its relative inefficiency. Because individuals differ on so many
dimensions, chance variability will often tend to be great, sometimes obscuring real effects
and reducing the power of the statistical test. As we discussed in Chapter 6, matching
participants on the basis of some measure other than the dependent variable, or testing each
participant in several conditions, will often lead to a reduction in chance variability. We
consider matching, or blocking, designs in Chapter 12 and repeated-measures designs in
Chapter 13.

In this chapter, we begin by looking at part of the data on which the article by Myers
et al. was based. As usual, this means generating and looking at descriptive statistics and
plotting the data in several ways. We then use the data to illustrate a conceptual framework
in which each score is viewed as a sum of components, and the total variability of the
scores is viewed as a sum of the variabilities of those components. This leads us into the
analysis of variance, or ANOVA, a partitioning of the total variability into parts that
provide the basis for an F test of the hypothesis that the treatment population means are
the same. Having illustrated the ANOVA with our data set, we consider the underlying
theory. We present a structural model, a model of the relation between each score and
the population parameters, and we state other assumptions necessary to justify the F test.
Following this, we present several measures of effect size, and we consider the power of the
F test. Finally, we consider the consequences of violations of assumptions, and we examine
possible remedies when those violations are thought to be severe enough to threaten the
validity of our inferences.

This is a rather extensive menu of theory and calculations. To avoid presenting too
many new ideas at once, we have placed the following restrictions on the presentation of
material in this chapter:

1. We consider only the subset of between-subjects designs that involve a single
independent variable; these are one-factor designs. We extend the development
to multifactor between-subjects designs in Chapter 11.

2. We consider only fixed-effect variables. This means that we view the population
of levels of the independent variable as consisting only of those that have been
selected for the experiment. We have more to say about this in Chapter 13. At that
point, we also introduce the concept of random-effect variables. The levels of
these variables are assumed to be randomly sampled from a population of levels.

3. We consider only tests of the omnibus null hypothesis: u1 = U2 = ... Uj = ...
...uj=... where ua, is the mean of a population of scores of individuals tested under
Aj, the jth level of the independent variable, A, and there are a levels of A in the
study. In Chapters 9 and 10, we extend the analysis of data from between-subjects
designs to contrasts among means of subsets of conditions, and to the analysis of
mathematical functions of quantitative independent variables, such as number of
trials, time in therapy, or hours of sleep deprivation.
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8.2 EXPLORING THE DATA

In the probability-learning experiment conducted by Myers et al. (1983), each of 48 par-
ticipants studied one of three texts that presented elementary probability concepts such as
the addition and multiplication rules, and conditional and joint probability. The participants
were tested on 6 story and 6 formula problems immediately following study, and they were
tested on a second set of 12 problems 2 days later. Half of each group of participants re-
ceived the story problems first, and the other half received the formula problems first. The
researchers were primarily interested in whether the relative performances of the groups
differed on the two types of problems.1 However, we will analyze the proportion correct
of the 12 story problems, ignoring other aspects of the design and proceeding as if we had
a one-factor design with three levels, and 16 participants at each level. The story problem
scores are presented in Table 8.1, together with various summary statistics for each group.
The standard text is abbreviated by S, the Low Explanatory text by LE, and the High Ex-
planatory text by HE. The texts differed with respect to the kinds of examples used and the
presence or absence of illustrations such as tree diagrams.

Figure 8.1 presents box plots of the three groups of data. Several aspects of the plot
stand out. First, there is little difference between the S and LE data sets, whereas the HE set
is noticeably different in several respects. It appears that the HE distribution is somewhat
skewed because the median lies above the midpoint of the box. Also, with the exception of
one outlying score, the HE data seem less variable. We note the apparent skew of the HE
group and its smaller interhinge distance because, as with the t test of Chapter 6, normality
and homogeneity of variance are assumptions underlying the F test of means. However,
the skew is not so pronounced nor, as the variances in Table 8.1 indicate, are the spreads

TABLE 8.1 PROPORTION OF CORRECT SCORES IN THE MYERS
ET AL. (1983) STUDY

S

.083

.167

.250

.250

.250

.333

.333

.333

.417

.500

.500

.500

.500

.583

.583

.750
Y.j = .396
s2 = .031

LE

.083

.167

.250

.250

.250

.333

.333

.417

.417

.417

.417

.500

.583

.583

.667

.833

.406

.038

HE

.333

.333

.333

.417

.417

.500

.500

.500

.583

.583

.583

.583

.583

.667

.667

.917

.531

.023
Y.. = .444
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Fig. 8.1 Box plots of the data in Table 8.1.

Fig. 8.2 Dot-density plot of the data in
Table 8.1.

different enough to cause concern about the F test we present shortly. We can also see that
there is an outlier in the HE plot. This suggests the possibility that the higher HE mean in
Table 8.1 is merely a reflection of this one score. However, other aspects of the plot suggest
this is not the case; the median, which is not influenced by the outlier, is also higher in the
HE condition and the entire distribution is displaced upward relative to the other two. This
displacement is also apparent in the dot-density plot of Fig. 8.2. Such plots provide an
alternative to histograms, with each small circle or "dot" representing a score. In Fig. 8.2,
the advantage of the HE condition is reflected in the fact that almost one third (5 of 16)
of the scores in the S and LE conditions lie below the lowest score in the HE condition.
Whether this advantage of the HE group is large enough relative to the variability in the
data to enable us to conclude that it holds for the populations represented by these three
groups of scores is a question we consider shortly.
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8.3 THE ANALYSIS OF VARIANCE

The alternative hypothesis is that there is at least one inequality among the means of the a
treatment populations.

Suppose the null hypothesis in the probability-learning experiment is true; the three texts
do not differ in their effects on the proportion correct on the story-problem test. Even if this
were so, the three group means would differ from each other. By chance, the 16 individuals
in one group may be more motivated, more alert, or more knowledgeable about probability
than those in another group. In addition, there may be chance variations caused by other
factors that affect test performance, such as the times at which the participants are tested.
The test of the null hypothesis is really a test of whether the group means differ more than
would be expected on the basis of these chance factors. If they do, then something more
than chance variation is involved. That "something more" is presumably the effect of the
independent variable (the text studied), and the null hypothesis should be rejected.

In the ANOVA, we attempt to determine whether more than chance variability is
involved by comparing two independent estimates of the population error variance, estimates
that do not differ significantly if the null hypothesis is true. One of these, the between-groups
mean square, is based on the variance of the group means and is influenced by both chance
variability and—if H0 is false—the effects of the independent variable. We label this mean
square MS A. The second estimate of variance, the error mean square, is the average of
the variances of scores in each group; it reflects only chance variability. We refer to this as
MSs/A (the mean square for subjects within levels of A). If MSA is much larger than MSS/A,

we may decide that the spread among the group means is too large to have resulted only
from chance variability. If so, we will conclude that the treatment population means are not
all equal; that is, H0 is false.

In the following sections, we develop formulas for the mean squares. We begin by
partitioning the total variability in the data set into two components that provide the numer-
ators of the mean squares. We discuss why the two mean squares are estimates of the same
chance, or error, variability when HQ is true and why, therefore, their ratio is distributed as
F. Following this, we present a more formal discussion, including a model of the structure
of the scores in terms of population parameters, and an explicit statement of assumptions.

Before participants were assigned to the text conditions, they could be viewed as a sample
from a single, infinitely large population. Assume that each individual in this parent popu-
lation is randomly assigned to one of the three treatments (texts) applied in the experiment.
There are then three treatment populations, very large populations of scores that potentially
differ systematically from each other. Within this framework, we may view each of the sets
of 16 scores in Table 8.1 as a random sample from the corresponding treatment popula-
tion. Usually, the first question of interest is whether there are any differences among the
means of the three populations of scores. More precisely, we wish to test the omnibus null
hypothesis:

In general, we assume that there are a levels of the treatment, A, and the omnibus null
hypothesis is
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8.3.1 Partitioning the Total Variability
Mean squares are ratios of sums of squared deviations to degrees of freedom. As we noted
in Chapter 6, these sums of squared deviations are referred to as sums of squares (SS).
In this section we show that SSA and SSs/A together account for the total variability in the
data of the one-factor design. We begin by partitioning the deviation of the ith score in the
jth group (Yij) from the grand mean (Y..), the mean of all an scores, into two components:
first, the deviation of the score from the mean of its own treatment group ( Y . j ) , and second,
the deviation of the group mean from the grand mean:

Table 8.2 illustrates this partitioning, using the data of Table 8.1. The table is divided
into three sets of three columns. The first three columns contain the values of Yij — Y..
for each of the three texts. The next three columns contain the effects of the three texts,
Y.j — Y.j These treatment effects actually reflect both the effect of the treatment and
chance variability. If there is a treatment effect in the population—that is, if the treatment
population means differ—that population effect should be reflected in differences among
the group means, and therefore in a deviation of any group mean from the grand mean. But
even if H0 is true, the group means will still differ, because there are different individuals
in each group and they will perform differently because of many factors. The residual
terms, Yij— Y.j, are contained in the last three columns, and they reflect the variation in
the performance of individuals who have received the same treatment. By squaring both
sides of Equation 8.1, summing, and applying the rules of summation of Appendix A, we

TABLE 8.2 BREAKDOWN OF THE SCORES FROM THE MYERS ET AL. (1 995) EXPERIMENT

Scores - Grand Mean = Text Effect

(Yij-Y..) = (Y.j-Y..)

-.361
-.277
-.194
-.194
-.194
-.111
-.111
-.111
-.027

.056

.056

.056

.056

.139

.139

.306

-.361
-.277
-.194
-.194
-.194
-.111
-.111
-.027
-.027
-.027
-.027

.056

.139

.139

.223

.389

-.111
-.111
-.111
-.027
-.027

.056

.056

.056

.139

.139

.139

.139

.139

.223

.223

.473

-.049
-.049
-.049
-.049
-.049
-.049
-.049
-.049
-.049
-.049
-.049
-.049
-.049
-.049
-.049
-.049

-.038
-.038
-.038
-.038
-.038
-.038
-.038
-.038
-.038
-.038
-.038
-.038
-.038
-.038
-.038
-.038

.087

.087

.087

.087

.087

.087

.087

.087

.087

.087

.087

.087

.087

.087

.087

.087

+

+

-.313
-.229
-.146
-.146
-.146
-.063
-.063
-.063

.021

.104

.104

.104

.104

.187

.187

.354

Residual

( Y i j - Y . i ]

-.323
-.239
-.156
-.156
-.156
-.073
-.073

.011

.011

.011

.011

.094

.177

.177

.261

.427

-.198
-.198
-.198
-.114
-.114
-.031
-.031
-.031

.052

.052

.052

.052

.052

.136

.136

.386
SStot = Ej E i(Y i j - Y..)2 = (-.361)2 + (-.277)2 + • • • + (.473)2 = 1.561

SSText = n Ei (Y.j - Y..)2 = (16)[(-.049)2 + (-.038)2 + (.087)2] = .182

SSRes = £j £i (Yij - Y.j)
2 = (-.313)2 + (-.229)2 + • • • + (.386)2 = 1.379
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find that the total sum of squares (SStot) is partitioned into two component sources of
variability, the between-groups sum of squares (SSA, the sum of squares for A), and the
within-groups sum of squares (SSs/A, the sum of squares for subjects within levels of A).
We have carried out this squaring and summing operation with the numbers in Table 8.2,
and, as indicated at the bottom of the table, the SSA and SSs/A do indeed sum to the SStot. A
general proof that SStot = SSA + SSs/A is presented in Appendix 8.1. The end result is

The SStot of Equation 8.2 is the numerator of the variance of all an scores about the
grand mean. Accordingly, it is distributed on an — 1 df. The within-groups sum of squares,
SSs/A, is the sum, or "pool" of the numerators of each of the group variances. Because
each group variance is distributed on n — 1 df, SSs/A is distributed on the sum of the group
degrees of freedom, or a(n — 1) df. The between-groups sum of squares, SSA, is n times
the numerator of the variance of the a group means about the grand mean and is therefore
distributed on a — 1 df. Note that

Equation 8.3 demonstrates that the degrees of freedom are partitioned into two nonover-
lapping parts corresponding to the sums of squares. This partitioning of the degrees of
freedom provides a partial check on the partitioning of the total variability in more complex
designs in which some term in the analysis may be overlooked, or the total variability may
be misanalyzed in some other way. When designs have many factors, and therefore many
components of the total variability, it is wise to find the degrees of freedom associated with
each term and to check to see if these add up to the total number of scores minus one.

Equation 8.2 defines the sums of squares for the one-factor between-subjects design,
and, accordingly, we refer to the component terms as definitional formulas. Using such
formulas with a calculator can result in rounding errors, and therefore textbooks have
generally provided so-called computational or raw-score formulas. Such formulas are of
less practical use today because most analyses are carried out by computer packages, or by
calculators that have a high degree of accuracy. Therefore, we ordinarily will not include
raw-score formulas. However, Appendix 8.2 presents the raw-score equivalent of the terms
in Equation 8.2, and it provides some rules that will generally enable the calculation of
sums of squares in more complex designs provided the user knows the correct degrees of
freedom for the terms. The use of the raw-score formulas is illustrated in Appendix 8.2 with
the data of Table 8.1.

Dividing the sums of squares by degrees of freedom results in the mean squares. These
quantities provide the components of the F statistic that tests the omnibus null hypothesis.
We consider these mean squares next.

8.3.2 Mean Squares, F, and the ANOVA Table

Suppose we draw a samples of n scores from the same population; we represent the variance
of the population (the error variance) by cr2. The variance of the a sample means is an
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estimate of the variance of the sampling distribution of the mean; that is,

The caret above the o stands for "estimated." Recall that the variance of the sampling
distribution of the mean is the population variance divided by n. Therefore, we can rewrite
the preceding equation as

and, multiplying both sides by n,

The left side of Equation 8.4 is the SSA divided by dfA; or MS A - The entire equation states
that MSA, the between-groups mean square, is an estimate of chance, or error, variance
when the a groups of scores are sampled from the same population.

Now assume that each group of scores is sampled from one of a treatment populations,
and that the population parameters are identical; that is,

Under this assumption, the situation is the same as if we sampled the a groups of scores
from one population. Therefore, if the null hypothesis is true and there is homogeneity of
variance, the between-groups mean square is an estimate of the error variance common
to the a treatment populations.

The within-groups mean square, MSs/A, provides a second estimate of error variance.
We have

We may rewrite Equation 8.5 as

The expression in the square brackets on the right side is the variance of the jth group of
scores, and the entire right side is an average of the a group variances. Therefore, MSs/A is
an average of a estimates of the population variance, a2.

The point of the preceding development is that, if the null hypothesis is true, MSA
and MSS /A both estimate the same population error variance. Therefore, their ratio should
be about one. Usually the ratio will be a little more or a little less than one; it would be
surprising if two independent estimates of the same population variance were identical. If
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H0 is true, the ratio, MSA /MS S / A , is distributed as F on a— 1 and a(n— 1) df. As we noted in
Chapter 7, critical values are tabled in Appendix C.5 and can also be obtained from various
software packages and Web sites.

Suppose the null hypothesis is false. For example, suppose that the text studied does
affect performance on story problems in the Myers et al. experiment. Then the means of
the groups of scores in Table 8.1 will differ not only because the scores in the different
groups differ by chance but also because the participants studied different texts. In other
words, if H0 is false, MSA, which is n times the variance of the group means, reflects not
only chance variability but also variability that is due to the independent variable. However,
the within-group variance should not be affected by the independent variable because all
participants in a group receive the same treatment. Therefore, when HO is false, the ratio
MSA/MSs/A should be greater than one.

In summary, under the assumptions of the null hypothesis, homogeneity of variance,
and independently distributed scores, MSA and MSs/A are two independent estimates of the
population error variance, o2. From Chapter 7, we know that if we add the assumption that
the population of scores is normally distributed, the ratio of two independent estimates of
the same population variance has an F distribution. Therefore, under these assumptions, the
ratio MSA /MSS / A is distributed as F. Because the numerator is an estimate of the variance of
a population means, it has a — 1 df. The denominator has a(n— 1 ) d f because the variance
estimate for each group is based on n— 1 df and the a group variances are averaged.

Table 8.3 summarizes the developments so far, presenting the formulas for sums of
squares, degrees of freedom, mean squares, and the F ratio for the one-factor between-
subjects design; Table 8.4 presents SYSTAT ANOVA output for the probability-learning
data of Table 8.1. Despite the apparent advantage of the HE text in Figs. 8.1 and 8.2, the
p value, .062, is slightly larger than the usual standard for statistical significance, p =
.05. We cannot reject H0 : us = ULE = UHE- However, neither can we accept the null
hypothesis. The usual criterion for p, .05, is not a magic number, and it is good to keep in
mind that the p value reflects not only the variance of the treatment population means but
also error variance and sample size. As we have noted in previous chapters, effects large
enough to be of practical or theoretical importance may not be statistically significant, and
trivial effects may be if enough data are collected. With this in mind, we should look at one
or more indices of importance. We discuss several in Section 8.5, but we now briefly note
one index that accompanies the ANOVA output in Table 8.4, and that is also provided by
other statistical packages, such as SPSS.

TABLE 8.3 ANOVA FOR THE ONE-FACTOR BETWEEN-SUBJECTS DESIGN

SV

Total

A

S/A

df

an — 1

a- 1

a(n - 1)

SS

EE(yij-Y..)2

n E ( Y . j - Y . . ) 2

EE(Yij-Y.j)
2

MS

SSA/dfA

SSS/A /dfs/A

F

MSA/MSS/A

Note. S V = source of variance.
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8.3.3 The Coefficient of Multiple Determination

The sums of squares provide one possible index of the importance of the independent
variable. The ratio, SSA /SS t o t , is the proportion of the total variability attributable to the
independent variable. This ratio is often called m,2 (eta squared) and is similar to r2, the
coefficient of determination introduced in Chapter 3. Recall that we defined r2 as SSregression/

SSY, where SSregression(the sum of squares for regression) was the sum of the squared
deviations of the predicted scores about the grand mean and SSy was the sum of squared
deviations of the actual scores about the grand mean. The best prediction we have for each
score is the mean of the group to which it belongs. Replacing Regression by SSA and SSY by
SStot, we have the coefficient of multiple determination:

This ratio of the between-groups to the total sum of squares may be viewed as a measure of
how well the group means predict the individual scores. The better this prediction—that is,
the larger the portion of the total variability accounted for by the independent variable—the
higher the value of R2.

The R2 for the probability-learning data is reported in Table 8.4 as a squared multiple
R of .116 (SPSS reports it as eta squared). Following Equation 8.6, the SSA was divided by
SStot (SSA + SSS/A):

The multiple R of .341 is the square root of .116.
R2 overestimates the actual proportion of variability in the population that is due to

the independent variable. To understand why, assume that the treatment population means
are identical. In that case, none of the variability in the population would be due to the
independent variable; therefore, R2 should be zero. However, R2 will be greater than zero
because—in contrast to the population means—the sample means will vary because of
chance. To correct for this, Wherry (1931) proposed a formula for shrunken R2 (also called

TABLE 8.4 ANOVA OF THE DATA IN TABLE 8. 1

Categorical values encountered during processing are:
TEXT (3 levels)

HE, LE, S

Dep Var: Y N: 48 Multiple R: .341 Squared multiple R: .1 1 6

Analysis of Variance

Source
TEXT
Error

Sum-of-Squares
.182

1.379

df
2

45

Mean-Square
.091
.031

F-ratio
2.965

P
.062

Note. ANOVA output is from SYSTAT.
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the adjusted, corrected, or attenuated R2, depending on the source):

where N= na. For the current example, the adjusted R2 is

and the corresponding Radj is .277.
Given that the participants in the study probably varied with respect to motivation,

mathematical background, and aptitude, as well as other factors that can affect learning, it
is not surprising that the independent variable appears to account for only a small portion of
the total variability, roughly 8%. Of course, this does not mean that the effects of the text are
unimportant. Nor are they as small as it might appear. According to guidelines suggested by
Cohen (1988), an adjusted R2 of .077 corresponds to a medium-sized effect. In any event,
judgment of the importance of the independent variable should be guided by knowledge of
the research situation and the potential application. If the difference of approximately 13%
correct between the mean in the HE condition and the other two conditions held for the
population, most instructors would consider it an important gain in performance.

R2 is only one possible index of the importance of the independent variable. It has the
advantage of being easy to compute and understand, but other measures deserve consider-
ation and are discussed in Section 8.5. These measures are best interpreted in terms of the
parameters of the ANOVA model. Therefore, we first consider the model in a more formal
way than we have so far.

8.4 THE MODEL FOR THE ONE-FACTOR DESIGN

In Subsection 8.3.2, we presented a somewhat informal statement of assumptions and
justification of the ratio of mean squares as an F ratio. In this section, we take a closer look
at these assumptions and see how they lead to an important concept, that of expected mean
squares.

8.4.1 The Structural Model

We can view an observed score as consisting of two components—the treatment population
mean and an error component. We represent this as

where uj is the mean of the jth treatment population and is a component of all the scores
in that population, and eij (the Greek letter epsilon) is the unique contribution to the score
of the ith individual in the jth treatment population. Any differences among the treatment
population means reflect differences in the effects of the treatments, whereas variation in
the error components reflects differences caused by differences in characteristics of the
individuals (such as ability or motivation) and differences in conditions of measurement
(such as the time of testing).
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Equation 8.8 is unchanged if on the right side we both add and subtract the constant JJL
resulting in

where u = Euj/a, the average of the a treatment population means. We may rewrite the
preceding equation as

where aj = uj — jx is the effect of treatment Aj. Equation 8.9 provides a structure within
which we view a score as a sum of the following three components:

1. The parent population mean, JJL. This quantity may be viewed as the average of
the treatment population means and is a constant component of all scores in the
data set.

2. The effect of treatment Aj, aj. This is a constant component of all scores obtained
under Ay but may vary over treatments (levels of j). The null hypothesis asserts
that the a values of ay are all zero.

3. The error, eij. This is the deviation of the i th score in group j from uj and reflects
uncontrolled, or chance, variability. It is the only source of variation within the
y'th group, and if the null hypothesis is true, the only source of variation within
the data set.

Two other points about treatment effects should be noted. First, researchers often refer
to the effects of an independent variable as in "A had a significant effect upon perfor-
mance." A somewhat wordy, but precise, translation of such a statement is that one or more
of the levels of A had an effect. In terms of the structural model, at least one of the ay
was not zero. Second, a distinction that will be important is that between fixed-effects
variables, independent variables whose levels have been arbitrarily selected, and random-
effects variables, variables whose levels have been randomly sampled. When levels
have been arbitrarily selected—as when we select three texts for study—it is as if we have
exhausted the population of levels. There is no statistical basis for generalizing from the
results of this experiment to draw conclusions about the effects of texts not included in
the experiment. In this situation, Ej(uj-U)=0 (or equivalently, Ej aj = 0) because
the sum of deviations of all values about their mean is zero. We deal exclusively with
fixed-effect treatment variables in this chapter.

Equation 8.9 is not sufficient for deriving parameter estimates and significance tests.
In addition, the following assumptions about the distribution of eij are required:

1. The eij are independently distributed. This means that the probability of sampling
some value of eij does not depend on other values of eij in the sample. An important
consequence of this is that the £ij are uncorrelated.

2. The eij are normally distributed with mean zero in each of the a treatment popu-
lations.

3. The distribution of the eij has variance a2 in each of the a treatment populations;
that is, a2 = a2 = • • • = a2 = • • • = o2 = a2. This is usually referred
to as the assumption of homogeneity of variance.

Although we never have access to the populations of scores, plots of the data will provide
information about the validity of our assumptions. Chapter 2 described some procedures
that will prove helpful, and we illustrated one other (the dot-density plot) in this chapter. In
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later sections of this chapter, we discuss the problems that may arise when our assumptions
are violated, and how alternative data analyses may provide a solution to these problems.
For now, we assume that Equation 8.9 is valid and that the populations of error components
are independently and normally distributed with equal variances. This provides the basis
for a more formal justification of the F test presented in this chapter.

8.4.2 Expected Mean Squares
In Section 8.3 we argued that the ratio of mean squares, MSA/MS s / A , was a reasonable test
statistic for the null hypothesis of equality of the treatment population means. The idea
is that if Ho is true, MSA and MSS/A are both estimates of oe

2, the treatment population
error variance. Because they both estimate the same quantity, their average values over
many random replications of the experiment should be about the same size. If H0 is false,
however, MSA reflects the differences among the treatment population means in addition
to chance variability. In that case, on the average, MSA will tend to be larger than MSs/A

In this section, we provide a somewhat different version of this argument, one based on the
average values of MSA and MSs/A over many replications of the experiment.

Suppose we draw a samples of n scores from their respective treatment populations, and
calculate the two mean squares. Now suppose that we draw another a samples of n scores,
and again calculate MSA and MSs/A . We could repeat this sampling experiment many times,
and arrive at two sampling distributions, one for MSA and another for MSs/A . Given the argu-
ments of Section 8.3, the average value of MSA will reflect both error variance and treatment
effects, whereas the average value of MSs/A will reflect only error variance. These averages
of the sampling distributions of the two mean squares are the expected values of the mean
squares, or the expected mean squares (EMS). They play an important role both in under-
standing the analysis of variance (ANOVA) and in deciding a number of practical issues. To
cite just one application, in more complex designs there will be many possible sources of
variance; the EMS dictates the appropriate error term for any particular source. Given the
structural model of Equation 8.9, and assuming that the eij are independently distributed
with variance ae

2, we can derive the EMS of Table 8.5 (Kirk, 1995; Myers & Well, 1995).
Look again at Table 8.5. Note that if the null hypothesis is true (i.e., if the uj are all

equal), both expectations equal oe
2; in any one experiment, the two mean squares we have

calculated will not be identical, but they rarely should be very different if H0 is true. In
contrast, if the uj differ, MSA has a larger expected value than MSs/A and therefore their ratio
should be greater than one. When we look at Table 8.5, it appears that this ratio increases

TABLE 8.5 EMS FOI
BETWEE

R THE ONE-FACTOR
N-SUBJECTS DESIGN

SV

A
S/A

EMS

a2 + n02

a2

Note.02 = [E/OJ-./ - fA)2]/(a - 1). We use the

6: notation rather than a2 to remind us that the treatment
component of the EMS involves division by degrees of
freedom rather than by the number of levels, as it would
in the formula for a population variance.
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with increases in n, with increases in the spread among the jxy, and with decreases in the
error variance. Therefore, we can expect greater power when we run more subjects, when
the effects of the independent variable are larger, and when error variance is reduced. The
error variance will depend on the subject population sampled, the measure selected, and
the experimental design. An example of the last factor—the experimental design—was the
comparison of the correlated-scores and independent-groups designs in Chapters 5 and 6.

In the one-factor design, there are only two mean squares and therefore it requires no
great insight to decide that MSs/A is the error term—the denominator of the F test, against
which MSA is to be tested. The choice of an error term is more complicated in designs in
which there are several possible error terms. However, that choice is guided by a simple
rule:

Choose an error term such that its EMS and the EMS of the term to be tested are identical when the
null hypothesis is true.

In summary, if the eij are independently distributed with variance 02, the mean squares
have the expectations presented in Table 8.5. If, in addition, the null hypothesis is true,
02 — o, and the two expectations are the same. Finally, if the eij are normally distributed,
the ratio of mean squares, MSA/MSs/A, is distributed as F and the probabilities of exceeding
various values are those tabled in Appendix C.5.

8.4.3 ANOVA With Unequal Group Sizes
The ns in conditions in a study may vary for one of several reasons. The populations may
be equal in size but data may be lost from some conditions, perhaps because of a mal-
function of equipment, or a participant's failure to complete the data-collection session.
Usually, individuals can be replaced, but sometimes this is impossible. In other instances,
the treatments may affect the availability of scores; for example, animals in one drug con-
dition may be less likely to survive the experiment than animals in another condition. In
still other instances, usually when we collect data from existing populations, some condi-
tions may naturally have more individuals available for participation than others will. For
example, in the Seasons data, we find different numbers of participants at various levels of
educational experience, and in different occupations. In educational and clinical settings,
there may naturally be different numbers of individuals in different conditions, such as
grade levels, or diagnostic categories. Discarding participants to equalize the group ns will
reduce error degrees of freedom and, consequently, power, and this may also misrepresent
the relative size of the populations sampled. In the latter case, the effects of some con-
ditions may be weighted too heavily or too lightly in the data analysis. In all of these
circumstances involving unequal n, the ANOVA is a straightforward modification of the
equal-n case, at least in the one-factor bet ween-subjects design. (Complications arise when
more than one factor is involved; these are treated in Chapters 11 and 21.) Table 8.6 presents
the ANOVA formulas and EMS for the unequal-n case. Note that if the nj are equal,
these formulas reduce to the definitional formulas in Table 8.3 and the EMS formulas of
Table 8.5.

Table 8.7 presents statistics based on the average (over seasons) Beck depression
scores (Beck_D) for four groups of male subjects who participated in the University of
Massachusetts Medical School research on seasonal effects (the Seasons data). For the pur-
poses of this example, we excluded some participants (those having only no or some high
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TABLE 8.6 ANOVA FOR THE ONE-FACTOR BETWEEN-SUBJECTS DESIGN WITH UNEQUAL GROUP SIZES
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Note, n j is the number of scores in the jth group and N = Ea
j=1 nj.

school education, and those with vocational training or an associate's degree). The remain-
ing groups are HS (high school diploma only), C (some college), B (bachelor's degree),
and GS (graduate school). The data may be found in the Male_educ file in the Seasons
folder.

The group of males participants with high school diplomas have higher average depres-
sion scores, both means and medians, than those of the other three groups; whereas the three
groups with more education have means ranging from 3.331 to 4.847, the HS group has a
mean depression score of almost 7 (6.903). The groups with the highest depression scores
(HS and GS) also have the highest variances, a finding that suggests that heterogeneity of
variance may affect the validity of conclusions based on the ANOVA of these data. Skew
and kurtosis are most pronounced in the B group. This is of interest because nonnormality
is most problematic when distributions vary in shape (Lindquist, 1953, pp. 78-90). Box
plots obtained from SPSS are presented in Fig. 8.3. They provide a more direct view of the
distributions, and the differences in location, spread, and skew are quite evident, as is the
presence of outliers in the B and GS groups. These characteristics of the plot suggest that
the assumptions of the ANOVA are violated. In Section 8.7 we discuss those assumptions,
together with alternative analyses developed to respond to violations of them.

TABLE 8.7 SUMMARY STATISTICS FOR BECK DEPRESSION
SCORES IN FOUR EDUCATIONAL LEVELS

Education

N of cases

Median

Mean
Variance

Skewness(Gl)
Kurtosis(G2)

HS

19
6.272
6.903

34.541
.824
.168

C

33
2.875
3.674
5.970
0.368

-0.919

B

37
2.265
3.331
9.861
2.047
5.837

GS

39
3.031
4.847

26.218
1.270
.745

Note. HS = high school diploma only; C = some college; B =
bachelor's degree; GS = graduate school. Data may be found in the
Male_educ file in the Seasons folder.
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Fig. 8.3 SPSS Box plots of Beck depression scores as a function of educational level.
Note that the numbers next to the outliers are case numbers and the asterisk represents an
extreme outlier.

The output is based on an analysis of Beck depression means for those participants
for whom scores in all four seasons were available. It contains considerable information
in addition to the ANOVA table. First note the squared multiple R of .079. Under Cohen's
(1988) guidelines, this would be a medium-sized association between the dependent and
independent variable. The ANOVA table follows and it is clear that the omnibus null hy-
pothesis can be rejected. The last thing to note is the warning that two scores are outliers,
using the studentized residual as a criterion.2 Upon examining these two cases, we found
that one belonged to the HS group and the other to the GS group. We redid the ANOVA with
these cases excluded, and the result was no longer significant; the new p value was .065.
Deleting just 2 of 128 scores changed the p value from .016 to .065, and a finding of statisti-
cal significance to nonsignificance. Despite the fact that statistical significance depended on
the presence of the two outliers, there are reasons to suspect that the population distributions
of depression scores do differ. First, even after the two outliers were excluded, the medians
of the three groups with some education beyond high school were about 3 or less, whereas
that for the HS group was more than twice as high. Second, examination of the four distri-
butions revealed that 26% of the HS scores were above 10, the cutoff for dysphoria, roughly
defined as a state of dissatisfaction (16 is the cutoff for depression) and 20% of the GS
group exceeded that cutoff; in contrast, only one individual in the other two groups had an
average Beck depression score exceeding 10. The point we wish to make is that we need to
look beyond the significance test and examine the sample distributions to better understand
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TABLE 8.8 ANOVA OF THE DATA SUMMARIZED IN TABLE 8.7

Dep Var: D_SCORE N: 128 Multiple R: .282 Squared multiple R: .079

Analysis of Variance

Source

EDUC$

Error

Sum-of -Squares

186.501

2164.061

df

3

124

Mean-Square

62.167

17.452

*** WARNING ***
Case
Case

14 is an outlier
114 is an outlier

F-ratio

3.562

P

.016

(Studentized Residual = 3.665)
(Studentized Residual = 3.622)

Durbin-Watson D Statistic 1.995
First Order Autocorrelation -.006

Note. ANOVA output is from SYSTAT.

our data. In addition, we should supplement the omnibus F test results with measures of
importance, such as those we consider in Section 8.5. Finally, CIs and significance tests on
specific contrasts (for example, the HS group against the combined mean of the other three
groups) will be informative. We introduced such contrasts in Chapter 6 and have more to
say about them in Chapter 9. For example, there we pursue the question of whether the HS
mean differs significantly from the mean of the other three groups combined, as the means
and medians suggest.

Significance tests and confidence intervals (CIs), examination of contrasts, measures
of importance, examination of group distributions—these combine to provide a sense of
whether the sampled populations differ and in what ways. The cause of the differences
can be elusive. For example, it is not clear why high school graduates (and possibly also
those with graduate school education) are more likely to be depressed than individuals in
the other two categories, if this difference proves to be reliable. Two possible causes of
such differences are occupational and age differences among the groups. Individuals with
only a high school education may be more dissatisfied with their jobs, and individuals with
graduate school education may feel overqualified for theirs. If the four groups differ in
age, there may be differences in health and, therefore, in depression scores. In summary,
even if we conclude that the populations differ in some respects, we must ask why they
differ.

8.5 ASSESSING THE IMPORTANCE OF THE
INDEPENDENT VARIABLE

Too often, researchers view .05 as a boundary dividing real effects from null effects. How-
ever, there is nothing magical about p = .05; it is merely one possible index of the effect
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of the independent variable. Usually, when p is less than or equal to .05, researchers reject
the null hypothesis. But should we really have so much less confidence that there is an
effect if p = .06? And if p = .01, does this statistically significant result reflect an effect
of practical or theoretical importance, or does it reflect a researcher with access to a large
pool of subjects? There is no statistic that carries a magic dividing line; however, there are
several measures that complement p, and that are more directly related to the variance of
the treatment means, and therefore are more easily interpreted. Using the example of the
probability-learning experiment, we considered one such measure, R2, the proportion of
variability accounted for by the independent variable. R2 may also be viewed as a measure
of the strength of association between the dependent and independent variable. In what
follows, we consider another measure of the strength of association, as well as a standard-
ized effect statistic that parallels the Es presented in Chapter 6. The development of both
statistics follows from our knowledge of the expected mean squares.

8.5.1 Measuring Strength of Association:
w2 (Omega Squared)

When we perform an ANOVA, R2 is the ratio of the between-groups sum of squares to
the total sum of squares. An alternative measure of the strength of association between the
dependent and independent variable is the ratio of the population variance of the means to
the total population variance. Following Hays' (1994) notation, we label this ratio as w2.
The numerator of the ratio is the variance of the treatment population means (the u7j) or,
equivalently, the variance of the treatment effects (the a,):

The denominator of o2 is the total population variance; that is, it is the treatment population
error variance, v2, plus the variance of the treatment population means, crj. Therefore,

We cannot know this ratio but we can use Equations 8.10 and 8.11 to derive an estimate
of it. More precisely, we derive estimates of a2 and a2.. We begin by restating the EMS
equations of Table 8.5:

To obtain an estimate of o^ we first subtract Equation 8.13 from Equation 8.12, and divide
by n; then we have
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where the symbol = means "is an estimate of." However, the numerator of o2 as defined
by Equation 8.11 involves a2, not 02. Because a2 = [(a — l)/a]62, our estimate is

where the "caret" above the a indicates "the estimate of." We now have estimates of the
numerator and denominator of to2, and, therefore, substituting into Equation 8.11, we have
an estimate of o2: for the one-factor between-subjects design, we have

We may write Equation 8.15 in a different form, one that allows us to calculate or from
knowledge of the F ratio, a, and n. The advantages are that the expression is somewhat
simpler, and, perhaps more important, because most research reports contain this informa-
tion we can estimate the strength of association for data collected by other investigators. We
begin by defining FA = MS A /MSs /A- Then, multiplying the numerator and denominator of
Equation 8.15 by an, and dividing by MS$/A, we have

Let's review what Equation 8.15 (or 8.16) represents. If we replicate the experiment
many times, the average value of the right-hand term will approximately equal w2, the
proportion of the total variance in the a treatment populations that is attributable to the
variance of their means. We say "approximately equal" because the expected value of a
ratio is not the same as the ratio of expected values. The approximation is reasonably
accurate and the expression is much simpler than that for the correct expression.

One other aspect of Equation 8.16 should be noted. If the null hypothesis is true, it is
quite possible that the F will have a value less than one, because in that case we have two
independent estimates of the error variance and either one could be the larger of the two.
Then, u2 would be less than zero and we should conclude that w2 = 0; that is, none of the
total population variance is attributable to the independent variable.

We can apply Equation 8.16 to the probability-learning experiment. In that experiment,
a = 3, n = 16, and (from Table 8.3) F = 2.965. Then, inserting these values into Equation
8.16, we have

This is very close to the value we calculated earlier for R2. That the values of R2- and co2

are so close is not unusual; Maxwell, Camp, and Arvey (1981) found that the two rarely
differ by more than .02. With respect to assessing the importance of either measure, Cohen
(1988) suggested that values of ,01, .06, and .14 may be viewed as small, medium, and
large, respectively. According to those guidelines, the proportion of variability accounted
for may be judged to be medium. Again, however, we caution that the importance attached
to any value must be assessed in the context of the research problem and the investigator's
knowledge of the research literature.
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8.5.2 Measuring Effect Size

R2 and w2 have intuitive appeal because their values are on a scale of zero to one and
they can be directly interpreted in terms of the variability accounted for by the independent
variable. However, standardized effect sizes such as those presented in Chapter 6 have other
advantages. They play an important role in meta-analysis, a procedure for combining the
results of several experiments (Hedges & Olkin, 1985), and, as we saw in Chapters 5 and 6,
standardized effect sizes, together with a and n, determine power. In Chapter 6, we defined
the standardized effect size as

Cohen (1988) suggested another standardized effect-size measure, /, which is a useful
adjunct to ANOVA:

The quantity under the square root sign in Equation 8.17 is the ratio of C2, the variance
of the treatment population means, to c2 , the population error variance. An estimate of c2

is provided by Equation 8.14 and the error variance is estimated by MSs/A- Therefore, our
estimate of / is

Substituting values from the output in Table 8.4 into the last equation, we have

Cohen (1988) has suggested that / = .10, .25, and .40 corresponds to small, medium,
and large effect sizes, respectively. Using these guidelines, we judge the effect to be of
medium size. This corresponds to the conclusion reached when we estimated co2. This is
not surprising because the two measures are directly related:

Estimates of either of two other parameters are often used in obtaining the power of
the F test. When the null hypothesis is false, the ratio of mean squares has a noncentral
F distribution, with noncentrality parameter, A. (lambda). This parameter serves as
one of the inputs to software programs for finding power, such as SAS's CDF module



TABLE 8.9 SOME PARAMETERS AND STATISTICS FOR THE ONE-FACTOR
BETWEEN-SUBJECTS DESIGN

Parameters Estimators

and the UCLA calculator. Another parameter, used in conjunction with power charts that
are found in many textbooks, is O) (phi). These two parameters, as well as / and w2,
together with formulas for estimating them, and relations among them, are presented in
Table 8.9.

The first line in Equation 8.19 is identical to that for the equal-n case (Equation 8.14), except
that n has been replaced by the average of the ns.
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8.5.3 Measures of Importance With Unequal Group Sizes

When there are different numbers of scores in each condition, we need a different way of
estimating a2

A than that presented in Table 8.9; we cannot just divide by n because there is
no single value of n. However, if the ns vary by chance and are not too different, the average
n might replace the n in the denominator of the estimator of Table 8.6. That is, we might
define
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We can arrive at Equation 8.19 in a somewhat different way. Suppose the populations
do differ in size. Then the definition of c2 is

where the PJ sum to one and are weights reflecting the relative population sizes. From the
EMS in Table 8.6,

which is a reasonable estimate of the parameter defined by Equation 8.20 if nj/N is an
adequate estimate of P . Although the rationales differ, the left-hand side of this equation
is identical to the last line of Equation 8.19.

To obtain estimates of the other parameters in Table 8.9 in the unequal-n case, we need
only substitute the expression for d^ in Equation 8.19 into the other expressions in the
table.

8.5.4 Measures of Importance: Limitations

In an introductory chapter to an edited collection aptly titled What if There Were No Sig-
nificance Tests?, Harlow (1997, pp. 5-6) reported that 11 of the book's other 13 chapters
"were very much in favor" of reporting measures such as R2, w2, and Es, and the remaining
two contributors "at least mildly endorsed such use." Similar support for measures such as
these can be found in The American Psychological Associations's guidelines for statistical
usage (Wilkinson, 1999), which urge researchers to report effect size statistics. Neverthe-
less, there are potential pitfalls. Values of these statistics may depend on the experimental
design (for example, between or within subjects), the choice and number of levels of the
independent variable, the dependent variable, and the population sampled. Another concern
is that squared coefficients tend to be small and it is sometimes easy to dismiss an effect
as trivial because of a small value of co2. These arguments suggest that we must be careful
in generalizing the results of any one study, or of making comparisons across studies that
differ with respect to the factors just cited. In addition, we should treat guidelines such
as those set forth by Cohen (1988) as suggestions, not as definitive boundaries between
important and unimportant effects. Even a very small advantage of one therapy over an-
other may be important. In theoretical work, a small effect predicted by a theory may be
important support for that theory. In summary, if care is taken in interpreting measures
of strength, statistics such as f and co2 are useful additions to the test statistics usually
computed.

8.6 POWER OF THE F TEST

Power calculations can play an important role in planning the experiment. Ideally, re-
searchers would have an estimate of f or w from previous studies; these could then be
used to determine the sample size needed to achieve a specific level of power. However,
such estimates may be unavailable or very wrong, or the required n may be too large to
be practical. In such cases, it is still helpful to estimate the power of the F test after the
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data have been collected. We describe this post hoc use of power functions first. Then we
consider a priori applications in which the researcher uses the power function of the F to
decide on a sample size before running the experiment.

8.6.1 Post Hoc Power Calculations

There are several situations in which it is important to have a sense of the power of the data
analysis. In one case, the researcher predicts effects of the independent variable and there
is a clear trend among the observed means that supports the researcher's prior hypothesis.
However, the result is not statistically significant. Therefore, either there really are no effects
of importance in the sampled population and the pattern of observed means is due to chance,
or the treatment population means do differ but the research had too little power to detect
this treatment variance. In this situation we may ask what power the F test had to reject
HO assuming the population effect size estimated from the data. If this power is low, the
research may be replicated with a larger n or with procedures or measures designed to
reduce error variance.

In a second case, the researcher predicts no effect and does not obtain a significant result.
In this situation, before claiming a successful prediction, the researcher should demonstrate
that power to detect the effects estimated from the data was high and therefore the failure to
achieve significance was because the independent variable had no, or trivially small, effects.
Finally, in a third situation, the experimenter predicts no effect but the F test produces a
significant result. Here, if power is very high to detect even very small effects, the effects
estimated from the data, although possibly real, may not be large enough to be of theoretical
or practical interest.

In all of these situations, estimates of / and co2 will be important in discussing the
results because they help provide a sense of the absolute and relative contributions of
the independent variable to the total variability. Calculations of power supplement these
statistics and place the results of our statistical text in a useful context.

The power of the F test (and of other tests; see the discussions in Chapters 4-6) depends
on several factors:

1. The significance level, a. As we reduce the rejection region, say from .05 to .01,
we lower the probability of rejecting false, as well as true, null hypotheses. In
other words, a reduced Type 1 error rate is accompanied by reduced power.

2. The values of a and n. Increases in either numerator or denominator degrees of
freedom yield increased power. Ordinarily, the value of a is determined by the
goals of the experiment; n is usually more arbitrarily selected, although con-
strained by practical concerns such as time, effort, and cost. In Subsection 8.6.2,
we consider how power calculations can, and should, influence decisions about
sample size.

3. The error variance, a2. The less noise in our data, the easier it will be to detect
treatment effects. Therefore, power increases with decreases in error variance.
This variance will be a function of the dependent variable, the subject population,
and the experimental design.

4. The variance of the treatment effects, o^. In the case of the F test, we will have
more power to reject the null hypothesis of equal treatment population means
when the differences among them are larger.
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To determine the power of the F test, we need the numerical values of the four factors
just cited, and we then need to find some way of relating power to them. Assuming we
have run the experiment, we know df1 and d/2, and have decided on a, we see that MSs/A
provides an estimate of c2. An estimate of the variance of the treatment effects is provided
by d^, which was defined in Equation 8.14. To obtain a value of power, we calculate one of
several closely related indices that are based on the ratio o^/oV Some sources (including
the previous edition of this book) contain "nomographs," charts in which power is plotted
as a function of 4> = / x Jn, with different curves for different values of d f 1 , d/2, and
a. These charts are awkward to use, and provide at best approximate results.3 A somewhat
better approximation may be obtained by using an estimate of / (defined by Equation 8.18)
together with tables provided by Cohen (1988). Of course, no chart or table can provide
power values for every possible combination of degrees of freedom or for every possible
value of a. The best solution to the problem of calculating power is to use a software
application that calculates power when the necessary information is input. Several statistical
packages such as SYSTAT, SAS, and SPSS4 will do this, at least for some tests. Furthermore,
a number of easy-to-use programs are freely available on the Internet. We used two of
these, GPOWER and the UCLA calculator, to obtain the power of the t test in Chapter 6.
Table 8.10 illustrates the application of both these programs to find the power of the F test,
using the data from the probability-learning experiment.

It is easy to become so focused on the process that we forget what the result means.
What the estimated power of .39 in Table 8.10 means is the following: Given the sample
size we ran, and assuming the MSs/A is a reasonable estimate of c2, there is a probability
of about .39 that we will reject the null hypothesis, if the effects in the population are of
the order of magnitude estimated from our data. Put somewhat differently, if the treatment
population means are about as different as our sample means suggest, we still have a .61
(1 — .39) probability of making a Type 2 error. Noting the low power, the p value that fell
only a little short of .05, and the medium-sized estimate of f (or w2), we find evidence that
the independent variable may have an effect. Although we cannot reject the null hypothesis,
there is some basis for believing that a more powerful replication of the experiment might
produce a statistically significant effect. If we replicate the experiment, we might attempt
to improve its sensitivity. One way to do this is to increase the number of participants.
Another way would be to increase the number of items on the test given to the participants.
This would decrease the variance of the test score, and thus decrease the error variance.
Decreasing the variance of the dependent variable is often possible, and often less expensive
in time and resources than running more subjects.

8.6.2 A Priori Power Calculations

Ideally, we should have some idea of the size of the effect we want to detect before running
an experiment. Pilot data, or a review of related experiments, might suggest that effects will
be of a certain magnitude. It is not necessary to have a precise estimate of f usually, some
sense of whether the effect is small, medium, or large (using Cohen's 1988 guidelines)
will do. Certainly, a decision about sample size based on any estimate of / will be an
improvement over an arbitrary selection of n. In some cases, the n required to achieve a
certain level of power against a specified effect size will be unpractically large. We can then
calculate what power we have with the largest n available for our study. If that power is very
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TABLE 8.10 CALCULATING THE POWER OF THE F TEST

Using GROWER
1. Under "Tests," select "F Tests (ANOVA)."
2. Fill in these values from the probability-learning experiment:

/ = .286
Alpha = .05

Total sample size = 48
Groups = 3

3. Click on "Calculate.", The results are:
Lambda = 3.9262

Critical F = 3.2043
Power = .3852.

Note that / was estimated previously (Subsection 8.5.2) by using Equation 8.2;
also, X = anf2 = 48 x .2862.

Using the UCLA calculator
1 . Go to the UCLA calculator (see Table 8.4 or Chapter 6 for the URL).
2. Click on "Noncentral F CDF Calculator."
3. Fill in these values:

X value = 3.2043 (the critical value of F for a. = .05)
Probability = ?

Numerator df= 2
Denominator df= 45

Noncentrality parameter = 3.9262 (X)
4. Click on "Complete Me!"
5. The question mark is replaced by .6148; this is beta, the probability of a Type 2

error. Subtracting from 1, we have power = .3852.

Note. The X value can be obtained from Table D.5, which contains critical values of the central F distribution
for various combinations of a and degrees of freedom. If the degrees of freedom for your data set are not in Table D.5,
interpolation will usually provide a reasonable approximation to the required X value. Better still, the central F calculator
at the above Web site will provide the necessary result.

low, consideration should be given to ways of decreasing variability—perhaps a different
research design, or a different dependent variable.

Finding the required n is simple with GPOWER. Select "F Tests" and "A priori."
Indicate the value of /, the a level, the desired power, and the number of groups. If
power = .8, f = .25 (medium), ct = .05, and there are three groups, the total N is 159, or
n = 53 participants in each group. If the UCLA calculator is used, the process involves trial
and error. Having selected a trial N (the total number of participants, no), you must calculate
the denominator degrees of freedom, find the F needed for significance at the desired a
level (the "X Value"), and calculate the noncentrality parameter, A. Enter these together
with the numerator degrees of freedom and a question mark in the probability space. If
the probability that is returned is greater than one minus the desired power (remember, the
calculator returns (3), increase the n; this means recalculating the denominator degrees of
freedom, the critical F value, and X. If 3 is very small, you can decrease the n and make
the necessary adjustments in the variables needed for the calculator. The same parameters
are entered into the SPSS "Compute" module.
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8.7 ASSUMPTIONS UNDERLYING THE F TEST

Although the critical values of F in Appendix Table C.5 are derived from the assumptions
presented previously, it does not follow that violations of the assumptions necessarily in-
validate the F test. For example, in view of our discussion of the central limit theorem and
the t test (in Chapter 6), we might guess that the ratio of mean squares will be distributed
approximately as F even when the populations are not normal. In this section, we look
at the role of assumptions more closely. We ask what the consequences of violations of
assumptions are and, in those cases in which there are undesirable consequences, what
alternatives to the standard analysis exist.

8.7.1 Validity of the Structural Model
It is important to bear in mind that the ANOVA for the one-factor design begins with the
assumption of Equation 8.9. That equation implies that only one factor systematically influ-
ences the data and that the residual variability (MSs/A) represents random error. However,
researchers sometimes ignore factors that have been manipulated but are not of interest
in themselves. If those factors contribute significant variability, the one-factor model is
not valid for the research design. Common examples arise when half of the subjects are
male and half are female, or when subject running is divided equally between two experi-
menters, or when the position of an object is counterbalanced in an experiment involving
a choice. Although the researcher may consider these variables irrelevant to the purpose
of the research, they may affect the outcome. If so, the MSs/A represents both error vari-
ance and variance caused by gender, experimenter, or position, but the variance caused
by these "irrelevant" variables will not contribute to MSA because—for example—there
will be an equal number of male and female subjects at each level of A. The analysis
based on the one-factor model then violates the principle that the numerator and denomi-
nator of the F ratio should have the same expectation when H0 is true. In such situations,
the denominator has a larger expectation because the irrelevant variable makes a contri-
bution. The result is a loss of power that can be considerable if the irrelevant variable
has a large effect. We say that the F test is negatively biased in this case. As a general
rale, the researcher should formulate a complete structural model, one which incorpo-
rates all systematically varied factors, even those thought to be irrelevant or uninteresting.
In the examples cited, this would mean viewing the study as one involving two factors,
A and gender (or experimenter, or position), and carrying out the analysis presented in
Chapter 11.

8.7.2 The Independence Assumption
When only one observation is obtained from each participant, and participants are randomly
assigned to treatments or randomly sampled from distinct populations, the assumption that
the scores are independently distributed should be met. There are exceptions, however,
that are often unrecognized by researchers. For example, suppose we wished to compare
attitudes on some topic for male and female participants. Further suppose that before being
tested, the participants are involved in three-person discussions of the relevant topic. The
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scores of individuals who were part of the same discussion group will tend to be posi-
tively correlated. If this failure of the independence assumption is ignored (and it often
is; see Anderson & Ager, 1978, for a review), there will be a positive bias—an inflation
of Type 1 error rate—in an F test of the gender effect. Why this is so, and the nature of
the proper analysis, is explained in Chapter 16. Another potential source of failure of the
independence assumption is the "bottom-of-the-barrel" problem. Researchers at universi-
ties often feel that as the semester progresses, the performance of volunteer participants in
experiments tends to become poorer because less motivated participants usually volunteer
for research credit late in the semester. Then scores obtained close in time will tend to be
correlated.

Autocorrelation plots, such as those in Fig. 8.4, provide one diagnostic tool. The
bars represent the average correlations of residuals (Yij — Y.j) that are various temporal
distances ("lags") apart. If any of the bars exceed the confidence limits indicated by the
two horizontal lines, the independence assumption may be invalid. In the upper panel of
Fig. 8.4, the correlation tends to be larger for scores nearer together in time, suggesting
some failure of the independence assumption. However, all the bars are within the CI and
the correlations are generally small. The bottom panel represents an artificial data set into
which we built a tendency for scores to become worse over time. As a result, scores near
each other had very high positive correlations and scores far apart tended to have a negative
correlation. Scatter diagrams of scores versus time of test may also be useful in checking for
trends over time (e.g., that performances were deteriorating or becoming more variable as
the semester progressed). Departures from a best-fitting line with slope of zero, or changes
in the spread of scores as a function of time, would suggest that scores were dependent on
when they were obtained.

8.7.3 The Normality Assumption
Mathematical proofs (Scheffe, 1959) and computer-sampling studies (e.g., Donaldson,
1968; Lindquist, 1953, pp. 78-90) have shown that the Type 1 error probability associ-
ated with the F test is little affected by sampling from nonnormal populations unless the
samples are quite small and the departure from normality extremely marked. This reflects
the role played by the central limit theorem; the distribution of means and their differences
will tend to be normal as n increases even when the distribution of the parent populations
is not. The F test's robustness with respect to Type 1 error rate appears to hold even when
the independent variable is discretely distributed, as it is whenever rating data or response
frequencies are analyzed. Computer-sampling studies indicate that Type 1 error rates are
relatively unaffected when such measures are submitted to an ANOVA. With as few as
two rating points (Lunney, 1970) and two groups of 3 participants each (Bevan, Denton, &
Myers, 1974; Hsu & Feldt, 1969), in all but the most skewed distributions the proportion of
rejections of the null hypothesis fell within two standard deviations of the theoretical alpha.
Furthermore, the distance between the empirical and theoretical alpha decreased with more
rating points, larger samples, and more symmetric distributions.

Although the Type 1 error rate is relatively unaffected by nonnormality in most in-
stances, power may be a concern. When treatment distributions are not normal, there are
alternatives to the ANOVA that will be more powerful. Such nonparametric tests do not
require the assumption that the population distribution is normal. We consider two such
tests next.
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Fig. 8.4 Autocorrelation (ACF) plots of two data sets (from SPSS).
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8.7.4 Tests Based on Ranks: The Kruskal-Wallis H
and the Rank-Transform F Tests

These tests are based on an analysis of ranks and are closely related. Both tests require that
all scores are ordered with a rank of 1 assigned to the lowest score in the data set and a rank
of N assigned to the largest, where N is the total number of scores in the data set. In case
of ties, the median rank is assigned. For example, if the 5 lowest scores are 1,4,1,9, and
9, they would receive ranks of 1, 2, 3,4.5, and 4.5 respectively. The Kruskal-Wallis H test
(Kruskal & Wallis, 1952) is available from the nonparametric menu of statistical packages
such as SPSS, SYSTAT, and SAS. Basically, it is the treatment sum of squares based on
the ranks, divided by the variance of N consecutive integers. Recall from Chapter 7 that
the ratio of a sum of squared deviations of normally distributed variables divided by the
population variance is distributed as x2 if the variables are normally distributed. If the HJ
are not very small—5 or more is the usually recommended cutoff—the means of the group
ranks will be approximately normally distributed and, under the null hypothesis, H will be
distributed as x2 on a — 1 df. A computing formula is

where nj is the number of scores in the jth group, TV is the total number of scores, and T.j
is the sum of ranks in the jth group.

The rank-transform F test (Conover & Iman, 1981) is conceptually even simpler. After
the scores are transformed, the usual one-way ANOVA is performed on the ranks and the
test statistic, FR, is evaluated on a—1 and N — a df. H and FR will generally result in
similar p values. This is not surprising given that they are related by the following equation:

Neither test requires the assumption that the treatment populations are normally dis-
tributed. However, the test of equal population means rests on the assumption that the
population distributions have identical shapes; that is, that they have the same values of
variance, skewness, and kurtosis. Under this constraint, the alternative to the null hypothe-
sis is referred to as the shift hypothesis, so called because it implies that the alternative is
that the treatment has shifted the distributions but not influenced them in any other way. If the
populations are not normally distributed but have the same shapes, then these tests will often
have more power than the F test. Furthermore, they are only slightly less powerful than the
F test when the distributions are normal. These points are illustrated in Table 8.11, which
presents the proportion of rejections for F and H in 1,000 computer-sampling experiments
with three different population distributions. The mixed-normal distribution is symmetric
but has heavier tails than the normal and the exponential is extremely skewed. When HO is
true (distance = 0), the empirical rejection rate is usually within two standard deviations
(or .014) of .05, the theoretical value of a. When the null hypothesis is false (distance = .4 or
.8), the F has a slight power advantage over the Kruskal-Wallis and rank-transform F tests
if the populations are normally distributed. However, for the two nonnormal distributions,
the nonparametric tests generally have more power.

There has been considerable confusion in journal articles and statistics texts about the
null hypothesis tested by H and FR. It has frequently been claimed that the Kruskal-Wallis
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TABLE 8.11 EMPIRICAL REJECTION RATES FOR THE F AND KRUSKAl-WALLIS H TESTS

Distance Between Adjacent Population Means

n

5
5
5

10
10
10

Test

Normal
Mixed-normal

Exponential
Normal

Mixed-normal
Exponential

0

F

.054

.055

.048

.048

.038

.035

H

.049

.055

.047

.036

.040

.047

.4

F

.167

.119

.197

.308

.205

.365

H

.144

.122

.243

.285

.234

.528

.8

F

.504

.363

.578

.876

.644

.859

H

.441

.357

.616

.852

.720

.936

H test should be used instead of the usual F test when there is heterogeneity of variance.
However, if the treatment populations do not have identical distributions, then H and FR

tests may reject the null hypothesis because of differences in the shapes of the distributions,
not their locations. On the basis of a computer-sampling study, Oshima and Algina (1992)
warn against using the Kruskal-Wallis test when the homogeneity of variance assumption
is suspect. A detailed discussion of what is tested by the Kruskal-Wallis and rank-transform
tests under various conditions is provided by Vargha and Delaney (1998). Our view is that
these tests can be useful when two conditions are met: first, there is clear evidence that the
data are not normally distributed; second, the treatment distributions are similar in shape.
Researchers entertaining the possibility of using either nonparametric alternative should first
view a normal probability plot of their data. As shown in Chapter 2, clear departures from
a straight line indicate a departure from normality. In addition, as discussed in Chapter 7,
tests of normality are available in SPSS and SAS.

If there is evidence of nonnormality, the next step would be to compare plots of the
data from the different treatment groups, using box plots, histograms, or dot-density plots.
Obvious differences in shape, or marked differences among variance, skewness, or kurtosis
measures, would suggest that the H or FR statistic is not appropriate for testing equality of
population means.5

When there are only two groups, the Kruskal-Wallis test is equivalent to the Wilcoxon
rank sum (or the equivalent Mann-Whitney U) test, and the rank-transform F test produces
the same result as a t test applied to the ranks. One drawback in using these rank-based
procedures is that although CIs on the median difference can be established, the process is
somewhat tedious and requires tables of the Mann-Whitney U test. Steps for calculating
the CI are outlined by Marascuilo and Serlin (1988, p. 242), and the necessary tables are in
the appendix to their book.

8.7.5 The Homogeneity of Variance Assumption

Variances may differ across conditions for one of several reasons. One possible cause of
heterogeneity of variance is an interaction of an experimental treatment with individual
characteristics. For example, a drug tested for its effects on depression may result in a
higher variance, but the same mean score, as a placebo. This would suggest that some
individuals had improved but others had been adversely affected by that drug. A second
possible reason for unequal variances is that some populations are more variable than others
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on a particular task. For example, although boys may have higher average scores on some
measure of mathematical ability, they may also have a higher variance. Still another factor in
findings of heterogeneity of variance are floor, or ceiling, effects. Variability may be reduced
in one condition relative to another because of a lower, or upper, limit on performance
that is due to the measuring instrument. Finally, variances tend to be correlated, usually
positively, with means; the normal distribution is the sole exception in which the means and
variances are independently distributed. For all of these reasons, homogeneity of variance
is rarely present in the populations sampled in our research. In this section, we summarize
some consequences of the failure of this assumption; in the sections following we consider
alternatives to the standard F test.

When there are the same number of scores in all conditions, heterogeneous variances
usually will cause Type 1 error rates to be inflated. The inflation is usually less than .02 at
the .05 level, and less than .005 at the .01 level, provided the ratio of the largest to smallest
variance is no more than 4:1, and n is at least 5. Even larger ratios may not be a problem,
but this will depend on sample size, the number of groups, and the shape of the population
distributions. The results of computer simulations employing these factors are discussed in
articles by Clinch and Keselman (1982) and Tomarken and Serlin (1986).

When there are different numbers of scores in each condition, simulation studies clearly
demonstrate that heterogeneous variances are a problem. Sampling from sets of either 3 or
4 normally distributed populations, Tomarken and Serlin found that at a nominal .05 level,
the actual Type 1 error rate was as low as .022 when the group size was positively correlated
with the variance and as high as .167 when the correlation was negative. Sampling from
heavy-tailed and skewed distributions, and using variance ratios of largest to smallest as
high as 16:1, Lix and Keselman (1998) found that error rates were as high as .50 in some
conditions. The expected mean squares may clarify why heterogeneous variances are more
troublesome when ns are unequal. For simplicity, assume the null hypothesis is true. Then,
it can be shown that

where N = £j nj and 02 is the variance of the yth treatment population. If the nj all equal
n, then N = an, and both expressions reduce to the same quantity; under the null hypo-
thesis, E(M$A) = E(MSs/A) = Eja

2/a the average population variance. This equality of
expectations does not mean that the ratio of mean squares will be distributed as F when
variances are heterogeneous; we have already noted that there may be inflation of Type 1
error rate even when ns are equal. Nevertheless, the equality does constrain the degree to
which the distribution of mean squares will vary from the theoretical F distribution.

The larger the nj, the smaller the contribution of the j th population variance to E(MSA)
in Equation 8.22, because N — nj decreases as HJ increases. The opposite is true for
E(MSs/A)', the larger the nj, the greater the contribution of the jth population variance
to the denominator because nj — 1 increases as nj does. Therefore, when large variances
are paired with large group sizes, they will increase the denominator relatively more than
the numerator; as a result, the true Type 1 error rate will be below the theoretical value
and power against false null hypotheses is likely to be reduced; there is negative bias. In
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contrast, when large variances are paired with small group sizes, they tend to contribute
relatively more to the numerator of the F test than to its denominator. In this case, the bias
is positive; the Type 1 error rate is inflated.

There is evidence that extreme variance ratios do occur in the research literature
(Wilcox, 1987), and a host of simulation studies make clear that heterogeneity of vari-
ance can inflate Type 1 error rates and deflate power, depending on various factors such as
sample sizes and the type of distribution sampled. That leaves us with two questions. First,
for a given data set, how do we decide whether to abandon the standard ANOVA for some re-
medial procedure? Second, if we do decide that unequal variances are a threat to the validity
of the standard F test, what alternative should we use? We consider these questions next.

8.7.6 Detecting Heterogeneity of Variance

As always, we urge that researchers begin the data analysis by examining summary statistics
and plots of the data. SPSS's Explore module (click on "Analyze" followed by "Descriptive
Statistics") is very helpful in this respect. It provides descriptive statistics, tests of homo-
geneity of variance, and box plots. The box plot for the Beck depression data as a function
of educational level was presented in Fig. 8.3 and, as we noted there, differences among the
groups in shape and spread are quite evident. The range of variances in Table 8.7 strongly
suggests that the alpha level reported in Table 8.8 may not be the actual probability of a
Type 1 error. For confirmation of this, we may wish to test whether the variances are ho-
mogeneous. Several tests of homogeneity of variance have been proposed. Some of these
(Bartlett, 1937; Cochran, 1941; Hartley, 1950) have been shown not to be robust in the
face of data that are not normally distributed and therefore are not considered further. The
Box-Scheffe (1953, 1959) test provides Type 1 error rates that are close to the nominal
alpha but lacks power relative to other procedures (Games, Keselman, & Clinch, 1979). A
test proposed by Levene (1960) is available in several statistical packages such as SYSTAT,
SPSS, BMDP, and SAS. In this test, the absolute residual of each score from its group mean,
Yij — Y.J , is computed and these residuals are then submitted to the ordinary ANOVA.

Although these residuals do not directly represent the variance, they are an index of the
spread of scores. For the data summarized in Table 8.7, SPSS's Explore module reports the
value of this statistic as 7.722, which, on 3 and 124 df, is very significant (p = .000) and in-
dicates that the mean absolute residual varies significantly as a function of education level.
The SPSS output also reports three other "Levene statistics." The first of these, actually
developed by Brown and Forsythe (1974a), is similar to the Levene test except that the data
are absolute deviations from the group medians, rather than the means. This test should be
less sensitive to outliers. The second alternative to the Levene test is a further modification
of the Brown-Forsythe test, in which degrees of freedom are adjusted as a function of the
group variances. The third alternative is one in which an ANOVA is performed on residuals
from the trimmed group means. The trimmed means are obtained by removing the highest
and lowest 5% of the scores in each group, and then calculating the means. This provides
another way of reducing the impact of outliers. With respect to the depression scores, all
four methods produced p values of .005 or less, confirming our sense that the spread of
scores was indeed a function of the educational level.

How robust are these tests of the null hypothesis of equal variances? The Levene test
appears to have an unacceptably high Type 1 error rate when the population distributions
are skewed or bimodal. Empirical rejection probabilities reach as high as .25 with very
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skewed distributions when the nominal Type 1 error rate is .05 (Church & Wike, 1976).
We recommend the Brown-Forsythe test based on deviations from the median. Sampling
studies indicate it has only a slightly inflated Type 1 error rate and good power relative to
various competitors even when ns are not equal and distributions depart markedly from the
normal (Games et al., 1979).

Once we conclude that the population variances are not equal, the next question is,
What shall we do about it? One possible response is to seek a transformation of the data that
yields homogeneity of variance on the scale resulting from the transformation. A second
possibility is to compute an alternative to the usual F test. We consider each of these
approaches next.

Statisticians have frequently recommended transforming data, for example by raising all
scores to some power, or by taking the logarithm of all scores. Transformations have been
used to transform skewed distributions into more nearly normal distributions, to reduce
heterogeneity of variance, and to remedy a condition known as "nonadditivity" in designs
in which each participant is tested on several trials or under several treatment levels. We
delay discussion of this third purpose until Chapter 13. For now, we note that a transformation
that best achieves one purpose may not be equally suitable for other purposes, although it
is true that transformations that equate variances do tend to yield more normally distributed
scores. Our focus here is on transformations designed to achieve homogeneous variances.

Typically, a variance-stabilizing transformation can be found when there is a functional
relation between cell variances and cell means. Smith (1976) has presented the rationale un-
derlying the derivation of transformation based on the relation between variances and means,
as well as several transformations representing different functional relations. Emerson
and Stoto (1983) have described a general approach that will frequently produce more
nearly equal variances. The technique involves plotting the log of the H spread (or in-
terquartile range; see Chapter 2) as a function of the log of the median and then finding
the slope of the best-fitting straight line. Then, if Z is the transformed score, the power
transformation is

If the slope equals one, the power equals zero, and the appropriate transformation is
Z = log(7). SPSS provides a spread versus level plot of log(H spread) as a function
of log(median), and outputs the slope and power. Select "Analyze," Descriptive Statistics,"
and "Explore," and then choose the "Plots" option and, within that, "Power Transforma-
tions." We followed this procedure with data from Royer's (1999) study of arithmetic skills
in elementary school children. Submitting response times (RTs) on multiplication problems
to SPSS's Explore module, we found that the slope of the spread-versus-level plot was 2.227
and the recommended power was therefore —1.227. We rounded this, letting Z — Y-1 =
1 / Y, thus reexpressing RT as response speed, a measure that is easily understood. Table 8.12
presents the group means and variances on the original and new data scales. On the original
RT scale, the ratio of largest to smallest variance is almost 15:1; on the speed scale, that
ratio is only 1.4:1. To provide a further check on the adequacy of the transformation, we had
SPSS plot the spread-versus-level function for the speed data. The slope of this function
was —.144 and therefore the power to which each score should be raised is 1— slope =

8.7.7 Transformations of the Data
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1.144. But this is close to one, indicating that no improvement is likely to be obtained by a
further transformation.

The choice of a dependent variable is often arbitrary and some transformation of the
original scale may be preferable if the distribution on the new scale has desirable properties,
such as normality or homogeneity of variance, that are lacking in the original data. One
potential problem is that values on the new scale may be less easily interpreted than on
the original scale. For example, the percentage of correct answers on a test (y) is easily
understood and communicated, but this is less true, for example, of the arc sine transfor-
mation (sin-1 ^/y, the angle whose sine is the square root of y), often recommended to
stabilize the variances of percentage scores. Another potential problem is that, although
variance-stabilizing transformations will usually maintain the ordering of the group means,
the relative distances among means may change, creating problems when the effects of
the manipulated factors are interpreted. Suppose a researcher has predicted that response
time (RT) will vary as a linear function of the levels of the independent variable. There is
an excellent chance that a test of linearity on a transformed scale will fail to support the
prediction because the means on the new scale are likely to fall on a curve. Transformations
only make sense when predictions are not dependent on the measurement scale. When the
measuring scale is arbitrary, the researcher may find it helpful to seek a transformation,
assessing the success of the transformation by plotting a spread-versus-level function as we
described in our example of the multiplication RTs and speeds. Keep in mind that although
it is perfectly reasonable to try several transformations, assessing each by plotting spread
against level, it is not appropriate to conduct a significance test after each transformation,
settling for the data scale that yields the largest F value. Such a procedure is bound to
increase the probability of a Type 1 error if the population means do not differ.

Often the researcher will not wish to transform the data, either because of the difficulty
of interpreting effects (or lack of effects) on the new scale, or because a strong theory
dictates the dependent variable. In other instances, it may be impossible to find a variance-
stabilizing transformation. Fortunately, there are other solutions that, although they also are
not always satisfactory, can often solve the heterogeneity problem. We turn now to consider
modifications of the standard F test.

8.7.8 Alternative Tests When Variances Are not Equal

Several alternatives to the standard F test of the equality of the a population means have
been proposed (Alexander & Govern, 1994; Brown & Forsythe, 1974b; James, 1951, 1954;

TABLE 8.12 MEANS AND VARIANCES OF MULTIPLICATION RTs FROM
THE ROYER DATA

Grade

Mean or Variance

RT Mean
RT Variance

Speed Mean
Speed Variance

5

3.837
4.864

.350

.033

6

1.998

.612

.560

.028

7

1.857

.328

.586

.031

8

1.935

.519

.583

.038
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Welch, 1951), but no one test is best under all conditions. Each has strengths and weaknesses,
depending on the shapes of the treatment distributions, the relative sample sizes, and the
ratio of variances. Detailed information about the influences of these factors on alternative
tests of the null hypothesis is provided in articles by Coombs, Algina, and Oltman (1996),
Grissom (2000), and Lix, Keselman, and Keselman (1996). These, particularly the Grissom
article, will in turn provide many additional references.

When the data are normally distributed and ns are equal, most of the procedures are
reasonably robust with respect to Type 1 error rate; however, the standard F is slightly more
powerful if the population variances are equal. When the variances are not equal, which test
is best depends on the degree of skew and kurtosis, whether outliers are present, the degree
of heterogeneity of variance, the relation between group sizes and group variances, and the
total N (Clinch & Keselman, 1982; Coombs et al., 1996; Lix et al., 1996; Tomarken &
Serlin, 1986). Although there is rarely a clear-cut choice for any given data set, we illustrate
the application of the Welch test, Fw, to the data summarized in Table 8.7. Fw performs
well relative to various competitors except when the data are highly skewed (skew > 2.0) or
group sizes are less than 10 (Tomarken & Serlin, 1986; Lix et al., 1996). Furthermore, the
test is available in BMDP and SAS/IML. Table 8.13 presents the necessary formulas and
illustrates their application to the statistics of Table 8.7. The resulting p value is considerably
higher than the .016 we obtained by using the standard F calculations. The discrepancy can

TABLE 8.13 FORMULAS FOR THE WELCH (Fw) TEST AND APPLICATION TO THE
STATISTICS OF TABLE 8.7

where

Wj

Y.j

The Welch test

Substituting Table 8.7 values in the preceding equations

HS

.550
6.903

C

5.528
3.674

B

3.752
3.331

GS

1.488
4.847

Then, u = 11.318, F. = 3.871, A = 2.594, B = 1.024, and F = 2.533;
also, df1 = 3, df2 = 1.018 = 55, and p = .066.
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be accounted for by noting that the correlation between nj and s2 is negative —.59. There
are only 19 participants in the group having only a high school education (HS), whereas
the other groups all have at least 33 participants. That smaller group size is paired with the
largest group variance. As we noted earlier in the chapter, when larger groups have smaller
variances, they have too much weight in the denominator of the F test, with a resulting
inflated probability of Type 1 errors. The Welch test has compensated for this by taking the
inequalities in group sizes and variances into account.

In summary, we recommend the following with respect to alternative tests:

1. Look at summary statistics, including skew and kurtosis measures, and plot the
data. Box plots are widely available and will often provide a sufficient basis for
deciding whether heterogeneity of variance is a problem. Visual inspection will
often be sufficient, but tests of homogeneity such as the Brown-Forsythe test can
provide confirmation (Brown & Forsythe, 1974a).

2. If the ns are equal and the ratio of largest to smallest variance is no more than 4:1,
the ordinary F test will have a Type 1 error rate close to its nominal value and
will have slightly more power than alternative tests against false null hypotheses.
However, when in doubt, it is probably best to consider an alternative. Even when
all the assumptions of the F test are met, the evidence suggests that the power of
the F will exceed that of competitors such as Fw by less than .04.

3. Although there is no one test that combines honest Type 1 error rates with higher
power than its competitors, we recommend the Welch test. It is available in sta-
tistical packages and performs reasonably well except when the distributions are
very skewed and the ns are less than 10. For n < 6, the Brown-Forsythe test of
the means (Brown & Forsythe, 1974b) appears to have Type 1 error rates closer to
the nominal value and power roughly equal to that of Fw. Another possibility is
to apply a test such as the Welch or Brown-Forsythe test to means based on data
from which the highest and lowest 20% have been trimmed. Computer-sampling
results for this procedure are promising (Lix & Keselman, 1998; also see Wilcox,
1997, p. 134, for a description of the procedure). The main drawback is the com-
putational complexity, but Wilcox has made a program available at a Web site
linked to the Academic Press Web site: (http://www.apnet.com).

No one test will be best in every situation. The relative merits of various procedures will
depend on a complex combination of factors. Researchers with heterogeneous variances
should turn to articles that have reported the effects of various combinations of factors
on error rates and power (e.g., Coombs et al., 1996; Lix et al., 1996; Lix & Keselman,
1998; Tomarken & Serlin, 1986). A test may then be selected on the basis of consideration
of the relative Type 1 error rates and power under conditions similar to the researcher's
own study. In some cases, there will be no test that clearly meets the researcher's needs. In
such instances, information about the distributions in the various conditions, including plots
of the data, should be presented in research reports. Indeed, such information should be
routinely presented regardless of whether significance test results are presented. Whatever
approach is taken, decisions about the appropriate null hypothesis test should never be made
by running several tests and selecting the one that yields the lowest p value; this procedure
is likely to inflate the Type 1 error rate.
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8.8 CONCLUDING REMARKS

Most studies involve more than a single factor. There may be several treatment variables
or, as in the Seasons data, participants may be categorized in several ways. Furthermore,
in many studies, participants are tested under several conditions or on several trials. Nev-
ertheless, important concepts and issues have been raised in this context, and these will
require consideration regardless of the design of the research. We should always consider
the appropriate structural model for our data, and we should always be concerned about
whether assumptions have been met and, if not, what the consequences are likely to be
and what remedies are available. In understanding our data and in assessing the validity
of assumptions, we should be guided by summary statistics and data plots readily avail-
able from many computer packages. Normal probability plots, box plots, dot-density plots,
stem-and-leaf plots, and spread-versus-level plots can all be helpful.

We have focused on tests of the omnibus null hypothesis in this chapter because they
are routinely conducted and routinely presented in research reports, and they provide an
overview of the effects of the independent variable. However, we believe that the omnibus
null hypothesis is rarely, if ever, of primary interest to researchers. Usually, either because
of reasons based on theory or prior knowledge, or because of the observed pattern of
cell means, we are most interested in estimating and testing contrasts of means. As we
demonstrated in Chapter 6, the t distribution provides the basis for CIs and tests of contrasts,
and these calculations are straightforward. Nevertheless, inferences about contrasts raise
certain issues, some of which are as much philosophical as statistical. We turn to these in
the next chapter.

KEY CONCEPTS

treatment populations
between-subjects designs

structural model
random-effect variables
dot-density plot
treatment effect
total sum of squares (SStot)
within-groups sum of squares (SSS / A}
raw-score formulas
shrunken R2

error term
noncentral F distribution
negative bias of the F test
autocorrelation plots
nonparametric tests
rank-transform F test
trimmed means
spread-versus-level plot

completely randomized design
within-subjects (repeated-measures)

designs
fixed-effect variables
omnibus null hypothesis
between-groups mean square
error component
between-groups sum of squares (SSA)
definitional formulas
n2

expected mean squares (EMS)
co2

noncentrality parameter, X
positive bias
robustness
Kruskal-Wallis H test
shift hypothesis
power transformation
Welch test, Fw
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EXERCISES

8.1 A data set has three groups of 5 scores each. Because the scores involve decimal
values, each score is multiplied by 100.
(a) How will the mean squares change (relative to an analysis on the original data set)?
(b) Should the F ratio change?
(c) In general, what happens to a variance when every score is multiplied by a

constant?
(d) Suppose we just added a constant, say 10, to all 15 scores. How would that effect

the mean squares and F ratio?
(e) Suppose we added 5 to all scores in the first group, 10 to all scores in the second

group, and 15 to all scores in the third group. Should MSA change? Should
MSs/A ? Explain.

8.2 Following are summary statistics from a three-group experiment. Present the ANOVA
table when (a) n1 = n2 = n3 = 10 and (b) n1 — 6, n^ = 8, and n3 = 10 (T.j is the
total, or sum of scores, for group7).

8.3 The data are:

AI
T.j = 30

s] = 3.2

A2

48

4.1

A3

70

5.7

A,

A2

27

23

18

33

16

26

33

19

24

38

(a) Perform the ANOVA.
(b) Next, do a t test. How are the results of parts (a) and (b) related?

0 8.4 The file Ex8_4 (Exercise folder) on the CD contains three groups of 15 scores.
(a) Explore the data; examine statistics and graphs relevant to assessing the normality

and homogeneity of variance assumptions.
(b) Calculate the F and Kruskal-Wallis H tests for these data and comment on the

outcome, relating your discussion to your answer to part (a).
9 8.5 (a) Calculate treatment and residual effects for the scores in Ex8_4. What should the

average treatment effect be? The average residual? Are the results as expected?
(b) Multiply the sum of the squared treatment effects by n and compare the result

with the between-groups sum of squares from Ex8_4, part (b). Also sum the
squared residuals and compare the result with the within-groups sum of squares
from Ex8_4, part (b).

8.6 The following are the results of two experiments, each with three levels of the
independent variable.

Table 1

SV

A
S/A

df

2
21

MS

80
5

Table 2

SV

A
S/A

df

2
12

MS

42.5
5
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(a) (i) For each of the two tables, calculate F and estimates of w^.
(ii) What does a comparison of the two sets of results suggest about the effect of

the change in n upon these three quantities?
(b) Calculate T^for each table. How does n effect the value of i]2

A ?
(c) Suppose F = 1. (i) What must the value of a>2

A be? (ii) What must the value of
T)^ be (as a function of a and n)?

(d) Comment on the relative merits of the various statistics calculated as indices of
the importance of A.

8.7 The results of an ANOVA of a data set based on three groups of 10 scores each is as
follows:

sv

A
S/A

df

2
27

SS

192
810

MS

96
30

F

3.2

(a) Is there a significant A effect if a = .05?
(b) Estimate Cohen's / for these results.
(c) Assuming this is a good estimate of the true effect of A, what power did the

experiment have?
(d) How many participants would be required to have power = .8 to detect a medium-

sized effect? Use Cohen's guidelines (Subsection 8.5.1 for w2 and Subsection
8.5.2 for /) for effect size.

8.8 According to a mathematical model for the experiment in Exercise 8.7, the predicted
scores are 10 in Condition 1, 14 in Condition 2, and 18 in Condition 3. If the theory
is correct, what sample size would be needed to achieve .8 power to reject the null
hypothesis of no difference among the means? Assume that the error mean square is
a good estimate of the population variance, and a = .05.

8.9 In this chapter, we examined descriptive statistics for the probability-learning data
of Myers et al. (1983; see Table 8.1). Although we decided that heterogeneity of
variance was not a problem, we should test this assumption.
(a) Perform the Brown-Forsythe test of equality of spread.
(b) We also concluded that nonnormality was not a problem. However, we did not

examine normal probability plots for each condition. Do so.
(c) Perform the Kruskal-Wallis H test of the probability-learning data. Does it lead

to a different conclusion than the F test result reported in this chapter?
• 8.10 Open the Sayhlth file in the Seasons folder of your CD. This file contains Sayhlth

scores (self-ratings of health) of 1-4 (excellent to fair; 3 participants with poor
ratings in the Seasons file are not included). The four categories will be the in-
dependent variable in this exercise and the Beck_D score will be the dependent
variable in the following analyses. The Beck_D score is an average of the four sea-
sonal Beck depression scores and is available only for those subjects whose scores
were recorded in all four seasons. The distribution of BeckJD scores tends to be
skewed, and, as in most nonnormal distributions, heterogeneity of variance is often a
problem.
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(a) Explore the data, using any statistics and plots you think are relevant, and com-
ment on the relative locations, shapes, and variabilities of the scores in the four
categories.

(b) Using the four Sayhlth categories, plot the spread versus level; as stated in Chap-
ter 8, this is the log of the H spread plotted against the log of the median. Several
statistical software packages make this plot available. Find the best-fit regression
line for this plot and transform the Beck_D scores by raising them to the power,
1 — slope.

(c) Explore the distribution of the transformed scores at each Sayhlth category. Has
the transformation had any effect on the shape of the distributions or on their
variances? Test for homogeneity of variance.

(d) Next let's try a different transformation. Calculate log(Beck_D +1) and discuss
the effects of this transformation.

(e) What might be the advantges of transforming data to a scale on which they are
normally distributed with homogeneous variances?

8.11 Continuing with the Sayhlth file, perform the following steps.
(a) Using the four Sayhlth categories as your independent variable, do separate

ANOVAs of the BeckJD data for men and for women.
(b) Calculate Cohen's / for each sex and compare the effect sizes (see Equation

8.19).
8.12 The Sayhlth file also categorizes individuals by employment category: 1 = employed

full time; 2 = employed part time; and 3 = not employed.
(a) Explore the Beck_D data in each Employ category, looking at relevant graphs

and statistics. Comment on the validity of the ANOVA assumptions.
(b) In Exercise 8.10, we considered transformations of the BeckJD data, one of

which appeared to provide results more in accord with the ANOVA model. Use
that transformation and again explore the data. Are the results more in accord
with the ANOVA model?

(c) Perform ANOVAs on the BeckJD scores and the transformed scores as a function
of employment status. Discuss the results.

(d) Calculate Cohen's / for both the original and the transformed data. How would
you characterize the effect sizes?

APPENDIX 8.1

Partitioning the Total Variability in the One-Factor Design

The following developments involve two indices of summation: i indexes a value from 1
to n within each group, where n is the number of individuals in a group; j indexes a value
from 1 to a, where a is the number of groups. Appendix A at the back of the book provides
an explanation of the use of this notation, using several examples.

Squaring both sides of Equation 8.1 yields
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Summing over i and 7, and applying the rules of Appendix A on summation, we have

Rearranging terms, we can show that the rightmost (cross-product) term equals zero:

The last result follows because the sum of deviations of scores about their mean is zero.

APPENDIX 8.2

Raw-Score Formulas for Sums of Squares

The raw-score formula for SStot is obtained by squaring each score, summing, and subtract-
ing a"correction term," C, where C = anY 2.. = (£a

=1 En=\ Y i j )
2 / an , and

C corrects for the fact that we are subtracting deviations about the grand mean.
Raw-score formulas for most designs can be readily obtained from the relation between

degrees of freedom and SS. Let Tj stand for the sum of the n scores in the j'th group, and
let T stand for the sum of all an scores. Now consider the SSs/A-

1. Expand the corresponding degrees of freedom: a(n — 1) = an — a. If the group
sizes are not equal, dfs/A = N — a, where N — E j

n
j -

2. Each degree of freedom in the expanded term corresponds to a squared quantity.
Therefore, we now have

Note that each squared quantity must have subscripts that correspond exactly to
the indices of summation to its left. Any indices that are not subscripted according
to this rule are replaced by dots, indicating that summation has taken place for that
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index prior to squaring. The designation T.I indicates that we have summed the rij
scores in group j and then squared the total.

3. Divide each squared quantity by the number of values on which it is based. Because
YIJ is a single score, it is divided by one. However, T..J is a sum of nj scores, so

Following these rules, because dfA = a— 1,

where C = T 2 / N .

EXAMPLE 1 Applying these formulas to the data of Table 8.1, we have



Chapter 9
Contrasts Among Means

9.1 INTRODUCTION

In Chapter 8, we tested the effects of educational level on male depression scores in the Sea-
sons data set. That is, we tested the null hypothesis that the population means of male depres-
sion scores at each educational level are identical. Such tests of the omnibus null hypothesis
are conducted in part because tradition demands it, and in part because there is a belief that
such a preliminary screening is required before we can address the questions that really in-
terest us. A significant F indicates that not all of the population means are equal. However, it
does not reveal which population means differ. Presumably, we are interested in testing, and
constructing confidence intervals (CIs) for, such differences as those between the HS (high
school education only) and C (some college) means, or between the HS and the combined
C, B (bachelor's degree), and GS (graduate school) means. The calculations for such tests
and CIs are straightforward; we have already illustrated them as examples of applications of
the t statistic in Chapter 6. However, evaluating several contrasts raises a number of issues.

The first issue we confront is that the risk of a Type 1 error increases as we conduct
more significance tests. To understand why this is so, assume that three contrasts among
population means are tested. Further assume that the null hypothesis is true in all three cases
so that any rejection is a Type 1 error. Finally, assume that the three significance tests are
independent; the result of any one test does not change the probability of the result of any
of the other tests. There are eight possible patterns of test results. For example, there might
be a significant result on the first test followed by nonsignificant results on the second and
third test. Assuming HO to be true and that the test results are independent, we find that the
probability of this is .05 x .95 x .95. Of the eight possible patterns of results, seven have at
least one rejection; that is, at least one Type 1 error. In fact, the probability of at least one
Type 1 error is one minus the probability that no test results in a rejection; this is 1 — .953, or
.143. This is notably higher than the .05 we associate with an individual test. Furthermore,
the more tests that are performed, the higher this error probability becomes. Although the
conditions we set in this example—all null hypotheses true and all tests independent of

233
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each other—will not usually hold in our studies, the general principle does. As the number
of tests increases, there is also an increase in the probability of at least one Type 1 error;
this probability is referred to as the familywise error rate, or FWE. There have been many
proposals for controlling the error rate associated with a family of tests, and a major purpose
of this chapter is to sort through these and make recommendations.

The second issue is, What is a family? In a one-factor design such as those considered in
Chapter 8, the answer seems obvious; it is the set of all tests conducted. However, suppose
we conducted two different sets of three tests each. For example, the contrasts among
educational levels might be performed on the depression data and on one other measure,
perhaps anxiety scores. Is there a single family consisting of six tests, or two families of
three tests each? The answer will influence the inferences that are drawn because a larger
value of t will be needed for significance when the FWE is based on six, as opposed to
three, tests. We discuss this issue in Section 9.4.

A third issue centers on the distinction between planned contrasts, those determined
before the data were collected, and post hoc contrasts, those based on "data snooping,"
testing differences that look interesting after the data have been collected. Should this
distinction influence the process by which we arrive at our inferences, and, if so, how? We
will argue that the distinction is important, and, in separate sections for planned and post
hoc contrasts, we discuss procedures for controlling the FWE.

The results of tests conducted on the Myers et al. (1983) probability-learning experiment
data in Chapters 6 and 8 raise yet a fourth issue. In Chapter 6, a t test on these data revealed
that the mean of the HE (high explanatory) condition was significantly higher than the mean
of the combined S (standard) and LE (low explanatory) conditions. However, the F test
in Chapter 8 failed to reject the omnibus null hypothesis that all three population means
are equal; the p was .062. Because the omnibus F was not significant, some investigators
would argue that no further tests should have been carried out. These individuals view the
omnibus F test as a gatekeeper and therefore would not proceed to tests of contrasts in
the absence of a significant result in the test of the omnibus null hypothesis. However, if
the FWE is maintained at or below its nominal level, not only is there no need for a prior
test of the omnibus null hypothesis before testing contrasts, but requiring such a test before
proceeding further will lead to a reduction of power.

The plan for this chapter is as follows. We first define some basic terms and present
examples of contrasts. Following this, we review calculations of t statistics for testing
hypotheses about contrasts, noting possible modifications under conditions of unequal ns
or unequal variances. We then address the issues raised previously in this introduction. We
illustrate methods for maintaining the FWE in several different situations—when a subset
of all possible contrasts has been planned, when all possible contrasts based on pairs of
means are made, when each of several treatment means is contrasted with the mean of a
control group, and when contrasts are selected for testing after an inspection of the data.

9.2 DEFINITIONS AND EXAMPLES OF CONTRASTS

We define a contrast, or comparison, of population means as a linear combination of the
means. We denote contrasts by the Greek letter, psi (W):
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where at least one Wj is not zero and Ej
W

j
 =0. Some examples are

For example, 1^3 contrasts the average of the last three treatment population means with the
first population mean. The point estimate of i); is

For the contrasts in Equation 9.2, the point estimates are

Each of these estimates a different contrast of the four population means and therefore
provides the basis for testing a different null hypothesis.

Because any set of weights that sum to zero is allowed under the definition of a con-
trast, there are an infinite number of possible contrasts. In practice, researchers are usually
interested in contrasts between the means of two treatment populations; v|/1 is an example.
Such contrasts are often referred to as pairwise comparisons. Less often, we are interested
in more complex contrasts in which at least one of the two means is itself an average of
several means; the remaining three contrasts in Equation 9.4 are all examples of this. If we
have four treatments, there will be six pairwise comparisons and 19 additional contrasts in-
volving subsets of means, such as w2,w3, and ^4. Such an abundance of testable hypotheses
may tempt us to test them all or, what is essentially the same thing, to look at the various
differences between sets of means, selecting the largest one and testing it. As we indicated
earlier, this may cause a greatly inflated Type 1 error rate. We present methods for control-
ling error rates even for large families of tests, but we must be aware that these methods
involve a cost. As we increase the number of contrasts we test while holding the FWE at
some reasonable level (ordinarily .05 or .10), power is lost. In view of this, we should think
hard about which hypotheses are of interest before we collect the data. We need to focus
both the research design and the power of our significance tests on those questions that are
of most interest to us.

9.3 CALCULATIONS OF THE f STATISTIC FOR TESTING
HYPOTHESES ABOUT CONTRASTS

In Chapter 6, we presented calculations for the t statistic for contrasts.1 In this section we
review those calculations with another example, and we discuss the selection of weights
when ns are unequal, and alternative calculations when variances are unequal. Consider the
response speeds on a multiplication test for the fifth- to eighth-grade students in Royer's
study (Royer et al., 1999). Suppose we had initially hypothesized that between fifth and
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sixth grade, there was a clear change in speed, but little, if any, further improvement
in subsequent grades. This suggests that the fifth-grade mean will differ from the mean
of the combined sixth through eighth graders, and that there will be no pairwise differ-
ences among the higher three grades.2 This in turn suggests the following set of four null
hypotheses:

TABLE 9.1 THE t TEST OF H01 : w1 = (1/3)(|A6 + X7 + u8) -u5 = 0

Mean
Variance
n

Grade

5

0.350
0.033

23

6

0.560
0.028

26

1

0.586
0.031

21

8

0.583
0.038

20 N =90

MSS/A = (22/86)(.033) + (25/86)(.028) + (20/86)(.031) + (19/86)(.038) = .032
and dfs/A = 90 - 4 = 86. To test H01 , we calculate

In this example,

Therefore,

Table 9.1 presents the means and variances of the four groups, and the group sizes, and it
illustrates the calculation of the t statistic for the first contrast. Note that the weights for v1 \
(Wj0 have been multiplied by 3 so that all weights are now integers. This does not change the
value of the t statistic because both the numerator and the denominator are increased by a
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TABLE 9.2a CONTRAST COEFFICIENTS AND TESTS FOR MEAN MULTIPLICATION
SPEEDS

Contrast Coefficients

Contrast

1
2
3
4

GRADE

5

-3
0
0
0

6

1
1
1
0

7

1
_1

0
1

8

1
0

-1
-1

TABLE 9.2b

CONTRAST TESTS

SPEEDMRT Assume equal variances

Does not assume equal
variances

Contrast

1
2
3
4

1
2
3
4

Value of
Contrast

.680140
2.62E-02
2.36E-02
2.64E-03
.680140

2.62E-02
2.36E-02
2.64E-03

Std. Error

.129976
5.25E-02
5.32E-02
5.59E-02
.131143

5.05E-02
5.44E-02
5.83E-02

t

5.233
-.500
-.443

.047

5.186
-.519
-.434

.045

df

86
86
86
86

38.3
41.7
37.3
38.2

Sig.
(2-tailed)

.000

.619

.659

.962

.000

.606

.667

.964

Note: Table 9.2 output is from SPSS.

factor of 3. It does simplify the calculations and makes rounding errors less likely. However,
one caution is in order: Confidence limits based on these weights will also be increased by
a factor of 3. To get back on the original speed scale, the limits are divided by 3. Note that
when we compare CIs, we must be sure they are all on the same scale. This can be achieved
by always transforming back to the original scale, or by adopting the convention that the
negative contrast weights should add to — 1 and the positive weights to +1.

Tables 9.2a and 9.2b present the SPSS output for all four contrasts. There are two sets of
results depending on whether homogeneity of variance is assumed. We discuss calculations
when the assumption of equal variances is violated in Subsection 9.3.2. The "Value of
Contrast" column in Table 9.2b contains the values of the ur s, and the "Std. Error" column
is for s^. (The value of the t for ty \ is slightly different from ours because we rounded the
group means.)

9.3.1 Weighting Means When us Are Unequal

In the multiplication speed data, the four grades had different numbers of students. How-
ever, there is no reason to view the four sampled populations as unequal in size. If the
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sixth- through eighth-grade populations are equal in size, then they should receive equal
weight when their mean is contrasted against the mean of the fifth-grade population. There-
fore, the weights used in testing H01 (—3,1,1,1) are appropriate. Equal weighting of means
that are averaged on one side of a contrast usually will also be appropriate in the anal-
ysis of data from any true experiment in which the independent variable is manipulated.
In contrast, in many observational studies, differences in group ns reflect differences in
population size. A case in point is the Seasons study, which we cited previously. In Chap-
ter 8, we tested the omnibus null hypothesis that mean depression scores were equal for
four populations defined by their education level. The four groups were male participants
with only a high school education (HS), some college experience (C), a bachelor's de-
gree (B), or graduate school experience (GS). Table 9.3a presents group sizes, means, and
variances.

Assume that one question of interest was whether the mean depression scores differed
between men with a graduate school education and all other men. We might weight the

TABLE 9.3a SUMMARY STATISTICS FOR DEPRESSION SCORES
AS A FUNCTION OF EDUCATIONAL LEVEL

Educational Level

HS
C
B

GS

n

19
33
37
39

Mean Variance

6.903 34.541

3.674 5.970

3.331 9.861
4.847 26.218

TABLE 9.3b SPSS OUTPUT FOR DEPRESSION SCORES AS A
FUNCTION OF EDUCATIONAL LEVEL

CONTRAST COEFFICIENTS

Contrast

1
2

Educational Level

HS

1
19

C

1
33

B

1
37

GS

-3
-89

Contrast

D-SCORE Assume equal variances

Does not assume equal
variances

Contrast Tests

1
2

1
2

Value of
Contrast

-.6329
-55.7348

-.6329
-55.7348

Std. Error

2.4385
71.3989
2.8837

80.8897

t

-.260
-.781
-.219
-.689

df

124
124

60.134
55.239

Sig.
(2-tailed)

.796

.437

.827

.494

Note. Table 9.3b is output from SPSS.



Unless we know the actual sizes of the populations, we now need estimates of the ws.
In many situations, the most reasonable and simplest estimate will be the group sizes.
Table 9.3b presents output from SPSS when the weights are 1, 1, 1, and —3 and when
they are based on the group sizes provided in Table 9.3a. Results are reported when equal
variances are assumed and when they are not; we consider the latter case shortly. For now,
note that, in the second contrast, the ws have been replaced by their corresponding ns.
Although neither contrast is statistically significant, there are clear differences between the
two t values, and between their p values.

Equal weighting and weighting by frequency will not always yield very different results;
the distribution of group sizes is the critical factor. We originally intended to contrast the
HS mean with the mean of the three groups having at least some college education but soon
found that the two sets of weights (—3,1,1,1 versus —109, 33, 37, 39) yielded very similar
results. The reason for this becomes evident if we divide the latter set of weights by 36; we
get -3.028, .917, 1.028, and 1.083—not very different from -3, 1, 1, and 1.

Bear in mind that the issue of weights arises only with contrasts in which one or both
subsets are based on at least two means. When pairwise comparisons are tested (by far the
most common situation), the weights will always be 1 and — 1 for the two means involved
in the comparison, and 0 for all other means.

9.3.2 Testing Contrasts When Variances Are not Equal

Suppose we wish to contrast the depression mean for the HS group with the mean of
individuals with more than a high school education. We use the weights 3, — 1, — 1, and — 1.
Before continuing our calculations, we note in Tables 9.3 that the variances of depression
scores are very different at the four educational levels. As we noted in both Chapters 6

and we test

Because the t test of a contrast is not affected by multiplying all weights by a constant, we
can simplify things by multiplying the expression by WHS + we + WB, giving us

and the contrast of interest is

This weights the HS mean the same as the C and B means, despite the fact that the relative
frequencies suggest that the HS population is considerably smaller than the others. Alterna-
tively, we can assume that the four populations vary in size such that weights proportional to
their size would be WHS. Wc, WB, and WgS. Then the mean of the first three populations—call
it u<GS ("less than graduate school")—would be a weighted average; that is,

CALCULATIONS OF THE f STATISTIC FOR TESTING HYPOTHESES ABOUT CONTRASTS 239

means (from HS to GS) 1, 1, 1, and —3; in this way we can test
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and 8, when the homogeneity of variance assumption is violated, the error rates associated
with the standard t and F tests may be badly distorted. The t' solution proposed by Welch
(1947) was presented as an alternative to the usual t and F tests. A general form of the t'
statistic can be applied even when more than two groups are involved in the contrast. The

TABLE 9.4a WELCH'S t1 TEST OF H01 : Ws = (l/3)(M-c + ub + JIGS) = 0.

From Table 9.3, $ = (3)(YHs) - (Yc + YB + YGS) = 8.857
The denominator of t' is

Then t' = 8.857/4.181 = 2.1 18. From Equation 9.6, the degrees of freedom are

Contrast Tests

Contrast

D .SCORE Assume equal variances
Does not assume equal

1

1

Value of
Contrast

8.8572

8.8572

Std. Error

3.1169

4.1810

t

2.842

2.118

df

124

20.5

Sig.
(2-tailed)

.005

.047

Note. Output is printed from SPSS.

TABLE 9.4b CONTRAST COEFFICIENTS AND TESTS FOR
DEPRESSION SCORES

Contrast Coefficients

Contrast

1

Education Level

HS

3

C

-1

B

-1

GS

-1
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test statistic is

and the degrees of freedom are

Table 9.4a illustrates the calculations for the contrast of the HS mean with the mean of
the combined other three educational groups. The calculations are somewhat tedious, but
fortunately, as Table 9.4b illustrates, the same result can be obtained from most statistical
software packages. These provide results under both the assumption of equal population
variances (in which case the standard error of the mean, SEM, is based on the MSs/A} and
under the more general assumption that the variances are not equal.

There are two situations in which the MSs/A is not an appropriate error term. In one case,
the contrast to be tested involves conditions for which the assumption of equal variances
is suspect. Here, t' should be calculated. In other instances, the variances corresponding
to the conditions involved in the contrast are very similar but different from the vari-
ances of those conditions not included in the contrast (that is, having zero weight). The
standard t is appropriate here but the denominator should be based only on the pool of
the variances corresponding to the included conditions. For example, if there are three
groups with variances 10, 11, and 5, and the means of the first two groups are to be
compared, the variance of 5 should not be included in the denominator because the es-
timate of the standard error (SE) of the contrast will be too small, and the Type 1 error
rate will be inflated. In summary, when there is reason to doubt that all population vari-
ances are equal, only those corresponding to means involved in the contrast should be
included. If the equal-variance assumption is at all suspect even for those variances, cal-
culate t'. Finally, as usual, we warn that such decisions should be made a priori; basing
decisions about which result to report on the output of both analyses invalidates the inference
process.

9.4 THE PROPER UNIT FOR THE CONTROL OF TYPE 1 ERROR

As we argued in the introduction to this chapter, the probability of a Type 1 error increases
with the number of significance tests. Therefore, if the probability of each significance
test is set without regard to how many tests might be conducted, the error rate for the
entire collection of tests may rise to an unacceptable level. Statisticians and researchers are
generally agreed that the proper unit for control of the Type 1 error rate is not the individual
test but a set of contrasts called a family. Before we address the question of how to limit the
Type 1 error rate for the family, we more closely consider possible definitions of a family
of contrasts.
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We begin by distinguishing between the error rate per contrast (EC)—the probability
that a single contrast results in a Type 1 error—and the FWE—the probability that a set, or
family, of contrasts will contain at least one Type 1 error. For a family of K independent
tests,

The probability of a Type 1 error on a single test is the EC. Therefore,

If a family consists of six independent tests, each conducted at EC = .05, substitution
in Equation 9.7 results in FWE = 1 - (1 -.05)6 = .265, considerably greater than .05. If
the six tests are not independent, the FWE is less than .265 but more than .05, although the
exact value is difficult to calculate. In any event, the larger the family, the more the FWE
exceeds the EC.

One extreme view we might take with respect to the discrepancy between the EC
and the FWE is simply to ignore the FWE. We could choose a value for the EC without
considering the total number of contrasts tested, and we could test each contrast by using
that p value, perhaps .05, as the criterion for significance. The problem with this approach
is that even if there are no differences among the treatment population means, we would
have a good chance of finding "significant" results if we performed a large enough number
of tests, because the FWE would then be large. Publishing such findings could result in
wasted effort spent investigating and attempting to replicate effects that did not exist. In
view of this, we want the EC to be such that the FWE for a family of contrasts will be
kept within acceptable bounds. The exact criterion for significance for the test of any one
contrast will depend on how large the family is. If we want to keep the FWE constant as
family size increases, the EC will have to decrease. This line of reasoning requires that we
decide exactly what we mean by a family of contrasts.

An investigator working in a research area over a period of years might perform hun-
dreds of experiments and test thousands of hypotheses. If we considered these thousands of
tests to form a single family and set the FWE equal to .05, the EC would be infinitesimally
small. Although this ultraconservative approach would result in a very low Type 1 error
rate, the Type 2 error rate would soar to unacceptable levels. The experimenter could be
confident that significant results revealed real effects but would miss finding many real
effects. Because lowering the EC results in a reduction of power, the definition of family
must be based on a compromise between concerns about Type 1 and Type 2 errors.

When we conduct an experiment with one independent variable and one dependent
variable, the definition of the family seems straightforward. If we have four levels of the
independent variable, and plan three specific contrasts, the family is of size 3. If we test
every possible pairwise contrast, the family is of size 6. If we scan the data, and select the
largest possible contrast, the family size is infinite because there are an infinite number
of sets of weights possible. The situation is different if we have several independent or
dependent variables in a single study. For example, consider the study of seasonal variation
in psychological and physical measures that we have referenced several times previously. We
might conduct pairwise comparisons among four educational levels on depression means
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and on anxiety means. We might do this separately for male and for female participants. We
have six pairwise comparisons for one measure for one sex. Because there are two measures
and two sexes, there are a total of 24 comparisons. Do we control the FWE for a family of
24 comparisons, or for each of four families of 6 comparisons? We recommend the second
option—viewing each combination of factor level and dependent variable as the basis for
defining the family. This seems a reasonable compromise between Type 1 and Type 2 errors.
Furthermore, it provides a natural basis for comparison with other studies. Suppose another
investigator carries out a study of the effects of educational level on depression scores in
female participants and also tests all six possible pairwise comparisons. Any comparison
of the FWEs of the two studies should be based on the same definition of family. Because
the second study used only female participants, and only the depression measure, such a
comparison is possible only if we have also defined the family in this way, rather than in
terms of all 24 comparisons we made.

9.5 PLANNED VERSUS POST HOC CONTRASTS

In Chapter 8, we analyzed depression scores as a function of educational level; the educa-
tional groups were HS, C, B, and GS. We tested the omnibus null hypothesis that the four
population means were equal. With respect to contrasts, consider two scenarios:

1. After inspecting the data, we find that the mean depression score for the HS group
is higher than that for the other three groups. Accordingly, we test the contrast of
the HS group mean against the combined mean of the other three groups; that is,
we test H0: |xHs = (1/3XM-C + M-B + M-HS)-

2. Before conducting the experiment, we predict on the basis of theory or previous
research that the HS mean will differ from that of individuals having at least some
college experience. On this basis, we test the same null hypothesis as in Scenario 1.

Assuming the result of the t test is significant at the .05 level, we should have more confidence
that the difference exists in the population in the second scenario than in the first. If the null
hypothesis is true and, without looking at the data, we select a single contrast to be tested
at a = .05, the probability of a Type 1 error is .05. However, if we first examine the data by
looking for a difference, and then we test the largest effect we observe, it is as if we have
carried out many significance tests. The EC is .05 but the FWE, the probability of at least
one Type 1 error, is considerably higher. The first scenario represents a situation in which
tests of contrasts are post hoc (or a posteriori), whereas the second scenario represents a
situation in which the contrasts are planned (or a priori).

A simple analogy may make the distinction clearer. Assume that I bet you at even odds
that the fourth toss of a coin will be a head. Assuming the coin is a fair one, so is the bet; the
probability of a head on the fourth toss is exactly .5. This is similar to a planned (predicted)
contrast. Now assume instead that I bet you at even odds that there will be a head somewhere
in the sequence of four tosses. Either refuse the bet or ask for (much) better odds because
the probability of at least one head in four tosses is considerably more than .5. This situation
is similar to a post hoc test of a contrast.

Before considering ways of controlling the FWE in each of these situations, we wish to
raise several points. First, plan ahead. If there is only one planned contrast, the EC and FWE
will be the same because the family is of size 1. Although we usually plan more than one
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contrast, typically the family of planned contrasts will be fairly small. Consequently, the EC
will not be greatly reduced relative to the FWE. As we noted earlier, the larger the family,
the lower the EC, and the lower the power of each individual test. For example, although
there are methods for controlling the FWE for the family of all pairwise comparisons, if
we test only a few that were decided on before we looked at the data, we will have greater
power and narrower CIs for each test.

The second point is that, although contrasts should be planned, often the pattern of
means is unexpected but suggests something interesting, although unanticipated. It is not
only legitimate to inspect one's data and carry out tests of contrasts that look interesting, it
should be obligatory. However, the criterion for significance of such post hoc tests should
be such that the FWE is held to a reasonable level.

A third consideration is the nature of that reasonable level. What should the FWE be?
Traditionally, the FWE has been set at the .05 level. That seems reasonable for small families
of planned contrasts. However, Scheffe (1959), in a classic text on ANOVA, suggested that
for post hoc tests, the FWE could be set at .10. The effective size of a family of post hoc
contrasts is determined not by the number of contrasts actually tested but by those that might
conceivably have been tested had the data suggested it was worth doing so. This family is
large and the power to test contrasts will often be extremely low if the FWE is set at .05
in this situation. Bear in mind that the EC and FWE are different concepts, and there is no
reason that traditional EC levels of significance need be applied to the FWE. Even with the
FWE at .10, the EC will generally be quite low.

9.6 CONTROLLING THE FWE FOR FAMILIES OF K PLANNED
CONTRASTS

Here, we discuss some very general methods for dealing with planned contrasts. All use
the t statistic presented in Table 9.1, or Welch's t' (Subsection 9.3.2) if variances are
unequal. However, they differ in their criteria for significance, and in whether they allow
the construction of CIs. These methods are very versatile. Although we illustrate their use
with multiple t tests, it should be emphasized that they can be used with any statistical
tests, parametric or nonparametric. Furthermore, if the summary statistics and plots of the
data indicate that the population variances are not equal, then these methods can be used
with Welch's t' test. Most important, it is not necessary that the omnibus F be significant
prior to testing planned contrasts, provided the FWE is controlled. In fact, power is lost by
requiring a significant F before carrying out planned tests with a procedure that controls
the FWE. What is critical is that the contrasts are decided on before the data are collected
and a method for evaluating significance of the tests is used that maintains the FWE at or
below a reasonable level, presumably .05 or .10.

9.6.1 Methods Based on the Bonferroni Inequality
Equation 9.7 describes the relation between the FWE and EC when the K tests are in-
dependent. Because this condition rarely holds, a more general statement of the relation
is



CONTROLLING THE FWE FOR FAMILIES OF K PLANNED CONTRASTS 245

In other words, the FWE is equal to or less than the term on the right, with the inequality
holding when the tests are not independent. Furthermore, if K tests are conducted with error
rates EC1, EC2 , . . . , ECK, then

where EQ is the probability of a Type 1 error for the &th contrast. The relationship expressed
in Equation 9.9 is known as the Bonferroni inequality, and it is the basis for several
procedures for testing planned contrasts. From the inequality, it follows that if each of the
K contrasts that make up the family is tested at EC = FWE/K, the probability of a Type 1
error for the family cannot exceed the FWE. If, for example, the family contains five planned
contrasts, the FWE will not be larger than .05 if each contrast in the family is tested at the
.01 level.

To illustrate methods based on the Bonferroni inequality, we reconsider the SPSS
output in Table 9.2. The significance values reported by SPSS are the ECs. In this instance,
it appears that we reach the same conclusion whether our criterion is the EC or the FWE. The
first contrast has such a small p value that it should be significant by any criterion, whereas
the last three contrasts are clearly not significant by any reasonable standard. Nevertheless,
we consider how each of two methods controls the FWE for this set of tests.

The Dunn-Bonferroni method follows from Equation 9.9. (Dunn, 1961). If there are
K contrasts, the FWE will not exceed a nominal value if the EC is set at that value divided
by K. For example, assuming a FWE of .05, we test the four contrasts in Table 9.2 at the
.0125 (.05/4) alpha level. To conduct the test, calculate

where the MSe (error mean square) will be MSs/A in the one-factor design and the error
degrees of freedom (dfe) will be N — a, where N = E j

n j - If the exact p value is avail-
able, as for example in the SPSS output of Table 9.2, to control the FWE we compare it
with FWE/K, and reject H0 only for those contrasts such that p < FWE/K. Alternatively,
Appendix Table C.I provides critical values of t as a function of the FWE, dfe, and K.
Note that these values assume that the alternative hypothesis is two tailed. To illustrate the
use of the table, suppose we have five tests and FWE = .05. Further assume that dfe = 20.
According to Table C.7, we require t = 2.845 for significance. If our tests were one tailed,
2.845 would correspond to FWE = .025. To maintain the FWE at .05 for a set of one-tailed
tests, the critical value of t is 2.528.

For dfe not listed in the table, the critical value of t can be readily obtained from
statistical packages such as SAS, SYSTAT, or SPSS. For example, with a data file containing
a p value and the degrees of freedom, SPSS's IDF.T function will yield the corresponding
value of t (to use this function, first click on "Transform," and then on "Compute"). The
CDF calculator for the Student distribution at the UCLA Statistics Department Web site
(see Chapter 6 or 8 for the URL) allows us to input any two of these three: X (the value
of ?), the degrees of freedom, or the p value, with a question mark for the third variable.
We enter 86 for the degrees of freedom and, assuming the test is two tailed, .00625 0/2 x
.0125) for the probability; the result is 2.551. If programs such as these are not available,
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an approximation based on the normal probability table can be calculated:

We see that za, the z exceeded by .00625, is slightly less than 2.50, approximately 2.4975.
Substituting this value for za, we again have ta = 2.551.

With this value of ta and the SEs of the four contrasts, we can compute CIs. The equation
for the CI is exactly the same as in Chapter 6; the difference is that the critical t is based on
the FWE of .0125 (two tailed), not the EC of .05. For ty i, the limits are

Substituting the critical / and values from Table 9.2, we find that the limits are

Because we used weights of —3, 1,1, and 1, we divide the limits by 3 to return to the
original data scale. The limits on the difference between the mean speeds of the fifth-grade
students and the mean of the other three grades are .116 and .337.

When CIs are based on the FWE, as in this example, they are interpreted somewhat
differently than when they are based on the EC. It may help to understand the distinction if
we assume many random replications of an experiment. In each replication, a set of four CIs,
one for each of the planned contrasts, is calculated and the critical value of t is 2.551. We
expect that, in .95 of the replications, each of the four intervals will contain the estimated
population contrast. In other words, the probability is .95 that the CIs for all members of
the family of contrasts will contain their corresponding u values. Because of this property,
intervals based on the FWE are referred to as simultaneous CIs.

Division of the FWE by K provides an approximate value of the EC. However, an exact
solution to Equation 9.7 is possible. This solution, originally proposed by Sidak (1967), is
obtained by solving for EC in Equation 9.7:

In the Dunn-Sidak method, H0k: wk =0 is rejected if pk < 1 - (1 - FWE)1/K. Because
1 — (1 — FWE)1/K > FWE/K, this method has more power and a narrower CI than the
original Dunn-Bonferroni procedure. However, the difference is very small, as can be seen
in Table 9.5; this table presents values of the EC for the original Dunn-Bonferroni test
(ECO and for the Dunn-Sidak revision (EC2).

A feature of the Bonferroni-based methods is that they allow the possibility of weighting
contrasts unequally (Myers, 1979; Rosenthal & Rubin, 1983). From Equation 9.9, it follows
that the FWE does not have to be divided into K equal parts. Suppose tests of three contrasts
are planned but one is of greater interest than the other two. Instead of a division of the
FWE by 3 in the Dunn-Bonferroni procedure, the most important contrast might be tested
at the .025 level, and the other two each at .0125. The FWE is still less than or equal to .05,
but power is increased in the test of the most interesting contrast at the expense of the other
two. An important qualification is that the determination of the division of the FWE should
be made before the data are collected.
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TABLE 9.5 DUNN-BONFERRONI AND SIDAK VALUES OF EC
WHEN FWE = .05 OR. 10

K

2

3
4
5
6
7
8
9
10

FWE = .05

EC,

.025000

.016667

.012500

.010000

.008333

.007143

.006250

.005556

.005000

EC2

.025321

.016952

.012741

.010206

.008512

.007301

.006391

.005683

.005116

FWE -.10

EC,

.050000

.033333

.025000

.020000

.016667

.014286

.012500

.011111

.010000

EC2

.051317

.034511

.025996

.020852

.017407

.014939

.013084

.011638

.010481

Note. EC, = FWE/K and EC2 = 1 - (1- FWE)
1/K.

9.6.2 Hochberg's Sequential Method
The Dunn-Bonferroni and Dunn-Sidak procedures are simultaneous methods. A further
increment in power is provided by sequential methods (also referred to as stepwise, or mul-
tistage), in which tests of contrasts involve several stages. The simplest of these are Holm's
sequentially rejective method (Holm, 1979), and Hochberg's step-up method (Hochberg,
1988). We describe only the latter method here because it is the more powerful of the two.
The K contrasts are rank ordered according to their p values, with p\ being the smallest
and px being the largest. In the example of Table 9.2, the contrasts would be ordered as
v1 ,V2, ^3, and u4 If pK < FWE, all K null hypotheses are rejected. If not, consider the
next largest p value, PK-I- If PK-I < FWE/2, then reject the null hypothesis correspond-
ing to the K — 1 contrast and all remaining contrasts. If this test is not significant, then test
whether PK-I < FWE/3, PK-I < FWE/4, and so on. Using the example of Table 9.2, and
assuming FWE = .05, we first compare .962 with .05. This fails and we compare the next
largest p value, .659, against .025. This fails and .619 is compared with .0167. The only
significant comparison is that of .000 with .0125, and we can reject only HQ: v|; \ = 0. The
power of this procedure can be increased at the cost of greater complexity (Hommel, 1988;
Rom, 1990).

The choice between the Bonferroni-based methods and the Hochberg procedure should
depend on whether the researcher wants CIs. If only tests of hypotheses are required, use the
Hochberg method because it provides a more powerful test while still maintaining the FWE
at the targeted level. When CIs are to be calculated, the Dunn-Bonferroni or Dunn-Sidak
methods should be used because readily interpretable CIs are not available for sequential
methods.

9.7 TESTING ALL PAIRWISE CONTRASTS

It is quite common for researchers to decide to contrast all possible pairs of means. The
methods used in the preceding section are applicable, but there are other procedures that
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provide slightly greater power. Of these, the ones we present are based on q, the studentized
range statistic. This statistic is the range of a set of observations from a normally distributed
population, divided by the estimated standard deviation of the population. If the observations
are group means,

where Fmax and Fmin are the largest and smallest means in a set of a ordered means and .sy,
the SEM, is

assuming homogeneity of variance and equal ns. Critical values of q can be found in
Appendix Table C.9 as a function of the FWE, a (the number of means), and the degrees
of freedom associated with the error mean square.

If we were to carry out a t test of the difference between the same two means, assuming
equal variances and group sizes in a one-factor design, the statistic would be

This relation can be useful in comparing the results of procedures based on t (such as the
Dunn-Bonferroni method) with those based on q; it has also been the basis for dealing with
unequal ns and unequal variances.

In the following sections, we consider several procedures for testing all (a) pairwise
contrasts. It is not necessary to conduct a preliminary test of the omnibus null hypothesis
prior to using any of these methods, because each method maintains the FWE at or below its
nominal value. In fact, requiring rejection of the omnibus null hypothesis before applying
a procedure that controls the FWE for the set of (2) comparisons is likely to increase the
probability of failing to detect true differences between means.

9.7.1 Tukey's HSD Test

Tukey's BSD (honestly significant difference; Tukey; 1953) test controls the FWE for the
set of all possible pairwise comparisons. We illustrate the test by using the means and
standard deviations for the fifth- through eighth-grade multiplication speed scores in the
Royer study. These were presented in Table 9.1. However, because Equation 9.14 requires
that the ns be equal, assume that there are 16 students in each of the four grades. (We will
shortly redo the calculations with the true ns, using a version of the Tukey test modified to
deal with unequal ns.) Table 9.6 presents the necessary steps in testing all pairwise contrasts
and in constructing simultaneous CIs, assuming equal ns and equal variances. The results
are also readily obtained from many statistical software packages.

In many studies, only a few of the possible pairwise comparisons will be of interest.
In such cases, the Dunn-Bonferroni procedure may provide more power and narrower CIs.
The ratio of interval widths of the Tukey to the Dunn-Bonferroni method is simply the ratio
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TABLE 9.6 TUKEY'S HSD TEST AND CIs

1. Order the means in Table 9.1 from smallest to largest:

Grade:
Mean:

5
.350

6
.560

8
.583

7
.586

We assume the means are based on 16 scores each.

2. Find the value of q required for significance when FWE = .05, a = 4, and df= a(n — 1) = 60.
That value is 3.74.

3. Calculate the SEM by using the values of the variance in Table 9.1, but assuming n = 16.
Averaging the variances (assuming equal n), MSs/A = -0325, and

4. A value of q can now be calculated for each of the six possible pairwise contrasts by dividing
each of the six differences between means by .045, and comparing the result with the critical
value, 3.74. For example, the difference between the fifth- and seventh-grade means is .236 and
therefore q = .236/.045 = 5.24. Because this is larger than 3.74, we conclude that these two
means differ significantly. We can therefore proceed to test the next largest difference. If we
proceed in this way, successively testing each smaller difference, we stop testing when we
encounter a nonsignificant difference.

Alternatively, we can find a critical difference between the means against which the
observed differences can be compared. In this example,

Compare the largest difference with dcrit, rejecting the null hypothesis if the observed difference
exceeds .169. Continue testing in the order of decreasing differences until a difference does not
exceed dcrit. This procedure is only applicable when the ns are equal.

5. The equivalent test can be carried out by using the t distribution. Calculate the usual t statistic
and compare with q.05.4.60 A/2, or 2.645. To carry out the test by using the differences, calculate

6. Simultaneous CIs can also be constructed by using Tukey's method. If the FWE is .05, then the
probability is .95 that all possible pairwise contrasts are contained within intervals of the form
w ± q.o5a,df SY or, equivalently, w ± (q.05,a.dfV2)s$ . For example, The .95 confidence limits
on the difference in mean speeds of the fifth- and sixth-grade populations are

.21 ± (2.645)(.064) = .041, .379

of the critical values of their respective test statistics,

where K is the number of comparisons and is equal to (2); for example, if a (the number of
groups) = 4, then K = 6. Dunn (1961) has evaluated this ratio for various combinations of
K , a , d f e (the degrees of freedom associated with the error term for the omnibus F test), and
the FWE. When all possible pairwise comparisons are tested, the Tukey procedure will have
the narrower interval (and the more powerful test); that is, the ratio of intervals will be less
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than 1. For fixed a, the advantage of the Tukey procedure declines as the FWE decreases,
the degrees of freedom increases, or K decreases. Table 9.7 illustrates that if only a subset
of all possible pairwise comparisons is planned and tested, a point is reached at which the
Dunn-Bonferroni procedure is more powerful. More precisely, if only four comparisons are
tested, the Dunn-Bonferroni method requires a smaller value of t for significance than does
Tukey's method. Therefore, it has the narrower CI (when K < 4) and greater power; the
advantage of the Dunn-Bonferroni method increases if even fewer comparisons are made.
Although the crossover point at which the Dunn-Bonferroni method has the advantage is
a function of K, it usually does not require K to be very small. For example, if a = 5, the
crossover point occurs when 7 of the possible 10 contrasts are planned if dfe = 60, and
when 6 are planned if dfe = 20.

9.7.2 When ns Are Unequal: The Tukey-Kramer Test

In the Royer study, the number of students in the fifth through eighth grades varied, as
indicated in Table 9.1. A modification of Tukey's HSD test suggested by Kramer (1956)
may be applied in such situations. The standard t statistic is calculated and compared with
qFWE,A,df/V2. SPSS provides an alternative approach. The s$ and p values, as well as the
.95 confidence limits, can be obtained from SPSS; the output for all pairwise comparisons
is presented in Table 9.8. The Tukey-Kramer t equals the mean difference (ijr) value divided
by the Std. (standard) Error (s^).

If the necessary software is lacking, the studentized range table (Appendix Table C.9)
can be used. In the example of the speed data, a = 4 and dfe = 86. However, there is no
entry in Table C.9 for these degrees of freedom; the closest are for df= 60 and 120. To
obtain the critical q value for df = 86, we can use a nonlinear interpolation method proposed
by Harter, Clemm, and Guthrie (1959). We first find <7.o5,4.,6o = 3.74 and <?.o5,4.,i20 = 3.69
from the table, and the reciprocals of 86 (.0116), 60 (.0167), and 120 (.0083). The critical
value for dfe = 86 is then given by

TABLE 9.7 CRITICAL VALUES OF f FOR THE D-B METHOD AS K VARIES

K

6
5
4
3
2

EC

.0083

.01

.0125

.0167

.025

dfe = 20

2.927
2.845
2.744
2.613
2.423

t

dfe = 60

2.728
2.660
2.575
2.463
2.299

Ratio (D-B/HSD)

dfe = 20

1.045
1.016
0.980
0.933
0.865

dfe = 60

1.032
1.006
0.974
0.931
0.869

Note. Critical values are made with the assumption that a = 4, df = 20,
df = 60, and FWE = .05. D-B - Dunn-Bonferroni. The ratio (D-B/HSD) divides
the critical t for the D-B method by that for the Tukey HSD method. A ratio less than
1 indicates that the D-B method requires a smaller t for significance and therefore is
more powerful and has a narrower CI.
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Multiple Comparisons
Dependent Variable: SPEEDMRT
Tukey HSD

(I) GRADE (J) GRADE

5 6
7
8

6 5
7
8

7 5
6
8

8 5
6
7

Mean
Difference

(I-J)

-.210099*
-.236340*
-.233701*

.210099*
-2.624E-02
-2.360E-02

.236340*
2.624E-02
2.638E-03

.233701*
2.360E-02

-2.638E-03

Std. Error

5.12E-02
5.40E-02
5.47E-02

5.12E-02
5.25E-02
5.32E-02

5.40E-02
5.25E-02
5.59E-02

5.47E-02
5.32E-02
5.59E-02

Sig.

.001

.000

.000

.001

.959

.971

.000

.959
1.000

.000

.971
1.000

95% Confidence Interval

Lower Bound

-.344329
-.377872
-.377071

7.58695E-02
-.163820
-.163071

9.48076E-02
-.111340
-.143872

9.03316E-02
-.115868
-.149149

Upper Bound

-7.5869E-02
-9.4808E-02
-9.0332E-02

.344329

.111340

.115868

.377872

.163820

.149149

.377071

.163071

.143872

Note. The dependent variable is SPEEDMRT.
*The mean difference is significant at the .05 level.

Then, assuming FWE = .05, we find qwE,a,df/V2 = 3.710/1.414 = 2.623. To test the
difference between the fifth- and sixth-grade means, we calculate the t statistic of Equation
6.17 (with Spooled replaced by MSs /A)):

This clearly exceeds 2.623 and is therefore significant. Note that this is the ratio based on
the Table 9.8 output.

9.7.3 When Variances Are Unequal
In Chapter 8, in our analysis of the effects of education level on mean depression scores of
male subjects in the Seasons study, we found that the variances were quite heterogeneous.
Several methods have been proposed to deal with this problem. Most use Welch's t' (Equa-
tion 9.5) and df (Equation 9.6) but differ in the criterion against which t' is evaluated. In
the Games-HoweH test, t' is compared with qpwE,a,dfe/V2 (Games & Howell, 1976). The
procedure is illustrated in Table 9.9, using the depression data.

Investigations of the error rates associated with the Games-Howell test indicate that if
the variances are fairly homogeneous and the group sizes are less than 50, the FWE may
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TABLE 9.9 GAMES-HOWELL PROCEDURE FOR TESTING ALL PAIRWISE COMPARISONS WHEN
VARIANCES ARE NOT EQUAL

Applying Equations 9.5 and 9.6 to the fifth- and sixth-grade speed statistics of Table 9.1, we have

To obtain the critical value of t corresponding to 45 df, interpolate in Appendix Table C.3 between
df- 40 and df- 60, with a = 4, FWE = .05. The critical q value is 3.773. Then

Because 4.227 > 2.668, we reject H0: (0,5 = fX6. In similar fashion, values of t' and df can be
calculated for each of the remaining five pairwise comparisons and evaluated against 2.668.

sometimes be as high as .07 when the nominal probability is .05 (Dunnett, 1980; Games,
Keselman, & Rogan, 1981). Even when the variances are not homogeneous, with AZS less
than 6, the FWE may be inflated. However, these same studies indicate that under most
other conditions the FWE is quite close to the nominal level. Furthermore, the test is more
powerful than any of the several competitors that have been proposed and, as might therefore
be expected, has narrower CIs for each comparison. If the researcher is concerned about
the possible inflation of the FWE, Dunnett's T3 test (Dunnett, 1980) appears to be the most
powerful of several alternatives that maintain the FWE at less than or equal to the nominal
value. The test requires tables of the studentized maximum modulus distribution. Miller
has described the procedure and has provided tables of the distribution (Miller, 1981,
pp. 70-75). Statistical packages provide a welcome shortcut to the analytic labor involved
in these tests. Table 9.10 presents SPSS output for the Games-Howell and Dunnett T3
methods applied to the depression data. Note that the p values (in the "Sig." Column) are
consistently lower for the Games-Howell procedure.

9.7.4 The Fisher-Hayter Test

Although the tests considered so far do not require a preliminary test of the omnibus null
hypothesis, there are procedures for controlling the FWE that include such a test as a first
stage. In Fisher's LSD (least significant difference) procedure (Fisher, 1935), the first stage
is the omnibus F test. Pairwise comparisons are tested by the usual t test at the .05 level in
a second stage, but only if the first stage yields a significant result. The LSD test has been
shown to have an inflated FWE for a > 3. However, Hayter's modification of the LSD test
maintains the FWE at or below its nominal level (Hayter 1986). In the Fisher-Hayter test,
the first stage consists of the omnibus F test. If this test yields a significant result, then all
pairwise comparisons may be tested. Standard t statistics are formed and tested against the
criterion qFWE, a -1 ,d f e /V2 . Note that in Appendix Table C.9, the column corresponding to
a — 1 means provides the critical value. Table 9.11 provides an example, again using the
Royer multiplication speed data.

As with other sequential testing methods, power is gained relative to simultaneous tests
but at the loss of the ability to construct simultaneous CIs. Therefore, the choice between
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TABLE 9.10 RESULTS OF THE DUNNETT T3 AND GAMES-HOWELL TESTS OF ALL PAIRWISE
COMPARISONS

Multiple Comparisons
Dependent Variable: D.MEAN

(I) (J)

Dunnett T3 HS C
B
GS

C HS
B
GS

B HS
C
GS

GS HS
C
B

Games-Howell HS C
B
GS

C HS
B
GS

B HS
C
GS

HS HS
C
B

Mean
Difference

( I -J )

3.2288
3.5724
2.0562

-3.2288
.3436

-1.1727

-3.5724
-.3436

- 1.5163

-2.0562
1.1727
1.5163

3.2288
3.5724
2.0562

-3.2288
.3436

-1.1727

-3.5724
-.3436

- 1.5163

-2.0562
1.1727
1.5163

Std. Error

1.2031
1.1791
1.1688

1.2031
1.0003
.9881

1.1791
1.0003
.9587

1.1688
.9881
.9587

1.2031
1.1791
1.1688

1.2031
1.0003
.9881

1.1791
1.0003
.9587

1.1688
.9881
.9587

Sig.

.170

.115

.723

.170

.996

.745

.115

.996

.534

.723

.745

.534

.133

.091

.568

.133

.956

.586

.091

.956

.406

.568

.586

.406

95% Confidence Interval

Lower Bound

-.8314
-.5579

- 2.3523

-7.2890
- 1.4671
-3.6871

-7.7028
-2.1543
-4.1427

-6.4646
-1.3418
-1.1101

-.7023
-.4176

-2.2214

-7.1600
-1.4188
-3.6180

-7.5625
-2.1061
-4.0726

-6.3337
- 1.2727
- 1.0400

Upper Bound

7.2890
7.7028
6.4646

.8314
2.1543
1.3418

.5579
1.4671
1.1101

2.3523
3.6871
4.1427

7.1600
7.5625
6.3337

.7023
2.1061
1.2727

.4176
1.4188
1.0400

2.2214
3.6180
4.0726

Note: Output is from SPSS.

the Fisher-Hayter test and the Tukey (or Tukey-Kramer) test depends on whether such CIs
are desired. Another consideration is whether variances are assumed to be homogenous.
The Fisher-Hayter test was derived under that assumption, and therefore a test such as
the Games-Howell or the Dunnett T3 test should be used if homogeneity of variance is in
doubt.3 Another issue is the choice of the omnibus test used in the first stage of testing.
Although the F test is usually referenced with respect to the Fisher-Hayter method, the q
(or q/V2) statistic applied to the largest difference between means provides an alternative
test of the omnibus null hypothesis. Seaman, Levin, and Serlin (1991) found that there was
little difference in the power of the Fisher-Hayter method as a function of whether F or
q was used in the first stage. Which procedure had the advantage depended on the pattern



of the means. However, it should be noted that the q test of the largest difference between
means is appropriate for the first stage only if the ns are equal; otherwise, the largest raw
difference may not correspond to the largest standardized effect.

9.7.5 Pairwise Comparisons: Summing Up

Seaman et al. (1991) simulated tests of all pairwise comparisons under conditions of equal
ns and equal variances. With respect to the methods we have presented, averaging over
ns of 5, 10, and 19, the Tukey HSD test generally had a power advantage of 2-3% over
the Dunn-Bonferroni method. The Fisher-Hayter method had a power advantage over the
Tukey method that varied from about 2% to as much as 9%, with the most typical difference
being about 6%. The advantage of the Fisher-Hayter method decreased as a increased from
3 to 5, and as n decreased from 19 to 10. In summary, if (a) all pairwise contrasts are to be
tested, (b) the power to detect differences is the primary consideration, and (c) homogeneity
of variance can reasonably be assumed, then the Fisher-Hayter procedure is the method of
choice. If only some subset of pairwise comparisons are of interest, the Dunn-Bonferroni
procedure may prove more powerful than the alternatives. If CIs are desired, use the Tukey
procedure, or the Dunn-Bonferroni one if only a few of the possible comparisons are of
interest. If there is any evidence of unequal variances, use the Games-Howell test, or the
Dunnett T3 test if n < 6.

Seaman et al. compared 23 different methods (including variations such as whether
F or q was used in the first stage of the Fisher-Hayter method), and even this set of
methods is not exhaustive. We have excluded from the current discussion some methods

TABLE 9.11 EXAMPLE OF THE FISHER-HAYTER TEST APPLIED TO THE STATISTICS OF TABLE 9. 1

1. In the first stage, the ANOVA is performed. Because the result (see the SPSS output below) is
significant, we can proceed to the second stage, testing all pairwise contrasts.

ANOVA
SPEEDMRT

Between Groups
Within Groups

Total

Sum of
Squares

0.880
2.755
3.634

df

3
86
89

Mean Square

.293
3.203E-02

F

9.153

Sig.

.000

2. Assuming homogeneous variances, we now perform the pairwise tests. To obtain the critical
value of q in Appendix Table C.9, we interpolate between the reciprocals of 60 and 120 in the
column corresponding to three means (one less than the total number of groups). The value of

q.05.3,86 is 3.376 and, dividing by \/2, we find that the critical value of t is 2.387. The t statisti
may now be calculated for each contrast, and the null hypothesis corresponding to any given
contrast will be rejected if the corresponding t exceeds 2.387.

Note. The ANOVA output is from SPSS.
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that yield FWEs that often are considerably in excess of the nominal value. Among these
are Fisher's LSD test, the Student-Newman-Keuls test (Keuls, 1952; Newman, 1939),
and Duncan's multiple range test (Duncan, 1955). We have also excluded several proce-
dures that maintain the FWE at or below its nominal level and have slightly more power
than the Fisher-Hayter method under some combinations of number of groups and group
size. On the basis of various sampling studies, the very slight power advantage of these
methods (usually 1-2%) does not warrant the added complexity they usually entail. The
omitted methods include proposals by Peritz (1970), Ramsay (1978, 1981), Shaffer (1979,
1986), and Welsch (1977). Descriptions of these methods, together with results of sam-
pling experiments, may be found in the article by Seaman et al. (1991). Other discus-
sions of several tests of pairwise comparisons may be found in review articles by Zwick
(1993) and Shaffer (1995), and in Toothaker's (1993) monograph on multiple comparison
procedures.

9.8 COMPARING a - 1 TREATMENT MEANS WITH A
CONTROL: DUNNETT'S TEST

Dunnett (1955, 1964) proposed a test for studies in which the researcher plans to contrast
each of several treatments with a control. If these are the only comparisons of interest,
methods that control the FWE for a family consisting of all pairwise comparisons will be
overly conservative; power will be lost and simultaneous CIs will be wider than necessary.
The Dunn-Bonferroni procedure with K = a — 1 will be an improvement but will still offer
less power and wider intervals than the Dunnett test.

Assuming that the group sizes are equal and that variances are homogeneous, we see
that the test is quite simple. To test the difference between the mean of the jth group and
the control group mean, compute the usual t statistic for each of the a — 1 contrasts:

where YC is the mean of the control group and the error mean square (MSs/A) is the
average of all a within-group variances. This t statistic is evaluated against the critical
values of dFWE,a,dfe in Appendix Table C.8 where a is the number of means including the
control and dfe is the number of degrees of freedom associated with the ANOVA error term.
Dunnett (1964) has provided tables that allow comparisons when the standard error of YC
differs from that of the treatment group means. If the treatment group ns are not equal,
replace 2/n in Equation 9.16 by 1 / H J + 1/n c , and use the Dunn-Bonferroni procedure
with K = a — 1. If the treatment group variances are heterogeneous, use Welch's t' and
again use the Dunn-Bonferroni criterion.

Of course, the Dunn-Bonferroni method can be used even when the assumptions un-
derlying the Dunnett test are met. However, the Dunnett test has a power advantage in those
circumstances. For example, suppose we want to compare the sixth-, seventh-, and eighth-
grade mean speeds with the mean speed of the fifth graders. Further assume the means and
standard deviations in Table 9.1 but assume that the ns are all 16, as in Table 9.6. If the FWE
is .05, for a contrast to be significant by use of the Dunnett criterion, the t statistic must
exceed 2.43. Using the Bonferroni criterion, we see that the EC is .05/3, or .0167. and the
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t statistic must exceed 2.46. The difference is small but nonetheless the power advantage
lies with the Dunnett procedure. The CIs exhibit a similar relation. Let s$ = .064, the value
calculated in Table 9.6. Then the Dunnett confidence limits for any contrast with the fifth-
grade mean are

and the Dunn-Bonferroni limits are

The interval widths for the Dunnett and the Dunn-Bonferroni methods are .311 and .315,
respectively. Again, the difference is not large but the Dunnett method does have a slight
advantage.

9.9 CONTROLLING THE FAMILYWISE ERROR RATE
FOR POST HOC CONTRASTS

Sometimes observed patterns in the data suggest one or more effects that were not an-
ticipated. When the corresponding null hypotheses are tested to determine whether these
effects are significant, we should be quite conservative in evaluating the result. In testing
contrasts "after the fact" we are, in effect, investigating the family of all possible outcomes.
There are an infinite number of possible contrasts and therefore the methods we present are
quite conservative because they control for the probability of at least one Type 1 error in a
very large set of possible contrasts.

9.9.1 Scheffe's Method

Assuming that the populations are normally distributed and have equal variances, Scheffe's
method maintains the FWE at its nominal level when the family consists of all possible
contrasts associated with a source of variance (Scheffe, 1959). The test statistic is the t of
Equation 9.10 and it is evaluated against

where df1 and d/2 are the numerator and denominator degrees of freedom associated with
the omnibus F test.

Using the fifth- to eighth-grade multiplication speeds as an example, assume that we
did not anticipate the pattern of means in Table 9.1 but, after viewing the data, realized that
the sixth through eighth grades had very similar means, each higher than the fifth-grade
mean. We might wish to test whether the mean of the fifth-grade times differed significantly
from that of the three combined sixth- through eighth-grade times; that is, we might test

We calculated the t statistic in Table 9.1 as 5.212. Because the test was not planned, we
use the Scheffe method to test the preceding null hypothesis. With FWE = .05, f = 3, and
dfe = 86, the critical value of F is 2.71 (by interpolation in Appendix Table C.5, or by
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using the UCLA calculator or software such as SYSTAT, SPSS, or SAS). Therefore,

We reject H0 if t > S or t < —S; because 5.264 > 2.851, the contrast is significant.
CIs can also be calculated. The probability is 1 — FWE that the values of all possible

contrasts in a family are simultaneously contained within intervals bounded by

From Table 9.1, we find that for the contrast in our example, $ = .679 and SQ, = .130. The
original weights were all multiplied by 3 to yield integer weights. Therefore, the confidence
limits on 31x5 — (|JL6 + IL7 + j u 8 ) are

However, we want limits on the original scale and we therefore divide these values by 3,
yielding .103 and .350. In Subsection 9.6.1, we treated this contrast as planned and found
the Dunn-Bonferroni limits, .116 and .337. The Scheffe interval is wider than the Dunn-
Bonferroni interval, revealing the price we pay in precision of estimation and power when
contrasts are not planned. A good strategy is to plan all those contrasts that might conceivably
be of interest, and then use the Dunn-Bonferroni or Fisher-Hayter method. Although the
power of these methods decreases as K, the number of planned contrasts, increases, a rather
large number of comparisons must be planned before the Scheffe criterion requires a smaller
value of t for significance. For a more detailed comparison of the Dunn-Bonferroni and the
Scheffe methods, consult the article by Perlmutter and Myers (1973).

Experimenters who have used both the standard ANOVA (analysis of variance) tests and
the Scheffe procedure have sometimes been surprised to find the omnibus null hypothesis
rejected by the ANOVA test but no contrasts significant by the Scheffe criterion. The
source of this apparent contradiction is that the overall F test has exactly the same power
as the maximum possible contrast tested by the Scheffe procedure. That contrast may
be of little interest and may not therefore have been tested. It could be something like
(1 l/37)u1 + (26/37)u2 - (17/45)u3 - (28/45)u4. In summary, although rejection of the
omnibus null hypothesis indicates that at least one contrast is significant by the Scheffe
criterion, there is no guarantee that any obvious or interesting contrast will be significant.

As with all the tests we have considered so far (except the Fisher-Hayter test), there is
no logical necessity that the Scheffe tests of contrasts be preceded by a significant omnibus
F. In contrast, even the largest possible contrast will not be significant if the overall F test
is not. There seems little point in expending energy on a series of post hoc Scheffe tests
unless first determining, by the F test of the omnibus null hypothesis, whether there is any
possibility that a contrast of interest might be significant.

9.9.2 The Brown-Forsythe Method

Brown and Forsythe (1974b) proposed that Welch's t' and df` (Equations 9.5 and 9.6)
be used with a criterion similar to Scheffe's S when the assumption of homogeneity of
variance is in question. The only difference is that the critical value of S against which t'
is evaluated is based on df`. As an example, reconsider the Seasons data. Let us contrast
the mean depression scores of individuals with only a high school education (HS) with the
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mean of individuals with more than a high school education (some college, C; bachelor's
degree, B; and graduate school, GS). We test

Turning back to Table 9.4, we find dfe (df') = 20.527, or approximately 21. With df1 =
a - 1, or 3, and FWE = .05, the critical value of F is 3.07. Therefore,

and, because t' = 2.118 (see Table 9.4), the result is not significant. The .95 limits on the
simultaneous CI of the contrast were calculated after all coefficients were multiplied by 3;
those limits are

Dividing by 3 to return to the original scale, we have —1.277, 7.182. The interval provides
an alternative test of the null hypothesis; the fact that it contains zero informs us that the
null hypothesis cannot be rejected.

9.10 THE SUM OF SQUARES ASSOCIATED
WITH A CONTRAST

The t statistic used throughout this chapter provides one approach to testing hypotheses
about contrasts. An alternative, but equivalent, test is based on components of SSA, the sums
of squares for the A source of variance. We develop this approach now in order to emphasize
the continuity between the ANOVA and test of contrasts, and to enhance our understanding
of contrasts. Furthermore, the relation between contrasts and sums of squares will prove
useful in the developments of the next chapter on trend analysis. A central idea is that any
contrast of the group means corresponds to a component of the SSA , the sum of squares
for the variable, A. That component sum of squares, SS^,, will be distributed on 1 df and
the contrast can be tested by dividing it by MSS / A- Because, as we showed in Chapter 7,
F1 dfc = tdfc , the F statistic formed in this way will equal t2. This relation leads us directly
to a formula for SS:,.:

so that
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TABLE 9.12 CONTRASTS OF THE MEANS IN TABLE 9.1 , ASSUMING n = 1 6

The contrasts are

The ANOVA table is

SV

A
o1
4 2

4-3

S/A

df

3
1
1
1

60

SS

0.621
0.085
0.183
0.353
1.95

MS

.207

.085

.183

.353

.033

F

6.37
2.62
5.63

10.86

To illustrate and to further develop the relation between contrasts and the ANOVA,
reconsider the multiplication speed scores in the Royer study. The means (from Table 9.1)
are .350, .560, .586, and .583 for the fifth through eighth grades, and to simplify calculations
we again assume n = 16 in all grades. Table 9.12 presents three contrasts and the ANOVA
table containing all relevant sums of squares, degrees of freedom, mean squares, and F
tests. The contrasts represent (a) the difference between the mean for the eighth grade and
the mean for the other three grades, (b) the difference between the seventh-grade mean and
the mean of the combined fifth and sixth grades, and (c) the difference between the fifth-
and sixth-grade means. An important point is that the SS$ s in Table 9.12 sum to .621, the
SSA; that is,

We can think of the treatment sum of squares as a pie and each contrast as a piece of the
pie. In the example of Table 9.1, the pieces are nonoverlapping, and together they account
for the whole pie. Here, the contrast of the fifth- and sixth-grade means (1^3) is the biggest
piece, accounting for about 57% (.353/.621) of the variability among the treatment means.

As with any pie, the SSA can be divided into pieces in many ways. For example, let

Applying Equation 9.19, we find the corresponding sums of squares for these contrasts to
be .421, .181, and .019; these values again sum to .621.

Will every set of contrasts result in sums of squares that add to SSA? Not at all; in
each of the preceding examples, the contrasts making up the set had a particular property
that resulted in their accounting for different portions of the variability, for nonoverlapping
pieces of the pie. When this is the case, the contrasts are said to be orthogonal. In addition,
the number of orthogonal contrasts in each set, a — 1, was equal to the degrees of freedom
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of the treatment sum of squares. The sums of squares of dfA orthogonal contrasts will always
add to $SA .

Before defining orthogonality more precisely, let's consider an example in which it
does not occur. Let's test

If the mean of the fifth-grade population (u5) differs from that of the sixth-grade population
(u6), there is a good chance that it will also differ from the combined mean of u6,u7, and (Jtg,
because that mean contains x5. In other words, there is a positive relation between the two
contrasts. This lack of independence between the two contrasts is called nonorthogonality.
It becomes evident in our example when we calculate the sums of squares corresponding
to the two contrasts. The sums of squares for the tests of H01 and H02 are .353 and .615,
respectively. The sum is clearly greater than SSA, .621. The two pieces of the pie overlap.

We do not have to add the sums of squares to determine whether two contrasts are, or
are not, orthogonal. Consider two contrasts, i|>p and tyq, such that

If there are n scores at all levels of A, the criterion for orthogonality is

For example, we know that the first two contrasts in Equation 9.20 are orthogonal because

If the ns vary across treatment conditions, the criterion for orthogonality becomes

Several points about orthogonality deserve emphasis. First, a set of a — 1 orthogonal con-
trasts can be thought of as asking a — 1 logically independent questions that collectively
"use up" all the degrees of freedom and variability associated with the independent variable.
Note that the variability can be partitioned in different ways, so that it is possible to find
different sets of orthogonal contrasts. Also, whether or not two contrasts are orthogonal
depends on the contrast weights, not on the values of the means being contrasted. One way
of thinking about this is that orthogonality depends on what questions are addressed by the
contrasts, not on what the answers turn out to be. The second point is that we choose to
test contrasts because they are of substantive interest, whether or not they are orthogonal to
one another. For example, researchers commonly test pairwise comparisons; these are not
orthogonal, but they are often of interest and should be tested when they are.

9.11 CONCLUDING REMARKS

Table 9.13 summarizes the conditions under which each of the methods described in the
preceding sections is appropriate. The methods that are listed do not exhaust all the possi-
bilities. We have excluded some methods because they allow the FWE to exceed its nominal
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TABLE 9.13 SUMMARY OF METHODS FOR CONTROLLING FWEs

Contrast

Planned

vs. Control

All pairwise

General post hoc

Cl

Yes
Yes
No
No

Yes
Yes
Yes

Yes
Yes
Yes
No

Yes
Yes

Group Size (n)

NR
NR
NR
NR

Equal
Not equal
NR

Equal
Not equal
NR
NR

NR
NR

Pop. Variances0 Test Stat.

Equal t
Not equal t'
Equal t
Not equal t'

Equal t
Equal t
Not equal t'

Equal q or t
Equal q or t
Not equal t'
Equal F or q, then

q or t

Equal t
Not equal t'

Method

D-B or D-S
D-B or D-S
Hochberg
Hochberg

Dunnett
D-B or D-S
D-B or D-S

Tukey
T-K
G~H or T3
F-H

Scheffe
Scheffe

Note. NR = not relevant; D-B = Dunn-Bonferroni; D-S = Dunn-Sidak; T-K - Tukey-Kramer; G-H = Games-
Howell; T3 = Dunnett's T3; F-H = Fisher-Hayter; t = t statistic with SE based on MS S / A ; t' = Welch's t using df: see
Equations 9.5 and 9.6.

a For population variances: Equal = the population variances are assumed to be homogeneous; Not equal = homogeneity
of variance assumption is suspect.

level, and others because they provide a very small gain in power at the cost of added com-
plexity. The methods listed in Table 9.13 are easy to use and are available in several software
packages such as SPSS and SAS. Further discussions of these procedures and descriptions
of other methods may be found in the previously cited review article by Shaffer (1995).
Seaman et al. (1991) also describe many methods for controlling FWEs for the family of
all pairwise comparisons and present the results of a large-scale computer-sampling study
of error rates and power.

In closing, we emphasize two points. First, among the tests we have presented, only
the Fisher-Hayter procedure requires that the omnibus null hypothesis be rejected before
contrasts are tested. Such a requirement causes a loss of power in using the Bonferroni-
based, or the Tukey, or the Dunnett methods. In the case of Scheffe's test, the preliminary
F is useful in possibly saving unnecessary labor because if it is not significant, no test
of a contrast will have a significant outcome; however, the omnibus test is not logically
necessary. In other instances, for example, when several contrasts have been planned, a
significant outcome of the omnibus test suggests that something is going on and if the
planned contrasts are not significant, the investigator may wish to do some data snooping,
using the Scheffe method. However, if the omnibus null hypothesis is not rejected, planned
contrasts can still be tested provided the FWE is maintained at or below the nominal value.
The second point, which cannot be emphasized too strongly, is the importance of planning
contrasts. A procedure such as the Dunn-Bonferroni may be considerably more powerful
than the" Tukey procedure if only a few of the pairwise comparisons are of any possible
interest. In addition, close consideration to the questions that are of primary, or perhaps
sole, interest may lead to research designs that are more closely focused on those questions.
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KEY CONCEPTS

omnibus null hypothesis
post hoc contrasts
familywise error rate (FWE)
Bonferroni inequality
simultaneous CIs
simultaneous methods
Hochberg's sequential method
Tukey's HSD test
Games-Howell test
Dunnett's test
Brown-Forsythe method
nonorthogonality

planned contrasts
family
error rate per contrast (EC)
Dunn-Bonferroni method
Dunn-Sidak method
sequential methods
the studentized range statistic (q)
Tukey-Kramer test
Fisher-Hayter test
Scheffe's method
orthogonal contrasts

EXERCISES

9.1 There are five treatment conditions in a problem-solving study, each with n = 20.
Two groups, F1 and F2, are given instructions designed to facilitate problem solving.
The third group is a control group given neutral instructions. The fourth and fifth
groups, I1 and 72, are given instructions designed to interfere with problem solving.
The data are as follows:

Test each of the following hypotheses with a = .05. State H0 and H1.
(a) The average of the facilitation group population means is greater than the mean

of the control population.
(b) The average of the interference population means is different from the mean of

the control population.
(c) The average of the facilitation means is not the same as the average of the inter-

ference means.
9.2 (a) Assume that all three tests in Exercise 9.1 were planned prior to data collection.

Using the Dunn-Bonferroni method, construct .90 simultaneous CIs for the three
contrasts. Reevaluate whether the null hypotheses in parts (b) and (c) should be
rejected, using the Dunn-Bonferroni criterion with FWE = .10.

(b) Assume the contrasts were chosen after the means were viewed. Use the Scheffe
method to construct simultaneous CIs. Reevaluate whether the null hypotheses
in parts (b) and (c) of Exercise 9.1 should be rejected with FWE = .10.

Y.i

S2

F l

14.6
3

F2

14.9
4

C

13.8
5

/1

11.8
4

12

11.7
4
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9.3 The following group means are each based on 10 scores:

(a) Calculate 55^-
(b) Calculate the sum of squares for each of the following contrasts: (i) 41, =

F.i -F.2;(ii)$21 =F.i -U/2)(F.2+F.3);(iii)4f3 =F.1 -F.3.
What should be true of the relation between SSA and the sums of squares for $ j
and vj>2? Why?

(c) We can remove the effect associated with ty 1 from the data by setting the means
at A1 and A2 equal to their average. The adjusted means are as follows:

Redo part (b), (ii) and (iii). Are either of the sums of squares different from those
calculated for the original (unadjusted) means? Explain, emphasizing the relation
of the results to the concept of orthogonality.

9.4 (a) Suppose the group sizes in Exercise 9.3 were not equal; the njs are 8, 10, and 12,
respectively. Returning to the original means, calculate SSA- Then calculate the
sums of squares for ijii1 and \\i 2. Now, what is the relation between the sums of
squares for vj>1 and $ 2 and SSA ?

(b) Redefine the $2 contrast so that it is orthogonal to that for ty1 for the samples
sizes stated in this exercise. Calculate SS$ 2. Does SS$1 + SS$2 = SSA ?

9.5 Consider the means in Exercise 9.3. Assume that MSs/A — 900.
(a) Assuming n = 10 in all three groups, calculate the standardized contrast, 4»5, for

part (b), (ii) of Exercise 9.3. (See Chapter 6 to review definitions and calculations.)
(b) Repeat part (a), but assume the unequal ns of Exercise 9.4 and define the contrast

as in part (b).
9.6 The following is suggested by a study conducted by Fenz and Epstein (1967). In

a study of conflict in parachutists, galvanic skin response (GSR) measures were
obtained for five different groups of 5 participants who differed with respect to when
the measures were taken: 2 weeks before the jump (B J — 2), one week before (B J — 1),
on the day of the jump prior to jumping (DJ — P), and on the day of the jump after
jumping (DJ — A). There was also a control group of normal (nonjumping) cowards
(C). The MSerror for the ANOVA = 4.0, and it is reasonable to assume homogeneity
of variance. The means were as follows:

A,

24

A2

16

A3

14

A,

20

A2

20

A3

14

BJ -2

5

BJ- 1

5

DJ - A

7

DJ - P

9

C

2
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(a) Suppose the investigator had planned to compare each of the four experimental
groups with the control (C). With a = .05 (two tailed), test the difference between
the DJ — P and C means, using (i) the Dunn-Bonferroni procedure, and (ii) the
Dunnett procedure.

(b) Suppose that the experimenter tested all possible pairwise comparisons. Redo the
test in part (a), using the appropriate procedure for controlling the FWE at .05.

(c) Comment on the relative power of these three procedures, justifying your con-
clusion by citing relevant information in your preceding answers. Explain why
these situations give rise to the differences in power that you indicate.

(d) Calculate the CIs obtained with each of the three procedures and relate the results
to your answer to part (c).

9.7 A sample of humanities majors are divided into three groups of 10 each in a study of
statistics learning. One group receives training on relevant concepts before reading
the text, a second receives the training after reading the text, and a third is a no-training
control. Summary statistics on a test are as follows:

Y - i

s2

Before

20

72

After

14

62

Control

13

76

(a) We want to test whether the mean of the Before population is higher than the
average of the other two populations combined. In answering the following parts,
assume FWE = .05.
(i) State the null and alternative hypotheses, (ii) What is the estimate of the
variance of the sampling distribution of $ (assume homogeneity of variance)?
(iii) Calculate the t statistic appropriate for testing HQ.

(b) Evaluate the test statistic you just calculated, assuming (i) the test was the sole
contrast tested and had been planned before viewing the data; (ii) the test was a
result of viewing the data.

9.8 We have five group means, each based on 10 scores, with MS$/A = 4.0. The means
are as follows:

A,

8.6

A2

9.5

A3

9.2

A4

8.0

A5

10.4

(a) We plan five contrasts with FWE = .05. Test the contrast of AS against the average
of the other four groups. State the criterion required for significance, and whether
HQ can be rejected.

(b) Suppose we had decided on the contrast in part (a) after inspecting the data. Now
what is the result of the significance test? Be sure to show your criterion statistic.

(c) Find the CIs corresponding to the tests in parts (a) and (b). Explain the difference
in widths.
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(d) Suppose we did all possible pairwise tests. Actually calculate the test for A\
against A-L. What is the criterion statistic? What conclusion do you reach about
//o?

(e) Suppose the only contrast we planned pitted the average of A1 and A 2 against the
average of the remaining three groups. Do the calculations and report the results,
showing the criterion statistic.

9.9 In an attitude change study, four groups of participants are presented with persuasive
messages about a topic. Two groups read the messages; there is a positive message
for one group and a negative message for the other. Two other groups receive the
messages by viewing a videotape. A fifth, control, group receives no message. Each
group has its attitude assessed by a questionnaire for which larger scores mean a
more positive attitude. There are 7 participants in each group and MS$/A = 20. The
group means are as follows:

A,
Video/Pos.

71

A2

Video/Neg.

42

A3

Read/Pos.

63

A4

Read/Neg.

47

A5

Control

52

(a) Determine which experimental conditions differ significantly from the control
using the Dunnett test with FWE = .05.

(b) Test the hypothesis that the difference between the positive and negative messages
is the same whether they are read, or are presented by videotape. Assume this is
the only planned comparison.

(c) By how much would two groups have to differ before they would be considerec
significantly different by the Tukey test with FWE — .05?

9.10 The Male_educ file in the Seasons folder contains means (over seasons) for four o]
the Schoolyr categories (3 = only high school, 5 = some after high school, 7 =
bachelor's degree, 8 = graduate school). In what follows, assume that all pairwise
differences are tested.
(a) Test the difference between the Schoolyr = 3 and Schoolyr = 5 Beck JD means

using (i) the Tukey-Kramer method, and (ii) the Dunn-Bonferroni method, as-
suming all pairwise comparisons. Assume homogeneous variances, (iii) Compare
the CIs.

(b) Perform the Games-Howell test of the difference in part (a). Compare the results
with those in part (a). In particular, which of these procedures should be usec
with these data?

9.11 The Sayhlth file in the Seasons folder contains Beck depression scores as a functior
of several factors.
(a) Test whether employment status significantly affects mean_d, the mean (ovei

seasons) depression score.
(b) Calculate all simultaneous CIs (FWE = .05) by using the Tukey-Kramer method

Assume homogeneous variances.
(c) Redo part (b), using the Dunn-Bonferroni method. Assume homogeneous vari-

ances.
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9.12 (a) Is the assumption of homogeneity of variance reasonable for the data in Exercise
9.11? Support your conclusion with statistical evidence.

(b) Assume we wish to know if the mean depression score for fully employed in-
dividuals (Category 1) differs from that of those who are not fully employed
(Categories 2 and 3 in the Sayhlth file). Test whether the difference is signifi-
cant, assuming this is the sole comparison tested and was planned prior to the
collection of data.



Chapter 10
Trend Analysis

10.1 INTRODUCTION

In Chapter 9 we discussed methods for comparing the mean scores of two groups, or of two
subsets of groups. Our primary concern was to address questions that are most appropriate
when the independent variable is qualitative. Qualitative variables are variables whose
"levels" differ in type, such as type of therapy, method of instruction, and diagnostic category.
In contrast, quantitative variables are variables whose levels differ in amount, such as hours
of therapy or instruction, drug dosage, and stimulus intensity. Even with variables such as
these, contrasts of two means can be tested. We did just that in contrasting multiplication
speed scores for different grades. However, when the independent variable is quantitative,
it often is more informative to consider the overall trend in the treatment group means,
rather than to make specific comparisons between two means. We might want to determine
whether there is a trend for means to increase as the level of the independent variable
increases, or whether the function relating the means and the level of the independent
variable is significantly curved. For example, Fig. 10.1 presents the mean multiplication
speeds (filled circles) for fifth- through eighth-grade students in the Royer study, together
with a straight line that minimizes the average squared distance of the points to the line, a
curve that indicates predicted speed as a function of grade and grade2, which also represents
a least-squares fit, and equations for these two functions. In the equations, Y represents mean
speed and X represents the grade. Because the slope of the best-fitting straight line (.074)
is positive, we know that there is a trend for the speeds to increase with grade level. The fit
of the straight line is at best fair; the average absolute deviation of grade means from the
predicted values based on the line is .053. The grade means are clearly closer to the curve;
the average absolute deviation is less than .02. If our goal is to fit the observed means, we can
do even better by adding an X3 term to the equation for the curve and replotting accordingly.
The means would then fall right on the resulting curve. Usually, however, we want to draw
inferences about the function that describes the relation between the population means and

267
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Fig. 10.1 Multiplication speed means (Y) fit by linear and curved functions.

the independent variable. We recognize that the pattern of observed means may be due to
chance, and therefore we usually want to test hypotheses about the slope and curvature of the
population function. We usually want to address the following questions: Is the slope of the
straight line that best fits the population means different from zero? Do the population means
fall on that line or is the best-fitting function curved? In the sections that follow, we state
null hypotheses corresponding to these questions and present the calculations necessary to
test those hypotheses. In Chapter 11, we consider analyses of trends in multifactor designs,
comparing the slopes and curves of several functions.

10.2 LINEAR TREND

Here we review equations for linear regression and the associated sums of squares, and then
we proceed to develop significance tests of hypotheses about the shape of functions based
on our data. We begin our discussion of trend analysis by considering linear regression
because it provides a relatively simple context within which to develop the basic ideas. To
simplify things still further, we assume that ns are equal throughout the chapter. A more
general treatment of trend analysis can be found in Chapter 20.

10.2.1 The Equation for a Straight Line

Suppose we have a levels of a quantitative independent variable. For example, we have four
levels of school grade in the Royer study; we represent the values as X = 5, 6. 7, and 8. We
can draw a straight line relating the group means to the X values. The line is described by
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the equation

where Ypre,j is the mean predicted for group j and b0 and b1 are the intercept and slope
(or linear regression coefficient), respectively. As we noted in Chapter 3, the intercept is
the value predicted for Y when X = 0, and the slope is the amount Y changes for each unit
change in X. Paralleling the developments in Chapter 3, and assuming equal n, we have the
following least-squares formulas for bo and b1:

Equation 10.1 enables us to predict a mean for any group, provided we have numerical
values of the intercept and slope. That prediction is not necessarily accurate; the best-fitting
straight line may not be a good fit. The observed group means may not lie on the best-fitting
straight line, or even be reasonably close to it. However, the predicted points do provide
the basis for testing whether the best-fitting straight line has a slope significantly different
from zero. That is, they underlie the test of whether there is a linear trend in the population,
a tendency for the population means to increase (or decrease) as X increases.

The linear regression coefficient, b1, is an estimate of the population parameter $1. We
can represent the best-fitting straight line relating the treatment population means to the
levels of the independent variable by

When we test for linear trend, we test the null hypothesis

In words, the null hypothesis is that the straight line that best fits the treatment population
means has a slope of zero.

Several points about this last statement must be understood. First, the (Xy may vary even
if the preceding hypothesis is true; that is, they may vary even if there is no linear trend.
To see this, suppose that the jx, fall on a perfectly symmetric inverted U-shaped function.
These means would exhibit no linear trend; a best-fitting straight line would have a slope
(Pi) of zero. Nevertheless, there would be variability among the means.

The second point to keep in mind is that the straight lines described by Equations 10.1
and 10.4 are lines of best fit. Many straight lines can be drawn to describe a set of means.
We choose our values of bn and b1 to minimize the sum of squared
distances between YpTe, j and Y . j , the predicted and observed values of the group means.
This is usually referred to as the least-squares criterion and it is what we mean by "best
fit."

The third point to note is that rejection of the null hypothesis of no linear trend does
not allow us to conclude that the population means are well fit by a straight line but only
that the best-fitting straight line has a slope other than zero. Again, we emphasize that the
best-fitting straight line is not necessarily a good fit. Still, inferences about linear trend are
important. For example, in a study of the effects of hours of practice on learning, a significant
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linear trend would support the hypothesis that the probability of a correct response tends to
increase with practice.

Equations 10.1-10.3 provide the basis for testing the null hypothesis that Pi = 0, and
for obtaining confidence intervals (CI) for Pi. In the next section, we present a numerical
example and use it to develop one approach to an F test of the null hypothesis. CIs are
presented in Chapter 20 within a more general regression framework.

10.2.2 Testing H0: P1 = 0
Consider an experimental study of stimulus generalization. A mild shock is presented in the
presence of a rectangle of light 11 in. high and 1 in. wide. Participants are then randomly
divided into five groups of 10, each of which is tested in the presence of a rectangle of light,
but with no shock. The independent variable is the height of the rectangle of light on these
test trials; the five groups see a rectangle whose height is either 7, 9, 11, 13, or 15 in. high.
An average galvanic skin response (GSR) measure is obtained for each participant. The
experimenters' hypothesis is that two processes are at work in this experiment. First, they
believe that the magnitude of conditioned responses should vary directly with the magnitude
of the test stimulus; this implies that GSR scores should increase as a function of the height
of the rectangle of light. Second, the experimenters expect a generalization effect. There
should be a trend for GSR scores to be higher the closer the test stimulus is to the training
stimulus. The result of this generalization process would be a symmetric inverted U-shaped
curve. If only this process were operating, GSR would be highest in response to the 11-in.
test stimulus and lowest for the 7- and 15-in. test stimuli.

The five group means, each of which is based on 10 scores, are presented in Table 10.1
("Obs. mean GSR") and are plotted in Fig. 10.2. If the experimenters' theory is correct,
the observed curve in Fig. 10.2 is the sum of two component functions. One of the two

TABLE 10.1 OBSERVED AND PREDICTED GROUP MEANS, AND CALCULATIONS FOR A TEST OF LINEARITY

Statistics

Stimulus Height (X)

Obs. mean GSR <T.j)

Pred. mean GSR (Fpre. j)
Y — Y..P r e . J

Variance (sj)

1

1.910
2.692

-0.772
2.218

9
3.560
3.078

-0.386
2.563

11
4.440
3.464
0
1.964

13
3.580
3.850

.386
2.881

15
3.830
4.236

.772
1.659

Mean

11
3.464
3.464
0
2.257

Note.

Furthermore, the predicted means follow from Equation 10.5. For example.
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Fig. 10.2 Mean GSR plotted as a function of stimulus height.

hypothesized functions increases with stimulus height and the other increases and then
decreases as height increases, with a peak when the height is 11 in. Therefore, in this
particular example, we want to test each of the two kinds of effects independently. Trend
analysis permits us to answer the following questions. First, if we fit a straight line to the five
means, will its slope be significantly different from zero? This addresses the hypothesis that
there is an increase in the population means with increasing test stimulus height. Second,
if we fit a symmetric inverted U-shaped curve to the five group means, will the points on
this function vary significantly? This addresses the hypothesis that there is a generalization
effect in the sampled population of GSR scores.

There are other questions we could ask about these data. For example, note the slight
upturn in the rightmost data point. If this upturn is due to more than chance variability, it is
not accounted for by the straight line representing stimulus height effects and the inverted
U-shaped curve representing generalization effects. There is the possibility that some pro-
cess that produces an S-shaped function is also at work. We present tests of possible curvi-
linear components such as the inverted U and the S in later sections of this chapter. In
this section, let's focus our attention on the test of linearity; that is, we test whether the
best-fitting straight line has a slope significantly different from zero.

One way of testing linear trend follows directly from the preceding discussion of the
equation for a line of best fit. This approach involves finding the group means predicted by the
best-fitting straight line and then calculating the sums of squared deviations of these predic-
ted means about their average, Y... This sum of squares can then be tested against the usual
within-groups error term, MSS/A, which has a value of 2.257 in the generalization example.

We will shortly illustrate a computationally simpler way to calculate the sum of squares,
one that avoids the necessity of calculating the predicted group means. However, our first
approach is useful in reminding us that the test of the null hypothesis of zero slope is a test
of the variability of the means predicted by Equation 10.1.
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Replacing bo in Equation 10.1 by the right side of Equation 10.3, we have

Using the X and Y.j values in Table 10.1, we have calculated the value of b\ and used
it to obtain the predicted values of the group means ("Predicted mean GSR"). If the null
hypothesis of no linear trend is true then p1 = 0, and, therefore, we would expect b\ to be
small. In turn, this implies that the predicted group means, the Y p r e , j , do not vary greatly
and are close to their average, the grand mean, Y... In contrast, considerable variability of
the predicted means would suggest that the null hypothesis of no linear trend is false and
should be rejected. This variability of the predicted means, the sum of squares for linearity,
is defined as

Like SSA as defined in Chapter 8, SSlin is n times the sum of squared deviations of group
means about their average. The difference is that these are predicted, not observed, group
means. Unlike 884, SSlin is distributed on only 1 df. This is because it reflects the deviation
of one quantity, b1, from zero.

Applying Equations 10.5 and 10.6 to the data of Table 10.1, we have

We can now test H0 :$1 = 0:

Because MSs/A is the average within-group variance, 2.257,

This F ratio, which is on 1 and 45 df, is quite significant. We therefore reject the null
hypothesis of no linear trend. It appears that the |xy tend to increase in magnitude as X, the
height of the rectangle of light, increases. However, this test tells us nothing about the shape
of the function that describes the population means. To draw inferences about whether the
function is curved, we must consider functions somewhat more complicated than straight
lines. In Section 10.3, we do just that. However, we first present a much simpler way to
calculate SSlin.

10.2.3 SSlin as a Single-degrees-of-freedom Contrast

From Equation 10.5, we know that
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Substituting the right-hand side of the preceding equation into Equation 10.6, we obtain

Substituting for b\ from Equation 10.2 and simplifying, we can rewrite Equation 10.6 as

where wy = Xj — X. .
The important point to recognize is that if we divide the last line of Equation 10.8 by

MSs/A, the result is the F test of a single-degree-of-freedom contrast as denned in Chapter 9.
The advantage of recognizing that the numerator of that F test, SS\m, can be written as a
sum of squares for a single-degree-of-freedom contrast is that we do not have to calculate b\
and use it to calculate the predicted group means. Furthermore, we soon will show that tests
of other trends can also be viewed as tests of single-degree-of-freedom contrasts. The only
difference is that when nonlinear trends are tested, the weights (the wy) in Equation 10.8
are quantities other than Xy — X..

The linear weights for the generalization example were the deviations of the stimulus
lengths about their average: —4, —2,0, 2, and 4. SS\m is unchanged if we multiply or divide
all the weights by a constant; this is because the squared constant appears in both numerator
and denominator of Equation 10.8. Therefore, we can get the same value of SSnn if we
divide Xy — X. by two; the new weights are

The £lin (Greek xi; the subscript refers to linearity) are weights that can be used in
Equation 10.8 in place of Xy — X. to test the linearity hypothesis whenever (a) the val-
ues of the independent variable are equally spaced, and (b) each mean is based on the same
number of scores. If the Xy are equally spaced, Xy — X. will differ from £lin,j by a constant
multiplier and, as already noted, SSlin will not be affected. For the general case in which
spacing or ns are not equal, refer to Chapter 20 on multiple regression.

Turn now to Appendix Table C.6, labeled "Coefficients of Orthogonal Polynomials."
Find the block of coefficients for a = 5 (five levels of the independent variable) and look at
the first row, the linear coefficients. These are the £iin listed previously. The table also lists
linear coefficients for other values of a, that is, for experiments in which there are more or
fewer levels of the independent variable. For each row of linear coefficients, (a) W Elin y = 0
and (b) provided the values of X (the independent variable) are equally spaced, the linear
coefficients are a straight line function of X. From now on, if the values of X are equally
spaced and the ny are all equal, Equation 10.8 can be used to calculate SS l in, but with the
linear coefficients of Table 6 replacing w/.
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As you may have guessed, the coefficients in the rows labeled "Quadratic," "Cubic,"
and so on enable us to test other hypotheses about the shape of the function that best
describes the treatment population means. We now discuss these hypotheses and the related
significance tests.

10.3 TESTING NONLINEAR TRENDS

10.3.1 A General Test

One question we might wish to ask is whether the group means in Table 10.1 depart
significantly from the best-fitting straight line. The null hypothesis is that the population
means fall on a straight line; there is no curvature. The experimenters expect generalization,
which implies that this null hypothesis should be false; the population means should deviate
from a straight line. A general test of the null hypothesis of no curvature follows from
recognizing that SSA, the variability among the group means, can be partitioned into two
components. The first of these is the SSnn that we discussed in the preceding section. Recall
that this reflects the difference between the best-fitting straight line and a line with slope of
zero. The second component of SSA is SSnoniin ("sum of squares for nonlinearity"), which
reflects the departure of the observed group means from the best-fitting straight line. This
partitioning of SSA follows from the identity

Squaring both sides of the preceding equation, and summing over subjects and groups, we
have

To the extent that the observed group means differ from the means predicted by a straight
line, the function is curved. The sum of those squared differences (between the observed
means and the means predicted by a straight line) is exactly what SSnonim reflects. Because
SSjin is distributed on 1 df, SSnonlin must be distributed on a — 2df. Another way of thinking
about these degrees of freedom is that SSnonim represents the variability of a data points
about a line; 2 df are lost because the line is determined by estimates of two parameters, p0

and Pi, leaving a — 2 df.
It follows from Equation 10.9 that S^onim is calculated as the difference between SSA

and SSlin. Therefore, to test the hypothesis that the population means fall on a straight line,
calculate

Applying Equation 10.10 to the data of Table 10.1, we have

and
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This result is significant at the .05 level, leading us to conclude that the function relating
|xy and Xj is not a straight line.

Let's summarize what we have learned so far from the analysis of trend in the gener-
alization example. First, the test of linearity reveals that there is a trend for the treatment
population means to increase as X increases; the linear regression coefficient is significantly
greater than zero. Second, the test of nonlinearity reveals that the straight line by itself is
not sufficient to account for the variation in the population means. Consistent with the idea
of stimulus generalization, the best-fitting function appears to be curved.

SSnoniin can be further partitioned into a — 2 components, each distributed on 1 df. We
next consider how these components are calculated and what they represent.

10.3.2 Orthogonal Polynomials
In the example of the generalization experiment (Table 10.1), we have so far established that
there are both linear and nonlinear components of the population function. In many analyses,
tests of these two components will be enough. However, more precise theories motivate more
precise statistical tests. For example, in the generalization experiment, the theory specifies
two independent processes that combine to generate the treatment means. The absolute
magnitude of the stimulus is thought to produce a linear effect; for each increment of one
unit in X, the (JL^ should increase by some constant amount. Distance of the test stimulus
from the training stimulus results in a quadratic effect; if only this generalization effect
were present, the |X7 would be a symmetric inverted U-shaped function of X. Note that this
statement of the theory is more specific than one that only states that there will be deviations
from the best-fitting straight line. The theory requires a very specific kind of nonlinearity.
It says that the population means are adequately described by a second-order polynomial
function of the form

This function is also called a quadratic function, and ^2 is often referred to as the quadratic
coefficient.

Equation 10.11 is a special case of the general polynomial function of order a — 1:

Note the restriction that if there are a points, the order of the polynomial is at most a — 1.
For example, if we have only two values of X, we can draw a line between the two data
points, thus establishing a linear function of the form of equation 10.1. However, we do
not have enough data to estimate more than the two coefficients, |3o and f j j ; therefore,
two data points restrict us to a linear, or first-order, polynomial function. Similarly, three
data points permit us to estimate Po, pi, and fa, and therefore allow us to fit a quadratic,
or second-order polynomial, function. The order of the polynomial function can be less
than a — 1 because some of the higher order coefficients such as (3a_j or (B(,_2 can be
zero.

Because there are five group means in the generalization example of Table 10.1, the
data could conceivably be fit by a function having cubic (X3) and quartic (X4) terms.
Our theory, however, holds that only the linear and quadratic components are necessary
to account for the variation among the treatment population means. Because SS\{n was
significant, we have already demonstrated the presence of a linear component. Now we
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would like to determine whether, in accord with the theory, the only significant nonlinear
component is the quadratic one. In order to construct independent tests of the quadratic,
cubic, and quartic components of the function for our five group means, we make use of
the orthogonal polynomial coefficients of Appendix Table C.6. Turning to the table, again
focus on the block for which a = 5. Several points hold for the four rows of coefficients:

1. The plot of the coefficients in a given row is closely related to the component we
wish to test. In Fig. 10.3, we have plotted each row as a function of X. Note that
the linear coefficients, the £ un, lie on a straight line. The quadratic coefficients,
the £ quad, lie on a symmetric U-shaped function; multiplication by — 1 would give
us the inverted U hypothesized for the generalization experiment. Sums of squares
and values of test statistics are not affected by reversing the sign of the coefficients,
or indeed by multiplying all coefficients by any constant.

2. As with the linear coefficients, and all the sets of contrast weights encountered in
Chapter 5, the coefficients sum to zero. That is, £] • £,pj = 0, where ^ / is theyth
value in the pth row.

3. All pairs of rows are orthogonal by the definition provided in Chapter 9. Recall
that a necessary condition for two sets of weights, WJP and w^, to be orthogonal

Fig. 10.3 Examples of polynomial functions.
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is that ]Ty WjpWjq must be zero. This requirement is met for the six pairs of rows
here. For example.

Using ^pj, we can rewrite Equation 10.12 as a sum of orthogonal polynomial components.
The advantage of this form of the polynomial function over Equation 10.12 is that it enables
us to independently test the null hypothesis for each orthogonal component. The general
form of this relation between the population means and the £„ / is

Tests of null hypotheses about the population parameters follow from the developments in
Chapter 9. The sums of squares for a single-degree-of-freedom contrast is the numerator of
theF ratio in Equation 9.19:

Replacing the Wj by values of £, we can compute the sums of squares needed to test whether
various terms in Equation 10.13 contribute to the variability among the group means. To
test#0: Pp = 0, calculate

For example, to test whether there is a quadratic component contributing to the population
GSR function, calculate

Table 10.2 presents the ANOVA, including tests of all four possible components of
SSA- Several points should be noted. First, note that the polynomial sums of squares are all
tested against the MSs/A • That is,

TABLE 10.2 TREND ANALYSIS OF THE MEANS OF TABLE 1 0. 1

A

S/A

SV

lin(A)
quad(A)
cubic(A)
quart(A)

df

4
1
1
1
1

45

SS

35.241
14.900
14.722
3.534
2.085

101.565

MS

8.811
14.900
14.722
3.534
2.085
2.257

F

3.90*
6.60**
6.52**
1.57
0.92

*p<.05;**p<.01.
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Second, considering the 55 column, note that the four sums of squares corresponding to the
polynomial components sum to 55^. This is because, as discussed earlier in this section,
the £p are orthogonal coefficients. Consequently, the corresponding sums of squares are
nonoverlapping sources of variability and together account for the total variability among
the means. Keep in mind, however, that this holds only if the n j are equal and the values
of X are equally spaced. As we see in Chapter 20, orthogonal partitioning of the SSA is
possible when these conditions are not met but the values in Appendix Table C.6 are no
longer appropriate.

The third point to note about Table 10.2 is that only the linear and quadratic components
of 55,4 are significant. We reject the null hypotheses

and we fail to reject the null hypotheses

This is consistent with our theory about the shape of the generalization function; the best-
fitting straight line has a slope greater than zero, indicating that response magnitude increases
with the magnitude of the test stimulus, and there is a quadratic component reflecting
stimulus generalization. The results of the significance test lead us to conclude that these
are the only two processes at work; linear and quadratic components appear adequate to
describe the variation among the group means. We conclude that, for this population and
these stimulus values, the mean GSR is best described by

In many studies, it is informative to plot the estimated population function. To do this,
we must first calculate the values of the b'. The (3' are estimated by

and, for p > 0,

For example, the quadratic coefficient, b'2, would be calculated as follows. First, we find the
values of £2,7 from Appendix Table C.6; when there are five groups, these are 2, — 1, —2,
— 1, 2. Then, substituting these values and the group means into Equation 10.17, we have

Because our data provide evidence only for the contributions of linear and quadratic com-
ponents, we calculate only b'0, b1, and b'2. Table 10.3 presents their values, the values of
b1£lin,j and b2 Equadj (the estimates of the components of the population function), and the
predicted values for each group. The predicted value for group j is obtained by adding b'0,
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TABLE 10.3 REGRESSION COEFFICIENTS AND SIGNIFICANT COMPONENTS OF FIG. 1 0.2

Component

Linear
Quadratic
Pred. value

b

0.386
-0.324

bp £P.1

-0.772
-0.649

2.043

b 0 ( Y . .) = 3.464

b'p £ p,2

-0.386
0.324
3.462

bp £ P,3

0
0.649
4.113

bp£p ,4

0.386
0.324
4.174

bP P,5

0.772
-0.649

3.587

Note. The predicted value is the sum of the grand mean and the linear and quadratic components of the
observed function. The value of b'p is computed by using Equation 10.6, and the values of the £p,j are obtained
from Appendix Table C.6. For example, blinElin,j is (.386) (-2); —2 is the linear coefficient for the first group.

Fig. 10.4 Plots of significant trend components and their sum.

b1Elin,j, and b2&quad,j. For example, the value predicted for the group tested with the 7-in.
stimulus (Group 1) would be 3.464 + (-.772) + (-.649) = 2.043.

The grand mean (b'Q) of the 50 scores, and the linear and quadratic components of
Table 10.3, are plotted in the upper panel of Fig. 10.4; they have been summed in the
bottom panel to provide our best estimate of the shape of the population function. If we
included the cubic and quartic components as well, the points representing the observed
group means would fall on the resulting curve. However, our significance tests indicate that
these two components do not reflect real trends in the population. Therefore, the deviations
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of the five group means about the function plotted in the bottom panel are attributed to chance
variability, and the plotted function is our best estimate of the true population function.

103.3 Strategies in Testing Trend

We generally prefer to carry out the minimum number of significance tests required to
evaluate our theory. When more polynomial components are tested, the probability of
a Type 1 error increases unless a procedure such as the Dunn-Bonferroni (described in
Chapter 9) procedure is used to control it. However, in that case, the fewer tests performed,
the greater the power each has to detect true contributions to the population function.
Therefore, although we have presented F tests for each of the four possible polynomial
components in our example, in practice we would perform only three tests. Because our
theory predicted linear and quadratic effects, and no polynomial contribution beyond these,
we would test the linear and quadratic components, as indicated earlier. In addition, to
determine whether the hypothesized components are sufficient to account for the pattern of
the a means, we would also test the residual between-groups (A) variability; the numerator
sum of squares for this test is calculated simply as

and MSA res — SSA KS/d/A Ks, where df= (a — 1) — 2 in our example. If M5^ res is significant
when tested against MSs/A. we have evidence that one or more of the polynomial components
included in SSA res (the cubic and quartic components in our example) is contributing to the
A effects. This significant result may be followed by tests of the components of the residual
term if the outcome of such tests will help us reformulate our theory. In practice, however,
cubic and higher-order terms usually are difficult to interpret.

10.4 CONCLUDING REMARKS

Trend analysis is a powerful tool for analyzing functional relations among variables. How-
ever, it is important to keep in mind that, when variables have fixed effects, trend analysis
provides statistical support only for conclusions about levels of the manipulated variable
that were included in the experiment. For example, conclusions about the shape of the
generalization function in our example hold only for the values of stimulus height in the
experiment. Would the function in Fig. 10.1 decline further or level off if heights greater
than 15 had been included? We might infer the answer to questions such as this by us-
ing our knowledge of the variables, theoretical considerations, and results of other studies.
However, such extrapolation beyond the stimulus levels in the current experiment has a
different status than the statistical inferences based on the stimulus levels in the study. The
best advice is to include in the study the range of variables that are of possible interest, and
to include a sufficient number of levels within that range to provide a good sense of the
shape of the function.

Another concern is the routine application of trend analysis whenever one or more
independent variables are quantitative. Any set of a data points can be fitted by a polynomial
of order a — 1, but if the population function is not a polynomial (e.g., a sine curve, or an
exponential function), the polynomial analysis can be misleading. It is also dangerous
to freely identify significant components with psychological processes. It is one thing to
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hypothesize a cubic component of a variable, to then test for its contribution, and to find
it significant, thus substantiating the theory. It is another matter to assign psychological
meaning to a significant component that has not been hypothesized prior to the collection
of data. An unexpected significant component should be of interest and should alert the
researcher to the possible need to reexamine the hypotheses that led to the study. However,
such a result should be viewed with even more than the usual skepticism until validated by
further research. If these caveats are kept in mind, trend analysis can be a powerful tool
for establishing the true shapes of data functions. As such, this method of analysis should
accompany the development of precise quantitative behavioral hypotheses.

KEY CONCEPTS

linear trend intercept
linear regression coefficient trend analysis
predicted group means orthogonal polynomials
polynomial function of order a — 1 quadratic coefficient
cubic coefficient quartic coefficient

EXERCISES

10.1 Four groups of 8 participants each are tested on a problem; time to solve is the
dependent variable. The independent variable is the number of previous practice
problems. The group means are

Previous problems: 1 2 3 4
Meantime: 6.49 4.82 4.25 3.80

The average within-group variance is 1.42.
(a) Calculate the value of b\, the least-squares linear regression coefficient defined

by Equation 10.2.
(b) Using the result in part (a), calculate the predicted mean for each of the four

groups.
(c) (i) Use Equation 10.6 to calculate SSlin. (ii) Redo the calculations by using Equa-

tion 10.8, the single degree of freedom formula for a contrast. Carry out the
significance test. (iii) What would a significant F ratio tell us about the results
of this experiment?

10.2 (a) Are the means in Exercise 10.1 adequately described by a straight line? Present
evidence to justify your response.

(b) A somewhat different test of SSlin than that we present here has been proposed
on several occasions. The procedure is to test SSlin against MSresidual; SSresidual =
SStot — SSlin, dfresidual = (an — 1) — 1, and MSresidual = SSresidual /dfresidual . What is

the underlying assumption of this test procedure? What are its potential advan-
tages and disadvantages?

10.3 In a study of the effects of group problem solving, group size = 2,3,4, or 5. Professor
Smith believes that "the more the merrier" and predicts that scores will increase as
size increases. Professor Brown believes that "there can be too much of a good thing"
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and predicts that scores will improve and then drop as size increases. There are five
groups in each size condition, and each group attempts 10 problems. The dependent
variable is the number each group gets correct. The means and standard deviations
for each size condition are

Size = 2 3 4 5
Mean = 2.8 4.6 7.4 6.0

s = 3.578 1.788 1.720 1.414

Do a trend analysis. Which prediction do the results support?
10.4 (a) Equation 10.15, defining the F ratio for testing polynomial terms, may be rewrit-

ten so that its square root is the ratio of the polynomial coefficient to its standard
error (SE). The square root of that F ratio is a t statistic. That is,

Use this equation to test linear trend and confirm that the resulting t is the square
root of the F ratio computed in Exercise 10.3.

(b) Find the .95 CI for b'1.
(c) Convert this into a CI for b1, the slope of the line that best fits Y as a function of

X.
d 10.5 A method used in some memory studies involves requiring participants to respond

yes or no within a predetermined interval to a probe of memory. For example, Corbett
and Wicklegren (1978) presented the name of a category (e.g., bird) for 2 seconds,
and then a second word (e.g., robin); participants then had s seconds to respond as
to whether the second word was a member of the category. One mathematical model
predicts that, as s increases, accuracy should at first be flat, then increase, and finally
flatten out again. Although experiments using this deadline procedure are usually run
as within-subject designs, we will assume that there are seven groups of six subjects,
each of which are tested with a different response interval, ranging from 0.2 seconds
to 1.4 in intervals of 0.2.
(a) Which trend component(s) should be significant?
(b) The file Ex10_5 contains the scores. The independent variable is Time and the

dependent variable is d_prime (d'), a measure of accuracy. Test for the trend
component(s) you listed in answer to part (a). Also test whether any other com-
ponent(s) are significant.

€ 10.6 For the data in the Exl0_5 file, construct a plot based only on the significant com-
ponents (see Fig. 10.4). What does this plot represent?

@ 10.7 The file Exl0_7 contains a data set from a hypothetical drug experiment. The four
levels of the factor A represent drug dosages in milligrams. The dependent variable
Y is a performance measure.
(a) Plot the means of the Y data against the levels of A; include standard error bars,
(b) Perform an ANOVA (analysis of variance) on the data, including tests of each of

the three polynomial components of A.
(c) Discuss the results of part (b) with respect to the plot of the means.

@ 10.8 The concept of orthogonal components may be clarified by further analysis of the
data in the Exl0_7 file.
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(a) Using Equations 10.16 and 10.17, calculate b'3. Then, calculate the cubic compo-
nent for each group, b'3ecubic. Call this cubic. The £ cubic values can be obtained
from Appendix Table C.6.

(b) Subtract each cubic value calculated in part (a) from the Y scores in the corre-
sponding group. Call the result V. Find SSA for the dependent variable, V. How
is this quantity related to the results of the ANOVA in Exercise 10.8?

(c) Calculate the linear and quadratic sums of squares for the V variable. Compare
the results with those in part (c) of Exercise 10.7.



Chapter 11
Multifactor Between-Subjects
Designs: Significance Tests in
the Two-Way Case

11.1 INTRODUCTION

In this chapter, we extend the between-subjects design of Chapter 8 to include a second
factor. In an example of this design, Wiley and Voss (1999) had 64 students read about
the Irish potato famine of the first half of the 19th century. One factor was the format:
whether the material was presented in a single textbooklike chapter (text format) or divided
among eight sources in a computer weblike (web format) environment. A second factor
was the instructions participants received; they were told to either write a narrative (N),
a summary (S), an explanation (E), or an argument (A) about what produced changes in
Ireland's population between 1800 and 1850. In summary, the experiment was a 2 x 4 ("two
by four") design involving two types of format (text or web) and four types of instructions
(narrative, summary, explanation, or argument). The 64 participants were assigned randomly
to the eight cells with the restriction that there were 8 participants in each cell.

Including several factors within the same experiment allows us to use one data set to
investigate several issues. In the Wiley-Voss study, the researchers wanted to test whether
the argument instruction promoted "more conceptual understanding" as evidenced by the
effects of instructions on writing, inference, and analogy tasks. They also were interested in
whether the more difficult web format, which forced readers to integrate material obtained
from several sources, would lead to a deeper understanding. Another focus of the experiment
was the interaction of format and instructions; the researchers were interested in whether
any difference between the effects of the argument instruction and the other instructions
would vary depending on the format.

In the next section, we view tables and graphs summarizing one of the measures from
the Wiley-Voss study. Those data will then be used to illustrate the ANOVA (analysis of
variance) and several possible follow-up tests for a two-factor design. This is followed by
a more formal development of the model underlying the analysis. Chapter 12 continues the
development of multifactor designs. Topics in that chapter include analyses of effect size and

284
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power, problems raised when cell frequencies are unequal, alternative structural models,
and matching participants on a concomitant variable. Chapter 12 also extends previous
developments to designs involving more than two factors.

11.2 A FIRST LOOK AT THE DATA

11.2.1 Summary Statistics

Wiley and Voss tested readers' understanding of the material in several ways, one of which
was a 10-item inference verification test (IVT). Table 11.1 presents the percent correct IVT
scores, together with cell and marginal means, and cell variances. Looking at the marginal
format means in the rightmost column, we observe that performance for the web format
(Yweb) was better than that for the text format (Ytext). We will soon consider whether this
difference reflects a difference in the means of populations tested under these conditions,
or whether it is caused by chance. Looking at the cell means, we see that the difference in
the marginal means seems largely due to the argument (A) instructional condition; although

TABLE 11.1 IVT SCORES, WITH SUMMARY STATISTICS

Instructionsa

Format N S E A

Text 70

80
80
70
60
50
80
80

Ytext.k = 71.25

s2
text.k = 126.79

Web 100
80
60
60
60
70
90
90

Yweb.k = 76.25
S2

web.k = 255.36

YN = 73.75

50
90
60
80
70
80
80
70
72.5

164.29

70
70
80
50
90
60

100
70
73.75

255.36

Ys= 73.13 YE

Y... = 74.84

70
80
70
60
60
80
70
60
68.75
69.64

60
60
80
80
80
60
80
80
72.5

107.14

= 70.63

70
70
60
60
70
90
90
80
73.75 Ytext = 71.56

141.07

100
90

100
80
90

100
70
90
90 Yweb = 78.1

114.29

YA = 81.88

Note. N = narrative, S = summary, E = explanation, and A = argument.
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Fig. 1 1 . 1 Bar graph of the Wiley-Voss (1999) IVT data.

the web format has a higher mean than the text format in all instructional conditions, the
differences between web and text cell means are small except in the A column. Turning
next to the marginal instructional means (YN, Ys, YE, and YA), we find the IVT mean to be
higher in the argument condition than in any of the others. Again, however, we must qualify
this; looking at the cell means in the two format conditions, we see that the advantage of
the argument condition is apparently quite pronounced for the web format, but rather small
in the text format. Whether we view the data as showing that the difference between format
means depends on instructions, or as showing that the differences among instruction means
depend on format, we are concerned with an interaction of format and instructions. This is
clearer in the bar graph of Fig. 11.1. Although web learning has an advantage in all four
instructional conditions, that advantage is clearly more pronounced in the A condition than
in any of the other three.

Table 11.1 also reports the cell variances. In three of the four instructional conditions,
the variance is larger in the web than in the text condition. However, the cell frequencies
are equal and the ratio of smallest to largest variance is less than 4, suggesting that the
inequality of variances may not seriously violate the ANOVA's homogeneity of variance
assumption. Another index of variability is provided by the lines projecting from the top of
each bar in Fig. 11.1; these indicate the standard errors (SE) of the cell means. Consistent
with our conclusion based on Table 11.1, the variation in the heights of the SE lines appears
slight. We next consider this further, armed with graphic displays and the results of a test
of the null hypothesis of equality of spread.

11.2.2 Evaluating the Validity of Assumptions

Ultimately, we wish to conduct tests of null hypotheses about the population means. As
stated in the preceding chapters, the distributions of the F and t statistics are derived under
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Fig. 11.2 Normal probability plot of
the Wiley-Voss IVT residuals.

assumptions of independence, normality, and homogeneity of variance. We examine those
assumptions for the IVT data, and we also check for the presence of any outliers that might
be responsible for the apparent superiority of the A/web condition. Given that participants in
the study were randomly assigned to conditions, there is no reason to suspect a violation of
the independence assumption. The normality assumption may not hold because the scores
tend to be high and the upper tail will tend to be truncated by the ceiling of 100. However, as
we discussed in Chapters 6 and 8, computer-sampling studies indicate that Type 1 error rates
are not usually greatly affected by departures from normality. To be sure that the departure
from normality is not severe, we used the SPSS software to plot the z scores expected under
the normality assumption against residuals (the residual is the difference between a score
and its cell mean). This normal probability plot is presented in Fig. 11.2. The advantage
of using residuals, which are available in most statistical packages, is that the effects of
experimental treatments are removed from the data. As we discussed in Chapter 2, if the
data are perfectly fit by a normal distribution, the points fall on a straight line. In fact, the
points, although not all on the line, fall quite close. We also used SPSS's Explore module to
apply the Kolmogorov-Smirnov test of normality to the residual distribution of 64 scores;
the result was a nonsignificant p value of .20.

What about the possibility of heterogeneous variances? In viewing Table 11.1, we saw
indications that the population variances might not be equal. However, none of the set of
four test results provided by SPSS's Explore module resulted in a p value less than .39.
The Brown-Forsythe test (Brown & Forsythe, 1974a), recommended in Chapter 7, yielded
an F on 7 and 56 df of .692. Apparently, the differences in the variances of the eight
groups are no more than we would expect by chance, assuming the population variances are
equal.

We also checked the data for outliers. Figure 11.3 presents box plots of the data in the
eight cells. There are no outliers using the criterion defined in Chapter 2. Therefore, we
doubt that the apparent advantage of the A/web condition is due to a deviant score either
increasing that mean, or lowering other means. This conclusion is supported by finding that
the pattern of the medians is similar to that for the means: as with the means, it is the A/web
condition that seems most deviant.1
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Fig. 11.3 Box plots of the Wiley-Voss IVT data.

11.3 TWO-FACTOR DESIGNS: THE ANOVA

In this section, we discuss the nature of main and interaction effects in data from a two-
factor completely randomized design, and we develop the ANOVA (analysis of variance)
to test those effects. In these designs, there are two independent variables, A and B, with
a levels of A, b levels of B, and n scores in each of the ab cells. We represent a score
as Yijk, the ith score at the jth level of A and the kth level of B. We begin by considering
the decomposition of Yijk into several components, and then we build on this to develop
the partitioning of sums of squares. Throughout the section, we use the Wiley-Voss IVT
scores to illustrate developments. In this example, we index the levels of format by j(j = 1
or 2, corresponding to text or web), and the levels of instruction by k(k = 1, 2, 3, or 4,
corresponding to N, S, E, or A). The cell frequency, n, is 8 and the total number of scores,
abn or N, is 64.

11.3.1 Components of the Scores

In the one-factor design of Chapter 8, we viewed a score as consisting of three compo-
nents: the grand mean, the treatment main effect, and a residual, or error, component. We
represented this by

Subtracting the grand mean from both sides, we have

Equation 11.2 provides the basis for the partitioning of the total sum of squares (SStot), and
therefore for the ANOVA. By squaring and summing each component, we saw that the total



where a cell is the combination of a level of A and a level of B; for example, the combination
of narrative instructions and text format (N/text) is one of eight cells in the Wiley-Voss
design.

The residual, the deviation of a score from its cell mean, reflects chance, or error,
variability; a subject's score differs from those of other people in the same cell, and therefore
from the average for that cell, because of individual differences or random variation within
the experimental conditions. The variance of these residuals is the error term in the ANOVA,
our best estimate of chance, or error, variance in the ab treatment populations. The cell
effect, the deviation of the cell mean from the grand mean, may be decomposed further
into components that reflect the questions of interest to the researcher. In the Wiley-Voss
example, the cell deviation can be partitioned into a format component, an instruction
component, and a third component reflecting the interaction of format and instruction.
The format and instruction components of this effect are main effects, and the interaction
component is the interaction effect. On occasion, we refer to some variable such as format
as having a significant effect (or a significant main effect). More precisely, we mean that
the population effects at the levels of the variable are not all zero or, equivalently, that the
population means at these levels are not all the same. The relation of the cell effect to the
main and interaction effects is

In words,

score — grand mean = main effect of A (format) + main effect of B (text)

+ interaction effect (format x text) + residual

In the two-factor design, we can also view a score as consisting of the three components
of Equation 11.2. In a manner similar to that of Equation 11.2, we could write

sum of squares equaled the between-groups sum of squares plus the within-groups sum of
squares. That is,
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Equation 11.5 provides one way of thinking about the interaction effect; if we subtract
the two main effect terms from both sides, we find that the interaction is what remains of
the cell effect after the main effects have been subtracted.

Substituting the right side of Equation 11.5 for the cell effect in Equation 11.4, we have
the basis for the ANOVA:
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Table 11.2 displays a breakdown of the IVT scores into the components of Equa-
tion 11.6. For example, the value — 4.844 in the N column of the top row of the scores—grand
mean panel is the sum of the corresponding values in each of the panels on the right; that is,

TABLE 11.2 A BREAKDOWN OF THE IVT SCORES FROM THE WILEY-VOSS EXPERIMENT

Format N S E A

Text

Web

Text

Web

Text

Web

Text

Web

-4.844
5.156

5.156

25.156
5.156

15.156

-3.281
-3.281

-3.281

3.281
3.281

3.281

-1.094
-1.094

-1.094

-1.094
-1.094

-1.094

Scores — Grand Mean (Y i j k -
-24.844

15.156

-4.844

-14.844
-4.844

-4.844

= Format Effect (Y.j. - Y
-3.281
-3.281

-3.281

3.281
3.281

3.281

+ Instruction Effect (Y..k —
-1.719
-1.719

-1.719

-1.719
-1.719

-1.719

+ Interaction (Y . jk - Y.j. - Y..k

0.781 2.656
0.781 2.656

0.781

-0.781
-0.781

-0.781

2.656

-2.656
-2.656

-2.656

-Y...)
-4.844

5.156

-14.844

-4.844
-14.844

5.156

...)
-3.281
-3.281

-3.281

3.281
3.281

3.281

Y...)
-4.219
-4.219

-4.219

-4.219
-4.219

-4.219

+ Y...)
1.406
1.406

1.406

-1.406
-1.406

-1.406

-4.844
-4.844

5.156

25.156
15.156

15.156

-3.281
-3.281

-3.281

3.281
3.281

3.281

7.031
7.031

7.031

7.031
7.031

7.031

-4.844
-4.844

-4.844

4.844
4.844

4.844
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TABLE 11.2 (continued)

Format N S E A

Text

Web

-1.25
8.75

8.75

23.75
3.75

13.75

+ Residuals (Yijk

-22.50
17.50

-2.50

-3.75
-3.75

-3.75

- Y.Jk)
1.25

11.25

-8.75

-12.50
-12.50

7.50

-3.75
-3.75

6.25

10.00
0.00

0.00

Each panel corresponds to a term in Equation 11.6. The grand mean (74.844) is subtracted
from every score, giving rise to the values to the left of the equals sign. The format
effect is —3.281 for those scores in the text condition (the top half of each panel) and
3.281 for those scores in the web condition (the bottom half of each panel). The text
and web effects sum to zero because they are deviations of the text and web means
from their average, the grand mean; as we pointed out in Chapter 2, the sum of devi-
ations of scores about their average is zero. For the same reason, the four instruction
effects also sum to zero, as do the interaction effects when summed over either rows or
columns.

Turning to the panel representing the Instruction Effects, note that the average N and
S scores are —1.094 and —1.719 below the grand mean. The E mean is further below the
grand mean (—4.219), and the argument mean is 7.031 points above it. Although the same
information could have been obtained from the means in Table 11.1, the display of effect
sizes should immediately make clear that the argument instructions had a strong positive
effect on the inference scores.

If Instructions and Format were the only factors (other than chance) influenc-
ing the results, the Interaction panel would have all zeros in it. However, the com-
binations of Instructions and Format make additional contributions to the data. As in
Table 11.1 and Fig. 11.1, we see in this panel that the spread between text and web
effects is greater under argument (A) instructions than in any of the other instructional
conditions.

Note.

Notice that the same value, —4.844, in the A column in that same top row has some
different components:
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Finally, look at the residuals. Although, to conserve space, we have omitted many of
the rows in these panels, the residuals that are displayed indicate that there is considerable
error variability in the data. We see absolute values as large as 23.50 and as small as zero.
Such variability of the residual terms is informative. On one hand, if there is considerable
variability, effects that appear large may be due to chance. On the other hand, if the effects
are not due to chance, the power of the hypothesis test may be low because of the large error
variability. In general, when there is considerable error variability, we can be less confident
about how to interpret nonsignificant effects.

11.3.2 The ANOVA Table

If we square each of the 64 values of Yijk — Y... in Table 11.2, and then sum those squared
quantities, we have SStot, a measure of the total variability in the data set. Similarly, squaring
each of the 64 terms in each panel to the right of the equals sign and summing results in
a component of the total sum of squares. For example, consider the Instructions Effects.
Squaring the values of each of the four effects (-1.094, -1.719, -4.29, and 7.031) and then
multiplying by 16 yields SSinstructions. The equations at the bottom of Table 11.2 demonstrate
the partitioning of sums of squares, and the parallel to the decomposition of scores.

Table 11.3 presents the ANOVA of the data of Table 11.1. Formulas for degrees of
freedom and SS have been presented, assuming a texts and b instructions; numerical values
based on the IVT data are presented with these formulas. The sources of variance (SV)

TABLE 11.3 ANOVA OF THE WILEY-VOSS DATA

SV df SS MS F

Total abn - 1 = 63

Between cells ab — 1 =7

Format (F) a — 1 = 1

Instructions (I) b — 1 = 3

FI (a -1)(b -1) = 3

S/FI ab(n - 1) = 56

EjEkEi(Yijk-Y...)2
j k i

= 10,998.44

nEjEk(Y.jk-Y...)2

j k

= 2,360.94

nbEj(Y.j -Y...)2

= 689.06

na E (Y..k. - Y...)2

k

= 1,142.19

SScells — SSF — SSI

= 529.69

SStot — SScells

= 8,637.50

SSF = 689.06 MS
F =4.47a

dfF MSs/FI

SS
I =380.73 MS

I =2.47b
df =380.73 ,.„ = 2.47b

df, MSs/FI

SS
FI = 176.56 MS

FI =1.14c

dfFI MSs/FI

SS
S/FI = 154.24

df
s/Fi

ap = .039; bp = .071; cp = .337.



The SS formulas in Table 11.3 are essentially instructions to operate on the effects in
Table 11.2. These formulas were first presented in that table and were used to calculate the
numerical values in Table 11.3. Note that, just as the various deviation scores in Table 11.2
summed to Yijk — Y..., the corresponding sums of squares sum to the SStot. The formulas
presented in Table 11.3 define the sums of squares and therefore should provide a sense of
the variability represented by each term. We calculated the results in Table 11.3 by using
SPSS; other statistical packages such as SAS, SYSTAT, or BMDP would have done as well.
In the absence of suitable software, a calculator that has a variance key can quickly provide
the desired results. For example, the SStot is abn — 1 times the variance of all the scores, the
SSA is bn(a — 1) times the variance of the A marginal means, and the SScells is n(ab — 1)
times the variance of the ab cell means.

As in the one-factor design, the MS of Table 11.3 are ratios of SS to degrees of free-
dom. Conceptually, however, the mean squares for the main effects are simple functions of
variances. For example, MSI is the variance of the four marginal means in the instructional
conditions, multiplied by 16, the number of scores on which each mean is based. The error
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reflect, first, the partitioning of the total variability into a between-cell (SScells) and a within-
cell (SS s / F I) component, and, second, the further partitioning of the between-cell component
into the Main and Interaction Effects of Table 11.2. These S V then dictate the values of the
degrees of freedom. The variability among cell means is based on 7 df because deviations
are calculated for eight cell means about the grand mean of the 64 scores. The between-cell
variability usually is not of interest in itself because it has several possible sources. The
eight cell means may differ because they represent different formats, different instructions,
or different combinations of formats and instructions. There is 1 df for the Format SV
because the mean of the 32 scores from the text condition is compared with the mean of
the 32 scores for the web condition. Similarly, there are 3 df for the Instruction SV because
it represents the variance of the four instruction means about the grand mean. Calculating
the SSFI involves taking deviations of cell means about the grand mean, and removing the
variability caused by Format and Instruction; therefore, the 7 df for the cells SV are reduced
by 1 (Format) and 3 (Instruction), leaving 3 df for the Format x Instruction interaction. In
general, if there are a levels of a variable, A, and b levels of B, the interaction degrees of
freedom are

reflecting the adjustment of cell variability for the variability caused by A and B. In practice,
we can generate the degrees of freedom for an interaction just by multiplying the degrees
of freedom for the interacting variables.

The dfs/AB may be thought of as the difference between dftot and d f c e l l s ; in our example,
this is 63 — 7, or 56. We can also view these degrees of freedom as the result of summing
the degrees of freedom for variability within each cell; there are ab cells, each with n — 1 df,
yielding ab(n — 1) df, which is 8 x 7 in our example. The two ways of thinking about degrees
of freedom, as a difference between the total degrees of freedom and the cell degrees of
freedom, or as a sum over cells, are equivalent; that is,
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where, for example, ( U t e x t , N is the mean of the population of scores obtained under the
narrative instructions and the text format. The difference between the observed text and
web means under argument (A) instructions appears considerably larger than the other
differences, as evidenced in the means of Table 11.1 and the bar graph of Fig. 11.1, as
well as by the panel displaying interaction effects in Table 11.2. Nevertheless, the F test
of the interaction fell well short of significance. This raises several questions. Given that
the Instructions and the Format x Instructions sources of variance were not significant, is
it proper to proceed with tests of contrasts related to those sources? If so, how should the
families of tests be defined? How should the familywise error rate (FWE) be controlled?

where s2
jk is the variance of the n scores in the cell defined by Aj and Bk. All three F ratios

are formed by using the MS s / F I in the denominator. For example, the F ratio for the Format
SV is 689.06/154.24, which equals 4.47. The reason for this choice of denominator follows
from the discussion of expected mean squares (EMS) in Chapter 8. Under the assumptions
presented there, if the means of the text and web populations do not differ, both MSF and
MS s / F I estimate the population error variance, ae

2. Therefore, forming a ratio of these two
mean squares follows the rule that the numerator and denominator MS of an F ratio must
have the same expectation when the null hypothesis represented by the numerator is true.
The same rationale also justifies testing the Instruction and Format x Instruction mean
squares against MS S / F I . We take a closer look at the expected mean squares and the model
underlying their derivation in the next section.

As the experimenters hypothesized, a significantly higher proportion of inferences were
correctly verified by participants in the web than in the text format condition. To understand
what this means, consider eight populations differing with respect to the type of format
and instructions. The F test of the Format source of variance addresses the null hypothesis
that the average of the four populations of IVT scores obtained under the web format does
not differ from the average of the four populations of IVT scores obtained under the text
format. In terms of Table 11.1, it is the marginal means, yweb (78.13) and Ytext (71.56),
that differ significantly. It is important to understand that this test informs us only about
the marginal means; by itself, it does not provide information about the difference between
format effects at any particular level of instructions.

The experimenters also were interested in whether instructions would affect perfor-
mance. They reported that the effect was "marginally significant" because the p value was
.07, short of the .05 level usually required for statistical significance. We pursue the ques-
tion of the effect of instructions in Chapter 12, where we calculate measures of effect size,
using the Wiley-Voss IVT data to illustrate such calculations for two-factor designs. We
also calculate the power of the test of instructions in Chapter 12.

The F test of the Format x Instructions interaction tests the null hypothesis that the
effects of instructions are the same under text as under web learning. One statement of the
null hypothesis of no interaction is that the difference between the text and web population
means is the same under all types of instructions. This may be represented as

mean square, MSs/FI, is an average of the within-cell variances; we can calculate it as
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What is the appropriate error term? We consider those questions later in this chapter. First,
however, we take a closer look at the model underlying the ANOVA of Table 11.3.

11.4 THE STRUCTURAL MODEL AND EXPECTED MEAN
SQUARES

The formal justification of the ANOVA of data from multifactor designs lies in a set of
assumptions, including a model of the relation between the observed scores and various
population parameters. To understand this structural model, we need to define certain
population parameters. Table 11.4 defines the population means, effects based on these
means, the quantities that estimate these parameters, and the EMS.

The EMS show how the population parameters may contribute to the variability in the
data. Note that a2 contributes to each of the EMS. In the A, B, and AB rows, there is an

TABLE 11.4 POPULATION PARAMETERS AND ESTIMATES, AND EMS FOR A TWO-FACTOR
DESIGN

The Model

Yijt = U + (X; + Bk + (aB)jk + E i j k

where Yijk = ith score at the jth level of A and the kth level of B.

Population Means Estimates

(ujk = mean of the pop. of scores at Aj and Bk

M= -rjkuj r b
uk -E ujku.k = 2 =

/ a

u = ££ ujk
j k ab

SV EMS

Y.jk = Eyijk

y
y E E ijk

EE nb

Y..k = E-E-Yijk
i j na

Y = E E E Yijki j k n ab

A a e
2 + n b E ( u j. - u)2(a - 1) = o? + n b E a 2 / ( a - 1)

j j
B ae

2 + na £ (u.k - u) 2 / (b - 1) = ae
2 + na E Bk

2/(b - 1)
k k

AB ae
2 + nE E (ujk - uj - uk + u)2/(a -1)(b-1)

j k

= a2
 e+ nEE (aB)2

jk/(a - 1) (b - 1)
j k

S/AB a-e
2

Note.

a.j = uj. - u, Bk = uk - u and (aB) j k = (ujk - u) - aj - Bk = (ujk - Uj, + u)



The relations among these population parameters and the data are summarized by the
structural model stated in Table 11.4.

4. The interaction effect of Aj and Bk, (ctB)jk. Because both A and B have fixed
effects, ^2j(a.$)jk = Z]/c(aP)./£ = 0- The relevant null hypothesis is

or, equivalently,

3. The main effect of treatment B, (3/t. This is also a fixed-effect variable and so
]T^ PJ. = 0. The F test of the B main effect tests the null hypothesis that

or, equivalently,
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additional term involving the sum of squared population effects, multiplied by a coefficient.
The coefficient is the number of scores on which each of the relevant means are based. For
example, the A SV reflects the variability among a means that are each based on bn scores,
whereas the AB SV involves the variability of ab means that are each based on n scores.
MSs/AB is the appropriate error term for all F tests because, if HQ is true, the numerator and
denominator MS will have the same expectation, a2.

Scores obtained under the same combination of A and B may differ simply because they
were obtained from different individuals or because of other chance factors such as variation
in the time of day. These individual differences and errors of measurement contribute to
a2, the error component defined in Table 11.4.

Deciding whether the variability in the scores is caused by anything more than chance
variability is what the analysis is about. For example, consider the factor A; if it does not
matter what level of A is administered to subjects, the JJL, would be identical and, therefore,
the a/ would all equal zero. The F test of the A source of variance will evaluate the variance
of the 7;; the issue is whether the variance of those means is about what one would expect
on the basis of chance variability alone, or whether it is so large as to suggest that the
population means, the JJLJ. , vary. An important point to keep in mind is that this test will
not tell us about whether the factor A has an effect at any particular level of B. The means
being compared are each based on all bn scores at a level of A.

In summary, variability in the data has four possible sources. These are as follows:

1. The error component, £,#. We assume that the errors are independently and normally
distributed with mean zero and variance a2, within each treatment population
defined by a combination of levels of A and B.

2. The main effect of treatment A, a/. The factor A is assumed to have fixed effects;
that is, the a levels have been arbitrarily selected and are viewed as representing the
population of levels. Then £] . a; = 0. The F test of the A main effect tests the
null hypothesis that
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11.5 MAIN EFFECT CONTRASTS

Suppose we wish to test, or construct confidence intervals (CIs) for, contrasts of the
marginal instructional means in Table 11.1. Such tests follow the guidelines recommended
in Chapter 9. If a set of K contrasts is planned before the data are viewed, the researcher
can apply any of the methods described in Chapter 9 to deal with this case (e.g., the
Dunn-Bonferroni or the Dunn-Sidak methods). For example, in using the Dunn-Bonferroni
method, and assuming that the FWE is .05, we see that each contrast would be tested at
the .05/K significance level. Such tests can be conducted whether or not the F test of the
main effect was significant. In contrast, if the researcher has decided to test all pairwise
comparisons, then the Tukey HSD procedure would apply. Finally, if a contrast that was
not planned is tested, the Scheffe criterion should be applied. In all of these cases, the
appropriate test statistic for contrasts among means at various levels of the factor B is

where 7../t is the average of the an scores at B^ and w± is the weight on that mean.
Alternatively, we can calculate the contrast sum of squares (SS^) and divide it by the
MSenoT. The resulting F ratio is the square of the t statistic of Equation 11.7. The numerator
for this F test is calculated as

In testing a contrast of the instruction means in the Wiley-Voss data set, we find
that an = 2 x 8, the number of scores in each instructional condition. The error mean
square, MSerror, is the average within-cell variance, MSS/FI (154.24), if the assumption of
homogeneous variances is tenable. Summary statistics and data plots will help to decide
whether or not the ab population variances are homogeneous. Preliminary tests, such as
the Levene test or the Brown-Forsythe test, provide additional information. If there is any
indication that the population variances differ—either through eyeballing the variances or
because p < .25 in a preliminary test—we recommend calculating M$error as the average of
only the within-cell variances corresponding to the cells involved in the contrast. Otherwise,
the error term may be too small or too large, and consequently there will be too many either
Type 1 or Type 2 errors.

Tests of contrasts can usually be performed by statistical software packages. However,
to make clear just what is involved, we illustrate the calculations for each of the tests
performed in this section. As an example of the application of Equation 11.7, assume that
Wiley and Voss tested the contrast of the argument marginal mean with the average of the
other three means. Then the null hypothesis is
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The value of the t statistic is unchanged if we multiply all weights by 3, yielding integers.
Using the revised weights, and the means from Table 11.1, we find that the numerator of
the t is

Assume that the FWE is .05 and this test was one of four planned tests. Then, with the
use of the Dunn-Bonferroni method, the test is conducted with a = .05/4, or .0125; the
t required for significance at this (two-tailed) alpha level, with 56 df, is 2.58. Because
the calculated t exceeds this critical value, the null hypothesis would be rejected.

If the test of the null hypothesis was selected after the data were viewed, the Scheffe
criterion is applied:

Replacing 2.58 by the critical value of S, 3.27, we find that the confidence limits for the
Scheffe method are —2.36 and 21.11. Note that not only does the Scheffe interval include
zero, indicating that the contrast is not significant but also that it is a wider interval than
that obtained when the contrast had been planned. Once again, we see the price in precision
of the estimate of the contrast and, by implication, power of the significance test when
contrasts are not planned.

11.6 MORE ABOUT INTERACTION

11.6.1 When Effects Are Additive

Look again at Table 11.3. Consistent with the partitioning of the deviation of the cell mean
from the grand mean (Table 11.2), SSpi can be obtained by subtracting SSp and SSj from
SSceiis- In other words, the interaction sum of squares represents the variability among cell
means that still remains when variability caused by the main effects of the two factors

Assuming that the eight population variances are equal, we replace M5error by MSs/Fi in the
denominator of Equation 11.7. The final result is

where the numerator degrees of freedom, dfi, = b — 1 or 3 in our example, and the error
degrees of freedom, dfe, = 56, assuming the error term is MSs/Fi- In that case, with the FWE
set at .05, the critical value of S = 3.27, clearly larger than the t statistic we calculated.
Therefore, the post hoc contrast is not significant.

There was actually no need to perform the significance test because no contrast will
be significant when the Scheffe criterion is used unless the omnibus F test was significant.
Nevertheless, the CI will provide some added information. To calculate either the Dunn-
Bonferroni or the Scheffe limits, we need the SE of the contrast. Because we multiplied the
original weights by 3, we return to the original scale by multiplying by 1/3. Therefore, $ —
(1/3)(28.13) = 9.38 and its SE is ^ = (1/3)V(154.24)(12/16) = 3.59. On the original
scale, the Dunn-Bonferroni limits are
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has been removed. Although this definition of interaction is correct, it is not satisfying.
Ordinarily, we would like to make a statement about an interaction in terms of the plot
of the original cell means. One way to develop this sort of interpretation is to consider
what the data would look like if there were no interaction. When there is no interaction,
the effects of the factors in the design are additive; each cell mean is obtained by adding
the main effects to the grand mean. If the interaction components in Table 11.2 were
zero, the cell means would be the sum of the grand mean and the format and instructions
components. For example, in the absence of interaction effects, the mean for the scores in
the text format, narrative instruction condition would be the sum of the grand mean, the text
format effect, and the narrative instruction effect; that is, 74.844 + (-3.281) + (-1.094) =
70.469. Summing the Grand Mean, the Format effects, and the Instruction effects while
ignoring the Interaction panel of Table 11.2, we have the eight cell means in Table 11.5. For
comparison, we have also included the observed cell means in parentheses in the Cell Means
panel.

The interesting point about the "interactionless" cell means is that the difference be-
tween the web and text format is exactly 6.562 under all four sets of instructions. We may
also compare the instruction means in the two formats. For example, the difference be-
tween the Summary (S) and Narrative (N) means is .625 in both the Web and the Format
row. The difference between the A and E columns is 11.25 in both rows. The point is
that when there is no interaction, the difference between any two row means will be the
same in all columns and, equivalently, the difference between any two column means will
be the same in all rows. The point should be clear in Fig. 11.4, which contains a plot of
two functions, one for the web and one for the text format.2 These lines, based on the
cell means with no interaction effects, are parallel. Of course, no sets of means based on
real data will ever be exactly parallel; however, interaction is a significant departure from
parallelism.

TABLE 11.5 WILEY-VOSS CELL MEANS WHEN INTERACTION EFFECTS ARE REMOVED FROM THE DATA

Format N S E A

Text
Web

Text
Web

Text
Web

Text
Web
Difference

74.844
74.844

-3.281
3.281

-1.094
-1.094

70.469(71.25)
77.031 (76.25)
6.562 (5.00)

Grand Mean
74.844
74.844

+ Format Effects
-3.281

3.281

+ Instruction Effects
-1.719
-1.719

= Cell Means
69.844 (72.50)
76.406 (73.75)
6.562(1.25)

74.844
74.844

-3.281
3.281

-4.219
-4.219

67.344 (68.75)
73.906 (72.50)
6.562 (5.75)

74.844
74.844

-3.281
3.281

7.03 1
7.031

78.594 (73.75)
85.156(90.00)
6.562(16.25)

Note. Observed cell means are in parentheses.
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11.6.2 Testing Interaction Contrasts

When the interaction of two variables is significant, main effects are insufficient for an
understanding of our data. For example, if the Format x Instruction interaction had been
significant in the Wiley-Voss study, it would indicate that the size of the population format
effects depended on instructions. In this case, we might wish to test what Tukey (1991)
has termed "cross comparisons." These comparisons would include various 2x2 subsets
of means. An example of such a comparison would be the comparison of the difference
between the A and TV instructions in the web and format conditions. This is essentially a
contrast of contrasts.3 Tests of possible 2x2 interactions, embedded within a larger design
(such as the 2 x 4 of Wiley and Voss), are straightforward. For illustrative purposes, we test
a more complex cross comparison, one relevant to the pattern of means in the IVT data.

Assume that we wish to know if the contrast of the A mean against the average of the
other three is significantly different in the web and format conditions; this is the difference
between ^//web (instructional contrast within the web condition) and v}///text. The relevant
null hypothesis is

Alternatively, the F statistic can be obtained by calculating the sum of squares for the

Rewriting to make the weights (vv.*) more obvious, we have HQ: fy = 0, where

The t statistic for each of these contrasts is similar to the statistic in Equation 11.7:

Fig. 11.4 The Wiley-Voss IVT data
with no interaction.
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contrast and dividing by MSenoT. The equation for the contrast sum of squares is similar to
Equation 11.8:

The t and F statistics are calculated in Table 11.6.
How shall we evaluate the result of our calculations? If this is one of K planned

interaction contrasts, we would use a method such as the Dunn-Bonferroni method to
control the FWE. Such a test can be performed whether or not the omnibus test of the
interaction was significant. If the test was post hoc, perhaps based on noticing the apparent
difference between the web and text contrasts, the Scheffe method should be applied. The
critical value of S is calculated as

The t calculated in Table 11.6 is clearly smaller than S and, therefore, we would not reject HQ .
In fact, whichever method we use, even setting a = .05 (as if there were exactly one planned

TABLE 11 .6 CALCULATIONS FOR TESTS OF A CROSS COMPARISON

Because we want a difference between two contrasts, we begin by calculating $ //web and $1/text the
instructional contrast of interest within the web and text conditions. We have

$ I/text = Y . t e x t . A — (l/3)(Y.text.N + Y . text .S + Y . tex t .E)

= 73.75 - (1/3)(71.25 + 72.5 + 68.75) = 2.917

and, similarly, we find that $I/web = 15.833. Then the contrast we wish to test is

$ = $ I/web - $ I/text = 15.833 - 2.917 = 12.916

The SE of this contrast is

The MSerror (assuming homogeneity of variance) is 154.24 and the sum of the eight squared weights
is 24/9, or 2.67. Therefore S(154.24)(2.67/8), or 7.17, and / = 12.92/7.17, or 1.80.

To calculate the F statistic, we find

Dividing by MSS/FI, we find F — 3,24, which equals the square of the t, 1.80.

Note. The sum of the squared weights is 12 + (3)(-l/3)2 + (-1)2 + (3)(l/3)2 = 24/9.



This rather wide interval reflects the variability of the IVT scores and attests to the impreci-
sion of the estimate and implies that our test had little power. As we have preached at other
points in the text, it is usually better to anticipate the contrasts of interest before collecting
the data. This permits a narrower definition of the family, and consequently a more precise
estimate and higher power of the significance test.

The effects of one variable at a specific level of another variable—for example, the ef-
fects of format under the argument instructions—are called simple effects. An interaction is
significant when the simple effects of one variable depend on the level of the second variable.
We now take a closer look at the nature of such effects and at related significance tests.

11.7 SIMPLE EFFECTS

Tables 11 .7a and 11.7b display estimates of the Simple Effects of Format and Instructions
on the IVT scores. To calculate the values in the panel labeled Simple Effects of Format,
we subtracted each column (instructional) mean from the cell means in that column. For
example, the average of the text scores in the narrative (N) condition is 2.5 points below
the mean of that condition. This value, —2.5, is the simple effect of the text format in the
narrative condition. The other values in the simple effects panel have been obtained in the
same way. Two points should be noted about these simple effects of format. First, just as
the main effects of format sum to zero, so do its simple effects. Second, the means of the two
rows in the simple effects panel are —3.281 and 3.281; these are the main effects originally
computed for the text and web formats in Table 11.2. In general, the main effects of a
variable are an average of its simple effects. If all interaction effects are zero, all the simple
effects in a row equal the row main effect. In this data set, the simple effects vary somewhat;
the Simple Effects of Format are greater in the A condition than in any other instructional
condition. Although this is evident from the original cell means in Table 11.1, by carrying
out the subtraction illustrated in Table 11.7a, we immediately see both the direction and
size of the effects of format at each instructional level.

Table 11.7b presents the Simple Effects of Instruction in each format condition. To
calculate these effects, we subtracted the row means from each cell mean. The sum of the
instruction simple effects (i.e., the sum of the four values in each row) is again zero and
the average of the simple effects of any instruction equals the instructional main effect;
for example, the average of —.313 and —1.875 is the N main effect of —1.094 found in
Table 11.2, or Table 11.5. We again see that the combination of the argument instructions
and the web format has a distinct effect; the distance between the A simple effect and those
for N, S, and E is greater in the web than in the text condition.
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contrast), we find that the result is not significant. In the case of the Scheffe method, the fact
that the test of the interaction was not significant meant that tests of interaction contrasts
could not be significant. Nevertheless, it may be of interest to calculate S in order to find
the CI. Nonsignificance is a failure to reject, not an acceptance of, the null hypothesis.
Therefore, it still makes sense to estimate the effect and to have an index of the precision
of the estimate. As calculated in Table 11.6, the estimate of v is 12.92 and the confidence
limits for the Scheffe method are
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11.7.1 Testing Simple Effects

There are differences of opinion about when simple effects should be tested. Some individ-
uals recommend that such tests should be performed only if the interaction is significant.4

We believe that this should not be a necessary condition provided the tests were planned
and the FWE is controlled. As an example of the test for significance of simple effects, we
test the effect of instructions in the web condition. At issue is whether the means of the four
instructional populations of IVT scores in the web format condition differ from each other;
the null hypothesis is

The numerator for the F test is the sum of squares for instructions within the web condition.
We denote this by SSI/web (sum of squares for instructions within the web condition). This
sum of squares is calculated as if the design were a one-factor design with four levels of
instructions, and 8 subjects in each instructional condition; the data for the text conditions
are ignored. Then SSI/web is obtained by squaring each of the four entries in the Web row

TABLE 1 1.7 SIMPLE EFFECTS OF FORMAT AND INSTRUCTIONS IN THE
WILEY-VOSS DATA

Format N S E A

(a) Format Simple Effects

Text 71.250
Web 76.250

Text
Web

Text
Web

73.750
73.750

-2.500
2.500

Cell Means
72.500
73.750

— Column Means
73.125
73.125

68.750
72.500

70.625
70.625

=Simple Effects of Format
-0.625 -1.875

0.625 1.875

(b) Instruction Simple Effects
Cell Means

Text 71.250 72.500
Web 76.250 73.750

Text
Web

Text
Web

71.563
78.125

— Row Means
71.563
78.125

68.750
72.500

71.563
78.125

= Simple Effects of Instructions
-0.313 0.937 -2.813
-1.875 -4.375 -5.625

73.750
90.000

81.875
81.875

-8.125
8.125

73.750
90.000

71.563
78.125

2.187
11.875



There are two possible error terms in this analysis: one based on all eight cells and
one based only on the cells involved in the significance test. Use of the error term from the
omnibus F tests, MSs /FI, is supported by finding that neither the Levene nor the Brown-
Forsythe test of the homogeneity of the eight cell variances provided any evidence that the
population variances differed. However, the real issue in testing the effects of instructions
in the web condition is whether the average variance in the web cells differs from that
of the format cells. If so, we should use only the four web cell variances. Following this
reasoning, we subtracted each score from its cell median, took the absolute value of this
difference, and then performed a two-factor ANOVA on these absolute deviations from
the median. The p value for the format main effect was .47, providing no evidence of a
difference between the average population variances in the web and text format conditions.
In view of these results, we tested the simple effects of instructions within the web condition
by dividing MSI/web by MS s / F I . The MSI/web is the SSI/web divided by the degrees of
freedom for instructions, or 15 62/3. Therefore, F = (1562.5/3)/154.24 = 3.38. with 3 and
56 df.

Before we decide whether this result is significant, we have to decide on the criterion
for significance. Because there are two possible tests of simple effects, one at each format
level, we recommend that each test be carried out at the .025 level. Then the result is
significant in the web condition, p = .024, but not in the text condition. In summary, we
recommend that tests of simple effects of variable A at each level of B should be evaluated
with a = FWE/b; similarly, a = FWE/a for tests of equality for each of the B simple
effects.

Tests of contrasts of simple effects may also be carried out. For example, all pairwise
comparisons of instructional means within each format level could be tested. In that case,
we would apply the Tukey HSD method with a = .025.

11.7.2 Interactions and Simple Effects

In the IVT data, the Format x Instructions interaction was not significant. Nevertheless,
when tests were planned, the simple effects of instructions were significant in the web format
conditions, but not in the text conditions, a result that implies an interaction. Given the lack
of a significant interaction in the analysis of the IVT scores, many researchers would argue
against testing simple effects. However, we recommend proceeding as we have indicated.
If the tests were planned, the Dunn-Bonferroni or a similar procedure is appropriate. When
the results of the tests of simple effects are not consistent with the test of interaction, we
have to be careful about our conclusions. The lack of a significant interaction means that we
cannot conclude that there is an interaction in the population, but it also does not permit us
to accept the null hypothesis of no interaction. We can conclude, as Wiley and Voss did, that
instructions had a significant effect within the web condition. That is all we can conclude
on the basis of our tests.

of the Simple Effects of the Instructions panel of Table 11.7, and multiplying by n (8):
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Why do we frequently see results of tests of simple effects that suggest the presence
of interaction in the population when the test of interaction does not have a significant
outcome? Consideration of a 2 x 2 design suggests an answer. We can represent the cell
means as follows:

11.8 TWO-FACTOR DESIGNS: TREND ANALYSIS

In this section, as in Chapter 10, we consider only experiments in which at least one
independent variable is quantitative, the levels are equally spaced, and there are equal
numbers of observations in each cell. Most of the concepts and notation were originally
developed in Chapter 10, and a review of that material should be helpful. The calculations
are those for sums of squares of contrasts and follow closely from earlier developments in
this chapter; in particular, Equations 11.8 and 11.10 will be especially relevant although the
weights will be dictated by questions concerning the slope and shape of functions.

In Chapter 10, we described an experiment in which a GSR (galvanic skin response)
response was conditioned to a stimulus 11 in. high. Different groups of participants were
tested with either a 7-, 9-, 11-, 13-, or 15-in. stimulus, and the resulting GSR generalization
gradient was analyzed into orthogonal polynomial components. In this section, we introduce

Some algebra shows that tAB > tB/A1 only if $ AB > ( 2 ) ( $ B/Al). The point is that the SE
of the interaction involves the variance of differences among four means, whereas that for
the simple effect involves the variance of only two means. Because the variance of a linear
combination of independent entities is the sum of their variances, the interaction contrast
has to be roughly 1.4 (i.e., 2 ) times larger than the simple contrast to achieve the same
size t.

The 4 in the denominator represents the sum of the squared weights. To test the simple
effect of B at A\, we calculate

The simple effect of B at A1 is a contrast: $ B/A1 = Y.11 — Y .12. The interaction is also
a contrast equivalent to the difference between the simple effects, $ B/A1 and $ B/A2; we

denote this as $AB = (Y . 1 1 — Y.12) — (Y.21 — Y.22). Note that $ AB may also be viewed as
the difference between the A simple effects at the levels of B, (Y .11 — F.21) — (Y .21 — Y.22),
or, with a little further manipulation, as the difference between diagonal elements, (Y .11 +
Y.22) - (Y . 1 2 + Y .21) The t statistic to test the AB interaction is

B1 B2

A,
A2

Y.11

Y.21

Y.12

Y.22



TABLE 1 1.7 GROUP GSR MEANS FOR A TWO-FACTOR EXPERIMENT

Personality Type (A)

Control group
Schizophrenic group

Mean(Y.k)

TestStim. Height (in.) (B)

7 9 11 13 15 Mean(Y,j.)

1.24
3.66
2.45

3.96
4.16
4.06

4.44
4.22
4.33

4.48
4.30
4.39

3.08
4.08
3.58

3.440
4.084

3.762

Fig. 11.5 Plot of GSR means for control
groups and schizophrenic groups
(Table 11.8).

a second factor. Assume that we sample participants from two populations: 30 patients
diagnosed as schizophrenic (5) and 30 normal controls (C). The 30 participants from each
population are randomly assigned to each of the five test stimulus conditions described in
Chapter 10. In general, we have a levels of A, b levels of B, and n subjects in each of the
ab cells. In this example, A denotes personality type (a = 2), B denotes stimulus height
(b = 5), and n = 6. The cell means for this design are presented in Table 11.8 and plotted
in Fig. 11.5.

Given a design of this sort, there are a number of questions we can ask. We can
analyze the source of variance for stimulus height into its trend components just as we
did in the one-factor design. That allows us to answer questions such as, Averaging over
the two personality types, are there linear trends? That is, is the slope of the straight line
that best fits the five marginal means significantly different from zero? Does the function
describing those marginal means have a quadratic component? Is there any significant
component of curvature? We can also partition the interaction sum of squares, allowing us
to address issues raised by personality theorists who have hypothesized that individuals with
schizophrenia tend to discriminate less among stimuli than do individuals without it. This
hypothesis has two possible consequences: First, the group with schizophrenia (S) should
show a less pronounced increase in GSR than a control group (C) with increases in stimulus
magnitude. If so, the linear coefficient of the generalization function should be lower in
the group with schizophrenia than in the control group. That is, the slope of the straight
line that best fits the five means should be lower for the S than for the C subjects. Second,
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the generalization gradient should be flatter in the schizophrenic population than in the
control population. This implies that there will be significant differences in the curvature
of the two functions of stimulus height. Because the generalization gradient in Chapter 10
contained only a linear and quadratic component, we would expect that the difference
in curvature would show up in the quadratic coefficient, which would be predicted to be
less in the S groups than in the C groups. As we can see in Fig. 11.5, it appears that
the data support our two hypotheses. Although the figure is compelling, in what follows
we develop the statistical tests needed to ensure that the apparent differences in position
and curvature of the two functions of stimulus height are not merely because of error
variance.

11.8.1 The Analysis of Main Effects

The questions here are about the slope and shape of the average curve for the two personality
types. The relevant data are the marginal means for each of the test stimuli based on
the 12 participants tested with that stimulus. More generally, we are interested in the qth
polynomial component of B, and each of the b means is based on an scores. Most statistical
packages have a polynomial option in the ANOVA (or GLM, general linear model) module
and will perform the necessary calculations. Regression analyses (see Chapter 20), which
are not limited to equal spacing and equal n, can also be performed by such packages.
However, the sums of squares can also readily be obtained with a calculator, once cell
means are calculated. To carry out such calculations, we need to weight each mean as in
any contrast. Assume we want to calculate the sum of squares for the qth component of the
sum of squares, for example, for the linear component. Let Ek.q represent the weight that
multiplies Y..k, the mean of the scores at Bk; for example, Ek,lin would represent the linear
weight for Y.k. The formula for the sums of squares for the qth component of B (e.g., the
linear component of the stimulus height function) is

This quantity represents the degree to which the line that best fits the relation between GSR
and stimulus height (averaging over the two personality types) departs from a straight line.
Whether the slope of that line differs significantly from zero—that is, whether there is a
tendency for GSR to increase with stimulus height—is tested shortly. First, however, we
consider the components of the interaction.

Substituting the marginal stimulus height (B) means from Table 11.8 and the linear coef-
ficients from Appendix Table C.6 into Equation 11.13, we find that the sum of squares for
the linear component of B is
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11.8.2 The Analysis of Interaction Effects

As we have noted, in normal populations, GSR tends to increase as the magnitude of the
test stimulus increases, but this is combined with a generalization gradient, an inverted
U-shaped curve. We hypothesized that such linear and quadratic trends should be less
pronounced in schizophrenic populations, who generally are less able to discriminate among
stimuli. This implies that the AB (Personality type x Stimulus height) interaction should
be significant. However, although this is necessary to support our predictions, it is not
sufficient. We predicted something more specific than a lack of parallelism; we predicted
that the nonparallelism of curves for the two populations would be due to variation in the
linear and quadratic components.

Table 11.9a presents point estimates of the population regression coefficients for the two
personality types [A x q(B)] and the coefficients based on the combined group data. These
values were obtained by using Equation 10.15. They are consistent with our predictions
for the two types of participants. The absolute values of the linear and quadratic regression
coefficients are larger for the control subjects than for the schizophrenic subjects, suggesting
that the control subjects discriminate better among the test stimuli. The cubic and quartic
coefficients appear to be small for both groups. Of course, we still have to view the results of
significance tests. The differences we have noted may be due to chance variability, and the
apparently small cubic and quartic coefficients might differ significantly from zero when
tested against a measure of error variance.

The results of a complete ANOVA are presented in Table 11.9b. We have already
discussed the calculations for the sums of squares of the trend components of stimulus
height [q(B)]. The calculations of the interaction components follows directly from earlier
developments in the analysis of qualitative contrasts. Specifically, Equation 11.10 stated
that the sum of squares for the difference between contrasts is

Table 11.6 provided an example of the calculations using this equation. In trend analysis the
ws are replaced by the polynomial coefficients, the Es. For example, suppose we wanted to
calculate SSA x lin(B). This is based on the difference between the linear coefficients for the
control and schizophrenic groups. For the control groups, the weights are —2, —1,0 , 1, and
2; for the schizophrenic groups, the weights are 2, 1 ,0—1, —2. Because we are contrasting
two quadratic coefficients, the sum of squares is distributed on 1 df.

The results of the ANOVA seem clear. The difference in the mean GSR scores for
the two personality types is significant; the schizophrenic subjects are more responsive.
The significant stimulus SV indicates significant variation in mean GSR as a function
of stimulus height, and the significant linear and quadratic components indicate that the
average GSR tends to increase with stimulus height but there is also quadratic curvature.
An equation describing the population function would be of the form GSR = B0 + B1 H +
B 2 H 2 , where H is the stimulus height. The significant difference in the trends for the
control and schizophrenic groups [A x lin(B) and A x quad(B)] indicates that the function
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TABLE 1 1.9a REGRESSION COEFFICIENTS FOR THE GSR MEANS OF TABLE 1 1 .8

Personality Type (A)

Control group
Schizophrenic group
Mean [q(B)]

Linear

.42

.10

.260

Regression Coefficients

Quadratic

-.62
-.10
-.360

Cubic

.08

.01

.045

Quartic

-.04
-.01
-.025

TABLE 1 1.9b ANOVA OF THE MEANS IN TABLE 11.8

SV

Personality (A)
Stimulus (B)

lin(B)
quad(B)
cubic(B)
quart(B)

AB
A x lin(B)
A x quad(B)
A x cubic(B)
A x quart(B)

S/AB

df

1
4

4

1
1

50

SS

6.221
30.723
8.050

21.859
0.265
0.549

14.711
3.111

11.294
0.131
0.175

33.333

MS

6.221
7.681
8.050

21.859
0.265
0.549

3.678
3.111

11.294
0.131
0.175
0.667

F

9.327
11.516
12.069
32.773
0.397
0.823

5.514
4.663

16.933
0.196
0.262

P

.004

.000

.001

.000

.531

.369

.001

.036

.000

.660

.611

is less steep and less curved for the clinical population; the schizophrenic group appears to
discriminate less well among the stimuli.

11.9 CONCLUDING REMARKS

In this chapter, we considered experiments in which each participant contributed one
score to a cell in a design in which all possible combinations of two factors were rep-
resented. We defined, illustrated, and distinguished among main, interaction, and sim-
ple effects. We provided examples of tests of contrasts of levels of a factor, both when
the factor was qualitative (e.g., instructions) and when it was quantitative (e.g., stimu-
lus intensity). Although we illustrated calculations involved in many of the significance
tests and CIs discussed, we emphasize that most statistical software packages will pro-
vide the same results and also allow the researcher to control the FWE appropriate to the
situation.

Although we have covered considerable ground with respect to between-subjects de-
signs, we have not exhausted the topic. In the next chapter, we pursue additional analyses
that we believe to be equal in importance to those already considered—for example, calcu-
lations of effect size and power. We also extend our coverage to between-subjects designs
involving more than two factors.
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main effects
residual
sources of variance (S V)
structural model
cross comparisons

interaction effects
cell effect
marginal means
additivity of effects
simple effects

EXERCISES

11.1 (a) Plot the marginal and cell means for the data set that follows. Discuss the pattern
of means.

B1 62

A1

14
12
26

A2

22
34
24

A3

31
33
43

A4

18
21
19

A1

42
15
27

A2

46
18
17

A3

20
25
15

A4

41
30
44

(b) Estimate the population main and interaction effects.
(c) Using the results in (b), calculate the main and interaction sums of squares.

11.2 We have the following cell means and variances; n = 10.

Means Variances

A,
A2

61

2.6
4.3

B2

4.3
3.6

B3

6.5
3.4

81

2.75
1.75

B2

5.00
2.25

83

5.50
3.75

(a) Carry out the ANOVA and present the tabled results.
(b) Test the simple effects of A at B3.
(c) Test the simple effects of B at A2.
(d) Briefly justify your choice of error terms for parts (b) and (c).

11.3 To conserve space, most psychology journals do not publish ANOVA tables except
when the analysis is complicated and there are many significant sources of variance.
Thus, usually all we can expect to find is a table of means, a report of the obtained
values of F, and sometimes the error MSs. At times, however, we wish that the
researcher had published other analyses of the data. Often we can perform these
analyses for ourselves, even though the researcher has not provided us with the raw
data from the study. Suppose we have been given the following table of cell means

KEY CONCEPTS
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from a between-subjects design with two factors:

We have been told that only the AB interaction is significant, F = 8.0, and p = .002.
(a) Assuming n = 6, reconstruct the entire ANOVA summary table.
(b) Test the simple effect of B at A2. What assumption is needed to justify this test?

11.4 Consider each of the following sets of hypotheses. Which S V should be significant?
Plot a data set consistent with the theory.
(a) In a bar press experiment, we hypothesize that Y = KDP, where ¥ is the bar

pressing rate (the dependent variable), A' is a constant, D is the hours of depri-
vation, and P is the number of practice trials.

(b) In impression formation studies, we give subjects some information on the
attractiveness (A) and intelligence (I) of an individual and then ask them to rate
the individual. We believe that the rating, R, = (A + I)/2.

(c) Patients in a mental hospital are divided into experimental groups on the basis
of their socioeconomic level (SE, three levels) and the kind of treatment they
receive (T, two levels, psychotherapy and behavior therapy). The investigator
predicts that first, psychotherapy will be less effective than behavior therapy,
and second, psychotherapy will be more effective the higher the socioeconomic
level of the patient, but that this will not be true for behavior therapy. In fact, no
main effect of socioeconomic level is predicted.

11.5 Assume 40 subjects are divided into good and poor readers on the basis of a pretest.
They then read either intact or scrambled text, and they are tested for their recall.
The means are as follows:

Assign weights to the cells and calculate SSq, for reading ability, for text, and for
their interaction.

11.6 Each cell in the following table contains a mean based on 10 scores:

(a) Find the sums of squares accounted for by each of the following contrasts of
the A marginal means: p1 = u1 .—(1/2) (u2 . + u3.); p2 = u2. — u3..

A,
A2

B1

12
18

82

16
14

63

14
12

Read. Ability

Good
Poor

Text

Scrambled

62.944
48.222

Intact

53.889
43.333

B1

B2

A1

20
6

A2

10
10

A3

6
8



(b) Are the two contrasts orthogonal?
(c) Find SSA and compare it with the sum of the two sums of squares found in

part (a).
(d) We wish to determine whether either of the above contrasts varies as a function

of B. Find the SS terms associated with each of the relevant significance tests.
Add these terms and compare them with SSAB.

11.7 Ninety children, varying in age (A1 = 5, A2 = 7, and A3 = 9) are taught by one of
three mnemonic methods (methods for memorizing; B1, B2, and B3). All subjects
are then shown a series of objects and their recall is scored. Thus we have nine
groups of 10 children each. The cell means and variances are as follows:

B1

B2

B3

A1

44
56
52

Means

A2

58
66
70

A3

78
83
79

A1

75
61
90

Variances

A2

79
82
71

A3

84
85
77

(a) Perform an ANOVA by using these statistics.
(b) B2 and B3 both involve the use of imagery, whereas B\ involves repeating the

object names. Therefore a contrast of the B\ mean against the average of the B2

and B3 means is of interest. Calculate a CI for this contrast. Does the contrast
differ significantly from zero?

(c) Test whether the contrast in part (b) is different at A1 than at A3.
11.8 In an experiment on memory, a passage was presented to subjects one word at a

time at a rate of either 300, 450, or 600 words per minute. The texts were either
intact or the order of sentences was scrambled. The dependent variable was the
percentage of idea units recalled. The summary statistics were as follows:

Word Rate/Minute

Text

Intact
Scrambled

300

66.250
54.375

Means

450

59.875
49.750

600

43.375
45.875

300

68.492
33.977

Variances

450

79.549
54.214

600

81.415
55.267

There are 8 subjects in each cell.
(a) There is some reason to believe that recall decreases as rate increases from

300 to 450 words per minute, but then levels off. What does the hypothesis
predict about the polynomial components? Perform an analysis of trend to test
the hypothesis.

(b) Test whether the contrasts indicated in part (a) are significantly different for the
intact and the scrambled text conditions.
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(c) Calculate the SSRate x Text. How should the results in part (b) relate to this value?
(d) Discuss the results of these analyses.
Errors in a memory task are recorded for male and female participants of ages 5, 6,
7, and 8 years. There are 5 subjects in each of the eight cells, the average within-cell
variance is 8.75, and the cell means are as follows:

Age

Male
Female

16.3
12.1

7.2
7.3

6.5
6.7

7.4
6.2

(a) Plot the means and carry out the ANOVA, including trend components of the age
variable. Is the decrease in errors with age significant? Is the apparent curvature
significant?

(b) There is some indication that the slope of the function relating errors and age
is less negative for female subjects. Test whether this difference in slopes is
significant.

The meaning of polynomial components of interaction such as the lin(Age) x Sex
term in Exercise 11.9 [part (b)] may be clearer if we redo part (b) in the following
way. Find the equation (see Equation 10.13) for the best-fitting straight line for
the male subjects, and calculate the predicted mean errors at each of the four ages.
Do the same for the female participants. At this point you have a table of means
much like the one in Exercise 11.9 except that those means were observed and
these are predicted. Calculate the Sex x Age interaction sum of squares by using
the predicted means (remember that n = 5) and compare it to SSLin(Age) x Sex.
In an attempt to develop better approaches to postgraduate clinical training, a study
comparing three training methods (M) was conducted. To determine if there was
some optimal point in time at which no further training was beneficial (within
practical limits), a second variable, time (T; 3,6,9, or 12 months) was included. At
the end of the training period, a committee of clinical faculty rated the individuals
on a 10-point scale. There were 5 trainees in each cell and the error sum of squares
was 87.84. The mean ratings are as follows:

Time (in months)

Method 3 6 9 12

M1

M2

M3

5.4
5.4
5.2

5.2
5.6
5.8

5.6
6.2
5.4

7.8
8.4
5.6

(a) Plot the means and describe any trends in the data. Then present the ANOVA
table. Include tests of the polynomial components of T.

5 6 7 8

11.9

11.10

11.11



(b) We wish to know if the linear trend for M3 differs significantly from the average
linear trend for M1 and M2. (i) State the null hypothesis in terms of the regression
coefficients for the three training populations. Use the notation B11. B12, and B13,

where the first subscript indicates linearity and the second subscript indicates
the level of M. (ii) Carry out the significance test.

11.12 (a) The file Ex11_12 in the Exercises folder of the CD contains a 3 x 3 data set.
Table and plot the marginal and cell means. Describe the pattern of means.

(b) Carry out an ANOVA on the data and present the results in a table.
(c) Assume that we planned to test the all pairwise comparisons among the marginal

A means. Perform the tests with FWE = .05 and report which comparisons are
significant.

11.13 In this chapter, we analyzed the IVT scores from the Wiley-Voss study (Wiley
& Voss, 1999). These investigators also analyzed several other measures of mem-
ory and comprehension. These measures may be found in the Wiley file in the
Wiley-Voss folder of the CD. The variable CAUSAL represents the number of
causal connections subjects introduced into essays based on the information ob-
tained, and it reflects their understanding of relations among events in the source
(web or text format) material. [Note: format = 1 and 2 corresponds to text and web,
respectively; instructions 1 through 4 correspond to narrative (N), summary (5),
explanation (E), and argument (A), respectively.]
(a) Using whatever plots and statistics you wish, describe location, variability, and

shape of the distributions.
(b) Carry out an ANOVA with format and instructions as the independent variables.
(c) Transform the data by log(CAUSAL +1). How has this affected the results in

parts (a) and (b)?
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Chapter 12
Multifactor Between-Subjects
Designs: Further Developments

12.1 INTRODUCTION

Chapter 11 presented the model and calculations for the analysis of variance for the two-
factor between-subjects design. That chapter also included follow-up tests and confidence
intervals. In this chapter, we continue consideration of two-factor designs. Again, using
the Wiley-Voss data to illustrate calculations, we compute measures of importance and the
power of the F test. The tests based on the Wiley-Voss inference verification task (IVT)
data revealed a significant effect of the format (F) by which information was presented
to participants, but the instructional (/) variable was not quite significant (p = .07) and
the F x I interaction did not approach significance. Nevertheless, descriptive statistics
and graphs revealed considerable error variability, and plots of the data suggested that the
I and F x I sources of variance might be more important than the significance test results
indicated. This is not unusual in research, and it is a major motivation for considering
something other than p values in assessing a variable's importance. It is also a reason to
question whether there was sufficient power to detect effects that might be of interest. We
consider these topics in this chapter.

Chapter 12 covers several other topics as well and extends the discussion to the general
case in which there are more than two factors. Throughout, we assume that each participant
contributes one score to the data analysis and that the levels of each independent variable
are fixed; that is, we assume that the levels have been arbitrarily selected, not randomly
sampled from a universe of levels.

12.2 MEASURES OF EFFECT SIZE

As we noted in Chapter 8, several different measures of effect size have been proposed and
are encountered in the literature. Among those we considered was R2, the ratio SSA/SStot

in the one-factor design. In multifactor designs, R2 is SScells/SStot. In other words, it is the

3T5
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TABLE 12.1 MEASURES OF IMPORTANCE FOR TWO-FACTOR DESIGNS WITH FIXED-EFFECT VARIABLES

Note. N = abn; the subscript Effect refers to A, B, or AB.

proportion of the total variability accounted for by the factors in the design. R2 is sometimes
referred to as N2(eta squared). If there are more than two factors and the analysis of variance
(ANOVA) is carried out using SPSS's General Linear Model module (univariate) and the
option "Effect Size" is checked, a value of N2 is reported for each effect. It is defined
as in Table 12.1 a and b, in which the subscript "Effect" represents A, B, or AB. For
example,

N2
A = SSA/(SSA+SSe)

Although N2 can be a useful indicator of the importance of a source of variance, it is a
descriptive statistic. One limitation is that G2

e contributes to the variability among condition
means and therefore to the numerator of N2. This is remedied by Hays' (1988) w2 (omega
squared), in which he defined as the variance of the treatment population means divided by
the sum of the population variances. Rather than dividing by the sum of the four variances
as Hays proposed, we define an adjusted w2 in Table 12.1. For example, in assessing the
contribution of the A source of variance, w2 would be defined as

w2
A = S2

A/(S2
A+S2

e)

This is sometimes referred to as a partial W2. This adjustment allows us to estimate the
contribution of one source of variance independent of the size of the contribution of other
variables. An advantage is that we can compare the contributions of a factor in experiments
having different numbers of factors.

Measure

Variance(a)

(b)

Estimator

Estimator
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Cohen's F (1988) provides still another measure of effect size. It can be used both in
conjunction with Cohen's (1988) power tables and with the free software package
GPOWER, whose URL was provided in Chapter 6. Cohen defined / as the ratio of the
standard deviation of the treatment population means to the population error standard de-
viation; for example,

We have included one other indicator of effect size in Table 12.1, X (lambda). This
was introduced in Chapter 8 as the parameter of the noncentral F distribution. As we noted
there, some programs for calculating power take X as their input. As we showed in Table
8.9, w)2, f, and X are all closely related; for example, X = Nf2.

The upper panel of Table 12.la presents formulas for defining and estimating the
variances referenced in the formulas in Table 12.1b. The variance estimators are derived
from the expected mean squares as was previously discussed in Chapter 8. For example,

The formula in Table 12.1 follows directly. Estimators of variances for B and AB have a
similar form and are also in the table.

Substituting the formulas for the variance estimators into the formulas in the lower
panel, we can obtain numerical estimates of w2, f,and X. Alternatively, the statistics can be
written in terms of the total N, degrees of freedom, and F ratio for the effect of interest. This
is useful because it allows us to calculate measures of importance for published reports that
usually include the F ratios even when measures of association or effect size have not been
included. A comparison with Table 8.9 for the one-factor design reveals that the formulas
are the same, as they will be for designs having more than two fixed factors (and no random
factors).

Using the Wiley-Voss IVT data, Table 12.2 presents calculations based on the defini-
tions and formulas in Table 12.1. Following Cohen's (1988) suggestion that f of. 1 reflects
a small-sized effect and / of .25 a medium-sized effect, it appears that both the format
(F) and instruction (/) variables are of medium size, whereas the interaction contributes
relatively little variability. Because w2, f, and X are closely related, they present a consistent
picture. The N2 value for the F x I interaction is larger than we would expect on the basis of
the other measures, presumably reflecting the contribution of error variance to the SSF x I. It
is interesting to note that the F value is larger and the p value smaller for the format than for

Then

Multiplying both sides by (a — l)/a, we have
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TABLE 12.2 VARIANCE ESTIMATES AND MEASURES OF IMPORTANCE FOR THE
WILEY-VOSS DATA (TABLE 11.1)

Variance Calculation Estimate

the instructional source of variance, whereas the relation is slightly reversed when we look
at other statistics in the bottom panel. This should serve to remind us of several points: (1) F
ratios or p values are indices of statistical significance; (2) this is not the same as practical
or theoretical significance; and (3) therefore, F ratios should be supplemented with other
measures. In addition to calculating measures of importance, contrasts should be targeted
before the data are collected; these should be tested and confidence intervals constructed,
with proper attention to the control of family wise error rates. Measures of importance, such
as ES (Cohen's d; see Chapter 6) can also be calculated for such contrasts.

12.3 POWER OF THE FTEST

The appropriate use of tables (e.g., Cohen, 1988), charts (e.g., Kirk, 1995; Myers & Well,
1995), and computer programs for power calculations is to determine the sample size
required prior to collecting data. Nevertheless, it can be enlightening to obtain a post hoc
estimate of power. Investigators are often surprised to find how little power they had to detect
even medium-sized effects. Consider, for example, the instructional source of variance in
the Wiley-Voss study. Recall that the effect was not significant at the standard .05 level, but
our measures of importance suggested that the effect was medium in size. How much power
does a 2 x 4 design with 8 subjects in each cell have to detect a medium-sized effect (/ = .25)
based on 3 and 56 df ? The answer is .336 or, put differently, there is a .66 probability of a Type
2 error in a design of this dimensionality and N, if we wish to detect an effect of medium size.

Several computer programs and statistical packages will produce this result. They are far
more versatile and accurate than tables or graphs. Two of these, GPOWER and the UCLA
calculator, are freely available from the Internet. We illustrated their use in determining

S2
F

S2
I

S2
F x I

S2
E

SV

F
I
F x I
S/FI

Total

df

1
3
3

56

63

SS

689.06
1,142.19

529.69
8,637.50

10,998.44

MS

689.06
380.73
176.56
154.24

F N2

4.467* .074
2.468** .117
1.145 .058

8.357

10.617

1.046

154.24

W2

.051

.064

.007

f

.233

.262

.082

X

3.468
4.393

.430

*p = .039; **p = .071.
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the power of the F test in one-factor designs in Chapter 8 (see Table 8.10). When using
GPOWER with multifactor designs, select "other F tests" from the test menu because the
standard F test choice does not handle interaction. The resulting menu asks for f2 (.0625
for a medium effect), A, N, and the numerator and denominator df. It returns not only a
value of power, but also X and the critical F. The application of the UCLA calculator is
exactly the same as in Chapter 8. The drawback to both is that neither GPOWER's "other
F tests" nor the UCLA noncentral F program calculate the N needed to achieve a specified
level of power. However, by trying different NS, this can be determined fairly quickly and
accurately. Among commercial statistical packages, we have found SYSTAT 10 easiest to
use. By clicking on "Statistics," followed by "Design of Experiments, and then "Power,"
the user has a choice of statistical tests, a choice between post hoc and a priori power,
and a choice among three measures of effect size. Of these, the "standardized average
squared effect" is f2. Whichever program is used, assuming Wiley and Voss' 2 x 4 design,
a = .05, and a medium-sized instructions effect, the required cell frequency (n) needed to
achieve .80 power is 23. You would need 8 x 23, or N = 184 subjects to have this level of
power. In many studies, this will be impractical and therefore consideration of additional
or alternative measures or alternative designs is advisable. When some measure related to
the dependent variable is available (a concomitant variable), the analysis of covariance
(ANCOVA) may greatly reduce error variance and thus increase power. That procedure is
discussed in Chapter 15.

12.4 UNEQUAL CELL FREQUENCIES

12.4.1 The Problem

In Chapter 11, and in the developments thus far in this chapter, we have considered only
cases in which the number of observations is the same in each of the ab cells. Problems
arise when this is not the case. As we noted in Chapter 6, unequal ns exaggerate the
consequences of heterogeneity of variance. Furthermore, when the njk (the cell frequencies)
are not equal, the sums of squares for A, B, and AB will usually not add to the SScells when
each is calculated ignoring the other effects. This is because such sums of squares are not
independently distributed. As in our discussion of contrasts (Chapter 8), we say that these
three sources are not orthogonal and that we have a nonorthogonal design. Table 12.3
illustrates the problem. The difference between the column (B) means is 5 in both the A1

and A2 rows, indicating that there is no AB interaction. According to our discussion of
simple and interaction effects in Chapter 11, the difference in the B main effects should
also equal 5 because in designs with equal ns when the interaction effects are zero, the
simple effects equal the main effects. However, in the example in Table 12.3, the difference
between the two column means is 22 — 8 or 14.

The results are even stranger if we calculate the A, B, and AB sums of squares in the
usual way:

SSA = (10)[(24 - 15)2 + (6 - 15)2] = 1620

SSB = (10)[(8 - 15)2 + (22 - 15)2] = 980

SScells = (2)(20 - 15)2 + (8)(25 - 15)2 + (8)(5 - 15)2 + (2)(10 - 15)2

= 1700
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TABLE 12.3 EXAMPLE WITH DISPROPORTIONATE CELL FREQUENCIES

B1 B2 nj. Y . j .

A1

A2

n1k
Y.1k
N2k

Y.2k

n.k
Y..k

2
20
8
5
10
8

8
25
2
10
10
22

10

10

n.. = 20

24

6

Y...= 15

Note. Y.j. = Ek n j k Y . j k / n j . ; for example, 24 = [(2)(20) + (8)(25)]/10.
The column means are computed in a similar way. The grand mean (15) is the
sum of all scores divided by the total n.

To obtain the interaction sum of squares, we calculate

SScells - (SSA +SSB) = -900

Of course, a negative sum of squared deviations makes no sense. Apparently, this approach
to calculating sums of squares does not work with nonorthogonal designs.

The reason for the strange results of the calculations carried out on the means of
Table 12.3 may become clearer if we consider an extreme case of nonorthogonality. Suppose
the ns were

Now SSA and SSB are identical; both are based solely on the difference between the A1B2

and A2B1 cell means, and therefore the A and B main effects are perfectly correlated. In
Table 12.3, the correlation is no longer perfect, but it is still high. The magnitude of both
SSA and SSB will still depend primarily (although not entirely) on the difference between
the A1B2 and A2B1 means.

Figure 12.1 contains a graphic representation of the situation when cell frequencies
are unequal. The square represents the SStot. The circles represent SSA, SSB, and SSAB.
When cell frequencies are equal, these three circles do not overlap; the overlap represents
the covariance of effects that is a result of nonorthogonal designs. Such covariances can be
positive or negative so that somehow subtracting the covariance from a sum of squares might
result in a smaller quantity (if the covariance is positive) or a larger one (if the covariance
is negative). The presence of correlations among effects poses a difficult problem in data
analysis and interpretation. For example, we could calculate SSA in the usual way. We say
that we obtain the sum of squares for A ignoring B and AB. Such a calculation corresponds
to the areas t, u, v, and w in Fig. 12.1. Or, we could adjust SSA for the contribution
of the other main effect B. This SSA|B corresponds to the areas t and w. Or we could
adjust SSA for the contributions of B and AB, in which case the adjusted SSA, SSA|B.AB

A1

A2

8] 62

0
8

8
0
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Fig. 12.1 The partitioning of variability in a two-factor
design.

would consist only of t. Similar options are available with respect to the other sources of
variance.

All three of the alternatives just considered are available in various computer packages.
In SPSS, clicking on the model menu in the GLM module provides access to several types
of sums of squares. Type I SSA yields the sum of squares for A ignoring B effects; Type II
SSA is the sum of squares adjusted for B effects, SSA|B; and Type III SSA is the sum of
squares adjusted for both B and AB effects, SSA|B.AB. Let us consider the results of each
type of analysis, using data from the Seasons data set.

12.4.2 Three Types of Sums of Squares: An Example

The upper panel of Table 12.4 presents means and ns for male and female participants in four
educational categories, based on average (over seasons) Beck depression scores collected
at the University of Massachusetts Medical School as part of the Seasons study. The ns
are clearly not equal; in particular, many more women than men had only a high school
education in this study. The lower panel presents four different partitions of the sums of
squares. Note that the error term is the same in all four analyses, as is the interaction sum of
squares. The latter may be viewed as represented by area z in Fig. 12.1, and is the variability
due to the AB interaction after adjusting for, or removing, the variability attributable to A
and B. In what follows, we consider each type of sum of squares in turn.

Type III Sums of Squares. The default in most current statistical packages (e.g.,
SAS, SPSS, SYSTAT) is the Type III sums of squares. In this analysis, the sum of squares
for each main effect is adjusted for the variability due to all other main and interaction
effects. Because of this, we will refer to the Type III sum of squares for A as SSA|B,AB

(sum of squares for A adjusted for B and AB). In terms of Fig. 12.1, the sum of squares for
Education (the A circle) corresponds to the area labeled t, the area that does not overlap
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TABLE 12.4 THREE PARTITIONS OF SUMS OF SQUARES USING THE SEASONS DEPRESSION DATA

Means and Cell Frequencies (in Parentheses)

HS C B GS

Male
Female

6.903 (19)
5.703 (48)

3.674 (33)
7.081 (26)

3.331 (37)
6.774 (29)

4.847 (39)
4.735 (35)

Note. HS = high school education; C = some college; B = bachelor's degree; GS = graduate school.

Three Types of Sums of Squares

sv

Education (A)

Gender (B)

A x B
S/AB

df

3

1

3
258

Type III SS

78.13(t)

118.91 (x)

260. 12 (z)
6,516.05

Type II SS

33.44 (t + w)

120.77 (x + y)

260.12 (z)
6,516.05

Type la SS

68.28 (t + w +
v + u)

120.77 (x + y)

260.12 (z)
6,516.05

Type Ib SS

33.44 (t +

156.61 (x +
v + u)

260.12 (z)
6,516.05

w)

y+

Note. For the Type la SS, the A sum of squares was calculated ignoring all other sources, and the B sum of squares was calculated
after adjusting for (removing variability due to) A effects. For the Type Ib SS, the B sum of squares was calculated ignoring all other
sources, and the A sum of squares was calculated after adjusting for (removing variability due to) B effects. The letters in parentheses
refer to the corresponding areas in Fig. 12.1. See the text for further explanation.

with the B or AB circles. Thus, Type III sums of squares are sums of squares for a source
of variance after removing other effects from the analysis.

Although the Type III sum of squares is usually calculated by means of a regression
analysis, as described in Chapter 21, the same result can be obtained by using formulas
similar to those in the standard ANOVA (analysis of variance) calculations. This is usually
referred to as an unweighted means analysis because the marginal means are not based
on the weighted average of the cell means. For example, the unweighted mean for the high
school scores (Y..1(U)) in Table 12.4 would be (1/2)(6.903 + 5.703). Note that the two cell
means are not weighted by the number of scores on which each is based, but instead are
given equal weights. Accordingly, the Type III sums of squares for Education in Table 12.4
tests the null hypothesis

where the first subscript refers to gender and the second to educational level. Appendix
12.1 provides an example of the calculation of the sums of squares for educational level,
using standard sums of squares formulas with equal weights on the cell means. The result
is identical to the regression analysis result provided by most statistical packages.

In summary, because the results are the same as those produced in an ANOVA in
which the means are equally weighted (as illustrated in Appendix 12.1), this method of
analysis is appropriate whenever it is reasonable to assume that the sampled populations
are of equal size and the unequal ns reflect chance variation. For example, Type III sums
of squares should be calculated when the data come from true experiments in which the
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independent variables have been manipulated, and the loss of data is caused by factors such
as the random failure of individuals in various conditions to appear for the experiment. This
approach would not be appropriate if the loss of data were systematic. Such systematic loss
would occur, for example, if certain conditions were more aversive than others, thus leading
to a greater loss of participants and their data in those conditions.

Type II Sums of Squares. A second option available in the analysis of data from
nonorthogonal designs is the calculation of Type II sums of squares. In this analysis, the
variability due to a main effect is adjusted only for the variability caused by effects of the
same or lower order. In the two-factor design, this requires adjusting the sum of squares
for each main effect for variability from the other main effect, but not for the interaction.
Therefore, we refer to the A sum of squares as SSA\B (sum of squares for A adjusted
for B). The underlying assumption is that interaction effects are absent in the sampled
populations. Appelbaum and Cramer (1974; Cramer & Appelbaum, 1980) have been the
primary proponents of the Type II analysis, arguing that main effects should not be adjusted
for interaction effects when the usual test of interaction has a nonsignificant result. The
potential advantage is that such tests of main effects will have more power when small or no
interaction variances are ignored in the analysis. The trouble with this approach is that weak
tests of the interaction may cause us to fail to adjust for substantial interaction variance, thus
increasing the Type 1 error rate in tests of the main effect. More conservative criteria for
nonsignificance of the interaction could be used, such as requiring that the interaction not
be significant at the .25 level, but there is insufficient understanding of the consequences of
even this approach. As a general rule, Type II sums of squares should not be calculated unless
there is strong a priori reason to assume no interaction effects, and a clearly nonsignificant
interaction sum of squares.

In comparing the Type III and Type II results in Table 12.4, note that the A (Education)
sum of squares is smaller in the Type II analysis than in the Type III analysis even though the
Type II analysis involves an additional area of Fig. 12.1 (i.e., t + w versus t). The reason for
this is that the areas of overlap in Fig. 12.1 represent covariances, numerators of correlation
coefficients, and as such can be positive or negative. The area labeled w is the covariance
of the A and AB effects, adjusted for the contribution of B effects. The fact that the Type II
sums of squares are smaller than the Type I indicates that this covariance is negative.

The Type II sums of squares can also be obtained by carrying out an analysis in which
the cell means are weighted. However, because the weights are not very meaningful, we will
not develop this approach here. Interested readers may consult Carlson and Timm (1974).

Type I Sums of Squares. In calculating Type I sums of squares, a hierarchical
analysis is carried out. For example, in the Type la analysis reported in Table 12.4, the sum
of squares for education was calculated ignoring gender and the interaction. This sum of
squares is represented by the full circle (t + w + v + u) in Fig. 12.1. The gender sum of
squares was then calculated after adjusting for education; this corresponds to the x + y area.
Finally, the Gender x Education (A x B) sum of squares was calculated after adjusting for
both main effects. Note that the gender sum of squares in the Type I and II analyses are
identical because, in both cases, gender has been adjusted for the effects of education. In
the Type Ib analysis, the effects of gender were removed first, and then the education sum
of squares, adjusted for gender effects, was computed. Which approach should be taken, a
or b, depends on the question. For example, if our primary interest is in whether educational
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level affects depression scores, we might first remove the variability due to gender, and then
test the adjusted education source to determine if there was any further contribution due to
that variable. The topic of the order of adjustments, and of the interpretation of results when
variables are correlated and adjustments are made, is a complex one. We will have more
to say about this issue in Chapters 15, 20, and 21 on analysis of covariance and multiple
regression.

Once again, a cell means analysis provides an equivalent computational approach. For
example, assuming weights based on the observed cell frequencies, the weighted marginal
population mean for individuals with a high school (HS) education is

and the null hypothesis of equality of effects of educational level is the hypothesis that the
four marginal means are equal. Appendix 12.1 contains an example of sums of squares
based on the weighted means.

12.4.3 Other Analyses
Several other approaches to unequal ns have been used by researchers. The "method of
unweighted means" (Horst & Edwards, 1982) is computationally simple, but gives results
equivalent to adjusting each sum of squares for its overlap with all others only when there
are exactly two levels of all variables. Another approach used to equally weight cell means
has been to randomly drop scores from cells to equate cell frequencies. Dropping scores
results in a loss of degrees of freedom and consequently of power. It is also inappropriate
if the original cell ns reflect the proportions in the populations, which will often be the
case with categorical values. Investigators have also estimated missing scores to achieve
equal ns. The reliability of missing score estimates will depend on the number of scores
available in the cell. And again, we may be imposing an equality of cell frequencies that is
unrepresentative of the relative sizes of the population. The availability of many computer
packages designed to do unequal-n analyses makes such short cuts and approximations
superfluous. (It should also be noted that any program for regression analysis can accomplish
any series of adjustments; Chapter 21 will discuss this further.) It is important, however,
to recognize that statistical packages provide options for calculating sums of squares. The
choice among such options has consequences for the data analysis and deserves careful
thought before doing the ANOVA.

12.5 THREE-FACTOR DESIGNS

12.5.1 A 2 x 2 x 2 (23) Example
Let's add a hypothetical third factor to the design of the Wiley-Voss experiment. For ex-
ample, suppose there were just two levels of instruction (/), summary and argument; two

More generally, the marginal mean for any column, k, may be represented by
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TABLE 12.5 MEANS FOR A HYPOTHETICAL EXTENSION OF THE WILEY-VOSS EXPERIMENT

Summary Argument Mean

Novice

Expert

Text
Web
Mean

Text
Web
Mean

71.25
76.50
73.875

70.50
88.25
79.375

73.75
90.00
81.875

74.00
89.75
81.875

72.50
83.25
77.875

72.25
89.00
80.625

Averaging Over Novices and Experts

Text
Web
Mean

70.875
82.375
76.625

73.875
89.875
81.875

72.375
86.125
79.25

formats (F), text and web; and we divided participants with respect to experience (E)—
those who either had prior experience searching the Internet (Experts) and those who were
Novices. Assume that there are 10 scores in each cell; that is, n = 10 and N = 80.The
means for this hypothetical experiment are presented in Table 12.5.

Main Effects. In the ANOVA, there will be three sources of main effects—I, F, and
E. We can view these main effects by calculating the marginal means. For example, the
test of the F source of variance involves a comparison of the text and web marginal means.
These means are obtained by averaging over the four combinations of instructions and
experience. As can be seen in the lower panel of Table 12.5, the text and web means are
72.375 and 86.125, respectively. The significance test is a test of the null hypothesis that,
averaging over the four populations corresponding to the combinations of experience and
instructions, there is no difference between the population text and web means. Because the
difference between the web and text means is distributed on 1 df, SSF can be calculated as a
contrast. The numerator is the squared difference between the means, and the denominator
is the sum of the squared weights (1 and — 1) divided by the number of scores upon which
each mean is based (4 x 10). Therefore,

The SSf and SSE are calculated in a similar manner.

First-Order (Two-Factor) Interactions. There are three possible two-factor inter-
actions: F x I, F x E, and I x E. The F x E interaction is of particular interest because
there is no reason to predict that computer experience would have an effect in the text
condition, but it well might in the web condition. The interpretation of this interaction is
essentially the same as if F and E were the only factors in the experiment, except that, in
this case, the relevant means are obtained by averaging over the levels of the third variable,
instructions. These means are in the rightmost column in the upper panel of Table 12.5. The



326 12 / MULTIFACTOR BETWEEN-SUBJECTS DESIGNS

interaction contrast is the difference between the format simple effects at the two levels of
experience (or, equivalently, the difference between the experience simple effects computed
for each format). This contrast is estimated as

WFxE = (83.25 - 72.50) - (89.00 - 72.25) = -6

In words, the advantage of the web format over the text format is six points greater for
experts than for novices. The sum of squares for this contrast is calculated as

In the actual Wiley-Voss experiment, the error mean square was 154. Assuming a similar
value for our hypothetical study, we lack sufficient evidence to reject the hypothesis of no
interaction. In other words, we cannot conclude that the advantage of the web format over
the text format is significantly greater for experts than for novices.

The Second-Order (Three-Factor) Interaction. The eight cell means in
Table 12.5 are plotted in Fig. 12.2. We assigned instructions to the X axis, and had the
experts' means in one panel and the novices in the other, with different lines for the two
formats. However, this assignment of variables in the plot is arbitrary. We could have had
the two formats, or the two types of instructions, in different panels. We will soon discuss
some factors that may influence the decision when plotting means from a three-factor ex-
periment. For now, let's focus on the interpretation of the second-order interaction. In the 23

design, it is helpful to think of the interaction as a contrast of simple two-factor interactions.
For example, in the right, expert, panel of the figure, the advantage of the web format over
the text format is greater under summary than under argument instructions. However, the
opposite is true in the left, novice, panel; there, the difference between web and text formats
is smaller in the argument than in the summary condition. Looking at the actual means, the
F x I contrast in the novice condition is

Fig. 12.2 A plot of the means in Table 12.5.

In this case, the weights (w) are 1, —1, — 1, and 1, and the sum of their squared values is
divided by 20, the number of scores on which each of the four means is based. Therefore,
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The simple F x I interaction in the expert condition is

Again assuming that MSerror = 154, we conclude that the three-factor interaction is not
significant. We cannot conclude that the F x I population interaction differs as a function of
the level of experience with computers. Nor does the F x E interaction differ as a function
of instructions, nor the I x E as a function of the format. No matter which simple two-factor
interactions are contrasted, the result of the F x I x E contrast will always be 13.

12.5.2 More on Three-Factor Interactions

It is important to realize that a three-factor interaction means that the simple interaction
effects of any two variables vary as a function of the level of the third variable. Researchers
often understand this to mean that, whenever the plot of the AB combinations looks different
at different levels of C, the three-factor interaction is likely to be significant. However, this
is not true. Saying that the simple interaction effects of AB are the same at all levels of C is
not the same as saying that the pattern of means is the same at all levels of C. The following
set of means should help us understand this point.

C1 C2

B2 B1 B2

A1

A2

22
20

11
14

34
23

23
17

Figure 12.3 presents a plot of the eight cell means under consideration. If these were
population means, would you think that there is a second-order interaction? The pattern of
means looks different at C1 than at C2; the lines cross in the C1 panel, but not in the C2

panel. As a result, students usually believe that an ABC interaction is present. In fact, if we

The F x I x E interaction contrast is the difference between the two simple interactions;
that is,

This interaction term is also distributed on 1 df. We can see this by a process of subtraction.
Because there are eight cell means, d f c e l l s = 7. Subtracting 3 dfs for the three main effects
and three more for the 3 two-factor interactions leaves 1 df for the three-factor interaction.
Because the F x I x E term is distributed on 1 df, we can again calculate the sum of squares
as a contrast:

In this instance, the sum of the squared weights is 8 because each cell mean in the contrast
is multiplied by either 1 or — 1. This sum is divided by n because each of the eight means
is based on n scores. Accordingly,

B1
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Fig. 12.4 An alternative plot of the means in Fig. 12.3.

The reader should verify that the outcome is the same if we contrast the AC simple interaction
effects at the levels of B, or the BC simple interaction effects at the levels of A.

One implication of this example is that the pattern of means can be deceptive. However,
some patterns will clearly signal the possibility of a three-factor interaction. If the lines in
an AB plot are approximately parallel (i.e., there is no AB interaction) at one or more levels
of C, but there is a simple interaction at least at one other level of C, then this indicates
an ABC interaction. Also, if the lines in one panel converge, whereas those in other panels
diverge, an ABC interaction is indicated. If the two AB plots are the same (or displaced by a
constant amount), except for one point, there is reason to expect a three-factor interaction.
Sometimes plotting the data in different ways is helpful. In Fig. 12.4, we have replotted the
data from Fig. 12.3. Several points are now clearer than in the original plot. In particular,
it should be evident that there is no BC interaction, which was not at all clear in Fig. 12.3.
It also appears that there is an AB interaction because the spread among the B lines is

calculate the interaction contrast, we find it is exactly zero, so there cannot be an A x B
x C interaction. For example, calculating the simple AB interaction contrast at each level
of C, and subtracting,
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greater in the A\ panel than in the A2 panel. Finally, it appears that there is no second-order
interaction because the BC interaction contrast is zero in both panels. Of course, these
are idealized data points, lacking the variability present in real data. However, the point
still stands; it is often helpful to plot data in several ways. Different patterns may become
evident, making clearer why certain effects in the ANOVA were significant, whereas others
were not.

12.5.3 Three-Factor Between-Subjects Designs:
The General Case

To understand formulas for sums of squares, and for components of the expected means
measure (EMS), we require some notation. In general, we have three independent variables:
A, B, and C, with n subjects in each of the abc cells. The relevant indices are

i = 1, 2, . . . , n ; j = 1, 2 , . . . , a; k = 1, 2, . . . , b; and m = 1, 2, . . . , c.

To define the sums of squares, we begin by partitioning the deviation of a score from the
grand mean into two components, one corresponding to the deviation of the score from
its cell mean and the other corresponding to the deviation of the cell mean from the grand
mean:

Deviation of the score from its cell mean provides the basis for the error term in the ANOVA.
Considering a single cell, if we square the n deviations and divide by n —1, we have s2

jkm,
an estimate of error variance. If we do this for every cell, then add the cell variances and
divide by the number of cells, we have the error mean square; that is,

Deviation of the cell mean from the grand mean can be further partitioned into components
that provide the basis for the sums of squares for main and interaction sources of variance.
Each of the component deviations estimates a population parameter. For example, Y . j . . —
Y.... estimates Aj, the effect of Aj in the sampled population. Table 12.6 presents the
components of the cell deviation and pairs it with the parameter it estimates. Summing
the entries in the Effects column yields Y.jkm — Y...., the deviation of the cell mean from
the grand mean. In the same way, the sum of squares based on the abc cell means can be
partitioned into the sums of squares for main and interaction sources of variance. The dfcells

can be partitioned into components representing the various sources of variance:

The only new term in the preceding equation is (a — 1)(b — l)(c — 1), the d f A B C . The
partitioning of the SStot and the dftot, together with definitional formulas of the sums of
squares, is presented in Table 12.7.

The S/ABC source of variance is the error term against which all main and interaction
terms, as well as any contrasts that are of interest, are tested. The rationale for this choice of
error term lies, as usual, in the expected mean squares, which are presented in Table 12.8.
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TABLE 12.6 EFFECTS AND THE PARAMETERS THEY ESTIMATE IN A THREE-FACTOR DESIGN

Source Effect Parameter

Y . j . . -Y . . . .

Y..k. - Y ...
Y...,m - Y...
Y. j k . -Y . j . . -Y . . k . + Y....

Y.j.m ~ ~V —^Y -I- ~Y
* . i .m • / • • • • • / " ' • - • •

Y..km ~ Y..k. ~ Y...,„ + Y

Y.jkm + Y .j.. + Y..k. + Y ,„

~ Y , j k . — Y .j.m — Y ..km — Y.

CLj = |Xy.. - |1...

3* = fJk*. - M-...

7/>; — r^.jn f -k . . .

(a(3);-t = ( IA/A . - (A.. .) - a, - PA

(a-y)_,-,„ = (IJL,'.,,, - |JL ) - a, - ym

($y\km = (&.k,,, ~ V...) - & - y»,

(ot$y)jkm = (\ijkm - |x...) - a, - PA

- ym - (a$)jk - (a^)j,,, - ( $ y ) k l l ,

TABLE 12.7 PARTITIONING THE TOTAL DEGREES OF FREEDOM AND SUMS OF SQUARES IN A
THREE-FACTOR DESIGN

SV

Total

Between cells

A

B

C

AB

AC

BC

ABC

S/ABC
(within cells)

df

abcn — 1

abc — 1

a - I

b- 1

c- 1

(a - l)(b - 1)

(a - l)(c - 1)

(b - l)(c - 1)

(a - l)(b - l)(c - l)

abc(n — 1)

SS

EEEE(Yijkm-Y..)2

i j k m
nEEE(Y.jkm, - Y...)2

.j k m
nbcE(Y.j.. -Y..)2

./'

n a c E ( Y . . k . - Y . . . ) 2

k

nabE(Y ...m -Y ...)2

m

nncEE(YncEE(YncEE(YcEEncEE(Y(Y
j k

nbE(YJjH-Y.j..-Y.
j m

n a E E ( Y . . k m - Y . . k . - Y
k m

nEEE(Y.jkm + Y . J . .+
j k m

~Y Y. Ik. -* . j .m •* . . A ' / / )

SStot — SSB. cells

. ,»+F.. .)2

.,H+7...)2

r.i. + r.m
-7...):

These have been derived from the structural model in the upper part of the table under
the usual assumptions that the scores in the abc treatment populations are independently
distributed and that the population variances all equal o^2. In addition, all three factors
are assumed to have fixed effects; that is, the levels have been arbitrarily selected and not
randomly sampled from a universe of treatment levels.

As in the two-factor design, the EMS play an important role in estimating the variances
of effects, and these in turn enable us to estimate measures of effect size such as Cohen's f

A

B

C

AB

AC

BC

ABC



THREE-FACTOR DESIGNS 331

TABLE 12.8 STRUCTURAL MODEL AND EXPECTED MEAN SQUARES (EMS) FOR THE
THREE-FACTOR DESIGN

The Structural Model

Yijkm = |A + 0/ + & + 7m + (<X$)jk + (<*7)ym + (fty)**/ + (<*P7)/*m + Kijkm

SV EMS

A ov 2 +n&cEa?/ ( f l - l )
j

B o r 2 +nacE Pt/(*-D
k

C a (
2+nafc£^/(c- l )

m

AB a(
2 + ncEE(<*P)yK« - W - D]

; *
^C a,2 + «fcEE(«7)?w/[(a - l)(c - 1)]

j m

El
k m

<T(?
2 + naEEO'Y)L/[tf ' - l)(c-l)]

Note. The parameters of the structural model are defined in Table 12.6.

(1988), w2, and X. These, as in the one- and two-factor designs, are of interest in themselves
and also are used in calculations of power. Calculations of estimates of variances of main
and interaction effects are similar to those in Table 12.1. For example, assume a design in
which n = 6, a = 2, b = 3, and c = 3. A portion of the ANOVA table might contain the
following values:

SV

AB
ABC

S/ABC

df

2
4

90

MS

34
24
10

F

3.40
2.40

P

.038

.048

ABC

S/ABC

Given these values, we can estimate the population variances. The estimate of c2
e is

and from the equations in Table 12.8, we have

Therefore,

bBC
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(= means "is an estimate of") and multiplying both sides of the preceding equation by
(a — 1)(b — 1)/ab, the estimator of c2

AB is

V2
AB = [(a- 1)(b - 1)/ab] [(MSA B - MSs/ABc)/nc]

= (2/6)[(34 - 10)/18] = .444

Various measures of effect size can now be estimated. For example Cohen's / is esti-
mated as

FAB = VAB/Ve = .444/10 = .21

In a similar way, we can show that d2
ABC = .519 and FABC = -228. Note that F(and other

measures of effect size) is larger for ABC, although the F ratio is larger and the p value
smaller for AB.

12.6 MORE THAN THREE INDEPENDENT VARIABLES

The analyses of data from between-subject designs involving more than three factors are,
in all respects, straightforward generalizations of the material presented for two- and three-
factor designs. Each variable and each possible combination of variables are potential
contributors to the total variability, and so is the variability among scores within each cell of
the design. As might be guessed, the degrees of freedom for any higher-order interaction are a
product of the degrees of freedom for the variables entering into the interaction. For example,
an ABCD interaction would have (a — 1)(b — l)(c — 1)(d — 1 ) d f . The interpretation of such
higher-order interactions is often difficult. We can say that a significant four-way interaction
indicates that the interaction of any three variables is a function of the level of the fourth
variable, but that is not very enlightening. Unless we have prior grounds for expecting such
interactions to be significant, or can attribute the interaction to some subset of cell means,
care should be taken before making too much of the result.

This form of the equation raises the question: When is it proper to average two mean
squares? The answer is that, if the two mean squares estimate the same population variance,

12.7 POOLING IN FACTORIAL DESIGNS

12.7.1 What Is Pooling?

When two or more sources of variance are pooled, the sums of squares are added together
and divided by the sum of the degrees of freedom. For example, in a two-factor design, the
pool of the AB term and the S/AB term is

Equation 12.3 can be rewritten as the weighted average of the two mean squares:
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or variances, pooling is proper. In the example of Equation 12.4, the assumption is that
s2

ab = 0; therefore, we have assumed a structural model that omits the (AB) j k term and,
consequently, both MSAB andMSs/AB are assumed to estimate S2e. The advantage of pooling
two or more estimates of the population error variance is that MSpool is distributed on more
dfs than MSS/AB; therefore, F tests based on the pooled error term may be more powerful
than tests based on MSs/AB- Of course, we never know that or2

AB = 0. If it is not, we may
lose power in using the pooled error term to test a false null hypothesis about a main effect.
To see why, look again at Equation 12.4. If, contrary to the assumption on which pooling
is based, E(MSAB) = of + o"^B, then the weighted average of this expectation and of 07
will be larger than of. As a result, the F test of a main effect will be negatively biased; the
expectation of the error term involves more than just of, and there will be too many Type II
errors. Somewhat surprisingly, when the null hypothesis about the main effect is true, there
may actually be an increase in Type I errors. The reason for this is that if MSAB and MSs/AB
do not both estimate of, the ratio of MSA (or MSB) to MSpoo\ will not be distributed as F,
and the tail area may be larger than the nominal a. In view of these considerations, it is not
clear when, if ever, to pool. We consider this issue next.

12.7.2 When (If Ever) to Pool
Although the subject of pooling is a contentious one, the most common recommendation is
a "sometimes-pool" rule recommended by Bozivich, Bancroft, and Hartley (1956). In this
procedure, pooling is carried out if a preliminary test (e.g., AB against S/AB) is not significant
at the .25 level. Using this rule, in a two-factor design, the AB and S/AB terms would be
pooled to provide an error term against which to test A and B if the MSAB/MSS/AB ratio
was not significant at the .25 level. However, the Bozivich et al. recommendation was based
on results for a nested design (see Chapter 16). More relevant to the designs of the current
chapter are the results obtained by Mead, Bancroft, and Han (1975). They investigated
pooling of the AB and S/AB terms in the context of a design with two fixed-effect factors.
For designs in which cell frequencies were equal, they found that the sometimes-pool rule,
even with the criterion a set at .50, often resulted in a loss of power when the null hypothesis
about the main effect was false, and an increase in Type I error rate when it was true. Although
there were conditions under which the sometimes-pool rule was beneficial, these involved
cases in which the ns were proportional and distributed in such a way that the interaction
df equaled those for the within-cell error term, or were greater. Such distributions of cell
frequencies are very unlikely. Therefore, in designs in which all factors have fixed effects,
we recommend never pooling. We consider whether the sometimes-pool rule is advisable
in other designs when we discuss those designs.

12.7.3 Unintended Pooling
Researchers often pool terms without realizing they have done so. Typically, in such cases,
there are one or more treatment variables and then one "nuisance" variable that the researcher
regards as irrelevant. For example, the position of a reward may appear equally often in all
experimental conditions of a discrimination study, or each of several experimenters may
run an equal number of subjects in each condition. Table 12.9 presents an example of two
analyses of data from a design in which A is the treatment of interest and B is a nuisance
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TABLE 12.9 AN EXAMPLE OF ANOVAS IN WHICH ONE FACTOR IS A NUISANCE VARIABLE

SV df

A 2

B 1

AB 2

S/AB 42

SV

A

Pooled Error

The Full Structural

SS

240

75

160

1554

The Reduced

df SS

2 240

45 1789

Model: Y / / t = |x + <*/ + Pk + («P) jk + £;/k

MS F p

120 3.24 .049 a;2

75 2.03 .162 a;

80 2.16 .128 CT;

37 or/

Structural Model: Y,^ = JJL + a/ + e/ / fc

MS F p

120 3.02 .059

39.76

EMS

+ 16X>2/2

+ 24£tf
k

+ 8E£<«P)/*/2
;' *

E/VIS

a,2 + 16][>5/2

<^2

As we noted in discussing Mead et al.'s (1975) results, we run the risk of a loss of power
if the null hypothesis is false, or an increased Type I error rate if it is true. The message is
simple: Consider all the factors that go into your design and test the full model.

variable, such as position of the reward, or experimenter, or gender. In an analysis based on
the full model, the treatment (A) has a significant effect. When the B variable is ignored in
the ANOVA, we implicitly assume the structural model in the lower panel of Table 12.9. In
this particular case, the treatment effect is no longer significant. Note that the pooled error
sum of squares is the sum of SSs, SSAB, and SSS/AB, and the pooled error df are summed in
the same way.

We cannot know which model is correct; nor can we know whether the null hypothesis
is false, as the full ANOVA indicates. However, we do know that if the reduced model
in the lower panel is not correct, and if there are B and/or AB effects in the population;
then, the pooled error mean square estimates more than just error variance. Specifically,
assuming that the full model of the upper panel is correct, pooling results in an inflated error
term and a ratio of mean squares that is not distributed as F. The expectation of that error
term is
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12.8 BLOCKING TO REDUCE ERROR VARIANCE

Bet ween-subject designs usually involve considerable variance because individuals differ
on many dimensions that will influence the data. There are several ways in which we
can attempt to reduce error variance and thus increase the precision of our estimates and
the power of hypothesis tests. One approach is to use designs in which participants are
tested under all levels of the independent variable. We consider variations of such repeated-
measures designs in several of the following chapters. However, in many cases, such designs
make no sense. In a test of drug treatments for some disorder, we are unlikely to test the
same individuals under all the drugs in the study. Nor are we likely to compare several
methods of instruction with the same group of students. In short, there are many situations
in which the nature of the treatment variable requires that different individuals be assigned
to different levels. In such studies, we can often make use of a concomitant variable, X,
a measure that we have reason to believe is correlated with the dependent variable Y.
There are two ways in which X can be used. One way is to perform a regression analysis,
ANCOVA, in which data are adjusted for variability attributable to X. Chapter 15 describes
this method and compares it with the method we consider in this section. In this section, we
use X to create blocks of subjects and remove its main and interaction effects from the total
variability.

This approach uses X in the design of an experiment. Suppose we had four instructional
conditions (a = 4) whose effects on reading skill we wished to compare. X might be a
measure of reading readiness obtained before the start of the school year. Assume that we
have 80 children available for this study. We might rank these 80 children in terms of their
reading readiness score. We could then divide them into five blocks of 16 children; block
1 (B\) would consist of the 16 children with the highest reading readiness score, 82 would
consist of the 16 with the next highest X values, and so on. Then we would randomly assign
each of the 16 children in B\ to one of the four instructional conditions with the constraint
that there would be exactly four children in each instructional condition. We would do the
same thing for each of the other reading readiness blocks. The result is that we would have
a two-factor design in which a = 4, b = 5, and n — 4. This two-factor Treatments X
Blocks design usually will have less error variance than the one-factor design based on the
same total number of subjects because the four subjects within each A x B cell will be less
variable in reading readiness than the 20 subjects within each level of A would have been
if we had used a one-factor design in which 20 subjects were randomly assigned to each
level of A without regard to reading readiness.

How many blocks should be used? If the total N is held constant, increasing the number
of blocks will decrease the error variance because with more blocks individuals within a
block will be more similar with respect to reading readiness. However, increasing the number
of blocks also decreases the error df, potentially decreasing power and precision of estimates.
In our example, in the one-factor design, the error dfare dfs/A = dftot— dfA = 79 — 3 = 76.
In the treatment x blocks design, the error df are dfs/AB = dftot~ (d/A + dfB + dfAB) =
79 - (3 + 4 + 12) = 60. But supposing we used 10, rather than 5 blocks. Still holding N
at 80, a = 4, b = 10, and n = 2. The error dfare now 40, a loss of 20 df. The point is that
there is an optimal number of blocks that depends on N, a, and the correlation between the
concomitant and dependent measures. Feldt (1958) has discussed these issues and provided
recommendations for selecting the value of b. That article should be consulted before using
the design.
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12.9 CONCLUDING REMARKS

The between-subjects factorial designs of this and the preceding chapters have several
advantages. Assuming equal cell frequencies, the analysis of the data is much simpler than
for most other designs. For any given number of scores, the error degrees of freedom will
be larger than for any comparable design. The requirements of the underlying model are
more easily met by these between-subjects designs than by other designs, and violations of
assumptions are less likely to affect the distribution of the F ratio. The between-subjects
designs share one major deficit. Because the within-cell variance—which is the basis for the
error term for all F tests—is a function of individual differences, the efficiency of the design
is low compared with that of other designs. That is, other designs, which allow the removal
of individual difference variability from the error variance, generally will yield smaller error
terms and therefore more precise estimates of population effects and more powerful tests
of hypotheses. The between-subjects designs are most useful whenever participants are
relatively homogeneous for the variable being measured; whenever a large N is available,
compensating somewhat for the variability of measurements; or whenever it is feasible to
block participants, or adjust variability, on the basis of a concomitant measure related to
the dependent variable. Also, there are many experiments in which it is impossible to do
anything but assign different participants to different levels of the variable. This is self-
evident when the independent variable is personality type or training technique. It may also
be true when much time is needed to obtain a measure from the participant, and it is therefore
preferable to obtain only one measure from each person. Nevertheless, particularly when
several factors are manipulated, participants are usually tested under several levels of the
independent variable. In Chapter 13, we consider such repeated-measures, or within-subject,
designs.

KEY CONCEPTS

partial to2

t)2(eta squared) X (lambda)
concomitant variable nonorthogonal design
S$A\B SSA\B,AB

Type I sums of squares Type II sums of squares
Type III sums of squares pooling sums of squares
negatively biased F test "sometimes-pool" rule
analysis of covariance (ANCOVA) Treatments x Blocks design
harmonic mean unweighted means analysis
weighted means analysis

EXERCISES

12.1 Consider the following means from a 2 x 2 x 2 (23) design.
(a) State the contrasts (W) corresponding to A, BC, and ABC sources of variance.
(b) Use the contrast formula to calculate the sums of squares for each contrast in

part (a). Assume n = 10.
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C2

62

A,
A2

12
17

14
16

A,
A2

8
10

13
18

Assume that in a multifactor experiment, a — 4, b = 3, and c = 2 and W — 96.
Given that MSA = 56.8 and the F = 2.84,
(a) Whatisn?MSs/ABC?
(b) Estimate a2 and f2 for the A effect.
(c) Assuming the effect size and error variance calculated in part (a), what power

do we have to test the A effect (at a. = .01) if the study is redone with n — 8?
In a study designed to examine changes in attention with age, 180 children are
required to sort decks of cards into two piles according to the value of a rele-
vant dimension contained on the card. For example, if the relevant dimension is
shape, the child may be asked to sort all the cards in a deck that contain a circle
into one pile and all the cards that contain a square into another pile. To inves-
tigate how well a child is able to focus on a single dimension, the amount of
irrelevant information present on the card is varied across different experimental
conditions: there is either no irrelevant information (/i); one irrelevant dimension,
such as color (I2); or two irrelevant dimensions (/s). To summarize the design,
there are three age levels (3, 5, and 7 years), three levels of irrelevant information,
and both male and female participants; there are 10 participants in each of these
18 cells. The dependent variable is the average (mean) time required to sort a deck
of cards.
(a) Write down the ANOVA table for this design (SV, df, and EMS).
(b) The following hypotheses are made: (i) older children are generally faster at

doing the task; (ii) irrelevant information interferes with performance, and there
is more interference for younger children than for older children; (iii) the ten-
dency for younger children to be more influenced by the irrelevant information
than older children is more pronounced for boys than for girls.
If the hypotheses are correct, what terms would you expect to be significant?

A large scale study of programmed instruction is carried out with three variables:
method (linear program, branching program, material is just read); ability level of
students (low, average, high); and instruction time per day (30, 45, or 60 min).
Several hypotheses are:

H1 : High-ability (HiA) students perform better than low-ability (LoA) students.

H2: Programmed instruction (LP, BP) is superior to nonprogrammed instruction
(NP).

H3: HiA students readers improve less with increased instructional time than LoA
students.

H4: Performance improves as instruction time increases, but the improvement is
smaller between 45 and 60 min than between 30 and 45 min.

H5: The improvement in performance with increased time is greater for the NP (no
program) conditions.

C]

B] 82

12.2

12.3

12.4

81
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(a) Plot a set of means consistent with these hypotheses.
(b) What significance tests would you carry out to test this set of hypotheses?

12.5 Following is a data set with unequal ns. The cell totals (T. j k) and the ns (n j k) are
given (Tjk/njk):

A1

A2

20/2
16/2

40/4
4/2

(a) Calculate SScells. The equation is 55cells = EJ ]C* njk(Y-jk - Y...)2.
(b) In the same way you did part (a), calculate SSA and SSB- Then subtract these

from SScells to get SSAB. DO you see any problem with this procedure? Explain.
(c) Calculate A1 and A2 .This requires finding the marginal (row) means for A1 and A2

and subtracting the grand mean. If you have done this correctly, E^. nj.&j -- 0
(nj. is the total n for row j).

(d) Subtract aj from each cell mean in row j. Look at the table of means that
results. Using these adjusted means, what are SSB and SSAB? How does this
result compare with your answer in part (b)?

12.6 Consider the following table of cell means. We will adjust these means for the
effects of A under different assumptions about cell frequencies and, by observing
what happens to the column means, infer the consequences of equal, proportional,
and disproportional cell frequencies for ANOVA. The cell means are:

82 83

A,
A2

A3

12
8
1

8
6
3

22
13
16

(a) Assume that the cell frequencies are all the same, (i) Calculate the row and
column means. (ii) Calculate estimates of the row effects (aJ), (iii) Subtract
each value of aJ from the three cell means in the corresponding row. How do
the column means of this adjusted (for A effects) matrix compare with those in
part (i)?

(b) Assume the original cell means presented here. This time, however, assume the
following cell frequencies (njk):

A,
A2

A3

4
3
1

8
6
2

12
9
3

B1 B2

B1

B1 B2 B3
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Redo (i)-(iii) of part (a). Be careful in calculating the row, column, and grand
means; the values being averaged must be weighted by their corresponding
frequency. For example, the mean of the first row is [(4)(12) + (8)(8) -f-
(12)(22)]/24. Similarly, the grand mean is the weighted average of the 12 cell
means (or of the three row or column means),

(c) Again assume the original set of means. This time, the njk are:

81 B2 B3

A1

A2

A3

5
5

10

10
5
3

4
10
5

Again, do (i)-(iii).
(d) Review your answers to this problem and draw a conclusion about the effects of

equal, proportional, and disproportional cell frequencies about the partitioning
of variability in ANOVA.

12.7 (a) In Exercise 11.12, based on the file Ex11_12, we found that the B source of
variance had an associated p value slightly greater than .05. This does not
provide a good sense of the effect size. Calculate both Cohen's / and partial w2

for the B effect.
(b) Calculate the power to detect a medium B effect (/ = .25), given the design of

Ex11_ 12. Do you think the N in the study was sufficient?
12.8 The file Ex12_8 contains an artificial data set modeled on results reported by

Roediger, Meade, and Bergman (2001). They varied three factors in a study of
social influence on memory: (1) a confederate included false recalls in the presence
of the participant [Context = exptal (i.e., experimental)] or did not include such
reports (Context = control); (2) false items were highly related to items actually
present in the to-be-remembered list or were low related (Related = high or low),
and the time to view the items during the study period was either 15, 30, or 45
seconds. (In the actual study, the context and relatedness variables were within-
subject factors, and there were only two viewing times.) The dependent variable in
our file is the percentage of false recognitions by the participants.
(a) Plot the means and describe the trends in the data.
(b) Perform an analysis of variance, including trend tests you believe to be appro-

priate. Discuss the results.
12.9 The WileyJVoss file (Wiley folder on the CD) contains several dependent variables.

Here, we analyze the SVT (sentence verification task) measure.
(a) Plot the cell means, including standard error bars.
(b) Perform the ANOVA.
(c) Calculate the standardized effects (Cohen's /) for the main and interaction

effects.
(d) Compare the relative sizes of the / values with the p values for the ANOVA. If

there is a difference in ordering, discuss why this has happened.
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(e) What N would you need to have .8 power to reject H0 if the Format / value
was .25 (medium, by Cohen's guidelines)? What N would you need for the
Instruction effect? Is there a difference? If so, why?

12.10 The file Exl2_10 on the CD contains data modeled after that collected in a study
by Bless, Bohner, Schwarz, and Strack (1990). These investigators manipulated
the mood (1 = happy, 2 = sad) of their participants, and presented them with a
message (1 = strong, 2 = weak) designed to influence their attitude about student
service fees. Subjects' focus (1 = content, 2 = language) was also varied. The
dependent measure in our data set is the recommended fee (in dollars) after reading
the message.
(a) Plot a bar graph of the eight cell means. Describe the pattern. What main and

interaction effects are suggested by the plot?
(b) Perform an ANOVA on the data in the file. Discuss the results with reference to

the plot of the means in part (a).
(e) Calculate w2 for each of the sources of variance. How do the values relate to the

results of the ANOVA?
12.11 Bless et al. (see Exercise 12.10) also collected data from a control group (n = 10)

that received no message but were asked to assess a fee. Assume that the mean for the
control group is 48 and the standard deviation is 4.5. Test the difference between the
control group and each of the eight experimental groups. Which of the experimental
groups differed significantly (A= .10) from the control group? Be explicit about
the method for controlling the FWE and the selection of the error term(s).

APPENDIX 12.1

Calculating Type III and Type I Sums of Squares
in Cell Means Analyses

The Harmonic Mean

Calculating the Type III sum of squares involves the harmonic means of cell frequencies.
Assume we have a rows and b columns, with njk scores in each cell. Then, the harmonic
mean of the number of scores in column k is

As in the usual formula for the B sum of squares, we need the squared deviation of the
column mean from the grand mean. In this case, the "grand mean" is calculated differently,

Type III Sums of Squares for B (Unweighted Means Analysis)

The unweighted marginal mean of column k is obtained by adding the cell means in the
column and dividing by the number of rows; that is,
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depending on whether we want the A or B sum of squares. For the Type III B sum of
squares, the grand mean is obtained by multiplying each unweighted column mean by the
harmonic mean of the njk in that column, summing these products and dividing by the sum
of the column harmonic means. In equation form, we have

Substituting numerical values from Table 12.4 in Equations 12.5, 12.6, and 12.7, we have
the values needed to calculate the SSB\A,AB (the Type III sum of squares for B) in this cell
means analysis:

E k = 1 n . k = 125.716 and YG(B) = 5.322. The SSB | A , A B formula looks much like the
standard definitional formula for SSB in an orthogonal design, except that n is replaced
by n.k and the grand mean is calculated as in Equation 12.7:

After substituting the previously calculated values in Equation 12.8, the result is SSB\A,AB

= 78.13, as in Table 12.4.

Type I Sums of Squares for B (Weighted Means Analysis)

In this analysis, the column (educational level) means are obtained by weighting each cell
mean by its relative frequency; that is,

where n.k is the total number of scores in column k. The "grand mean" is

where N is the total number of scores. Substituting numbers from Table 12.4 in Equa-
tion 12.10, the weighted column means are 6.044, 5.176, 4.844, and 4.794, and Y . . . ( W ) =
5.206. The SSB is

and, after further substitution in Equation 12.11, SSB = 68.28.



Chapter 13
Repeated-Measures Designs

13.1 INTRODUCTION

The preceding chapters have focused on research designs in which N participants are
distributed among the conditions, and each participant contributes exactly one score to the
data set. In many studies, however, participants contribute scores in several conditions. Such
studies include experiments in which the conditions are levels of a manipulated independent
variable, with the order of presentation randomized independently for each participant, as
well as studies in which measures are obtained from the same individuals at different points
in time. An example of the latter use of a repeated-measures design is the Seasons study
carried out by researchers at the University of Massachusetts Medical School. The upper
panel of Table 13.1 presents Beck depression scores for each season for each of 14 men
under the age of 35 who served in the Seasons study, and for whom scores were available
in all four seasons. Each row of the data set represents a different participant, and each
column represents a season. The column means indicate that depression scores are lower
in the summer than in any other season, and the analysis of variance (ANOVA) results in
Table 13.2 indicate that we can reject the hypothesis that the population means for the four
seasons are equal. We have more to say about these results later in this chapter, and we also
consider the analysis of the trend over seasons.

In general, we have n subjects, each tested in each of a conditions. A single score is
denoted by Yij, the score for the ith subject in the jth condition of the variable A. The
design is a departure from the between-subjects designs considered so far because each
individual contributes more than one score. However, in one sense there is nothing new
about this design. Its layout is essentially that of a two-factor (S x A) design with one score
in each of the an cells of the design. Therefore, the calculations of sums of squares and mean
squares in Table 13.2 are nearly the same as in the two-factor between-subject design of
Chapters 11 and 12. Of course, there is one difference: Because only one score is present in
each cell, there is no within-cell error term. Instead, we use MSSA as the denominator for the
F test of A. The structural model and other assumptions underlying the data analysis will

342
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TABLE 13.1 SEASONAL DEPRESSION SCORES AND ANOVA FOR MALES UNDER 35 YEARS OF AGE

Subject

1
2
3
4
5
6
7
8
9

10
11
12
13
14

Mean

Winter

7.500
7.000
1.000
0.000
1.059
1.000
2.500
4.500
5.000
2.000
7.000
2.500

11.000
8.000

4.290

Spring

11.554
9.000
1.000
0.000
0.000
2.500
0.000
1.060
2.000
3.000
7.354
2.000

16.000
10.500

4.712

Summer

1.000
5.000
0.000
0.000
1.097
0.000
0.000
2.000
3.000
4.208
5.877
0.009

13.000
1.000

2.585

Fall

1.208
15.000
0.000
0.000
4.000
2.000
2.000
2.000
5.000
3.000
9.000
2.000

13.000
11.000

4.943

Mean

5.316
9.000
0.500
0.000
1.539
1.375
1.125
2.390
3.750
3.052
7.308
1.627

13.250
7.625

4.133

TABLE 13.2 ANOVA OF THE DATA IN TABLE 13.1

SV

Subjects (5)

Seasons (A)

S x A

Total

df

n-\
= 13

a - 1
= 3

(n - 1)(al - 1)
= 39

an - 1 = 55

SS

a£i(Yi-Y..)2

= 779.01

nEj(Y.j-Y..)2

= 47.781

£i£j(Yij-Yi-Y.j+Y..)2

= 206.973

E iEj(Yij - Y..)2
EiEj(Yij-Y..)2

= 1033.838

MS

SSs/dfs

= 59.931

SSA/dfA

= 15.927

SSSA/dfSA

= 5.306

f

MSs/MSsA

= 11.295

MSA/MSSA

= 3.001

P

.000

.042

be presented shortly and will be used to generate expected mean squares, thus justifying
the S x A error term. Before then, however, we consider some ways in which the design
differs from the between-subjects designs considered so far.

One advantage of the repeated-measures design is that it requires fewer subjects than
the between-subjects design does. This is important when subjects are members of a popu-
lation that is limited in size, as are many clinical populations; or when subjects are difficult
to recruit, as when the task is very boring or dangerous; or when subjects are expen-
sive animals such as monkeys. Even without these constraints on subject availability, the
repeated-measures design may prove more practical than a between-subjects design. For
example, if it takes very little time to obtain a score from a subject, it may be more efficient to
run one subject under several conditions than to run several subjects, each under a different
condition.
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Practicality is an important factor in the choice of a design, but efficiency—the size of
the error variance—is even more important. Therefore, to understand the potential advan-
tages of repeated-measures designs, we should consider the nature of the error variance.
Recall that the structural model for the one-factor between-subjects design is

We might think of eij in a between-subjects design as the sum of two components: (1) an
individual differences component that occurs because participants who differ from one
another in ability, training, and other personal characteristics would respond differently
even if tested at exactly the same moment under exactly the same conditions and (2) a
measurement error component that occurs because even the same individuals respond
differently when tested on different occasions because of fluctuations in attention, changes
in the physical environment, chance variability in the stimulus, and a host of other factors.
Because there is usually considerable variability in the way different individuals perform,
a2 (and MSs/A, our best estimate of it) tends to be large in between-subjects designs. Other
designs with no more observations may yield more power, and less variable estimates
of parameters, than between-subjects designs by removing some or all of the individual
differences component from a2.

In the Treatment x Blocks design discussed in Chapter 12, error variance was reduced
by introducing a blocking factor that allowed some of the individual differences variability
to be removed from the total variability. In repeated-measures designs, the idea of blocking
is taken a step further; a blocking factor, subjects, is introduced. This factor has n levels,
one for each subject. As can be seen in the ANOVA of Table 13.2, we now are able
to remove variability due to individual differences by subtracting a sum of squares for
subjects from the total sum of squares. The error term, MSSA, still includes variability due
to measurement error. However, because of the elimination of variability from individual
differences, the error variance in the repeated-measures design will be much smaller than
that in a between-subjects design with the same number of data points. As a result, when
H0 is false, F ratios will be larger and treatment effects will be more easily detected. In
addition, confidence intervals for differences based on pairs of treatments will be narrower
in the repeated-measures design; we can more precisely estimate effects.

Repeated-measures designs make efficient use of subjects, both in the sense of requiring
fewer subjects than between-subjects designs, and in the sense of having less error variance.
However, not all independent variables lend themselves to such designs. For example,
subject variables—such as gender, intelligence, and clinical category—must be treated as
between-subjects factors. Except under rather unusual circumstances, a given subject cannot
be expected to contribute one score as a male and a second score as a female. Also, for
some independent variables, once participants are tested at one level, it does not make sense
to test them at a second level. For example, in an experiment designed to compare the
effectiveness of different methods of teaching mathematics, knowledge achieved by being
exposed to one of the methods cannot be miraculously expunged so that it can be releamed
using a second method.

Although the between-subjects designs we considered in previous chapters may be
inefficient, they are relatively simple. Scores in different groups can be considered to be
independent, and the within-cell variance can be used as the error term for testing any
effect. The repeated-measures designs we introduce in the present chapter are potentially
more efficient, but we pay for the increased efficiency with some additional complexity.
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We must be aware of the possibility of carry-over effects, the possibility that a score at
one point in time is influenced by the treatment at a preceding point in time. A second
consideration is that, because each individual contributes several scores, these scores are
likely to be correlated; this will have implications for the validity of the F test calculated
in Table 13.2. Another difference from the between-subjects design is that the within-cell
variance cannot be used as the error term to test all effects. In most repeated-measures
designs, there is no within-cell variance; because subjects are a factor in the design, each
cell contains a single score. When there are several independent variables, there will usually
be an appropriate error term to test each source of interest, but what is used as the error term
will depend on which source of variance is tested. These inferential issues—implications
of correlated scores and the choice of error term—will be developed in subsequent
sections.

13.2 THE ADDITIVE MODEL AND EXPECTED MEAN
SQUARES FOR THE S A DESIGN

We first develop and discuss a very simple structural model for the design of Table 13.1. In
this additive model, subject (5) and treatment (A) effects are assumed to add (together with
an error component) to account for the deviation of a single score, Yy, from the grand mean,
Y . We then consider the nonadditive model in which an S x A interaction effect is added
to the main effects to account for the structure of the data. Although the nonadditive model
provides a more realistic account of many data sets, it raises certain inferential problems.
Therefore, we begin our discussion of repeated-measures designs with the simpler additive
model.

13.2.1 The Structural Equation and Expected Mean
Squares (EMS)

Consider a group of n subjects, each of whom is tested once under each of a levels of the
treatment variable A. The order in which the participant is tested in the different treatment
conditions is randomly determined, and randomization is conducted independently for each
participant. We assume that the n subjects are a random sample from an infinitely large
population of individuals. We view Yij, the score of the ith subject under treatment Aj as
being composed of a true score, uij, and measurement error, eij; that is,

To establish the basis for the ANOVA, we need to express the true score, uij, in terms of the
population grand mean and the contributions of subjects and treatments. To do this, we have
to define some averages of the true scores. In turn, this requires us to distinguish between
fixed-effect and random-effect variables. A treatment variable, A, is said to have fixed
effects when we assume that its levels have been arbitrarily selected. Therefore, the average
true score for subject i, ui., is the average over the a levels of A selected for our experiment.
This is reflected in its definition in Table 13.3. The subject variable, 5, is assumed to have
random effects because the n subjects in the experiment are assumed to be a random sample
from the population of subjects. Therefore, the average of the population of true scores at
any level of A is an expected value of an infinite set of true scores. Accordingly, Table 13.3
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TABLE 13.3 DEFINITIONS AND ASSUMPTIONS FOR PARAMETERS OF THE ADDITIVE MODEL

Parameter

ui.

M-j

u

ni

a
j

Definition

E; M-y/fl

E ( u i j )

Ej u.j/a = E(ui.)
ui. - u
u.j - u

The following conditions hold for aj, ni , and eij:

1. The aj, ni, and eij are distributed independently of each other.

2. If A is a fixed-effect variable (so that the entire population of levels of A is considered to
be represented in the design), then

because the sum of all deviations of treatment means about their mean must be 0. The
variance of the treatment effects is

The null hypothesis about the effects of treatments is

or, equivalently, that a2 = 0.

3. Because we have assumed that the subjects in the experiment are a random sample from an
infinite population, the sum of the n values of ni sampled in the experiment are unlikely to
sum to zero; that is,

However, the average value of all such effects for the population of subjects will be zero;
that is, E(r\i) = 0. We assume that the population of t], values is distributed independently
and normally with variance a = E(n 2 ) . We can summarize these distributional
assumptions by stating that the r\i are distributed IN(0, a2);that is, independently and
normally with mean zero and variance, a2.

4. The error component, eij is assumed to be distributed independently and normally with
mean £(£y) = 0 and variance a;2 = E(e2). That is, the eij are distributed IN(0, 07).

presents the definition of u.j, the mean of the population of scores at theyth level of A, as
an expected value. The mean of all a populations, u,, is defined as an average of the u.j or,
equivalently, as an expected value of the ui..

The definitions presented in Table 13.3 provide the basis for defining the subject (ni)
and treatment (aj) effects. Their definitions are also presented in Table 13.3. We assume
that the deviation of the true score, (uij, from the grand mean, u, is due to the subject and
treatment. Therefore, Equation 13.1 can be rewritten as
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Equation 13.2 is the structural model under the assumption of additivity; the term "ad-
ditivity" reflects the adding of a/ and r\i in the model, and the assumption that there are
no interaction effects. In the nonadditive model, considered later in this chapter, a term
will be added to Equation 13.2 to reflect an S x A interaction, and the consequences of
that additional assumption will be developed. To complete our presentation of the additive
model, we state certain conditions on a,, ni, and eij. These are presented in the lower panel of
Table 13.3.

Equation 13.2 and the preceding assumptions about its component parameters provide
the basis for deriving EMS. We have

sv

Subjects (S)
Treatment (A)
S x A

EMS

a; + aa2

a2 + ne2

c2

where 02 = 1 T a2. The preceding table indicates that, under the additive model, MS$A
is the appropriate error term for testing null hypotheses about both S and A. In either test,
if the null hypothesis is true, the numerator and denominator of the F ratio have the same
expected value.

The additive model and the EMS derived from it have implications for more than the
F tests. In the next few sections, we consider several of these aspects of the design.

13.2.2 The Efficiency of the Repeated-Measures Design

As we noted in the introduction to this chapter, the error variance in the between-subjects
design of Chapter 8 has contributions from both individual differences and measurement
error. We might rewrite the expectation of the error mean square in the between-subjects
design as

where the subscript m indicates that the variance is due to measurement error, and the
subscript S indicates variance caused by individual differences in the population of subjects.
In contrast, in the repeated-measures design, the subject variability has been removed from
the error term because subjects are a factor in the design. Therefore, under the assumption of
additivity, the error mean square in this design is an estimate only of error of measurement
error. That is,

From Equations 13.3 and 13.4, it follows that E(M$SA) < E(MSS/A). Therefore, assuming
that both designs have the same number of observations (an), F ratios based on the S x A
error term will generally be larger than those based on the S-within-levels-of-A error term.
Although dfSA < dfs/A [i.e., (a — l)(n — 1) < a(n — 1)] and power generally depends on
df, the S/A error variance is usually so much larger due to its individual difference compo-
nent that the repeated-measures design will almost always result in more power. Another
way to think about this is that the repeated-measures design will require fewer subjects, and
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therefore fewer data points, to achieve the same power. It is more efficient than the between-
subjects design. In Appendix 13.1, we have derived an expression for the efficiency of the
repeated-measures design relative to that of the completely randomized (i.e., between-
subjects) design. The relevant formula, which takes into account differences in error
df,is

This is the efficiency of the repeated-measures (RM) design relative to that of the completely
randomized (CR) design. As an example of Equation 13.5, consider the efficiency of the
design represented by the data set in Table 13.1. There are four depression scores, one for
each season, for each of 14 subjects. In the alternative completely randomized design with
the same number of observations, there would be 56 subjects, 14 tested in each season.
Substituting values of error degrees of freedom and mean squares into Equation 13.5 from
the ANOVA of Table 13.2, we have

In practical terms, if this study were run with different subjects in each season, the design
would require 3.47 times as many observations for each season to obtain the same power.
The completely randomized design would have required about 49 subjects in each season,
or 196 observations, instead of the 56 observations in the repeated-measures study.

13.2.3 Measures of Effect Size

On the basis of the expected mean squares, we can again measure the effect of the indepen-
dent variable, A, by calculating Cohen's / or partial o2. As in Chapters 8 and 12 (e.g., see
Table 12.1), estimates of population variances are obtained from the expected mean squares
and inserted into the formulas for the measure of effect. Cohen's / is defined as

Therefore,

where FA = MSA /MS s A . Partial oo2 is defined as

and is estimated by

As in previous chapters, there is a simple relation between the partial oo2 and f:
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Inserting F ratios from the AN OVA table in Table 13.2 into Equation 13.6, the estimate
of f is

According to Cohen's (1988) guidelines, seasons have an effect between medium and large
(f = .25 for a medium effect and .4 for a large effect) on depression scores. In a similar
manner, substituting into Equation 13.7, we find that the value of w2 is .10.

13.2.4 Estimating Missing Scores

Suppose that a subject does not show up to be tested in Condition Aj or that the data in
Condition Aj were not recorded properly for one subject. The Seasons data file on the CD
accompanying this book has many such missing scores. Still assuming additivity of subjects
and treatments, it is possible to estimate the missing score using the a — 1 scores that the
subject provided in the other treatment conditions and the n — 1 scores provided by the
other subjects in Condition Aj. Call the missing score Xij. Because E(eij) = 0, assuming
an additive model we can estimate X i j .

We now need estimates of the population means in Equation 13.9. Some notation will help.
Let T be the sum of the an — 1 scores that were actually obtained, Ti. be the sum of the
a — 1 scores from Subject i, and r, be the sum of the n — 1 scores from the other subjects
in treatment Condition Aj. Our best estimate of u is the grand total of all the scores divided
by the number of scores, an. In this case, the grand total is the observed total plus the
missing score: T + Xy. Similarly, we can estimate JJL; and u.j. Replacing the parameters
of Equation 13.9 by their estimates, we have

and solving for Xij,

Because the missing score is estimated from the remaining scores, it does not contribute
a degree of freedom, so that the error degrees of freedom are reduced by one; that is,
dfSA = ( n - 1 ) ( a - 1 ) - 1 .

To illustrate the procedure, assume that the score for the 11th subject in the winter
season is missing from Table 13.1. The sum of the three remaining scores in the row is
22.231, the sum of the remaining scores in the winter season is 53.059, and the total of all
scores other than the missing one is 224.426. Substituting into Equation 13.10, the missing
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score is estimated as

The result is reasonably close to the "true" missing score of 7.
The procedure can be extended to situations in which we have more than one missing

value—say both Y1,4 and Y5,3 are missing. Begin by "guessing" the value of one of the
scores (e.g., assigning ¥53 an arbitrary value such as its column mean). Treating this guess
as though it were a real score, Y(1), a first approximation to Y^, may be obtained by using
Equation 13.10. Then, treating Y(1) as though it were a real score, Equation 13.10 can
be used to obtain Y(1), an approximation to Y5,3. The procedure is then repeated, using
Y(1) in Equation 13.10 to produce Y(1), a second approximation to Y1,4, then using Y(2) to
produce Y5 3 and so on. This can be continued until two successive cycles show as small
a change in the estimates as desired. Note that when the data are analyzed, the degrees of
freedom for the error term are reduced by 1 for each score that is estimated. This method
is called an iterative procedure (because of the iteration, or repetition, of steps). The
procedure can be extended to situations with more than two missing scores. However,
unless a computer program is written to implement it, calculations will quickly get out of
hand.

This procedure for estimating missing data rests on the assumption of the additive
model, Equation 13.2. If subjects and treatments interact, alternative methods exist but they
also require rather strong assumptions. The procedure described here is fairly simple and
provides a reasonable approximation for many data sets.

13.2.5 Tukey's Test of Nonadditivity and Transformations

In many experiments, the effects of treatments may vary over subjects. To take just one of
many possible examples, the effects of many different variables on reading comprehension
are likely to depend on such individual factors as reading ability, familiarity with the topic,
current state of alertness, and motivation to perform well in the experiment. In such cases,
the additive model of Equation 13.2 may not provide a valid description of the structure
of data. One consequence of nonadditivity, noted earlier, is that Equation 13.10 provides
only a rough estimate of missing scores when interaction terms are present in the model.
A second consequence is that the Type 1 error rate associated with the F test of A against
5 x A will be inflated. Although this is an important problem, we shall see when we
discuss the nonadditive model that there are a number of ways to handle it. Our view is
that additivity is desirable because the Subject x Treatment interaction contributes noise,
reducing the power of the test of treatments. When the additivity assumption holds, it
provides more precise estimates of population effects and a more powerful F test of those
effects.

Assuming that additivity of subject and treatment effects is desirable, we have to decide
whether the assumption is reasonable for a given data set and, if it is not, whether a trans-
formation exists that will improve things. We might plot n curves, one for each subject, and
attempt to decide if they depart sufficiently from parallelism to justify concluding that sub-
jects and treatments interact in the population. However, distinguishing between variability
due to chance and variability due to interaction effects is usually difficult, particularly if
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TABl£ 13.4 TUKEY'S TEST OF NONADDITIVITY AND A RELATED TRANSFORMATION

1. Calculate the product of each score multiplied by the deviations of its row and
column means from the grand mean, and sum these products:

P1 = EiEjYij(Yi,-Y..)(Y,-Y.)
For example, using the data of Table 13.1, the winter score for Subject 1 (7.5)
would be multiplied by its row deviation (5.316 — 4.133) and its column deviation
(4.290 - 4.133). If we consider all 56 scores in Table 13.1, P1 = 108.544.

2. Calculate the sum of the squared deviations of the row means from the grand
mean and the sum of the squared deviations of the column means from the
grand mean, and multiply these two sums:

P2 = Ei(Yi. - Y..)2 Ej (Y.j - Y..)2 = 664.716

3. The numerator of the F test of nonadditivity is distributed on 1 df and is calculated
as SSnonadd = P 2 /P 2 . For the data of Table 13.1, 5Snonadd = 17.725.

4. The denominator SS (the "balance") is distributed on (n — l)(a — 1) — 1 df and is
calculated as SSbal = SSsA ~ SSnomdd; SSbal = 189.228. Dividing by dfbal, 39 - 1,
MSbal = 4.980, and F = SSnonadd/MSbal = 3.559, p = .067.

5. The Anscombe-Tukey power transformation is Y' = Y power, where power = 1 —
(P,/P2)F... In the current example, power = 1 - (1 08.544/664.7 16)(4. 133) = .325.
The Tukey test for nonadditivity is available in the Scale/Reliability Analysis module
of SPSS; click on "Analyze," "Scale", "Reliability", and "Statistics."

there are more than a very few subjects, as in the example of the 14 subjects in this chapter.
Although it will not detect all forms of nonadditivity, Tukey's (1949) test is helpful, not
just because it provides a significance test, but also because a transformation to additivity
can sometimes be found using some of the results of the calculations. The test is based on
partitioning SSsA into two components: one that represents a specific type of nonadditivity
and the other that serves as the basis for an error term.

Table 13.4 presents the formulas for Tukey's test of nonadditivity, and the results of
applying them to the data of Table 13.1. Although the F test of nonadditivity was not
significant at the .05 level, the p value of .067 suggests that subjects and treatments may
interact. This suggestion is supported when Anscombe and Tukey's (1963) proposed data
transformation is calculated. Such power transformations are easily carried out in most
statistical packages. When each score was raised to the .325 level, in accord with the result
in Table 13.4, the F test of nonadditivity yields a p value of .488, indicating that the
transformation was successful. Furthermore, an ANOVA on the transformed data resulted
in an F of 4.077, p = .013. That p value is considerably smaller than the .042 on the original
untransformed depression scores.

Because raising scores to a power of .325 seemed unnatural, we also tried a square root
transformation of the scores in Table 13.1; that is, we raised each score to the .5 power,
reasoning that this was not too far from the Anscombe-Tukey result. The outcome was
similar to that obtained with the .325 transform. Now the test of nonadditivity resulted in a
p value of .891. The F test of the Seasons source of variance was again significant at the
.013 level. The averages of the square roots of the scores in Table 13.1 were



352 13 / REPEATED-MEASURES DESIGNS

Winter

1.867

Spring

1.752

Summer

1.186

Fall

1.894

This pattern is similar to that for the original means in that the one mean that is clearly
different from the others is that for the summer. For these 14 men, both the original and the
transformed data indicate that depression scores are considerably lower in the summer.

These results with a real data set indicate that data transformations may increase
power and the precision of estimates of population parameters. However, it is important to
realize that the tests of null hypotheses and parameter estimates are based on a different
scale than the original. If the original scale is more meaningful, or the transformation badly
distorts the pattern of means, the gain in efficiency may not be worthwhile. On the other
hand, the original scale is often quite arbitrary, and taking the square root, or log, or recip-
rocal of scores may be equally meaningful. Researchers may increase their comfort levels
by retransforming the means; for example, by squaring the means based on the transformed
data.

13.3 THE NONADDITIVE MODEL FOR THE 5 x A DESIGN

In many studies, the effects of treatments may vary over subjects with the result that the
additive model of Equation 13.2 fails to provide a valid description of the structure of the
data. For example, the effects of rate of presentation of text material on comprehension
may depend on such individual factors as reading ability, familiarity with the topic, current
state of alertness, and motivation to perform well in the experiment. In such cases, it may
be impossible to find a transformation to additivity, or it may be important to retain the
original scale. Therefore, in this section, we consider a more general, nonadditive model
that includes a term to represent S x A interaction effects.

13.3.1 The Structural Equation

For the nonadditive model, we add an interaction component to the additive model of
Equation 13.2. Therefore, the equation for the nonadditive case is

Assumptions about the distribution of the terms that were in Equation 13.2 are unchanged.
The interaction effect associated with the t/th cell is defined as

Assuming that the levels of A have been arbitrarily selected, the mean of the interaction
effects for a subject is zero; that is, X^-CnoOy/tf = 0. When the effects of A are fixed, the
average of the interaction components for any subject is zero, because all the levels of A
that have been selected are involved in the average.
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At each level of A, (na)ij is assumed to be normally and independently distributed.
The mean of each of these a distributions of interaction effects, E (na ) i j , is zero, and the
variance is E(na)2, which we will refer to as aSA.The mean of the population of interaction
effects at Aj is an expected value because we assume an infinite population of subjects,
and therefore of interaction effects, at Aj. However, only a sample of n of the population
of interaction effects at Aj are included in the data. Because this sample will be different
at each level of A, the 5 x A interaction will contribute to differences among the observed
means at the various levels of A. In contrast, because A is a fixed-effects variable, the mean
for each subject involves an average of all interaction effects for the subject. That mean will
be zero and so interaction effects do not contribute to the variability among the observed
subject means. Consistent with this analysis, we shall see that the expected mean square
for A contains a component due to the interaction of S and A, whereas the expected mean
square term for S does not.

Table 13.5 may clarify the preceding discussion. The table presents the true scores for a
rather small population of four subjects. Note that the treatment population (column) means
are identical; the null hypothesis is true. Also, note that the average interaction effect in each
column and in each row is zero; this is an algebraic result of the definition of an interaction
effect. Now assume an "experiment" in which two of the four subjects—say S1 and S2—are
selected by random sampling. Ordinarily, there would be more subjects in an experiment,
but this should be enough to make our point. We also have set all e// equal to zero; that is,
we have made the observed scores (Yij) in our experiment equal to the true scores so that
o2 will not be a factor in our discussion. Taking the "data" from the two subjects in the
experiment (S1 and S2) , we find that the means at the levels of A, the Yj, are 9, 9.5, and
5.5. Note that, although the u.j are identical, the Yj are not. This is not because of error

TABLE 13.5 DATA FOR A POPULATION OF FOUR SUBJECTS

With Interaction Effects Present

A!

S,
5,
S,
S4

uj

y/i
8

10
11
9

9.5

fa<*)n

_ 1

3
— 1

-1

A2

Yi2

10
9

12
7

9.5

(na),2

1
2
0

-3

A3

Y/3

9
2

13
14

9.5

(na)i3

0
-5

1
4

ui

9
7

12
10

u = 9.5

•n/

-.5
-2.5

2.5
.5

Without Interaction Effects Present

S1

S2

s3,
S4

uj

Yn

8 -(-1)= 9
10-3 = 7

11 -(-1)= 12

9-(-l) = 10

9.5

Yi2

10- 1 = 9
9 - 2 = 7

12-0= 12
7 - (-3) = 10

9.5

Y*

9-0= 9
2 -(-5)= 7

13-1 = 12
14-4= 10

9.5

M-i

9
7

12
10

T|i

-.5
-2.5

2.5
0.5
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of measurement because there is none in this artificial data set. It is entirely due to the fact
that the two average sampled interaction effects are different at the three levels of A. To
demonstrate this, each value of (na)ij has been subtracted from the corresponding value
of Yij. For example, Y11 is 8 — (—1) = 9 and ¥21 = 10 — 3 = 7; this population of scores,
obtained by removing the interaction effects, is presented in the lower panel of Table 13.5.
Because there are no interaction effects (and no error components), the treatment means
for the first two (or any set of) subjects, like the population treatment means, are identical.
The point of all this is that interaction among subjects and treatments will contribute to
the variability among the Yj, and therefore to MSA. Which treatment means will be most
raised or lowered relative to their population values will depend on the pattern of interaction
effects that have been sampled from each treatment population.

One other point follows from our two-subject experiment. Note that the subject means,
Yj, are unchanged if the interaction effects are subtracted from the scores in Table 13.5;
MSs is not affected by the pattern of sampled interactions. This is because A is a fixed-effect
variable. When we get the mean for a subject, we average over all the (na)ij for that subject;
that average will always be zero.

This artificial example was intended to provide some intuition about the nature of the
expected mean squares. We next present a more precise statement of these expectations and
consider certain implications.

13.3.2 EMS

TABLE 13.6 PARAMETER DEFINITIONS AND EXPECTED MEAN SQUARES FOR THE S x A DESIGN

Model Definition

The additive model: Yij = u + ni + aj + eij

The nonadditive model: Yij = u + ni + aj + (na)ij + ey

where 7] = ui, - u, aj= uj— u, (ma)ij = |xy - |x, - (x; + JJL

jjLy = E(Yjj), fji; = E(|Ay), |A, = E |Xy/a, JJL = E(|A/) = E \Lj/a

E «/ = E0n<*)y = 0 and £[(T)a)y] = Efey) = 0
j j

£($)=<*?,£ ft) =<ri,E[(T\cLJIjl=<rtA, and £ -^- = 8*
j U I

SV

S

A

SA

df

n - 1

a- 1

(n - l)(fl - 1)

Additive
EMS

CT; + aaj

a; + <

°e

Nonadditive
EMS

a(
2 + acrj

°?+°SA+nQA

°? + °&4

F

MSS

MSSA

MSA

MSSA

Table 13.6 presents the sources of variance (SV), degrees of freedom (df\ and EMS under
the additive and nonadditive models. Although we have not repeated the calculations of
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Table 13.2, it should be noted that the numerical values of the sums of squares and the
mean squares are the same for the two models. Furthermore, in both cases, the A source
of variance would be tested against MS$A • However, in the presence of nonadditivity, the
repeated-measures design is less efficient because the interaction effects contribute added
"noise" to the data set. This can be seen by considering the ratio of EMS under the two
models. If additivity holds, that ratio is

However, if the nonadditive model is valid, the ratio is smaller:

S x A interaction effects will reduce the precision of parameter estimates and the power of
the significance test. It is important to understand, however, that such interaction variance
will almost always be less than the individual difference variance associated with completely
randomized designs. Therefore, even when the data do not conform to the additive model,
the repeated-measures design will yield more powerful tests of the null hypothesis than will
the completely randomized design with the same number of observations.

An increase in error variance is not the only price that nonadditivity exacts. Although
the expected mean squares in Table 13.6 do not suggest bias in the test of the independent
variable, A, there is a potential problem, which we consider next.

13.4 HYPOTHESIS TESTS ASSUMING NONADDITIVITY

As previously stated, a necessary condition for a mean square to be a proper error term
to test some null hypothesis is the following: If H0 is true, then the expectations of the
numerator and denominator mean squares should be identical. As can be seen in Table 13.6,
this requirement is met by the expected mean squares in both the additive and nonadditive
cases. However, meeting this requirement is not sufficient for MSA /MS s A to have an F
distribution. Rouanet and Lepine (1970) and Huynh and Feldt (1976) have shown that an
assumption called sphericity (or circularity) must also be met; when that assumption is
violated, Type 1 error rates will be inflated, sometimes severely. The following sections
describe the sphericity assumption, its consequences, and the procedures to use when the
assumption is violated.

13.4.1 Sphericity (Homogeneity of Variances
of Difference Scores)

The concept of sphericity is illustrated in the upper panel (Data Set A) of Table 13.7. Data
are presented for five subjects at three levels of A. We have also calculated all possible
difference scores for each subject: di,12 = Yi1 — Yi2, d/,i3 = Yi1 — F/s, and d,,23 = YU —
y/3. The assumption of sphericity states that the three populations of difference scores have
identical variances. In general, if we have a treatment levels, there will be (l/2)(a)(a — \)
possible populations of difference scores, and it is assumed that all have the same variance,
a2. Note that the three sample values of a2 are identical in the example in the upper panel;
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TABLE 13.7 DATA EXHIBITING SPHERICITY (SET A) AND NONSPHERICITY (SET B)

Data Set A (Exhibits Sphericity)

S,
S2

s^
S4

S5

Mean
CT2

AI

21.050
6.915
3.890

11.975
31.169

15.000
124.000

A2

7.214
29.599
21.000
12.401
34.786

21.000
132.000

AJ

26.812
16.366
41.053
18.896
31.872

27.000
100.000

Y,3 ~ V,2

19.598
-13.233

20.053
6.495

-2.914

6.000
208.000

Y,z ~ Yn

-13.836
22.684
17.110

.426
3.617

6.000
208.000

Yi3 - Yn

5.760
9.451

37.163
6.921

.703

12.000
208.000

Note. MSSA = 104 = (l/2)aj.

Si
$2

s,
S4

S5

Mean
* 7a

Data Set B (Exhibits Nonsphericity)

AI

1.7
4.4
7.8
6.6
9.1

5.92
8.557

^2

3.9
6.5

13.3
9.4

15.2

9.66
21.793

A3

6.0
14.5
18.6
14.5
23.5

15.42
41.457

Yi-3 - Yi2

2.1
8.0
5.3
5.1
8.3

5.76
6.378

V/2 - Yn

2.2
2.1
5.5
2.8
6.1

3.74
3.653

Y,3-Yn

4.3
10.1
10.8
7.9

14.4

9.50
13.914

Note. MSSA = 3.991 = (1/2)(6.378 + 3.653 + 13.914)/3.

the sphericity assumption is met by these data.1 The data in the lower panel (Data Set B)
exhibit considerably more heterogeneity of variance of difference scores (nonsphericity);
if such heterogeneity exists in the population, Type 1 error rates will be higher than the
nominal a level. We will shortly consider what to do about this, but first we note some
conditions under which the sphericity assumption will hold.

Additivity is a sufficient, but not necessary condition, for the sphericity assumption to
hold. Additivity is sufficient because if there are no S x A interaction effects, the difference
between the scores under any two treatments, Aj and Aj>, will not vary over subjects. But
this means that the variance of the difference scores based on Aj and Ay is zero, and this is
true for ally and j'. Thus, additivity implies constant (zero) variance of difference scores.
However, Data Set A of Table 13.7 indicates that additivity is not necessary for sphericity to
hold. Although there is an interaction between A and S, the variances of difference scores
are identical.

Another condition under which sphericity occurs is compound symmetry, which
is defined by homogeneity of the population treatment variances and homogeneity of the
population covariances; that is, there is compound symmetry if of = ... = a;

2 — ... aa
2 and
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p12a1a2= ... pjj'Vjaj = ... = a constant; pjj' is the population correlation between the
scores at Aj and Ay, and p;yo-ycry< is the covariance. In Chapter 5 (see Appendix 5.2),
we showed that, if djj> = Yj — Yj>, then the variance of the population of difference
scores is

If compound symmetry holds in the population, all variances of difference scores will
involve the same variances and covariances of scores and therefore they must be identical.
However, although compound symmetry is sufficient, it too is not necessary for sphericity.
In Data Set A, the variances of the individual scores are not the same; they are 124,132, and
100. Nor are the covariances identical. They are 24 for conditions 1 and 2, 8 for conditions
1 and 3, and 12 for conditions 2 and 3.

Nonsphericity, or heterogeneity of variance of difference scores, is analogous in both
form and consequences to heterogeneity of variance in the between-subjects designs of
Chapters 8, 11, and 12. In Chapter 8, the error term, MS$/A, was the average of the group
variances. We showed that if the null hypothesis is true, and if there are n scores at each
treatment level, then £(M5^) = E(MSS/A} even if the group variances are very different
from each other. However, even though this heterogeneity of variance does not effect the
ratio of expected mean squares, it does effect the sampling distribution of the ratio of mean
squares. More precisely, when the null hypothesis is true, heterogeneity of variance inflates
the probability of sampling large F values.

We have a similar situation in the repeated-measures design. As can be seen in Data
Sets A and B of Table 13.7, the error term, MS$A, is one half the average of the three values
of sj; this relation between the variances of the difference scores and MSsA will hold for
any number of levels of A. If these variances are very different, the Type 1 error rate will be
inflated, as is the case when group variances differ in the between-subjects design. Mauchly
(1940) derived a test of the null hypothesis that the variances of difference scores are
homogeneous. The test result is available in some computer packages (e.g., in SPSS's GLM
module). However, if the population distributions are not normal, the Mauchly test tends
to yield significant results even when sphericity holds. Therefore, we recommend against
using this test to determine whether there is a problem in the data set. Rogan, Keselman,
and Mendoza (1979) present some simulation results relevant to this point, together with a
good discussion of the general topic of the analysis of repeated measurements.

There are three data-analysis strategies that protect the researcher against inflation
of Type 1 error rates due to nonsphericity. These are: (1) the univariate F test with e-
adjusted degrees of freedom; (2) the multivariate analysis of variance, or MANOVA;
and (3) tests of planned contrasts. The first two involve calculating the covariances of
scores. The reason for this lies in the relation, expressed in Equation 13.13, between the
variances and covariances of scores and the variance of the difference scores. We next
consider each of these three approaches.

13.4.2 The e-Ad justed F Test

Box (1954) showed that the statistic MSA/MSSA is distributed approximately as F when
the assumption of sphericity is violated; however, with violations of sphericity, the degrees
of freedom are adjusted by a factor, e ; d f A = (a — l)e and dfSA = (a - l)(n - l)e. The
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TABLE 13.8 ANOVA OF THE DATA OF TABLE 13.1

Within Subjects

Source

BeckJ)
Error

SS

47.781
206.953

df

3
39

MS

15.927
5.306

F

3.001

P

.042

G-G

.053

H-F

.042

Greenhouse — Geisser Epsilon: 0.8316
Huynh-Feldt Epsilon : 1.0000

Multivariate Repeated Measures Analysis

Test of: Beck_D

Statistic

Wilks ' Lambda
Pillai Trace
H-L Trace

Hypoth . Error
Value

.608

.392

.645

df

3
3
3

df

11
11
11

F

2.366
2.366
2.366

P

.127

.127

.127

Note. Output printed from SYSTAT.

adjustment, £, is a function of the degree of nonsphericity. If the variances of difference
scores are homogeneous—that is, if there is sphericity—e will be 1 and the usual degrees of
freedom apply. Under conditions in which the assumption is severely violated, e approaches
a lower bound of 1 /(a — 1). In this case, F would be distributed on 1 and n — 1 df. In
summary, as nonsphericity increases, the degrees of freedom decrease, with the result that
a larger value of F is required for significance. In this way, the e adjustment compensates
for the inflation of Type 1 error rate caused by the failure of the sphericity assumption.

Estimating e requires calculating covariances for all pairs of levels of A, as well as
variances for each level of A. Fortunately, common statistical computer programs—such as
SPSS, SAS, and SYSTAT—do these calculations. The upper panel of Table 13.8 presents
the ANOVA output from SYSTAT. The p value for the conventional degrees of freedom
is presented in the "P" column. The next column, labeled G-G, presents the p value for
the degrees of freedom adjusted by £, the e estimate first derived by Box (1954) and
subsequently extended to the designs of Chapter 14 by Greenhouse and Geisser (1959).
The p value in the far right column, labeled H-F, is based on degrees of freedom adjusted
by e, a second estimator of e derived by Huynh and Feldt (1976).

Both £ and g are biased estimates of e, and there is no consensus as to which should
be used. The H-F estimate, £,is always at least as large as that of £ and therefore provides
greater power. However, it also appears that £ has a higher Type 1 error rate under many
conditions (Gary, 1981). One reason for this is that g can exceed 1.0, in which case it is set
to 1. Usually, the two adjustments lead to the same conclusion. When they do not, as in the
results presented in Table 13.8, the conservative course is to rely on the G-G adjustment, £.
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In this case, we fail to reject the null hypothesis of an effect of seasons on Beck depression
scores.

In the rare case in which the researcher lacks access to statistical software that calcu-
lates t and e, the calculations can be tedious and time-consuming. Although formulas are
available in many sources (e.g., Myers & Well, 1995), Greenhouse and Geisser have sug-
gested a three-step approach to significance testing that frequently will avoid the necessity
of carrying out such calculations:

1. First test the F ratio in question with the conventional degrees of freedom (i.e.,
a - 1 and (n — l)(a — 1)). If the F test is not significant using these df, it certainly
will not be if the d/are reduced by the e adjustment. The null hypothesis cannot be
rejected.

2. If the F test using conventional degrees of freedom is significant, perform the
conservative F test using 1 and n — 1 df [i.e., the test that assumes e takes on its
lowest possible value of \l(a — 1)]. If this conservative test is significant, the null
hypothesis can be rejected without further testing.

3. If the conventional F test is significant, but the conservative F test is not, the
correction factor £ must be estimated.

Given the availability of computers and the fact that estimates of e are available in most,
if not all, statistical software, the degree-of-freedom correction should be used. Because the
inflation in Type 1 error rate can be very great if the df are not adjusted, the univariate F
should never be evaluated without an adjustment. Note, however, that an adjustment does
not apply if A has only two levels. In that case, there is only one set of n difference scores
and, therefore, only one variance of difference scores. Therefore, homogeneity of variance
of difference scores is not an issue.

13.4.3 MANOVA

If the data have a multivariate-normal distribution, the MANOVA provides an alternative
to the univariate test that does not require the assumption of sphericity. Although a detailed
discussion of MANOVA is beyond the scope of this book, we do provide a brief introduction
to the topic.

If there are a within-subject conditions, the null hypothesis of equality of population
means is equivalent to assuming that a series of a — 1 pairwise differences are all equal to
zero. One such null hypothesis would be

and still another would be

This suggests transforming the a scores for each subject into a set of a — 1 difference
scores. For example, the successive differences for the depression scores of subject 1 (see
Table 13.1) are dn = 7.5 - 11.554 = -4.054, d2i = 11.554 - 1 = 10.554, and d34 =
I — 1.208 — —.208. Similarly, difference scores can be obtained for all 14 subjects. The
difference scores for each subject are then weighted and summed to create a single score;
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call this score U. For example, the U score for subject 1 based on the successive differen-
ces is

The derivation of the weights requires some knowledge of matrix algebra, but the important
point is that they have the property of maximizing a t ratio. That t looks very much like the
standard one-sample t, that is, it is the mean of the n values of Ui divided by the standard
error of the mean:

The squared value of this t is ordinarily calculated using matrix algebra and is usually re-
ferred to as Retelling's T2 (1931). The F ratio reported in the MANOVA part of Table 13.8
is T2 multiplied by (n — a + l)/[(n — 1}(a — 1)]. This statistic has the F distribution on
a — 1 and n — a + 1 df. Because n — a + 1 must be greater than zero, the multivari-
ate test, unlike the univariate, requires that n be greater than a — 1. Also, if a = 2, (n —
a + 1)/[(« — l)(a — 1)] = 1, and F = t2. Stated differently, when there are only two condi-
tions, the multivariate F reduces to the univariate because both are equivalent to calculating
a squared / statistic for matched pairs.

In Table 13.8, we see three different statistics listed, all of which result in the same
value of F. When there is no between-subjects variable, or when there are only two levels
of the within-subject variable, these statistics will always result in the same F. In other
instances, they will usually yield similar results. Several books discuss the various statistics
and provide a far more detailed discussion of MANOVA as it applies to the designs of this
and the next chapter. Harris (1985) and Morrison (1990) are two excellent sources.

By now, the reader may have noted that, whereas the univariate F test resulted in either
a significant (at the .05 level) or near-significant result, the p value for the multivariate
analysis is considerably higher. This forces us to confront a fundamental question: Which
set of results should we accept? More generally, we must consider the Type 1 and Type 2
error rates under various conditions. We turn next to this topic.

13.4.4 ANOVA or MANOVA?

There is no simple answer to this question. The relative powers of the two procedures depend
on the value of e, and on a and n. If the population value of e is 1, then the univariate test
will be more powerful because its denominator df, (a — !)(« — !), will be greater than the
multivariate df, n — a+ 1. For example, as can be seen in Table 13.8, the univariate error df
are 39, whereas those for the multivariate test are 11. As n increases, the error df increase
for both tests and the power advantage of the univariate test decreases.

When sphericity does not hold, MANOVA may provide the more powerful test.
Based on simulations, Algina and Keselman (1997) recommended the multivariate test if:
(a) a < 4, n > a + 15, and £ < .90, or (b) 5 < a < 8, n > a + 30, and £ < .85. In the ex-
ample of the seasonal depression data, these recommendations would indicate that the
univariate test is more powerful. Two points should be kept in mind, however. First,
the simulations are not exhaustive; different results might be obtained with combinations of
n, a, and e other than those investigated. Second, as Algina and Keselman state, even in their
simulations, "selection of the multivariate test according to these rules is not a guarantee of
increased power; our results indicate that some percentage of the time this rule will result in
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choosing the wrong test" (1997, p. 215). Nevertheless, it is apparent that as estimates of e
decrease, and as n increases relative to a, the advantage of the univariate test will decrease,
and at some point the multivariate test will tend to be more powerful.

Transformation of the data to produce additivity, and therefore sphericity, can be
helpful. As we noted earlier in this chapter, a square root transformation of the data in
Table 13.1 resulted in a significant F test of the effects of seasons with p = .01. Even with
the Greenhouse-Geisser £ adjustment, p = .02. Even the multivariate test produced a sig-
nificant result with these transformed data: p = .04. Again, we caution that transformations
that yield additivity (and therefore more powerful tests and narrower confidence intervals)
cannot always be found, and even if available, may not be meaningful. However, the option
is often worth consideration.

1.4.5 Testing Single df Contrasts

In many, perhaps most, studies, pairwise comparisons or more complex contrasts are of
primary interest. As we pointed out in Chapter 6, such contrasts—pairwise or complex—
are distributed on 1 df. Sphericity is not an issue because there is only a single contrast score
for each subject. In the example of seasonal effects on depression, we might wish to test all
pairwise comparisons. The calculations are straightforward and, in any event, paired F or t
tests can be carried out by most statistical software. There are two issues, however. The first
is whether to test each of the six possible pairwise comparisons against MS$A or against the
variance of the comparison under consideration. MS$A is distributed on more error degrees
of freedom, (a — l)(n — 1), and therefore the F test with this denominator is potentially
more powerful. Nevertheless, the default error term in statistical packages is the variance
of the contrast being tested. For example, to test the difference between winter and summer
mean depression scores, the mean (d) and standard deviation (sj) of the 14 differences
would be calculated. Then

The F reported by some software is the squared t. The reason for using the standard deviation
of the contrast, rather than MS$A, in the denominator is that if there is nonsphericity in the
data set, the variances of difference scores may vary greatly across comparisons. Because
MSsA is one half of the average of the six variances, it will be too small when testing some
of the comparisons and too large when testing others. Boik (1981) showed that even small
departures from sphericity can create serious distortions in Type 1 and Type 2 error rates,
and in the widths of confidence intervals when the denominator of the t (or F) is based on
MSSA.

The second issue in testing the six possible pairwise comparisons is the control of
familywise error rate. Tukey's HSD procedure, described in Chapter 9, would seem to be
the natural approach. However, the test performs badly if there is nonsphericity. Maxwell
(1980) compared the Type 1 error rates and powers of various methods of controlling the
familywise error (FWE) rate and concluded that the Bonferroni approach, with the error
term based on the contrast being tested, provided the best solution. In the current example,
we would calculate a different sd for each of the six comparisons and compare each p value
against .05/6.
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FABLE 1 3.9 SPSS POLYNOMIAL ANALYSIS OF THE DATA OF TABLE 13.1

Tests of Within-Subjects Contrasts
Measure: MEASURE 1

Source

DEPRESS

Error (DEPRESS)

DEPRESS

Linear
Quadratic

Cubic

Linear
Quadratic

Cubic

Type III Sum
of Squares

1.936E-02
13.124
34.638

74.310
49.831
82.811

df

1
1
1

13
13
13

Mean Square

1.936E-02
13.124
34.638

5.716
3.833
6.370

F

.003
3.424
5.438

Sig.

.954

.087

.036

Note. Output is from SPSS.

More complex contrasts are sometimes of interest. In the example of seasonal effects
on depression scores, we might be interested in the shape of the function relating the Beck
depression scores to the four seasons, starting with winter. As part of the repeated-measures
output (in the GLM module), SPSS provides the polynomial analysis shown in Table 13.9.
The only significant component is the cubic, indicating that the population means may be
described by an 5-shaped function with a slope of zero. The F ratio for the cubic term may
be calculated as follows. The equation for the sum of squares for the contrast is

For the cubic term, vv/ = —1,3 , —3, and 1. Substituting these values and the means from
Table 13.1 into Equation 13.15, we have

which (within rounding error) equals 34.638, the result in the SPSS output. The error mean
square may be calculated directly as

where s 2 i s the variance of n contrast scores. These contrast scores are obtained by mul-\\i j

tiplying each subject's scores by the corresponding weights and adding the products; the
contrast score for the j'th subject is \J;( = ]T^ WjYy. Substituting into Equation 13.16, we
have

and F is the ratio: 34.638/6.370. Note that each polynomial component in Table 13.9 is
tested against a different error term.
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13.5 POWER OF THE F TEST

Assuming sphericity, power calculations are conducted as for other designs (Koele, 1982).
For example, in Section 13.2.3, Cohen's / was calculated as .33 for the depression data of
Table 13.1. Using GPOWER, we select "Other F Tests" and then enter the values of f2,
numerator and denominator df, and a. The result is .48, the power of the test of the Seasons
source of variance. The noncentrality parameter, X, equals Nf2, or 6.10. Using the UCLA
calculator, we enter the F needed for significance at the .05 level with 3 and 39 df, the
numerator and denominator df, and X. The critical F is 2.845 and \ = 6.10. The calculator
returns p, the Type 2 error probability. This value is .52 and, subtracting from 1, we again
have the power, .48.

Unfortunately, the sphericity assumption is often violated; in that case, the ratio of mean
squares is not distributed as F on a — 1 and (a — l)(n — 1) df. As we discussed earlier in
this chapter, MSA/MSsA is approximately distributed as F on e(a — 1) and e(a — 1)(n — 1)
df. Because, under nonsphericity, £ is a fraction greater than or equal to 1/(a — 1), the
degrees of freedom that we should use to calculate power are actually less than a — 1
and (a — l)(n — 1) and, therefore, power is less than in the standard method described
previously. Therefore, we can consider the power of .48 in our example as an upper limit on
the true power. If we decide on the n before running a study, we also run into the sphericity
problem. To decide on the n needed to achieve a certain power against a specified f2 (or X),
we can try out different values and change the dfsA accordingly. However, the n we arrive
at will be an underestimate of the n we actually need, if there is nonsphericity.

Muller and Barton (1989, 1991) have presented an approximate solution to the non-
sphericity problem. Expected values of & and g can be calculated, and the d/that are entered
into power calculations can be adjusted by these expected values. The formulas for these
expected values are complex, but SAS programs are available (Algina & Keselman, 1997;
Muller, LaVange, Ramey, & Ramey, 1992).

Although there are problems in determining power, or the sample size needed to attain
a specific level of power, when the numerator has more than 1 df, there is no difficulty
in determining power or n when pairwise comparisons or contrasts are of interest. The
appropriate procedures were described in Chapter 6.

13.6 MULTIFACTOR REPEATED-MEASURES DESIGNS

So far, we have considered only the S x A repeated-measures design; however, there is no
reason why additional within-subject factors cannot be included in the design. For example,
in a study designed to shed light on the processes underlying facial recognition, Murray,
Yong, and Rhodes (2000) presented each of 24 subjects with photos of several faces. There
were three versions of each photo—an unaltered version, a distortion in which eyes and
mouth were inverted, and a distortion in which the pupils of the eye were whitened and
the teeth blackened. Each subject viewed each face for 3 seconds in 1 of 7 positions, from
upright to upside down. Subjects were asked to rate each face for bizarreness, with normal
being 1 and very bizarre being 7. Both types of distortion (3 levels) and orientation (7 levels)
were within-subject variables.2

The Murray et al. study is an example of a multifactor repeated-measures design. In
such designs, n randomly sampled subjects are each tested at every combination of levels
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of the other factors. Therefore, if there are two within-subjects factors, A and B, with a and
b levels, respectively, each subject is tested ab times. If A and B both have fixed effects, the
EMS and F tests in the S x A x B design are similar to those in the S x A design. If A or B
is assumed to have random effects (i.e., the levels selected to be included in the experiment
have been randomly selected), significance tests and estimation of variance components are
somewhat more complicated. Let us consider each case in turn.

13.6.1 The S x A x B Design, with A and B Fixed

Consider an experiment similar to that reported by Murray et al. (2000). Factor A is ori-
entation of the faces; there are three levels instead of the seven in the actual experiment.
B is the type of distortion of the photo: B\ photos are unaltered, 62 photos have the eyes
and mouth upside down, and J53 photos have the eyes whitened and teeth blackened. Data
in Table 13.10 are made-up averages of ratings of several photos in each condition, but the
pattern of the means plotted in Fig. 13.1 is similar to the pattern in the Murray et al. article.

Table 13.11 presents formulas and numerical results for the S x A x B ANOVA. The
formulas for degrees of freedom and sums of squares parallel those developed earlier in this
chapter and in previous chapters. The F tests are based on the nonadditive model, assuming
A and B both have fixed effects and subjects are a random sample from an infinite-sized
population of subjects. Note that A is tested against S x A, B is tested against S x B, and
A x B is tested against S x A x B. The expected mean squares that justify these error terms
will be presented in Section 13.6.3. With respect to the results, orientation (A), distortion
(B), and their interaction are all very significant, particularly distortion. The huge F for

TABLE 13.10 DATA FOR A TWO-FACTOR REPEATED-MEASURES EXPERIMENT

Subjects

1
2
3
4
5
6

A1

1.18
1.14
1.02
1.05
1.81
1.69

Bi

A2

2.40
1.55
1.25
1.63
1.65
1.67

A3

2.48
1.25
1.30
1.84
1.01
1.04

Ai

4.76
4.81
4.98
4.91
5.01
5.65

62

A2

4.93
4.73
3.85
5.21
4.18
4.56

A3

3.13
3.89
3.05
2.95
3.51
3.94

A

5.56
4.85
4.28
5.13
4.90
4.12

63

A2

4.93
5.43
5.64
5.52
5.18
5.76

A3

5.21
4.89
6.49
5.69
5.52
4.99

Cell and Marginal Means

B1

B2

B3

y.j.

A,

1.32
5.02
4.81

3.72

A2

1.69
4.58
5.41

3.89

A3

1.49
3.41
5.47

3.46

Y... =

Y..k

1.50
4.34
5.23

3.69

Note. A is orientation and B is distortion.
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TABLE 1

SV

Total

S

A

SA

B

SB

AB

SAB

13.11 ANOVA OF THE D/*

df

abn — 1 — 54

n - 1 =5

a - 1 = 2

(n - l)(a - 1) = 10

6 - 1 = 2

(n - \)(b - 1) = 10

(a- l)(b-l) = 4

(n - l)(a - l)(b - 1)

= 20

JA OF TABLE 13.10

SS

EEE(^M->"...)2 = 156.133
' j k

ab^(Yi..-Y.y- = .544
i

nb^(Y.j. -F..)2 = 1-749
j

bEE(Yij.-Y,.-Y.j. + Y...)2

j i
= .947

na'£(Y..k-Y...)2 = 136.554
k

aEE(Yl.k-Y,..~Y..k + Y...)2

k i

= 2.257

nEE(Y.jk-Y.i.-Y..k + YJ2

,i k
= 8.560

SStot ~ SSs — SSA — SSsA

-SSB - SSSB - SSAB = 5.522

MS

.109

.874

.095

68.277

.226

2.140

.276

F

MSA -9^3
MSSA

MS" = 302.56
MSsB

MS*° = 7.75
MSSAB

Distortion is largely due to the difference between the average bizarreness rating of the
unaltered photo and the means for the two altered photos. Adjusting the degrees of freedom
by the conservative Greenhouse-Geisser estimate of e (using SPSS's repeated-measures
program) did not change the p values markedly (p < .012 for all three tests).

Our hypothetical experiment provides an opportunity to consider contrasts among
means within the two-factor repeated-measures design. We continue with our example in the
following section to illustrate the calculations and interpretation of the results. Following the
discussion of contrasts, we return to a discussion of the choice of error terms in Table 13.11,
and also consider changes in expected mean squares and error terms when one of the two
factors has random effects.

Table 13.10
Fig. 13.1 Plot of the means in
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13.6.2 Testing Contrasts in the 5 x A x B Design

Several contrasts are of possible interest in the Orientation x Distortion experiment. We
might test whether the average rating in the two distorted conditions (82 and 83) differs
from the mean in the unaltered condition (B\). Or, we might be interested in whether the
slope and curvature of the curves in Fig. 13.1 differ as a function of the distortion condition.
Most statistical software packages have options for performing such contrasts. They can
also be tested by creating a contrast score for each subject and performing the appropriate
tests on these. The contrast scores can be obtained by using a calculator or by using the
transformation option in statistical software. Because the analysis of contrast scores is
simple and may make the nature of the tests clearer, we illustrate this method in tests of
two null hypotheses. The first is that the average slope of the three curves in Fig. 13.1
does not differ significantly from zero; that is, H01 : Blin = 0, where Blin is the mean of the
three population linear regression coefficients. The second null hypothesis is that the three
slopes are equal; that is, #02 : B1.lin = B2,lin = B3,lin Table 13.12 presents the linear score

TABLE 13.12 TREND ANALYSIS FOR THE DATA OF TABLE 13.10

A contrast score for subject i at Bk

subject 1 at B\ in Table 13.9 is v j 1 , l i n

contrast scores derived from the ratir

is ji ik = Ej w j Y i j k . For example, the linear contrast score for

= (- 1)(1.18) + (0)(2.40) + (1)(2.48) = 1.30. The other linear
igs in Table 13. 10 are:

Linear Contrast Scores

Subject

1
2

3
4
5
6

Column

Bl

1.30
0.11
0.28
0.79

-0.80
-0.65

Means 0.172

62

-1.63
-0.92
-1.93
-1.96
-1.50
-1.70

-1.608

63

-0.35
0.04
2.21
0.56
0.62
0.87

.658

Row Means

-0.227
-0.257

0.187
-0.203
-0.560
-0.493

-0.259

The test of whether the average linear regression coefficient (the slope) differs significantly from
zero is essentially a one-sample t test, as in Chapter 6. Divide the mean of all the linear contrasts by
its standard error, SE($), where SE(fy )is the standard deviation of the n row means divided by the
square root of n. In the present example, to test H01

: B l in = 0,

To check our result, we used SPSS's GLM (repeated-measures) ANOVA program that includes an
F test of the polynomial components of the orientation SV. The reported F of 5.772 is the square of
the t calculated above (within rounding error), as it should be. The p value is .061; assuming a = .05,
we cannot reject the null hypothesis that the population slope is zero.

To test H02- Pi.i in = Pa.iin = p3.iin, we perform a repeated-measures S x B ANOVA in which the
scores are the linear contrast scores at each level of B. From the SPSS output, we have

SV

Linear (B)
S x Linear (B)

df

2
10

55

8.543
3.414

MS

4.272
.341

F

12.528

P

.002
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for each subject at each level of B followed by tests of the two null hypotheses. With three
levels of A, the linear coefficients are 1, 0, and -1 (or any multiple of these numbers).

As the results in Table 13.12 show, the average of the three slopes does not differ
significantly from zero. However, the three slopes do differ significantly from each other.
This is because the 82 slope in Fig. 13.1 is negative, whereas the other two slopes are
slightly positive. The B2 condition is the one in which the distortion involved turning the
eyes and mouth upside down. The slope may be negative because the B2 faces seem less
bizarre when seen upside down (at A3, 180 degrees rotation) than when not rotated (Ai) ;
in the upside-down condition, the eyes and mouth are in their normal orientation.

The methods illustrated in Table 13.12 are quite general. We can use them to test
contrasts involving quadratic curvature using the coefficients —1,2, and — 1 (or any multiple
of these), or to test qualitative contrasts among either the A or B means.

».3 The S x A x B Design, A Fixed and B Random

In the Murray et al. (2000) experiment, photos of eight different faces were presented to
subjects in each combination of distortion and orientation. Faces are a variable, one we view
as having random effects. Presumably, the sampling of the photos is carried out in a way
that ensures that they can be reasonably viewed as a random sample from a large population
of photos. Otherwise, there are no statistical grounds for generalizing conclusions about the
effects of the independent variable to photos that were not included in the experiment.

There are many types of experiments in which we would like to generalize the results
to stimuli other than those actually used. We may, for example, be concerned with ratings
of pictures that vary along some dimension, the number of trials taken to solve problems
that differ in difficulty, time to comprehend sentences with different syntactic structures, or
responses to words in different experimental conditions. What can reasonably be viewed
as a random set of b stimuli is not a simple issue and will be discussed in more detail later
in this chapter. Until then, we assume that B is a random-effects factor and consider the
implications of this assumption for data analysis.

Table 13.13 presents EMS assuming B has either fixed or random effects. Comparing
the two sets of EMS, it should be apparent that, if B is random, additional components of
variance are present. This is because the data represent samples of the populations of S x A,
A x B, and S x A x B interaction effects at each level of A. The means of these samples
of interaction effects will not be zero and will tend to have different values at each level
of A, depending on the particular interaction effects sampled. Therefore, the interaction
variances will influence the value of MSA •

Because of the additional variance components found in the expected mean squares
when B is random, there is no obvious error term against which to test A, the variable
of primary interest. The error term should be a mean square that has an expectation of
07 + baSA + naSB + aSAB. As can be seen in Table 13.13, there is no source of variance
that has this expectation. The problem disappears if aSA or aAB is zero; in either of those
cases, an error term is readily found, MSAB if aSA = 0 or MS$A if &AB = 0. This observation
raises the possibility of a preliminary test of the S x A or the A x B term against MS SAB-
If, for example, we had prior grounds for assuming that aAB = 0 and the A x B term was
not significant at the .25 level, we might delete (aB)jk from the model, in which case MSsA
would be an appropriate error term for testing the A source of variance. As we noted in dis-
cussing pooling in Chapter 12, there is considerable debate about whether such preliminary
tests should be used. If a Type 2 error is made in the preliminary test, then the Type 1 error
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TABLE 13.13 EMS FOR THE S x A x B DESIGN

EMS

SV

S

A

SA

B

SB

AB

SAB

df

n-\

n- 1

(n - 1)(a - 1)

b- 1

(n - 1)(b - 1)

(a - \)(b - 1)

(n - 1)(a - 1)(b - 1)

A,B fixed

of + aba2

a2 + baSA+nb02

of + bv2
SA

of + a&jg + na0g

a2+ aSB

a2 + aSAB + nAB

°? + °SAB

A fixed, 8 random

of + avjB + abaj

°e + b(TSA + n°AB + °SAB + nh®A

°e + °SAB + b(*SA
of + aaSB + nac2

of + avSB

a2 + aSAB +naAB

a2 + aSAB

Forming F Ratios
Assuming H0 is true, the ratio of EMS for the numerator and denominator must be 1 .

Rules for EMS

1. of contributes to all lines.

2. The component corresponding to the SV under consideration (the null hypothesis
component)
should be present. For example, E(MSA) includes a 62 component.

3. Any other variance component will be included if: (1) its subscripts include the letter(s) in
the present SV, and (2) if all of its other subscripts represent random factors. For example,
under the model in which A and B are both fixed, crjA contributes to E(MSA), because
SA includes A and the remaining subscripts (5) is a random factor. When S and B are
both random factors, E(MSA) includes SA, AB, and SAB components because when A is
ignored, the remaining letter (s) represent random factors.

4. The coefficient multiplying each variance component reflects the number of scores involved
in the subscribed combinations. For example, there are n scores in each AB combination,
so QAB is multiplied by n; however, there are nb scores at each level of A, so 0^ is multiplied
by nb.

associated with the test of A against M5^B will be inflated. In studies of the "sometimes-
poor' rule, Type 1 error rates have ranged from .07 to . 11 with the nominal a. level at .05
(Janky, 2000). Presumably, a similar inflation of Type 1 error rate is possible when a
preliminary test is used to justify testing A against A x B or S x A. Furthermore, there will
rarely be prior grounds for deleting a term from the complete nonadditive model. Therefore,
an alternative approach, the quasi-F test, is recommended. We consider this next.

13.6.4 Quasi-F (F') Tests

Assuming that the effects of the independent variable will vary across subjects (5) and
items (B), and that B is a random-effects variable, we are faced with the issue of testing the
hypothesis of no treatment effects. One solution is to calculate a quasi-/7 ratio (F')—a ratio
of combinations of mean squares whose expectations are equal under the null hypothesis.
One possibility is
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The rationale for this ratio is that the ratio of EMS is

which equals 1 if the null hypothesis ( 02
A = 0) is true.

That the ratio of EMS terms equals one is a necessary, but not a sufficient, condition
for the ratio of mean squares to be distributed as F. As we saw in Chapter 7, an important
condition is that both the numerator and denominator must be distributed as chi-square
variables divided by their degrees of freedom. Satterthwaite (1946) has shown that, under
the usual assumptions of analysis of variance, a linear combination of mean squares has
approximately this sampling distribution. The appropriate dffor the denominator are

Other quasi-F ratios can be calculated. One that has been widely recommended is

As with F,', the ratio of EMS is again 1 under the null hypothesis. The numerator dfare

and the denominator df are

Should FI or F2 be calculated? F2 was consistently more powerful under condi-
tions examined in simulation studies by Hudson and Krutchkoff (1968) and Davenport
and Webster (1973); however, the advantage appears to be slight, except when df are small
(n = a = b = 3) or the SA, AB, and SAB population variances are all very small. Another ad-
vantage of F'2is that it takes on only positive values, whereas F'1can be negative when MSSAB

is large. However, the variance of F'1 "is considerably smaller" than that of F'2 (Davenport &
Webster, 1973). Presumably, this is because a ratio based on a chi-square variable and an ap-
proximately distributed chi-square variable is a better approximation to the F ratio than one
based on two approximately distributed chi-square variables. Neither procedure is clearly
preferable under all circumstances, but we lean toward F'2 because its power is somewhat
greater under conditions in which power will tend to be low.

Equations 13.18, 13.20, and 13.21 for degrees of freedom are special cases of a general
formula. If we have a linear combination of mean squares (CMS) such that CMS =
MS] ± MS2 ± • • • ± MS1*-, it is distributed on df calculated as

The ratios formed in Equations 13.17 and 13.19 involve linear combinations of mean squares
in which the weights by which the mean squares are multiplied are 1 and —1. In some
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circumstances, we will use other weights to combine mean squares or variances. A case in
point is the Brown-Forsythe statistic, F*, which was presented in Chapter 8 as a way of
testing treatment effects when variances are heterogeneous. To obtain a denominator mean
square for F*, we combined group variances instead of mean squares, and the weights were
a function of the group sizes. Nevertheless, F* is a quasi-F statistic because its denominator
is a linear combination of the general form

where wk is any real number and Vk is either a mean square or a variance. The degrees of
freedom associated with this is

The dfk are the degrees of freedom associated with the kth mean square or variance.
In many studies, observations are missing and therefore not all S x A x B combinations

are available. If so, it will be impossible to calculate MSSAB and, therefore, neither F1 nor F'
can be calculated. A conservative remedy in this situation is to calculate F' or F'2 without
MS SAB. We can see from Equations 13.17 and 13.19 that MSA/(MSAB+ MSSA) must be
less than F' or F'2, which is why we call this approach conservative. In actual practice,
this minimum quasi-F (min F'; Clark, 1973; Forster & Dickinson, 1976) is computed as
follows:

1. Find the average of the scores in each S x A combination; presumably there will
be a few scores in each combination, even if some values are missing. Compute
F,=MSA/MSSA.

2. Find the average of the scores in each A x B combination. Compute FI =
MSA/MSAB.

3. Compute

and

The numerator df are just a — 1. Appendix 13.2 presents the derivation of the two preceding
equations.

What about the effects of violations of the sphericity assumption on the distribution
of F'? Somewhat surprisingly, Maxwell and Bray (1986) have found evidence that non-
sphericity does not inflate the Type 1 error rate for F'. Their article presents an interesting
discussion of the reasons for this.

One last comment is in order. If B is a random-effects variable, b should be as large
as possible. Interactions of A with both S and B contribute to the error variance against
which treatment effects are to be evaluated. It is important to have sufficient degrees of
freedom associated with both variables to ensure powerful tests of A. Furthermore, the
limited evidence we have suggests that the distribution of F' more closely approximates
that of F as a, b, an increase.



FIXED OR RANDOM EFFECTS? 371

It should be clear from our discussion so far that designating effects as fixed or random has
important implications for both significance testing and parameter estimation, as well as for
the degree to which we can generalize our results. Therefore, we need to consider further
the decision about classifying effects.

The decision to classify a variable as having fixed or random effects is not always a
simple one. At one extreme, we have variables that clearly should be viewed as having
fixed effects. The levels of the variable have been arbitrarily selected for inclusion in the
experiment, and because of the way in which they have been selected, there is no basis for
viewing them as a random sample of levels from a population of levels. This class includes
most manipulated variables such as the type of distortion or the orientation of the photo
in the Murray et al. (2000) experiment, or observed characteristics of individuals such as
gender or clinical category. It also would include a variable such as seasons because the four
seasons included as an independent variable in the study exhaust the population of possible
seasons.

At the other extreme, we have random sampling from some well-defined population.
This is rarely realized in practice, and it is therefore difficult to determine to which population
our results can be generalized. Can we reasonably view our subjects as a random sample of
adults? College students? College students interested in psychology? College students who
attend the particular university in which the study was run? The answer depends not only on
the sampling process, but also on the particular study. In studies of sensory processes, like
visual acuity, we might generalize to the population of adults having normal vision. In studies
of human learning, we might define the population more narrowly, reserving judgment as
to whether our conclusions will hold for populations having a markedly different average
level of ability from that characterizing the institution in which our study was run. When in
doubt, generalizations should be restricted to the more narrowly defined population.

Even though the population is rarely as well defined as we would like, it should be
clear from the preceding comments that we do view subjects as a random-effects variable.
Our justification is that subjects are not arbitrarily selected. Other individuals are provided
an equal opportunity to participate and might well serve if replications of the experiment
were run.

Classifying stimuli, such as words and pictures, presents greater difficulty. For many
experiments, we can argue, on much the same grounds that we presented in discussing
subjects, that such stimuli are a random sample from a (possibly ill-defined) population of
potential items; that is, the stimuli are not arbitrarily selected, and there are many other items
that had an equal opportunity of being included in the study under the sampling procedure
used. In many other experiments, however, the choice of stimuli is so constrained that it is
difficult to imagine a population from which this set of items is one relatively small sample.
In studies involving responses to words, for example, restrictions are often placed on the
grammatical class, length in both syllables and letters, familiarity, and number of associates
of each word. The experimenter may find it difficult to meet those restrictions. Under such
conditions, it is not clear that stimuli should be treated as having random effects. Two
rough guidelines may be helpful. First, under the existing constraints, could independent
investigators produce other samples of items? Second, if the answer to the first question is
positive—there is a reasonably large population of items—was there an equal likelihood
that all members of the population could be included in the study? If this answer is also

13.7 FIXED OR RANDOM EFFECTS?



positive, it is reasonable to treat the stimuli as having random effects with all that this
implies for our data analyses and the scope of our conclusions.

13.8 NONPARAMETRIC PROCEDURES FOR
REPEATED-MEASURES DESIGNS

In Chapter 8, two tests based on ranks were presented, the Kruskal-Wallis H test and the
rank-transformation test (Conover & Iman, 1981). These tests are often more powerful
than the F test when the treatment population distributions have heavy tails or are skewed.
Similar analyses of ranked scores can be applied to data from repeated-measures designs.
We consider these as well as a test for situations in which all scores are either zeros or ones.

13.8.1 Friedman's X 2 Test

Consider a data set with n rows (subjects) and a columns (treatment levels). Assume that
the scores for each subject have been assigned ranks from 1 (for the lowest) to a (for the
highest). If appropriate statistical software is available, we need not rank the data ourselves.
For example, SPSS's nonparametric module ("K Related Samples") takes the original data
of Table 13.1 as its input and yields a chi-square statistic and its associated p value. In the
absence of such software, ranking can be done by hand and calculations can be carried out.
If there are no ties, Friedman's (1937) test statistic may be written as
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where

and R j is the mean of the n ranks (the Rij) at Aj, R.. is the mean of the an ranks, and X2
F

is distributed on a — 1 df. The denominator of Equation 13.27 is the variance of a set of a
consecutive integers or untied ranks. Recall that the ratio of a sum of squares to the variance
of its population is distributed as chi-square (see Chapter 7) if the scores are independently
and normally distributed; for correlated observations, sphericity is required. Therefore, the
ratio in Equation 13.27 has an exact chi-square distribution on a — 1 df if sphericity holds
for the population of ranks and the sampling distribution of the mean of the ranks is normal.
The central limit theorem assures us that, for reasonably large n, the normality requirement
will be met and, therefore, the use of the chi-square table (Appendix Table C.4) to evaluate
X2 will be appropriate. A conservative strategy for using the chi-square table is to require
an > 30. Odeh (1977) has tabled exact p values for X2 for values of a and n as large as 6;
these may be used to evaluate significance in small samples.

Ties require a modification of Equation 13.27. Because the calculations are some-
what complicated, and several software packages take ties into consideration,3 we will not
illustrate the process here. Interested readers may consult a textbook on nonparametric
procedures; Lehmann (1975) provides details of the calculations and a numerical example.
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13.8.2 The Rank-Transformation F Test (F R )

A rather simple alternative to ANOVA has been applied to data from several experimental
designs, including the repeated-measures design (Iman, Hora, & Conover, 1984; Hora &
Iman, 1988). There are two steps: first, assign ranks to all an scores from smallest to largest,
assigning midranks in case of ties—note that, unlike Friedman's procedure, each subject's
scores are not ranked separately; and second, do the standard S x A ANOVA on the rank
values. This means that once the Yij have been converted to Rij, the transformed values can
be submitted to any program that analyzes data from a repeated measures design. Table
13.14 presents the Rij transforms of the data of Table 13.1, together with the results of an
ANOVA performed by SYSTAT. The p value for this test is .03.

13.8.3 Which Test?

When the distributions of scores in the treatment populations are the same, the usual F
test, X F , a n d FR all test the null hypothesis of equal treatment population means. If, in
addition, those populations can be assumed to be normal or to have short tails (as when the

TABLE 13.14 RANKS AND ANOVA FOR THE RANK-TRANSFORMATION (Fr) TEST

Winter

45.0
42.5
14.0
5.5

17.5
14.0
30.0
37.0
39.0
24.5
42.5
30.0
50.5
46.0

R.j 31.286

SV df

Seasons 3
S/seasons 39

Spring

52.0
47.5
14.0
5.5
5.5

30.0
5.5

17.5
24.5
33.0
44.0
24.5
56.0
49.0

29.179

SS

854.821
3233.304

Greenhouse-Geisser epsilon:
Huynh-Feldt epsilon :

Summer

14.0
39.0
5.5
5.5

19.0
5.5
5.5

24.5
33.0
36.0
41.0
11.0
53.5
14.0

21.929

MS

284.940
82.905

0.8302
1.0000

Fall

20.0
55.0
5.5
5.5

35.0
24.5
24.5
24.5
39.0
33.0
47.5
24.5
53.5
50.5

31.607

F p C-G H-F

3.437 .026 .035 .026

Note. Ranks are based on the data of Table 13.1.
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data are ratings from a scale with only a few points), the F test will be most powerful. As
the discussion in Chapter 8 suggests, the relative power of the F and the rank-based tests
changes when treatment populations are skewed or heavy tailed. Several studies (Hora &
Iman, 1988; Iman et al., 1984; Kepner & Robinson, 1988) indicate that, in these conditions,
both FK and xF usually have Type 1 error rates close to the nominal .05 level, and both are
more powerful, often considerably so, than the F test.4 As for the relative power of the two
rank-based tests, Iman et al. (1984) found that FR was more powerful than X2 except when
the number of levels of the independent variable was 10, or the distribution was very heavy-
tailed. In those cases, power was about equal. However, Hora and Iman (1988) and Kepner
and Robinson (1988) found that the relative powers of FR and XF depend not only on a and
the shape of the treatment population distribution, but also on a number of other factors,
including the within-subject correlation, and the variability of subject means. The power
advantage moves to the Friedman test as the correlation or subject effects increase. Because
of the influence of so many factors, there is no simple rule of thumb, but we recommend
FR unless a is more than 5 and the data are very skewed.

13.8.4 The Wilcoxon Signed-Rank (WSR) Test

Neither FR nor X2 has good power when a = 2. The WSR test (1949) provides a powerful
alternative when the population of difference scores is symmetrically and independently
distributed. The test is only slightly less powerful than the t when the data are normally
distributed and can be considerably more powerful when the difference scores are symmet-
rically (but not necessarily normally) distributed with heavy tails (Blair & Higgins, 1985).
However, power is lost for the WSR test, but not for the t test, when difference scores are
zero because such differences are discarded in the WSR test.

Table 13.15 presents fall-summer difference scores and signed ranks for the Beck
depression scores for 12 of the 14 subjects in Table 13.1. Two of these difference scores
were zero, and therefore were discarded before the analysis. The first step in the analysis
of the remaining n pairs is to rank the difference scores, from smallest to largest, ignoring
the sign of the difference. This has been done in Table 13.15. When several absolute values
of differences are tied, each receives the median rank. After ranks are assigned, a + or —
sign is attached, depending on the sign of the original difference score. Then the sum of
the positive ranks (T+) and the absolute value of the sum of the negative ranks (|T_ |) are
obtained. Rules for rejecting the null hypothesis are presented in Table 13.15. Note that
they depend on the alternative hypothesis. The z score calculated in the table can also be
obtained from several statistical software packages. However, bear in mind that the p value
reported assumes a normal distribution of the signed ranks; therefore, for n less than 50,
it will be more accurate to compare the T statistic with the critical T value in Appendix
Table C. 10.

One reminder is in order with respect to the WSR test. Researchers often take the
descriptive phrase "distribution free" too literally. Although the test does not depend on the
assumption that the population of difference scores is normally distributed, that distribution
should be symmetric, or at least not markedly skewed. To see why this is so, consider the
following set of scores and their assigned ranks:

Scores: -4 -3 -2 +2 +3 +4
Ranks: -5.5 -3.5 -1.5 +1.5 +3.5 +5.5
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TABLE 13.15 THE WSR TEST APPLIED TO DIFFERENCE SCORES BASED ON THE FALL AND SUMMER
DEPRESSION SCORES OF TABLE 13.1

REJECTION RULES

The null hypothesis is rejected if the test statistic is less than the critical value of T (TC) . The test
statistic depends on the null hypothesis in the following way:

H1
Test Statistic

Udiff > 0 |T_|
Udiff < 0 T+
Udiff = 0 Smaller of | T| and T+

FALL-SUMMER DIFFERENCE SCORES AND RANKS

Subject
Differences
Signed
Ranks

1
10.554

12

2
4

10

3
1

2.5

5
-1.097

—4

6
2.5

8

8
-.94

_1

9
-1

-2.5

10
-1.208

-5

11
1.477

6

12
1.991

7

13
3

9

14
9.5

11

Assuming a two-tailed alternative, the test statistic for these data is the smaller total, |T- | = | (— 1) +
(-2.5) + (-4) + (-5) | = 12.5. From Appendix Table C.10, we find that the critical value, Tc, for
n = 12, a = .05, is 13. Because |T_| < TV, reject H0. I f n > 50, the test statistic can be converted to
a z score, and the associated p value can be obtained from the normal probability table, Appendix
Table C.2. The conversion formula is

where n is the number of nonzero differences, J is the number of ties, and tj is the number of
differences in the jth tie. In the example, n = 12 and there are no ties; therefore,

and p = .038.

The median is zero, and T+ = |T-| = (n)(n + l)/4. Suppose we now skew the distribution
of scores as follows:

Scores: -6 -5 -2 +2 +3 +4
Ranks: -6 -5 -1.5 +1.5 +3 +4

The median is still zero, but T+ no longer equals |T-|. Thus, a true null hypothesis
about a population median may be rejected if the distribution is skewed.

Although we have discussed the WSR test in terms of difference scores, it can be
applied to any contrast among means. For example, given four levels of a variable A, we
might wish to test whether the combined average of the A1 and A2 populations of scores
differs from that for A3 and A4. In that case, we calculate (1\2)(Yi1 + Yi2) - (1/2)(Yi3 + Yi4),
and then rank and sign these contrast scores.
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13.8.5 Cochran's Q Test

A common research situation is one in which each subject responds on several trials, or
under several different conditions, and each response is classified in one of two ways.
For example, suppose we record a success or failure for each subject on each of four
mathematical problems that varied in their conceptual distance from a practice problem.
The question is whether the probability of success depended on the problem type. In general,
Yij = 1 or 0, indicating a success or failure by subject i in condition j. If Pj is the probability
of a success in the population of responses under Aj, then the null hypothesis is

The Q statistic is defined as

MSA/s is the average of n variances, in which each variance is based on the a scores for a
subject. If we denote the sum of scores for subject i as Ti, then

We can also calculate MSA / s by performing an ANOVA on the scores:

Cochran (1950) proved that the ratio in Equation 13.29 is distributed as chi-square
when n is large and the population correlation for any pair of conditions is the same as for
any other pair. Therefore, the null hypothesis is rejected when Q exceeds the critical value
of chi-square on a — 1 df.

As we stated in Chapter 7, the chi-square distribution rests on the assumption that the
variable of interest is normally distributed. Under the central limit theorem, this assumption
is essentially true when n is large. This raises the question of how large an n is large. The
answer depends on the values of the Pj; when Pj is closer to .5, n can be smaller because
the distribution is more symmetric. Another factor is the number of subjects who exhibit
no variability (i.e., all zeros or ones); such subjects contribute nothing to the value of Q
and therefore do not contribute to the effective n. Based on a review of several simulation
studies, Myers, DiCecco, White, and Borden (1982) recommended that the effective n (for
a = 3) be at least 16. When n is small, empirical rejection rates of true null hypotheses are
less than the nominal a, and power is quite low.

Table 13.16 presents data for 16 subjects on four math problems of different types.
Although the analysis can be done easily by hand, statistical packages can also be used. For
example, SPSS provides a Q test program (under "Nonparametrics," "K Related Samples"),
which yields the exact p value of .037. The 0/1 data can also be submitted to a repeated-
measures ANOVA. In fact, Myers et al. (1982) report that the F and Q tests have very
similar Type 1 error rates for n > 16; for smaller n, the F test's Type 1 error rate may be
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and SSP - n E j [ ( T j . / n ) - ( T / a n ) ] 2 - 2.563. Therefore, Q = 2.563/.302 = 8.48. Evaluated as a chi-square statistic
on 3 df, the result is significant at the .05 level.

inflated. Some indication of this is present in the example; the p value reported for the F
was .031, slightly less than that obtained in the chi-square test.

13.9 CONCLUDING REMARKS

The research literature abounds with examples of designs involving repeated measurements.
Repeated-measures designs potentially have greater precision than designs that use only
between-subjects factors and are particularly useful when the supply of subjects is limited
relative to the number of treatment combinations to be studied, or when the experimenter's
goal is to collect data on some performance measure as a function of time. However, ex-
perimenters should understand the potential problems associated with repeated-measures
designs, the assumptions that are made, and the consequences of violating these assump-
tions. We have, for example, (a) indicated that tests on within-subjects factors having more
than two levels will be positively biased when the sphericity assumption is violated and have
recommended that a degree-of-freedom correction, or MANOVA, be used to counteract this
bias; (b) shown that there will not always be obvious error terms in designs that contain

TABLE 13.16 AN EXAMPLE OF COCHRAN'S Q TEST

Subject

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

Tj

P1

1
1

1
0
1
1
1
1
0
1
1
0
0
1
1
1

12

P2

0
0
0
0
0
0
1
0
0
1
0
1
1
0
1
0
5

Problems

P3

1
1
0
0
0
1
0
1
1
1
1
0
1
1
0
0
9

P4

0
0
0
1
0
0
1
0
1
0
0
1
0
0
0
0
4

Tj

2
2
1
1
1
2
3
2
2
3
2
2
2
2
2
1

30

T2

4
4
1
1
1
4
9
4
4
9
4
4
4
4
4
1

62

Note. Substituting into Equation 13.30,
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several random-effect factors, but that hypotheses may often be tested using quasi-F tests;
and (c) indicated that there are a number of negative consequences of nonadditivity and that
sometimes it may be desirable to transform the data to an additive scale. These techniques
provide a good starting point for coping with some of the problems that may result from us-
ing the repeated-measures design. Even more important, awareness of potential problems is
necessary to decide whether to use the repeated-measures design and to evaluate the results
of significance tests intelligently.

It should also be emphasized that, when the independent variable is something other than
time or trial, the order of presentation of treatments should be randomized independently
for each subject. Proper randomization will guard against confounding the effects of time
and treatments (what inference can be drawn in the extreme case in which treatment 1 is
always presented first, treatment 2 always second, and so on?). Randomization will also
reduce the possibility of severe heterogeneity of covariance and violations of the sphericity
assumption. Scores for treatments close together in time should be more highly correlated
than scores for treatments further apart. By randomizing the order of treatments for each
subject, each pair of treatments is given an equal opportunity to appear any given length of
time apart.

Sufficient time between presentations of treatments may help minimize carry-over
effects. If participating in a particular experimental condition results in the subject becoming
fatigued, the effects should be allowed to wear off before the next condition is presented.
Even if the different orders of presentation balance so that treatments and trials are not
confounded, carry-over effects, if present, will result in increased variability among orders
of presentation, and thus reduce the efficiency of the design.

The "pure" repeated-measures designs represent only a subset of designs that use
within-subjects factors. In the next chapter, we discuss designs that combine between-
subjects and within-subjects factors, and following that we consider designs in which the
orders of treatments are systematically counterbalanced. A solid understanding of the con-
tents of the present chapter should provide the necessary preparation for these extensions
of the repeated-measures design.

KEY CONCEPTS

repeated-measures designs
measurement error component
additive model
true score
random-effects variables
power
sphericity
univariate F test with e-adjusted

degrees of freedom
quasi-F test
min F'
rank-transformation F test (FR)
Cochran's Q test

individual differences component
carry-over effects
nonadditive model
fixed-effects variables
Tukey's test of nonadditivity
transformations
compound symmetry
multivariate analysis of variance

(MANOVA)
linear combination of mean

squares (CMS)
Friedman's x2 test
Wilcoxon signed-rank (WSR) test
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EXERCISES

13.1 The following data set consists of 3 scores for each of four subjects:

(a) Carry out the ANOVA.
(b) Assuming additivity, present the EMS.
(c) Use your answer to part (b) to estimate partial w2

A.
(d) If there were four different subjects at each level of A, the error variance would

have been larger. Estimate what MSs/A would have been from the ANOVA of
part (a). The appropriate formula is given by Equation 13.5. (Note that this
estimate is a weighted average of the S and 5 x A mean squares.)

(e) Estimate the power each design would have had to reject H0 at the .05 level,
assuming the effects in the data represent the true population effects.

13.2 Consider the following data set:

(a) For each subject, calculate the three difference scores d12, d13, and d23, where
djj' represents the difference, Yij — Yij. Find the variances of each set of differ-
ence scores.

(b) Calculate the variance-covariance matrix. Using those results, calculate the three
variances of difference scores. The result should be the same as in part (a).

(c) Perform an ANOVA on the data and show that MSsA = (1 /2) x (average of the
three variances calculated in the preceding two parts).

(d) Perform the t test of the difference between the A1 and A 2 means (i) using MSsA

and (ii) using the variance of d12. Find the p value for each procedure. Which
analysis do you think should be preferred? Why?

(e) Calculate the t to test the null hypothesis that (1/2)((U2 + U3) - U1 = 0.

s1

S2

s3
S4

A1

12
9

10
8

A2

14
8
9
6

A3

15
10
12
7

Subject

1
2
3
4
5
6

A1

1.7
4.6
6.9
3.6
4.3
5.1

A2

2.4
6.3
6.8
6.1
4.4
5.2

A3

2.7
7.0

10.2
7.5
8.2
5.8



13.3 Huynh and Feldt (1970) present the following variance-covariance matrix. Does it
satisfy compound symmetry? Does it satisfy sphericity?
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(a) Carry out the ANOVA on these data and find the lower and upper bounds
on the p value, assuming sphericity and nonsphericity, respectively. Assuming
a = .05, can you reach a conclusion with respect to the A source of variance?

(b) Assume that we planned all pairwise comparisons for the preceding data set.
Find the .95 confidence interval for ¥.4 — Y.2, controlling for the FWE.

13.5 Assume that the levels of A in Exercise 13.4 are equally spaced. Perform a trend
analysis, testing each of the three polynomial components.

13.6 An educational psychologist wishes to develop a measure of articulation that can
then be used in examining the relation between reading comprehension and the
ability to articulate words. She has 40 third graders read aloud each of 20 words
and measures the time required for the response. A Subjects x Words ANOVA
yields the following results:

One measure of the reliability of a measuring instrument is r11, the proportion of
the total variance attributable to differences among the subjects.
(a) Because the variability due to words is clearly negligible, obtain an error mean

square by pooling the W and S x W mean squares.
(b) Estimate as.and ae

2.
(c) Using the results from parts (a) and (b), calculate r11.

13.4 Consider the following data set:

S1
S2

S3,
S4

S5

S6

S7

s8

A1

1.8
2.4
1.9
2.7
4.7
3.6
4.4
5.8

A2

2.2
1.5
1.7
2.6
4.8
3.1
4.2
6.1

A3

3.2
1.9
2.5
2.4
4.4
4.2
4.1
6.4

A4

2.4
2.7
3.5
3.1
4.8
5.4
4.9
6.6

SV

Subjects (S)
Words (W)
SX W

df

39
19

741

MS

208,305.017
739.141
853.157

F

244.158
.866
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13.7 Four subjects each were tested on three successive days. Unfortunately, the record
for subject 1 on Day 2 was accidentally deleted from the computer disk. The remai-
ning scores are presented below.

(a) Estimate the missing score.
(b) Suppose both Y12 and y43 were missing. Use the iterative estimation procedure

described in this chapter to estimate the missing scores.
13.8 Ten randomly sampled clerical workers (W) are observed on each of five randomly

sampled occasions (O) with each of four word processing programs (P). The
programs have been selected for comparison purposes to decide which ones to buy
for the entire work force. A score is obtained for each worker with each processor
on each occasion. An ANOVA is then carried out. The results are:

(a) Write out the EMS for the above table, first specifying which factors have random
effects and which have fixed effects.

(b) Calculate a quasi-F test of the P source. Let a. = .05.
(c) Perform an alternative to the quasi-F test of P. What assumption is implied in

doing this test?
13.9 In research on personality, there has been much discussion of the relative importance

of traits and situations. The basic research design involves n subjects, and t tasks
representing a random sample of situations. Measures are obtained for each subject
(ni) on each task (aj) on each of b randomly sampled occasions (B k ) .
(a) Assuming the completely additive model, Yijk = U + ni + aj + Bk + E i j k ,

present expressions for the SV, df, and EMS.
(b) Present expressions for estimates of the variance components for subjects, tasks,

and occasions.
(c) Assume we have evidence from previous studies that subjects and tasks interact.

State the revised model, the revised ANOVA table (SV, df, and EMS), and revised
estimates of the variance components.

S1
S2
S3
S4

D1

19
24
21
16

D2

—

27
30
21

D3

42
45
47
39

SV

W
P
O
W x P
W x O
P x O
W x P x O

df

9
3
4
27
36
12
108

MS

2580
2610
690
330
370
640
320

EMS
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13.10 Each of five subjects is tested at four equally spaced points in time on a visual
detection task. The numbers of errors for each test are:

(a) Time 1 provides a baseline. The experimenter wishes to test whether the mean at
Time 1 differs significantly from the combined mean for the other three times,
(i) State the null hypothesis and carry out the test with a = .05. Calculate a
confidence interval for the contrast.

(b) Test whether there is a significant linear trend.
(c) Test whether the means depart significantly from a straight line.

13.11 In the following data set, B represents 3 statements that are rated before ( A 1 ) and
after ( A 2 ) reading a persuasive communication.

S1

S2

s3
S4

S5

81
2
3
7
2
1

A1

62

3
3
4
2
2

83

4
4
6
4
2

B1

8
6
4
7
5

A2

B2

9
7
9
9
4

63

8
9
9
8
5

(a) Assume B is fixed and do an S x A x B ANOVA.
(b) Find the mean at A1 and at A2 for each subject. Now do an ANOVA for this

S x A design.
(c) Now assume B is a random-effects variable (as seems more reasonable). Present

the EMS.
(d) Test the A source of variance under the model of part (c).
(e) What is the problem with the (commonly performed) ANOVA of part (b) when

B has random effects?
13.12 Following are response times (in milliseconds) obtained under four different con-

ditions for eight subjects:

Subject

1
2
3
4
5

1

9
11
6

13
12

Time

2 3

6 7
8 6
8 7

10 10
8 9

4

5
6
5
9
6
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Subject

1
2
3
4
5
6
7
8

A1

2036
2034
2198
2593
2347
2308
2454
2462

A2

2220
2042
2612
2629
2408
2352
2501
2394

A3

2211
2094
2272
2652
2416
2463
2475
2491

A4

2316
2077
2348
2647
2479
2358
2461
2659

Carry out (a) the ANOVA, (b) Friedman's x2 test, and (c) the rank transform test
on these scores.

13.13 (a) For the data of the preceding exercise, use the WSR procedure to test whether the
A\ and A 2 conditions are significantly different. Assume a two-tailed alternative
hypothesis and a. = .05.

(b) Continuing with the data set of Exercise 13.13, use the WSR procedure to test
whether there is a significant linear trend.

13.14 Twenty people underwent a 1-week program aimed to help them quit cigarette
smoking. The researchers running the program checked on the progress of the
participants after 3,6, and 9 months. The results follow, with a 1 signifying that the
individual has smoked at least once during the preceding 3-month period and a 0
indicating that the individual has not smoked during that period.

Subjects

Period

1
2
3

1 2

1 0
1 1
1 1

3

0
1
1

4

0
1
1

5

1
1
1

6

0
0
0

7

0
1
0

8

0
0
1

9

0
0
1

10 11

0 0
1 1
1 1

12

0
0
1

13

1
1
0

14

1
0
1

15

0
0
0

16

0
1
1

17

1
0
1

18

1
0
1

19

1
1
1

20

0
1
0

The investigators want to know if there has been a significant change in the percent-
age of smokers over the three periods in the follow-up study. Perform an analysis
to answer this question and state your conclusion.

13.15 The file Daylight in the Seasons folder of the CD contains hours/weekday of ex-
posure to daylight for the oldest group of subjects in the Seasons study. This was
of interest to the researchers because it is believed that exposure to daylight affects
mood.
(a) Perform an ANOVA on the female (i.e., sex = 1) DIRWDC (Direct exposure

to daylight during weekdays) scores; 1 = winter, 2 = spring, 3 = summer, and
4 = fall.

(b) Calculate the partial w2 for the effects of Seasons.
(c) Perform a trend analysis.

13.16 Transform the data in Exercise 13.15 by Log(DIRWDC + 1) and redo parts (a)-(c).
Comment on any differences in results.
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(a) Using any graphs or descriptive statistics you find useful, comment on any
changes in the distributions of scores due to the transformation.

Dividing this estimate by the MSsA calculated from our data yields Equation 13.5, the
efficiency of the repeated-measures design relative to the completely randomized design.

Deriving the min f Statistic

When MSsAB cannot be calculated, we can conceive of the quasi-F as

APPENDIX 13.1

Then, our estimate of the error variance for the completely randomized population can be
derived from the mean squares calculated from the repeated-measures design by substitu-
tion:

Similarly, combining the A and S x A terms on the right, we have

We next substitute variance components, ignoring the treatment variance because it should
be the same in both designs. Therefore,

Relative Efficiency of a Repeated-Measures Design

We assume that over many replications of the experiment, the average total sum of squares
will be the same for the completely randomized (CR) and repeated-measures (RM) designs.
That is,

Replacing the total sums of squares by their component sums of squares, we have

Appendix 13.2
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Multiplying numerator and denominator by MSA /(MSsA • MSAB), we find that the numerator
of min F' becomes

The denominator is

Therefore, min F' = F1 F 2 ( F 2 + F1). The error degrees of freedom for min F' are

Multiplying the numerator by MS 2 / (MSsA • MSAB)2,we have

and also multiplying the denominator by the same quantity, we have

Therefore,



Chapter 14
Mixed Designs:
Between-Subjects and
Within-Subjects Factors

14.1 INTRODUCTION

In Chapter 13, we analyzed the effects of seasons on Beck depression scores for a group
of male patients. We might have included a group of female patients as well. This would
have allowed us to test whether there was a significant difference between the average
(over seasons) depression scores as a function of gender. We could also have tested the
interaction of gender and seasons; in particular, we might have tested whether there were
differences in the slopes and shapes of the two functions of seasons. Gender is a between-
subjects factor, and seasons is a within-subjects factor in this example. Designs like this
that involve both between-subjects and within-subjects factors will be referred to as mixed
designs (sometimes called split-plot designs). Such designs are very common. They are a
compromise between a desire to use within-subjects factors to reduce error variance (and
thus increase power and the precision of estimation) and the reality that certain variables
simply cannot be treated as within-subjects factors. Examples of variables that are inherently
between-subjects factors are those whose levels are selected rather than manipulated (e.g.,
individual differences variables, such as gender, age, or clinical diagnostic category) and
manipulated variables that entail carry-over effects (e.g., training method). In this chapter,
we consider the structural models and analyses for various mixed designs.

386

14.2 ONE BETWEEN-SUBJECTS AND ONE
WITHIN-SUBJECTS FACTOR

Table 14.1 presents a data set for a hypothetical experiment in which one group was taught
probability by a standard instructional method (A 1 ) , a second group was given additional
problems (A2), and a third group received additional problems from a computer that provided
immediate feedback (^3). All three groups were tested at the end of the instructional period,
and then once every 2 weeks until four different tests had been given. Assume that the tests
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TABLE 14.1 DATA FOR A DESIGN WITH ONE BETWEEN-SUBJECTS (A) AND ONE
WITHIN-SUBJECTS (B) VARIABLE

Method of

Instruction

S11

S21

53,

A1 S41

S51

S61

Y.1k

5,2

S22

532

A 2 S42

s52

S62

Y.2k

5,3

S23

S33

A 3 S43

S53

S63

Y3k

Y..k

Time of Test

61

82
72
43
77
43
67
64

71
89
82
56
64
76
73

84
84
76
84
67
61
76

71

62

48
70
35
41
43
39
46

53
67
84
56
44
74
63

80
72
54
66
69
67
68

59

B3

41
51
30
61
21
30
39

50
76
83
55
44
64
62

75
63
57
61
55
55
61

54

B4

53
45
12
31
29
40
35

62
68
71
45
52
74
62

77
81
61
77
69
61
71

56

Yij.

56
62
30
50
34
44
Y.1.
59
75
80
53
51
72
F.2.

79
75
62
72
65
61
F.3.

Y...

= 46

= 65

= 69

= 60

were equated for difficulty so that any differences could be attributed to the passage of time.
This design permits us to compare the instructional methods (A) and also to see the time
course (B) of performance following the end of instruction for each method. Notice that
the design is a mixture of the between-subjects design of Chapter 8 and the within-subject
design of Chapter 13. If we average the four test scores for each subject, we have a between-
subjects design and can conduct the ANOVA exactly as in Chapter 8. If, on the other hand,
we retain the four test scores but ignore the instructional factor, we have an S x B design
in which 18 subjects have scores at the four levels of B. In designs such as the one in
Table 14.1, n subjects are tested at A1, n other subjects are tested at A2, and so on. All an
subjects are tested at each of the b levels of the independent variable B. Therefore, abn — 1
df must be accounted for in the analysis of variance (ANOVA). With respect to notation,
we refer to Yjjk, where i indexes the subject (i — 1, 2 , . . . , n ) , j indexes the level of the
between-subjects variable (j — 1, 2, . . . , a), and k indexes the level of the within-subjects
variable (k = 1,2, ... b). In the current example, n = 6, a = 3, and b = 4.

We begin our discussion of mixed designs by analyzing the data of Table 14.1. First, we
examine how the total sum of squares is partitioned into sources of variance that provide the
components of F tests. We do this by analogy to the analyses of the between-subjects design
of Chapter 8 and the within-subjects designs of Chapter 13. Following this, we present a



388 14 / BETWEEN-SUBJECTS AND WITHIN-SUBJECTS FACTORS

more formal structural model to justify the partitioning and expected mean squares to justify
the error terms used in the F tests.

14.2.1 Partitioning the Sums of Squares
and Degrees of Freedom

Mixed designs might at first glance seem more complicated than pure between-subjects or
repeated-measures designs. However, we can obtain the appropriate model for any mixed
design—and hence the entire ANOVA table for the design—using what we already know
about the pure designs. A simple way to find the appropriate sources of variance for any
mixed design involves two steps: (1) first ignore the between-subjects factors and obtain
the SV terms for the resulting repeated-measures design, then (2) partition the SV terms
that contain the "subjects" variable, S, to reflect the effects of the between-subjects factors.
If we ignore the between-subjects variable, A, in Table 14.1, we have an S x B repeated-
measures design with an (3 x 6) subjects and b (4) levels of the within-subjects factor, B.
For this simplified design, we know from Chapter 13 that the appropriate sources of variance
and degrees of freedom are those presented in panel (a) of Table 14.2. Note that the total

TABLE 14.2 SOURCES OF VARIANCE, DEGREES OF FREEDOM, AND SUMS OF SQUARES FOR THE MIXED
DESIGN OF TABLE 14.1

(a) Appropriate SV and df |f Factor A Is Ignored

SV

Total

Between-Subjects (5)

Within-Subjects(WSs)

B

SB

df SS

abn - 1 = 71

an - 1 = 17

an(b - 1) = 54

b-1 =3

(an- l)(b- 1) = 51

Ek EjEi(Yijk-Y...)2 = 20,956
bE jE i(Y i j . -Y...)2 = 14.448

EkEjEi(Yijk-Yij.)
2 = 6,508

an Ek(Y..k -Y...)2 = 3,132

SStot - SSs — SSB = 3,376

(b) Complete Partitioning of the SS and df

SV

Total

Between-Subjects (S)

A

S/A

Within-Subjects(W Ss)

B

SB

AB

SB/A

df

abn-1 = 71

an - 1 = 17

a- 1 =2

a(n - 1) = 15

an(b - 1) = 54

b - 1 = 3

(an- 1)(b- 1) = 51

(a - 1)(b - 1) = 6

a(n - 1)(b - 1) = 45

SS

E k E j E i ( Y i j k - Y . . . ) 2 = 20,956
bEjEi(Yij. -Y...)2 = 14.448

bn E j ( Y . j . -Y...)2 =7.248

SSs-SSA =7,200

SStot - SSS = 6,508
an Ek(Y..k-Y...)2 = 3,132

SSwss - SSB
 = 3,376

n Ej- Ek (Y-jk - Y-)2 - SSA - SSB
= 1,056

SSWSS - SSB - SS AB = 2,320
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sum of squares is completely accounted for by variability between subjects (SSs) and within
subjects (SSwSs}', that is,

In a similar manner, the total degrees of freedom can be divided into between-subject and
within-subject components:

The within-subjects degrees of freedom reflect the fact that the variance of each subject's b
scores is distributed on b — 1 df, and this variability is then summed over the an subjects.
The within-subject variability (SSwss) can be further partitioned into a term due to B and
one due to the interaction of S and B:

The dfwss is similarly partitioned:

The model and analysis suggested by this partitioning are incomplete because panel (a)
of Table 14,2 does not include an A source of variance. The SSA and dFA are components of
the between-subjects sum of squares (SSs) and degrees of freedom (dfs). SSS represents the
variability of the an subject means, the yij.. Some of this variability may be due to effects
of A, and some is due to individual differences among subjects within each level of A. If we
analyze the an subject means, we have a one-factor between-subjects design with n scores
at each level of A. Just as we partitioned the total variability in the one-factor design of
Chapter 8, we can partition the between-subject variability here:

The corresponding degrees of freedom are

The S x B variability can also be further partitioned by crossing A and S/A with B; this
yields

The degrees of freedom can be partitioned in a similar way:

These partitionings of the S and SB terms complete the breakdown of SStot into its compo-
nents. The final result is presented in panel (b) of Table 14.2.

Scanning the sources of variance in panel (b) you may wonder why there is no S x A
term present. The answer lies in the distinction between crossing and nesting. When data
are obtained for all combinations of levels of one factor with all levels of another, we say



that the two factors cross. For example, in the current design, A andB cross, as do S and B;
however, A and 5 do not cross. Here, A is a between-subjects factor; that is, each subject
provides data at a single level of A. We describe this situation by saying that subjects are
"nested within levels of A," and we indicate nesting by using a "/" in our SV terms, as in
S/A. It is not possible for two factors to interact with one another unless they cross. There
is no possibility of an interaction between S and A because the question of whether the
difference between any two subjects is greater at A 1 than at A 2 is meaningless unless the
subjects provide data both at A\ and at A2.

How do we interpret the nested terms? It is as though the sums of squares were obtained
separately at each level of A and then pooled. Thus, SSs/A could be obtained by computing,
for each level of A, the variability of the n subject means about the mean for that level of A,
and then adding up the terms for the a levels of A. The n — 1 df obtained from each of the
a levels of A are added to make up the a(n— 1) df associated with S/A. Similarly, we could
obtain SS$B/A by computing SSsB separately at each level of A [accounting for (n — 1)(b— 1)
df at each level of A] and then summing the resulting a terms [thus accounting for the
a(n-1}(b-1) df associated with SB/A].

The sums of squares formulas and numerical results are presented in Table 14.2. Al-
though these are not too laborious to obtain with a calculator, with more data, and particularly
with more variables, we advise the use of a computer program. In addition to saving la-
bor, packages such as SAS, SPSS, BMDP, and SYSTAT are capable of providing much
additional information, such as summary statistics, plots of scores and residuals, tests of
contrasts, and adjustments for nonsphericity.

The mean squares in Table 14.3 are, as always, ratios of sums of squares to degrees of
freedom. The basis for the choice of error terms also follows our standard rule: The error
term has the same expectation as the numerator mean square, assuming H0 is true. The
validity of the entries in the expected mean squares (EMS) column rests on the validity of
certain underlying assumptions that we will present next.

14.2.2 The Structural Model
As usual, the F tests (Table 14.3) are based on expected mean squares whose deriva-
tion requires a structural model. Table 14.4 defines the parameters that are components

TABLE 14.3 ANOVA OF THE DATA IN TABLE 1 4. 1

SV

Total
Between-Subjects

A

S/A
Within-Subjects

B

AB

SB/A

df

71
17
2

15
54

3

6

45

SS

20,956
14,448

7,248

7,200
6,508
3,132

1,056

2,320

MS Error term

3,624.000 S/A

480.000

1,044.000 SB / A

176.000 SB /A

51.556

F

7.55a a2

a2

20.25" 07

3.41a a2

a2

a2

EMS

+ ba2/A

+ ba2
/A

+ a S B / A

+ a2sB/A

+ a2
B/A

+ bnO2

+ anO2

+ noAB

ap < .01.
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TABLE 14.4 PARAMETERS OF THE MODEL FOR THE MIXED DESIGN OF TABLE 1 4. 1

Population Meansa

j

Population Effects and Constraints

Population Variances

a E stands for the expectation over the population of subjects at Aj ; .

of that model. The following assumptions should be kept in mind when considering that
table:

1. Yijk, the observed score for the ith subject at the jth level of A, is made up of
a true score component, Uijk and a random error component, Eijk. The Eijk are
independently and normally distributed with mean zero and variance a2.

2. A and B are fixed-effect variables.
3. The n subjects in each of the a groups are randomly sampled from a treatment

population consisting of an infinite number of subjects,

Assumptions 2 and 3 justify the definitions and constraints in Table 14.4. For example, we
define Uij as the arithmetic mean of b values of Uijk because the average is taken over the
levels of B, a fixed-effects variable. In contrast, we define Uj as the expectation of the Uij.
This is because 5 is a random-effects variable; therefore, to obtain the mean of the popula-
tion of scores at Aj, we must average (i.e., take the expectation) over an infinite population
of subjects. To consider one other example of the application of Assumptions 2 and 3, note
that we have the constraint that E Bk = 0, whereas E(ni/j) = 0; in one case, fixed effects
(the Bk) are summed and, in the other, we take the expectation of random effects (the -ni/j).
The reason for the differences in definitions and constraints as a function of the nature of
the effects was discussed in Chapter 13.
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There are six components of variance that might potentially contribute to any of the expected
mean squares. These are the variances due to subjects (a2), the interaction of subjects and
B (a2

SB/A)> and errpr variance ((Ae
2), as well as components corresponding to the fixed effects

Given the definitions and constraints in Table 14.4, we can specify the structural model,

The effects in this equation, with the exception of the error component, Eijk, correspond
to sources of variance in Table 14.3. In particular, the nested effects, ni/j and ( n B ) i k / j ,
correspond to the sources S/A and SB/A. There is no source of variance corresponding
directly to Eijk because there is only one score for each combination of S, A, and B. We
saw a similar situation in the repeated-measures designs of Chapterl3.

Equation 14.1, together with the definitions of variances and constraints in Table 14.4,
allows us to derive expected mean squares for the design. These were presented in Table 14.3.
These expectations can be generated by a set of rules that are general enough to encompass
more complex designs as well. Those rules will be presented in Section 14.3 but, before that,
again consider the expected mean squares in Table 14.3. The first thing to note is that there
are two error terms; the EMS indicate that MS S/A is the appropriate error term against which
to test whether the A effect is significant and that MSSB/A is the appropriate error term forB
and AB. An important difference between the expectations of these two error terms is that
E(MS s / A) involves the variance of the ni/j (o2

s/a), whereas E ( M S s B / A ) involves the variance
of the (nB)ik/j (o 2

S B / A ) ' , o2
S/Awill typically be greater than o2

SB/A. Therefore, within-subjects
factors, usually are tested against error terms that are smaller than the error terms used with
between-subjects factors, and tests of B and AB effects usually have greater power than test
of A effects.

When tests of within-subjects factors are performed, possible violations of the spheric-
ity assumption are a consideration. In Chapter 13, we discussed how violations of sphericity
may result in positively biased F tests of within-subjects factors. This is also true for mixed
designs. Conservative F tests parallel to those discussed in Chapter 13 can be performed
for the current design and are routinely reported by most statistical software. The statistics
MSB and MSAB are distributed on (b—l)E and (a — 1)(b—1)8 df, respectively, and MSSB/A,
the error term for both B and AB, is distributed on a(n — 1)(b— l)E df. The values that E
can take on vary between 1 (when there is no violation of the sphericity assumption) and
1(b— 1) (when there is maximum violation). The conservative test of the B effect would
therefore use 1 and a(n — 1 ) d f and that for the AB effect would use a — 1 and a(n — 1 ) d f . For
the data set of Table 14.1, the degrees of freedom for the conservative F test of B would
be 1 and 15 (3 x 5) df, and the degrees of freedom for the A B test would be 2 and 15.
The conservative test of the B effect would still be significant at the .01 level. However,
the conservative test of the AB interaction is not significant at the .05 level; p = .06. In this
case, the conservative test is very conservative indeed. Using SPSS's repeated-measures
program, the Greenhouse-Geisser estimate of e (£) was .626, and the F test of the AB
interaction, with degrees of freedom adjusted by this value, was significant; p = .023. The
Huynh-Feldt estimate (e) was .807; p = .013.

14.3 RULES FOR GENERATING EXPECTED MEAN SQUARES



in the structural equation,(0^, 0g, and 02
B). Referring to Table 14.3, it is evident that only

a few of these terms actually contribute to any expectation, and therefore play a role in the
selection of the error term or in the estimation of effect sizes. Our designs are now becoming
sufficiently complicated that rules for determining the components of each expected mean
square will be useful. Table 14.5 presents such rules. Appendix 14.1 presents a justification
for these "rules of thumb" by examining the example of E(MSA).

Consider how the rule of thumb might be used to find E(MSs). First list o;2 because
it contributes to every EMS. Then, add every additional component of variance that has
subscripts containing B, multiplying each component by its appropriate coefficient. The
result is

Rules 5 and 6 dictate deletion of the n02
AB component, because once B is deleted from its

subscripts (A andB), we are left with A, a subscript that denotes a fixed effect variable.
Note that the VJ/AB component is retained, because when B is deleted from the "essential"
subscripts of that component, we are left with S, a subscript that denotes a random-effect
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TABLE 14.5 RULES OF THUMB FOR OBTAINING EXPECTED MEAN SQUARES (EMS)

Rule 1. Decide for each independent variable (including subjects) whether it is fixed or random.
Assign a letter to designate each variable. Assign another letter to be used as a coefficient that represents
the number of levels of each variable. In the example of Table 9.3, the variables are designated A , B .
and S; the coefficients are a, b, and n; A and B are fixed-effect variables and S is random.

Rule 2. List 07 as part of each EMS

Rule 3. For each EMS, list the null hypothesis component — that is, the component corresponding
directly to the SV under consideration. Thus, we add nbO2, to the EMS for the A line and ba2

/4 to the
EMS for the S/A line. Note that a component consists of three parts:

1. A coefficient representing the number of scores at each level of the effect (e.g.) nb scores
at each level of A, or b scores for each subject).

2. A a2 or 02, depending on whether the effect is assumed to be random or fixed [a2 is the
variance of the population of effects; for example, a2

/A = E ( n 2 i / j ) , o2 = Ej a2/(a — 1)].

3. As subscripts, those letters that designate the effect under consideration.

Rule 4. Now add to each EMS all components whose subscripts contain all the letters designating
the SV in question. Since the subscript SB/ A contains the letters S and A, for example, add cr|gM to
the EMS for the S/A line (this is later deleted according to Rule 6).

Rule 5. Next, examine the components for each SV. If a slash appears in the subscript, define only
the letters to the left of the slash as "essential." If there are several slashes (as in the next chapter),
only the letters preceding the leftmost slash are essential. If there is no slash in the subscript, all letters
are considered essential.

Rule 6. Among the essential letters, ignore any that are necessary to designate the SV. If the source
is A, in considering no2

B , for example, ignore the A. If the source is S/A, in considering the a2
B/A

component, S and B are essential subscripts and S is to be ignored. If any of the remaining essential
letters designate fixed variables, delete the entire component from the EMS.
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TABLE 14.6 EXPECTED MEAN SQUARES (EMS) WHEN A IS A FIXED-EFFECT
VARIABLE AND B IS A RANDOM-EFFECTS VARIABLE

SV

A

S/A

B

AB

SB/A

a —

a(n

b-

(a-

a(n

df

1

-1)

1

-D(b-1)

- 1)(b - 1)

EMS

The reader should apply the rules to the remaining sources of variance and compare the
results with those in Table 14.3. The rules also apply to designs with more variables and
with additional levels of nesting.

The rules for generating expected mean squares also enable us to construct quasi-F
ratios in situations in which no single source of variance provides an appropriate error term.
For example, assume a instructional groups of n subjects each. Further assume that the
students are tested once on a set of b randomly selected items. The sources of variance,
degrees of freedom, and expected mean squares are presented in Table 14.6. Verify that
the expected mean squares follow the rules in Table 14.5. Note that the S/A mean square,
the usual error term against which to test A, is inappropriate under the assumption that
B is a random-effects variable. If A is tested against S/A, a significant result could be
attributed to either effects due to A or AB. Assuming a model that includes an AB term—
that is, a2

B = 0—we must construct a quasi-F test of the A source or variance. From the
developments in Chapter 13,

Calculations of effect size in the mixed design follow the approach taken in earlier chapters.
For convenient reference, Table 14.7 summarizes formulas for the A, B, and AB effects in
the design exemplified by the data set of Table 14.1 and the ANOVA of Table 14.3.

The numerator degrees of freedom are

and the denominator degrees of freedom are

14.4 MEASURES OF EFFECT SIZE

variable. The final result is
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TABLE 14.7 EFFECT SIZE MEASURES FOR A DESIGN WITH ONE BETWEEN-SUBJECTS (A) AND ONE
WITHIN-SUBJECTS FACTOR

A

Effect

B AB

14.4.1 Partial Eta-Squared (n2) Statistics
The general form of the partial n2 statistic is

For example, using the results in Table 14.3, the T)2 value for A x B (Instructional
Method x Time of Test) is 1056/(1056 + 2320) = .313.

14.4.2 Cohen's f

As noted in previous discussions of effect sizes, n2 is a descriptive statistic whose numerator
is inflated by error variance. Cohen's /—defined for several designs in Chapters 8,12, and
13—is a population parameter and is defined as

The population standard deviations can be estimated from the expected mean squares in
Table 14.3, as in the previous chapters. For example,

and

Substituting the estimates, and simplifying, we have the formulas in Table 14.7, where
Feffect = MSeffect/MS'error- For example, for the interaction effect in Table 14.3, we have
FAB = MSAB/MSS/AB and f AB = V(6)(2.414)/72 = .45, a value that would be a large
effect according to Cohen's (1988) guidelines.



14.4.3 Partial Omega-Squared w2

Values of partial co2 can be computed as a function of f,

or as a function of the F ratio,

Substituting the previously calculated value of fAB into Equation 14.7,

or, substituting values from Table 14.3 into Equation 14.8,

] 4.4.4 Other Measures of Effect Size

The noncentrality parameter of the F distribution, X, is needed in some programs for
calculating power. It can be calculated simply as a function of /:

As stated in earlier chapters, estimates of the index O can be used together with charts found
in several sources (e.g., Kirk, 1995; Myers & Well, 1995) to compute power, or the n needed
to obtain a specified level of power. This index can also be calculated as a function of f:

Suppose that prior to running the experiment on instructions and time of test, we estimated
from pilot work that the effect of instructions (A) would be large; that is, / = .4. How
many subjects should be included in the experiment to have power equal to .8? Assume
that a and b are 3 and 4, as in Table 14.1. What should n be? We can use the free program
GPOWER, cited at several earlier points in this text, to decide on n. Begin by selecting
"Other F tests." Then enter .16 for f2, .05 for a, and assuming a trial n of 6, 72 for JV,
and 2 and 15 for the numerator and denominator degrees of freedom. The resulting power
is .79, almost sufficient to meet our goal. Suppose we also want power equal to .8 to detect
a large interaction effect. The numerator and denominator df= 6 and 45, and power equals
.65.1 If we increase n to 8, TV is now 96 (3 x 4 x 8), the denominator dfare 63, and the
power for testing the interaction is .81.

It is important to bear in mind a point discussed in Chapter 13: Power estimates for
within-subject variables assume sphericity. If this assumption is not met, the numerator
and denominator df for the test of B and AB will be less than those entered into whatever

14.5 POWER CALCULATIONS
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program (or chart) is used, and therefore power will be less that the estimated value. Never-
theless, even an overestimate of power, or an underestimate of n, is better than no estimate,
particularly if the researcher is aware of the potential nonsphericity effect.

As we noted in previous chapters, many statistical packages can test contrasts among means
if the weights involved in the contrasts are provided. If such packages are not used, the tests
can still be done in a fairly straightforward way. Procedures developed in Chapters 9 and
12 for between-subjects designs, and in Chapter 13 for within-subjects designs, can be
extended to mixed designs.

To have an example in mind, let's take another look at Table 14.1. There were three
groups of six subjects, and the groups had either a standard instructional approach (A}),
additional problems (^2), or additional problems presented by a computer (A 3 ) . Subjects
were tested at four points in time (B1 to 64), beginning with a test at the end of the
instructional period. In this section, we use the example of Table 14.1 to illustrate tests of
four kinds of contrasts. We indicate the first kind by U ( A ) , where U indicates a contrast
and the subscript p(A) specifies the pth contrast among the means of the between-subjects
factor, A. For example, we might want to test the difference between the means of A2 and
A3, the groups receiving additional problems. Or, we might wish to pit the mean of our
control, A1, against the average of the combined AI and A3 groups. In both examples, we are
contrasting the marginal means, those obtained by averaging the bn scores at a level of A.

We also might wish to test whether the contrast among the Aj differs as a function of
the level of B. For example, the data of Table 14.1 suggest that the difference between the
A\ mean and the average of the A 2 and A3 means increases as B, the time since training,
increases. This suggests a second kind of contrast, U(A)XB, the variation in the pth contrast
of the A means as a function of the level of B.

Still, a third possible contrast is Yq(B), which would involve the qth contrast among the
marginal means at the different levels of B. For example, it appears from Table 14.1 that
there is a trend for the average score to decrease as the delay since instruction increases.
Using the weights for polynomial analysis, discussed in Chapter 10, we can test whether
this decline (the linear trend component) is a significant contributor to the overall variability
due to B. We might refer to this contrast as U l i n (B) .

Finally, note that the decline over time seems more pronounced for the control group
(A1) than for either of the groups that received additional problems (A2 and A3). In terms
of our discussion of trend analysis in Chapter 11, it appears that there may be a significant
U A x l i n ( B ) source of variance.

In the remainder of this section, the data of Table 14.1 are used to illustrate the cal-
culations involved in testing whether these contrasts are significant. Bear in mind that the
discussion in Chapter 9 of familywise error rates applies here as well. For example, if all
pairwise comparisons of the f.y.are made, the Tukey or Bonferroni procedure should be
used to evaluate whether results are significant.

14.6.1 Contrasts of the Levels of the Between-Subjects
Factor, A

Suppose we wish to compare the average score at A1 with the average for the combined
A2 and A^ conditions. The three group means receive the weights —1, 1/2, and '/2 (or

14.6 CONTRASTING MEANS IN MIXED DESIGNS
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TABLE 14.8 A CONTRAST OF THE MEANS AT THE LEVELS Of A IN TABLE 1 4. 1

(a) The totals for the AB combinations (T , j k ) and the weights for the contrast (wj) are presented;
n=6.

#,
B2

B3

B4

A1

384
276
234
210

A2

438
378
372
372

A3

456
408
366
426

E / / r . / t

63
117
135
189

(b)Totest//0:£,.w;iJi/ = 0,

For the data of Table 14.1,

(c) To test H

any multiple of these), respectively. Panel (a) of Table 14.8 presents the cell totals from
Table 14.1, together with weighted totals at each level of B. For example, the value of 63
in the B1 row is obtained from
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The sum of squares of the A contrast is distributed on 1 df and therefore can be tested using
either the t or its square, the F. Throughout this section, we will use F ratios to test the
hypotheses. From Chapter 9,

and

The denominator is the S/A mean square because we are testing a component of the between-
groups variability.

In panel (b) of Table 14.8, Equations 14.11 and 14.12 have been applied to the data
in panel (a) to test the contrast of the A1 mean with the mean of the combined A\ and A 2
data. The value of F of 14.7 is significant; the control group (A 1 ) mean differs significantly
from the average of the two groups that received extra problems. The reason for this result
is apparent in Figure 14.1, in which the control groups curve lies far beneath the other two
curves.

Next let's look at the interaction of p(A) and ̂ For our example, we test whether the
difference between F.i. and the average of Y.2. and 7.3. varies significantly as a function of
the time of test (B). The sum of squares for this comparison of b contrasts is

The F test is

Fig. 14.1 Plot of the means in Table 14.1.



400 14 / BETWEEN-SUBJECTS AND WITHIN-SUBJECTS FACTORS

Note that the numerator sum of squares is distributed on b — 1 df. The reason is that we
are calculating the variance of b contrasts. Also note that the error term is the usual within-
subject error term. This is appropriate here because a component of the AB interaction
variability is tested.

Equations 14.13 and 14.14 are applied to the data of Table 14.1 in panel (c) of
Table 14.8. This result is also significant. Turning to Figure 14.1, it appears that the differ-
ence between the A\ curve and the A 2 and A3 curves increases as B increases. In terms of
our example, the advantage of additional problems (A2 and A3) is greater as the time since
instruction (B) increases, accounting for the significant p(A) x B result.

14.6.2 Contrasts of the Levels of the Within-Subjects
Factor, B

Contrasts of the b means (time of test in the example) can be tested directly by using statistical
packages that can provide tests of contrasts of within-subject effects. They can also be tested
by transforming the data into contrast scores as we did in Chapter 13.1.2 For example,
suppose we want to test whether the average curve in Fig. 14.1 has a significantly negative
slope. This is a test of linear trend, lin(B). From the orthogonal polynomial coefficients of
Appendix Table C.6, we obtain weights of 3, 1, —1, and —3. These weights were applied
in Table 14.9 to obtain the 18 contrast scores (C,-y), one for each subject at each level of A.
The contrast scores were computed by multiplying each of the four scores for each subject
by the corresponding linear coefficient and then summing these products. For example,
the four scores for the first subject in group A\ are 82, 48, 41, and 53. Then the contrast
score is (3)(82) + (1)(48) + (-1)(41) + (-3)(53) = 94. The test for linear trend is a test
of whether the average of all an (3 x 6 in our example) contrast scores differs significantly
from zero. The test can be performed by submitting the an contrast scores to a program for
analyzing data from a one-factor (A) design. Table 14.10 presents the output from SPSS's
ANOVA of the three groups of contrast scores. The "intercept" term corresponds to the test
of linear trend. In general, it tests whether the mean of all the scores differs significantly
from zero. The very large F ratio (p = .000) indicates that the average of the three curves
has a slope different from zero. Again, turning to Figure 14.1, the result of the test of linear
trend apparently reflects the average negative slope of the three group curves.

The weights on the scores at the levels of B are 3, 1, —1, and —3. These
are multiplied by the scores for each subject. For example, the contrast score for
Subject 1 in Group A, is (3)(82) + (1)(48) + (-1)(41) + (-3)(53) = 94. In this
way, we get 18 contrast scores, one for each subject in each of the three groups.

TABLE 14.9 CONTRAST SCORES BASED ON THE DATA OF TABLE 1 4. 1

AI

94
90
98

128
64
90

A2

30
• 54

34
34
36
16

A3

26
18
42
26

8
12
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TABLE 14.10 SPSS ANOVA OUTPUT FOR THE CONTRAST SCORES IN TABLE 1 4.9

Tests of Between-Subjects Effects

Source

Corrected Model
Intercept
A
Error
Total
Corrected Total

Type III Sum
of Squares

17856.000a

45000.000
17856.000
3592.000

66448.000
21448.000

df

2
1
2

15
18
17

Mean Square

8928.000
45000.000
8928.000
239.467

F

37.283
187.918
37.283

Sig.

.000

.000

.000

Dependent Variable: Y
aR2 = .833 (adjusted R2 = .810.)
Note. Output is from SPSS.

Another test of interest is that of the interaction of A and q(B). In our example, the
significant AB interaction (see the ANOVA of Table 14.3) may be due, at least in part, to
differences among the three groups in the rate at which performance drops off over the four
test periods. The A\ curve appears to have a more negative slope than those for the other two
groups. As with the q(B) term, A x q(B} can be tested by performing a one-factor ANOVA
on the contrast scores. The results are also presented in the SPSS output of Table 14.10 in
the line for the A source. Both q(B) (the intercept source) and A x q(B) (the A source)
are very significant sources of variance. We conclude that, averaging over all three levels of
A, performance in the population declines markedly after the end of the instruction period;
however, the rate of decline varies as a function of A, presumably because it is greater at
A\ than at A 2 or Aj,

14.7 TESTING SIMPLE EFFECTS

In the example of Table 14.1, we might wish to test the effects of type of instruction (A) only
immediately after instruction; that is, only at B\. Or, we might wish to test the effects of
time (B) only for the control group (Ai). In general, we may wish to test the simple effects
of A at Bk (A/Bk} or the simple effects of B at Aj (B/Aj). Let's consider the appropriate
F test for each in turn.

To test the simple main effects of A at Bk, we recommend ignoring the data at all other
levels of B. Then there are a groups of n subjects, each subject having exactly one score,
the score at Bk. The numerator sum of squares is

and is distributed on a — 1 df. The denominator mean square (MSs/A/sk '•> subjects within A
at Bk) is just the average of the variances within the a cells at Bk and therefore is distributed
ona(n — 1) degrees of freedom.

If the populations of scores corresponding to the ab cells have homogeneous variances,
a more powerful test of the simple effects of A at Bk is possible. The numerator of the
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test statistic is the sum of square s of Equation 14.15, but its denominator is MSwcells , th e
averag e of th e ab cel l variances . An eas y way to calculate this erro r ter m is to poo l the S/A
an d SB / A  sources of varianc e in the origina l analysis of varianc e of Tabl e 14.3. The reaso n
for th e potentia l powe r advantag e whe n MSwcell s i s th e erro r ter m i s tha t M S w c e l ls ha s mor e
degree s of freedom than MSs/A/B

k

', ab(n — 1) df [th e sum of a(n — 1) and a(n — 1 ) (b — 1)]
is greater than a(n — 1) df. However , researcher s should be cautiou s about using MSwcell s
as an erro r ter m for testing the simpl e e f f e c ts of A. Averaging variance s f rom cell s that are
not involve d in the numerator of th e F ratio may result in an increas e in Typ e 1 or Typ e 2
errors , depending on whether the additional cell variances are smaller or larger than those
at B

k

. We recommen d the more conservativ e approac h of basin g the erro r ter m only on the
cell s involved in the contrast.

To test the e f f e c ts of B  at A
j,

 we view the design as a simple subjects x B design, in
which ther e ar e n  subjects with b  score s fo r each . Th e erro r ter m fo r testin g th e simpl e e f f e ct
of B is the S x B/A

j

 (subjects by B at A
j

) mean square. This will be on (n — 1 ) (b —  1)
df. As in testing simple e f f e c ts of A, a potentially more powerful alternative exists; the
simpl e e f f e ct of B may be tested against SB/A, the omnibus error term against which the
mai n e f f e c ts of B (and the A x B interaction) are tested. However, we again urge caution
in using this error term. Although SB/A is distributed on more degrees of freedom than
the error term based only on the A

j

 data, Type 1 and Type 2 error rates may be severely
distorte d if th e subjects x B  interaction varianc e changes across the levels of A.

14. 8 PRETEST-POSTTES T DESIGN S

40 2

A common mixed design is one in which there is a between-subjects treatment ( A ), and
two measures are obtaine d from each subject: a pretest and a posttest score. Subjects are
generall y assigne d randoml y to the level s of A  and th e pretes t score s ar e obtaine d befor e the
treatmen t is applied , so that there are no systematic differences in the pretest score s across
level s o f A . Th e posttes t score s reflect th e e f f e c ts o f th e treatment , i f ther e ar e any . Although
this design is often analyze d as a mixe d design, other analyses are preferable . Because the
treatment is applie d to the posttes t score s but not the pretest scores , the two types of score s
ar e describe d by different structural models. Assuming that we are interested in whether
the variable A e f f e c ts posttest performance , possibl e analyses for this design include:

1. Analysis of covariance.  When its assumptions ar e met, the mos t powerful analysis
is provided by the analysis of covarianc e (ANCOVA) that will be discussed in
Chap te r l5. Briefly, this analysi s rest s on th e assumptio n tha t th e posttes t score s ar e
linea r functions of th e pretest score s and that the slope s of thes e func t ions are the
sam e at eac h leve l of A . The analysi s take s advantag e of thi s relationship , reducing
erro r variance in the posttes t score s by removing variability accounted for by the
pretest scores.

2. Analysis of gain  scores. Another possible analysis is based on gain scores . Each
subject 's pretest score is subtracted f rom the posttest score and then a one-factor
( A) ANOVA is performed on thes e gain scores . This approach assumes that each
treatment adds a constant to the pretes t score . Because this model is less likely to
be true than that assumed in the analysis of covariance , it will generally provide a
les s powerful test .
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3. Analysis of posttest scores only. Because the treatment only affects the posttest
scores, one could ignore the pretest scores and simply perform a one-factor ANOVA
on the posttest scores. The resulting F would clearly test the effect of A on posttest
scores. However, although this approach does not violate any assumptions, it ig-
nores data (the pretest scores), which could help reduce error variance, and therefore
this approach will produce less powerful tests than those noted previously.

4. Using the mixed design analysis. We raised the issue of testing the effects of A
using pretest and posttest scores in this section because such data are frequently
analyzed as if generated by a mixed design with A as the between-subjects factor
and trials as the within-subjects factor (Huck & McLean, 1975; Jennings, 1988).
If this is done, the F test for the A main effect will be very conservative because
the pretest scores cannot be affected by the treatment. A better test of A is given by
the F for the A x Trials interaction. This test can be shown to be identical to that
obtained by performing a one-factor ANOVA on the gain (posttest-pretest) scores.
However, as indicated previously, the analysis of covariance will generally provide
a more powerful test. More detailed discussions of these issues are provided by
Huck and McLean (1975), Jennings (1988), and Maxwell and Howard (1981).

We emphasize that the discussion in this section has presupposed random assignment
of subjects to levels of A. Without random assignment, there may be systematic differences
in the pretest scores across levels of A. If so, interpretation is more difficult, both for analysis
of covariance and for analyses of gain scores (see, e.g., Cronbach & Furby, 1970; and Linn
& Slinde, 1977). The referenced articles and the material on regression in Chapters 18-21
should be consulted by researchers faced with this problem.

14.9 ADDITIONAL MIXED DESIGNS

The approach taken in analyzing data from the design discussed in the preceding sections
may be extended to any mixed design. In the present section, two additional designs are
presented as illustrations.

14.9.1 Two Between-Subjects and One
With in-Subjects Factor

Consider a variation of the experimental design that has carried us through the chapter so far.
Again assume a between-subjects factor, A. This might be the three instructional methods in
the example analyzed in previous sections. Furthermore, assume a second between-subjects
variable, B. For example, there might be an equal number of male and female participants in
each instructional condition. In general, as in Chapter 11, there are ab groups of n subjects
each. Finally, assume a third, within-subjects, variable, C. For example, each of the abn
subjects might be tested on each of c occasions. Table 14.11 presents the layout for a group
tested under conditions A jBk.. The indices of notation are i = 1, 2 , . . . ,n ; j = 1, 2 , . . . , a;
k = 1, 2 , . . . , b ; and m = 1, 2 , . . . , c.

The approach taken in developing the ANOVA table for the one between-subjects and
one within-subjects design is readily extended to designs in which there are two between-
subjects factors. If we ignore the between-subjects factors and write down the sources of
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TABLE 14.1 1 THE LAYOUT FOR THE GROUP OF SCORES 
OBTAINED UNDER CONDITIONS Aj AND Bk 

A 6 S u ~ ~ e c f  C1 . . . C,,, . . . cc 

TABLE 14.12 ANOVA FOR A DESIGN WITH TWO BETWEEN-SUBJECTS AND ONE 
WITHIN-SUBJECTS FACTORS 

~~ 

(a) Appropriate SV and dfierms I f  Factors A and B Are Ignored 

sv df ss 
- 

Total abcn - 1 CCCC(Y,/krn - y )? 
- 

Between-Subjects (S) abn - 1 c c  c CiYI,x - y 
Within-Subjects (WSs) abn(c - 1) C C C C V i j k n r  - Yrj, 

SSto, - ssy - SSC 

- 
C c - 1  a b n C ( Y  - Y l2 
sc (abn - 1)(c - 1) 

(b) Complete Partitioning of the Variability 

sv df SS 

Total 

3 e t w ~ ~ n - S u b j e ~ t s  (S) 
A 

B 
AB 

S/A B 
Within-Subjects ( W S s )  

C 
sc 

AC 

BC 

ABC 

sc/m 

abcn - 1 
abn - 1 

a - 1  
h - 1  
(a  - l ) (b  - 1) 

ab(n - 1) 
abn(c - 1) 
c - 1  
(abn - 1)(c - 1) 
(a  - 1)(c - 1)  

( b  - l)(c - 1) 

(a  - 1)(b - l)(c - 1) 

ab(n - l)(c - 1) 
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variance and degrees of freedom for the resulting repeated-measures design, we obtain the
result presented in panel (a) of Table 14.12. This preliminary analysis of the data accounts
for all abcn — 1 df; there are abn — 1 df for between-subject variability and abn(c — 1)
for within-subject variability; that is, c — 1 df for each of the abn subjects. The analysis of
panel (a) is, however, incomplete because it fails to take account of the between-subjects
factors A and B. From the analysis of data from completely randomized designs with two
factors (Chapter 11), it follows that the between-subjects variability occurs partly because
of the main effects of A and B, partly because of the joint effect of A and B, and partly
because subjects tested at a given combination of the levels of A and B differ from one
another in ways that affect their scores. The partitioning of the between-subjects variability
(SS B s s ) and degrees of freedom (dfBSs) can therefore be represented by

and

Crossing C with each of the above terms, the SC variability and degrees of freedom of panel
(a) can be partitioned as

and

The complete partitioning of the total variability is presented in panel (b) of Table 14.12.
Table 14.13 contains the F ratios and expected mean squares. Note that there are two error
terms in Table 14.13: one for the between-subjects-terms (A, B, and AB) and another for
the within-subjects terms (C and its interactions).

TABIE 14.13 EXPECTED MEAN SQUARES AND ERROR TERMS FOR A DESIGN WITH
TWO BETWEEN-SUBJECTS AND ONE WITHIN-SUBJECTS VARIABLE

SV

A

B

AB

S/AB

C

AC

BC

ABC

SC/AB

df

a- 1

b- 1

(a - 1)(b - 1)

ab(n - 1)

c- 1

(a - l)(c - 1)

(b - 1)(c - 1)

(a-1)(b-1)(c-1)

ab(n - l)(c - 1)

EMS

p2
e + Cp2

s/AB + nbcO2
A

p2e +cp2
s/AB + nacp2

B

p2
e +

 Cp2
s/AB + nco2

AB

p2
e + Cp2

S/AB

p2
e + p2

SC/AB +
 nabO2c

°f + VSC/AB + nbQlc

°e + <*SC/AB + naQlc

°;2 + VSC/AB + n*ABC
CT,2 + tffc/AB

Error Term

S/AB

S/AB

S/AB

SC/AB

SC/AB

SC/AB

SC/AB

Note. A, B, and C are all assumed to be fixed-effects factors.
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TABLE 14.14 ANOVA FOR A DESIGN WITH ONE BETWEEN-SUBJECTS AND TWO WITHIN-SUBJECTS
FACTORS

SV

Total

Between-Subjects (S)

A

S/A

Within-Subjects (WSs)

B

AB

SB/A

C

AC

SC/A

BC

ABC

SBC/A

df

abcn — 1

an — 1

a- 1

a(n - 1)

an(bc — 1)

b- 1

(a - 1)(b - 1)

a(n - 1)(b - 1)

c- 1

(a - l)(c - 1)

a(n - l)(c - 1)

(b-1)(c-l)

(a - 1)(b - l)(c - 1)

a(n - l)(b - l)(c - 1)

SS

EEEE(Yijkm-Y...)2

bcEE(Y i j-Y...)2

b c n E ( Y . j . . - Y ) 2

bcEE(Yij-Yj..)
2

EEEE(Yijkm-Yij...)2

a c n E ( Y . . k . -Y....)2

cnEE(Y. j k .-Y. . . ) 2 -ssA-ssB
c E E E ( Y i j k . - Y i j . . - Y . j k . + Y.j..)

2

a b n E ( Y . . . m - Y . . . . ) 2

bnEE(Y.j.m.-Y...)2- SSA -SSC

b E E E(Yij.m - Yij. - Y.j.m + Y.j..)2

an EE(Y..km-Y....)2-SSB-SSc

nEEE(Y.jkm-Y....)2-ssA-ssB
-SSC - SSAB - SSAC-SSBC

SSwss — SSB — SSAB — SSc — SSAC

—SSA C - SSABC - SSSB/A — SSsc/A

14.9.2 One Between-Subjects and Two
Within-Subjects Factors

Still, another version of the mixed design involves more than one within-subjects factor
For example, in the study by Myers et al. (1983), cited in Chapters 6 and 8, subjects were
instructed in probability by one of three methods, then tested on two occasions 48 hours
apart. The tests contained story problems and formula problems, which were scored sep-
arately. Instructional method (A) was a between-subjects factor, and day of test (B) and
problem type (C) were within-subjects factors. The indices of notation for this design are
i = 1, 2 , . . . , n; j = 1, 2 , . . . , a; k = 1, 2 , . . . , b; and m — 1, 2 , . . . , c, where Yijkm refers
to the score for the ith subject at the jth level of A, tested at Bk and Cm.

Once again, we begin partitioning SStot and dftot by ignoring the variable A and con-
sidering an S x B x C design in which an subjects are tested under all combinations of B
and C. We have

The variability among the an subjects is in part due to A; therefore, as in the one-
factor between-subjects design of Chapter 8, SSs = SSA + SSs/A. This accounts for the
between-subjects variability. Crossing S with B, C, and BC in turn, we have
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TABLE 14.15 EXPECTED MEAN SQUARES AND ERROR TERMS FOR A DESIGN WITH
ONE BETWEEN-SUBJECTS AND TWO WITHIN-SUBJECTS FACTORS

SV

A

S/A

B

AB

SB/A

C

AC

SC/A

BC

ABC

SBC/A

df

a - 1

a(n - 1)

b- I

(a - l)(b - 1)

a(« - l)(b - 1)

c- 1

(a - l)(c - 1)

a(»- l ) (c- l )

(b - l)(c - 1)

(a - 1)(b - l)(c - 1)

a(n - \)(b - l)(c - 1)

EMS

^ + b^liA + nbc$l

a? + bcvl/A

a? + C(JSB/A + nacQl

°f + C<TSB/A + ncQAB

°e + C<*SB/A

of + bcrjc/A + nabQ^

°e + b<*sc/A + nbQlc

a£
2 + b<TJc/A

<*? + <*SBC/A + na0fiC
ae + aSBC/A +n®ABC

°e + <*iBC/A

Note. A, B, and C are all assumed to have fixed effects.

Error Term

S/A

SB/A

SB/A

SC/A

SC/A

SBC/A

SBC/A

and

The complete partitioning is presented in Table 14.14 and the expected mean squares and
F tests are presented in Table 14.15. One difference from the previous analyses of this
chapter is that there are four error terms. In descending order, these are S/A, SB/A, SC/A,
and SBC/A. Assuming that all three factors have fixed effects, we can use the rules of
Table 14.5 to verify the expected mean squares.

In many experiments, subjects' responses to stimuli (C) are obtained under several
conditions (B). For example, ratings or times to respond are often recorded. If the investi-
gator wishes to generalize to a population of items represented by the stimuli in the study,
the stimuli are assumed to have random effects. We leave as an exercise the use of the rules
of thumb to derive expected mean squares and F tests of A and B in the design of this
section, with the warning that quasi-Fs will be involved.

14.10 CONCLUDING REMARKS

In mixed designs, the analyses for both between-subjects and within-subjects factors are
essentially the same as in the corresponding pure designs, with the same advantages, assump-
tions, and costs. Effects of within-subjects factors can potentially be tested for with more
precision because individual differences components are removed from the error terms.
However, as in pure within-subjects designs, the possibility of Subjects x Treatments
interactions is introduced for these factors as well as the possibility of violations of the
sphericity assumption.
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For within-subjects factors, if there are large Subjects x Treatments interactions, effi-
ciency will be lowered, and if the sphericity assumption is violated, F tests may be positively
biased unless the appropriate degree-of-freedom corrections are used. Conservative F tests
that adjust for this bias have been discussed in Chapter 13 and in the current chapter, and
are calculated automatically by most statistical software. It should be emphasized that we
need not be concerned about the positive bias that arises from violations of the sphericity as-
sumption when testing the effects of between-subjects factors in a mixed design, nor when
testing the effects of within-subjects factors that have only two levels, nor when testing
single degree-of-freedom contrasts.

KEY CONCEPTS

mixed, or split-plot, designs
nested factors
pretest-posttest designs
analysis of covariance

crossed factors
rules of thumb for generating EMS
gain scores

EXERCISES

14.1 Consider the following data set:

A,

A2

Sn
$21
S3i

5,2

S22

S32

fli

23
27
22

25
17
9

B2

16
1

10

16
33
17

83

12
14
10

19
22
22

(a) Present the complete ANOVA table with all numerical results; assume A and B
both have fixed-effects.

(b) Find the mean score for each subject. You now have a one-factor completely
randomized design. Perform an ANOVA using the mean scores as the data,
(i) How does the F test of A compare with that calculated in part (a)? (ii) How
does MSA in this analysis compare with that obtained in part (a)? Explain the
relation.

(c) In this chapter, we stated that SSSB/A was equivalent to the result of calculating
the S x B sum of squares separately at each level of A and then summing the
a terms. To demonstrate this, ignore the A2 data and calculate the sum of squares
for S x B at A 1 (SSsB/At )• Do the same thing at A2 and check the sum of the two
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terms against SSsa/A calculated in part (a). Confirm that MS$B/A is the average
of the two S x B mean squares.

14.2 A\ and A2 in Exercise 14.1 might have been two litters of three animals; in that
case, we would assume that A has random effects. Assume B represents trials and
is a fixed-effect variable.
(a) State the expected mean squares for the various sources of variance.
(b) Recalculate any F ratios that are not the same as in Exercise 14.1.

14.3 Suppose A1 and A 2 in Exercise 14.1 are two groups of subjects of two different
ages and the levels of B correspond to three problems sampled randomly from
some very large population of problems. Present the EMS under this model and
recalculate F tests where necessary.

14.4 An investigator is interested in the extent to which children are attentive to violent
acts on television. An experiment is run with 120 subjects: half boys and half girls
(sex, X) at each of three age levels (Age, A). Each child views six scenes differing
with respect to the level of violence (V, 3 levels), and the type of character; half the
scenes involve animal cartoon characters and the other involve human characters
(C, 2 levels). The dependent variable is a measure of attention during presentation
of the scene.
(a) State the SV, df, and error terms for this design.
(b) In an alternative design, each child might view only three scenes involving only

one type of character; C would be a between-subjects variable. Present the SV,
df, and EMS for this design. What tests will be affected by this change in design?
In what way?

(c) Suppose the children are available for only short periods of time, but the inves-
tigator has access to large numbers of subjects. What are the advantages and
disadvantages of the original design [part (a)] as opposed to using a design in
which each subject is tested only once in some combination of V and C?

14.5 In a study of the development of the concepts of conservation of quantity and
weight, two standardized and quantifiable tasks (T, 2 levels) are presented to each
of 72 children. Mastering the first task requires that a child grasp the notion of con-
servation of quantity whereas the second task depends on conservation of weight.
The score is the number of trials required for the mastery of the task. Both age
(A, 3 levels: 5, 7, and 9 years) and sex (X, 2 levels) are included as major variables
in the design.
(a) Present the sources of variance associated with the design of this study as well

as the df and EMS (using numbers where possible).
(b) State the error term and its df for tests of the following simple effects: (i) The

effect of age for the conservation-of-quantity task (T1; (ii) the effect of age for
all male subjects on the T1 task; and (hi) the effects of task on the scores of all
male subjects.

14.6 Thompson, Schellenberg, and Husain (2001) tested the "Mozart effect," the effect on
tests of spatial abilities after listening to music by Mozart. Twenty-four participants
listened to a tape of music by either Mozart or Albinoni (Group, g = 2). They were
tested on measures of spatial relations, arousal, mood, and enjoyment after listening
to the music and also after a period of silence (Condition, c = 2). The order of the
two conditions was counterbalanced with half of the subjects receiving the music
first and half receiving the silence first (Order, o = 2).
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(a) The F for Groups on the arousal scores was 6.20. What are the values of / and
o>2 for this effect? According to Cohen's (1988) guidelines, is the effect small,
medium, or large?

(b) Assuming the effect estimated in part (b), what power did the experiment have?
Is nonsphericity a potential problem in this calculation? Would it be if we were
calculating power for the effect of conditions? Explain.

(c) If we were to redo the experiment, assuming a medium effect on arousal by
Cohen's standards, how many subjects would we need to attain power of .8?

14.7 In the Thompson et al. spatial test data, the means are (approximately)

Given the F of 16.89 for Groups x Conditions, find the .95 confidence interval for

(H-Mozart, Music M'Albioni, Music) vl^Mozart, Silence M-Albioni, Silence)-

14.8 In a small-scale pilot study of the effects of diet on the ability to withstand physical
stress, 12 volunteers were divided into three groups of four subjects and each
given a different diet. They then underwent a battery of physical tests on each of
four successive days. Scores for each day were combined into a single score, with
higher scores representing better performance. The data are in the file Exl4_8 on
your CD.
(a) Plot the performance curves for each group.
(b) Perform the ANOVA, including a complete trend analysis. Discuss the results

in terms of the plot in part (a).
14.9 (a) For the Exl4_8 data set, calculate the .95 simultaneous confidence intervals on

the pairwise differences among diet means (averaging over the 4 days), using
Tukey's HSD (1953) procedure. Report any significant differences,

(b) After inspecting the data, the researcher notes that diet C yields better perfor-
mance than A or B on day 4. Calculate a confidence interval for the difference
between that mean and the average of the other two means, taking into consider-
ation the fact that the test is post hoc (FWE = .05). Is the difference significant?

14.10 We have two groups (A i, A2) of four subjects each. Each subject is tested six times
with two levels of B and three levels of C crossing to yield six scores for each
subject. The data are presented in the Exl4_10 file in the Exercises folder of your
CD.
(a) Test the A term, assuming all factors are fixed.
(b) Suppose C represents randomly chosen items. How will your analysis (F tests,

EMS) differ from that when all three factors have fixed effects? Again, test the
A effect.

(c) Without doing the calculations, set up the F test for B and AB, again assuming
the effects of C are random.

14.11 Several different measures are available in the Wiley file in the Wiley^Voss folder.
Of these, the SVT (sentence verification) and IVT (inference verification) are on
the same scale, and differences between the two tap the difference between memory

Group

Mozart
Albinoni

Music

14.8
9.8

Silence

11.0
11.4
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for explicitly stated information and the inferences drawn from the material stud-
ied. We might wish to see if these differences are affected by the format and text
manipulations.
(a) Plot the cell means and describe the resulting pattern. What effects are sug-

gested?
(b) Perform an ANOVA with format and text as between-subjects variables and test

(SVT vs. IVT) as the within-subjects variable. Discuss the results, relating your
discussion to the plot of the means.

14.12 In Exercise 14.11, there is a significant interaction between format and the type
of test (SVT vs. IVT). We may better understand this effect if we calculate some
additional measures.
(a) Calculate an estimate of / for the effect of format on the difference between

test scores.
(b) Calculate a .95 confidence interval for the interaction of format and test.
(c) We wish to have a measure of the effect of instructions on the difference between

SVT and IVT scores. Estimate Cohen's / statistic for that difference (i) in the
text and (ii) in the web condition.

APPENDIX 14.1

Justifying the Rules of Thumb for Expected Mean Squares

We begin by noting that MSA is bn times the variance of the means at the levels of A;
accordingly, we relate F.y. to the structural equation. Because F 7 = £^ ]T); Yijk/nb, and
substituting for F/^ from Equation 14.1,

As stated in Table 14.4, because B is a fixed-effect variable, ^ (3* = 0, X^(aP)y£ = 0,
and ]T; ̂  (T)(3),^/y = 0. Therefore, the preceding equation simplifies to

where TQ.J. is the mean subject effect at Aj and equals (1/n) ^ "^i/j, and £.;. is the average
error in group j and equals (l/bn) ^. ]T^ £,-;*. Because JJL contributes to all a means, it
does not contribute to MS A- The group means differ because of the A treatment effect
(a/), individual differences (TJV.), and error of measurement (e.(j). This is reflected in the
E(MSA) of Table 14.3. The other EMS can be justified in a similar manner.



15.1 INTRODUCTION

In Chapter 8 we introduced an analysis of variance (ANOVA) by discussing a probability-
learning study (Myers et al., 1983) in which subjects were randomly assigned to one of three
learning conditions—standard text (5), low-explanatory text (LE\ and high-explanatory
text (HE)—and then tested on 12 probability problems. The dependent variable was the
proportion correct on the 12 problems (the data are presented in Table 15.1). When a standard
between-subjects ANOVA was performed, we did not have sufficient evidence to reject the
omnibus null hypothesis

That is, the differences among the group means were not sufficiently large, relative to
the error variance, to reject the null hypothesis. The present chapter describes ways in
which error variance can be reduced, and power consequently increased, through the use of
information about a concomitant variable or covariate, a measure that is correlated with
the dependent variable.

One way to reduce the error variance is to use the concomitant variable to generate
a Treatment x Blocks design (see Section 12.7). Suppose that before we conducted the
probability-learning study, we gave each of the 48 participants a quantitative reasoning test.
We could use the scores on this test to assign participants to text conditions. For example,
we could rank the scores on the test and form, say, 4 blocks of 12 participants each: The
top 12 scorers on the reasoning test would form BI, the next 12 would form B2, the next
12 would form 83, and the 12 lowest scorers would form 64. Then we could randomly
distribute the participants in each block among the three treatment conditions, 5", LE, and
HE, and perform the experiment. We could then conduct a two-factor ANOVA in which the
factors are text condition (A) and block (JS) that would have four participants in each of the
12 cells of the design. Instead of having a completely randomized design with structural
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TABLE 15.1 PROPORTION CORRECT IN THE MYERS ET AL. (1 983) STUDY ALONG WITH THE
QUANTITATIVE APTITUDE SCORE (X) FOR EACH PARTICIPANT

S

.083

.167

.250

.250

.250

.333

.333

.333

.417

.500

.500

.500

.500

.583

.583

.750

Mean = .396

s2 = .031

X

46
41
50
60
53
74
69
51
68
49
65
42
59
69
80
71

59.188
F.. = .444

146.029

IE

.083

.167

.250

.250

.250

.333

.333

.417

.417

.417

.417

.500

.583

.583

.667

.833

.406

.038

X

64
58
51
66
52
56
68
47
72
59
61
77
51
83
93
97

65.938
X.. = 62.355

225.929

HE

.333

.333

.333

.417

.417

.500

.500

.500

.583

.583

.583

.583

.583

.667

.667

.917

.531

.023

X

61
61
67
52
29
38
58
60
74
59
72
48
66
75
81
90

61.938

239.396

model

in which participants are randomly assigned to text conditions without regard to quantitative
ability, we would now have a two-factor model Treatments x Blocks design with model

For the completely randomized design, the text main effect would be tested by the ratio
MSA/MSs/A, where the error term, MSS/A, is an estimate of the variance of £y. For the
Treatments x Blocks design, the text effect would be tested using the ratio MS^/MSs/AE-,
where the error term,1 MSs/AB, is an estimate of the variance of e//*. If quantitative ability
is correlated with performance on the probability problems, we would expect MSs/AB to be
smaller than MSs/A • Because participants within a cell of the Treatments x Blocks design
are less variable with respect to quantitative ability than participants randomly assigned to
a treatment condition without regard to their quantitative ability scores, their performance
on the probability problems should be also less variable. The resultant reduction in error
variance would tend to make the Treatments x Blocks design more powerful, all other
things being equal.

However, not all other things are equal; power depends not only on the size of the
ratio, but also on the degrees of freedom of the error term. Whenever we increase b, the
number of blocks, thereby making MSS/AB smaller, we also lose error degrees of freedom,
which increases the size of the critical F, thereby decreasing power. In the current example
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with N = 48, we would have dfenor = N — a = 48 — 3 = 45 for the completely random-
ized design; dfenor = N — ab = 48 — (3)(4) = 36 for a Treatments x Blocks design with
4 blocks; and dfenoi = 48 — (3)(8) = 24 if we used 8 blocks. It turns out that, for each
combination of N, a, and the correlation between the dependent and concomitant variables,
there is a value of b that maximizes power. Feldt (1958) has discussed these issues and
made recommendations for selecting the optimal number of blocks.

We will have more to say about blocking in Section 15.5. However, we now turn to the
analysis of covariance (ANCOVA). The ANCOVA can result in even greater gains in power
than blocking when there is a high correlation between the concomitant and dependent
variables, although at the cost of somewhat increased complexity, and of more and stronger
assumptions about the data. In most cases, an ANCOVA is applied to designs in which
subjects are assigned to treatments without regard to the covariate. However, as we see
later, even greater gains in power may be achieved by an ANCOVA if the covariate is used
in forming the treatment groups.

The basic idea of the ANCOVA is similar to that of Treatments x Blocks in that
information about a concomitant variable is used to reduce error variance. However, in the
blocking design, this information is used to form a categorical blocking factor to remove the
effect of the blocking factor and its interaction with A from the error term. In contrast, in an
ANCOVA, we try to remove the error variance predictable from the concomitant variable
(which in an ANCOVA is usually called the covariate) by using regression. This may result
in a smaller error term and also a reduction in bias of the group means due to the error
variance. We can think of the ANCOVA as performing a statistical adjustment to ask what
the ANOVA would be like if each participant had the same score on the covariate. The
model for a one-factor ANCOVA

adds a regression component to the one-factor ANOVA model of Equation 15.1. An increase
in power may be achieved, because if S$A and SSs/A are adjusted by removing the variability
accounted for by the regression on X (i.e., variability predictable from X), the ratio of the
resulting mean squares may be considerably larger than the ratio of the unadjusted mean
squares. Comparing the ANOVA and ANCOVA models (Equations 15.1 and 15.3), we see
that

That is, the error associated with ith participant in the 7'th treatment condition can be
considered to be made up of two components: a component predictable from the covariate
(£pred) and the residual component (eres). In the ANOVA for a completely randomized design,
both components contribute to the error variance, so that tr^2 = o-pred + o-r

2
s, whereas in the

ANCOVA, only the residual component contributes. Graphing the regression of Y on X
provides another way of looking at the potential advantage in efficiency of the ANCOVA over
the ANOVA. Figure 15.1 schematically indicates how differences between two treatment
groups may be easier to observe if the variability in Y predictable from X can be removed.
The two ellipses in the central part of the figure represent clouds of data points for two
treatment groups. As can be seen from the two distributions plotted on the right vertical
axis, the Y scores for the two groups overlap considerably. However, the distributions of
the deviations of the data points from the regression lines that are plotted along the left
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Fig. 15.1 Distributions of Y scores (right side) and deviations of Y scores from the
regression lines (left side) in two groups.

vertical axis show greater separation. We should have more power if we test the equality of
the intercepts than if we test the equality of the means.

An ANCOVA may be viewed as a special case of a multiple regression analysis, and
we will return to it in that context in Chapter 21. At this point, using the bivariate regression
framework developed in Chapter 3, we focus on the basic ideas behind the ANCOVA and
on its interpretation—especially on how correct interpretation of the analysis depends on
certain assumptions being met. Because we assume that ANCOVAs will be performed using
software packages, we will not concern ourselves much with calculations or computational
formulas.

15.2 EXAMPLE OF AN ANCOVA

15.2.1 Introduction
Table 15.1 contains the data for the Myers et al. (1983) probability-learning experiment along
with the scores on a quantitative reasoning test, X.2 As mentioned earlier, when we conduct
an ANOVA on the dependent variable, Y (proportion of the probability problems solved
correctly), we cannot reject the null hypothesis that IJLS = (JLLE = I^HE, F(2, 45) — 2.965,
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TABLE 15.2 (a) RESULTS OF THE ANOVA OF PROPORTION CORRECT ON THE
PROBABILITY PROBLEMS (Y)

SV

Text [A]
Error [S/A]

Total

df

2
45

47

SS

0.182
1.379

1.560

MS

0.091
0.031

f

2.965

P

.062

(b) RESULTS OF THE ANCOVA FOR Y USING X AS A COVARIATE

SV

Text [A(adj)]
X
Error [5/A(adj)]

Total (adj)

df

2
1

44

46

SS

0.205
0.492
0.887

1.092

MS

0.102
0.492
0.020

F

5.081
24.383

P

.010

.000

p = .062 [see panel (a) of Table 15.2]. However, we can use X as a covariate and con-
duct an ANCOVA. When we do so, we find that the null hypothesis can now be rejected,
F(2, 44) = 5.081, p = .010 [see panel (b) of Table 15.2]. In the rest of the section, we
explain the logic of ANCOVA and the terms found in the output.

Essentially what we do in an ANCOVA is first to assume that the relation between
Y and X is the same in each of the treatment groups, and then estimate what the ANOVA
would be like if each subject had the same score on the covariate. Perhaps the best way
to think of ANCOVA is in terms of a comparison of two regression models, a restricted
model (R) in which Y is regressed on X without regard to group membership,

and a full model (F) in which regressions are performed in each group, but it is assumed
that they each have the same slope,

Two points about the preceding equations should be noted. First, the slope parameters in
the two models are not the same: Ptot is estimated by the slope of the overall regression of
Y on X, whereas $S/A, the common slope for the within-group regressions, is estimated by
an average of the slopes obtained in separate regressions for each of the groups. Therefore,
we cannot perform an ANCOVA by simply performing an ANOVA on the residuals of the
first regression. The second point is a matter of notation. In ANCOVA, we use JJL to refer to
the mean of the Y scores and X to refer to the mean of the X scores because, in the usual
regression inference model (see Chapter 19), we assume that X is a fixed-effect variable
and that Y is random.

The restricted model is represented (for two groups) in panel (a) of Fig. 15.2, and the
full model is represented in panel (b). The test of the full against the restricted model asks
whether we can account for significantly more variability by performing separate within-
groups regressions with a common slope than by performing a single overall regression
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Fig. 15.2 (a) Schematic representation of the regressions
indicated by the model of Equation 15.4. All the data are
used to obtain a single regression line. (b) Schematic
representation of the regressions indicated by Equation
15.5. Regression lines with equal slopes are obtained for
each treatment group.

without regard to group membership. Rejection of the null hypothesis implies that the
group intercepts are not all the same.

The appropriate statistic for testing a full model against a restricted one is given by

where SSemr(R) — SSenor(F) represents the reduction in error variability (or equivalently, the
additional variability accounted for) when the full model is used instead of the restricted
model.
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15.2.2 Developing Expressions for SSerror(R) and SSerr0r(F)
in an ANCOVA

To perform an ANCOVA, we first need to calculate SSerror(R) and SSerror(F), the error sums
of squares associated with the restricted and full models for an ANCOVA. The appropriate
equations rest on the development of the error sum of squares for regression in Chapter 3
(see Section 3.7).

where r is the correlation between the dependent variable, Y, and the covariate, X. Because
the equations for an ANCOVA are usually expressed in terms of slopes, we can express
SSWror ^n terms °f the slope instead of the correlation. First, we note that from Equation 3,8,

where b\ is the slope of the regression of Y on X. Substituting b\ for r in Equation 15.7
and rewriting, we obtain

We can now find the error sums of squares for the restricted and full models. SSenoT(R) *s me

variability in the Y scores not accounted for by the restricted model, that is, not accounted
for by a regression of Y on X without regard to group membership, using all N data points.
From Equation 15.9,

where

is the slope of the overall (or total) regression of Y on X. SSsnor(R) is sometimes referred
to as the adjusted total sum of squares of Y, or SStotai(adj)- For the current example,
SSY = 1.560, SSX = 9538.979, andfctot = 0.0070, so that SSenor(R) = 1.092.

SSerror(F) *s me variability not accounted for by the full model (Equation 15.5); that is,
the variability left unaccounted for by separate regressions in each of the groups in which
each slope is assumed to have the same value, b$/A- If we label the S, LE, and HE text
conditions as Groups 1, 2, and 3, we have

SSenor(F) is sometimes referred to as the adjusted within sum of squares SSs/A(adj)- As we
will see in Section 15.3.4, the interpretation of an ANCOVA depends on the assumption
that, in the population, the slopes of the regression lines are the same for each group. The
estimate of this common slope, bs/A> is obtained as a weighted average of the slopes found
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when separate regressions are conducted in each group, where the weights are the sums of
squares of X for each group. That is,

In the current example, separate regressions of Y on X for Groups 1, 2, and 3 are 0.00786,
0.00858, and 0.00581, respectively, so that

Substituting into Equation 15.10, we find SSenoI(F) = 0.887. The main effect of text can
now be tested according to Equation 15.6,

Note that there is one fewer degree of freedom for the ANCOVA error term than for the
corresponding ANOVA because 1 df is used to estimate bs/A • For the current example,
F = [(1.092 - 0.887)/2](0.887/44) = 5.081 and p = .010.

Table 15.2 summarizes the analysis and Table 15.3 describes the terms usually found
in the software output. Different software packages present somewhat different outputs, but
they all present certain sources of variance. One is the source of variance labeled by the
name of the independent variable, which is the A(adj) term listed in Tables 15.2 and 15.3.
This has a sum of squares equal to SSemt(R)— SSenoT(f). A second source of variance that
is usually included is labeled by the name of the covariate; this is SSregression(within groups)- A
third source of variance, usually labeled as "error," is the 5/A(adj) term that has a sum of
squares equal to SSenor(F).

15.2.3 Adjusting the Group Means in Y for
Differences in X

In the previous section, we showed how SSA and SSS/A could be adjusted for differences
in the covariate. Similarly, in certain situations, it is both possible and desirable to adjust
the mean of the group Y scores for covariate differences. To do the adjustment, we predict
what the group means for Y would be if the value of the covariate was held constant. In
our example, the mean of the scores on the covariate is highest for the LE text condition
(65.938) and lowest for the S condition (59.188). We define the adjusted mean of the scores
for Group j, Y . j ^ j ) , as the score predicted in Group j using the within-group regression
equation with common slope bs/A if the value of the covariate is equal to the grand mean of
the covariate scores; that is, if Xy = X...

Starting with Equation 3.11, a form of the regression equation for predicting Y
from X,



TABLE 15.3 EXPLANATION OF THE TERMS IN AN ANCOVA 

sv df ss Explanation 

Total (adj) N - 2  

Ssregression (within groups) 

The variability accounted for by the full model 
(Equation 15.5) over and above that accounted for by the 
restricted model (Equation 15.4) 

The sums of squares accounted for by separate regressions 
in each group, but with common slope b ,  

The summed residual variability in the groups; that is the 
variability not accounted for by the within-group 
regressions using the common slope, b ,  

The residual variability in Y not accounted for by the 
overall regression on X 

~~ ~~ 

Note. If Y is regressed on X .  SSrcgrc\,lol, = r’SV = b2SSx and SS,,,, = S S y  - b2SSSx. The common slope, b5,, , is obtained as a weighted average of the slopes, (b,’s), obtained in 
\eparate regressions. where the weights are the sums of squares of X for the groups; that is b,/ ,  = C b ,  SSx,/C SSu,. 
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the regression equation for scores in Group j is

Substituting bs/A for b\ and X.. for Xy, we have

or

In our example, the adjusted group means for the S, LE, and HE text conditions are

and

15.2.4 Testing Contrasts Using the Adjusted Means

If the assumptions for the ANCOVA are met, we can test contrasts based on the adjusted
means; these tests are generally more powerful than those using unadjusted means. Suppose
we wished to test the null hypothesis

Using the procedures described in Chapter 9, we would use the test statistic

so that we could reject the null hypothesis at p = .019.
Using procedures described in Huitema (1980), we can form a contrast using the

adjusted means. The procedure is essentially the same as that for the unadjusted means,
except that the error term contains corrections for the covariate. For a completely randomized
design, the recommended test statistic is

where MSA(X) and SS$/A(X) are the between mean squares and the within sum of squares
obtained when an ANOVA is performed on the covariate. Substituting into Equation 15.12,
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we have

We can now reject the null hypothesis at p = .003. We obtained a larger value of the test
statistic using the adjusted means, although we lost one error degree of freedom. In obser-
vational studies (i.e., studies in which subjects are not randomly assigned to conditions),
the recommended error term is different, and now contains a correction that depends on the
specific contrast that is tested,

For a good discussion of these issues, see Huitema (1980).
If several contrasts are tested, Type 1 error can be controlled in much the same way as

was discussed in Chapter 9. If there are several planned contrasts, we can use the Dunn-
Bonferroni method. For post hoc contrasts, if we wish to use the Scheffe test, the t statistics
obtained earlier can be referred to the criterion ^/(a — l)FFWE,a-i,w-a-i- For the Tukey post
hoc test of pairwise differences, the same test statistics can be used with weights +1 and — 1.
If the covariate is a fixed-effect variable, the test statistic can be referred to ^FWE,a,d/err0rA/2,
where q is a critical value of the studentized range statistic (Appendix Table C.9) that we
used with the Tukey test in Chapter 9. If the covariate is a random variable, as is usually the
case, Bryant and Paulson (1976) have shown that q should be replaced by QrwE,a,c,dfmm- a
value of the generalized studentized range statistic in which c is the number of covariates.
Tables of the generalized studentized range statistic are available in Huitema (1980) and
Kirk (1995).

15.3 ASSUMPTIONS AND INTERPRETATION
IN AN ANCOVA

15.3.1 Introduction

When an ANCOVA is used instead of an ANOVA, increases in power may be achieved
at the cost of greater complexity and more assumptions. The standard assumptions for an
ANCOVA break down into two groups. As in an ordinary ANOVA, some assumptions are
necessary for the ratio of adjusted mean squares to be distributed as F. However, unless
certain additional assumptions, such as homogeneity of regression and identity of the X
populations are met, the ANCOVA F may test a different null hypothesis than an ordinary
ANOVA, and the adjusted means may be biased estimates of the population means. In the
sections that follow, we will discuss these assumptions and the consequences of violating
them.
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15.3.2 Normality and Homogeneity of Variance
In an ANCOVA, it is assumed that the conditional distributions of Y at different values
of X are normal and have equal variances. In general, the consequences of violating these
assumptions are similar to those for an ANOVA, with the exception that they depend to
some extent on the distribution of the covariate (see Huitema, 1980, for a more detailed
discussion of these assumptions). An ANCOVA is unlikely to be severely biased by viola-
tions of the normality and homogeneity of variance assumptions, provided there are equal
numbers of participants in each group and the covariate itself is approximately normally
distributed.

15.3.3 Linearity
As we have so far discussed it, an ANCOVA adjusts for differences in the covariate by
removing the variability accounted for by a linear regression on X. If there is a systematic
nonlinear component to the relation between X and Y, the use of linear regression will
not remove all the variability in Y potentially accounted for by X. The effect of moderate
nonlinearity is a slight negative bias in the ANCOVA F test. Although it is rare in the
behavioral sciences to observe strongly nonlinear relations, they can result in severely
biased F tests if a linear ANCOVA is used (Atiqullah, 1964). However, if the nature of
the nonlinearities can be specified, transformations of Y or polynomial ANCOVAs (see
Section 15.8) may be used. It is recommended that the linearity assumption be checked as a
preliminary step in using the ANCOVA. Plotting the group scatter diagrams offers a quick
check, and a significance test for nonlinearity is also available (see Chapter 19).

15.3.4 Assumption of Homogeneity of Regression Slopes

In an ANCOVA, we adjust for differences in the covariate. However, an ANCOVA makes
sense only if the same type of adjustment is appropriate for each treatment group. Therefore,
we make the strong assumption that in the population the slopes are equal in each of the
groups. This assumption should be tested (see Section 15.4), and the results of an ANCOVA
should be reported only if homogeneity cannot be rejected.

In the one-factor ANCOVA design, we estimate the common slope, p^, by using the
pooled within-group slope, bS/A , essentially an average of the slopes obtained in within-
groups regressions. If the slopes in the different groups are not equal, using any kind of
"average" adjustment will be inappropriate for at least some of the groups. An analogy can be
made between an adjusted A main effect in an ANCOVA in the presence of heterogeneous
slopes, and an A main effect in the presence of an interaction between A and a second
factor, B, in an ANOVA. If there is a large interaction, particularly if the curves cross, the
F test of A may not adequately reflect the A effect at any level of B. Similarly, if the group
regression coefficients vary, the effect of A varies with X and the ANCOVA F test may
produce misleading results.

It may help to describe the situation using diagrams. When Y is adjusted for the effects
of the covariate, X, treatment effects are interpreted in terms of differences in the intercepts
of the group regression lines instead of differences in the group means (see Fig. 15.1).
Suppose that the lines in each panel of Fig. 15.3 represent regression lines obtained sep-
arately for two treatment groups. Parallel lines, illustrated in panel (a), indicate that the
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Fig. 15.3 Regressions with homogeneous and
heterogeneous slopes.

treatment effects are the same for each value of the covariate. In this case, we can iden-
tify the treatment effects with the vertical distance between the lines. On the other hand,
nonparallel lines, illustrated in panels (b) and (c), indicate that the treatment effects are not
the same for each value of the covariate. In panel (b), the two lines intersect at X = X..,
but differ considerably for high and low values of X. In panel (c), there is a separation
between the two lines at X = X.., but the separation is larger for large X and smaller
for small X. For panels (b) and (c), it is of more interest to ask for what values of X,
if any, the separations are significant than to consider the separation at any single value
of X. Johnson and Neyman (1936) have developed a procedure for establishing regions
of significance on the covariate. The Johnson-Neyman technique and related procedures
are described in several sources; for example, Huitema (1980) and Hunka and Leighton
(1997).
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15.3.5 Assumption That the Treatment and Covariate
Are Independent

An ANCOVA should not be used to analyze designs in which the covariate varies sys-
tematically with the treatment. If the treatment influences the covariate, or is otherwise
systematically related to it, performing an ANCOVA will not simply reduce error variance;
it may adjust between-group differences in ways that are difficult to understand and lead to
biased tests.

It was appropriate to use an ANCOVA to test the effect of text condition for the Myers et
al. experiment because participants were randomly assigned to the text conditions, and there
was no way that the treatment could influence the covariate. However, suppose everything
else was kept the same, except that participants were given the quantitative reasoning test
at the end of the experiment instead of before they saw the text material. In this case, we
should not use the quantitative reasoning test as a covariate if material given in the text
conditions might affect performance on the test. If test performance was affected and we
went ahead and used it as a covariate, the ANCOVA would not only remove some of the
error variance, but it would also remove some of the effect of the treatment.

Suppose instead, rather than randomly assigning participants to text conditions, the
different text materials were presented to intact groups—say the LE text was given to a
class of psychology majors and the S and HE texts were given to classes of English and
fine arts majors, thereby confounding text condition with major. We would say that we
had a nonequivalent-groups design. Some researchers seem to believe that performing an
ANCOVA can appropriately adjust the groups for their preexisting differences. However,
even though the groups may differ on the covariate, the confounding cannot be magically
removed by performing an ANCOVA. The underlying groups may differ on many variables,
and many of these differences are not likely to be fully predictable from a covariate. If
treatments are applied to intact groups that differ from one another, an ANCOVA presents
the same kinds of difficulties that are always associated with interpreting the results of
observational studies. Whenever the covariate varies systematically across conditions, it
becomes correlated with other variables that differ across groups, including the treatment
itself. Performing an ANCOVA tends to adjust the effects of all of these variables, but to
different degrees. This will be the case even when the distinctions among the intact groups
are more subtle.

Consider another example in which the independent variable and covariate might be
correlated. Suppose in an experiment conducted to evaluate three different teaching pro-
grams, students are given material to study on their own, and then are tested on it. Suppose the
mean test score for Program 1 is larger than the means for Programs 2 and 3, and an ANOVA
performed on the test scores is significant, suggesting that the three programs are not al]
equally effective. However, the experimenter notes that students assigned to Program 1
spend more time actually working with the material than students assigned to the other
programs and decides to perform an ANCOVA using "study time" as the covariate. The
ANCOVA reveals no significant differences, and so the experimenter concludes that the
three programs would be equally effective if study time was held constant. This interpre-
tation is not necessarily correct. Statistically controlling for study time is not the same as
experimentally controlling or manipulating it and no causal statements are justified; we
simply do not know from these data what would happen if study time was actually held
constant. The materials used in Program 1 may be more understandable and interesting to
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work with than that used in the other programs; these qualities may be the cause of both
the superior test performance and the greater study time. Using study time as a covariate
will tend to remove the effects of any variables correlated with study time, including the
characteristics of the program that are actually responsible for the superior performance. It
is therefore entirely possible that Program 1 would produce superior performance even if
study time was actually equated.

"Controlling" study time by throwing out data is also not appropriate. Suppose that the
mean daily study time is 40 min for the first group and 25 min for the other two groups.
What if we analyze only the performance scores for students in the three groups who have
comparable study times, say 30-35 min? This is a poor strategy because in selecting students
who have comparable study times, we may be selecting students who differ widely on other
important characteristics. There is no reason to think that students in the first group whose
study times are below that group's average are comparable in ability and motivation to
students who have above average study times in the other two groups. If one is interested
in the effects of the program and study time, there is simply no substitute for conducting a
true experiment in which both variables are manipulated.

The assumption of independence of the treatment and covariate can be tested by per-
forming an ANOVA on the covariate. In nonequivalent groups designs, a significant ANOVA
result for a covariate measured before the treatments have been administered indicates that
the ANCOVA F's and adjusted means will almost certainly be biased. Unfortunately, a non-
significant ANOVA cannot be taken as an indication that there will be no bias, although the
bias is more likely to be small. In completely randomized designs, there will be no bias for
covariates measured before treatments have been administered. However, ANOVAs should
be performed on covariates measured during or following treatment.

15.3.6 Assumption That the Covariate Is Fixed and
Measured Without Error

As we shall see in Chapter 19, the standard model for making statistical inferences about
regression assumes that the variable used to predict Y is a fixed-effect variable that is mea-
sured without error. In ANCOVA this translates into the assumption that the covariate has
these properties. However, the assumption that the covariate is a fixed-effect variable can
generally be violated without serious consequences and, indeed, the most common appli-
cations of ANCOVA are with random covariates. For randomized designs, measurement
error results in reduced power. However, for nonequivalent groups designs, measurement
error in the covariate can result in increased bias and, therefore, even greater difficulties in
interpretation. In a nonequivalent groups design, if the mean covariate value varies across
groups and if the covariate is measured with error, the expected values of the adjusted Ys may
differ even if the treatment has no effect. Figure 15.4 illustrates the problem for two groups
in which the true scores of X and Y are perfectly correlated and there are no treatment
effects. In panel (a), X is measured without error and both group equations have the same
slope and intercept. Therefore, the adjusted means for these groups must be the same and
an ANCOVA would correctly reveal that there are no treatment effects. Panel (b) represents
exactly the same situation, except that now X is measured with error. The effect of the
measurement error will be to "spread out" the values of X and reduce the slopes for both
groups. As can be seen in panel (b), the adjusted Y mean will now be larger for the group
that has the larger values of X, even though there is no treatment effect. Because groups
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TABLE 15.4 SYSTAT OUTPUT FOR TESTING THE HOMOGENEITY OF GROUP SLOPES

Effects coding used for categorical variables in model.
Categorical values encountered during processing are: TEXT (3 levels)

1, 2, 3

Dep Var: Y N: 48 Multiple R: 0.66374 Squared multiple R: 0.44055
Analysis of Variance

Source

TEXT
X
TEXT*X
Error

Sum-of -Squares

0.048
0.480
0.014
0.873

df

2
1
2

42

Mean-Square

0.024
0.480
0.007
0.021

F-ratio

1.146
23.114
0.341

P

0.328
0.000
0.713

Fig. 15.4 Effect of measurement error on regression slopes. Both samples are from populations in
which the true scores of Y and X are perfectly correlated and no treatment is applied. X is
measured (a) without error and (b) with error.

do not differ systematically from one another in randomized designs, measurement error in
X will result in reduced power, but will not cause the adjusted means to be biased. How-
ever, in nonequivalent groups designs, measurement error in X will introduce bias. Quite
apart from the issue of measurement error, Fig. 15.4 provides another illustration that when
nonequivalent groups are used, bias is introduced if the dependent variable and covariate
are not perfectly correlated.

15.4 TESTING HOMOGENEITY OF SLOPES

As we discussed in Section 15.3.4, a necessary assumption for ANCOVA is that the slopes are
equal in each of the treatment populations. In practice, the easiest way to test this is to use a
software package such as SPSS or SYSTAT to test whether the independent variable interacts
with the covariate, a test that is equivalent to testing homogeneity of slopes. Table 15.4
presents the SYSTAT output for this test. The interaction is not significant, F(2, 42) =
0.341, p = .713. We cannot reject the hypothesis that the slopes are homogeneous and
therefore proceed with the ANCOVA. This analysis is equivalent to comparing a restricted
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model in which regressions with a common slope are performed for the separate groups,

(note that this is the ANCOVA model), and a full model in which the separate within-group
regressions are not constrained to have the same slope

15.5 MORE ABOUT ANCOVA VERSUS
TREATMENTS x BLOCKS

Both the ANCOVA and the Treatments x Blocks design use information about a concomi-
tant variable, X, to increase power. It is therefore of interest to discuss the advantages and
disadvantages of both designs. However, in doing so, we must consider how participants are
assigned to treatment conditions, as well as what statistical analysis is subsequently used.
We distinguish among four cases:

1. Treatments x Blocks with a priori blocking. As described in Section 15.1, this
design requires that participants be divided into b blocks on the basis of their
X scores, where the optimal value of b (Feldt, 1958) depends on N, the number of
treatment conditions, and the correlation between X and the dependent variable.
Within each block, participants are randomly assigned to treatment conditions.
Finally, a two-factor Treatments x Blocks ANOVA is performed.

2. Treatments x Blocks with post hoc blocking. In this case, participants are assigned
to treatment conditions without regard to their X values. Blocks are formed after the
Y scores have been collected, and the design is analyzed as a two-factor ANOVA.

3. ANCOVA with random assignment of participants to treatment conditions. Partic-
ipants are assigned to treatment conditions without regard to their lvalues as in
(2); however, an ANCOVA is performed.

4. ANCOVA with assignment of participants to conditions based on the covariate
value. If the covariate values are available before the experiment is conducted, they
can be used in assigning participants to conditions, even if an ANCOVA is to be
used. For example, if the independent variable has a levels, the a participants with
the highest scores on X can be randomly distributed across the treatment conditions,
then the participants with the next a highest scores, and so on. In the case of two
treatment groups, several authors (Dalton & Overall, 1977; Maxwell, Delaney, &
Dill, 1984) have recommended the alternate ranks design in which the participants
are ranked with respect to X and then assigned to conditions A\ and A2 according
to an A\A2A2A\ A\A2A2 ... sequence. Whether the assignment of each a scores
to the levels of A is made randomly or based on the alternative ranks design, the
means of X should vary less than in cases 2 and 3.

In a classic paper, Feldt (1958) compared methods 1 and 3. He found that an ANCOVA
was more powerful than Treatments x Blocks with the optimal number of blocks when
p, the population correlation between Y and X, was greater than .6; that blocking was
more powerful for p less than .4; and that there was little difference for .4 < p < .6.
Because of these findings and the complexity and stringent assumptions of an ANCOVA. it
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has often been argued that blocking should be used instead of an ANCOVA, except when
p is large.

However, in practice, it will not be possible for the experimenter to decide on the
optimal number of blocks unless a good estimate of the correlation between X and Y is
available before participants are assigned to blocks and the Y scores are obtained. The
ANCOVA designs do not require this information in advance. Also, when assignment to
groups is considered as well as the method of analysis, there seem to be reasons to favor
an ANCOVA over blocking, even for moderate values of p. Maxwell et al. (1984) used
simulation procedures to test the power and precision of nine methods, including the four
listed previously. Although in their simulations they used an independent variable with only
two levels, it is likely that their findings hold more generally.

When information about X is not used in assigning subjects to treatment conditions, an
ANCOVA tends to have strong advantages over post hoc blocking. Maxwell et al. (1984)
found method 3 to be more powerful and precise than method 2, even for values of p as low
as .28. Another disadvantage of post hoc blocking is that it will usually lead to designs with
disproportionate cell frequencies. If post hoc blocks are to be formed, they should be based
on the X values of all members of the entire sample, without regard to group assignment. If
this is done, it is unlikely that there will be equal numbers of scores in each of the ab cells.
As discussed in Chapter 12, such designs involve problems of analysis and interpretation.
Experimenters should be very careful to avoid forming post hoc blocks within each group.
As Myers (1979) has pointed out, this will lead to positively biased F tests.

Maxwell et al. also suggest that advantages in power and precision may be obtained
by using the values of X to assign participants to conditions (method 4). They found that
when participants were assigned to conditions using an alternative ranks procedure, both the
ANCOVA and Treatments x Blocks ANOVA were more powerful than when assignment
was made without regard to X. Also, both when X was used in assigning participants to
treatments and when it was not, the ANCOVA was found to be slightly more powerful than
the Treatments x Blocks ANOVA for p = .28 and had a larger advantage for p = .50.

In summary, if the concomitant measure is available prior to data collection, greater
power may be achieved if it is used in assigning participants to treatment conditions. In
addition, if the relation between Y and X is linear and the other assumptions of an AN-
COVA are reasonably satisfied, the ANCOVA will generally provide more power than the
Treatments x Blocks ANOVA.

Finally, several comments should be made with respect to the ANCOVA assumptions.
As we have so far discussed it, the ANCOVA assumes a linear relation between X and Y,
whereas the Treatments x Blocks analysis does not depend on the nature of the functional
relation between X and Y. The Treatments x Blocks design will therefore be relatively
more powerful to the extent that there are nonlinearities that are not accounted for by the
ANCOVA analysis. However, relations in the behavioral sciences are often approximately
linear. If there is a nonlinear relation, transformations of For generalized ANCOVAs that
depend on polynomial regression may be performed.

The fact that the ANCOVA requires the strong assumption of homogeneity of regres-
sion slopes is sometimes mentioned as a reason to favor Treatments x Blocks designs.
However, heterogeneity of regression slopes is conceptually the same as an interaction in
a Treatments x Blocks ANOVA; in both cases, it is not advisable to interpret the treatment
main effect. Also, although most researchers are more familiar with simple effects tests,
the nature of group differences at different values of the covariate will be revealed in more
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detail by the Johnson-Neyman technique than by simple effects tests (see, Huitema, 1980,
Chapter 13).

15.6 ESTIMATING POWER IN AN ANCOVA

We considered how to find the power for a one-factor ANOVA in Chapter 8. We began by
estimating the quantity

where, for the current example, cr^ can be estimated from

and Ug can be estimated from MSs/A = .031. The estimate of / is, therefore,

Using GPOWER (see Table 8.10), we find the post hoc power to be approximately .38. We
can also perform a priori power calculations. Again, using GPOWER, we find that given
/ = .284; we need approximately 41 participants per condition to have power = .80.

How can we estimate power for an ANCOVA The major change in an ANCOVA is that
the error variance is reduced. It can be shown that the estimated error variance will be

where r^A is the squared within-group correlation between the covariate and the dependent
variable. For the current example, this correlation is about .6, so that, substituting into
Equation 15.15, the estimated error variance is

the value actually obtained for MSs/A(adj) when the ANCOVA was performed. Now substi-
tuting into the denominator of the expression for / in Equation 15.14, we find

Using GPOWER,we find that the post hoc power for the ANCOVA is .55 and that we
would need about 27 participants per condition to achieve a power of .80.
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15.7 ANCOVA IN HIGHER-ORDER DESIGNS

Sources of variance can be adjusted for a covariate in multifactor designs in much the same
way as the one-factor design we have so far considered. Again, the test for each effect can be
thought of as a comparison between a full and a restricted model. For example, if we have
two between-subjects factors A and C, and a covariate X, the full model for the ANCOVA is

where a common slope is assumed in each of the ac groups. The restricted models for the
A and C main effects and the AC interaction are, respectively,

and

The adjusted SS for any effect E, SSE(adj), is the reduction in SSerror that results when the
full model is applied instead of the restricted model in which E is omitted. In each case,
the effect is tested using Equation 15.6, which becomes

where SSerror(adj) is the error left unaccounted for in the ac cells when the full model is
applied. The appropriate F statistics are readily calculated by many software packages.

15.8 SOME EXTENSIONS OF THE ANCOVA

In this section, we briefly introduce the ideas of adjustments for more than one covariate
and adjustments based on polynomial regression. Because these procedures fit particularly
well into a multiple regression framework, we defer more detailed consideration of them
until Chapter 21. However, these extensions can easily be accommodated by the standard
statistical packages.

15.8.1 More Than One Covariate

Suppose that our dependent variable is problem-solving performance (Y), but that now we
have available two possible covariates: scores on analytic reasoning (X) and verbal skills
(W) tests. We might wish to use either of the covariates in an ANCOVA; however, we may
choose to use both of them in the same analysis. This would involve testing a full model
that contains a treatment component as well as the covariates

against a restricted model that contains the covariates, but not the treatment,
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If X and W are both correlated with Y, but not completely redundant, it is possible that
using both covariates will result in a greater gain in power than using either one by itself.

15.8.2 Polynomial ANCOVA
Suppose our dependent measure (Y) is performance; our possible covariate is a measure of
anxiety (X), and we know that the relation between X and Y contains both strong linear and
quadratic components. It would be inappropriate to use ANCOVA based on the regression
of Y on X alone because this will adjust only for the linear component of the relation.
However, it is possible to use an ANCOVA model that contains both linear and quadratic
components. In this case the full model would be

and the restricted model would be

(note that X..2 is the average of the squared scores, X2
ij, not the square of the mean, X..).

The combined linear and quadratic components should together partial out more of the error
variability than the linear component alone, and thereby provide a more powerful analysis.

15.9 CONCLUDING REMARKS

When used with an understanding of its assumptions and limitations, ANCOVA can be a
useful tool. However, ANCOVA is, as Elashoff (1969) has termed it, a "delicate instrument,"
and there is great potential for its abuse, especially because it is so easy to perform ANCOVAs
with the standard statistical packages. The greatest abuses occur when ANCOVA is used
to try to equate groups that are basically different from one another. In such cases, Smith
(1957) has argued that adjusted means might better be referred to as "fictitious means," and
the use of ANCOVA can result in worse inferences than using no adjustment whatsoever.
Although it seems trite to repeat it, one must always keep in mind that statistical control is
not the same as experimental control, and that correlation and prediction are not the same
as causation.

KEY CONCEPTS

error variance
covariate
completely randomized design
SSregression(within groups)

SSerror(F)

SSs/A(adj)

adjusted means
Johnson-Neyman procedure
a priori blocking
polynomial regression

concomitant variable
treatment by blocks design
SSregression (total)

SSe r r o r ( R )

SStotal(adj)

SSA(adj)

homogeneity of regression slopes
nonequivalent groups
post hoc blocking
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EXERCISES

15.1 Consider an experiment conducted to test the effectiveness of three software packages
for teaching problem-solving skills to seventh graders. Thirty-six seventh graders
are randomly selected and assigned to the software packages with the restriction that
12 children work with each of the packages. The levels of the independent variable
(P) are the software packages the children worked with; and the dependent variable
(Y) is the score obtained on a problem-solving achievement test administered after
the children have worked with a package for 6 months. There are also scores (X)
obtained on a problem-solving pretest administered before the children were assigned
to work with the software packages. The data are presented herein:

15.2 Eighteen participants are assigned randomly to three treatment conditions A1, A2,
and A3. After the treatment is applied, values of Y, the dependent variable, are
obtained. However, before the treatment is applied, values of X, a variable closely
related to Y, are recorded. The data are as follows:

Y

38
61
50
44
69
72
61
41
51
57
46
62

P1

X

25
35
23
11
29
36
26
10
23
29
16
27

Y

47
73
44
85
58
64
67
69
58
81
94
43

P2

X

10
28
16
30
21
18
31
34
27
35
41
15

P3

y

58
74
65
91
67
45
54
65
59
57
49
74

X

19
37
17
40
24
25
23
31
27
14
17
41

(a) Perform an ANOVA using P as the independent variable.
(b) Perform an ANCOVA using P as the independent variable and X as the covariate.
(c) Test whether the homogeneity of regression slope assumption is satisfied.

A1

X

12
10
7
14
12
11

y

26
22
20
34
28
26

A2

X

11
12
6
18
10
11

y

32
31
20
41
29
31

A3

X

6
13
15
15
7
9

y

23
35
44
41
28
30
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(a) Perform an ANOVA on F.
(b) Perform an ANOVA on X.
(c) Test for homogeneity of regression in the three groups.
(d) Perform an ANCOVA on Y, using X as the covariate.
(e) How do the hypotheses tested by the ANOVA and the ANCOVA differ?
(f) What are the adjusted means for the three treatment groups?

(g) What is the interpretation of the adjusted means?
15.3 Discuss whether it is appropriate to perform ANCOVAs using X as the covariate in

each of the following cases:
(a) Measures of job satisfaction (Y) and performance evaluation by supervisors (X)

are obtained for eight randomly sampled workers in each of the four departments
of a company. The researchers desire to test whether job satisfaction is the same
in each of the departments. The data are as follows:

(b) Thirty children are each randomly assigned to one of three remedial math skills
training programs. Before entering the programs, each child takes a standardized
pretest (X). At the end of 6 months, a standardized achievement test (Y) is given
to each of the children. The researchers wish to determine whether the training
programs are all equally effective. The data are:

A1

X

29
37
26
32
31
37
33
39
33
36

Y

61
73
54
63
62
76
72
80
73
72

A2

X

39
34
35
39
35
27
35
29
34
26

Y

79
66
76
84
73
75
66
85
62
79

A3

X

41
36
29
33
42
35
32
42
39
36

Y

78
66
56
61
70
65
59
80
65
64

D1

X

1.4
2.0
3.2
1.4
2.3
4.0
5.0
4.7

Y

1.0
2.7
3.9
1.0
4.0
3.4
3.7
2.3

D2

X

3.2
6.8
5.0
2.5
6.1
4.8
4.6
4.2

Y

3.0
5.5
5.6
3.2
4.2
4.2
3.7
3.8

D3

X

6.2
3.1
3.2
4.0
4.5
6.4
4.4
4.1

Y

7.3
4.0
4.9
6.9
2.1
5.6
6.0
4.6

D4

X

5.8
6.6
6.5
5.9
5.9
3.0
5.9
5.6

y

5.6
7.2
6.1
7.1
5.4
4.0
5.6
5.8
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15.4 If, for the data of Exercise 15.2, all the Y scores are regressed on all of the X scores,
the regression equation obtained is

The residuals for this regression are as follows:

Perform an ANOVA on these residuals. Is the ANOVA on the residuals equivalent
to the ANCOVA of part (d) of Exercise 15.2? Why or why not?

15.5 Perform an ANCOVA for the following two-factor between-subjects design:

B1

B2

A1

X

24.4
22.3
23.3
15.8
22.6
24.9

20.9
19.6
23.9
26.2
18.8
24.0

Y

15.9
15.7
19.2
13.4
18.0
22.5

15.1
13.7
12.8
25.5
17.0
25.3

A2

X

22.5
12.5
14.2
18.6
15.2
23.2

20.9
18.1
18.1
11.5
22.4
30.2

Y

24.2
19.7
19.2
17.9
24.4
28.0

19.9
28.2
18.1
13.5
19.3
35.1

A1

-5.771
-6.138
-2.689
-1.404
-3.771
-3.955

A2

2.045
-0.771
-0.872
-1.670

0.862
1.045

A3

2.128
1.412
6.780
3.780
5.311
3.678



Chapter 16
Hierarchical Designs

16.1 INTRODUCTION

This chapter is concerned with two classes of designs that involve the nesting of variables.
We refer to these as hierarchical designs in reference to the hierarchy of variables that
typifies them. The first class of designs is typical of those studies in social, clinical, and
educational psychology in which the behavior of individuals is measured following parti-
cipation in interactive groups. For example, educational researchers have studied the ef-
fects of cooperative group learning on academic achievement and attitudes to learning (e.g.,
Lindauer & Petrie, 1997; Springer, Stanne, & Donovan, 1999), and social psychologists
have studied the effects of training within interactive groups on individual problem solving
(e.g., Brodbeck & Greitemeyer, 2000). In such designs, subjects are nested within inter-
active groups (i.e., each subject is in only one group) that often in turn are nested within
levels of a factor. For example, groups may differ with respect to gender, number of group
participants, or range or level of participant abilities. Or groups may be assigned to differ-
ent levels of an experimental variable, such as the rule used to decide on the solution to
problems (Stasson, Kameda, Parks, Zimmerman, & Davis, 1991).

The reason we treat this groups-within-treatments design differently from the com-
pletely randomized subjects-within-treatments design of Chapter 8 is the assumption that the
scores of individuals within an interactive group will be correlated, whereas it is assumed that
the scores of individuals in the completely randomized design are independently distributed.
In this view, the interactive group makes a contribution to the total variability beyond that
due to the individual. Individuals' scores are not just a function of their personal charac-
teristics and the treatment condition, but also of the particular group of people with whom
they interacted during the initial phase of the study. This effect of grouping is also present
in other types of research. If several elementary classes are taught reading by one method
and several others by another method, the structural model should incorporate an effect of
class because scores within a class will not be independently distributed; they are obtained
from students taught by the same teacher at the same time of day in the same classroom,

436
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and within the context of interaction with the same group of children. Still another example
of the design might be taken from the animal laboratory. Different methods of rearing rats
might be compared, with each method applied to several litters. Measures obtained from
individual rats within a litter may be correlated because of the common genetic heritage.

In summary, the primary new aspect of the groups-within-treatment design is the as-
sumption that social, environmental, and genetic units are a source of variability separate
from error variability. Even though the same experimental treatment is applied to two in-
dividuals in different social groups (or school classes or litters), their scores will differ, not
only because they are different individuals, but also because they are subject to different
social interactions (or genetic contributions). Once the possibility of such group effects are
recognized, they must be incorporated within the structural model and, therefore, within
the data analysis.

We also consider a second class of hierarchical designs in this chapter. These involve
nesting of items within levels of a within-subjects factor. For example, in Chapter 13, we
cited a study by Murray et al. (2000) in which the distortion and orientation of photos
of faces were varied, and the photos were then rated as to how bizarre they appeared.
In that study, four of eight faces in each condition were female and four were male. We
characterize this as nesting of faces within gender levels. Such nesting of one within-
subject variable—most often items—within levels of a factor is common in many areas
of research. Research in language processing often involves responses to words that differ
in various ways, such as English language frequency or grammatical category. Research
in education may involve scores on sets of problems differing in complexity. Personality
or social psychological research may involve responses to pictures representing different
forms of social interaction. In each of these cases, there are several levels of a factor, such as
word frequency, problem complexity, or social interaction; there are several different items
at each level of the factor; and usually each subject is tested on all items at all levels of the
within-subject factor.

Usually items—e.g., words, problems, or pictures—are assumed to have random effects
because of the method of selection and because of the wish to generalize beyond the set
of items used in the study. Given this assumption, there will be several sources of variance
among the means of the conditions within which the stimuli are nested. First, there may be
effects of the condition, as when complexity affects the time to solve problems. Second,
means of the different conditions may vary because the items are different for different
conditions. Third, as in repeated-measurement designs generally, the interaction of subjects
with within-subject factors may contribute to the variance of within-subject treatment means.
In many instances, it will be necessary to calculate quasi- F ratios to incorporate stimuli-
within-treatments and subjects-by-treatments effects into the error term. In this respect, our
discussion of the items-within-treatments design revisits issues that arose originally in
Chapter 13, although in a slightly different context.

16.2 GROUPS WITHIN TREATMENTS

16.2.1 Partitioning Variability

Consider an experiment in which subjects meet in a first phase in groups to solve a set of five
math problems. The groups are assigned to one of two conditions: Their solution to each
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problem is decided either by majority rule or by a unanimous decision of the group members.
In a subsequent phase, individual's are tested on a set of five new math problems, and their
scores as well as their ratings of satisfaction with the group experience are recorded. For the
sake of simplicity, this hypothetical experiment involves three 4-person groups in each of
the two conditions.1 In general, this type of experiment has a levels of the treatment variable,
A, g groups at each level of A, and n participants in each group. In the example, a = 2
(decision rules), g = 3, and n = 4 for a total of agn = 24 participants in the experiment.

Table 16.1 presents the satisfaction ratings for the example. An individual score is
represented as Yijk, where i = 1,2, . . . , n; j = 1,2, . . . , g; and k = 1, 2 , . . . , a. The deviation
of each score from the grand mean can be partitioned into effects due to the treatment (the
decision rule in the example), the group membership, and a residual component attributable
to individual differences and error of measurement:

Table 16.2 presents this partitioning of the deviation of the score from the grand mean for
the data of Table 16.1. Note that the group effect is the deviation of the group mean from
the treatment mean.

The analysis of variance (ANOVA) of Table 16.3 follows directly from Equation 16.1.
More precisely, by summing and squaring the values of Yijk — Y..., we have the total sum of
squares (SStot); similarly, summing and squaring the treatment, group, and residual values
in Table 16.1 yields the components of the SStot. In equation form, we have

The notation, S/G/A, is read as "subjects within groups within levels of A," or more briefly,
"within groups." Some books and software packages use the notation S(GA). What is critical
is the distinction between the variable denoted by the essential subscript(s), and the variables
in which they are nested.

TABLE 16.1 DATA FOR A GROUPS-WITHIN-TREATMENTS DESIGN

G11

19
20
18
15

Y j1 = 18

A] (Majority Rule)

G21

16
15
15
14
15

Y..1 = 16

G31

19
15
13
13
15

G12

10
12
15
19

Y.j2 = 14

A2 (Unanimity Rule)

G22

9
8

14
9

10

Y..2 = 12

G32

12
10
12
14
12
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The SVs in Table 16.3 are consistent with the partitioning just presented. We have
included the lines for the Total and Between Groups sources as an aid in calculating their
components. However, only the last three lines are needed, and these would be the only
lines listed in the output of statistical software capable of providing an analysis of data from
designs involving nested factors (e.g., SPSS, SAS, BMDP). Researchers lacking access to
such software, or having only very early versions that may lack the ability to carry out the
nesting analysis, can perform the correct analysis in one of two ways. The first approach to

TABLE 16.2 DECOMPOSITION OF THE DATA OF TABLE 16.1

Score - Grand Mean (Yijk- Y...) = Rule Effect ( Y..k - Y...)

G11

5
6
4
1

A1

G21

1
1
2
0

G31

5
_ 1

1
__l

G12

1
5

-4
-2

A2

G22

-5
-6

0
-5

G32

2

0
2

-4

SStot = 52 + 12 + • • • + (-5)2 + (-4)2 = 268

+ Group Effect( Y , j t- Y . .k)

G11

2
•7
2
2

A1

G21

-1
-1
-1
-1

G31

-l
-l
-l
_]

G12

2
2
2
2

A2

G22

-2
-2
-2
-2

G32

0

0
0
0

SSG/A = (4)(22) + (4)(-l)2 + . . . + (4)(02) = 56

G11

2
2
2
2

A1

G2l

2
2
2
2

G31

2
2
2
2

G12

-2
-2
-2
-2

A2

G22

-2
_2
_2
_2

G32

-2
_2
_2
-2

SSA = (12)(22) + (12)(-2)2 = 96

+ Residual (Yijk- Y.jk)

G11

1
2
0

-3

A1

G21

0
0
1

-1

G31

4
-2

0
-2

G l2

1
5

—4
-2

A2

G22

-1
1

4
-1

G32

0
2
0

-2

SSs/G/A = 12 + 02 + • • • + (-1)2 + (-2)2 = 116

TABLE 16.3 ANOVA OF THE DATA OF TABLE 16.3

SV

Total
Between groups

A

G/A

S/G/A

(Within groups)

df

23
5
1

4

18

SS

268
152
96

56

116

MS

96

14

6.44

F

6.86*

2.17**

EMS

+ n°G/A + 8n®A

^ + n°G/A

*t

Error Terms

G/A

S/G/A

*p = .Q6;**p = .11.
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calculating the sum of squares for the nested term is based on the fact that the between-group
variability is a composite of A and G/A. This can be seen in the partitioning of the degrees
of freedom:

Then,

and, because of the one-to-one correspondence of sums of squares and degrees of freedom,

This suggests carrying out the ANOVA in two passes. In the first, G (with ag levels) is treated
as the factor in a one-factor complete randomized design; this pass yields SSBetween Groups-
In the second pass, the group variable is ignored, and A is treated as the sole factor; this
yields SS^ • Subtraction provides SSc/A •

A second approach can be used with any program that is capable of analyzing a two-
factor design, but that has no provision to deal with nesting. This approach is based on
viewing groups as if they crossed with A. With respect to Table 16.1, we would input the
variables as if there were the same three groups at each level of A. The result of the analysis
would be two main effects and an interaction: A, G, and A x G. Summing the degrees of
freedom for G and A x G,

Summing the corresponding sums of squares yields the nested term:

Justification of the expected mean squares requires specification of the underlying
structural model that relates each score to population parameters. We do that next, first
pausing to note that, given these expected mean squares, the F ratios calculated in Table 16.3
meet the usual requirement of equality of numerator and denominator expectations under
H0.

16.2.2 The ANOVA Model

In establishing the relation of F/,* to population parameters, we ignore the variable A and
view the design as having one factor, G, with ag levels and n subjects at each level. In
accord with the one-factor model (Chapter 8), this view suggests

where -y^ = JJL^ — JJL, the deviation of the population mean for the jth group at the fcth
level of A from the grand mean of all the populations, and e,^ = Y^ — JJL/*, the residual
error component. Equation 16.3 ignores any possible effect of the treatment variable, A.
However, group means may differ not only because the groups have different compositions,
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but also because some groups are at one level of A, whereas other groups are at a different
level of A. This line of reasoning suggests that part of the group effect, -y^, is due to the
treatment effect, c^, the effect due to the particular level of A in which the group is nested.
Expressed in terms of the population parameters,

Substituting for ̂  in Equation 16.3, results in the structural model for the groups-within-
treatments design:

Each score is contributed to by a treatment effect, a group effect, and a residual component
reflecting error of measurement and individual differences. This parallels the development
in Table 16.2 in which the deviations of the observed scores from the grand mean were
partitioned into estimates of the effects in Equation 16.4.

A common error in analyzing group designs is the failure to incorporate group effects
into the model. When this happens, the analysis proceeds as though the design were a
completely randomized one-factor design with gn subjects in each of a treatment groups.
This failure to separate group variance from the residual error variance may result in positive
bias, an increase in the Type 1 error rate beyond the nominal value. The reason for this will
be discussed shortly.

To complete the presentation of the theory underlying the ANOVA, and to arrive at
the expected mean squares of Table 16.3, we must decide whether the variables have fixed
or random effects. Generally, the levels of A have been arbitrarily selected by the re-
searcher and therefore A is a fixed-effect factor. Therefore, the variance component is
defined as 6^ = ]££= j c^/(a — 1). The nested group effect, y^, is viewed as a random-
effects variable because the groups are assumed to be a random sample from the population
of all possible groups of size n that could be composed. Both y^ and e//* are assumed
to be independently and normally distributed with mean zero and variances crJ/4 and o^2,
respectively.

Given these assumptions, the expected mean squares of Table 16.3 can be derived.
More simply, we can use the rules of thumb presented in Chapter 14. Considering the
A source of variance first, set down a2 and the null hypothesis term, 6^. The latter term
is multiplied by ng, the number of scores at each level of A. Because the subscript G/A
includes the letter A, and the essential letter G represents a random-effects variable, a~^,A
is included in the expectation. Its coefficient is n, the number of scores in each group.
The remaining two lines should pose no problems. Note, however, that a2combines both
variance due to individual difference and variance due to error of measurement. Only when
the design involves repeated measures is there a need to distinguish between these two
variance components.

6.2.3 Pooling Group and Subject Variances

The ANOVA of Table 16.3 failed to yield a significant A effect. However, the test against
an error mean square on 4 df is likely to have a very high Type 2 error rate. Admittedly,
most experiments are likely to involve more groups, and therefore more error degrees of
freedom, than our example. Nevertheless, although exaggerated in our example, the problem
of a relatively low value of dfc/A is a common one in hierarchical designs. One possible
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solution to the problem of low power of the F test is to assume a different structural model.
If it is assumed that the group variable does not contribute to the total variability, the effect
of G/A is deleted from the model and a£,A is deleted from the expected mean squares of
Table 16.3. Then, MSc/A and MS $/G/A both estimate cre

2. Assuming this revised model, the
two mean squares could be pooled to obtain a single estimate of error variance, MSs/A, where

If Equation 16.5 is applied to the terms in Table 16.3, the result is Table 16.4. Note that the
F test of the A effect is now very significant. There are two reasons for this. First, the error
degrees of freedom are now 22, instead of 4. Even if the F ratio had been unchanged from
that of Table 16.3, the result would now be significant because an F of 6.86 on 1 and 22
df results in p = .016. In the example, there is a second reason for the decreased p value.
The pooled mean square, MSs/A, is a weighted (by degrees of freedom) average of MSc/A
and MSs/c/A', that is, Equation 16.5 can be rewritten as

Note that W represents a proportion of degrees of freedom. Because, in this example,
MSs/c/A is less than MSc/A, the average of the two will be less than MSc/A- So, the pooled
error term has more degrees of freedom than the original error term in Table 16.3, and it is
also smaller. However, pooling carries a risk, as we discussed in Chapter 12. If the original
structural model is correct, then (TQ,A > 0, and the expectation of the pooled mean square is

Therefore, assuming HQ is true, the ratio of expected mean squares involved in the pooled
F test of A is

But because W is a fraction, the above ratio is greater than 1, indicating that we could get
a significant result even though the null hypothesis is true.

Bozivich, Bancroft, and Hartlet (1956) and Srivastava and Bozivich (1961) carried out
computer simulation studies using exactly the design and model under consideration in this

TABLE 16.4 REVISION OF TABLE 16.3 AFTER POOLING

SV

A
S/A

df

1

22

SS

96
172

MS

96
7.82

F

12.28*

EMS

a?+gn*}
-)

°e

Error Terms

S/A

*p = .002.
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chapter, with a = .05. They pooled the G/A and S/G/A terms when a preliminary test of G/A
against S/G/A was not significant at the .25 level. Using this procedure, when the null hypoth-
esis was true, the Type 1 error rate for the test of the A source of variance rose to .08 under
some conditions. The authors recommended that pooling should be carried out in the hierar-
chical design only when there are a priori grounds for assuming that the mean squares to be
pooled have the same expectation and the p value for the preliminary test, MSG/AIMSS/C/A,
is greater than .25. Returning to Table 16.3, the .25 criterion is not met (p = .11),
and a pooled error term should not be used in this example. Generally, groups will dif-
fer from each other and pooling will not be proper. Therefore, researchers should have as
many groups as is practical, so that the appropriate error term, MSc/Ai will be distributed
on a substantial number of degrees of freedom, and the F test of A will have reasonable
power without resorting to pooling.

16.3 GROUPS VERSUS INDIVIDUALS

In many studies in which individuals are trained within a group setting, there is also a
condition in which in which individuals do not participate in a group. For example, Stasson
et al. (1991) had subjects work in groups to solve practice problems and then tested them
individually on a new problem set; however, they also included one condition in which
other subjects worked on the practice problems individually. Because this group-versus-
individual-training design is common, and the data often are improperly analyzed, we
consider it here. Assume that there are 15 students assigned to study a topic individually
(individual condition, C/) and another 15 students randomly assigned to five discussion
groups of three students each (group condition, CQ). After the study session, all 30 students
are tested individually on the subject matter studied. The data and group means are presented
in Table 16.5. Although the subjects in C/ studied individually, we randomly grouped their
scores into sets of three. This simplifies the notation, allowing us to denote each score by
Yijk'. i = 1 ,2 , . . . , n\ j = 1, 2, ..., g; and k = 1, 2, . . . , c. In the example, n = 3, g = 5,
and a = 2 (I or G).

The sum of squares for the individual-versus-group condition (SSc) is calculated in
Table 16.5, below the data. The denominator against which this is tested has usually been

TABLE 16.5 DATA FOR A GROUPS-VERSUS-INDIVIDUALS DESIGN

Individual Condition (C/)

YU, =

Y,i =

9 9 11
9.67

15 16 12
14.33

12 8 15
11.67

16 15 16
15.67

14 11 13
12.67 Y..I = 12.8

Group Condition (Co)

YUV =

Y.v =

11 16
14

15 17 18
18

19 11 13
13

15 17 18
18

19 10 13
12

13

Y..c; = 15

--^r--
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calculated as MS$/c- In the data set of Table 16.5, this means calculating the variance of the
15 scores in each condition and averaging the two variances. The result, here distributed
on 28 df, is 8.37. To the extent that the group factor in Condition CQ contributes to the
variance of the 15 scores in that condition, the resulting F test of C will be positively
biased. Myers, DiCecco, and Lorch (1981) have shown that this inflation in Type 1 error
rate can be quite marked and increases with the number of scores. Using expected mean
squares, they justified two methods of analysis that yield unbiased F tests. We present these
methods here. The calculations are in Tables 16.6 and 16.7.

16.3.1 The Pseudogroup Procedure

This analysis, presented in Table 16.6, is performed as if the randomly constructed post
hoc groups (the pseudogroups) in C/ were real groups and C is tested against G/C on
1 and 2(g—1 ) df. Assuming HQ is true, the ratio of expected mean squares is 1, so the
F ratio is not biased. There is heterogeneity of variance here because the pseudogroup
means vary less than the real group means do, but Myers et al. (1981) reported simulation
results demonstrating that Type 1 error rates are little affected by this when the number
of pseudogroups are equal to the number of experimental groups and are of the same
size. This is consistent with our earlier observation (Chapters 6 and 8) that heterogene-
ity of variance is not a problem except when the numbers of observations vary between
conditions.

16.3.2 The Quasi-F Procedure

This approach uses the quasi-F statistic. It is identical to the Brown-Forsythe statistic
presented in Chapter 8 as a way of testing effects in the presence of heterogeneity of
variance. That makes sense here because the error term will be a linear combination of the
variance of group means from Condition CQ and the variance of individual scores from
Condition C/. The error mean squares (MSQp) and degrees of freedom are presented in
Table 16.7. The steps in the calculations are:

1. Find the variance of the NI scores in C/ (15 in the example); this is MSs/c, •
2. Find n times the variance of the g group means in CQ ; this is MSG/cG.
3. The error term for the quasi-F test is MSgF, a weighted average of MSS/C, and

MSc/Cc', the weighting is defined in Table 16.7.
4. As illustrated in Table 16.7, the error degrees of freedom, d/Qp, are calculated and

rounded to the nearest integer.

TABlf 16.6 PSEUDOGROUP ANALYSIS OF THE DATA OF TABLE 1 6.5
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TABLE 16.7 QUASI-F ANALYSIS OF THE DATA OF TABLE 1 6.5

The mean square based on the scores in condition C/ is

The mean square based on the group means in condition CG is

Let NI be the number of scores in C/, TVc be the number of scores in CG, and N = N/ + Af(,-; NI —
N(; = 15 in the example. Then the error mean square is

The quasi- F statistic is

The df associated with the error term, MSQf, are

that we have rounded to 7 df.

16.3.3 Which Method?

The pseudogroup and quasi-F tests are similar in their power to reject false null hypothe-
ses and both tests have approximately correct Type 1 error rates (Myers et al., 1981). The
pseudogroup approach is computationally simpler and should be used when the /V/ obser-
vations can be partitioned into as many pseudogroups as there are real groups. The quasi-F
approach is applicable regardless of the value of Nj. Also, Myers et al. (1981) have pointed
out that the groups-versus-individuals design is a special case of designs in which group
size is a variable; the article shows how the quasi-F statistic can be used to analyze data
from the more general design.

16.4 EXTENSIONS OF THE GROUPS-WITHIN-TREATMENTS
DESIGN

16.4.1 A Within-Groups Variable

The composition of a discussion group or school class might be included as a variable
in the study. In the example of Table 16.1, the discussion groups could be composed of
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two males and two females. In that case, gender is a within-groups variable. The design
enables us to ask whether the effect of the group decision rule is different for males than for
females. The data of Table 16.1 are presented once more in Table 16.8 with the gender of
the subject indicated. Groups are still nested within levels of A. However, A and B cross;
that is, all possible combinations are present in the design, allowing for a test of the A x B
interaction. Note that groups also cross with B; there are both males and females in every
group.

In general, there are g groups at each of a levels of A for a total of ag groups. Within
each group, there are b levels of B, with n subjects at each level. Therefore, there are bn
scores in each of ag groups. In the current example, a — 2 (decision rule), g = 3 (groups
within decision rule), b = 2 (gender), and n = 2 (subjects within each cell formed by A,
G, and B), yielding 4 (b x n) scores in each of 6 (a x g) groups for a total of 24 scores.
The indices of notation for this design are i = 1, 2 , . . . , n; j = 1, 2, . . . , g; k — 1, 2, . . . , a\
and w = 1, 2, . . . , b.

Whether the data are analyzed using a calculator or statistical software, understanding
the structure of the design is critical. It may help to realize that the layout of Table 16.8 is
very similar to that of the mixed design of Chapter 14. Rather than partitioning 55tot into
between-subjects and within-subjects components, it is divided into between-groups and
within-groups components. Table 16.9 illustrates this partitioning; panel (a) presents the
general form of the degrees of freedom, sums of squares, and the expected mean squares,
and panel (b) presents numerical results for the data of Table 16.8. As we can see in Table
16.9, the between-groups sum of squares can be further divided into A and G/A sources.
This reflects the fact that part of the variability among the ag group means may be due
to differences in the level of A and part is due to differences among groups within each
level of A. Similarly, the within-groups sum of squares can be divided further. A potential
source of the variability among the bn scores within each group is the factor B. This is also
reflected in Table 16.8. The AB and GB/A terms fall out naturally as a result of crossing
each between-group term with B. The last component of the within-group sum of squares,
S/GB/A, is due to the fact that the n scores vary within each G x B combination within each
level of A.

The degrees of freedom follow from the sources of variance. Only two of these represent
terms we have not seen before. GB/A represents the interaction of g groups and b levels

TABLE 16.8 THE DATA OF TABLE 1 6. 1 WITH SUBJECT'S GENDER INCLUDED

At

A2

G I I
G2l

Gii

G1 2

G22

G31

6!

19
16
19

10
9

12

(Males)

20
15
15

y...i
19.5
15.5
17.0

82

18
15
13

F..U = 17.33

12
8

10

11.0
8.5

11.0

15
14
12

F..2i = 10.17

F...I = 13.75

(Females)

15
14
13

Y...2

16.5
14.5
13.0

F. i2 = 14.67

19
9

14

17.0
11.5
13.0

F..22 = 13.83
F..2 = 14.25

r.i. = 16

F..2. = 12

F... = 14
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of B, pooled over the a levels of A; therefore, dfGB/A = a(g — l)(b — 1). Similarly, dfs/GB/A
reflects the variability of n scores in each combination of G and B within each level
of A, or gba(n — 1). Although sums of squares can be computed by hand for a small
data set such as this one, the amount of data and the complexity of the design, together
with the possibility of doing supplementary analyses, usually will warrant a computer
analysis. Several packages expedite the analysis of hierarchical designs. These include
SPSS, SAS, and BMDP. The manuals should be consulted for details of the appropriate
commands.

TABLE 16.9 ANOVA FOR THE DESIGN ><\ND DATA OF TABLE 16.8

(a) Formulas and Expected Mean Squares

SV

Between Groups

A

G/A

Within Groups

B

AB

GB/A

S/GB/A

dt

ag- 1

a- 1

a(g-l)

agb(n - 1)

b- 1

(a -l)(b -I)

a(g - \)(b - 1)

agb(n - 1)

SS EMS

of + bna£/A + bgn^

07 + £no-£/A

°7 + n°GB/A + a^l

cr; + ncr-g/4 + gnQ2w

of + nvlB/A

°;

(b) ANOVA of the Data of Table 1 6.8

SV

Between Groups

A
G/A

Within Groups

B
AB
GB/A
S/GB/A

df
5
1
4

18
1
1
4

12

SS

152.000
96.000
56.000

116.000
1.500

60.167
13.333
41.000

MS

96.000
14.000

1.500
60.167

3.333
3.417

F

6.86"

.45
18.05*

.98

Error Terms

G/A

GB/A
GB/A
S/GB/A

*p < .001.
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The F tests in Table 16.9 follow directly from the expected mean squares presented
there. They in turn are derived from the following structural model:

Several aspects of the model should be noted. Because subjects do not cross with any of
the other variables, there are no interactions involving them. Furthermore, because groups
are nested within levels of A, the groups x B interaction effect, (y$)jm/k, is also nested
within levels of A. The corresponding source of variance may be viewed as G/A x B, or
GB/A. The GB/A notation indicates a method of computing the SScs/A- The G x B sum of
squares can be calculated at each level of A, and then the a interaction terms are summed.

We assume that A and B are fixed-effects variables; therefore, the corresponding com-
ponents of the expected mean squares are 9^ = (^ a|)/(a - 1), 6| = (]Tm ̂ )/(b - I),
and 6;^ = [£fc Em (°£)L]/Kfl ~ W ~ ^l- The terms ̂ ' CvPW, and e^ are in-
dependently and normally distributed with mean zero and respective variances o-J/A, <TQB/A ,
and cre

2. These terms are incorporated in the expected mean squares as dictated by the rules
stated in Chapter 14.

16.4.2 Repeated Measurements in the
Groups-Within-Treatments Design

In several articles reporting experiments of the sort considered so far, more than one score
has been obtained from each subject. For example, scores might have been obtained on
each of c occasions from each of the abgn subjects in a design such as that of Table 16.8.
In that case, there are abcgn — 1 total degrees of freedom. Of these, abgn — 1 are allocated
to the between-subjects sources of variance; these are the terms in the SV column of
Table 16.9. Then, abgn(c — 1) degrees of freedom remain to be accounted for. These
correspond to within-subjects sources of variance that can be obtained by crossing each of
the between-subjects terms with the within-subjects variable, C. Table 16.10 presents the
SV, df, EMS, and error terms resulting from partitioning the within-subjects variability.
Several software packages are capable of dealing with this and other variations of the
groups-within-treatments design provided that the researcher correctly designates nesting
and crossing relations among variables. In the current example, A crosses with B and C, B

TABLE 16.10 THE WITHIN-SUBJECT TERMS IN AN EXTENSION OF THE DESIGN OF TABLE 16.8

SV df

Within subjects abgn (c — \)
C

AC

GC/A

BC

ABC

GBC/A

SC/GB/A

c- 1

(a - l)(c - I)

a(g - l)(c - 1)

(b - l)(c - \)

(a - l)(b - l)(c - 1)

a(g - l)(b - l)(c - I)

abg(n -l)(c~l)

EMS

°e + °lciGB,A + nb<*cciA + nabg^

<*t + VSC/GB/A + nb°cc/A + nbS*lc

°e + VJC/CB/A + nb<JGC/A

ffe + VSC/CB/A + n°GBC/A + n8^BC

ffe + ® SC/GB/A + naGBC/A + nS^\BC
2 ~> i 2

°V "i & SC/GB/A ~r n(JGBCIA
2 _i_ 2

°7 + GSC/GB/A

Error Term

GC/A

GC/A

SC/GB/A

GBC/A

GBC/A

SC/GB/A
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crosses with C, G is nested in A, and G/A crosses with B and with C. The G/A x C and
the G/A x BC are labeled GC/A and GBC/A in Table 16.10.

16.5 ITEMS WITHIN TREATMENTS

In many experiments, participants respond to stimuli that are nested within the levels of
some variable of interest. For example, in the study by Murray et al. (2000), described in
Chapter 13 and cited in the introduction to this chapter, photos of four male and four female
faces were presented in different orientations and rated for bizarreness. In this case, faces
are nested within levels of gender. Both variables cross with orientation because each face
was rated in each physical position. To take another example, researchers have recorded
time spent reading words that were either high or low in English-language frequency. In this
case, words are nested within levels of frequency. Typically, as in these two examples, the
items—faces or words—are most properly viewed as a random sample from a population
of items. One approach frequently taken to the analysis is to reduce it to the Subjects x
Treatments design of Chapter 13. For example, the researcher might obtain the means of
the ratings of the male and female faces. Then there would be two scores for each subject,
the male and female means. The problem with this analysis is that, although the differences
between the male and female means is at least in part attributable to the variability of the
items, the approach ignores that variability. Ignoring item variability inflates the probability
of a Type 1 error because then the error term does not include the variance of the scores
on the items, whereas the numerator of the F does. In this section, a small artificial data
set is used to illustrate the proper partitioning of the total sums of squares and degrees of
freedom, and formulas for quasi-F tests are presented.

16.5.1 An Example of the Design

Suppose that a researcher is interested in the effects of problem difficulty on time to solution.
Each subject is required to solve 12 problems, 4 of which are easy, 4 of intermediate
difficulty, and 4 difficult. In this example, problems are nested within difficulty levels. The
study is further complicated by having subjects nested within levels of experience; 5 subjects
are novices and 5 are experts. The data from such a study are presented in Table 16.11.

The study just described is a specific example of a general design in which there are
n subjects at each of a levels of A for a total of an subjects. Each subject is tested with b
different stimuli at each of c levels of C; in the above example, a — 2 (levels of expertise),
b = 4 (problems within difficulty levels), and c = 3 (difficulty levels). B is nested within
levels of C (B/C) and is assumed to have random effects; C and A are assumed to have fixed
effects. In what follows, we develop an approach to deal with design variations of various
degrees of complexity.

16.5.2 Partitioning the Sums of Squares and
Degrees of Freedom

As in earlier examples involving a between-subjects variable, beginning with Chapter 8, the
between-subjects sources are A and S/A. The within-subjects sums of squares and degrees
of freedom can be partitioned in a similar way. In our problem-solving example, there are
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c x b or 3 x 4, problems. Therefore, there are be — 1, or 11, dffor problems. Part of the
variability among the scores on the be items is because there are c levels of difficulty. This
accounts for c — 1, or 2, of the be — 1 dffor items. The remaining c(b — 1), or 9, df account
for the B/C term (items within levels of C).

To summarize, so far we have listed A, S/A, C, and B/C as sources of variance. The
remaining terms follow after deciding about the crossing and nesting of the sources already
listed. Because there are scores for all combinations of expertise (A) and problem difficulty
(C), A crosses with C yielding AC. Also, because individuals at both expertise levels see all
items, A also crosses with B/C, yielding A B/C. Because all subjects are tested on all items
at all difficulty levels, S/A will also cross with C and with B/C, yielding SC/A and SB/AC.
Note that A and S/A do not cross with each other; nor does C cross with B/C. If a variable
is nested within levels of another variable, the two variables cannot cross. All sources of
variance are presented in the SV column of Table 16.12.

TABIE 16.1 1 DATA FOR A WITHIN-SUBJECTS DESIGN WITH LEVELS OF 8 NESTED WITHIN LEVELS OF A

A!

A2

5,,
52i
531

•$41

55,

5,2

S22

S,2

542

552

811

4.4
4.4
5.0
4.4
4.8

5.0
3.9
3.9
6.1
6.0

c,

82i

5.2
6.0
5.9
5.0
5.5

7.8
6.6
5.6
7.1
7.8

831

5.8
6.1
6.3
5.5
5.3

9.8
8.6
6.5
8.3
9.1

B4i

4.5
4.3
4.8
3.4
5.4

6.0
5.2
3.6
5.7
6.6

8)2

5.5
5.7
5.3
5.2
4.9

8.4
6.1
6.5
6.9
7.9

C2

822

5.7
5.3
6.8
5.2
5.1

8.7
8.3
7.2
9.1
9.9

832

4.2
4.0
4.6
3.5
4.0

5.9
4.9
4.1
5.2
5.9

842

4.8
6.4
6.2
4.9
5.2

8.4
6.1
6.2
6.5
8.0

813

5.4
5.5
6.3
5.8
5.1

8.9
7.6
7.6
9.5
8.8

C3

823

4.2
3.7
5.1
4.6
4.5

5.1
3.9
2.8
6.4
5.4

833

5.6
5.2
4.9
5.4
5.2

7.9
7.7
5.6
7.5
7.0

843

5.6
6.7
5.3
4.5
5.1

9.5
9.0
7.1
8.9
9.2

TABLE 16. 1 2 ANOVA OF THE DATA OF TABLE 16.11

SV

A

S/A

C

B/C

AC

AB/C

SC/A

SB/AC

df

1

8

2

9

2

9

16

72

55

94.70

41.76

4.11

111.47

2.80

25.27

5.00

18.70

MS

94.70

5.22

2.06

12.39

1.40

2.81

.31

.26

EMS

CT; + bc<rj,A + ncrAB/c + nbc%l

ae
2 + bcvj/A

cre
2 + navB/c + bvjc/A + nbaQ£

CT; + naaB/c

°e + WAB/C + basc/A + nb^lc

°? + WAB/C

^e + b^c/A

^

Note. We have not included the &SB/AC component in the EMS because it contributes
to every term.
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As usual, we can check the list of sources by considering the degrees of freedom. The
between-subjects degrees of freedom are partitioned into two components:

The within-subjects sum of squares will be on an(bc — 1) df because the variance of
scores for a single subject will be on be — 1 df, and there are an subjects. Or, we can
subtract an — 1 from the total degrees of freedom, abcn — 1, again obtaining an(bc — 1)
df for the within-subjects sum of squares. This within-subjects term can be partitioned

TABLE 1 6. 1 3 QUASI-F TESTS FOR THE DATA OF TABLE 16.11

These tests follow from the entries in the expected-mean-square column of Table 16.12

Note. Both quasi-F's are significant at the .01 level. Note that they give very similar results; /s is
slightly smaller then F!, but has an error term with one more df.
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as follows:

The partitioning of sums of squares follows the same pattern. As we noted previously,
several software packages provide commands enabling the user to obtain the nested terms.
Appendix 16.1 provides an alternative approach that requires only the capability to handle
mixed designs such as those in Chapter 14.

The numerical results, together with expected mean squares, are presented in Table
16.12. The lack of a column of F values is not an oversight; the terms in the EMS column
indicate the need for quasi-F ratios. We construct these next.

16.5.3 Quasi-F Ratios

Turning to the EMS column2 of Table 16.12, we first note that there is no single source of
variance that provides an error term against which to test A. lfMSA is divided by MSs/A—as
was the case in the designs of Chapters 8,12, and 14—a significant result could be due to A
or the nested AB interaction; that is, either 0^ or o-^fl/c, or both, could be greater than zero.
Table 16.13 illustrates two methods of computing a quasi-F test of A. In both cases, the p
value is .004. Tests of the C and AC sources of variance can be similarly constructed. We
leave this as an exercise for the reader.

16.6 CONCLUDING REMARKS

Although there are countless variations of the hierarchical design, all yield to the same
principles of analysis that have been applied in the preceding chapters. The first step is
to have a sound understanding of the layout of the design. Which variables are nested in
which others? Which variables cross each other? Which are between-subjects and which
are within-subjects variables? No matter how sophisticated the software used for analysis,
these questions must be answered to obtain the correct partitioning of total variability and
degrees of freedom. In addition, we must determine which variables are to be viewed as
random, which as fixed. This is not always an easy decision; the answer depends on how
levels of the variable have been selected and on the range of generalization we intend. Once
variables have been classified, application of the rules of thumb will yield the expected
mean squares. These provide a check on the error terms and a basis for estimating effect
size and for power calculations.

Data analysis is particularly sensitive to the choice of a structural model. If certain
variables are assumed to have negligible effects, it is possible to pool terms and consequently
have more error degrees of freedom. This results in tests of greater power and the avoidance
of quasi-F ratios. Although such consequences of simplifying the model are desirable, we
have espoused a more conservative approach to model construction and therefore to data
analysis. We prefer to assume a general model, incorporating all possible effects. Ignoring
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some variance components that make a more than negligible contribution to the variance in
the data can lead to Type I errors in testing treatment effects of interest.

The presence of other random-effects variables besides subjects, a characteristic of the
designs of this chapter, raises additional considerations in planning the experiment. One
important point is that merely running many subjects will not ensure sufficient power to
test null hypotheses of interest. In the designs of Sections 16.2-16.4, the value of g—the
number of social groups, classes, litters, and so on—is the critical determinant of error
degrees of freedom and thus of power. It is important to work out the actual analysis of
sources of variance and degrees of freedom before collecting data, and to modify the design
in whatever ways seem necessary to obtain powerful tests of effects of interest. In the
extreme case in which g = 1, there is not only a loss of power, but also a confounding of
groups and levels of A. If one class is taught by one method and another by a second, is a
difference in class means due to the different methods or to differences in the interperson
interactions within the two classes? To determine the effect of the treatment, we need some
measure of variability among classes taught by the same method. Experimenters often don't
realize that the failure to replicate groups within levels is not particularly different from
running one subject at each level of A in a simple completely randomized one-factor design.
Similar comments hold for the designs of Section 16.5. When stimuli are a random sample
from some population, the power of the test of treatment effects depends on the number of
stimuli.

KEY CONCEPTS

hierarchical designs
nesting
pseudogroup procedure

crossing
items-within-treatments design
quasi- F procedure

Note. The designs are becoming more complicated. Therefore, in the following problems,
indicate which variables are between-subjects variables, which are within-subjects variables,
which ones are nested and what they are nested in, and which variables have fixed and which
have random effects. Also, a few of these problems will require quasi-F (F') tests of the
effects of interest. When this is the case, present the test and the associated degrees of
freedom.

EXERCISES

16.1 A group of personality researchers hypothesized that the self-image children have
is related to their socioeconormc background, but that this is less the case for males
than for females. To examine this question, they selected three school districts (D),
each representing a different social stratum, for inclusion in the study. Five sixth-
grade classes (C) were randomly sampled from each school district, and 10 students
of each sex (X) from each class were then randomly selected and asked to fill out
a self-evaluation form. The researchers performed the following analysis:
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(a) Present an alternative ANOVA table (SV, df, EMS).
(b) What inferences might be changed by doing the analysis this way? Why?

16.2 A therapist meets with 12 groups (G) for an hour each week. Each group consists
of three males and three females (sex, X). Six of the groups are engaged in a type
of directed therapy and the other six in nondirected therapy (T). Self-ratings are
collected after a year of therapy and analyzed. Present the SV, df, EMS, and F tests.

16.3 An educational psychologist divides the 240 students in an Introductory Psychology
course into 40 six-person discussion groups (G). There are four graduate student
discussion leaders (L), each responsible for 10 groups. Half of the groups for each
leader are taught by a didactic method in which the leader lectures and responds
to questions from the six group members; the other five groups for each leader are
taught by an interactive method in which the leader is strictly a resource person,
monitoring the discussion and speaking only when the group can go no further in
discussing a problem. Call this variable method (M). The dependent variable is the
score on the midterm.

Present SV, df, EMS, and F tests. Is L a random-effect or fixed-effect variable?
16.4 Six high schools (Sc) are chosen at random for an experiment testing the effective-

ness of an educational software package that is to be used at three of the schools,
but not at the other three; call this variable P (package). The 120 students in the
study come from 12 classes (C), two from each school. The measures are the scores
on two tests (71), a midterm and final given to each subject.
(a) Present the SV, df, EMS, and F tests.
(b) Redo your answer assuming the design is changed so that the software package

was used in one of the two classes at each of the six schools.
16.5 A list of 50 stimulus items to be used in a memory task is constructed in the

following way: First, 5 large pools of items are selected that differ with respect to
meaningfulness (M). Then 10 items (/) are randomly selected from each pool. The
list of 50 items is presented to 20 subjects, so that there is a total of 1000 scores.

Present all SV, df, and EMS, and an F test for M (meaningfulness), including
its df.

16.6 A researcher wishes to study the effects of viewing televised violence on the behav-
ior of children. She has a large sample of adult viewers rate the level of violence of a
large number of episodes randomly selected from typical Saturday morning cartoon
presentations. She then chooses 15 episodes; 5 of these are viewed as representative
of a population of low-violence episodes; 5 more are medium, and 5 more are high
in violence. Thus, there are three levels of violence (V), with five different episodes
(E) at each level. Subjects are 6, 8, and 10 years old. Each of several dependent
measures will be subjected to an ANOVA. One way to run the study would be

SV

Total
District (D)
Sex (X)
D x X

S/DX

df

299
2
1
2

294
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to minimize the number of subjects needed. We might use 10 subjects at each age
level. Each child would be tested on each of 15 days with a different episode viewed
on each day; the order of episodes would be random.

Present SV, df, and EMS, and the F test for the A effect.
16.7 There are many alternative designs for the study in Exercise 16.6. One possibility

is to have both age and violence be between-subject variables. There are 9 groups
of 10 subjects each, and each child views five episodes, all at the same level of V.
Again, state SV, df, and EMS, and the F test for the A effect.

16.8 The members of each of 10 groups of three monkeys have been raised together.
In five of the groups, the group members were separated at 6 months of age; in
the other five groups, separation occurred at 1 year. At age 2, all monkeys were
tested on four problems in the presence of their original cohorts and on four other
problems with no other monkeys present. Thus, we have 2 levels of age (A) of
separation, 8 different problems (P), and 2 test environments (£"). We also have
30 monkeys who comprise 10 different groups.

Present an F test for the AE term. Include the df and justify with the relevant
EMS.

16.9 The design in Exercise 16.8 involved 240 observations. We could do the same study
using 240 monkeys reared in 80 three-monkey groups. Half of these groups would
be separated at 6 months of age and half at 1 year. Of the 40 groups at A\, the
members of five would be tested on Problem 1; the members of another five groups
would be tested on Problem 2; etc. The same would be done with the 40 groups at
A.I. Problems 1-4 are those tested in the social environment and Problems 5-8 are
those tested in the individual environment.
(a) Present an F test for the AE term. Include the df and justify with the relevant

EMS.
(b) What are the pros and cons of the two designs presented? There are both statis-

tical and practical considerations.
16.10 The file Exl6_10 in the Exercise folder of your CD contains problem-solving

scores from 60 subjects. The subjects were in one of three conditions: (1) practice
in problem solving was conducted in a four-person group with a leader appointed
by the experimenter (Leader = appointed); (2) the group practice was led by a
leader elected by the group (Leader — elected); and (3) no leader was designated
for the group (leader = noleader). In each condition, there were five groups of four
members each, two males and two females. Carry out an ANOVA, testing for the
effects of leader, gender, and their interaction.

16.11 In a follow-up experiment to that in Exercise 16.10, the "noleader" condition was
compared with a "nogroup" condition in which subjects practiced individually. The
data are in the Exl6_ll file. The 20 individual scores are coded as though they
had been in groups (see the discussion of pseudogroups in Section 16.3.1). Test the
effect of groups versus individuals using (a) the pseudogroup method and (b) the
quasi-F method.

16.12 In several recent experiments, researchers have presented participants with mate-
rial to read that was designed to prime their attitudes about subsequently presented
descriptions of individuals (e.g., Stapel & Koomen, 2000). For example, on a given
trial, a participant might read a sentence designed to prime a positive or negative
attitude toward some personality trait. Following that, the participant would read a
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description of an individual that was ambiguous with respect to the trait and would
have to rate the individual on a 1 (very positive) to 7 (very negative) scale. The file
Ex 16_ 13 contains a data set we created for a possible study of this sort. One indepen-
dent variable is Sex = M or F. There are four conditions: a sentence primed either a
positive (P) or negative (N) attitude, and was either relevant (R) or irrelevant (/) to
the trait that was rated after reading the subsequent description. There are five items
(prime-description pairings) in each condition so that there are 20 ratings for each of
12 male and 12 female participants. Present SV, df, SS, and MS. Then test the V and
R x V terms. Discuss the results.

APPENDIX 16.1

Calculating Sums of Squares for Nested Terms

In the absence of software capable of calculating nested sums of square for the data in
Table 16.11, we can make do with any program that can handle one between-subjects and
two within-subjects variables. Enter the data as if the levels of B cross with C in Table 16.11.
We now have a variable, Bf, with the same four levels at each level of A. Proceeding with
the analysis in this way, the within-subjects sources of variance and degrees of freedom are
as follows:

Note that dfB, + dfB,c = (b - 1) + (b - l)(c - 1) = c(b - 1), the degrees of freedom
for B/C, one of the terms in the correct ANOVA of Table 16.12. We take advantage of the
one-to-one relation between degrees of freedom and sums of squares to arrive at SSB/c =
SSB' + SSB'c- Similarly, SSAB/C = SSAB* + SSAB'C and SSss/AC = SSss'/A + SSss'c/A- The
correct degrees of freedom are arrived at in a parallel manner.

SV

B'
C
B'C
AB'
AC
AB'C
SB'/A
SC/A
SB'C/A

df

b- 1
c- 1

(b - \)(c - 1)
(a - \)(b - 1)
(a - l)(c - 1)
(a - l)(b - l)(c - 1)

a(n - l)(b - 1)
a(n - l)(c - 1)
a(n - l)(b - l)(c - 1)



Chapter 17
Latin Squares and Related
Designs

17.1 INTRODUCTION

An important consideration in designing an experiment is the efficiency of the design; all
other things being equal, research should be designed to minimize the effects of chance fac-
tors. As chance variability decreases, statistical power increases, and with it the probability
of detecting effects of the independent variable. One way to increase design efficiency was
described in Chapter 12. There we showed that assigning subjects to blocks on the basis of
a measure related to the dependent variable could greatly reduce error variance, and thus
increase the likelihood of detecting treatment effects if these exist in the population. The
repeated-measures design of Chapter 14 is still more efficient. This design permits further
reduction in variance due to individual differences; because every subject experiences all
conditions, differences among subjects do not contribute to differences among the means
for the different conditions. In this chapter, we consider a class of experimental designs that
have the potential for still greater reductions in error variance. We begin by considering a
research example that should provide a sense of the design, its potential benefits, and some
potential problems.

Suppose we wish to compare the relative effects of five different drug dosages on the
ability of monkeys to learn a discrimination. Our measure will be the number of correct
responses in a block of 20 trials. Monkeys are expensive subjects and so a between-subjects
design will not be used. In fact, we will use only five subjects, testing each under a different
dosage on a different day. One way to do this is to select a different random order of the five
dosages for each subject. Using a random number table, or a computer-generated sequence
of random numbers, the resulting five sequences of dosages might be as follows:

457
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where Aj is the y th dosage. Averaging over the five subjects, some dosages are presented
relatively earlier in the sequence than others; AI, for example, never appears later than
the third day, whereas only Subject 4 experiences AS before the third day, This may not
have any effect on performance; on the other hand, boredom may slow down, or practice
speed up, responses late in the series of days. Because all dosages have an equal chance
of presentation on each of the 5 days, no dosage has a systematic advantage over many
replications of the experiment; therefore, the statistical test of A is unbiased. Nevertheless,
this chance variability due to the day of presentation does reduce the power of the test to
detect effects of A. In a more efficient design, the variability due to days would be removed
from the data much as the variability due to subjects was removed in the repeated-measures
design. This could be done by having each dosage appear equally often on each of the
5 davs. An examole of this would be:

This design is called a Latin square; it is characterized by the fact that each level of A
appears exactly once in each row and column.

Because each subject and each level of A is represented exactly once in each col-
umn of the Latin square design, variability due to columns (days in this example) can be
extracted from the total sum of squares. The Latin square design allows the removal of
variability due to two sources of error, subjects and days in our example. In contrast, in
a Subjects x Treatments design, only error variance due to subjects is removed; random
variability due to days contributes to ae

2. Because the error variance is potentially smaller
in the Latin square than in the Subjects x Treatments design, the Latin square is potentially
a more efficient design.

We say "potentially a more efficient design" because there are also some potential
problems that do not arise in the Subjects x Treatments design. One problem arises because
the Latin square is what is often called an incomplete block design. This means that
each subject (block) in our example is not tested under the complete set of 25 possible

Days

Subject

1
2
3
4
5

1

A,
A2
A3
A4
A2

2

A2
A,
A2
At
A,

3

A,
A3
A,
A2
A?

4

A4
A5
A4
A)
A4

5

A5
A4
A5
A,
A,

Days

Subject

1
2
3
4
5

1

A2
A,
A,
A5
A4

2

A,
A4
A,
A3
A2

3

A,
A5
A2
A4
A3

4

A3
A2
A4
A,
A5

5

A4
A3
As
A2
A,
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combinations of drug dosage (A) and days. Because of this, there are not enough total
degrees of freedom to perform independent tests of the A, subjects, and days effects, and
their interactions. For example, there are 24 (25 — 1) df available for assessing the variability
among the cell means. Twelve [3 x (5 — 1)] of these are associated with the main effects
of subjects, days, and drug dosage. This leaves only 12 df to account for all the possible
interactions, any one of which requires at least 16 [(5 — 1) x (5 — 1)] df. Our inability to
calculate interaction sums of squares poses no problem if row, column, and treatment effects
are additive; that is, if there are no interactions among these variables in the population.
However, if such interactions are present in the population, they may affect our conclusions.
We will consider this issue at several points in this chapter.

A second potential problem, as with any repeated-measures design,1 is carry-over
effects. Consider the example of tests under different drug dosages on different days. The
Latin square controls for any potential effect of practice in the discrimination task by
ensuring that each drug dosage is presented once on each of the 5 days. However, it does
not control for the sequencing of treatments. If, in our example, A\ has an effect that lasts
for more than 1 day, performance under A 2 might be affected more than performance under
other levels of A because A 2 follows AI twice, whereas other treatments follow A\ zero or
one time. One way of minimizing such effects of the sequences of treatments is to increase
the time period between treatments. However, using a long enough recovery period may not
be feasible in some experiments. For example, in research with young children, prolonging
a session, or requiring subjects to serve over an extended number of sessions, is often
undesirable. An alternative to the recovery period is a variation on the Latin square design
in which each treatment is followed equally often by every other treatment. We will consider
such variations in this chapter.

A necessary step in using the experimental designs of this chapter is the selection of the
Latin square. We begin by demonstrating how this is done. We then proceed to consider the
data analysis. Finally, we describe some modifications and extensions of the basic design.

17.2 SELECTING A LATIN SQUARE

The expected mean squares we present in this chapter are based on the assumption that the
Latin square used in the experiment has been randomly selected from the population of
possible squares. In this section, we consider procedures for selecting a square so that the
random-selection assumption will be justified. This is straightforward for 2 x 2 squares; only
two such squares are possible. There are 12 possible 3x3 squares. We could enumerate
these and select a random number from 1 to 12 to choose the one for our experiment.
However, it is simpler to obtain a square for an experiment by permuting the rows and
columns of a standard square; this is a square whose first row and first column is in the
standard order: (A\. A2, A^). The only possible 3x3 standard square is

To construct a random member of the possible set of 12 squares, begin by permuting all
rows but the first. To do this, draw the numbers 2 and 3 in random order and reorder the
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rows accordingly; for example, if the sequence is (3,2), the new square is

Now draw the numbers 1, 2, and 3 in random order. This time, permute the columns.
Assuming the sequence is (3, 1,2), the square is now

Note that the row permutation stage involves two possible orders of rows; this combines
with six possible orders of columns to generate the entire population of 12 possible squares.

There are four 4x4 standard squares:

To obtain a random square from the population of 4 x 4 squares, select a number at
random from 1 to 4 and begin with the corresponding standard square. Then permute all rows
except the first and all columns as we did in the example of the 3 x 3 square. Note that this
procedure generates 3!4! possible squares for each of the four standard squares Therefore,
we are selecting one square at random from the population of 576 (4 x 3! x 4!) squares.

The number of standard squares increases rapidly as a, the number of treatment lev-
els, increases. Therefore, the procedure used for a = 4 is impractical for larger squares.
A reasonable approach is to arbitrarily select a standard square, permute all rows, then
all columns, and finally all letters. We did this to arrive at the 5 x 5 square presented in
Section 17.1. We start with the standard square

A table of random numbers yields the values (2,4,3, 1,5}; the rows are permuted
accordingly:
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We turn again to the random number table and this time get (4, 1, 2, 5, 3), resulting in the
following column permutation:

Draw one more set of random numbers; this time we have (4, 2, 5, 1,3). We will replace
the AIS in the above square by the A4s, the A2S will be in the same cells, the A3S will be
replaced by the A5S, and so on. Then the final square to be used in the experiment is

This procedure should be used whenever there are five or more treatment levels. Although not
all squares have an equal opportunity to be sampled, the approach adequately approximates
random sampling from the complete set of squares of size a x a.

17.3 THE SINGLE LATIN SQUARE

We begin our discussion of the data analysis using the 5 x 5 square selected in Section 17.2
and the example introduced in Section 17.1. Recall that each level of A is a drug dosage,
each row is a subject, and the columns are days. This single Latin square is the simplest use
of the Latin square principle; possible extensions include running more than one subject
through each sequence of treatments, and using more than one a x a square. When only a
single square is used with one subject in each sequence, the square should be at least 5x5 .
Anything smaller is likely to have too few degrees of freedom associated with the error
mean square to provide adequate power to detect treatment effects.

17.3.1 TheANOVA

Table 17.1 presents the data collected using the 5x5 square obtained in Section 17.2. Most
computer packages can analyze these data. Typically, each score is entered with its row,
column, and treatment level coded. For the data set of Table 17.1, we would have a data file
looking like this:
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TABLE 17.1 EXAMPLE OF A SINGLE LATIN SQUARE

c1
S1

S2

s3
s4
S5

~(A1)17
(A3)14
(A4)13
(A2)14

L(A5) 8

C2

(A2)18
(A,)16
(A3)15
(A5)14
(A4)10

C3

(A4)18
(A5)16
(A1)18
(A3)16
(A2)12

C4

(A3)19
(A2)18
(A5)16
(A4)17
(A1)14

C5 Y i..
(A5)20
(A4)17
(A2)18
(A1)19
(A3)14

18.4
16.2
16.0
16.0
11.6

y..k = 13.2 14.6 16.0 16.8 17.6 Y . = 15.64

The means for the levels of A are

A1 A2 A3 A4 A5

Y.j. = 16.8 16.0 15.6 15.0 14.8

Note. C = days; A = drugs.

where S is the subject number, C is the day, A is the level of A, and Y is the score. In SPSS's
GLM module, click on the Model option and indicate "Main Effects." The SPSS output
is presented in the upper panel of Table 17.2. Other statistical software programs provide
other options for analyzing data from Latin square designs.

The lower panel of Table 17.2 presents the expected mean squares that justify the error
term for each F test. These expected mean squares, as well as the partitioning of variability
into the sources presented, reflect a structural model considered in the next section. The sums
of squares for the total, subjects (5), drug dosage (A), and days (C) are calculated exactly
as in the preceding chapters. The residual sum of squares (the "error" term in Table 17.2)
is exactly that, a residual of the total variability after removal of SSs, SSA, and SSc. All
F ratios are constructed by testing the numerator source of variance against the residual
term. Note that there is considerable variance due to days (C). In a repeated-measures
(Subjects x A) design, this variance would have been included in the error variance, and the
F test of A might not have had a significant outcome. Also, confidence intervals on trend
components or on possible contrasts would have been considerably wider. The success of
the design lies in the fact that performance improved over days, and the Latin square design
enabled us to remove the variance attributable to days from the error variance. We will have
more to say on this point in Section 17.3.3.

17.3.2 The Structural Model
We now consider the model that justifies the analysis of Table 17.2. The advantages of the
Latin square are clear and the interpretation of the analysis straightforward if the following
additive model can reasonably be assumed:

where i indexes the subjects (rows of the square), j indexes the treatment levels, k indexes
the columns, and there are a levels of each of the three variables.

As in Chapter 13, the term "additive" refers to the additivity of main effects; no interac-
tions are assumed to be present in the model. For our example of drug dosages administered
over days, we assume that A (treatments) and C (columns) are fixed-effect variables. We
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TABLE 17.2 SPSS RESULTS OF AN ANOVA OF THE DATA OF TABLE 1 7. 1 AND EXPECTED MEAN SQUARES

Dependent Variable: Y

Source

Intercept Hypothesis
Error

C Hypothesis

Error
A Hypothesis

Error
5 Hypothesis

Error

(a) SPSS Results

Tests of Between-Subjects Effects

Type III Sum
of Squares

6115.240
122.560
61.760
2.480

12.960
2.480

122.560
2.480

df

1
4
4

12
4

12
4

12

Mean Square

6115.240
30.640a

15.440
.207b

3.240
.207b

30.640
.207b

F

199.584

74.710

15.677

148.258

Sig.

.000

.000

.000

.000

a. MS(S)

b. MS(Error)

Note. The Intercept term tests the null hypothesis that the population grand mean is zero.

(b) Expected Mean Squares

SV

S

C

A

Residual

df

a- 1

a - l

a- \

(a - l)(a - 2)

EMS

ae
2 + ao2

s

p2
e + at2c

p2
e+at2A

p2
e

If C contributes more than chance variability, this analysis results in a negatively biased
F test. The error term in this analysis is a pool of the C and residual mean squares and

consider days to be a fixed-effect factor because time periods such as days are usually
arbitrarily selected; ordinarily, we do not randomly select the days for testing. Later in this
chapter, we will consider cases in which C might be a factor other than time periods and
might have random effects. Under the present assumptions, Ejaj= EkBk=0. Also, the
ni and eijk are normally distributed random variables with zero means and variances 07
and p2

S , respectively. The expected mean squares derived from this model are presented in
Table 17.2. If Equation 17.1 adequately describes the population of scores, the Latin square
design provides the basis for a very efficient test of effects, because we have removed er-
ror variance due to both the row and column variables. It should be emphasized that this
efficiency is realized only if the proper analysis is carried out. Frequently, researchers coun-
terbalance treatment levels over positions in time, or with respect to some other variable, and
then partition the total SS into only three components: SSA , SSs, and SSSA • This partitioning
implies a different structural model, one in which the effect of C (yk) is absent:



17.3.3 Relative Efficiency

We argued in the introduction to this chapter that the Latin square design should have less
error variance associated with it than the Subjects x Treatments design, because the former
permits us to remove variance due not only to individual differences (or, more generally,
rows), but also to columns. This intuitive argument can be supported in a more formal way.
Assume a Subjects x Treatments design with a subjects and a treatment levels, and a Latin
square design with the same dimensions. Then it can be shown (Myers & Well, 1995, p.
375) that the relation between the error terms in the two designs is

If MSc > MSresidual, MSSA (the Subjects x Treatments error term) will be larger than
MSresidual (the error term in the Latin square design). Therefore, we can expect F tests
of treatments to be more powerful with the Latin square design. However, MSresidual has
fewer degrees of freedom than MSSA, which lessens the advantage of the Latin square er-
ror term. To account for this, Fisher (1952) proposed the following measure of relative
efficiency of Design 1 to Design 2, originally cited in Chapter 13:

Note the adjustment for error degrees of freedom ( d f 1 and d f 2 ) .
In the example of the drug dosage experiment, assume that we have used the Latin square

design and want to decide whether it will be more efficient than the Subjects x Treatments
design in future studies. The Latin square degrees of freedom are df1 = (a — l)(a — 2) = 12
in our example. The degrees of freedom for the alternative repeated-measures design are
df2 = (a — 1)(n — 1) = 16 (because n = a). Applying Equations 17.2 to the mean squares
in Table 17.2, the estimate of MSSA is

Replacing MSerror 2 in Equation 17.3 by 3.254 and MSerror 1 by MSresidual (.207), the efficiency
of the Latin square relative to the repeated-measures design is

therefore

Failure to detect an effect of A when tested against this error term might reflect an absence
of A effects in the population, or large enough C effects to obscure effects of A. To minimize
the possibility of a Type 2 error due to the presence of C effects in the denominator of the
F test of A, the complete analysis of Table 17.2 should always be carried out.

If the data are properly analyzed, the Latin square should be a more efficient design
than the Subjects x Treatments design of Chapter 13. Let's consider this point next.

464 17 / LATIN SQUARES AND RELATED DESIGNS
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To achieve equivalent power with the Subjects x Treatments design would require approx-
imately 12 times more subjects than using (and properly analyzing the data from) the Latin
square design. Of course, this conclusion might be quite different if days had not contributed
so much variance. However, factors such as practice, fatigue, and boredom can be expected
to frequently influence performance, contributing more variability than even the treatment
of interest.

17.3.4 Estimating Missing Scores

Assuming Equation 17.1, missing scores can be estimated following a derivation similar
to that in Chapter 13. Let Xijk be the missing score. Then, its expected value follows from
Equation 17.1:

Substituting estimates of effects into Equation 17.4, the estimated value of X is

Simplifying and solving,

where T .is the sum of all the scores (except the missing one), Ti.. is the sum of scores for
the ith subject, T.j. is the sum of scores for treatment Aj, and T..k is the sum of scores in the
kth column of the square. If several scores are missing, the iterative procedure described in
Chapter 13 can be used.

17.3.5 Nonadditivity

In the preceding sections, we assumed complete additivity; that is, no interactions among
S, C, and A. Because this model is unrealistic in many, perhaps most, situations, it is
important to examine the consequences of nonadditivity. A nonadditive model incorporating
all possible interactions is

As in the additive case, ni, aj, and yk reflect S, A, and C effects.
Wilk and Kempthorne (1957) derived the expected mean squares for the Latin square

design based on Equation 17.6. Table 17.3 presents their results for two cases, when C has
fixed effects and when C has random effects. In both cases, S represents subjects and is
assumed to have random effects, and A, the treatment variable, is assumed to have fixed
effects. Note that components of variance are present in the expected mean squares that the
rules of thumb of Chapter 14 would not suggest. For example, when C has fixed effects,
t2

AC contributes to the variance of the subject (5) means. The reason for this is that the Latin
square is an incomplete block design; only a subset of all possible AC interaction effects



contribute to a subject's data, and the subset differs among subjects, thus contributing
to differences among the subjects' mean scores. For a similar reason, p2

SC contributes to
E(MSA) even though the rules previously given for constructing expected mean squares do
not require it. In general, whether the effects are fixed or random, p2

SC influences MS A , p2
SA

influences MSc, t2
AC influences MSS, and the three-way interaction contributes to the mean

squares for all three variables. Such confounding of effects is typical of incomplete block
designs—that is, designs in which all combinations of two variables are not present at each
level of a third variable.

Nonadditivity has some undesirable consequences. When the null hypothesis is false,
the addition of a component of variance to numerator and denominator tends to reduce
the F ratio and therefore tends to reduce power. The presence of some interactions in the
population also can cause bias in the F test. If C is a fixed-effect variable, the interaction
variance component, t2

AC, will contribute to MSresidual but not to MSA or MSC . Thus, if
t2

AC > 0, the test of A will be negatively biased. If this interaction variance is large relative
to variance among the population means for the treatment levels, Type 2 error rates will
be high.

Despite such potential bias, the Latin square design often provides a more powerful
test than the Subjects x Treatments design. For this to be the case, t2

AC should be small,
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TABLE 17.3 EXPECTED MEAN SQUARE FOR THE SINGLE LATIN SQUARE
(NONADDITIVITY ASSUMED)

5 Random, C and A Fixed

SV

S

A

C

Residual

EMS

S and C Random A Fixed

SV

5

A

C

Residual

EMS
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and t2
C should be large. In short, the negative bias should not overwhelm any potential

treatment effects, and blocking with respect to columns should have a large payoff in the
form of a reduction of error variance. These conditions will often be met.

When C has random effects, the F test of A is unbiased, regardless of which variance
components are present in the population. This can be seen in the bottom panel of Table 17.3
in which t2

AC contributes to both the A and residual mean squares. C might be considered
a random-effects factor in many experiments. Often, stimuli such as pictures, sentences, or
passages are randomly divided into c sets, each of which is assigned to a different level of
a treatment variable, A. The assignment is counterbalanced so that the design is a Latin
square with the levels of C representing sets of items. Assuming that the items represent
a random sample from a population of items, the levels of C can be viewed as randomly
sampled.

Let's sum up the consequences of nonadditivity in analyzing data from a design using
a single Latin square. When C has random effects, or when t2

AC is zero, the F test of
treatment effects is unbiased. Under other conditions, the bias will be negative because t2

AC

will contribute to MSreSidual, but not to MSA- Even if such bias is present, the Latin square
usually will provide a more powerful test of A effects than will other designs because row
and column main effects will not contribute to the Latin square's error variance. However,
estimates of t2

A, will be systematically too small in the presence of negative bias.
Provided there are sufficient data, nonadditivity may be detected by plotting residuals.

As with the repeated-measures design, we can calculate the values of Yijk that are expected
under the additive model:

If the data are additive, the residuals, Yijk — Yijk, plotted as a function of the predicted
value, Yijk, will vary randomly about a line with slope of zero. Figure 17.1 presents such
a plot for the data of Table 17.1. Although the points are widely scattered, there is no
systematic trend and the slope is clearly not different from zero; the confidence interval
for the slope of the best-fitting straight line is bounded by — .05 and .05. In figures such as
Fig. 17.1, one or two deviant points would suggest the possibility of miscalculation of the
data point, or a need to replace the subject. A systematic pattern such as a curved function
would suggest nonadditivity that may be corrected by a power transformation (i.e., Y p ) .
However, we again emphasize that transformations result in tests of null hypotheses on a
scale other than the original data scale. If the original scale has no firm theoretical or practical
basis, and the new scale is as readily interpreted, such transformations make sense, but not
otherwise.

The residual plot can be supplemented by a test of nonadditivity (Tukey, 1952). The test
requires extensive calculations (which are not generally available in computer packages),
is not sensitive to all patterns of nonadditivity, and requires a large enough square to ensure
power. Our inclination is to rely primarily on plots of residuals to inform us about the
presence and nature of nonadditivity in our data. Finally, we note that nonadditivity opens
the possibility of nonsphericity. The epsilon (E) adjustment of degrees of freedom, described
in Chapter 13 is appropriate for the Latin square as well.



Fig. 17.1 A plot of residuals for the data of Table 17.1.

17.3.6 Incorporating Several Treatment Variables Into a
Single Square

Even in a single Latin square, the interaction of two variables, A and B, can be analyzed,
provided that all possible combinations appear exactly once in each row and column of the
square. Consider a study of visual perception in which targets are presented for a brief period
of time. The targets are either large or small and are presented for 50 or 100 ms. Each subject
experiences a block of 20 trials under each of the four possible treatment combinations, and
the dependent variable is the number of correctly identified targets in each block. In this
case, the Latin-squared treatments form a 2 x 2 design (Size x Duration). An example of
the design using one subject in each of four sequences of trial blocks, together with a set
of scores, is presented in Table 17.4. Table 17.5 contains the results of the analysis of these
data. The calculations are essentially the same as those for a single Latin square. The only
difference is that we now calculate SSA, SSB, and SSAB rather than a single treatment sum
of squares.

In general, there are ab rows and ab columns; because a = b = 2 in Table 17.4,
ab = 4. The model underlying the sources of variance and the expected mean squares in
the ANOVA of Table 17.5 is

where i indexes subjects (i =1,2, . . . , ab), j indexes the levels of A (size: j = 1, 2 , . . . , a),
k indexes the levels of B (duration: k = 1, 2, . . . ,b), and m indexes the columns (trial block:
m = 1,2,.. .ab). In the present example, we assume that the aj,Bk,(ab)jk, and Ym are fixed-
effect variables, and therefore £jaj = EkBk =Emym= Ej(ab)jk = Ek(ab)jk = 0.
The ni and eijkm are random-effect variables independently and normally distributed with
mean zero and variances oe

2 and ps
2 , respectively.
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17.4 THE REPLICATED LATIN SQUARE DESIGN

The single Latin square design discussed so far is useful in situations in which it is impractical
to collect data from more than a small number of subjects. Perhaps more commonly, the
square is replicated n times; that is, a groups of n subjects are assigned to each of the a
sequences. Then there are an subjects, each with a scores. In the following sections, we
first present the proper partitioning of sums of squares, and then consider the F tests based
on two models, one assuming that C is a fixed-effect variable and the other assuming that
C has random effects.

17.4.1 Partitioning the Sums of Squares

Table 17.6 presents group means from an experiment reported by Cook, Myers, and O'Brien
(2000). The column factor, C, represents 3 sets of 8 short texts each. The factor, A, represents
3 versions of each text, differing with respect to information in the early part of the text

TABLE 17.4 A LATIN SQUARE DESIGN ALLOWING TESTS OF INTERACTION

c1
S1 11 (A1B2)
S2 6 (A2B1)
S3 2 (A2B2)
S4 5 ( A 1 B 1 )

Y...m=6

C2

16(A2B1)
13 (A2B2)
13(A1B1)
6(A1B2)

12

C3

20 (A1 B1)
13(A1B2)

9 (A2B1)
4 (A2B2)

11.5

C4

15 (A2B2)
18(A

1
B

1
)

10(A1B2)
7 (A2B1)

Yi...
15.5
12.5
8.5
5.5

12.5 Y...= 10.5

Treatment Means (Y .jk.)

B1

A1 14
A2 9.5
y..k. 11.75

B2 Y
10 12
8.5 9
9.25 10.

•j..

5

TABLE 1 7.5 THE ANOVA FOR THE DATA OF TABLE 1 7.4

SV

S

C

A

B

AB

Residual
Total

df

ab-l = 3

ab-l=3
a-1 = 1
b-l = l

(a-l)(b-l)=l
(ab - 1)(ab - 2) = 6
(ab)2 - 1 = 15

SS

232

110

36

25

9

4

416

MS

77.333
36.667
36.000
25.000
9.000

.667

F

116.00
55.00
54.00
37.50
13.50

EMS

pe
2 + abp2

S

pe
2 + abt2

C

a2
e + a b 2 t 2

A

p2
e + a2bt2

B

p2
e+abt2

AB

p2
e

aMSresidual is the error term for all F tests. All effects are significant at the .01 level.
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that was referred to in the last sentence of the text. Note that the design is a Latin square,
differing only from the single Latin square in that each value in a cell represents a mean of
10 scores. For example, the 10 subjects in Group 1 read version A 2 of the eight texts in set
C1; the subjects in Group 2 read version A3 of the C1 texts; and the subjects in Group 3
read version AI of the C\ texts. The means are based on the time each subject took to read
the final sentence of the text; that sentence was the same in all three versions.

We begin the partitioning of degrees of freedom and sum of squares by first considering
the variability among the a2 cell means, the SScells, distributed on a2 — 1 df. Subtracting
SSgroups, SSA, and SSC from SScells, we have a between-cells residual sum of squares

(SSBCR); that is,

and accordingly,

Table 17.7 presents a complete partitioning of sums of squares and degrees of freedom.
We will postpone discussion of the F tests until after consideration of expected mean
squares. For now, we focus on obtaining the sums of squares. In most software packages,
this is done fairly easily. We began by constructing a data file with 30 rows (one for each
subject) and 7 columns. The first column contains the group code, in our case a number
from 1 to 3, depending on the group. The next three columns contained the scores at each
level of A. The final three columns contained the same scores, but rearranged so that each
column corresponded to a level of C. We ran two mixed-design ANOVAs with groups as the
between-subjects factor.2 In the first, A was the within-subjects variable and in the second
C was the within-subject variable. The SSgroups and SSs/groups terms are the same in both
analyses. Calculation of SSBcR follows from its definition:

TABLE 17.6 CELL MEANS FOR A REPLICATED LATIN SQUARE (COOK, MYERS, & O'BRIEN,

Group C]

1
2
3

~1917.1(A2)
1753.5(A3)
1836.1(A1)

C2

1726.4(A1)
1805.4(A2)
1836.8(A3)

C3 Mean

1817.8(A3)~
1830.1(A1)
2018.4(A2)

2000)

1820.43
1796.33
1897.10

Means at the levels of C are

Means at the levels of A are

The grand mean = 1838.96

A1

1797.53

A2

1913.63

A3
1802.70

c1
1835.57

C2

1789.53

C3
1888.77



17.4.2 Expected Mean Squares and F Tests

In the Cook et al. (2000) experiment, C is most reasonably viewed as having random
effects because the sets of passages that constitute the levels of C have been randomly
constructed from a pool of passages that may be viewed as a sample from some population
of potential items. However, the replicated square design is also used when C is more
reasonably considered to have fixed effects; for example, when the levels of C are time
periods. Because the designation of C as fixed or random affects the expected mean squares
and, consequently, the error term against which the A source of variance is tested, we
consider both possibilities.

The structural model for the replicated square design is

where i indexes the subject within a row of the Latin square (i =1, 2,..., n), j indexes the
level of A (j = 1, 2, . . . , a), k indexes the level of C (k = 1, 2 , . . . , a), and m indexes the row
within the square (the group; m = 1, 2, . . . , a). The population of subject effects, the ni/m,
is assumed to be independently and normally distributed with mean zero and variance a2

S/G.
The effects of a, the aj, are assumed to be fixed. As indicated, C may have fixed or random

The last term in Table 17.7 is the usual mixed-design error term. Because A and C
are totally confounded within each group, SSsxA/groups must be the same as SSsxc/groups;
in Table 17.7, we chose the more neutral label WCR (within-cells residual) for this term.3

This completes the partitioning of the total sum of squares. We consider the F tests next.

or

In the example,

The SSGroups xA is available in the output of the first analysis. Or we could calculate
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TABLE 17.7 PARTITIONING OF THE SUMS OF SQUARES FOR THE DATA OF TABLE 17.6

SV

Between Ss

Groups (G)
S/G

Within Ss
A
C
BCR
WCR

df

an -1 =29

a-1 = 2
a(n -1) = 27

an(a - 1) = 60
a- 1 = 2
a- 1 = 2

(a- l)(a-2) = 2
a(n - l)(a - 1) = 54

SS

12,375,507.81
166,125.09

12,209,382.72
1,473,905.72

258,121.09
147,965.62
27,128.14

1,040,690.87

MS

83,062.54
452,199.36

129,060.54
73,982.81
13,564.41
19,272.05

Note. BCR = between-cells residual; WCR = within-cells residual.
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effects. If random, then the effects of C, the y k, and the AC interaction effects, the (ay )jk, are
distributed independently and normally with mean zero and respective variances o2

C and o2
AC.

The AC effects require further comment. Although there is no SSAC in the usual sense,
the AC interaction effects contribute to the variance of the group means. If there are AC
effects in the population, part of their contribution to the data will be reflected in MSpoups-
This is because the Latin square is an incomplete block design; as a result, each of the three
factors (rows, columns, treatments) is potentially confounded with the interaction of the
other two factors (see Section 17.4.3). Furthermore, significant residual variability among
the a2 cell means (after adjusting for the contribution of the main effects) also reflects part
of the variance of AC interaction effects. The (AC)' label in the SV column of Table 17.8
(as well as the expected mean squares) indicates these partial interaction effects.

Turning to Table 17.8, the test of the effects of the treatment variable, A, when the
effects of C are assumed to be fixed is the same as in the mixed design of Chapter 14.
The within-subjects error term is appropriate for testing both A and C main effects, as
well as providing a test of the partial interaction (AC) of A and C. However, when C is
assumed to have random effects, following the rules stated in Chapter 14, p2

AC contributes
to E(MSA) and the appropriate error term is MSBCR. Unless the A effects are large, or the

TABLE 17.8 EXPECTED MEAN SQUARES AND F RATIOS FOR THE REPLICATED
SQUARE DESIGN (DATA FROM TABLE 17.6)

C Has Fixed Effects

SV

Groups (AC')

S/G

A

C

BCR (AC')

WCR

EMS

p2
e +ap2

S/G +nat2
AC

p2
e +ap2

S/G

p2
e + n a t 2

A

t2
e + nat2

C

p2
e + n t 2

A C

p2
e

Error Term

S/G

WCR

WCR

WCR

F

.18

6.70

3.84

.70

P

.836

.003

.028

.501

C Has Random Effects

5V

Groups (AC)

S/G

A

C

BCR (AC)

WCR

EMS

p2
e + ap2

S/G + nap2
AC

p2
e+ap2

S/G

p2
e + np2

AC + nat2
A

p2
e + nap2

C

07 + na2
AC

p2
e

Error Term

S/G

BCR

WCR

WCR

F

.18

9.51

3.84

.70

P

.836

.095

.028

.501

Note. Because p2
AC clearly makes no contribution to the residual variance of the cell

means, we pooled the BCR and WCR terms. SSpool = 1, 067, 819.01 and after dividing
by 56, the pooled degrees of freedom, MSpool = 19, 068.20. Dividing MSA by the pooled
mean square yields F = 6.77, which is significant at the .002 level.
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square is, this F test will lack power. In the Cook et al. example, BCR has only 2 df and,
as can be seen, what appears to be a rather large F is not significant at the .05 level. A
more powerful test of A can be constructed if we have clear evidence that AC interaction
effects (t2

AC) are negligible. In that case, the BCR and WCR mean squares could be pooled
and used as an error term against which to test A. With this in mind, we tested BCR against
WCR. The p value for this preliminary test is considerably greater than .25, the standard
suggested by Bozivich et al. (1956), and the test would appear to be reasonably powerful,
given the number of error degrees of freedom. Thus, the result offers no evidence of any
AC contribution to the E(MSBCR). In terms of the Cook et al. experiment, the effects of the
text version (their A factor) do not appear to depend on the particular set of texts (C) used.
In view of this, the BCR and WCR terms have been pooled, and as noted at the bottom of
Table 17.8, the F test of A now has a clearly significant result.

What if the preliminary test has a p value less than .25? A transformation may be
found that results in a scale on which there is no evidence of AC variance. Failing that, the
investigator should consider redoing the experiment with an alternative design that does not
involve the confounding associated with the Latin square.

One other issue deserves mention. The means in Table 17.6 are averages not only over
subjects, but also over items as well. It may appear that—as we prescribed in Chapter 13—a
quasi-F statistic should be calculated to take the variance due to items into account. How-
ever, the test against the BCR mean square (or its pool with the WCR mean square) serves
that function because variance due to the sets of items, and its interaction with treatments, is
included in the expected mean squares (Raaijmakers, Schrijnemakers, & Gremmen, 1999).

17.4.3 Including Between-Subjects Variables in the
Replicated Square Design

Suppose that, on the basis of a pretest, Cook et al. had divided their subjects into two levels
of reading ability; call this factor B. Then the design would look like that of Table 17.9
in which the Latin square is a 3 x 3, and there are 5 good and 5 poor readers in each
row (combinations of A and C). In general, the design has abn subjects, divided at ran-
dom among the a rows of the square and the b levels of B. The sources of variance,
degrees of freedom, expected mean squares, and error terms are presented in Table 17.10,
assuming that C has random effects. As indicated in the SV column and expected mean

TABLE 17.9 REPLICATED LATIN SQUARE WITH A BETWEEN-SUBJECTS VARIABLE

B1 (Good Readers) 82 (Poor Readers)

Row

1
2
3

c,

A2

A3

A1

C2

A1

A2

A3

C3 Row

A3 1
A1 2
A2 3

c,

A2

A3

A1

C2

A1

A2

A3

C3

A3

A2

A2

Note. There are five subjects in each row at each level of B. In general, there are n
subjects in each of a rows at each of b levels of B, for a total of abn subjects with a scores
for each subject.



squares of Table 17.10, both the row and between-cells residual (BCR) terms reflect possible
AC interaction effects. The B x Row and B x BCR terms reflect possible ABC interaction
effects. This also is indicated in the SV and EMS columns of Table 17.10. These interaction
effects are again a function of the confounding inherent in incomplete block designs.

Main and interaction effects are calculated as in all preceding chapters. The only terms
whose calculations might pose a problem are the BCR and its interaction with B. These
can be viewed as differences between terms derived from standard mixed-design ANOVAs.
This observation again forms the basis for using computer packages to analyze the data.
Any computer program capable of handling two between-subject variables (B, Row) and
one within-subject variable (A or C ) can then be used to do two analyses. For example,
obtain SSA from the analysis that treats A as the within-subject variable and SScxRow from
the analysis that treats C as the within-subjects variable. Then SScxRow -SSA = SSBCR.
Similarly, SSsxcxRow — SSAB = SSsxBCR- The results will be the same if SSc is subtracted
from SSAxROW, and SSBC is subtracted from SS A x B xRow. The entries in the EMS column in
Table 17.10 were derived assuming C has random effects, the most reasonable assumption
when C represents sets of items. If C is a fixed-effect variable, as when C represents time
periods, the expected mean squares and error terms are changed as described in the footnote
to Table 17.10.

17.5 BALANCING CARRY-OVER EFFECTS

When C represents time periods, there is a risk that the effects of treatments will be modi-
fied by preceding treatments. By the proper choice of squares, carry-over effects from the
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TABLE 17.10 ANALYSIS OF THE DESIGN OF TABLE 1 7.9

SV

Rows (AC)

B
B x Rows
(ABC)

S/B x Rows

A

C

AB

BC

BCR(AC)

B x BCR
(ABC)

WCR

df

a- 1

b- 1

(a - 1)(b - 1)

ab(n - 1)

a- 1

a- 1

(a- 1)(b-1)

(a - 1)(b - 1)

(a - l)(a - 2)

(a - l)(a - 2)(b - 1)

ab(a - l)(n - 1)

EMSa

a2
e + ap2

s/B x ROWS + abna2
AC

a2
e + ap2

s/B x ROWS + a2nt2
B

a2
e +ap2

S/BxRows + anp2
ABC

p2
e +ap2

S/BxRows
p2

e + nbo2
AC + abnt2

A

a2
e + nbp2

AC + abn2
C

p2
e+np2

ABC+anp2
AB

ae
2 +np2

ABC + anp2
BC

p2
e + nbp2

AC

p2
e + np2

ABC

p2
e

Error Term

S/B x Rows

S/B x Rows

S/B x Rows

BCR

BCR

B xBCR

B xBCR

WCR

WCR

"The EMS are based on the assumption that C has random effects. If C has fixed effects, the AC and ABC interaction
components are deleted from the A, C, AB, and BC EMS, and those effects are accordingly tested against the within-cells
residual, WCR.



3. Fill in each column by proceeding sequentially from the number in the first row:

2. Write the same numbers in order, this time starting at the right of the row:

Each number now precedes each other number exactly once. Treatment levels can now be
assigned at random to the four numbers. Each row corresponds to a subject or to a group of
subjects as in previous versions of the Latin square design.

When a is an odd number, say 3, two squares are needed to balance carry-over ef-
fects from the immediately preceding treatment. To construct the squares, follow these
steps.

1. Construct a row with 2a columns. Then write the numbers from 1 to a in order in
every other cell:

BALANCING CARRY-OVER EFFECTS 475

immediately preceding treatment can be balanced out. This can be done with a single square
when there is an even number of treatments, but requires two squares when a is an odd
number. Assume a is an even number, say 4. Then the square is constructed in the following
steps.

1. Number the treatments from 1 to a.
2. Enter numbers in order in every other cell of the first row:

3. Fill the remaining cells with the remaining numbers in order, starting at the right
of the row:

4. Fill each column in order from the first row:

C1

1
C2 C3

2
C4

C1 C2 C3 C4
1     4       2      3

c,
1
2
3
4

C2
4
1
2
3

C3
2
3
4
1

C4
3
4
1
2

c,
1

C2 C3
2

c1 C2

3
C3

C1
1

C2

3
C3
2

C1

2
C2

3
C3
1

C1
1
2
3

C2

3
1
2

C3

2
3
1

C,
2
3
1

C2

3
1
2

C3
1
2
3
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Each of the six rows corresponds to a subject or group of subjects. Each digit, representing
a treatment level, precedes each other digit exactly twice.

The data from this digram-balanced design is analyzed as in the preceding sec-
tions. Because a treatment precedes all other treatments equally often, the carry-over
contribution to treatment effects should be equated. However, the design equates only
the effect of the immediately preceding treatment and does not deal with effects car-
ried over several time periods. Cochran and Cox (1957, pp. 135-139) describe methods
for calculating the sums of squares due to carry-over, and for removing that variability
from the sums of squares for treatments. Namboodiri (1972) also describes other related
designs.

17.6 GRECO-LATIN SQUARES

The designs presented in this chapter are a subset of the many possible variations of the
Latin square design. They are an even smaller subset of incomplete block designs. We have
limited our presentation to those designs we view as most useful and most often used by
researchers. One possible extension occasionally referenced in the experimental literature
is the Greco-Latin square. Suppose we have three levels of a variable A and three levels of
a variable B. To have efficient tests of both, we wish to treat both A and B as within-subject
variables. But suppose it is impractical to test each subject under all nine combinations of
A and B. If the levels of A are represented by the letters a, b, and c and those of B by a,
B, and y (hence "Greco-Latin"), the design might be

where a subject or group is tested with each sequence (row of the square). Note that
the layouts of the Latin letters and the Greek letters each meet the requirements for
a Latin square. Furthermore, each combination of levels of A and B appears exactly
once in each row and column. The above design has several problems. First, the intro-
duction of another variable reduces the BCR degrees of freedom; for a single square,
such as the one above, these degrees of freedom are (a2 — 1) — 4(a — 1) = (a — 1)(a — 3).
This is zero when a = 3. To have any chance at rejecting a false null hypothesis, the

4. Split the columns midway and rearrange with the first a columns placed on top of
the remaining a columns:

C1
1
2
3
2
3
1

C2
3
1
2
3
1
2

C3
2
3
1
1
2
3
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Greco-Latin design should involve at least six rows and columns. The second problem
is perhaps more serious. The introduction of another factor in this way sets up the pos-
sibility of still more interactions that may be confounded with main effects of interest.
This may cost us a clean test of such main effects. The third problem is that if A x B
interactions are present, we have no way of assessing them. It is rare that an investigator
would want to forego the opportunity to test for an interaction between two experimen-
tally manipulated factors. In short, although there are circumstances in which this design
has some appeal, we believe that investigators usually will be better off with some other
design.

17.7 CONCLUDING REMARKS

Several points about designs that use the Latin square principle deserve emphasis. Such
designs are potentially very efficient because they permit blocking with respect to two
variables, such as subjects and trials, or subjects and sets of materials. The potential benefits
carry with them the risk that the F test may be biased because variability due to interactions
cannot be removed from the total pool of variability. Latin squares are incomplete block
designs and therefore there are insufficient degrees of freedom to permit independent tests
of both main effects and interactions of rows, columns, and treatments. However, even if
interaction effects do contribute to various mean squares, the Latin square design will often
still be more efficient than the standard repeated-measures design, because of the removal
of variance due to the columns factor.

It is often helpful to plot residuals to obtain a sense of the degree, if any, of nonad-
ditivity. Also, the test of the BCR in the replicated squares design is an aid in assessing
whether an additive model is appropriate. Given evidence of marked nonadditivity, the
researcher might consider transforming the data to a scale on which the additive model
is adequate. If such a transformation cannot be found, or if there are reasons to keep the
original scale, at least the knowledge of nonadditivity can aid in assessing the implications
of the F ratios calculated and perhaps in qualifying the inferences to be drawn. Finally,
we again wish to emphasize our sense that the Latin square, particularly the replicated
square design, is often used by researchers, but the data are often not properly analyzed
(Pollatsek & Well, 1995). Failing to adjust for the variance of group means (i.e., row effects)
negatively biases the F test, increasing the probability of a Type 2 error. Also, as we have
discussed, the BCR is the proper error term against which to test treatment effects when the
columns factor has random effects. Failure to do so can result in an inflated Type 1 error
rate.

KEY CONCEPTS

Latin square design incomplete block design
carry-over effects recovery period
standard square confounding
replicated-squares design between-cells residual sum of squares
digram-balanced design
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EXERCISES

17.1 Consider the following 4x4 Latin square:

(a) Calculate the SSA, SSc, SSS., and SSresidual.

(b) Calculate the estimates of the 16 S x C interaction effects [ (ny )ik]. Then sub-
tract each estimate of (ny)ik from Yik. Note that

Now recalculate the various sums of squares for the adjusted scores. Which sums
of squares, if any, change? What potential problem in the use of this design do these
results reflect?

17.2 Suppose the design in Exercise 17.1 was a repeated-measures design in which the
sequence of the Aj had been randomly assigned for each subject.
(a) Estimate MSSA from the data set above.
(b) What is your estimate of the relative efficiency of the two designs?
(c) Suppose every subject had scores 3 points lower at C1 and 3 points higher

at C2. Would the efficiency relative to the S x A design be less than, the same
as, or greater than the value you calculated in part (b)? Why?

17.3 In a study of decision making, two factors were manipulated. The task either resem-
bled one seen during a practice session or did not (experience, E) and the amount
of information available was either high or low (information level, /). Each subject
was tested under all four combinations of E and I with the assignment of EI com-
binations to four randomly sampled problems (P) counterbalanced through the use
of a Latin square. Decision times were:

Perform the ANOVA.
17.4 A researcher wishes to investigate cognitive performance as a function of drug

type (T) and dosage (D). Thirty-two subjects are randomly assigned to one of two
drugs, and each subject is given a different one of four dosages of the same drug on
four different occasions (0). A Latin square design is used with four sequences of
dosages and eight subjects in each sequence. Note that half of the subjects in each
sequence receive D1 and half receive D2.
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(a) Give the SV, df, and error terms.
(b) Another way to run this study would be to create a single 8x8 Latin square

with two subjects in each row (so there are still 128 total scores). The eight
treatments would be all possible combinations of the drug (T) and dosage (D)
levels. Write out the SV, df, and error terms for this case.

(c) What are the pros and cons of the two designs?
17.5 A researcher is interested in gambling behavior under variations in initial stake

(I), payoffs (P), and probability of winning (W). There are three levels of each
of these variables. Eighty-one subjects are available for this experiment. Many
possible experimental designs could be used. Suggest several alternative designs
and discuss their relative merits.

17.6 When subjects are tested under different conditions at different points in time,
carry-over (residual) effects are a potential problem. The digram-balanced design
described in this chapter provides one possible solution.
(a) Construct a digram-balanced design, assuming that there are six levels of the

treatment variable.
(b) Construct a digram-balanced design, assuming that there are five levels of the

treatment variable.
@ 17.7 The Exl7-7 file in the Exercises folder of your CD contains a data set for a 4 x 4

Latin square design. There are 12 subjects with 3 in each row (R) of the square. A
is the treatment factor and C is the column (or position in time) factor. Assume C
has fixed effects. Perform the ANOVA.

17.8 Presumably, you analyzed the Ex 17_7 data set correctly. However, some individuals
might treat the data as if they were obtained from a Subjects x Treatments design.
Pool terms from your answer to Exercise 17.7 to arrive at this incorrect ANOVA.
How does the F and p value relate to that previously obtained? Explain the reason
for the difference in results.

@ 17.9 The Ex 17_9 file contains data (very) loosely modeled after a study by Witvliet,
Ludwig, and Vander Laan (2001). Subjects in that experiment were instructed to
think of an individual who had mistreated or offended them. They imagined a re-
sponse to this individual as they read four scripts representing hurting someone
(Si), bearing a grudge (S2), empathsizing (Ss), and forgiving (£4). Various phys-
iological measures were obtained in each of several segments of time in several
counterbalanced blocks. The Exl7_9 file contains heartbeat change scores similar
to averages in the Witvliet article. There are 20 cases in the file, 5 in each of the
four rows of a Latin square. The within-subject factors are S (the script) and C (the
ordinal position in the sequence of presentation). Note that S1 and S2 have negative
valences, and S3 and S4 have positive valences; the effect of valence should be con-
sidered in the analysis. Perform the analysis and summarize your conclusions.

€$ 17.10 Assume that we had given a scale measuring hostility to 40 subjects, and divided
them into two groups of 20 on that basis (H = 1 corresponds to the high hostility
group and H = 2 corresponds to the low hostility group). These subjects then
participate in the experiment described in Exercise 17.9. The data are in the Ex 17 _ 10
file. Carry out the ANOVA and state your conclusions.



Chapter 18
More About Correlation

18.1 INTRODUCTION

In Chapter 3 we introduced the Pearson correlation coefficient as a measure of the extent to
which two variables are linearly related, and we considered examples in which correlations
such as r = .594 for multiplication and subtraction accuracy in third graders and r = .286
for cholesterol level and age were obtained. Given such correlations, a number of questions
immediately arise. How are we to interpret these correlations? Is a correlation of .286 large
enough to be meaningful? Is it significantly different from zero? Can we find a confidence
interval? What assumptions must we make about the data?

In this chapter, we first extend our discussion of the interpretation of r because although
the correlation coefficient is frequently encountered, it often seems to be reported without
a great deal of understanding, and without looking at the data. This can lead to serious
problems because the correlation coefficient has some important limitations. As we showed
in Chapter 3, the correlation coefficient is a measure of the extent to which two variables
are linearly related; however, two variables may have a systematic nonlinear relation even
if their correlation is very small or zero. Also, in general, there is no one-to-one relation
between the correlation coefficient and slope of the best-fitting regression line. Although the
Pearson correlation coefficient is a measure of the extent to which two variables are linearly
related, different combinations of the slope, variance of X and Y, and error variance can
yield the same value of the correlation coefficient. This means that the correlation coefficient
is a sample-specific measure. That is, the correlation coefficient depends not only on the
nature of the linear relation between X and Y, but also on the variability of X and Y in the
sample.

When we introduced the correlation coefficient in Chapter 3, we discussed a number of
important issues. In the present chapter, we discuss some characteristics of the correlation
coefficient in more detail and raise a number of additional issues that should be kept in
mind when interpreting correlations. We also discuss confidence intervals and significance
tests for correlation coefficients, and the power of significance tests for correlation. We also
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FURTHER ISSUES IN UNDERSTANDING THE CORRELATION COEFFICIENT 481

introduce the concept of partial correlation, the correlation between two variables that have
been adjusted for the effects of other variables. Finally, we introduce several special cases
and alternative measures of correlation.

where b\ is the slope of the regression line for predicting F from X, sx and SY are the
standard deviations of X and F, and SSX and SSy are the sums of squares of X and F. If sx

and sy are equal, r is equal to the slope of the regression line. However, when the standard
deviations differ, as they usually do, r is not the slope of the regression equation. From
Equation 18.2, we see that r depends not only on b1, but also on sx and sy. As we shall
see, by packaging the information slightly differently, we can show that r depends on b1,
sx, and se, the variability in F not accounted for by the regression line.

In Chapter 3, we presented several scatterplots (Fig. 3.9) that were each based on
the same 20 paired z scores and therefore represented the same correlation (r = .80). The
scatterplots differ in having different standard deviations for X and F. The correlation
coefficient remains the same despite the fact that the slope varies considerably, as does the
apparent degree of clustering around the best-fitting straight line. The same value of r can
occur for different combinations of sx, SY , b1, and se. The fact that the same value of r can

Two things should be noted about Equation 18.1. First, we use SSresidual instead of SSerror to
refer to E (Yi — Yi)2, because the term SSerror is often reserved to refer to variability about
a mean. Second, in the expression for se, SSresidual is divided by its df, N — 2. There are
N — 2 df because there are N data points and two restrictions; that is, 2 dfare used up by
estimating the intercept and slope of the regression equation.

18.2.2 The Relation Between r and Variability in X and Y

In this section, we discuss how the value of r depends on the slope of the regression line,
the variability about the regression line, and the variability of X and F. In Chapter 3, we
pointed out how the correlation coefficient and the slope of the regression line for predicting
F from X were related:

18.2 FURTHER ISSUES IN UNDERSTANDING THE
CORRELATION COEFFICIENT

18.2.1 The Standard Error of Estimate

Before considering the properties of the correlation coefficient, it is useful to introduce a
measure of variability about the regression line. As we shall show, this variability affects
the magnitude of r. It is measured by se, the estimated population standard error of
estimate, the most commonly used measure of variability about the regression line and the
one typically given by software packages. It is defined as



Equation 18.5 is derived in Appendix 18.1, and Equations 18.3 and 18.4 are derived in
Appendix 18.2.

Both Equations 18.3 and 18.4 show that when all the data points fall on the regression
line so that 55residual and se

2 are zero, then r2 = 1, and r must be +1 or —1. Equation 18.3
shows that, for a given slope and amount of variability around the regression line, the more
variability there is in X, the closer r2 is to 1. Also, for given values of Residual and SSx,
larger values of the slope, b1, lead to increases in r2. Equation 18.4 shows that, for a given
amount of variability around the regression line, the more variability there is in Y, the
closer r2 is to 1. These equations suggest that it is useful to think of the correlation
coefficient as a composite measure that combines different features of the linear relation
between X and Y.

The fact that the correlation coefficient is so strongly influenced by the sample variances
of X and Y has some unfortunate consequences. For example, in the Seasons data set, the
correlation between total cholesterol level and age for females is .506. If we break the
sample into two parts, one subsample consisting of women 50 years of age or over and
the other of women under 50, the age variability is less in each of the subsamples (the
standard deviations are 6.26 and 6.58 for older and younger women, respectively) than in
the combined sample (standard deviation of 11.69). As suggested by Equation 18.3, the
correlations between cholesterol level and age are also much smaller in the subsamples: the
correlations of .148 and .264 found for the older and younger women represent reductions
of 71% and 49% from the correlation of .506 in the whole sample. These results indicate
that comparisons of correlations between groups may be ambiguous. A finding that r is
larger in one group than in another might occur because the nature of the linear relation
between X and Y is different in the two groups. However, we might also find the same result
even if the linear relation is the same in both groups, but the variability of X is different.

These equations both follow directly from the fact that the total variability in the Y scores
can be partitioned into components that correspond to the variability in Y accounted for by
the regression (SSregression) and the variability not accounted for by the regression (SSresidual);
that is,

and
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occur for these different combinations makes it clear that we must look at the scatterplot
and consider not only r, but also these other statistics if we wish to understand the relation
between X and Y. Also, when comparing the nature of the relation between X and Y in two
groups, we must think carefully about whether we want to compare rs or whether we want
to compare regression slopes.

We can write several equations that are useful for understanding how r depends on the
regression slope and the different types of variability. Two of these equations are



Fig. 18.1 Scatterplots with different regions marked
to illustrate the effect of the variability of X and Y on
the correlation coefficient.

If we want to compare the rate at which 7 changes with X in the two groups, we should
compare their regression coefficients, not their correlations.

Consider what happens when only certain values of X are sampled. Suppose we have
a population of data points in which X and Y have an imperfect linear relation with a
moderately high correlation, p, as indicated in Fig. 18.1. Assume further that there is
homoscedasticity; that is, the variability about the regression line is the same for all values
of X. Now suppose we select two samples, one from region B and the second from regions
A and C. The r for a sample selected from region B will tend to underestimate p, and the r
for a sample selected from a region consisting of both A and C will tend to overestimate p.
The standard deviation of Y will be smaller in region B (or in any other single region) than
it is in the entire population of data points. This is because there are relatively fewer large
deviations of Y scores from their mean in a restricted region (see Fig. 18.1). Therefore,
sy will tend to be smaller for a sample selected from region B than for a sample of the
same size selected from the entire population. In contrast, the standard error of estimate,
se, will not systematically differ by very much in the two samples. Therefore, the ratio
se/sy will tend to be larger for the restricted sample than for the sample selected from the
entire population, and from Equation 18.4, we can see that r would be expected to be
smaller. This type of bias is frequently referred to as the restriction of range problem. An
oft-cited example of restriction of range is the low correlation between Graduate Record
Examination (GRE) scores and success in graduate school as measured by grades or faculty
ratings (e.g., Dawes, 1971), which has prompted calls for the abandonment of the GRE
scores as predictive measures. Even if GRE scores were an excellent measure of ability, the
correlation would be expected to be quite low because only students with relatively high
GRE scores get accepted into graduate programs.

Sampling from restricted regions of the distribution can also produce inflated estimates
of p. For example, suppose we select a sample only from regions A and C in Fig. 18.1. The
standard deviation of Y in this sample will tend to be larger than the population standard
deviation because it is based on the Y values in regions A and C, which tend to deviate
considerably from the mean of F, and it fails to include the smaller deviations in area B.
Because se will not usually differ by much in the two situations, samples from the combined
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A and C regions will tend to have smaller se/sy ratios than samples selected from the entire
population, and therefore, as we can see from Equation 18.4, these samples will have larger
values of r. Investigators interested in the relation between two variables will sometimes
drop the middle scores for one or both of them. For example, the gambling behavior of
subjects scoring high on the MMPI Psychopathic Deviant Scale may be compared with
the gambling behavior of subjects who score low on the scale. Although this procedure is
acceptable for determining whether there is a linear component to the relation, the correla-
tion between gambling behavior and MMPI scale scores obtained from the extreme groups
should definitely not be considered to be an estimate of the correlation in the whole popula-
tion. However, as we will show, the correlation for the complete sample may be estimated
from that calculated from a subset of scores.

We can also illustrate these points by considering the arithmetic accuracy data for the
third graders in the Royer data set. If we consider all the third graders, the correlation between
subtraction accuracy and multiplication accuracy is .59. From the preceding discussion, we
would expect that the correlation would decrease if we selected scores from only one part
of the distribution, so that sx and SY were smaller. This turns out to be true. If we consider
only children who scored at least 80% in subtraction, the correlation drops to .34. On the
other hand, if we consider only those children who either scored over 90% or under 70%
on subtraction, the correlation increases to .72. As expected, selecting from the distribution
in ways that increase sx and SY raises the correlation.

When we have a value of r estimated from a sample selected from a particular range
of X values, it is possible to estimate what the value would have been if the sample had
been based on a different range of X values, if we can assume that the relation between
X and Y is linear and that b1 and se are exactly the same in both samples. Then, starting
with Equation 18.3, it can be shown that if a correlation coefficient of r' is obtained from
a sample with standard deviation sxr, an estimate of the correlation coefficient in a sample
with standard deviation sx is given by

For example, for those third graders who scored at least 80% on subtraction, the correla-
tion between multiplication and subtraction accuracy was r' = .34. The standard deviation
of the subtraction scores in this restricted sample was sx' = 6.04. If we consider all the
third graders, the standard deviation is sx = 11.77. Substituting these values into Equa-
tion 18.6, we find the estimated correlation of subtraction and multiplication scores for
the third graders to be .58, very close to the actual correlation of .59 in the unrestricted
sample.

So far, we have tried to indicate how r depends on the characteristics of the sample
by noting what we would expect to happen for samples selected from particular restricted
regions of the population. It is important to note that the same kind of bias will occur in
samples that are randomly selected from the entire population. All other things being equal,
samples that have larger values of sx because of sampling error will tend to produce higher
estimates of p.

Because the correlation coefficient is sample-specific and generally does not describe
the relation between X and F, some writers (e.g., Achen, 1982; Tukey, 1969) have cautioned
against its use. Achen (1982) has taken a rather extreme position, arguing



where the quantities rxx and rYy are the reliability coefficients for X and 7, and estimate
the proportion of the variances of X and Y accounted for by the true scores; e.g., rxx
estimates

where X' and Y' are the true scores, and u and v are error components. Then it can be shown
that the correlation that we observe, rxy, has the following relation to the correlation of the
true, errorless, scores, rX'y,
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"The fact that a Pearson r (or a gamma, phi, standardized beta, or any other correlational measure)
depends in an important way on the variance of the variables involved makes comparisons meaningless
in general. Different correlational measures depend on the variance in different ways, but the solution
is not to find the one that captures the medieval essence of correlation, but rather to abandon them
all." (p. 61)

We agree that if there is a linear relation between X and Y, characteristics of the regression
equation—such as the intercept, slope, and standard error of estimate—may well describe
the nature of the relation more usefully than does r. However, we do not believe that
the correlation coefficient should be abandoned, only that it should be used with a full
understanding of what it does and does not measure.

One possible reason for the popularity of the correlation coefficient is that in the social
sciences we frequently work with variables that have arbitrary scales (what does a 1-point
difference on a 7-point anxiety scale really mean?). Therefore r may seem attractive because
it is based on standardized scores, rather than scores expressed in terms of the actual units
of the measuring scales. However, the downside is that when we use r or r2, or any other
standardized measure of effect size, we are more likely to ignore the fact that our scales
may be inadequate. We may not understand them very well, and they may not be good
measures of the underlying variables that are our real concern. When we do have variables
with meaningful units, we should consider using measures such as the regression slope,
which is expressed in terms of these units. As Tukey (1969) puts it,

"Given two perfectly meaningless variables, one is reminded of their meaninglessness when a regres-
sion coefficient is given, since one wonders how to interpret its value. A correlation coefficient is less
likely to bring up the unpleasant truth—we think we know what r = — .1 means." (p. 89)

18.2.3 Measurement Error
If X and Y are measured with error, the obtained correlation coefficient will underestimate
the "true" correlation that would be obtained if X and Y could be measured without error.
This should not be surprising; if our numbers are contaminated by measurement error, they
can hardly be expected to reveal strong systematic relations. To better understand the effect
of measurement error on the correlation coefficient, assume that X and Y each consist of a
true score and an error component; that is,
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where e is the sampling error, if rxy is multiplied by a factor of 1/Rrxx R r Y Y , then so is the
sampling error. For example, if correcting for attenuation doubles the size of the correlation
coefficient, the width of the confidence interval for the correlation coefficient is doubled as
well.

18.2.4 The Shapes of the X and Y Distributions

The marginal distributions of X and Y place constraints on the possible values of the
correlation between X and Y. We noted in Chapter 3 that the correlation is +1 if for each
data point, (X, Y), zx = ZY, and the correlation is —1 if zx= — Z Y . Therefore, if both X
and Y have identical, symmetrical distributions, it is possible that any given value of zx
might be paired with any of the values of ZY, and so it is possible that any value of r from
— 1 to +1 might occur, depending on how the values of X and Y are paired. However, if X
and Y have distributions that are different from one another, or if they are asymmetric, the
full range of correlations from — 1 to +1 cannot occur, no matter how the values of X and
Y are paired.

In Figure 18.2, distribution A is positively skewed and distribution B is negatively
skewed. If larger scores in A are paired with smaller scores in B, and vice versa, it is
possible to obtain a correlation of — 1; however, it is not possible to obtain a correlation
of +1. For one thing, there are no scores in B that have positive z scores as large as those
in the upper tail of B. For another, if we attempted to pair larger scores in A with those
in B, it would soon become apparent that there are not enough large scores in A to match
up with those in B. If we did the best we could (i.e., paired off scores that had the same
rank order), the scatterplot would show that we had a curvilinear relation with a correlation
less than +1. Similarly, if we had two variables whose marginal distributions were both
positively skewed as in A, or were both negatively skewed as in B, it would be possible to
have a correlation of +1, but not one of — 1. Because of these constraints, we should plot
the univariate distributions of X and Y as well as the scatterplot when we try to understand
the relation between X and Y.

From Equation 18.7, if the correlation between the true scores X' and Y' is .6 and the
reliability coefficients for both X and Y are .7, then the observed correlation will be only
.42. In fact, from Equation 18.7, because the true correlation cannot be larger than +1 or
less than —1, the observed correlation cannot be larger than Rrxx RrYY or more negative
than -Rrxx Rryy.

If we know the reliability coefficients for X and Y, we can use Equation 18.7 to estimate
the correlation of the true scores; that is, we can estimate the correlation that would result
if both variables were measured without error. Dividing both sides of Equation 18.7 by
Rrxx RrYY results in a correlation, rc, that has been "corrected for attenuation,"

If this is done, it should be kept in mind that rc is an estimated correlation, not a correlation
directly obtained from observed scores. We should also note that correcting a correlation
for attenuation does not change whether or not it is statistically significant. As pointed out
by Hunter and Schmidt (1990), because
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Fig. 18.2 Two skewed distributions to
illustrate how the distributions of X and Y
limit the possible values of correlation.

18.2.5 Combining Data Across Groups

When the data from different groups are combined, the correlation in the resultant data
set may not characterize the relation between X and Y in any of the groups. The problem
occurs because the "aggregate" correlation reflects not only the relations between X and Y
within the different groups, but also the differences among the group means. In panel (a) of
Fig. 18.3, it is apparent that the correlation will be larger if the groups are combined than
in either of the separate groups, and in panel (b) it is apparent that the correlation will be
lower if the groups are combined.

Suppose, for example, that we were interested in finding the correlation between height
and weight. Because men tend to be both taller and heavier than women, we would expect
a situation like that depicted in panel (a), in which the correlation would be larger for the
combined group than for either men or women. This expectation is confirmed if we consider
the Seasons data set. Here, the correlation between height and weight is .29, both for men
and for women considered separately. However, if we combine the data for men and women,
the correlation is .53. As another example, if we correlated scores on verbal and math skills
tests, we would expect positive correlations for both men and women. However, if the data
conformed to the stereotypical view that women perform better than men on verbal tests,
but worse than men on math tests, we would have a situation like that depicted in panel
(b), in which the correlation is lower in the combined group than for either men or women
considered separately. In extreme cases, it is conceivable that X and Y could be positively
correlated in each of a number of groups but negatively correlated when the groups were
combined, as in panel (c), or negatively correlated in each group but positively correlated
when combined, as in panel (d).

The message is that one must be very cautious when combining data from meaningful
subgroups. The summary statistics for the combined data set may not only fail to accurately
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Fig. 18.3 Scatterplots illustrating how combining data from different
groups can affect the correlation coefficient.

describe each of the constituent groups, but also they may fail to describe any of the con-
stituent groups appropriately. This is important to keep in mind, not only when considering
correlations, but also more complicated analyses that may take correlations as inputs, such
as factor analysis. If the correlations do not appropriately characterize the subgroups making
up a data set, neither will quantities based on these correlations, such as the factors obtained
in a factor analysis. Of course, this caveat does not apply only to the correlation coefficient.
For example, the regression slope would be positive for each of the groups represented in
panel (c), but would be negative for the combined data set.

18.2.6 Ecological Correlations: Correlations Based on
Rates or Averages

Similarly, ecological correlations, correlations based on the averages of groups, may not
tell us anything useful about the correlations based on the individuals within the groups. For
one thing, the group means do not convey information about the within-group variability.
For another, factors that cause the variability across the groups may not be the same ones
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responsible for the within-group variability. For groups such as those represented in panel
(c) of Fig. 18.3, we could have strong positive correlations in each of the groups, yet
the correlation based on the group means could be strongly negative. In a classic study,
Robinson (1950) illustrated the dangers of generalizing from correlations based on means
to correlations based on individuals by showing that when measures such as race, national
origin, and illiteracy were correlated, the results could differ dramatically depending on the
unit of analysis. For measures of race and illiteracy, the correlation was .203 for individuals,
.773 for the means of states, and .946 for the means of census tracts (see Pedhazur, 1997, for
a more complete discussion). We can also illustrate the problem of generalizing across units
of analysis by noting that if we correlate subtraction and multiplication accuracy for third,
fourth, fifth, and sixth graders in the Royer data set, we get correlations of .594, —.184,
.225, and .431. The correlation based on the means for the four grades is .821, much larger
than those for any of the grades.

18.3 INFERENCE ABOUT CORRELATION

So far, we have discussed correlation as a descriptive statistic. We have not made any
assumptions about the joint distribution of X and Y, although we have pointed out that
certain characteristics of the distribution can limit the range of values that can be taken
on by r. Now we turn to the discussion of how to make inferences about correlation; this
requires us to state a model for the joint distribution of the population.

8.3.1 A Model for Correlation

The model most commonly assumed for inference about correlation asserts that the popu-
lation of (X, Y) pairs has a bivariate normal distribution. Both X and Y are assumed to
be random variables and the density function that characterizes their joint distribution is

where

Equation 18.8 represents the family of bivariate normal distributions; a member of the
family is defined by a combination of the parameters ux, uy, dx, Dy, and p.

We can graphically represent the bivariate normal distribution in several ways. In
Fig. 18.4, the plane defined by the X and Y axes contains all possible pairings of X and Y.
The bivariate normal density function can be thought of as a bell-shaped surface that rises
above the X — Y plane. The intersections of this surface with planes perpendicular to
the X — Y plane and parallel to either the X or Y axis all define normal distributions.
Also, the intersection of the bivariate normal surface with planes parallel to, but above,
the X — Y plane define a family of ellipses, as shown in Fig. 18.5. Each point on one of
these ellipses will have the same probability density, and hence these ellipses are called
isodensity contours. Because of the "peaked" shape of the surface, the smaller ellipses in



Fig. 18.4 An example of a bivariate normal distribution.

490 18 / MORE ABOUT CORRELATIONS

Fig. 18.5 Isodensity contours for a bivariate
normal distribution.

Fig. 18.5 correspond to larger values of probability density. The more eccentric the ellipses,
the greater the correlation between X and Y. A set of concentric circles corresponds to a
correlation of zero.

Some characteristics of a bivariate normal distribution in X and Y are as follows:

1. The marginal distributions of both X and Y are normal with variances

p2
x and p2

y.

2. The conditional means of 7 fall on the straight line with equation uy.x = uy +
B Y x ( X — ux), where BYx= P p Y / p X is the slope of the population regression
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equation that predicts Y from X. The conditional distributions of Y are normal with
variance VyX

 = °r(l ~~ P2)- The conditional means of X fall on the straight line
with the equation \LXY = M-x + $XY(Y — |xy), where $XY = poWoY is the slope
for the regression of X on Y, and the conditional distributions of X are normal
with variance <T| r = a£(l — p2). Given bivariate normality, if X and Y have a
correlation of zero, then they are independent. That is, given bivariate normality,
the only possible systematic relation between X and Y is a linear one.

18.3.2 Using the f Distribution to Test the Null Hypothesis
H0: p = 0

The null hypothesis HQ: p = 0 may be tested using the test statistic

with N — 2 df. For example, for the 28 third graders in the Royer data set, the correlation
between subtraction and multiplication accuracy is .594. The value of the t statistic with
26 df is (.594)^/26/0 - .5942) = 3.77, which yields, from Appendix Table C.3, p < .001.
Therefore, we can reject the null hypothesis if a > .001.

Power calculations for the null hypothesis HQ: p =0 are readily performed. For ex-
ample, GPOWER calculates both post hoc and a priori power. The post hoc power is .964
for the previous example if a two-tailed test is used. To get this result in GPOWER, simply
select "t test (correlations)" from the "Tests" menu, and enter the obtained correlation, a,
and total sample size, then indicate that a two-tailed test was used, and click on "Calculate."
In fact, the post hoc power can be calculated using any noncentral t calculator. An estimate
of the noncentrality parameter that is appropriate when using Equation 18.9 is given by

Substituting r = .594 and N — 28 yields & = 3.907. The critical t values for a two-tailed
test with a = .05 and 26 df are ±2.056. Entering 2.056 as the X-value, 26 (for df) and 3.907
(for the noncentrality parameter) in the UCLA noncentral t calculator yields probability =
.0360; this indicates that the power in the upper tail is 1 - .0360 = .964. Entering -2.056
yields probability = .000. This indicates that there is no additional power in the lower tail.
Therefore, the power of the test is .964.'

GPOWER can also calculate the sample size necessary to obtain any desired level of
power. Suppose we want the sample size necessary to have a power of .80 for rejecting
the null hypothesis HQ: p =0 using a two-tailed test with a = .05 when we expect the
correlation to be small2 (r = .10 by Cohen's 1988 guidelines; see Section 3.4). To do this
in GPOWER, indicate that an a priori analysis with a two-tailed test is to be performed,
then enter r = .10, a = .05, and power = .80, and click "Calculate." GPOWER indicates
that to have power equal to .80, it is necessary to have sample size of N = 779. The
corresponding Ns necessary to obtain power equal to .80 for medium (r = .30) and large
(r = .50) correlations are 82 and 26, respectively. It is certainly worth knowing how large
the sample size must be before conducting the study, so that a decision can be made about
whether it is worth expending the resources necessary to have a reasonable chance of
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obtaining a significant result. If we simply went ahead with the study, using a sample of
size 100 selected from a population in which the p was .10, the estimated power for the test
of HQ: p =0 would be only .17.

Although the t test of the null hypothesis that p = 0 is quite robust with respect to the
assumption of normality (see, e.g., Edgell & Noon, 1984), it cannot be used to test other
null hypotheses about p, nor can it be used to develop confidence intervals. This is because
the shape and the standard error of the sampling distribution of r depend on p. When p
differs from zero, the sampling distribution of r becomes skewed, even for large sample
sizes. However, we can test these other hypotheses and find confidence intervals if we use
an appropriate transformation.

18.3.3 Using the Fisher Z Transform and the Normal
Distribution to Find Confidence Intervals and Test
Hypotheses About p

Fisher showed that if bivariate normality can be assumed, a logarithmic transformation of
r, henceforth referred to as the Fisher Z transform,

for sample sizes as small as N = 10.3 The effect of the Fisher Z transform is to stretch the
tail of the sampling distribution. It has very little effect on small values of r and increasingly
large effects as r gets larger. Because the transformed values of r are normally distributed,
we can calculate confidence intervals for p, by first finding the confidence interval for
Zp and then transforming back. It also allows us to test null hypotheses of the form HQ:
P = Phyp, where phyp =£ 0.

Given an observed correlation r, we can find the value of the Fisher transform, Z,, using
Appendix Table C.ll, or the transformation menu found in most statistical packages, or
the inverse hyperbolic tangent function found in many calculators (including the scientific
calculator offered as an accessory in the Windows operating system). The 1 — a confidence
interval for p is then given by

(where "In" is the natural logarithm and "arctanh" is the inverse of the hyperbolic tangent)
is approximately normally distributed with mean

and standard error

where z is the value that cuts off the upper a/2 of the standard normal distribution; for
the .95 confidence interval, 2.025 — 1-96. For example, for the 28 third graders in the Royer
data set, the correlation between subtraction and multiplication accuracy is .594. The Fisher
transform of .594 is approximately .684. The .95 confidence interval for Zp is given by
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That is, the confidence interval extends from Z values of .292 to 1.076. Transforming back
to r scores using Appendix Table C.ll (or the hyperbolic tangent function of a calcula-
tor) yields .95 confidence limits of .284 and .792 for p. Note that because the Fisher Z
transform is a nonlinear function of r, the limits are not equally distant from the observed
value of r.

The confidence interval tells us several important things. For one thing, we can reject
the null hypothesis HQ: p = phyp at a = .05 for all values of phyp that do not fall in the
confidence interval; that is for all hypothesized values of p less than .284 or greater than
.792. Note that we can simply test the hypothesis HQ: p = phyp by using the test statistic

Even though we clearly can reject the null hypothesis that p = 0, we cannot be con-
fident about the exact value of p because the .95 confidence interval is quite wide. It is
sobering to realize just how large confidence intervals for p are, even for moderately large
sample sizes. If we had obtained the sample correlation of .594 from a sample of N = 100,
the .95 confidence interval would extend from approximately .45 to .71; still quite large.
We strongly recommend finding confidence intervals for correlation coefficients. These may
be calculated as shown previously or alternatively, the approximate .95 confidence intervals
may be read off the chart in Fig. 18.6.

Because the Fisher Z transforms are assumed to be normally distributed, we can perform
power calculations in a manner analogous to the procedures used in Chapter 5. For example,
suppose we wished to test the hypothesis HQ: p = .30 against H\\ p / .30 with a. — .05,
and that r = .594 was obtained from a sample of N = 28. The obtained z using Equation
15.12 is (.684 - .310)(5) = 1.87. This is less than the upper critical value of 1.96, so we
cannot reject the null hypothesis. The power calculation outlined in Table 18.1 indicates
that if p really was .594, the power to reject the null hypothesis with a two-tailed test and
N — 28 would be approximately .46. Also, the calculations in Table 18.2 indicate that if
we wanted a power of .80, we would need a sample size of approximately 59. These values
are the same as those produced by SYSTAT 10 (see Fig. 18.7, p. 497).

18.3.4 What If the Assumption of Bivariate Normality
Is Violated?

The model underlying statistical inference in this chapter assumes bivariate normality. Yet,
we know that in real data sets, even univariate distributions rarely follow ideal normal dis-
tributions (e.g., Micceri, 1989). There have been a number of simulation studies performed
to investigate the robustness of significance tests for correlation under violations of the nor-
mality assumption (e.g., Edgell & Noon, 1984; Havlicek & Peterson, 1977; Lee & Rodgers,
1998). The results show that tests of the hypothesis HQ: p = 0 are quite robust with respect
to Type 1 error. Type 1 error rates are close to their nominal values, even for skewed dis-
tributions. The exception occurs when "composite" populations with large correlations are
used (e.g., the population might be constructed by selecting data points with p = .5 from
two populations, one with p = .7 and the other with p = — .7). In this case, the Type 1 error
rate may actually be two or three times as large as the stated value of a.
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-1.0

The numbers on the curves indicate sample size. The chart can also be used to determine upper
and lower 2.5% significance points for r, given p.

Fig. 18.6 Chart giving the .95 confidence intervals for the population correlation coefficient, p,
given the sample coefficient, r.

Other simulation studies have shown that power can be greatly reduced by severe
violations of bivariate normality. For example, Lee and Rogers (1998) compared two joint
distributions for which p was .4. One of them was bivariate normal; for the other, the
distribution of one variable was normal, but the distribution of the other variable was highly
skewed (an exponential distribution was used). When many samples of sizes 15, 30, and 60
were selected from the normal population, the powers for the test of H0: p = 0, using the
test statistic in Equation 18.12, were found to be .328, .637, and .892, respectively. When
samples were selected from the nonnormal population, the powers were much lower: .203,
.301, and .431, respectively. This decline in power suggests that, when we severely violate
the normality assumption, we should consider alternatives to the usual tests.

A nonparametric alternative that may be useful when the normality assumption does not
seem to be satisfied is bootstrapping. Bootstrapping is a general purpose, computationally
intensive approach to inference (Efron & Diaconis, 1983), in which the sampling distribution
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TABLE 18.1 POWER CALCULATIONS USING THE FISHER Z TRANSFORM AND THE NORMAL
DISTRIBUTION

Because the sampling distribution of the Zr's can be considered to be normally distributed, we can
perform all necessary power calculations using the normal distribution. Suppose that H0: p = .30
and H1: p = .30 with a = .05, and that the data from a sample of N = 28 indicates that r = .594.
We showed in the text that this does not provide enough evidence to reject the null hypothesis.
The post hoc power (i.e., the power for sample size of 28 if p really is .594) can be found by
determining what proportion of the sampling distribution centered at Z.594 = .684 (call this the
alternative distribution) lies within the rejection region for the hypothesis test. We can find the
power by reasoning as follows:

1. The upper rejection region for a two-tailed test with a = .05 begins at z.025 = 1.96
standard errors above the mean of the null hypothesis distribution that is centered at
Z.30 = .310.

2. The mean of the alternative distribution is displaced (.684 - .310)/dr = (.684 - .310)(5) =
1.87 standard errors to the right of the mean of the null hypothesis distribution.

3. Therefore, the upper rejection region begins 1.96 — 1.87 = .09 standard errors above the
mean of the alternative distribution; therefore, the critical value has a z score of .09,
with respect to the alternative distribution.

4. Therefore, the power in the upper tail is the proportion of the normal distribution above a
z score of .09 = .46.

Expressing this reasoning in terms of equations, the power in the upper tail is given by the proportion
of a normal distribution above a z score of

where for a two-tailed test with a = .05, zcrit for the lower tail would be —1.96. In the current
example, for the lower tail z = —1.96 — 1.87 = —3.83. The power in the lower tail is essentially
zero, because almost none of the normal distribution lies below a z of —3.83. Therefore, the power
is approximately .46.

Suppose we had used a one-tailed test with H1: p > .30. Then, the power would be the proportion
of the normal distribution above z = z.05 — (Zr — Zphyp)^/N — 3 = 1.645 — 1.87 = —.225; so the
power would be about 1 — .41 = .59.

of a statistic can be obtained by repeatedly sampling from the observed sample. For example,
a .95 confidence interval could be obtained for a correlation coefficient based on a sample
of size N, using the following steps:

1. Select 1000 samples (or any other large number of samples) of size N with re-
placement from the observed sample.

2. Calculate the correlation coefficient for each sample.
3. Sort the 1000 correlations, ordering them from smallest to largest.
4. With 1000 samples, the 25th largest and 976th largest correlation would then form

the boundaries of the .95 confidence interval.
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Therefore, if we wish to test HQ: p = .30 against H\: p ^ .30 with a = .05, the sample size necessary
to achieve a power of .80 if p is really .594 is given by

N = [(1.96 + .84)2/(-684 - .310)2] + 3 = 59.

Note that this is the same as the value provided by the power module of SYSTAT (see Fig. 18.7).
When HO', p =0, calculations using the Z transform agree quite well with those performed using
the t distribution in Section 18.2.2. For example, to obtain a power of .80 of rejecting //0:ph>.p = 0 at
a = .05 if p is really .30, we have

The preceding steps provide a general approach when there is a concern about the
distributional assumptions. However, it has been pointed out (e.g., Rasmussen, 1987) that
the confidence intervals produced by the bootstrap tend to be too small, especially for
small samples, leading to inflated Type 1 error when they are used to test hypotheses.
Strube (1988) used several modifications suggested by Efron (1982) and showed that they
performed better than the original bootstrap. Rasmussen (1989) noted that one of these,
the "adjusted" bootstrap procedure, in which the width of the usual bootstrap confidence
interval is simply increased by a factor of ^/(N + 2)/(N — 1), controlled Type 1 error better
than the standard test using the Fisher Z transforms when composite populations were
sampled.

When we used the bootstrapping option in SYSTAT with 1000 samples for the cor-
relation between total cholesterol and age for females in the Seasons study, we found that
the .95 confidence interval for the correlation between cholesterol level and age for females
extended from .386 to .605. The "adjusted" bootstrap .95 confidence interval extended from
.385 to .606. This is close to the interval from .397 to .599 that was found using the Fisher
Z transform approach discussed in the previous section.

TABLE 18.2 CALCULATING THE SAMPLE SIZE NECESSARY TO ACHIEVE A DESIRED POWER

Starting with the equations in Table 18.1, we can develop an expression that estimates the sample
size necessary to achieve a desired level of power. Suppose we have a positive value of r, so
that virtually all of the power will be in the upper tail. Then, the power is the area in the normal
distribution to the right of a z score of

where zcn, is 1.96 if we use a two-tailed test with a. = .05. If we wish to have a desired power
of .80, the desired z score, Z0, must be —.84. Solving for N, we have

so that

rounding to the nearest whole number. This compares with the required N of 82 obtained using
GPOWER.
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Fig. 18.7 Output of SYSTAT power module for a
priori power calculation. The goal is to determine
the sample size necessary to have power of .80 to
reject HQ. p = .30 in favor of Hf. p ^ .30, with
a = .05, if p is really .594. The value produced for
N is the same as that obtained by the calculations in
Table 8.2.

18.3.5 Testing Whether Independent Correlations Are
Significantly Different

It is possible to test whether the correlation between X and Y is the same in two different
populations; i.e., to test HQ: pi = p2, by using the test statistic

We may, for example, want to know whether the correlation between number of years of
education and income is the same for African-Americans as it is for Caucasians, or whether
math and verbal scores are correlated equally for male and female ninth graders. Of course,
if the correlations were different for males and females, we would have to be cautious in
interpreting what the difference meant. Even if the slope and standard error of estimate were
the same for males and females, the males would have a higher correlation if their scores
had greater variability. When comparing two groups, it is always a good idea to display the
scatterplots and to find the regression statistics for both groups instead of looking only at
the correlations.

As an example, using Equation 18.13 with real data, the correlation between subtraction
and multiplication accuracy for the 28 third graders in the Royer data set is .594; for the
25 fifth graders, it is .225. To determine whether these correlations are significantly different
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TABLE 18.3 POWER AND SAMPLE SIZE CALCULATIONS FOR A TEST OF H0: p, - P2

The logic underlying these calculations is exactly the same as that for the test of H^: p = phyp; the
only difference is that now the standard error reflects the fact that both pi and p2 are estimated
from the data. In the example discussed in 18.3.5, for a sample of 28 third graders, r\ = .594 and
for a sample of 25 fifth graders, r2 = .225. For a two-tailed test of HQ: p\ = p2 against //0: p, ^ p2

with a = .05, the power in the right-hand tail is the area in a standard normal distribution to the
right of zp, where

so the power in the right tail is p(z > .40) = .34. The power in the left tail is the area below the zp

given by the same expression, except that now Zen, = —1.96; this yields zp = —1.96— .4S5/.292 =
—3.52. The power in the left tail is p(z < —3.52), which is approximately 0. Therefore, the power
for the two-tailed test is approximately .34.

To determine the sample size for each group necessary to obtain a desired level of power, we start
with the same equation, assuming equal sample size,

We then substitute for zp the value necessary for the desired level of power, then solve for N. For
example, to obtain a power of .80 in the right tail, we substitute the value of z that cuts off the
lower .20 of the distribution. From Appendix Table C.2, we see that .20 of the normal distribution
lies above z = .84; therefore, zr must be —.84. Similarly, if we wish the power to be .90, zp must
be —1.28. Solving for N, we have

To find the N necessary to obtain a power of .80 in the current example, we have N =
2[(1.96 + .84)/.455]2 + 3 = 79. Similarly, the N necessary for the power to be .90 is 2[(1.96 +
1.28)/.455]2 + 3 = 104.

at a — .05, we can substitute in Equation 18.13. If so, we obtain

z = (.684 - .229)/.292 = 1.56

This is less than the upper critical value of zcrjt = 1 .96, so we do not have sufficient evidence
to reject the null hypothesis that the correlations in the populations of third and fifth graders
are equal. The calculations for post hoc power and for the sample size necessary to obtain
a desired level of power are analogous to those shown in the previous section and are
outlined in Table 18.3. For example, given the current data, the post hoc power for a two-
tailed test of HQ: pi = p2 at a = .05 is .34. Also, assuming that pi — .594 and p2 = .225,
the sample size for each group that is necessary to achieve a power of .80 is approx-
imately 79.
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TABLE 18.4 CORRELATIONS BETWEEN SUBTRACTION AND
MULTIPLICATION ACCURACY FOR FOURTH, FIFTH,
AND SIXTH GRADERS IN THE ROYER DATA

Grade

Fourth
Fifth

Sixth

Correlation

-.194

.225

.431

N

28
23
26

.95 Cl

-.528-. 194

-.206-.583

.052-.701

Equation 18.13 provides a basis for obtaining confidence intervals for ZP| — Zp, The
.95 confidence interval is given by

Note that, although Equation 18.14 can be used to find a confidence interval for ZP1 — Zp,.
one cannot transform back to obtain a confidence interval for pi — p2, because ZP ]_P I is
not the same as ZP) — Zp,. This does not pose a problem for hypothesis testing, because if
ZPI = ZP2, then pi must be equal to p2 .

It is also possible to test for the homogeneity of J independent correlation coefficients.
The hypothesis that the set of J p s are all equal uses the test statistic

where Zy is the Fisher Z transform of the j th correlation coefficient. For example, Table 18.4
presents the correlations between subtraction accuracy and multiplication accuracy for
fourth, fifth, and sixth graders; these are —.194, .225, and .431, respectively. The obtained
value of the test statistic is x2 = 6.899 - (10.283)2/68 = 5.344. Because this is less than
X2

Q5 2 = 5.99, we do not have sufficient evidence to reject the hypothesis that the three
population correlations are identical.

18.3.6 Testing Hypotheses About Correlation Matrices

When data on a number of variables have been collected from the same set of subjects, the
correlations may be displayed as a correlation matrix. If the variables are X\, X2, X?,, and
X4. the correlation matrix is

If there are k variables, the correlation matrix consists of k2 elements. The k elements
on the major diagonal (the one that goes from the upper left to the lower right) are each
equal to 1, because any variable is perfectly correlated with itself. The k2 — k = k(k — 1)
off-diagonal elements can be divided into a set of k(k — 1 )/2 correlations above the diagonal
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and a set of equal size below it. The matrix is symmetric because elements on opposite sides
of the diagonal are identical; r12 =r21 and, in general, rij = rji for all i and j.

When k is large, the number of correlations will be large. For example, if k — 20,
k(k — l)/2 = 190. If we tested each correlation for significance at a = .05, the Type 1
error rate for the entire family of correlations would be very high. Although most soft-
ware packages will dutifully print out the significance level for each correlation coefficient
as though it was the only one tested, it is every bit as necessary to control Type 1 er-
ror here as when we perform multiple t tests on the differences between means. If we
are interested in a limited number of tests based on a priori considerations, we can ad-
just the significance levels using the Dunn-Bonferroni procedure described in Chapter 9.
We can also use the Dunn-Bonferroni adjustment if we have a large number of signifi-
cance tests, although it will be conservative because the tests are not independent of one
another.

To protect against excessive Type 1 error, Steiger (1980) has recommended the routine
use of a simple test of the hypothesis that all off-diagonal elements of a correlation matrix
are equal to zero. If this hypothesis cannot be rejected, tests on the individual correlations
in the matrix are not likely to be meaningful unless motivated by a priori considerations.
The hypothesis can be tested using the statistic

X
2 = (N-3) £EZJ (18.16)

i > i

with k(k — l)/2 df, where Zy is the Fisher Z transform of rij and the summation is over
the k(k — l)/2 squared transforms corresponding to the correlations above (or below) the
diagonal. For example, if for the Seasons data set, we correlate age, height, total cholesterol
(TC), and body mass index (BMI) for the 207 women having scores for all four variables,
the correlation matrix is

Age
Age

Height
TC

BMI

1
-.129

.513

.070

Height
-.129

1
-.198
-.093

TC
.513

-.198
1

.152

BMI
.070"

-.093
.152

1

E E zl = (--130)2 + (.567)2 + (-.201)2 + (.070)2 + (-.093)2 + (.153)2 = .415, so,
from Equation 18.16, x2 = (204)(.415) = 84.66. Because the observed value of x2 is
much larger than the critical value x o5 6 = 12.59, we can reject the hypothesis that all the
off-diagonal correlations are zero. Had we failed to reject the overall null hypothesis, and if
we had no a priori knowledge about the correlations, we would conduct no further tests on
these correlations. In the present example, the null hypothesis was rejected. In any event,
we might have tested some of the individual correlations on a priori grounds. For example,
the literature suggests that, for women, there is a positive correlation between age and TC.
Based on this sample, using the procedures of Section 18.3.3, we find the .95 confidence
interval for the correlation between TC and age to be between .41 and .61, and can therefore
reject the null hypothesis that this correlation is zero in the population.

We may also choose to determine whether the correlation between TC and age is
significantly different than that between TC and BMI. Unfortunately, testing hypotheses
about dependent correlations involves expressions that are complicated, nonintuitive, and
often tedious to calculate, especially when the correlations to be tested do not have a variable
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in common. Because these tests have not been incorporated into the standard statistics
packages, we must either use specialized software, or calculate the test statistics. Some
useful sources that discuss tests of dependent correlations are Meng et al. (1992), Olkin
and Finn (1990, 1995), and Steiger (1980). Perhaps the simplest test for two dependent
correlations that have a variable in common is given by Meng et al. (1992). Given the null
hypothesis H0: pyx1 = PYXx2, we can use the test statistic

where

(where f is not allowed to exceed 1) and r2 is the mean of r2
yX1 and r2

X2 . To test whether
the correlation between TC and age (.513) is significantly different from the correlation
between TC and BMI (.152), we may substitute into Equation 18.17. We have r2 = .143,
f = .543, and h = 1.076, so that z = 4.18. Therefore, we may reject the null hypothesis at
p = .000. Note that the test statistic given in Equation 18.17 is only appropriate if the two
correlations have a common variable. If we wish to test the hypothesis H0 pXY = PWQ, the
test statistic is considerably more complicated (see Steiger, 1980).

One may test many different types of hypotheses about the elements of a cor-
relation matrix by using Steiger's MULTICORR program (Steiger, 1979), which per-
forms tests based on a statistical rationale developed by Dunn and Clark (1969).
The program is free, and is available, along with documentation and source code, at
http://www.interchg.ubc.ca/steiger/homepage.htm. MULTICORR is a DOS program that
requires the preparation of a command file in which certain pieces of information have to
be typed in exactly the right columns. However, it can test a variety of hypotheses about
whether correlations or groups of correlations are equal to one another, or to specified val-
ues, and is much more desirable to use than the corresponding computational formulas.
Using MULTICORR to test whether the correlation between TC and age is significantly
different from the correlation between TC and BMI yields x2

1 = 17.819, which corresponds
to z = 4.22, a result very similar to the value of 4.18 given by Equation 18.17.

and

18.4 PARTIAL CORRELATIONS

18.4.1 The Partial Correlation Coefficient

In Chapter 3, we noted that two variables may be correlated because they are both influenced
directly or indirectly by other variables. For example, verbal ability is correlated with shoe
size in children, because both verbal ability and shoe size increase with age. However,
we may wish to ask whether there would still be a correlation between physical size and



502 1 8 / MORE ABOUT CORRELATIONS

verbal ability even if the effects of age could somehow be controlled or "partialed out."
For example, we may believe that even at the same ages, students who are more physically
mature may tend to be more mentally mature, perhaps because greater physical growth
may be an indicator of better health or nutrition, and might therefore be related to mental
ability. How can we find a measure of the relation between size and verbal ability that is
not contaminated by the effects of chronological age?

If we use the notation rxy — corr(X, Y) to stand for the correlation between two
variables X and Y, then rXY\ w, the partial correlation between X and Y with the effects
of W partialed out, is given by

where X\W = X — X, and X is the value of X predicted from the regression of X on W;
therefore, X\W is the part of X that is not predictable from W. Similarly, Y\W = Y - Y is
the residual that results when Y is regressed on W. It is also possible to express rxv\w in

terms of the simple correlations between X, Y, and W:

For example, suppose X represents size, Y represents verbal ability, and W represents age.
If the correlations of both size and verbal ability with age were .1 (rx\v = ryw = -7), and
the correlation between size and verbal ability was .5 (rxy = -5), rsize,verbai|age would have
a value of (.5 — .49)/(I — .49) = .02. In other words, if we take into account the relation
between size and age, and verbal ability and age, the apparent relation between size and
verbal ability essentially disappears.

Partial correlations are often calculated on data from observational studies, in an attempt
to statistically "control" for the effects of variables that are not of interest. Unfortunately,
although partial correlations are easy enough to calculate, the meaning of a partial correlation
can usually be properly understood only in terms of a specific theory or causal model of the
situation under investigation (see, e.g., Pedhazur, 1997). It should be emphasized that when
fxY\wi& obtained, what is removed from X and Y are the components that art predictable
from a linear regression on W. Suppose, for example, that X measures parents' education,
Y measures their children's performance in school, and W is the number of books in
the home. If TXY\W is considerably smaller than rxy—that is, if the correlation between
school performance and parent's education is much smaller when the number of books in
the home is partialed out—this does not necessarily mean that providing the family with
lots of books will have much of an effect on performance, or that parental education is
unimportant. Partialing books out of the correlation between parental education and school
performance removes more than the direct effect of the books; partialing out books removes
any components of parental education and children's school performance predictable from
the number of books in the home. The number of books in the home is correlated with
parental education and intelligence, as well as with other potentially important variables,
such as socioeconomic level and parental encouragement of achievement. Therefore, when
the number of books is partialed out of the relation between X and Y, some of the effects
of these other variables are removed as well. These types of difficulties in interpretation
also arise for other techniques, such as analysis of covariance and multiple regression, in
which there are a number of correlated variables and one or more of them are statistically
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"controlled." We will be in a better position to discuss these issues in more detail after we
have introduced multiple regression in Chapter 20.

The ideas in this section can be extended to partialing out the effects of more
than one variable. Suppose that we wish to partial out the effects of variables W and
Q from the correlation between X and Y. The partial correlation rxY\wQ is given by
corr(X\WQ, Y\WQ) = corr(X - X,Y - Y), where X is the prediction of X based on
a linear regression equation that contains both W and Q, and Yis the corresponding pre-
diction of Y. The same logic holds no matter how many variables there are to be partialed
out; the partial correlation can always be obtained by correlating the two sets of residuals
that result when X and Y are regressed on these variables. Such partial correlations are
readily obtained by using statistical packages that either produce the partial correlations
directly or provide the appropriate residuals that can then be correlated. If the raw data are
not available, but the first-order correlations are, Equation 18.19 indicates how to find the
partial correlation between X and Y, partialing out W and Q. In effect, Equation 18.18 is
first used to remove the effects of Q from rxy, rxw, and ryw, then is used again to remove
the effects of W from rXY\Q •

and the more general null hypothesis HQ~.PXY\W = Phyp can be tested using

and then transforming back to the correlation scale.
In general, if r is the partial correlation with p variables partialed out, the expressions

become

and

18.4.2 Confidence Intervals and Significance Tests for
Partial Correlation Coefficients

Confidence intervals and significance tests for partial correlation coefficients are completely
analogous to those calculated in Section 18.3. The null hypothesis HQ:PXY\W — 0 can be
tested by using

where the Z's are Fisher transforms. The 1 — a confidence interval for p may be found by
finding the limits for Zp,
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and the confidence limits on p can be obtained by transforming

and

Substituting into these expressions, we see that if rxw — ryw = -7, rxy must have a value
between —.02 and 1.00. A strong negative correlation between X and Y is not possible if
X and Y both have large positive correlations with W.

18.4.3 The Semipartial (or Part) Correlation Coefficient

The semipartial correlation coefficient rY(x\w) is the correlation between Y and X\W, where
X\W = X — X, and is the residual when X is regressed on W. The coefficient may be
obtained by regressing X on W, then correlating the resulting residuals with Y, or by using
Equation 18.20,

Note that the part of X that can be predicted by W has been removed, but no adjustment
has been made to Y. The part correlation has a useful interpretation in terms of multiple
regression and will be discussed further in Chapter 20.

18.4.4 Constraints in Sets of Correlation Coefficients

Given three variables—X, Y, and W—there are three correlation coefficients, r\y, rxw, and
ryw- The range of possible values that can be taken on by any one of these correlations is
constrained by the values taken on by the other two. As the most extreme example, if W
has a perfect linear relation with both X and 7, then X and Y must have a perfect linear
relation. That is, if \rxw\ = kiwi = 1, then kxrl = 1- However, what can we say about the
possible values of rxy if rxw and ryw are both equal to some other value such as .7?

Because rxy\w is a correlation, it must take on a value between — 1 and +1. If we solve
Equation 18.18 for rXY, we have

Therefore, the value of rxy must lie between

18.5 OTHER MEASURES OF CORRELATION

In this section, we introduce several classes of correlation measures other than the usual
Pearson product-moment correlation coefficient. We first discuss four measures used when
one or both variables are dichotomous (i.e., they have only two possible values). The
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point-biserial and phi (<}>) coefficients are simply the Pearson r with one and two dichoto-
mous variables, respectively. The biserial and tetrachoric coefficients provide estimates of
what the Pearson r would be if, instead of dichotomous variables, we actually had normally
distributed scores. We then discuss several measures of correlation used with ranked data.
The first of these, the Spearman rho (p) coefficient, is simply the usual Pearson r applied
to ranks. The Kendall tau (T) and Goodman-Kruskal gamma Cy) coefficients use a dif-
ferent measure of agreement, based on the proportion of pairs of data points in which the
rankings of X and Y agree.

18.5.1 The Point-Biserial and <j> Correlation Coefficients

We are frequently concerned with dichotomies, such as male/female, pass/fail, and ex-
perimental/control. Even though these are each categorical variables and there is nothing
inherently quantitative about them, we can express each dichotomy as levels of a quantita-
tive variable that may be correlated with other variables.4 For example, we can correlate a
dichotomous variable with a continuous variable (e.g., passing or failing an individual test
item with the overall test score) or correlate two dichotomous variables (e.g., male/female
with pass/fail). We can find the correlation by assigning any two different numbers to the
categories that make up the dichotomy. Usually the two numbers 0 and 1 are used, but the
size of the correlation would be the same for any pair of numbers (e.g., 31 and 57).

When the Pearson r formula is applied to a data set in which one variable is continuous
and the other variable takes on the values 0 and 1, the result is called the point-biserial
correlation coefficient. There are specialized formulas for the correlation that take advantage
of the fact that one of the variables is dichotomous, but they will give the same result as the
Pearson rapplied to the same variables and therefore will not be presented here. The point-
biserial correlation coefficient can be tested for significance using the statistic presented in
Equation 18.9.

The t test for the point-biserial correlation is formally identical to the independent-
groups / test that we discussed in Chapter 6. Given data from two independent groups,
we could test the null hypothesis that their population means are equal using the test
statistic given in Chapter 6. If we do this, we get exactly the same observed t as if we
formed N = n \ + n2 data points (X, Y) in which the value of X was determined by group
membership, and Y was the value of the dependent variable, then found rxy, then tested HQ:
p = 0 using Equation 18.9. Solving Equation 18.9 for r yields the relation between / and
r in Equation 18.21:

Because of this relation, some authors recommend that r be used as the primary measure
of effect size to accompany t tests and, because F(l, dfenor) = (2(dfenoT), as the measure of
effect size for F tests in which df\ = 1 (see, e.g., Rosenthal, 1991).

As an illustration, if we correlate depression score (averaged over seasons) with sex
(coded as 0 for males and 1 for females), we find r = .134. The positive correlation indicates
that depression scores are higher for females. Using the t test statistic of Equation 18.9, we
find that the correlation is significant, f(328) = 2.455, p = .015. If we perform a pooled-
variance independent-groups t test on the same data, we find that we can reject HO : jxtemaies =
(xmaies, also with ?(328) = 2.455 and p = .015. The point-biserial correlation coefficient
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If there are a cases for which both X and Y are 1, b cases for which X is 0 and Y is 1, c cases for
which X is 1 and Y is 0, and d cases for which X and Y are both 0, then 4> may be calculated as

Consider an example in which drug therapy and outcome are correlated. Assume the following
contingency table:

The 4> coefficient for treatment and outcome is

may be used as a measure of effect size, although the standardized effect size measure that we
introduced in Chapter 6, Es = (Tfemaie - i?maie)Apooied = (6.217 - 4.720)/5.537 = .270,
seems to have a more direct interpretation.

When the Pearson r formula is applied to two variables that are each coded 0 or 1 to
represent dichotomies, the result is called the cj> coefficient. As is the case for the point-
biserial coefficient, specialized formulas for <j> exist, but these always give the same result
as applying the Pearson r to the dichotomous data. Table 18.5 contains the calculation
of the correlation between survival (survive, die) and treatment (drug, no drug), using
one of the expressions for <j>. The example also demonstrates that, depending on the con-
text, even a small correlation can correspond to an important effect. In the example, the
value of the correlation between treatment and survival is .2; only (.2)(.2) = .04 or 4%
of the variance is accounted for. Yet, this small correlation corresponds to a 20% increase
in survival rate when a drug is administered, a difference that no one would deny was
important.

TABLE 18.5 AN EXAMPLE OF THE CALCULATION OF THE PHI COEFFICIENT



The x2 statistic with 1 dfcan be used to test the hypothesis that X and Y are independent in
the population, whereas the (}> coefficient (or c}>2, which can be interpreted as the proportion
of variance accounted for) can be used as a measure of the strength of the relation between
X and Y.

As a final comment, we note that Equation 18.22 provides us with an opportunity to
emphasize that with large enough samples, even small effects may be statistically significant.
Looking in Appendix Table C.4, we find that we can reject the null hypothesis that X and
Y are independent at a = .05, as long as x2 = WcJ>2 > 3.84 or c(>2 > 3.84//V. It follows
that for N = 1000, we would be able to reject the null hypothesis of independence even
if (j>2 was only .00384. In this case, the "significant" relation would only account for about
one third of 1% of the variance.

18.5.2 The Biserial and Tetrachoric Correlation Coefficients

The biserial correlation coefficient is analogous to the point-biserial coefficient in that for
both measures, one variable is dichotomous and the other is continuous. The difference
between them is that whereas the point-biserial coefficient is simply a special case of the
Pearson r, the biserial correlation coefficient is an estimate of what r would be if, instead of
having a dichotomous variable, scores on the underlying normally distributed variable were
available. The biserial correlation coefficient acts quite differently than the point-biserial
one. Unlike the point-biserial, the biserial coefficient is not very sensitive to the proportion
of Os and Is in the dichotomous variable; moreover, the biserial coefficient can be shown
to always be at least 25% larger than the point-biserial coefficient calculated on the same
data, and under some circumstances may take on values greater than 1.

The tetrachoric coefficient is also an estimate. Like the cf> coefficient, the tetracho-
ric coefficient takes as data two dichotomous variables. However, rather than measuring
the correlation between the dichotomous variables, the tetrachoric coefficient estimates the
r that would result if scores on the two normally distributed underlying variables were
available. The idea of representing a dichotomy in terms of an underlying normal variable
may make sense in some cases but not in others. For the dichotomy pass/fail, one can
imagine passing a test if one has more than a certain amount of a normally distributed
ability, and failing the test if one has less than that amount of ability. On the other hand,
the idea of a normally distributed underlying variable does not make sense for a variable
like sex. Even if there is an underlying continuous variable, the assumption of normality
may not be appropriate. For example, the dichotomous data may have been collected in a
sample of college students. Even if an underlying ability dimension is normally distributed
in the general population, the lowest part of the distribution will not be represented in the
population of college students.

The biserial and tetrachoric coefficients depend very strongly on the assumption of
normality and should be used only with caution. Because these measures are rarely used,
we do not deal with them further, other than to refer the interested reader to sources that
provide more detailed discussions, such as Lindeman, Merenda, and Gold (1980).
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The <j> coefficient is closely related to the x2 test for independence, and it can be shown
that
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18.5.3 The Spearman Correlation Coefficient
for Ranked Data

Sometimes we wish to obtain correlations for data that occur in the form of ranks. We may,
for example, have two judges rank a set of stimuli according to some quality and obtain the
correlation between the two sets of rankings as a measure of reliability. Even if X and Y
are continuous variables, we may wish to convert to ranks, either because we do not believe
that equal differences in the X and/or Y scores necessarily correspond to equal differences
in the underlying variable that is measured, or because we desire measures that are more
resistant to the effects of outliers than the usual Pearson r.

The special case of the Pearson r for ranked data is referred to as the Spearman
correlation coefficient (rs) or sometimes as the Spearman rho coefficient. Although the
value of the Spearman coefficient can always be obtained by applying any of the usual
Pearson r formulas to the ranked data, one frequently encounters a fairly simple formula
that takes advantage of the characteristics of ranks. If there are no ties, the ranks of N
scores are the first N integers. Therefore, the mean of a set of N ranks is (N + l)/2, and the
variance can be shown to be N(N + 1)/12. Substituting such expressions into the Pearson
r formula yields

where D, is the difference between the X and Y ranks for the ith case. An example of a
calculation using Equation 18.23 is given in Table 18.6. Equation 18.23 should not be used
if there are ties, because when there are ties, all the scores in a group of ties are given the
mean of the ranks they would have received had there been no ties. For example, if after
the nine largest scores have been ranked, we find that four scores are tied for 10th place,
each receives the rank of 11.5 (the mean of 10, 11, 12, and 13), and the next largest score
receives a rank of 14. The assigning of mean ranks for ties reduces the variance of the ranks
so that it is less than the variance of the first N integers. Although there are modifications of
Equation 18.23 that can adjust for ties, they are both cumbersome and unnecessary, given
that the appropriate value can be obtained by finding the Pearson r for the ranked data, and
that most statistical packages will do both the ranking and the calculations.

For N > 10, we can test the null hypothesis that the ranks of X and Y have a correlation
of zero in the population by using the test statistic given in Equation 18.9 with N — 2 df.
Although this test is not appropriate for small samples, Zar (1972) has developed tables
for the critical values of the Spearman coefficient for small TV; these tables have been
reproduced in Siegel and Castellan (1988).

18.5.4 The Kendall T and Goodman-Kruskal y
Coefficients for Ranked Data

Kendall has developed a different approach to the problem of assessing agreement between
two sets of ranks. Rather than using a measure of discrepancy that depends on the sum of
the squared differences in the ranks of X and Y (i.e., the ]T Df quantity that appears in
the formula for the Spearman coefficient), Kendall's approach depends on the number of
agreements and disagreements in rank order when pairs of items are considered.
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TABLE 18.6 CALCULATION OF rs AND T FOR A SET OF RANKED DATA

X

81
59
37
79
63
72
42
61
83
70

Rank of X

9
3
1
8
5
7
2
4

10
6

y

20
16
12
21
19
17
9

14
25
15

Rank of Y

8
5
2
9
7
6
1
3

10
4

D

1
_2

-1
-1
_2

1
1
1
0
2

D2

1
4
1
1
4
1
1
1
0
4

Calculation of r,

The number of inversions can most easily be obtained by drawing lines between the same ranks for
X and Y. The number of times that pairs of lines cross one another is the number of inversions. For
the current example, there are six inversions. Therefore,

Suppose we have N objects O\, O2,..., ON that receive two sets of rankings, X and
Y. If the X and Y rankings are exactly the same, there will be no disagreement, and the
Kendall T will have a value of 1. We say that an inversion occurs if, for any two objects
O[ and Oj, 0, is ranked higher than Oj in one set of rankings, but lower than Oj in the
other set. For N objects, there are N(N — l)/2 possible pairings of objects. Therefore, if
there are no ties, there are a maximum of N(N — l)/2 possible inversions. The Kendall T

Calculation of T

Ordered ranks of X
Corresponding ranks of Y
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coefficient is defined as

Various procedures exist for obtaining the number of rank inversions, but the simplest is the
graphic method illustrated in Table 18.6. The graphic method is appropriate only if there
are no tied ranks, and more general procedures when there are ties are outlined in Hays
(1988) and Siegel and Castellan (1988). If there are ties, the expression for T becomes

where TX = J] t(t — 1) and t is the number of tied observations in each group of ties on the
X variable; and TY = ^ t(t — 1), where, r is the number of tied observations in each group
of ties on the Y variable. Packages such as SPSS, SYSTAT, and SAS all provide measures
that take account of ties. However, the packages differ in whether or not they will perform
significance tests; for example, SPSS 10 will provide the results of significance tests5 for p
and T, but SYSTAT 10 will not.

For N greater than 10, the significance of T can be tested by using the test statistic z =
T/CTT where aT = ^/2(2N + 5)/9N(N — 1), and z is approximately normally distributed
under the null hypothesis. We can reject the null hypothesis that T is equal to zero in the
population at a = .05 for the data in Table 18.6, because the obtained value of the test
statistic, 2.94, is greater than the critical z of 1.96. Tables that can be used when N < 10
can be found in Siegel and Castellan (1988).

The Goodman-Kruskal y is closely related to the Kendall T and has essentially the
same interpretation. The 7 is simply the ratio of the difference between the number of
agreements and disagreements to their sum, after all ties have been thrown out; that is

Both -y and T can be thought of as measures of monotonicity, the tendency for the under-
lying measures to increase or decrease together. The test for significance for y depends on
an approximation that requires large samples (e.g., see Siegel & Castellan, 1988), and we
shall not consider it here.

On what basis should we decide which measure to use? The Kendall T is somewhat
more appealing than the Spearman p because of its direct interpretation in terms of the
proportion of agreements and disagreements in rankings. In contrast, the Spearman p is
interpretable primarily by analogy to the usual Pearson coefficient. Concerns about power
do not help much with the choice. Siegel and Castellan (1988) point out that, although
T and p will generally have different values when calculated for the same data set, when
significance tests for T and p are based on their sampling distributions, they will yield the
same p values. However, if a normal approximation is used to perform the significance test,
the T is a better choice because its sampling distribution approaches normality more rapidly
than that of the Spearman p as sample size increases.
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We found the correlation between cholesterol level and age for males, using the
Pearson r, the T, and the p. As stated earlier, r = .062 and is not significant, p = .363.
The Kendall T and Spearman p values obtained from SPSS are slightly larger than r,
.093 and .135; and they are both significant, p = .044 and .046, respectively. There are
several reasons for this discrepancy. One reason is that monotonicity, the tendency for X
and Y to increase (or decrease) together, is a weaker condition than linearity, and thus
easier to satisfy. Another reason is that, because they are based on ranks, T and p are
more resistant than the Pearson r; that is, they are less influenced by outliers. As we can
see in Figure 18.8, the influence plot (see Section 3.4.2) of cholesterol level and age for
men does have some outliers that reduce the size of the correlation. We conclude that
there is a weak tendency for cholesterol level to increase with age for men. We have
sufficient evidence to reject the null hypothesis that the relation is nonmonotonic in the
population.

18.6 CONCLUDING REMARKS

We conclude this chapter by repeating several concerns about correlational measures that
should be kept in mind. Although we outlined procedures for testing differences in corre-
lations across groups, the sample-specific nature of the correlation coefficient makes such
differences difficult to interpret. Because the correlation depends on the variability within
each group, the correlations may be different even if the nature of the linear relation is the
same. Also, we must be concerned with the meaningfulness of our variables. Interpreting a
regression slope that is expressed in the units of Xand Y forces us to consider what changes
in X and in Y really mean. We may be less likely to consider our variables carefullv if we

Fig. 18.8 Influence plot for the correlation between cholesterol level and age for males.
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TABLE 18.7 SUMMARY OF SOME OF THE TYPES OF CORRELATIONS DISCUSSED IN CHAPTER 18

Statistic Equation or Description

Some useful expressions
for the Pearson r

Partial correlation

Semipartial correlation

Point-biserial r

<b coefficient

Spearman p, rs

Kendall T , if there are no ties

Pearson r, where one variable is continuous and the other is dichotomous

Pearson r, where both variables are dichotomous

Pearson r for ranked data
number of agreements in order- number of disagreements in order

total number of pairs of objects

if there are ties,

use a dimensionless correlational measure. If we are interested in understanding the relation
between two variables, it is always a good idea to look at the scatterplot and the regression
statistics in addition to the correlation coefficient.

Finally, in Tablel8.7, we list some of the major types of correlation discussed in
Chapter 18.

KEY CONCEPTS

sample-specific measure
homoscedasticity
reliability coefficient
bivariate normal distribution
bootstrapping
partial correlation coefficient
point-biserial correlation coefficient
biserial correlation coefficient
Spearman p coefficient
Goodman-Kruskal -y coefficient

standard error of estimate
restriction of range
ecological correlation
Fisher Z transform
correlation matrix
semipartial or part correlation coefficient
4> coefficient
tetrachoric correlation coefficient
Kendall T coefficient

where X\W = X — X is the part of X that is not predictable from W
and Y\W = Y - Y is the part of Y that is not predictable from W

where Tx = £] t(t — 1), where t is the number of tied observations in each group of ties on the X
variable and TY = ^t (t — I) where t is the number of tied observations in each group of ties on the
Y variable
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EXERCISES

18.1 Given the following data,

X

1
2
3
4
5
6

Y

11
3
7
9
9
21

(a) Draw a scatterplot.
(b) What is the correlation between Y and X?
(c) What is the proportion of variance in Y accounted for by XI
(d) What is the proportion of the variance in X accounted for by 7?

18.2 For parts (a)-(c) indicate whether the use of the correlation coefficient and/or the
conclusion drawn is reasonable. If it is not, indicate why not.
(a) A clinical psychologist reads a description of a study in which a correlation of

—.80 was obtained between a measure of anxiety and a measure of emotional
stability. Deciding to verify the result, he administers the same measures of anx-
iety and emotional stability to a random sample of patients in a VA hospital. The
observed correlation of —.20 between measures is not significant. He concludes
that he has no evidence of any relation (at least any linear relation) between
anxiety and emotional stability.

(b) Martians are tall and skinny and do not weigh very much. Jovians are shorter,
but weigh a lot more. Height and weight correlates pretty highly for each group,
about r = .60. Would you expect the correlation between height and weight for
a mixed group consisting of equal numbers of Martians and Jovians to be about
the same, bigger, or smaller than .60? Why?

(c) It is reported in the press that getting a degree from a 4-year college is highly
correlated with lifetime earnings; i.e., it is worth several hundred thousand
dollars a year in lifetime earnings.

18.3 Using the Seasons data set on the CD, verify that the correlation between total
cholesterol (TC) level and age is .506 for women, but only . 148 for women 50 years
of age or over, and .264 for women under 50 years of age. How do you explain
these differences? What are the corresponding results for men?

18.4 (a) A psychologist is interested in predicting Y from X in two distinct groups. She
finds the following results:

Group 1

b, =1
SY = 20
sx = lQ

Group 2

b, =4
sY = 10
sx=2

In which situation is the correlation between X and Y higher?
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(b) You are given a large number of data points (X, 7), and find that the correlation
between X and Y is rxy = -70. You now transform X by multiplying each of
the X scores by 10 and adding 3 to the each of the products. You also transform
Y by multiplying each of the Y scores by 2. What is the correlation coefficient
between the transformed variables?

18.5 We are concerned with the correlation between two tests. The reliability of the first
test is .64; that of the second test is .81.
(a) What is the largest correlation that we could possibly find?
(b) Suppose we actually find that the correlation is .40 in a sample of 40 subjects.

What is our best estimate of what the correlation would be if we had perfectly
reliable measures?

(c) Is the correlation significantly different from 0?
18.6 Using the data for men in the Seasons data set, if we consider individual men, the

correlation between TC and age is .062. What is this correlation if we consider
levels of the variable agegrp; that is, if we find the mean value of TC and age at
each level of agegrp, and use these as our data points?

18.7 It is found in an introductory statistics course with 19 students that scores on the
final examination correlate —.30 with the number of hours studied.
(a) Using the t distribution, test the null hypothesis HQ\ p =0, assuming a two-

tailed test with a = .05?
(b) Test the same hypothesis, using the Fisher Z transform and the normal distri-

bution.
(c) Can we conclude that studying too much interferes with test taking?
(d) Find the .95 confidence interval for the population correlation coefficient, p.

Find the .50 confidence interval.
(e) Using GPOWER, or any other valid procedure or program, what is the post hoc

power for the test in (a)?
(f) Calculate the post hoc power for the test in (b). Note that here you cannot use

GPOWER.
(g) Assuming that the population correlation really is —.30, use GPOWER to find

the number of subjects necessary to have a power of .80 for rejecting HQ : p = 0,
using a two-tailed test with a = .05.

(h) Using the normal distribution, and the test in (b), find the number of sub-
jects that would be necessary to have the power be .80 for the significance
test.

18.8 Each year, a random sample of N = 200 freshmen admitted to the Elite Institute
of Technology (EIT) must take a standardized skills test when they first enroll.
Two years ago, the correlation between the test and first year GPA (Grade Point
Average) was .22. Last year, after the test had been revised, the correlation rose
to .35.
(a) If the two entering classes can be considered random samples of EIT freshmen,

test whether the two correlations are significantly different at a — .05 ? If the test
indicated that the correlations were significantly different, what conclusion^)
could you draw about the standardized skills tests.

(b) What is the post hoc power for the test in (a)?
(c) Assuming that the population correlations for the two versions of the test were

actually .22 and .35, how large would N have to be to have a power of .80 to
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reject the null hypothesis that they were the same? (assume two-tailed test with
a = .05)

18.9 For three independent groups, the data are as follows: (use a. = .05 for any signifi-
cance tests)

n
r

Gi

103
.60

Gs

52
.45

G3

67
.20

Ml
Fl
VI
M2
F2
V2

Ml
1.00
.10
.40
.70
.05
.45

Fl

1.00
.50
.05
.70
.50

VI

1.00
.50
.50
.80

M2

1.00
.50
.50

F2

1.00
.60

V2

1.00

Note that these correlations are not independent, because all the correlations are
based on the same students.

For the following, assume nondirectional alternative hypotheses with a = .05.
(a) Test HQ\ p2 = 0.
(b) Test H0: P] = P2.
(c) Test HQ: p2 = p3-
(d) Find the 95% confidence interval for p2-

18.10 A random sample of 39 students are given tests of abstract reasoning (A), quanti-
tative reasoning (Q), and verbal skills (V). The resulting correlation matrix is

A Q V
A 1.00
Q .30 1.00
V .50 .20 1.00

Note that these correlations are not independent, because all the correlations are
based on the same students.
(a) Test the hypothesis that all of the off-diagonal elements in the matrix (here the

.30, .50, and .20 correlations) are equal to 0 in the population.
(b) Test the hypothesis that, in the population, abstract reasoning correlates equally

with verbal ability and quantitative reasoning. That is, test//o: PAY = PAQ against
the alternative hypothesis H\\ PAY ¥^ PAQ-

(c) Find r,4v|g,the partial correlation between A and V with Q partialed out. Test
whether it is significantly different from zero.

18.11 Steiger (1980) used as an example a longitudinal study of sex stereotypes and
verbal achievement. Masculinity, femininity, and verbal achievement are measured
at Time 1 and Time 2. A random sample of 103 observations are obtained. The
resulting correlation matrix is

A
Q
V

A
1.00
.30
.50

Q

1.00
.20

V

1.00
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18.12

(a) Test the hypothesis that, in the population, the correlation between masculinity
and femininity is the same at Time 1 and Time 2.

(b) Test the hypothesis that, in the population, the correlation between VI and Ml
is the same as the correlation between VI and Fl.

If we have two binary variables X and Y, we can find the correlation between them
(called the "cj> coefficient") using the expression in Table 18.5.
(a) What is the value of <t> for the following 2x2 table?

18.13

18.14

18.15

(b) Given the marginal frequencies, what are the minimum and maximum values
of 4> that are possible?

(c) Given the marginal frequencies, for what cell values would <j> be 0?
Sometimes we will find that a correlation has been computed between some variable
X and another variable T, which is the sum of a number of variables, including X
(e.g., T = X + Y). Under these circumstances, we can expect a positive correlation
between X and T, even if X is not related to Y because X is part of T. Show that
in general

We would not expect a perfect correlation between pretest and posttest scores for a
lot of reasons, including random error. Suppose rpre,post = -70. What do we expect
IOr ^pre,change •

A researcher tries to develop a new questionnaire to measure some personality
trait. The instrument is made up of a number of items, each of which is scored
numerically. The total score, T, is supposed to represent the degree to which a
person has the trait. The researcher likes the instrument, but thinks it will be too time-
consuming to administer all of it, because it contains a large number of items—so

where rx,T-x is the correlation between X and the part of T not containing X.
Note that the previous question has implications for the interpretation of correlations
involving change or difference scores. Suppose that X refers to pretest scores and
T to posttest scores. Therefore, T — X refers to change scores. If we assume that
spK — SpOSt, the equation in question 18.13 reduces to
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she arbitrarily divides the instrument into two parts, each containing half the items.
Let's refer to the score on one of the halves as X and the score on the other half
as Y (so that T = X + 7). She finds that the correlation between X and T is high
(rXT = .7) and concludes that the correlation between the scores on the two halves
of the instrument (rXY) must also be pretty high, so that she can get by using only
one of the halves to measure the personality trait. If we can assume that the variances
of X and Y are equal, what is r X Y ?

APPENDIX 18.1

•egression

APPENDIX 18.2

To get Equation 18.3, we start with

Proof that

We start with the identity 7, — Y = (7/ — 7,-) + (7; — Y) Squaring both sides and summing,
we get

We next show that £ (7, - 7,)(7, - 7) = 0. We first substitute 7, = 7 + b\(Xt - X) into
the left side of the equation. This yields

We then note from the definition of covariance in Chapter 3 that E (Xi - X)(7(- - 7) =
(N - l)sXY =(N - I)bi4 because b\ = sXY/s2

x and that £(X, - X}2 = (N - 1)4.
where sx is the variance of X.

Substituting into Equation 18.24, we have

Therefore, the crossproduct term is 0, and
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We first note that if we square both sides of Equation 18.3 and multiply both sides of the
equation by SSY, the result is

Also, from Appendix 18.1, we have SSY = SSKgKS&i0n -f Residual-Substituting into Equation
18.25, we have

The rest of Equation 18.3 follows if we note that the variance of X is

and that the variance of estimate (the square of the standard error of estimate) is

To get Equation 18.4, we note that



Chapter 19
More About Bivariate
Regression

19.1 INTRODUCTION

In Chapter 3, we indicated how to find linear regression equations that best predict
scores on one variable from those on another. For example, we developed linear equa-
tions to predict final exam performance from pretest performance in a statistics class
and cholesterol level from age in a sample of subjects participating in a medical school
study.

In the present chapter, we first consider an important characteristic of regression, the
phenomenon of regression toward the mean. This term refers to the fact that, whenever
prediction is not perfect, the best prediction is always less "extreme" (i.e., is closer to its
mean in standard deviation units) than the score it is predicted from. This has consequences
that are often unappreciated.

We then go on to consider the kinds of inferences we can make about the linear equation
that characterizes the relation between two variables in a population on the basis of a random
sample selected from the population. Perhaps we wish to form a .95 confidence interval (CI)
for the population slope, or determine whether we have sufficient evidence to reject the null
hypothesis that the population slope is zero. To form confidence intervals, test hypotheses,
or perform power calculations, we must state a model and make certain assumptions about
the population. Our strategy will be to begin with the usual regression model that assumes
that the predictor, X, is a fixed-effect variable and is measured without error, and Y is a ran-
dom variable that is normally distributed, then discuss what happens when X is also random
and when X is measured with error. We also discuss how to check whether the assumptions
of the model have been met and whether any of the data points have a particularly strong
influence on the regression. We conclude by indicating how to test whether regression coef-
ficients are significantly different from one another and by considering repeated-measures
designs.

519
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19.2 REGRESSION TOWARD THE MEAN

Whenever there is an imperfect linear relation between X and Y, the values of ZY associated
with any given value of zx will, on the average, be closer to zero than zx is. This can be seen
in Fig. 19.1 in which an elliptical "envelope" has been drawn to represent a large number
of standardized data points. In the figure, the envelope is symmetrical about a straight line
with a slope of 1 drawn through the origin (i.e., the line with the equation ZY = Zx)- Now
imagine that the ellipse is divided into a number of narrow vertical strips and that the mean
of the data points in each strip is located in the middle of the strip. We can see that the line
joining the means of the strip will have a slope that is less than 1. In fact, the line that best
fits the points representing the mean values of ZY in the vertical strips will approximate

the regression equation for predicting ZY from zx- From Equation 19.1, we see that the
predicted z is always closer to zero than the predictor, whenever prediction is not perfect
(i.e., whenever \r\ < 1). We can extend this result to raw scores by rewriting Equation
19. las

or, multiplying both sides by s y, as

In Equation 19.2 we see that the best prediction for Y must be closer to Y than the corre-
sponding X is to X, whenever sx = sy and prediction is not perfect.

Although regression toward the mean must always occur whenever two variables with
equal variances are not perfectly linearly related, investigators have often felt compelled to

Fig. 19.1 Regression line for predicting ZY from zx when there is
an imperfect linear relation between X and Y.
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explain regression effects in terms of "interesting" variables—ignoring the fact that these
effects could have been produced solely by random variability or measurement error or
any other factor that results in less-than-perfect correlation. For example, suppose a group
of children takes an achievement test, then is given a period of instruction followed by a
second test. Children with extremely low scores on the first test will often tend to show
some improvement in standing on the second test, and children with extremely high scores
on the first test will often tend to show a decline. Although this seems to suggest that the
intervening instruction is more effective for the students who scored lower on the first test
than for those who scored higher, the changes in performance may merely reflect regression
toward the mean. Even if the instruction was equally effective for all children, we would
expect regression toward the mean if the two tests did not measure exactly the same thing or
if there were random fluctuations in the children's alertness and their success in guessing.
Because of such nuisance variables, if we want to assess the effects of instruction, we should
include an appropriate control group and conduct an experiment.

Another example of the interpretive problems resulting from regression toward the
mean is the so-called "sophomore slump." Individuals who perform particularly well in
their first year of academics or athletics will probably perform relatively less well in their
second year. It is often thought that this finding requires an explanation in terms of overcon-
fidence and poor work habits that result from early success. However, these explanations
may be unnecessary. Even without any interventions or distractions, performance will gen-
erally fluctuate so that there are periods of better-than-average performance and periods
of worse-than-average performance. Therefore, periods of exceptionally good performance
will often be followed by performance that is less good, whether or not there is an interven-
tion. Similar regression effects observed in other everyday situations may elicit unwarranted
explanations. Normal fluctuations in children's behavior may cause parents to overesti-
mate the effectiveness of interventions such as punishment. Fluctuations in the intensity
of symptoms in sufferers of many chronic diseases may cause patients to overestimate the
effectiveness of various remedies and food supplements.

Regression toward the mean may also result in an apparent lack of symmetry that at first
glance seems to be counterintuitive. Suppose, for example, that the correlation between the
heights of fathers and their adult sons is .5, and that the mean height for males is 69 inches
with a standard deviation of 2 inches. From Equation 19.2, the best prediction for the heights
of sons whose fathers are 73 inches tall is

However, it does not follow from this that the best prediction for the heights of fathers of
71 -inch sons is 73 inches. Rather, the best prediction for the heights of fathers of 71 -inch-tall
sons is 70 inches, again a regression toward the mean.

Regression toward the mean also complicates the study of change. For example, again
consider children who take two tests separated by a period of instruction. It might seem
desirable to subtract the score on the first test from the score on the second test in the hope
of obtaining a "pure" measure of improvement; that is, a measure of change unrelated to
initial performance. However, the change scores are not free of the influence of the scores on
the first test. Whenever there is less than a perfect correlation between the tests, regression
effects will occur, and these effects will be larger for more extreme scores. In our example,
children who had extremely high scores on the first test will tend to have lower scores on the
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second one; children with extremely low scores on the first test will tend to score relatively
higher on the second. It follows that if the scores have been standardized and if regression
toward the mean occurs, change scores will tend to be negatively correlated with the scores
on the first test, so that how other variables correlate with the change scores will depend
to some extent on how they correlate with initial performance. These considerations, and
others, have led to much discussion about whether the best estimate of average treatment
effect in a pretest-posttest design is obtained if the pretest score is subtracted or if it is used
as a covariate (for a recent discussion, see Maris, 1998).

We conclude this section by emphasizing that regression toward the mean is inevitable
only if the variances are equal. As we can see in Equation 19.2, regression effects must
occur for raw scores if

where
YI is the value of the dependent variable for the ith case
po and p i are the Y intercept and slope of the line
Xi is the value taken on by the predictor variable for the zth case

and
e, is a random error component

We further assume that the error component £ is independently and normally distributed
with mean 0 and variance cr2; that is,

£(£/) = 0
var(e,) = a^ for all i (homogeneity of variance or homoscedasticity)
COV(BI•, £.'•) — 0 except when i = i' (independence)

These assumptions imply that the conditional population mean of Y corresponding
to any given value of X, fxy.x, lies on the straight line (jty.x = Po + Pi-X", and that the
deviation of Y from its conditional population mean is due solely to random error. This
is very important; if the systematic relation between X and Y is not linear, our measure
of error will include more than chance variability, and the significance tests developed
from this model may be biased. In this model, X is assumed to be a fixed-effect variable

However, if SY > SY, regression toward the mean need not occur for raw scores; in fact, if
I r [SY/SX > 1, we will have the opposite effect, called "egression from the mean" (see, e.g.,
Ragosa, 1995). Although there are many situations in which regression effects occur for
raw scores, there are others in which these effects occur for standardized, but not for raw,
scores.

19.3.1 The Normal Regression Model
We now go on to develop the theoretical structure necessary to make statistical inferences
in regression. We first consider the model for the population that states Yand X are related
according to the equation

19.3 INFERENCE IN LINEAR REGRESSION
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that is measured without error. If we replicated the study, exactly the same values of X
would be used. If these conditions are satisfied, it can be shown that b\ and bo> the least-
squares estimators of Pi and Po that we developed in Chapter 3, are both unbiased (e.g.,
E(b\) = Pi) and consistent (i.e., as the sample sizes are made larger, the estimates more
closely approximate the parameter values).1 The estimators are (see Equations 3.8 and 3.9)

and

As an example, consider the data presented in panel (a) of Table 19.1. In a hypothetical
visual search experiment, 20 subjects each look at a screen and are presented with an array
of letters. They are asked to respond as quickly as they can whether a specified target letter
is present in the array. Groups of five subjects are assigned to array sizes of two, four, six,
and eight letters, and the times in (milliseconds) to respond correctly that the target letter is
present are recorded. Generally, when the letter arrays are larger, it takes longer to respond
to the presence of a target letter, so the data are reasonably well fit by a linear equation.
Here, the assumption that X is a fixed-effect variable is satisfied, because the array sizes are
chosen by the researcher and can be measured without error. Note that this is not the case
for the statistics class example presented in Chapter 3, in which we think of first selecting
individuals from the population, then measuring X (pretest score) and Y(final exam score),
so that both X and Fare random variables.

In the next few sections, we discuss how to make statistical inferences about the slope
and intercept of the regression equation and about the predictions made by the equation.
In every case, we can find the 1—a confidence interval for 6, the population parameter of
interest, by finding

and can test hypotheses about 0 by using the test statistic

where 6 is the estimate of 6 obtained from the sample and s§ (which, when there are sub-
scripts, will usually be written as SE($)) is the estimated standard error. For example,
the .95 confidence interval for P1 is given by b\ ± t.025 • SE(b\). We have already shown how
to find b\ in Chapter 3; all we need to find the confidence interval is SE(b\), the estimated
standard error of b\.

19.3.2 Inferences About (i0 and
The SYSTAT output for the regression of time on array size is given in panel (b) of Table 19.1.
From this output, we see that the bivariate regression equation that best predicts reaction
time (Y) from array size (X) is
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TABLE 19.1 DATA AND REGRESSION OUTPUT FOR THE SEARCH EXPERIMENT EXAMPLE

(a) Data

Size Time

2
2
2
2
2
4
4
4
4
4
6
6
6
6
6
8
8
8
8
8

418
428
410
445
471
475
455
418
524
516
537
500
480
511
529
550
617
590
608
548

(b) SYSTAT Regression Output

Dep Var: TIME N: 20 Multiple R: 0.873 Squared multiple R: 0.763
Adjusted squared multiple R: 0.749 Standard error of estimate: 31.452
Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
CONSTANT 381.900 17.227 0.000 . 22.169 0.000
SIZE 23.920 3.145 0.873 1.000 7.605 0.000

Analysis of

Source
Regression
Residual

Sum-of -Squares
57216.640
17806.360

df
1
18

Variance

Me an- Square
57216.640

989.242

F-ratio
57.839

P
0 . 000

Note. Output is from SYSTAT.

In the output, the term multiple R refers to the multiple correlation coefficient, Ry.x =
corr(Y, 7) = .873. This is the correlation between the actual value of Y and 7,the value
of Y predicted from X using the regression equation. Because Y is a linear function of
X, and because the magnitude of a correlation is unchanged by a linear transformation,
for bivariate regression the multiple correlation is the absolute value of r^y. Note that the
multiple correlation coefficient cannot be negative because it is the correlation between
Y and a prediction of Y based on a regression equation that has been developed to min-
imize prediction error. Also, presented in the regression output is the standard error of
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TABLE 19.2 EXPLANATION OF THE ANOVA TABLE IN THE REGRESSION OUTPUT FOR

BIVARIATE REGRESSION

SV df SS MS

Regression

Residual

Total

1

N

AT

E(Y,
-2
_ j

E
E

(Y,

(Yi

-n2

- Y,}2

-Yf

= r2SSY = b2SSx

= (\-r2)SSY

=SSY

55rcg/l MSreo/MSrcsJdual

SSresiduaiAAf - 2)

estimate.

a measure of the variability around the regression line that we discussed in Chapter 18.
As can be seen in Table 19.2, the ANOVA (analysis of variance) table at the bottom of

the output indicates the partitioning of variability (see Appendix 18.1). The total variability
in the Y scores, SSy = EX^' ~~ ^)2' *s partitioned into two components, the variability
accounted for by the bivariate regression equation,

and the variability not accounted for by the regression,

The F given in the rightmost column of Table 19.2 is the ratio MSregression/^residual- A
significant F indicates that both r and b\ are significantly different than zero; that is, that
the null hypotheses HQ: p = Oand//o:Pi — 0 can both be rejected. The F can be used to
test the significance of the correlation coefficient because it can be expressed as the square
of the t that was presented in Chapter 18 as the test statistic for the null hypothesis HQ:
p = 0. Also, as we shall soon see, the F can be written as the square of t = b\ /SE(b\), the
test statistic for the null hypothesis HQ: Pi =0.

The regression output also displays t tests for the significance of bo and b\. Above
the ANOVA table in Table 19.1, in the "Effect" column, the terms CONSTANT (i.e., the
Y intercept of the regression equation) and SIZE (the predictor variable, X) are listed. In
the next two columns to the right are the values of the coefficients, bo and b\, and then their
standard errors. The "r" column is the ratio of the coefficient to its standard error, which
is distributed as t if the assumptions of the model are satisfied and the null hypothesis is
true. Note that the square of the t for b\, (7.605)2 is, within rounding error, the same as the
value of the F in the ANOVA table. The "Std Coef" column contains information about the
regression of Y on X when both variables have been standardized. Because the regression
line must pass through the origin when the variables are standardized, the Y intercept must
be zero. The standardized slope coefficient, the so-called "P" coefficient, has the same value
as the correlation coefficient in bivariate regression.2

We estimate the regression parameters Po and pi using the least-squares estimates b^
and b\ that were presented in Chapter 3. It can be shown (see Appendix 19.2) that bQ and
b\ are unbiased estimates of PO and Pi The estimated standard errors for b0 and b\ can be



526 19 / BIVARIATE REGRESSION

where se is the standard error of estimate and SSx — £] (%i ~ ^O2- These equations follow
readily from the fact that, under the regression model, b$ and b\ can each be expressed as
linear combinations of the Y scores. This discussion is elaborated in Appendix 19.1, and
the expressions are derived in Appendix 19.3.

Although the exact forms of the expressions for the standard errors are not completely
intuitive, they have characteristics that make sense. For example,

1. We would expect that the greater the variability of the data points around the
regression line, the more uncertainty we should have about the location of the
regression line. Therefore, the standard errors of bo and b\ should vary directly
withs^.

2. We would expect to get more stable estimates of the regression parameters if the
sample contained both large and small X values than if it contained only a narrow
range of X's. Therefore, the standard errors of both b$ and b\ should vary inversely
with some measure of variability in the X scores such as sx or SSx •

3. Because the least-squares regression line must pass though the point
(X, Y),variability in the slope will affect the Y intercept less if X is close to the
Y axis (i.e., if X is close to 0). Therefore, the standard error of bo increases as X
increases.

We can use these standard errors to find confidence intervals and test hypotheses about
the slope and Y intercept. For the slope of the regression equation, the .95 confidence interval
for Pi is given by

expressed as

and

We can test the null hypothesis HQ: pi = Pihyp by using the test statistic

Note that if we wished to test the null hypothesis/^: Pi = 0, a two-tailed t test for the
slope is equivalent to the F test in the ANOVA table. This may be seen by squaring the
expression for the t,

Suppose we wish to test the hypothesis HO'. Pi = 20 against the alternative hypothesis
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If we wish to test HQ\ Pi = 20 against the alternative hypothesis H\: p{ > 20 with a =
.05, as in the previous section, the noncentrality parameter is estimated by the observed
value of t, here 1.246. Entering the critical value of t, 1.734, as the X value, df =18, and
the observed value of t as the noncentrality parameter in the UCLA noncentral Student
calculator returns probability = .672, so the power is 1 — .672 = .328.

We can also estimate what the power would be if we increased the number of obser-
vations. Suppose we had 20 observations at each level of array size instead of 5 and that
everything else remained the same. Because SSx = ^ (X,- — X)2, increasing the number
of observations at each level of X from 5 to 20 would increase SSX from 100 to 400, a
factor of 4. Assuming the slope and standard error of estimate remained the same, we can
see from Equation 19.7 that making SSx four times as large would make the standard error
of b\ half as large. Therefore, the test statistic would become twice as large, increasing in
value from 1.246 to 2.492. The df would now be N — 2 = 78, and the new critical value of
t would be t,05,78 = 1.665. Entering these values into the noncentral / calculator yields a
probability of .205, so that the estimated power would be approximately .80 for rejecting
H0: pi = 20 in favor of HI : pi > 20.

We can perform power calculations for tests of the Y intercept in exactly the same
way. For the test of HQ: po = 350 against H\: Po ^ 350 at a = .05, we can use the test
statistic t — (381.90 - 350)/17.227 = 1.852 as the estimate of the noncentrality param-
eter. Using this estimate, and the critical value of ?.025,18 = 2.101, yields a post hoc power
estimate of .42. If we increased the number of observations at each array size from 5 to 20
and everything else remained the same, the standard error would become

19.3.3 Power Calculations
Using the noncentral t distribution, we can readily calculate the post hoc power for the tests
we just conducted. The noncentrality parameter for the test of the slope coefficient is

We know that the test of H0: Po = 350 against HI: po ^ 350 at a = .05 will not be
significant because 350 lies within the .95 confidence interval for PQ.

Because this value does not exceed the one-tailed critical value of f.os.is = 1 -734, we do
not have sufficient evidence to reject the null hypothesis.

If we are concerned with the Y intercept, we can find confidence intervals and test
hypotheses just as we did for the slope. For example, the .95 confidence interval for Po is

H\: Pi > 20. The value of the test statistic is
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and the test statistic would be (381.90 - 350)/8.613 = 3.703. Using 3.703 as the estimate
of the noncentrality parameter, the critical value f.025,78 — 1 -99, and df = 78 yields a power
estimate of .96.

GPOWER can also be used to provide power estimates in regression. However, it can
only estimate power for tests of the null hypothesis that Pi = 0 (or, in the case of multiple
regression, for tests of null hypotheses that state that one or more of the set of (3s for
different predictors are equal to zero). We illustrate its use in Chapter 20.

19.3.4 Inferences About the Population Regression Line

According to the regression model, the expected value of Y for any X = Xj is fxr.A', =
Po + $ \ X j . We can think of \^y.x, as the conditional mean of the Y scores that correspond
to Xj. We can show that Yj = jiy.x,- = ^o + b\Xj is an unbiased estimator of |Ay.x,-- and
that the estimated standard error is given by

As we can see from Equations 19.10 and 19.11, the standard error, and therefore the
confidence interval, depends on the value of Xj. It is smallest when Xj = X, and increases
as Xj deviates more from X. This can be clearly seen in Fig. 19.2, which is the scatterplot
for the search experiment data, with the regression line and the .95 confidence interval also
displayed. Note that hypothesis tests or power calculations may be conducted in the same
way as in the previous section.

19.3.5 Obtaining a Confidence Interval for Ynew// a New
Value of rat X,

In the previous section, we showed how to find a confidence interval for the conditional
mean of the Y scores at Xj. Here, we show how to find a confidence interval for the
Y score of a new individual who has X — Xj. That is, we wish to estimate one of the
scores from the population of scores with mean |Xyx ; , where Fnewj = I^Y.X,+ £• The
estimate of the conditional mean, jiy.x, = ^o + b\Xj, is an unbiased estimate of FneW;-
However, if we wish to find the confidence interval for Fnewy > our measure of variability
should not only contain the variability associated with fLYX , but should have an additional

where

is the so-called leverage of Xj (see Appendix 19.1).
For the search experiment data, the best estimate for the conditional mean of Y at

X = 4 is given by |iy.x=4 = 381.90 + (23.92)(4) = 477.58 and the estimated standard
error is

Therefore, the .95 confidence interval for |xy.x=4 is
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Fig. 19.2 Scatterplot for the search data of
Table 19.1 with the regression line and .95
confidence curves.

component because of the variability of the Y scores around their conditional means. The
appropriate standard error is given by sej\ + hjj, where hjj, the leverage, was defined by
Equation 19.11.

For the search experiment data, the predicted reaction time for a new subject with an
array size of 4 is 381.90 + (23.92)(4) = 477.58, the same as the predicted conditional
mean. However, the estimated standard error is

19.3.6 The One-Factor ANOVA with Two Groups:
A Special Case of Regression Analysis

It is important to understand that ANOVA is simply a special case of regression analysis.
Although we will discuss this in detail after we have introduced multiple regression, we are

so that the .95 confidence interval for Fnew is 477.58 ± (2.101)(32.38) = 477.58 ± 68.03.
Note that this interval is much wider than the .95 confidence interval for the conditional
mean that we previously found to be 477.58 ± 16.19.

Note that the above result does not allow us to conclude that 95% of the population
of Y scores corresponding to X = 4 lie within the interval 477.58 ± 68.03. As always,
the correct interpretation of the confidence interval is based on what would be expected
to happen during repeated sampling: Assume that (1) we select many samples of size N,
using the same values of X in each sample, (2) for each sample, we find the .95 confidence
interval for the Y score of a new individual with X = 4; and (3) for each sample, we observe
whether the Y score actually is contained within the confidence interval. If the assumptions
of the model are valid, the .95 confidence intervals will contain the actual scores in 95%
of the samples. Table 19.3 lists some of the population parameters that we might wish to
estimate, the sample statistics that we use as estimators, and the standard errors that can be
used to form confidence intervals.
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Statistic

Slope

Expression

Expected Estimated Standard Error for

Value Finding Confidence Interval

6, =£(*,- - X)(Yi - Y)/SSX p,
= rsY/sx

se/^/SSx

where se = ^/SSKSiduai/(N - 2)
is the standard error of estimate

Y intercept
Mean value

of Y at Xj

New score
at Xj

Residual of
the y'th case

bo =

&Y-XJ

•* newy

eJ =

Y

=

=

Yj

-biX

bo + b{Xj

&Y-XJ =b0 + b\Xj

— Y

Po

V-Y-Xj

VY-XJ

0

se\

se^

^e \

$e\

/ ( l / N ) + (X2/SSx)

/h]j, where hj} = ± 4

/i+*a
r^hjj

(Xj - xr
~~s$~

Because X\ / .X^iM — 1^2 = 0 only if Pi = 0; therefore, when there are only two groups,
testing the null hypothesis that Pi = 0 is equivalent to testing the hypothesis (JLJ = 1x2-

We can also show that, if the factor has only two levels, Degression = 55^, and
^residual = SSs/A- Because there are only two groups, the least-squares regression line
must pass through the two group means. Therefore, YH = Y.\ and 7/2 = Y.2. Therefore,
in the case of one-factor ANOVA with two levels

and

so that MS,
the factor.

regression /MSVesiduai and MSA /MS$/A are equivalent if there are only two levels of

The distributional assumptions about e// are the same as for the ANOVA model. Because
there are only two populations of Y scores, the two population means must lie on a straight
line. The population mean for the first group of F's is given by (o-i = Po + Pi^i, and the
mean of the second group is 1x2 = po + Pi ̂ 2- Therefore,

with the usual assumption that the e// are independently distributed with mean 0 and variance
cre

2 within each population. To consider the two-group design as a problem in regression
analysis, we assign the value X\ to all the participants in one group and any different value
XT to all the participants in the second group. The regression model may then be written as

already in a position to demonstrate that a one-factor ANOVA that tests the hypothesis
(mi = fX2 is exactly equivalent to a regression test of the hypothesis HQ: pi = 0.

The ANOVA model for a one-factor between-subjects design is
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It is important to note that, when there are more than two levels of the factor, Degression
will in general not be equal to SSA. For the general case in which there are a groups of
scores, Degression will equal SSA only if, when Y is plotted against X, the a group means all
fall on a straight line. However, we will show in Chapter 21 that even complicated ANOVAs
can be considered to be special cases of multiple regression.

19.3.7 Regression Analysis in Nonexperimental Research

In the regression model introduced in Section 19.3.1, X is assumed to be fixed and measured
without error. In other words, the values of X scores are assumed to be known constants.
This condition will generally only be fully satisfied when X is an independent variable
that is manipulated in an experiment. In an experiment, the researcher selects the levels of
the independent variable—array size in the current example. When a statistical inference
is made, conclusions are drawn about the populations of Y scores corresponding to these
fixed levels of X.

However, regression is commonly used with data collected in nonexperimental research
in which both X and Y take on values that vary from sample to sample, and are therefore
random variables. This will occur in observational studies in which a sample of individuals
is selected, and values of X and Y are obtained for each individual. For example, we could
perform an observational study in which we selected a sample of patients and measured the
body mass index (X) and cholesterol (Y) for each patient.

Even if X is a random variable, it can be shown that the least-squares estimates are
unbiased and consistent, and we can use the same calculations for hypothesis tests and
confidence intervals as for the fixed-X model we discussed earlier, provided we are will-
ing to make certain assumptions. We must assume that the values of Y are drawn from
a normal population with mean \±Y.x = Po + Pi^ and constant variance 07, and that
the probability distribution of X does not involve the regression parameters Po, Pi, and
e. In particular, we must assume that X and e are not correlated. Note that to ensure that
X and e are independent, we treat the X scores as though they were fixed by making
our statistical inferences "conditional" on them. That is, our inferences are considered
to apply to situations having the same distribution of X scores as in the current sam-
ple. (For discussions of what happens when both X and Y are random variables, see
Fox, 1997, pp. 113-114; Hays, 1994, pp. 637-638; Neter et al., 1996, p. 85; Snedecor
& Cochran, 1967, pp. 149-150; and especially Mittelhammer et al.,3 2000, pp. 17-24 and
225-235.)

19.3.8 Regression When X Is Subject to Random Error

So far we have assumed that X is measured without error. As this assumption is often
not realistic, we consider what happens when the obtained value of X is made up of two
components, X', its true value (i.e., the value it would have if it could be measured without
error), and u, an error component, so that

X = X' + u

If we can assume that the measurement is unbiased and that the error component, u, is
uncorrelated with X', we have E(u) = 0 and vl = &l, + a;.
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where pj is the "true" slope (i.e., the slope of the equation that would be obtained by
regressing Y on X' ), X = (TM

2/o-|,, and rXx = °x'/°i ls me reliability of X. Even if X'
is not normally distributed, the result holds for large samples and approximately for small
samples when X is small. This means that when X is measured with error, the obtained
slope, hi, underestimates the magnitude of the true slope because it estimates $\ rather than
the true slope, pj. If there is a great deal of measurement error, the reliability will be low,
and Pi will be much closer to zero than the true slope.

Fortunately, in experimental research, measurement error is usually quite small. Con-
sider a situation in which vx1 = 15. Even if au =5 (this implies that about one third of the
measured values of X will be in error by at least 5 units), the reliability will be high. In this
case, rxx = 225/250 = .90 so that from Equation 19.12, pi = .9p|.

However, if instruments that have large amounts of measurement error are used, the
magnitudes of the regression coefficients may be seriously underestimated. Also, if the
amount of measurement error differs across conditions, this must be kept in mind when
comparing slopes obtained in the different conditions. The situation is more complicated
if it cannot be assumed that X' is independent of u. For further discussion, see Draper and
Smith (1998, pp. 89-92).

19.4 AN EXAMPLE: REGRESSING CHOLESTEROL
LEVEL ON AGE

Suppose we were to explore the extent to which total cholesterol level is related to age.
To do this, we consider the scores of the participants in the Seasons study who had their
cholesterol measured in every season.4 The scatterplot of the mean of the four seasonal
cholesterol scores against the age of the participant at the first measurement was presented
in Figure 3.6 and showed a moderate linear relation. Because the literature suggests that the
relation might be different for men and women, we present separate scatterplots for men
and women in Fig. 19.3(a) and Fig. 19.3(b).

For the 211 women having cholesterol scores in each season, the scatterplot indicates
that there is a positive linear relation between cholesterol and age. Using the inference
procedures discussed in Chapter 18, we can determine that the correlation is significantly
different from zero, r — .506, p = .000. The univariate distributions for age and choles-
terol are fairly symmetric, and the boxplots indicate only a single outlier on the cholesterol
measure. There is considerable scatter around the smoothing curve, especially for several
women between the ages of 30-50 who have high cholesterol scores.

Figure 19.4 displays the SYSTAT output for the regression of cholesterol on age for
women. From the output, we see that the linear regression equation that best predicts
cholesterol (Y) from age (X) is

Snedecor and Cochran (1967) point out that, if e, u, and X' are all normally and inde-
pendently distributed, Y and X will follow a bivariate normal distribution (see Chapter 18)
and the regression of Y on X will be linear with a slope of
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Fig. 19.3 Scatterplot for total cholesterol and age with LOWESS smoothing for
fa) females (r - .506) and (b) males (r — .062).

Both the intercept and slope differ significantly from zero, ?(209) = 13.117, p = .000,
and r(209) = 8.476, p ~ .000, respectively. The output also contains information about
the Durbin-Watson statistic (see Section 19.5.5) and the first-order autocorrelation (i.e., the
correlation between the residual on trial i and the residual on trial i - 1), and warns that
case 311 is an outlier, then goes on to plot the residuals (the differences between the actual
Y scores and the Y scores predicted by the regression equation) against the estimated 7's.
We will discuss these measures in the context of checking the assumptions that underlie
our inferences in Section 19.5.

The 220 men with complete data have an age distribution very similar to that for
the female sample (the mean age is 48.4 years for women and 50.3 years for men). The
mean cholesterol score in the male sample is slightly higher than for the female sample
(221.9 as compared with 214.7), but the difference is not sufficient to conclude that they are
significantly different (the .95 confidence interval for the difference extends from —0.19 to
14.55). There seems to be less change in cholesterol level with age for men than women,
and there are also a few more outlying cholesterol scores for men. The correlation between
cholesterol and age for men is not significantly different from zero, r = .062, p = .363.
Using the test statistic given in Chapter 18, we find that the correlation between cholesterol
and age is significantly larger for women than for men, z = 5.10, p = .000.

The results of the regression of cholesterol level on age for men are given in Fig. 19.5.
The regression equation is

For each additional year of age, the predicted cholesterol level increases by 1.71 units. The
.95 confidence interval for the slope is

The slope is not significantly different from zero, t ( 2 l S ) = .912, p — .363; the estimate of
the slope is .198, with a .95 confidence interval that extends from — .23 to +.63. A reasonable
question to ask at this point is whether the slope for women is significantly different than
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Dep Var: TC N: 211 Multiple R: 0.506 Squared multiple R: 0.256
Adjusted squared multiple R: 0.252 Standard error of estimate: 34.219
Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
CONSTANT 131.870 10.053 0.000 . 13.117 0.000
SIZE 1.712 0.202 0.506 1.000 8.476 0.000

Analysis of Variance

Source

Regression

Residual

Sum-of -Squares

84117.481

244725 . 926

df
1

209

Mean-Square

84117.481

1170.937

F-ratio

71.838

P
0.000

***WARNING***

Case 311 is an outlier

Durbin-Watson D Statistic

(Studentized Residual = 4.068)

2.084

First Order Autocorrelation —0.050

Fig. 19.4 SYSTAT output for regression of total cholesterol on age for
females.

that for men. We shall present this test in Section 19.7. In bivariate regression, if r is
significantly different from zero, the slope must also be significantly different from zero.
However, because of the characteristics of the correlation coefficient, it does not necessarily
follow that, if a correlation is significantly larger in Group 1 than in Group 2, the slope must
also be larger in Group 1. In Exercise 19.5 at the end of the chapter, we present an example
in which the correlation coefficient is significantly higher for men than for women, but the
regression slope is significantly higher for women than for men. We next consider how to
check the assumptions underlying our tests.

19.5 CHECKING FOR VIOLATIONS OF ASSUMPTIONS

Because our conclusions can be seriously in error if there are severe violations of the
assumptions, we next discuss how to check for violations. When we try to understand our
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Dep Var: TC N: 220 Multiple R: 0.062 Squared multiple R: 0.004
Adjusted squared multiple R: 0.000 Standard error of estimate: 38.286
Effect Coefficient Std Error Std Coef Tolerance t P(2 Tail)
CONSTANT 211.906 11.249 0.000 . 18.837 0.000
SIZE 0.198 0.218 0.062 1.000 0.912 0.363

Analysis of Variance

Source
Regression
Residual

Sum-of -Squares
1218.673

319540.841

df
1

218

Mean-Square
1218.673
1465.784

F-ratio
0.831

P
0.363

***WARNING***

Case 409 is an outlier

Durbin-Watson D Statistic

(Studentized Residual = 4.362)

2.011

First Order Autocorrelation —0.018

Plot of Residuals against Predicted Values

Fig. 19.5 SYSTAT output for regression of total cholesterol on age for
males.

data, we should not rely only on summary statistics such as the correlation coefficient or the
slope of the regression line. It is important to plot the data and to use the diagnostics that are
usually provided by statistical packages. A dramatic illustration of the dangers of relying
exclusively on summary measures has been provided by Anscombe (1973). He developed
four very different data sets (see Fig. 19.6; the data are in Table 3.3) that have identical
values of N, X, Y, b\, bo, SSX, degression, ^residual. SE(b\\ and r. The summary statistics
themselves suggest very strongly that the relation between Y and X must be the same for
all four data sets. But, if we look at Fig. 19.6, we see that this is not so. In set (a), Y and X
have a linear relation with some scatter around the regression line; but, in set (b), there is a
curvilinear relation with a strong linear component. In set (c), 10 of the 11 points are well
fit by a linear equation, but the remaining point is quite far off the line that fits the other 10.
Without knowing more about how the data were generated, we cannot say whether or not it



536 19 / BIVARIATE REGRESSION

Fig. 19.6 Scatterplots for four data sets with identical summary statistics (from Anscombe,
1973).

is appropriate to delete the outlying point; however, if we do delete it, the slope changes from
.50 to .35. Finally, the regression for set (d) depends very heavily on one case. If this case
was deleted, we could not even estimate the slope, and the correlation would be undefined
because the variance of X would be zero. We cannot have much confidence in measures of
b\ and r that depend so heavily on a single case. These data sets make it clear that summary
statistics do not tell the whole story. To understand the relation between Y and X, we must
look at the scatterplot, check to see whether there are deviations from linearity (whether
there are some very influential data points), and check the other assumptions that underlie
inference.

19.5.1 Checking Assumptions by Using Residuals

Valuable information about whether the assumptions are valid may be obtained by study-
ing residuals, that is, differences between the observed and predicted values of Y. The
residuals, et = Y,• — Y = F/ — (bo + b\Xi) provide information about the population error
components, e, = Yf — (3o — Pi^/)- Statistical software packages generally provide resid-
uals and allow them to be plotted in a variety of ways. If the distribution of residuals differs
strongly from that assumed for the error components, the assumptions of the model may
not be satisfied. Moreover, the nature of the difference can tell us which assumptions have
been violated and suggest remedial measures.
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Residuals cannot provide information about the assumption £(e/) = 0 because when a
least-squares regression equation is used, the residuals are constrained to sum to zero. The
residuals can, however, provide useful information about whether there are violations of the
assumptions of linearity, homogeneity of variance, normality, and independence of error.

If the assumptions of linearity and homoscedasticity (homogeneity of variance) are
both valid, when residuals are plotted against either X or F, the data points should lie
within a horizontal band as indicated in panel (a) of Fig. 19.7. Any other pattern suggests
that the assumptions are not valid or that some kind of error has been made. For example,
plots such as that in panel (b) indicate that the relation between Y and X is nonlinear, and
that the appropriate model should contain additional terms such as X2. Plots such as that in
panel (c), in which the residuals are more spread out for some values of X or Y than others,
indicate that the variance of estimate is not constant. We plot residuals against F rather than
against F because it can be shown that e is not correlated with F (or, therefore, with X),
but has a correlation of \/l — r2 with F. It should also be noted that although plots of
residuals against X and against F provide equivalent information for bivariate regression
(because F is simply a linear function of X), this will not be the case when there is more
than one predictor variable. We can determine whether an additional variable, W, belongs
in the model by plotting the residuals against W. If the residual varies systematically with
W, then W should be included in the model; if it is not included, the error component, £.
will consist of more than chance variability.

19.5.2 An F Test for Departures From Linearity

The assumption that, in the population, the conditional means of F are a perfect linear
function of X is basic to the inferential procedures that we have discussed in this chapter.
Departures from linearity suggested by scatter diagrams or plots of residuals may be tested
for significance by using a procedure based on partitioning Residual into two components,
one based on systematic departures from linearity and the other based on pure error—that
is, variability around the curve that accounts for all the systematic variability.

If the linear model is appropriate, the conditional means all fall on a straight line. In
this case, the variability about the straight line is the same as the variability about the means,
so that SSresiduai consists only of pure error. If the linear model is not appropriate, SSresiduai
consists not only of a pure error component that reflects variability about the conditional
means, but also a "nonlinearity" component that reflects the extent to which the conditional
means are not a perfect linear function of X. Assume that X takes on the values X\,
X j , . . . , X j , . . . , Xa, and that there are n, values Y\j, Fy, . . . , F,;, Fn/J of F at Xj. The
predicted F score at Xj is obtained from the linear equation F/ = bo + b \ X j . The identity

suggests the following partitioning of error variance:

The pure error SS term is associated with N — a df; there are rij — 1 dfat each of the
a levels of X, and N = ^ HJ. The corresponding mean square, ^ ^ (Fy — F . j ) 2 / ( N — a].
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Fig. 19.7 Possible patterns of residuals.

estimates the variance of the scores around the conditional means of Y. The nonlinearity SS
term is obtained by subtracting SSp{1K error from 55residuai- It has a — 2 df because there are
a means and 2 df are used up in estimating the slope and intercept of the linear regression
equation; equivalently, (N - 2) - (N - a) — a — 2. The corresponding mean square
estimates a quantity that is the sum of o-pure error and a component that reflects the departure
from linearity. Therefore, the linearity assumption may be tested using

with a — 2 and N — a df.
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TABLE 19.4 RESULT OF AN ANOVA USING DATA FROM WOMEN IN WHICH THE DEPENDENT VARIABLE
IS CHOLESTEROL LEVEL, AND THE INDEPENDENT VARIABLE IS AGE

Dep Var: TC N: 211 Multiple R: 0.624 Squared multiple R: 0.389
Analysis of Variance

Source
AGE
Error

Sum-of -Squares
128075.102
200768.305

df
46
164

Me an- Square
2784.241
1224.197

F-ratio P
2.274 0.000

Note. Output is from SYSTAT.

Suppose we wish to test whether the relation between cholesterol level and age departs
significantly from linearity for women. Looking at the regression output in Fig. 19.4, we see
that SSresiduai = 244,725.926 with 209 df. Now, all we need to complete the analysis is to find
SSpUK error- Because the error term in an ANOVA is a measure of pure error (i.e., variability
about the group means), the easiest way to do this is to perform an ANOVA in which
the dependent variable is cholesterol level and age is treated as a categorical independent
variable. We can do this even for predictor variables that we would not normally consider
to be categorical (as is the case for age); the test only requires that some of the values of
the predictor have more than one value of Y associated with them, so that an estimate of
SSpure error may be obtained. The results of the ANOVA are displayed in Table 19.4. We
see that SSemr is 200,768.305 with 164 df, this is the SSpUre error term in Equation 19.14.
Subtracting this from 55residuah we find SSnoniinearity — 43,957.621 with 45 df. Substituting
into the test statistic of Equation 19.15, we have F = 976.836/1224.197 = 0.80; this
result does not provide evidence of a significant departure from linearity. We can summarize
the steps to test for systematic departures from linearity as follows:

1. First find 55residuaj: To do this regress Y on X.
2. Then find SSpuK error' To do this, perform an ANOVA on Y with X as the factor;

the error SS in the ANOVA is SSpure enoT.

3. rind OOnonlinearity — ^residual ~ impure error and "/nonlinearity ~ "Jresidual ~ 4/pure error

and substitute into the test statistic given in Equation 19.15.

In Chapter 10, we described tests for specific kinds of deviations from linearity (e.g.,
quadratic or cubic curvature). The calculations based on the coefficients of orthogonal
polynomials found in Appendix Table C.6 were appropriate only when the values of X were
equally spaced and the ns were equal. We shall consider tests of nonlinear components
under more general conditions when we return to trend analysis in Chapter 20.

19.5.3 Dealing With Heteroscedasticity

In the current example, when we regress cholesterol level on age for women, the assumption
of homoscedasticity is reasonably well satisfied. But what should we do if there are severe
violations of the assumption that can result in biased estimates and inflated standard errors?
One possibility is to transform the Y variable (see the discussion of variance-stabilizing
transformations in Chapter 8). Another possibility, if the variability in the residuals varies
systematically with X, is to use a procedure called weighted least-squares (WLS) estima-
tion instead of the ordinary least-squares (OLS) estimation procedures that we have been
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in a program that can perform WLS analyses. The Weight Estimation option in SPSS
Regression can help decide which power of \/Xj to use as the weight. When regressing
Y on X, we indicate that X is to be used as the basis of the weights. Then, SPSS tries
out different powers of IIX and indicates for which power the WLS model provides the
best fit. For the regression of cholesterol level on age for women, the variability in the
residuals does not seem to vary systematically with age. If we nevertheless proceed to
use the Weight Estimation option, we find that the most appropriate powers of I/Age are
0 and —.5. The zero power is equivalent to equal weighting, and therefore would result
in the usual OLS regression. We tried the alternative weighting, (I/Age) ~~5 or Age-5, and
found a result that was very similar to that for the OLS regression. The regression equation
obtained using WLS was TCpredicted = 132.61 + 1.70 x Age; the OLS regression equation
was TCpredkted = 131.871 + 1.71 x Age. Had the weight estimation procedure produced
a different power, we could have simply used that in the WLS regression.

19.5.4 Normality

As indicated earlier, statistical packages are usually capable of constructing histograms and
normal probability plots of the residuals. A virtue of the normal probability plot is that if
the residuals are normally distributed, the points fall on a straight line, and it is easier to
detect departures from a straight line than from a normal histogram. Figure 19.8 displays
both a histogram with a normal smoother and a normal probability plot for the residual of
the regression of cholesterol on age for females. The distribution of residuals is slightly
heavy-tailed and positively skewed. If there were large deviations from normality, we could
consider transformations of the Y variable. Violations of the linearity and homogeneity of
variance assumptions may cause the residuals to depart from normality, so that generally
the linearity and homogeneity of variance assumptions should be checked before looking
for violations of the normality assumption.

using. WLS regression is identical to OLS regression, except that residuals based on values
of the predictor variable for which there is less error variance are weighted more heavily
than residuals based on predictor values that have more error variance. The rationale is that
predictor values associated with less error are more useful for making predictions (for more
detail about the procedures, see, e.g., Neter et al., 1996). In an appropriate WLS regression,
the resulting values of b\ and b§ will have smaller standard errors, and therefore narrower
confidence intervals than they would have in the corresponding OLS regression. Some, but
not all, of the standard statistical packages can conveniently handle WLS analyses. For
example, SPSS 10 offers a WLS option in the Linear Regression dialog box and a Weight
Estimation option in the Regression menu to assist in determining which weights to use.
On the other hand, although there are ways of performing WLS regression with S YSTAT,
they are less convenient.

How do we decide which weights to use in a WLS regression? If the variance in the
residuals is proportional to X2, as would be the case if the plot of the residuals against
X provided a fan-shaped scatterplot like the one in panel (c) of Fig. 19.7, it would be
appropriate to use the weights
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Fig. 19.8 A histogram with a
superimposed normal curve and a
normal probability plot for the residuals
for the regression of cholesterol on age
for females.

19.5.5 Independence
We assume that the error components, the e,, are independent of one another. If they are
positively correlated, perhaps because of the omission of some important variables from
the model, standard errors calculated using the usual OLS procedures may underestimate
the true standard deviations of the regression coefficients, and the confidence intervals and
hypothesis tests based on these standard errors will not be appropriate. The residuals cannot
be strictly independent; there are N residuals and only N — 2df (another way to think about
this is that the residuals are all based on the same estimates of bo and b\). Nonetheless, if
N is reasonably large, this unavoidable dependency will be very small so that residuals can
meaningfully be examined for evidence of lack of independence. Data are usually collected
and recorded sequentially. If the error components are independent, the residuals should
not vary systematically over time. Systematic variation may reflect changes in subjects,
measuring devices, or surroundings. When the residuals are plotted against time or case
number, the result should again look like panel (a) of Fig. 19.7.

It is possible for error components to exhibit different kinds of serial correlations: for
example, the residual corresponding to case i may tend to be similar (or dissimilar) in
size to those corresponding to case i ~ I or i — 2. Several packages print values of the
Durbin-Watson D statistic that forms the basis for a test of serial correlation in adjacent
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residuals. The statistic

will be small when sequentially adjacent residuals are positively correlated and large when
they are negatively correlated. D is approximately equal to 2(1 — r,,( _ i), where r,, _ i is
the correlation between sequentially adjacent residuals. Therefore, D can range from 0 to
4, with larger deviations from a value of 2 providing stronger evidence of serial correlation.
A more detailed discussion of the test and appropriate tables for assessing significance may
be found in Draper and Smith (1998). Under some conditions, WLS can be used to perform
the regression analysis when the data are serially correlated (see Draper & Smith, 1998,
Chapter 9). In the current example, as we can see from the output in Fig. 19.4 and 19.5, the
D statistic has values close to 2 for both males and females, and the serial correlations are
close to zero.

19.6 LOCATING OUTLIERS AND INFLUENTIAL DATA POINTS

Because the results of an OLS regression analysis can be markedly affected by a few extreme
data points, it is important to identify data points that are unusually influential. If these points
can be located, checks can be made to determine whether they reflect different processes
than the rest of the data do or occur because of recording or transcription errors. If so,
they can be corrected or deleted from the data. If the influential points cannot be attributed
to an error or failure of some sort, the appropriate way to deal with them depends on the
specific research problem. Given the presence of influential points, we can make the impact
of these points clear to the reader by collecting more data and/or by reporting analyses
both with the influential cases included and with them deleted. Also, in situations in which
predictions are important, the effects of influential points may be partially circumvented
by isolating regions where the influence is relatively unimportant. It is also possible to
use robust regression procedures that are relatively resistant to the effects of outliers (see
Huynh, 1982; Neter et al., 1996; Rousseeuw & Leroy, 1987).

It also may be of interest to locate points that have outlying X and/or Y values, even
though such points may not greatly influence the regression equation. These points can be ex-
amined for errors or to determine whether there is something "special" about them. Also, de-
pending on the particular research problem, it may be reasonable to treat cases with extreme
values of X differently, or to confine discussion to cases that do not have outlying values of X.

Table 19.5 contains output for the first 30 cases obtained from the SYSTAT package
when we regressed cholesterol on age for females and requested that the residuals be saved.
Six quantities are presented. The first two are the predicted value (Y) and residual (Y — Y)
for each case. Note that estimates are provided for all of the females, including those who
did not have complete cholesterol data. However, residuals and related variables can only
be obtained for those with complete data. For the others, the missing data are indicated by
dots. The last measure, SEPRED, is SE((LY.x), which, as we have previously noted, takes
on different values for different values of X. The remaining measures are LEVERAGE (the
hjj that we have encountered on several occasions), COOK, and STUDENT. LEVERAGE
measures the extent to which the case is an outlier with respect to the distribution of X
values, COOK measures the influence exerted by the case on the regression equation, and
STUDENT measures the extent to which the case has an outlying residual. In the remainder



LOCATING OUTLIERS AND INFLUENTIAL DATA POINTS

TABLE 19.5 THE FIRST 30 CASES OF THE SYSTAT RESIDUAL OUTPUT FOR THE REGRESSION OF
CHOLESTEROL LEVEL ON AGE FOR WOMEN0

Case

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

ESTIMATE
222.583
205.467
215.736
239.698
224.294
241.410
227.717
195.198
219.159
226.006
229.429
220.871
232.852
231.140
229.429
234.563
202.044
243.121
236.275
200.332
202.044
200.332
202.044
215.736
215.736
215.736
220.871
224.294
196.909
203.755

RESIDUAL

-63.486
-9.198

8.456
-59.535

-15.823
42.716

.

.

56.004
.

62.110

7.187
-58.669
-13.246
-14.025

.

-24.419
53.293
22.456

-41.361
20.889

-34.871
14.706
17.341

-27.005

LEVERAGE
0.005
0.006
0.005
0.012
0.006
0.013
0.007
0.009
0.005
0.006
0.007
0.005
0.009
0.008
0.007
0.009
0.007
0.014
0.010
0.007
0.007
0.007
0.007
0.005
0.005
0.005
0.005
0.006
0.009
0.006

COOK

.
0.008
0.000
0.000
0.021
.

0.001
0.004
.

.

0.007

0.013
.

0.000
0.010
0.001
0.001
.

0.002
0.009
0.001

0.004
0.001
0.003
0.001
0.001
0.002

STUDENT
.

-1.871
-0.270

0.247
-1.760

-0.464
1.253
.

.
1.648
.

1.833
.

0.211
-1.728
-0.389
-0.411

-0.715
1.568
0.658

-1.213
0.611

-1.022
0.430
0.508

-0.791

SEPRED
2.532
2.596
2.359
3.774
2.613
3.934
2.812
3.294
2.414
2.707
2.927
2.465
3.183
3.051
2.927
3.322
2.790
4.097
3.468
2.903
2.790
2.903
2.790
2.359
2.359
2.359
2.465
2.613
3.156
2.687

Note. Output is from SYSTAT.
"Dots indicate missing data. These come from participants who did not have cholesterol data recorded in each

season.

of this section, we attempt to provide an explanation of these, and other related measures,
and to indicate why they might be useful.

19.6.1 Locating Outliers

There are several types of outliers that may be discussed. We first deal with detecting
extreme residuals, then with extreme values of the predictor. Measures for detecting these
outliers are listed in Table 19.6.

Locating Outlying Residuals. Whether a given residual is an outlier depends not
only on its absolute size, but also on the distribution of the other residuals. Therefore, if one
is interested in locating extreme outliers, it makes sense to use some sort of standardized
measure in which the raw residual is divided by something like the standard deviation.
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TABLE 19.6 MEASURES FOR LOCATING OUTLIERS

Measure Equation Criterion

Measures for detecting extreme
residuals

Internally studentizedresidual tj — e j / s e ^ / \ — h/j

Externally studentized residual t(~J) = e / / s ^ j } ^ / l — hjj

where *<-''> = /£,w (Y, ~ Y^f/W - 3)

Measures for detecting outlying
values of predictors

Mahalanobis distance D, = [(X, — X)/sx]~

= (N - l)(Xj ~ X)2/SSX

Leverage _ , ( X j - X ) -
njJ ~ N + SSX

Finding that a residual has a z score of 4.50 informs us more directly that it is an outlier than
finding that it has an absolute value of 34.58. Although there is nothing very complicated
about this basic idea, different statistical packages provide a variety of measures termed
standardized or studentized residuals. Unfortunately, the packages are not always consistent
in the terms they use to refer to these measures.

To discuss the measures, we note (see Appendix 19.3) that the standard error for a
given residual ej is given by

Both BMDP and SPSS refer to this as the "studentized residual." However, a somewhat
different measure of studentized residual is often considered. If a data point (Xj, F7 ) is far
from the other data points, it may have a strong influence on the regression line (see the
next section). An influential data point will pull the regression line toward itself, thereby
reducing its residual; but, in doing so, increasing the residuals for most of the other data
points. Because of this, a better index of the extent to which a data point is an outlier is based
on the distance of the data point from the regression line based on the other N— 1 data points.

The deleted prediction for the jth case is defined as

where Y- is the prediction of Y from Xj using the regression equation in which the Y
intercept and slope, b(^~j) and b[~j), are obtained from the N — 1 cases that remain when
the data point (Xj, F;) is not included.

where /i;; is the leverage of Xj (see Equation 19.11).
Dividing a raw residual by its standard error results in an internally studentized

residual (Velleman & Welsch, 1981),
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The deleted residual for the yth case, e- , is defined as the difference between 7/
and its deleted prediction,

The ratio of the deleted residual to its standard error is called the externally studentized
residual and can be expressed as

where the deleted standard error of estimate

is based on the N — 1 data points that remain after case j has been deleted. The externally
studentized residual is what SYSTAT calls STUDENT in the saved residual output in
Table 19.5 and what SPSS calls the "studentized deleted residual."

An advantage of externally studentized residuals is that they can be tested by the t
statistic defined in Equation 19.21. However, as usual, when a large number of significance
tests are performed, Type 1 error rate should be controlled (see Chapter 9). This can be
accomplished conveniently for the family of N residuals by using the Bonferroni inequality,
that is, by conducting each test at the a./N level of significance. With a = .05 and 211
cases, the critical t is approximately 3.73. The SYSTAT output in Fig. 19.4 automatically
alerts us that case 311 is an outlier with an externally studentized residual of 4.068.

Locating outlying values of the predictor. Another index of an outlier is the
extent to which Xj differs from the center of the distribution of X scores. Statistical pack-
ages provide the Mahalanobis distance, which for bivariate regression is just a squared z
score,

Another useful measure of the extent to which Xj is an outlier is the leverage measure
provided by SYSTAT when residuals are saved,5

The leverage is closely related to the Mahalanobis distance and can be expressed in terms
of it as

It can be shown that the sum of the leverages for a data set is equal to p + 1, where p is
the number of predictor variables; therefore, for bivariate regression, the hjj must sum to 2
and have a mean value of2/N. Hoaglin and Welsch (1978) suggest that values of hjj greater
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than 2(p + \)(N should be considered large. Belsley, Kuh, and Welsch (1980) caution that
this cutoff will identify too many points when there are only a few predictor variables, but
recommend it because it is easy to remember and use. SYSTAT uses an F approximation
discussed by Belsley et al. (1980) to determine which values should elicit a warning. For
the current example, the mean leverage is 2/211 = .0095, and the largest leverage, .033,
comes from the only 20-year-old female with complete cholesterol data. This exceeds the
Hoaglin and Welsch criterion, but not that used by SYSTAT.

19.6.2 Influential Data Points
We are certainly concerned with cases that have large residuals and should look closely at
them. However, we look even more closely at cases that have an unusually large influence
on the regression equation and thereby on the predictions made using it. As we shall see,
cases that are both outliers and have large residuals will have the greatest influence (see
Equation 19.26). There are several measures commonly used to detect influential points.
These are listed in Table 19.7.

One way of assessing the influence of the y'th case on the regression equation is to
compare the results of the analysis when the y'th case is present with the results when it
is deleted. Therefore, the difference in the fitted (i.e., predicted) value, Yj, when case j is
included and when it is excluded from the regression equation doing the prediction,

can be considered an index of the effect of the y'th case. Both DFFITj and its standardized
value,

TABLE 19.7 MEASURES FOR DETECTING INFLUENTIAL DATA POINTS

Measure Equation Criterion

Measure of the influence of
the yth data point on the fitted
(predicted) value of Yj

DFFITS

Measure of the influence of
the y'th data point on all fitted
values

Cook's distance

Measure of the influence of the
;'th data point on the kth
regression coefficient

DFBETAS
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where s(
e
 j) is as defined in Equation 19.22, can be requested for each data point in both SAS

and SPSS. A number of criteria have been suggested for a case to be considered influential.
SAS suggests a general cutoff of 2 and a size-adjusted cutoff of 1*J(p + l)/N for DFFITS.

Cook (1977) proposed a measure that takes into consideration the effect of deleting
case j on all N residuals. This measure, known as Cook's distance, can be expressed as

where p = 1 for bivariate regression and, in general, p is the number of predictor variables
in the regression equation. Cook and Weisberg (1982) suggest that Cook's distance should
be referred to an F distribution with p + landN — p — 1 df. A value of Cook's distance
is considered large if the F has a p value greater than .5. For regressions with more than
5 or 6 predictor variables, this leads to a criterion value of about 1; however, for bivariate
regression with a sample size of about 200, the criterion would be about 0.7. Another useful
expression for Cook's distance is

\ /

where tj is the internally studentized residual of Equation 19.18. This expression makes it
clearer that the influence of a data point depends on both its residual and the extent to which
it is an outlier.

The final measures we consider here reflect differences in the regression coefficients
bo and b\ that result when case j is excluded from the analysis. The difference

where k = 0 for the Y intercept and 1 for the slope, indicates the change in the coefficient,
and the standardized change,

where the denominator is simply the usual standard error for bk, except that se
 J replaces se.

The DFBETAS measure is available in both SAS and SPSS and has a suggested size-related
cutoff of 2/*/N.

With these measures, we reconsider the regression of cholesterol level on age for
females. Case 311 (see Fig. 19.4) deserves special attention. It not only has an externally
studentized residual of 4.068 that elicited a warning from SYSTAT, but we calculated a
DFFITS of .487, which is greater than the criterion of .195. We also found DFBETAS
values of .452 and —.397 for bo and b\, respectively, both of which exceed the criterion
of 137. The Cook's distance for case 311 was .110. This does not exceed the criterion, but
it is more than twice the size of the next largest value. When we examined case 311, we
found the data came from a woman who was relatively young (32 years old), but had a
high cholesterol level (320), possibly resulting from a very high body mass index (41.1).
There does not seem to have been any obvious error in recording the data. Although any
one cholesterol reading can be in error, the cholesterol levels for case 311 are over 300 in
each season. We cannot drop a data point from our analysis just because we don't like it,
but we can assess whether and how much our conclusions would change if the data point
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was excluded. If we redo the regression analysis excluding case 311, the results are much
the same: The slope changes from 1.71 to 1.79, the intercept from 131.87 to 127.49, and
the correlation between the observed and predicted values from .51 to .54.

Another possible approach when we are concerned about the presence of influential data
points is to use one of the robust regression procedures that give less weight to cases with
large residuals (see, e.g., Huynh, 1982). Both SPSS and SYSTAT allow us to perform robust
regressions in their nonlinear regression modules. SYSTAT offers options that include using
least absolute deviations estimators (for which the sum of absolute deviations is minimized
rather than the sum of squared deviations) and trimming a specified proportion of the cases.
Performing a least absolute deviations regression of cholesterol level on age for females
yields an intercept of 133.04, a slope of 1.65, and a correlation between observed and
predicted values of .51—values not very different from those obtained with the usual OLS
regression. The use of robust regression procedures might be particularly useful in situations
in which there are groups of data points that collectively, but not individually, have a strong
influence on the regression. In the current example, we conclude that the assumptions are
reasonably well satisfied and that the regression is not severely distorted by outliers, and
would report the results of the OLS regression. In general, the recommendations of Hogg
(1979) and Huynh (1982) are reasonable: "Perform the usual OLS regression along with
a robust regression procedure. If the resulting estimates are in essential agreement, report
the OLS estimates and relevant statistics. If substantial differences occur, however, take a
careful look at the observations with large robust residuals and check to determine whether
they contain errors of any type or if they represent significant situations under which the
postulated regression model is not appropriate." (Huynh, 1982, pp. 511-512)

19.7 TESTING INDEPENDENT SLOPES FOR EQUALITY

Suppose we wish to test whether the slopes for men and women differ significantly. This will
be particularly easy to do after we have considered multiple regression in the next chapter.
However, in Table 19.8, we show that we can test the null hypothesis that two independent
slopes are equal (Ho\ (3i i — £12 = 0) using the test statistic

where se is the best estimate of the standard error of estimate based on both groups (see
Table 19.8). Substituting in the data for the regression of cholesterol and age for men and
women, we have

so that the slopes are significantly different with p = .000.
DeShon and Alexander (1996) and Overton (2001) have recently emphasized that

the assumption of equal within-group error variances is important when testing the
homogeneity of regression lines. They point out that violations of this assumption can
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seriously affect the power of the test, even when the sample sizes are equal, and they
consider some possible remedies.

19.8 REPEATED-MEASURES DESIGNS

Up to this point, we have considered regressions in which each data point has been con-
tributed by a different subject. However, in many situations, each of the participants provides
data points at several levels of X. If we ignored the fact that each participant provides a
number of data points, and analyzed the data in the usual way, the test of the null hypothesis,
HQ: P! = 0, would be biased. When there are repeated measures, it can be shown that

TABLE 19.8 DEVELOPING A TEST FOR THE EQUALITY OF TWO INDEPENDENT SLOPES

Suppose we wish to test the hypothesis that the slopes are identical in populations 1 and 2 (i.e., that
H0: Pn —Pn = 0). We can estimate the difference in the population slopes by b\\ — bn, and, be-
cause under the usual regression assumption, the fo's can be expressed as linear combinations of the
7's, the ratio

is distributed as t with df=N\+N2—4if the null hypothesis is true. From Table 19.4, we know
that var(^i) = a^/ssx. Therefore,

because the groups are independent

where SSXl and SS\2 are the sums of squares of X in Groups 1 and 2, so that

where the best estimate of of is given by the weighted average of the estimates from Groups 1 and 2:

Combining this information, the test statistic

can be used to test the null hypothesis HQ\ $\\ = 3!2.

(see Lorch & Myers, 1990). Because the error mean square in the usual analysis (i.e.,
when all points are viewed as being independent) estimates ae

2, a significant result might
indicate only that the slope varies across participants (i.e., that o^ > 0). Therefore, repeated-
measures designs must be analyzed in ways that take account of the fact that each participant
contributes a set of data points.



550 19 / BIVARIATE REGRESSION

We would normally run a search experiment of the type discussed in Section 19.3.1
as a repeated-measures design, collecting data from each participant at all four array sizes.
Let's say that 20 participants search for particular target letters in arrays of letters and that
we obtain 200 detection times from each participant, 50 at each of the four array sizes. The
20 participants provide a total of 4,000 data points.

Regression equations could be obtained using any of the following three procedures:

1. Regress reaction time on array size using the combined data set (4000 data points,
200 from each participant). Values of b\ and bo could be obtained, as usual, by
using Equations 3.8 and 3.9.

2. Regress reaction time on array size using the 80 data points obtained by pairing
each array size with the mean detection time for each of the 20 participants at that
array size.

3. Regress the mean reaction time on array size separately for each of the 20 partici-
pants, basing each equation on four data points. Average the resulting 20 values of
b\ and b$ to obtain values that best represent the entire group.

If every participant is tested at exactly the same levels of X and contributes the same
number of data points at each level, all three procedures will yield exactly the same values for
bi and bQ. However, procedure 3 has the advantage that the values of b\ and bo obtained for
each participant can be treated as scores in subsequent analyses in which we test hypotheses
about Pi and Po using the procedures that were developed in earlier chapters.6 In essence,
when we test hypotheses about Pi or Po, we have one score for each participant, either b\
or bo. Suppose we use bu to represent the slope obtained for the rth participant. Then, we
could test the null hypothesis that Pi is equal to some hypothesized value Pihyp by using
exactly the same t test that was introduced in Chapter 6 with slope as the dependent variable.
The test statistic is

We could find the confidence interval for Pi by finding b\ ± ?a/2-% •
Suppose, for example, the values of b\ for the 20 participants are 19, 25, 27, 16, 14,

15, 18, 34, 19, 30, 25, 26, 19, 30, 27, 19, 24, 20, 23, and 25. Then, the mean slope is 22.75,
and the estimated population standard deviation sblis 5.45, so that s^ = ^,/A/20 = 1.22.
Therefore, the .95 confidence interval around pi is given by 22.75 ± (2.093)(1.22) =
22.75 ± 2.55. The individual values of bo or b\ could also be used in matched- and
independent-groups t tests and in repeated-measures and between-subjects ANOVAs if
we wished to test for equality of slopes or intercepts across conditions. We might,
for example, want to test whether slopes for arrays consisting of letters and digits are
equal.

Note that this so-called "slopes-as-outcomes" approach to repeated-measures regres-
sion gives equal weight to the regression coefficients for each participant. This is reasonable

where b\is the mean slope for the sample of N participants, and s^ is the estimated standard
deviation of the slopes; that is,
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in the search example if each participant is tested at the same levels of X, and contributes
equal amounts of data at each level. But suppose that some participants were tested at only
three of the four array sizes, but others at all four, and that some participants contributed
more data points than others. Or suppose that some participants saw arrays of sizes 2,4, and
6, but others saw sizes 2, 4, and 8. We could still perform regressions separately for each
participants, but the resulting regression coefficients would have varying standard errors;
ideally, those coefficients with larger standard errors should receive less weight because they
convey less information. If we did perform some second-order analysis on these coefficients
without somehow taking this into account, we would be ignoring an important aspect of the
data.

19.9 MULTILEVEL MODELING

Repeated-measures studies are only one of the possible types of design with a hierarchically
nested structure. As we discussed in Chapter 16, participants may be nested within social
groups, schools, or litters. For example, suppose we wanted to assess the effect of the num-
ber of hours of assigned homework on a common achievement test for charter and public
schools, using data from students in 10 public and 10 charter schools. In a two-level model,
we can think of students nested in schools; in a three-level model, we could add class within
school. If we simply regressed achievement score on hours of homework for each type of
school, we would ignore the variability among schools. On the other hand, if we regressed
achievement score on hours of homework separately for each school, and then used only
the resulting regression coefficients in subsequent analyses, we would ignore the variability
within schools. A number of multilevel modeling procedures, given names such as hi-
erarchical linear modeling or random coefficients regression, have been developed that
take both kinds of variability into account (see, e.g., Bryk & Raudenbusb.,1992; Goldstein
1995; & Kreft & de Leeuw, 1998). Although the basic ideas are not too complicated, a
detailed discussion of the estimation procedures is beyond the scope of this book.

19.10 CONCLUDING REMARKS

In the present chapter, we discussed statistical inference in bivariate regression and how
to check the assumptions on which these inferences are based. In doing so, we presented
many new concepts and formulas.

However, in most research situations, we are concerned with more than two variables.
If our goal is prediction, we will usually be able to make better predictions of Y if we base
these predictions on more information. Using bivariate regression, we showed that age was
useful in predicting cholesterol level for females. But, certainly other variables—such as
body mass index and various dietary measures such as amount of fat consumed—should
also be useful in predicting cholesterol level. A regression equation with several relevant
predictors will often make better predictions than an equation with only a single predictor.
Similarly, if we are using regression as a tool to develop an explanatory model, we can gain
a better understanding of the situation if we study a number of variables simultaneously.
We therefore consider multiple regression in Chapter 20.
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KEY CONCEPTS

regression toward the mean
multiple correlation coefficient, R
cc
SSregression

standard error of b\
reliability
regression assumptions
linearity
homoscedasticity
OLS (ordinary least-squares)

regression
outliers
Mahalanobis distance
externally studentized residual
influential data points
DFBETAS
robust regression
multilevel modeling (hierarchical

linear modeling)

regression model for inference
standard error of estimate

^residual

standard error of b0

residual
independence
CCJljpure error

Durbin-Watson test
WLS (weighted least-squares)

regression
leverage
studentized residual
internally studentized residual
DFFITS
Cook's distance
repeated-measures regression

EXERCISES

19.1 (a) After each of two practice landings, pilot trainees discuss their performance
with their instructors. The instructors find that trainees who make poor landings
the first time tend to make better landings the second time, whereas trainees
who make good landings the first time tend to do worse the second time. The
instructors conclude that the criticism that follows poor performance tends to
make pilots do better and that the praise that follows good performance tends
to make them do worse. Therefore, the instructors decide to be critical of all
landings, good or bad. Is this a reasonable strategy?

(b) After the first examination in a course, students who scored in the bottom 25%
of the distribution are given special tutoring. On the next examination, all of
these students score above the average for the whole class. Can we conclude
that the tutoring was effective or could the results simply be due to regression
toward the mean?

(c) An educational psychologist wants to see if ability to spell has any effect on
ability to read. To this end, he selects two groups of students, a group of poor
spellers and a group of good spellers. However, he is worried that the poor
spellers may not be as intelligent as the good spellers, so he creates a group of
poor spellers and a group of good spellers who are equated on IQ. (To make
this simple, let us assume that his procedure is to use only those students
in both groups who scored 100 on an IQ test that he administered.) He now
administers a reading test to both groups and finds that the good spellers do
better on average than the poor spellers. Does this mean that spelling ability
affects reading ability?
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19.2 Assume that the correlation between the adult heights of fathers and sons is .5,
and that the mean and standard deviation of the heights of adult men is 70.0 and
3.0 inches, respectively.
(a) Given the information that a father is 76 inches tall, what is the best linear

prediction for the adult height of his son?
(b) Given that the adult height of a son is 73 inches, what is the best linear prediction

for the height of his father?
(c) Given the phenomenon of "regression toward the mean," why wouldn't we

expect all men to have about the same height in a few more generations?
19.3 At the end of this exercise are data relating response time (Y) to a target on a screen

as a function of intensity level (X); the intensity levels have been coded from 1 to
5 for convenience. There are 10 participants at each value of X.
(a) First, using a statistical package, plot the scatter diagram. Then, test whether

there is a linear relationship between Y and X. Save the residuals for the
regression.
(i) Write out the best-fitting linear equation, using the numbers from your re-

gression analysis. Use this equation to predict Y for each of the five X values,
(ii) Is there a significant linear relation? Report the appropriate test statistic

and df.
(b) Now, plot the residuals against the estimates. That is, produce a plot of residuals

as a function of Y. Include this graph with your answer. Does it suggest any
problem with your analysis?

(c) Fill in the following table:

sv

Linearity
Lack of fit

(nonlinear ty)
Pure error

df SS MS F P

(i) Write out the equation for predicting Y with numbers taken from the output.
Are Pi and p2 different from zero? Explain,

(ii) Does this model provide a better account of the data than the linear model?
Explain.

Note that if you perform an ANOVA on Y with X, treating X as a categorical
independent variable, the SS accounted for by X is the sum of the linear and
nonlinear SS (i.e., accounts for all the variability in the group means). The error
term of the ANOVA provides an estimate of the "Pure Error" variability (i.e.,
the residual variability when all the systematic effects are partitioned out).

(d) Now regress Yon both X and X2. That is, Y should be the "dependent" variable
and the "independent" (i.e., predictor) variables should be X andXSQ = X* X.
Again, save the residuals. This estimates the parameters Po, 3i, and 3? for the
population model
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(iii) Plot the residuals for this model against Y. Do you see any problem now?

Intensity
Level (X)

1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3

Data for Exercise
Response
Time (Y)

400
380
394
416
400
440
429
388
419
391
470
417
457
471
495
460
483
463
446
470
474
476
495
455
496
475
479
498
453
503

19.3

X

4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
—5
5
5
5

Y

501
497
495
494
504
469
430
434
470
474
431
407
430
387
418
422
433
419
455
415

19.4 (a) Open the Seasons data set and select the data for women. Regress cholesterol
level on age. Write out the regression equation and indicate the values of the
standard error of estimate, SE(bi), and SE(bo\

(b) Using the regression equation, estimate the means of the populations of choles-
terol scores for women of ages (i) 30 and (ii) 50. Find the 95% confidence
interval for each of these population means.

(c) Which estimate is more likely to be closer to its actual population value, that
for 30- or for 50-year-old women? Explain why.

(d) What is the 95% confidence interval for the cholesterol score of a randomly
chosen 30-year-old woman?
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19.5 In a large study of income (Y) as a function of years on job (X), the data for
2,000 men and 2,000 women in a certain profession are

Men

Income (X)

s2

rXY

324
.333

Years (X)

100

Income

289

Women

Years

25
.235

Note. Income is recorded in thousands of dollars.

(a) Test to see whether the correlations for men and women are significantly dif-
ferent. How do you interpret the result?

(b) Find byx (i-e., ^income,Years), the regression coefficient for the regression of in-
come on years of service for men and for women. What is your best estimate of
the amount by which salary increases per year for men and women? Is the rate
of increase for men and women significantly different? Is this result consistent
with differences in the correlations? Explain.

19.6 Given the following data from a between-subjects experiment in which the depen-
dent variable is a performance measure 7:

10

27
17
14
20
15

Drug Dosage (D)

20

38
32
10
26
29

30

69
64
59
57
35

40

60
57
55
30
50

(a) Regress 7 on D. What is the best linear equation? Is the slope of the regression
line significantly different from zero?

(b) Perform an ANOVA, using D as the independent variable. Is the D effect sig-
nificant? How exactly does the null hypothesis in (b) differ from that in (a)?

19.7 Use a statistical package to analyze the data in Table 3.2.
(a) Regress FINAL on PRETEST.
(b) Write out the regression equation for this data set. What are the values of the

standard errors of estimate for bo and b\, SE(b\), and SE(bo)l
(c) Using the regression equation, estimate the mean of the population of FINAL

scores with PRETEST scores of (i) 24 and (ii) 37. Find the 95% confidence
interval for each of these population means.

(d) On the basis of your answers to (d), which estimate is more likely to be closer to
the actual population value? Explain why, in terms of the leverages associated
with the two PRETEST values.
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(e) Find the 95% confidence interval for the FINAL score of a single student with
a PRETEST score of 24.

19.8 In a search experiment, participants are required to check for the presence of some
target character in an array of characters. There are four different array sizes, X =
2, 4, 6, and 8. Ten participants are assigned to each array size. The time to respond
for each of the 40 participants (Y) is recorded. The data for the four array sizes
are:

Xj

Y-j~>
S":
J

2
480

360

4

520

315

6

540

324

8

540

333

and tests the hypothesis HQ : Pi = 0.
(a) Are Anne and Reg testing equivalent hypotheses? Briefly, justify your an-

swer. If your answer is "no," are the two null hypotheses related? That is, if
Anne's is false, should Reg's be true? Or, if Reg's is false, should Anne's be
true?

(b) Use ANOVA to test HQ: ̂ \ = ^2 — 1^3 = 1x4; and use regression to test HQ\
P i = 0 .

(c) Must SSA always be larger than Regression?
(d) Determine whether there is a significant departure from linearity in the data

using a = .05.
19.9 Groups of 40 men and 40 women each participate in the kind of search experiment

described in the chapter. For each group, SSx = 200. For men, we obtain b\ = 30.0
and se = 15.5; for women, b\ — 20.0 and se = 12.2. Test whether the slopes for
men and women differ significantly at a = .05.

19.10 (a) The search experiment described in Section 19.3 is rerun as a repeated-measures
study. In one condition, letters are used as stimulus material. Each of the 10 men
and 10 women in this condition is tested at all four array sizes, and slopes
are obtained for each subject by performing separate regressions. The slopes
are:

Men 35 25 29 37 20 24 18 31 30 25
Women 17 19 29 19 23 25 20 18 22 25

Find the .95 confidence interval for the difference in population slopes for men
and women when letters are used.

Two experimenters, Anne and Reg, have different views about the analysis. Anne
uses the ANOVA design model

to test the hypothesis HQ: jj^ = 1^2 = 1^3 — 1x4, and Reg assumes the linear regres-
sion model
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(b) In a second condition using different subjects, digits (i.e., the numbers 0 through
9) are used as stimulus material. In this second condition, the slopes are

Men 30 19 28 38 16 26 22 28 33 21
Women 19 21 24 22 20 23 20 15 25 28

Test whether the slopes for men are significantly different from those for
women in this condition. What exactly can you conclude from the significance
test?

(c) From the results of both conditions, test the following, using slope as the de-
pendent variable:

(i) the interaction between sex and type of stimulus material (letters versus
digit)

(ii) the main effect of sex
(iii) the main effect of type of stimulus material

19.11 Using the Seasons data set, we established in the chapter that the model assumptions
were reasonably well satisfied for the regression of cholesterol level on age for
women. We also established that the regression results were not strongly distorted
by the presence of outliers and influential data points. Go through the same types of
steps for the regression of cholesterol level on age for men and write a brief report
of what you find out about that regression.

APPENDIX 19.1

To Show That bi, DO/ and Y Are Linear Combinations
of the Y Scores

We start by showing that the expression for b\ can be broken into two components, one of
which can be shown to be zero, that is,

Therefore, b\ can be expressed as a linear combination of the 7s; that is,
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so,

APPENDIX 19.2

To Show That bi, bo/ and Y/ Are Unbiased Estimators
of (*!,£!, and juLyx,

To show that b\ is an unbiased estimator of jii, we need to show that E(bi} — fr. The
regression model states that

and

so,

where Xf is a fixed-effect variable. We can rewrite this equation as

(Note that we refer to the mean of X as X and the mean of Y as jjiy, because according to
the usual regression model, X is a fixed-effect variable and Y is a random variable.)

From Appendix 19.1, we have

where
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To show that bo is an unbiased estimator of (3o, we need to demonstrate that E(bo) = (3o-
We begin by noting that

APPENDIX 19.3

Obtaining the Standard Errors of bi, b0, Yj, and e/

(Note that we assume here that X, the predictor, is a fixed-effect variable that is measured
without error—so that if the usual assumptions are satisfied, var(7/) = o-2.)
(1) From Appendix 19.1, we know that b\ can be expressed as b\ = ]T- // F/,

because

Substituting the expression for the model and taking the expectation, we have

The first and third terms are equal to zero because

and by assumption, £(e,) = 0. The second term is

and that from the model

Taking the mean of both sides (and noting that Po and pi are constants), we have

Therefore,
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so the standard error of b\ is

where

Therefore,

Now, because

assuming independence

assuming homoscedasticity

and the estimated standard error is

(2) To find the standard error of b0, we start with bo = ]T g, F;. If we can assume indepen-
dence and homoscedasticity, var(b0) = ^ £,• sf- Substituting

and simplifying, we have

so that

(3) Similarly, we can show that
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var(Y,) = var I>KL-, =^E*J

and so

(4) Finally, to show that

we begin with

so

The first term on the right-hand side of the equation is equal to ae
2. The second term is

equal to /iycre
2 from (3). The last term is equal to —2/tjf/dg2, because cov(Yj, Yj) = a2 and

cov(Yj, Yj>) = 0 for j ^ j'. Therefore, var(e;) = of(l - hjj) and

From Appendix 19.1,

Then

But it can be shown that

(just expand and simplify to see that this is true). Therefore,



Chapter 20
Multiple Regression

20.1 INTRODUCTION

In Chapters 3 and 19, we considered bivariate regression equations in which a criterion
variable was regressed on a single predictor variable. Among the examples we discussed
were the regressions of response time on stimulus array size and cholesterol level on
age. However, in most research situations, there are many relevant variables and more
than one predictor needs to be considered. If our goal is simply to generate accurate
predictions, surely predictions should be better if we base them on more information.
If, instead, our goal is to use regression as a tool to develop an explanatory model of a
research situation—and, as we shall see, this is a much more difficult task—we can usually
gain a better understanding of the situation if we study a number of variables simulta-
neously. For example, if we wish to investigate the influences on cholesterol level, it is
worth considering variables such as body mass index and various dietary measures in
addition to age. In the statistics class example, we would expect to predict final exam per-
formance better if we considered other measures of ability along with pretest score. In
Chapter 20, we develop multiple regression, which is regression based on more than one
predictor.

In bivariate regression, our concern was with estimating the parameters of the linear
model

562

Estimates of 3o and Pi were obtained using the least-squares criterion; we found values bo
and b\ that minimized the mean-squared error obtained using the prediction equation

We now extend this discussion to multiple linear regression. We consider models in which
the criterion variable, Y, is expressed as a linear function of a number of predictor variables,
X\, XT, X$, ..., Xp. Although the additional predictor variables result in some increase in
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20.2 A REGRESSION EXAMPLE WITH SEVERAL
PREDICTOR VARIABLES

In Chapter 19, we found that cholesterol level tends to increase with age in women. How-
ever, cholesterol level also changes systematically with other variables. For example, it is
commonly thought that heavier people are more likely to have higher cholesterol levels. In
the current section, we perform regressions involving total cholesterol level (TC), age, and
body mass index (BMI),1 a measure of weight that takes height into consideration. In doing
so, we will use data from women in the Seasons study who were 20-65 years of age when
they entered the study.

If we are interested in how TC, BMI, and age are related, the first step is, as al-
ways, to look at the data. Figure 20.1 contains the SYSTAT scatterplot matrix for the
three variables. The distribution of BMI scores is positively skewed and highly peaked,
and from the descriptive statistics in panel (a) of Table 20.1, we find that Gl = 1.684
and G2 = 3.906. The boxplot for BMI scores in Fig. 20.1 indicates that there are outliers,
and we can see these points clearly in the scatterplots and in the stem-and-leaf plot in
Table 20.2. When we plot TC against BMI in Fig. 20.2 and apply a LOWESS smoother
(see Chapter 3), it appears that the BMI outliers tend to have relatively low TC scores and
introduce a strong curvilinear component to the relation between TC and BMI. Because
we are primarily concerned with describing the relations among the variables for women
who do not have extreme scores, we will exclude the data points of the nine women whose
BMI scores were greater than 40 (the outliers in Table 20.2) from our initial analyses.
As can be seen in panel (b) of Table 20.1, if we exclude the outlying BMI scores, the
skewness and kurtosis of the BMI distribution are reduced, so that now Gl = 0.830 and
G2 = 0.261.

Information about the correlations among TC, age, and BMI is presented in Table
20.3, which contains SPSS output for the 181 women aged 20-65 years with BMIs of 40
or less who have scores on all three measures. TC is significantly correlated with both
age, at r — .492, p — .000, and with BMI, at r = .231, p = .002. This suggests that we
might be able to predict TC better by using information about both age and BMI than by
using information about only one of these measures. Somewhat surprisingly, the correlation
between age and BMI is small in this sample, at r = .116, p = .119.

for the N data points in our sample.

complexity, the basic concepts underlying bivariate and multiple regression are largely the
same.

In multiple regression, we can obtain the least-squares estimate of the linear model

by finding bo,b\ ,62, • • •, bp such that the linear regression equation

minimizes
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Fig. 20.1 Scatterplot matrix for TC, age, and
BMI, using data from all women 65 years old
or younger and a boxplot for BMI.

and

In Equation 20.1, the slope of 1.812 indicates that, for each 1-year increase in age, the
prediction for TC increases by 1.812 units. Equation 20.2 tells us that predicted TC increases
by 1.934 units for each one-unit increase in BMI.

Now let's consider the SPSS output for the regression of TC on both age and BMI.
The B column in the coefficients table of the output provides the least-squares estimates of
the Y intercept (b0) and the unstandarized partial slope coefficients or unstandardized
regression coefficients for X\ and X^ (b\ and £2)- The entries tell us that the best regression
equation that includes both age and BMI as predictors is

This equation corresponds to the regression plane displayed in Fig. 20.3. Equation 20.3
indicates that if BMI is held constant, a one-unit (i.e., 1-year) change in age corresponds to
a change of 1.737 units in the predicted cholesterol level. Similarly, if age is held constant,
a one-unit change in BMI corresponds to a change of 1.474 units in predicted TC. We will
use the remainder of this section to introduce some of the other information found in the
output. More detailed discussions will be provided in the following sections.
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TABLE 20.1 DESCRIPTIVE STATISTICS FOR WOMEN AGED 65 YEARS OR LESS

(a) For all cases with data on all three variables

AGE TC

(b) For cases with BMI <40

BMI

N of cases
Minimum
Maximum
Median
Mean
Standard Dev
Skewness(GI)
SE Skewness
Kurtosis(G2)
SE Kurtosis

190
20.00000
65.00000
47.00000
46.7421 1
10.59359

-0.08130
0.17632

-0.73470
0.35087

190
114.87500
320.00000
210.50000
211.61184
39.60712

0.27696
0.17632

-0.00984
0.35087

190
17.69206
57.11127
25.20052
26.59906
6.30139
1 .68447
0.17632
3.90574
0.35087

AGE TC BMI

Nof cases
Minimum
Maximum
Median
Mean
Standard Dev
Skewness(GI)
SE Skewness
Kurtosis(G2)
SE Kurtosis

181
20.00000
65.00000
48.00000
46.92818
10.63016
-0.11630

0.18058
-0.72168

0.35927

181
114.87500
316.00000
211.12500
211.58011
39.17264

0.23947
0.18058

-0.16519
0.35927

181
17.69206
39.12482
24.93211
25.66503
4.66999
0.83037
0.18058
0.26078
0.35927

Note. Output is from SYSTAT.

In the model summary table, we see that the multiple correlation coefficient, R, is
.522. This means that the TC values predicted by Equation 20.3 have a correlation of
.522 with the actual TC values in the sample. The squared multiple correlation coefficient,
R Square is sometimes called the coefficient of multiple determination. Here, its value
is .5222 = .272, so we may conclude that 27.2% of the variance in TC is accounted for
by the regression on age and BMI.This means that the variability not accounted for when
the regression equation is used to predict the Y scores is 1 — .272 = .728 of the residual
variability that would result if Y was used to predict each of the 7 scores. The Adjusted
R Square is .264. The sample multiple correlation coefficient is a positively biased es-
timator of the population coefficient because the regression equation obtained using the
sample fits the sample better than it fits the population. The adjusted R results from
one type of attempt to remove the positive bias. We'll consider the adjusted R further in
Section 20.4.

The Standard Error of the Estimate is 33.603. This provides a measure of how well
the regression equation predicts the cholesterol levels. The equation provides a prediction,
y, for each combination of X\ and X2. The standard error of estimate, se, is the square root
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TABLE 20.2 STEM-AND-LEAF PLOT FOR BMI VALUES OF THE
1 90 FEMALES AGED 65 YEARS OR YOUNGER

Data for the following results were selected according to:
(AGE = <65) and (SEX = 1) and (TC <>.)

Stem-and-leaf plot of variable: BMI, N = 190
Minimum: 17.69206
]
i

1
]

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
* =t
40
41
42
45
50
57

Lower hinge:
Median:
Upper hinge:
Maximum:

66
09
334479

22.08871
25.20052
28.97510
57.11127

00112224556777899
2223333566677888999

H 0012556678999
00111122455556677888
0002444578899

M 01 122223345566677789
013445579
11123489

H 00 136666688999
1266789
1235567
0344457
45
013

257
1555
29
02
1

= * Outside Values * * *
16
0
4

028
8
1

of the sum of the squared deviations of the actual final cholesterol levels from the predicted
levels, divided by the df, so that
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TABLE 20.3 PEARSON CORRELATIONS FOR TC, AGE, AND BMI FOR WOMEN AGED
20-65 YEARS WITH BMIs < 40

Correlations

TC Pearson Correlation
Sig. (2-tailed)

AGE Pearson Correlation
Sig. (2-tailed)

BMI Pearson Correlation
Sig. (2-tailed)

TC

1.000

.492**

.000

.231**

.002

AGE

.492**

.000

1.000

.116

.119

BMI

.231**

.002

.116

.119

1.000

Note. Output is from SPSS. For correlations, listwise, N = 181.
"Correlation is significant at the 0.01 level (two tailed).

Fig. 20.2 Scatterplot of TC against BMI using
LOWESS smoothing for women 65 years old or
younger.

For the general case in which Y is regressed on/? predictor variables, the standard error can
be expressed as

If the underlying model for the population is F, = p0 + Pi-^i + ^2-^2 + •• • + $PXP + e,,,
then the standard error of estimate provides an estimate of the standard deviation of e.

The ANOVA or analysis of variance table tells us that the total sum of squares of
276,209.213 associated with cholesterol scores can be partitioned into two components:
one the sum of squares accounted for by the regression (Regression) and the other the sum
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TABLE 20.4 SPSS OUTPUT FOR REGRESSION OF TC ON AGE

Model Summary

Model

1

R

.492a

R Square

.242

Adjusted
R Square

.238

Std. Error of
the Estimate

34.2029

a Predictors: (Constant), AGE

ANOVAb

Model

1 Regression
Residual
Total

Sum of
Squares

66807.777
209401.437
276209.213

df

1
179
180

Mean Square

66807.777
1169.840

F

57.108

Sig.

.000a

aDependent Variable: TC
^Predictors: (Constant), AGE

Coefficients3

Model

1 (Constant)
AGE

Unstandardized
Coefficients

B

126.531
1.812

Std. Error

11.538
.240

Standardized
Coefficients

Beta

.492

t

10.967
7.557

sig.

.000

.000

95% Confidence Interval for

Lower Bound

103.763
1.339

Upper Bound

149.299
2.286

aDependent Variable: TC
Note. Output is from SPSS.

of squares left unaccounted for, .SSresiduab with

The F formed by taking the ratio of the regression and residual mean squares, 33.308, is
significant, p = .000. The null hypothesis that is tested states that the regression coefficients
Pi and p2 are both zero or, equivalently, that the population multiple correlation coefficient
is zero. In the Coefficients table, we not only have the information about the constant (bo),
and the coefficients of X\ and Xi in the regression equation (b\ and £2), but also about their
standard errors.

The Standardized Coefficient (Beta) column contains the values of the regression
coefficients that would result if the regression was performed using z scores. Although
standardized regression coefficients offer the advantage of common (standard deviation)
units, they are generally not as useful as the unstandardized coefficients. For one thing, if
the scales are meaningful, one-unit changes are more understandable than changes of one

and



A REGRESSION EXAMPLE WITH SEVERAL PREDICTOR VARIABLES 569

TABLE 20.5 SPSS OUTPUT FOR REGRESSION OF TC ON BMI

Model Summary

Model

1

R

.231 a

R Square

.053

Adjusted
R Square

.048

Std. Error of
the Estimate

38.2236

aPredictors: (Constant). BMI

ANOVA*

Model

1 Regression
Residual
Total

Sum of
Squares

14682.972
261526.242
276209.213

df

1
179
180

Mean Square

14682.972
1461.040

F

10.050

Sig.

.002*

"Predictors: (Constant), BMI
^Dependent Variable: TC

Coefficients3

Model

1 (Constant)
BMI

Unstandardized
Coefficients

B

161.944
1.934

Std. Error

15.913
.610

Standardized
Coefficients

Beta

.231

t

10.177
3.170

sig.

.000

.002

95% Confidence Interval for

Lower Bound

130.543
.730

Upper Bound

193.346
3.138

"Dependent Variable: TC
Note. Output is from SPSS.

standard deviation. Also, standardized regression coefficients are sample-specific in the
same way as correlation coefficients and therefore should not be used to generalize across
groups. The magnitudes of the standardized coefficients depend not only on the variances
and covariances of the variables included in the model. They also depend on the variances
of variables that are not included in the model but contribute to the error term and thereby
to the variance of the criterion variable. The unstandardized coefficients, bj, are preferable
because they are fairly stable even when variances and covariances vary across samples.

For each coefficient, a t statistic is formed by dividing b by its standard error. This
tests the null hypothesis that the corresponding (3 is equal to zero. The / of 7.322 (with
p = .000) for age indicates that, when BMI is held constant, the rate of change of predicted
TC with age is significantly different from zero. The t of 2.730 (with p = .007) for BMI
indicates that there is a significant rate of change of predicted TC with BMI when age is held
constant; that is, there is a significant contribution of BMI to the predictability of TC over
and above that provided by age. The significant t for bo (the constant, or intercept, of
the regression equation) indicates that we can reject the null hypothesis that Po = 0 in the
population. We requested confidence intervals, and so the table contains the upper and lower
bounds of the intervals for each coefficient. Even with a fairly large sample, the confidence
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TABLE 20.6 SPSS OUTPUT FOR REGRESSION OF TC AGE AND ON BMI

Model Summary

Model

1

R

.522a

R Square

.272

Adjusted
R Square

.264

Std. Error of
the Estimate

33.6028

^Predictors: (Constant), BMI, AGE

ANOVA*

Model

1 Regression
Residual
Total

Sum of
Squares

75220.300
200988.913
276209.213

df

2
178
180

Mean Square

37610.150
1129.151

F

33.308

Sig.

.000a

a Predictors: (Constant), BMI, AGE
^Dependent Variable: TC

Coefficients9

Model

1 (Constant)
AGE
BMI

Unstandardized
Coefficients

B

92.239
1.737
1.474

Std. Error

16.921
.237
.540

Standardized
Coefficients

Beta

.471

.176

t

5.451
7.322
2.730

Sig.

.000

.000

.007

95% Confidence
Interval for B

Lower
Bound

58.846
1.269

.408

Upper
Bound

125.631
2.205
2.540

Collinearity Statistics

Tolerance

.986

.986

VIF

1.014
1.014

'Dependent Variable: TC.

Collinearity Diagnostics9

Model Dimension

1 1
2
3

Eigenvalue

2.949
3.678E-02
1.407E-02

Condition
Index

1.000
8.954

14.476

Variance Proportions

(Constant)

.00

.02

.98

AGE

.01

.79
.20

BMI

.00

.31

.69

"Dependent Variable: TC.
Note. Output is from SPSS.

intervals are quite wide. For example, the 95% confidence interval for the partial slope of
predicted TC with BMI extends from 0.408 to 2.540.

We also requested Collinearity statistics, measures that indicate the extent to which
the predictor variables are correlated among themselves. As we shall see in Section 20.7,
multicollinearity, that is, high correlations among the predictors, presents difficulties for
multiple regression analysis. The tolerance of each predictor variable is a measure of how
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nonredundant the predictor is with the other predictor variables in the equation; with only
two predictor variables, the tolerance is one minus the square of the correlation between the
two predictors. In general, the tolerance of the j\h predictor variable is 1 — R2j., where R~.
is the square of the multiple correlation of Xj with all the other predictor variables in the
equation. The standard error of the coefficient of they'th predictor variable can be shown to
be

where se is the standard error of estimate defined earlier in this section and
SSj = Y^i (%ij ~ X-j) is me sum °f squares of the jth predictor. The ratio under the
rightmost square root sign, 1 divided by the tolerance of Xj, is known as the variance
inflation factor (VIF) for the predictor, which is also presented in the SPSS output. If the
predictor Xj has a tolerance of zero (i.e., if R* = 1), it can be perfectly expressed as a linear
combination of the other predictors in the regression equation. As a consequence, if any
of the predictors has a tolerance of zero, we cannot obtain least-squares estimates of the
regression coefficients because the set of equations that must be solved to find the bj& does
not have a unique solution. From Equation 20.5, we can see that as the tolerance of X/
decreases, the corresponding VIF increases and, consequently, so does the estimated SE.
This in turn means that a t test of the regression coefficient, bj, will have less power. This
makes sense, because if Xj is redundant with the other predictors, we should not expect it
to provide a significant increase to the predictability of Y. Most packages will allow you
to set a minimum tolerance below which a predictor will not be added to the regression
equation. In the current analysis, the tolerance for both age and BMI is .986 and the VIF
is 1.014, indicating that the correlation between age and BMI is small. The Collinearity
Diagnostics table contains additional measures that are useful for determining whether the

Fig. 20.3 Regression of total cholesterol (TC) level on age and
BMI.
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degree of correlation among the predictors is serious enough to present a problem for the
regression. We will discuss these measures further in Section 20.7.

20.3 THE NATURE OF THE REGRESSION COEFFICIENTS

When a regression equation does a good job predicting the criterion variable, it is tempting
to use the equation not only to predict but also as an explanatory model—or at least to
think of the regression coefficients in the equation as measures of the "importance" of the
corresponding Xs. in influencing Y. However, interpretations of regression coefficients as
measures of importance should not be made without considerable thought. One reason is
that a variable that has no causal importance whatsoever may be a very useful predictor if it
happens to be correlated with other variables that are important. For example, the number
of books that parents own may be a perfectly good predictor of children's performance
in elementary school, even if the children do not read the books. Even though the books
themselves do not influence school performance, the number of books is correlated with
factors such as parental intelligence and education, that do influence performance.

A second reason for care in interpreting regression coefficients is that the size of a
regression coefficient usually depends on the other variables that are included in the equation
and how well the equation matches the actual population model. Let's consider this point
further.

Suppose we have a population described by the model

If we ignore the random error component, Y is a linear function of X\ with slope Pi, where
Pi is the rate of change of Y with X\. That is, a one-unit change in X\ corresponds to a change
of Pi units in Y. If a sample is drawn from the population described by Equation 20.6, it
can be shown that the regression coefficient, b\ , is an unbiased estimator of the population
parameter, Pi. Because the population equation has the same predictors as the population
model, b\ does not only represent the rate of change of the predicted score, Y, with changes
in X\ in the regression equation based on the sample; it is also an unbiased estimate of the
rate at which the actual score, Y, changes with changes in X\ in the population.

Now assume that the true population model has an additional predictor:

If we ignore the random error component, Pi is the rate of change of Y with X\, given
that Xi is held constant (i.e., if X\ is changed by one unit and Xi is not changed, then Y
will change by Pi units). Similarly, P2 is the rate of change of Y with Xi given that X\ is
held constant. Note that Pi in Equation 20.7 does not have the same interpretation as Pi in
Equation 20.6. To emphasize this distinction, we could write Equation 20.7 as

so that the notation for each parameter specifies the other variables in the model; for example,
Pn.2 indicates the rate of change of Y with X\ when X2 is also in the equation, whereas
PKI represents the rate of change of Y with X\ when X\ is the only predictor.

Although the interpretation of the PS in Equations 20.6 and 20.7 is quite simple,
the interpretation of the sample regression coefficients is less straightforward because we
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usually do not know the underlying model that truly describes the population. If we select
a sample from the population described by Equation 20.7 and regress Y only on X\, the
sample regression coefficient will be a biased estimator of pi in Equation 20.7—b\ will
represent the rate of change of Y with X\ in the sample, but it will not necessarily be a good
estimator of how Y changes with X\ in the population when X2 is held constant. As we
show later, if X2 is left out of the regression equation, b\ will generally reflect the effects
of both X\ and X2. If X2 is also included in the equation, we obtain a different value of b\,
one that now represents the rate of change in Y with X2 held constant.

An example may help. Suppose we want to predict final exam performance in an
introductory statistics course on the basis of two predictors: the quantitative SAT score
and a pretest. Suppose that (a) the pretest measures algebra skills, (b) the SAT measures
abstract mathematical thinking skills, (c) people with better algebra skills also tend to have
better abstract thinking skills, and (d) performance on the final exam depends on both
types of skills. If we regressed the final exam score only on the pretest score, we would be
mistaken if we interpreted the regression coefficient only as a measure of the importance of
algebra skills in determining the grade on the final. The change in the predicted final exam
score associated with a one-unit difference in the pretest score reflects both the difference
in algebra skills and the associated difference in abstract thinking skills. However, if we
regressed final exam score on both pretest and SAT score, the coefficient of the pretest
variable would no longer reflect the importance of abstract thinking skills. In this case, the
pretest score coefficient would represent the rate of change of the predicted score on the
final with pretest score, holding SAT score constant.

There is one situation in which the inclusion of additional predictors does not affect
the other regression coefficients—when the predictors are not correlated. In the example of
age, BMI, and cholesterol level, because there is only a small correlation between age and
BMI in our sample, the coefficients of age and BMI are similar when both variables are
included in the regression equation and when each variable is the only predictor. If age and
BMI were completely uncorrelated, the two sets of coefficients would be exactly the same.

20.4 THE MULTIPLE CORRELATION COEFFICIENT AND THE
PARTITIONING OF VARIABILITY IN MULTIPLE REGRESSION

20.4.1 The Multiple Correlation Coefficient

In Chapter 3, we defined the correlation coefficient, r, as a measure of the linear relation
between Y and X and introduced the coefficient of determination, r2, as the proportion of
the variability in one of the variables accounted for by the regression on the other. Both of
these concepts have parallels when we investigate the relation between a criterion variable,
Y, and a collection of predictors, X\, X2, X j , . . . , Xp.

We define the multiple correlation coefficient, Ry.123...P- as the correlation between Y
and Y, where

is the prediction of Y obtained from the multiple regression equation that contains the
p predictors. If Y is perfectly predicted by the multiple regression equation, then R = 1. If
the multiple regression equation predicts no better than the equation Y = Y, then R = 0.
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When there is a single predictor variable, X, the multiple correlation coefficient reduces to
RY.X = \fxY\, the absolute value of the bivariate correlation coefficient. This is because in
bivariate regression, 7is a linear function of X, so that \ryxl = ?YY- Note that, although the
limits of r are ±1, R can vary only between 0 and 1.

The proportion of the variability in Y accounted for by the regression on p predictor
variables is r1 ~ = Ry 12 . Therefore, we can write

where SSregression = £]/• (^ ~ ^) i§ me amount of variability in Y accounted for by the
regression.

20.4.2 Partitioning S5Y into SSregression and S$»siciuai

As was the case with bivariate regression, the variability of Y can be partitioned into a
component accounted for by the regression, Regression* and a component not accounted for
by the regression, Residual,

where Regression = R2SSy and Residual = (1 ~ R2)SSy. It is convenient to express the
partitioning of variability in terms of an ANOVA table of the form of Table 20.7. SSy is
associated with N — I df because 1 df is used to estimate the population mean. Of these
N — 1 df, p are associated with the regression sum of squares, because coefficients for each
of the p predictors must be estimated. The remaining N — 1 — p dfare associated with the
residual SS. Note that, when there is only one predictor, N — I — p = N — 2, the result
presented in Chapter 19.

Under standard assumptions that will be discussed in Section 20.5, if the p population
regression coefficients Pi, P 2 , . . . , pp are all zero, the ratio

TABLE 20.7 ANOVA TABLE FOR MULTIPLE REGRESSION

SV df SS MS F

Regression

Residual

(or error)

Total
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will be distributed as F with p and N — 1 — p df. Therefore, the ratio of mean squares
tests the null hypothesis that fr = ($2 = • • • = pp = 0. In the current example, when we
regressed TC on both age and BMI score (so that p = 2), we found R = .522. Substituting
the square of this value into Equation 20.8, and replacing SSy by the total sum of squares
in Table 20.6, we have

20.4.3 Partitioning SSrCgression

Note that the numerator and denominator sums of squares are, within rounding error, the
same as the values in the SPSS output of Table 20.6, and the Fs are accordingly the same.
As can be seen in Table 20.6, this large F value clearly provides the basis for rejecting
the hypothesis that the population regression coefficients for both age and BMI are zero.
MSresiduai is the square of the standard error of estimate provided in the SPSS output. If all
important systematic sources of variability are included in the regression equation so that
the residual variability is due only to random error, MSVesiduai estimates the random error
variance, a2. If important sources of variability are omitted from the equation, A/Sresjduai
will reflect these sources as well as random error, resulting in a biased F test.

If the p predictor variables in a multiple regression are mutually uncorrelated, Regression
can be partitioned into nonoverlapping components associated with each of the predictors.
Panel (a) of Fig. 20.4 represents this situation. X\ and X^ overlap with Y, but not with each
other, indicating that the variability in F collectively accounted for by X\ and X^. is the sum
of variabilities accounted for separately by X\ and by X*i- In this situation,

where SSYj = r^- SSy and ryj is the correlation between Y and Xj. Because Regression —
RY 12SISV (see Section 20.4), it follows that, when the two predictors are uncorrelated,

More generally, if p predictors account for the nonerror variability in F, and are mutually
uncorrelated,

and

In summary, when the predictors are uncorrelated with one another, the proportion of the
variability of F they collectively account for is the sum of the proportions of variability
accounted for by the individual predictors.

However, predictor variables are usually correlated with one another. They usually
share variability as in panel (b) of Fig. 20.4, where there is a correlation between X{ and
X2 as indicated by the overlap of their circles. Note that if we add the overlap of F with
X\ to the overlap of Y with A^. the b area is added in twice. When any of p predictors



576 20/MULTIPLE REGRESSION

Fig. 20.4 Representation of
variability in the criterion
variable accounted for by
uncorrelated and correlated
predictor variables, (a)
Uncorrelated predictors:
variabilities accounted for by X\
and X2 do not overlap so that
RY 12 = fy\ + rY~>- (b) Correlated
predictors: variabilities
accounted for by X\ and X2

overlap so that /?$; 12is not the
sum of the r^ s. RJ may be found

from R2
YA2 = ^ j b j r y j S j / s y .

are correlated, the proportion of variability in Y they account for is not the sum of the
proportions associated with the individual predictors, but must be adjusted for overlapping
variability, such as that represented by the b area.

A general expression for R2 that takes the correlations between predictors into account
is given by

where bj is the regression coefficient of Xj in the multiple regression equation and Sj and
s^are the standard deviations of Xj and Y, respectively. For example, when TC (Y) was
regressed on age (X\) and BMI (^2), we obtained the following results:
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*>j
ry,
SJ

TC

39.173

Age

1.737
0.492

10.630

BMI

1.474
0.231
4.670

20.4.4 Cross-Validation and the Adjusted (or Shrunken)
Multiple Correlation Coefficient

When a multiple regression equation is developed from a sample of data, the multiple
correlation coefficient R and its square are commonly used indices of how well the equation
fits the data in the sample. These measures are also often used as estimates of how the
regression equation fits the population from which the sample was obtained. However, using
R or R2 as measures of fit can be misleading, because R is a positively biased estimator
of the population coefficient. This is a consequence of chance variability that causes the
regression equation obtained from the sample to always describe the sample better than the
population from which the sample was drawn. Particularly if the sample is small and there
are a large number of predictors, a regression equation that predicts well in the sample may
predict poorly in the population.

so that, substituting in Equation 20.9, we have

the same value as that displayed in the SPSS output in 20.6. In the current example, the sum
of the r2 values for TC and age and for TC and BMI, 0.295, is not greatly different from
the value of 0.272 obtained earlier, because the correlation between age and BMI is small.

The increase in R2 when X2 is added to a regression equation that already contains
X\ is r^(2|i)» the square of the semipartial correlation coefficient introduced in Chapter 18.
As we mentioned there, ry(2|i) is the correlation of Y with the component of X2 that is not
predictable from X\. In terms of the lower panel of Fig. 20.4 we may think of ry(2|i) as the
proportion of the Y circle that overlaps Xi but not Xi.ln general, the squared semipartial
correlation coefficient ry(/H_i|i2 P) is the increase in R2 that follows from adding a (p + l)st

predictor to a regression equation that already contains p predictors. That is,

In Equation 20.10, rY(p+i\i2...p) is the correlation between Y and Xp+\\X\, X2, . . . , Xp,
where the latter term represents the residuals of the regression of Xp+\ on X\, X 2 , . . . , Xp.
Applying Equation 20.10 to the TC data, when age is added to a regression equation that
already contains BMI as a predictor, the proportion of the variance of TC accounted for is
increased by .219. If instead, BMI is added to an equation when age is already included as
a predictor, the increase is .030. Note that because age and BMI are somewhat correlated
and therefore account for overlapping variability in TC, these increases are smaller than the
proportions of variance accounted for by age and BMI when each is the only predictor in
the equation. We will soon discuss "partial F tests" that will allow us to test whether the
addition of one or more variables significantly increases the variability accounted for by a
regression equation.
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This gives the value of R2 for which the adjusted R2 will be zero. Using this equation, we
can see that if we have 10 predictors and 50 cases, an R2 value of .204 (or multiple R of
.452) would correspond to an adjusted R of zero.

However, if our interest is prediction, the Wherry adjustment may not be appropriate,
because we may care less how a regression equation fits the population than in how well
the equation fits another sample drawn from the same population. Herzberg (1969; see the
discussion in Stevens, 1986) gives two adjustment equations that attempt to estimate R2 in
a second sample—that is, to estimate R2 if we used the regression equation developed in
sample 1 with the data of sample 2. If the predictors are random variables, as is usual in

With enough predictors, the regression equation has to fit the sample well no matter
how the predictors and the criterion are related in the population. Just as any two data points
can be fit by a straight line, any p + 1 data points can be fit perfectly by a regression equation
with p predictor variables, and the resulting value of the sample R must be 1. With more
data points, R in the sample need not be 1, but will tend to be larger than R in the population
as long as the N/p ratio (number of cases divided by number of predictor variables) is
small because of capitalization on chance; that is, because the regression equation takes
advantage of chance fluctuations in scores that allow for predictability in the sample, but
not in the population. The bias in R can be reduced by working with larger samples. How
large should samples be? Although the recommended sample size depends to some extent
on the nature of the research problem and the purpose of the analysis, the N/p ratio should
be large—perhaps 30 or more—if the size of R is to be taken very seriously.

A common adjustment for this positive bias has been provided by Wherry (1931). The
population correlation p can be defined as

(compare with Equation 18.4). If we replace the population variances by their unbiased
estimates, we have

which can be rewritten as

But SSresiduai/SSV = 1 — R2• Therefore, substituting, we have Wherry's formula,

The adjusted (or "shrunken") squared multiple correlation coefficient is provided in the
regression output of most statistical packages. For the regression of TC on age and BMI,
Equation 20.11 yields an adjusted R2 of 1 - (1 - .272)(180/178) = .264, the same value,
within rounding error, provided by the SPSS output in 20.6. Note that if we set the adjusted
R2 equal to zero and solve Equation 20.9 for R2, we get
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The shrinkage is greater if we use the Herzberg equations instead of the Wherry equation. For
example, given a sample of size 100 with 10 predictors and an R2 of .50, Adjusted = -^44,
whereas RldjRP ~ -^74 and R^FP — .383. In our current example, because of the high
N/p ratio, there isn't a great deal of shrinkage: A f = 1 8 1 , / ? = 2, and R2 = .212, so that
justed = -264 and R2

ad)RP = .252.
The best way of obtaining a more realistic estimate of the population R is to use a

procedure called cross-validation that avoids capitalizing on chance by developing the
regression equation and testing it in separate samples. One of the samples (the screening
sample) is used to develop a regression equation. The regression equation developed in the
screening sample is then used to predict Y scores for each case in a second (calibration)
sample. The cross-validated R is the correlation between these predicted Y scores and the
actual Y scores in the calibration sample. Because the regression weights are obtained from
one sample and tested in another, the cross-validated R cannot systematically capitalize on
sampling variability. Therefore, a useful estimate of the population R might be obtained by
correlating the deleted predictions (see Section 19.6.1) of Y with the actual values of Y.

The problem of capitalization on chance is most insidious when the variables in the
regression equation are chosen from a larger pool of possible predictors. Variables that are
useful for predicting in the sample will be chosen to be in the equation and thus increase
the multiple correlation, even if they are not very useful in other samples. If the N/p ratio
is small and variables in the regression equation are chosen from a larger set of possible
predictors, the shrinkage achieved by cross-validation can be dramatic. We can illustrate
this point by using the Seasons data set. We selected the data from the first 40 women
aged 65 years or younger with BMI scores <40. Then, using TC as the dependent vari-
able and arbitrarily choosing HEIGHT, BMI1, HOST1, ANGER 1, IRRIT1, ANXIETY 1,
DIRWDC1, BECK_D1, BECKD_2, BECK_D3, and BECKJD4 as 11 possible predictors,
we found that the best regression equation containing five predictor variables (obtained by
using stepwise regression—see Section 20.6) was

TC = 78.143 + 2.706 • BMI1 + 16.863 - HOST1

- 1.605 • ANGER1 + 16.461 • DIRWDC1 - 1.906 • BECK_D1

Here, the regression equation is based on the 32 cases in the sample having data on the
dependent variable and all five predictors, so the N/p ratio is 6.4. The R obtained for the
sample is .504, and the adjusted R is .333. We then cross-validated by first using the equation
to predict the TC scores for the remaining 120 women with data on all the variables in the
equation, then finding the correlation between the predicted and the actual TC scores for
these 120 women. This correlation is very small (r = .046, so that the cross-validated R2 is
.0462 = .002), indicating that, although the regression equation based on the first 40 cases
fits that sample pretty well, it is of no use for predicting outside the sample.

nonexperimental research, the adjustment equation is

If the predictors are fixed, the adjustment equation is
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In summary, if the N/p ratio is small, the multiple correlation coefficient for a sample
will strongly overestimate the usefulness of the regression equation in the population and in
other samples. The situation is much worse when the predictors in the equation are chosen
from a larger pool. We strongly recommend the use of cross-validation to counter the effects
of capitalization on chance.

20.5 INFERENCE IN MULTIPLE REGRESSION

20.5.1 Models and Assumptions

As was the case for bivariate regression, the validity of our inferences rests on a model
and certain assumptions about the data. Also, we again distinguish between situations in
which the predictors are fixed-effect variables and situations in which they are random
variables. Fixed predictors generally occur in experimental studies in which the indepen-
dent variables are manipulated; then Y is a random variable, but the values of the Xs are
selected by the researcher and are therefore considered to be fixed over replications of the
experiment. Predictors are considered to be random variables when they, as well as Y, are
randomly sampled. Fortunately, although somewhat different assumptions are made for
fixed and random predictor variables, the procedures for testing hypotheses and forming
confidence intervals are the same in both cases when certain assumptions are met. However,
the inferences we make are conditional on the joint distribution of the predictors observed
in the sample.

Whether X is fixed or random, we assume that the model is

where ^y-XiX2... xp is the mean of the population of Y scores corresponding to a particular
set of values for the p predictor variables. For the fixed-X situation, we assume:

1. None of the predictor variables is completely redundant; i.e., no predictor vari-
able, Xp, can be perfectly predicted from the other p — 1 predictors using a linear
equation. If this condition is not satisfied, the set of normal equations that must be
solved to obtain the sample regression coefficients will not have a unique solution.

2. The error components associated with each of the Y scores are normally and inde-
pendently distributed with mean 0 and variance ae

2.
3. The values of the predictor variables are fixed and measured without error. This

means that the values of the X's will be exactly the same for each replication of
the experiment.

If the Xs are random variables, we assume (1) and (2), and further assume that the distri-
butions of the predictor variables are independent of e.

In the remainder of Section 20.5, we discuss and illustrate some types of statistical
inferences that can be made in multiple regression. We will not derive expressions for
standard errors; rather, we state the results and concentrate on the logic and interpretation
of the statistical tests.
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20.5.2 Testing the Hypothesis (51 = p2 = • • • = PP

will be distributed as F with p and N — 1 — p df under standard assumptions. Therefore,
MSregression/MSresidual can serve as the statistic to test the null hypothesis that the p regression
coefficients are all zero in the population. This test can be thought of as asking whether we
have sufficient evidence to conclude that the model

As we indicated earlier, if the p regression coefficients P1, £2, • • • Pp all have the value 0 in
the population, the ratio

accounts for Y in the population better than the restricted model

20.5.3 Testing the Hypothesis pi = Phyp and Finding
Confidence Intervals for ft i

Under standard assumptions, the ratio

and so we can reject the hypothesis that the population regression coefficients are zero
for both age and BMI. The test assumes that MSresidual is an estimate of the variance of
the random error component. If important variables are left out of the regression equation,
MSresidual will reflect their effects as well as random error, and the test will be negatively
biased.

If the restricted model is appropriate, f1 = $2 = ...=$p = 0 so that the best predictor
for Y is 3o = ^Y and the multiple correlation coefficient in the population has the value 0.

In the current example, when we regress TC on age and BMI, we find

will be distributed as t with N — 1 — pdf. Therefore, if we can estimate the standard errors
(see Equation 20.5), we can test the hypothesis that the population intercept, ffo, or any of
the population regression coefficients, (Jj, are equal to any constant. In practice, the null
hypothesis J3j = 0 is usually tested. Rejection of this hypothesis implies that Xj makes a
significant contribution to the predictability of Y when it is added to the other variables in
the equation.

Also, once we have obtained the appropriate SEs, we can obtain confidence intervals
for each parameter using
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In the current example, the 95% confidence intervals for the intercept and the coefficients
of age and BMI are 92.239 ± 33.392, 1.737 ± 0.468, and 1.474 ± 1.066, respectively.

20.5.4 Partial F Tests: Procedures for Testing a Subset
of the (Jjs

We can use partial F tests to determine whether adding one or more predictors to a regression
equation that already contains p predictors significantly increases the predictability of Y.
If we consider just one additional predictor, Xp +1, a test of the model

against the restricted model

is equivalent to testing the hypothesis H0: $p+1 =0.
We can represent the variability in Y accounted for by regression on the variables of

the restricted model as

and the variability accounted for by the larger model when the predictor X p + 1 is added as

Therefore, the increment in variability associated with the predictor Xp + 1 is given by

This increment is associated with a single df because only one additional regression coef-
ficient must be estimated in the larger model.

Table 20.7 presents these results in the form of an ANOVA table. The hypothesisH0:
(3p+1 = 0 can be tested using the ratio

where the denominator is the mean square associated with the variability not accounted for
by the larger model; that is,

The numerator of the F is associated with 1 df if a single predictor is added and the
denominator with N— p —2df. The partial F can be expressed as

When a partial F test is used to test whether a single population regression coefficient is zero,
the results produced are exactly equivalent to those of the t test discussed in the preceding
section. If we use this procedure to test whether BMI adds significantly to the prediction of
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TABLE 20.8 ANOVA TABLE FOR TESTING THE EFFECT OF ADDING k PREDICTOR VARIABLES TO
MODEL THAT ALREADY CONTAINS p PREDICTORS

SV

Larger model

Smaller model

Increment

Residual

df

p + k

P

k

N - 1 - p-k

SS

RY\....j,+kSSv

Rn....trSSy

<\<\ —JJincremenl —

(RY\....P+k - RY\....P)ssy

(! ~ RY\....p+k)SSY

MS

RY\....P+kSSy

P + k

RY\....pSSY

P

"J^incremem/K

(l-R2
ri....p+k)SSy

N -1- p-k

We showed in Chapter 19 that, for bivariate regression, the estimated standard error asso-
ciated with the prediction of Y at X = Xj is given by

that can be estimated by

In bivariate regression, the expected value of Y corresponding to a value Xj of X is given
by

20.5.5 Inferences About the Predictions of Y

The appropriate ANOVA table is given in Table 20.8. This general approach can be used to
assess the effect of adding any set of predictors to the equation and tests the hypothesis that
the regression coefficients for these added predictors are all equal to zero in the population.

and we add k more predictor variables so that the model is now

The F value obtained is the square of the t for the coefficient of BMI in the output for the
regression of TC on age and BMI in Table 20.6.

Partial F tests can also be used to test hypotheses that state that some subset of the
(3js are equal to zero. Suppose, for example, we start with a model containing p predictor
variables

TC over and above age, SSincrement = 8412.523, dfincrement - 1, and MSresidual = 1129.151,
so that
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and that the standard error associated with an individual score is

where se is the standard error of estimate and h jj, the leverage of Xj, is

In multiple regression, we can find the estimated standard error for the prediction of Y
associated with any combination of values of the p predictor variables in the regression
equation. Because there is more than one predictor, the standard errors are most easily
presented as matrix expressions. However, if the combination of predictor values is one that
occurred for any of the cases in our sample, say case j, the estimated standard error for the
prediction is again given by Equation 20.14. Although the expression for hjj will now be
more complicated because there is more than one predictor, it can be thought of and used
in much the same way as in bivariate regression. If we want to find the confidence intervals
for the conditional means or individual scores in our data set, we do not have to calculate
the leverage; we can simply ask that SPSS add the lower and upper confidence limits to our
output, or ask that SYSTAT provide the leverage values that we can then use in Equations
20.14 and 20.15.

However, if we wish to find the standard error for the prediction of Y based on a
combination of values for the p predictors, X 1 , X 2 , . . . , X P , that did not occur in our sample,
the estimated standard errors for ji and Y are not directly made available in the computer
output and must be calculated. We will not present the relevant matrix expressions or their
derivation in the text. They are available, along with a worked-out example, in the brief
development of multiple regression using matrix notation in the Supplementary Materials
folder on the accompanying CD (Chapter 20A).

20.5.6 Outliers and Influential Points in
Multiple Regression

In discussing bivariate regression, we introduced measures for identifying cases that had
outlying values of Xor had inordinate influence in determining the value of the regression
coefficient for X. The corresponding measures for multiple regression are just generaliza-
tions of these measures; and we can think of, and use them, in the same way as in bivariate
regression. However, because more than one predictor is involved, the measures are usu-
ally expressed in matrix notation. A brief treatment using matrix notation is presented in
Chapter 20A on the CD.

In bivariate regression, outliers in X can usually be identified by looking at the distri-
bution of X or at the scatter diagram of X and Y. However, in multiple regression, one must
depend more heavily on measures such as the leverage, hjj, to identify outliers because
multivariate outliers can occur in subtle ways. For example, the jth case may be an outlier
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because there are correlated deviations from the mean for several predictors; there need not
be an extreme deviation for any predictor. It should be also noted that when leverages are
requested, SPSS produces centered leverages, hjj — 1 / N .

As we mentioned in Chapter 19, it can be shown that ^ hjj = p + 1 where p is the
number of predictor variables; therefore, the mean value of hjj is (p + 1)/N. Hoaglin and
Welsch (1978) suggest that values of hjj greater than 2(p + l)/N should be considered
to be large. Belsley, Kuh, and Welsch (1980) indicate that this cutoff will identify too
many data points if p is small, but recommend it because it is easy to remember and
use. Other guidelines mentioned by Neter et al. (1996) are that hjj values exceeding .5
indicate very high leverage, whereas those between .2 and .5 indicate moderate leverage. For
the regression of TC on age and BMI, for women aged 20-65 years with BMI's <40, the
largest hjj is .061, a low value according to the Neter et al. guidelines, although above
the Hoaglin and Welsh criterion of .033. We can see from the data set that this leverage
value comes from case 569, a woman with both predictor values (age = 64, BMI = 39)
near their cutoffs. However, we should emphasize that outlying cases need not exercise
inordinate influence on the values of the regression coefficients. We introduced Cook's
distance, CDj, in Chapter 19 as a measure of the change that would result in the regression
coefficients if the jth case was omitted. CDj, can be written as

where F(
( ;)is the prediction of Yi obtained from regression coefficients obtained with the

jth case deleted. A simple guideline given by Cook and Weisberg (1982) is that a Cook's
distance of 1 should be considered to be large. However, a guideline that takes sample size
and number of predictors into account is that Cook's distance values should be considered
large if they exceed the cutoff Fso^+i^-p-i (see Section 19.6). Case 569 has a Cook's
distance of .029, well below the cutoff of F5o,3, ns = .79. The largest Cook's distance value
for the regression is .084, again well below the cutoff.

Unfortunately, although regression diagnostics that consider the effect of deleting one
point at a time work quite well when there is a single influential outlier, it is much more
difficult to diagnose outliers when there are several of them. For a useful discussion of
developments in the detection of multiple outliers and of robust regression, see Rousseeuw
and Leroy( 1987).

20.5.7 Confidence Intervals for the Squared Multiple
Correlation Coefficient

A confidence interval on p 2, the squared population multiple correlation coefficient, is much
more informative than simply stating the sample R2 along with the results of a significance
test. Using an example given by Steiger and Fouladi (1997), suppose we obtain an R2 of
.40 in a regression using five predictor variables with N = 45. The shrunken estimator (i.e.,
the adjusted R2) is .327 and if a significance test is performed, the p is .0009. However, it
is more useful to know that the 95% confidence interval for p2 extends from .095 to .562.
This interval tells us that the range of possible values is quite wide; the lower limit of the
interval for p is .31, whereas the upper limit is a relatively high .75.
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There are several ways of obtaining these confidence intervals. Olkin and Finn (1995)
have pointed out that, for large samples, the variance of R2 is approximately given by

where p is the number of predictors, and p 2 is the square of the population multiple corre-
lation coefficient. If 2p + 1 is small relative to N,

For example, if we consider the regression of TC on age and BMI for women aged 65 years
or younger, using the results in Table 20.5, the variance of R2 can be estimated by

Therefore, an estimate of the .95 confidence interval for p 2is given by

that is, an interval that extends from approximately .161 to .383.
Steiger and Fouladi (1992) have developed a computer program, R2, that

finds confidence intervals and performs significance tests and power calculations
for R2. The program is free and may be downloaded from Steiger's web page at
http://www.interchg.ubc.ca/steiger/homepage.htm. Using R2 with the current example
yields a 95% confidence that extends from .160 to .380, almost exactly the same values we
calculated above using the approximation given by Olkin and Finn (1995).

We may also be interested in determining whether a set of predictors is equally useful
in separate populations. For example, we may wish to test whether a battery of college
placement tests is equally useful for predicting college GPA for city and suburban students,
or whether a set of clinical variables is equally useful in predicting cholesterol levels in
men and women. For example, when we regressed TC on age and BMI for the 183 men
under the age of 65 with BMI < 40 who had data on all three variables in the Seasons data
set, we found R2 = .046. This seems considerably less than the R2 of .272 that we found
for women. Do we have enough evidence to reject the hypothesis that p2 is the same for
women and men? If R2 and R2 are obtained from large independent samples with N1 and
N2 observations, respectively, the distribution of their difference is approximately normal
with a variance that can be estimated by

and the confidence interval many be approximated using

For the regression of TC on age and BMI for women and men, the variance is
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(where the subscripts 1 and 2 represent women and men) and the 95% confidence interval
for the difference between the population squared multiple correlations for women and men
is approximated by

This interval ranges from approximately .10 to .35. Because the interval does not contain
zero, we can reject the null hypothesis that the p2 values are equal for men and women.
Furthermore, we are reasonably certain that the squared correlation is greater for males than
for females, but probably not by more than .35.

How big must the samples be to provide a reasonable estimate of the confidence interval
using the approximation suggested by Olkin and Finn (1995)? There is no simple answer:
Algina and Keselman (1999) performed a simulation study assuming multivariate normality
and varying such factors as the sizes of the population multiple correlation coefficients, the
number of predictors, and whether or not the sample sizes were equal. They found that
the required sample sizes were smaller if the p2 's were equal and not extremely close to
zero. If Ns were equal and both were at least 40, both p2 values were at least .06, and
there were no more than six predictor variables, then the confidence intervals provided
reasonable coverage; nominal 95% confidence intervals were somewhere between 92.5%
and 97.5% intervals. With more than six predictor variables, the smaller N should be at
least 80. The samples must be larger if one or both of the p2s is very close to zero. For
example, if p2 = .00, p2 = .02 and there are 10 predictors, sample sizes should be greater
than 900. Algina and Keselman (1999) provide tables that indicate the sample sizes required
for various combinations of factors.

It is also possible to use large-sample approximations to find confidence intervals for
the difference between dependent R2s (i.e., R2s calculated on the same sample). As was the
case with simple correlation coefficients, finding confidence intervals is more complicated
when we use dependent measures because we must take account of their covariance. Alf
and Graf (1999) discuss how to obtain these confidence intervals and present worked-out
examples.

We should point out that the methods discussed in this section will not be accurate unless
the assumption of multivariate normality is satisfied and the predictor variables have been
specified in advance. In situations in which the predictors have been selected from a larger
pool of variables using some sort of stepwise procedure, it is important that cross-validation
be used (see Section 20.4).

20.5.8 Power Calculations in Multiple Regression

The issue of power calculations in multiple regression is somewhat complicated, largely
because there are many hypotheses that might be tested. Consider the model

We may wish to test the hypotheses that (a) all p of the partial slope coefficients are equal
to zero in the population, (b) a particular coefficient is equal to zero, or (c) all members of a
specified subset that contains k of the p coefficients are equal to zero. In calculating power
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for these cases, it is useful to have in mind a general case from which we can derive power
for these three special cases. Specifically, most programs for calculating power will require
an estimate of the noncentrality parameter for the F distribution, defined as

where AR2 is the increment in R2 when k predictors are added to a set of p — k predictors,
and R2 is the squared multiple correlation calculated for the full set of p predictors. Then
the general form of the noncentrality parameter we will use in most power calculations is,
for fixed-effect predictors,

and, for random-effects predictors,

We now consider the three cases for which we might require power.
Case 1—Power for tests that all of the partial slope coefficients are equal to 0 in the

population. The test of the null hypothesis that all partial slope coefficients equal zero is
equivalent to the test that p2 = 0. Therefore, there are several options that yield similar
results. One approach is to use a noncentral F calculator. To obtain an estimate of X as
an input for the calculation of power, we need to decide on the values of N* and f2

in Equation 20.19. To do this, we note that we are asking whether adding p predictors
to a set with zero predictors increases R2; therefore, we let k = p in Equation 20.20, and
accordingly,N* = N.Furthermore, AR2 = R2 in this case. Therefore, substituting in either
Equation 20.22a or 20.22b, we have

Suppose, for example, that we plan to regress TC on age and BMI in a sample of
40 women. If we expect R2 to equal .238, substituting into Equation 20.23, we find the
estimated value of X to be 12.49. The critical F with 2 and N - p - 1 = 37 df is 3.25.

When the predictors are fixed-effect variables, N* is replaced by the sample size, N. How-
ever, Cohen (1988)2 recommends that for multiple regression N* be defined as

Maxwell comments that Cohen's (1988) formulation appears to provide a small adjustment
for the random nature of predictors that are usually encountered in psychological research
(Maxwell, 2000, p. 436). Therefore, we will follow Cohen's recommendation for random-
effects predictors. In any event, for fairly large values of N, the differences in estimated
power obtained using N, N — p + k, and N — p — 1 will be small.

The effect size statistic, f2, is defined in general as



As an example, suppose we plan to test whether adding BMI to a regression equation that
already contains age will significantly improve the predictability of TC. We are consider-
ing using N = 40, and we have reason to believe that R2 with age as the only predictor
will be .203, and that when BMI is added, R2 will be .238, so that AR2 is .035. Sub-
stituting in Equation 20.22, we find \ = (39)[.035/(1 - .238)] = 1.79. Using a noncen-
tral F calculator with Fcrit.o5(l, 37) = 4.11, df1 = k = 1, df2 = N - (p + 1) = 37, and
X = 1.79, the estimated power is only .26. If we perform the study, we will need a much
larger sample to have a reasonable chance of achieving statistical significance. Trying
out different values of N, we find that we would need an N of about 175 to obtain an
estimated power of .80. Alternatively, we can use GPOWER. If we select the a priori
analysis and special hypothesis options of GPOWER, then insert the values f2 = 035/
(1 — .238) = .046, a = .05, power = .80, p = 2, and numerator df = 1, the required N
is 173.

If we have a fairly large sample, we can approximate the N required to obtain any
desired power. We begin by noting that if dfresidual is greater than about 120, the V's required
to achieve powers of .80 and .90 are approximately 7.85 and 10.51, respectively. Solving

INFERENCE IN MULTIPLE REGRESSION 589

Using the UCLA noncentral F calculator or the NCDF.F function available in SPSS, we
find that the estimated power is .87. GPOWER also gives an estimate of .87, whereas the
estimate provided by Steiger and Fouladi's R2 program (described in the preceding section)
is .84.

GPOWER and R2 can also be used to determine the number of cases necessary to
obtain a desired level of power. For example, suppose we have five predictors and wish
to determine the number of cases necessary to achieve a power of .80 with a = .05 and
f2 [= R 2 / (1 — R2)] = .02, .15, and .35, the values that, according to Cohens's guidelines,
correspond to small, medium, and large effects. Because R2 = f2/(1 + f2), these f2 values
correspond to R2 values of .020, .130, and .259. The required values of N produced by the
R2 and GPOWER programs are:

The two programs provide similar results despite the fact that GPOWER assumes the predic-
tors are fixed, whereas R2 assumes they are continuous random variables with a multivariate
normal distribution. Gatsonis and Sampson (1989) point out that the approximations would
not be expected to be accurate in situations where some variables are continuous random
variables with nonnormal distributions and others are dichotomous.

Case 2—Power calculations for the test that a particular coefficient is zero in the
population. Here, k = 1, so that Equation 20.22b becomes

R2

GPOWER

Small

637

647

Effect Size

Medium

95
92

Large

45
43



For example, suppose we have a total of five predictors and we wish to test whether a
particular subset of three predictors collectively adds significantly to the prediction over
and above the contribution of the other two. If we expect that when the subset of three
predictors is added to the equation, R2 will increase from .44 to .50, then the f2 for the
additional three predictors is .06/.50 = .12. If we plan to conduct a study with N = 100,
the estimated noncentrality parameter will be A. = (98)(.12) = 11.76. The critical F for
a. = .05 and d f 1 = k = 3 and df2 = N - (p + 1) = 94 is 2.70. Using these values with a
noncentral F calculator gives an estimated power of .81.

What happens to power when we add more predictor variables to a regression equation?
The answer depends on the pattern of correlations among the predictors and the criterion
variable, but in general, because predictors tend to be correlated with one another, the
unique contribution of any given predictor variable tends to be less when more predictors
are added to the equation, even though R2 will increase. Therefore, although there may be
a greater probability that some test will become significant, the power for the test of any
given predictor will tend to decline. The consequences of this state of affairs are extremely
unfortunate.

Given just enough power to find that some predictors are significant, we would expect
to find disagreement about which predictors are significant. This point is illustrated by a
simulation study conducted by Maxwell (2000), who used multivariate normal data for a
criterion variable and five predictors. In the population, each predictor had a correlation of
.30 with the other predictors and with the criterion variable. When he repeatedly selected
samples of N = 100, Maxwell found that at least one predictor was significant at the
.05 level in .84 of the samples; in other words, power was .84 to reject at least one of the five
null hypotheses. However, the probability that any given predictor was significant, alone or
in combination with others, was only .26, and the probability that at least four of the five
predictors were significant was less than .01. Even though the sample size was sufficiently
large to provide a good chance of finding something that was significant, the power for the
tests of each of the regression coefficients was very low.
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Equation 20.24 for N, we obtain

Assuming we desire power equal to .80, we substitute X = 7.85 into Equation 20.23 and,
continuing with our example, the N required is N — (7.85/.0459) + 2 - 1 = 172, a value
consistent with our previous estimates. We can also use Equation 20.25 to estimate the sam-
ple sizes required to obtain a specific value of power for small, medium, and large effect sizes
(i.e., f2 values of .02, .15, and .35). For power = .80, the required N's are 392 + p. 52 + p,
and 22 + p, respectively. So, for example, if we expect to obtain a small effect for a specified
predictor, and if we have eight predictors in the equation, and wish to have a power of .80,
we will need approximately 400 cases.

Case 3—Power calculations for testing whether all members of a specified subset that
contains k of the p coefficients are equal to zero. Assuming that the predictors are random
variables, the noncentrality parameter may be estimated from Equation 20.22b:
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Because researchers, who are usually limited in the number of available subjects, often
include many variables to achieve some significant results, power for tests of individual co-
efficients will often be low. This is a prescription for developing literatures with inconsistent
findings. Further discussion of these issues may be found in Maxwell (2000).

20.6 SELECTING THE BEST REGRESSION EQUATION
FOR PREDICTION

Sometimes we want to predict some criterion of interest by developing a regression equa-
tion that contains a subset of the potentially useful predictor variables that are available. In
predicting, we are normally concerned both with the accuracy of the predictions and with
the costs involved in making them. If our only concern was accuracy, we would be inclined
to use as many valid predictors as possible in the regression equation; on the other hand,
concerns about costs would motivate us to use fewer predictors. Because in many types of
research most of the predictor variables are correlated with one another, including all of
them in a regression equation would not only be expensive and cumbersome, but would
also introduce a good deal of redundancy. A number of automated procedures that allow a
compromise between these concerns have been developed to produce the best possible pre-
dictions with regression equations that contain relatively few predictors. These procedures
include forward selection, backward elimination, and stepwise regression, and are available
in many statistical packages. Using these procedures, it is often possible to select a subset
of the potential predictors that accounts for nearly as large a proportion of the variability
in Y as does the entire pool of predictors. Before describing them, we should emphasize
that these automated procedures have been developed solely to produce the best prediction
equations according to certain criteria. These equations need not be best or even very good
in any explanatory or theoretical sense. Running an automated regression routine may be
useful for predicting, but is a very poor way to develop theory.

20.6.1 Forward Selection

In the forward selection procedure, the regression equation is built up one variable at a
time. On the first step, the predictor that has the highest correlation (positive or negative) is
selected. If it fails to meet the criterion for inclusion, the procedure ends with no predictors in
the equation and the final equation is Yi = Y. If the first predictor meets the criterion and is
added to the equation, on the next step a second predictor is selected and tested to determine
whether it should be entered into the equation. The predictor selected is the one that would
result in the greatest increment in R2 if added to the equation. If the second predictor does
not meet the criterion for inclusion, the procedure terminates with only a single predictor
in the equation. If it does meet the criterion, on the third step, a third predictor is selected
and tested, and so on. At each step, a partial F test (see Section 20.5) is performed on the
selected variable, and the criterion for inclusion is stated in terms of the critical value or the
significance level of the F.

It should be noted that, for procedures like forward selection, the usual significance
levels obtained from the F distribution are not appropriate. This is because at each step
a number of possible predictors are examined and only one—the one that produces the
greatest increment in R2 or, equivalently, the one that has the largest partial F—is tested.
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If only a single predictor is to be chosen from a pool of m possible predictors, the situation
is analogous to choosing the largest member of a family of m contrasts and testing it for
significance. As in the case of contrasts, if a single predictor is to be chosen, it is appropriate
to use the Bonferroni procedure to control Type 1 error; that is, to use a* = a/m as the
criterion for significance, where a is the probability of at least one Type 1 error (see Chapter 9
for a discussion of the issue of family wise error rates and procedures for controlling them).

If a subset of k predictors is to be chosen, where 1 < k < m, the distribution of R2 is
unknown. Wilkinson (1979) has discussed this problem and has provided tables of the upper
95th and 99th percentage points of the sample R2 distribution in forward selection based on
simulations (other tables and discussions of this problem can be found in Hocking, 1983;
Rencher & Pun, 1980; Wilkinson & Dallal, 1982). These tables are more conservative than
the usual F tables. For example, with N = 35, and a = .05, if all four members of a set of
predictor variables are to be included in the regression equation, it is appropriate to use the
standard F test to test R2 for significance. When this is done, it is found that the sample R2

has to exceed .26 to reject the hypothesis that the population multiple correlation coefficient
is zero. However, if the four predictors are to be selected from a larger set of 20 predictors
using a forward selection procedure, according to Wilkinson's tables, the sample R2 must
exceed .51 to reject the null hypothesis. Many researchers do not seem to be aware of this
problem; for a sample of 66 published papers that reported significant forward selection
analyses according to the usual F tests, Wilkinson found that 19 were not significant when
his tables were used.

20.6.2 Backward Elimination
Whereas forward selection begins with no predictors in the equation and adds them to the
equation one by one, backward elimination begins with all the predictors in the equation
and removes them one by one until the final equation is obtained. At each step, the predictor
in the equation that produces the smallest increment in R2 is tested to determine whether it
should be removed from the equation. Again, the criterion for removal is generally stated
in terms of the significance level of a partial F test. If the selected variable is removed,
another predictor is selected and tested on the next step. The procedure terminates when a
predictor that has been selected for testing is not removed from the equation; it and all the
other predictors remaining in the equation are included in the final regression equation.

20.6.3 Stepwise Regression
Stepwise regression, the most popular procedure used to obtain the best prediction equa-
tion, is a combination of the forward selection and backward elimination procedures. The
procedure is essentially the same as forward selection, with the exception that after each
new predictor has been added to the regression equation, all the predictors already in the
equation are reexamined to determine whether they should be removed. A partial F test
is performed on the predictor already in the equation that produces the smallest increment
in R2. If the predictor no longer satisfies the criteria for inclusion, it is removed from the
equation. Statistical packages allow the user to set the significance levels (or critical F
values) for entering or removing a variable.

It is not difficult to see why it is sometimes desirable to remove a predictor that had
been entered early in the analysis. For example, suppose that X7 is highly predictable from
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X4 and X9, but is more highly correlated with Y than either of them. Even though X7 may
enter the equation early because of its high correlation with Y, it will become superfluous
after X4 and X9 are entered. Even if X7 contributes significantly to the predictability of Y
by itself, it may not make a significant contribution over and above that provided by the
other two variables.

Again, it is important to emphasize that when predictor variables entered into the
equation are selected from a larger pool, the significance levels printed out by stepwise
programs are not "real" p values. Because many practitioners seem to be unaware of this
fact, stepwise regression outputs are frequently misinterpreted. As Wilkinson states in the
SYSTAT manual, stepwise regression programs are probably the most notorious source of
"pseudo p values" in the field of automated data analysis. As with forward selection, we
recommend that Wilkinson's (1979) tables be used to test R2 for significance.

Finally, we again emphasize that the sole motivation for the automated procedures
described in this section is to develop useful prediction equations that include subsets of
the available predictors. There is no reason to think that the equations they produce are
"best" or even reasonable in any theoretical sense. Variables that are useful predictors need
not be important components of a good theory or causal explanation of the situation. The
automated procedures may include theoretically uninteresting variables in the regression
equations they produce and they may not include the important variables. Consider, for
example, a stepwise regression with several predictors that are highly correlated both with
the criterion and with each other. The correlation between the criterion and the predictor
included on the first step may be only marginally greater than the correlation between the
criterion and the other predictors. Nonetheless, including the first predictor may prevent
any of the others from being entered into the equation on subsequent steps. Even though
the other predictors add significantly to the predictability of Y in the absence of the first
variable, they may not do so when the first variable is in the equation.

Because predictor variables are included in the regression equation if they are useful
in the sample, stepwise procedures are extremely susceptible to capitalization on chance,
especially when the sample is small. Recall that in the discussion of capitalization on
chance in Section 20.4, we presented an example in which stepwise regression produced an
equation that fit a sample fairly well. Nonetheless, we demonstrated that the equation was
of no use for predicting outside of that sample. If stepwise regression is ever to be used,
it is critically important to use cross-validation to evaluate the usefulness of the resulting
regression equation.

20.7 EXPLANATION VERSUS PREDICTION IN REGRESSION

The machinery of regression deals with prediction, not causation. Therefore, regression
equations that are useful for prediction may not be useful for explanation or for advancing
theory. Nor may regression coefficients be used as measures of causal importance except
in the context of a well developed theory. Procedures beyond the scope of this book, such
as path analysis and structural modeling (e.g., Bollen, 1989; Joreskog & Sorbom, 1986;
Pedhazur, 1997; also see an interesting collection of papers in the Summer 1987 edition
of the Journal of Educational Statistics), have been seen by some researchers as ways of
extracting causal information from correlational data. However, these procedures do not
generate causal models; rather, they estimate the strengths of effects within the context of a
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proposed causal model. The procedures may be able to reject a proposed model if the model
can be shown to be inconsistent with the data. However, just because a model is not rejected
does not mean that it is correct, or even useful. There may be other, quite different, models
that also would not be rejected. Useful causal models are developed by researchers, not by
computer programs. However, the programs can be useful in spelling out the consequences
of the models and in testing whether they are consistent with the data.

Our goal in Section 20.7 is to extend the discussion, begun in Section 20.3, of reasons
why the size of a regression coefficient may not be a good measure of its importance. We
have already discussed the fact that a variable that has no causal importance may be a useful
predictor if it is correlated with variables that are important. In the next few sections, we
discuss the consequences of misspecifying a model and point out that, even in a properly
specified causal model, the partial regression coefficient of a predictor variable may not be
a good measure of its importance, because the variable may have both direct and indirect
effects on the dependent variable, and the partial regression coefficient reflects only the
direct effect. Finally, we discuss the consequences of multicollinearity, how to recognize it,
and some possible remedies.

where we use the notation fiyi-2 to emphasize that the regression coefficient of X1 comes
from a model that includes both X1 and X2. If we attempt to estimate pn 2 and $Y2-i from

Omitting Relevant Variables. Suppose a variable in the population model is omit-
ted from a regression equation. If it is correlated with one or more of the variables that
are included in the equation, the partial regression coefficients may reflect not only the
effects of the corresponding predictors, but also the effects of relevant variables that were
not included in the regression equation.

Let's be more specific. Suppose that the true model in the population is

the bj's can be shown to be unbiased estimators of the fijs. However, as we pointed out in
Section 20.3, if the bj's are obtained from a regression equation that does not include the
same variables as the correct population model, they will generally be biased estimators
of the fy's in the population model. Let's consider the consequences of omitting relevant
variables from, and including irrelevant variables in our regression equations.

are estimated by the coefficients of the sample regression equation

If there are specification errors, that is, if a regression does not contain the same variables
as the true population model, the obtained regression coefficients may be poor estimates of
the corresponding population parameters. This is important, because our regression models
will rarely match the true population model, either because we do not know the true model,
or because we lack information about some of the variables in the true model.

If parameters of the population model

20.7.1 Specification Errors
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a sample using the regression equation

it can be shown that E(by1. 2) = Pyi 2 and E(bY2.1i) = 3y2-i» so that the sample regression
coefficients are unbiased estimators of the model parameters.

If, however, we regress Y only on X1 and thereby misspecify the model, we obtain the
sample regression equation

Now by1 will generally be a biased estimator of Pn 2- To show this, we first express by1 as

where SS\ = £ (X1 - X1)2 so that

If we assume X is fixed, we can rewrite the preceding equation as

Substituting the population model expressions for Y and Y and simplifying, we have

where r12 is the correlation between X1 and X2, SS1 and SS2 are the sums of squares of
X1 and X2, and b21 is the regression coefficient obtained by regressing X2 (the omitted
variable) on X1. Therefore, the expected value of by1 is not $y\-2\ rather, the expected value
also contains a term that depends on Px2.i, as well as on the regression of X2 on X1. Note
that this biasing term disappears if X1 and X2 are uncorrelated.

Although things get more complicated when there are more predictors, unless all the
variables that are in the population model are included in the regression equation, the
regression coefficients will be biased estimators of the population parameters—unless all
the omitted variables are uncorrelated with those that are included in the regression.

Including Irrelevant Variables. Because of the negative consequences of omitting
relevant variables, researchers are sometimes inclined to include additional variables in their
regression equations, just to make sure that nothing important has been left out. This may
result in the addition of irrelevant variables to the equation; that is, variables that are not
included in the population model. Adding irrelevant variables does not bias parameter
estimates, so the consequences of including irrelevant variables are not as serious as those
of omitting relevant ones. Nonetheless, including irrelevant variables will use up degrees
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Multicollinearity occurs when predictor variables included in a regression equation can
be predicted from the other variables in the equation. If at least one predictor variable
can be perfectly predicted from the others, there is perfect multicollinearity. Given perfect
multicollinearity, an infinite number of regression equations will fit the data equally well, and
the statistical packages will not conduct a regression analysis. Suppose that Y is regressed
on X1 and X2. Then, the points (Y, X1, X2) that satisfy the regression equation Y = /?o +
b\X\ + b2X2 will lie along the surface of a plane in the three-dimensional space defined
by axes Y, X1, and X2. If X1 and X2 are not highly correlated, as in Fig. 20.3, these
points constrain the values of bo, b1, and b2 that define the best-fitting regression plane. If
the orientation of the plane was changed, resulting in different values for b0, b1, and b2,
the predictions would be different. However, if X1 and X2 are perfectly correlated, as in
Fig. 20.5, the points (Y, X1, X2} will lie along a straight line in the three-dimensional space,
and any of the infinite number of planes that contain the line will fit the data equally well,
making it impossible to specify unique values for b0, b1, and b2. It is rare to find perfect
multicollinearity unless redundant variables, such as subscale scores and total score, or
age and year of birth, are included. However, it is not rare to find situations in which the
predictors are highly, but not perfectly, collinear. In such cases, the software packages will
perform the regression. However, the values of the regression coefficients, although not
totally unconstrained by the data, may be extremely unstable.

High correlations among predictors do not generally result in much difficulty if the only
goal is prediction. However, they can present difficulties both for estimating and interpreting
regression coefficients. If several highly correlated predictors are included in the regression
equation, their combined effect will be split up among them. The nature of the split will
depend on the details of the data, and may vary widely from sample to sample, leading to
dramatically increased standard errors for the regression coefficients (see Equation 20.5).

of freedom and will tend to inflate the standard errors of the relevant variables that are in
the equation, making parameter estimates less precise.

20.7.2 Interpretation of the Regression Coefficients as the
Direct Effects of the Xi

Even if we include the correct variables in the regression equation and there is a causal
relationship between Xj and the criterion, the regression coefficient bj does not represent
the total effect of Xj on Y. Rather, the regression coefficient reflects the direct effect of
Xj on Y, that is, the rate of change of Y with Xj, holding all of the other variables in
the equation constant. If we actually changed Xj, this would influence other variables in
the model, and the resultant changes in these variables will also influence the dependent
variable. These are the indirect effects of Xj. In assessing the causal importance of Xj. we
must be concerned with both the direct and indirect effects.

Given a valid causal model, path analysis or structural equation modeling can be used to
assess the total effect of changing a variable. However, we should note that these estimates
may be misleading if important variables are omitted from the model or if the model is
otherwise invalid.

20.7.3 Multicollinearity
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Fig. 20.5 Illustration of perfect multicollinearity :
The open circles represent data points (X1 , X2, Y).
The lower group of filled circles represents the (X1 ,
X2) coordinates of the data points. If X1 and X2 are
perfectly correlated, these filled circles will fall on a
straight line. The upper set of filled circles represents
the points (X1 , X2, Y), where the Ys are the best
least-squares predictions of Y corresponding to ( X 1 ,
X2). Note that these points fall on a straight line in
the three-dimensional space, and that an infinite
number of planes with different values of b0, b1, and
b2 will contain that straight line. Therefore, it is
impossible to specify a unique regression plane.

The major software packages all contain diagnostic information that can be used to de-
termine if there is a serious multicollinearity problem. In the SPSS output for the regression
of TC on age and BMI in Table 20.6, the Coefficients table displays information about the
Tolerance (1 — R2.) and VIF = 1/Tolerance, measures that we discussed in Section 20.3.
Because we asked for collinearity diagnostics, we also have a table containing eigenvalues,
condition indices, and variance proportions. Although a complete explanation of these terms
is beyond the scope of this book, a rough explanation is as follows: A principal components
analysis is first conducted to identify dependencies among the variables; think of this as
a data reduction technique in which the first principal component is obtained by finding
the linear combination of variables that accounts for the greatest amount of variability, the
second principal component is the linear combination that is both uncorrelated with the first
component and accounts for the greatest amount of the remaining variability, and so on.
The eigenvalues are the amounts of variability accounted for by each of the components. If
one or more of the eigenvalues are zero, this indicates that one or more of the variables is
completely redundant, so there is perfect multicollinearity. The condition index for each
component is the square root of the ratio of the largest eigenvalue to the eigenvalue for
that component. According to Belsley, Kuh, and Welsh (1980), a condition index greater
than 15 suggests a possible multicollinearity problem, and a condition index greater than
30 suggests that there may be a serious multicollinarity problem. The variance proportions
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are the proportions of variance of each regression coefficient estimate associated with each
component. There is a serious multicollinearity problem when a component has a large
condition index and high variance proportions (say, greater than .50) for two or more re-
gression coefficients. We see in Table 20.6 that none of the condition indices exceed 15 for
the regression of TC on age and BMI, so we do not have a multicollinearity problem for
this analysis.

A number of remedies have been suggested if we find that there is a multicollinearity
problem:

1. One recommendation is to delete some of the predictors that are responsible for
the problem. Unfortunately, this might result in specification errors that themselves
can have serious consequences, as we discussed in the previous section.

2. Another recommendation is to combine clusters of highly related predictor vari-
ables into new variables that represent common underlying factors. Deciding which
variables to combine is best done on the basis of theoretical considerations. Other
procedures, such as principal components analysis and factor analysis, can provide
suggestions about possible underlying processes.

3. Another approach is to use centering. This involves replacing each score by the
corresponding deviation score; that is, the score minus the mean of the variable.
For example, when we regressed TC on age and BMI using data from women
aged 20-65 with BMI scores not exceeding 40, the mean of the age scores was
46.928. We would center the age variable by replacing it with a new variable,
age — 46.928. Multicollinearity can result in computational errors in the algorithms
that are used in standard software packages. Centering can reduce the correlations
among predictors and can also reduce the sizes of the numbers used in calculations,
thereby reducing rounding error.

4. Finally, a procedure called ridge regression (see, e.g., Draper & Smith, 1998;
Rozeboom, 1979) is sometimes used to deal with multicollinearity. This proce-
dure takes advantage of the fact that, under certain conditions, it is possible to
obtain biased estimates with small standard errors that are more useful than unbi-
ased estimates with large standard errors.

20.8 TESTING FOR CURVILINEARITY IN REGRESSION

20.8.1 Testing for Curvilinearity Using
Continuous Variables

When we regressed TC on age and BMI, we implicitly assumed that if the variables were
related, they were related linearly. However, it is possible that the relation is not strictly linear
and that the prediction of TC scores would be better if we included curvilinear components
as well. In general, given a dependent variable Y and a predictor X\, we can test for a
quadratic component by regressing Y on X1 as well as X\, so that the regression equation
is of the form
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If we find that the quadratic component is significant, we can test for the presence of a cubic
component by now regressing Y on X1, as well as on X1 and X1, and so on. Note that we
cannot test for the presence of a quadratic component by regressing only on X1, because X1
usually will be correlated with X1, so that the regression of Y on X1 alone would reflect both
linear and quadratic effects. If we wish to test for the presence of a quadratic component,
we must include X\ in the equation as well as X1, to partial out the linear component. If
we regress TC on BMI and BMI2 for women aged 65 or younger who have BMI scores no
greater than 40, we find that the coefficient of the BMI2 term is not significant, although
it does not miss significance by much; t(178) = —1.885, p = .061. Because we cannot
conclude that the quadratic component differs from zero, we cannot reject the hypothesis
that a straight line adequately describes the population.

20.8.2 Testing for Curvilinearity Using Quantitative
Categorical Variables: Trend Analysis

Multiple regression can readily be used to perform the trend analyses that we discussed
in Chapter 10. In fact, using multiple regression to perform trend analysis offers important
advantages. When we used orthogonal polynomial contrasts in Chapter 10, the orthogonal

TABLE 20.9 AN EXAMPLE OF TREND ANALYSIS

(a) Percent Addition Accuracy as a Function of Grade for Royer Data

n
Y
s

1

19
71.82
30.23

2

28
84.66
15.26

Grade (X)

3

32
91.97

8.24

4

30
92.34

7.30

5

26
91.98
9.20

(b) Trend Analysis for the Data in Panel (a)

SSlinear = R\ -X SSY = 4690. 170

SSquadratic = (Ry.x X2 ~ R2
Y-x)SSY = 6553.310 - 4690.170 = 1863.140

^•uhic = (R2
Y.X ^3 - R2

r.x ,xi)SSY = 6617.701 - 6553.310 = 64.391

SSquanic = (R2
Y.X.X2.X3.X4 ~ R2

Y.XX2Xj}SSy = 6626.772 - 6617.701 = 9.071

SV

Grade
Linear
Quadratic
Cubic
Quartic

Error

df

4
1
1
1
1

130

55

6626.772
4690.170
1863.140

64.391
9.071

28511.337

MS

1656.693
4690.170
1863.140

64.391
9.071

219.318

F

7.554
21.385

8.495
0.294
0.041

P

.000

.000

.004

.589

.840
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polynomial weights in Appendix Table C.6 assumed equal numbers of subjects at each
level of the independent variable and equal spacing between levels of the variable. If either
of these equalities are violated, new orthogonal polynomial weights must be calculated.
Unequal n and unequal spacing present no difficulties if we perform trend analysis by using
hierarchical multiple regression; that is, if we regress Y first on X, then on X and X2, then
on X, X2, and X3, and so on, and test the increments in variability accounted for when
higher order components are added to regression equations that already contain the lower
order components.

For example, consider the addition accuracy scores for grades 1-5 in the Royer data set
that are presented in Table 20.9 and plotted in Fig. 20.6. Accuracy first increases with
grade, then levels off. We would expect to find both a linear trend, because the best-
fitting straight line would have a positive slope, and a quadratic trend because we have
a negatively accelerated curve. If we regress Accuracy (7) on Grade (X), SSlinear, the vari-
ability accounted for by the regression, is Ry.xSSy = 4690.170. If we now regress Y on
X and X2, SSquadratic is the increment in SSregression that results when X2 is added to a re-
gression equation that already contains X. In our example, SSquadratic, SScubic, and SSquartic,

can all be calculated as increments in the regression sum of squares. The contributions
are removed in order, linear first, then quadratic, and so on, as illustrated in Table 20.9.
As is also indicated in the table, all of these trend components can be tested against the
within-groups error term, MSerror = 219.318. The ANOVA table in panel (b) of Table 20.9
presents the results of the tests. As expected, we find significant linear and quadratic trends:
F(l, 135) = 21.385, p = .000, and F(l, 135) = 8.495, p = .004, respectively. We should
note that because there are five levels of grade, and therefore 4 df, the regression of Y
on X, X2, X3, and X4 must account for all of the variability in the group means; that is.

Fig. 20.6 Plot of percent addition accuracy versus grade using standard errors as error bars.
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RyX X2 x3 x 4 SSy = 6626.772 = SSBetween. Just as any two points can be fit perfectly by
a straight line, the points for the five group means can be fit perfectly by a fourth-degree
polynomial.

20.9 INCLUDING INTERACTION TERMS IN
MULTIPLE REGRESSION

20.9.1 Introduction

Let's reconsider the population model discussed in Section 20.3,

If we ignore the random error component, $1 is the rate of change of Y with X1, given
that X2 is held constant, and £2 is the rate of change of Y with X2 , given that X\ is held
constant. This is an additive model because the effect on Y of changing the values of either
of the predictors does not depend on the value of the other predictor. This kind of model
will be unrealistic whenever the relation between Y and a predictor, X1, is moderated by
(i.e., it depends on the value taken on by) another variable X2. In this case, we would say
we had an interaction between X1 and X2.

We dealt with interactions in detail when we discussed ANOVA. In the context of
ANOVAs, we would say we had an interaction when the effect of a factor is different
for different levels of a second factor. We can translate this thinking directly to multiple
regression analyses; however, when we work with multiple regression we can extend the
concept, because we can deal not only with categorical factors, but also with a mix of
categorical and quantitative continuous variables. Also, it is possible to construct models
in which the effect of one factor is a specified function of the levels of a second factor.

20.9.2 Testing the Interaction Between
Two Quantitative Predictors

In Section 20.2, we regressed TC on age and BMI for women aged 20-65 years and obtained
the equation

According to this equation, if BMI is held constant, a 1-year increase in age corresponds to
a 1.737 unit increase in predicted TC, no matter what value BMI takes on. Also, if age is
held constant, a one-unit increase in BMI corresponds to a 1.474 unit increase in predicted
TC for subjects at all ages. However, it is possible that Equation 20.26 is unrealistic.
Age and BMI may interact; the rate of change of predicted TC with age may differ for
different values of BMI, or equivalently, the rate of change of predicted TC with BMI may
differ for different ages. We can investigate this possibility by first creating a new variable,
Age x BMI, that is the product of age and BMI, and then regressing TC on age, on BMI, and
on Age x BMI. As can be seen in the SPSS output in Table 20.10, the resulting regression
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TABLE 20.10 OUTPUT FOR REGRESSION OF TC ON AGE, BMI, AND AGE x BMI USING DATA
FOR WOMEN AGED 65 YEARS OR YOUNGER WITH BMI < 40

Model Summary

Model

1

R

.546a

R Square

.298

aPredictors: (Constant), AGEXBMI, BMI, AGE.

Adjusted
R Square

.286

Std. Error of
the Estimate

33.0969

Model

1 Regression
Residual
Total

ANOVAb

Sum of Squares

82322.209
193887.004
276209.213

aPredictors: (Constant), AGEXBMI, BMI, AGE.
bDependent Variable: TC.

df

3
177
180

Mean Square

27440.736
1095.407

F

25.051

Sig.

.000a

Model

1 (Constant)
AGE
BMI
AGEXBMI

Coefficientsa

Unstandardized
Coefficients

B

-70.241
5.209
7.844
-.135

aDependent Variable: TC.
Note. Output is from SPSS.

Std. Error

65.952
1.383
2.558

.053

Standardized
Coefficients

Beta

1.413
.935

-1.287

t

-1.065
3.765
3.067

-2.546

sig.

.288

.000

.003

.012

The coefficient of the product term is significant, at t(186) = —2.546, p = .012. It may
help us to understand the interpretation of this coefficient, —0.135, by regrouping terms and
rewriting Equation 20.27 as

equation is

or
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Fig. 20.7 Plot of the surface generated by the equation TC =
-70.241 + 5.209 • Age + 7.844 • BMI - 0.135 • Age x BMI.

We can see from these equations that the rate of change of predicted TC with BMI when age
is held constant now depends on the value at which age is held constant. The rate of change
of predicted TC with BMI is now a linear function of age, 7.844 — 0.135 age, and the rate of
change of predicted TC with age is a linear function of BMI, 5.209 — 0.135 BMI. Because
of the product term, when we plot Equation 20.27 (see Fig. 20.7), we no longer have a
plane, but rather a curved surface on which the partial slopes with one predictor decrease
as the value of the other predictor increases.3 The slope of predicted TC with age decreases
by 0.135 for each one-unit increase in BMI, and the slope of TC with BMI decreases by
0.135 for each one-unit increase in age. According to Equation 20.27, the partial slope of
predicted TC with age for BMI = 20 is 5.209 - (0.135)(20) ~ 2.51, and for BMI = 30 it
is approximately 1.16. The partial slope of predicted TC with BMI at age = 30 is 7.844 —
(.135)(30) ~ 3.79, and for age = 55 it is only approximately 0.42. Therefore, BMI is a
less useful predictor of TC for older subjects, and age is a less useful predictor of TC for
subjects with large BMIs.

How do we interpret the other regression coefficients in Equation 20.27 and their tests
of significance in Table 20.10? The coefficient of age, 5.209, is the partial slope of predicted
TC with age for BMI = 0. Similarly, the coefficient of BMI, 7.844, is the partial slope of
predicted TC with BMI for age = 0.

We are not likely to be interested in predictions for age = 0 and BMI = 0, but we may
well be interested in testing whether a partial slope coefficient is significant at a specified
value of the other predictor. Suppose we want to test whether the partial slope of TC with
BMI is significant at age = 50. There are several ways to conduct the test. The easiest way
is to transform the variables and redo the regression.

To test the partial slope of TC with BMI at age = 50, we can create the variable
Agem50 = age — 50, then regress TC on Agem50, BMI, and their product, Agem50 x BMI.



As can be seen in the SPSS output in Table 20.12, the coefficient of the product
term, 1.813, is significant; t(363) = 4.909, p = .000. To understand this coefficient, we
can regroup the terms in Equation 20.28 and rewrite the equation as either

These equations are plotted in Figure 20.8; it is apparent that predicted TC changes very little
with age for males, but strongly increases for females. We can test this apparent interaction
of age and sex by regressing TC on age, sex, and an additional variable, Age x Sex, that is
formed by multiplying age and sex. This results in the equation

and

A better understanding of the relation of TC to age and sex may be obtained by regressing
TC on age separately for males and females; the resulting equations are

In the preceding example, we considered the interaction of two quantitative variables. The
approach we took—creating a variable to represent the interaction—can be applied to the
common situation in which we have a quantitative variable and a categorical dichotomous
(i.e., having only two possible values) variable. For example, consider the regression of TC
on age and sex for subjects in the Seasons data set who are of age 65 or younger and have
BMI scores no higher than 40. Coding males as 0 and females as 1, we arrive at the output
in Table 20.11, which provides the coefficients for the equation

20.9.3 Testing the Interaction Between a Quantitative and
a Dichotomous Predictor

In the equation, the coefficient of BMI, 1.071, is the partial slope coefficient of predicted
TC with BMI at Agem50 = 0; that is, at age = 50. The coefficient is not significant,
t(177) = 1.93, p = 0.055. We could do similar analyses to test the coefficients of age at
different levels of BMI by transforming BMI and redoing the regression.

Finally, we should note that, unless we specify the correct model, we might wind up
concluding that we have an interaction when what we actually have is curvilinearity. We do
not have space to address this issue here, but we have included a section "Do we actually
have an interaction or do we have curvilinearity or do we have both?" in the Supplementary
Materials folder of the CD.

This results in the regression equation
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TABLE 20.11 OUTPUT FOR REGRESSION OF TC ON AGE AND SEX USING DATA
FOR SUBJECTS AGED 65 YEARS OR YOUNGER WITH BMI < 40

Model Summary

Model

1

R

.268a

R Square

.072

aPredictors: (Constant), SEX, AGE

Adjusted
R Square

.067

Std. Error of
the Estimate

38.5497

Model

1 Regression
Residual
Total

ANOVAb

Sum of
Squares

41436.191
536474.480
577910.671

aPredictors: (Constant), SEX, AGE
bDependent Variable: TC

df

2
361
363

Mean Square

20718.096
1486.079

F

13.941

Sig.

.000a

Model

1 (Constant)
AGE
SEX

Coefficientsa

Unstandardized
Coefficients

&

178.009
.900

-8.645

aDependent Variable: TC
Note. Output is from SPSS.

Std. Error

9.562
.190

4.046

Standardized
Coefficients

Beta

.240
-.108

t

18.616
4.723

-2.137

sig.

.000

.000

.033

or as

From these equations, we can see that the rate of change of predicted TC with age is a
function of sex, namely, -0.0005 + 1.813 sex, and the change in predicted TC with sex
(i.e., the difference in predicted TC for males and females), is a function of age, -94.612 +
1.813 age. For example, at age 60 we would predict the difference in predicted TC for
mates and females to be -94.612 + (1.813)(60) = 14.168, whereas at age 30 we would
predict the difference to be -94.612 + (1.813)(30) = -40.222. Predicted TC for females
is about 40 units lower than for males at age 30, but about14 units higher than for males at
age 60.



TABLE 20.12 OUTPUT FOR REGRESSION OF TC ON AGE, SEX AND AGE x SEX
USING DATA FOR WOMEN AGED 65 YEARS OR YOUNGER WITH
BMI < 40

Model Summary

Model

1

R

.360a

R Square

.130

aPredictors: (Constant), AGEXSEX

Adjusted
R Square

.123

Std. Error of
the Estimate

37.3727

Model

1 Regression
Residual
Total

ANOVAb

Sum of
Squares

75090.960
502819.711
577910.671

aPredictors: (Constant), AGEXSEX
bDependent Variable: TC

df

3
360
363

Mean Square

25030.320
1396.721

F

17.921

Sig.

.000a

Model

1 (Constant)
AGE
SEX
AGEXSEX

Unstandardized
Coefficients

B

221.143
4.57E-04
-94.612

1.813

"Dependent Variable: TC.

Std. Error

12.773
.260

17.947
.369

Coefficientsa

Standardized
Coefficients

Beta

.000
-1.187

1.120

t

17.313
-.002
-5.272

4.909

sig.

.000

.999

.000

.000

Collinearity Statistics

Tolerance

.502

.048

.046

VIF

1.990
20.984
21.554

Fig. 20.8 Scatterplot of TC versus age for men and women with linear smoothers using data
from participants aged 65 years or younger with BMI < 40.
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20.10 MULTIPLE REGRESSION IN
REPEATED-MEASURES DESIGNS

When we analyze repeated-measures designs using multiple regression, hypothesis tests
can be performed and confidence intervals can be found in the same ways that we indicated
in Section 19.8 for bivariate regression. Table 20.13 contains the data for a hypothetical
reading experiment described by Lorch and Myers (1990). Each of 10 participants reads a
paragraph consisting of seven sentences, and reading times are recorded (in milliseconds)
for each sentence. There are three predictor variables for each sentence: the serial position
of the sentence in the text (SP), the number of words in the sentence (WORDS), and the
number of new arguments in the sentence (NEW). We are interested in whether each of
the predictors makes a significant contribution to the prediction of reading time over and
above that provided by the other two predictors (i.e., if the rate of change of reading time
with the value of the predictor is significant holding the values of the other two predictors
constant).

There are several ways of testing hypotheses and forming confidence intervals for the
regression coefficients of the predictors. One of them is to regress reading time on the
three predictors separately for each participant and then to perform subsequent analyses
on the regression coefficients. Table 20.14 contains the regression coefficients for each of
the 10 participants along with the mean, standard error, and t (i.e., the ratio of the mean
to the standard error) for each coefficient. Because there are 10 participants, there are
9 df associated with each t. Because tCRIT.05,9 = ± 2.262, we can reject the hypotheses that
BSP = 0 and BWORDS = 0 at A = .05. We cannot reject the hypothesis that BNEW = 0.

As we pointed out in Chapter 19, regression analyses of data from repeated-measures
designs have frequently been conducted inappropriately. Many researchers would incor-
rectly analyze the data presented in Table 20.13 by first averaging over participants, and
then regressing the mean reading times for each sentence on the predictor variables. If
this is done, the resulting significance tests will be positively biased. Even if the ex-
pected value of a regression coefficient is zero, the F may be large if the effect of the
predictor varies across participants. For a more detailed discussion, see Lorch and Myers
(1990).

TABLE 20.13 VALUES OF THE PREDICTOR VARIABLES FOR THE SEVEN SENTENCES AND THE READING
TIMES IN MILLISECONDS FOR EACH OF THE 10 PARTICIPANTS

SNT

1

2

3

4

5

6

7

SP

1

2

3

4

5

6

7

WORDS

13

16

9

9

10

18

6

NEW

1

3

2

2

3

4

1

3429

6482

1714

3679

4000

6973

2634

P2

2795

5411

2339

3714

2902

8018

1750

P3

4161

4491

3018

2666

2991

6625

2268

P4

3071

5063

2464

2732

2670

7571

2884

P5

3625

9295

6045

4205

3884

8795

3491

P6

3161

5643

2455

6241

3223

13188

3688

P7

3232

8357

4920

3723

3143

11170

2054

P8

7161

4313

3366

6330

6143

6071

1696

P9

1536

2946

1375

1152

2759

7964

1455

P10

4063

6652

2179

3661

3330

7866

3705
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TABLE 20.14 REGRESSION COEFFICIENTS FOR THE REGRESSION OF
READING TIME ON SP, WORDS, AND NEW FOR EACH OF THE
10 PARTICIPANTS

Participant

1

2

3
4

5

6

7

8

9

10

Mean

SE
t

SP

.23124

.30533

.20637

.48300
-.06210
1.10982
.25448

-.33147
.66786
.46921

.33337

.12417
2.6849

WORDS

.39103

.43415

.40360

.50203

.28778

.80850

.57498

.11341

.50078

.56964

.45859

.05855
7.8329

NEW

.22161

.34637
-.25294
-.27683

.92680
-.23336

.79643

.33124

.16320
-.50621

.15163

.14982
1.0121

We also pointed out in Chapter 19 that the approach to repeated-measures regression
that we describe above gives equal weight to the regression coefficients for each participant.
If the predictors take on different values for different participants or if there are missing
data, the multilevel modeling procedures cited in Chapter 19 should be considered.

In Chapter 20, we extended many of the ideas that we first developed with bivariate regres-
sion to the case of two or more predictors. This has allowed us to address important issues
within the regression framework, including the ability to detect and describe curvilinearity
and interactions. It has also forced us to be more precise about what we can conclude from
measures such as the regression coefficients and the coefficient of multiple determination.
We have tried to spell out the virtues and limitations of these measures.

In the next and final chapter of this book, we will further extend the regression frame-
work to deal with qualitative categorical variables. To this point, the only qualitative pre-
dictors we have used in regression have been those that can take on only two values, such
as sex. However, when a qualitative variable has more than two levels, it cannot simply be
represented in a regression analysis by a single predictor variable that takes on more than
two values. Adequate coding of a k-level categorical variable requires k — 1 predictors.

When confronted with a mix of continuous and categorical predictors, some re-
searchers have adopted the strategy of transforming the continuous variables into cate-
gorical variables—presumably so that they can deal with them by conducting ANOVAs.
We strongly argue against arbitrarily categorizing continuous variables, because we believe
that this approach is wasteful of data and can be misleading. Once we develop the appro-
priate coding, we will be able to deal with both quantitative and qualitative variables within
the multiple regression framework.

20.11 CONCLUDING REMARKS
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KEY CONCEPTS

multiple regression
standardized regression coefficient

(beta coefficient)
multiple correlation coefficient, R
adjusted or shrunken R2

standard error of estimate
SSresidual

tolerance
capitalization on chance
partial F test
power calculations
backward elimination
specification errors
trend analysis
interaction
influential data point
Cook's distance

unstandardized partial slope coefficient
unstandardized regression coefficient

R2, the coefficient of multiple determination
R as a positively biased statistic
SS regression

multicollinearity
variance inflation factor (VIF)
cross validation
conditional mean of Y at X
forward selection
stepwise regression
centering
additive model
outlier
leverage

EXERCISES

20.1 In a visual "search" experiment, a subject is presented with a display containing
an array of letters and makes a response when he or she detects the presence of a
specific "target letter" that was specified beforehand. Arrays can differ in the number
of letters they contain and (because of differences in brightness and contrast or the
presence of visual "noise") how difficult it is to identify the letters. We simulated the
results of such an experiment in which number of letters and identification difficulty
were varied orthogonally, using the model

Time = 400 + 30 x Number + 2 x Diff + e

where Number is the number of letters in the array (2, 4, 6, or 8), Diff stands for
identification difficulty (10 or 20 units), and e is a number selected randomly from
a normal population with mean = 0 and standard deviation — 40 to generate the
24 cases in the following table:

Time
Number
Diff

Time
Number
Diff

493
2
10

559
6
10

504
2
10

576
6
10

483
2
10

618
6
10

508
2
20

598
6
20

573
2
20

686
6
20

515
2
20

656
6
20

533
4
10

705
8
10

490
4
10

602
8
10

614
4
10

570
8
10

623
4
20

672
8
20

585
4
20

629
8
20

542
4
20

709
8
20
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(a) Find the summary statistics and correlation matrix for these data.
(b) Regress Time on Number and Diff. Are the effects of Number and Diff sig-

nificant at a = .05? Are these significance tests equivalent to the tests of the
Number and Diff main effects in a standard ANOVA? Perform an ANOVA on
Time using the factors Number and Diff and compare the results with those that
follow from the regression.

(c) What are the estimates of the parameters of the model that are obtained from
the regression? How do these compare with the actual parameter values (P0 =
400, 31 = 30, and $2 = 2) that were used to generate the data? What are the
95% and 99% confidence intervals for $0, P1 , and £2? We should emphasize
that, in the real world, we do not know what the parameters of the model are or
even the form of the model. We use the sample data to infer something about
the underlying model.

20.2 Given the following data set:

Y Xi X2

4 2 - 2
1 -1 -1
5 - 2 0
7 -1 1

12 2 2

(a) Verify that X1 and X2 are uncorrelated.
(b) Verify that, in this case (X1 and X2 uncorrelated), Ry 12 = r\l + rp-,.
(c) For this data set, what is the relation between (i) the regression coefficient for X1

when Y is regressed on X\ alone and (ii) the regression coefficient for X1 when
Y is regressed on both X\ and X2? Is this true in general? What is the relation
between the standard errors of b1 in (i) and (ii)?

20.3 For the following 17 cases:

X, X2 Y

2 5 42,65
2 6 55
3 5 68,55,65
3 6 79, 59, 74, 67
3 7 97, 75, 80, 78
4 6 83,72
4 7 92

(a) Fit the model Y = p0 + Pi*i + p2*2 + e.
(b) Test for lack of fit. That is, test for nonlinearity using "pure error" as the error

term.
(c) From the data, does it seem that both X\ and X2 should be included in the

regression model?

-22

0
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20.4 Calculate the adjusted R2 given the following information:
(a) R2

Y.1234 = .50, N =10

(b) R2
Y.1234 = .50, N = 40

(c) R2
Y.1234 = .50, N = 200

(d) R2
 Y.12 = .30, N = 40

20.5 In an experiment designed to determine the effects of drug dosage on performance,
the following data are obtained:

10

6.8
2.8
5.2
4.8

Dosage in

20

10.4
6.4

13.1
8.7

12.4
7.2

milligrams

30

10.7
14.4
15.9
10.6

40

8.9
12.5
12.7
7.4
8.5

(a) Do an ANOVA to test the effect of dosage on performance.
(b) Using multiple regression, perform a trend analysis on the same data.
(c) Find the best-fitting polynomial equations of degrees 2 and 3; that is, of the form

that expresses performance as a function of dosage.
20.6 Consider 15 cases selected randomly from the same population:

Y
x1
x2
x3

.15

.07

.27

.66

.09 -3.36 -1.34
1.08 -.40 -1.25
.51 -.78 -2.92

1.61 1.38 -2.38

-.69
-1.31

-.69
.20

-1.15
2.16
-.31
-.60

-.51
2.26
-.83
-.16

-1.47
3.69

-.82
-.02

-.38
-1.44

.34
2.60

.78 -3.60 -2.40
-1.80 -.76 -2.69

.23 -.60 2.33
2.56 2.29 4.14

1.46
-1.33

.51

.20

-.71
-.45

.10
-.76

1.42
.09
.72
.07

(a) Using only the first four cases, regress Y on X1, X2, and X3. What is the value
of RY.123? Comment on why RY.123 must take on the value that it does here.

(b) Use the regression equation obtained in (a) to predict the values of Y for each
of the 15 cases.

(c) Find the correlations between the scores predicted in (b) and the actual Y values
(i) for the first four cases and (ii) for the remaining 11 cases. Comment on the
difference between these correlations.

20.7 In the following data set, Y is a measure of verbal achievement for students in
elementary school, X1 and X2 are measures of school and teacher quality, and X3

and X4 are measures of student and parent background:
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Y

7.4
5.3
7.3
8.1
7.4
6.7
8.3
6.7
8.2
7.4

X1

7.6
5.8
5.9
5.8
6.1
4.1
5.0
4.9
6.2
4.8

X2

5.32
4.88
5.14
5.15
5.08
4.32
4.98
5.00
5.32
5.60

X3

17.2
-1.7
22.3
24.2
16.3
16.2
22.7

9.8
19.9
10.0

X4

2.9
2.0
6.9
6.5
3.0
4.5
7.7
2.5
6.5
1.0

Y

4.6
7.0
6.9
6.6
4.5
7.9
6.4
6.3
8.6
8.2

X1

4.2
5.0
4.4
5.3
5.4
6.3
7.1
5.0
5.4
4.7

X2

4.70
4.72
4.90
5.16
5.04
5.01
5.00
4.96
5.11
5.10

X3

-2.9
10.9
14.8
9.0

-6.1
20.6
12.7

-1.1
25.1
22.8

X4

1.2
2.2
1.4
3.2
1.2
6.8
4.2
1.7
8.6
7.7

(a) Do the school and teacher measures contribute to the predictability of Y? Do the
student and parent measures? Consider regression equations containing different
combinations of predictors in arriving at your answer.

(b) Perform a step wise regression using one of the standard packages. Do you think
that the regression equation identified by the stepwise regression is a reasonable
explanatory model of the situation?

(c) Is there a joint effect of the school and teacher measures?
20.8 In a multiple regression analysis, we wish to reject the hypothesis that all population

regression coefficients are equal to zero, using a = .05. How many cases do we
need to have a power of .80 if we have six predictor variables and expect an R2 of
.20?

20.9 We conduct a multiple regression analysis on data from an observational study with
four predictor variables and N = 40. We find that adding variable X4 to the other
three predictors increases R2 from .21 to .27. Can we reject the null hypothesis that
the coefficient of variable X4 has the value 0 in the population? How many cases do
we need to have a power of .80 for rejecting the null hypothesis if we use a = .05?

20.10 (a) A researcher is interested in relating measures of mother-child attachment
to measures of externalization and criticism obtained from a series of inter-
views. A regression of the attachment measure on both externalization and
criticism yields significant t tests for both the predictor variables. What can be
concluded?

(b) The researcher then decides to determine whether the joint effect of external-
ization and criticism is an important predictor of attachment. She creates a
new variable by multiplying the externalization and criticism measures for each
case. She then regresses attachment on the externalization and criticism mea-
sures as well as on the new variable. The regression now shows that none of the
t tests for the three predictors are significant. Is this an appropriate way to assess
whether the joint effect of externalization and criticism is an important predictor
of attachment? Why or why not? What is the most likely reason that the t tests for
the coefficients of externalization and criticism are not significant in the second
regression even though they were significant in the first regression, described
in part (a)? Considering the results of the two regressions together, what can be
concluded?
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20.11 Given the Royer data set, use both ANOVA and multiple regression to perform a
trend analysis that will help you understand the functional relation between subtrac-
tion accuracy and grade. Determine whether there are significant linear, quadratic,
and cubic components and indicate what these suggest. Does there seem to be any
additional nonlinearity in the relation?

20.12 Using the Seasons data for men aged 20-65 years who have BMI scores less than
or equal to 40:
(a) Determine whether there is a relation between BMI and total cholesterol (TC).
(b) Is there evidence of an interaction between age and BMI in a multiple regression

with TC as the dependent variable?

613



Chapter 21
Regression With Categorical
and Quantitative Variables:
The General Linear Model

21.1 INTRODUCTION

In this final chapter, we consider regression with categorical variables that have levels that
differ qualitatively from one another. Examples of such variables are sex, with levels female
and male; diagnosed mental illness, with levels of schizophrenia, depression, and anxiety
disorder; and treatment condition, with levels defined by the different therapies. Our de-
velopment of regression to this point has focused on quantitative predictor and criterion
variables. However, qualitative categorical variables can also be incorporated into regres-
sion analyses, providing us with a general and powerful framework within which many of
the analyses that we have previously considered, including the analysis of variance
(ANOVA) and analysis of covariance (ANCOVA), can be considered as special cases.
Learning about this framework can both increase our understanding of how different kinds
of analyses are related to one another and allow us to deal with data from designs that cannot
be handled easily by the standard ANOVA approach.

In an ANOVA, all factors are treated as though they are qualitative categorical variables
that are independent of one another. It is this independence or orthogonality that makes it pos-
sible for the ANOVA to partition the variability in factorial designs into distinct, nonoverlap-
ping components associated with main effects and interactions. However, the system breaks
down if there is nonorthogonality; when the cell frequencies are unequal, the inequality intro-
duces correlations among the factors, and these correlations cause the variance components
associated with the different effects to overlap (see Section 12.4). It is more natural to con-
sider nonorthogonal factorial designs within the multiple regression framework, in which
variables are generally correlated with one another. We deal with nonorthogonal ANOVA
designs in Section 21.3 and then reconsider within the multiple regression framework several
other types of analyses that we discussed previously. However, we first consider how quali-
tative categorical variables may be coded so that they can be included in regression analyses.

It is important to distinguish between quantitative and qualitative categorical variables
in regression. Suppose we have a categorical variable with six levels that refer to qualitatively
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different treatment conditions, and use the numbers 1-6 to label these treatments. If we
performed a regression analysis that used this variable as a predictor, we would be treating
it as a quantitative variable. Such coding implies that the treatment at level 3 is three times
"as large" as the treatment at level 1, and the treatment at level 4 is twice "as large" as the
one at level 2. However, if the treatments are qualitatively different from one another, we
do not want a coding system that imposes relative sizes on the treatments; rather, we want a
system that simply specifies that the treatments are different from one another. As we shall
see, for a factor with six levels, 5 dF are needed to specify these qualitative differences, and
consequently five coding variables will be required to do the job.

In practice, we almost never have to generate these coding variables ourselves. Rather,
we let the software packages do it for us in their ANOVA or GLM (general linear model)
modules. Our goal here is simply to describe how the coding of categorical variables may
be done because this allows greater insight into the analyses.

21.2.1 Coding Categorical Variables

Any qualitative categorical variable can be coded by defining one or more dummy or in-
dicator variables that take on numerical values. These numbers are not measures of the
categories; rather, they are best thought of as labels that together specify category member-
ship. As we discussed in Chapter 19, the coding is particularly simple when a categorical
variable has only two levels—as is the case, for example, for the variable sex. If A has only
two levels, X could take on any value at one level and any different value at the other level.
The overall test of the regression of the dependent variable Y on the dummy variable X is
exactly equivalent to the ANOVA F test for the categorical variable.

To be more specific, if we regress Y on X, the regression line must pass through the
points (1, Y . 1 ) and (2, Y.2) as can be seen in Fig. 21.1. This is because the line is defined
as the line that minimizes the mean-squared deviations of the YS, and the group means
minimize the mean-squared deviations in each of the groups. Because the regression line
passes though the two group means, it accounts for all the variability in the group means,
so SSregression must equal the between-group variability, SSA. Also, SSresidual, the variability
unaccounted for by the regression, must equal SSs/A .

However, if the factor A has more than two levels, regression on a single dummy
variable will not, in general, account for all of SSA . Consider what happens with three
levels: Panel (a) of Table 21.1 presents scores at levels A1, A2, and A3 of the factor A. If we
code A with a single dummy variable, X1, that takes on the values 1,2, and 3, as in panel (b)
of the table, the points that represent the group means in the space defined by X1 and Y will
be (1, Y . 1 ) , (2, Y.2), and (3, Y.3)—see panel (a) of Fig. 21.2. In general, these three points
will not be perfectly fit by a straight line. Therefore, if Y is regressed on X1, the regression
will not, in general, account for all the variability in the group means, and SSregression will
be less than SSA . However, we can account for all of SSA if we define an additional dummy
variable, X2, that is not perfectly correlated with X1—for example, the variable that takes
on the values given in panel (b) of Table 21.1. Now, if we represent the three group means
in the three-dimensional space defined by Y, X1, and X2, as in panel (b) of Fig. 21.2, it is
apparent that they can be perfectly fit by a regression plane. Therefore, when Y is regressed

21.2 ONE-FACTOR DESIGNS
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Fig. 21.1 (a) Plot of the means of A against X for the data in panel
(b). Note that the two points representing group means can be fit
perfectly by a straight line. (b) Data and results of ANOVA and
multiple regression.

on both dummy variables, all the between-group variability will be accounted for by the
regression, so that SSregression = SSA, and the F test for the overall regression of Y on X1

and X2 is exactly equivalent to the ANOVA F test for the effect of the categorical factor, A.
In general, it will take as many independent dummy variables to code a factor as the

number of degrees of freedom associated with it, so that a categorical variable with six
levels will require five dummy variables. The only requirement on these dummy variables
is that they be linearly independent—that is, none of them may be obtained as a linear
combination of the others. If any dummy variable can be expressed as a linear combination of
the other dummy variables, it is redundant and cannot contribute anything to the specification
of the categories.

21.2.2 Effect and Dummy1 Coding

In this section, we discuss effect and dummy coding, two of the many possible ways to
code categorical variables. Both coding methods allow us to specify group membership
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TABLE 21.1 REGRESSION ON DUMMY VARIABLES FOR A ONE-FACTOR DESIGN

(a) Data and Results of Standard ANOVA for a One-Factor Design

SV

A
S/A

A1

4
8
7
9
7

A2

2
5
3

A3

4
5
3
6

Y.j = 7.00 3.33 4.50

Yu = (7 + 3.33 + 4.50)/3 = 4.94

df

2
9

SS

28.583
23.667

MS

14.292
2.630

F

5.435

(b) Dummy Variable Coding and Some Statistics Obtained From the Regressions

of Y on X1 and X2, on XE1 and XE2 , and on XD1 and XD2

A,

A2

Y

4
8
7
9
7

2
5
3

4
5
3
6

X1

1
1
1
1
1

2
2
2

3
3
3
3

X2

0
0
0
0
0

3
3
3

1
1
1
1

XE1

1
1
1
1
1

0
0
0

-1
-1
-1
-1

XE 2

0
0
0
0
0

1
1
1

-1
-1
-1
-1

XD1

1

1

1

1

1

0
0
0

0
0
0
0

XD2

0
0
0
0
0

1
1
1
0
0
0
0

The statistics for the regression of Y on X1 and X2, on XE1 and XE2, or on XD1 and XD2 are

R = .740; SSregression = 28.583; SSresidual = 23.667; F = MSregression/MSresidual = 5.435.
The regression coefficients based on effects coding are:

bE0 = Yu =4.94, bE1 = Y.1 -Yu =2.06, and b£2 =Y.2 -Yu = -1.61

and the regression coefficients based on dummy coding are:

bD0 = Y.3 =4.50, bD1 = Y.1 -Y.3 =2.50, and bD2 = Y.2 - Y.3 = -1.17
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Fig. 21.2 (a) Plot of the means of A
against X] for the data in Table 21.1. In
general, the points representing the three
means cannot be fit perfectly by a straight
line. (b) Plot of the means of A against X1

and X2. The points representing the three
means can always be fit by a plane.

so that a regression of the dependent variable on the dummy variables will produce an
analysis identical to the ANOVA. The only difference between them is that the regression
coefficients produced by the two coding systems have different interpretations.

Effect Coding. In discussing ANOVA as a special case of multiple regression, we
may find it useful to consider the type of dummy variable coding called effect coding be-
cause, as we show below, it produces regression coefficients that estimate the ANOVA
effects a1, a2,..., aa-1, where aj = uj - U. Effect coding represents group member-
ship with dummy variables that contain 1's, 0's, and — 1's as illustrated by variables
XE1 and XE2 in panel (b) of Table 21.1. Dummy variables for effect coding are defined
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as follows:

Because there are three levels of A in Table 21.1, we require two dummy variables to
account for all the between-group variability. The coding of XE1 and XE2 is presented in
panel (b) of Table 21.1. As can also be seen there, the regression of Y on XE1 and XE2

produces a value of SSregression that is equal to the SSA obtained from the standard ANOVA,
and an overall F statistic for the regression that is equal to the ANOVA F.

We can readily find the regression coefficients. As we have just stated, if we use enough
dummy variables, regressing on them must account for all the between-group variability.
Consequently, the scores predicted by the regression equation for each of the groups must be
the group means. Therefore, for A1, we have Y = Y.1 , XE1 = 1 and XE2 = 0. Substituting
into the regression equation that predicts Y from XE1 and XE2, Y = bE0 + b E 1 X E 1 +
bE2XE2, we obtain

Similarly, for A2 and A3, respectively, we have

and

Adding Equations 21.1-21.3, we obtain 3bE0 = Y.1 + Y.2 + Y.3, so that

Here, Yu is the unweighted average of the group means. If there are equal numbers of
scores in each of the groups, YU will equal Y.., the grand mean of all the scores.

We can now write the coefficients of the dummy variables as deviations from the
unweighted mean of the group means. Substituting bE0 = YU into Equations 21.1 and
21.2, and solving, we obtain the formulas and numerical results for bE1 and bE2 that are
presented in panel (b) of Table 21.1. Note that for equal-n designs, the regression coefficients
correspond exactly to the estimated main effect components of the ANOVA, the aj's. That
is, because Y.j = uj and Y.. = u,

and

Furthermore, because of the requirement that E aj = 0, A3 can be found as
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The last equation gives us bD0 = Y . 3 , and substitution into the two equations preceding it
yields the formulas for the other two coefficients that are found (together with the numerical
results) in panel (b) of Table 21.1.

Dummy coding would be particularly useful if the design contained a control group. If
so, we could let the control group serve as the reference group, and the regression coefficients
would then directly reflect the treatment-control mean differences. There are many other
ways to code categorical variables. For example, categorical variables could be coded such
that regression coefficients took on the values of contrasts of possible interest. Detailed
discussions of these methods may be found in sources such as Cohen and Cohen (1983).

As described previously, although it is important to understand how categorical vari-
ables can be represented in regression, we rarely have to code the categorical variables
ourselves—we can usually let the standard software packages produce the desired dummy
variables for us. For example, once we have specified that we have a categorical factor,
the GLM module in SYSTAT 10 allows us to choose whether we wish it to use effect or
dummy coding. On the other hand, the GLM module in SPSS 10 does not provide a choice;

Dummy Coding. A second way to code categorical variables is to use dummy coding,
for which the indicator variables only take on the values 0 and 1, as illustrated by XD1 and
XD2 in panel (b) of Table 21.1. For dummy coding, the dummy variables are defined as

Note that because we only need a — 1 dummy variables to code a groups, one group,
referred to as the reference group, will receive 0s on all the dummy variables.

Because there are three levels of A in the current example, we require two dummy
variables to account for all the between-group variability. Scores at A1 receive a 1 on XD1

and a 0 on XD 2; scores at A 2 receive a 0 on XD1 and a 1 on XD2; and scores at A3 receive
values of 0 on both XD1 and X D 2 . As we can see in panel (b) of Table 21.1, the regression
of Y on XD1 and XD2 also produces a value of ssRegression equal to the SSA obtained from
the standard ANOVA. Although the variability accounted for by the regression is the same
whether we use dummy or effect coding, the regression coefficients are different. If we use
dummy coding, the intercept, bD0, takes on the value of the mean of the reference group;
that is, the group that has 0s on all the indicator variables. The regression coefficients for
each of the dummy variables, bD1 and bD2, take on values equal to the difference between
the group coded 1 on the dummy variable and the mean of the reference group. We can
see this by noting again that because the regression accounts for all the between-group
variability, the prediction for each score will be its group mean. For example, for scores
at A1, we have Y = Y . 1 . Substituting Y = Y . 1 , XD1 = 1, and XD2 = 0 into the equation
for the regression of Y on XD1 and XD2, Y = bD0 + bD1XD1+ bD2XD2, we obtain

Similarly, for scores at A2, we have

For the scores at the last level of A, each dummy variable has the value 0 so that
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it simply uses dummy coding. This does not present any particular problem for us, but we
should be aware what the program is doing if we try to interpret the parameter estimates.

21.3 REGRESSION ANALYSES AND FACTORIAL DESIGNS

In Section 21.2, we saw how any categorical variable can be coded by a set of dummy
variables and that a multiple regression analysis that uses these dummy variables as pre-
dictors provides all of the information, and more, that can be obtained from a one-factor
ANOVA. In Section 21.3, we extend this discussion to multifactor designs, first considering
orthogonal designs and then the issues that arise in analyzing data from nonorthogonal or
unbalanced (unequal-n) designs.

21.3.1 Orthogonal Designs

A regression analysis of a factorial design can be performed if both the factors and their
interactions are coded by sets of dummy variables. Panel (a) of Table 21.2 contains data
from a 3 x 3 design with factors A and C (note that we use C rather than B to refer to the
second factor because of the plethora of bs already in the chapter), and panel (c) contains the
results of an ANOVA on the data. Panel (b) contains the sets of effect dummy variables that
code the design. Each set of dummy variables has as many members as the corresponding
sources of variance have degrees of freedom. A and C are coded as though each was the
only factor in the design, and the set of four dummy variables that code the AC interaction
is obtained by multiplying each dummy variable in the A set by each one in the C set.
Together, the eight dummy variables code membership in the nine cells of the design.

With effect coding, the dummy variables within any one of the A, C, and AC sets are
correlated. However, if the cell frequencies are all equal, the dummy variables in any set are
uncorrelated with all the dummy variables in each of the other sets; therefore, the sums of
squares associated with the different sets do not overlap. Let's use the notation RY.A, RY.AC,
and RY.A,AC to represent the multiple correlation coefficients that result when Y is regressed
on the sets of dummy variables that code A, AC, and both A and AC, respectively. Then,
because the sets of dummy variables corresponding to A, C, and AC are uncorrelated, we
have

Multiplying each of the squared correlations by SSY, we have

Because we have enough coding variables to account for all the between-subject variability,
SSerror = SSresidual = (1 — R2

Y A,C,AC)SSY, and tests of the A and C main effects and the AC
interaction, respectively, are provided by
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TABLE 21.2 EFFECT CODING FOR AN ORTHOGONAL 3 x 3 DESIGN

(a) Data

A1

A2

A3

C1

53
51
55
78
79
99

C2

88
63
48
42
80
92

C3

56
42
79
50
69
94

(b) Dummy Variables Formed by Using Effect Coding

A

Effect

A1C1

A1C2

A1C3

A2C1

A2 C2

A2C3

A3C1

A3C2

A3C3

SV

A
C
AC
Error

Y

53
51
88
63
56
42
55
78
48
42
79
50
79
99
80
92
69
94

X1

1
1
1
1
1
1
0
0
0
0
0
0

-1
-1
-1
-1

1

-1

df

2
2
4
9

X2

0
0
0
0
0
0
1
1
1
1
1
1

-1
-1
-1
-1
-1

-1

C

X3

1
1
0
0

-1
-1

1
1
0
0

-1
-1

1
1
0
0

-1
-1

X4

0
0
1
1

-1
— 1

0
0
1
1

-1
-1

0
0
1
1

-1
-1

ss

2862.333

64.333

1399.333

1700.000

X5

1
1
0
0

-1
-1

0
0
0
0
0
0

-1
-1

0
0
1
1

MS

1431.167

32.167

349.833

188.889

AC

X6

0
0
0
0
0
0
1
1
0
0

-1
-1
-1
-1

0
0
1
1

X7

0
0
1
1

-1
1

0
0
0
0
0
0
0
0

-1
-1

1
1

F

7.577

0.170
1.852

X8

0
0
0
0
0
0
0
0
1
1

-1
-1

0
0

-1

-1
1
1

and

As can be seen in Table 21.2, these test statistics have exactly the same values as the ANOVA

Fs for A, C, and AC.
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To carry out the ANOVA, we need only code each factor with a single variable that
labels each level with a distinct symbol, such as 1,2, and 3, then use the ANOVA or GLM
module of a standard statistical package to analyze the data. If the variable is specified as
a categorical variable or factor, the software creates the dummy variables and performs the
analyses as described. The programs differ somewhat in what must be specified in their
GLM modules. For example, SPSS 10 GLM assumes that each variable listed as a factor is
categorical; continuous variables must be listed as covariates. On the other hand, in S YSTAT
10 GLM, independent variables may be either continuous or categorical; we must specify
that a variable is categorical or else it will be treated as though it was continuous.

21.3.2 Nonorthogonal Designs
In Chapter 12, we discussed some of the difficulties that stem from the fact that, in nonorthog-
onal factorial designs, the between-cell variability cannot be neatly partitioned into nonover-
lapping components associated with the main effects and interactions. Panel (a) of Table 21.3
contains the data for a nonorthogonal design with factors A and C, and panel (b) contains
the effect coding for the design. Because of the unequal cell frequencies, the sets of dummy
variables that code the A, C, and AC effects are no longer uncorrelated. Therefore, in
general,

because the variabilities associated with A, C, and AC overlap, as represented by Fig. 21.3.
Multiple regression analyses allows a variety of possible adjustments for this overlap. For
example, in considering the A effect,

1. We may view SSA as the variability that is uniquely associated with A. This is the
variability in A that does not overlap with the other effects in the design and is
represented by area t in the upper circle of Fig. 21.3. It can be obtained from

As we discussed in Chapter 12, when we adjust the sum of squares by adjusting
for the variability due to all the other main or interaction effects, we obtain what
are called Type III sums of squares. This is the default for most of the standard
statistics packages.

2. We may decide to adjust the A effect only for the other main effect C, yielding the
variability represented by areas t and w in the upper circle of Fig. 21.3,

or
3. We may decide not to adjust for the contributions of the other effects at all. This

yields

Summarizing, if we have a nonorthogonal ANOVA with factors A and C, we can obtain
for the A main effect, SSA, which is the sum of squares for A ignoring overlap with C and
AC; SSA/C ,which is the sum of squares for A adjusted for the C main effect; and SSA\c,AC.,

which is the sum of squares for A adjusted for both the C main effect and the AC interaction.
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TABLE 21.3 EFFECT CODING FOR AN ORTHOGONAL 3 x 3 DESIGN

(a) Data

A1

A2

A3

C1

53
51

55
78
39

79
99

C2

88
63
50
71

48
42

80
92

C3

56
42

79
50
62

69
94
80
77

(b) Dummy Variables Formed by Using Effect Coding

A

Effect:

A1C1

A1C2

A1C3

A2C1

A2C2

A2C3

A3C1

A3C2

A3C3

Y

53
51
88
63
50
71
56
42
55
78
39
48
42
79
50
62
79
99
80
92
69
94
80
77

X1

1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0

-1

-1
-1

-1

-1
-1
-1
-1

X2

0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1

-1

-1
-1
-1
-1
-1
-1
-1

C

X3

1
1
0
0
0
0

-1
-1

1
1
1
0
0

-1
-1

-1
1
1
0
0

-1
-1
-1
-1

X4

0
0
1
1
1
1

-1

-1
0
0
0
1
1

-1
-1
-1

0
0
1
1

-1
-1
-1
-1

X5

1

1

0
0
0
0

-1

-1
0
0
0
0
0
0
0
0

-1
-1

0
0
1
1
1
1

AC

X6

0
0
0
0
0
0
0
0
1
1
1
0
0

-1

-1
-1
-1
-1

0
0
1
1
1
1

X7

0
0
1
1
1
1

-1
-1

0
0
0
0
0
0
0
0
0
0

-1

-1
1
1
1
1

X8

0
0
0
0
0
0
0
0
0
0
0
1
1

-1

-1
-1

0
0

-1

-1
1
1
1
1
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Fig. 21.3 Partitioning of variability in a nonorthogonal
two-factor design.

These sums of squares will all have the same value if the cell frequencies are equal; however,
because in nonorthogonal designs the variabilities of the effects may overlap, SSA, SSA \ C ,
and SSA\C,AC. will generally not be equal. Depending on whether the covariations among
the effects are positive or negative, the adjusted sum of squares may be smaller or larger
than if there is no adjustment. For the data in Table 21.3, SSA\c,Ac = 4,139.42, SSA\C =
3,609.95, and SSA = 3,581.08.

On what basis are we to decide which, if any, of these sums of squares to use? In
Chapter 12, we discussed conditions under which different analyses are appropriate. Here,
we review and expand on that discussion. Our view is that the proper analysis depends on
the weights that should be given to the levels of the factors in the study. If the variables are
manipulated, or if the data in the cells can be viewed as samples from naturally occurring,
equal-sized treatment populations, it makes sense to give each cell in the design the same
weight, even though chance variations in actual cell frequency may occur. That is, we may
plan to have equal cell frequencies, but fail to obtain them because of chance occurrences
such as equipment failures or participants failing to show up. In this case, the overall A null
hypothesis that is of interest states that the unweighted averages of the c population means
at each level of A are equal. That is,

where

is the unweighted mean of the cell means at the j'th level of A.
However, if the cell populations vary systematically in size, we may wish to test hy-

potheses in which the cell means are weighted according to population size. If we have
reliable information about the relative sizes of the cell populations, we can use it to weight
the cell means. If we do not have such information, we can use the cell frequencies as
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weights. In this case, the overall A null hypothesis of interest states that the weighted means
of A are equal. That is,

where

is the weighted mean of the cell means at the j'th level of A.
It can be shown that adjusting the sums of squares in different ways results in tests

of the different hypotheses of interest. Table 21.4 describes three methods of analyzing
nonorthogonal factorial designs and indicates the hypotheses tested by each of them.
Table 21.5 provides the results of these analyses for the data in Table 21.3. In all three
methods, interactions are adjusted for all other effects in the design, resulting in tests of the
usual interaction null hypothesis

Method 1 adjusts each effect for every other effect in the design. In Method 3, main effect
sums of squares are not adjusted for any other effects. In Method 2, adjustments are made
only for effects of the same or lower order, so that main effects are adjusted for other main
effects, but not for interactions. It can be shown (e.g., Myers & Well, 1995) that Method 1
tests unweighted main effect null hypotheses; therefore, Method 1 is recommended when
unequal cell frequencies occur by chance, as is usually the case in experimental designs.
Method 3 tests weighted main effect hypotheses and can be useful when cell frequencies
are proportional to corresponding population sizes.

The Method 2 approach that is favored by some statisticians (e.g., Cramer &
Appelbaum, 1980) corresponds to a hierarchical series of model tests that starts with higher-
order effects. On the rationale that main effects are not very meaningful in the presence of
an interaction, this approach first tests the interaction by comparing the model

against

If there is no interaction, tests of the main effects are then conducted by comparing

against

and

against
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TABLE 21 .4 THREE METHODS FOR ANALYZING NONORTHOGONAL FACTORIAL DESIGNS

Method 1 : Adjusting for All Main and Interaction Effects

SV df SS

A a — 1 SSA\C.AC =(R2
Y .A ,C .AC - R2

Y.c.AC)SSY

C c— 1 SSC\A..AC
 = (R2

Y. A.C.AC - R2
Y.A.AC)SSY

AC (a - l)(c - 1) SSAC\A.c = (R2
YA.c.Ac - R2YA.c)SSY

Residual N — ac SSrcsidual = (1 — R2
Y . A . C . A C)SSY

Hypotheses tested

A : u1. = u2. = • • • = ua., where uj. = 1/c Ek ujk is the unweighted mean of the population means
for the c cells in the jth row of A

C :u1 = u. 2 = • • • = u.c,where u.K = 1/a £ j u j k is the unweighted mean of the population means
for the a cells in the kth row of C

AC : ujk - uj'k - ujk' + uj'k' = 0 for all j, k, j', k'

Usage: This method uses Type III sums of squares to test hypotheses about unweighted column
and row means, and will usually be the method of choice when unequal cell frequencies occur by
chance. This method is also known as Overall and Spiegel's (1969) Method 1, Yates's (1934)
weighted squares of means, and SPSS's classic regression approach.

Method 2: Adjusting for the Effects of the Same and Lower Order

SV df SS

A a — 1 SSA\C = (R2
Y.A.c -R2

Y.C)SSY

C c — 1 SSc\A
 = (R2

Y.A.c - R2
Y .A)SSY

AC (a - 1)(c - 1) SSAC\A.c = ( R 2
Y . A . C - R 2

Y . A . C ) S S Y

Residual N - ac SSrcsidual = (1 - R2
Y.A.C.AC )SSY

Hypotheses tested

Usage: If there is no interaction, Method 2 tests Method 1's hypotheses with somewhat more power
than Method 1 itself. However, if there is the possibility of an interaction, Method 2 should be
avoided because it tests data-dependent hypotheses that are not useful (see the hypotheses that are
tested above). This method is also known as Overall and Speigel's Method 2, Yates's fitting
constants method, and SPSS's classic experimental design approach.
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TABLE 2 1.4 (continued)

SV

A

C

AC

Residual

Method 3: Main Effects Not Adjusted

df

a- 1

c- 1

(a-1)(c-1)

N — ac

SS

SSA
 = R2

Y.A SSY

SSc = R2
Y.C SSY

SSAC\A.C = (R2
Y. A.C.AC - R2Y . A . c)SSY

SSresidual
 = (1 -R2

Y. A . C . A c)SSY

Hypotheses tested

A: u1* = u2* =... = ua*, where uj* =1/nj E n j k u j k is the weighted mean of the population
means for the c cells in the jth row of A

C: u*1 = u*2 = • • • = u*C, where u*k = 1/nk E n j k u j k is the weighted mean of the population
means for the a cells in the kth row of C

AC: ujk - u j ' k - ujk' + u j ' k ' = 0 for all j, k, j', k'

Usage: This method tests main-effect hypotheses about the weighted row and column means.
These tests may be desirable if the cell frequencies are proportional to the corresponding
population sizes. This method is also known as Yates's method for proportional cell sizes.

TABLE 21.5 RESULTS OBTAINED USING THE THREE METHODS WITH THE DATA OF TABLE 21 .3

Method 1

SV

A
C
AC
Residual

df

2
2
4

15

SS

SSA \ C . A C= 4139.423
SSC \ A . A C= 21.074
SSAC\A.c = 1103.074
(1 - R2

Y. A c AC)SSY =2667.833

MS

2069.712
10.537

275.769
177.882

F

11.639
0.059
1.551

Method 2

SV

A
C
AC
Residual

df

2
2
4

15

SS

SSA\c = 3609.950
SS C \ A = 60.468

SSAC\A.C = 1103.074
(1 - R2

Y. A .c. AC)SSY =2667.833

MS

1804.975
30.234

275.769
177.882

F

10.150
0.170
1.551

Method 3

SV

A
C
AC
Residual

df

2
2
4

15

SS

SSA =3581.083
SSC = 31.601

SSAc\Ac = 1103.074
(1 - R2

Y.A.C.AC)SSY = 2667.833

MS

1790.542
15.800

275.769
177.882

F

10.089
0.089
1.551
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The Method 2 tests correspond exactly to these model comparisons. The advantage of this
approach is that if there is no interaction, tests of main effects are somewhat more powerful
than the comparisons of

against

and

against

that correspond to the Method 1 main effect tests.
We do not recommend using the Method 2 approach because if an interaction does exist,

the hypotheses that it tests are data dependent; that is, they depend on the cell frequencies,
and do so in ways that are of little, if any, interest. For example, the null hypothesis for the
effect of A can be shown to be

(see Carlson & Timm, 1974). Even interactions that do not approach significance can result
in biased tests of the main effects (see, e.g., Overall, Lee, & Hornick, 1981). Therefore,
we reaffirm the general rule stated in Chapter 12 that Method 2 should not be used unless
there is strong a priori reason to assume no interaction effects, and a clearly nonsignificant
interaction effect is observed.

Finally, it is possible that a logical or theoretical analysis of the research problem
might dictate the order in which the sets of dummy variables are entered into the regression
equation and, therefore, the nature of the adjustments. Suppose, for example, that A and C
indicate levels of child and parental educational achievement, respectively. It is reasonable
to assume that parental education may influence a child's educational achievement but not
the reverse. In this case, it may be desirable to consider the unadjusted effects of parental
educational achievement but to adjust the effects of the child's education for that of the
parents.

In summary, the ability to use categorical variables in multiple regression analyses
enables us to adjust sums of squares in ways that result in tests of the hypotheses of factorial
ANOVAs in nonorthogonal designs. We can use the Method 1 approach to test hypotheses
about unweighted cell means and the Method 3 approach to test hypotheses about weighted
means. Also, if we have logically or theoretically determined orderings of factors, we can
perform sequential adjustments.

In most cases, unless otherwise requested, the packages produce Type III sums of
squares, and therefore test hypotheses about unweighted means. However, one should check
the documentation or perform some test analyses to be sure. SPSS has caused some con-
fusion in its mainframe versions by defaulting to Method 2 for ANOVA commands and
Method 1 for MANOVA.
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21.4 USING CATEGORICAL AND CONTINUOUS VARIABLES
IN THE SAME ANALYSIS

21.4.1 Testing Homogeneity of Regression Slopes Using
Multiple Regression

In Chapters 19 and 20, we discussed tests for equality of slopes when one variable was
regressed on another at different levels of a dichotomous (i.e., having only two levels)
categorical variable. In Section 20.9, we selected subjects in the Seasons data set aged
65 years or younger with BMI (body mass index) scores no larger than 40, and tested
whether the rate of change of total cholesterol (TC) level with age was the same for males
and females. Although we did not use the term there, the variable sex in the data set is a
dummy variable that labels men by 0s and women by 1s. We showed that we could test the
hypothesis that the rate of change was the same for men and women by regressing TC on
age, sex, and an additional variable Age x Sex that was formed by multiplying age by sex.
The resulting regression equation is

Because the coefficient of the interaction term Age x Sex is significant, with t (363) = 4.909,
p = .000, we can reject the hypothesis that the slope of TC with age is equal for males and
females.

What if the categorical variable has more than two levels? If so, we can still test
the hypothesis of homogeneity of regression slopes by determining whether there is a
significant interaction. That is, we can test whether the regression of Y on a continuous
variable, X, is a function of the level of A when A is a categorical variable with more than
two levels. However, because now more than one dummy variable is needed to code the
categorical variable, the interaction term will have more than 1 df, and we will need to
use a partial F test (as described in Chapter 20) to determine whether the interaction is
significant.

Consider the categorical variable education level, EL. We might be interested not only
in its main effect on TC, but also in its interaction with age. Let EL = 1 correspond to
individuals with a high school education or less; EL = 2 to education beyond high school,
but not including the bachelor's degree, and EL = 3 to at least a bachelor's degree. EL
seems to make a difference in TC. Using the same subjects as the previous analysis, to
the nearest integer, mean TC is 227, 217, and 210 for EL = 1, 2, and 3, respectively,
and an ANOVA with EL as the independent variable is significant; F(2, 359) = 4.908,
p = .008.

Now let's consider whether the effects of EL depend on the age of the subjects. Be-
cause EL has three levels, we can code it with two dummy variables—it does not matter
whether we use effect, dummy, or any other kind of dummy variable coding. We can then
code the interaction of EL with age by using two additional dummy variables, obtained
by multiplying the dummy variables used to code EL by age. In general, if we have a
continuous predictor variable X and a categorical variable A with a levels, the proportion
of the variability in Y accounted for by a regression on X and the a — 1 dummy variables
coding the categorical variable A is R2

Y. x. A. If we now add the a — 1 dummy variables that
account for the AX interaction to the regression, the proportion of variance accounted for is
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R2
Y. x A AX. The AX interaction can be tested by the partial F

The numerator of the expression corresponds to the increment in the amount of variability
accounted for by the interaction and has df equal to the number of dummy variables needed
to code the interaction. The denominator is the amount of variability not accounted for by
the regression equation that contains the interaction, divided by df = N — 1 — the number of
predictors in the regression equation = N — 1 — [1 + 2(a — 1)] = N — 2a. The bracketed
quantity, 1 + 2(a — 1), represents the a — 1 df for the regression of Y on A, the a — 1 df
for the AX interaction, and 1 df for the regression of Y on X.

Using the GLM module of a standard statistics package to test the interaction, we would
specify that EL is a categorical variable, age is a continuous variable, and that we wanted
to include the EL x Age interaction in the model. The SYSTAT output for the analysis is
provided in Table 21.6. The EL x Age interaction is not significant, F(2, 356) = 0.641,
p = .528. Therefore, we cannot reject the null hypothesis that the effects of EL do not vary
with age (or, equivalently, that the rate of change of TC with age is the same at each level
of EL).

The procedure can be readily extended to factorial designs. If we had Y and X scores
for each cell of a 2 x 4 design with factors A and C, we could test homogeneity of the
regression slope in the eight cells of the design by performing analyses that produced partial
F tests of the XA, XC, and XAC interactions.

TABLE 21.6 SYSTAT GLM OUTPUT FOR THE TEST OF THE EL x AGE INTERACTION

Data for the following results were selected according to:
(AGE=< 65) AND (BMI=< 40)

Effects coding used for categorical variables in model.

Categorical values encountered during processing are:
EL (3 levels)

1, 2, 3
13 case(s) deleted due to missing data.

Dep Var: TC N: 362 Multiple R: 0.278 Squared multiple R: 0.077

Analysis of Variance

Source

AGE
EL
EL* AGE
Error

Sum-of-Squares

25241.843
2149.938
1905.416

529487.998

df

1
2
2

356

Mean-Square

25241.843
1074.969
952.708

1487.326

F-ratio

16.971

0.723

0.641

P

0.000

0.486
0.528

Note. Output is from SYSTAT.
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21.4.2 ANCOVA as a Special Case of Multiple Regression

In Chapter 15, we portrayed ANCOVA as a kind of hybrid that incorporated elements of
ANOVA to deal with the categorical factors and bivariate regression to adjust for the co-
variate. Using a multiple regression framework that can deal with both categorical variables
and covariates allows a more integrated approach that we believe is easier to understand.

One-factor ANCOVA. Performing an ANCOVA on a design that has a single factor A
can now be seen as determining whether A has effects over and above those of the covariate,
X. First of all, we determine whether there is an AX interaction using the procedures
described in the preceding section (see Chapter 15 for a discussion of why the logic of
ANCOVA requires homogeneity of regression). If there is no significant interaction, we
can go ahead with the ANCOVA by performing a partial F test for the effects of A over
and above those of X. We find the variability in Y accounted for by A and the covariate,
R2

Y.X.ASSY, and the variability accounted for by the covariate alone, R2
Y.XSSY. then use the

nartial F statistic

This partial F test is exactly equivalent to the ANCOVA test for A that was presented in Chap-
ter 15. The adjustments for the covariate that produced SSA(adj) and SSS/A(adj) in Chapter 15
simply involve partialing out the effects of X, so that

and

In practice, we would produce these results by using a standard software package and
specifying that A was a categorical variable and X was the covariate. However, recall that
if we found a significant AX interaction, we would not proceed with the ANCOVA. Instead,
the relation between X and Y can be characterized by obtaining the regression equations
for each of the groups and the Johnson-Neyman procedure (see, e.g., Huitema, 1980) can
be used to identify regions of the covariate for which the groups differ significantly in Y.

Factorial ANCOVA. The multiple regression approach to ANCOVA can be readily
extended to factorial designs. For example, if we consider the two-factor design described
in the previous section, we can test for homogeneity of regression using Equation 16.4. If
homogeneity is not rejected, the ANCOVA tests for A, C, and AC are provided by
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and

Using More Than One Covariate. A researcher may wish to adjust for several
sources of unwanted variability by using several covariates. For example, suppose we have
a one-factor design and information about two covariates X and W that are each linearly
related to Y. Performing an ANCOVA that uses both covariates tests whether A has sig-
nificant effects over and above both X and W. The appropriate test statistic is the par-
tial F:

Note that the denominator of this equation has one less df because of the additional covari-
ate. The adjusted means are the scores predicted by the regression equation for each group
if X = X.. and W = W... Homogeneity of regression can be tested by using the partial F
for the interactions between A and the covariates,

Nonlinear ANCOVA. The relations between the dependent variable and potential
covariates are not always linear. For example, according to the Yerkes-Dodson Law, we
would expect a quadratic relation between measures of performance and motivation. If we
use standard ANCOVA procedures when there is substantial nonlinearity, the ANCOVA F
tests may have little power and the adjusted means may be biased estimates of the treatment
means. Therefore, it is a good idea to check for severe violations of nonlinearity by plotting
scatter diagrams for each group. Also, significance tests for nonlinearity are available.

If the relation between Y and X is nonlinear but monotonic (i.e., Y increases or decreases
with X but not in a linear fashion), it may be worth checking to see if there is a simple
transformation of X, such as log X or X raised to some power, for which the relation between
Y and the transformed X is approximately linear. If such a transformation can be found, the
transformed value of X can be used as the covariate in a standard ANCOVA.

If the relation between Y and X is not monotonic, a simple transformation will not
achieve linearity. However, in this case, it may be worthwhile to use a polynomial ANCOVA
in which the ANCOVA model contains linear and higher-order polynomial components.
For a quadratic ANCOVA, it is assumed that the relation between Y and X is of the form

for a cubic ANCOVA, the polynomial function contains an X3 term, and so forth. A quadratic
ANCOVA is conducted by including both X and X2 as covariates, so that for the one-factor
design, the ANCOVA test for A becomes
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Higher-order polynomial ANCOVAs can be performed by adding X3, X4, and so on,
as covariates. However, it is important to keep in mind that, although more complex models
will fit better, using more covariates results in fewer error degrees of freedom. Therefore,
one should be careful not to use more complex models or more covariates than are necessary.

Finally, it should be noted that the powers of X(X, X2, etc.) are highly correlated and
using them in the same multiple regression will result in multicollinearity (see Chapter 20)
that may result in computational difficulties for some software packages. These problems
can generally be avoided by centering the covariates, that is, by using deviation scores.
For example, x = (X — X) and x2 = (X — X)2 may be used instead of X and X2 in the
regression.

21.5 CODING DESIGNS WITH WITHIN-SUBJECTS FACTORS

In a repeated-measures design, each subject is tested at every level of at least one independent
variable, and subjects are considered to define levels of a factor, S, in the design. If there
are n subjects, we can code S with n — 1 dummy variables in the same way as any other
categorical variable.

Table 21.7 contains data for an S x A design with data from eight subjects at four levels
of the repeated-measures factor, A. We can code the eight levels of S with the seven dummy
variables labeled in Table 21.8 as S1-S7, the four levels of A with three dummy variables,
and the SA interaction with 21 dummy variables (5A11-SA73) formed by multiplying every
dummy variable in the S set by every dummy variable in the A set. The sums of squares
can be found from

and

From Chapter 13, we know that for an S x A design, the appropriate test for the A main
effect is given by F = MSA/MSSA.

The coding procedure can be directly extended to designs in which there are several
within-subjects variables, although the number of dummy variables required increases rather
dramatically. If we had a S x A x B design with eight subjects, four levels of A and two
of B, coding all the main effects and interactions would require abn — 1 = 63 dummy
variables, as many dummy variables as df for each source of variance. However, if a multiple
regression program was used to analyze such a design, one would really only have to
code the S, A, and B effects. Most software packages have some sort of COMPUTE or
TRANSFORM instruction that will create the variables needed to code the interaction
effects.

Finally, the coding procedures can be extended to mixed designs that contain both
within-subjects and between-subjects factors. Panel (a) of Table 21.8 contains a set of
hypothetical data and the ANOVA table for a design that has one between-subjects variable,
A, and one within-subjects variable, C, and panel (b) presents dummy variables that code
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TABLE

Subject

21.7

1
2
3
4
5
6
7
8

A1

A2

A3

A4

Y

1.4
2.0
1.4
2.3
4.7
3.2
4.0
5.0

3.2
2.5
4.2
4.6
4.8
5.0
6.8
6.1

3.2
3.1
4.1
4.0
4.4
6.2
4.5
6.4

3.0
5.8
5.6
5.9
5.9
5.9
6.5
6.6

DATA AND DUMMY VARIABLE CODING FOR AN S x A DESIGN

A1

S1

1
0
0
0
0
0
0

-1
1
0
0
0
0
0
0

-1

1
0
0
0
0
0
0

-1
1
0
0
0
0
0
0

-1

1.4
2.0
1.4
2.3
4.7
3.2
4.0
5.0

S2

0
1
0
0
0
0
0

-1
0
1
0
0
0
0
0

-1
0
1
0
0
0
0
0

-1
0
1
0
0
0
0
0

-1

S3

0
0
1
0
0
0
0

-1
0
0
1
0
0
0
0

-1

0
0
1
0
0
0
0

-1
0
0
1
0
0
0
0

-1

S

S4

0
0
0
1
0
0
0

-1
0
0
0
1
0
0
0

-1
0
0
0
1
0
0
0

-1
0
0
0
1
0
0
0

-1

A2

3.2
2.5
4.2
4.6
4.8
5.0
6.8
6.1

S5

0
0
0
0
1
0
0

-1
0
0
0
0
1
0
0

-1
0
0
0
0
1
0
0

-1
0
0
0
0
1
0
0

-1

A3

S6

0
0
0
0
0
1
0

-1
0
0
0
0
0
1
0

-1
0
0
0
0
0
1
0

-1
0
0
0
0
0
1
0

_]

3.2
3.1
4.1
4.0
4.4
6.2
4.5
6.4

S7

0
0
0
0
0
0
1

-1
0
0
0
0
0
0
1

-1
0
0
0
0
0
0
1

-1
0
0
0
0
0
0
1

-1

A1

1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

-1
-1
-1
-1
-1
-1
-1
-1

A

A2

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0

-1
-1
-1

-1

-1

-1
-1

-1

A4

3.0
5.8
5.6
5.9
5.9
5.9
6.5
6.6

A3

0
1
0
0
0
0
0
0

0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1

-1
-1
-1

-1

-1

-1
-1
-1

SA11

1
0
0
0
0
0
0

-1

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

-1
0
0
0
0
0
0
1

S x A

SA21

0
1
0
0
0
0
0

-1

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
-1
0
0
0
0
0
1

SA73

0
0
0
0
0
0
0
0

0
0
0
0
0
0
0
0

0
0
0
0
0
0
1

-1
0
0
0
0
0
0

-1
1
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TABLE 21.8 DUMMY VARIABLE CODING FOR A MIXED DESIGN

(a) Data and ANOVA Table

A1

A2

SV

A
S/A
C
AC
SC/A

S11

S21

S31

S12

S22

S32

df

1
4
2

2
8

C1

7
9
7

12
16
19

SS

162.00
48.00
85.33
49.33
19.33

C2

1
2
3

7
14
11

MS

162.00
12.00
42.67
24.67

2.42

(b) Dummy Variable Coding

A1S1

A1S2

A1S3

A2S1

A2S2

A3S3

A

y A1

7 1
1 1
7 1
9 1
2 1

10 1
7 1
3 1
8 1

12 -1
7 -1
8 -1

16 -1
14 -1
9 -1

19 -1
11 -1
12 -1

S/A11

1
1
1
0
0
0

-1

-1
-1

0
0
0
0
0
0
0
0
0

S/A12

0
0
0
1
1
1

-1

-1
-1

0
0
0
0
0
0
0
0
0

S/A

S/A21

0
0
0
0
0
0
0
0
0
1
1
1
0
0
0

-1
-1
-1

C3

7
10
8

8
9

12

F

13.50

17.66
10.21

for the Design

S/A22

0
0
0
0
0
0
0
0
0
0
0
0
1
1
1

-1
-1
-1

c1

1
0

-1
1
0

-1
1
0

-1
1
0

-1
1
0

-1

1
0

-1

c

C2

0
1

-1
0
1

-1
0
1
1
1

0
1

-1
0
1

-1

0
1

-1

AC

AC11 AC12

1 0
0 1

-1 -1
1 0
0 1

-1 -1
1 0
0 1

-1 -1
-1 0

0 -1
1 1

-1 0
0 -1
1 1

-1 0
0 -1
1 1
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the design. The A, C, and AC sources of variance can be coded as in a factorial between-
subjects design and S/A can be directly represented by coding subjects separately at each
level of A as indicated in Table 21.8. It is not really necessary to code SC/A because SSsc/A
can be obtained as a residual

However, SC/A could be coded by the eight dummy variables that would result from mul-
tiplying the values of variables in the C and S/A sets.

It should be noted that when there are different numbers of subjects at each level of
A, the standard ANOVA and GLM modules will produce Type III sums of squares. For
example, SSc will be obtained as (R2y A c AC — R2

y c AC)SSy, not as R2
yCSSy.

21.6 CONCLUDING REMARKS

The two goals we had in this chapter were to discuss how categorical variables can be
coded so that they can be incorporated into multiple regression analysis and to reconsider
within the multiple regression framework a number of the analyses we discussed earlier.
We did not include this second goal to encourage our readers to perform ANOVAs and
ANCOVAs by coding categorical variables in terms of dummy variables and then using
multiple regression, although they could do so if the standard ANOVA and ANCOVA
programs were not available. Rather, we believe that considering ANOVA and ANCOVA
from the multiple regression perspective allows us to gain a deeper understanding of these
analyses and their relations to one another.

Also, the generality and flexibility of the multiple regression framework offer some
clear advantages. As described previously, the standard ANOVA approach breaks down for
disproportionate-n designs. Thinking in terms of multiple regression, a system in which
nonorthogonality is the rule, not the exception, facilitates consideration of the kinds of
adjustments that might be made. To provide appropriate analyses of nonorthogonal designs,
the standard "ANOVA" programs are really multiple regression programs. We hope that this
chapter provides some understanding of how these programs might work and what options
they allow. Finally, the ability to include categorical and continuous variables in the same
analysis not only provides a framework for better understanding ANCOVA, but also makes
it clear that it is not necessary to transform inherently continuous variables into categorical
ones (by, e.g., using median splits) to analyze the data.

KEY CONCEPTS

categorical variable
qualitative variable
linearly independent variables
dummy coding
nonorthogonal designs
Method 1
Method 3

quantitative variable
dummy (indicator) variable
effect coding
orthogonal designs
Type III sums of squares
Method 2
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EXERCISES

21.1 Test scores are obtained from 8 women and 8 men. Data are as follows:

Gender

Men

27
18
16
27
24
30
32
26

Women

35
33
26
21
38
28
38
32

(a) Find the correlation between gender and test score (i.e., the point-biserial corre-
lation coefficient) and test it for significance.

(b) Perform an independent-groups t test to determine whether there is a significant
effect of gender.

(c) How many variables are needed to code for gender? Indicate how gender could
be coded using (i) effect (1, — 1) and (ii) dummy (1,0) coding.

(d) Regress the dependent variable on the dummy (i.e., indicator) variables foi
(i) and (ii) above. Compare the significance levels with those found in (a) anc
(b). What are the interpretations of the regression coefficients for (i) and (ii)?

21.2 Create another dummy variable for gender using 33 for males and —17 for females,
Regress the dependent variable on this "nonsense" variable. What is the interpretation
of this analysis?

21.3 Given the following data from a between subjects design:

Condition

c,

17
33
26
27

2

C2

11
18
14
18

C3

9
12
10
8

14

(a) How many linearly independent dummy (indicator) variables are needed to code
the design?

(b) Code the design using (i) dummy coding and (ii) effect coding.
(e) Regress the dependent variable on the indicator variables for (i) and (ii).
(d) What are the interpretations of the regression coefficients in each case?
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21.4 Would the interpretations of the regression coefficients in Exercise 21.3 change if
there were equal numbers of scores in each group? If so, how?

21.5 Given the following data from a 2 x 3 nonorthogonal (i.e., unbalanced or unequal
n) design:

A1

A2

01

72
63
57
52
69
75

65
45
53
52
57

B2

49
71
63
48

56
55
49
52
45
57

83

40
49
36
50
54

41
42
57
39

(a) Perform the ANOVA by using a statistical software package.
(b) Code the design by using effect coding (include variables for the main effects

and the interaction).
(c) Are the dummy variables that correspond to the different effects correlated with

one another?
(d) Assuming that the unequal ns have arisen by chance, and we wish to test hypothe-

ses about the unweighted means, perform the appropriate regression analyses,
and do what has to be done to test the A, B, and A x B effects. Exactly what
hypotheses are tested? Compare your results with the ANOVA performed in (a).

(e) Suppose you regress on just the dummy variable corresponding to the A effect,
omitting the dummy variables that code for B and the A x B interaction. What
hypothesis is tested using the SSA obtained in this analysis?

21.6 Use the data from Exercise 15.1 to perform an ANCOVA using the ANOVA or GLM
module of a software package. Then perform the ANCOVA by coding the variables
properly and using regression. Verify that the results are the same.

21.7 Use multiple regression to test the design in the previous exercise for homogeneity
of regression slope.
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Appendix A
Notation and Summation
Operations

We must have a common language to talk about the derivations and computational formulas
that relate to psychological experimentation. Such a language exists in the notational system
presented here. If you try to master it now, your efforts will be amply repaid. You will find
first a few simple rules, which are then applied to some elementary statistical quantities.

A.1 A SINGLE GROUP OF SCORES

A. 1.1 Some Basic Rules

In a group of scores like Y1 ,Y2 ,Y3 , Y 4 ^ , . . . , yn, the subscript has no purpose except to
distinguish among the individual scores. The quantity n is the total number of scores in the
group. Suppose that n = 5 and we want to show that all five scores are to be added together.
We could write

or, more briefly,

Still more briefly, we write

This expression is read "sum the values of Y for all i from 1 to 5." In general, i = 1,
2, . . . , n (that is, i takes on the values of 1 to n), and the summation of a group of n scores

641
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is indicated by

The quantity i is the index, and 1 and n are the limits of summation.1 When the context of
the presentation permits no confusion, the index and limits are often dropped. Thus we may
often indicate by E Y that a group of scores are to be summed.

Three rules for summation follow.

RULE 1. The sum of a constant times a variable equals the constant times the sum of the
variable; or

The term C is a constant in the sense that its value does not change as a function of i; the
value of Y depends on i, and Y is therefore a variable relative to i. The rule is easily proved.

RULE 2. The sum of a constant equals n times the constant, where n equals the number
of quantities summed; or

RULE 3. The summation sign operates like a multiplier on quantities within parentheses.

EXAMPLE 1.

Proof.

EXAMPLE 2.

Proof.



A SINGLE GROUP OF SCORES 643

A. 1.2 Applying the Summation Rules

We can apply the rules of summation to prove the properties of means and variances stated
in Chapter 2 (Section 2.4). Throughout this section it should be clear that we are summing
over / from 1 to n even though the index and limits are not explicitly presented in each
expression.

Properties of the Mean

1. XXF — F) = 0; the sum of all deviations of scores about their mean is zero. Ap-
plying Rule 3, we get

However, Y is a constant; its value is the same regardless of the value of the index
of summation. Therefore, applying Rule 2, we rewrite the last equation as

Because Y — X F/n, we can rewrite this as

2. X(^ + k)/n — F + k\ if a constant is added to all scores, the mean is increased
by that constant. Applying Rule 3 gives

Applying Rule 2 and noting that X! F/n = F, we have

3. ^kY/n = k Y ; i f all scores are multiplied by a constant, the mean is multiplied by
that constant. Applying Rule 1, we have

4. XX^ — F)2 is a minimum. Assume that there is some value F + d such that the
sum of squared deviations of all scores about it is smaller than the sum about
any other value. This sum of squared distances is XlT — (F + d)]2. Expanding in
accord with Rule 3, we have

Applying Rule 1, we rewrite the rightmost term as

because S(F — F) = 0. Applying Rule 2, we have



644 APPENDIX A/ NOTATION AND SUMMATION OPERATIONS

Therefore,

which is as small as possible when d = 0, that is, when we sum the squared
deviations of scores about their mean.

Properties of the Variance

1. Adding a constant to all scores leaves the variance unchanged. If a constant k is
added to all scores the new variance is

2. Multiplying all scores by a constant k is equivalent to multiplying the variance by
k2 and the standard deviation by k. We have

By Rule 1 this becomes

z Scores

The properties proven allow us to show that the mean of a set of z scores is zero and its
variance is 1. Recall that

To obtain the average of a set of n z scores, we sum them and divide by n, keeping in mind
that E(Y - Y) = 0. Then

To prove that the variance (and therefore the standard deviation) of the z scores is 1,
expand the formula for z as

Note that (l/sy) is a constant with respect to the index of summation i. Because adding (or
subtracting) a constant from a variable does not change its variance (see the first property of
the variance), the variance of z is the same as the variance of (l/sy)Y. But, from the second
property of a variance, we know that the variance of a constant (1/sy) times a variable (Y)
is the squared constant times the variance of the variable. That is,
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—2
Noting that Y is a constant and applying Rule 2, we have

Dividing the right-hand side of Equation A.I by n — 1 gives the raw-score formula for s^.
We can find the raw-score formula for the covariance of X and Y,

A. 1.3 Raw-Score Formulas

The summation rules can be applied to obtain raw-score formulas for quantities such as
the variance and covariance. These raw-score or computational formulas contain sums of
scores, squared scores, and cross products rather than sums of squared differences and cross
products of difference scores. This allows them to minimize rounding error and makes them
convenient to use with simple hand calculators that do not have variance and correlation
keys.

The numerator of the expression for the variance of Y is SSy = £XFi ~ ^)2- To get
the raw-score formula for SSy, expand the quantity within the summation sign. Thus

Applying Rule 3, we have

The quantity 27 is a constant and, by Rule 1, can be placed before the summation sign.
Thus,

Now replace Y by £] Y/n to get

Simplifying, we have

by noting that Equation A. 1 could be rewritten as

By analogy, the numerator of SXY has the raw-score formula

Dividing by n — 1 yields the raw-score formula for SXY •
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A.2 SEVERAL GROUPS OF SCORES

The simplest possible experimental design involves several groups of scores. Thus one
might have a groups of n subjects each, which differ in the amount of reward they receive
for their performance on some learning task. In setting the data down on paper, there would
be a column for each level of amount of reward—that is, for each experimental group. The
scores for a group could be written in order within the appropriate column. In referring to a
score, we should designate it by its position in the column (or experimental group) and by
the position of the column. Table A.1 illustrates this procedure. Note that the first subscript
refers to the position in the group (row), the second to the position of the group (column).
Thus Y22 is the second score in group 2, and in general, YIJ is the ith score in the jth group.

Suppose we want to refer to the mean of a single column. The term used previously, Y,
is obviously inadequate because it does not designate the row or column that we want. Even
Y i is not clear, because it might as easily refer to the mean of the first row as to the mean
of the first column.2 The appropriate designation is Y1=(1/n) ]En

i Yi1 ; the dot represents
the summation over i, the index that ordinarily appears in that position. Similarly, the mean
of row i would be designated by Yi. = (1/a) Y^j Yij summation is over the index j. The

mean of all an scores would be designated by Y.. = (1/an) ]T ]T F/v, or merely Y.
Some examples using the double summation (£i.Ej.) may be helpful. Suppose we

have

TABLE A.1 A TWO-DIMENSIONAL MATRIX

Subjects

Groups

Y11 Y12 • • • Yij • • • Yia

Y21 y22 ' ' ' Y2j • • • Y2a

Yi1 Yi2 • • • Yij • • • Yia

Y n1 Yn2 ... Ynj .... Y na

This is an instruction to set i and j initially at 1; the resulting score Y\\ is then squared.
Holding j at 1, we step i from 1 to n, squaring each score thus obtained and adding it
to those previously squared. When n scores have been squared and summed, we reset the
index i at 1 and step j to 2; the squaring and summing is then carried out for all Yi2.
The process continues until all an scores have been squared and summed. The process just
described can be represented by

If we have
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the notation indicates that a sum of n scores is to be squared. We again set j at 1, and after
adding together all the Yi1 square the total. The index j is then stepped to 2 and i is reset
at 1; we get another sum of n scores, which is squared and added to the previous squared
sum. We again continue until all an scores have been accounted for. The process can be
represented by

A third possibility is

which indicates that the squaring operation is carried out once on the total of an scores; we
then have

Note that the indices within the parentheses show how many scores are to be summed
prior to squaring, and the indices outside the parentheses show how many squared totals
are to be summed. When no parentheses appear, as in EE Y2, we treat the notation as if
it were EE(Y2). When no indices appear outside the parentheses, it is understood that
we are dealing with a single squared term, as in (EE Y)2. When several indices appear
together, whether inside or outside the parentheses, the product of their upper limits tells us
the number of terms involved. Thus, (Eaj

=1 E
n
i=1 Y)2 indicates that an scores are summed

before the squaring.
Our three illustrations of the double summation can be further clarified if we use some

numbers. Let us use the three groups of four scores each shown in Table A.2. Now,

and

and

TABLE A.2 SOME SAMPLE DATA

£, YU =
£/i? =

Group 1

4
1
3

_2

10
30

Group 2

1
7
2

_4

14
70

Group 3

6
4
5

_$

19
93
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Now, expanding the numerator (or "sums of squares") of this quantity, we get

Note that ]T. Yj = nYj. Although Yj is a variable relative to the index j, it is a
constant relative to i, the index over which we are currently summing; therefore Rule 2
applies.

Substituting raw-score formulas for the group means gives

Simplifying gives

To simplify notation, we can use T (for "total") to replace ^ Y. The sum of scores,
for example, for group 7 is

and the raw-score expression just derived can be rewritten as

As another example of how to use double summation, we might derive a raw score
formula for the average group variance, often referred to as the within-gwup mean square.
This is the sum of the group variances divided by a, the number of groups, or

More briefly, this average is indicated by

We "multiply through" by ^(, noting that Yj varies only with j; it is constant when / is the
index of summation. Terms are also rearranged so that sums are premultiplied by constants:

which can also be written



Appendix B
Expected Values and
Their Applications

The view of a population parameter as the expected value of a statistic is inherent in
most inferential procedures. Furthermore, many important results are derived by taking
expectations of statistics. The following discussion provides an introduction to these matters.
We begin by defining an expected value, and we then present some rules for working with
expectations. We then apply these rules to derive some results that were presented earlier
in this book.

B.1 DEFINITIONS AND BASIC RULES

We repeat the earlier definitions of expected values (see Chapter 4) for convenience in
dealing with the other material in this appendix. The expected value of a random variable,
Y, may be viewed as a weighted average of all possible values Y can take. The weights
are probabilities, p(y), when Y is discretely distributed and densities, f(y), when Y is
continuously distributed. In the discrete case,

and in the continuous case,

E ( Y ) is read as "the expected value of Y" or "the expectation of Y." The y under the
summation and integral signs is meant to remind us that the sum or integral is over all
possible values of Y.

The symbol E is often referred to as an expectation operator, meaning that it is an
instruction to sum or integrate the variable indicated. The expectation operator follows a
set of rules similar to those presented in Appendix A for the summation operator. The most
important of these rules are presented next.
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RULE 1. The expectation of a constant times a variable equals the constant times the sum
of the variable:

This may be seen by writing

RULE 2. The expectation of a constant is the constant:

If several events have the same numerical value C, the average value will equal C.

RULE 3. E acts like a multiplier. For example,

To prove this, begin with the definition of E(X + Y):

where the expression on the right indicates that each possible value of X + Y is multiplied
by its joint probability, and these products are then summed. Distributing this expression,
we obtain

A special case of this expression occurs when one variable is replaced by a constant; then

This equation provides an immediate basis for asserting that

because

Another application of Rule 3 is

This leads to a proof of the statement in Chapter 5 that the variance of F, E (Y — (u )2, equals
E(Y2) - u2:
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B.2 APPLICATIONS TO ESTIMATION

We next show that s2 is an unbiased estimator of a2; that is, E(s2) — d2. Begin by con-
sidering the sum of squares, the numerator of s2:

because U and E(Y) are the same entity

RULE 4. IF X and Y are independently distributed, then E(X Y) = E(X)E(Y). To prove
this, we again begin with the definition of an expectation:

because the joint probability p(x, y) = p(x)p(y) if X and Y are independently distributed.
Rearranging terms gives

A useful implication of this is that E(X — X)(Y — Y) = 0 if X and Y are independent.
This follows because E(X - X)(Y - Y) then must equal [E(X - X][E(Y - F)] = 0 x 0.
Therefore, if X and 7 are independent, their covariance (and consequently p) must equal
zero.

We can now show that Y is an unbiased estimate of U; that is, E(Y) = E(Y) or LA. We have

The average squared deviation of a quantity from its average is a variance; that is,
E(Y - U)2 = D2 and E(Y - U)2 = D2/n. Therefore,
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B.3 THE MEAN AND VARIANCE OF THE
BINOMIAL DISTRIBUTION

Consider a series of n Bernoulli trials and let X = 1 or 0, depending upon whether the trial
outcome was a success or failure; p(X = 1) = p and p(X = 0) = q. The total number of
successes in the n trials is Y = E X. We want to derive expressions for E ( Y ) and var(Y),
the mean and variance of the binomial distribution. We have

We derive the expression for the variance of the binomial distribution in a similar manner:

Therefore,

The variance of a sum of independent variables is the sum of their variances; therefore,

The variance of X is E[X - E(X)]2 = E(X2) - [E(X)]2; see the development under
Rule 3, immediately preceding Rule 4. We showed above that E(X) = p, and

Therefore,



Appendix C
Statistical Tables

C.1 The Binomial Probability
C.2 The Standardized Normal Distribution
C.3 Percentage Points of the t Distribution
C.4 Percentage Points of the Chi-Square Distribution
C.5 Upper Percentage Points of the F Distribution
C.6 Coefficients of Orthogonal Polynomials
C.7 Critical Values of the Bonferroni t Statistic
C.8 Distribution of Dunnett's d Statistic for Comparing

Treatment Means with a Control
C.9 Critical Values of the Studentized Range Distribution
C.10 Critical Values for the Wilcoxon Signed-Rank Test
C.11 Transformation of r to Z
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TABLE C.1 THE BINOMIAL PROBABILITY: p(y, n, p}

n =4

n = 5

n = 6

n = l

n = 8

n = 9

y

0
1
2
3
4

0
1
2
3
4
5

0
1
2
3
4
5
6

0
1
2
3
4
5
6
7

0
1
2
3
4
5
6
7
8

0
1
2
3
4

.05

.8145

.1715

.0135

.0005

.0000

.7738

.2036

.0214

.0011

.0000

.0000

.7351

.2321

.0305

.0021

.0001

.0000

.0000

.6983

.2573

.0406

.0036

.0002

.0000

.0000

.0000

.6634

.2793

.0515

.0054

.0004

.0000

.0000

.0000

.0000

.6302

.2985

.0629

.0077

.0006

.10

.6561

.2916

.0486

.0036

.0001

.5905

.3281

.0729

.0081

.0005

.0000

.5314

.3543

.0984

.0146

.0012

.0001

.0000

.4783

.3720

.1240

.0230

.0026

.0002

.0000

.0000

.4305

.3826

.1488

.0331

.0046

.0004

.0000

.0000

.0000

.3874

.3874

.1722

.0446

.0074

.15

.5220

.3685

.0975

.0115

.0005

.4437

.3915

.1382

.0244

.0022

.0001

.3771

.3993

.1762

.0415

.0055

.0004

.0000

.3206

.3960

.2097

.0617

.0109

.0012

.0001

.0000

.2725

.3847

.2376

.0839

.0185

.0026

.0002

.0000

.0000

.2316

.3679

.2597

.1069

.0283

.20

.4096

.4096

.1536

.0256

.0016

.3277

.4096

.2048

.0512

.0064

.0003

.2621

.3932

.2458

.0819

.0154

.0015

.0001

.2097

.3670

.2753

.1147

.0287

.0043

.0004

.0000

.1678

.3355

.2936

.1468

.0459

.0092

.0011

.0001

.0000

.1342

.3020

.3020

.1762

.0661

P

.25

.3164

.4219

.2109

.0469

.0039

.2373

.3955

.2637

.0879

.0146

.0010

.1780

.3560

.2966

.1318

.0330

.0044

.0002

.1335

.3115

.3115

.1730

.0577

.0115

.0013

.0001

.1001

.2670

.3115

.2076

.0865

.0231

.0038

.0004

.0000

.0751

.2253

.3003

.2336

.1168

.30

.2401

.4116

.2646

.0756

.0081

.1681

.3601

.3087

.1323

.0284

.0024

.1176

.3025

.3241

.1852

.0595

.0102

.0007

.0824

.2471

.3177

.2269

.0972

.0250

.0036

.0002

.0576

.1977

.2965

.2541

.1361

.0467

.0100

.0012

.0001

.0404

.1556

.2668

.2668

.1715

.35

.1785

.3845

.3105

.1115

.0150

.1160

.3124

.3364

.1811

.0488

.0053

.0754

.2437

.3280

.2355

.0951

.0205

.0018

.0490

.1848

.2985

.2679

.1442

.0466

.0084

.0006

.0319

.1373

.2587

.2786

.1875

.0808

.0217

.0033

.0002

.0207

.1004

.2162

.2716

.2194

.40

.1296

.3456

.3456

.1536

.0256

.0778

.2592

.3456

.2304

.0768

.0102

.0467

.1866

.3110

.2765

.1382

.0369

.0041

.0280

.1306

.2613

.2903

.1935

.0774

.0172

.0016

.0168

.0896

.2090

.2787

.2322

.1239

.0413

.0079

.0007

.0101

.0605

.1612

.2508

.2508

.45

.0915

.2995

.3675

.2005

.0410

.0503

.2059

.3369

.2757

.1128

.0185

.0277

.1359

.2780

.3032

.1861

.0609

.0083

.0152

.0872

.2140

.2918

.2388

.1172

.0320

.0037

.0084

.0548

.1569

.2568

.2627

.1719

.0703

.0164

.0017

.0046

.0339

.1110

.2119

.2600

.50

.0625

.2500

.3750

.2500

.0625

.0313

.1563

.3125

.3125

.1563

.0313

.0156

.0938

.2344

.3125

.2344

.0938

.0156

.0078

.0547

.1641

.2734

.2734

.1641

.0547

.0078

.0039

.0313

.1094

.2188

.2734

.2188

.1094

.0313

.0039

.0020

.0176

.0703

.1641

.2461
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TABLE C.1 (continued)

P

y

5
6
7
8
9

n = 10
0
1
2
3
4
5
6
7
8
9
10

n = 11
0
1
2
3
4
5
6
7
8
9
10
11

n = 12
0
1
2
3
4
5
6
7
8
9
10
11
12

.05

.0000

.0000

.0000

.0000

.0000

.5987

.3151

.0746

.0105

.0010

.0001

.0000

.0000

.0000

.0000

.0000

.5688

.3293

.0867

.0137

.0014

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.5404

.3413

.0988

.0173

.0021

.0002

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.10

.0008

.0001

.0000

.0000

.0000

.3487

.3874

.1937

.0574

.0112

.0015

.0001

.0000

.0000

.0000

.0000

.3138

.3835

.2131

.0710

.0158

.0025

.0003

.0000

.0000

.0000

.0000

.0000

.2824

.3766

.2301

.0852

.0213

.0038

.0005

.0000

.0000

.0000

.0000

.0000

.0000

.15

.0050

.0006

.0000

.0000

.0000

.1969

.3474

.2759

.1298

.0401

.0085

.0012

.0001

.0000

.0000

.0000

.1673

.3248

.2866

.1517

.0536

.0132

.0023

.0003

.0000

.0000

.0000

.0000

.1422

.3012

.2924

.1720

.0683

.0193

.0040

.0006

.0001

.0000

.0000

.0000

.0000

.20

.0165

.0028

.0003

.0000

.0000

.1074

.2684

.3020

.2013

.0881

.0264

.0055

.0008

.0001

.0000

.0000

.0859

.2362

.2953

.2215

.1107

.0388

.0097

.0017

.0002

.0000

.0000

.0000

.0687

.2062

.2835

.2362

.1329

.0532

.0155

.0033

.0005

.0001

.0000

.0000

.0000

.25

.0389

.0087

.0012

.0001

.0000

.0563

.1877

.2816

.2503

.1460

.0584

.0162

.0031

.0004

.0000

.0000

.0422

.1549

.2581

.2581

.1721

.0803

.0268

.0064

.0011

.0001

.0000

.0000

.0317

.1267

.2323

.2581

.1936

.1032

.0401

.0115

.0024

.0004

.0000

.0000

.0000

.30

.0735

.0210

.0039

.0004

.0000

.0282

.1211

.2335

.2668

.2001

.1029

.0368

.0090

.0014

.0001

.0000

.0198

.0932

.1998

.2568

.2201

.1321

.0566

.0173

.0037

.0005

.0000

.0000

.0138

.0712

.1678

.2397

.2311

.1585

.0792

.0291

.0078

.0015

.0002

.0000

.0000

.35

.1181

.0424

.0098

.0013

.0001

.0135

.0725

.1757

.2522

.2377

.1536

.0689

.0212

.0043

.0005

.0000

.0088

.0518

.1395

.2254

.2428

.1830

.0985

.0379

.0102

.0018

.0002

.0000

.0057

.0368

.1088

.1954

.2367

.2039

.1281

.0591

.0199

.0048

.0008

.0001

.0000

.40

.1672

.0743

.0212

.0035

.0003

.0060

.0403

.1209

.2150

.2508

.2007

.1115

.0425

.0106

.0016

.0001

.0036

.0266

.0887

.1774

.2365

.2207

.1471

.0701

.0234

.0052

.0007

.0000

.0022

.0174

.0639

.1419

.2128

.2270

.1766

.1009

.0420

.0125

.0025

.0003

.0000

.45

.2128
,1160
.0407
.0083
.0008

.0025

.0207

.0763

.1665

.2384

.2340

.1596

.0746

.0229

.0042

.0003

.0014

.0125

.0513

.1259

.2060

.2360

.1931

.1128

.0462

.0126

.0021

.0002

.0008

.0075

.0339

.0923

.1700

.2225

.2124

.1489

.0762

.0277

.0068

.0010

.0001

.50

.2461

.1641

.0703

.0176

.0020

.0010

.0098

.0439

.1172

.2051

.2461

.2051

.1172

.0439

.0098

.0010

.0005

.0054

.0269

.0806

.1611

.2256

.2256

.1611

.0806

.0269

.0054

.0005

.0002

.0029

.0161

.0537

.1208

.1934

.2256

.1934

.1208

.0537

.0161

.0029

.0002

655



TABLE C.1 (continued)

P

y

n = 13
0
1
2
3
4
5
6
7
8
9
10
11
12
13

n = 14
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14

n = 15
0
1
2
3
4
5
6
7
8
9
10
11
12

.05

.5133

.3512

.1109

.0214

.0028

.0003

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.4877

.3593

.1229

.0259

.0037

.0004

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.4633

.3658

.1348

.0307

.0049

.0006

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.10

.2542

.3672

.2448

.0997
0.277
.0055
.0008
.0001
.0000
.0000
.0000
.0000
.0000
.0000

.2288

.3559

.2570

.1142

.0349

.0078

.0013

.0002

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.2059

.3432

.2669

.1285

.0428

.0105

.0019

.0003

.0000

.0000

.0000

.0000

.0000

.15

.1209

.2774

.2937

.1900

.0838

.0266

.0063

.0011

.0001

.0000

.0000

.0000

.0000

.0000

.1028

.2539

.2912

.2056

.0998

.0352

.0093

.0019

.0003

.0000

.0000

.0000

.0000

.0000

.0000

.0874

.2312

.2856

.2184

.1156

.0449

.0132

.0030

.0005

.0001

.0000

.0000

.0000

.20

.0550

.1787

.2680

.2457

.1535

.0691

.0230

.0058

.0011

.0001

.0000

.0000

.0000

.0000

.0440

.1539

.2501

.2501

.1720

.0860

.0322

.0092

.0020

.0003

.0000

.0000

.0000

.0000

.0000

.0352

.1319

.2309

.2501

.1876

.1032

.0430

.0138

.0035

.0007

.0001

.0000

.0000

.25

.0238

.1029

.2059

.2517

.2097

.1258

.0559

.0186

.0047

.0009

.0001

.0000

.0000

.0000

.0178

.0832

.1802

.2402

.2202

.1468

.0734

.0280

.0082

.0018

.0003

.0000

.0000

.0000

.0000

.0134

.0668

.1559

.2252

.2252

.1651

.0917

.0393

.0131

.0034

.0007

.0001

.0000

.30

.0097

.0540

.1388

.2181

.2337

.1803

.1030

.0442

.0142

.0034

.0006

.0001

.0000

.0000

.0068

.0407

.1134

.1943

.2290

.1963

.1262

.0618

.0232

.0066

.0014

.0002

.0000

.0000

.0000

.0047

.0305

.0916

.1700

.2186

.2061

.1472

.0811

.0348

.0116

.0030

.0006

.0001

.35

.0037

.0259

.0836

.1651

.2222

.2154

.1546

.0833

.0336

.0101

.0022

.0003

.0000

.0000

.0024

.0181

.0634

.1366

.2022

.2178

.1759

.1082

.0510

.0183

.0049

.0010

.0001

.0000

.0000

.0016

.0126

.0476

.1110

.1792

.2123

.1906

.1319

.0710

.0298

.0096

.0024

.0004

.40

.0013

.0113

.0453

.1107

.1845

.2214

.1968

.1312

.0656

.0243

.0065

.0012

.0001

.0000

.0008

.0073

.0317

.0845

.1549

.2066

.2066

.1574

.0918

.0408

.0136

.0033

.0005

.0001

.0000

.0005

.0047

.0219

.0634

.1268

.1859

.2066

.1771

.1181

.0612

.0245

.0074

.0016

.45

.0004

.0045

.0220

.0660

.1350

.1989

.2169

.1775

.1089

.0495

.0162

.0036

.0005

.0000

.0002

.0027

.0141

.0462

.1040

.1701

.2088

.1952

.1398

.0762

.0312

.0093

.0019

.0002

.0000

.0001

.0016

.0090

.0318

.0780

.1404

.1914

.2013

.1647

.1048

.0515

.0191

.0052

.50

.0001

.0016

.0095

.0349

.0873

.1571

.2095

.2095

.1571

.0873

.0349

.0095

.0016

.0001

.0001

.0009

.0056

.0222

.0611

.1222

.1833

.2095

.1833

.1222

.0611

.0222

.0056

.0009

.0001

.0000

.0005

.0032

.0139

.0417

.0916

.1527

.1964

.1964

.1527

.0916

.0417

.0139
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TABLE C.1 (continued)

P

y

13
14
15

n = l6
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

n = 17
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

n = 18
0
1
2
3

.05

.0000

.0000

.0000

.4401

.3706

.1463

.0359

.0061

.0008

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.4181

.3741

.1575

.0415

.0076

.0010

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.3972

.3763

.1683

.0473

.10

.0000

.0000

.0000

.1853

.3294

.2745

.1423

.0514

.0137

.0028

.0004

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.1668

.3150

.2800

.1556

.0605

.0175

.0039

.0007

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.1501

.3002

.2835

.1680

.15

.0000

.0000

.0000

.0743

.2097

.2775

.2285

.1311

.0555

.0180

.0045

.0009

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0631

.1893

.2673

.2359

.1457

.0668

.0236

.0065

.0014

.0003

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0536

.1704

.2556

.2406

.20

.0000

.0000

.0000

.0281

.1126

.2111

.2463

.2001

.1201

.0550

.0197

.0055

.0012

.0002

.0000

.0000

.0000

.0000

.0000

.0000

.0225

.0957

.1914

.2393

.2093

.1361

.0680

.0267

.0084

.0021

.0004

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0180

.0811

.1723

.2297

.25

.0000

.0000

.0000

.0100

.0535

.1336

.2079

.2252

.1802

.1101

.0524

.0197

.0058

.0014

.0002

.0000

.0000

.0000

.0000

.0000

.0075

.0426

.1136

.1893

.2209

.1914

.1276

.0668

.0279

.0093

.0025

.0005

.0001

.0000

.0000

.0000

.0000

.0000

.0056

.0338

.0958

.1704

.30

.0000

.0000

.0000

.0033

.0228

.0732

.1465

.2040

.2099

.1649

.1010

.0487

.0185

.0056

.0013

.0002

.0000

.0000

.0000

.0000

.0023

.0169

.0581

.1245

.1868

.2081

.1784

.1201

.0644

.0276

.0095

.0026

.0006

.0001

.0000

.0000

.0000

.0000

.0016

.0126

.0458

.1046

.35

.0001

.0000

.0000

.0010

.0087

.0353

.0888

.1553

.2008

.1982

.1524

.0923

.0442

.0167

.0049

.0011

.0002

.0000

.0000

.0000

.0007

.0060

.0260

.0701

.1320

.1849

.1991

.1685

.1134

.0611

.0263

.0090

.0024

.0005

.0001

.0000

.0000

.0000

.0004

.0042

.0190

.0547

.40

.0003

.0000

.0000

.0003

.0030

.0150

.0468

.1014

.1623

.1983

.1889

.1417

.0840

.0392

.0142

.0040

.0008

.0001

.0000

.0000

.0002

.0019

.0102

.0341

.0796

.1379

.1839

.1927

.1606

.1070

.0571

.0242

.0081

.0021

.0004

.0001

.0000

.0000

.0001

.0012

.0069

.0246

.45

.0010

.0001

.0000

.0001

.0009

.0056

.0215

.0572

.1123

.1684

.1969

.1812

.1318

.0755

.0337

.0115

.0029

.0005

.0001

.0000

.0000

.0005

.0035

.0144

.0411

.0875

.1432

.1841

.1883

.1540

.1008

.0525

.0215

.0068

.0016

.0003

.0000

.0000

.0000

.0003

.0022

.0095

.50

.0032

.0005

.0000

.0000

.0002

.0018

.0085

.0278

.0667

.1222

.1746

.1964

.1746

.1222

.0667

.0278

.0085

.0018

.0002

.0000

.0000

.0001

.0010

.0052

.0182

.0472

.0944

.1484

.1855

.1855

.1484

.0944

.0472

.0182

.0052

.0010

.0001

.0000

.0000

.0001

.0006

.0031
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TABLE C.1 (continued)

P

y

4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

n = 19
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

n = 20
0
1
2
3
4
5
6
7

.05

.0093

.0014

.0002

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.3774

.3774

.1787

.0533

.0112

.0018

.0002

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.3585

.3774

.1887

.0596

.0133

.0022

.0003

.0000

.10

.0700

.0218

.0052

.0010

.0002

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.1351

.2852

.2852

.1796

.0798

.0266

.0069

.0014

.0002

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.1216

.2702

.2852

.1901

.0898

.0319

.0089

.0020

.15

.1592

.0787

.0301

.0091

.0022

.0004

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0456

.1529

.2428

.2428

.1714

.0907

.0374

.0122

.0032

.0007

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0388

.1368

.2293

.2428

.1821

.1028

.0454

.0160

.20

.2153

.1507

.0816

.0350

.0120

.0033

.0008

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0144

.0685

.1540

.2182

.2182

.1636

.0955

.0443

.0166

.0051

.0013

.0003

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0115

.0576

.1369

.2054

.2182

.1746

.1091

.0545

.25

.2130

.1988

.1436

.0820

.0376

.0139

.0042

.0010

.0002

.0000

.0000

.0000

.0000

.0000

.0000

.0042

.0268

.0803

.1517

.2023

.2023

.1574

.0974

.0487

.0198

.0066

.0018

.0004

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0032

.0211

.0669

.1339

.1897

.2023

.1686

.1124

.30

.1681

.2017

.1873

.1376

.0811

.0386

.0149

.0046

.0012

.0002

.0000

.0000

.0000

.0000

.0000

.0011

.0093

.0358

.0869

.1491

.1916

.1916

.1525

.0981

.0514

.0220

.0077

.0022

.0005

.0001

.0000

.0000

.0000

.0000

.0000

.0008

.0068

.0278

.0716

.1304

.1789

.1916

.1643

.35

.1104

.1664

.1941

.1792

.1327

.0794

.0385

.0151

.0047

.0012

.0002

.0000

.0000

.0000

.0000

.0003

.0029

.0138

.0422

.0909

.1468

.1844

.1844

.1489

.0980

.0528

.0233

.0083

.0024

.0006

.0001

.0000

.0000

.0000

.0000

.0002

.0020

.0100

.0323

.0738

.1272

.1712

.1844

.40

.0614

.1146

.1655

.1892

.1734

.1284

.0771

.0374

.0145

.0045

.0011

.0002

.0000

.0000

.0000

.0001

.0008

.0046

.0175

.0467

.0933

.1451

.1797

.1797

.1464

.0976

.0532

.0237

.0085

.0024

.0005

.0001

.0000

.0000

.0000

.0000

.0005

.0031

.0123

.0350

.0746

.1244

.1659

.45

.0291

.0666

.1181

.1657

.1864

.1694

.1248

.0742

.0354

.0134

.0039

.0009

.0001

.0000

.0000

.0000

.0002

.0013

.0062

.0203
,0497
.0949
.1443
.1771
.1771
.1449
.0970
.0529
.0233
.0082
.0022
.0005
.0001
.0000
.0000

.0000

.0001

.0008

.0040

.0139

.0365

.0746

.1221

,50

.0117

.0327

.0708

.1214

.1669

.1855

.1669

.1214

.0708

.0327

.0117

.0031

.0006

.0001

.0000

.0000

.0000

.0003

.0018

.0074

.0222

.0518

.0961

.1442

.1762

.1762

.1442

.0961

.0518

.0222

.0074

.0018

.0003

.0000

.0000

.0000

.0000

.0002

.0011

.0046

.0148

.0370

.0739
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TABLE C.1 (continued)

P

y

8
9
10
11
12
13
14
15
16
17
18
19
20

.05

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.10

.0004

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.15

.0046

.0011

.0002

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.20

.0222

.0074

.0020

.0005

.0001

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.25

.0609

.0271

.0099

.0030

.0008

.0002

.0000

.0000

.0000

.0000

.0000

.0000

.0000

.30

.1144

.0654

.0308

.0120

.0039

.0010

.0002

.0000

.0000

.0000

.0000

.0000

.0000

.35

.1614

.1158

.0686

.0336

.0136

.0045

.0012

.0003

.0000

.0000

.0000

.0000

.0000

.40

.1797

.1597

.1171

.0710

.0355

.0146

.0049

.0013

.0003

.0000

.0000

.0000

.0000

.45

.1623

.1771

.1593

.1185

.0727

.0366

.0150

.0049

.0013

.0002

.0000

.0000

.0000

.50

.1201

.1602

.1762

.1602

.1201

.0739

.0370

.0148

.0046

.0011

.0002

.0000

.0000
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TABLE C.2 THE STANDARDIZED NORMAL DISTRIBUTION

z

.00

.01

.02

.03

.04

.05

.06

.07

.08

.09

.10

.11

.12

.13

.14

.15

.16

.17

.18

.19

.20

.21

.22

.23

.24

.25

.26

.27

.28

.29

.30

.31

.32

a

.5000

.4960

.4920

.4880

.4840

.4801

.4761

.4721

.4681

.4641

.4602

.4562

.4522

.4483

.4443

.4404

.4364

.4325

.4286

.4247

.4207

.4168

.4129

.4090

.4052

.4013

.3974

.3936

.3897

.3859

.3821

.3783

.3745

z

.33

.34

.35

.36

.37

.38

.39

.40

.41

.42

.43

.44

.45

.46

.47

.48

.49

.50

.51

.52

.53

.54

.55

.56

.57

.58

.59

.60

.61

.62

.63

.64

.65

a

.3707

.3669

.3632

.3594

.3557

.3520

.3483

.3446

.3409

.3372

.3336

.3300

.3264

.3228

.3192

.3156

.3121

.3085

.3050

.3015

.2981

.2946

.2912

.2877

.2843

.2810

.2776

.2743

.2709

.2676

.2643

.2611

.2578

z

.66

.67

.68

.69

.70

.71

.72

.73

.74

.75

.76

.77

.78

.79

.80

.81

.82

.83

.84

.85

.86

.87

.88

.89

.90

.91

.92

.93

.94

.95

.96

.97

.98

a

.2546

.2514

.2483

.2451

.2420

.2389

.2358

.2327

.2296

.2266

.2236

.2206

.2177

.2148

.2119

.2090

.2061

.2033

.2005

.1977

.1949

.1922

.1894

.1867

.1841

.1814

.1788

.1762

.1736

.1711

.1685

.1660

.1635

z

.99
1.00
1.01
1.02
1.03
1.04
1.05
1.06
1.07
1.08
1.09
1.10
1.11
1.12
1.13
1.14
1.15
1.16
1.17
1.18
1.19
1.20
1.21
1.22
1.23
1.24
1.25
1.26
1.27
1.28
1.29
1.30
1.31

a

.1611

.1587

.1562

.1539

.1515

.1492

.1469

.1446

.1423

.1401

.1379

.1357

.1335

.1314

.1292

.1271

.1251

.1230

.1210

.1190

.1170

.1151

.1131

.1112

.1093

.1075

.1056

.1038

.1020

.1003

.0985

.0968

.0951

z

1.32
1.33
1.34
1.35
1.36
1.37
1.38
1.39
1.40
1.41
1.42
1.43
1.44
1.45
1.46
1.47
1.48
1.49
1.50
1.51
1.52
1.53
1.54
1.55
1.56
1.57
1.58
1.59
1.60
1.61
1.62
1.63
1.64

a

.0934

.0918

.0901

.0885

.0869

.0853

.0838

.0823

.0808

.0793

.0778

.0764

.0749

.0735

.0721

.0708

.0694

.0681

.0668

.0655

.0643

.0630

.0618

.0606

.0594

.0582

.0571

.0559

.0548

.0537

.0526

.0516

.0505
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TABLE C.2 (continued)

z

1.65
1.66
1.67
1.68
1.69
1.70
1.71
1.72
1.73
1.74
1.75
1.76
1.77
1.78
1.79
1.80
1.81
1.82
1.83
1.84
1.85
1.86
1.87
1.88
1.89
1.90
1.91
1.92
1.93
1.94
1.95
1.96
1.97

a

.0495

.0485

.0475

.0465

.0455

.0446

.0436

.0427

.0418

.0409

.0401

.0392

.0384

.0375

.0367

.0359

.0351

.0344

.0336

.0329

.0322

.0314

.0307

.0301

.0294

.0287

.0281

.0274

.0268

.0262

.0256

.0250

.0244

z

1.98
1.99
2.00
2.01
2.02
2.03
2.04
2.05
2.06
2.07
2.08
2.09
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22
2.23
2.24
2.25
2.26
2.27
2.28
2.29
2.30

a

.0239

.0233

.0228

.0222

.0217

.0212

.0207

.0202

.0197

.0192

.0188

.0183

.0179

.0174

.0170

.0166

.0162

.0158

.0154

.0150

.0146

.0143

.0139

.0136

.0132

.0129

.0125

.0122

.0119

.0116

.0113

.0110

.0107

z

2.31
2.32
2.33
2.34
2.35
2.36
2.37
2.38
2.39
2.40
2.41
2.42
2.43
2.44
2.45
2.46
2.47
2.48
2.49
2.50
2.51
2.52
2.53
2.54
2.55
2.56
2.57
2.58
2.59
2.60
2.61
2.62
2.63

a

.0104

.0102

.0099

.0096

.0094

.0091

.0089

.0087

.0084

.0082

.0080

.0078

.0075

.0073

.0071

.0069

.0068

.0066

.0064

.0062

.0060

.0059

.0057

.0055

.0054

.0052

.0051

.0049

.0048

.0047

.0045

.0044

.0043

z

2.64
2.65
2.66
2.67
2.68
2.69
2.70
2.71
2.72
2.73
2.74
2.75
2.76
2.77
2.78
2.79
2.80
2.81
2.82
2.83
2.84
2.85
2.86
2.87
2.88
2.89
2.90
2.91
2.92
2.93
2.94
2.95
2.96

a

.0041

.0040

.0039

.0038

.0037

.0036

.0035

.0034

.0033

.0032

.0031

.0030

.0029

.0028

.0027

.0026

.0026

.0025

.0024

.0023

.0023

.0022

.0021

.0021

.0020

.0019

.0019

.0018

.0018

.0017

.0016

.0016

.0015

z

2.97
2.98
2.99
3.00
3.01
3.02
3.03
3.04
3.05
3.06
3.07
3.08
3.09
3.10
3.11
3.12
3.13
3.14
3.15
3. 16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25

a

.0015

.0014

.0014

.0013

.0013

.0013

.0012

.0012

.0011

.0011

.0011

.0010

.0010

.0010

.0009

.0009

.0009

.0008

.0008

.0008

.0008

.0007

.0007

.0007

.0007

.0006

.0006

.0006

.0006

Source: Adapted from Table 1 in Pearson, E. S. and Hartley, H. O. (1958). Biometrika Tables for Statisticians. Vol. 1.
2nd ed. Cambridge University Press: Cambridge, with the kind permission of the trustees of Biometrika.
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Level of Significance for a One-Tailed Test

0.4 0.25 0.1 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

Level of Significance for a Two-Tailed Test

df

1

2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

30
40
60

120
oc

0.8

0.325
.289
.277
.271

0.267
.265
.263
.262
.261

0.260
.260
.259
.259
.258

0.258
.258
.257
.257
.257

0.257
.257
.256
.256
.256

0.256
.256
.256
.256
.256

0.256
.255
.254
.254
.253

0.5

1.000
0.816

.765

.741

0.727
.718
.711
.706
.703

0.700
.697
.695
.694
.692

0.691
.690
.689
.688
.688

0.687
.686
.686
.685
.685

0.684
.684
.684
.683
.683

0.683
.681
.679
.677
.674

0.2

3.078
1.886
1.638
1.533

1.476
1.440
1.415
1.397
1.383

1.372
1.363
1.356
1.350
1.345

1.341
1.337
1.333
1.330
1.328

1.325
1.323
1.321
1.319
1.318

1.316
1.315
1.314
1.313
1.311

1.310
1.303
1.296
1.289
1.282

0.1

6.314
2.920
2.353
2.132

2.015
1.943
1.895
1.860
1.833

1.812
1.796
1.782
1.771
1.761

1.753
1.746
1.740
1.734
1.729

1.725
1.721
1.717
1.714
1.711

1.708
1.706
1.703
1.701
1.699

1.697
1.684
1.671
1.658
1.645

0.05

12.706
4.303
3.182
2.776

2.571
2.447
2.365
2.306
2.262

2.228
2.201
2.179
2.160
2.145

2.131
2.120
2.110
2.101
2.093

2.086
2.080
2.074
2.069
2.064

2.060
2.056
2.052
2.048
2.045

2.042
2.021
2.000
1.980
1.960

0.02

31.821
6.965
4.541
3.747

3.365
3.143
2.998
2.896
2.821

2.764
2.718
2.681
2.650
2.624

2.602
2.583
2.567
2.552
2.539

2.528
2.518
2.508
2.500
2.492

2.485
2.479
2.473
2.467
2.462

2.457
2.423
2.390
2.358
2.326

0.01

63.657
9.925
5.841
4.604

4.032
3.707
3.499
3.355
3.250

3.169
3.106
3.055
3.012
2.977

2.947
2.921
2.898
2.878
2.861

2.845
2.831
2.819
2.807
2.797

2.787
2.779
2.771
2.763
2.756

2.750
2.704
2.660
2.617
2.576

0.005

127.32
14.089
7.453
5.598

4.773
4.317
4.029
3.833
3.690

3.581
3.497
3.428
3.372
3.326

3.286
3.252
3.222
3.197
3.174

3.153
3.135
3.119
3.104
3.091

3.078
3.067
3.057
3.047
3.038

3.030
2.971
2.915
2.860
2.807

0.002

318.31
22.326
10.213
7.173

5.893
5.208
4.785
4.501
4.297

4.144
4.025
3.930
3.852
3.787

3.733
3.686
3.646
3.610
3.579

3.552
3.527
3.505
3.485
3.467

3.450
3.435
3.421
3.408
3.396

3.385
3.307
3.232
3.160
3.090

0.001

636.62
31.598
12.924
8.610

6.869
5.959
5.408
5.041
4.781

4.587
4.437
4.318
4.221
4.140

4.073
4.015
3.965
3.922
3.883

3.850
3.819
3.792
3.767
3.745

3.725
3.707
3.690
3.674
3.659

3.646
3.551
3.460
3.373
3.291

Source: Adapted from Table 12 in Pearson, E. S. and Hartley. H. O. (1958). Biometrika Tables for Statisticians, Vol. 1,
2nd ed. Cambridge University Press: Cambridge, with the kind permission of the trustees of Biometrika.
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TABLE C.3 PERCENTAGE POINTS OF THE t DISTRIBUTION



1
2

3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

30
40
50
60

70
80
90
100

Z

0.995

392704. 10-10

0.0100251
0.0717212
0.206990

0.411740
0.675727
0.989265
1.344419
1.734926

2.15585
2.60321
3.07382
3.56503
4.07468

4.60094
5.14224
5.69724
6.26481
6.84398

7.43386
8.03366
8.64272
9.26042
9.88623

10.5197
11.1603
11.8076
12.4613
13.1211

13.7867
20.7065
27.9907
35.5346

43.2752
51.1720
59.1963
67.3276

-2.5758

0.990

157088. 10-9

0.0201007
0.114832
0.297110

0.554300
0.872085
1.239043
1.646482
2.087912

2.55821
3.05347
3.57056
4.10691
4.66043

5.22935
5.81221
6.40776
7.01491
7.63273

8.26040
8.89720
9.54249
10.19567
10.8564

11.5240
12.1981
12.8786
13.5648
14.2565

14.9535
22.1643
29.7067
37.4848

45.4418
53.5400
61.7541
70.0648

-2.3263

0.975

982069. 10-9

0.0506356
0.215795
0.484419

0.831211
1.237347
1.68987
2.17973
2.70039

3.24697
3.81575
4.40379
5.00874
5.62872

6.26214
6.90766
7.56418
8.23075
8.90655

9.59083
10.28293
10.9823
11.6885
12.4011

13.1197
13.8439
14.5733
15.3079
16.0471

16.7908
24.4331
32.3574
40.4817

48.7576
57.1532
65.6466
74.2219

-1.9600

0.950

393214.10-8

0.102587
0.351846
0.710721

1.145476
1.63539
2.16735
2.73264
3.32511

3.94030
4.57481
5.22603
5.89186
6.57063

7.26094
7.96164
8.67176
9.39046
10.1170

10.8508
11.5913
12.3380
13.0905
13.8484

14.6114
15.3791
16.1513
16.9279
17.7083

18.4926
26.5093
34.7642
43.1879

51.7393
60.3915
69.1260
77.9295

-1.6449

0.900

0.0157908
0.210720
0.584375
1.063623

1.61031
2.20413
2.83311
3.48954
4.16816

4.86518
5.57779
6.30380
7.04150
7.78953

8.54675
9.31223
10.0852
10.8649
11.6509

12.4426
13.2396
14.0415
14.8479
15.6587

16.4734
17.2919
18.1138
18.9392
19.7677

20.5992
29.0505
37.6886
46.4589

55.3290
64.2778
73.2912
82.3581

-1.2816

0.750

0.1015308
0.575364
1.212534
1.92255

2.67460
3.45460
4.25485
5.07064
5.89883

6.73720
7.58412
8.43842
9.29906
10.1653

11.0365
11.9122
12.7919
13.6753
14.5620

15.4518
16.3444
17.2396
18.1373
19.0372

19.9393
20.8434
21.7494
22.6572
23.5666

24.4776
33.6603
42.9421
52.2938

61.6983
71.1445
80.6247
90.1332

-0.6745

0.500

0.454937
1.38629
2.36597
3.35670

4.35146
5.34812
6.34581
7.34412
8.34283

9.34182
10.3410
11.3403
12.3398
13.3393

14.3389
15.3385
16.3381
17.3379
18.3376

19.3374
20.3372
21.3370
22.3369
23.3367

24.3366
25.3364
26.3363
27.3363
28.3362

29.3360
39.3354
49.3349
59.3347

69.3344
79.3343
89.3342
99.3341

0.0000
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TABLE C.4 (continued)

^\ a

df \̂

1
2
3
4

5
6
7
8
9

10
11
12
13
14

15
16
17
18
19

20
21
22
23
24

25
26
27
28
29

30
40
50
60

70
80
90
100

Z

0.250

1.32330
2.77259
4.10835
5.38527

6.62568
7.84080
9.03715
10.2188
11.3887

12.5489
13.7007
14.8454
15.9839
17.1170

18.2451
19.3688
20.4887
21.6049
22.7178

23.8277
24.9348
26.0393
27.1413
28.2412

29.3389
30.4345
31.5284
32.6205
33.7109

34.7998
45.6160
56.3336
66.9814

77.5766
88.1303
98.6499
109.141

+0.6745

For df > 100 take

0.100

2.70554
4.60517
6.25139
7.77944

9.23635
10.6446
12.0170
13.3616
14.6837

15.9871
17.2750
18.5494
19.8119
21.0642

22.3072
23.5418
24.7690
25.9894
27.2036

28.4120
29.6151
30.8133
32.0069
33.1963

34.3816
35.5631
36.7412
37.9159
39.0875

40.2560
51.8050
63.1671
74.3970

85.5271
96.5782
107.565
118.498

+ 1.2816

0.050

3.84146
5.99147
7.81473
9.48773

11.0705
12.5916
14.0671
15.5073
16.9190

18.3070
19.6751
21.0261
22.3621
23.6848

24.9958
26.2962
27.5871
28.8693
30.1435

31.4104
32.6705
33.9244
35.1725
36.4151

37.6525
38.8852
40.1133
41.3372
42.5569

43.7729
55.7585
67.5048
79.0819

90.5312
101.879
113.145
124.342

+ 1.6449

0.025

5.02389
7.37776
9.34840
11.1433

12.8325
14.4494
16.0128
17.5346
19.0228

20.4831
21.9200
23.3367
24.7356
26.1190

27.4884
28.8454
30.1910
31.5264
32.8523

34.1696
35.4789
36.7807
38.0757
39.3641

40.6465
41.9232
43.1944
44.4607
45.7222

46.9792
59.3417
71.4202
83.2976

95.0231
106.629
118.136
129.561

+ 1.9600

0.010

6.63490
9.21034
11.3449
13.2767

15.0863
16.8119
18.4753
20.0902
21.6660

23.2093
24.7250
26.2170
27.6883
29.1413

30.5779
31.9999
33.4087
34.8053
36.1908

37.5662
38.9321
40.2894
41.6384
42.9798

44.3141
45.6417
46.9630
48.2782
49.5879

50.8922
63.6907
76.1539
88.3794

100.425
112.329
124.116
135.807

+2.3263

0.005

7.87944
10.5966
12.8381
14.8602

16.7496
18.5476
20.2777
21.9550
23.5893

25.1882
26.7569
28.2995
29.8194
31.3193

32.8013
34.2672
35.7185
37.1564
38.5822

39.9968
41.4010
42.7956
44.1813
45.5585

46.9278
48.2899
49.6449
50.9933
52.3356

53.6720
66.7659
79.4900
91.9517

104.215
116.321
128.299
140.169

+2.5758

0.001

10.828
13.816
16.266
18.467

20.515
22.458
24.322
26.125
27.877

29.588
31.264
32.909
34.528
36.123

37.697
39.252
40.790
42.312
43.820

45.315
46.797
48.268
49.728
51.179

52.620
54.052
55.476
56.892
58.302

59.703
73.402
86.661
99.607

112.317
124.839
137.208
149.449

+3.0902

according to the degree of accuracy required, z is the standardized normal deviate corresponding to a and is shown in the bottom line of the
table.
Source: Adapted from Table 8 in Pearson, E. S. and Hartley, H. O. (1958). Biometrika Tables for Statisticians, Vol. 1, 2nd ed. Cambridge
University Press: Cambridge, with the kind permission of the trustees of Biometrika.
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TABLE C.5 UPPER PERCENTAGE POINTS OF THE F DISTRIBUTION 

a 

- 
.oo 1 
.005 
.01 
.025 
.05 
.10 
.25 
.001 
.005 
.01 
.025 
.05 
.10 
.25 
.001 
.005 
.01 
.025 
.05 
.10 
.25 
.001 
.005 
.01 
.025 
.05 
.10 
.25 
.001 
.005 
.o 1 
.025 
.05 
.10 
.25 

405284 
1621 1 
4052 

647.79 
161.45 
39.86 
5.83 

998.5 
198.50 
98.49 
38.51 
18.5 1 
8.53 
2.56 

55.55 
34.12 
17.44 
10.13 
5.54 
2.02 

74.14 
3 1.33 
21.20 
12.22 
7.71 
4.54 
1.81 

47.04 
22.79 
16.26 
10.01 
6.61 
4.06 
1.70 

167.5 

500000 
20000 
4999 

799.50 
199.50 
49.50 
7.50 

999.0 
199.00 
99.00 
39.00 
19.00 
9.00 
3.00 

49.80 
30.81 
16.04 
9.55 
5.46 
2.28 

61.25 
26.28 
18.00 
10.65 
6.94 
4.32 
2.00 

36.61 
18.31 
13.27 
8.43 
5.79 
3.78 
1.85 

148.5 

540379 
21615 
5403 

864.16 
215.71 
53.59 
8.20 

999.2 
199.17 
99.17 
39.17 
19.16 
9.16 
3.15 

47.47 
29.46 
15.44 
9.28 
5.39 
2.36 

56.18 
24.26 
16.69 
9.98 
6.59 
4.19 
2.05 

33.20 
16.53 
12.06 
7.76 
5.41 
3.62 
1.89 

141.1 

562500 
22500 
5625 
899.58 
224.58 
55.83 
8.58 

999.2 
199.25 
99.25 
39.25 
19.25 
9.24 
3.23 

46.20 
28.71 
15.10 
9.12 
5.34 
2.39 

53.44 
23.16 
15.98 
9.60 
6.39 
4.11 
2.06 

3 1.09 
15.56 
11.39 
7.39 
5.19 
3.52 
1.85, 

137.1 

576405 
23056 
5764 
921.85 
230.16 
57.24 
8.82 

999.3 
199.30 
99.30 
39.30 
19.30 
9.29 
3.28 

45.39 
28.24 
14.89 
9.01 
5.31 
2.41 

51.71 
22.46 
15.52 
9.36 
6.26 
4.05 
2.07 

29.75 
14.94 
10.97 
7.15 
5.05 
3.45 
1.89 

134.6 

585937 
23437 
5859 
937.1 1 
233.99 
58.20 
8.98 

999.3 
199.33 
99.33 
39.33 
19.33 
9.33 
3.31 

44.84 
27.91 
14.74 
8.94 
5.28 
2.42 

50.53 
21.98 
15.21 
9.20 
6.16 
4.01 
2.08 

28.84 
14.5 1 
10.67 
6.98 
4.95 
3.40 
1.89 

132.8 

598 144 
23925 
598 1 
956.66 
238.88 
59.44 
9.19 

999.4 
199.37 
99.36 
39.37 
19.37 
9.37 
3.35 

44.13 
27.49 
14.54 
8.84 
5.25 
2.44 

49.00 
21.35 
14.80 
8.98 
6.04 
3.95 
2.08 

27.64 
13.96 
10.29 
6.76 
4.82 
3.34 
1.89 

130.6 

6 10667 
24426 
6106 
976.7 1 
243.91 
60.70 
9.41 

999.4 
199.42 
99.42 
39.42 
19.41 
9.41 
3.39 

43.39 
27.05 
14.34 
8.74 
5.22 
2.45 

47.41 
20.71 
14.37 
8.75 
5.91 
3.90 
2.08 

26.42 
13.38 
9.89 
6.52 
4.68 
3.27 
1.89 

128.3 

623497 
24940 
6234 
997.25 
249.05 
62.00 
9.63 

999.5 
199.46 
99.46 
39.46 
19.45 
9.45 
3.44 

42.62 
26.60 
14.12 
8.64 
5.18 
2.46 

45.77 
20.03 
13.93 
8.5 1 
5.77 
3.83 
2.08 

25.14 
12.78 
9.47 
6.28 
4.53 
3.19 
1.88 

125.9 

636619 
25465 
6366 
1018.30 
254.32 
63.33 
9.85 

999.5 
199.5 1 
99.50 
39.50 
19.50 
9.49 
3.48 

41.83 
26.12 
13.90 
8.53 
5.13 
2.47 

44.05 
19.33 
13.46 
8.26 
5.63 
3.76 
2.08 

23.78 
12.14 
9.02 
6.02 
4.36 
3.10 
1.87 

123.5 



TABLE C.5 (continued) 

6 

7 

8 

9 

10 

- 
a 

- 
.001 
.005 
.01 
.025 
.05 
.10 
.25 
.oo 1 
.005 
.o 1 
.025 
.05 
.10 
.25 
.oo 1 
.005 
.o 1 
.025 
.05 
.10 
.25 
.oo 1 
.005 
.o 1 
.025 
.05 
.10 
.25 
.oo 1 
.005 
.0 I 
,025 
.05 
.10 
.25 

1 2 3 4 5 6 a 12 24 cx, 

35.51 
18.64 
13.74 
8.81 
5.99 
3.78 
1.62 

29.22 
16.24 
12.25 
8.07 
5.59 
3.59 
1.57 

25.42 
14.69 
1 1.26 
7.57 
5.32 
3.46 
1.54 

22.86 
13.61 
10.56 
7.21 
5.12 
3.36 
1.51 

21.04 
12.83 
10.04 
6.94 
4.36 
3.28 
1.49 

27.00 
14.54 
10.92 
7.26 
5.14 
3.46 
1.76 

21.69 
12.40 
9.55 
6.54 
4.74 
3.26 
1.70 

18.49 
11.04 
8.65 
6.06 
4.46 
3.11 
1.66 

16.39 
10.11 
8.02 
5.71 
4.26 
3.01 
1.62 

14.9 1 
9.43 
7.56 
5.46 
4.10 
2.92 
1.60 

23.70 
12.92 
9.78 
6.60 
4.76 
3.29 
1.78 

18.77 
10.88 
8.45 
5.89 
4.35 
3.07 
1.72 

15.83 
9.60 
7.59 
5.42 
4.07 
2.92 
1.67 

13.90 
8.72 
6.99 
5.08 
3.86 
2.81 
1.63 

12.55 
8.08 
6.55 
4.83 
3.7 1 
2.73 
1.60 

21.90 
12.03 
9.15 
6.23 
4.53 
3.18 
1.79 

17.19 
10.05 
7.85 
5.52 
4.12 
2.96 
1.72 

14.39 
8.81 
7.01 
5.05 
3.84 
2.81 
1.66 

12.56 
7.96 
6.42 
4.72 
3.63 
2.69 
1.63 

11.28 
7.34 
5.99 
4.47 
3.45 
2.61 
1.60 

20.81 
11.46 
8.75 
5.99 
4.39 
3.11 
1.79 

16.21 
9.52 
7.46 
5.29 
3.97 
2.88 
1.71 

13.49 
8.30 
6.63 
4.82 
3.69 
2.73 
1.66 

11.71 
7.47 
6.06 
4.48 
3.48 
2.61 
1.62 

10.48 
6.87 
5.64 
4.24 
3.33 
2.52 
1.59 

20.03 
11.07 
8.47 
5.82 
4.28 
3.05 
1.78 

15.52 
9.16 
7.19 
5.12 
3.87 
2.83 
1.71 

12.86 
7.95 
6.37 
4.65 
3.58 
2.67 
1.65 

11.13 
7.13 
5.80 
4.32 
3.37 
2.55 
1.61 
9.92 
6.54 
5.39 
4.07 
3.22 
2.46 
I .58 

19.03 
10.57 
8.10 
5.60 
4.15 
2.98 
1.78 

14.63 
8.68 
6.84 
4.90 
3.73 
2.75 
1.70 

12.04 
7.50 
6.03 
4.43 
3.44 
2.59 
1.64 

10.37 
6.69 
5.47 
4.10 
3.23 
2.47 
1.60 
9.20 
6.12 
5.06 
3.85 
3.07 
2.38 
1.56 

17.99 
10.03 
7.72 
5.37 
4.00 
2.90 
1.77 

13.71 
8.18 
6.47 
4.67 
3.57 
2.67 
1.68 

11.19 
7.01 
5.67 
4.20 
3.28 
2.50 
1.62 
9.57 
6.23 
5.11 
3.87 
3.07 
2.38 
1.58 
8.45 
5.66 
4.7 1 
3.62 
2.9 1 
2.28 
1.54 

16.89 
9.47 
7.31 
5.12 
3.84 
2.82 
1.75 

12.73 
7.65 
6.07 
4.42 
3.41 
2.58 
1.67 

10.30 
6.50 
5.28 
3.95 
3.12 
2.40 
1.60 
8.72 
5.73 
4.73 
3.61 
2.90 
2.28 
1.56 
7.64 
5.17 
4.33 
3.37 
2.74 
2.18 
1.52 

15.75 
8.88 
6.88 
4.85 
3.67 
2.72 
1.74 

1 1.69 
7.08 
5.65 
4.14 
3.23 
2.47 
1.65 
9.34 
5.95 
4.86 
3.67 
2.93 
2.29 
1.58 
7.81 
5.19 
4.31 
3.33 
2.71 
2.16 
1.53 
6.76 
4.64 
3.91 
3.08 
2.54 
2.06 
1.48 



I 1  

12 

13 

14 

15 

v 

.001 

.005 

.O1 

.025 

.05 

.10 

.25 

.001 

.005 

.01 

.025 

.05 

.10 

.25 

.001 

.005 

.01 

.025 

.05 

.10 

.25 

.oo 1 

.005 

.o 1 

.025 

.05 

.10 

.25 

.001 

.005 

.01 

.025 

.05 

.10 

.25 

19.69 
12.23 
9.65 
6.72 
4.84 
3.23 
1.46 

18.64 
11.75 
9.33 
6.55 
4.75 
3.18 
1.46 

17.81 
11.37 
9.07 
6.41 
4.67 
3.14 
1.45 

17.14 
11.06 
8.86 
6.30 
4.60 
3.10 
1.44 

16.59 
10.80 
8.68 
6.20 
4.54 
3.07 
1.43 

13.81 
8.91 
7.20 
5.26 
3.98 
2.86 
1.58 

12.97 
8.5 1 
6.93 
5.10 
3.88 
2.8 1 
1.56 

12.31 
8.19 
6.70 
4.97 
3.80 
2.76 
1.55 

1 1.78 
7.92 
6.5 1 
4.86 
3.74 
2.73 
1.53 

11.34 
7.70 
6.36 
4.77 
3.68 
2.70 
1.52 

11.56 
7.60 
6.22 
3.63 
3.59 
2.66 
1.58 

10.80 
7.23 
5.95 
4.47 
3.49 
2.61 
1.56 

10.21 
6.93 
5.74 
4.35 
3.41 
2.56 
1.55 
9.73 
6.68 
5.56 
4.24 
3.34 
2.52 
1.53 
9.34 
6.48 
5.42 
4.15 
3.29 
2.49 
1.52 

10.35 
6.88 
5.67 
3.28 
3.36 
2.54 
1.58 
9.63 
6.52 
5.41 
4.12 
3.26 
2.48 
1.55 
9.07 
6.23 
5.20 
4.00 
3.18 
2.43 
1.53 
8.62 
6.00 
5.03 
3.89 
3.11 
2.39 
1.52 
8.25 
5.80 
4.89 
3.80 
3.06 
2.36 
1.51 

9.58 
6.42 
5.32 
4.04 
3.20 
2.45 
1.56 
8.89 
6.07 
5.06 
3.89 
3.11 
2.39 
1.54 
8.35 
5.79 
4.86 
3.77 
3.02 
2.35 
1.52 
7.92 
5.56 
4.69 
3.66 
2.96 
2.31 
1.51 
7.57 
5.37 
4.56 
3.58 
2.90 
2.27 
1.49 

9.05 
6.10 
5.07 
3.88 
3.09 
2.39 
1.55 
8.38 
5.76 
4.82 
3.73 
3.00 
2.33 
1.53 
7.86 
5.48 
4.62 
3.60 
2.92 
2.28 
1.51 
7.43 
5.26 
4.46 
3.50 
2.85 
2.24 
1 S O  
7.09 
5.07 
4.32 
3.41 
2.79 
2.21 
1.48 

8.35 
5.68 
4.74 
3.66 
2.95 
2.30 
1.54 
7.7 1 
5.35 
4.50 
3.51 
2.85 
2.24 
1.51 
7.21 
5.08 
4.30 
3.39 
2.77 
2.20 
1.49 
6.80 
4.86 
4.14 
3.29 
2.70 
2.15 
1.48 
6.47 
4.67 
4.00 
3.20 
2.64 
2.12 
1.46 

7.63 
5.24 
4.40 
3.43 
2.79 
2.2 1 
1.51 
7.00 
4.91 
4.16 
3.28 
2.69 
2.15 
1.49 
6.52 
4.64 
3.96 
3.15 
2.60 
2.10 
1.47 
6.13 
4.43 
3.80 
3.05 
2.53 
2.05 
1.45 
5.81 
4.25 
3.67 
2.96 
2.48 
2.02 
I .44 

6.85 
4.76 
4.02 
3.17 
2.61 
2.10 
1.49 
6.25 
4.43 
3.78 
3.02 
2.50 
2.04 
1.46 
5.78 
4.17 
3.59 
2.89 
2.42 
1.98 
1.44 
5.41 
3.96 
3.43 
2.79 
2.35 
1.94 
1.42 
5.10 
3.79 
3.29 
2.70 
2.29 
1.90 
1.41 

6.00 
4.23 
3.60 
2.88 
2.40 
1.97 
1.45 
5.42 
3.90 
3.36 
2.72 
2.30 
1.90 
1.42 
4.97 
3.65 
3.16 
2.60 
2.21 
1.85 
1.40 
4.60 
3.44 
3 .OO 
2.49 
2.13 
1.80 
1.38 
4.31 
3.26 
2.87 
2.40 
2.07 
I .76 
1.36 



TABLE C.5 (continued) 

16 

17 

18 

19 

20 

- 
cy 

- 
.001 
.005 
.o 1 
.025 
.05 
.10 
.25 
.oo 1 
.005 
.o 1 
.025 
.05 
.10 
.25 
.001 
.005 
.o 1 
.025 
.05 
.10 
.25 
.001 
.005 
.o 1 
.025 
.05 
.10 
.25 
.oo 1 
.005 
.o 1 
.025 
.05 
.10 
.25 

1 2 3 4 5 6 8 12 24 2% 

16.12 
10.58 
8.53 
6.12 
4.49 
3.05 
1.42 

15.72 
10.38 
8.40 
6.04 
4.45 
3.03 
1.42 

15.38 
10.22 
8.28 
5.98 
4.41 
3.01 
1.41 

15.08 
10.07 
8.18 
5.92 
4.38 
2.99 
1.41 

14.82 
9.94 
8.10 
5.87 
4.35 
2.97 
1.40 

10.97 
7.5 1 
6.23 
4.69 
3.63 
2.67 
1.51 

10.66 
7.35 
6.11 
4.62 
3.59 
2.64 
1.51 

10.39 
7.21 
6.01 
4.56 
3.55 
2.62 
1 S O  

10.16 
7.09 
5.93 
4.5 1 
3.52 
2.61 
1 S O  

9.95 
6.99 
5.85 
4.46 
3.49 
2.59 
1.49 

9.00 
6.30 
5.29 
4.08 
3.24 
2.46 
1.51 
8.73 
6.16 
5.18 
4.01 
3.20 
2.44 
1.51 
8.49 
6.03 
5.09 
3.95 
3.16 
2.42 
1.49 
8.28 
5.92 
5.01 
3.90 
3.13 
2.40 
1.49 
8.10 
5.82 
4.94 
3.86 
3.10 
2.38 
1.48 

7.94 
5.64 
4.77 
3.73 
3.01 
2.33 
1 S O  
7.68 
5.50 
4.67 
3.66 
2.96 
2.3 1 
1.49 
7.46 
5.37 
4.58 
3.61 
2.93 
2.29 
1.48 
7.26 
5.27 
4.50 
3.56 
2.90 
2.27 
1.48 
7.10 
5.17 
4.43 
3.5 1 

2.25 
1.47 

3 117 
I." I 

7.27 
5.21 
4.44 
3.50 
2.85 
2.24 
1.48 
7.02 
5.07 
4.34 
3.44 
2.81 
2.22 
1.47 
6.81 
4.96 
4.25 
3.38 
2.77 
2.20 
1.46 
6.61 
4.85 
4.17 
3.33 
2.74 
2.18 
1.46 
6.46 
4.76 
4.10 
3.29 
2.71 
2.16 
1.45 

6.8 1 
4.91 
4.20 
3.34 
2.74 
2.18 
1.47 
6.56 
4.78 
4.10 
3.28 
2.70 
2.15 
1.46 
6.35 
4.66 
4.01 
3.22 
2.66 
2.13 
1.45 
6.18 
4.56 
3.94 
3.17 
2.63 
2.11 
1.44 
6.02 
4.47 
3.87 
3.13 
2.60 
2.09 
1.44 

6.19 
4.52 
3.89 
3.12 
2.59 
2.09 
1.45 
5.96 
4.39 
3.79 
3.06 
2.55 
2.06 
1.44 
5.76 
4.28 
3.71 
3.01 
2.5 1 
2.04 
1.43 
5.59 
4.18 
3.63 
2.96 
2.48 
2.02 
1.42 
5.44 
4.09 
3.56 
2.9 1 
2.45 
2.00 
1.42 

5.55 
4.10 
3.55 
2.89 
2.42 
1.99 
1.43 
5.32 
3.97 
3.45 
2.82 
2.38 
1.96 
1.41 
5.13 
3.86 
3.37 
2.77 
2.34 
1.93 
1.40 
4.97 
3.76 
3.30 
2.72 
2.3 1 
1.91 
1.40 
4.82 
3.68 
3.23 
2.68 
2.28 
I .89 
1.39 

4.85 
3.64 
3.18 
2.63 
2.24 
1.87 
1.39 
4.63 
3.5 1 
3.08 
2.56 
2.19 
1.84 
1.38 
4.45 
3.40 
3 .OO 
2.50 
2.15 
1.81 
1.37 
4.29 
3.31 
2.92 
2.45 
2.11 
1.79 
1.36 
4.15 
3.22 
2.86 
2.41 
2.08 
1.77 
1.35 

4.06 
3.11 
2.75 
2.32 
2.01 
1.72 
1.34 
3.85 
2.98 
2.65 
2.25 
1.96 
1.69 
1.33 
3.67 
2.87 
2.57 
2.19 
1.92 
1.66 
1.32 
3.52 
2.78 
2.49 
2.13 
1.88 
1.63 
1.31 
3.38 
2.69 
2.42 
2.09 
1.84 
1.61 
1.29 



'I 

22 

23 

24 

25 

0. 
0. 
9 

.00 1 

.005 

.0 1 

.025 

.05 

.10 

.25 

.oo 1 

.005 

.01 

.025 

.05 

.10 

.25 

.001 

.005 

.01 

.025 

.05 

.I0 

.25 

.001 

.005 

.O1 

.025 

.05 

.10 

.25 

.oo 1 

.005 

.O1 

.025 

.05 

.I0 

.25 

14.59 
9.83 
8.02 
5.83 
4.32 
2.96 
1.40 

14.38 
9.73 
7.94 
5.79 
4.30 
2.95 
1.40 

14.19 
9.63 
7.88 
5.75 
4.28 
2.94 
1.39 

14.03 
9.55 
7.82 
5.72 
4.26 
2.93 
1.39 

13.88 
9.48 
7.77 
5.69 
4.24 
2.92 
1.39 

9.77 
6.89 
5.78 
4.42 
3.47 
2.57 
1.49 
9.6 1 
6.81 
5.72 
4.38 
3.44 
2.56 
1.48 
9.47 
6.73 
5.66 
4.35 
3.42 
2.55 
1.47 
9.34 
6.66 
5.61 
4.32 
3.40 
2.54 
1.47 
9.22 
6.60 
5.57 
4.29 
3.38 
2.53 
1.47 

7.94 
5.73 
3.87 
3.82 
3.07 
2.36 
I .48 
7.80 
5.65 
4.82 
3.78 
3.05 
2.35 
1.47 
7.67 
5.58 
4.76 
3.75 
3.03 
2.34 
1.47 
7.55 
5.52 
4.72 
3.72 
3.01 
2.33 
1.46 
7.45 
5.46 
4.68 
3.69 
2.99 
2.32 
I .46 

6.95 
5.09 
4.37 
3.48 
2.84 
2.23 
1.46 
6.8 1 
5.02 
4.31 
3.44 
2.82 
2.22 
1.46 
6.69 
4.95 
4.26 
3.41 
2.80 
2.21 
1.45 
6.59 
4.89 
4.22 
3.38 
2.78 
2.19 
1.44 
6.49 
4.84 
4.18 
3.35 
2.76 
2.18 
1.44 

6.32 
4.68 
4.04 
3.25 
2.68 
2.14 
1.44 
6.19 
4.61 
3.99 
3.22 
2.66 
2.13 
I .44 
6.08 
4.54 
3.94 
3.18 
2.64 
2.11 
1.43 
5.98 
4.49 
3.90 
3.15 
2.62 
2.10 
1.43 
5.88 
4.43 
3.86 
3.13 
2.60 
2.09 
1.42 

5.88 
4.39 
3.8 1 
3.09 
2.57 
2.08 
1.43 
5.76 
4.32 
3.76 
3.05 
2.55 
2.06 
1.42 
5.65 
4.26 
3.71 
3.02 
2.53 
2.05 
1.41 
5.55 
4.20 
3.67 
2.99 
2.5 1 
2.04 
1.41 
5.46 
4.15 
3.63 
2.97 
2.49 
2.02 
1.41 

5.3 1 
4.0 1 
3.5 1 
2.87 
2.42 
1.98 
1.41 
5.19 
3.94 
3.45 
2.84 
2.40 
1.97 
1.40 
5.09 
3.88 
3.41 
2.81 
2.38 
1.95 
1.40 
4.99 
3.83 
3.36 
2.78 
2.36 
1.94 
1.39 
4.91 
3.78 
3.32 
2.75 
2.34 
1.93 
1.39 

4.70 
3.60 
3.17 
2.64 
2.25 
1.88 
1.83 
4.58 
3.54 
3.12 
2.60 
2.23 
1.86 
1.37 
4.48 
3.47 
3.07 
2.57 
2.20 
1.84 
1.37 
4.39 
3.42 
3.03 
2.54 
2.18 
1.83 
1.36 
4.3 1 
3.37 
2.99 
2.5 1 
2.16 
I .82 
1.36 

4.03 
3.15 
2.80 
2.37 
2.05 
1.75 
1.34 
3.92 
3.08 
2.75 
2.33 
2.03 
1.73 
1.33 
3.82 
3.02 
2.70 
2.30 
2.00 
1.72 
1.33 
3.74 
2.97 
2.66 
2.27 
1.98 
1.70 
1.32 
3.66 
2.92 
2.62 
2.24 
1.96 
1.69 
1.32 

3.26 
2.61 
2.36 
2.04 
1.81 
1.59 
1.29 
3.15 
2.55 
2.3 1 
2.00 
1.78 
1.57 
1.28 
3.05 
2.48 
2.26 
1.97 
1.76 
1.55 
1.27 
2.97 
2.43 
2.21 
1.94 
1.73 
1.53 
1.26 
2.89 
2.38 
2.17 
2.91 
I .71 
1.52 
1.25 



(continued) 

26 

27 

28 

29 

30 

- 
01 

- 
.oo 1 
.005 
.o 1 
.025 
.05 
.10 
.25 
.001 
.005 
.01 
.025 
.05 
.10 
.25 
.001 
.005 
.01 
.025 
.05 
.10 
.25 
.001 
.005 
.01 
.025 
.05 
.10 
.25 
.oo 1 
.005 
.o 1 
.025 
.05 
.LO 
.25 

1 2 3 4 5 6 8 12 24 m 

13.74 
9.41 
7.72 
5.66 
4.22 
2.91 
1.38 

13.61 
9.34 
7.68 
5.63 
4.21 
2.90 
1.38 

13.50 
9.28 
7.64 
5.61 
4.20 
2.89 
1.38 

13.39 
9.23 
7.60 
5.59 
4.18 
2.89 
1.38 

13.29 
9.18 
7.56 
5.57 
4.17 
2.88 
1.38 

9.12 
6.54 
5.53 
4.27 
3.37 
2.52 
1.46 
9.02 
6.49 
5.49 
4.24 
3.35 
2.5 1 
1.46 
8.93 
6.44 
5.45 
4.22 
3.34 
2.50 
1.46 
8.85 
6.40 
5.42 
4.20 
3.33 
2.50 
1.45 
8.77 
6.35 
5.39 
4.18 
-3.32 
2.49 
1.45 

7.36 
5.41 
4.64 
3.67 
2.98 
2.31 
1.45 
7.27 
5.36 
4.60 
3.65 
2.96 
2.30 
1.45 
7.19 
5.32 
4.57 
3.63 
2.95 
2.29 
1.45 
7.12 
5.28 
4.54 
3.61 
2.93 
2.28 
1.45 
7.05 
5.24 
4.5 1 
3.59 
2.92 
2.28 
1.44 

6.4 1 
4.79 
4.14 
3.33 
2.74 
2.17 
1.44 
6.33 
4.74 
4.11 
3.31 
2.73 
2.17 
1.43 
6.25 
4.70 
4.07 
3.29 
2.71 
2.16 
1.43 
6.49 
4.66 
4.04 
3.27 
2.70 
2.15 
1.43 
6.12 
4.62 
4.02 
3.25 
2.68 
2.14 
1.42 

5.80 
4.38 
3.82 
3.10 
2.59 
2.08 
1.42 
5.73 
4.34 
3.78 
3.08 
2.57 
2.07 
1.42 
5.66 
4.30 
3.75 
2.06 
2.56 
2.06 
1.41 
5.59 
4.26 
3.73 
3.04 
2.54 
2.06 
1.41 
5.53 
4.23 
3.70 
3.03 
2.53 
2.05 
1.41 

5.38 
4.10 
3.59 
2.94 
2.47 
2.01 
1.41 
5.31 
4.06 
3.56 
2.92 
2.46 
2.00 
1.40 
5.24 
4.02 
3.53 
2.90 
2.44 
2.00 
1.40 
5.18 
3.98 
3.50 
2.88 
2.43 
1.99 
1.40 
5.12 
3.95 
3.47 
2.87 
2.42 
1.98 
1.39 

4.83 
3.73 
3.29 
2.73 
2.32 
1.92 
1.38 
4.76 
3.69 
3.26 
2.7 1 
2.30 
1.91 
1.38 
4.69 
3.65 
3.23 
2.69 
2.29 
1.90 
1.38 
4.64 
3.61 
3.20 
2.67 
2.28 
1.89 
1.37 
4.58 
3.58 
3.17 
2.65 

1.88 
1.37 

- Q-7 L.L I 

4.24 
3.33 
2.96 
2.49 
2.15 
1.81 
1.35 
4.17 
3.28 
2.93 
2.47 
2.13 
1.80 
1.35 
4.1 1 
3.25 
2.90 
2.45 
2.12 
1.79 
1.34 
4.05 
3.21 
2.87 
2.43 
2.10 
1.78 
1.34 
4.00 
3.18 
2.84 
2.41 
2.09 
1.77 
1.34 

3.59 
2.87 
2.58 
2.22 
1.95 
1.68 
1.31 
3.52 
2.83 
2.55 
2.19 
1.93 
1.67 
1.31 
3.46 
2.79 
2.52 
2.17 
1.91 
1.66 
1.30 
3.41 
2.76 
2.49 
2.15 
1.90 
1.65 
1.30 
3.36 
2.73 
2.47 
2.14 
1.89 
1.64 
1.29 

2.82 
2.33 
2.13 
1.88 
1.69 
1 S O  
1.25 
2.75 
2.29 
2.10 
1.85 
1.67 
1.49 
1.24 
2.70 
2.25 
2.06 
1.83 
1.65 
1.48 
1.24 
2.64 
2.21 
2.03 
1.81 
1.64 
1.47 
1.23 
2.59 
2.18 
2.01 
1.79 
1.62 
1.46 
1.23 



40 

60 

I20 

30 

- 

.oo 1 

.005 

.o 1 

.025 

.05 

.10 

.25 

.001 

.005 

.o 1 

.025 

.05 

.10 

.25 

.001 

.005 

.o 1 

.025 

.05 

.10 

.25 

.oo 1 

.005 

.01 

.025 

.05 

.10 

.25 - 

12.61 
8.83 
7.3 1 
5.42 
4.08 
2.84 
1.36 

11.97 
8.49 
7.08 
5.29 
4.00 
2.79 
1.35 

11.38 
8.18 
6.85 
5.15 
3.92 
2.75 
1.34 

10.83 
7.88 
6.64 
5.02 
3.84 
2.71 
1.32 

11.25 
6.07 
5.18 
4.05 
3.23 
2.44 
1.44 
7.76 
5.80 
4.98 
3.93 
3.15 
2.39 
1.42 
7.3 1 
5.54 
4.79 
3.80 
3.07 
2.35 
1.40 
6.91 
5.30 
4.60 
3.69 
2.99 
2.30 
1.39 

6.60 
4.98 
4.3 1 
3.46 
2.84 
2.23 
1.42 
6.17 
4.73 
4.13 
3.34 
2.76 
2.18 
1.41 
5.79 
4.50 
3.95 
3.23 
2.68 
2.13 
1.39 
5.42 
4.28 
3.78 
3.12 
2.60 
2.08 
1.37 

5.70 
4.37 
3.83 
3.13 
2.61 
2.09 
1.41 
5.31 
4.14 
3.65 
3.01 
2.52 
2.04 
1.39 
4.95 
3.92 
3.48 
2.89 
2.45 
1.99 
1.37 
4.62 
3.72 
3.32 
2.79 
2.37 
1.94 
1.35 

5.13 
3.99 
3.5 1 
2.90 
2.45 
2.00 
1.39 
4.76 
3.76 
3.34 
2.79 
2.37 
1.95 
1.37 
4.42 
3.55 
3.17 
2.67 
2.29 
1.90 
1.35 
4.10 
3.35 
3.02 
2.57 
2.21 
1.85 
1.33 

4.73 
3.71 
3.29 
2.74 
2.34 
1.93 
1.37 
4.37 
3.49 
3.12 
2.63 
2.25 
1.87 
1.35 
4.04 
3.28 
2.96 
2.52 
2.17 
1.82 
1.33 
3.74 
3.09 
2.80 
2.41 
2.09 
1.77 
1.31 

4.21 
3.35 
2.99 
2.53 
2.18 
1.83 
1.35 
3.87 
3.13 
2.82 
2.41 
2.10 
1.77 
1.32 
3.55 
2.93 
2.66 
2.30 
2.02 
1.72 
1.30 
3.27 
2.74 
2.51 
2.19 
1.94 
1.67 
1.28 

3.64 
2.95 
2.66 
2.29 
2.00 
1.71 
1.31 
3.3 1 
2.74 
2.50 
2.17 
1.92 
1.66 
1.29 
3.02 
2.54 
2.34 
2.05 
1.83 
1.60 
1.26 
2.74 
2.36 
2.18 
1.94 
1.75 
1.55 
1.24 

3.01 
2.50 
2.29 
2.01 
1.79 
1.57 
1.27 
2.69 
2.29 
2.12 
1.88 
1.70 
1.51 
1.24 

2.40 
2.09 
1.95 
1.76 
1.61 
1.45 
1.21 
2.13 
1.90 
1.79 
1.64 
1.52 
1.38 
1.18 

2.23 
1.93 
1.80 
1.64 
1.51 
1.38 
1.19 
1.90 
1.69 
1.60 
1.48 
1.39 
1.29 
1.15 
1.56 
1.43 
1.38 
1.31 
1.25 
1.19 
1.10 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 
1 .oo 

Sourer: Adapted from Table 18 in Pearson, E. S. and Hartley. H. 0. (1958). Biomerriku Tuhlrs,for Staristicians. Vol. I ,  2nd ed. Cambridge University Press: Cambridge. with the kind permission of 
the trustees of Biornrrrikn. 



TABLE C.6 COEFFICIENTS OF ORTHOGONAL POLYNOMIALS 
0 . -  
2 k  

3 

4 

5 

6 

7 

8 

9 

10 

Polynomial 

Linear 
Quadratic 
Linear 
Quadratic 
Cubic 
Linear 
Quadratic 
Cubic 
Quartic 
Linear 
Quadratic 
Cubic 
Quartic 
Linear 
Quadratic 
Cubic 
Quartic 
Linear 
Quadratic 
Cubic 
Quartic 
Quintic 
Linear 
Quadratic 
Cubic 
Quartic 
Quintic 
Linear 
Quadratic 
Cubic 
Quartic 
Quintic 

x =  1 2 3 4 5 6 7 8 9 10 

-- 1 
1 

-3 
1 

-1 

-2 
2 

-1 
1 

-5 
5 

-5 
1 

-3 
5 

-1 
3 

-7 
7 

-7 
7 

-7 
-4 
28 

- 14 
14 

-4 
-9 

6 
-42 

18 
-6 

0 
-2 
-1 
-1 

3 
-1 
- 1  

2 
-4 
-3 
-1 

7 
-3 
-2 

0 
1 

-7 
-5 

1 
5 

- 13 
23 

-3 
7 
7 

-21 
11 

-7 
2 

14 
- 22 

14 

1 
1 
1 

-1 
-3 

0 
-2 

0 
6 

-1 
-4 

4 
2 

-1 
-3 

1 
1 

-3 
-3 

7 
-3 
- 17 
-2 
-8 
13 

-1 1 
-4 
-5 
-1 
35 

-17 
- 1  

3 
1 
1 
1 2 

- 1  2 
-2 1 
-4 1 

1 3 
-4 -1 
-4 -7 

2 -3 
0 1 

-4 -3 
0 -1 
6 1 

-1 1 
-5 -5 

3 -3 
9 9 

- 15 15 
-1 0 

-17 - 20 
9 0 
9 18 

-9 0 
-3 - I  
-3 -4 
31 12 
3 18 

-1 I -6 

5 
5 
5 
1 
2 
0 

-1 
-7 

3 
-3 
-7 
-3 
17 
1 

- 17 
-9 

9 
9 
1 

-4 
-12 

18 
6 

3 
5 
1 
3 
5 
1 

-5 
-13 
-23 

2 
-8 
- 13 
-11 

4 
3 

-3 
-3 1 

3 
1 1  

7 
7 
7 
7 
7 
3 
7 

-7 
-21 
-11 

5 
- 1  

-35 
-17 

1 

4 
28 
14 
14 
4 
7 9 
2 6 

- 14 42 
-22 18 
- 14 6 

3 
I 

6 
20 
4 

20 
10 
14 
10 
70 
70 
84 

180 
28 
28 
84 
6 

154 
168 
168 
264 
616 

2184 
60 

2772 
990 

2002 
468 
330 
132 

8580 
2860 
780 

1 
3 
2 
1 

1013 
1 
1 

516 
35/12 

2 
312 
513 

7/12 
1 
1 

1 /6 
711 2 

2 
1 

213 
7/12 
7/10 

1 
3 

516 
7/12 
3/20 

2 
112 
513 

511 2 
1/10 

S o i r m c  Adapted from lable 47 in Pearson, E. S. and Hartley. H. 0. ( 1958). Hiomrtrihn 'fhh/r.s,for- Sfali.\tic.rrrri.s, Vol. I .  2nd ed. Cambridge University Press: Cambridge. with the kind permission of  
the trustees of Riornrrrikri. 



TABLE C.7 CRITICAL VALUES OF THE BONFERRONI t STATISTIC (note that the tabled values are two-tailed)

Number of contrasts (K)

df

3

4

5

6

7

8

9

10

11

12

13

14

15

16

FWE

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

2

7.453
4.177
3.182

5.598
3.495
2.776

4.773
3.163
2.571

4.317
2.969
2.447

4.029
2.841
2.365

3.833
2.752
2.306

3.690
2.685
2.262

3.581
2.634
2.228

3.497
2.593
2.201

3.428
2.560
2.179

3.372
2.533
2.160

3.326
2.510
2.145

3.286
2.490
2.131

3.252
2.473
2.120

3

8.575
4.857
3.740

6.254
3.961
3.186

5.247
3.534
2.912

4.698
3.287
2.749

4.355
3.128
2.642

4.122
3.016
2.566

3.954
2.933
2.510

3.827
2.870
2.466

3.728
2.820
2.431

3.649
2.779
2.403

3.584
2.746
2.380

3.530
2.718
2.360

3.484
2.694
2.343

3.444
2.673
2.328

4

9.465
5.392
4.177

6.758
4.315
3.495

5.604
3.810
3.163

4.981
3.521
2.969

4.595
3.335
2.841

4.334
3.206
2.752

4.146
3.111
2.685

4.005
3.038
2.634

3.895
2.981
2.593

3.807
2.934
2.560

3.735
2.896
2.533

3.675
2.864
2.510

3.624
2.837
2.490

3.581
2.813
2.473

5

10.215
5.841
4.541

7.173
4.604
3.747

5.893
4.032
3.365

5.208
3.707
3.143

4.785
3.499
2.998

4.501
3.355
2.896

4.297
3.250
2.821

4.144
3.169
2.764

4.025
3.106
2.718

3.930
3.055
2.681

3.852
3.012
2.650

3.787
2.977
2.624

3.733
2.947
2.602

3.686
2.921
2.583

6

10.869
6.232
4.857

7.529
4.851
3.961

6.138
4.219
3.534

5.398
3.863
3.287

4.944
3.636
3.128

4.640
3.479
3.016

4.422
3.364
2.933

4.259
3.277
2.870

4.132
3.208
2.820

4.031
3.153
2.779

3.948
3.107
2.746

3.880
3.069
2.718

3.822
3.036
2.694

3.773
3.008
2.673

7

11.453
6.580
5.138

7.841
5.068
4.148

6.352
4.382
3.681

5.563
3.997
3.412

5.082
3.753
3.238

4.759
3.584
3.117

4.529
3.462
3.028

4.357
3.368
2.960

4.223
3.295
2.906

4.117
3.236
2.863

4.030
3.187
2.827

3.958
3.146
2.796

3.897
3.112
2.770

3.846
3.082
2.748

8

11.984
6.895
5.392

8.122
5.261
4.315

6.541
4.526
3.810

5.709
4.115
3.521

5.202
3.855
3.335

4.864
3.677
3.206

4.622
3.547
3.111

4.442
3.448
3.038

4.303
3.370
2.981

4.192
3.308
2.934

4.101
3.256
2.896

4.026
3.214
2.864

3.963
3.177
2.837

3.909
3.146
2.813

9

12.471
7.185
5.625

8.376
5.437
4.466

6.713
4.655
3.926

5.840
4.221
3.619

5.310
3.947
3.422

4.957
3.759
3.285

4.706
3.622
3.184

4.518
3.518
3.107

4.373
3.437
3.047

4.258
3.371
2.998

4.164
3.318
2.957

4.086
3.273
2.924

4.021
3.235
2.895

3.965
3.202
2.870

10

12.924
7.453
5.841

8.610
5.598
4.604

6.869
4.773
4.032

5.959
4.317
3.707

5.408
4.029
3.499

5.041
3.833
3.355

4.781
3.690
3.250

4.587
3.581
3.169

4.437
3.497
3.106

4.318
3.428
3.055

4.221
3.372
3.012

4.140
3.326
2.977

4.073
3.286
2.947

4.015
3.252
2.921

15

14.819
8.575
6.741

9.568
6.254
5.167

7.499
5.247
4.456

6.434
4.698
4.058

5.795
4.355
3.806

5.374
4.122
3.632

5.076
3.954
3.505

4.855
3.827
3.409

4.685
3.728
3.334

4.550
3.649
3.273

4.440
3.584
3.223

4.349
3.530
3.181

4.273
3.484
3.146

4.208
3.444
3.115



TABLE C.7 (continued)

Number of contrasts (K)

df

17

18

19

20

25

30

35

40

60

120

FWE

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

2

3.222
2.458
2.110

3.197
2.445
2.101

3.174
2.433
2.093

3.153
2.423
2.086

3.078
2.385
2.060

3.030
2.360
2.042

2.996
2.342
2.030

2.971
2.329
2.021

2.915
2.299
2.000

2.860
2.270
1.980

3

3.410
2.655
2.316

3.380
2.639
2.304

3.354
2.625
2.294

3.331
2.613
2.285

3.244
2.566
2.252

3.189
2.536
2.231

3.150
2.515
2.215

3.122
2.499
2.204

3.057
2.463
2.178

2.995
2.428
2.153

4

3.543
2.793
2.458

3.510
2.775
2.445

3.481
2.759
2.433

3.455
2.744
2.423

3.361
2.692
2.385

3.300
2.657
2.360

3.258
2.633
2.342

3.227
2.616
2.329

3.156
2.575
2.299

3.088
2.536
2.270

5

3.646
2.898
2.567

3.610
2.878
2.552

3.579
2.861
2.539

3.552
2.845
2.528

3.450
2.787
2.485

3.385
2.750
2.457

3.340
2.724
2.438

3.307
2.704
2.423

3.232
2.660
2.390

3.160
2.617
2.358

6

3.730
2.984
2.655

3.692
2.963
2.639

3.660
2.944
2.625

3.630
2.927
2.613

3.523
2.865
2.566

3.454
2.825
2.536

3.407
2.797
2.515

3.372
2.776
2.499

3.293
2.729
2.463

3.217
2.683
2.428

7

3.801
3.056
2.729

3.762
3.034
2.712

3.727
3.014
2.697

3.697
2.996
2.683

3.584
2.930
2.634

3.513
2.887
2.601

3.463
2.857
2.579

3.426
2.836
2.562

3.344
2.785
2.524

3.265
2.737
2.486

8

3.862
3.119
2.793

3.822
3.095
2.775

3.786
3.074
2.759

3.754
3.055
2.744

3.637
2.986
2.692

3.563
2.941
2.657

3.511
2.910
2.633

3.473
2.887
2.616

3.388
2.834
2.575

3.306
2.783
2.536

9

3.917
3.173
2.848

3.874
3.149
2.829

3.837
3.127
2.813

3.804
3.107
2.798

3.684
3.035
2.742

3.607
2.988
2.706

3.553
2.955
2.681

3.514
2.931
2.663

3.426
2.877
2.620

3.342
2.824
2.579

10

3.965
3.222
2.898

3.922
3.197
2.878

3.883
3.174
2.861

3.850
3.153
2.845

3.725
3.078
2.787

3.646
3.030
2.750

3.591
2.996
2.724

3.551
2.971
2.704

3.460
2.915
2.660

3.373
2.860
2.617

15

4.152
3.410
3.089

4.104
3.380
3.065

4.061
3.354
3.045

4.023
3.331
3.026

3.884
3.244
2.959

3.796
3.189
2.915

3.735
3.150
2.885

3.691
3.122
2.862

3.590
3.057
2.811

3.494
2.995
2.761

674



TABLE C.8 DISTRIBUTION OF DUNNETT'S d STATISTIC FOR COMPARING TREATMENT MEANS WITH A
CONTROL (note that the tabled values are two-tailed)

d f f o r
MSerror FWE

.10

.05
6 .02

.01

.10

.05
7 .02

.01

.10

.05
8 .02

.01

.10

.05
9 .02

.01

.10

.05
10 .02

.01

.10

.05
11 .02

.01

.10

.05
12 .02

.01

.10

.05
13 .02

.01

.10

.05
14 .02

.01

.10

.05
16 .02

.01

Number of means (including control)

2

1.94
2.45
3.14
3.71

1.89
2.36
3.00
3.50

1.86
2.31
2.90
3.36

1.83
2.26
2.82
3.25

1.81
2.23
2.76
3.17

1.80
2.20
2.72
3.11

1.78
2.18
2.68
3.05

1.77
2.16
2.65
3.01

1.76
2.14
2.62
2.98

1.75
2.12
2.58
2.92

3

2.34
2.86
3.61
4.22

2.27
2.75
3.42
3.95

2.22
2.67
3.29
3.77

2.18
2.61
3.19
3.63

2.15
2.57
3.11
3.53

2.13
2.53
3.06
3.45

2.11
2.50
3.01
3.39

2.09
2.48
2.97
3.33

2.08
2.46
2.94
3.29

2.06
2.42
2.88
3.22

4

2.56
3.18
3.88
4.60

2.48
3.04
3.66
4.28

2.42
2.94
3.51
4.06

2.37
2.86
3.40
3.90

2.34
2.81
3.31
3.78

2.31
2.76
3.25
3.68

2.29
2.72
3.19
3.61

2.27
2.69
3.15
3.54

2.25
2.67
3.11
3.49

2.23
2.63
3.05
3.41

5

2.71
3.41
4.07
4.88

2.62
3.24
3.83
4.52

2.55
3.13
3.67
4.27

2.50
3.04
3.55
4.09

2.47
2.97
3.45
3.95

2.44
2.92
3.38
3.85

2.41
2.88
3.32
3.76

2.39
2.84
3.27
3.69

2.37
2.81
3.23
3.64

2.34
2.77
3.17
3.55

6

2.83
3.60
4.21
5.11

2.73
3.41
3.96
4.17

2.66
3.28
3.79
4.44

2.60
3.18
3.66
4.24

2.56
3.11
3.56
4.10

2.53
3.05
3.48
3.98

2.50
3.00
3.42
3.89

2.48
2.96
3.37
3.81

2.46
2.93
3.32
3.75

2.43
2.88
3.26
3.65

7

2.92
3.75
4.33
5.30

2.82
3.54
4.07
4.87

2.74
3.40
3.88
4.58

2.68
3.29
3.75
4.37

2.64
3.21
3.64
4.21

2.60
3.15
3.56
4.09

2.58
3.10
3.50
3.99

2.55
3.06
3.44
3.91

2.53
3.02
3.40
3.84

2.50
2.96
3.33
3.74

8

3.00
3.88
4.43
5.47

2.89
3.66
4.15
5.01

2.81
3.51
3.96
4.70

2.75
3.39
3.82
4.48

2.70
3.31
3.71
4.31

2.67
3.24
3.63
4.18

2.64
3.18
3.56
4.08

2.61
3.14
3.51
3.99

2.59
3.10
3.46
3.92

2.56
3.04
3.39
3.82

9

3.07
4.00
4.51
5.61

2.95
3.76
4.23
5.13

2.87
3.60
4.03
4.81

2.81
3.48
3.89
4.57

2.76
3.39
3.78
4.40

2.72
3.31
3.69
4.26

2.69
3.25
3.62
4.15

2.66
3.21
3.56
4.06

2.64
3.17
3.51
3.99

2.61
3.10
3.44
3.88

10

3.12
4.11
4.59
5.74

3.01
3.86
4.30
5.24

2.92
3.68
4.09
4.90

2.86
3.55
3.94
4.65

2.81
3.46
3.83
4.47

2.77
3.38
3.74
4.33

2.74
3.32
3.67
4.22

2.71
3.27
3.61
4.13

2.69
3.23
3.56
4.05

2.65
3.16
3.48
3.93



TABLE C.8 (continued)

dr-for

MSerror FWE

.10

.05
18 .02

.01

.10

.05
20 .02

.01

.10

.05
24 .02

.01

.10

.05
30 .02

.01

.10

.05
40 .02

.01

.10

.05
60 .02

.01

.10

.05
120 .02

.01

.10

.05
oo .02

.01

Number of means (including control)

2

1.73
2.10
2.55
2.88

1.72
2.09
2.53
2.85

1.71
2.06
2.49
2.80

1.70
2.04
2.46
2.75

1.68
2.02
2.42
2.70

1.67
2.00
2.39
2.66

1.66
1.98
2.36
2.62

1.64
1.96
2.33
2.58

3

2.04
2.40
2.84
3.17

2.03
2.38
2.81
3.13

2.01
2.35
2.77
3.07

1.99
2.32
2.72
3.01

1.97
2.29
2.68
2.95

1.95
2.27
2.64
2.90

1.93
2.24
2.60
2.84

1.92
2.21
2.56
2.79

4

2.21
2.59
3.01
3.35

2.19
2.57
2.97
3.31

2.17
2.53
2.92
3.24

2.15
2.50
2.87
3.17

2.13
2.47
2.82
3.10

2.10
2.43
2.78
3.04

2.08
2.40
2.73
2.98

2.06
2.37
2.68
2.92

5

2.32
2.73
3.12
3.48

2.30
2.70
3.08
3.43

2.28
2.66
3.03
3.36

2.25
2.62
2.97
3.28

2.23
2.58
2.92
3.21

2.21
2.55
2.87
3.14

2.18
2.51
2.82
3.08

2.16
2.47
2.77
3.01

6

2.41
2.84
3.21
3.58

2.39
2.81
3.17
3.53

2.36
2.76
3.11
3.45

2.33
2.72
3.05
3.37

2.31
2.67
2.99
3.29

2.28
2.63
2.94
3.22

2.26
2.59
2.89
3.15

2.23
2.55
2.84
3.08

7

2.48
2.92
3.27
3.67

2.46
2.89
3.23
3.61

2.43
2.84
3.17
3.52

2.40
2.79
3.11
3.44

2.37
2.75
3.05
3.36

2.35
2.70
3.00
3.28

2.32
2.66
2.94
3.21

2.29
2.62
2.89
3.14

8

2.53
2.99
3.33
3.74

2.51
2.96
3.29
3.67

2.48
2.91
3.22
3.58

2.45
2.86
3.16
3.50

2.42
2.81
3.10
3.41

2.39
2.76
3.04
3.33

2.37
2.71
2.99
3.25

2.34
2.67
2.93
3.18

9 10

2.58 2.62
3.05 3.11
3.38
3.80

2.56
3.02
3.34
3.73

2.53
2.96
3.27
3.64

2.50
2.91
3.21

.42

.85

.60

.07

.38

.78

.57

.01

.31

.69

.54

.96

.24
3.55 3.59

2.47 2.51
2.86 2.90
3.14 3.18
3.46 3.50

2.44 2.48
2.81 2.85
3.08 3.12
3.38 3.42

2.41 2.45
2.76 2.80
3.03 3.06
3.30 3.33

2.38 2.42
2.71 2.75
2.97 3.00
3.22 3.25

Source: Adapted from tables in Dunnett, C. W. (1955). A multiple comparison procedure for comparing several treatments
with a control. Journal of the American Statistical Association, 50, 1096-1121, and from Dunnett, C. W. (1964). New
tables for multiple comparisons with a control. Biometrics, 20, 482-491, with permission of the author and the editors.
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TABLE C.9 CRITICAL VALUES OF THE STUDENTIZED RANGE DISTRIBUTION

Error

df

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Number of Ordered Means

FWE

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

2

14.04
6.09
4.13

8.26
4.50
3.33

6.51
3.93
3.02

5.70
3.64
2.85

5.24
3.46
2.75

4.95
3.34
2.68

4.75
3.26
2.63

4.60
3.20
2.59

4.48
3.15
2.56

4.39
3.11
2.54

4.32
3.08
2.52

4.26
3.06
2.51

4.21
3.03
2.49

4.17
3.01
2.48

4.13
3.00
2.47

3

19.02
8.33
5.73

10.62
5.91
4.47

8.12
5.04
3.98

6.98
4.60
3.72

6.33
4.34
3.56

5.92
4.17
3.45

5.64
4.04
3.37

5.43
3.95
3.32

5.27
3.88
3.27

5.15
3.82
3.23

5.05
3.77
3.20

4.96
3.74
3.18

4.90
3.70
3.16

4.84
3.67
3.14

4.79
3.65
3.12

4

22.29
9.80
6.77

12.17
6.83
5.20

9.17
5.76
4.59

7.80
5.22
4.26

7.03
4.90
4.07

6.54
4.68
3.93

6.20
4.53
3.83

5.96
4.42
3.76

5.77
4.33
3.70

5.62
4.26
3.66

5.50
4.20
3.62

5.40
4.15
3.59

5.32
4.11
3.56

5.25
4.08
3.54

5.19
4.05
3.52

5

24.72
10.88
7.54

13.33
7.50
5.74

9.96
6.29
5.04

8.42
5.67
4.66

7.56
5.31
4.44

7.01
5.06
4.28

6.63
4.89
4.17

6.35
4.76
4.08

6.14
4.65
4.02

5.97
4.57
3.97

5.84
4.51
3.92

5.73
4.45
3.89

5.63
4.41
3.85

5.56
4.37
3.83

5.49
4.33
3.80

6

26.63
11.74
8.14

14.24
8.04
6.16

10.58
6.71
5.39

8.91
6.03
4.98

7.97
5.63
4.73

7.37
5.36
4.56

6.96
5.17
4.43

6.66
5.02
4.34

6.43
4.91
4.26

6.25
4.82
4.21

6.10
4.75
4.16

5.98
4.69
4.12

5.88
4.64
4.06

5.80
4.60
4.05

5.72
4.56
4.03

7

28.20
12.44
8.63

15.00
8.48
6.51

11.10
7.05
5.68

9.32
6.33
5.24

8.32
5.90
4.97

7.68
5.61
4.78

7.24
5.40
4.65

6.92
5.24
4.55

6.67
5.12
4.47

6.48
5.03
4.40

6.32
4.95
4.35

6.19
4.89
4.31

6.09
4.83
4.27

5.99
4.78
4.24

5.92
4.74
4.21

8

29.53
13.03
9.05

15.64
8.85
6.81

11.55
7.35
5.93

9.67
6.58
5.46

8.61
6.12
5.17

7.94
5.82
4.97

7.47
5.60
4.83

7.13
5.43
4.72

6.88
5.31
4.64

6.67
5.20
4.57

6.51
5.12
4.51

6.37
5.05
4.46

6.26
4.99
4.42

6.16
4.94
4.39

6.08
4.90
4.36



TABLE C.9 CRITICAL VALUES OF THE STUDENTIZED RANGE DISTRIBUTION

Error
df

17

18

19

20

24

30

40

60

120

oc

Error
df

2

3

4

Number of Ordered

FWE

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

2

4.10
2.98
2.46

4.07
2.97
2.45

4.05
2.96
2.45

4.02
2.95
2.44

3.96
2.92
2.42

3.89
2.89
2.40

3.83
2.86
2.38

3.76
2.83
2.36

3.70
2.80
2.34

3.64
2.77
2.33

3

4.74
3.63
3.11

4.70
3.61
3.10

4.67
3.59
3.09

4.64
3.58
3.08

4.55
3.53
3.05

4.46
3.49
3.02

4.37
3.44
2.99

4.28
3.40
2.96

4.20
3.36
2.93

4.12
3.31
2.90

4

5.14
4.02
3.50

5.09
4.00
3.49

5.05
3.98
3.47

5.02
3.96
3.46

4.91
3.90
3.42

4.80
3.85
3.39

4.70
3.79
3.35

4.60
3.74
3.31

4.50
3.69
3.28

4.40
3.63
3.24

5

5.43
4.30
3.78

5.38
4.28
3.77

5.33
4.25
3.75

5.29
4.23
3.74

5.17
4.17
3.69

5.05
4.10
3.65

4.93
4.04
3.61

4.82
3.98
3.56

4.71
3.92
3.52

4.60
3.86
3.48

Number of Ordered

FWE

.01

.05

.10

.01

.05

.10

.01

.05

.10

9

30.68
13.54
9.41

16.20
9.18
7.06

11.93
7.60
6.14

10

31.69
13.99
9.73

16.69
9.46
7.29

12.27
7.83
6.33

11

32.59
14.39
10.01

17.13
9.72
7.49

12.57
8.03
6.50

12

33.40
14.75
10.26

17.53
9.95
7.67

12.84
8.21
6.65

Means

6

5.66
4.52
4.00

5.60
4.50
3.98

5.55
4.47
3.97

5.51
4.45
3.95

5.37
4.37
3.90

5.24
4.30
3.85

5.11
4.23
3.80

4.99
4.16
3.76

4.87
4.10
3.71

4.76
4.03
3.66

Means

13

34.13
15.08
10.49

17.89
10.15
7.83

13.09
8.37
6.78

7

5.85
4.71
4.18

5.79
4.67
4.16

5.74
4.65
4.14

5.69
4.62
4.12

5.54
4.54
4.07

5.40
4.46
4.02

5.27
4.39
3.96

5.13
4.31
3.91

5.01
4.24
3.86

4.88
4.17
3.81

14

34.81
15.38
10.70

18.22
10.35
7.98

13.32
8.53
6.91

8

6.01
4.86
4.33

5.94
4.82
4.31

5.89
4.79
4.29

5.84
4.77
4.27

5.69
4.68
4.21

5.54
4.60
4.16

5.39
4.52
4.10

5.25
4.44
4.04

5.12
4.36
3.99

4.99
4.29
3.93

15

35.43
15.65
10.89

18.52
10.53
8.12

13.53
8.66
7.03



TABLE C.9 (continued)

Error

df

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

FWE

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

9

9.97
6.80
5.65

8.87
6.32
5.34

8.17
6.00
5.14

7.68
5.77
4.99

7.33
5.60
4.87

7.06
5.46
4.78

6.84
5.35
4.71

6.67
5.27
4.65

6.53
5.19
4.60

6.41
5.13
4.56

6.31
5.08
4.52

6.22
5.03
4.49

6.15
4.99
4.46

6.08
4.96
4.44

6.02
4.92
4.42

10

10.24
7.00
5.82

9.10
6.49
5.50

8.37
6.16
5.28

7.86
5.92
5.13

7.50
5.74
5.01

7.21
5.60
4.91

6.99
5.49
4.84

6.81
5.40
4.78

6.67
5.32
4.72

6.54
5.25
4.68

6.44
5.20
4.64

6.35
5.15
4.61

6.27
5.11
4.58

6.20
5.07
4.55

6.14
5.04
4.53

Number

11

10.48
7.17
5.97

9.30
6.65
5.64

8.55
6.30
5.41

8.03
6.05
5.25

7.65
5.87
5.13

7.36
5.72
5.03

7.13
5.61
4.95

6.94
5.51
4.89

6.79
5.43
4.83

6.66
5.36
4.79

6.56
5.31
4.75

6.46
5.26
4.71

6.38
5.21
4.68

6.31
5.17
4.66

6.25
5.14
4.63

of Ordered

12

10.70
7.32
6.10

9.48
6.79
5.76

8.71
6.43
5.53

8.18
6.18
5.36

7.78
5.98
5.23

7.49
5.83
5.13

7.25
5.71
5.05

7.06
5.62
4.99

6.90
5.53
4.93

6.77
5.46
4.88

6.66
5.40
4.84

6.56
5.35
4.81

6.48
5.31
4.77

6.41
5.27
4.75

6.34
5.23
4.72

Means

13

10.89
7.47
6.22

9.65
6.92
5.88

8.86
6.55
5.64

8.31
6.29
5.46

7.91
6.09
5.33

7.60
5.94
5.23

7.36
5.81
5.15

7.17
5.71
5.08

7.01
5.63
5.02

6.87
5.55
4.97

6.76
5.49
4.93

6.66
5.44
4.89

6.57
5.39
4.86

6.50
5.35
4.83

6.43
5.32
4.80

14

11.08
7.60
6.34

9.81
7.03
5.98

9.00
6.66
5.74

8.44
6.39
5.56

8.03
6.19
5.42

7.71
6.03
5.32

7.47
5.90
5.23

7.27
5.80
5.16

7.10
5.71
5.10

6.96
5.64
5.05

6.85
5.57
5.01

6.74
5.52
4.97

6.66
5.47
4.94

6.58
5.43
4.91

6.51
5.39
4.88

15

11.24
7.72
6.44

9.95
7.14
6.08

9.12
6.76
5.83

8.55
6.48
5.64

8.13
6.28
5.51

7.81
6.11
5.40

7.56
5.98
5.31

7.36
5.88
5.24

7.19
5.79
5.18

7.05
5.71
5.12

6.93
5.65
5.08

6.82
5.59
5.04

6.73
5.54
5.01

6.66
5.50
4.98

6.59
5.46
4.95



TABLE C.9 (continued)

Error

df

20

24

30

40

60

120

oo

Error
df

2

3

4

5

6

7

Number of Ordered

FWE

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

FWE

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

9

5.97
4.90
4.40

5.81
4.81
4.34

5.65
4.72
4.28

5.50
4.64
4.22

5.36
4.55
4.16

5.21
4.47
4.10

5.08
4.39
4.04

16

36.00
15.91
11.07

18.81
10.69
8.25

13.73
8.79
7.13

11.40
7.83
6.54

10.08
7.24
6.16

9.24
6.85
5.91

10

6.09
5.01
4.51

5.92
4.92
4.45

5.76
4.82
4.38

5.60
4.74
4.32

5.45
4.65
4.25

5.30
4.56
4.19

5.16
4.47
4.13

17

36.53
16.14
11.24

19.07
10.84
8.37

13.91
8.91
7.23

11.55
7.93
6.63

10.21
7.34
6.25

9.35
6.94
5.99

11

6.19
5.11
4.61

6.02
5.01
4.54

5.85
4.92
4.47

5.69
4.82
4.41

5.53
4.73
4.34

5.38
4.64
4.28

5.23
4.55
4.21

Number

18

37.03
16.37
11.39

19.32
10.98
8.48

14.08
9.03
7.33

11.68
8.03
6.71

10.32
7.43
6.33

9.46
7.02
6.06

12

6.29
5.20
4.70

6.11
5.10
4.62

5.93
5.00
4.56

5.76
4.90
4.49

5.60
4.81
4.42

5.44
4.71
4.35

5.29
4.62
4.29

of Ordered

19

37.50
16.57
11.54

19.55
11.11
8.58

14.24
9.13
7.41

11.81
8.12
6.79

10.43
7.51
6.40

9.55
7.10
6.13

Means

13

6.37
5.28
4.78

6.19
5.18
4.71

6.01
5.08
4.64

5.84
4.98
4.56

5.67
4.88
4.49

5.51
4.78
4.42

5.35
4.69
4.35

Means

20

37.95
16.77
11.68

19.77
11.24
8.68

14.40
9.23
7.50

11.93
8.21
6.86

10.54
7.59
6.47

9.65
7.17
6.20

14

6.45
5.36
4.86

6.26
5.25
4.78

6.08
5.15
4.71

5.90
5.04
4.63

5.73
4.94
4.56

5.56
4.84
4.49

5.40
4.74
4.41

30

41.32
18.27
12.73

21.44
12.21
9.44

15.57
10.00
8.14

12.87
8.88
7.44

11.34
8.19
7.00

10.36
7.73
6.70

15

6.52
5.43
4.92

6.33
5.32
4.85

6.14
5.21
4.77

5.96
5.11
4.70

5.79
5.00
4.62

5.61
4.90
4.54

5.45
4.80
4.47

40

43.61
19.28
13.44

22.59
12.87
9.95

16.37
10.53
3.57

13.52
9.33
7.83

11.90
8.60
7.36

10.85
8.11
7.04



TABLE C.9 (continued)

Error

df

8

9

10

11

12

13

14

15

16

17

18

19

20

24

30

FWE

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

16

8.66
6.57
5.72

8.23
6.36
5.58

7.91
6.19
5.47

7.65
6.06
5.38

7.44
5.95
5.31

7.27
5.86
5.25

7.13
5.79
5.19

7.00
5.72
5.15

6.90
5.66
5.11

6.81
5.61
5.07

6.73
5.57
5.04

6.65
5.53
5.01

6.59
5.49
4.99

6.39
5.38
4.91

6.20
5.27
4.83

17

8.76
6.65
5.80

8.33
6.44
5.66

7.99
6.27
5.54

7.73
6.13
5.45

7.52
6.02
5.37

7.35
5.93
5.31

7.20
5.85
5.26

7.07
5.79
5.21

6.97
5.73
5.17

6.87
5.68
5.13

6.79
5.63
5.10

6.72
5.59
5.07

6.65
5.55
5.05

6.45
5.44
4.97

6.26
5.33
4.89

Number

18

8.85
6.73
5.87

8.41
6.51
5.72

8.08
6.34
5.61

7.81
6.20
5.51

7.59
6.09
5.44

7.42
6.00
5.37

7.27
5.92
5.32

7.14
5.85
5.27

7.03
5.79
5.23

6.94
5.73
5.19

6.85
5.69
5.16

6.78
5.65
5.13

6.71
5.61
5.10

6.51
5.49
5.02

6.31
5.38
4.94

of Ordered Means

19

8.94
6.80
5.94

8.49
6.58
5.79

8.15
6.41
5.67

7.88
6.27
5.57

7.67
6.15
5.50

7.49
6.06
5.43

7.33
5.97
5.37

7.20
5.90
5.32

7.09
5.84
5.28

7.00
5.79
5.24

6.91
5.74
5.21

6.84
5.70
5.18

6.77
5.66
5.16

6.56
5.55
5.07

6.36
5.43
4.99

20

9.03
6.87
6.00

8.57
6.64
5.85

8.23
6.47
5.73

7.95
6.33
5.63

7.73
6.21
5.55

7.55
6.11
5.48

7.40
6.03
5.43

7.26
5.96
5.38

7.15
5.90
5.33

7.05
5.84
5.30

6.97
5.79
5.26

6.89
5.75
5.23

6.82
5.71
5.21

6.61
5.59
5.12

6.41
5.48
5.03

30

9.68
7.40
6.48

9.18
7.15
6.31

8.79
6.95
6.17

8.49
6.79
6.07

8.25
6.66
5.98

8.04
6.55
5.90

7.87
6.46
5.84

7.73
6.38
5.78

7.60
6.31
5.73

7.49
6.25
5.69

7.40
6.20
5.65

7.31
6.15
5.62

7.24
6.10
5.59

7.00
5.97
5.49

6.77
5.83
5.39

40

10.13
7.76
6.80

9.59
7.49
6.62

9.19
7.28
6.48

8.86
7.11
6.36

8.60
6.97
6.27

8.39
6.85
6.19

8.20
6.75
6.12

8.05
6.67
6.06

7.92
6.59
6.00

7.80
6.53
5.96

7.70
6.47
5.92

7.61
6.42
5.88

7.52
6.37
5.85

7.27
6.23
5.74

7.02
6.08
5.64



TABLE C.9 (continued)

Error

df

40

60

120

oo

Number of Ordered Means

FWE

.01

.05

.10

.01

.05

.10

.01

.05

.10

.01

.05

.10

16

6.02
5.16
4.75

5.84
5.06
4.68

5.66
4.95
4.60

5.49
4.85
4.52

17

6.07
5.22
4.81

5.89
5.11
4.73

5.71
5.00
4.65

5.54
4.89
4.57

18

6.12
5.27
4.86

5.93
5.15
4.78

5.75
5.04
4.69

5.57
4.93
4.61

19

6.17
5.31
4.91

5.97
5.20
4.82

5.79
5.09
4.74

5.61
4.97
4.65

20

6.21
5.36
4.95

6.02
5.24
4.86

5.83
5.13
4.78

5.65
5.01
4.69

30

6.55
5.70
5.29

6.33
5.57
5.20

6.12
5.43
5.10

5.91
5.30
5.00

40

6.78
5.93
5.53

6.55
5.79
5.42

6.32
5.64
5.31

6.09
5.50
5.20

Source: Adapted from Table II.2 in The Probability Integrals of the Range and of the Studentized Range, prepared by
H. L. Harter. D. S. Clemm, and E. H. Guthrie. The original tables are published in WADC Tech. Rep. 58-484. Vol. 2,
1959, Wright Air Development Center, and are reproduced with the permission of the authors.
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TABLE C.10 CRITICAL VALUES FOR THE WILCOXON SIGNED-RANK TEST

Number of Pairs

One-
tailed

.05

.025

.01

.005

.05

.025

.01

.005

.05

.025

.01

.005

.05

.025

.01

.005

.05

.025

.01

.005

Two-
tailed

.10

.05

.02

.01

.10

.05

.02

.01

.10

.05

.02

.01

.10

.05

.02

.01

.10

.05

.02

.01

5

0

15

30
25
19
15

25

100
89
76
68

35

213
195
173
159

45

371
343
312
291

6

2
0

16

35
29
23
19

26

110
98
84
75

36

227
208
185
171

46

389
361
328
307

7

3
2
0

17

41
34
27
23

27

119
107
92
83

37

241
221
198
182

47

407
378
345
322

8

5
3
1
0

18

47
40
32
27

28

130
116
101
91

38

256
235
211
194

48

426
396
362
339

9

8
5
3
1

19

53
46
37
32

29

140
126
110
100

39

271
249
224
207

49

446
415
379
355

10

10
8
5
3

20

60
52
43
37

30

151
137
120
109

40

286
264
238
220

50

466
434
397
373

11

13
10
7
5

21

67
58
49
42

31

163
147
130
118

41

302
279
252
233

12

17
13
9
7

22

75
65
55
48

32

175
159
140
128

42

319
294
266
247

13

21
17
12
9

23

83
73
62
54

33

187
170
151
138

43

336
310
281
261

14

25
21
15
12

24

91
81
69
61

34

200
182
162
148

44

353
327
296
276



TABLE C.11 TRANSFORMATION OF r TO Z

r

0.000
0.005
0.010
0.015
0.020

0.025
0.030
0.035
0.040
0.045

0.050
0.055
0.060
0.065
0.070

0.075
0.080
0.085
0.090
0.095

0.100
0.105
0.110
0.115
0.120

0.125
0.130
0.135
0.140
0.145

0.150
0.155
0.160
0.165
0.170

0.175
0.180
0.185
0.190
0.195

Z

0.000
0.005
0.010
0.015
0.020

0.025
0.030
0.035
0.040
0.045

0.050
0.055
0.060
0.065
0.070

0.075
0.080
0.085
0.090
0.095

0.100
0.105
0.110
0.116
0.121

0.126
0.131
0.136
0.141
0.146

0.151
0.156
0.161
0.167
0.172

0.177
0.182
0.187
0.192
0.198

r

0.200
0.205
0.210
0.215
0.220

0.225
0.230
0.235
0.240
0.245

0.250
0.255
0.260
0.265
0.270

0.275
0.280
0.285
0.290
0.295

0.300
0.305
0.310
0.315
0.320

0.325
0.330
0.335
0.340
0.345

0.350
0.355
0.360
0.365
0.370

0.375
0.380
0.385
0.390
0.395

Z

0.203
0.208
0.213
0.218
0.224

0.229
0.234
0.239
0.245
0.250

0.255
0.261
0.266
0.271
0.277

0.282
0.288
0.293
0.299
0.304

0.310
0.315
0.321
0.326
0.332

0.337
0.343
0.348
0.354
0.360

0.365
0.371
0.377
0.383
0.388

0.394
0.400
0.406
0.412
0.418

r

0.400
0.405
0.410
0.415
0.420

0.425
0.430
0.435
0.440
0.445

0.450
0.455
0.460
0.465
0.470

0.475
0.480
0.485
0.490
0.495

0.500
0.505
0.510
0.515
0.520

0.525
0.530
0.535
0.540
0.545

0.550
0.555
0.560
0.565
0.570

0.575
0.580
0.585
0.590
0.595

Z

0.424
0.430
0.436
0.442
0.448

0.454
0.460
0.466
0.472
0.478

0.485
0.491
0.497
0.504
0.510

0.517
0.523
0.530
0.536
0.543

0.549
0.556
0.563
0.570
0.576

0.583
0.590
0.597
0.604
0.611

0.618
0.626
0.633
0.640
0.648

0.655
0.662
0.670
0.678
0.685

r

0.600
0.605
0.610
0.615
0.620

0.625
0.630
0.635
0.640
0.645

0.650
0.655
0.660
0.665
0.670

0.675
0.680
0.685
0.690
0.695

0.700
0.705
0.710
0.715
0.720

0.725
0.730
0.735
0.740
0.745

0.750
0.755
0.760
0.765
0.770

0.775
0.780
0.785
0.790
0.795

Z

0.693
0.701
0.709
0.717
0.725

0.733
0.741
0.750
0.758
0.767

0.775
0.784
0.793
0.802
0.811

0.820
0.829
0.838
0.848
0.858

0.867
0.877
0.887
0.897
0.908

0.918
0.929
0.940
0.950
0.962

0.973
0.984
0.996
1.008
1.020

1.033
1.045
1.058
1.071
1.085

r

0.800
0.805
0.810
0.815
0.820

0.825
0.830
0.835
0.840
0.845

0.850
0.855
0.860
0.865
0.870

0.875
0.880
0.885
0.890
0.895

0.900
0.905
0.910
0.915
0.920

0.925
0.930
0.935
0.940
0.945

0.950
0.955
0.960
0.965
0.970

0.975
0.980
0.985
0.990
0.995

Z

1.099
1.113
1.127
1.142
1.157

1.172
1.188
1.204
1.221
1.238

1.256
1.274
1.293
1.313
1 .333

1 .354
1.376
1.398
1.422
1.447

1.472
1.499
1.528
3.557
1.589

1.623
1.658
1.697
1.738
1 .783

1.832
1.886
1.946
2.014
2.092

2.185
2.298
2.443
2.647
2.994



Answers to
Selected Exercises

CHAPTER 2

2.1 (a) Y = 30.562; (b) Y (median) = 33.5; (c) (E Y)2 = 239,121; (d) E Y2 = 16,311; (e) 9.543;
(f) HL = 23.5, HU - 37.5.

2.3 Outliers in box or stem-and-leaf plots and the shape of a normal probability plot suggest a
heavy-tailed distribution in data set (a) Both a stem-and-leaf (or a histogram) and a normal
probability plot indicate that data set (c) is skewed to the right. Data set (b) appears to be
normally distributed.

2.5 (a) Y(, = 57. (b) Adding a score equal to the mean will yield the smallest variance.
2.7 (a) Y .1=22; (b) Y 2 . = 19.333; (c) Y.. = 21.067; (d) E?=! £j=1 Y? = 9,422; and

(e)£]=,r2,. = 1,532.72.
2.9 Standardizing each of the three sets of scores equates their means (at 0) and standard deviations

(at 1). The ranges and medians are not necessarily ordered as they were for the original three
distributions. However, the shapes are the same; the skewness and kurtosis values, and their
standard errors, as well as the normal probability plot are unchanged.

2.11 (a) The line graph is preferable in that it more clearly reveals differences among age groups
in trends over seasons.

(b) Two aspects of the graph are notable. First, the younger age groups (Agegrp = 1 and 2)
have higher mean Beck anxiety scores than the older groups. Second, this is particularly
pronounced in the winter season; although three of the four groups are most anxious then,
this is markedly so for the youngest group.

(c) Median trends over seasons within each age group show a trend similar to that for the
means, though the differences among age groups are not quite as large when the median
is viewed instead of the mean.

2.13 (a) z, = (41 - 38.6)/4.616 = .520; Zz = (51 - 46.84)/9.496 = .438. Performance has de-
clined in standard deviation units.

(b) A score of 52 is the lowest integer value that transforms the Test 2 score into a z score
exceeding .52.

(c) The distributions appear to be symmetric as suggested by near equality of means and
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686 ANSWERS TO SELECTED EXERCISES

medians, symmetric box plots, and normal probability plots indicating that the points lie
fairly close to a straight line.

CHAPTER 3

3.1 (b) r = .620; (c) Y = 3 + 2X; (d) r2 = .385; (e) X = 1.577 + 0.192F; (f) r2 = .385.
3.3 (a) r = —.487. (c) If the most influential point (case 64) is removed, r = —.743.
3.5 (a) The reasoning of the committee member is that because there is a high correlation between

the pretest and posttest scores, no change in IQ has occurred. This reasoning is silly: the
correlation is sensitive to the relative standing on the two tests but not the absolute scores.
The correlation says nothing about the means. For example, if all the students had their
scores increase by about 20 points, the correlation would be very high.

(b) Of course, the longer you live the more time you have to smoke cigarettes. If we are concerned
about the infuence of smoking on longevity, we should look at the rate of cigarette smoking
(cigarettes/day), not the total number.

(c) The data do not allow us to make a causal statement. It could be that less able or motivated
students spent less time on schoolwork and therefore had more time to watch TV. We cannot
conclude that the TV watching caused the poor performance.

3.7 The overall correlation between height and weight is .529; however, it is only .288 for both
men and women considered separately. As we discuss in more detail in Chapter 18, statistics
of combined distributions may not describe any of the constituent distributions. Here, because
men tend to be both taller and heavier than women, the variance of both height and weight is
greater for the combined male and female distributions than for men and women considered
separately:

Men Women Overall

Mean height (cm)
SD height
Mean weight (kg)
SD weight

176.24
6.81

86.21
13.81

161.43
6.73

69.55
16.36

169.08
10.03
75.12
17.24

3.9 Given that rXY = .6, we find the following: (a) The correlation between Y and Y must also
be .6 because Y is just a linear transformation of X; (b) the correlation between Y and Y is
corr(Y, Y -Y) = .8; (c) corr(Y, Y - f) = 0.

CHAPTER 4

4.1 (a) .2; (b) .23 = .008; (c) (.8)(.2)(.8) = .128; (d) (3)(.128) = .384; (e) 1 - p(none correct)
= 1 - .83 = 1 - .512 = .488; (f) (3)(.22)(.8) = .096; (g) (.84)(.2) - .08192.

4.3 (a)

Test Results HIV No HIV Total

Positive
Negative

Total

997
3

1,000

1,485
97,515
99,000

2,482
97,518

100,000

(b) 997/2,482 = .402; (c) 97,515/97,518 = .99997.



ANSWERS TO SELECTED EXERCISES 687

4.5 (a) p(reject|true) = a = .05; (b) p(don't reject|false) = B = 1 - power = .2; (c) p(true|
nonreject) = .67; (d) p(reject) = .575.

4.7 (a) H0: p = .25; H1: p > .25; (b) H0: p = .20; H1: p > .20, although those espousing ESP
often also take below-chance performance as evidence for their cause—in this case, H1: p =
.20; (c) H0: p = .60; H1: p > .60.

4.9 (a) No; p = p(data at least as extreme as that obtained|H0 true), not p(H0 true|data); (b) no.
for the same reason as in part (a).

4.11 (a) Reject if r < 7; p(reject) = .058; (b) power = .42; (c) reject if r > 14 or r < 6; (d) power
now equals .25.

4.13 (a) H0: p = .5, H1: p = .5; p is the probability that the imagery is better than the rote pro-
cedure. Let n = 12 and a = .05. Then the decision rule is: reject if r > 9 or r < 3 where
r is the number of participants who performed better by using the imagery method. The
null hypothesis cannot be rejected.

(b) Power = .89.
4.15 (a) E(Y) = 5; (b) the completed sampling distribution is

7 = 2 3 4 5 6 7 8
p(Y) = .0625 .125 .1875 .250 .1875 .125 .0625

(c) E(Y) = 5 = E(Y); var(F) = 2.5 = var(F)/2; in general, the variance of the sample mean
equals the sample variance divided by the sample size.

4.17 (a) The best estimate of the mean of the other four students is still 100; (b) the best estimate
of the sample mean is 550/5 = 110; (c) only the answer to (b) is changed; the estimate is
105.

CHAPTER 5

5.1 (a) (i) p(Y > 30) = .023; (ii) p(85 < Y < 145) = .840; (iii) p(Y > 70) = .977; (iv) p(10 <
Y < 80) = .069. (b) yupper = 119.2 and Flowcr = 80.8. (c) F75 = 110.125. (d) p = .159.
(e) The area is essentially zero.

5.3 (a) (i) p = .401; (ii) p = .067; (iii) p = .464; (b) p = .69; (c) p = .72; (d) p = .69.
5.5 (a) #O:TT = .4;H1:P < .4.

(b) Then z = —2.12. The decision rule is as follows: Reject H0 if z < —1.645. Therefore,
reject the null hypothesis. We conclude that the new drug has reduced the probability of
recurrence of symptoms.

(c) (i) We assumed that the sampling distribution of p was normal, (ii) Because p is an average
of 48 ones (failures) and zeros (successes), the central limit theorem provides the rationale
for using the normal distribution, (iii) Because the distribution of p approaches normality
as n increases, the normal approximation will not be as good when n — 10 than when
n = 48. _

5.7 (a) (i) E(X) = .2; var(X) = P(l - P) = .16. (ii) var(X) = .16/3 = .053.
(b)

Y

0
1
2
3

PM

.83 = .512
(3)(.82)(.2) = .384
(3)(.8)(.22) = .096
.23 = .008

X

0
1/3
2/3
0

S2
^X

0

2/9
2/9
0

sj
0

2/27
2/27
0

4
0
1/9
1/9
0
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(c) (i) E(Y) = .6; (ii) E(X) = 2; (iii) E ( S 2 / X ) = .036; (iv) E(S4) = .053.
(d) E(Y) = N x E(X) and E(X) = E(X). _
(e) S2/X = [(N - 1 ) / N ] x var(X); s2/X = var(X).

5.9 (a) E(T - C) = MT- - MC = .5<r; var(r - C) = cr} + a* = 2a2; (b) p = .64; (c) (i) p =
.86; (ii) p =^66. _

5.11 (a) Let d = F, - F2. Then jj = J ( l / N ) ( s j +4 - 2rs}s2) = 1.469.
(b) CI ̂ 2.36, 8.12
(c) f = d/sj = 5.241/1.469 = 3.57. TC levels are significantly higher in the winter than in

the spring season.
(d) SPSS yields confidence bounds of 2.347 and 8.135, and a value of t of 3.569; all of these

values are close to those obtained by using the z test.
5.13 (a) CI = 3.217, 23.735; (b) power = .84.
5.15 (a) The medians and means for women are higher than those for men. Female depression scores

are also more variable. Skewness and kurtosis measures are high for both sexes. Graphs
of histograms, box plots, normal probability curves, and stem-and-leaf plots indicate that
the data are markedly skewed to the right in both groups with many outliers (roughly, a
little more than 7%).

(b) CI = .333, 2.735. The interval does not include zero, so the null hypothesis of no dif-
ference can be rejected. Although the populations of scores are not normal, the sampling
distributions of the means are likely to be, given the size of the samples, and therefore the
significance test is likely to be valid.

(c) From stem-and-leaf plots, we find that male scores greater than 13.250 and female scores
greater than 16.659 are outliers.

(d) When outliers, as defined in part (c), are deleted from the data set, there is still considerable
skew but less than previously. Some scores that previously were not outliers are so now,
but there are fewer outliers than before. Also, the mean and median are closer together in
both groups than in the original full data set. The removal of outliers greatly reduces the
variances. Consequently, the new CI bounds, .430 and 2.076, are closer than those obtained
in part (b). Therefore, the population difference in means is more precisely estimated, and
power to test the null hypothesis is greater.

CHAPTER 6

6.1 (a) CI = 4.5 ± (2.201)(1.555) = 1.077, 7.923.
(b) H0: Md = 0; H1: Md=0; reject if |T| > 2.201. t = d/s^ = 4.5/1.555 = 2.895.

Reject H0.
(c) CI = -6.559, 15.584 and t = 4.5/5.332 = .844, clearly less than the critical value on 22

df of 2.014. The independent-groups analysis is considerably less efficient as evidenced by
the fact that the CI is more than three times wider than in the repeated-measures design. The
independent-groups design has twice as many degrees of freedom, but this is more than
compensated for by the much smaller SE for the repeated-measures data. However, one
potential problem is that performance exposure to one condition may affect performance
under the other condition, and sometimes it is impossible to test the same subjects in two
conditions.

6.3 (a) t = 2/(5.6/4) = 1.43. The null hypothesis cannot be rejected, (b) Es = .36; (c) power =
.39 when N = 16; (d) when N = 36, power = .68; (e) N = 50; (f) the power values for
various Ns and the two distributions are as follows:
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Distributions

N t

16 .39 .41
36 .68 .69
49 .80 .81

The normal distribution (z) provides a reasonable approximation to the power of the t test,
even when N is relatively small. Also, because the t distribution approaches the normal with
increasing degrees of freedom, the approximation improves as N increases.

6.5 (a) On 30 df, with a = .05 (two tailed), the critical t = 2.042. t = 2.20. Therefore, reject H0.
(b) Applying Equation 6.19, we have t' = 3.2/1.763 = 1.82. From Equation 6.20, df = 13.

The null hypothesis cannot be rejected against a two-tailed alternative.
(c) The pooled-variance test gives heavy weight to the smaller variance, producing a positive

bias (i.e., too many Type 1 errors) in the t test. The separate-variance test corrects this bias.
6.7 (a) H0: MH — ML. = 0; H1: MH — ML = 0; for a = .05 and df= 34, reject if |t| >

2.034. t = .621, which is not significant.
(b) H0: MM - (.5)(MH + ML = 0; H,: MM - (.5)(MH + M L ) L > 0;4f = N - 3 = 51 and for

ot = .05, reject H0 if t > 1.676. S =3.921. Assuming homogeneous variances, we have
SE = 1.776 and t = E/sE = 3.931/1.776 = 2.21. The null hypothesis can be rejected.

(c) For the contrast in part (a), E s = .21. For part (b), E s = .64.
6.9 (a) When Sayhlth = 2, then Es = .22, a small standardized effect; when Sayhlth = 4, then

Es = 11.087/19.375 = .57, a medium standardized effect.
(b) Sayhlth = 2, t181..05 = 1.973; CI = 1.59, 7.53; t = 4.56/1.506 = 3.030; p = .003.

Sayhlth = 4, t22..05 = 2.074; CI = 11.087 ± (2.074)(4.040) = 2.71, 19.47; / =
11.087/4.04 = 2.744; p = .012.

(c) The statistics in part (b) might suggest that the increase in TC scores in the winter relative
to the spring is more pronounced in the Sayhlth = 2 group. However, this probably reflects
the fact that there are many more participants in the study who rated themselves in very
good health (Sayhlth = 2) than who rated themselves in fair health (Sayhlth = 4). The
comparison of effect sizes serves to remind us of this because the standardized effect size
is considerably larger in the Sayhlth = 4 group. Because of the small n in that group,
we can reach no firm conclusion about the relative effects in the two groups. We need a
considerably larger sample of people who rate themselves in only fair health.

6.11 Response time data are—like the accuracy data—quite similar for boys and girls. Again, effect
sizes are very small, all less than .01, and all t statistics are less than one. All distributions are
skewed to the right, with the bulk of scores falling between 1 and 3 seconds. Perhaps the one
notable difference between boys and girls is that the variances of the male scores are higher
for all four measures. However, the ratios are less than 2 and tests of significance will have to
await developments in Chapter 7.

CHAPTER 7

7.1 (a) (i), p(xl < 9.236) = .90; (ii) p(1.145 < X| < 6.626) = .70.
(b) x2 = (N - \}s2/v2 = 5s2/W = s2/2. If V < 8.703, then \2 < 8.703/2. or 4.351.

Therefore, p = .50.
7.3 (a) H0: a

2 = 12.64; #,: a2 < 12.64. X
2 = (9)(3.51)/12.64 = 2.499. p(x9

2 < 2.499) =
.019. Therefore, reject HO", the variance has decreased.

z
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(b) The ratio, (N — 1)s2/S2, is distributed as x2 under the assumption that the distribution
of scores in the population is normal. As sample size increases, the sample distribution
is more likely to approach the (nonnormal) distribution so that increasing the sample size
will not remedy the situation.

7.5 (a) Appendix Table C.5 is entered with d f 1 = 4 and df2 = 10 because the boys' variance is in
the numerator. The required probabilities are (i) .10 and (ii) .975.

(b) We assume the samples were drawn from two independently and normally distributed
populations with the same variances.

7.7 F = 3.75. Reject if F > F10.20..025 or F < F10,20..975; F10.20..025 = 2.77 and Fl0.20..975. =
1/F20.10..025 = .29. The variances differ significantly.

7.9 (a) The CI limits are 1.70 and 16.58.
(b) The decision rule is: reject H0 if F > F12.14..025 or F < F12.14.975. F12.14.975 = 3.05 and

therefore HO is rejected; the variance of the girls' multiplication accuracy scores is signif-
icantly greater than that for the boys.

(c) A stem-and-leaf plot reveals two outliers in the boys' data: 37.5 and 41.429. When these
are deleted, the variance shrinks to 22.791, less than one tenth of the original variance.
The effect of outliers in small data sets can be very large.

(d) The data are clearly not normally distributed.
7.11 (a) Plots of the means as a function of grade show a steep decline from third to sixth grade, and

then a leveling off at approximately 1.8 seconds. The standard deviations also decrease
from the third to the sixth grade, with the sharpest drop occurring between Grades 5
and 6. Surprisingly, variability increases from the sixth to the eighth grade. This could be
investigated by plotting the distributions. Outlying scores may be responsible. It is also
possible that the upturn is not statistically significant.

(b) H0. of = S2
2; H1: S2 = S2. F = 2.028. The critical F value is 2.44; therefore, we cannot

reject H0.

CHAPTER 8

8.1 (a) The variances will be multiplied by 1002.
(b) The F ratio will not change because both numerator and denominator increase by the same

factor.
(c) The variance is increased by the square of the constant.
(d) Adding a constant to all scores will not change the mean squares or the F ratios.
(e) Because the spread of the group means is changed, the MSA changes. However, adding

the same constant to all scores in a group will not change the within-group variance and
therefore MSS /A is unaffected.

8.3 (a) F = 44.1/53.0 = .832. We cannot reject H0. (b) t = .912. Squaring /, we have .9122 =
.832 = F.

8.5 The treatment effects are aj = Y.j - Y.. = -9.333, -1.400, and 10.733. The mean is zero
as it should be. The residuals are E,7 = Yij — Y . j ; these also have a mean of zero,
(b) 15 E. a2 = 3064.133 = SSA and E,E, e2

ij = 20547.067 = SSS/A.
8.7 (a) p = .057. The effects of A are not significant, (b) Cohen's / = .383. (c) Power = .41.

(d) N = 159, or 53 in each group.
8.9 (a) The test of the means of the absolute deviations from the median yields F = .472.

p = .627.
(b) Normal probability plots for each text indicate that deviations from normality are small,

mostly for the highest scores. Also, neither the Kolmogorov-Smirnov or Shapiro-Wilk
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test (available in SPSS's Explore module) yield a significant result for any of the three
groups.

(c) The rank sums for the three groups are 333, 341, and 502, and H = 5.922, which is
distributed approximately as x2 on 2 df and has p = .052. Although slightly less than the
p value from the F test, the result is again not significant.

8.11 (a) For men (sex = 0), F3,156 = 268.793/16.523 = 16.268; p = .000. For women (sex = 1),
F3.163 = 242.595/32.009 = 7.579; p = 000.

(b) F = yd-2/d;2 = V4.730/16.523 = .54. Similar calculations for the female data yield
/ = yd^/o;2 = V3-783/32.009 = .34. According to the guidelines suggested by Cohen,
the effect for men is large, and that for women nearly so.

CHAPTER 9

9.1 (a) H0: (l/2)(MF1 + MF2) - MC < 0; H1: (l/2)(MF1 + MF2) - MC > 0.

E (1/2)(14.6+14.9)-13.8
tq$ = — = = 1. / J

yMS5M£>2./n V(4X-52 + -52 + 12)/20

The p value is .043. Reject H0.
(b) H0: Mc - (l/2)((MI1 + MI2) = 0; H1: (l/2)(MI1 + (MI2) - MC=0- Proceeding as in part

(a), t = 3.74, which is clearly significant.
(c) H0: (l/2)(jJL f i + jif-2) - ( l /2)( jJL/ i + M-/2) = <>;#,: (1/2}(^F] + |JLF2) - (l/2)(^, +

jju / 2) / 0. t = 6.71. The null hypothesis can be rejected.
9.3 (a) SSA = 560. (b) (i) SS^, = 320; (ii) SS^2 = (20 - 14)2/(1.5/10) = 240; (iii) SSj,, = (24 -

14)2/(2/10) = 500. Because the contrasts are orthogonal, SSE2+ SSE1 = SSA.

(c) SSE2 is unchanged because the contrast is orthogonal to the first contrast. However, SSE3 is changed because it is not orthogonal to the first contrast.

9.5 (a)$s = .2.(b)$5 = .185.
9.7 (a)( i)Let i|; = JJLB - (l/2)(jJLA + M-c); then H0: i|i < 0; //,: »|i > 0; (ii) j| = M5error

X:- w2 /« r = 10.5; (iii) f = 4./^ = 6.5/3.24 = 2.01.
(b) (i) The standard t test, on 27 df, is appropriate if this test is the only one and has been

planned. For a = .05 and a one-tailed alternative, reject H0 if t > 1.703; therefore reject
Ho.
(ii) The Scheffe method is appropriate here; t is compared with 5 = ^/df{ • F05_ ^ df-, >
where df\ and df2 refer to the numerator and denominator degrees of freedom. Substituting
values, we have 5 = V(2)(3.35) = 2.59. We cannot reject H0.

9.9 (a) The critical distance is 6.26, and all comparisons, except A4 versus A5, are significant.
(b) The null hypothesis is HO: (|X] — p^) — (^ — l-M) = 0. Therefore, \\> = 13, .s,|, = 3.381,

and t = 3.85, which leads us to reject HQ.
(c) Reject HQ if \t\ > 2.90, or if the absolute difference between two means is greater than

6.93.
9.11 (a) F = 86.679/28.895 = 3.00; with 2 and 323 df, p = .051.

(b) There are 323 dfe. In part (b), the Tukey-Kramer test is appropriate and for three groups,
^.05,323^3.31; therefore, /crjt = 3.31/>/2 = 2.34. In part (c), the Dunn-Bonferroni
method is appropriate; therefore, a = .017 (two tailed), and with 323 df, ?,.„, = 2.408.
Let D — Y.,• — Y.j> and SE = sjj. Then, we have the following:
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Cl

Employ. Cat. D SE Part (b) Part (c)

1,2
1,3
2,3

1.274
1.730
0.456

0.872
0.783
1.053

-0.77,3.31
-0.10, 3.56
-2.01,2.92

-0.83, 3.37
-0.16,3.62
-2.08, 2.99

The confidence limits are D ± tcrit SE and SE = ^MSerrm(l/rij + !/«/•)• The Dunn-
Bonferroni intervals are slightly wider than the Tukey-Kramer ones.

CHAPTER 10

10.1 (a) b1 = -.864. (b) YPre.j = 6.136, 5.272, 4.408, and 3.544. (c) (i) SSlin = 29.860; (ii) S5lm =
29.860; F1.28 = 29.860/1.42 = 21.028; (iii) The best-fitting straight line has a slope sig-
nificantly different from zero.

10.3 Only lin(A) is significant; F1. 16 = 7.33, p = .016. The results support Smith's hypothesis of
an increasing trend with increased group size.

10.5 (a) According to the theoretical model, the function relating d' and time should increase with
time and should be S shaped. This suggests linear and cubic polynomial components

(b) As predicted, only the linear (F1.35 = 78.81, p = .000) and cubic (F1.35 = 738.50, p =
.000) components of Time are significant.

10.7 (a) The means increase from A1 to A3 and then decrease at A4, suggesting linear and quadratic
components.

(b) All three components of A are significant. lin(A): F1.36 = 5.72, p = .022; quad(A):
F.36 = 20.39, p = .000; cubic(A): F1.36 = 14.84, p = .000.

(c) The means at the A1, A2, and A3 levels are increasing, contributing to the significant linear
component. The downturn at A4 is apparently responsible for the quadratic component.
The inflection point at A2 is the most likely reason for the cubic contribution.

CHAPTER 11

1 1 . 1 (a) The cell and marginal means are as follows:

A1 A2 A3 A4 Y..k

B1
B2

Y.j.

17.333
28.000

22.667

26.667
27.000

26.834

35.667
20.000

23.824

19.333
38.333

28.833

24.750
28.333

26.542

In a plot of the cell means, the only clear pattern is one of interaction. The B\ means
increase as A does until A3, whereas the B2 means exhibit the opposite pattern, falling
until A3 and then rising.
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(b) The estimates for the A and B main effects are as follows:

A, A2 A3 A4 B1 62

-3.875 0.292 1.292 2.291 -1.792 1.792

The interaction effects are (Y.jk — Y...) — a, — fik:

A2 A3 A4

B1
B2

-3.542
3.542

1.625
-1.625

9.625
-9.625

-7.708
7.708

(c) SSA = 440.423; SSB = 256.794; SSAB = 3344.960.
(a) Calculate the A, B, and AB mean squares from the cell means. We also know that

MSAn/MSs/AB = 8.0 so that we can solve for MSS/AB- The result is as follows:

SV df SS MS

A
B
AB
S/AB

1
2
2

30

4
32

128
240

4
16
64
8

0.5
2.0
8.0

.485

.153

.002

(b) MSB/A-, — 56; F2,3o = 7.00; p = .003. We assume that the six population variances are
equal because we are using the error mean square from the omnibus F tests.

SSA = 399.361; SSB = 121.522; SSAB = 43.389.
(a) The effects of A (F2.81 = 82.56, p = .000) and B (F2.81 = 7.6S,p = .001) are significant,

butnotAfl(F4.81 = 1.38,p = .248).
(b) $ = 7.667; ^ = 1.978; CI = 3.73, 11.60. The contrast differs significantly from zero.
(c) 4» = 7 and s^, = 4.844; r81 = 1.45; this is not significant.
(a) The means at the four ages are (in order from age 5 to 8) 14.20, 7.25, 6.60, and 6.80.

The only significant sources are age (F^2 = 15.38, p = .000), linear(age) (F1.32 =
29.84, p = .000), and quad(age) (F1.32 = 14.61, p = .001). The slope of the best-
fitting straight line differs significantly from zero, and there is significant (quadratic)
curvature.

(b) There are no significant differences between the sexes with respect to any of the three
polynomial components; forlin(Age) x Sex, (Fi.32 = 1.18, p = .285), for quad(Age) x
Sex, (F1.32 = 2.32, p = .138); and for cubic(Age) x Sex, (F1.32 = .10, P = .754).

(a) A plot of the means for the three groups suggests both a linear and a quadratic component
of the time source of variance. The ANOVA confirms the linear trend and the quadratic
is almost significant.

A1

F P

11.3

11.5
11.7

11.9

11.11
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SV df 55 MS

Time
Linear
Quadratic
Cubic

Method
T x M
S/TM

3
1
1
1
2
6

48

35.00
27.00

6.67
1.33
8.13

16.40
87.84

11.67
27.00

6.67
1.33
4.07
2.73
1.83

6.38
14.75
3.64
0.73
2.22
1.49

.001

.000

.062

.398

.119

.201

(b) (i) H0:0/2)(B11+Pi2)-B13 = 0
(ii) F1.48 = 10.14/1.83 = 5.54; p = .023 and we reject the null hypothesis; the slope is

significantly flatter in the M3 condition.
11 .13 (a) In both format conditions, instructions influence mean performance, with means high-

est in the argument (A ) condition, and tending to be lowest in the narrative (N) and
summary (S) conditions. Means are consistently higher in the web than in the text
condition. There may be an interaction with the largest format effects present in the
N and A conditions. There appears to be considerable heterogeneity of variance, with
variances highly correlated with the means. Levene's F7.56 = 2.437, p = .03. Finally,
normal probability plots, the Kolmogorov-Smirnov test, and skewness and kurtosis
statistics all make clear that the data are not normally distributed. In particular, the
text /N and text/S distributions are skewed to the right with a pileup of scores near the
median.

(b) The format effects are significant (F1.56 = 4.71, p = .034), as are the instruction effects
(F3.56 = 6.37, p = .034); the interaction is not (F3.56 = .30, p = .824).

(c) The pattern of means is similiar to that on the original scale, although there is a
more marked trend toward interaction; the effect of format decreases as we move
from the narrative to the explanation condition. The most evident change is that the
differences among the variances are much reduced; in fact, the Levene test of ho-
mogeneity, which previously yielded a p value of .03, now yields F7.56 = .384, p =
.91. Although p values are somewhat less than on the original data scale, conclu-
sions are essentially the same. For format, F1.56 = 7.86, p = .007; for instructions,
F3.56 = 8.41, p = .000; for the interaction, F3.56 = 1.45, p = .239, and SSABc =
45.

CHAPTER 12

12.1 (a) For A, H0: (M111 + M112 + M121 + M122) - (M 2 1 1 + M212 + M221 + M222) = 0. For BC,
HN: (M111 + M211 + M 1 2 2 + M2 2 2) — (M112 + M212 + M121 + M 2 2 1 ) = 0. For ABC, H0:

( M 1 1 1 + M 1 2 2 + M212 + M 2 2 l ) - (M 2 1 1 + M222 + M 1 1 2 + M 1 2 l ) = 0.

(b) SSA = 145, SSBC = 180, and SSABC = 45.
12.3 (a) Let A, /, and X represent age, irrelevant information, and sex, respectively. Then the

SV, df, and EMS are:

F P
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SV df EMS

A*

r
X

AP
AX

IX

AIX*

S/AIX

2

2

1

4

2

2

4

162

o;2 + 6062

cr,2 + 606;

or,2 + 9062

<r(
2 + 2oe2,

a,2 + 300;̂

tf; + 30e2
x

07 + 1062
/x

°;2

12.5

12.7

12.9

(b) Sources followed by an asterisk are hypothesized to be significant.
(a) SScells = 240.
(b) SSA = 240; SSB = 52.267. Because A and B effects are correlated, the variability due to

A and B is greater then the variability among the four cell means, an impossible result.
Subtracting from SScells, the SSAB is negative, a meaningless result.

(c) d = 5;d2 = —3.
(d) Adjusting for the effects of A, the cell means are now all 5. The SSB and SSAB are

now both zero. This peculiar state of affairs exists because the A, B, and AB effects are
perfectly correlated in this "data set."

(a) fB = .21; u)| = .04. The effect is roughly medium in size by Cohen's guidelines.
(b) The power to detect F/ = .25 with 2 and 81 df is .54.
(a) The means (and SEMs) for the Wiley-Voss SVT data are:

Format Narrative Summary Explanation Argument Means

Text
Web

80.00 (3.27)
71.88(4.32)

80.00 (3.78)
69.38 (3.59)

70.00 (5.35)
62.50 (2.67)

71.25 (4.80)
75.62 (2.74)

75.31
69.84

Means 75.94 74.69 66.25 73.44 72.58

(b) The ANOVA table is:

SV df SS MS

Format
Instructions
Fx I
Error

1
3
3

56

478.52
904.30
538.67

6878.13

478.52
301.43
179.56
122.82

3.90
2.45
1.46

.053

.073

.235

(c) / = deflect/Of and, for example, in a two-factor design,

&A = V(dfA/dfA + l)](MSA - MSmor)/nb.

F P
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Source ^effect

Format Vd/2)(478.52 - 122.82)/32 = 2.358

Instructions V(3/4)(301.43 - 122.82/16 = 2.894

Fxl V(3/4)(179.56 - 122.82/8 = 2.306

f

.21

.26

.21

12.11

(d) Although the Format F is larger, and its p value smaller, than that for Instructions,
the estimated effect of Instructions is larger. E(MSFormat) = S2 + 329pormat, whereas
£(MSinstructions) = of + 160,2nstructions. The larger coefficient of the 92 term in the Format
F test contributes to its larger F. However, the estimated ratio of population standard
deviations is not affected by the coefficients.

(e) We require N = 128 to detect / = .25 with power = .80 for the format effects, but
N = 176 for the instructional effects. It may seem surprising that a much larger N
is needed to have the same power. However, note that, for fixed N, each of the four
instructional means is based on fewer scores than each of the two format means and
therefore has a larger standard error. To compensate for this, a larger sample size is
needed to test Instructions.

Dunnett's method should be used. Because the control group variance (s2 =4.52) is
quite similar to the MSerror, we pooled them, obtaining the standard error, sm- = 2.064.
The critical value of Dunnett's d, with a = .10 and 81 df, is approximately 2.43. The
means of experimental conditions differed significantly from the mean of the control
only when subjects were sad and focused on the content of a strongly worded mes-
sage, or when subjects were happy and focused on the language of a weakly worded
message.

CHAPTER 13

13.1(a,b)

SV df MS EMS

Subjects

A

S x A

3

2

6

23.556

16.583

1.139

"> , ^ 007 + 30-5

14.559 07 + 462

*!

13.3

(c) partial u>2 = .69. (d) estMSs/A = 7.253.
(e) For the repeated-measures design, assuming sphericity, / = 1.50 or X = 27. Then,

power & .95. For the between-subjects design, / = .596 and X = 4.259. Then,
power = .28.

The matrix does not exhibit compound symmetry because the variances are not equal, nor



are the covariances. However, it does meet the sphericity definition because var(d12) =
var(d13) = var(d23) = 3.

13.5 Following is SPSS's output for a trend analysis:

Tests of Within-Subjects Contrasts

Source A

A Linear
Quadratic
Cubic

Error (A) Linear
Quadratic
Cubic

Type III Sum
of Squares

2.809
.911

4.225E-02

1.861
1.689
.598

df

1
1
1

7
7
7

Mean Squares

2.809
.911

4.225E-02

.266

.241
8.539E-02

F

10.566
3.777

.495

Significance

.014

.093

.505

Measure: MEASURE_1.

13.7 (a)

(b) Our results are:

13.9 (a)

SV

Subjects (S)

Occasions (0)

Tasks (T)

Residual

n —

o —

t -

not

df

1

1

1

-(n + o + t-2)

EMS

07 + ota2
 s

v2 + nto2
0

o2 + nov2T

°e
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Cycles

X12

x43

1

30.5000
37.9167

2

24.6806
38.8866

3

24.5189
38.9135

4

24.5144
38.9143

(b) O2
S = (MSS - MSresidual)/ot;T2

0 = MS0 - MSresidual/nt; C2
T = (MST - MSresidual)/no.
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(c)

sv

Subjects (S)

Occasions (0)

Tasks (T)

ST

Residual

n- 1

o- 1

t- 1

(n-

(nt-

df

l)(t - 1)

l ) (o- l )

EMS

07 + offj,.

(T(
2 + «fCT^

a; + o(T2
7.

a; + oo-2
7

")CT;

+ oraf

+ nocfj

&l = (MSs - AfS.s7 )/0f; d£ = (AfS« - MSK^ua\ )/nt

df =(M5r -MSST}/no

13.11 (a)

SV

5
A
5
A5
SA
55
SA5

df

4
1
2
2
4
8
8

55

34.467
112.133

9.800
4.067

14.867
2.533

18.933

MS

8.617
112.133

4.900
2.033
3.717

.317
2.367

Error

SA
SB
SAB

F

30.170
15.474

.859

(b)

SV

5
A
SA

df

4
1
4

55

11.489
37.378
4.956

MS

2.872
37.378

1.239

F

30.170

Note. The MS and SS are one-third of their original values because the "scores" in
part (b) are an average of three scores in part (a). The F ratio for A is unchanged. Therefore, as long
as B has fixed effects, averaging over its levels will not change the test of the effects of interest.

(c) The EMS are presented in the table. The terms in parentheses do not contribute to the
variability in the data when B has fixed effects.

SV EMS

s
A

B

SA

SB

AB

SAB

or,2 + (acr2^) + abaj

CT; + bvjA + (na^K) +

u~ + a(T^B + nacrj

°V2 + VSAB + ba™

°7 + a°SB

<*t + aLii + n(jL
ue + °SAB

(a|AB) + n^e2
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(d) Using Equation 13.19, F'2 = 19.91. From Equations 20.20 and 20.21, the df = 1.042
and 5.98. Therefore, p = .004. When B is viewed as fixed [part (a)], p = .0006.

(e) Averaging over the levels of B and analyzing the data as if there were only a scores for
each subject ignores the A x B and S x A x B variability that contributes to the A mean
square if B has random effects. Therefore, in such circumstances, that procedure will
generally lead to an inflated Type 1 error rate.

(a) The sum of the negative ranks is 6. For a = .05 (two tailed) and n = 8, to reject H0,
T— < 3 (see Appendix Table C.10). Therefore, we cannot reject H0.

(b) For each subject, multiply the scores from A1 to A4 by —3, — 1 , 1 , and 3, respectively,
and sum the cross products to obtain an index of linearity. Only the contrast for S7 is
negative. It has the smallest absolute value of the eight contrasts and therefore has a rank
of 1. Because T— < 3, we can reject the null hypothesis.

(a) The results of the ANOVA are:

Source

SEASONS

Error (SEASONS)

Tests of Within-Subjects Contrasts

SEASONS

Linear
Quadratic
Cubic

Linear
Quadratic
Cubic

Type III Sum
of Squares

3.629
48.133
6.227

34.539
72.824

108.009

df

1
1
1

48
48
48

Mean Squares

3.629
48.133
6.227

.720
1.517
2.250

F

5.043
31.725
2.767

Significance

.029

.000

.103

Measure: MEASURE_1.

CHAPTER 14

14.1 (a) The results of the ANOVA are:

SV

Between Ss
A
S/A

Within Ss
B
AB
S x B/A

df

5
1
4

12
2
2
8

SS

226.5
112.5
114.0
758.0

84.0
336.0
338.0

MS

112.50
28.50

42.00
168.00
42.25

F

3.947

.994
3.976

P

.118

.412

.063

sv

Seasons
Error

SS

57.989
215.372

df

3
144

MS

19.330
1.496

F

12.924

P

.000

(b) The partial w2 = .154, a large value.
(c) The results of the trend analysis are:
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14.3

(b) The ANOVA based on the mean scores for the subjects is:

sv

Total
A
S/A

df

5
I
4

SS

75.5
37.5
38.0

MS F

37.5 3.947
9.5

P

.118

(i) The Fs in parts (a) and (b) are identical, (ii) The SS and MS in part (b) are one
third of their counterparts in part (a). The reason for this is that, in part (a), SSA =
bn E/F.;. - ^-)2' whereas in part (b), SSA = n £;. (F.;. - F...)2.

(c) SSsB/A, = 118andS5sB/A2 = 220; the sum is 338, the result in part (a). Also, MSsfi/.4| =
29.5 and MSsB/A-, = 55; the average is 42.25, the result in part (a).

SV

A

S/A

B

AB

SB/A

df

I

4

2

2

8

EMS

CT<? + <*SB/A + 3(JS/A

CT,2 + vla/A + 3crl/A
ff? + VSB/A + 6e«

°7 + °ie/,4 + 3(TAB

*? + °SB/A

+ 3o-2
B+96,2

To test the A effect, F' = (MSA + MSSB/A)/(MSS/A + MSAB) = (112.5 + 42.25)7(28.5 +
168) = .79. The result is clearly not significant.

14.5 (a) The ANOVA table is:

SV

Between Ss
X

A

X x A

S/XA

Within Ss
T

XT

AT

XAT

ST/XA

df

71
1

2

2

66

72
1

1

2

2

66

EMS

of + 20-1^+7201

of + 2o-J/;M+4802

(T2 + 2cr|/A.,+24e2,

°V2 + 2°i/xA

^+^ST/XA+^T

CT<2 + vtr/XA + 360lr

^e+^ST/XA+^^AT

*? + ° ST/XA + 12QXAT

ae + <* ST/XA

S/XA is the error term for the between-subjects terms, and ST/XA is the error term for the
within-subjects terms.

(b) We base the error term only on those scores involved in these tests of simple effects;
that is the default in most statistical packages. For part (i), we find the variance of T\
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scores within each Age x Sex combination and average these. We might notate this
as M S s / A x x / T 1 (subjects within Age x Sex combinations for the T1 task). The df =
ax(n-- 1) = (3)(2)(11) = 66.
(ii) The error term is MSs/A/Male/T1 • The df = a(n — 1) = (3)(11) = 33.
(iii) The error term is MSS T / A / M a l e- The df= a(n - l)(t - 1) = (3)(11)(1) = 33.

14.7 The confidence interval is CI = 5.4 ± (1.314)(2.086) = 2.66, 8.14.
14.9 (a) Using Appendix Table C.10, the B-A interval = -1.03,4.28; the C-A interval =

2.22, 7.53; and the C-B interval is = .60, 5.90. Diet C differs significantly from both
Diets A and B; Diets A and B do not differ significantly from each other.

(b) Scheffe's method is appropriate here. The confidence interval = 2.07, 9.68. Because the
interval does not contain zero, we conclude that the mean for Diet C does differ from the
average of the other two means on Day 4.

14.11 (a) Mean SVT scores are higher than IVT scores in the text format, though the advantage
diminishes as we move from N (narrative) to A (argument) instructions. In the web format,
IVT scores are higher than SVT scores and the advantage is greatest with A instructions
This suggests a Test x Format interaction, and Test x Instruction interaction.

(b)

sv

Format (F)
Instructions (/)
Fx I
S/FI

Test (T)
TxF
Tx I
TxFx I
S x T/FI

df

1
3
3

56

1
1
3
3

56

SS

9.570
1430.273
1064.648
9995.312

164.258
1158.008
616.211

3.711
5520.312

MS

9.570
476.758
354.883
178.488

164.258
1158.008
205.404

1.237
98.577

F

.05
2.67
1.99

1.67
11.75
2.08

.01

P

.818

.056

.126

.202

.001

.113

.998

The one source that is significant at the .05 level is the Test x Format interaction; F1.56 =
11.75, p = .001. This interaction reflects the fact that the sentence memory (SVT) mean
is higher when participants have studied the material from a textbook chapter but that
the inferences (IVT) mean is higher when participants have been required to integrate
information from the Web site.

CHAPTER 15

15.1 (a) The effect of P is not significant when an ANOVA is performed.

Dep Var: Y N: 36 Multiple R: 0.344 Squared multiple R: 0.119

Analysis of Variance

Source

P
Error

Sum of Squares

806.167
5988.583

df

2

33

Mean Squares

403.083

181.472

F Ratio P

2.2211     0.124
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(b) Using an ANCOVA, the effect of P is significant.

Dep Var: Y N: 36 Multiple R: 0.830 Squared multiple R: 0.688
Analysis of Variance

Source

X
P [P (adj)]
Error [S/P (adj)]

Sum of Squares

3869.741
539.495

2118.843

df

1
2

32

Mean Squares

3869.741
269 . 748
66.214

F Ratio P

58 .443 0 . 000
4 . 074 0 . 027

(c) We use the GLM module in one of the software packages to add a P*X term to the model.
The interaction term is not significant, so we do not reject the hypothesis of homogeneity
of slopes.

Dep Var: Y N: 36 Multiple R: 0.844 Squared multiple R: 0.712
Analysis of Variance

Source

X
P
P*X
Error

Sum of Squares

3725.614
75.463

162.458
1956.385

df

1
2
2

30

Mean Squares

3725.614
37.731
81.229
65.213

F Ratio

57.130
0.579
1.246

P

0.000
0.567
0.302

15.3 (a) No, it is not appropriate to use ANCOVA here. We have a nonequivalent-groups
design because the workers for whom we have satisfaction scores have not been
randomly assigned to the four departments. Moreover, an ANOVA with X as the
dependent variable yields a significant effect of department, F(3. 28) = 5.602, p —
.004.

(b) No, it is not appropriate to use ANCOVA here. The data violate the assumption of
homogeneity of the slopes. The test of heterogeneity of slope indicates that there is a
significant interaction between the covariate X and the factor A, F(2, 24) = 7.137, p =
.004.

15.5 The ANOVA on Y does not indicate any significant effects; however, the ANCOVA on Y
using X as a covariate reveals a significant A effect, F(l, 19) = 17.376, p — .001. There
are no significant effects when an ANOVA is performed using X as the dependent vari-
able; also, there is no suggestion that the homogeneity of regression slopes has been
violated.



ANSWERS TO SELECTED EXERCISES 703

Dep Var: Y N: 24 Multiple R: 0.409 Squared multiple R: 0.168
Analysis of Variance

Source

A

B
A*B
Error

Dep Var:
Analysis

Source

A
B
A*B

X
Error

Dep Var:
Analysis

Source

A

B
A*B

Error

Sum of Squares

118.815
1.215
0.667

599.577

df

1

1
1

20

Y N: 24 Multiple R:
of Variance

Sum of Squares

276.023
2.513

11.878
297.762
301.814

df

1
1
1
1

19

X N: 24 Multiple R:
of Variance

Sum of Squares

64.354
9.500
9.250

386.082

df

1
1
1

20

Mean Squares

118.815
1.215
0.667

29.979

0.762 Squared

Mean Squares

276.023
2.513

11.878
297.762
15.885

0.4211 Squared

Mean Squares

64.354
9.500
9.250

19.304

F Ratio

3.963
0.041
0.022

multiple R:

F Ratio

17.376
0 .158
0.748

18.745

multiple  R:

F Ratio

3.334
0.492
0.479

P

0.060
0.842
0.883

0.581

P

0.001
0.695
0.398
0.000

0.177

P

0.083
0.491

0.497

16.1 (a)

sv

D

C/D

X

DX

CX/D

S/CX/D

d f

2

12

1

2

12

270

EMS

a(
2 + 20a2

/D + 10002

a,2 + 20a2
C/D

a; + 10o-2
x/D + 15002

a,2 + 10<r2
x/D + 5002

 x

(j; + 10ac
2
x/D

*!

CHAPTER 16
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(b) MSS / D X is the pool of the C/D, CX/D, and S/CX/D mean squares; E ( M S s / D X ) = r2 +
(12/294)(20o-2C/D) + (12/294)(10(T2

CX/D).).. f the variance due to C/D > 0. the test of X
will be negatively biased; if the variance due to CX/D > 0, the test of D will be negatively
biased.

16.3 Presumably, we wish to generalize beyond the four leaders used in the study. Therefore, L is
viewed as a random-effects variable. The ANOVA is:

16.7

sv

L

M

L x M

G/LM

S/G/LM

df

3

1

3

32

200

EMS

a2e + 6oG / L M + 60o2
L

Oe
2 + 602G/LM + 30oLM + 120o2

M

oe
2+ 6°G/LM + 30C

LM

o2
e + 6o2

G/LM

°e

Error Term

G/LM

LM

G/LM

S/G/LM

If each leader has been selected for a particular quality, we may view L as fixed, in which
case M is tested against G/LM.

16.5

SV

5

M

I/M

S x M

S x I/M

df

19

4

45

76

855

o2
e + 50o2

s

07 + 20o2
I/w

07 + 20aI/M

O2
e + 10o2

sM
TC2

EMS

+ 10a|M + 200oM

SV

A

V

AV

S/AV

E/V

AE/V

SE/AV

df

2

2

4

81

12

24

324

o2e7 + 5 o S / A V +

°V2 + 5°S/AV +

°7 + 5 o s / A V +

C<2 + 5oS / A V

a2 + 30o-E/v

c2
e + 10o-AE/v

o2
e

EMS

10oAE/V

30oE/v

10oAE/V

+ 15002

+ 15002

+ 5002
AV

To test M, a quasi-F is needed; F' = (MSM + M S S 1 / M ) / ( M S I / MM + MSSM). The nu
merator df= (MSM + M S S I / M ) 2 / ( M S 2

M / 4 + MS2
S1/M/855); the denominator df= (MS I / MM +

MSS M)2 / (MS2
I / M /4545 MS2

SM/76).6)..
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16.9 (a)

To test the A source of variance, F' = (MSA + MSsE/Av}l(MSs/AV + MSAE/v)- The numera-
tor df= (MSA + MSSE/Av)

2/(MS2
A/2 + MS2

SE/AV/324) and the denominator df = (MSS/AVv  +

MSAE/V)2 / (MS2S /AV/81  +  MS2AE/v /24 ) .

sv

A

E

AE

P/E

AP/E

G/AP/E

S/G/AP/E

df

1

1

1

6

6

64

160

EMS

°e + 3^G/AP/E + 15°AP/E + 120eA

°? + 3^G/AP/E + 3Q°P/E + 12061

CT<2 + 3^G/AP/E + 15°AP/E + 6™AE

°e + ^G/AP/E + 30orP/E

ae + *° G/AP/E + l5aAP/E

^ + ̂ G/AP/E

<*e~

Error Term

A P / E

P/E

A P / E

G/AP/E

G/AP/E

S/G/AP/E

(b) This analysis is likely to involve less error variance and provide more powerful, and
certainly simpler, tests of A, E, and AE. However, monkeys are expensive to purchase
and maintain, and the design Exercise 16.8 involves far fewer subjects.

16.11 (a) F1.30 = 6.646, p = .03.
(b) Let NL be the "noleader" group condition and / be the individual (no group) condition.

Then, F' = MSL/[(]/2)(MSG/NLNL+ MSS / I)]]]= 26.150/(l/2)(8.825 + 5.937) = 3.543. The
error df % 10; p = .09.

CHAPTER 17

17.1 (a) SSA = 79.5, SSC = 22.5, SSS = 56, and SSresidual = 29.
(b) The estimates of the S x C effects and the scores after adjustment are:

est(Try)//

S1

S2

S3

S4

c1

3.500
2.500

-4.500
-1.500

C2

-5.000
3.000
1.000
1.000

C3

2.250
-3.750

2.250
-0.750

C4

-0.750
-1.750

1 .250
1 .250

C1

21.500
16.500
17.500
18.500

Yijk-est(Try)ij

C2

21.000
16.000
17.000
18.000

C3

21.750
16.750
17.750
18.750

C4

18.750
13.750
14.750
15.750

SSs and 55c are unchanged; however, SSA and SSresidual now both equal zero. If there is an
interaction of two variables in the population, effects attributed to the third variable may
be due to the interaction.
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17.3

sv

s
p
E
I
E x I
Residual

df

3
3
1
1
1
6

SS

.593

.232
1.323
.903
.023
.025

MS

.198

.077
1.323
.903
.023
.004

F

47.4
18.6

197.6
144.4

3.6

P

.000

.002

.000

.000

.107

17.5 The simplest design is a 3 x 3 x 3 completely randomized design with three subjects in each
of the 27 cells. This requires the least time from each subject, involves the fewest assumptions,
runs no risk of carry-over effects, and has 54 error df. However, it is also the least efficient design
because the error term includes variance due to individual differences. A second possibility
would be to create a 3 x 3 Latin square with one variable, perhaps (W) varied in a counterbal-
anced order. Twenty-seven subjects would be run in each row of the square (sequence of levels
of w). These 27 individuals would be divided among the nine combinations of the remaining
two factors. The advantage of this design is that whichever factor is the within-subject factor,
and its interactions, can be tested more efficiently than in the first, completely randomized
design. The disadvantage is the possibility of carry-over effects, and the added assumptions
(e.g., sphericity) involved in any within-subject design. A third possibility is a variation on the
second, in which two factors are within subjects, so that the basic design is a replicated Latin
square. The advantage is that now two variables are efficiently tested. The possible disadvan-
tages are those cited for the second design, and the added time for each participant. There are
other possibilities, including Latin-Greco squares. The main disadvantage of this design is that
it rests on the assumption of no interaction between the two within-subject variables.

17.7 A and C are tested against the within-cell residual (WCR). These are the only significant
sources. For A, F3.24 = 10.24, p = .000; for C, F3,24 = 18.68, p = .000.

17.9 The key to the analysis is to recognize that scripts (S) are nested within valences (V). The
script means and the ANOVA table are:

Sl

2.321

SV

R
Ss/R
Script (S)

V
S/V

C
BCR
WCR

S2

1.909

df

3
16
3
1
2
3
6

48

S3

.766

SS

10.375
30.825
42.462
40.527

1.895
5.953
1.783

12.606

S4

.617

MS

3.458
1.927

14.154
40.527

.948
1.984
.297
.263

F

1.80

53.82
154.95

3.60
7.54
1.13

P

.188

.000

.000

.035

.000

.359



ANSWERS TO SELECTED EXERCISES 707

Heartbeat change scores are affected by the script, and this variance is primarily due to the
difference between the negative and positive scripts; the change is greater for the two scripts
with negative valence. All terms are tested against the within-cells residual (WCR) except R,
which is tested against S/R.

CHAPTER 18

18.1 (b) r = .620; (b) r2 = .385; (c) r2 = .385.
18.3 The reduction in the correlation between age and TC for older and younger women occurs

because of the reduction in the variability of age (see the discussion in Section 18.2.2). The
corresponding figures for men are r = .062 for the overall correlation of age and TC in the
sample; r = .008 for men under 50 and r = —.035 for men 50 and over.

18.5 (a) Because rXY — rx1y1 ̂ Jfxx-J^ (Equation 18.7), the largest correlation that we could find

would be rXY = */rxx+/rn = V^64v^T = -72.
(b) The estimated correlation if we "correct for attenuation" due to low reliability is

.40/V^V^F = .40/v^64VIT = .40/.72 = .56.
(c) To test the correlation, we use the "uncorrected" correlation of .40. The test statistic is

t = r/^/(\ - r2}/(N - 2) = 2.690, p < .05. The correlation is significant.
18.7 (a) Using Equation 18.9, t (17) = —1.30, so we cannot reject H0.

(b) z = (Zr — Z\typ)/^/l/(NN ~ 3) = —1.24, so again we cannot reject H0..

(c) No, even if the correlation had been significant, we could not conclude that studying
interferes with test performance. More likely, students having difficulty may study more,
but still perform more poorly.

(d) The.95 CI for Zp is given by Zr ± z.025 Jl/(N - 3) = -.310±(1.96)(l/4) = -.80, .18.
Translating back to correlations, the .95 CI for p extends from —.66 to +.18. The .50
CI for Zp is -.310 ± (.675)(l/4) = -.48 to -.14. Translating back to correlations, the
interval extends from —.44 to —.14.

(e) Using GPOWER, the post hoc power is approximately .25.
(f) To calculate directly as in Table 18.1, recall from part (b) that the test statistic was

z = — 1.24. The lower critical value therefore has a z score of — 1.96 — (— 1.24) = — .72
with respect to the sampling distribution given p = .30, so that the power is p(z <
-.72) = .24, about the same value given by GPOWER.

(g) From GPOWER, we need N = 82 to get power of .80.
(h) Using the procedure illustrated in Table 18.2, we get N = 85.

18.9 (a) z = (Z.45 - 0)/yi749 = 3.395, so we can reject H0.
(b) z = (Z 60 - Z.45)M 1/49] + [1/64] = 1.193, we cannot reject H0.
(c) z = (Z.45 - Z.20)A/[l/49] + [1/64] = 1.486; the correlations do not differ significantly.
(d) The .95 CI for Zp is .485 ± (1.96)(l/7) = .205, .765; the interval for p is .202, .644.

18.11 (a) Using Steiger's MULTICORR program, we find x2 = 34.007, p = .000. The correlation
between masculinity and femininity is significantly different at times 1 and 2.

(b) Again using the program, we find x f = 0.798, p = .375. We cannot reject the hypothesis
that the correlation between V1 and Ml is the same as the correlation between V1 and
Fl.

18.13
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18.15 There are several ways of doing the problem. We could start by expressing rxT = r X ( x + Y ) in
terms of r X Y :

Now, if sx = SY = s, then

Squaring both sides, (1 + rxy)/(2) = .49, so that rXY = —.02. Here, the two parts of the test
are not correlated. The reason rXT is high is because X is part of T.

CHAPTER 19

19.1 (a) The strategy is not a good one. Given inconsistent behavior, very bad performance is
likely to followed by better performance, and exceptionally good performance may well
be followed by performance that is not as good, whether or not feedback is given.

(b) The improvement cannot be explained as regression toward the mean. Regression toward
the mean by itself would not account for above average performance by the group that
received tutoring.

(c) Not necessarily. Regression toward the mean complicates matching. Suppose that good
spellers on the average have much higher IQs than poor spellers. If we were to form a
mixed group of good and poor spellers matched for IQ on the basis of a single test, then the
mixed group might largely consist of more intelligent good spellers who just happened
to perform poorly on the IQ test and less intelligent poor spellers who performed well
on the test. If they were to be given a second IQ test, the two groups might regress to
separate means.

19.3 (a) The scatterplot indicates that there is a strong curvilinear relation between the two vari-
ables. The results of the regression of Y on X are:

Dep Var: Y N: 50 Multiple R: 0.178 Squared multiple R : 0.032

Adjusted squared multiple R: 0.012 Standard error of estimate: 36.309

Effect

CONSTANT

X

Coefficient

435.880

4.560

Std

12.

3.

Error

042

631

Std Coef

0.000

0.178

Tolerance

1.000

t

36.

1.

p(2-tail)

196

256

0.

0.

000

215

.
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Analysis of Variance

Source

Regression
Residual

Sum of Squares

2079.360
63280.960

df

1
48

Mean Square

2079.360

1318.353

F Ratio p

1.577 0.215

Durbin-Watson D Statistic 0.677
First-Order Autocorrelation 0.633

and the results of an ANOVA with X as the factor are as follows:

Source

X
Error

Sum of Squares

45790.520
19569.800

df

4
45

Mean Square

11447.630
434.884

F Ratio

26.323

P

0.000

To test whether there is also a significant linear effect, we note that from the regression,
SSlinear

 = MSlinear = 2079.360. To test for linearity, form the ratio F = MS l inear/MSerror ,

where MSerror is obtained from the ANOVA; F(l, 45) = 2079.360/434.884 = 4.781;
there is a significant linear effect, p < .05. The best-fitting regression equation is Y —
435.88 + 4.56X; this predicts values of 440.44, 445.00, 449.56, 454.12, and 458.68 for
X = 1-5, respectively.

(b) The plot of residuals (Y against Y) is curvilinear, indicating that a curvilinear component
in the relation between Y and X has not been accounted for by the regression.

(c) We can now fill in the table:

sv

Between
Linearity
Lack of fit

(nonlinearity)
Pure error

df

4
1
3

45

SS

45790.52
2079.36

43711.16

19569.80

MS

11447.63
2079.36

14570.39

434.88

F

26.32
4.78

33.50

P

.000
<.05
<.001

(d) We can create a new variable XSQ = X*X and regress Y on X and XSQ. This yields the
following output:

Dep Var: Y N: 50 Multiple R: 0.833 Squared multiple R: 0.693

Adjusted squared multiple R: 0.680 Standard error of estimate: 20.657

Effect

CONSTANT

X

XSQ

Coefficient

312.880

109.989

-17.571

Std Error

14.010

10.677

1.746

Std Coef

0.000

4.302

-4.203

Tolerance

0.037

0.037

f

22.332

10.302

-10.065

p (2-tail)

0.000

0.000

0.000

Analysis of Varianceee

.
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Analysis of Variance

Source

Regression
Residual

Sum of Squares

45305.074
20055.246

df

2
47

Mean Square

22652.537
426.707

F Ratio p

53.087 0.000

Durbin-Watson D statistic 1.793
First-Order Autocorrelation 0.101

The regression equation is Y = 312.88 + 109.99X + 17.571X2. The quadratic compo-
nent is highly significant. R2 is now .69 as opposed to .03 in the original regression. The
residual plot no longer suggests any obvious nonlinearity.

19.5 (a) Using Equation 18.13, z = 3.38, so there is a higher correlation between salary and years
of service for males and females; that is, there is a stronger linear relation for men than
for women.

(b) Using b1 = rsY/sx, we find there is a slope of .599 for men and .799 for women. Each
additional year of service corresponds to about an additional $600 (.599 x $1000) for
males and about $800 for females. We can test whether the slope difference is significant
using the test statistic (see Table 19.8)

so that se = 16.75, substituting we find t(3996) = —2.38, p < .02. The salary increment
per year for women is significantly greater than that for men. So here we have a situation
in which the correlation is significantly larger for men than women, but the slope is
significantly higher for women than men. The reason for this apparent paradox is that the
men have greater variability in their years of service.

19.7 (a) Regressing FINAL on PRETEST produces the following output:

where

Dep Var: FINAL N: 18 Multiple R: 0.725 Squared multiple R: 0.526

Adjusted squared multiple R: 0.496 Standard error of estimate: 10.638

Effect

CONSTANT

PRETEST

Coefficient

-36.083

3.546

Std Error

27.295

0.842

Std Coef

0.000

0.725

Tolerance

.

1.000

t

-1.322

4.212

p (2-tail)

0.205

0.001
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(b) The regression equation is FINAL = -36.08 + 3.55 PRETEST. The standard error of
estimate is 10.64, and the standard errors of b0 and b\ are 27.295 and 0.842, respectively.

(c) Using the regression equation, estimates of the conditional means of the population
of FINAL scores for PRETEST = 24 and 37 are 49.02 and 95.12, respectively. To
find the confidence intervals for the conditional means, we need the standard errors

for the predicted final scores, SE(FINAL) = se^/h~ = se^l/N + (X - X ) 2 / S S X . For

PRETEST = 24, N = 18; (X - X)2 = (24 - 32.27S)2; SSX = (N - 1)4 = 159.60.
So, SE(FINAL) = (10.638)^1/18 + (24 - 32.278)2/159.60 = 7.408. Similarly, the
SE for PRETEST = 37 is 4.708. The .95 CI for the conditional mean of FI-
NAL scores at PRETEST = 24 is given by 49.02 ± r]6..025 SE = 49.02 ±
(2.12)(7.408) = 49.02 ± 15.71. Similarly, the .95 CI at PRETEST = 37 is given by
95.12±9.98.

(d) The estimate at PRETEST = 37 is likely to be more accurate. Because it is closer to the
mean of the PRETEST scores, it has a smaller leverage and therefore a smaller standard
error.

(e) To find the .95 CI for the FINAL score of a single student with PRETEST score = 24.
we need the appropriate standard error given by

so the confidence interval is 49.02 ± 27.48.
19.9 The null hypothesis that the population slopes are equal can be tested using the test

statistic t = (b\M — b\F)/(SE(b\M — b \ F ) ) , where SE(b\M—b\F)) can be estimated by
se^/l/SSxMM   + 1/SSxp (see Table 19.8). In general, s^ is the weighted average of s;
and s^., here 194.55, so se = 13.95. Therefore, we test the null hypothesis using t =
(30.0 - 20.0)/(13.95V1/200 + 1/200) = 7.17 with NM - 2 + NF - 2 = 76 df. We ca
reject the null hypothesis.

19.11 If we regress TC on age for males, we get the following results:

Dep Var: TC N: 220 Multiple R: 0.062 Squared multiple R: 0.004

Adjusted squared multiple R: 0.000 Standard error of estimate: 38.286

Effect

CONSTANT

AGE

Coefficient

F 211.906

0.198

Std Error

11.249

0.218

Std Coef

0.000

0.062

Tolerance

1.000

t

18.837

0.912

p (2-tail)

0.000

0.363

Analysis of Variance

Source

Regression
Residual

Sum of Squares

2007.497
1810.780

df

1
16

Mean Square

2007.497
113.174

F Ratio p

17.738 0.001

.
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The slope is not significant; t(218) = 0.912, p = .363. To check assumptions, we begin by
noting that the residual plot does not show any obvious nonlinearity, although there is perhaps
a tendency for the lower estimates to have larger residuals, indicating a possible problem
with homogeneity of variance. If we use a weighted least-squares regression, as described
in Section 19.5.3, we get the results that are not greatly different from those obtained in the
original analysis.

SSnoniineanty = SSResidual - SSerror = 319,540.841 - 252,608.094 = 66,932.094 with 45 df.
So we test the null hypothesis of no nonlinearity using F(45, 173) = MSnonlinearity/MSerror =
(66932.094/45)/1460.166 = 1.019, so there is no significant nonlinearity.

The Durbin-Watson test does not show any evidence of serial correlation; D is close
to 2 and r is only —.018. SYSTAT identifies the case with ID = 686 as an outlier, having
an externally Studentized residual of 4.362. This score comes from a 32-year-old male with
very high cholesterol readings (all seasonal TC levels at least 358). But even this case is not
extremely influential. Cook's distance is .137—much less than F.50(2,218) = .695. Redoin
the regression omitting this case results in a slope of 0.294, which is higher than but not
greatly different from the original value.

Effect

CONSTANT

AGE

Coefficient

212.89
0.180

Std Error

12.27

0.22

t

17.36
0.81

p (2-tail))

0.000

0.42

We can check for nonlinearity by first conducting an ANOVA in which age is the independent
variable. We obtain the following output:

Dep Var: TC N: 220 Multiple R: 0.461 Squared multiple R: 0.212

Analysis of Variance

Source

AGE
Error

Sum of Squares

68150.767

252608.747

df

46
173

Mean Square

1481.538

1460.166

F Ratio

1.015

P

0.457

Analysis of Variance

Source

Regression
Residual

Sum of Squares

1218.673
319540.841

df

1
218

Mean Square

1218.673

1465.784

F Ratio

0.831

P

0.363

*** WARNING ***
Case 409 is an outlier (Studentized Residual = 4.362)
Durbin-Watson D Statistic 2.011
First-order Autocorrelation —0.018
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There is some modest nonnormality. Plots of the residual indicate somewhat heavy tails
and a slight positive skew. The kurtosis = 1.485 and skewness = .616. Finally, when we
tried out several types of robust regression, the obtained results were not very different from
those in the original regression. We therefore conclude that the assumption for the original
least-squares regression were reasonably well satisfied.

CHAPTER 20

20.1 (a)

(b) In the regression, the effects of both Number and Diff are significant, t(21) = 6.192,
p = .000 and t(21) = 2.775, p =.011, respectively. If an ANOVA is conducted, we find
significant main effects for both Number and Diff, F(3, 16) = 10.216, p = .001 and
F(l, 16) = 6.091, p = .025, respectively. The results of the regression are not equivalent
to that of an ANOVA. The regression treats the predictors as quantitative variables and
tests whether the rate of change of time with one of the variables is different from zero in
the population, holding the other variable constant. In the ANOVA, the test of the number
main effect addresses the question of whether the population means for the different
levels of number are all the same.

(c) The regression yields estimates of 402.375, 22.825, and 4.575 for ft,, (5,, and ft,- The
95% confidence intervals are 335.99 - 468.76, 15.16 - 30.49, and 1.157 - 8.00. The
99% confidence intervals are 312.01 - 492.75, 12.39 - 33.27, and - 0.09 - 9.25.

20.3 (a) Regressing Y on X1 and X2 yields the regression equation Y = -16.294 + 9.196X1 +
9.941X2.

(b) The ANOVA table for the regression indicates that SSresidual = 1030.745 with 14 df. Next,
to obtain SSpure error- we perform an ANOVA, using X\ and X2 as factors. The error term
of the ANOVA is SSpure error = 937.417 with 10 df. Therefore, SSnonlinearity = 1030.745 -
937.417 = 93.328 with 4 df. F = MSnonl inear i ty/MSpure error error = -249, so there is no significant
departure from linearity.

(c) In the initial regression, the coefficients of X1 and X2 both differ significantly from zero,
t(14) = 2.420, p = .030 and t(14) = 3.378, p = .005, respectively. Therefore, both
variables should be included.

Pearson correlation matrix

TIME
NUMBER
DIFF

TIME

NUMBER
DIFF

Mean
SD

493.33
10.50

1.000
0.756
0.339

2
10

532.00
35.68

2
20

545.67
62.96

NUMBER

1.0000
0.000

4 44 (

DIFF

1.000

6 6
10 20 10 20

583.33
40.53

584.33
30.37

646.67
44.74

8
10

625.67
70.54

8
20

670.00
40.04



The obtained F is less than the critical F.05, 1.35 of 4.121. To determine the N necessary to
have a power of .80 for the test of X4, we try out several values for N, finding the noncentrality
parameter and critical F value for each, then use a noncentral F calculator to determine the
power. For N = 101, N* = 98, the noncentrality parameter X. is 8.036, and the critical value
of F (with 1 and 96 df) is 3.940. This yields estimated power of .801, approximately the
desired value.

(c) The best-fitting quadratic equation is Y = -4.714 + 1.122X -00.019X2.
20.7 (a) When individual bivariate regressions are performed, student background and parent

background are both significant. However, the background measures are highly correlated,
and if both measures are included as predictors, the student background measure remains
significant, but the parental background measure does not. Also, although the teacher
quality does not predict significantly by itself, it adds significantly to predictability' if
either student or parental background is included.

(b) Here, the stepwise regression enters student background on the first step and teacher
quality on the second. Although these seem like useful predictors, the predictor variables
that are first selected in a stepwise regression need not be the ones that are important in
an explanatory model.

(c) There are no significant interactions between either of the background measures and
either of the quality measures.

20.9 If including X^ in the regression equation results in R2 increasing from .21 to .27, then A/?2 =
.06 and f2 = .06/(1 - .27) = .082. To test whether the increment in predictability afforded
by the addition of X4 is significant, we form the partial F ratio
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20.5 (a) For the data set, a standard ANOVA yields:

SV

Dosage (D)
Error (S/D)

df

3
15

SS

132.306
90.740

MS

44.102
6.049

F

7.290

P

.003

(b) A trend analysis yields:

SV

Dosage (D)
Linear
Quadratic
Cubic

Error ((S/D)

df

3
1
1
1

15

SS

132.306
62.110
65.375
4.821

90.740

MS

44.102
62.110
65.375
4.821
6.049

F

7.290
10.268
10.808
0.797

P

.003
<.01
<.01

ns
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20.11 The ANOVA table is as follows:

There are highly significant linear, quadratic, and cubic components. There is a significant
linear component—the best-fitting straight line has a slope other than zero. There are also
significant tendencies to level off and possibly decrease as grade increases, then to increase
again. Some of the other bumps in the curve are probably due to other than chance variation,
because the remaining nonlinearity is significant.

CHAPTER 21

21.1 (a) We can create a gender variable with levels, say, 1 for men and 0 for women. If we correlate
gender with the dependent variable, we find r(14) = —.509, p = .044.

(b) We find that there is a significant effect of gender; t(14) = 2.210, p = .044. As we noted
in Section 18.5.1, the test of the point-biserial correlation is equivalent to an independent-
groups t test.

(c) Because it has only two levels, we only need a single dummy variable to code for gender.
If men and women were assigned values of 1 and — l,we would have effect coding; if the
values were 1 and 0, we would have dummy coding.

(d) For effect coding, we find the output:

sv

Grade
Linear
Quadratic
Cubic
Other nonlinear

Error

df

1
1
1
1
4

185

SS

10,040.060
5,668.646
2,170.851

684.947
1,515.516

15,170.367

MS

1434.294
5,668.646
2,170.851

684.947
378.879

82.002

F

17.491
69.128
26.473

8.351
4.620

P

.000

.000

.000

.002

.003

Dep Var: Y N: 16 Multiple R: 0.509 Squared multiple R: 0.259

Adjusted squared multiple R: 0.206 Standard error of estimate: 5.769

Effect

CONSTANT

EFFECT

Coefficient

28.187

-3.188

Analysis of Variance

Source

Regression

Residual

Std Error

1.442

1.442

Sum of Squares

162.563

465.875

Std Coef

0.000

-0.509

Tolerance

1.000

df Mean Square

1 162.563

14 33.277

t

19.545

-2.210

F Ratio

4.885

p (2-tail)

0.000

0.044

P

0.044

.



Note that the ANOVA tables are the same for both analyses; in both cases the gen-
der variable accounts for all the variability in the means. However, the slope coef-
ficients are not the same. The coefficient of EFFECT in the first analysis, —3.188,
indicates that the mean for men is 3.188 units less than the average of the male and
female means, whereas the coefficient of DUMMY in the second analysis, —6.375, in-
dicates that the mean of the male scores is 6.375 units less than the mean of the female
scores.

21.3 (a) With three levels of the factor, we would need two dummy variables.
(b) The coding is as follows:
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and for dummy coding, we obtain:

Dep Var: Y N: 16 Multiple R: 0.509 Squared multiple R: 0.259
Adjusted squared multiple R: 0.206 Standard error of estimate: 5.769

Effect

CONSTANT
DUMMY

Analysis oi

Source

Regressior
Residual

Coefficient

31.375
-6.375

: Variance

Std Error

2.040
2.884

Std Coef

0.000
-0.509

Sum of Squares

1 162.563
465.875

Tolerance

.

1.000

t

15.384
-2.210

p (2-tail)

0.000
0.044

df Mean Square

1 162.563
14 33.277

F Ratio

4.885

P

0.044

Effect Coding

Y

17
33
26
27
21
11
18
14
18
9

12
10
8

14

E l

1
1
1
1
1
0
0
0
0

-1
-1
-1
-1
-1

E2

0
0
0
0
0
1
1
1
1

-1
_ j
-1
-1
-1

Dummy Coding

Dl

1
1
1
1
1
0
0
0
0
0
0
0
0
0

D2

0
0
0
0
0
1
1
1
1
0
0
0
0
0
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(c) (i) For effect coding, the regression output is:

Dep Var: Y N: 14 Multiple R: 0.846 Squared multiple R: 0.716
Adjusted squared multiple R: 0.664 Standard error of estimate: 4.335

Effect Coefficient Std Error

CONSTANT
El
E2

16.883
7.917

-1.633

Analysis of Variance

Source

Regression
Residual

Sum (

521.
206.

1.165
1.616
1.710

of Squares

250
750

Std Coef Tolerance

0.000
0.928

-0.181

df

2
11

0.720
0.720

Mean Square

260.625
18.795

t

14.491
4.900

-0.955

F Ratio

13.866

p (2-tail)

0.000
0.000
0.360

P

0.001

(ii) For dummy coding, the regression output is:

Dep Var: Y N: 14 Multiple R: 0.846 Squared multiple R: 0.716
Adjusted squared multiple R: 0.664 Standard error of estimate: 4.335

Effect

CONSTANT
D1
D2

Coefficient

10.600
14.200
4.650

Analysis of Variance

Source

Regression
Residual

Std Error

1.939
2.742
2.908

Sum of Squares

521.250
206.750

Std Coef

0.000
0.944
0.291

df

2
11

Tolerance

.

0.778
0.778

Mean Square

260.625
18.795

t

5.467
5.179
1.599

p (2-tail)

0.000
0.000
0.138

F Ratio p

13.866i 0.001

Note that the ANOVA tables are exactly the same for the two regressions,
(d) The interpretation of the coefficients for the regression on the effect coding variables are

bo = (7.| + Y.2 + K.3)/(3); b\ = Y.\ — b()\ and b2 = Y .2 — b0. For the regression on the
dummy coding variables, if the reference group, i.e., the group coded by O's by both
variables is Group 3, the coefficients are:

.



(b) We would need five dummy variables to code the design: one for A, two for B, and two
for the A x B interaction. The effect coding is presented here:

Y

72
63
57
52
69
75
49
71
63
48
40
49
36
50
54
65
45
52
53
57
56
55
49
52
45
57
41
42
57
39

A

x,

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

-1
-1
_]

-1
— 1
-1
-1

-1
— 1
-1
-1
-11

— 1
-1
-1

6

X2

1
1
1
1
1
1
0
0
0
0

-1
_1

-1
-1
-1

1
1
1
1
1
0
0
0
0
0
0

-1
-1
-1
-1

X3

0
0
0
0
0
0
1
1
1
1

-1
-1
-1
-1
-1
0
0
0
0
0

-1

-1
-1

A x B

X4

1
1
1
1
1
1
0
0
0
0

-1
_1

-1
-11

-1
_]

-1
-1
-1
_1

0
0
0
0
0
0
1
1
1
1

X5

0
0
0
0
0
0
1
1

—1
—1
—1
—1
_1

0
0
0
0
0

-1
_1

-1
-1
-1

-1
1
1
1
1

21.5 (a) The ANOVA output (using SYSTAT) is:

Dep Var: Y N: 30 Multiple R: 0.696 Squared multiple R: 0.484
Analysis of Variance

Source

A
B

A* B
Error

Sum of Squares

227.031
1019.342
104.836

1528.167

df

1

2

2
24

Mean Square

227.031
509.671
52.418
63.674

F Ratio

3.566
8.004
0.823

P

0.071
0.002
0.451
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1
1
1
1
1
1

1
1

-1
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Yes, the dummy variables are correlated with one another. However, the variables belonging
to different effects would not be correlated if the design was orthogonal (had an equal
number of scores in each cell).

(d) In this case, we would want to test hypotheses about unweighted means, i.e.,

where

where

andHoAB: jxy* — ( A y . — ̂ ./, — |JL.. = 0 for all j,k. We could test the first of these hypotheses
by finding SSAIB.AB = (R2

Y.A.B.AR - R2
Y.B.AB)SSY, then use

Here, this is

and

The results are identical to those of the standard ANOVA using Type III SS.
(e) If we regress only on X1, we get F = MSA/MSerroror= (229.63)/(2731.73/28) = 2.354.. p =

.136. This a test of the hypothesis (jL t* = (jL2+ where

(c) The correlation matrix for the dummy variables is:

Pearson Correlation Matrix

X1

X,
X3

X4

x5

X1

1.000
0.000

-0.126
0.082
0.042

X2

1.000
0.460
0.100
0.062

X3 X4

1.000
0.051 1.000

-0.048 0.465

X5

1.000



We cannot reject the hypothesis that the population regression slopes are the same.

are weighted means. The same result may be obtained by performing an ANOVA, but only
including X1 as a factor.

21.7 To test for homogeneity of slope, find:
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Endnotes

FOOTNOTES TO CHAPTER 2

1. The normal distribution is referred to as the Gaussian distribution in many articles and books.
This name refers to the mathematician and statistician, K. F. Gauss, and reflects the fact that
normal distributions are not very normal; that is, they are not commonly observed with real data.

2. Percent correct and response time scores for students in Grades 1-8 in the Royer study are available
on the CD accompanying this book. Students are classified by gender and grade, and scores are
available for several skills, including addition, subtraction, and multiplication. Table 2.1 contains
values that have been rounded to the nearest integer value, and the statistics and graphs we present
for the second-grade addition accuracy are based on these integer values.

3. These data are available on the accompanying CD in the Seasons folder.
4. The means are averages of the four seasonal depression scores and were calculated only for those

participants who had been tested in all four sessions. The absence of a bar for participants in
category 4 indicates not that there were no women in that category but only that there were no
women for whom four scores were available.

FOOTNOTES TO CHAPTER 3

1. The mean of the absolute errors, J] | Yj — Y, \/N, also has the value 0 only if prediction is perfect,
and it has the additional virtue of being more resistant to outliers than the mean of the squared
errors. However, it is not as easy to work with mathematically.

2. Note that whenever the prediction of Y from X is not perfect, the predicted Y will always be fewer
standard deviations away from the mean of the Y scores than X is from the mean of the X scores.
We have more to say about this phenomenon of "regression toward the mean" in Chapter 19.
Here we merely note that the prediction equations discussed in this chapter are referred to as
"regression" equations in recognition of these regression effects.

3. Because r is symmetric in X and Y, r2 is also the proportion of the variability in X accounted for
by Y.
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FOOTNOTES TO CHAPTER 4

The actual experiment was a bit more complicated than described here. Chen and Myers included
a control group and the teenagers were tested on more than one trial. The results suggest that the
teenagers retained some memory for the objects they had seen more than a decade earlier. They
chose previously presented objects significantly more often than would be expected by chance,
and significantly more often than a control group that had not been in the earlier experiment.

FOOTNOTES TO CHAPTER 5

1. The central limit theorem states that the sampling distribution of a variable of the general form
L — w\Y\ + w2Y2 + • • • + wNYN will approach normality as N increases. The Yi are random
variables, but each of the wi is constant across samples. If the wi all equal 1, L is the sum of
scores in the sample, and if the w, all equal 1/n, L is the mean of the sample. In general, we refer
to variables of the form of L as linear combinations. Appendix 5.1 contains more information
about linear combinations, including expressions for their means and variances.

2. Technically, 6 is a consistent estimate of 6 if the probability that |0 — 91 is less than an arbitrarily
chosen small value approaches 1 as N increases.

3. As noted earlier, because N is large, the results based on the normal distribution are quite similar
to those based on the t distribution; the confidence limits using the t distribution are 218.64 and
230.14. Generally, we base inferences about population means on the t distribution because we
usually do not know the value of cr.

4. As we show in Appendix 5.1, the variance of the difference of two dependent means equals the
sum of the variances of the two means minus twice their covariance (see Chapter 3 for a definition
of covariance). If we treat the means as independent when they are not, we fail to subtract the
covariance from our measure of variability, and therefore have too large an estimate of the SE of
the difference of the means.

5. We do not wish to suggest that the true population distribution looks exactly like the sample
distribution; samples are not miniature replicas of populations. However, in this instance, the
sample provided a convenient way of conceptualizing a nonnormal distribution that is similar to
data distributions that have been examined in several studies.

6. Because of sampling error inherent in drawing a finite number of samples, we do not expect a
perfect match to the theoretical value of .95.

FOOTNOTES TO CHAPTER 6

1. There have been a number of expressions for effect size, and various notations have been used
(e.g., Cohen, 1988; Glass, 1976; Hedges, 1981). The Es of Equation 6.4 is an estimate of Cohen's
d, essentially d.

2. A listing of available software packages that compute power may be found at
http://sustain.forestry.ubc.ca/cacb/power. A review of the packages (as of 1997) may be found at
http://sustain.forestrv.ubc.ca/cacb/review/powrev.html.

3. When "Other t Tests" is selected in GPOWER, the label for effect size is "f" and the listed sample
size conventions are those for /. However, we should ignore this. When calculating power for
matched-group or single-group t tests, insert the value of Es (Cohen's d) for effect size and use
the effect size conventions for d. The index / is another of Cohen's effect size measures, defined
as <rOT/cr where am is the standard deviation of the group means and cr is the within-group standard
deviation. When there are two groups, d = 2f.
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FOOTNOTES TO CHAPTER 8

1. The researchers found that the relative performances of the three groups depended significantly
on the type of problem, with the HE group performing better than the other two groups on story
problems but worse on formula problems. We refer to this as a significant interaction and discuss
this concept in Chapter 11.

2. The studentized residual is the deviation of the score from its group mean divided by a measure
of error variability from which the score has been deleted. Note that the outliers found by this
procedure are not the same ones found in the box plot. Those are based on a different definition
of outliers (see Chapter 2).

3. Gatti and Harwell (1998) provide a detailed comparison of the results of charts and computer
program calculations, and they illustrate the use of SAS in calculating power. SAS takes the same
inputs as the UCLA calculator, whose use is illustrated in Table 8.10.

4. We must be cautious because some of the options provided by the programs overestimate power.
We will get overestimates if we select the observed (i.e., post hoc) power option in the SPSS
General Linear Model Univariate module, or if we provide observed sample means and an estimate
of the within-group standard deviation to GPOWER or the power module of SYSTAT instead of
providing f or f2 ourselves. The reason for this is that the programs treat all the variation in sample
means as though it was due to variation in the population means. The estimate of the component
of variation in the group means that occurs because of random variability is not subtracted. This
results in the noncentrality parameter being estimated as X = (a — \)MS^JMSs/A = (a — 1)F
instead of as X = (a — \)(MS^ — MSs/A)/MSs/A = (a — 1)(F — 1), the estimate we provide in
Table 8.9.

5. Vargha and Delaney (1998) note that if the distributions of the ranks have equal variance (a
weaker condition than homogeneity of variance of the original scores), H and FR test the null
hypothesis that the expected values of the ranks are the same for the a treatments. This hypothesis
is equivalent to one in which for every pair of treatments, the probability is .5 that a randomly
chosen score under one treatment exceeds a randomly chosen score under the other treatment.

FOOTNOTES TO CHAPTER 9

1. A review of the sections of Chapter 6 that deal with contrasts may be helpful. It includes material
on CIs and standardized effect sizes.

2. We could conduct only two tests, a t test contrasting the fifth graders against the average of the
other three grades, and an F test of the equality of the remaining three group means. However,
if the F was significant, we might still wish to carry out pairwise comparisons within the set of
three means to determine the possible source of the significant F.

3. A possible sequential test alternative in the face of unequal variances would be to use the Welch test
or the Brown-Forsythe test of the omnibus null hypothesis in the first stage (Brown & Forsythe,
1974b; Welch, 1951). If that proves significant, pairwise contrasts could be tested by the Games-
Howell or the Dunnett T3 method, using a critical value based on a — 1, rather than a, means.
Because of a lack of information of the properties of this method, it cannot be recommended.
However, investigation of its FWE and power might prove fruitful.

FOOTNOTES TO CHAPTER 11

1. The E/web plot contains no median line or "whiskers" because all scores are either 60 or 80, and
the median is at 80, the value of the upper hinge and the highest score.
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2. Because the two independent variables are qualitative, a bar graph is appropriate. However, we
have used a line graph here so that the parallelism of the text and web means is more clearly
displayed.

3. If there were more than two formats, we could test for equality of the contrast of the four types
of instructions across the three formats. However, the calculations are somewhat different from
those we present here, and the associated degree of freedom would be a — 1, where a is the
number of formats, because we are calculating the variance of a contrasts. We believe that tests
of simple differences between two contrasts are most useful, and therefore we focus on these.
Readers interested in the general analysis may consult Myers (1959, 1979).

4. Several individuals (e.g., Marascuilo & Levin, 1970; Rosnow & Rosenthal, 1989, 1991, 1995)
have argued that when the interaction is significant, tests should be performed not on the simple
effects of each factor but on interaction effects; for example, those in the four cells defined by
the crossing of the A and N instructions with the web and format conditions. In contrast, Tukey
(1991) gave equal "first class" status to comparisons of simple effects and "cross comparisons"
of interaction effects (p. 112). We have taken this approach.

FOOTNOTES TO CHAPTER 13

1. We will never observe perfect sphericity in a real data set, but, to make some points more clearly,
we have eliminated error from these "data."

2. The design actually involved four within-subject variables. The original photos were of 4 men
and 4 women. Therefore, gender was a third within-subject variable, and photos-within-gender
(or items) was a fourth variable.

3. Some programs (e.g., SYSTAT 10) do not correct for ties. This will lead to an underestimate of
the x2-

4. The actual comparisons in the cited articles involved FF, a function of x£, which is somewhat
more powerful and has the F distribution under the null hypothesis. However, because statistical
software packages report values of X2

F, and it will have similar properties to FF, we continue to
refer to the chi-square statistic.

FOOTNOTES TO CHAPTER 14

1. It may be counterintuitive that, with increased degrees of freedom and the same effect size, power
for the test of the interaction is less than that for the A main effect. Comparing the equations
for / in Table 14.7, note that because here b > 2, (a — l)(b — 1) > a — 1, so that FAB must be
less than FA to maintain the same value of f. The distance between the noncentral and central F
distributions is smaller, and therefore power is less, for the AB source. Another way to view the
problem is to note that, in Equation 14.10, if / is held constant, then c|> decreases as the degrees
of freedom increase.

2. Most statistical packages have the option of providing these results as part of the output of an
analysis of the original data, avoiding the necessity of obtaining contrast scores. Although that is
the procedure we recommend, we present the trend analysis in terms of an analysis of contrast
scores to emphasize that what is being done is essentially a between-subjects analysis in which
the "scores" for each subject reflect the polynomial component of the subject's curve.

FOOTNOTES TO CHAPTER 15

1. Whether blocks selected in the manner described should be viewed as a fixed- or random-effects
variable is open to debate. We have chosen to treat them as fixed in their effects. This has two
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implications: first, generalizations should be restricted to levels of ability defined by the blocks
in the experiment. Second, the error term is the within-cells mean square, whereas, if blocks are
viewed as having random effects, the appropriate error term is the Blocks x Treatment interaction
mean square.

2. We made up the scores on the quantitative reasoning variable by first generating scores that
correlated approximately .6 with the dependent variable in each of the text conditions, and then
scaling them so that the overall mean of the quantitative reasoning scores was approximately 63
and the standard deviation was approximately 15 in each of the groups.

3. To use GPOWER to calculate the post hoc power for an ANCOVA, we select F Test (ANOVA)
and specify that we have a "Special" hypothesis (this simply tells GPOWER that the dfe is not
N — a, and will have to be calculated on the basis of other information). We insert a value for f
(here .354), Alpha (here .05), total sample size (48), and numerator degrees of freedom (here 2). In
order to have the correct dfe, we insert for groups the number of cells in the design plus the number
of covariates (here 3 + 1=4). When we click on "Calculate," we get post hoc power = .55. If
we request a priori power and specify Power = .80, we get N = 80; we need about 27 subjects
per condition to achieve the desired power.

FOOTNOTES TO CHAPTER 16

1. Although this example is patterned after the experiment by Stasson et al. (1991), it simplifies
their design considerably. They had several hundred subjects, included a no-concensus and an
individual condition, and a first phase in which they obtained a baseline (or pretest) score from
individuals prior to group training. The satisfaction means in their study were 14.02 for the
majority condition and 13.03 for the unanimity condition.

2. We have not included the crJB/AC component in the EMS because it contributes to every term.

FOOTNOTES TO CHAPTER 17

1. The Latin square design can be used with different subjects in each cell; this application of the
Latin square is discussed in several sources (e.g., Kirk, 1995; Myers, 1979; Myers & Well, 1995).
However, in our experience, the great majority of examples of application of the Latin square
principle involve repeated measures, and we have chosen to focus exclusively on such examples
in this edition.

2. Note that all we really need from the second analysis is SSc (or SSA if C was the within-subjects
factor in the first analysis). Therefore, there is no need to do a complete second analysis, although
if a file is set up and a statistical package is used for analysis, this will be the easiest procedure.

3. The within-cell sum of squares is distributed on a2(n — 1) df. Subtracting a(n — 1) df for the S/G
sum of squares leaves a within-cell residual distributed on a(n — 1)(a — 1) df. Equivalently, this
may be thought of as the within-subjects residual.

FOOTNOTES TO CHAPTER 18

1. Different power programs may produce slightly different answers. For example, for power cal-
culations for tests of the hypothesis H0: p = 0 , the SYSTAT power module (newly introduced
with version 10) uses tests based on the Fisher Z transform (see Subsection 18.3.3) instead of
the t and produces a power estimate of .928, instead of the value of .964 obtained by using
the t.
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2. We should emphasize that, depending on the context, even small correlations may be important.
See the example in Subsection 18.5.1.

3. Strictly speaking, the Z transformation is biased by an amount r/2(N — 1); see Pearson and
Hartley (1954, p. 29). This bias will generally be negligible unless N is small and p is large, and
we ignore it here.

4. As we see in Chapter 21, this general idea can be extended to categorical variables that have more
than two levels; in that case, more than a single quantitative variable is required to accomplish the
coding. In general, a categorical variable with a levels can be coded in terms of a — 1 numerical
"indicator" or "dummy" variables.

5. Details of the tests are available at ftp://ftp.spss.com/pub/spss/statistics/spss/algorithms/, as is
information about all the algorithms used by SPSS. Look for npcorr.pdf.

FOOTNOTES TO CHAPTER 19

1. If the assumptions of linearity, homoscedasticity, and independence are satisfied, the Gauss-
Markov theorem shows that the least-squares estimators are the most efficient (i.e., have the
smallest sampling variance); that is, they are the best linear unbiased estimators (often given the
acronym BLUE). If one adds the assumption of normality, it can be shown that the least-squares
estimators are the most efficient of all unbiased estimators. In some applications, such as ridge
regression (see, eg., Draper & Smith, 1998), it is desirable to choose estimators that have some
bias but are more efficient than any of the unbiased estimators.

2. Unfortunately, both the standardized coefficients and the population parameters of the unstan-
dardized coefficients are commonly referred to as "betas." We will be mostly concerned with
unstandardized coefficients and will usually reserve the use of (3 notation to refer to the popula-
tion parameters.

3. Mittelhammer et al. (2000) offer a detailed discussion of the consequences of having random
predictor variables. They also provide simulation programs in the GAUSS language that allow
exploration of the properties of estimators, significance tests, and power functions with random
predictors.

4. In drawing inferences from these data, keep in mind that the eligibility requirements of the study
excluded people with extremely high cholesterol scores (Merriam et al., 1999). Specifically, the
subjects were members of a large HMO who were between the ages of 20 and 70 years and were
not receiving medication to lower lipids, were not on a lipid-lowering or weight-control diet,
and did not have a secondary cause of hyperlipidemia or a history of cancer during the previous
5 years.

5. Note that if you request that leverages be saved in SPSS, you get "centered leverages," hjj — 1//V
6. Because b\ and bo are both linear combinations of the Y scores, we can think of their repeated-

measures significance tests as analogous to those for repeated-measures contrasts. Any repeated-
measures contrast can be tested by first obtaining a contrast score for each subject and then using
the contrast score as the dependent variable in a subsequent analysis.

FOOTNOTES TO CHAPTER 20

1. A BMI (i.e., weight in kilograms divided by the square of height in meters) of 40 corresponds to
a weight of about 300 Ib (135.9 kg) for an individual who is 6 ft (1.82m) tall.

2. Cohen's (1988) recommendation that N* = N — p + k represents a change from the 1977 edition
of his power analysis book in which he used N* = df r e s i d u a l = N — p — 1. This latter value is
consistent with the post hoc power analyses available in SPSS. However, GPOWER uses N* — N.
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3. If the coefficient of the product was positive, the partial slope of predicted Y with one predictor
would become larger as the value of the other predictor increased.

FOOTNOTE TO CHAPTER 21

1. The term "dummy variables" refers to the variables that code a categorical variable by using any
of the coding procedures. "Dummy coding" refers to a particular kind of coding procedure in
which each dummy variable takes on the values 1 and 0 as described in the text.

FOOTNOTES TO APPENDIX A

1. To conserve space, when we wish to indicate an index of summation in a line of text or a fraction,
we will often write it as a subscript. The expression EiYi, should be considered equivalent to

2. In the design we used for an example, the mean of the first row would not be a quantity of interest,
since we stipulated that the order within each column was arbitrary. There are designs, however,
giving rise to tables like Table A. 1 for which it is as interesting to obtain row means as it is to
obtain column means.
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Distributions,
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541
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Dot plot, see Dot density plot
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Dunn-Bonferroni method, see Contrasts
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Dunn-Sidak method, see Contrasts among means
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a control, see Contrasts among means
Durbin-Watson statistic, 533, 541-542, see also

Regression

E

Ecological correlations, see Correlation
Effect coding, see Coding of categorical variables
Effect size, 7

comparing two means, (Es, Cohen's d),
145-146, 156, 210, 722

confidence intervals for, see the Supplementary1

Materials folder of the CD
contrasted with p values, 146-17
in mixed ANOVA, 394-396
in multifactor ANOVA, 315-318
in one-factor ANOVA, 208-212

for unequal-n designs, 211-212
Cohen's guidelines for size of effect,

ANOVA, 209
comparing pairs of means, 146
correlation, 46, 491
multiple regression, 589

Cohen's f and f2, 210-211, 316-318,
588-591

eta squared, n2, 200, 316
omega squared, w2, 208-209, 316
partial omega squared, 316
raw, 145
in repeated-measures ANOVA, 348-349
shrunken squared multiple R, 200-201
squared multiple R, 200-201
standardized, ES, 145-146

Efficiency, 6, 347-348, 384, 464-465
Elementary event, see Event
Epsilon-adjusted F test, 357-361
Error mean square, 195
Error term in ANOVA, 204
Error variance, 5-6, 197-198
Estimators of population parameters

choice of, 110-111
consistent estimators, 78, 109
efficient estimators, 110
properties of, 108-110
unbiased estimators, 109

Eta squared, n2, 200
Events, see also Probability

conditional, 69-70
elementary, 68
event classes, 68
exhaustive, 70-71
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Events (Continued)
independent, 70
joint, 68
mutually exclusive, 70-71
unions of, 9

Expected mean squares (EMS), see Analysis
of variance

rules for obtaining, 368, 392-394
Expected value, 79, 102, 649-652
Experiment, 3
Externally studentized residual, 544-545, see also

Regression

F

Familywise error rate (FWE), see Contrasts
among means

F distribution, see Distributions
Fisher-Hayter test, see Contrasts among means
Fisher's LSD test, see Contrasts among means
Fisher Z transform, 492, 725-726
Five-point summary, 13
Fixed-effects variable, 192

as opposed to random-effects variables, 202,
371-372

Forward selection, 591-592 see also Regression
Friedman's chi square test, 372
FWE (familywise error), see Contrasts

among means
Full model, 416

G

G1, a measure of skewness, 29-30
G2, a measure of kurtosis, 31
Games-Howell test, see Contrasts among means
Gaussian distribution, 731, see Normal distribution
General linear model, 614-637, see also

Regression
GPOWER., 149-150, 215, 318-319, 396-397,

491,725
Greco-Latin square designs, 476-477, see also

Analysis of variance, Latin squares
Greenhouse-Geisser adjustment, 358, 361
Groups-within-treatments design, 436-449,

see also Analysis of variance,
Hierarchical designs

H

Harmonic mean, 340
Hierarchical linear modeling, see Multilevel

modeling
Hinges, 14-15
Histograms, 12-13
Hochberg's sequential method, see Contrasts

among means
Homogeneity of variance 158-161, see also

assumption for ANOVA, 220-223
assumption for testing contrasts,

239-241
Homogeneity of regression slopes, testing,

427-428,630-631
Homoscedasticity, 483, 522, 539-540, see also

Correlation, Regression,
Homogeneity of variance

Hotelling's T2 test, 360
H-spread (interhinge distance), 16-19
Hypothesis testing

alternative hypothesis, 80-81
introduction to, with binomial distribution,

80-88
null hypothesis, 80-81
one- and two-tailed tests, 83
p-value for, 82
power, see Power
rejection region, 81
relation to confidence intervals, 122-123
significance level, 82
test statistic, 82
Type 1 and Type 2 errors, 82
using the chi-square distribution,

for independence and goodness-of-fit,
173

for variance, 176-178
using the F distribution,

in ANOVA, see Analysis of variance
for the ratio of two variances, 182-184
relation between the hypothesis test and

confidence interval, 190
in regression, see Regression

using the normal distribution,
for comparing means of independent

samples, 125-128
for correlation, see Correlation
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for correlated samples, 117-119
for a single mean, 114-117

using the t distribution,
for contrasts, 161-165, 236-237
for correlated samples, 143-145
for comparing means of independent

samples, 155-156
in regression, see Regression
for a single mean, 143-145

Huynh-Feldt adjustment, 358

I

Incomplete block designs, see Latin-square
designs

Independence, see also Probability
assumption of, 65, 86-88, 96-97, 123-124,

216-217,541-542
test for, 173, 216-217

Independent groups, see also Confidence intervals
and Hypothesis tests

or correlated groups, 165-167
Independent-groups design, 165, see also

Bet ween-subjects designs
Independent slopes, testing for equality,

427-428, 548-549 also see
Regression

Indirect effects, see Regression
Inferential statistics, 2
Influence plot, see Correlation
Influential data points, 55-56, 542-548
Inner fence, 16
Interactions, 284, 289-291, 298-302, 304, 308,

325-329
in multiple regression, 601-606

Interaction contrasts, see Contrasts among means
internally studentized residual, 544 see also

Regression
Interquartile range, 14
Isodensity curves, 489-490
ftems-within-treatments design, 436, 449-452,

see also Analysis of variance,
Hierarchical designs

J

Johnson-Neyman technique, 424

K

Kolmogorov-Smirnov test for normality, 287
Kruskal-Wallis H test, 219-220
Kurtosis, 31-32

L

Latin-square designs, 457-477, see also Analysis
of variance

Least absolute deviation criterion, 548 see also
Regression

Least-squares criterion, 51-52, 60
Levene test, 161, 185, 222
Leverage of X,-, 528, 584, 726
Line graphs, 25
Linear combinations, 136-139, 722, see also

Contrasts among means, Regression
Linear equation, 44
Linear independence, 616
Linear relations, 43-44
Location, see central tendency
LOWESS, 42, 533

M

Mahalanobis distance, 545-548, see also
Regression

Main effect contrasts, see Contrasts among means
Main effects, 202, 289-293, 307, 325
Mann-Whitney U test, 220
Marginal probability, see Probability
Matched-pair design, see Repeated-measures

design
Mauchly test for sphericity, 357
Mean

harmonic mean, 340
of a linear combination, 137-138
of a population, 79-80
of a sample, 11,20-23
properties of, 22
standard error of the mean (SEM), 24-25
trimmed mean, 24, 111, 222
weighted mean, 22

Measurement error,
and correlation, 486
and regression, 531-532
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Measures of importance, see Effect size
Median, 11, 13-15

depth of, 13-15
Midsummary scores, 30
Min F', 370, 384-385
Missing scores, estimating, 349-350, 465
Mixed designs, 191, 386-408, see also Analysis

of variance
Mixed-normal distribution, 111
Moderator variable, 601
Multicollinearity, 570-572, 596-598, see

Regression
Muticorr program, 501
Multifactorial ANOVA designs, see Analysis

of variance
Multilevel modeling, 551 see also Regression
Multiple correlation coefficient, R, 200-201, 524,

565-580 see also Regression
Multiple regression, see Regression
Multivariate analysis of variance (MANOVA),

359-361, see also Analysis of
variance

N

Negatively biased test, 216, 333
Nested factors, 389-390, 437, see also Analysis

of variance, Hierarchical designs
Nonadditivity, see Analysis of variance
Noncentral distributions,

the F, 210
the t, 147-148

Noncentrality parameters, 148, 162, 210-211, 317,
491,588-590

Nonorthogonal designs, 319-324, 623-629
Nonparametric tests, 152, 217, 219-220,

372-377
Normal approximation to the binomial,

128-129
Normal distribution, see Distributions
Normal equations in regression, 60
Normality assumption, 124, 178, 184-185, 217,

287
Notation and summation operators, see

Appendix A, 641-648
Nuisance variable, see variable
Null hypothesis, see Hypothesis testing

O

Observational study, 3
Omega squared, w2, see Effect size
Omnibus null hypothesis, 192, 233

for correlation matrices, 500
One-tailed tests, see Hypothesis testing
Orthogonal contrasts, 259-260
Orthogonal designs, 621-623
Orthogonal polynomials, see Trend analysis
Outer fence, 16
Outliers, 15-17, 55-56, 542-548

P

Pairwise comparisons, see Contrasts among
means

Part correlation, see Correlation
Partial correlation, see Correlation
Partial F tests, 582-583, see also Regression
Partial regression coefficients, 564, see Regression
Partial slope coefficients, 564, see Regression
Partitioning variability, 196-197, 230-231,

388-390, 437-444, 517-518, 525,
573-577

Phi coefficient, see Correlation
Planned contrasts, see Contrasts among means
Point-biserial correlation coefficient, see

Correlation
Point estimates, 89, 113
Polynomial analysis of covariance, see Analysis

of covariance
Pooling, 332-334, 441-443, see also Analysis

of variance, Hierarchical designs
Populations, 2

distinguished from samples, 2
Population parameters, 2
Positively biased test, 217
Post hoc contrasts, see Contrasts among means
Power,

a priori calculation, 147
for analysis of covariance, 430
for bivariate regression, 527-528
factors affecting power, 121-122
functions for the binomial distribution, 85
GPOWER, see GPOWER
in mixed-design ANOVA, 396-397
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for multifactor between-subjects ANOVA,
318-319

for multiple regression, 587-591, 726
for one-factor between-subjects ANOVA,

212-215
for one-sample t test, 147-151
post hoc calculation, 147
for repeated-measures designs, 363
specific alternative hypothesis, 84
SYSTAT power module, 493, 497, 725
for test of a single correlation, 495-496
for test of the equality of independent

correlations, 498
for tests using the binomial distribution,

83-86
for t test of two independent means,

157-158
for z test, 119-122

Power transformation, 223-224, 351-352
Pretest-posttest designs, 402-403
Probability,

conditional, 69-70, 97-99
definition, 68, 72 (table)
density function, 101
distributions, see Distributions
independence, 75, 96-97
introduction to, 67-72
joint, 68
marginal, 68
posterior, 98
prior, 98
rules of, 71,72 (table)
of unions of events, 69

Probability plot, 287
Pseudogroup procedure, 444
Pure error, 537-539

Q

Quasi-F tests, 368-370, 444-445, 451-452

R

R2 program, 586
Random assignment, 4
Random coefficients modeling, see Multilevel

modeling

Random-effects variables, 192
as opposed to fixed effects variables 202,

371-372
Random selection, 68
Rank-transformation F test, 219, 373
Raw-score formulas, see Computational formulas
Reference group, see Coding of categorical

variables
Regression analysis, see Regression
Regression,

adjusted (shrunken) multiple correlation
coefficient R, 524, 577-580

bivariate regression, 51-54, 519-561
coefficients are unbiased estimators,

558-559
coefficients as linear combinations of the

Y scores, 557-559
egression from the mean, 522
inference, see Regression, Inference about

bivariate regression
least absolute deviation criterion, 548
least-squares criterion, 51-52, 60
partitioning of variability, 517-518, 525
regression coefficients, 522-523
regression toward the mean, 519-522
standardized coefficients, 525
two-group ANOVA as a special case,

529-531
capitalization on chance, 577-580
with categorical variables, 614-637
checking for violations of assumptions

independence, and the Durbin-Watson
statistic, 533, 541-542

linearity, 537-539, 598-599
using residuals, 536-538

coding of categorical variables, 615-621, 727
dummy coding, 617, 620-621, 727
effect coding, 617-621

coefficients as linear combinations of Y scores,
559-561

cross-validation, 577-580
curvilinearity, testing for, 598-601
direct and indirect effects, 596
factorial designs, 621-629

nonorthogonal designs, 623-629
orthogonal designs, 621-623

homogeneity of regression slopes, 630-631
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Regression (Continued)
independent slopes, testing for equality,

548-549
inference about bivariate regression, 522-532

estimators of regression coefficients,
530 (table)

homoscedasticity, 522, 539-540
independence, 541-542
inference about a new value of Y at Xj,

528-529
inference about B0 and B1, 523-527
inference about the population regression

line, 528
leverage of Xj, 528
models for regression

model with fixed-effect predictors, 522
model for nonexperimental research,

531-532
normality, 540-541
power calculations, 527-528, see also Power
robust regression, 548
standard errors for b0 and b1, 525-526

derivation, 559-560
standard error of estimate, 524-525

inference about multiple regression
confidence intervals for the squared multiple

correlation coefficient, 585-587
inference about a single coefficient, 581-582
inference about predictions of F, 583-584
models and assumptions, 580
power, 587-591
testing the hypothesis that all the partial

coefficients are zero, 581
interactions, 601-606

between quantitative variables, 601-604
between a quantitative and a dichotomous

variable, 604-606
matrix algebra approach to, see Supplementary

Materials folder of CD
measurement error, 531-532
multicollinearity (collinearity), 570-572,

596-598
condition index, 597
tolerance, 570-571,597
variance inflation factor, 571, 597
variance proportions, 597-598
centering, 598

multilevel modeling, 551
multiple correlation coefficient R, 524,

573-58
multiple regression, 562-608

analysis of covariance as a special case,
632-634

analysis of variance as a special case,
615-629, 634-637

explanation versus prediction, 593-594
general linear model, 614-637
inference, see Regression, Inference about

multiple regression
interpretation of the coefficients, 572-573,

593-596
multiple correlation coefficient, 573-580
partial F tests, 582-583
partial regression coefficients, 564
partial slope coefficients, 564
partitioning of variability, 573-577
specification errors, 594-596

including irrelevant variables, 595-596
omitting relevant variables, 594-595

standard error of estimate, 565-567
tolerance, 570-572
variance inflation factor (VIF), 571-572,

see Regression
outliers and influential data points, 55-56,

542-548
Cook's distance, 546-547, 585
deleted predictions, 544
deleted residuals, 544
DFBETAS, 546-547
DFFITS, 546
externally studentized residuals, 544-545
internally studentized residuals, 544
leverage of Xj, 528, 584-585, 726
Mahalanobis distance, 545-548
studentized residuals, 544

repeated-measures regression, 549-551,
607-608

selecting the best regression equation for
prediction, 591-593

backward elimination, 592
forward selection, 591-592
stepwise regression, 592-593

trend analysis using multiple regression,
599-601
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Relative efficiency of estimators, 110,
see Efficiency

Reliability coefficient, 485^86, 532
Repeated-measures designs, 6, 165, 191, 342-378,

see also Within-subjects designs,
Analysis of variance, and Regression

Repeated-measures designs in regression, 549-551
see also Regression

Replicated Latin square design, 469-474, see also
Analysis of variance, Latin squares

Resistant measures, 15, 42, 55-56
Restricted model, 416
Restriction of range, see Correlation
Robustness of test, 217
Robust regression, 548 see also Regression

S

Sample space, 72-73
Sample-specific measure, 480-485, see also

Correlation
Sampling

random, 68
with replacement, 74
without replacement, 74

Sampling distributions, 25, 66, 104-108
Scatterplots, 38-40, 43-44
Scheffe's test, see Contrasts among means
Screening sample, see Cross-validation
Selecting the best regression equation for

prediction, 591-593 see also
Regression

Separate-variance t test, see Welch's test
Shapiro-Wilk test for normality, 185
Sign test, 86
Significance testing, see Hypothesis testing
Simple effects, 302-305, 401-402
Simple random samples, 2
Skewness, 29-30
Slope, see linear equation
Smoothers, 40-43
Specific alternative hypothesis, see Power
Specification errors, see Regression
Sphericity, 355-357
Split-plot designs, 386, see also Mixed Designs

and Analysis of variance
Spread, 20

Spread versus level plot, 223
SPSS algorithms, 726
Squared multiple R, 200, see also Coefficient of

multiple determination
SSU(adj), SSs/A(adj), and SStotal(adj), 418-420, see

also Analysis of covariance
Standard deviation, 23-24, see also Variance
Standardized effect size, see Effect size
Standard errors

of a contrast, 172
of the difference between the means of two

independent groups, 153-155
of estimate in regression, 55, 481, 524-525,

565-567
of the mean (SEM), 24-25, 108, 141
of a normally distributed variable, 104
of regression coefficients, 526, 528-530 (table)
of regression coefficients, derivation, 559-560

Standardized scores, see z scores
Stationarity, 75
Statistical model, 63
Statistical tables, 653-684
Stem- and-leaf plots, 13, 15-16
Stepwise regression, 592-593 see also

Regression
Stratification, see Blocking
Structural model, 192, see also Analysis of

variance
Studentized range statistic, 248
Studentized residual, 544, 723, see also Regression
Sum of squares associated with a contrast, 258
Sum of squares of Y, SSy, 55
Summation operators, see Appendix A, 641-648
SYSTAT 10 power module, 493, 497, 725

t distribution, 142-143
t tests, see Hypothesis tests
Tolerance, 570-572
Transformations, 223-224

Fisher Z transform, 492, 725-726
to obtain additivity in a repeated-measures

design, 351-352
Treatment x blocks design, 335, 412-414

blocks, fixed- or random-effects?, 724-725
compared with Analysis of covariance, 428-430

T
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Tree diagram, 72-73
Trend analysis, 267-281, 305-309

equation for a straight line, 268-269
in multifactor designs, 305-309
orthogonal polynomials, 273, 275-280
polynomial function, 275
SSlin as a single-degree-of-freedom contrast,

272-275
strategies in testing trend, 280
testing nonlinear trends, 274-280
testing the null hypothesis P1 = 0
using multiple regression, 599-601

Trimmed mean, 24, 1 1 1 , 222
Tukey's HSD lest, see Contrasts among means
Tukey-Kramer test, see Contrasts among means
Tukey's test of nonaditivity
Two-tailed tests, see Hypothesis testing
Type 1 and Type 2 errors, see Hypothesis testing
Type I, Type 11, and Type III sums of squares,

321-324, 340-341, 623-629

U

UCLA calculator, 148-149, 318-319
Unequal cell frequencies, 204. 319-324,

623-629
Uniformly most powerful tests, 187
Unweighted means analysis. 322, 340-341

V

Variable
categorical, 604. 608, 614-637
continuous, 7, 100-102
criterion, 52
dependent, 3
discrete, 7, 62-63
dummy, 617-621
fixed effects, 192

as opposed to random, 202

independent, 3
indicator, 617-621
moderator, 601
nuisance. 4
predictor, 52
random, 62-63, 100-102

as opposed to fixed, 202
random effects, 192

Variance
of a linear combination. 138-139
of a population, 80
of a sample, 23-24
properties of. 24

Variance inflation factor (VIF), 571-572 see also
Regression

Variance of estimate in regression. 55. see also
Regression

W

Weighted least squares, 539-540 see also
Regression

Welch's separate variance t test, 160
for contrasts, 240-241

Welch's test for ANOVA, 225-226, 723
Wilcoxon rank-sum test, 220
Wilcoxon signed-rank test, 152. 374-375
Within-groups mean square, 198
Within-subjects designs, 165. 191. see also

Repeated-measures designs. Analysis
of variance

Within-trcatment variability. 1

Y-intercept, see Linear equation

z scores 27-28, 36

Y

Z
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