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In order to create the living matter, Nature needed billions of years.
This experience is unique, and we must learn from it.





Contents

Preface xv

1. INTRODUCTION 1

1 What is the superconducting state? 1

2 A brief historical introduction 2
2.1 Phenomenon of superconductivity: its discovery and

evolution 3
2.2 Era of high-temperature superconductivity 5
2.3 History of the soliton 9

3 Room-temperature superconductivity 10

4 Why the living matter is organic? 14

2. BASIC PROPERTIES OF THE SUPERCONDUCTING STATE 17

1 What is the superconducting state? 17

2 Why does superconductivity occur? 18
2.1 What causes superconductivity? 21

3 Characteristics of the superconducting state 21
3.1 Critical temperature 21
3.2 Cooper-pair wavefunction 22
3.3 Order parameter 23
3.4 Penetration depth 26
3.5 Coherence length and the Cooper-pair size 30
3.6 Type-I and type-II superconductors 32
3.7 Critical magnetic fields 33
3.8 Critical current 36
3.9 Energy scales 36

4 Basic properties of the superconducting state 41
4.1 Zero resistance 41

ix



x ROOM-TEMPERATURE SUPERCONDUCTIVITY

4.2 The Meissner effect 42
4.3 Flux quantization 42
4.4 The Josephson effects 45
4.5 Energy gap in the excitation spectrum 50
4.6 Thermodynamic properties 55
4.7 Proximity effect 59
4.8 Isotope effect 61
4.9 Type-II superconductors: Properties of the mixed state 62
4.10 Suppression of the superconducting state 69

5 Universal theory of the superconducting state 71

3. SUPERCONDUCTING MATERIALS 81

1 First group of superconducting materials 82

2 Second group of superconducting materials 83
2.1 A-15 superconductors 83
2.2 Metal oxide Ba1−xKxBiO3 85
2.3 Magnesium diboride MgB2 86
2.4 Binary compounds 88
2.5 Semiconductors 90

3 Third group of superconducting materials 90
3.1 Chevrel phases 91
3.2 Copper oxides 94
3.3 Charge transfer organics 104
3.4 Fullerides 109
3.5 Graphite intercalation compounds 113
3.6 Polymers 115
3.7 Carbon nanotubes and DNA 116
3.8 Heavy-fermion systems 117
3.9 Nickel borocarbides 121
3.10 Strontium ruthenate 122
3.11 Ruthenocuprates 123
3.12 MgCNi3 124
3.13 Cd2Re2O7 125
3.14 Hydrides and deuterides 126
3.15 Oxides 127

4. PRINCIPLES OF SUPERCONDUCTIVITY 129

1 First principle of superconductivity 129

2 Second principle of superconductivity 131



Contents xi

3 Third principle of superconductivity 134

4 Fourth principle of superconductivity 135

5 Proximity-induced superconductivity 137

5. FIRST GROUP OF SUPERCONDUCTORS: MECHANISM
OF SUPERCONDUCTIVITY 141

1 Introduction 141

2 Interaction of electrons through the lattice 142

3 Main results of the BCS theory 146
3.1 Instability of the Fermi surface 146
3.2 Electron-electron attraction via phonons 148
3.3 The ground state of a superconductor 149
3.4 Energy gap 152
3.5 Density of states of elementary excitations 154
3.6 Critical temperature 155
3.7 Condensation energy 156
3.8 Coherence length 157
3.9 Specific-heat jump 158
3.10 The BCS and Ginzburg-Landau theory 158

4 Extensions of the BCS theory 159
4.1 Critical temperature 159
4.2 Strength of the electron-phonon interaction 160
4.3 Tunneling 161
4.4 Effect of impurities on Tc 162
4.5 High-frequency residual losses 163

6. THIRD GROUP OF SUPERCONDUCTORS: MECHANISM
OF SUPERCONDUCTIVITY 165

1 Systems with strongly-correlated electrons 166

2 General description of the mechanism 167

3 Detailed description of the mechanism 169
3.1 Structural phase transitions 169
3.2 Phase separation and the charge distribution into the

CuO2 planes 172
3.3 The striped phase 177
3.4 Phase diagram 180
3.5 Pseudogap 184
3.6 Soliton-like excitations on charge stripes 188
3.7 Cooper pairs 196



xii ROOM-TEMPERATURE SUPERCONDUCTIVITY

3.8 Phonons 207
3.9 Mechanism of phase coherence along the c axis 210
3.10 Energy gaps ∆p and ∆c 224
3.11 Quantum critical point and the condensation energy 229
3.12 Effective mass anisotropy 229
3.13 Penetration depth 230
3.14 Critical fields and current 230
3.15 Coherence length and the size of a Cooper pair 232
3.16 Resistivity and the effect of the magnetic field 234
3.17 Crystal structure and Tc 236
3.18 Effect of impurities 238
3.19 Chains in YBCO 239
3.20 Superconductivity in electron-doped cuprates 239
3.21 Superconductivity in alkali-doped C60 240
3.22 Future theory 242
3.23 Two remarks 242
3.24 Tunneling in unconventional superconductors 243

7. SECOND GROUP OF SUPERCONDUCTORS: MECHANISM
OF SUPERCONDUCTIVITY 247

1 General description of the mechanism 247
1.1 Effect of isotope substitution on Tc 249
1.2 Effect of impurities on Tc 249
1.3 Magnetic-field effect on resistivity 249

2 MgB2 250

8. COOPER PAIRS AT ROOM TEMPERATURE 253

1 Mechanism of electron pairing at room temperature 254
1.1 Electrons versus holes 254

2 Selection process by Nature 254
2.1 Solitons and bisolitons in the living matter 255

3 Cooper pairs above room temperature 256
3.1 Pairing energy in a room-temperature superconductor 257
3.2 Pairing energy in the case Tc � 450 K 259

4 Summary 259

9. PHASE COHERENCE AT ROOM TEMPERATURE 261

1 Mechanisms of phase coherence 261
1.1 The Josephson coupling 262
1.2 Spin fluctuations 263



  

Contents xiii

1.3 Other mechanisms of phase coherence 263

2 The magnetic mechanism 263
2.1 Antiferromagnetic or ferromagnetic? 264
2.2 Requirements to magnetic materials 264
2.3 Coherence energy gap 265

3 Tc and the density of charge carriers 267

4 Transition temperature interval 269

10. ROOM-TEMPERATURE SUPERCONDUCTORS 271

1 Superconducting materials: Analysis 272

2 Requirements for high-Tc materials 274
2.1 Electron pairing 275
2.2 Phase coherence 275
2.3 Structure 276
2.4 Materials 276

3 Three basic approaches to the problem 277

4 The first approach 278
4.1 Materials for electron pairing 278
4.2 Materials for phase coherence 292
4.3 Materials containing water 294

5 The second approach 296

6 The third approach 297

7 Electrical contacts 300

References 303

Index
307





Preface

In spite of the fact that it is Nature’s “oversight,” superconductivity is a re-
markable phenomenon. Personally, I am fascinated by it. Superconductivity,
indeed, was a major scientific mystery for a large part of the last century: dis-
covered in 1911 by the Dutch physicist H. Kamerlingh Onnes and his assistant
Gilles Holst, it was completely understood only in 1957. Generally speaking,
superconductivity is a low-temperature phenomenon. As a result, it is com-
monly believed that it cannot occur at room temperature,T ∼ 300 K.

The main purpose of the book is twofold. First, to show that, under suitable
conditions, superconductivity can occur above room temperature. Second, to
present general guidelines how to synthesize a room-temperature supercon-
ductor. The principal point of this book is that, in order to synthesize a room-
temperature superconductor, we may use some of Nature’s experience (see the
prologue to the book).

The book is organized as follows. The first seven chapters of the book
present an overview of the basic properties of the superconducting state and
the mechanisms of superconductivity in various compounds. Chapter 1 is a
historical review of major events related to the phenomenon of superconduc-
tivity. Chapter 2 gives an overview of the basic properties of the supercon-
ducting state. In all textbooks on superconductivity, the description of the su-
perconducting state is based on the Bardeen-Cooper-Schrieffer (BCS) theory,
assuming that the BCS model is the only possible mechanism of superconduc-
tivity (in fact, this is not the case). Contrary to this old tradition, Chapter 2
reviews the superconducting state independently of any specific mechanism.
Chapter 3 gives an overview of superconducting materials. The next chapter,
Chapter 4, presents the main principles of superconductivity as a phenomenon,
valid for every superconductor independently of its characteristic properties.
In various materials, the underlying mechanisms of superconductivity can be
different, but these principles must be satisfied. The following three chapters,
Chapters 5–7, describe the mechanisms of superconductivity in various com-

xv
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pounds. The main purpose of Chapter 5 is to discuss the BCS mechanism of
superconductivity characteristic for conventional superconductors. Chapter 6
reviews the mechanism of unconventional superconductivity. The mechanism
of half-conventional superconductivity is discussed in Chapter 7. Thus, the first
seven chapters make an introduction into the physics of the superconducting
state and superconducting materials and, therefore, can be used by students.

The last three chapters of the book are mainly addressed to specialists in ma-
terials science and in the field of superconductivity. In Chapter 8, it is shown
that the Cooper pairs exist above room temperature in organic materials. The
main purpose of Chapter 9 is to discuss the onset of long-phase coherence in
a room-temperature superconductor. The chief aim of Chapter 10 is to con-
sider materials able to superconduct above room temperature. In the context
of practical application, Chapter 10 is the most important in the book. The
principal ideas of the last three chapters are based exclusively on experimen-
tal facts accumulated at the time of writing. Personally, I have no doubts that
in 2011 superconductivity will celebrate its 100th jubilee having a transition
temperature above 300 K. I hope that the present book will make a valuable
contribution to this event.

A few words about the history of this book: writing my first book entitled
“High-Temperature Superconductivity in Cuprates: The Nonlinear Mechanism
and Tunneling Measurements,” I could add to the existing 12 chapters of the
book one chapter more. The title of this additional chapter would be similar to
the title of this book. However, I have decided to drop the additional chapter
and to realize this project by myself, even if it will take a few years to syn-
thesize a room-temperature superconductor. Unfortunately, I did not have a
possibility to start the project locally (still in Brussels). Then, I have proposed
this project to a few laboratories: I have sent a few e-mail messages. To my
surprise, I did not receive even one reply. This is how scientific relationships
function in our society: n ot even a simple “thank you for your proposal.”
In addition to a certain “culture” of relations among scientists, the disbelief
mentioned above, namely, that superconductivity cannot occur at room tem-
perature, was definitely the second reason why I did not get a reply. “Well,”
I said to myself, “Then I have no choice—if I cannot realize this project by
myself, I will write a new book about how to synthesize a room-temperature
superconductor.” This is it; the story is very short. In fact, some readers can
even thank these “nice” people to whom I have sent the proposal; otherwise,
this book would not exist.

I thank three professors of physics J. W. Turner, J. Wickens and D. Johnson,
and the publisher V. Riecansky for correcting English.

Andrei Mourachkine

Cambridge/Brussels, August 2003



Chapter 1

INTRODUCTION

What Nature created at the Big Bang—the spin of the electron—she later tried to “get
rid" of in the living matter.

—From Ref. [19]

1. What is the superconducting state?

The exact definition of the superconducting state will be given in the follow-
ing chapter. Here we discuss a bird’s-eye view of the superconducting state.

First, one question: would you be able to notice the difference in taste be-
tween two glasses of your preferred drink—soft or hard, whatever—in one of
which a 10−4 part, i.e. 0.01%, is replaced by another drink? I do not think so.
However, it is not the case for a superconductor (not literally, of course).

In some metals for example, the superconducting state occurs due to the
presence of a 10−4 fraction of “abnormal” electrons, while the other 99.99%
free (conduction) electrons remain absolutelynormal. The correlated behav-
ior of the small fraction of these “abnormal” electrons overwhelms the rest.
Amazing, is it not? Due to the presence of these “abnormal” electrons, the
metal is no longer a metal but a superconductor, losing its ability to resist to a
small-magnitude electrical current. The presence of normal (conduction) elec-
trons is completely masked by that of the “abnormal” electrons, as if the normal
electrons were not existing at all. (Of course, we talk only about electron trans-
port properties of a metal; the crystal structure of a metal is almost unchanged
below the critical temperature, i.e. when a metal becomes superconducting.)

What is even more interesting is that Nature had no intention at all to create
the superconducting state. Superconductivity is rather Nature’s oversight—it

1
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is an instability, an anomaly. What does the superconducting state literally
mean? In the superconducting state, THERE IS NO FRICTION. In the real
world, what does it mean? If friction were absent, Earth would be ideally
round, no buildings, no clothes, and I am afraid that the living matter, including
us, would not exist at all. Definitely, it was not Nature’s intention. Humans
however, after the discovery of the superconducting state, try to derive a good
deal of benefit from use of its peculiar properties.

Nevertheless, the superconducting state is a state of matter, even if it is an
instability, and in this book we shall discuss its characteristic properties. As
any state of matter, superconductivity is not a property of isolated atoms, but
is a collective effect determined by the structure of the whole sample.

The superconducting state is a quantum state occurring on a macroscopic
scale. In a sense, the superconducting state is a “bridge” between the mi-
croworld and the macroworld. This “bridge” allows us to study the physics
of the microworld directly. This is one of the reasons why superconductiv-
ity, driven only by a 10−4 fraction of “abnormal” electrons, has attracted the
attention of so many scientists since its discovery in 1911 (thus, more than
90 years of intensive research!). Between 1911 and 1957, many best minds
tried to unravel the mystery of this state caused only by 0.01 % of conduction
electrons.

How do normal electrons in a superconductor become “abnormal”? At the
Big Bang, Nature has created two types of elementary particles: bosons and
fermions. Bosons have an integral spin, while fermions a half-integral spin. As
a consequence, bosons and fermions conform to different statistics. Electrons
are fermions with a spin of 1/2 and obey the Fermi-Dirac statistics. In a super-
conductor, two electrons can form a pair which is already a boson with zero
spin (or a spin equal to 1). These electron pairs conform to the Bose-Einstein
statistics and, being in a phase, can move in a crystal without friction. This
is how, in a classical superconductor, a tiny fraction 0.01 % of all conduction
electrons becomes “abnormal.” Simple, is it not?

2. A brief historical introduction
The history of superconductivity as a phenomenon is very rich, consist-

ing of many events and discoveries. Therefore, it is not possible to describe
all of them in one section. There are a few books devoted to the history of
superconductivity—the reader who is interested to know more on this issue, is
referred to these books (see, for example, [1]). The goal of this introductory
section is primarily to give some historical perspective to the evolution of the
subject.

In most textbooks on superconductivity, the subject is presented chronolog-
ically. The presentation in this book does not follow this tradition: in this sec-
tion we consider the most important events and discoveries, and in the subse-
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quent chapters, we discuss the physics of the superconducting state in different
compounds without emphasizing the historical order.

2.1 Phenomenon of superconductivity: its discovery and
evolution

The phenomenon of superconductivity was discovered in 1911 by the Dutch
physicist H. Kamerlingh Onnes and his assistant Gilles Holst in Leiden. They
found that dc resistivity of mercury suddenly drops to zero below 4.2 K, as
shown in Fig. 1.1. Gilles Holst actually made this measurement [1]. However,
his name has become lost in the recesses of history, as is often the case with
junior researchers working under a famous scientist. A year later, Kamerlingh
Onnes and Holst discovered that a sufficiently strong magnetic field restores
the resistivity in the sample as does a sufficiently strong electric current.

 Hg
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Figure 1.1. Experimental data obtained in mercury by Gilles Holst and H. Kamerlingh Onnes
in 1911, showing for the first time the transition from the resistive state to the superconducting
state.

In two years after the discovery of superconductivity in mercury, lead was
found to superconduct at 7.2 K. In 1930, superconductivity was discovered in
niobium, occurring at 9.2 K. This is the highest transition temperature among
all elemental metals.

In 1933, W. Meissner and R. Ochsenfeld discovered in Berlin one of the
most fundamental properties of superconductors: perfect diamagnetism. They
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found that the magnetic flux is expelled from the interior of the sample that is
cooled below its critical temperature in weak external magnetic fields (see Fig.
2.2). Thus, they found that no applied magnetic field is allowed inside a metal
when it becomes superconducting. This phenomenon is known today as the
Meissner effect.

Dutch physicists C. J. Gorter and H. B. G. Casimir introduced in 1934 a
phenomenological theory of superconductivity based on the assumption that,
in the superconducting state, there are two components of the conducting elec-
tron “fl uid” : “normal” and “superconducting” (hence the name given this the-
ory, the two-fluid model). The properties of “normal” electrons are identical
to those of the electron system in a normal metal, and the “superconducting”
electrons are responsible for the anomalous properties. In the superconduct-
ing state, these two components exist side by side as interpenetrating liquids.
The two-fluid model proved a useful concept for analyzing, for example, the
thermal and acoustic properties of superconductors.

Following the discovery of the expulsion of magnetic flux by a superconduc-
tor—the Meissner effect—the brothers F. and H. London together proposed in
1935 two equations to govern the microscopic (local) electric and magnetic
fields. These two equations provided a description of the anomalous diamag-
netism of superconductors in a weak external field. In the framework of the
two-fluid model, the London equations, together with the Maxwell equations,
describe the behavior of superconducting electrons, while the normal electrons
behave according only to the Maxwell equations. The London equations ex-
plained not only the Meissner effect, but also provided an expression for the
first characteristic length of superconductivity, namely what became known as
the London penetration depth λL.

Vortices in superconductors were discovered by L. V. Shubnikov and co-
workers in 1937. They found an unusual behavior for some superconductors
in external magnetic fields. Actually, they discovered the existence of two
critical magnetic fields for type-II superconductors and the new state of super-
conductors, known as the mixed state or the Shubnikov phase.

In 1950, H. Fröhlich proposed that vibrating atoms of a material must play
an important role causing it to superconduct. He suggested that searching for
an isotope effect in superconductors would establish whether or not lattice vi-
brations play some role in the interaction responsible for the onset of super-
conductivity. Following this proposal, the isotope effect was indeed found in
the same year 1950 by E. Maxwell and C. A. Reynolds. The study of dif-
ferent superconducting isotopes of mercury established a relationship between
the critical temperature Tc and the isotope mass M : TcM

1/2 = constant. Un-
doubtedly, this effect played the decisive role in showing the way to the correct
theory of superconductivity.
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Also in 1950, V. Ginzburg and L. Landau proposed an intuitive, phenomeno-
logical theory of superconductivity. The theory uses the general theory of the
second-order phase transition, developed by L. Landau. The equations derived
from the theory are highly non-trivial, and their validity was proven later on
the basis of the microscopic theory. The Ginzburg-Landau theory played an
important role in understanding the physics of the superconducting state. This
theory is able to describe the behavior of superconductors (both conventional
and unconventional) in strong magnetic fields. The Ginzburg-Landau theory
provided the same expression for the penetration depth as the London equa-
tions and also an expression for the second characteristic length ξGL, called
the coherence length.

By using the Ginzburg-Landau theory, A. A. Abrikosov theoretically found
vortices and thus explained Shubnikov’s experiments, suggesting that the Shub-
nikov phase is a state with vortices that actually form a periodic lattice. This
result seemed so strange that he could not publish his work during five years;
and even after 1957, when it was published, this idea was only accepted after
experimental proof of several predicted effects.

In 1956 Leon Cooper showed that, in the presence of a very weak electron-
phonon (lattice) interaction, two conducting electrons are capable of forming a
stable paired state. After the discovery of the isotope effect, this was the second
and the last breakthrough leading to the correct theory of superconductivity.
This paired state is now referred to as the Cooper pair.

The first microscopic theory of superconductivity in metals was formulated
by J. Bardeen, L. Cooper and R. Schrieffer in 1957, which is now known as the
BCS theory. The central concept of the BCS theory is a weak electron-phonon
interaction which leads to the appearance of an attractive potential between
two electrons. As a consequence, they form the Cooper pairs. We shall discuss
the BCS model in Chapter 5.

Quantum-mechanical tunneling of Cooper pairs through a thin insulating
barrier (of the order of a few nanometers thick) between two superconductors
was theoretically predicted by B. D. Josephson in 1962. After reading his
paper, Bardeen publicly dismissed young Josephson’s tunneling-supercurrent
assertion: “ ... pairing does not extend into the barrier, so that there can be no
such superfluid flow.” Josephson’s predictions were confirmed within a year
and the effects are known today as the Josephson effects. They play a special
role in superconducting applications.

2.2 Era of high-temperature superconductivity
The issue of room-temperature superconductivity was for the first time se-

riously addressed in a paper written by W. A. Little in 1964 [2]. He proposed
a model in which a high Tc is obtained due to a non-phonon mediated mech-
anism of electron attraction, namely, an exciton model for Cooper-pair forma-
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tion in long organic molecules. Little’s work revived the old dream of high
Tc, and can be considered as the beginning of the search for high-temperature
superconductivity.

Many new superconductors were discovered in the 1970s and 1980s. For ex-
ample, the first representatives of two new classes of superconductors—heavy
fermions and organic superconductors—were discovered in 1979. The experi-
mental data obtained in organic superconductors and heavy fermions indicated
that superconductivity in these compounds was unconventional. Before the
discovery of superconductivity in copper oxides (cuprates), the highest critical
temperature 23.2 K was observed in 1973 in Nb3Ge. This type of supercon-
ductor is called an A-15 compound.

The bisoliton model of superconductivity was proposed in 1984 by L. S.
Brizhik and A. S. Davydov [3] in order to explain superconductivity in quasi-
one-dimensional organic conductors. In the framework of this model, the
Cooper pairs are quasi-one-dimensional excitations coupled due to a moder-
ately strong, nonlinear electron-phonon interaction.

In 1986, trying to explain the superconductivity in heavy fermions, K. Miya-
ke, S. Schmitt-Rink and C. M. Varma considered the mechanism of supercon-
ductivity based on the exchange of antiferromagnetic spin fluctuations [4]. The
calculations showed that the anisotropic even-parity pairings are assisted, and
the odd-parity as well as the isotropic even-parity are impeded by antiferro-
magnetic spin fluctuations.

The real history of high-Tc superconductivity began in 1986 when Bednorz
and Müller found evidence for superconductivity at ∼ 30 K in La-Ba-Cu-O
ceramics [5]. This remarkable discovery has renewed the interest in super-
conductive research. In 1987, the groups at the Universities of Alabama and
Houston under the direction of M. K. Wu and P. W. Chu, respectively, jointly
announced the discovery of the 93 K superconductor Y-Ba-Cu-O. Just a year
later—early in 1988—Bi- and Tl-based superconducting cuprates were discov-
ered, having Tc = 110 and 125 K, respectively. Finally, Hg-based cuprates with
the highest critical temperature Tc = 135 K were discovered in 1993 (at high
pressure, Tc increases up to 164 K). Figure 1.2 shows the superconducting
critical temperature of several cuprates as a function of the year of discov-
ery, as well as Tc of some metallic superconductors. All these cuprates are
hole-doped. One family of cuprates which was discovered in 1989 is electron-
doped: (Nd, Pr, Sm)-Ce-Cu-O. Their maximum critical temperature is compar-
atively low, Tc,max = 24 K.

In 1986 the scientific world was astonished by the discovery of high-Tc su-
perconductivity in copper oxides because oxides are very bad conductors. The
first reaction of most scientists working in the field of superconductivity was
to think that there must be a new mechanism, since phonon-mediated super-
conductivity is impossible at so high a temperature. The discovery of super-
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Figure 1.2. The time evolution of the superconducting critical temperature since the discovery
of superconductivity in 1911. The solid line shows the Tc evolution of metallic superconductors,
and the dashed line marks the Tc evolution of superconducting oxides.

conducting cuprates was followed by research growth at a rate unprecedented
in the history of science: during 1987 the number of scientists working in the
field of superconductivity increased, at least, by one order of magnitude. Data
obtained in the cuprates, within a year after the discovery of their ability to su-
perconduct, indeed showed that the characteristics of high-Tc superconductors
deviate from the predictions of the BCS theory as do those of organic super-
conductors and heavy fermions. For example, the BCS isotope effect is almost
absent in optimally doped cuprates. As a consequence, this has prompted the
exploration of non-phonon electronic coupling mechanisms. Ph. Anderson
was probably the first to suggest a theoretical model which did not incorporate
the phonon-electron interaction.

The events presented below are important since they have led to our un-
derstanding of the mechanism of high-Tc superconductivity. In 1987, L. P.
Gor’kov and A. V. Sokol proposed the presence of two components of itiner-
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ant and more localized features in cuprates [6]. This kind of microscopic and
dynamical phase separation was later rediscovered in other theoretical mod-
els. In 1988, A. S. Davydov suggested that high-Tc superconductivity occurs
due to the formation of bisolitons [7], as well as superconductivity in organic
superconductors. The pseudogap above Tc was observed for the first time in
1989 in nuclear magnetic resonance (NMR) measurements [8]. The pseudo-
gap is a partial energy gap, a depletion of the density of states above the critical
temperature.

In 1990, A. S. Davydov presented a theory of high-Tc superconductivity
based on the concept of a moderately strong electron-phonon coupling which
results in perturbation theory being invalid [9, 10]. The theory utilizes the
concept of bisolitons, or electron (or hole) pairs coupled in a singlet state due
to local deformation of the -O-Cu-O-Cu- chain in the CuO2 planes. We shall
discuss the bisoliton model in Chapter 6. In the early 1990s, a few theorists
autonomously proposed that, independently of the origin of the pairing mecha-
nism, spin fluctuations mediate the long-range phase coherence in the cuprates.
It turned out that this suggestion was correct. In 1994, A. S. Alexandrov and N.
F. Mott pointed out that, in the cuprates, it is necessary to distinguish the “ inter-
nal” wavefunction of a Cooper pair and the order parameter of a Bose-Einstein
condensate, which may have different symmetries [11].

In 1995, V. J. Emery and S. A. Kivelson emphasized that superconductiv-
ity requires pairing and long-range phase coherence [12]. They demonstrated
that, in the cuprates, the pairing may occur above Tc without the onset of long-
range phase coherence. In the same year 1995, J. M. Tranquada and co-workers
found the presence of coupled, dynamical modulations of charges (holes) and
spins in Nd-doped La2−xSrxCuO4 (LSCO) from neutron diffraction [13]. In
LSCO, antiferromagnetic stripes of copper spins are separated by periodically
spaced quasi-one-dimensional domain walls to which the holes segregate. The
spin direction in antiferromagnetic domains rotates by 180◦ on crossing a do-
main wall. In 1997, V. J. Emery, S. A. Kivelson and O. Zachar presented a the-
oretical model of high-Tc superconductivity based on the presence of charge
stripes. It turned out that the model is not applicable to the cuprates (there is
no charge-spin separation in the cuprates); however, it was the first model of
high-Tc superconductivity based on the presence of charge stripes in the CuO2

planes.
In 1999, analysis of tunneling and neutron scattering measurements showed

that, in Bi2Sr2CaCu2O8+x (Bi2212) and YBa2Cu3O6+x (YBCO), the phase
coherence is established due to spin fluctuations [14, 15]. We shall consider
the mechanism of the onset of phase coherence in the cuprates in Chapter 6.
In 2001, tunneling measurements provided evidence that the Cooper pairs in
Bi2212 are pairs of quasi-one-dimensional solitonlike excitations [16–19]. We
shall briefly discuss these data in Chapter 6.
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2.3 History of the soliton

One may wonder how do solitons (or solitary waves) relate to the phe-
nomenon of superconductivity? Simply because the Cooper pairs in super-
conducting cuprates and some other unconventional superconductors are pairs
of soliton-like excitations, not electrons as in superconducting metals.

For a long time, linear equations have been used for describing different
phenomena. However, the majority of real systems are nonlinear. For exam-
ple, the fate of a wave travelling in a medium is determined by properties of the
medium. Nonlinearity results in the distortion of the shape of large amplitude
waves, for instance, in turbulence. The other source of distortion of a wave is
the dispersion. Nonlinearity tends to make the hill of the wave steeper, while
dispersion flattens it. The solitary wave lives “between” these two dangerous,
destructive “ forces.” Thus, the balance between nonlinearity and dispersion
is responsible for the existence of the solitary waves. As a consequence, the
solitary waves are extremely robust.

The history of solitary waves or solitons is unique. The first scientific ob-
servation of the solitary wave was made by Russell in 1834 on the surface of
water. One of the first mathematical equations describing solitary waves was
formulated in 1895. But only in 1965 were solitary waves fully understood!
Moreover, many phenomena which were well known before 1965 turned out
to be solitons! Only after 1965 was it realized that solitary waves on the water
surface, nerve pulses, vortices, tornados and many others belong to the same
category: they are all solitons! That is not all, the most striking property of
solitons is that they behave like particles!

In 1834 near Edinburgh (Scotland), John Scott Russell was observing a boat
moving on a shallow channel and noticed that, when the boat suddenly stopped,
the wave that it was pushing at its prow “rolled forward with great velocity,
assuming the form of a large solitary elevation, a rounded, smooth and well
defined heap of water which continued its course along the channel apparently
without change of form or diminution of speed” [20]. He followed the wave
along the channel for more than a mile.

In 1965 N. J. Zabusky and M. D. Kruskal performed computer simula-
tions considering movements of a continuous nonlinear rubber string. They
accounted for nonlinear forces by assuming that stretching the string by ∆�
generates the force k∆� + α(∆�)2. The nonlinear correction to Hooke’s law,
α(∆�)2, was assumed to be small as compared to the linear force k∆�. After
many attempts, they came to a striking conclusion: for small amplitudes, vi-
brations of the string are best described by a nonlinear equation formulated in
1895 by D. J. Korteweg and G. de Vries. It is only nowadays known that the
Korteweg-de Vries equation describes a variety of nonlinear waves, and is suit-
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able for small amplitude waves in materials with weak dispersion. However,
in 1965 it was a new finding.

In addition, Zabusky and Kruskal found that the solitary waves are not
changed in collisions, like rigid bodies, and on passing through each other, two
solitary waves accelerate. As a consequence, their trajectories deviate from
straight lines, meaning that the solitons have particle-like properties. So they
coined the term soliton, 131 years after its discovery.

The latest example of solitary waves is the so-called freak wave occurring
in open ocean. The height of a freak wave can be as much as 30 meters. It
suddenly appears from nowhere in weather conditions close to a storm. Only
in 2001 it was scientifically shown that the freak wave is a solitary wave.

Mathematically, there is a difference between “solitons” and “solitary waves.”
Solitons are localized solutions of integrable equations, while solitary waves
are localized solutions of non-integrable equations. Another characteristic fea-
ture of solitons is that they are solitary waves that are not deformed after col-
lision with other solitons. Thus the variety of solitary waves is much wider
than the variety of the “ true” solitons. In fact, real systems do not carry ex-
act soliton solutions in the strict mathematical sense (which implies an infinite
life-time and an infinity of conservation laws) but quasi-solitons which have
most of the features of true solitons. In particular, although they do not have
an infinite life-time, quasi-solitons are generally so long-lived that their effect
on the properties of the system is almost the same as that of true solitons. This
is why physicists often use the word “soliton” in a relaxed way which does not
agree with mathematical rigor.

3. Room-temperature superconductivity

This issue is the main topic of this book and, in fact, an old dream. The
dream of high-temperature superconductivity existed long before the develop-
ment of the BCS theory. It had been expected that the future theory would
not only explain the phenomenon of superconductivity, but also would show
whether it is possible to create high-temperature superconductors and to predict
the occurrence of superconductivity in different materials. The BCS theory,
created in 1957, did explain the phenomenon of superconductivity in metals,
however it did not provide a rule for predicting the occurrence of supercon-
ductivity in different compounds. In the framework of the phonon mechanism
of superconductivity, the BCS formula showed that the maximum critical tem-
perature Tc,max should be approximately an order of magnitude less than the
Debye temperature. Since the Debye temperature in many metals is around
room temperature, this means that, in the framework of the BCS theory, super-
conductivity is a low-temperature phenomenon. Nevertheless, this estimation
of maximum Tc did not stop some dreamers to continue the search for high-
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temperature superconductors. The grand old man of superconductivity, Bernd
Matthias, used to say “Never listen to theorists.”

What is interesting is that this restriction imposed by the BCS theory on
the maximum Tc value has in its turn stimulated theorists to search for a new
mechanism of superconductivity different from the phonon mechanism. As is
mentioned above, Little proposed in 1964 the exciton model of superconduc-
tivity in long chainlike organic molecules [2]. In the framework of his model,
the maximum critical temperature was estimated to be around 2200 K! Lit-
tle’s paper has encouraged the search for room-temperature superconductivity,
especially in organic compounds. It is worth noting that in 1964 the idea of su-
perconductivity in organic systems was not new. F. London already questioned
in 1950 whether a superfluid-like state might occur in certain macromolecules
which play an important role in biochemical reactions [21]. Such molecules
usually have alternating single and double bonds, called conjugate, and con-
tain molecular groups attached to certain carbons along the chain (“spine” ).
However, Little was the first to place the concept of high-temperature super-
conductivity in organic molecules on a serious theoretical footing.

Between 1964 and 1986, many new superconductors were discovered, in-
cluding organic superconductors. However, none of them had a critical tem-
perature going over the BCS limit, ∼ 30 K. The increasing pessimism among
experimentalists was crushed overnight in 1986 by Bednorz and Müller’s dis-
covery of superconductivity in cuprates. In 1993, a high-temperature supercon-
ductor having Tc � 135 K became the reality. What about room-temperature
superconductivity?

From the beginning, it is important to note that the issue of room-temperatu-
re superconductivity must be discussed without emotions. Everyone under-
stands (otherwise see below) what technical marvels we can see if one day
room-temperature superconductors become available. Therefore, it is some-
times very difficult to discuss this issue just as a physical phenomenon: the
human brain in such situations tends not to function properly. However, we
have to examine this question calmly. Only numbers obtained from estima-
tions and experimental facts must be our guides to the “untouched” territory.

Secondly, it is necessary to note that the expression “a room-temperature
superconductor” inherently contains an ambiguity. Some perceive this expres-
sion as a superconductor having a critical temperature Tc ∼ 300 K, others as
a superconductor functioning at 300 K. There is a huge difference between
these two cases. From a technical point of view, superconductors only become
useful when they are operated well below their critical temperature—one-half
to two-third of that temperature provides a rule of thumb. Therefore, for the
technologist, a room-temperature superconductor would be a substance whose
resistance disappears somewhere above 450 K. Such a material could actually
be used at room temperature for large-scale applications. At the same time,
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Tc ∼ 350 K can already be useful for small-scale (low-power) applications.
Consequently, unless specified, the expression “a room-temperature supercon-
ductor” will further be used to imply a superconductor having a critical tem-
perature Tc � 350 K. The case Tc � 450 K will be discussed separately.

Consider the facts: a superconductor with Tc = 135 K is already available
(since 1993). The first discovered superconductor—lead—has a critical tem-
perature of 4.2 K. Taking into account that the ratio 135 K/4.2 K � 32 is more
than one order of magnitude larger than the ratio 350 K/135 K � 2.6, one can
conclude that the goal to have a room-temperature superconductor looks not
only as a possibility but also a near-future possibility. In Fig. 1.2, if we as-
sume that the rise of critical temperature will follow the same growth as that for
copper oxides, then in 2010 we will have a room-temperature superconductor.
This is one of the reasons why I believe that, in 2011, superconductivity will
celebrate its 100-year anniversary having a critical temperature above 300 K.
In Chapters 8 and 9, we shall see that, from the physics point of view, there is
no formal limitation for superconductivity to occur above room temperature.

In the literature, one can find many papers (more than 20) reporting evidence
of superconductivity near or above room temperature. Most researchers in su-
perconductivity do not accept the validity of these results because they cannot
be reproduced by others. Paul Chu, the discoverer of the 93 K superconductor
Y-Ba-Cu-O (see above), calls these USOs—unidentified superconducting ob-
jects. The main problem with most of these results is that superconductivity is
observed in samples containing many different conducting compounds, and the
superconducting fraction (if such exists at all) of these samples is usually very
small. Thus, it is possible that superconductivity does exist in these complex
materials, but nobody knows what phase is responsible for its occurrence. In
a few cases, however, the phase is known but superconductivity was observed
exclusively on the surface. For any substance, the surface conditions differ
from those inside the bulk, and the degree of this difference depends on many
parameters, and some of them are extrinsic. In Chapter 8, we shall discuss the
results of two works reporting superconductivity above room temperature.

In 1992, a diverse group of researchers gathered at a two-day workshop in
Bodega Bay (California). They considered the issue of making much higher
temperature superconductors. T. H. Geballe, who attended this workshop,
summarized some guidelines in a two-page paper published in Science [22],
that emerged from discussions:

Materials should be multicomponent structures with more than two sites
per unit cell, where one or more sites not involved in the conduction band
can be used to introduce itinerant charge carriers.

Compositions should be near the metal-insulator Mott transition.
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On the insulating side of the Mott transition, the localized states should
have spin-1/2 ground states and antiferromagnetic ordering of the parent
compound.

The conduction band should be formed from antibonding tight-binding
states that have a high degree of cation-anion hybridization near the Fermi
level. There should be no extended metal-metal bonds.

Structural features that are desirable include two-dimensional extended sheets
or clusters with controllable linkage, or both.

All these hints are based on the working experience with cuprates. Per-
sonally, I have came across this paper when the main ideas of this book were
already existing. Basically, these hints are correct but, however, not complete:
I would add a few (remember that this paper was written in 1993). We shall
discuss them in Chapter 10.

Finally, let us suppose that, one day, a room-temperature superconductor
will be available, and suppose that in time, scientists and engineers figure out
how to synthesize it in useful forms and build devices out of it. What technical
marvels could we expect to see?

First of all, all devices made from the room-temperature superconductor
will be reasonably cheap since its use would not involve cooling cost. The
benefits would range from minor improvements in existing technology to rev-
olutionary upheavals in the way we live our lives. Energy savings from many
sources would add up to a reduced dependence on conventional power plants.
Compact superconducting cables would replace unsightly power lines and rev-
olutionize the electrical power industry. A world with room-temperature su-
perconductivity would unquestionably be a cleaner world and a quieter world.
Compact superconducting motors would replace many noisy, polluting en-
gines. Advance transportation systems would lessen our demands on the au-
tomobile. Superconducting magnetic energy storage would become common-
place. Computers would be based on compact Josephson junctions. Thanks
to the high-frequency, high-sensitivity operation of superconductive electron-
ics, mobile phones would be so compact that could be made in the form of
an earring. SQUID (Superconducting QUantum Interference Device) sensors
would become ubiquitous in many areas of technology and medicine. Room-
temperature superconductivity would undoubtedly trigger a revolution of sci-
entific imagination. The effects of room-temperature superconductivity would
be felt throughout society, including children who might well grow up playing
with superconducting toys.
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4. Why the living matter is organic?

One may ask how does this question relate to the issue of room-temperature
superconductivity? In fact, the superconducting state and some biological pro-
cesses have, at least, one thing in common—they do not like the electron spin.
The prologue to this chapter may look unusual, and to better understand its
meaning here is a quote from the same book [19]: “From the physics point
of view, the general understanding of many biological processes is still very
limited. However, it is known that (i) in redox reactions occurring in liv-
ing organisms, electrons are transferred from one molecule to another in pairs
with opposite spins; and (ii) electron transport in the synthesis process of ATP
(adenosine triphosphate) molecules in conjugate membranes of mitochondria
and chloroplasts is realized by pairs, but not individually [9, 10]. Apparently,
in living tissues, electron transfer is preferable in pairs in which two electrons
are in a singlet state. ...

“At the Big Bang, spin was attached to what are now called the fermions in
order to create diversity of possible forms of the existence of matter. Seem-
ingly, in living tissues which appeared later, the spin of the electron became
rather an obstacle in the evolution of the living matter. In many biological
processes, in order to get rid of the electron spin, two electrons with opposite
spins are coupled, forming a composite boson with 2e charge and zero spin. It
happened that in inorganic solids two electrons, in some circumstances, can be
paired too. This state of matter, which is in fact an instability in solids, is now
called the superconducting state. Thus, the understanding of some biological
processes can lead to better understanding of the phenomenon of superconduc-
tivity in solids. This is particularly true in the case of high-Tc superconductiv-
ity. Superconductivity does not occur in living tissues because it requires not
only the electron pairing but also the phase coherence among the pairs.”

Nevertheless, the superconducting-like state exists locally in complex or-
ganic molecules with conjugate bonds [23]. Figure 1.3 shows a few examples
of such molecules. Their main building blocks are carbon and hydrogen atoms.
The characteristic feature of these conjugated hydrocarbons is the presence of a
large number of π electrons. These collectivized electrons are in the field of the
so-called σ electrons which are located close to the atomic nuclei and not much
different from the ordinary atomic electrons. At the same time, the π electrons
are not localized near any particular atom, and they can travel throughout the
entire molecular frame. This makes the molecule very similar to a metal. The
framework of atoms plays the role of a crystal lattice, while the π electrons that
of the conduction electrons. As an example, Figure 1.4 schematically shows
the formation of σ- and π-orbitals in ethene. It turns out, in fact, that the con-
jugated hydrocarbons with even number of carbon atoms are more than just
similar to a metal, but are actually small superconductors [23]. Experimen-
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Figure 1.3. Organic molecules with delocalized π electrons: (a) tetraphenylporphin; (b) ova-
lene; (c) hexabenzocoronene, and (d) coronene [23].

tally, conjugated hydrocarbons with even number of carbon atoms (thus, with
even number of π electrons) exhibit properties similar to those of a supercon-
ductor: the Meissner-like effect, zero resistivity and the presence of an energy
gap. The π electrons form bound pairs analogous to the Cooper pairs in an
ordinary superconductor. The pair correlation mechanism is principally due to
two effects: (i) the polarization of the σ electrons, and (ii) σ − π virtual elec-
tron transitions. However, if the number of π electrons is odd, the properties
of such conjugated hydrocarbons are different from those of a superconductor.

Thus, “ the essential fluidity of life agrees with the fluidity of the electronic
cloud in conjugated molecules. Such systems may thus be considered as both
the cradle and the main backbone of life” [24]. At the end, I would like to
recall the prologue to this book: In order to create the living matter, Nature
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Figure 1.4. Formation of π- and σ-orbitals in ethene.
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needed billions of years. This experience is unique, and we must learn from it.
Finally, aside from our problem of room-temperature superconductivity,

why, indeed, is the living matter (including us) organic? Could we exist being
made from, for example, B or N? The answer is no. Just by using common
sense and the periodic table of chemical elements (the Mendeleev table) it is
not difficult to show that the element which we could be made from can only
be carbon. Only C can perform this function.



Chapter 2

BASIC PROPERTIES OF THE
SUPERCONDUCTING STATE

Any state of matter has its own specific characteristics and basic properties.
For example, viscosity is a characteristic of a liquid, and a liquid takes the
shape of a container which contains the liquid. The latter is one of the basic
properties of a liquid. As remarked in Chapter 1, the superconducting state is
a state of matter. Therefore, it has its own specific characteristics and basic
properties, and we need to know them before we discuss room-temperature
superconductivity. We also need to know why it occurs. What does cause
superconductivity?

In earlier textbooks on the physics of superconductivity, the description of
the superconducting state is based on the BCS theory, assuming that the BCS
model is the only possible mechanism of superconductivity. In fact, as we shall
see in the next chapter, all superconductors can be divided into three groups in
accordance with the mechanism of superconductivity in each compound. Con-
trary to this old tradition, the purpose of this chapter is to characterize the su-
perconducting state as whole, independently of any specific mechanism. Later,
in Chapters 5, 6 and 7, we shall separately consider characteristic features of
superconductivity in each group.

1. What is the superconducting state?
Superconductivity was discovered by Kamerlingh Onnes and his assistant

Gilles Holst in 1911: on measuring the electrical resistance of mercury at low
temperatures, they found that, at 4.2 K, it dropped abruptly to zero (see Fig.
1.1). Subsequent investigations have shown that this sudden transition to per-
fect conductivity is characteristic of a number of metals and alloys. However,
some metals never become superconducting. Bardeen, Cooper and Schrieffer
reported in 1957 the first successful microscopic theory of superconductivity

17
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Figure 2.1. Temperature dependence of
electrical resistivity of a superconductor.
Tc marks the transition to the supercon-
ducting state.

 H  H

 T > T  c  T < T  c

Figure 2.2. The Meissner effect: the ex-
pulsion of a weak, external magnetic field
from the interior of a superconductor. The
field is applied (a) at T > Tc, and (b) at
T < Tc.

(BCS theory). Despite the existence of the BCS theory, there are no com-
pletely reliable rules for predicting whether a metal will superconduct at low
temperature or not.

From a classical point of view, the superconducting state is characterized by
two distinctive properties: perfect electrical conductivity (ρ = 0) and perfect
diamagnetism (B = 0 inside the superconductor), as shown in Figs 2.1 and 2.2,
respectively. However, this definition of the superconducting state can soon be
changed because, as recently found in an unconventional organic superconduc-
tor, the applied magnetic field induces superconductivity. Therefore, B �= 0
inside this organic superconductor (see Section 4.10).

2. Why does superconductivity occur?
At the Big Bang, Nature created two types of elementary particles: bosons

and fermions. Every elementary particle is either a boson or a fermion. This
is known as the quantum statistical postulate. Whether an elementary particle
is a boson or fermion is related to the magnitude of its spin (in units of h̄).
Particles having an integer spin are bosons, while those with a half-integer
spin are fermions. Electrons are fermions with a spin of 1/2. According to
the Pauli exclusion principle no two electrons can occupy the same energy
state. At the same time, bosons can occupy the same state multiply. This is the
main difference between bosons and fermions. Thus, they conform to different
quantum statistics. Fermions obey the Fermi-Dirac statistics: for a system of
free fermions in equilibrium at temperature T , the probability of occupation of
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a level of energy E is given by the Fermi-Dirac distribution function:

fF (E) ≡ 1
exp[(E − µ)/kBT ] + 1

, (2.1)

where µ is the chemical potential (in metals, the chemical potential at low tem-
peratures is very close to the Fermi level), and kB is the Boltzmann constant.
Bosons obey the Bose-Einstein statistics: for a system of free bosons in equi-
librium, the probability of occupation of a level of energy E is given by the
Bose distribution function:

fB(E) ≡ 1
exp[(E − µ)/kBT ] − 1

. (2.2)

For fermions, Nature had however created a “ loophole” : under some cir-
cumstances, they can become bosons (but bosons can never be fermions). The
moment fermions become bosons, they switch the statistics which they are
obeying. As a consequence, the properties of the system are radically changed
at this moment. This is exactly what happens in a superconductor at criti-
cal temperature: two electrons, if there is a net attractive force acting between
them, form a pair which is already a boson with zero spin (or a spin equal to 1).
These electron pairs being in a phase can move in a crystal without friction. In
conventional superconductors, the pairing occurs in momentum space which is
reciprocal to real space. In fact, it is not important whether the electron pairing
occurs in momentum or, for example, real space. The most crucial circum-
stance for the electron pairing and, thus, for the onset of the superconducting
state, is that the net force acting between two electrons must be attractive. In a
superconductor, the electron pairs is usually called the Cooper pairs.

Are these electron pairs (composite bosons) really bosons? The answer is
yes. For example, atomic nuclei are composed of protons and neutrons (which
are fermions), and atoms are composed of nuclei and electrons. Thus, nuclei
and atoms are composite objects. It has been experimentally demonstrated
that they are indistinguishable quantum particles. Therefore, they are either
bosons or fermions (this depends on the total number of elementary fermions
in a composite particle). Two electrons, if there is an attraction between them,
indeed, represent a boson. If the attractive force disappears, the two electrons
will again behave as fermions do. As a matter of fact, all experimental and
theoretical studies of superconductivity are in a first approximation reduced to
finding the origin of this attractive force.

It is important to note that the phenomenon of fermion pairing gives rise not
only to superconductivity, i.e. to the absence of electrical resistance in some
solid conductors, but also to some other peculiar correlated states of matter.
The latter ones can in a sense be considered as various manifestations of the
superconducting state in Nature. For example, the fermion pairing gives rise
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to superfluidity. At 2.19 K, liquid 4He undergoes a superfluid transition. Be-
low the transition temperature, liquid 4He exhibits frictionless (zero viscosity)
flow remarkably similar to supercurrents in a superconductor. The 4He atoms
consisting of 2 protons, 2 neutrons and 2 electrons, are composite bosons, and
a finite fraction of them (about 7%) experience at 2.19 K (in fact, at 2.17 K)
the Bose-Einstein condensation which we shall discuss in Chapter 4.

The fermion pairing gives also rise to the “superconducting” state in nuclei
and neutron stars. The atomic nuclei are composed of protons and neutrons
which have a spin of 1/2. If the total number of protons and neutrons in a
nucleus is even, does the nucleus become superconducting? Yes and no. No,
because, in a nucleus, there is no sense in discussing the absence of electrical
resistivity—this concept has no meaning. Yes, because there are other indica-
tions of the “superconducting” state in nuclei having even number of protons
and neutrons. For example, nuclei having even and odd number of protons and
neutrons absorb radiation differently. In nuclei with even number of protons
and neutrons, the fermions are paired. As a consequence, the energy of an in-
coming photon must be equal to or greater than the binding energy of a bound
pair, otherwise, the radiation cannot be absorbed. Contrary to this, in nuclei
having odd number of protons and neutrons, there is an unpaired fermion left
over, which can absorb photons with much lower energy than that in the first
case. Another indication of the fermion pairing in nuclei is provided by the
fact that the measured nuclear moments of inertia are considerably smaller
than the values calculated theoretically with the use of the noninteracting par-
ticle model. This effect is similar to that observed in superfluid helium. Thus,
the paired fermions in a nucleus form a Bose condensate similar to that in liq-
uid 4He. The development of the superfluid model of the atomic nucleus has
predicted a large number of important results observed experimentally.

In neutron stars consisting almost entirely of neutrons, the neutron liquid
is in a state analogous to that in an atomic nucleus. Thus, in neutrons stars,
neutrons are paired. As we shall see below, superconductors have very low
heat capacity. Due to this property, neutron stars cool very rapidly. Another
indication of neutron pairing in neutron stars is the quantization of their angular
momentum (every neutron star or pulsar rotates about its axis). This effect is
similar to that in liquid helium. Generally speaking, the discreteness of any
physical quantity is the fingerprint of the quantum world.

Undoubtedly, there are other manifestations of fermion pairing in Nature,
which we are not yet aware of. The phenomenon of superconductivity is only
one and, probably, the most spectacular exhibition of fermion pairing, occur-
ring in some solids.

It is worth noting that in spite of the fact that this “ loophole” for fermions
was most likely created by Nature intentionally, one should however realize
that the occurrence of the superconducting state on a macroscale is rather Na-
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ture’s oversight, it is an anomaly (see the Introduction). The occurrence of the
superconducting state on a macroscale requires not only the electron pairing
but also the onset of long-range phase coherence. They are two different and
independent phenomena.

2.1 What causes superconductivity?
Superconductivity is not a universal phenomenon. It shows up in materials

in which the electron attraction overcomes the repulsion. What can cause the
occurrence of this attractive force in solids? In all known cases at the mo-
ment of writing, it is the interaction between electrons and the crystal lattice.
Thus, the electron-phonon interaction in solids is responsible for the electron
attraction, leading to the electron pairing. It turns out that the electron-electron
attraction provided by the lattice can overcome the electron-electron repulsion
caused by the Coulomb force, so, the net force acting between them can be
attractive.

3. Characteristics of the superconducting state
Before we discuss the basic properties of the superconducting state, it is nec-

essary, first, to know its specific characteristics. Such a sequence will simplify
the understanding of this peculiar state of matter. For instance, in the aforemen-
tioned example, before studying a liquid, one must know what is the viscosity.
Of course, some characteristics of the superconducting state are identical to the
characteristics of the normal state. For example, the energy gap (see below) in
a superconductor is tied to the Fermi surface which is the typical characteris-
tic of a metal. In addition, a few characteristics such as the electron mass m,
the electron charge e, the Fermi velocity vF , the electron mean free path � and
so on, are simply indispensable for characterizing the superconducting state.
Also, one should bear in mind that, in a superconductor at any T > 0, the vast
majority of conduction electrons remain normal.

3.1 Critical temperature
The phase transition from normal into the superconducting state is a second-

order transition, occurring at a temperature called the critical temperature Tc

shown in Fig. 2.2. The values of Tc for some superconductors are given in
Tables 2.1 and 2.2.

The superconducting state requires the electron pairing and the onset of
long-range phase coherence, which in general occur at different temperatures.
Tc is the temperature controlled by the onset of long-range phase order.

For every superconducting material, the critical temperature is exclusively
determined experimentally. At the moment of writing, there is no theoretical
formula for predicting the value of critical temperature in a given compound.
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Table 2.1. Critical temperature Tc, the penetration depth λ(0), the intrinsic coherence length
ξ0 and the critical magnetic field Hc for some elemental superconductors

Element Tc (K) λ(0) (A
◦

) ξ0 (A
◦

) Hc(T )

Al 1.1 500 16000 0.01
Pb 7.2 390 830 0.08
Sn 3.7 510 2300 0.03
In 3.4 640 4400 0.03
Tl 2.4 920 - 0.02
Cd 0.56 1300 7600 0.003

There is even no rule for predicting whether a certain substance will undergo
the superconducting transition at low temperature or not. Actually, this is one
of the main problems in the field of superconductivity—how to calculate the
Tc value in different materials. If we could know how to estimate the Tc value
for any specific material, there would be no need for this book. Stop reading
and think this over for a while—this is an important point.

This book does not provide a formula for estimating the value of Tc for any
compound (this is in fact an impracticable task). Instead, this book presents an
analysis of experimental facts, which is further used to show a way in achieving
the goal, namely, Tc � 350 K.

It is necessary to note that, in the framework of the BCS theory, there is
in fact a formula for estimating the Tc value (see Chapter 5); however, it is
a general formula which does not take into account any specific features of a
certain material.

Finally, one should remember that the critical temperature is a macroscopic
quantity, while the Cooper-pair wavefunction and the order parameter are quan-
tum ones.

3.2 Cooper-pair wavefunction
As discussed above, if in a solid, there is an attraction between two elec-

trons, they become coupled, forming a composite boson. The electron pairing
may occur in momentum or real space (see Chapter 4). Even if the lifetime of
these paired electrons is very short, ∼ 10−12–10−15 s, nevertheless, they live
long enough, so that their effect on the properties of the system is almost the
same as that of bosons with the infinite life-time.

In quantum mechanics, any particle is characterized by a wavefunction. So,
a Cooper pair is also characterized by a wavefunction ψ(r1−r2), where r1 and
r2 are the positions of each electron in real space, and the difference r1 − r2

is the relative coordinates. In Chapter 5, we shall see that in conventional
superconductors, the Cooper-pair net spin is zero, s1 + s2 = 0, as well as the
Cooper-pair net momentum, k1 + k2 = 0. Figure 2.3 schematically shows
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 r  1   -  r  2
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Figure 2.3. Schematic illustration of the Cooper-pair wavefunction in conventional supercon-
ductors. The diameter of a pair is around 100–1000 nm, and the wavelength is about 1 nm. So,
the diameter of a pair is in fact equal to hundreds of wavelengths (this sketch shows just a few).
The frequency of oscillations is of the order of 1015 Hz (f = 2EF /h).

the Cooper-pair wavefunction. The wavefunction ψ is a complex scalar having
an amplitude and a phase. By definition, the probability to find a Cooper pair
in real space is given by ψ∗ψ, where ψ∗ is the complex conjugate of ψ. The
probability distribution of a Cooper pair in relative coordinates is schematically
shown in Fig. 2.4.

 Ψ  ∗  Ψ   

 “Size”  of a Cooper pair

 r  1   -  r  2

Figure 2.4. Schematic representation of the probability distribution of a Cooper pair in rela-
tive coordinates. The maximum probability is located between two electrons bound by a net
attractive force.

3.3 Order parameter
The wavefunction of the superconducting condensate is called the order pa-

rameter. It is probably the most important parameter of the superconducting
state. As mentioned in the Introduction, the superconducting state is a quantum
state occurring on a macroscopic scale. This is the reason why the supercon-
ducting state is characterized by a single wavefunction Ψ(r). Any wavefunc-
tion has an amplitude and a phase, therefore, it can be presented as

Ψ(r) = |Ψ(r)| eiθ(r), (2.3)

where θ(r) is the phase. The order parameter has the following properties:
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It is a complex scalar which is continuous in real space.

It is a single-valued function, that is, at any point, Ψ∗(r)Ψ(r) can only have
one value, where Ψ∗(r) is the complex conjugate of Ψ(r).

In the absence of magnetic field, Ψ �= 0 at T < Tc; and Ψ = 0 at T ≥ Tc.

Ψ = 0 outside a superconductor.

The order parameter is usually normalized such that |Ψ(r)|2 gives the num-
ber density of Cooper pairs at a point r:

|Ψ(r)|2 ≡ Ψ∗(r)Ψ(r) = ns/2, (2.4)

where ns is the number of superconducting electrons and ns ≡ n − nn,
where n is the total number of free (conduction) electrons, and nn is the
number of non-superconducting electrons. Then, in a conventional super-
conductor, Ψ(r) = (ns/2)1/2eiθ. Alternatively, the order parameter is
sometimes normalized that |Ψ(r)|2 = ns, thus |Ψ(r)|2 gives the number
density of superconducting electrons.

In momentum space, the variations of |Ψ| are proportional to variations of
the energy gap ∆ (see below).

In the absence of magnetic field, the phase is the same everywhere inside a
superconductor at T < Tc, and θ(r) = 0 at T ≥ Tc. In other words, below
Tc there is phase coherence in the whole sample.

The phase is a periodic function in real space. Indeed, the addition of 2π n
to θ(r), where n = 0,±1,±2,±3 . . ., does not change the function Ψ(r) =
|Ψ(r)| eiθ(r) because e2π i n = 1.

Although absolute values of phase θ(r) cannot be measured, the gradient of
the phase defines the supercurrent that flows between two superconducting
regions (the Josephson current).

If the order parameter is known explicitly, then, almost complete informa-
tion about the superconducting condensate is known too. As in quantum me-
chanics, any measurable value expected to be observed in the superconducting
state can be obtained from the following expression

[operator] Ψ = (measured value) Ψ,

where [operator] is a quantum operator corresponding to a measurable quan-
tity. This expression means that the measured value in quantum mechanics is
the eigenvalue corresponding to the eigenfunction Ψ.
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At the same time, knowledge of the order parameter does not provide au-
tomatically information about the attractive force that binds two electrons in
a Cooper pair together. However, the symmetry of the order parameter gives
a good hint. For example, if the order parameter has an s-wave symmetry,
that is, Ψ is positive (or negative) everywhere, it is very likely that the lattice
is involved in the formation of Cooper pairs. If the order parameter has a p-
or d-wave symmetry, that is, Ψ has respectively two or four nodes where it
changes sign, it is very likely that spin fluctuations mediate superconductivity.

Furthermore, knowledge of the order parameter does not provide automat-
ically information about the Tc value. In conventional superconductors, how-
ever, the Tc value can be estimated from the maximum value of |Ψ(r)| because
∆ ∝ |Ψ(r)|. In unconventional superconductors, the situation is more com-
plicated and, generally speaking, the ratio between Tc and ∆ is not fixed, i.e.
depends on the material.

At a normal metal-superconductor interface, the order parameter does not
change abruptly from a maximum value to zero. Instead, as we shall see be-
low, it starts to diminish somewhat before the interface and even, going to
zero, penetrates slightly into the normal metal. So, the order parameter never
undergoes abrupt changes. This is a salient feature of the quantum world.

It is important to note that in conventional superconductors, that is, in most
metallic superconductors, the order parameter can be considered as the wave-
function of a single Cooper pair. In unconventional superconductors, however,
this is not the case. The order parameter of the superconducting condensate in
unconventional superconductors does not coincide with the wavefunction of a
single Cooper pair—they are different.

3.3.1 Symmetry of the order parameter

In conventional superconductors, each electron of a Cooper pair has oppo-
site momentum and spin compared to the other: k1 + k2 = 0 and s1 + s2 = 0
(see Chapter 5). When the angular momentum of a pair is zero, L = 0, it is cus-
tomary to say that the superconducting ground state has an s-wave symmetry
(by analogy with the shape of atomic orbitals). When L = 0, the energy gap ∆
has no nodes, and positive (negative) everywhere in momentum space. Since
the momentum-space variations of |Ψ| are proportional to variations of ∆, it is
also customary to say that the order parameter in conventional superconductors
has an s-wave symmetry. This means that |Ψ| �= 0 everywhere in real space.
When |Ψ| is constant, the s-wave symmetry of the order parameter is called
isotropic. If |Ψ| varies slightly in real space, the s-wave symmetry of the order
parameter is called anisotropic.

In unconventional superconductors, the situation is slightly different. In
most unconventional superconductors, each electron of a Cooper pair still has
opposite momentum and spin compared to the other. However, the angular
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momentum of a pair is usually not zero. When L = 2, it is a custom to say that
the superconducting ground state has a d-wave symmetry (by analogy with the
shape of atomic orbitals). A key feature distinguishing a d-wave symmetry is
that the energy gap has two positive and two negative lobes, and four nodes
between the lobes. In this case, the order parameter also has a d-wave sym-
metry. It is necessary to underline that in unconventional superconductors, the
symmetry of |Ψ| coincides with the symmetry of phase-coherence energy gap
∆c (unconventional superconductors have two energy gaps). The d-wave sym-
metry of the order parameter was first attributed to the superconducting ground
state of heavy fermions just before the discovery of high-Tc superconductors.

Theoretically, in some unconventional superconductors, electrons can be
paired in a triplet state, so their spins are parallel, s1 + s2 = 1. In this case, it
is customary to say that the order parameter has a p-wave symmetry (since the
lowest value of the total angular moment is L = 1).

3.4 Penetration depth
The way in which a superconductor expels from its interior an applied mag-

netic field with the small magnitude (the Meissner effect) is by establishing a
persistent supercurrent on its surface which exactly cancels the applied field
inside the superconductor. This surface current flows in a very thin layer of
thickness λ, which is called the penetration depth. The existence of a penetra-
tion depth was predicted by the London brothers (see the Introduction) and it
was later confirmed by experiments.

Consider the two London equations to govern the microscopic electric and
magnetic fields

E =
d
dt

(Λjs) and (2.5)

h = −c curl (Λjs), (2.6)

where Λ =
m2

nse2
=

4πλ2

c2
(2.7)

is a phenomenological parameter, and js is the supercurrent These two equa-
tions are derived in the framework of the two-fluid model which assumes that
all free electrons are divided into two groups: superconducting and normal.
The number density of superconducting electrons is ns, and the number den-
sity of normal electrons is nn. So, the total number of free (conduction) elec-
trons is n = ns + nn. As the temperature increases from 0 to Tc, ns decreases
from n to 0. In addition, the number density ns is assumed to be the same
everywhere, i.e. spatial variations of ns are disregarded.

The first London equation is simply Newton’s second law for the supercon-
ducting electrons. It follows from this equation that in the stationary state, that
is, when djs/dt = 0, there is no electrical field inside the superconductor. In
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the second equation, h denotes the value of the flux density locally (in the first
equation, we do not use e as a local value of E in the same way in order to
avoid constant confusion with the charge e of the electron). The second Lon-
don equation, when combined with the Maxwell equation, curl h = 4πj/c,
leads to

∇2h =
h
λ2

. (2.8)

This implies that a magnetic field is exponentially screened from the interior of
a sample with penetration depth λ, as shown in Fig. 2.5. This length clarifies
the physical significance of the quantity λ formally defined by Eq. (2.7), and
is called the London magnetic-field penetration depth:

λL =

(
m∗c2

4πnse2

)1/2

, (2.9)

where m∗ is the effective mass of the charge carriers; e is the electron charge,
and c is the speed of light in vacuum.
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Figure 2.5. Penetration of the magnetic field into a superconducting sample. λ is the penetra-
tion depth.

Equation (2.8) actually describes the Meissner effect. In a one-dimensional
case, the solution of Eq. (2.8) is

h(x) = H0 e−x/λL , (2.10)

where H0 is the magnitude of magnetic field outside the superconductor, ap-
plied parallel to the surface. In Fig. 2.5, one can see that the external field
actually penetrates the superconductor within λ.

It is important to underline that the magnitude of the penetration depth is
directly related to the superfluid density ns. As a consequence, it depends on
temperature, since ns is temperature-dependent. In conventional superconduc-
tors, a good approximation for the temperature dependence of λ is given by the
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empirical formula

λ(T ) =
λ(0)

[1 − (T/Tc)4]1/2
. (2.11)

This dependence λ(T ) is shown in Fig. 2.6. Let us estimate λ(0). In a metal
at T = 0, all conduction electrons are superconducting; then ns = n ≈ 1022

cm−3. Substituting this value into Eq. (2.9), together with m ≈ 9 × 10−28

g, c ≈ 3 × 1010 cm/s and e = 4.8 × 10−10 esu, we obtain that λL ∼
530 A

◦
. It is worth noting that, in a metal, this length is considerably longer

than the interatomic distance which is of the order of several A
◦
. The values of

λ(0) for some metallic superconductors are listed in Table 2.1 and, for some
unconventional superconductors, in Table 2.2.
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Figure 2.6. Temperature dependence of penetration depth, λ(T ), given by Eq. (2.11).

Everything said so far about the electrodynamics of superconductors falls
into the category of the so-called local electrodynamics. It means that the cur-
rent at some point is given by the magnetic field at the same point. Therefore,
strictly speaking, Equation (2.6) is applicable only if the size of the current
carriers is much smaller than the characteristic length over which the magnetic
field changes, that is, smaller than the penetration depth λL. We know that
the superconducting current carriers are pairs of electrons. Let us denote the
size of a Cooper pair by ξ (see the following subsection). Then, the electrody-
namics is local if ξ 
 λL. In pure metals, ξ ∼ 104 A

◦
and λL ∼ 102–103 A

◦
.

Therefore, the local London electrodynamics is not applicable to pure metals
because the magnetic field changes appreciably over the length ξ.

If the magnetic penetration depth is much smaller than the size of Cooper
pairs, i.e. λL 
 ξ, the electrodynamics is non-local. In this case, the current
at some point is given by the magnetic field at a different point. Such a non-
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local relation was considered for the first time by Pippard several years before
the BCS theory of superconductivity appeared. Pippard calculated the mag-
netic penetration depth and found that the penetration distance of an applied
magnetic field is in fact larger than λL. The zero-temperature value of the pen-
etration depth in the case of non-local electrodynamics can be estimated from
the following expression

λP ≈ (λ2
Lξ)1/3, (2.12)

where the latter “P” denotes the name of Pippard. Indeed, if λL 
 ξ, then
λL 
 λP . Of course, it is also assumed that λP 
 ξ, which is not always the
case even for pure metals. For example, pure Al is described by non-local re-
lations. At the same time, Pb, even of high purity, is a London superconductor.
It is important to note that, on heating, when the temperature approaches Tc,
all superconductors become local, i.e. London superconductors, because λ(T )
diverges at T → Tc while ξ is independent of temperature.

Another important point which must be taken into account is how the mean
free path of electrons � is related to the Cooper-pair size ξ. Everything said
so far applies to pure metals, that is, those characterized by a mean free path
� � ξ. This case is also known as the clean limit. If a metal contains a
large number of impurities, the mean electron free path can become smaller
than the Cooper-pair size, i.e. � 
 ξ. This case is called the dirty limit.
Alloys also fall into this category. For example, in Al, � � 1300 A

◦
and

ξ � 16 000 A
◦

; and � � 290 A
◦

and ξ � 380 A
◦

in Nb. In very dirty
metals, the role of the coherence length (see below) is played by the mean
electron free path �. In the framework of the microscopic theory of supercon-
ductivity (the BCS theory), the estimation of the magnetic-field penetration
depth for “dirty” superconductors (� 
 ξ) is given by

λd ≈ λL(ξ/�)1/2. (2.13)

Thus, λd � λL always if � 
 ξ.
The value of the penetration depth can experimentally be obtained by differ-

ent techniques such as microwave, infrared, muon-Spin-Rotation (Relaxation),
ac-susceptibility, inductance measurements etc. In microwave measurements,
for example, the penetration depth and its temperature dependence are inferred
from the value and temperature dependence of surface reactance Xs (the imag-
inary part of surface impedance). The relation between Xs(T ) and λ(T ) is
given by

Xs(T ) = ωµ0λ(T ), (2.14)

where µ0 is the permeability of the free space, and ω = 2πf is the microwave
frequency.
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Table 2.2. Critical temperature Tc, the penetration depth λ(0), the Cooper-pair size ξ(0) and
the upper critical magnetic field Hc2 for type-II superconductors (for layered compounds, the
in-plane values are given)

Superconductor Tc (K) λ(0) (A
◦

) ξ(0) (A
◦

) Hc2(T )

Nb 9.2 450 380 0.2
NbTi 9.5 1600 50 14
NbN 16 2000 50 16
Nb3Sn 18.4 800 35 24
Nb3Ge 23 - 35 38
Ba0.6K0.4BiO3 31 2200 35 32
MgB2 39 850 37 39
UPt3 0.5 7800 200 2.8
UBe13 0.9 3600 170 8
URu2Si2 1.2 - 130 8
CeIrIn5 0.4 5300 250 1.0
CeCoIn5 2.3 - 80 11.9
TmNi2B2C 11 800 150 10
LuNi2B2C 16 760 70 7
K3C60 19.5 ∼4800 35 ∼30
Rb3C60 30 ∼4200 30 ∼55
YBa2Cu3O7 93 1450 13 150
HgBa2Ca2Cu3O10 135 1770 13 190

3.5 Coherence length and the Cooper-pair size
In the framework of the Ginzburg-Landau theory (see below), the coher-

ence length ξGL is the characteristic scale over which variations of the order
parameter Ψ occur, for example, in a spatially-varying magnetic field or near a
superconductor-normal metal boundary (see Figs. 2.7 and 2.10).

In many textbooks, one can find that the distance between two electrons in
a Cooper pair (the Cooper-pair size), ξ, is also called the coherence length.
However, in general, such a definition is incorrect: ξGL �= ξ. Why? As we
already know, superconductivity requires the electron pairing and the onset of
long-range phase coherence. These two physical phenomena are different and
independent of one another. The coherence length ξGL defines variations of
the order parameter of the superconducting condensate, whilst the pair size
ξ is related to the wavefunction of a Cooper pair (see Fig. 2.4). Thus, in
general, the coherence length and the Cooper-pair size do not relate directly to
one another. Secondly, the coherence length depends on temperature, ξGL(T ),
while the Cooper-pair size is temperature-independent. The coherence length
diverges at T → Tc.

However, in conventional superconductors at zero temperature, ξGL(0) = ξ
because in conventional superconductors, the phase coherence is mediated by
the overlap of the Cooper-pair wavefunctions—the process which does not give
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rise to a “new” order parameter. Instead, it simply “magnifies” the Cooper-pair
wavefunctions to the level of the order parameter. In other words, in con-
ventional superconductors, all the Cooper-pair wavefunctions below Tc are
in phase. Therefore, the electron pairing and the onset of phase coherence
in conventional superconductors occur simultaneously at Tc. The overlap of
Cooper-pair wavefunctions is also called the Josephson coupling. Thus, in
conventional superconductors, the values of coherence length and Cooper-pair
size coincide at T = 0. However, at 0 < T < Tc, the value of the coher-
ence length in “clean” conventional superconductors is always larger than the
average size of Cooper pairs, ξ < ξGL(T ).

In unconventional superconductors, the long-range phase coherence is not
mediated by the Josephson coupling; the phase-coherence mechanism is dif-
ferent (see Chapter 6). Therefore, in all unconventional superconductors, the
order parameter has no relation with the Cooper-pair wavefunctions. As a
consequence, in unconventional superconductors ξGL �= ξ. Nevertheless, the
values of ξGL and ξ in unconventional superconductors are of the same order of
magnitude at T 
 Tc. In most unconventional superconductors, the electron
pairing occurs above Tc, and the onset of long-range phase coherence appears
at Tc.

In the framework of the BCS theory for conventional superconductors (see
Chapter 5), the coherence length ξ0 determined by the energy gap at zero tem-
perature, ∆(T = 0) (see below), is called intrinsic:

ξ0 =
h̄vF

π∆(0)
, (2.15)

where vF is the Fermi velocity (on the Fermi surface), and h̄ = h/2π is the
Planck constant. ξ0 is also called the Pippard coherence length. Furthermore,
in conventional superconductors, the values of the coherence length and Cooper-
pair size coincide at T = 0, ξ0 is also called the distance between electrons in
a Cooper pair. Let us estimate ξ0. In a metal superconductor, ∆(0) ∼ 1 meV.
Substituting this value into Eq. (2.15), together with vF ≈ 1.5× 108 cm/s and
h̄ = h/2π � 6.5 × 10−13 meV s, we obtain ξ0 � 3 × 10−5 cm = 3×103 A

◦
.

In the framework of the Ginzburg-Landau theory, the temperature depen-
dence of coherence length in “clean” superconductors (� � ξ0) at temperatures
close to Tc is given by

ξc
GL(T ) = 0.74 ξ0

(
1 − T

Tc

)−1/2

. (2.16)

From this expression, one can see that the coherence length always exceeds the
Cooper-pair size. For “dirty” superconductors (� 
 ξ0), the Ginzburg-Landau
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temperature dependence of coherence length at temperatures close to Tc is

ξd
GL(T ) = 0.85 (ξ0�)1/2

(
1 − T

Tc

)−1/2

. (2.17)

From Eqs. (2.16) and (2.17), one can see that ξc,d
GL → ∞ as T → Tc. Such a

temperature dependence is similar to that of λ(T ), shown in Fig. 2.6.
In the case of non-local electrodynamics, Pippard suggested an empirical

relation for the coherence length

1
ξP

=
1
ξ0

+
1
�
. (2.18)

It follows from this expression that the Pippard coherence length ξP is always
smaller than ξ0, and in very dirty metals (� 
 ξ0), the role of the coherence
length is played by the mean electron free path �.

In conventional superconductors, the intrinsic coherence length can be ex-
tremely large, ∼ 1000 A

◦
(see Table 2.1). In spite of the fact that two electrons

in a Cooper pair in metallic superconductors are far apart from each other, the
other Cooper pairs are only a few ten A

◦
away (the period of a crystal lattice

is several A
◦

). In most unconventional superconductors, the values of coher-
ence length and pair size at low temperature are very small: in cuprates, for
example, ξ is only a few periods of the crystal lattice (see Table 2.2).

3.6 Type-I and type-II superconductors
The ratio of the two characteristic lengths, defined above, is called the

Ginzburg-Landau parameter k:

k =
λ

ξGL
. (2.19)

It is an important parameter that characterizes the superconducting material.
Close to Tc, this dimensionless ratio is approximately independent of tempera-
ture, and allows one to distinguish between type-I and type-II superconductors.
For example in Al, λ = 500 A

◦
and ξ0 =16 000 A

◦
(see Table 2.1). Thus, in many

conventional superconductors, k 
 1.
As defined by Abrikosov, a superconductor is of type-I if k < 1/

√
2. If

k > 1/
√

2, a superconductor is of type-II. Thus, the majority of metallic su-
perconductors is of type-I. At the same time, in unconventional superconduc-
tors k � 1 (see Table 2.2). So, they are type-II superconductors. The main
difference between these two types of superconductors is that they can show
entirely different responses to an external magnetic field (the Meissner effect).
While type-I superconductors expel magnetic flux completely from their in-
terior, type-II superconductors do it completely only at small magnetic field
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magnitudes, but partially in higher external fields. The reason is that the sur-
face energy of the interface between a normal and a superconducting region
is positive for type-I superconductors and negative for those of type-II (see
below).

As defined above, λ measures the depth of penetration of the external mag-
netic field (see Fig. 2.5), and ξGL is the characteristic scale over which vari-
ations of the order parameter Ψ occur, for example, near a superconductor-
normal metal interface. To visualize the difference between type-I and type-II
superconductors, consider the two limiting cases: k 
 1 and k � 1. Fig-
ure 2.7 illustrates these two cases. In Fig. 2.7a, λ 
 ξGL, and in Fig. 2.7b,
λ � ξGL.

 x λ ξ

 Ψ(  x  )  H

 Superconductor

 Interface

 Normal

 (a)

 x ξ λ

 Ψ(  x  )
 H (b)

 metal  Superconductor  Normal
 metal

 Interface

Figure 2.7. Spatial variations of the order parameter Ψ and the magnetic field H in the vicinity
of a superconductor-normal metal interface for (a) k � 1 and (b) k � 1.

3.7 Critical magnetic fields
With the exception of Nb and V, all superconducting elements and some

of their alloys are type-I superconductors. We already know that the super-
conducting state can be destroyed by a sufficiently strong magnetic field. The
variation of the thermodynamic critical field Hc with temperature for a type-I
superconductor is approximately parabolic:

Hc(T ) � Hc(0)[1 − (T/Tc)2], (2.20)

where Hc(0) is the value of the critical field at absolute zero. The dependence
Hc(T ) is schematically shown in Fig. 2.8. For a type-II superconductor, there
are two critical fields, the lower critical field Hc1 and the upper critical field
Hc2, as shown in Fig. 2.9. In applied fields less than Hc1, the superconductor
completely expels the field, just as a type-I superconductor does below Hc. At
fields just above Hc1, flux, however, begins to penetrate the superconductor in
microscopic filaments called vortices which form a regular (triangular) lattice.
Each vortex consists of a normal core in which the magnetic field is large,
surrounded by a superconducting region, and can be approximated by a long
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Figure 2.8. Hc(T ) dependence for a type-I superconductor, shown schematically.

cylinder with its axis parallel to the external magnetic field. Inside the cylinder,
the superconducting order parameter Ψ is zero.

The radius of the cylinder is of the order of the coherence length ξGL. The
supercurrent circulates around the vortex within an area of radius ∼ λ, the
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Figure 2.9. Hc1(T ) and Hc2(T ) dependences for a type-II superconductor, shown schemati-
cally.
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penetration depth (see Fig. 2.25). The spatial variations of the magnetic field
and the order parameter inside and outside an isolated vortex are illustrated in
Fig. 2.10. The vortex state of a superconductor, discovered experimentally
by Shubnikov and theoretically by Abrikosov, is known as the mixed state. It
exists for applied fields between Hc1 and Hc2. At Hc2, the superconductor
becomes normal, and the field penetrates completely. Depending on the ge-
ometry of a superconducting sample and the direction of an applied field, the
surface sheath of the superconductor may persist to even higher critical field
Hc3, which is approximately 1.7Hc2.

 Ψ  2

 H
 Ψ  2

 H

 ξ    λ    R

Figure 2.10. The spatial variations of the magnetic field H and the order parameter Ψ in-
side and outside an isolated vortex in an infinite superconductor. R is the distance from the
center of the vortex, and ξGL and λ are the coherence length and the penetration depth of the
superconductor, respectively (in type-II superconductors, ξGL < λ).

As we shall see further below, the Ginzburg-Landau theory predicts that

Hc(T )λ(T )ξGL(T ) =
h̄

2
√

2eµ0

=
Φ0

2
√

2πµ0

, (2.21)

where Φ0 ≡ h

2e
= 2.0679 × 10−15 T m2 (or Weber) (2.22)

is the magnetic flux quantum. In the framework of the Ginzburg-Landau theory,
Hc2 =

√
2kHc, where k = λ/ξGL is the Ginzburg-Landau parameter. Then,

substituting this expression into Eq. (2.21), we obtain

Φ0 = 2πξ2
GLHc2. (2.23)

This important relation is often used to obtain the values of the coherence
length in type-II superconductors.

The magnitudes of the upper critical magnetic field of conventional type-II
superconductors is very small, less than 1 T. However, in unconventional super-
conductors, these values can be extremely large (see Table 2.2). For example,
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in the Chevrel phase PbMo6S8, Hc2 = 60 T. In three-layer high-Tc supercon-
ductors, the critical magnetic field parallel to the c-axis can be Hc2(0) ∼ 50 T
and parallel to the ab-planes Hc2(0) ∼ 250 T.

3.8 Critical current
The superconducting state can be destroyed not only by a magnetic field

but by a dc electrical current as well. The critical current Jc is the maximum
current that a superconductor can support. Above Jc, the dc current breaks the
Cooper pairs, and thus, destroys the superconducting state. In other words, Jc

is the minimum pair-breaking current. Thus, any superconductor is character-
ized by a critical dc current density jc (current divided by the cross-sectional
area through which it flows).

The temperature dependence Jc(T ) (or jc(T )) is similar to that of Hc(T ),
shown in Fig. 2.8. At T = 0, the critical current density can be estimated by
using the electron velocity on the Fermi surface, vF = π∆ ξ0/h̄, the superfluid
density ns given by Eq. (2.9), and the critical (maximum) velocity of a Cooper
pair, vc � ∆/mvF , as

jc = nsevc � nse
∆

mvF
=

h̄c2

16πe

1
λ2

Lξ0
, (2.24)

where m is the electron mass. To estimate jc, we take λL ∼ 103 A
◦

and ξ0 ∼
103 A

◦
. Substituting these values into Eq. (2.24), together with c � 3 × 1010

cm/s, h̄ = h/2π � 10−27 erg s and e = 4.8 × 10−10 esu, we obtain jc ∼
4 × 1016 CGS units. In Si units, it is equivalent to js ∼ 107 A cm−2.

The critical current density jc in Eq. (2.24) can be expressed in terms of crit-
ical magnetic field Hc(0). Using the expressions for the condensation energy

(see below) H2
c (0)
8π = 1

2N(0)∆2(0), where N(0) = kF m/(π h̄)2 is the density
of states near the Fermi surface, the electronic density ns(0) = k3

F /3π2, and
ξ0 = h̄vF /(π∆(0)), we obtain in CGS units

js �
1

4π
√

3
c Hc(0)
λL(0)

. (2.25)

The Ginzburg-Landau and BCS theories give the same relation for jc with
somewhat different numerical prefactors.

From Eq. (2.25), the maximum current density that can theoretically be
sustained in a superconductor, is of the order of Hc/λL (in SI units). Let us
estimate jc. Using Bc ∼ 0.1 T, λL ∼ 103 A

◦
, and µ0 = 4π 10−7 H/m, we

obtain jc ≈ 5 × 106 A cm−2.

3.9 Energy scales
The superconducting state is characterized by a few energy scales. We al-

ready considered one energy scale given by the critical temperature, kBTc. The
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superconducting state is also characterized by an pairing energy gap, phase-
coherence gap, phase stiffness and condensation energy. Let us consider the
meaning of these energy scales.

3.9.1 Pairing energy gap

The pairing energy gap 2∆p measures the strength of the binding of elec-
trons (quasiparticles) into the Cooper pairs. In other words, the value of this
gap corresponds to the binding energy that holds the electrons together. The
magnitude of pairing energy gap is temperature-dependent.

As discussed above, the superconducting state requires the electron pairing
and the onset of long-range phase coherence. They are two independent phe-
nomena and, generally speaking, occur at different temperatures, Tpair and
Tc, respectively, and Tc ≤ Tpair. In conventional superconductors, how-
ever, Tpair = Tc. At the same time, in most unconventional superconduc-
tors, Tc < Tpair. In a superconductor, the value of the phase stiffness (relative
to kBTc) determines whether the electron pairing and the onset of long-range
phase-coherence occur simultaneously or not.

The pairing gap is directly related to the kBTpair energy scale, thus,
2∆p ∝ kBTpair. At the same time, the magnitude of the phase-coherence
gap is proportional to kBTc, i.e. 2∆c ∝ kBTc. In general, the coefficients
of proportionality in this two expressions are different and, as determined ex-
perimentally, varies between 3.2 and 6, depending on the case (in one heavy
fermion, � 9). The energy 2∆p measures the strength of the binding of two
electrons (quasiparticles) into a Cooper pair. At the same time, the energy 2∆c

is the condensation energy of a Cooper pair due to onset of phase coherence
with other pairs. We shall discuss the phase-coherence gap in the following
subsection.

Historically, conventional superconductors are the most studied. Further-
more, the physics of conventional superconductors is simpler than that of un-
conventional superconductors, because conventional superconductors have only
one energy gap. Thus, let us discuss for the rest of this subsection the energy
gap exclusively in conventional superconductors. The reason why the binding
energy of two electrons is called the energy gap is because, when a metal un-
dergoes a transition into the superconducting state, a small energy gap appears
in the band at the Fermi level. As a result, the electronic system is unable to
absorb arbitrary small amounts of energy.

The energy gap in a superconductor is quite different in its origin from that
in a semiconductor. From the band theory, energy bands are a consequence of
the static lattice structure. In a superconductor, the energy gap is far smaller,
and results from an attractive force between electrons in the lattice which plays
only an indirect role. In a superconductor, the gap occurs on either side of the
Fermi level, as shown in Fig. 2.11. If, in a semiconductor, the energy gap is
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Figure 2.11. The density of states near the Fermi level EF in a superconductor, showing the
energy gap 2∆ at T = 0, and in a normal metal. All the states above the gap are assumed empty
and those below, full.

tied to the Brillouin zone (see Chapter 5), in a superconductor, the energy gap
is carried by the Fermi surface. At T = 0 all electrons are accommodated in
states below the energy gap, and a minimum energy 2∆(0) must be supplied
to produce an excitation across the gap.

As discussed above, the phase coherence in conventional superconductors is
mediated by the overlap of the Cooper-pair wavefunctions—the process which
does not give rise to a “new” order parameter. Instead, it simply “magnifies”
the Cooper-pair wavefunctions to the level of the order parameter. Therefore,
the electron pairing and the phase coherence in conventional superconductors
occur simultaneously at Tc, so Tpair = Tc. As a consequence, the energy
gap in the elementary excitation spectrum of conventional superconductors is
exclusively determined by the pairing energy gap, ∆ = ∆p.

The BCS theory, developed for conventional superconductors, predicts that
2∆(0) = 3.52kBTc. Experimentally, the ratio 2∆

kBTc
in conventional super-

conductors varies between 3.2 and 4.2. Figure 2.12 shows the temperature
dependence of the energy gap in the framework of the BCS theory.

Since in unconventional superconductors, ∆p and kBTc do not relate with
one another, the ratio 2∆p

kBTc
determined experimentally in unconventional su-

perconductors, is usually larger than 4, and can be as large as 30.
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Figure 2.12. The BCS temperature dependence of the energy gap ∆(T ).

3.9.2 Phase-coherence energy gap

The phase-coherence energy gap 2∆c is the condensation energy of a Cooper
pair when the long-range phase coherence appears. The condensation of Cooper
pairs is similar to a Bose-Einstein condensation which occurs in momentum
space (see Chapter 4). The magnitude of a phase-coherence gap is temperature-
dependent, and the temperature dependence of ∆c is similar to that in Fig.
2.12.

Generally speaking, the magnitudes of pairing and phase-coherence gaps
depend on orientation: ∆p(k) and ∆c(k), where k is the vector in momentum
space, and ∆c and ∆p have different symmetries. In many unconventional
superconductors, the pairing and phase-coherence gaps are highly anisotropic,
and often have nodes.

As was mentioned above, the variations of |Ψ| in momentum space are al-
ways proportional to variations of phase-coherence gap ∆c, and not to those of
∆p. In conventional superconductors, however, the symmetry of order param-
eter coincides with the symmetry of the pairing gap ∆p, because conventional
superconductors have only one energy gap: ∆ = ∆p.

3.9.3 Phase stiffness

The phase stiffness Ωph is the energy scale measuring the ability of the su-
perconducting state to carry supercurrent. The magnitude of phase stiffness
is mainly determined by zero-temperature superfluid density ns(0) and zero-
temperature coherence length ξGL(0). Thus, the phase stiffness is an energy
scale defined at T = 0.
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The phase stiffness is given by the following expression

Ωph =
A kB h̄2ns(0) ξGL(0)

4m∗ =
A kB(h̄ c)2ξGL(0)

16e2λ2
L(0)

, (2.26)

where m∗ is the effective mass of charge carriers; λL(0) is the zero-temperature
London penetration depth given by Eq. (2.9); c is the speed of light; and A is
a dimensionless number of the order of 1 which depends on the details of the
short distance physics [12]. For layered compounds, ξGL(0) → ξGL,⊥(0) in
the above formula, where ξGL,⊥(0) is the zero-temperature coherence length
perpendicular to the layers.

In order to determine the importance of phase fluctuations, it is necessary to
compare the values of the phase stiffness and energy scale kBTc. If kBTc 

Ωph, phase fluctuations are relatively unimportant. Then, the electron pairing
and the onset of long-range phase coherence occur simultaneously at Tc. If
kBTc ≈ Ωph, phase fluctuations are important. In this case, the electron pairing
will most likely occur above Tc.

For example, the ratio Ωph/kBTc calculated for some conventional super-
conductors lies between 2×102 and 2×105 [12]. This means that the superfluid
density in conventional superconductors is relatively high, and phase fluctua-
tions in metal superconductors are practically absent. As a consequence, the
pairing and the onset of long-range phase coherence in low-Tc superconductors
occur simultaneously at Tc. However, phase fluctuations play an important role
in unconventional superconductors. The ratio Ωph/kBTc calculated for some
superconductors with low superfluid density and small coherence length, such
as organic and high-Tc superconductors, is small and lies between 0.7 and 16
[12]. Thus, the pairing may occur well above Tc which is controlled by the
onset of a long-range phase order.

3.9.4 Condensation energy

The superconducting state is a more ordered state than the normal one.
Therefore, the superconducting state is preferable to the normal state from
the standpoint of free energy. However, the superconducting state can be de-
stroyed by a critical magnetic field Hc which is related thermodynamically to
the free-energy difference between the normal and superconducting states in
zero field. This difference is the condensation energy of the superconducting
state. Thus, the thermodynamic critical field Hc is determined by equating the
energy H2

c /(8π) per unit volume (in CGS units), associated with holding the
field out against the magnetic pressure, with the condensation energy:

Fn(T ) − Fs(T ) =
H2

c (T )
8π

, (2.27)
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where Fn and Fs are the Helmholtz free energies per unit volume in the re-
spective phases in zero field. We shall discuss the condensation energy further
below while considering the thermodynamic properties of superconductors.

Let us now estimate the condensation energy of a superconductor. As dis-
cussed above, the condensation energy of a single Cooper pair is 2∆c. Then,
ns/2 × 2∆c is approximately the total condensation energy per unit volume,
where ns is the density of Cooper pairs in a superconductor. The fraction of the
electronic states directly involved in pairing approximately equals ∆p(0)/EF ,
where EF is the Fermi energy. Recalling that a conventional superconductor
has only one energy gap ∆ = ∆p, the condensation energy of a conventional
superconductor is of the order of ∆2(0)/EF .

In a conventional superconductor, ∆(0) ∼ 0.5–1 meV and EF ∼ 5–10 eV.
Then, ∆(0)/EF ≈ 10−4, and the condensation energy is small as ∆2(0)/EF ≈
10−7–10−8 eV per atom.

4. Basic properties of the superconducting state
We already considered the most important characteristics of the supercon-

ducting state; we know why the superconducting state occurs, and what causes
superconductivity in solids. Now we are going to discuss basic properties of
the superconducting state. The mechanisms of superconductivity occurring in
different materials will be discussed in Chapters 5, 6 and 7. The Ginzburg-
Landau theory will be considered at the end of this chapter.

The superconducting state, as any state of matter, has its own basic proper-
ties, so any superconductor, independently of the mechanism of superconduc-
tivity and the material, will exhibit these properties. Hence, a room-temperature
superconductor will exhibit them too. The main basic properties of the super-
conducting state are the following: zero resistance, the Meissner effect, the
magnetic flux quantization, the Josephson effects, the appearance of an energy
gap in elementary excitation energy spectrum, and the proximity effect. Every
superconducting transition is marked by a jump in specific heat. And lastly, in
the mixed state, the behavior of type-II superconductors has the same pattern.

4.1 Zero resistance
Every superconductor has zero resistivity, i.e. infinite conductivity, for a

small-amplitude dc current at any temperature below Tc. Is the resistivity of
a superconductor really zero? Yes, its resistivity is zero as far as it can be
measured. This property of the superconducting state was demonstrated by
inducing a small-amplitude dc current around a closed ring of a conventional
superconductor. The experiment continued over two and a half years—there
was no measurable decay of the current. This means that the resistivity of a
superconductor is smaller than 10−23 Ω m. This value is 18 orders of magni-
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tude smaller than the resistivity of copper at room temperature. Such a value
of resistivity in a superconductor implies that the current lifetime in a super-
conducting ring in zero magnetic field is not less than 105 years.

This intrinsic property of the superconducting state is probably the most fas-
cinating one, and is widely used in different types of practical applications—
from microchips to power lines.

It is worth to recall that the resistivity of a superconductor to an ac current
is not zero. The ac current flows on the surface of a superconductor within a
thin layer of thickness on the order of λL.

4.2 The Meissner effect
From a classical point of view, every superconductor exhibits perfect dia-

magnetism, i.e. B = 0 inside the superconductor, as shown in Fig. 2.2b. In
fact, as we already know, the magnetic field penetrates into the superconductor
within a very thin surface layer having the thickness of the order of λL. To can-
cel B, a superconductor creates a dc current on the surface, which gives rise to
a magnetization M, so that in the interior of the superconductor 4πM + H =
0. Since the resistivity of the superconductor is zero, this surface current does
not dissipate energy.

If the magnetic field was applied to a superconductor at T > Tc, and it is
then cooled down to T < Tc, in this case, the field will remain inside the super-
conductor until it will be warmed up again through Tc. This “ frozen” magnetic
field will remain inside the superconductor independently of the presence of
the external magnetic field.

Probably, the most spectacular demonstration of the Meissner effect is the
levitation effect. A small magnet above Tc simply rests on the surface of a
superconductor having dimensions larger than those of the magnet. If the tem-
perature is lowered below Tc, the magnet will float above the superconductor.
The gravitational force exerted on the magnet is compensated by the magnetic
pressure occurring due to supercurrent circulation on the surface of the super-
conductor.

4.3 Flux quantization
The quantum nature of the superconducting state manifests itself in quanti-

zation of magnetic flux. One of the characteristics of the quantum world is the
quantization of a number of physical quantities, such as energy, spin, momen-
tum etc. So, they can take on only a discrete set of values. Since the super-
conducting state is the quantum state occurring on a macroscopic scale, some
physical quantities characterizing the superconducting state are quantized too.

Consider a bulk superconductor having a hole, as schematically shown in
Fig. 2.13. Assume that the magnetic field H0 was applied to the superconduc-
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 C

Figure 2.13. Superconductor with a hole. The contour of integration C goes around the hole
through the interior of the superconductor.

tor at T > Tc, parallel to the hole walls. Then the superconductor was cooled
down to T < Tc. In the non-superconducting hole, some magnetic flux will re-
main “ frozen” , produced by the supercurrent generated at the internal surface
of the hole. Recalling that the order parameter of a conventional superconduc-
tor can be written in the form Ψ(r) = (ns/2)1/2eiθ(r), where ns is the density
of superconducting electrons, and θ is the phase. In the superconductor with a
hole, the order parameter has to go through an integral number of oscillations
around the hole. The integral number of oscillations of Ψ explains why mag-
netic flux inside the hole is quantized. Let us find the value of this “ frozen”
magnetic flux.

First, we need to know the expression for a current-density vector opera-
tor in quantum mechanics. In classical mechanics, Hamilton’s equations are
expressed in terms of the canonical variables, pi, xi. In the absence of mag-
netic field and charge particles, the quantity p is the same as the ordinary or
kinematic momentum, p = mv. However, when a particle carries charge q
and moves in a magnetic field H associated with the vector potential A, the
canonical and kinematic momenta are different, and related by

p = mv + qA, or mv = p − qA. (2.28)

In electrodynamics, the vector potential A is defined as

H = ∇× A = curlA, with ∇ · A = gradA = 0. (2.29)

In quantum mechanics, the relation between the canonical and kinematic mo-
menta is maintained, but the canonical momentum is replaced by an operator:
p −→ −ih̄∇. In quantum mechanics, the flow of particles characterized by a
wavefunction (order parameter) Ψ is described by a current density vector

J =
1

2m
[(−ih̄∇Ψ)∗Ψ + Ψ∗(−ih̄∇Ψ)]. (2.30)
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If the particles are charged and moving in a vector potential A, then the current
density vector takes the following form

J =
1

2m
{[(−ih̄∇− qA)Ψ]∗Ψ + Ψ∗(−ih̄∇− qA)Ψ}. (2.31)

To obtain the electrical current vector, J in the latter expression must be mul-
tiplied by a charge q.

We are now in a position find the value of the “ frozen” magnetic flux. Sub-
stituting Ψ(r) = (ns/2)1/2eiθ into Eq. (2.31), and taking into account that
each Cooper pair has a mass of 2m and a charge of 2e, we obtain the expres-
sion for the supercurrent density

js =
1

cΛ

(
Φ0

2π
∇θ − A

)
, (2.32)

called the generalized second London equation. In this expression, Λ is given
by Eq. (2.7), and Φ0 = πh̄c/e (in CGS units) is the flux quantum in Eq. (2.22).

Consider the contour C inside the superconductor, as shown in Fig. 2.13,
enclosing the hole so that the distance between the contour and the internal
surface of the hole is everywhere in excess of λL. Then at any point of the
contour, the supercurrent is zero, js = 0, and the path integral of supercurrent
along the contour reduces to

Φ0

2π

∮
C

∇θ · dl =
∮
C

A · dl. (2.33)

Taking into account that in Eq. (2.33), the latter integral corresponds to the
total flux through the contour C, i.e.

∮
C

A · dl = Φ, we have

Φ =
Φ0

2π

∮
C

∇θ · dl. (2.34)

Since the order parameter Ψ is single-valued, the change in θ after a full circle
around the hole containing the magnetic flux must be an integral multiple of
2π, i.e. 2π n (n = 1, 2, 3, . . .), because the addition of 2πn to θ does not
change the exponent: eθ+2πin = eθ. Therefore,

Φ =
Φ0

2π
· 2πn = n Φ0. (2.35)

Thus, the “ frozen” magnetic flux through the contour C is always an integral
number of the flux quantum Φ0. It also follows from Eq. (2.35) that the mini-
mum possible value of magnetic flux is Φ0.

If the magnetic flux enclosed in the hole is quantized, then the current circu-
lating around the hole cannot be of an arbitrary magnitude, and cannot change
continuously—it is also quantized.
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4.4 The Josephson effects
In 1962, Josephson calculated the current that could be expected to flow

during tunneling of Cooper pairs through a thin insulating barrier (the order
of a few nanometers thick), and found that a current of paired electrons (su-
percurrent) would flow at zero bias in addition to the usual current that results
from the tunneling of single electrons (single or unpaired electrons are present
in a superconductor along with bound pairs). The zero-voltage current flow re-
sulting from the tunneling of Cooper pairs is known as the dc Josephson effect,
and was experimentally observed soon after its theoretical prediction. Joseph-
son also predicted that if a constant nonzero voltage V is maintained across
the tunnel barrier, an alternating supercurrent will flow through the barrier in
addition to the dc current produced by the tunneling of single electrons. The
angular frequency of the ac supercurrent is ω = 2eV/h̄. The oscillating cur-
rent of Cooper pairs that flows when a steady voltage is maintained across a
tunnel barrier is known as the ac Josephson effect. These Josephson effects
play a special role in superconducting applications.

In fact, the Josephson effects exist not only in tunneling junctions, but also
in other kinds of the so-called weak links, that is, short sections of supercon-
ducting circuits where the critical currents is substantially suppressed. Some
examples of weak links are shown in Fig. 2.14. Let us now discuss these
effects in detail.

Consider a superconductor-insulator-superconductor junction in thermody-
namic equilibrium at T 
 Tc. For simplicity, assume that the superconductors
on both sides of the junction are conventional and identical. Then, the order
parameters of the two superconductors can be presented as Ψ1(r) = (ns/2)1/2

 S  S I
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Figure 2.14. Different types of weak links: (a) SIS tunneling junction; (b) SNS sandwich; (c)
microbridge formed by a narrow constriction; (d) point-contact junction; (e) and (f) weak links
due to the proximity effect: (e) a normal film N causes local suppression of the order parameter
of a superconducting film S, and (f) small drop of solder on a superconducting wire.
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Figure 2.15. Superconductor-insulator-superconductor junction: sketch of the decay of the
order parameters in the insulator.

eiθ1(r) and Ψ2(r) = (ns/2)1/2 eiθ2(r), where ns is the density of superconduct-
ing electrons, and θ1 and θ2 are the phases. The order parameters decay in the
insulator, as shown schematically in Fig. 2.15. If the insulator is not very thick,
the two order parameters will overlap, resulting in the onset of phase coherence
across the junction. Since the superconductors are identical, their Fermi levels
are identical too. Set the potential difference between the two superconductors,
V = (E1 − E2)/2e (the pair charge is 2e). Then, the order parameters will
evolve according to the following equations:

ih̄
∂Ψ1

∂t
= E1Ψ1 + CΨ2 and

ih̄
∂Ψ2

∂t
= −E2Ψ2 + CΨ1,

(2.36)

where C is a coupling constant that measures the interaction of the two order
parameters (depends mainly on the thickness of the insulator). Substituting the
order parameters into the above equations, and separating real and imaginary
parts, we have

∂ns

∂t
=

2
h̄

Cns sin θ,

∂θ1

∂t
=

C

h̄
cos θ − eV

h̄
, (2.37)

∂θ2

∂t
=

C

h̄
cos θ +

eV

h̄
,

where θ = θ1−θ2. The first equation means that the current I = 4eC
h̄ ns sin θ =

Ic sin θ circulates between the two superconductors at zero bias. The critical
current density Ic in

I = Ic sin θ (2.38)

is the maximum dissipation-free current through the junction. Since the cou-
pling constant C is unknown, Ic cannot be obtained explicitly. Subtracting the
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second equation of Eqs. (2.37) from the last one, we get

∂θ

∂t
=

2e

h̄
V. (2.39)

In the case when the superconductors in the junction shown in Fig. 2.15
are not identical, Equations (2.37) will be slightly different, and the reader can
easily derive these equations independently.

Equations (2.38) and (2.39) respectively represent the dc and ac Josephson
effects (also known as stationary and nonstationary, respectively). The first
equation implies that a direct superconducting current can flow through a junc-
tion of weakly coupled superconductors with no applied potential difference.
The magnitude of this zero-bias current depends on the phase difference across
the junction, θ = θ1 − θ2. The amplitude of the dc Josephson current depends
on temperature. For a tunneling junction with identical conventional super-
conductors, the temperature dependence of the critical Josephson current was
derived in the framework of the BCS theory by Ambegaokar and Baratoff,

Ic(T ) =
π∆(T )
2eRn

tanh
∆(T )
2kBT

, (2.40)

where Rn is the junction resistance in the normal state, and ∆(T ) is the energy
gap. The Josephson current is maximal at T = 0:

Ic(0) =
π∆(0)
2eRn

. (2.41)

Figure 2.16 shows the I(V ) characteristic of a tunneling junction at T = 0.
Let us estimate the value of Ic(0) for a conventional superconductor. In con-
ventional superconductors, ∆(0) ≈ 1 meV. For an oxide junction of 1 mm2

area, with Rn � 1 Ω, Ic(0) is of the order of 1 mA. Then, the current density
through the junction is about 103 A m−2. At high temperatures, as T → Tc,
the amplitude of Ic(T ) decreases, so that Ic ∝ ∆2 ∼ (T − Tc).

The second Josephson equation, Eq. (2.39), implies that if a constant volt-
age is applied across the barrier, then an alternating supercurrent of Cooper
pairs with a characteristic frequency ω = 2eV/h̄ will flow across the junc-
tion. An applied dc current of 1 mV will produce a frequency ν = ω/2π =
2eV/h = 483.6 GHz, which lies in the far infrared region. Every time a Cooper
pair crosses the barrier (obviously, resistanceless), it emits (or absorbs) a pho-
ton of energy h̄ω = 2eV . This radiation is observed experimentally. The latter
expression involves twice the electron charge due to electron pairing. This very
simple relation between the radiation frequency and the applied voltage is now
used to verify the fact of the electron pairing, every time a new superconduc-
tor is discovered. This is done in the following way. A tunneling junction is
placed in a microwave cavity and, in measured I(V ) characteristics, one can
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Figure 2.16. I(V ) characteristic for a Josephson junction at T = 0. Ic at zero voltage is the
maximum Josephson current, and In is the normal-state current.

then observe the appearance of equidistant steps, called the Shapiro steps. The
steps appear at voltages V0,n = n h̄ωµw/2e, where ωµw is the microwave fre-
quency (the Josephson current at zero bias is reduced when microwaves are
applied, enabling one to detect the Shapiro steps). The relation h̄ω = 2eV
was also used to derive a value for the ratio e/h, which is the most accurate
determination of this ratio so far.

It is important to emphasize that the effects of weak superconductivity have
their origin in the quantum nature of the superconducting state. The supercon-
ducting condensate is a Bose condensate, and is similar to a Bose-Einstein con-
densate (see Chapter 4). Therefore, the Josephson effects will manifest them-
selves in every Bose-Einstein condensate, even if the bosons have no charge.
In the later case, it is not easy to detect the current of chargeless particles. (In
a chargeless Bose-Einstein condensate, the energy 2eV in the ac Josephson
effect in Eq. (2.39) is represented by another energy scale).

The so-called superconducting quantum interference devices (SQUIDs), con-
sisting of two parallel tunneling junctions connected in parallel (dc SQUIDs),
as shown in Fig. 2.17, are the most sensitive device for measuring the value of
a magnetic field. The actual resolution of such a device can be much better than
a single flux quantum, ∼ 10−5Φ0. The most celebrated examples are SQUID
magnetometers, which are able to resolve flux increments of ∼ 10−10 G, and
precision voltmeters with the sensitivity of ∼ 10−15 V. SQUIDs based on a
single point-contact junction incorporated in a loop (rf SQUIDs), can measure
only the change of flux, variations of magnetic field or of its gradient.

Finally, let us consider briefly how Ic is affected by an applied magnetic
field and the size of junction. It turns out that by applying a magnetic field to a
tunneling junction, the magnitude of Ic is found to be a nonmonotonic function
of the field strength, as shown in Fig. 2.18. This is due to a quantum interfer-



Basic properties of the superconducting state 49

 J

 J  2

 J  1

 Φ

 Superconductor  Insulator

 C

Figure 2.17. SQUID magnetometer consisting of two Josephson junctions connected in par-
allel. A magnetic flux Φ which is threaded through the interior of the SQUID loop changes the
combined current that emerges at C.

ence effect caused by the phases of the order parameters. The dependence of
the amplitude of the dc Josephson current on the magnetic field is

Ic(Φ) = Ic(0)
∣∣∣∣sin(πΦ/Φ0)

πΦ/Φ0

∣∣∣∣ , (2.42)

where Φ is the magnetic flux threading through the insulating layer in the junc-
tion, and Φ0 is the flux quantum. When the total magnetic flux is a multiple of
the flux quantum, Φ = n Φ0, n = 1, 2, 3, . . ., the Josephson current vanishes,
as shown in Fig. 2.18. This result is a commonly used criterion for the unifor-
mity of tunneling current in a Josephson junction: one measures the maximum
zero-bias current as a function of magnetic field, and the extent to which the
dependence fits Eq. (2.42) is a measure of the uniformity.

 0  1  2  3

 I  c

 5 4
 Φ
 Φ  0

Figure 2.18. Maximum supercurrent through a dc Josephson junction versus the external mag-
netic field applied parallel to the plane of the junction.
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In the above discussion, we neglected entirely the fact that the tunneling cur-
rent can also produce a magnetic field that affects the behavior of the junction.
If the size of the junction is small, the effect of this self-field can be neglected;
however in long Josephson junctions, the self-field effect leads to the appear-
ance of a nonlinear term in the equation describing the behavior of Ic. For a
long Josephson junction, the nonlinear equation exactly coincides with the so-
called sine-Gordon equation describing the behavior of a chain of pendulums
coupled by torsional springs. For the chain of pendulums, the solution of the
sine-Gordon equation represents the propagation of soliton along the chain of
pendulums. In a long Josephson junction, the sine-Gordon solitons describe
quanta of magnetic flux expelled from the superconductors, that travel back
and forth along the junction. Their presence, and the validity of the soliton de-
scription, can be easily checked by the microwave emission which is associated
with their reflection at the ends of the junction. For the long Josephson junc-
tion, the quantity λJ , called the Josephson penetration length, gives a measure
of the typical distance over which the phase (or magnetic flux) changes:

λJ =
(

Φ0

2πµ0Ic(d + 2λL)

)1/2

, (2.43)

where Φ0 = 2.07×10−15 Wb, µ0 = 4π×10−7 H m−1, Ic is the density of the
critical current through the junction in A m−2, λL is the London penetration
depth in m, and d is the thickness of the insulator (oxide layer) in m. The
quantity (d+2λL), or (d+λL,1 +λL,2) if two superconductors in the junction
are not identical, is the width of the region penetrated by the magnetic field.
The Josephson penetration length allows one to define precisely a small and
a long junction. A junction is said to be long if its geometric dimensions are
large compared with λJ . Otherwise, the junction is small. Let us estimate λJ .
Taking typical parameters for a Josephson junction, (d + 2λL) ∼ 10−5 cm,
Ic ∼ 102 A cm−2, we get λJ ∼ 0.1 mm, i.e. it can be a macroscopic length.

A very useful feature of the Josephson solitons is that they are not difficult
to operate by applying bias and current to the junction. Then, long Josephson
junctions can be used in computers. One of the most useful properties of such
devices would be very high performance speed. Indeed, the characteristic time
may be as small as 10−10 sec, while the size of the soliton may be less than
0.1 mm. The main problem for using the Josephson junctions in electronic
devices is the cost of cooling refrigerators. For commercial use in electronics,
the long Josephson junctions await for the availability of room-temperature
superconductors.

4.5 Energy gap in the excitation spectrum
At T = 0, the elementary excitation spectrum of a superconductor has an

energy gap. In conventional superconductors, however, at some special con-
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ditions, there may exist gapless superconductivity, since conventional super-
conductors have only one energy gap—the pairing one. We shall consider this
case at the end of this subsection.

As already discussed above, the energy gap in a superconductor is carried
by the Fermi surface, and occurs on either side of the Fermi level EF , as shown
in Fig. 2.11. The excited states of a superconductor are altered from the nor-
mal state. If in the normal state, it costs energy |Ek − EF | to put electron into
an excited one-electron state, where Ek is the single particle energy spectrum;
in the superconducting state, the energy cost is

√
(Ek − EF )2 + ∆2. Thus,

the minimum energy cost in the normal state is zero, whereas in the supercon-
ducting state, it is instead the smallest value of ∆. As a result, the electronic
system in the superconducting state is unable to absorb arbitrary small amounts
of energy. At T = 0 all electrons are accommodated in states below the energy
gap, and a minimum energy 2∆(0) must be supplied to produce an excitation
across the gap, as shown in Fig. 2.11. The BCS temperature dependence of
the energy gap for a conventional superconductor is depicted in Fig. 2.12. In
conventional superconductors, the value of the energy gap ∆(0) is of the order
of 1 meV (� 12 K).

It is worth to recall that the superconducting state requires the electron pair-
ing and the onset of long-range phase coherence. Superconductors in which
the long-range phase coherence occurs due to a mechanism different from the
overlap of wavefunctions, have two distinct energy gaps—the pairing gap ∆p

and phase-coherence gap ∆c. As a consequence, in the superconducting state
the magnitude of total energy gap in the elementary excitation spectrum of
such unconventional superconductors is equal to

√
∆2

p + ∆2
c .

Experimental evidence of the existence of the energy gap in the elementary
excitation spectrum of superconductors comes from many different types of
measurements, such as tunneling, infrared, microwave, acoustic, specific-heat
measurements etc. The most direct way of examining the energy gap is by
tunneling measurements. The experiment consists in examining the current-
voltage characteristics obtained in a tunneling junction, I(V ). Let us briefly
discuss the basics of tunneling measurements.

The phenomenon of tunneling has been known for more than sixty five
years—ever since the formulation of quantum mechanics. As one of the main
consequences of quantum mechanics, a particle such as an electron, which can
be described by a wave function, has a finite probability of entering a classi-
cally forbidden region. Consequently, the particle may tunnel through a po-
tential barrier which separates two classically allowed regions. The tunneling
probability was found to be exponentially dependent on the potential barrier
width. Therefore the experimental observation of tunneling events is measur-
able only for barriers that are small enough. Electron tunneling was for the
first time observed experimentally in junctions between two semiconductors
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Figure 2.19. (a) Superconductor-insulator-normal metal tunneling junction, and (b) corre-
sponding energy diagram at T = 0 in the presence of an applied voltage: quasiparticles can
tunnel when |V | ≥ ∆/e.

by Esaki in 1957. In 1960, tunneling measurements in planar metal-oxide-
metal junctions were performed by Giaever. The first tunneling measurements
between a normal metal and a superconductor were also carried out in 1960.
The direct observation of the energy gap in the superconductor in these and the
following tunneling tests provided strong conformation of the BCS theory.

Consider the flow of electrons across a thin insulating layer having the thick-
ness of a few nanometers, which separates a normal metal from a conventional
superconductor. Figure 2.19a shows a superconductor-insulator-normal metal
(SIN) tunneling junction. At T = 0, no tunneling current can appear if the ab-
solute value of the applied voltage (bias) in the junction is less than ∆(0)/e.
Tunneling will become possible when the applied bias reaches the value of
±∆(0)/e, as shown in Fig. 2.19b. Figure 2.20 shows schematically three
current-voltage I(V ) characteristics for an SIN junction at T = 0, 0 < T < Tc

and Tc < T . At T = 0, the absence of a tunneling current at small voltages
constitutes an experimental proof of the existence of a gap in the elementary
excitation spectrum of a superconductor. At 0 < T < Tc, there are always ex-
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Figure 2.20. Tunneling I(V ) characteristics for an SIN junction at different temperatures:
T = 0; 0 < T < Tc, and T > Tc (the latter case corresponds to a NIN junction). At
0 < T < Tc, quasiparticle excitations exist at any applied voltage.

cited electrons due to thermal excitations, as shown in Fig. 2.21, and one can
measure some current for any voltage. In other words, at finite temperatures,
quasiparticles tend “ to fill the gap.” As shown in Fig. 2.20, the I(V ) curves,
measured below Tc, approach at high bias the I(V ) characteristic measured
above Tc (thus corresponding to tunneling between two normal metals). In

 S
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 Excitations

 Excitations
 E  F1

Figure 2.21. The density of states near the Fermi level EF in a superconductor and a normal
metal in an SIN junction at 0 < T < Tc. Due to thermal excitations, there are states above the
gap in the superconductor and above the Fermi level in the metal. Quasiparticles can tunnel at
any applied voltage, as shown in Fig. 2.20.
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conventional superconductors, the gap vanishes completely at Tc, as shown in
Fig. 2.12. This, however, is not the case for high-Tc superconductors—there
is a pseudo-gap in the elementary excitation spectrum of the cuprates above
Tc. We shall analyze tunneling measurements in the cuprates in Chapter 6.
Tunneling I(V ) characteristics for a superconductor-insulator-superconductor
(SIS) junction are similar to those for a SIN junction. However, in SIS junc-
tions, the tunneling current is absent at T = 0 between -2∆(0)/e and 2∆(0)/e,
with exception of the Josephson current at zero bias, as shown in Fig. 2.16.

The energy gap in the elementary excitation spectrum of a superconductor
can also be measured directly in acoustic (ultrasound) measurements. Consider
absorption of high-frequency sound waves in a conventional superconductor.
Ultrasound waves are scattered in a superconductor by normal electrons, not
by Cooper pairs, so that their attenuation is a measure of the fraction of nor-
mal electrons. As a consequence, superconductors absorb sound waves more
weakly than normal metals. Ultrasound attenuation in a superconductor is de-
scribed by the following expression

αs

αn
=

2
e∆/kBT + 1

, (2.44)

where αs and αn are the absorption coefficients in the normal and supercon-
ducting states, respectively. This formula is valid if h̄ω < 2∆, where ω is the
sound frequency. In practice, the sound frequency is less than 1 GHz (= 109

Hz), so that h̄ω < 10−2∆. The ratio of the attenuation measured in conven-
tional superconductors as a function of temperature indeed follows the pre-
diction of the BCS theory shown in Fig. 2.12, confirming the validity of the
principal ideas of the theory.

In conventional superconductors, the energy gap in the elementary excita-
tion spectrum at some conditions can be absent. Consider this particular case.
In Chapter 5, we shall discuss how magnetic and non-magnetic impurities af-
fect the superconducting state in conventional superconductors: doping a con-
ventional superconductor with non-magnetic atoms does not affect strongly
the critical temperature and the energy gap. Only a very pure superconductor
will suffer a small decrease in Tc (about 1%). This decrease comes to an end
when the mean free path � becomes equal to the size of a Cooper pair, ξ (at
this moment, the energy gap becomes isotropic). At the same time, doping
a conventional superconductor with magnetic impurities drastically affect the
superconducting properties: a marked change in the critical temperature and
the energy gap is always observed when magnetic impurities are introduced.
Even a small impurity concentration (a few percent) can lead to a complete de-
struction of the superconducting state. Experimentally, it turns out that as one
keeps adding the magnetic impurities, the energy gap in the elementary exci-
tation spectrum of a conventional superconductor decreases faster than Tc, and
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when the impurity concentration reaches n0 = 0.91 × ncr, the gap vanishes
while the sample remains superconducting, i.e. there is still no electrical resis-
tivity. ncr is the impurity concentration at which superconductivity completely
disappears.

How does gapless superconductivity occur? Having a magnetic moment,
magnetic impurities destroy the electron pairs. At the impurity concentration
n0, some fraction of the Cooper pairs are broken up. Then even at T = 0,
the situation is similar to that in the two-fluid model: the Cooper pairs and
the free electrons, created by the partial breakup of the Cooper pairs, coexist.
The Cooper pairs can still sustain resistanceless current flow, while the free
electrons can absorb radiation of arbitrary low frequency, so that the energy
gap in the elementary excitation spectrum disappears, as seen for example, in
tunneling measurements. Gapless superconductivity can occur in conventional
superconductors not only in the presence of magnetic impurities, but in the
presence of any external “ force,” for example, a sufficiently strong magnetic
field or an applied current, which is able to destroy the superconducting order.
In unconventional superconductors, the occurrence of gapless superconductiv-
ity is only possible locally, and we shall discuss this case in Chapter 6. On a
macroscopic scale, the occurrence of gapless superconductivity in unconven-
tional superconductors is impossible because unconventional superconductors
have two energy gaps—pairing and phase-coherence.

4.6 Thermodynamic properties
The transition from the normal state to the superconducting state is the

second-order phase transition. At a second-order phase transition, the first
derivatives of the Gibbs free energy are always continuous, while the second
derivatives have finite-step discontinuities. The Gibbs free energy G for a sys-
tem in thermal equilibrium is defined (in CGS units) as

G ≡ U − TS − B · H/4π + pV ≡ F − B · H/4π + pV, (2.45)

where U is the total internal energy of the system; T is the temperature of the
system; S is the entropy per unit volume; p is the pressure in the system; V
is the volume of the system; H and B are the applied magnetic field and flux,
respectively. The function F ≡ U − TS is the Helmholtz free energy, already
discussed above. The Gibbs free energy is also called the Gibbs potential.

As obtained above, the Helmholtz free energy of the superconducting state
Fs is lower than that of the normal state Fn by the value

Fn − Fs =
H2

c

8π
(2.46)
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Figure 2.22. Temperature dependences of the specific heat Cs, the entropy Ss and the free
energy Fs of a superconductor in H = 0 with respect to their values in the normal state, Cn, Sn

and Fn.

called the condensation energy. The magnetic field Hc is the thermodynamic
critical field. The condensation energy −(Fn − Fs) is shown in Fig. 2.22 as a
function of reduced temperature t = T/Tc.

Let us now derive the difference in entropy between the normal and super-
conducting states. By the first law of thermodynamics, we have

δQ = δR + δU, (2.47)

where δQ is the element of the thermal energy density for the body under
consideration, and δR is the work done by the body on external bodies, per unit
volume. For the Helmholtz free energy, one obtains δF = δU − TδS − SδT .
Since for a reversible process δQ = TδS, we get

δU = TδS − δR and δF = −δR − SδT. (2.48)

From the last equation, it follows that

S = −
(

∂F

∂T

)
R

. (2.49)

We can use Eq. (2.46) to calculate the difference in entropy between the normal
and superconducting states. Substituting Eq. (2.46) into Eq. (2.49), we obtain

Ss − Sn =
Hc

4π

(
∂Hc

∂T

)
R

. (2.50)

The third law of thermodynamics states that as T → 0, the entropy of a sys-
tem approaches a limit S0 that is independent of all its parameters. Therefore,
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Ss − Sn → 0 as T → 0. Since the superconducting transition is the second-
order phase transition, then Ss − Sn = 0 at Tc. From Eq. (2.20), we have
(∂Hc/∂T ) < 0. Therefore, Ss < Sn at 0 < T < Tc, meaning that the super-
conducting state is a more ordered state than the normal one. Therefore, the
superconducting transition can be considered as the order-disorder transition.
A sketch of the dependence Ss − Sn is shown in Fig. 2.22 as a function of
temperature.

The latent heat of transformation L1,2 is defined as the heat absorbed by
the system from the reservoir as a transformation takes place from phase 1 to
phase 2. Since for a reversible process δQ = TδS, then the heat added to the
system at constant temperature is

L1,2 = Q = T (S2 − S1) (2.51)

Because Ss − Sn is zero at T = 0 and Tc, therefore the latent heat of trans-
formation is zero at T = 0 and Tc. So, the transition is the second order not
only at Tc but also at T = 0. However at 0 < T < Tc, the transition is the first
order since the latent heat is not zero.

Consider now the difference in specific heat per unit volume between the
superconducting and normal states. The specific heat of matter can be defined
as C = T (∂S/∂T ). By taking the derivative of Eq. (2.50), we can write the
difference in specific heat per unit volume between the superconducting and
normal states as

Cs − Cn =
T

4π

[(
∂Hc

∂T

)2

+ Hc
∂2Hc

∂T 2

]
. (2.52)

At Tc, one obtains that there is a specific-heat discontinuity

Cs − Cn =
Tc

4π

(
∂Hc

∂T

)2

Tc

. (2.53)

The last expression is known as the Rutgers formula, and defines the height of
the specific-heat jump at Tc. In the framework of the BCS theory for conven-
tional superconductors (the weak electron-phonon coupling approximation),
this jump is given by

β ≡ ∆C

Cn

∣∣∣∣
Tc

≡ Cs − Cn

Cn

∣∣∣∣
Tc

= 1.43. (2.54)

The temperature dependence of the difference Cs − Cn is plotted in Fig. 2.22.
In the normal state, thus above Tc, the specific heat Cn linearly decreases as
the temperature decreases, Cn = γ T , as shown in Fig. 2.23. Such a lin-
ear dependence of specific heat is typical for normal metals, and represents
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Figure 2.23. Temperature dependence of the specific heat of a superconductor. The character-
istic jump ∆C occurs at Tc.

the electronic specific heat. In the superconducting state, thus below Tc, the
specific heat falls exponentially, as the temperature decreases:

Cs ∝ exp
(
−∆(T )

kBT

)
, (2.55)

as schematically shown in Fig. 2.23. In the language of the two-fluid model,
the exponential temperature dependence means that below Tc, only the normal
component transports heat. The Cooper-pair condensate does not contribute to
the energy transfer. In the strong electron-phonon coupling regime, i.e. when
2∆ > 3.52 kB Tc, the value of specific-heat jump increases, i.e. β > 1.43 (for
example, in Pb β = 2.7).

Thus, it is worth to emphasize that the specific-heat jump at Tc is a universal
property of all superconductors; however, its magnitude varies.

Finally, it is necessary to note that in deriving the above formulas for spe-
cific heat, we did not take into account the contribution from the lattice. In
general, the specific heat of a metal is made up of the electronic and lattice
contributions: C = Cel + Clat. From the theory of normal metals, the tem-
perature dependence of the lattice specific heat at low temperature is given by
Clat ∝ T 3. In metallic superconductors, the superconducting transition has
practically no effect on the lattice, therefore, the lattice specific heat is not
changed below Tc (in contrast to the electronic specific heat which changes
drastically below Tc). As a consequence, the difference in specific heat be-
tween the superconducting and normal states in metals, Cs − Cn, is mainly
determined by the electronic component. However, it may be not the case for
non-metallic superconductors, for example, for oxides. Therefore, generally
speaking, it is possible that at the superconducting transition of some exotic
superconductors, one can observe the apparent absence of specific-heat jump,
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or even, a negative specific-heat jump due to a negative contribution from the
lattice. In a sense, this effect is similar to the occurrence of negative isotope
effect in conventional superconductors.

Heat transfer in superconductors is also characterized by a peculiar behavior.
The thermal conductivity of a normal metallic alloy decreases as the tempera-
ture decreases. In a superconductor, however, this is not the case. Following
the superconducting transition, the thermal conductivity below Tc rises sharply,
then passes through a maximum, and after that, begins to drop. This is due to
the fact that in addition to the electronic heat transfer, the lattice can contribute
to the flow of thermal energy. This makes the phenomenon of heat conduction
more complicated than electrical conduction.

4.7 Proximity effect
Every superconductor exhibits the proximity effect. The proximity effect

occurs when a superconductor S is in contact with a normal metal N. If the
contact between the superconductor and normal metal is of a sufficiently good
quality, the order parameter of the superconductor close to the interface, Ψ,
will be altered. The superconductor, however, does not “ react passively” to this
“ intrusion.” Instead, it induces superconductivity into the metal which was in
the normal state before the contact. Of course, this induced superconductivity
exists only in a thin surface layer of the normal metal near the NS interface.
The distances measured from the NS interface, along which the properties of
the superconductor and the normal metal are modified, are of the order of the
coherence length, i.e. ∼ 104 A

◦
.

Thus, when a normal metal and a superconductor are in good contact, the
Cooper pairs from the superconductor penetrates into the normal metal, and
“ live” there for some time. This results in the reduction of the Cooper-pair
density in the superconductor. This also means that in a material which by
itself is not a superconductor, one can, under certain conditions, induce the
superconducting state. So, the proximity effect gives rise to induced supercon-
ductivity. The proximity effect is strongest at temperatures T 
 Tc, i.e. close
to zero.

Let us consider an interface between a normal metal and a superconductor.
Assume that the interface between the two materials is flat and coincides with
the plane x = 0, as shown in Fig. 2.24. The superconductor occupies the
semispace x > 0, and the normal metal the semispace x < 0. The order
parameter penetrates the normal metal to a certain depth ξN , called the effective
coherence length. In a first approximation, the decay of the order parameter in
the normal metal is exponential, Ψn ∝ exp(−|x|/ξN ). Rigorous calculations
based on the microscopic theory give the following expressions for ξN . In a
pure N metal, that is, when the electron mean free path is much larger than the
effective coherence length, �n � ξN (the clean limit), the effective coherence
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Figure 2.24. Order parameter Ψ(x) near the interface between a superconductor (x > 0) and
a normal metal (x < 0) at T � Tc.

length is

ξn =
h̄vF,n

2πkBT
, (2.56)

where vF,n is the Fermi velocity in the normal metal. From this expression,
one can see that when T → 0, ξN → ∞. In such a limit, the decay of the
order parameter in the N region is much slower than the exponential one. In
the so-called dirty limit, when �n 
 ξN , the effective coherence length in the
N metal is

ξN =
(

h̄vF,n�n
6πkBT

)1/2

. (2.57)

Evaluations by Eqs. (2.56) and (2.57) give values for ξN in the range of
103–104 A

◦
.

The behavior of the order parameter in the general case is sketched in Fig.
2.24. The length b in Fig. 2.24 is called the extrapolation length. This length
is a measure of extrapolation to the point outside of the boundary at which Ψ
would go to zero if it maintained the slope it had at the surface. In the dirty
limit, the value of b is

b � σs

σn
ξN , (2.58)

where σs and σn are the conductivities in the S and N regions, respectively,
and ξN is defined by Eq. (2.57). For a superconductor-insulator interface, the
microscopic theory gives

b ∼ ξ2
0

a0
, (2.59)

where ξ0 is the intrinsic coherence length of the superconductor, and a0 is the
interatomic distance in the insulator.
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If the thickness of a superconductor which is in contact with a normal metal,
is sufficiently large, i.e. when d � ξGL, the critical temperature of the super-
conductor is practically unaffected. However, when a superconducting thin
film is deposited onto the surface of a normal metal, and the thickness of this
film is small d 
 ξGL, the critical temperature of the whole system decreases,
depending on d, and in principle, can fall to zero.

The proximity effect is utilized in SNS Josephson junctions in which the
phase coherence between the two superconducting electrodes is established
via a normal layer that can be quite thick (∼ 104 A

◦
). It is worth to mention that

any Bose-Einstein condensate will also exhibit the proximity effect.
As stated above, the proximity effect involves Cooper pairs entering into the

normal metal. The transition of a Cooper pair from the superconductor into the
normal metal can be considered as a reflection off the NS interface, with two
electrons incident on the interface and two holes reflected back. Indeed, the
disappearance of an electron is equivalent to the creation of a hole. Contrary
to this, we are interested in what happens at the NS interface to an electron in
the normal metal moving towards the superconductor, when it encounters the
NS interface. If the electron energy is less than the energy gap of the super-
conductor, the electron is reflected back from the interface. The propagation of
a negative charge in the normal metal from the interface is equivalent to prop-
agation of a positive charge in the superconductor in the opposite direction.
Therefore, the process of the electron reflection gives rise to a charge trans-
fer from the normal metal to the superconductor, i.e. to an electrical current.
This process was first proposed theoretically by Andreev and is now called the
Andreev reflection.

In a sense, the electron tunneling and the Andreev reflection are two “ in-
verse” processes. In an superconductor-insulator-normal metal (SIN) junction
at T = 0, in the tunneling regime (high values of the normal resistance of
the junction, Rn � 0), the current is absent at bias |V | < ∆/e (see Fig.
2.20), whereas in the Andreev-reflection regime (small Rn), the current at
|V | < ∆/e can be twice as large as the current at high bias (in unconven-
tional superconductors, usually lower than 2). In addition, it is worth noting
that tunneling spectroscopy is a phase-insensitive probe (at least, for s-wave
superconductors), whereas the Andreev reflection is sensitive exclusively to
coherence properties of the superconducting condensate.

4.8 Isotope effect
It was experimentally found that different isotopes of the same supercon-

ducting metal have different critical temperatures, and

TcM
α = constant, (2.60)
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where M is the isotope mass. For the majority of superconducting elements,
α is close to the classical value 0.5.

The vibrational frequency of a mass M on a spring is proportional to M−1/2,
and the same relation holds for the characteristic vibrational frequencies of the
atoms in a crystal lattice. Thus, the existence of the isotope effect indicated
that, although superconductivity is an electronic phenomenon, it is neverthe-
less related in an important way to the vibrations of the crystal lattice in which
the electrons move. The isotope effect provided a crucial key to the devel-
opment of the BCS microscopic theory of superconductivity for conventional
superconductors. Luckily, not until after the development of the BCS theory
was it discovered that the situation is more complicated than it had appeared
to be. For some conventional superconductors, the exponent of M is not -1/2,
but near zero, as listed in Table 2.3.

Table 2.3. Isotope effect (Tc ∝ M−α)

Element α

Mg 0.5
Sn 0.46
Re 0.4
Mo 0.33
Os 0.21
Ru 0 (±0.05)
Zr 0 (±0.05)

So, the isotope effect is not a universal phenomenon, and can be absent
even in conventional superconductors. In unconventional superconductors, the
situation is very peculiar. For example in copper oxides, varying the doping
level, the isotope effect is almost absent in the optimally-doped region (α ≈
0.03). At the same time in the underdoped region, the exponent α is about
1 (see Fig. 6.28), thus its value is two times larger than the classical value
0.5! This fact was initially taken as evidence against the BCS mechanism of
high-Tc superconductivity (true), and against the phonon pairing mechanism
(false). We shall consider the mechanism of electron pairing in unconventional
superconductors in Chapter 6.

4.9 Type-II superconductors: Properties of the mixed state
The absolute majority of all superconductors is of type-II. In the mixed state,

their behavior has the same pattern. So, the basic properties of the mixed
state are worth to be considered in detail. The term “ type-II superconductors”
was first introduced by Abrikosov in his phenomenological theory of these
materials. As defined by Abrikosov, a superconductor is of type-II if k =
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λ/ξGL > 1/
√

2 � 0.71. Then it follows that the magnetic penetration depth
in type-II superconductors is much larger than the coherence length, ξGL < λ.
This case is schematically shown in Fig. 2.7b. The electrodynamics in type-II
superconductors is local, i.e. of the London type.

The mixed state occurs at magnetic fields having a magnitude between Hc1(T )
(the lower critical field) and Hc2(T ) (the upper critical field), as shown in Fig.
2.9. This state of a type-II superconductor is referred to as the mixed state be-
cause it is characterized by a partially penetration of the magnetic field in the
interior of the superconducting sample. The field penetrates the superconduc-
tor in microscopic filaments called vortices which form a regular triangular
lattice, as schematically shown in Fig. 2.25. Each vortex consists of a nor-
mal core in which the magnetic field is large, surrounded by a superconducting
region, and can be approximated by a long cylinder with its axis parallel to
the external magnetic field. Inside the cylinder, the superconducting order pa-
rameter Ψ is zero. The radius of the cylinder is of the order of the coherence
length ξGL. The supercurrent circulates around the vortex within an area of ra-
dius ∼ λ. The spatial variations of the magnetic field and the order parameter
inside and outside an isolated vortex are sketched in Fig. 2.10. Each vortex
carries one magnetic flux quantum.

As an example, Figure 2.26 shows the magnetization curve of a type-II su-
perconductor in the form of a long cylinder placed in a parallel magnetic field.
At H < Hc1, the average field in the interior of the cylinder is B = 0. If
Hc1 < H < Hc2, a steadily increasing field B penetrates the superconductor.
The magnitude of this field always remains below the external field. As long
as the external field H < Hc2, the cylinder superconducts. At H = Hc2, the
average field in the interior becomes equal to the external field, thus to Hc2,
and the bulk superconductivity disappears. The transition into the normal state
at Hc2(T ) is a second-order phase transition.

Figure 2.25. Normal-state vortices (grey areas) in the mixed state of a type-II superconductor
form a regular triangular lattice. Arrows shows the supercurrent circulating around the vortices
at ∼ λ from the centers of vortices. The radius of the vortices is about ξGL.
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Figure 2.26. Magnetization curves for a type-II superconductor: (a) flux B as a function of an
external magnetic field H , and (b) magnetic moment M as a function of H .

Why does an external magnetic field penetrate a type-II superconductor in
the form of vortices, and not uniformly? In the next section, while considering
the Ginzburg-Landau theory, we shall see that for type-II superconductors, the
surface energy of the interface between a normal metal and a superconductor
is negative, σns < 0. This implies that, under certain circumstances, it is en-
ergetically favorable for type-II superconductors, when placed in an external
magnetic field, to become subdivided into alternating normal and supercon-
ducting domains in order to minimize the total free energy of the system. The
energy in the |∇Ψ|2 term limits the variations of the order parameter. By def-
inition, significant variations of the order parameter cannot exist on a scale
smaller than the coherence length ξGL. Thus at H > Hc1, penetration of vor-
tices with a size ∼ ξGL into the interior of a type-II superconductor becomes
thermodynamically favorable. Once inside the superconductor, the vortices
arrange themselves at distance ∼ λ from each other. Energetically, the most
favorable regular vortex lattice is triangular. As the external field increases, the
vortex lattice period steadily decreases, and the density of the vortices rises.
At H = Hc2, the vortex lattice grows so dense that the distance between
the neighboring vortices, i.e. the vortex lattice period, becomes of the order
ξGL(T ). When it happens, the normal cores of the vortices come into con-
tact with each other, and the order parameter Ψ becomes zero over the entire
volume of the superconductor. At this moment, the superconducting state is
suppressed, and the superconductor becomes normal.

4.9.1 The lower and upper critical fields

How do the lower and upper critical fields, Hc1 and Hc2, relate to Hc,
the thermodynamic critical field of bulk material? In the framework of the
Ginzburg-Landau theory, the thermodynamic critical field in CGS units is given
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by

Hc =
Φ0

2
√

2πλξGL

=
Φ0

2
√

2πλ2
k. (2.61)

[see also Eq. (2.21)]. The lowest magnetic field, at which formation of vortices
in a type-II superconductor becomes thermodynamically favorable, is

Hc1 =
Φ0

4πλ2
(ln k − 0.18). (2.62)

This expression is obtained in the limit k � 1. From Eqs. (2.61) and (2.62),
one obtains that at k � 1

Hc1 � Hc
ln k√

2k
. (2.63)

It follows from this expression that at k � 1, the lower critical field is always
Hc1 
 Hc. The exact calculations of the upper critical field give

Hc2 =
√

2kHc. (2.64)

Thus, at k � 1, Hc2 is always Hc 
 Hc2. Let us estimate the values of Hc1

and Hc2. Taking k ∼ 100 and Hc ∼ 103 Oe, we get Hc1 ∼ 30 Oe and Hc2 ∼
105 Oe.

Combining Eqs. (2.63) and (2.64), an interesting relation can be obtained
for the product Hc1Hc2:

Hc1Hc2 = H2
c ln k, (2.65)

which indicates that if Hc1 is very small, then Hc2 must be very large. Thus,
this means that in type-II superconductors with very high Hc2, the lower crit-
ical field is always very small. And vice versa, in superconductors with low
Hc2, the lower critical field is sufficiently large.

What does the thermodynamic critical field Hc mean for a type-II supercon-
ductor? In a type-I superconductor, it is the field at which the superconductor
goes to the normal state. What happens to a type-II superconductor at Hc?
The answer is: nothing special. For a type-II superconductor, the quantity Hc

should be considered as a measure of the extent to which the superconducting
state of a particular material is favored over its normal state in the absence of
magnetic field: Fn − Fs = H2

c /8π.

4.9.2 Surface superconductivity

All the above expressions, obtained in the framework of the Ginzburg-Landau
theory, are rigorously valid only for an infinite sample. As we have discussed
above, superconductivity in type-II superconductors appears within the volume
of the sample below Hc2. For a finite sample, it turns out that, at the surface
of a superconductor, the superconducting state can exist in much higher fields
than Hc2, provided the surface is parallel to the external field. Resolving the
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first linearized Ginzburg-Landau equation together with the boundary condi-
tion (see the following section), one can obtain that superconductivity in a thin
surface layer can survive in the external magnetic field up to

Hc3 = 1.69Hc2, (2.66)

if the field is parallel to the surface of the superconductor. Thus, even if the
bulk of a superconductor remains normal, superconductivity can exist in a thin
surface layer with a thickness of the order ∼ ξGL(T ). What is interesting
is that the phenomenon of surface superconductivity can also be observed in
some type-I superconductors with k > 0.42.

4.9.3 Anisotropy in layered superconductors

All layered superconductors are of type-II. In these superconductors, the
critical magnetic fields Hc1 and Hc2, as well as λ and ξGL, are different in
different directions—parallel and perpendicular to the layers. For example, the
upper critical field applied perpendicular to the layers, Hc2,⊥, is determined by
vortices whose screening currents flow parallel to the planes. Then, from Eq.
(2.23), we have

Hc2,⊥ =
Φ0

2πξ2
GL,ab

, (2.67)

where the letters “ab” indicate that the direction of the screening currents is
in the ab-plane. All the formulas above must be adjusted for layered super-
conductors in the same manner. Some of them, however, assume a slightly
unusual form. For instance, the same expression for the upper critical field
applied parallel to the layers, Hc2,‖, becomes

Hc2,‖ =
Φ0

2πξGL,abξGL,c
, (2.68)

where ξGL,c is the coherence length perpendicular to the planes. Then from
Eqs. (2.67) and (2.68), one can obtain the anisotropy ratio for a layered type-II
superconductor:

Hc2,‖
Hc2,⊥

=
ξGL,ab

ξGL,c
. (2.69)

In some layered unconventional superconductors, this anisotropy ratio is ex-
tremely large. For example, in highly underdoped cuprates, Hc2,‖/Hc2,⊥ ∼
50. The order parameter in layered superconductors, Ψ, is also anisotropic.

4.9.4 Vortices and their interactions

What is the magnetic field at the center of an isolated vortex? In other words,
what is the field at r = 0 in Fig. 2.10? The value of this field is determined by
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the material:

H(r = 0) =
Φ0

2πλ2
(ln k − 0.18). (2.70)

Comparing Eqs. (2.62) and (2.70), one can see that at k � 1, the field at the
center of an isolated vortex is twice larger than the lower critical field Hc1. Far
from the center of the vortex, the field goes exponentially to zero. At large
k � 1, the numerical term 0.18 in Eqs. (2.62) and (2.70) can be dropped. The
penetration of the magnetic field in the interior of a thin superconducting film
in the form of vortices is schematically shown in Fig. 2.27.

 T   <  T  c

 H  c  1   <  H   <  H  c  2

Figure 2.27. The mixed state of a thin superconducting film in a perpendicular magnetic field
H . Vortices shown in grey are normal.

Do the vortices interact with each other? Yes, two neighboring parallel vor-
tices of the same orientation strongly repel each other, and the repulsion force
acts only on the vortex core. The same orientation of vortices means that the
directions of magnetic field in the vortex cores are the same. How do they in-
teract with one another? As we already know, the radius of a vortex is of the
order of the coherence length, ξGL. The supercurrent circulates around the vor-
tex within an area of radius ∼ λ. As long as the distance between the vortices
exceeds λ, they do not “ feel” each other. However, when the distance between
them becomes less than λ, the core of one vortex moves into the area where
the supercurrent of the other vortex circulates, and vice versa. Since the vor-
tices have the same orientation, the directions of the supercurrents circulating
around the vortices also coincide. Then in the area between the vortices, the
supercurrents cancel each other, resulting in a difference of Bernoulli pressures
exerted on the cores of vortices. Therefore, they repel each other.

In equilibrium, the mutual repulsion of vortices gives rise to a regular vortex
lattice with the minimum free energy. As mentioned above, the most favorable
regular vortex lattice is triangular, as shown in Fig. 2.25. However, the ideal
triangular vortex lattice can only occur in absolutely homogeneous supercon-
ductor. As a matter of fact, the free-energy difference between various regular
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lattice configurations is relatively small; in practice, the material structure will
have a greater influence on the vortex pattern. For example, vortices can easily
be trapped or “pinned” by defects in the material or by impurities. The impuri-
ties and defects, such as grain boundary, dislocation walls, dislocation tangles,
voids, second-phase precipitates etc., are often referred to as pinning centers.
However, not every defect can interact with vortices effectively. For example,
in conventional type-II superconductors, vacancies, individual second-phase
atoms, or other similar tiny defects are not effective as pinning centers because
the characteristic size of a vortex (∼ ξGL) exceeds by far the atomic size and,
therefore, the characteristic size of such a defect. A vortex simply does not
notice them; they are too small. In contrast, structural defects with dimensions
∼ ξGL and larger are very effective, and can be the cause of very large critical
current densities which we shall discuss further below.

How do the vortices in a finite-size superconductor interact with the surface
of the superconductor? In the absence of an external magnetic field at the sur-
face of a superconductor, vortices are attracted to the surface. The interaction
of a vortex with the surface can be interpreted as its interaction with its image
“existing” at the other side of the surface, thus in vacuum. Since a vortex and
its image have opposite orientations, the vortex is attracted to its image and,
thus, to the surface. In the presence of an external magnetic field parallel to the
surface of the superconductor, the Meissner supercurrent generated by the field
will push the vortex away from the surface. Thus, in the presence of a mag-
netic field, the vortex is repelled from the surface by the Meissner current. At
the same time, the vortex is still attracted by its image to the surface. The sign
of the net force depends on the value of the external magnetic field H . The
exact calculations by de Gennes showed that if H < Hc, the vortex will be
attracted to the surface. Otherwise, the vortex will be repelled from the surface
if H > Hc.

How do the pinning centers affect a transport current? Consider a type-II
superconductor in the mixed state to which a transport current, i.e. a current
from an external source, is applied in the direction perpendicular to the vor-
tices. The transport current gives rise to a Lorentz force [j × h] which acts
to move the vortices. Their movements lead to the development of a longi-
tudinal potential gradient in the superconductor or, equivalently, to the onset
of resistance, thus to dissipative loses in the superconductor. There are several
dissipation mechanisms. The main one is connected with the normal phase (the
vortex cores) moving through the superconductor. The normal-phase electrons
are scattered by the thermal lattice vibrations, resulting in Joule losses. There
is also the so-called thermal mechanism of dissipation caused by the fact that
vortex motion is always accompanied by energy absorption in the region of the
forward boundary of the vortices (the superconducting phase changes into the
normal phase). This leads to the appearance of microscopic thermal gradients
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accompanied by heat flow and energy dissipation. Thus, the transport current
through a superconductor in the mixed state is accompanied by generation of
heat, which is equivalent to saying that the critical current is vanishingly small.

However, the picture changes drastically in the presence of pinning centers
which trap the vortices. Then, the vortices will start moving only if the Lorentz
force becomes strong enough to overcome pinning and tear the vortices off the
centers. In other words, the Lorentz force must exceed a certain value. The
current density corresponding to the initiation of vortex break-off from the
pinning centers is the so-called critical current density jc.

The critical current density is a structure-sensitive property and can vary by
as much as several orders of magnitude as a result of thermal or mechanical
treatment of the material. At the same time, the critical temperature Tc and
the upper critical field Hc2 can remain virtually unaffected. These specially
prepared type-II superconductors are called the hard superconductors in which
the pinning force is sufficiently large to prevent flux motion, resulting in the
resistanceless current flow. The hard superconductors are also called the type-
III superconductors.

To summarize, owing to the presence of vortices, hard superconductors can
withstand large magnetic fields, while structural inhomogeneities make it pos-
sible to pass large currents through them. If the transport current exceeds
jc, the Lorentz force becomes stronger than the pinning force, and the vor-
tices are depinned. Even though this state is no longer dissipationless as in a
usual superconductor, the resistivity of a superconductor at such conditions is
still lower than that of the same sample in the normal state. Interestingly, at
H → Hc2, instead of monotonically vanishing, the critical current has a local
peak near Hc2. This is the so-called peak effect. One of possible explanations
of this strange effect is that at H → Hc2, the elastic moduli of the vortex lat-
tice decreases, that is, the lattice becomes softer and pinning becomes stronger
[27].

4.10 Suppression of the superconducting state
The superconducting state requires the electron pairing and the onset of

long-range phase coherence. They are two different and independent phenom-
ena. As we already know, superconductivity can be suppressed, for example,
by a sufficiently strong magnetic field. Then, a question rises: what does a
sufficiently strong magnetic field destroy first, the electron pairing or the long-
range phase coherence? This question has never been considered in earlier
textbooks on the physics of superconductivity because, for conventional su-
perconductors, this question has no sense. In conventional superconductors, it
is always the electron pairing which is suppressed. The long-range phase co-
herence in conventional superconductors is mediated by the overlap of Cooper-
pair wavefunctions, and the density of Cooper pairs is relatively high. There-
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fore, as long as the Cooper pairs exist, and their density is high, the onset
of long-range phase coherence arises automatically (and at the same temper-
ature as the electron pairing occurs). So, in conventional superconductors, it
is impossible to discontinue the spread of phase coherence without breaking
Cooper pairs. The suppression of the superconducting state in conventional
superconductors can only be achieved by breaking up the Cooper pairs.

However, this is not the case for unconventional superconductors, specially
in layered ones. In these superconductors, the onset of long-range phase coher-
ence occurs due to a mechanism which different from the overlap of Cooper-
pair wavefunctions. Therefore, in unconventional superconductors, the onset
of long-range phase coherence is always the weakest link, and will be sup-
pressed first, for example, by a sufficiently strong magnetic field. Of course,
the electron pairing in unconventional superconductors can be suppressed too,
but for this, one must increase the magnitude of magnetic field in comparison
with that needed to destroy the phase coherence.

In the context of the above discussion, the difference between conventional
and unconventional superconductors can be illustrated by the following exam-
ple. In conventional superconductors, by applying a sufficiently strong mag-
netic field, the part of resistivity curve corresponding to the transition into the
superconducting state (see, for example, Fig. 2.1) remains steplike but is only
shifted to lower temperatures. The same takes place in half-conventional su-
perconductors (see Chapter 7). Contrary to this, the transition width in uncon-
ventional superconductors becomes broader with increasing magnetic fields,
meaning that at temperatures just below Tc(H = 0), there are large phase fluc-
tuations. In layered unconventional superconductors, the transition widths in
resistivity become broader in both directions, along and perpendicular to the
layers. The onset of long-range phase coherence perpendicular to the layers
is usually affected by an applied magnetic field to a higher degree than that
along the layers because the in-plane phase coherence is usually established
by two independent processes, one of which is the same as that perpendicu-
lar to the layers, and the second is the direct hopping, overlap of Cooper-pair
wavefunctions. We shall discuss the mechanism of phase coherence in layered
unconventional superconductors in detail in Chapter 6.

In unconventional superconductors, knowing the magnitude of a magnetic
field at which the onset of long-range phase coherence is discontinued, one
can estimate the value of the coherence length by using Eq. (2.23). By in-
creasing the magnitude of magnetic field (if the laboratory conditions allow
to do so), one can then estimate the value of the coherence length of electron
pairing, thus the size of Cooper pairs. One can now understand why, while
defining the coherence length and the size of Cooper pairs (see above), it was
underlined that generally speaking, the two notions—the coherence length and
Cooper-pair size—are not the same. From Eq. (2.23), one can also grasp that
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in unconventional superconductors, at any temperature T < Tc,

ξ0 < ξGL, (2.71)

where ξGL is the coherence length, and ξ0 is the Cooper-pair size. It is worth to
recall that ξGL depends on temperature, while ξ0 is temperature-independent.

To finish this subsection, it is worth noting that superconductivity is not al-
ways destroyed by a sufficiently strong magnetic field. In fact, superconductiv-
ity can be induced by a very strong magnetic field! As an example, in the quasi-
two-dimensional organic conductor λ-(BETS)2FeCl4, where BETS stands for
bis-(ethylenedithio)tetraselenafulvalene, the superconducting phase is induced
by a magnetic field exceeding 18 Tesla [26, 27]. Crystalline λ-(BETS)2FeCl4
consists of layers of highly conducting BETS sandwiched between insulating
layers of iron chloride FeCl4. The field is applied parallel to the conducting
layers. This is particularly remarkable since this compound at zero field is an
antiferromagnetic insulator below 8.5 K. Field-induced superconductivity was
earlier reported for EuxSn1−xMo6S8 but this compound is paramagnetic above
Tc = 3.8 K. In λ-(BETS)2FeCl4, the Fe3+ ions within the FeCl4 molecules are
responsible for a long-range antiferromagnetic order.

Field-induced superconductivity in magnetic materials is usually discussed
in terms of the Jaccarino-Peter compensation, in which the applied field com-
pensates the internal magnetic field provided by the magnetic ions. By increas-
ing the magnitude of applied magnetic field above B = 41 Tesla, the compound
λ-(BETS)2FeCl4 becomes metallic above 0.8 K [27]. The dependence Tc(H)
has a bell-like shape with a maximum Tc � 4.2 K near 33 Tesla. Interestingly,
a magnetic field of only 0.1 Tesla, applied perpendicular to the conducting
BETS planes, destroys the superconducting state. This indicates that, in this
organic conductor, superconductivity is robust along the c axis and, at the same
time, week in the planes (in the cuprates, it is the other way round).

5. Universal theory of the superconducting state
We discuss here the Ginzburg-Landau theory which is in fact universal

in the sense that it is applicable to any superconductor independently of the
material and the mechanism of superconductivity. A major early triumph of
the Ginzburg-Landau theory was in handling the mixed state of superconduc-
tors, in which superconducting and normal domains coexist in the presence of
H ≈ Hc. Thus, the Ginzburg-Landau theory is able to describe the behavior of
spatially inhomogeneous superconductors in which the spatial variations of the
order parameter Ψ(r) and the vector potential A are not too rapid. However,
the main disadvantage of the Ginzburg-Landau theory is that it can only be ap-
plied at temperatures sufficiently near the critical temperature: Tc − T 
 Tc.
The range of validity of the Ginzburg-Landau theory will be discussed in more
detail at the end of this section.
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The Ginzburg-Landau theory is phenomenological and based on the gen-
eral theory of second-order phase transitions developed by Landau. According
to this theory, a phase transition of the second order occurs when the state of
a body changes gradually while its symmetry changes discontinuously at the
transition temperature. Furthermore, the low-temperature phase with the re-
duced symmetry is a more ordered one. One of the examples of a second-order
phase transition is the ferromagnetic transition at the Curie temperature TCur,
that is, the transition from paramagnetic to ferromagnetic state. The spon-
taneous magnetization M of the sample appears at TCur, and its magnitude
increases on cooling. Close to TCur, the thermodynamics of such a system can
be described by expanding the Helmholtz free energy F (T, M) in powers of
magnetization M which is small near TCur:

F (T, M) = F (T, 0) + a(T − TCur)M2 + bM4 + c|∇M |2, (2.72)

where a, b and c are the expansion coefficients. By minimizing the free energy
with respect to M , one can obtain that

M = 0 for T > TCur, (2.73)

M �= 0 for T < TCur. (2.74)

Using this analysis as the starting point, one can describe the magnetic tran-
sition. Assuming that any second-order phase transition can be described in the
same manner, Landau suggested that the magnetization M in Eq. (2.72) can be
replaced by another quantity, and in the case of a superconducting transition,
by the order parameter Ψ(r). This assumption inspired Ginzburg and Landau
to develop a simple and exact description of superconducting properties near
the critical temperature.

5.0.1 Equations of the Ginzburg-Landau theory

In the framework of the two-fluid model, in a superconductor below Tc,
there are superconducting and normal electrons. Assume that in an inhomo-
geneous superconductor, the superconducting electrons are described by an
order parameter Ψ(r) = |Ψ(r)| eiθ, so that |Ψ(r)|2 gives the local density of
the Cooper pairs, ns(r)/2, where ns(r) is the local density of superconducting
electrons. The basic postulate of the Ginzburg-Landau theory is that if Ψ of an
inhomogeneous superconductor in a uniform external magnetic field is small
and varies slowly in space, the Helmholtz free-energy density Fs(r, T ) can be
expanded in a series of the form

Fs = Fn + α|Ψ|2 +
β

2
|Ψ|4 +

1
2m∗

∣∣∣ (
−ih̄∇− e∗

c
A

)
Ψ

∣∣∣2 +
h2

8π
, (2.75)

where Fn is the free energy of the superconductor in the normal state; h is
the local magnetic field; A is the local vector potential and h = curlA; e∗ =
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2e and m∗ = 2m are respectively the effective charge and mass of Cooper
pairs, and α and β are the phenomenological expansion coefficients which are
characteristics of the material. The order parameter is normalized that |Ψ(r)|2
gives the density of Cooper pairs, or a half of the density of superconducting
electrons, ns/2.

The total free energy of the superconductor is

Fs(T ) =
∫
V

Fs(r, T ) d3r, (2.76)

where V is the volume of the sample.
Evidently, if Ψ = 0, Equation (2.75) reduces properly to the free energy of

the normal state Fn + h2/8π. In the absence of fields and gradients, we have

Fs = Fn + α|Ψ|2 +
β

2
|Ψ|4. (2.77)

Let us find the value of |Ψ|2 for which the free energy in a homogeneous su-
perconductor is minimum. This value is the solution of the equation

dFs

d|Ψ|2 = 0. (2.78)

Carrying out elementary calculations we obtain

|Ψmin|2 = −α

β
. (2.79)

Substituting this expression into Eq. (2.77), we find the difference in energy

Fn − Fs =
α2

2β
. (2.80)

Recalling that, from Eq. (2.27), this difference equals H2
c /8π, we have

H2
c =

4πα2

β
. (2.81)

Let us discuss the temperature dependence of the coefficients α and β. Since
the order parameter must be zero at T = Tc, and finite at T < Tc, it follows
from Eq. (2.79) that α = 0 at T = Tc and α < 0 at T < Tc. Therefore, in a
first approximation, we can write

α ∝ (T − Tc). (2.82)

This temperature dependence of α correlates Eq. (2.81) with the empirical
formula for Hc near Tc, given by Eq. (2.20).
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It follows from Eqs. (2.79) and (2.81) that the coefficient β must be positive.
From Eqs. (2.20) and (2.82), we obtain that, in a first approximation, β is
independent of temperature. So, the coefficient β is a positive constant. Then,
from Eqs. (2.79) and (2.82), we get

|Ψ|2 ∝ (T − Tc) (2.83)

for temperatures near, but below, Tc.
Let us go back to Eq. (2.75). Taking into account that Ψ = |Ψ| eiθ, we

rewrite Eq. (2.75) as

Fs = Fn + α|Ψ|2 +
β

2
|Ψ|4 +

h̄

2m
(∇|Ψ|)2 +

1
2
|Ψ|2mv2

s +
h2

8π
, (2.84)

where we introduced

vs =
1
m

(h̄∇θ − 2e

c
A). (2.85)

In Eq. (2.84), one can see that we have obtained the Landau expansion given
by Eq. (2.72), plus the free energy of the magnetic field and the current. If the
order parameter does not vary in space, one gets back exactly to the London
free energy and the London equations by carrying out the minimization. Thus,
the Ginzburg-Landau free energy is the way to introduce the London idea in
the usual second-order phase transition.

In order to determine the order parameter Ψ(r) and the vector potential
A(r), we minimize the Helmholtz free energy with respect to Ψ and A. By
this double minimization, one gets two equations named after their authors, the
Ginzburg-Landau equations

1
4m

(
ih̄∇ +

2e

c
A

)2

Ψ + β|Ψ|2Ψ = −α(T )Ψ, (2.86)

js = − ieh̄

2m
(Ψast∇Ψ − Ψ∇Ψ∗) − 2e2

mc
|Ψ|2A. (2.87)

These two equations are coupled and should therefore be solved simultane-
ously. The first equation gives the order parameter while the second enables
one to describe the supercurrent that flows in the superconductor (js = c/4π×
curl h). It is worth noting that the first equation is analogous to the Schrödinger
equation for a free particle, but with an additional nonlinear term β|Ψ|2Ψ.

In carrying through the variational procedure, it is necessary to provide
boundary conditions. One possible choice, which assures that no supercurrent
passes through the surface, is(

ih̄∇Ψ +
2e

c
AΨ

)
· n = 0, (2.88)
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where n is the unit vector normal to the surface of the superconductor. This
boundary condition used by Ginzburg and Landau is also appropriate at an
insulating surface. Using the microscopic theory, de Gennes showed that for a
normal metal-superconductor interface with no current, Equation (2.88) must
be generalized to (

ih̄∇Ψ +
2e

c
AΨ

)
· n =

h̄

i b
Ψ, (2.89)

where b is a real constant. If An = 0, b is the extrapolation length shown in
Fig. 2.24. The value of b depends on the nature of the material to which contact
is made, approaching zero for a magnetic material and infinity for an insulator,
with normal metals lying in between.

5.0.2 Two characteristic lengths

If we introduce two characteristic lengths

ξ2
GL =

h̄2

4m|α| and (2.90)

λ2 =
mc2

4πnse2
=

mc2β

8πe2|α| , (2.91)

the Ginzburg-Landau equations can be written in a more concise and conve-
nient form

ξ2
GL

(
i∇ +

2π

Φ0
A

)2

ψ − ψ + ψ|ψ|2 = 0, (2.92)

curl curlA = −i
Φ0

4πλ2
(ψ∗∇ψ − ψ∇ψ∗) − |ψ|2

λ2
A, (2.93)

where ψ(r) = Ψ(r)/Ψ(∞) is a dimensionless wavefunction, and Φ0 ≡ πh̄c/e
is the flux quantum. Furthermore, taking into account that the order parameter
has the form ψ = |ψ| eiθ, the second Ginzburg-Landau equation for a simply
connected (not a multiple connected) superconductor becomes

curl curlA =
|ψ|2
λ2

(
Φ0

2π
∇θ − A

)
. (2.94)

Let us now find the physical significance of the two characteristic lengths
ξGL and λ. We start with ξGL. Consider a normal metal in contact with a
clean flat surface of a superconductor, as shown in Fig. 2.24. Let us take
the x axis perpendicular to the surface of the superconductor, with the origin
(x = 0) at the surface. Then it is obvious that ψ can vary only along the x
axis, i.e. ψ = ψ(x). In the absence of external magnetic field, A = 0, the
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differential equation Eq. (2.92) has only real coefficients. Then, this equation
can be reduced to a simple form

ξ2
GL

d2ψ

dx2
+ ψ − ψ3 = 0. (2.95)

Suppose that the normal layer at the surface is so thin that the magnitude of ψ
at the surface is not very different from 1, that is,

ψ(x) = 1 − ε(x) and ε(x) 
 1. (2.96)

Substituting this expression into Eq. (2.95) and keeping only linear terms in
ε(x), we get

ξ2
GL

d2ε(x)
dx2

− 2ε(x) = 0. (2.97)

Taking into account that ψ → 1 as x → ∞, we have ε(∞) = 0. Then the
solution of Eq. (2.97) is

ε(x) = ε0e−
√

2x/ξGL (2.98)

which shows that a small disturbance of ψ from 1 will decay in a characteristic
length of order ξGL. Then, we can call this length the coherence length.

The other quantity, λ, is already known to us [see Eq. (2.9)]. This is the
penetration depth for a weak magnetic field. Both ξGL and λ are temperature-
dependent. Taking into account Eq. (2.82), we find that in the vicinity of Tc,

ξ2
GL =

h̄2

4m|α| ∝ (Tc − T )−1, (2.99)

λ2 =
mc2

4πnse2
=

mc2β

8πe2|α| ∝ (Tc − T )−1. (2.100)

As a consequence, in the vicinity of Tc, the Ginzburg-Landau parameter k =
λ/ξGL is temperature-independent. One can demonstrate that the Ginzburg-
Landau free energy depends only on k. This means that the Ginzburg-Landau
parameter k phenomenologically characterizes completely a given supercon-
ductor.

Combining Eqs. (2.19), (2.99) and (2.100), one can obtain an important
relationship among characteristic quantities of a superconductor,

Hc(T )λ(T )ξGL(T ) =
Φ0

2
√

2π
, (2.101)

which was already discussed above in SI units [see Eq. (2.21)].
The relation between the Ginzburg-Landau theory and the BCS microscopic

theory derived for conventional superconductors will be considered in Chapter
5.



Basic properties of the superconducting state 77

 G  s   

 x

 G  n   

 Normal metal
 Interface

 Superconductor

 σ  n  s    > 0

 σ  n  s    < 0

Figure 2.28. Density of the Gibbs free energy Gns in the vicinity of a normal metal-
superconductor interface in an external magnetic field. In type-I superconductors, the surface
energy of the interface, shown by broken lines, is positive, Gns − Gn = σns > 0, while in
type-II superconductors, σns is negative.

5.0.3 Surface energy at the NS interface

Consider now the normal metal-superconductor (NS) interface, shown in
Fig. 2.24, in an external magnetic field, A �= 0. As we already know, type-I
and type-II superconductors can show different responses to an applied mag-
netic field. The reason is that the surface energy of the interface between a
normal metal and a superconductor, σns, is positive for type-I superconductors
and negative for type-II superconductors. To show this, one must calculate
the Gibbs free energy deep inside the superconductor, Gs, and that deep in-
side the normal metal, Gn. In equilibrium, one easily finds that Gs = Gn,
thus the density of the Gibbs free energy far to the right of the NS interface
equals the energy density far to the left, as schematically shown in Fig. 2.28.
At the same time, the calculation of the Gibbs free energy at the NS interface,
Gns, shows that in general, σns = Gns − Gn �= 0. Thus, the density of the
Gibbs free energy at the NS interface differs from those inside the supercon-
ductor and normal metal. In order to evaluate σns, one must also resolve the
Ginzburg-Landau equations given by Eqs. (2.92) and Eq. (2.94).

In the case k 
 1 (i.e. λ 
 ξGL), one obtains that

σns = 1.89
H2

c

8π
ξGL > 0, (2.102)

thus, the surface energy of the NS interface in type-I superconductors is always
positive.

In the case k � 1 (i.e. λ � ξGL), the exact calculations yield that the
surface energy of the NS interface in type-II superconductors,

σns = −H2
c

8π
λ < 0, (2.103)
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is always negative.

Let us now interpret the results physically.

(1) In the case of type-I superconductors, λ 
 ξGL (or k 
 1), the varia-
tions of the order parameter ψ and the magnetic field H in the vicinity of the
interface are sketched in Fig. 2.7a. The former falls off over a distance ξGL

and the latter over a distance λ. In the vicinity of the interface, there is a region
of thickness ∼ ξGL where the order parameter is sufficiently small, and the
magnetic field is kept out. Since ψ is small, in order to keep the magnetic field
out of this region, work must be done on the magnetic field to expel it from this
region. This means that one must overcome a magnetic pressure H2

c /8π and
shift its boundary by the distance ξGL. Then, this work is about (H2

c /8π)ξGL,
in accord with Eq. (2.102).

(2) In the case of type-II superconductors, λ � ξGL (or k � 1), the varia-
tions of the order parameter ψ and the magnetic field H in the vicinity of the
interface are shown in Fig. 2.7b. In the vicinity of the interface, there is a
region of thickness ∼ λ with ψ ∼ 1 which is penetrated by the magnetic field.
It implies that the free energy of this region must be smaller in comparison
with that far from the NS interface (on the left or on the right) to shift the mag-
netic field Hc by the distance λ. Then, this difference in free energy is about
(H2

c /8π)λ, in agreement with Eq. (2.103).

Obviously, at some value k ∼ 1, the energy σns must be zero. The exact
calculations made by Abrikosov show that this occurs at k = 1/

√
2. This value

“separates” type-I and type-II superconductors.

5.0.4 The range of validity

Let us establish the range of validity of the Ginzburg-Landau theory. In the
series expansion of the Helmholtz free energy density in powers of |−ih̄∇Ψ−
(2e/c)AΨ|2, given by Eq. (2.75), only the first term has been kept. This means
that only slow changes of Ψ and A are assumed over distances comparable
with the characteristic size of an inhomogeneity in the superconductor, that
is, over the size of the Cooper pair. Consider the cases of type-I and type-II
superconductors separately.

In the clean limit when the electron mean free path is much larger than
the size of the Cooper pair, � � ξ0, the Ginzburg-Landau theory is valid if
ξGL(T ) � ξ0 and λ(T ) � ξ0. Since ξGL(T ) ∼ ξ0(1 − T/Tc)−1/2 [see Eq.
(2.16)], then the coherence length ξGL(T ) always exceeds the Cooper-pair size
ξ0. So, at T ∼ Tc, the first condition, ξGL(T ) � ξ0, is automatically satisfied.
The second condition, λ(T ) � ξ0, in fact, represents the requirement that the
local electrodynamics is applicable, or in other words, that the superconductor
is of the London type. Since λ(T ) ∝ (1− T/Tc)−1/2 and λ(T ) → λL at T →
0, and k ∼ λL/ξ0, then the condition λ(T ) � ξ0 reduces to k2 � (1−T/Tc),
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which is a rather strict condition because k in type-I superconductors can be
very small. For example, in Al k = 0.01.

In the dirty limit (� 
 ξ0), the validity interval for the Ginzburg-Landau
theory is much wider than that for clean superconductors. For “dirty” super-
conductors, the characteristic scale of inhomogeneity is the mean free path �.
This means that the Ginzburg-Landau theory can be applied if ξGL(T ) � � and
λ(T ) � �. Since ξGL(T ) ∼ (ξ0�)1/2(1−T/Tc)−1/2 [see Eq. (2.17)], the con-
dition ξGL(T ) � � reduces to ξ0/� � (1 − T/Tc). In addition, since ξ0 � �,
this condition is much less strict than the general condition for the Ginzburg-
Landau theory, namely, Tc − T 
 Tc. For the second condition, λ(T ) � �,
recalling that λ(T ) ∝ (1 − T/Tc)−1/2 and λ → λL(ξ0/�)1/2 at T → 0 [see
Eq. (2.13)], and k ∼ λL/�, then it can be rewritten as k2(ξ0/�) � (1−T/Tc).
Even if k ∼ 1, one can find again that it is less strict than the general condition
Tc − T 
 Tc. Thus, in the case of type-II superconductors, the Ginzburg-
Landau theory is valid within a rather wide temperature interval, and automat-
ically provided the general condition Tc − T 
 Tc to be satisfied.
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Chapter 3

SUPERCONDUCTING MATERIALS

This book deals with a problem which is directly connected with the ma-
terials physics. Therefore, it is worthwhile to review materials that supercon-
duct. In this chapter, we shall only give a brief introduction to such materials.
At present, there are about 7000 known superconducting compounds, and it
is impossible in one chapter to give a detailed description of all these super-
conducting materials or even to cover only their principle classes. Indeed, all
superconducting materials can be classified into several groups according to
their crystal structure and their properties.

In addition to such a classification of superconducting materials, they can
also be sorted according to the mechanism of superconductivity in each com-
pound. Recently, it was shown that the mechanisms of superconductivity in
various compounds are different and, basically, there are three types of super-
conducting mechanisms [19]. In Chapters 5, 6 and 7, we shall discuss these
three types of superconducting mechanisms in detail. However, already in this
chapter, superconducting materials are divided into these three groups. In a
first approximation, these three groups consist of the following superconduct-
ing materials:

1) metals and some of their alloys,
2) low-dimensional, non-magnetic compounds,
3) low-dimensional, magnetic compounds.
The phenomenon of superconductivity occurs in solids, and they exist in the

form of single crystals, thin films and polycrystalline ceramics (consisting of
a large number of micron-size single crystals). Interestingly, some materials
superconduct only in one of these forms but not in the other. Some compounds
become superconducting exclusively under high pressure or when irradiated.
In a few unconventional superconductors, the superconducting state is induced
by an applied magnetic field.

81
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1. First group of superconducting materials

The first group of superconductors incorporates non-magnetic elemental su-
perconductors and some of their alloys. The superconducting state in these
materials is well described by the BCS theory of superconductivity presented
in Chapter 5. Thus, this group of superconductors includes all classical, con-
ventional superconductors. The critical temperature of these superconductors
does not exceed 10 K. Most of them are type-I superconductors. As a con-
sequence, superconductors from this group are not suitable for applications
because of their low transitional temperature and low critical field. The phe-
nomenon of superconductivity was discovered by Kamerlingh Onnes and his
assistant Gilles Holst in 1911 in mercury—a representative of this group.

Ironically, many superconductors, discovered mainly before 1986, were as-
signed to this group by mistake. In fact, they belong to either the second or
third group of superconductors. For example, the so-called A-15 superconduc-
tors, during a long period of time, were considered as conventional; in reality,
they belong to the second group. The so-called Chevrel phases were first as-
signed also to the first group; however, superconductivity in Chevrel phases
is of unconventional type, and they are representatives of the third group of
superconductors.

In the periodic table of chemical elements, over half of the elements can
exhibit the superconducting state. However, sixteen of them (at the moment
of writing) superconduct when made into thin films, under high pressure, or
irradiated. Most metallic elements are superconductors, and some of them are
listed in Table 2.1. However, noble metals—copper, silver and gold—which
are excellent conductors of electricity at room temperature never become su-
perconducting. So, superconductivity occurs rather in “bad” metals than in the
best conductors. This fact will be explained in Chapter 5. One of the magnetic
metals, iron, exhibits superconductivity under extremely high pressure (super-
conductivity in Fe is of unconventional type). The semiconductors Si and Ge
become superconducting under a pressure of ∼ 2 kbar with Tc = 7 and 5.3 K,
respectively. At a pressure of 15.2 kbar, the critical temperature of Si increases
to Tc = 8.2 K. Other elements that superconduct under pressure include As,
Ba, Bi, Ce, Cs, Li, P, Sb, Se, Te, U and Y.

The critical temperature of some elements is raised dramatically by prepar-
ing them in thin films. For example, Tc of tungsten (W) was increased from
its bulk value of 0.015 K to 5.5 K in a thin film; molybdenum (Mo) exhibits
an increase from 0.92 K to 7.2 K and titanium (Ti) from 0.42 K to 2.52 K. At
ambient pressure, chromium (Cr) superconducts only in the thin-film state;
other non-superconductors, such as bismuth (Bi), cesium (Cs), germanium
(Ge), lithium (Li) and silicon (Si) can be converted into superconductors by
either applying pressure or preparing them as thin films.
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A very limited number of metallic alloys belong to this group. For exam-
ple, the alloy NbTi listed in Table 2.2 belongs most likely to the second group
of superconductors. So, the number of superconductors in this group is very
small, and they are not suitable for applications. The classical type of super-
conductivity (the BCS type) occurs only in superconductors of this group.

2. Second group of superconducting materials
The second group of superconductors incorporates low-dimensional, non-

magnetic compounds. The superconducting state in these materials is charac-
terized by the presence of two interacting superconducting subsystems. One of
them is low-dimensional and exhibits genuine superconductivity of unconven-
tional type, while superconductivity in the second subsystem which is three-
dimensional is induced by the first one and of the BCS type. So, supercon-
ductivity in this group of materials can be called half-conventional (or alter-
natively, half-unconventional). We shall discuss the mechanism of supercon-
ductivity in these half-conventional superconductors in Chapter 7. The critical
temperature of these superconductors is limited by ∼ 40 K and, in some of
them, Tc can be tuned. All of them are type-II superconductors with an upper
critical magnetic field usually exceeding 10 T. Therefore, many superconduc-
tors from this group are suitable for different types of practical applications.

2.1 A-15 superconductors
Intermetallic compounds of transition metals of niobium (Nb) and vanadium

(V) such as Nb3B and V3B, where B is one of the nontransitional metals, have
the structure of beta-tungsten (β-W) designated in crystallography by the sym-
bol A-15. As a consequence, superconductors having the structure A3B (A =
Nb, V, Ta, Zr and B = Sn, Ge, Al, Ga, Si) are called the A-15 superconductors.

Figure 3.1 shows the crystal structure of the binary A3B compounds. The
atoms B form a body-centered cubic sublattice, while the atoms A are situated
on the faces of the cube forming three sets of non-interacting orthogonal one-
dimensional chains. The distance between atoms A on the chains is about 22%
shorter than the distance between chains.

The first A-15 superconductor V3Si was discovered by Hardy and Hulm
in 1954. Nearly 70 different A-15 superconductors were already known in
1985. Before the discovery of superconductivity in cuprates, the A-15 super-
conductors had the highest Tc. Table 3.1 lists some characteristics of six A-15
superconductors with the highest values of Tc. The critical temperature of A-
15 superconductors is very sensitive to changes in the 3:1 stoichiometry. These
materials are also very sensitive to the effects of radiation damage.

In addition to unusually high Tc values, the A-15 superconductors display
several superconducting properties which cannot be explained in the frame-
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Table 3.1. Characteristics of A-15 superconductors: the critical temperature Tc; the upper
critical magnetic field Hc2; and the gap ratio 2∆

kBTc
inferred from infrared measurements.

Compound Tc (K) Hc2 (T) 2∆
kBTc

Nb3Ge 23.2 38 4.2
Nb3Ga 20.3 34 -
Nb3Al 18.9 33 4.4
Nb3Sn 18.3 24 4.2-4.4
V3Si 17.1 23 3.8
V3Ga 15.4 23 -

work of the BCS theory. The coherence length of the A-15 superconductors is
very short, ξ0 � 35–200 A

◦
. They have extraordinary soft acoustic and optical

phonon modes. A lattice instability preceding a structural phase transition and
then followed by superconductivity is typical for the A-15 compounds. This
structural phase transition is called martensite. The presence of densely packed
one-dimensional chains is believed to be responsible for this crystalline insta-
bility. The phase-transition temperature Tm for V3Si and Nb3Sn is 20.5 K and
43 K, respectively. In V3Ga and Nb3Al, this transition occurs at about 50 K
and 80 K, respectively. The symmetry transition, from cubic to tetragonal, is

 B atom

 A atom

 A 3 B  

Figure 3.1. Crystal structure of A3B compounds (A-15 superconductors). The atoms A form
one-dimensional chains on each face of the cube. Chains on the opposite faces are parallel,
while on the neighboring faces orthogonal to each other.
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accompanied only by a rearrangement of the crystal lattice, with the volume
of the crystal remaining unchanged. Immediately after the transition, there is a
softening of the elastic coefficients of the lattice, as observed in acoustic mea-
surements. The Debye temperature of the A-15 superconductors is moderate,
300–500 K. It has been established that the more metastable lattice exhibits the
higher Tc value. One of the main factors in increasing the Tc value is the soft-
ening of the phonon spectrum, i.e. the phonon spectrum shifts to lower phonon
frequencies.

It is worth noting that the search of high-temperature superconductors in
materials exhibiting structural instabilities was already proposed in 1971 [28].
Even at that time, it was already known that metals with strong electron-lattice
coupling tend towards structural instabilities.

In spite of the fact that the A-15 compounds exhibit high critical temper-
atures and upper magnetic fields (see Table 3.1), they are not widely used in
applications because they are too brittle and therefore not flexible enough to
be drawn into wires. In contrast, the alloy niobium-titanium (NbTi) with lower
Tc = 9.5 K is easily drawn into wires; hence it is much more useful for appli-
cations. This problem was however solved for Nb3Sn and V3Ga by the use
of a technique called the bronze process. Magnets made from these wires can
produce magnetic fields of about 20 T at 4.2 K.

2.2 Metal oxide Ba1−xKxBiO3

In 1975, Sleight and co-workers discovered superconductivity in the metal
oxide BaPb1−xBixO3 with a maximum Tc � 13.7 K at x = 0.25. Other
members of this family, BaPb0.75Sb0.25O3 (Tc = 0.3 K) and Ba1−xKxBiO3

(BKBO), were discovered in 1988. The metal oxide BKBO is an exceptionally
interesting material and the first oxide superconductor without copper with a
critical temperature above that of all the A-15 compounds. Its critical temper-
ature is Tc � 32 K at x = 0.4. At the moment of writing, BKBO still exhibits
the highest Tc known for an oxide other than the cuprates. For the potassium
concentration x ≥ 0.35, this compound has the regular cubic perovskite struc-
ture sketched in Fig. 3.2. However, in one recent study the crystal structure of
BKBO has been found to be non-cubic and of the layered nature, having the
lattice parameters a ≈ a0 and c ≈ 2a0, where a0 is a simple cubic perovskite
cell parameter shown in Fig. 3.2.

Materials called perovskites are minerals (hard ceramics) whose chemical
formula is ABX3 or AB2X3. Thus, perovskites contain three elements A, B, X
in the proportion 1:1:3 or 1:2:3. The atoms A are metal cations, and the atoms
B and X are nonmetal anions. The element X is often represented by oxygen.
The compound BKBO is a perovskite of type 1:1:3 with a part of the barium
atoms replaced by potassium atoms.
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 Ba  or   K

 O

 Ba  1-  x  K  x  BiO  3

 Bi

Figure 3.2. Cubic perovskite unit cell of Ba1−xKxBiO3.

Superconductivity in BKBO is observed near a metal-insulator transition.
The undoped parent compound for BKBO is BaBiO3 containing an insulating
charge-density-wave phase formed of an ordered arrangement of non-equivalent
bismuth ions referred to as Bi3+ and Bi5+. Superconducting BKBO with low
potassium content also exhibits a charge-density-wave ordering. The density of
charge carriers in BKBO is very low (see Fig. 3.6). Depending on x, the effec-
tive mass of charge carriers in BKBO is small, and can be even smaller than the
electron mass, m∗ < me. Various evidence suggests that the electron-phonon
coupling is responsible for superconductivity in BKBO. For example, the iso-
tope effect in BKBO is sufficiently large: upon partial replacement of 16O with
18O in BKBO, the critical temperature is shifted down, and the isotope expo-
nent is about α ≈ 0.4. Above and below Tc, BKBO exhibits a normal-state
pseudogap caused most likely by the electron-phonon coupling. A two-band
model applied to BKBO accounts very well for all the available data on BKBO.

Acoustic measurements performed in BKBO show that many physical prop-
erties of BKBO are quite similar to those of the A-15 superconductors. Exam-
ples are some structural instabilities just above the superconducting state, soft
phonon modes (acoustic in A-15 compounds and optical in BKBO), an an-
harmonicity of some phonons and large softening of the elastic constants. In
the A-15 compounds and BKBO, there is a structural phase transition slightly
above Tc (martensite transition). For comparison, Table 3.2 lists some charac-
teristics of Nb3Ge (A-15 compound) and BKBO. In Table 3.2, one can see that
the characteristics of these superconductors have similar values.

2.3 Magnesium diboride MgB2

In January 2001, magnesium diboride MgB2 was found to superconduct at
Tc = 39 K. The discovery was made by the group of Akimitsu in Tokyo. At
the moment of writing, the intermetallic MgB2 has the highest critical temper-
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Table 3.2. Characteristics of Nb3Ge (A-15 compound), BKBO (x 	 0.4) and MgB2: the
critical temperature Tc; the energy of the highest phonon peak ωph in the Eliashberg function
α2F (ω); the Fermi velocity vF ; the coherence length ξ0; the gap ratio 2∆

kBTc
and the upper

critical magnetic field Hc2

Compound Tc (K) ωph (meV) vF (107 cm/s) ξ0 (A
◦

) 2∆
kBTc

Hc2 (T)

Nb3Ge 23 25 2.2 35–50 4.2 38
BKBO 32 70 3 35–50 4.5 32
MgB2 39 90 4.8 35–50 4.5 39

ature at ambient pressure among all superconductors with the exception of the
cuprates. As shown in Fig. 3.3, the crystal structure of MgB2 is very sim-
ple: it is composed of layers of boron and magnesium, alternating along the c
axis. Each boron layer has a hexagonal lattice similar to that of graphite. The
magnesium atoms are arranged between the boron layers in the centers of the
hexagons.

The physical properties of MgB2 are also quite unique. The density of states
in MgB2 is small. MgB2 has a very low normal-state resistance: at 42 K the
resistivity of MgB2 is more than 20 times smaller than that of Nb3Ge (A-15
compound) in its normal state. In the superconducting state, MgB2 has a highly
anisotropic critical magnetic field (∼ 7 times), and exhibits two energy gaps.
The gap ratio 2∆/(kBTc) for the larger gap ∆L is given in Table 3.2. For the
smaller gap ∆s, this ratio is around 1.7, so that ∆L/∆s � 2.7. Seemingly, both
the energy gaps have s-wave symmetries: the larger gap is highly anisotropic,
while the smaller one is either isotropic or slightly anisotropic. Band-structure
calculations of MgB2 show that there are at least two types of bands at the
Fermi surface. The first one is a heavy hole band, built up of boron σ orbitals.

 B
 MgB  2  Mg

 View from the top  View from one side

Figure 3.3. Crystal structure of MgB2. Boron atoms form honeycomb planes, and magnesium
atoms occupy the centers of the hexagons in between boron planes.
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The second one is a broader band with a smaller effective mass, built up mainly
of π boron orbitals. The larger energy gap ∆L occurs in the σ-orbital band,
while ∆s in the π-orbital band.

In MgB2, superconductivity occurs in the boron layers. The electron-phonon
interaction seems to be responsible for the occurrence of superconductivity in
MgB2. For example, the boron isotope effect is sufficiently large, α � 0.3 (the
Mg isotope effect is very small). The muon relaxation rate in MgB2 is about
8–10 µs−1. So, in the Uemura plot (see Fig. 3.6), MgB2 is literally situated be-
tween the large group of unconventional superconductors and the conventional
superconductor Nb.

In Table 3.2 which is presented for comparison of some characteristics of
the A-15 compounds, BKBO and MgB2, one can see that the characteristics of
these superconductors have similar values.

From the standpoint of practical application, magnesium diboride is very
attractive because MgB2 has a very high critical temperature, and it is inex-
pensive to produce in large quantities since it is made from elements that are
abundant in nature. Because magnesium and diboride atoms are light, MgB2

is light-weight.

2.4 Binary compounds
There are a large number of binary superconductors. Non-magnetic binary

compounds exhibiting high values of Tc and Hc2 most likely belong to the
second group of superconductors.

2.4.1 Nitrides and carbides

There is a number of superconducting binary compounds AB with the sodium
chloride structure shown in Fig. 3.4. The NaCl structure is a cubic face-
centered structure with alternating A and B elements in all directions. In crys-
tallography, such a structure is denoted as B1. In AB superconductors with
the NaCl structure, the A atom is one of the transition elements of the III, IV,
V and VI subgroups of the periodic table, and the B atom is a nontransitional
element. The highest critical temperature is observed in the binary compounds
with transition metals of the IV, V and VI subgroups: Zr, Nb, Mo, Ta and W,
which have incomplete 4d- and 5d-shells when they join nitrogen (nitrides) or
carbon (carbides). Like the A-15 compounds, these nitrides and carbides have
extraordinary properties in the normal and superconducting states. Table 3.3
gives the values of Tc for some nitrides and carbides.

In fact, some nitrides and carbides do not have precisely the 1:1 stoichiom-
etry. For example, the NbN nitride listed in Table 3.3 cannot be prepared with
1:1 stoichiometry. Its exact formula is NbN0.92, so the structure has many
vacancies. Another example from Table 3.3 is vanadium nitride which is in
reality VN0.75. Vanadium carbide also has the non-exact 1:1 stoichiometry,
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Table 3.3. Critical temperature Tc for some nitrides and carbides

Nitride Tc (K) Carbide Tc (K)

NbN 17.3 MoC 14.3
ZrN 10.7 NbC 12.0
HfN 8.8 TaC 10.4
VN 8.5 WC 10.0
TaN 6.5 TlC 3.4

VC0.84. Interestingly, if the vacancies in NbN0.92 are filled by carbon to form
NbC0.1N0.9, the critical temperature increases to 17.8 K. The latter B1 com-
pound was synthesized by Matthias in 1953. During the fourteen years that
followed, it was one of the available superconductors with the highest Tc. It is
worth to mention that the first nitride discovered to superconduct was NbN, in
1941.

As all compounds of the second group of superconductors, the B1 com-
pounds have two conduction bands formed by the d-electrons and sp-electrons.
The d-electron band is very narrow, while the sp-electron band is sufficiently
wide. Tunneling measurements carried out in some B1 compounds showed
that the electron-phonon interaction is mainly responsible for the occurrence
of superconductivity in these materials, and the dominant contribution to the
electron-phonon interaction parameter comes from acoustic phonons. The neu-
tron scattering studies of the phonon spectrum performed in the stoichiometric
carbides HfC (Tc = 0.25 K) and TaC (Tc = 10.3 K) confirmed the dominant
role of the electron-phonon interaction for the occurrence of superconductivity
in these materials.

As opposed to the A-15 superconductors, the binary compounds with the
NaCl lattice are very stable and less sensitive to mechanical defects: the B1

 B atom

 A atom

 AB  

Figure 3.4. Crystal structure of AB compounds (B1 superconductors). NaCl has the same
crystal structure.
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materials are far more resistant to radiation and disorder than the A-15 com-
pounds. Nonetheless, the nitrides and carbides are also quite brittle and diffi-
cult to fabricate into wires, but they have been successfully exploited as thin
films for superconducting electronics.

2.4.2 Laves phases

There are several dozen metallic AB2 compounds called the laves phases
that superconduct. Some of them have a critical temperature above 10 K and
a high critical field Hc2. For example, Zr0.5Hf0.5V2 has Tc = 10.1 K and
Hc2 = 24 T, and the same compound with a different Zr : Hf ratio has sim-
ilar Tc and Hc2 values and the critical current density Jc ≈ 4 × 105 A/cm2.
The critical temperatures of the laves phases CaIr2 and ZrV2 are 6.2 K and
9.6 K, respectively. The AB2 materials also have the advantage of not being so
hard and brittle as some other compounds and alloys with comparable critical
temperatures.

2.5 Semiconductors
There are a few semiconductors that become superconducting at very low

temperatures. The carrier concentration in semiconductors is much lower than
that in metals. Since semiconductors are not magnetic, they most likely belong
to the second group of superconductors. GeTe was the first superconduct-
ing semiconductor discovered in 1964 , having a very low critical temperature
Tc � 0.1 K. This was followed by the discovery of superconductivity in the
perovskite SrTiO3 with Tc � 0.3 K. The crystal structure of SrTiO3 is cubic-
perovskite and similar to that of BKBO (see Fig. 3.2). However, by lowering
the temperature, it undergoes some phase transitions which destroy its cubic
symmetry. Doping SrTiO3 by carriers, one can tune its critical temperature,
and the dependence Tc(p) has a shape similar to that of the hyperbolic sine,
sinh p, with a sharp maximum of 0.3 K located at p ≈ 1020 cm−3. The criti-
cal temperature of some superconducting semiconductors can dramatically be
increased by applying an external pressure. In SrTiO3, the Ginzburg-Landau
parameter k is of the order of k ∼ 10, thus, SrTiO3 is a type-II superconductor
and has Hc2(0) ∼ 400 Oe.

The tunneling studies carried out in Nb-doped SrTiO3 with different Nb
concentrations clearly showed the presence of two-band superconductivity in
this compound.

The semiconductor SnTe also superconducts at low temperatures.

3. Third group of superconducting materials
The third group of superconductors is the largest and incorporates so-called

unconventional superconductors. A distinctive characteristic of unconventional
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superconductors is that they are low-dimensional and magnetic, or at least,
these compounds have strong magnetic correlations. Furthermore, the den-
sity of charge carriers in these superconductors is very low. In unconventional
superconductors, spin fluctuations mediate the onset of long-range phase co-
herence. In the majority of unconventional superconductors, the magnetic cor-
relations favor an antiferromagnetic ordering. In contrast to antiferromagnetic
superconductors, ferromagnetic ones usually have a low critical temperature.
Independently of the type of magnetic ordering, the pairing mechanism in un-
conventional superconductors is due to the electron-phonon interaction which
is moderately strong and non-linear. We shall discuss the mechanism of un-
conventional superconductivity in detail in Chapter 6. In all superconductors
belonging to this group, the coherence length is very short, while the pen-
etration depth is very large, so that all unconventional superconductors are of
type-II. They have a very large upper critical magnetic field. As a consequence,
many superconductors from this group are used for practical applications. We
start with the so-called Chevrel phases.

3.1 Chevrel phases
In 1971, Chevrel and co-workers discovered a new class of ternary molybde-

num sulfides, having the general chemical formula MxMo6S8, where M stands
for a large number of metals and rare earths (nearly 40), and x = 1 or 2. They
were called the Chevrel phases. The Chevrel phases with S substituted by Se or
Te also display superconductivity. Before the discovery of high-Tc supercon-
ductivity in cuprates in 1986, the A-15 superconductors had the highest values
of Tc, but the Chevrel phases were the record holders in exhibiting the highest
values of upper critical magnetic field Hc2, listed in Table 3.4. The Chevrel
phases are of great interest, largely because of their striking superconducting
properties.

Table 3.4. Critical temperature and the upper critical magnetic field of Chevrel phases

Compound Tc (K) Hc2 (T)

PbMo6S8 15 60
LaMo6S8 7 44.5
SnMo6S8 12 36
LaMo6Se8 11 5
PbMo6Se8 3.6 3.8

The crystal structure of Chevrel phases, shown in Fig. 3.5, is quite interest-
ing. These compounds crystallize in a hexagonal-rhombohedral structure. The
building blocks of the Chevrel-phase crystal structure are the M elements and
Mo6X8 molecular clusters. Each Mo6X8 is a slightly deformed cube with X
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 Pb

 S

 PbMo  6  S  8

 Mo

Figure 3.5. Crystal structure of the Chevrel phase PbMo6S8. Each lead atom is surrounded by
eight Mo6S8 units (only four Mo6S8 units are shown).

atoms at the corners, and Mo atoms at the face centers (these distortions of the
cubes are not shown in Fig. 3.5). Such a crystal structure leads to materials
particularly brittle, which give problems in the fabrication of wires. The elec-
tronic and superconducting properties of these compounds depend mainly on
the Mo6X8 group, with the M ion having very little effect.

Superconductivity in the Chevrel phases coexists with antiferromagnetism
of the rare earth elements (in fact, superconductivity in the Chevrel phases is
mediated by magnetic fluctuations). For example, a long-range antiferromag-
netic order of the rare earth elements RE = Gd, Tb, Dy and Er in (RE)Mo6X8,
setting in respectively at TN = 0.84, 0.9, 0.4 and 0.15 K, coexists with super-
conductivity occurring at Tc = 1.4, 1.65, 2.1 and 1.85 K, respectively. TN is
the Ne′el temperature of an antiferromagnetic ordering. In HoMo6S8, for ex-
ample, the magnetic correlations of rare earth elements result in a long-range
ferromagnetic ordering. First, a non-uniform ferromagnetic phase appears in
the superconducting state of HoMo6S8. Then, on further cooling, a long-range
ferromagnetic order develops, destroying superconductivity. HoMo6S8 is su-
perconducting only between two critical temperatures 2 K and 0.65 K. This
is called reentrant superconductivity. Below 0.65 K, the material is ferromag-
netic.

The superconductivity in the Chevrel phases is primarily associated with the
mobile 4d-shell electrons of Mo, while the magnetic order involves the local-
ized 4f -shell electrons of the rare earth atoms which occupy regular positions
throughout the lattice. In the normal state, the Chevrel phases exhibit a strong
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softening in the elastic constants as a function of temperature for the longitu-
dinal and transverse modes.

The Chevrel phases and all superconductors of this group have one distinc-
tive characteristic: they all have a very low superfluid density. Furthermore,
the critical temperature of unconventional superconductors depends linearly
on superfluid density, and this dependence is universal for all superconductors
of this group, including the Chevrel phases. Let us consider this dependence.

From Eq. (2.9), the superfluid density ns directly relates to the penetration
depth, ns ∝ 1/λ2. So, penetration-depth measurements are able to provide the
value of superfluid density. Carrying out muon-Spin-Relaxation (µSR) mea-
surements, Uemura and co-workers showed that the critical temperature in un-
conventional superconductors first depends linearly on the superfluid density,
as shown in Fig. 3.6. However, on further increasing the superfluid density,
Tc follows a “boomerang” path shown in the lower inset of Fig. 3.6. The
Uemura plot shows also that the concentration of charge carriers in unconven-
tional superconductors is more than one order of magnitude lower than that in
the metallic Nb superconductor. We shall continue to discuss the Uemura plot
to the end of this section.
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Figure 3.6. Critical temperature versus muon-spin-relaxation rate σ(T → 0) for various su-
perconductors (σ ∝ 1/λ2 ∝ ns/m

∗). The cuprates are marked by 214, 123, 2212 and 2223
(see Table 3.5). BEDT is a layered organic superconductor. Heavy fermions are shown in
the upper inset (HTS = high-Tc superconductors). For the cuprates, the lower inset shows the
“boomerang” path with increasing doping: the underdoped (UD), optimally doped (Opt) and
overdoped (OD) regions [29].
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3.2 Copper oxides
A compound is said to belong to the family of copper oxides (cuprates) if

it has the CuO2 planes. Cuprates that superconduct are also called high-Tc

superconductors. The first high-Tc superconductor was discovered in 1986 by
Bednorz and Müller at IBM Zurich Research Laboratory [5]. Without doubt,
this discovery was revolutionary because it showed that, contrary to a general
belief of that time, superconductivity can exist above 30 K, and it can occur in
very bad conductors.

The parent compounds of superconducting cuprates are antiferromagnetic
Mott insulators. A Mott insulator is a material in which the conductivity van-
ishes as temperature tends to zero, even though the band theory would predict
it to be metallic. A Mott insulator is fundamentally different from a conven-
tional (band) insulator. If, in a band insulator, conductivity is blocked by the
Pauli exclusion principle, in a Mott insulator charge conduction is blocked by
the electron-electron repulsion. Quantum charge fluctuations in a Mott insula-
tor generate the so-called superexchange interaction which favors antiparallel
alignment of neighboring spins. Thus, a Mott insulator has a charge gap of
∼ 2 eV, whereas the spin wave spectrum extends to zero energy. When cuprates
are slightly doped by holes or electrons (the hole/electron concentration is
changed from one per cell), on cooling they become superconducting. At the
moment of writing, the cuprates are the only Mott insulators known to super-
conduct.

The cuprates are materials with the strong electron correlation. What does
this mean? Electrons in a metal can be treated in a mean-field approximation.
In the framework of this approach, it is assumed that an electron in the crystal
moves in an average field created by other electrons. Thus, it is not necessary
to know the exact positions of all the other electrons. In cuprates and other
strongly-correlated electron materials, the mean-field approach breaks down.
The position and motion of each electron in these materials are correlated with
those of all the others. Furthermore, in this class of materials, the electron-
phonon interaction is much stronger than that in metals. As a consequence, the
combination of the electron-electron correlation and electron-phonon interac-
tion results in a strong coupling of electronic, magnetic and crystal structures,
so that, depending on temperature, they interact strongly with each other. This
gives rise to many fascinating phenomena, such as superconductivity, colossal
magnetoresistance, spin- and charge-density waves.

There are many cuprates which become superconducting at low temper-
ature. They can be classified in several groups according to their chemical
formulas which are sufficiently complicated; therefore, it is useful to use ab-
breviations. The abbreviations which will be used further are summarized in
Table 3.5. In addition, Table 3.5 indicates the number of the CuO2 planes per
unit cell and the critical temperature of these cuprates. From these data, one
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Table 3.5. Abbreviations for some cuprates

Cuprate CuO2 planes Tc (K) abbreviation

La2−xSrxCuO4 1 38 LSCO
Nd2−xCexCuO4 1 24 NCCO
YBa2Cu3O6+x 2 93 YBCO
Bi2Sr2CuO6 1 ∼12 Bi2201
Bi2Sr2CaCu2O8 2 95 Bi2212
Bi2Sr2Ca2Cu3O10 3 110 Bi2223
Tl2Ba2CuO6 1 95 Tl2201
Tl2Ba2CaCu2O8 2 105 Tl2212
Tl2Ba2Ca2Cu3O10 3 125 Tl2223
TlBa2Ca2Cu4O11 3 128 Tl1224
HgBa2CuO4 1 98 Hg1201
HgBa2CaCu2O8 2 128 Hg1212
HgBa2Ca2Cu3O10 3 135 Hg1223

can see that for members of the same family of cuprates, the critical temper-
ature of a cuprate with double CuO2 layer per unit cell is always higher than
that of a single-layer cuprate, and a cuprate with the triple CuO2 layer has a
higher Tc than that with the double layer. With the exception of NCCO which
is electron-doped, all the cuprates in Table 3.5 are hole-doped.

The crystal structure of cuprates is of a perovskite type, and it is highly
anisotropic. Such a structure defines most physical properties of the cuprates.
In conventional superconductors, there are no important structural effects since
the coherence length is much longer than the penetration depth. This, however,
is not the case for the cuprates.

The simplest copper-oxide perovskites are insulators. To become supercon-
ducting they have to be doped by charge carriers. The effect of doping has
the most profound influence on the superconducting properties of the cuprates.
Introducing charge carriers into the CuO2 planes of cuprates, their lattice be-
comes very unstable, especially at low temperatures. On lowering the temper-
ature, all cuprates undergo a number of structural phase transitions. Generally
speaking, it is the unstable lattice that is responsible for the occurrence of su-
perconductivity in the cuprates.

Superconductivity in the cuprates occurs in the copper-oxide planes. There-
fore, the structural parameters of the CuO2 planes affect the critical tempera-
ture the most. The structure of the CuO2 layers of cuprates is basically tetrag-
onal. In the CuO2 planes, each copper ion is strongly bonded to four oxygen
ions separated by a distance of approximately 1.9 A

◦
. At a fixed doping level,

the highest Tc is observed in cuprates having flat and square CuO2 planes. The
CuO2 layers in the cuprates are always separated by layers of other atoms such
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as Bi, O, Y, Ba, La etc., which provide the charge carriers into the CuO2 planes.
These layers are often called charge reservoirs.

In conventional superconductors, the critical temperature rises monotoni-
cally with the rise of charge-carrier concentration, Tc(p) ∝ p. In the cuprates,
the Tc(p) dependence is nonmonotonic. In most hole-doped cuprates, the Tc(p)
dependence has a bell-like shape and can be approximated by the empirical ex-
pression

Tc(p) � Tc,max[1 − 82.6(p − 0.16)2], (3.1)

where Tc,max is the maximum critical temperature for a certain compound. Su-
perconductivity occurs within the limits 0.05 ≤ p ≤ 0.27 which vary slightly in
different cuprates. Different doping regions of the superconducting phase are
mainly known as underdoped, optimally doped and overdoped. The insulating
phase at p < 0.05 is usually called the undoped region. These designations are
used in the remainder of the book. Above p = 0.27, cuprates are practically
metallic.

Let us now discuss several cuprates in more detail.

3.2.1 LSCO

This compound was the first high-Tc superconductor discovered. The max-
imum value of Tc is 38 K. The tetragonal unit cell of LSCO is shown in Fig.
3.7a. The lattice constants are a ≈ 5.35 A

◦
, b ≈ 5.40 A

◦
and c ≈ 13.15 A

◦
.

This compound is often termed the 214 structure because it has two La (Sr),
one Cu and four O atoms. Upon examining the unit cell shown in Fig. 3.7a,
one can clearly see that the basic 214 structure is doubled to form a unit cell.
Therefore a more proper label might be 428. The reason for this doubling is
that every other CuO2 plane is offset by one-half a lattice constant, so that the
unit cell would not be truly repetitive if we stopped counting after one cycle of
the atoms.

In LSCO, the conducting CuO2 planes are ∼ 6.6 A
◦

apart, separated by two
LaO planes which form the charge reservoir that captures electrons from the
conducting planes upon doping. In the crystal, oxygen is in an O2− valence
state that completes the p shell. Lanthanum loses three electrons and becomes
La3+ which is in a stable closed-shell configuration. To conserve charge neu-
trality, the copper atoms must be in a Cu2+ state which is obtained by losing the
(4s) electron and also one d electron. This creates a hole in the d shell, and thus
Cu2+ has a net spin of 1/2 in the crystal. Along the c direction, each copper
atom in the conducting planes has an oxygen above and below. These oxygen
atoms are called apical. Thus, in LSCO, the copper ions are surrounded by oc-
tahedra of oxygens, as shown in Fig. 3.7a. However, the distance between a Cu
atom and an apical O is ∼ 2.4 A

◦
, which is considerably larger than the distance

Cu–O in the planes (1.9 A
◦

). Consequently, the dominant bonds are those on
the plane, and the bonds with apical oxygens are much less important. Many
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Figure 3.7. (a) Crystal tetragonal structure of LSCO. (b) Schematic of a CuO2 plane, the
crucial subunit for high-Tc superconductivity. The arrows indicate a possible alignment of spins
in the antiferromagnetic ground state.

high-Tc compounds also have apical oxygens which are always separated from
the conducting planes by a distance of about 2.4 A

◦
.

Figure 3.7b schematically shows a CuO2 plane, the crucial subunit for high-
Tc superconductivity. In Fig. 3.7b, the arrows indicate a possible alignment of
spins in the antiferromagnetic ground state of La2CuO4. In reality, however,
the copper spin are not fully in the planes—they are oriented slightly out of the
planes, i.e. along the c axis.

The phase diagram of this material is shown in Fig. 3.8. Near half-filling,
the antiferromagnetic order is clearly observed. For higher Sr doping, 0.02 ≤
x ≤ 0.08, there is no long-range antiferromagnetic order, but at very low tem-
peratures there is a spin-glass-like phase. This phase is not a conventional
spin glass. The insulator-metal transition occurs at about x ∼ 0.04–0.05. For
Sr doping between x ∼ 0.05 and ∼ 0.27, a superconducting phase is found
at low temperatures. The maximum Tc is observed at the “optimal” doping
x ∼ 0.16. As one can see in Fig. 3.8, the Sr substitution for La in LSCO in-
duces a structural phase transition from the high-temperature tetragonal (HTT)
to low-temperature orthorhombic (LTO) and, at low temperatures, from the
LTO phase to the low-temperature tetragonal (LTT) phase (not shown).

In Fig. 3.8, the Tc(x) dependence has a nearly bell-like shape. However,
at doping x = 1

8 , the curve has a dip. This dip is the so-called 1
8 anomaly and

inherent exclusively to LSCO.
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Figure 3.8. Phase diagram of LSCO.

In the Uemura plot shown in Fig. 3.6, one can see that the superfluid density
in LSCO (marked by 214) and other cuprates is very low. The main supercon-
ducting characteristics of LSCO and some other cuprates are listed in Table
3.6. From these data, one can conclude that the superconducting properties of
cuprates are very anisotropic.

Table 3.6. Characteristics of optimally doped cuprates: the critical temperature Tc; the coher-
ence length ξi; the penetration depth λi, and the upper critical magnetic fields Hi

c2 (i = ab or
c)

Compound Tc (K) ξab (A
◦

) ξc (A
◦

) λab (A
◦

) λc (A
◦

) Hab
c2 (T) Hc

c2 (T)

NCCO 24 58 3.5 1200 260 000 10 -
LSCO 38 33 2.5 2000 20 000 62 15
YBCO 93 15 2 1450 6000 120 40
Bi2212 95 20 1 1800 7000 100 30
Bi2223 110 15 1 2000 10 000 250 30
Tl1224 128 14 1 1500 – 160 -
Hg1223 135 13 2 1770 30 000 190 -
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Figure 3.9. Crystal orthorhombic structure of YBCO. Note that the orthorhombic lattice vec-
tors are at 45◦ relatively to the tetragonal lattice vectors (see Fig. 3.7a).

3.2.2 YBCO

YBCO is the first superconductor found to have Tc > 77 K, and is com-
monly termed “123” . The orthorhombic unit cell of YBCO is shown in Fig.
3.9. The lattice constants are a ≈ 3.82 A

◦
, b ≈ 3.89 A

◦
and c ≈ 11.7 A

◦
. The two

CuO2 layers are separated by a single yttrium atom. The role of yttrium is very
minor, it just holds the two CuO2 layers apart. In the crystal, Y has a valence
of +3. The replacement of Y by many of the lanthanide series of rare-earth ele-
ments causes no appreciable change in the superconducting properties. Outside
the CuO2–Y–CuO2 sandwich, the BaO planes and CuO chains are located, as
shown in Fig. 3.9. In the crystal, Ba has a valence of +2. The distance Cu–O
in the chains is ∼ 1.9 A

◦
, as that in the planes. Each copper ion in the CuO2

planes is surrounded by a pyramid of five oxygen ions.
YBCO is the only high-Tc compound having the one-dimensional CuO

chains. In YBCO6, there are no CuO chains, and the compound is an anti-
ferromagnetic insulator, as shown in Fig. 3.10. It has to be doped to gradually
become a metallic conductor and a superconductor at low temperature. The
doping is achieved by adding additional oxygen atoms which form the CuO
chains. So, the oxygen content can be changed reversibly from 6.0 to 7.0 sim-
ply by pumping oxygen in and out of the parallel CuO chains running along the
b axis. Thus, the CuO chains play the role of charge reservoirs. At an oxygen
content of 6.0, the lattice parameters a �= b, and the unit cell is orthorhombic.
The increase of oxygen content causes the unit cell to have square symmetry,
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Figure 3.10. Phase diagram of YBCO.

i.e. a = b. So, the crystal becomes tetragonal at low temperatures, as shown in
Fig. 3.10. At an oxygen content of 6.4, the antiferromagnetic long-range or-
der disappears and the superconducting phase starts to develop. The maximum
value of Tc is achieved at a doping level of about 6.95 (the optimal doping).
Unfortunately, it is not possible to explore the phase diagram above the oxygen
content of 7.0, since the CuO chains are completed. YBCO7 is a stoichiometric
compound with the highest Tc.

In Fig. 3.10, one can see that, at x � 6.7, there is a plateau at Tc � 60 K.
This is the so-called 60 K plateau. There are two different explanations for the
origin of the 60 K plateau: the hole concentration in the CuO2 planes at x � 6.7
remains unchanged, and the change of hole concentration occurs exclusively
in the CuO chain layers. The second explanation is that this plateau is directly
related to the 1

8 anomaly observed in LSCO.

3.2.3 Bi2212

Figure 3.11 shows the unit cell of Bi2212 which has a maximum Tc of 95 K.
The dimensions of the tetragonal lattice constants of Bi2212 are a � b ≈ 5.4 A

◦

and c ≈ 30.89 A
◦

. In addition to the CuO2 double layer intercalated by Ca, the
unit cell also contains two semiconducting BiO and two insulating SrO layers,
as shown in Fig. 3.11. In the crystal, Bi and Sr have a valence of +3 and +2,
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Figure 3.11. Crystal structure of Bi2212.

respectively. In Bi2212 crystals, there is a lattice modulation along the b axis,
with the period of 4.76 b. The family of the bismuth cuprates consists of three
members: Bi2201, Bi2212 and Bi2223 with the unit having 1, 2 and 3 CuO2

planes, respectively. The maximum Tc increases with increasing number of
CuO2 planes.

The structure of the bismuth cuprates is very similar to the structure of thal-
lium cuprates such as Tl2201, Tl2212 and Tl2223, with bismuth replaced by
thallium, and strontium replaced by barium. In spite of similar structural fea-
tures of bismuth and thallium compounds, there are differences in the super-
conducting and normal-state properties.

The bismuth cuprates are very suitable for tunneling and other measure-
ments: the oxygen content in Bi2212, Bi2201 and Bi2223 at room temperature
is stable, unlike that in YBCO. Secondly, the bonds between BiO layers in the
crystal are weak, so it is easy to cleave a Bi2212 crystal. After the cleavage, the
Bi2212 crystal has a BiO layer on the surface. However, it is generally agreed
that Bi2212 samples have not reached the degree of purity and structural per-
fection attained in YBCO.

Since the bismuth, thallium and mercury cuprates have the lattice constants
a = b, there is no twinning within a crystal.

3.2.4 NCCO

The structure of the electron-doped NCCO cuprate, shown in Fig. 3.12,
is body-centered tetragonal like that of LSCO. The difference between the two
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Figure 3.12. Crystal structure of NCCO.

lies in the position of the oxygen atoms of the charge reservoirs. The tetragonal
lattice constants of NCCO are a � b ≈ 5.5 A

◦
and c ≈ 12.1 A

◦
. In the crystal,

Nd and Ce have a valence of +3 and +4, respectively. When a Nd3+ ion is
replaced by Ce4+, the CuO2 planes get an excess of electrons. It is believed
that an added electron occupies a hole in the d shell of copper, producing an
S = 0 closed-shell configuration.

Superconductivity in NCCO is observed when the Ce content varies be-
tween x � 0.14 and 0.18. The phase diagram of NCCO is compared in Fig.
3.13 with that of the hole-doped LSCO cuprate. As one can see in Fig. 3.13,
the two diagrams are very similar. Both present an antiferromagnetic phase
with similar Ne′el temperature. When x is increased further, a superconducting
phase appears close to antiferromagnetism, although the width of the super-
conducting phase in the two cases differs by a factor of 3. The maximum value
of Tc in NCCO is 24 K, so it is almost twice as small as that of LCSO.

3.2.5 Applications of high-Tc superconductors

Soon after the discovery of high-Tc superconductors, it was realized that, at
liquid nitrogen temperatures, enormous savings are possible. For example, if
cryogenic liquids are used for cooling, a litre of liquid helium costs approxi-
mately $25, as opposed to $0.60 for a litre of liquid nitrogen. The difference
in the cost of electricity, if electrical cryocoolers are used at 4.2 K and 77 K, is
similar.
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Figure 3.13. Schematic phase diagram of NCCO and LSCO shown together for better com-
parison.

The main problem in using cuprates for applications is that, like all ceram-
ics, high-Tc superconductors are very brittle and very difficult to shape and
handle, while long, flexible, superconducting wires are necessary for many
large-scale applications. Large supercurrents can only flow along CuO2 planes,
and only a small fraction of the material in a completed device is likely to be
correctly oriented. The grain boundaries attract impurities, leading to weak
links, which reduce the inter-grain current density and provide an easy path for
flux vortices to enter the material. Flux creep or vortex penetration into high-
Tc superconductors is unusually rapid. The coherence length or diameter of a
vortex core tends to be very small. This is a problem because pinning is most
effective if the defect or impurity is of the same size as the coherence length.

Small-scale applications. Small-size devices based on thin films of cuprates
are now commercially available. Progress is now largely limited by refriger-
ation packages, not by materials, films or junctions. Thin films of YBCO are
widely used for small-size high-Tc superconducting devices because YBCO
has a high critical temperature and can accommodate a high current density.
Most success has been achieved with SQUIDs which are based on the Joseph-
son effect. The SQUID sensitivity is so high that it can detect magnetic fields
100 billion times smaller than the Earth magnetic field. Other devices that
have reached commercial availability are high-Tc superconducting passive RF
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(radio frequency) and microwave filters for wide-band communications and
radars. These are based on conventional microstrip and cavity designs. They
have the advantages of very low noise and much higher selectivity and ef-
ficiency than conventional filters. They are now used at mobile-phone base
stations. Finally, high-Tc superconducting thin films are also widely used for
bolometric detection of radiation.

Large-scale applications. Large-scale applications for high-Tc supercon-
ductors present a major challenge to the materials scientists. Compared with
the small-scale applications, a large-scale application generally requires much
larger currents and lengths of superconductor in a working environment where
the magnetic field may be several Teslas. The most important applications
under consideration are in magnets, power transmission cables, current leads,
fault current limiters, transformers, generators, motors, and energy storage.
Applications related to magnet technology are probably among the most sig-
nificant that are under development at the present time. These include mag-
netic energy storage, Maglev trains (relaying on repulsion between magnets
mounted on the train and the guideway) and magnets for MRI (Magnetic Res-
onance Imaging) and other medical applications. In all these cases the super-
conductor must not only carry a large current with zero resistance under a high
magnetic field, but it also must be possible to fabricate it in long lengths with
high flexibility and a high packing density. Research on large-scale applica-
tions of high-Tc superconductors has focused on the Bi-based family because
it is difficult to grow YBCO in bulk. Bi2212/Bi2223 powder is packed into a
silver tube, which is drawn fine and goes through a sintering, rolling and an-
nealing process. The major remaining barrier to wider use is cost. However,
in some cases the extra cost is justified: high-Tc superconducting underground
power transmission cables, which can carry 3 to 5 times the current of a copper
cable of the same diameter, are already coming into commercial use in cities
such as Detroit. The use of high-Tc superconductors is now a multi-billion-
dollar growing business: more than 50 companies around the world have set
out to commercialize high-Tc superconductors over the past 14 years.

3.3 Charge transfer organics
Organic compounds and polymers are usually insulators, but it is now known

that some of them form good conductors. These conducting organics were
widely studied during the 1970s. It turns out that some of them superconduct
at low temperatures. All organic superconductors are layered. So, all these ma-
terials are basically two-dimensional. However, the electron transport in some
of them is not quasi-two-dimensional but quasi-one-dimensional.

The first organic superconductor was discovered in 1979 by Bechgaard and
Jerome: the compound (TMTSF)2PF6 was found to superconduct below Tc =
0.9 K under a pressure of 12 kbar. TMTSF denotes tetramethyltetraselenaful-
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Figure 3.14. Structure of organic molecules that form superconductors. Abbreviations of their
names are shown below each molecule.

valene, and PF6 is the hexafluorophosphate. However, the ten years following
this discovery saw a remarkable increase in Tc. In 1990, an organic supercon-
ductor with Tc ≈ 12 K was synthesized. In only 10 years, Tc increased over a
factor 10!

Figure 3.14 shows several organic molecules that form superconductors. In
general, they are flat, planar molecules. Among other elements, these molecules
contain sulfur or selenium atoms. In a crystal, these organic molecules are ar-
ranged in stacks. The chains of other atoms (Cs or I) or molecules (PF6, ClO4

etc.) are aligned in these crystals parallel to the stacks. As an example, the
crystal structure of the first organic superconductor (TMTSF)2PF6, a represen-
tative of the Bechgaard salts, is schematically shown in Fig. 3.15. The planar
TMTSF molecules form stacks along which the electrons are most conducting
(the a axis). The chains of PF6 lie between the stacks, aligned parallel to them.
Two molecules TMTSF donate one electron to an anion PF6:

(TMTSF)2 + PF6 −→ (TMTSF)+2 + PF−
6 .
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Figure 3.15. A side view of the crystal structure of the Bechgaard salt (TMTSF)2PF6. Each
TMTSF molecule is shown with the electron orbitals (the hydrogen atoms are not shown).
The chemical structure of the TMTSF molecules is depicted in Fig. 3.14. The organic salt
(TMTSF)2PF6 is the most conductive along the TMTSF stacks (along the a axis).

The separation of charge creates electrons and holes that can become delocal-
ized to render the compound conducting and, at low temperatures, supercon-
ducting (under pressure).

After 1979, several more organic superconductors of similar structure were
discovered. In all cases, some anion X− is needed to affect charge balance in
order to obtain metallic properties and, at low temperature, superconductivity.
So, the anions are mainly charge-compensating spacers; the conductivity is in
the organic molecules. There are six different classes of organic superconduc-
tors. Two of them are the most studied—the Bechgaard salts (TMTSF)2X and
the organic salts (BEDT-TTF)2X based on the compound BEDT-TTF shown
in Fig. 3.14. BEDT-TTF denotes bis-ethylenedithio-tetrathiafulvalene. The
members of the (BEDT-TTF)2X family exhibit the highest values of Tc, and
have a rich variety of crystalline structures. In contrast to the flatness of the
TMTSF molecules shown in Fig. 3.15, the CH2 groups in the BEDT-TTF
molecule lie outside the plane of the remaining part of this molecule. Fur-
thermore, the arrays of BEDT-TTF stacks form conducting layers separated
by insulating anion sheets. So, in contrast to the Bechgaard salts which ex-
hibit quasi-one-dimensional electron transport, the electronic structure of the
BEDT-TTF family is of two-dimensional nature which appears in the anisotro-
py of the conductivity and superconducting properties. Also in contrast to the
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Bechgaard salts, one molecule BEDT-TTF, not two, donates one electron to an
anion X−. The highest values of Tc are observed in the (BEDT-TTF)2X salts
with the anions X = Cu(NCS)2; Cu[N(CN)2]Br and Cu[N(CN)2]Cl. Their
critical temperatures are respectively Tc = 10.4, 11.6 and 12.8 K. The first
two compounds superconduct at ambient pressure, while the last one with
Cu[N(CN)2]Cl becomes superconducting under a pressure of 0.3 kbar.

Interestingly, the hydrogen isotope effect in BEDT-TTF is negative. In con-
ventional superconductors, the critical temperature of a metal is always higher
than that of its isotope with a heavier mass. It is just the opposite for the
(BEDT-TTF)2Cu(NCS)2 compound: in 1989, Japanese researchers replaced
some hydrogen atoms in BEDT-TTF molecules by deuterium, and its critical
temperature rose to 11.0 K. Such an isotope effect is called negative or inverse.

Organic superconductors with the same chemical formula can exist in a va-
riety of crystal phases. This is because the electronic properties of organic
conductors depend on the preparation method. For example, there are at least
five known phases of the (BEDT-TTF)2I3 compound that differ considerably
in their critical temperatures. It is necessary to emphasize that the conditions
in which the single crystals of organic conductors are synthesized differ dras-
tically from those at which the crystals of the cuprates are grown. While the
single crystals of cuprates are prepared at temperatures near 950 C, the single
crystals of organic superconductors are grown at ambient temperatures. Above
100 C, the crystals of organic conductors decompose, melt or change compo-
sition. To make an organic charge-transfer salt, including the (BEDT-TTF)2X
series, the electrocrystallization synthesis process is generally used. Solutions
of the cation and the anion are placed in a container, separated by a porous
glass plug (a “ frit” ) that allows ions to pass only when electrical current flows.
Applying a small current (0.1–0.5 µA/cm2) causes small crystals of (BEDT-
TTF)2X to form on the anode. Typical crystal masses are 140-280 µg. The
crystals are very thin, about 1 to 2 mm long, and black in color. So, at this
stage, no one regards the organic superconductors as practical materials.

However, organic superconductors attract a lot of attention because they are
in many respects similar to the cuprates. They have reduced dimensionality,
low superfluid density, low values of the Fermi energy, magnetic correlations,
unstable lattice and numerous phase transitions above Tc. Indeed, as discussed
above, the Bechgaard salts and salts based on the TCNQ molecules shown in
Fig. 3.14 are quasi-one-dimensional conductors, while the BEDT-TTF family
is quasi-two-dimensional. Obviously, their superconducting properties are also
highly anisotropic. For example, the values of in-plane and out-of-plane coher-
ence lengths in (BEDT-TTF)2Cu[N(CN)2]Br are ξ0,‖ � 37 A

◦
and ξ0,⊥ � 4 A

◦
,

respectively (compare with those for LSCO in Table 3.6). In the Uemura plot
shown in Fig. 3.6, one can see that the superfluid density obtained in k-(BEDT-
TTF)2Cu(NCS)2 (marked in Fig. 3.6 by BEDT) is very low, and comparable
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with that in the cuprates (the prefix k indicates one of the five crystal phases of
the (BEDT-TTF)2X family). Depending on pressure, organic superconductors
exhibit a long-range antiferromagnetic ordering. If, in the phase diagram of
the Bechgaard salts, the superconducting phase evolves out of the antiferro-
magnetic phase, in k-(BEDT-TTF)2Cu[N(CN)2]Br, these two phases overlap.
The latter fact suggests that antiferromagnetic fluctuations—short-lived exci-
tations of the hole-spin arrangements—are important in the mechanism of un-
conventional superconductivity in organic salts. The unconventional character
of superconductivity in organics manifests itself in the gap ratio, 2∆/(kBTc) ∼
6.7, obtained in tunneling measurements in k-(BEDT-TTF)2Cu(NCS)2. Such
a value of the gap ratio is too large for the conventional type of superconduc-
tivity.

As discussed in Chapter 2, in the quasi-two-dimensional organic conduc-
tor λ-(BETS)2FeCl4, superconductivity is induced by a very strong magnetic
field, 18 ≤ H ≤ 41 T. The dependence Tc(H) has a bell-like shape with a
maximum Tc � 4.2 K near 33 T. At zero field, this organic compound is an an-
tiferromagnetic insulator below 8.5 K. The other two-dimensional compound,
α-(BEDT-TTF)2KHg(NCS)4, at low magnetic fields is a charge-density-wave
insulator. Thus, in these organic salts, the magnetic and electronic degrees of
freedom are coupled. Furthermore, the fact that the electronic and magnetic
properties of organic superconductors strongly depend on pressure indicates
that their electronic, magnetic and crystal structures are strongly coupled, as
those in the cuprates.

Finally, let us consider the longitudinal ρa and transverse ρc resistivities
measured in (TMTSF)2PF6 and the in-plane ρab and out-of-plane ρc resistiv-
ities obtained in an undoped TmB2Cu3O6.37 (TmBCO) single crystal. Figure
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Figure 3.16. (a) Temperature dependences of longitudinal ρa (see the axes in Fig. 3.15) and
transverse ρc resistivities measured in one-dimensional (TMTSF)2PF6 organic conductor. (b)
The temperature dependences of in-plane ρab and out-of-plane ρc resistivities obtained in an
undoped TmBCO single crystal (after [30]).
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3.16 depicts these two sets of resistivities as functions of temperature. A visual
inspection of Figs. 3.16a and 3.16b shows a striking similarity between the two
plots. In Fig. 3.16a, the steep rises in ρa and ρc at low temperatures are due to
a metal-insulator transition (and occur at different temperatures, Tρa < Tρc).
In Fig. 3.16b, only the out-of-plane resistivity ρc exhibits this rise; the in-plane
resistivity ρab in Fig. 3.16b does not show the rise at low temperature because
the minimum temperature available in these measurements was not sufficiently
low to observe it [30]. As shown elsewhere [30], this insulating phase at low
temperatures in (TMTSF)2PF6 and TmBCO occurs mainly due to a charge-
density-wave ordering. This fact is important and will be discussed in Chapter
6. From the data in Fig. 3.16, one can also conclude that, below 327 K, the
electron transport in TmBCO is in fact quasi-one-dimensional.

3.4 Fullerides
Historically, any allotrope based on the element carbon has been classed

as organic, but a new carbon allotrope stretches that definition. The pure el-
ement carbon forms not only graphite and diamond but a soccer-ball shaped
molecule containing 60 atoms, sketched in Fig. 3.17. Because the structure
of C60 is a mixture of five-sided and six-sided polygons, reminiscent of the
geodesic dome designed by architect R. Buckminister Fuller, the molecule C60

has been affectionately named “buckminster-fullerene” (without one i), or just
“ fullerene” for short. Due to its resemblance to a soccer ball, the molecule C60

is also called “buckyball.” There are also lower and higher molecular weight
variations such as C20, C28, C70, C72, C100 and so forth, which share many
of the same properties. The word “ fullerenes” is now used to denote all these
molecules and other closed-cage molecules consisting of only carbon atoms.
The alkali-doped fullerenes are called “ fullerides.”

The C60 molecules were officially discovered in 1985; however, their pres-
ence was first seen by astrophysicists a few years earlier in the interstellar dust.
The light transmitted through interstellar dust had an increased extinction in
the ultraviolet region at a wavelength of 2200 A

◦
(5.6 eV) caused by the C60

molecules. Only since 1990 has C60 been available to many laboratories in
large enough quantities to make solids of a size that allowed traditional solid-
state experiments. Very soon, in 1991 it was found that intercalation of alkali-
metal atoms in solid C60 leads to metallic behavior. Shortly afterwards, also
in 1991, it was discovered that some of these alkali-doped C60 compounds are
superconducting with a transition temperature that is only surpassed by that
in the cuprates. In fullerides, the maximum critical temperature of 33 K is
observed at ambient pressure in RbCs2C60, and Tc = 40 K in Cs3C60 under a
pressure of 12 kbar.

The C60 molecule has a great stability because it has an incredibly large
number of resonant structures. Large organic molecules, for example those in
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Figure 3.17. One C60 molecule.

Fig. 1.3, have alternating single and double bonds between the carbon atoms—
the conjugate bonds. Stability of such molecules arises from the possibility of
having different arrangements of single and double bonds. Each such arrange-
ment is called a resonant structure. The more an organic compound has these
resonance structures, the more it is stable. For example, extensive sheets of
graphite have a virtually infinite number of resonance structure. So, from this
standpoint, the C60 molecule is very stable. The C60 molecule, as well as a
soccer ball, has 12 pentagonal (5-sided) and 20 hexagonal (6-sided) faces. The
mean diameter of a C60 ball is 7.1 A

◦
. The average C-C distance in a C60

molecule is 1.43 A
◦

. There are 90 C-C bonds in a C60 molecule.
The C60 molecules bind with each other in the solid state to form a crystal

lattice with a face-centered cubic structure (see Fig. 3.18). The lattice constant
a of the C60 crystal is 14.161 A

◦
. In such a lattice, the distance between cen-

ters of two neighboring C60 molecules is 10 A
◦

. These C60 molecules are held
together by weak van der Waals forces. Because C60 is soluble in benzene,
single crystals of it can be grown by slow evaporation from benzene solutions.
In the face-centered cubic fullerene structure, about 26% of the volume of the
unit cell is empty. So, when doped by alkali atoms, these easily fit into empty
space between molecular balls of the materials, as schematically shown in Fig.
3.18. Unfortunately, the fullerides are extremely unstable in air, burning spon-
taneously, so they must be prepared and kept in an inert atmosphere. When C60



Superconducting materials 111

Figure 3.18. Unit cell of A3C60. The large spheres represent the C60 molecules, and the small
spheres are alkali ions. In a given unit cell, there are two ions with tetrahedral coordination and
one ion with octahedral coordination.

crystals and, for example, potassium metal are placed in evacuated tubes, then
heated to 400 C, an atmosphere of potassium vapor diffuses into the empty
space between the C60 molecules, forming the compound K3C60. This com-
pound is no longer an insulator but becomes superconducting at 19.5 K. In this
fulleride, the potassium atoms become ionized to form the positive ion K+,
while each C60 molecule accepts three electrons:

3K + C60 −→ 3K+ + C3−
60 .

Thus, each fullerene molecule has three extra delocalized electrons. These
extra electrons not only wander around their respective C60 molecules, but they
can also jump from one to another C60 molecule and thereby carry electrical
current. The fullerides are magnetic due to spins of alkali atoms, which are
ordered antiferromagnetically at low temperatures.

There are a few dozens of fullerides M3C60 known to become supercon-
ducting at low temperature. The critical temperatures for several supercon-
ducting fullerides with the highest Tc are listed in Table 3.7. As already noted,
Cs3C60 also superconducts below Tc = 40 K but exclusively under pressure
(∼ 12 kbar). The crystal structure of the superconducting phase for Cs3C60

is believed to be not face-centered cubic but a mixed A-15 and body-centered
tetragonal. Table 3.7 also gives the values of lattice constant for these super-
conducting fullerides. When a C60 single crystal is doped by alkali metals, its
lattice constant slightly increases in comparison with that of the pristine C60

crystal. The degree of this lattice expansion depends on the radius of the dopant
alkali atom. In Table 3.7, one can see that the critical temperature increases as
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Table 3.7. Critical temperature Tc and the lattice constant a for some M3C60 fullerides [31]

M3 in M3C60 a (A
◦

) Tc (K)

RbCs2 14.555 33
Rb2Cs 14.431 31.3
Na2Cs(NH3)4 14.473 29.6
Rb3 14.384 29
Rb2K 14.323 27
K2Cs 14.292 24
KRb2 14.243 23
K2Rb 14.243 23
K3 14.240 19.5

the cubic C60 lattice expands. Thus, there is a correlation between the critical
temperature Tc and the lattice constant a. Nevertheless, it is generally believed
that a relation between Tc and the electronic density of states at the Fermi level
N(EF ) is more fundamental than between Tc and a. On the other hand, there
is considerable uncertainty regarding the magnitude of the experimental elec-
tronic density of states for specific fullerides, while the lattice constants can be
more reliably measured. It is for this reason that plots of Tc versus a are more
commonly used in the literature.

Let us now discuss superconducting properties of the fullerides. First of
all, it is necessary to emphasize that the fullerides are electron-doped super-
conductors, not hole-doped as the cuprates and organic salts. Experimentally,
the critical temperature of hole-doped superconductors is usually a few times
higher than that of electron-doped superconductors. So, it is possible that the
temperature Tc ∼ 40 K can be a maximum for electron-doped fullerides.

It is by now generally agreed that the electron-phonon interaction is the
dominant pairing mechanism in the fullerides [31, 32]. At the same time, anti-
ferromagnetic spin fluctuations participate also in mediating superconductivity
in the fullerides [19]. For example, the Tc(p) dependence in the fullerides,
where p is the carrier concentration, has a bell-like shape [32], typical for the
cuprates and organic salts. Furthermore, the Ne′el temperature in antiferro-
magnetic non-superconducting fullerides as a function of crystal volume also
has a bell-like shape [19]. Generally speaking, a bell-like shape of the Tc(p)
dependence is the “fi ngerprint” left by spin fluctuations participating in super-
conductivity. Therefore, such a bell-like Tc(p) dependence is in fact typical for
all compounds of the third group of superconductors. For the fullerides, this
means that superconductivity in alkali-doped C60 is unconventional.

The unconventional type of superconductivity in the fullerides manifests it-
self through most superconducting characteristics. For example, the carbon
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isotope effect in some C60 compounds is not of the BCS type. In spite of the
fact that the isotope-mass exponent α in most of the fullerides is around 0.3,
in some of them α is much larger than 0.5 (the BCS value). For instance, the
carbon-isotope-mass exponent in Rb3C60 is larger than 2. Such an exponent
value is similar to that of oxygen isotope effect in underdoped cuprates. Sec-
ondly, the superfluid density ns in the fullerides is very low: in the Uemura
plot shown in Fig. 3.6, K3C60 is situated among other unconventional super-
conductors. As a consequence of low values of ns, the Fermi energy EF in the
fullerides is also low (∼ 0.25 eV) and comparable with that of the cuprates.
The values of the coherence length in alkali-doped C60 are small, ∼ 30 A

◦
,

while the penetration depth is very large, ∼ 4000 A
◦

. So, the fullerides are
type-II superconductors. Table 2.2 presents some superconducting character-
istics for K3C60 and Rb3C60. The values of Hc1 in the fullerides are very
small, ∼ 100–200 Oe, whilst those of Hc2 are sufficiently large for electron-
doped superconductors, ∼ 30–50 T. The gap ratio obtained in Rb3C60 in tun-
neling measurements is also sufficiently large for electron-doped compounds,
2∆/(kBTc) � 5.4 (thus, ∆ � 7 meV).

3.5 Graphite intercalation compounds

The first observation of superconductivity in a doped graphite goes back to
1965, when superconductivity was observed in the potassium graphite interca-
lation compound C8K having a critical temperature of 0.55 K. Later, supercon-
ductivity was observed in other graphite intercalation compounds (GICs) [33].
A single layer of three-dimensional graphite is defined as a graphene layer.
In GICs, the graphene layers are separated by the layers of intercalant atoms.
The crystal structure of graphite is shown in Fig. 3.19. The interlayer spacing
in graphite is about 3.354 A

◦
, and the length of C–C bonds in the graphene is

1.421 A
◦

. The bonds between adjacent layers in graphite are weak.

According to the preparation method, the superconducting GICs can be di-
vided into two subgroups: the stage 1 and stage 2 GICs. The stage 2 GICs are
synthesized in two stages, and so they are referred to as the stage 2 compounds.
The structures of the stage 1 and 2 GICs are different along the c axis. In the
stage 1 GICs, the adjacent intercalant layers are separated from one another
by one graphene layer, while in the stage 2 GICs, the neighboring intercalant
layers are separated by two graphene layers. The stage 1 GICs consist of the
binary C8M, ternary C4MHg and C4MTl1.5 compounds, and the stage 2 GICs
are represented by the ternary C8MHg and C8MTl1.5, where M = K, Rb and
Cs, i.e. the same alkali atoms which are used to dope the fullerene C60 (see the
previous subsection). This means that the superconducting GICs are magnetic
due to spins of the alkali atoms. In the superconducting GICs, as well as in the
fullerides, the charge carriers are electrons, not holes.
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Figure 3.19. Crystal structure of hexagonal graphite. Only three planes of carbon (graphene
layers) are shown. The nearest-neighbor carbon distance in graphene layer is 1.421 A

◦
, and the

distance between the layers is 3.354 A
◦

.

At ambient pressure, the critical temperatures of the superconducting GICs
discovered before 1986 are low, Tc < 3K. After 1986 when high-Tc super-
conductivity was discovered in cuprates, most groups suspended the search for
superconductivity in GICs. For binary C8M compounds, the highest critical
temperatures reported for M = K, Rb and Cs are 0.55, 0.15 and 0.135 K, re-
spectively. In the alkali metal amalgam GICs C8KHg and C8RbHg, the critical
temperatures are 1.93 and 1.44 K, respectively. In the potassium thallium GICs
C4KTl1.5 and C8KTl1.5, respectively Tc = 2.7 and 1.3 K. With the potassium
thallium GICs excluded, the critical temperature of the stage 2 GICs is in gen-
eral higher than that of the stage 1 GICs. Under pressure, the sodium graphite
intercalation compound C2Na superconducts below Tc ∼ 5 K.

The physical properties of superconducting GICs, in many respects, are sim-
ilar to those of the fullerides and MgB2. The latter material is a representative
of the second group of superconductors, similar to graphite both electronically
and crystallographically (compare Figs. 3.3 and 3.19). So, it is possible that
nonmagnetic GICs that superconduct at low temperature will be discovered in
the near future. This family of superconducting GICs will already belong to
the second group of superconductors.

All the GICs are two-dimensional. As a consequence, their superconducting
properties are anisotropic as those in the cuprates, organic salts and MgB2.
Thus, the GICs are type-II superconductors. The anisotropy in most GICs,
ξ‖/ξ⊥, is between 10 and 50. In low-Tc GICs, the values of ξ‖ and ξ⊥ are of
the order of 3000 and 100 A

◦
, respectively, and Hc2,⊥ ∼ 0.2 T. In C4KTl1.5

which has the highest Tc at ambient pressure (= 2.7 K), ξ‖ � 280 A
◦

, ξ⊥ �
40 A

◦
, and Hc2,⊥ � 3 T [33]. So, the anisotropy in C4KTl1.5, ξ‖/ξ⊥ � 7, is not
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very large, and ξ⊥ � 40 A
◦

is much larger than the interlayer distance in the
superconducting GICs, ∼ 10 A

◦
.

Recently, considerable scientific interest in graphite and graphite-based su-
perconducting materials has been renewed after the discovery of supercon-
ductivity in MgB2. In 2001, superconductivity at Tc = 35 K was observed in
graphite-sulfur composites [35]. In this work, however, the structure of the sul-
fur intercalant layers was not identified. As a result, it is not clear to what group
this C-S composite belongs, and whether it is an electron-doped or hole-doped
superconductor.

Finally, let us briefly discuss how the stage 1 and 2 GICs are synthesized.
The stage 1 GICs are prepared similarly to the superconducting fullerides: a
single crystal of highly oriented pyrolytic graphite is placed in an evacuated
tube, then heated to ∼ 300◦C in an atmosphere of intercalant vapor for couple
of days. The intercalant pristine is however heated in another tube to a much
lower temperature, ∼ 150–200◦C, so that the intercalant vapor can reach the
graphite single crystal to diffuse between the graphene layers. This technique
is called the two-temperature method [34]. The stage 2 GICs are synthesized
in two stages. As an example, let us consider the preparation procedure of
the stage 2 compound C8MHg. In the first step, the binary compound C8M is
prepared by the same two-temperature method, and then transferred to a new
tube and exposed to mercury vapor at about 100◦C. As the reaction proceeds,
the stage 1 binary C8M changes into the stage 2 ternary C8MHg. As all the
fullerides, the alkali metal GICs are extremely unstable in air and, therefore,
must be kept in an inert atmosphere.

3.6 Polymers
At present, no organic polymer yet discovered exhibits superconductivity.

In contrast to solid crystals, conducting organic polymers like polyacetylene
are very flexible. So, a superconducting organic polymer with a high critical
temperature will have an enormous potential for practical applications, first
of all, for making superconducting wires. However, one inorganic polymer,
(SN)x, is already known to superconduct below Tc = 0.3 K.

Superconductivity in (SN)x was discovered in 1975. It is the first supercon-
ductor found among quasi-one-dimensional conductors and, moreover, the first
that contained no metallic elements. (SN)x is a chain-like polymer in which
sulphur and nitrogen atoms alternate along the chain. Single crystals have a
dc electrical conductivity of about 1.7 × 105 Ω−1 m−1 along the chains, and
the anisotropy is of the order of 103. A remarkable property of (SN)x is that it
does not undergo a metal-insulator (Peierls) transition at low temperatures but
turns instead into a superconductor below 0.3 K.

In a sense, carbon nanotubes, which we shall discuss in a moment, can be
considered as organic polymers since they can be viewed as giant conjugated
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molecules with a conjugated length corresponding to the whole length of the
tube. They, in fact, can already be used in superconducting chips.

3.7 Carbon nanotubes and DNA
In addition to ball-like fullerenes, it is possible to synthesize tubular fulleren-

es. By rolling a graphene sheet (see Fig. 3.19) into a cylinder and capping each
end of the cylinder with a half of a fullerene molecule, a fullerene-derived
tubule, one atomic layer, is formed, which we shall call a carbon nanotube,
or just a nanotube for short. According to their structure, one can have three
types of the nanotubes. If one rolls up a graphene sheet along the a axis,
shown in Fig. 3.19, one will obtain a nanotube called zigzag. By rolling a
graphene sheet in the direction θ = 30◦ relative to the a axis, one obtains an
armchair nanotube. In the case 0◦ < θ < 30◦, a nanotube called chiral will
be formed. Figure 3.20 shows a piece of armchair nanotube. The armchair
nanotubes are usually metallic, while the zigzag ones are semiconducting. The
carbon nanotubes and fullerenes have a number of common features and also
many differences.

Figure 3.20. A piece of armchair nanotube.

Carbon nanotubes were first observed in 1991 by Iijima in Japan. In fact,
they were multi-walled carbon nanotubes consisting of several concentric
single-walled nanotubes nested inside each other, like a Russian doll. Two
years later, single-walled nanotubes were observed for the first time. They had
just 10–20 A

◦
in diameter. But the field really took off a few years later when

various groups found ways to mass-produce high-quality nanotubes. At the
present, carbon-nanotube research is probably the most active research field in
carbon science.

The nanotubes have an impressive list of attributes. They can behave like
metals or semiconductors, can conduct electricity better than copper, can trans-
mit heat better than diamond. They rank among the strongest materials known,
and they can superconduct at low temperatures—not bad for structures that are
just a few nanometers across. These remarkable properties of carbon nanotubes
suggest enormous opportunities for practical applications which, undoubtedly,
will follow in the near future.
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In 1999, proximity-induce superconductivity below 1 K was observed in
single-walled carbon nanotubes, followed by the observation of genuine super-
conductivity with Tc = 0.55 K. In the latter case, the diameter of single-walled
nanotubes was of the order of 14 A

◦
. Soon afterwards, superconductivity be-

low Tc � 15 K was seen in single-walled carbon nanotubes with a diameter of
4.2 ± 0.2 A

◦
[36]. So, the nanotubes with a smaller diameter (4.2 A

◦
< 14 A

◦
)

exhibit a higher Tc (15 K > 0.55 K). The nanotube diameter of 4.2 A
◦

is very
small, and can be at, or very close to, the theoretical limit. In the case of
Tc = 15 K, the coherence length estimated along the tube direction is about
ξ0 ≈ 42 A

◦
. The effective mass of charge carriers, obtained in calculations, is

m∗ = 0.36 m, where m is the free electron mass.
One of the main problems to study carbon nanotubes, as well as DNA (de-

oxyribonucleic acid), is not only their structure and possible defects along
them, but also the quality of electrical contacts between a nanotube and leads.
For example, it is impossible to solder metal leads onto carbon nanotubes in
the conventional sense of this expression because metals do not wet the tubes.
Therefore, a new laser-based technique was developed for solving the problem
[37].

There is a report suggesting the observation of superconductivity at 645 K in
single-walled carbon nanotubes which contain a small amount of the magnetic
impurities Ni and Co [38]. It is assumed that the nanotubes are only partially
in the superconducting state, and the normal charge carriers are also present at
such high temperatures. We shall discuss these data in Chapters 8 and 10.

In 2001, proximity-induced superconductivity was observed below 1 K in
DNA [37]. The observation of a proximity effect in DNA molecules signifies
that they are in a state near a metal-insulator transition point. The double helix
of DNA has a diameter of 20 A

◦
. It is assumed that if one can find a technique

to dope DNA, it is most likely that it will exhibit genuine superconductivity.

3.8 Heavy-fermion systems
This family of superconductors includes superconducting compounds which

consist of one magnetic ion with 4f or 5f electrons (usually Ce or U) and other
constituent or constituents being s, p, or d electron metals. The principal fea-
ture of these materials is reflected in their name: below a certain coherence
temperature (∼ 20–100 K), the effective mass of charge carriers in these com-
pounds become gigantic, up to several hundred times greater than that of a free
electron. A large number of heavy fermions superconduct exclusively under
pressure. The Tc values of superconducting heavy fermions are in general very
low; however, the family of these intermetallic compounds is one of the best
examples of highly correlated condensed matter systems.

The first such superconductor, CeCu2Si2, was discovered in 1979 by Steglich
and co-workers, and some time passed before the heavy-fermion phenomenon
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was confirmed by the discovery of UBe13 and then UPt3, with critical temper-
atures of Tc = 0.65, 0.9 and 0.5 K, respectively. Since then many new heavy-
fermion systems that superconduct at low temperatures have been found. A
few characteristics for five heavy fermions are given in Table 2.2. The crys-
tal structure of these compounds does not have a common pattern, but varies
from case to case. For example, the crystal structure of the first discovered
superconducting heavy fermions—CeCu2Si2, UBe13 and UPt3—is tetragonal,
cubic and hexagonal, respectively.

These systems display a rich variety of phenomena both in the normal and
superconducting states. Let us start with their anomalous normal-state prop-
erties. At room temperatures, the f -electrons of the magnetic ions behave as
localized spins; the conduction electrons are the s, p or d electrons and have
quite ordinary effective masses. As the temperature is lowered, the f -electrons
begin to couple to the conduction electrons, resulting in very large effective
masses for the hybridized carriers. Due to the strong electron correlation, these
materials have several characteristics that distinguish them from ordinary met-
als. The electronic heat capacities are 102–103 times larger than that observed
in ordinary metals, and the magnetic (Pauli) susceptibility at low temperatures
is ∼ 100 times larger. Both these abnormalities are consequences of a very
large effective mass of the charge carriers. For example, the values of effective
mass in UBe13, UPt3 and URu2Si2 are respectively m∗/m � 300, 180 and
25, where m is the electron mass. The Fermi velocity of such heavy quasi-
particles is very small. If in ordinary metals vF ∼ 108 cm/s, the values of the
Fermi velocity in CeCu2Si2, UPt3, UBe13 and CeAl3 are 1.0 × 105, 6.6 × 106,
3.4 × 106 and 1.2 × 105 cm/s, respectively.

The temperature dependence of resistivity in heavy fermions is similar to
those measured along the c axis in the Bechgaard salt and underdoped cuprates,
shown in Fig. 3.16. Unlike the ordinary metals where the resistance falls with
decreasing temperature, in heavy fermions it first rises, attains a maximum, and
then falls, vanishing at Tc. Ultrasound measurements carried out in the normal
state show that, between room temperature and Tc, heavy fermions undergo
structural phase transitions. In UPt3, the attenuation ultrasound measurements
in the normal state reveal a T 2 dependence of the attenuation down to the
lowest temperature, consistent with electron-electron scattering.

The superconducting state in heavy fermions also displays some anomalous
properties. The enormous value of the Sommerfeld constant γ = C/T , where
C is the specific heat capacity, and the jump in C at Tc (see Chapter 2) reveal
that the heavy electrons participate in superconducting pairing. Furthermore,
the temperature dependence of the heat capacity below Tc is not exponential.
Instead, it follows a power law, indicating that the energy gap at the Fermi sur-
face has nodes in certain directions. Thus, the energy gap is highly anisotropic.
Ultrasound measurements performed in a large number of heavy fermions be-
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low Tc confirm also the existence of nodes in the gap. In UBe13, the gap ratio
obtained in Andreev-reflection measurements, 2∆/(kBTc) � 6.7, uncovers
the unconventional type of superconductivity. A zero-bias conductance peak
observed in these measurements is theoretically an indicator of a d-wave en-
ergy gap. At the same time, tunneling measurements show that UBe13 is an
s-wave superconductor. Tunneling measurements performed in UPt3 indicate
that the s-wave order parameter is anisotropic (see references in [19]). Such a
conflicting situation concerning the gap symmetry is similar to that for super-
conducting cuprates.

The superfluid density in heavy fermions is very low. In the inset of Fig.
3.6, only UPt3 and UBe13 are shown. Recent µSR measurements performed in
UPd2Al3, URu2Si2 and U6Fe show that, in the Uemura plot, these compounds
are also situated in the group of all unconventional superconductors. From
Fig. 3.6, the heavy fermions, in fact, have relatively high Tc as scaled with
their low superfluid density, which is a consequence of their large effective
mass m∗. The phase diagram of many superconducting heavy fermions is very
complex. For example, specific-heat capacity measurements show that, in zero
magnetic field, UPt3 has two superconducting phase transitions at ∼ 0.475 K
and ∼ 0.520 K (a similar phenomenon is observed in superfluid 3He). Further-
more, UPt3 has three distinct superconducting phases in the magnetic field-
temperature plane. As in all unconventional superconductors, the supercon-
ducting properties of heavy fermions are very anisotropic. For example, the
values of the upper critical field of tetragonal URu2Si2 are 2 T for H‖c and
8 T for H⊥c. The electrical resistivity in heavy fermions also varies with di-
rection in the crystal.

Probably, the most interesting characteristic of superconducting heavy fermi-
on materials is the interplay between superconductivity and magnetism. The
magnetic ions are responsible for the magnetic properties of heavy fermions.
For example, in the heavy fermions UPt3, URu2Si2, UCu5 and CeRhIn5, mag-
netic correlations lead to an itinerant spin-density-wave order, while, in
UPd2Al3 and CeCu2Si2, to a localized antiferromagnetic order. In the latter
two heavy fermions, the antiferromagnetic order appears first, followed by the
onset of superconductivity. In these compounds, as well as in other supercon-
ducting heavy fermions with long-range antiferromagnetic order, the Ne′el tem-
perature is about TN ∼ 10Tc. For instance, in CeRh0.5Ir0.5In5 and CeRhIn5,
the bulk superconductivity coexists microscopically with small-moment mag-
netism (≤ 0.1µB). In the heavy fermion CeIrIn5, the onset of a small magnetic
field (∼ 0.4 Gauss) sets in exactly at Tc. In the heavy fermions, superconduc-
tivity and antiferromagnetic order do not compete, since superconductivity is
mediated by spin fluctuations.

Recently, superconductivity was discovered in PuCoGa5 [39], the first su-
perconducting heavy fermion based on plutonium. What is even more interest-
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ing is that the superconductivity survives up to an astonishingly high temper-
ature of 18 K. Such a high critical temperature indicates that in PuCoGa5 the
effective mass of quasiparticles is much lower than that in other heavy fermion
compounds. The crystal structure of PuCoGa5 is layered and tetragonal. The
estimated value of Hc2 is around 35 T.

All the superconducting heavy fermion systems considered up to now have
antiferromagnetic correlations. All experimental facts known before 2000 sup-
ported a point of view that superconductivity and ferromagnetism are mutually
hostile and cannot coexist. For example, in the boride ErRh4B4 and Chevrel-
phase HoMo6S8, superconductivity is destroyed by the onset of a first-order
ferromagnetic phase transition. So, it was a surprise when in 2000 the coex-
istence of superconductivity and ferromagnetism was discovered in an alloy
of uranium and germanium, UGe2. At ambient pressure, UGe2 is known as
a metallic ferromagnet with a Curie temperature of TC = 53 K. However, as
increasing pressure is applied to the ferromagnet, TC falls monotonically, and
appears to vanish at a critical pressure of Pc � 16–17 kbars. In a narrow range
of pressure below Pc and thus within the ferromagnetic state, the supercon-
ducting phase appears in the millikelvin temperature range below the critical
temperature. Above Pc, UGe2 is paramagnetic.

As a matter of fact, magnetic fluctuations are strongest when magnetic or-
der is about to form or disappear, a point known as the quantum critical point.
Quantum critical points have attracted a great deal of attention because the
large slow spin fluctuations that occur near the critical pressure (critical den-
sity) play a key role in the making and breaking of Cooper pairs.

Soon after the discovery of superconductivity in itinerant ferromagnet UGe2,
two new itinerant ferromagnetic superconductors were discovered—zirconium
zinc ZrZn2 and uranium rhodium germanium URhGe. ZrZn2 superconducts
only when it is ferromagnetic, i.e. below the critical pressure Pc � 21 kbars.
Above Pc, it is a paramagnet showing no trace of superconductivity. In ZrZn2,
the maximum critical temperature is slightly less than 3 K at ambient pressure,
and decreases with increasing pressure. URhGe is also a superconductor at
ambient pressure, and has many similar properties of high-pressure UGe2—it
loses its resistance below 9.5 K, exhibits the Meissner effect and has a large
specific-heat anomaly at the superconducting critical temperature.

The archetypal ferromagnet, iron, is found to superconduct at high pres-
sure between 15 and 30 kbars. Albeit, at such pressures, iron ceases to be
ferromagnetic, and there is evidence that, at low temperature, it is weakly an-
tiferromagnetic.

The mechanism of superconductivity in the ferromagnetic heavy fermions
UGe2, ZrZn2 and URhGe is most likely the same as that in the antiferromag-
netic heavy fermions and cuprates, with the exception of the symmetry of the
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order parameter. In the ferromagnetic heavy fermions, it has a p-wave symme-
try, not a d-wave.

3.9 Nickel borocarbides
The nickel borocarbide class of superconductors has the general formula

RNi2B2C, where R is a rare earth which is either magnetic (Tm, Er, Ho, or
Dy) or nonmagnetic (Lu and Y). In the case when R = Pr, Nd, Sm, Gd or Tb
in RNi2B2C, the Ni borocarbides are not superconducting at low temperatures
but antiferromagnetic. In the Ni borocarbides with a magnetic rare earth, super-
conductivity coexists at low temperatures with a long-range antiferromagnetic
order. Interestingly, while in the superconducting heavy fermions with a long-
range antiferromagnetic order TN ∼ 10Tc, in some Ni borocarbides it is just
the opposite, Tc ∼ 10TN . Thus, antiferromagnetism appears deeply in the su-
perconducting state. Furthermore, if in the superconducting antiferromagnetic
Ni borocarbides Tc ∼ 15 K, in the non-superconducting antiferromagnetic Ni
borocarbides with R = Pr, Nd, Sm, Gd or Tb, the Ne′el temperature is also
TN ∼ 15 K. This fact indicates that there exists a direct connection between
magnetism and superconductivity in the Ni borocarbides. Indeed, in the Ni
borocarbides the study of an interplay between superconductivity and antifer-
romagnetism shows that they do not compete [40].

Superconductivity in the Ni borocarbides was discovered in 1994 by Eisaki
and co-workers. Transition temperatures in these quaternary intermetallic com-
pounds can be as high as 17 K. Some characteristics for the antiferromag-
netic TmNi2B2C and nonmagnetic (i.e. without a long-range magnetic order)
LuNi2B2C borocarbides can be found in Table 2.2. The Ni borocarbides have
a layered-tetragonal structure alternating RC sheets and Ni2B2 layers. As a
consequence, the superconducting properties of the Ni borocarbides are also
anisotropic, ξc < ξab. It is agreed that the phonon-electron interaction plays
an important role in mediating superconductivity in these compounds. At the
same time, in the normal state, electrical resistivity shows a T 2 dependence
implying the presence of a strong electron-electron correlation in the Ni boro-
carbides.

Many different types of measurements carried out in the Ni borocarbides
show that the gap ratio 2∆/(kBTc) is between 3.3 and 5.3. So, the coupling
strength in RNi2B2C seems to be not very strong. At the same time, there
is complete disagreement in the literature about the shape of the energy gap.
In photoemission and microwave measurements, the energy gap in some Ni
borocarbides was found to be an s-wave but highly anisotropic. On the other
hand, in specific-heat, thermal-conductivity and Raman-scattering measure-
ments carried out in the Ni borocarbides with R = Y and Lu, the energy gap was
found to be a highly anisotropic gap, most likely with nodes. Furthermore, in
other thermal-conductivity measurements, the gap appears to have point nodes
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along the [100] and [010] directions, thus along the a and b axes. Recent
tunneling measurements performed in the antiferromagnetic TmNi2B2C show
unambiguously that this Ni borocarbide is a fully gapped s-wave superconduc-
tor with a gap being slightly anisotropic. To reconcile all these data, one should
assume that different measurements probe different energy gaps, either ∆p or
∆c.

For the Ni borocarbides, there are still many open questions. For exam-
ple, in the Ni borocarbide ErNi2B2C, besides the presence of incommensurate
spin-density-wave order at low temperatures, the microscopic coexistence of
spontaneous weak ferromagnetism with superconductivity was found by neu-
tron diffraction. The other borocarbide YbNi2B2C is unique in its behavior as
a heavy fermion system. Some of its normal-state characteristics are similar
to those of the heavy fermions. This borocarbide is not superconducting nor
antiferromagnetic.

The layered borocarbides DyB2C and HoB2C without Ni also supercon-
duct, with Tc = 8.5 and 7.1 K, respectively. At the same time, ErB2C is an
antiferromagnet below TN = 16.3 K.

Other related compounds, such as the Ni boronitride La3Ni2B2N3, are also
found to superconduct.

3.10 Strontium ruthenate
Nearly 40 years ago it was found that SrRuO3 is a ferromagnetic metal with

a Curie temperature of 160 K. In its cousin, Sr2RuO4, the superconducting
state with Tc ≈ 1.5 K was discovered in 1994 by Maeno and his collaborators.
The crystal structure of Sr2RuO4 is layered perovskite, and almost isostructural
to the high-Tc parent compound La2CuO4 (see Fig. 3.7), in which the CuO2

layers are substituted by the RuO2 ones. Below 50 K, electrical resistivity—
both in the RuO2 planes and perpendicular to the planes—shows a T 2 de-
pendence implying that the electron-electron correlations in the Sr ruthenate
are important. Therefore, the Fermi-liquid approach is appropriate for this
compound. While searching for optimal crystal growth conditions, a eutectic
solidification system, Ru metal embedded in the primary phase of Sr2RuO4,
was found. An intriguing observation was that the critical temperature of this
eutectic system was enhanced up to 3 K.

The superconducting properties of Sr2RuO4 are highly anisotropic: ξab �
660 A

◦
and ξc � 33 A

◦
. In the mixed state, the vortex lattice has a square struc-

ture, not triangular. Different types of measurements show that the energy gap
in Sr2RuO4 has line nodes. Furthermore, there is a consensus that spin fluctu-
ations mediate superconductivity in Sr2RuO4; however, there is no agreement
on the type of these fluctuations—antiferromagnetic or ferromagnetic. This
issue is still widely debated because it is directly related to another important
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question: does the energy gap in Sr2RuO4 have a p-wave or d-wave symmetry?
Let us briefly discuss this issue.

The problem is that, in analogy with 3He, it is assumed that the p-wave
pairing is mediated via ferromagnetic spin fluctuations. Since the compounds
related to Sr2RuO4 are dominated by ferromagnetic interactions—SrRuO3 be-
comes ferromagnetic below 160 K and Sr3Ru2O7 orders ferromagnetically at
100 K under pressure—it was initially suggested that superconductivity in
Sr2RuO4 is mediated by ferromagnetic spin fluctuations. Therefore, it was
immediately assumed that the energy gap in Sr2RuO4 has a p-wave symme-
try. However, quite astonishingly there is not much experimental evidence
for ferromagnetic spin fluctuations in Sr2RuO4. On the contrary, in inelastic
neutron scattering and NMR measurements, it was found that spin fluctua-
tions have significant antiferromagnetic character (superconducting Sr2RuO4

is extremely close to an incommensurate spin-density-wave instability). Fur-
thermore, its cousin Ca2RuO4 was found to be an antiferromagnetic insulator
with TN ≈ 113 K. On the other hand, the other cousin Sr2IrO4 turned out to be
a weakly ferromagnetic insulator. In recent Andreev-reflection measurements
performed in Sr2RuO4, a zero-bias conductance peak was observed in the su-
perconducting state. In analogy with the cuprates, the presence of this peak in
conductances indicates that the gap has a d-wave symmetry.

Recently, bilayer and trilayer strontium ruthenates have been synthesized:
Sr3Ru2O7 is an enhanced paramagnetic metal, and Sr4Ru3O10 is ferromag-
netic with a Curie temperature of 105 K.

3.11 Ruthenocuprates
Ruthenocuprates are in a sense a hybrid of the superconducting cuprates

and strontium ruthenate. As a consequence, they have a number of common
features with the cuprates, but also many differences. Basically, there are two
ruthenocuprates that superconduct at low temperatures. The general formulas
of these ruthenocuprates are RuSr2RCu2O8 and RuSr2R2Cu2O10 with R =
Gd, Eu and Y. The second ruthenocuprate was discovered first in 1997. The
crystal structure of RuSr2RCu2O8 is similar to that of YBCO except for the
replacement of one-dimensional CuO chains by two-dimensional RuO2 layers
(see Fig. 3.9). It is assumed that the RuO2 layers act as charge reservoirs
for the CuO2 layers. The principal feature of the ruthenocuprates is that they
are magnetically ordered below Tm ∼ 130 K, and become superconducting at
Tc ∼ 40 K. For RuSr2RCu2O8, Tm = 130–150 K and Tc = 30–45 K, while for
RuSr2R2Cu2O10, Tm = 90–180 K and Tc = 30–40 K. It is believed that the
magnetic order arises from ordering of Ru ions in the RuO2 layers, while the
transport occurs in the CuO2 layers.

As in the cuprates, the superconducting properties of the ruthenocuprates
are highly anisotropic: ξab ∼ 60–75 A

◦
and ξc ∼ 10 A

◦
. Superconductivity and
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the magnetic order are found to be homogeneous. Chu and his collaborates
suggested that a bulk Meissner effect does not exist in the ruthenocuprates.
Indeed, the value of the penetration depth is very large, λ ∼ 30–50 µm. In
principle, this can happen if metallic RuO2 layers remain normal below Tc.

The situation with the ruthenocuprates is even worse than that with Sr2RuO4.
If in the Sr ruthenate, there is disagreement only on the type of spin fluctua-
tions that mediate superconductivity, in the ruthenocuprates there are two ma-
jor problems. First, the type of ordering at Tm still remains controversial. Ear-
lier experimental studies suggested a homogeneous ferromagnetic ordering of
the Ru moments, while the latest ones report that the magnetic order of the Ru
spins is predominantly antiferromagnetic. Second, from the beginning it was
assumed that superconductivity occurs exclusively in the CuO2 planes. How-
ever, recent NMR studies reveal that the superconducting gap develops also at
the magnetically ordered RuO2 planes with a ferromagnetic component.

There is a consensus that in the ruthenocuprate, there is a small ferromag-
netic component; however, there is no agreement on its origin. It may origi-
nate not only from the Ru moments but also, for example, from the Gd spins.
There are many reports on this issue, which often contradict one another. In an
attempt to reconcile these discrepancies, it was suggested that the RuO2 lay-
ers ordered ferromagnetically couple antiferromagnetically. In RuSr2RCu2O8

with R = Gd and Y, neutron scattering studies found that these two compounds
have an antiferromagnetic ground state with a very small canting ferromag-
netic component, and that an external magnetic field can tune the field-induced
ferromagnetic component that coexists with superconductivity in a high field.

3.12 MgCNi3
MgCNi3 is the second most recent superconductor described in this chapter,

after Cd2Re2O7 (see the following subsection). Superconductivity in MgCNi3
was discovered in 2001 by Cava and co-workers, a few months later than that
in MgB2. The crystal structure of MgCNi3 is cubic-perovskite, and similar to
that of BKBO (see Fig. 3.2). The perovskite MgCNi3 is special in that it is
neither an oxide nor does it contain any copper. Since Ni is ferromagnetic, the
discovery of superconductivity in MgCNi3 was surprising. The critical tem-
perature is near 8 K. MgCNi3 is metallic, and the charge carriers are electrons
which are derived predominantly from Ni.

The estimated values of the coherence length and upper critical field in
MgCNi3 are ξ ≈ 46 A

◦
and Hc2 � 15 T, respectively. Penetration-depth mea-

surements at microwave frequencies show unambiguously that superconduc-
tivity in MgCNi3 is not of the BCS type, and λ(0) = 2480 A

◦
. In Andreev-

reflection measurements performed on polycrystalline samples (single crystals
of MgCNi3 are not yet available), a zero-bias conductance peak was observed.
In analogy with the cuprates, the presence of this peak in a conductance indi-
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cates a d-wave symmetry of the energy gap. The gap ratio obtained in these
Andreev-reflection measurements, 2∆/kBTc ∼ 10, is very large. However,
this value is only an estimate because it is obtained in polycrystalline samples.
The Debye temperature obtained from specific-heat measurements is Θ �
284 K, and the value of specific-heat jump at Tc is β � 2.1. At low tem-
perature, the Ginzburg-Landau parameter is k = 54.

Structural studies of MgCNi3 reveal structural inhomogeneity. Apparently,
the perovskite cubic structure of MgCNi3 is modulated locally by the variable
stoichiometry on the C sites.

3.13 Cd2Re2O7

Cd2Re2O7 is the most recent superconductor described in this chapter. Al-
though Cd2Re2O7 was synthesized in 1965, its physical properties remained
almost unstudied. Unexpectedly, superconductivity in Cd2Re2O7 was discov-
ered in the second half of 2001 by Sakai and co-workers. The critical tem-
perature of Cd2Re2O7 is low, Tc = 1–1.5 K. This compound is the first super-
conductor found among the large family of pyrochlore oxides with the formula
A2B2O7, where A is either a rare earth or a late transition metal, and B is a
transition metal. In this structure, the A and B cations are 4- and 6-coordinated
by oxygen anions. The A-O4 tetrahedra are connected as a pyrochlore lattice
with straight A-O-A bonds, while B-O6 octahedra form a pyrochlore lattice
with the bent B-O-B bonds with an angle of 110–140◦. Assuming that elec-
tronic structure in Cd2Re2O7 as formally Cd2+ 4d10 and Re5+ 4f145d2, the
electronic and magnetic properties are primarily dominated by the Re 5d elec-
trons. Cd2Re2O7 shows an anomaly at 200 K in electrical resistivity, magnetic
susceptibility, specific heat and Hall coefficient: there is a structural phase tran-
sition near 200 K. Another structural phase transition occurs around 1.5 K, just
above the superconducting transition.

Oxide superconductors with non-perovskite structure are rare. Previous
studies indicate that the pyrochlores, like the spinels, are geometrically frus-
trated. The effect of geometric frustration on the physical properties of spinel
materials is drastic, resulting in, for example, heavy-fermion behavior in
LiV2O4. Another spinel compound LiTi2O4 is a superconductor below Tc =
13.7 K. Indeed, x-ray diffraction studies performed under high pressure showed
that superconductivity in Cd2Re2O7 is detected only for the phases with a
structural distortion. It was suggested that the charge fluctuations of Re ions
play a crucial role in determining the electronic properties of Cd2Re2O7.

Between 2 and 60 K, the resistivity in Cd2Re2O7 exhibits a T 2 dependence
indicative of the Fermi-liquid behavior. The value of the specific-heat jump at
Tc, 1.29, is close to the weak coupling BCS value. In comparison with other
pyrochlores, the value of the Sommerfeld constant γ for Cd2Re2O7 is large,
suggesting that the electrons in Cd2Re2O7 are strongly correlated with the en-
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hanced effective mass, resulting possibly from geometric frustration. The Re
nuclear quadrupole resonance (NQR) measurements performed in zero mag-
netic field below 100 K rule out any magnetic or charge order. Specific heat
and Re NQR measurements suggest that the superconducting gap in Cd2Re2O7

is almost isotropic.
The value of the coherence length in Cd2Re2O7 is ξ0 ∼ 260 A

◦
. The value

of the penetration depth is very large, λ(0) ∼ 7500 A
◦

. The lower and upper
magnetic fields are Hc1 ≤ 0.002 T and Hc2 ≈ 0.85 T, respectively.

3.14 Hydrides and deuterides
In addition to the nitrides and carbides from the second group of supercon-

ductors, another class of superconducting compounds that also has the NaCl
structure are hydrides and deuterides (i.e. compounds containing hydrogen or
deuterium). However, in contrast to the nitrides and carbides, superconduct-
ing hydrides and deuterides are magnetic. In the seventies it was discovered
that some metals and alloys, not being superconducting in pure form, become
relatively good superconductors when they form alloys or compounds with hy-
drogen or deuterium. These metals include the transition elements palladium
(Pd) and thorium (Th) that have unoccupied 4d- and 5f -electron shells, respec-
tively.

In 1972, Skoskewitz discovered that the transition element Pd which has
a small magnetic moment normally preventing the pairing of electrons, joins
hydrogen and forms the PdH compound that superconducts at Tc = 9 K. This
compounds has the NaCl cubic structure, thus it is a B1 compound. Later on, it
was found that by doping such a system with noble metals the critical temper-
ature increases up to 17 K. Interestingly, the palladium-deuterium compound
also superconducts, and its critical temperature equal to 11 K is higher than
that of PdH. So the hydrogen isotope effect in PdH is reverse (negative), which
is similar to that observed in some organic superconductors. In contrast, the
critical temperatures of the ThH and ThD compounds do not differ drastically
from each other like those of PdH and PdD. Probably, the higher atomic mass
of thorium is the cause of this discrepancy.

The experimental studies of the Pd1−xMxHy hydrides, where M = Al, Pb, In
and Cu, showed that, as one increases the M concentration from zero, their crit-
ical temperatures as a function of x first increase and then drop quite sharply.
This study was performed under the most favorable hydrogen concentrations
that correspond to the maximum value of Tc with fixed x. The critical temper-
ature of the Pd1−xAgxDy deuteride as a function of x also exhibits the same
tendency as those of the doped palladium hydrides. However, in the doped hy-
drides and deuterides, their critical temperatures reach maximums at different
dopant concentrations. This is due to the fact that different metals have differ-
ent abilities to donate electrons. However, such a bell-like shape of the Tc(p)
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dependence, where p is the doping level, is typical for all the compounds of
the third group of superconductors.

The hydrides and deuterides have two conduction bands as the heavy fermi-
ons do: the wide valence band of s- and p-electrons and the very narrow band
generated by electrons in the inner 4d- and 5f -subshells incompletely occupied
by electrons. The existence of two conduction bands is also typical for the
second-group superconductors.

3.15 Oxides
Superconducting oxides are a special family of superconductors. The class

of superconducting compounds containing the element oxygen O is probably
the largest family among all superconducting materials. Furthermore, they ex-
hibit the highest critical temperatures (cuprates). Representatives of this family
of superconductors are members of either the second (BKBO, SrTiO3) or third
group of superconductors (cuprates, ruthenates, etc.). NbO was the first su-
perconducting oxide discovered in 1965 by Miller and his collaborators. The
oxide series, beginning from NbO, is shown in Fig. 1.2.

Usually, oxides are associated with insulators, while superconductors with
the best conductors such as Cu, Ag and Au. However, the opposite is true.
In materials with a weak phonon-electron interaction, like Cu, Ag and Au,
superconductivity is absent, while materials with a moderately strong phonon-
electron interaction, like oxides, exhibit sometimes superconductivity. This
fact shows the importance of the electron-lattice interaction for superconduc-
tivity.





Chapter 4

PRINCIPLES OF SUPERCONDUCTIVITY

The issue of room-temperature superconductivity is the main topic of this
book. Even if this subject was raised for the first time before the development
of the BCS theory and later by Little in 1964 [2], from the standpoint of prac-
tical realization, this issue is still a new, “untouched territory.” To go there, we
need to know Nature’s basic rules for arrangement of matter over there. Other-
wise, this journey will face a fiasco. To have the microscopic BCS theory in a
bag is very useful, but not enough. It is clear to everyone by now that a room-
temperature superconductor can not be of the BCS type. Therefore, we need to
know more general rules, principles of superconductivity that incorporate also
the BCS-type superconductivity as a particular case.

The purpose of this chapter is to discuss the main principles of supercon-
ductivity as a phenomenon, valid for every superconductor independently of
its characteristic properties and material. The underlying mechanisms of su-
perconductivity can be different for various materials, but certain principles
must be satisfied. One should however realize that the principles of supercon-
ductivity are not limited to those discussed in this chapter: it is possible that
there are others which we do not know yet about.

The first three principles of superconductivity were introduced in [19].

1. First principle of superconductivity
The microscopic theory of superconductivity for conventional superconduc-

tors, the BCS theory, is based on Leon Cooper’s work published in 1956. This
paper was the first major breakthrough for understanding the phenomenon of
superconductivity on a microscopic scale. Cooper showed that electrons in a
solid would always form pairs if an attractive potential was present. It did not
matter if this potential was very weak. It is interesting that, during his cal-

129
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culations, Cooper was not looking for pairs—they just “dropped out” of the
mathematics. Later it became clear that the interaction of electrons with the
lattice allowed them to attract each other despite their mutual Coulomb repul-
sion. These electron pairs are now known as Cooper pairs.

An important note: in this chapter and further throughout the book, we
shall use the term “a Cooper pair” more generally than its initial meaning. In
the framework of the BCS theory, the Cooper pairs are formed in momentum
space, not in real space. Further, we shall consider the case of electron pairing
in real space. For simplicity, we shall sometimes call electron pairs formed in
real space also as Cooper pairs.

In solids, superconductivity as a quantum state cannot occur without the
presence of bosons. Fermions are not suitable for forming a quantum state
since they have spin and, therefore, they obey the Pauli exclusion principle
according to which two identical fermions cannot occupy the same quantum
state. Electrons are fermions with a spin of 1/2, while Cooper pairs are already
composite bosons since the value of their total spin is either 0 or 1. Therefore,
the electron pairing is an inseparable part of the phenomenon of superconduc-
tivity and, in any material, superconductivity cannot occur without electron
pairing.

In some unconventional superconductors, the charge carriers are not elec-
trons but holes with a charge of +|e| and spin of 1/2. The reasoning used
above for electrons is valid for holes as well. Thus, in the general case, it
is better to use the term “quasiparticles” which also reflects the fact that the
electrons and holes are in a medium.

The first principle of superconductivity:

Principle 1: Superconductivity requires quasiparticle pairing

In paying tribute to Cooper, the first principle of superconductivity can be
called the Cooper principle.

In the framework of the BCS theory, the quasiparticle (electron) pairing oc-
curs in momentum space, not in real space. Indeed in the next section, we shall
see that the electron pairing in conventional superconductors cannot occur in
real space because the onset of long-range phase coherence in classical super-
conductors occurs due to the overlap of Cooper-pair wavefunctions, as shown
in Fig. 4.1. As a consequence, the order parameter and the Cooper-pair wave-
functions in conventional superconductors are the same: the order parameter
is a “magnified” version of the Cooper-pair wavefunctions. However, in un-
conventional superconductors, the electron pairing is not restricted by the mo-
mentum space because the order parameter in unconventional superconductors
has nothing to do with the Cooper-pair wavefunctions. Generally speaking, the
electron pairing in unconventional superconductors may take place not only in
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 Pair
 phase    θ    (  r  )

 Cooper-pair   
 wavefunction  ψ  (  r  )

Figure 4.1. In conventional superconductors, the superconducting ground state is composed
by a very large number of overlapping Cooper-pair wavefunctions, ψ(r). To avoid confusion,
only three Cooper-pair wavefunctions are shown in the sketch; the other are depicted by open
circles. The phases of the wavefunctions are locked together since this minimizes the free
energy. The Cooper-pair phase Θ(r), illustrated in the sketch, is also the phase of the order
parameter Ψ(r).

momentum space but also in real space. We shall discuss such a possibility in
the following section.

The electron pairing in momentum space can be considered as a collective
phenomenon, while that in real space as individual. We already know that
the density of free (conduction) electrons in conventional superconductors is
relatively high (∼ 5 × 1022 cm−3); however, only a small fraction of them
participate in electron pairing (∼ 0.01%). In unconventional superconductors
it is just the other way round: the electron density is low (∼ 5 × 1021 cm−3)
but a relatively large part of them participate in the electron pairing (∼ 10%).
Independently of the space where they are paired—momentum or real—two
electrons can form a bound state only if the net force acting between them is
attractive.

2. Second principle of superconductivity
After the development of the BCS theory in 1957, the issue of long-range

phase coherence in superconductors was not discussed widely in the literature
because, in conventional superconductors, the pairing and the onset of phase
coherence take place simultaneously at Tc. The onset of phase coherence in
conventional superconductors occurs due to the overlap of Cooper-pair wave-
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functions, as shown in Fig. 4.1. Only after 1986 when high-Tc superconduc-
tors were discovered, the question of electron pairing above Tc appeared. So, it
was then realized that it is necessary to consider the two processes—the elec-
tron pairing and the onset of phase coherence—separately and independently
of one another [12].

In many unconventional superconductors, quasiparticles become paired
above Tc and start forming the superconducting condensate only at Tc. Su-
perconductivity requires both the electron pairing and the Cooper-pair conden-
sation. Thus, the second principle of superconductivity deals with the Cooper-
pair condensation taking place at Tc. This process is also known as the onset
of long-range phase coherence.

Principle 2:
The transition into the superconducting state is
the Bose-Einstein-like condensation and occurs

in momentum space

Let us first start with one main difference between fermions and bosons.
Figure 4.2 schematically shows an ensemble of fermions and an ensemble of
bosons at T � 0 and T = 0. In Fig. 4.2 one can see that, at high temperatures,
both types of particles behave in a similar manner by distributing themselves in
their energy levels somewhat haphazardly but with more of them toward lower
energies. At absolute zero, the two types of particles rearrange themselves in
their lowest energy configuration. Fermions obey the Pauli exclusion principle.
Therefore, at absolute zero, each level from the bottom up to the Fermi energy
EF is occupied by two electrons, one with spin up and the other with spin
down, as shown in Fig. 4.2. At absolute zero, all energy levels above the Fermi
level are empty. In contrast to this, bosons do not conform to the exclusion
principle, therefore, at absolute zero, they all consolidate in their lowest energy
state, as shown in Fig. 4.2. Since all the bosons are in the same quantum
state, they form a quantum condensate (which is similar to a superconducting
condensate). In practice, however, absolute zero is not accessible.

We are now ready to discuss the so-called Bose-Einstein condensation. In
the 1920s, Einstein predicted that if an ideal gas of identical atoms, i.e. bosons,
at thermal equilibrium is trapped in a box, at sufficiently low temperatures
the particles can in principle accumulate in the lowest energy level (see Fig.
4.2). This may take place only if the quantum wave packets of the particles
overlap. In other words, the wavelengths of the matter waves associated with
the particles—the Broglie waves—become similar in size to the mean particle
distances in the box. If this happens, the particles condense, almost motionless,
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 Fermions
 T  >> 0  T  = 0
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 T  >> 0  T  = 0

Figure 4.2. Sketch of the occupation of energy levels for fermions and bosons at high temper-
atures and absolute zero. Arrows indicate the spin direction of the fermions. For simplicity, the
spin of the bosons is chosen to be zero. EF is the Fermi level for the fermions.

into the lowest quantum state, forming a Bose-Einstein condensate. So, the
Bose-Einstein condensation is a macroscopic quantum phenomenon and, thus,
similar to the superconducting condensation.

For many decades physicists dreamt of cooling a sufficiently large number
of ordinary atoms to low enough temperatures to undergo the Bose-Einstein
condensation spontaneously. During 1995 this was accomplished by three
groups acting independently. The first Bose-Einstein condensate was formed
by using rubidium atoms cooled to 2 × 10−9 K.

The superconducting and Bose-Einstein condensates have much in common
but also a number of differences. Let us start with their similarities. Firstly, the
superconducting and Bose-Einstein condensations are both quantum phenom-
ena occurring on a macroscopic scale. Thus, every Bose-Einstein condensate
exhibits most of the superconducting-state properties described in Chapter 2.
Secondly, the superconducting and Bose-Einstein condensations both occur in
momentum space, not in real space. What is the difference between a con-
densation in momentum space and one in real space? For example, the vapor-
liquid transition is a condensation in ordinary space. After the transition, the
average distance between particles (atoms or molecules) is changed—becomes
smaller when the vapor condenses and larger when the liquid evaporates. So, if
a condensation takes place in real space, there may be some noticeable changes
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in the system (second-order phase transitions occurring in real space, if such
exist, are not accompanied by changes in real space). On the other hand, if
a condensation occurs in momentum space there are no changes in ordinary
space. In the aforementioned example of the Bose-Einstein condensation oc-
curring in the box, after the condensation, the mean distance between particles
remains the same.

The superconducting and Bose-Einstein condensates have two major differ-
ences. In spite of the fact that the superconducting and Bose-Einstein conden-
sates are both quantum states, they, however, have “different goals to achieve.”
Through the Bose-Einstein condensation bosons assume to reach the lowest en-
ergy level existing in the system (see Fig. 4.2). At the same time, the Cooper
pairs try to descend below the Fermi level as deeply as possible, generating an
energy gap (see Fig. 2.11). The second difference is that a Bose-Einstein con-
densate consists of real bosons, while a superconducting condensate comprises
composite bosons. To summarize, the two condensates—superconducting and
Bose-Einstein—have common quantum properties, but also, they have a few
differences.

In conventional superconductors, the onset of phase coherence occurs due
to the overlap of Cooper-pair wavefunctions. In a sense, it is a passive process
because the overlap of wavefunctions does not generate an order parameter—
it only makes the Cooper-pair wavefunctions be in phase. This means that
in order to form a superconducting condensate, the Cooper pairs in conven-
tional superconductors must be paired in momentum space, not in ordinary
space. However, this may not be the case for unconventional superconductors
where the onset of long-range phase coherence occurs due to not the overlap
of Cooper-pair wavefunctions but due to another “active” process. As a con-
sequence, if the onset of phase coherence in unconventional superconductors
takes place in momentum space, it relieves the Cooper pairs of the duty to be
paired in momentum space. This means that, in unconventional superconduc-
tors, the Cooper pairs may be formed in real space. Of course, they are not
required to, but they may.

If the Cooper pairs in some unconventional superconductors are indeed
formed in real space, this signifies that the BCS theory and the future theory
for unconventional superconductors can hardly be unified.

Let us go back to the second principle of superconductivity. After all these
explanations, the meaning of this principle should be clear. The transition
into the superconducting state always occurs in momentum space, and this
condensation is similar to that predicted by Einstein.

3. Third principle of superconductivity
If the first two principles of superconductivity, in fact, are just the ascertain-

ing of facts and can hardly be used for future predictions, the third and fourth
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principles are better suited for this purpose, and we shall use them further in
Chapters 8 and 9.

The third principle of superconductivity is:

Principle 3:
The mechanism of electron pairing and the mechanism

of Cooper-pair condensation must be different

The validity of the third principle of superconductivity will be evident after
the presentation of the fourth principle. Historically, this principle was intro-
duced first [19].

It is worth to recall that, in conventional superconductors, phonons mediate
the electron pairing, while the overlap of wavefunctions ensures the Cooper-
pair condensation. In the unconventional superconductors from the third group
of superconductors (see Chapter 3), such as the cuprates, organic salts, heavy
fermions, doped C60 etc., phonons also mediate the electron pairing, while spin
fluctuations are responsible for the Cooper-pair condensation. So, in all super-
conductors, the mechanism of electron pairing differs from the mechanism of
Cooper-pair condensation (onset of long-range phase coherence). Generally
speaking, if in a superconductor, the same “mediator” (for example, phonons)
is responsible for the electron pairing and for the onset of long-range phase
coherence (Cooper-pair condensation), this will simply lead to the collapse of
superconductivity (see the following section).

Since in solids, phonons and spin fluctuations have two channels—acoustic
and optical (see Chapter 5)—theoretically, it is possible that one channel can
be responsible for the electron pairing and the other for the Cooper-pair con-
densation. The main problem, however, is that these two channels—acoustic
and optical—usually compete with one another. So, it is very unlikely that
such a “cooperation” will lead to superconductivity.

4. Fourth principle of superconductivity
If the first three principles of superconductivity do not deal with numbers,

the forth principle can be used for making various estimations.
Generally speaking, a superconductor is characterized by a pairing energy

gap ∆p and a phase-coherence gap ∆c (see Chapter 2). For genuine (not
proximity-induced) superconductivity, the phase-coherence gap is proportional
to Tc:

2∆c = Λ kBTc, (4.1)

where Λ is the coefficient proportionality [not to be confused with the phe-
nomenological parameter Λ in the London equations, given by Eq. (2.7)]. At
the same time, the pairing energy gap is proportional to the pairing temperature
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Tpair:
2∆p = Λ′ kBTpair. (4.2)

Since the formation of Cooper pairs must precede the onset of long-range phase
coherence, then in the general case, Tpair ≥ Tc.

In conventional superconductors, however, there is only one energy gap ∆
which is in fact a pairing gap but proportional to Tc:

2∆ = Λ kBTc, (4.3)

This is because, in conventional superconductors, the electron pairing and the
onset of long-range phase coherence take place at the same temperature—at
Tc. In all known cases, the coefficients Λ and Λ′ lie in the interval between 3.2
and 6 (in one heavy fermion, ∼ 9). Thus, we are now in position to discuss the
fourth principle of superconductivity:

Principle 4:
For genuine, homogeneous superconductivity,

∆p > ∆c > 3
4kBTc always

(in conventional superconductors, ∆ > 3
4kBTc)

Let us start with the case of conventional superconductors. The reason why
superconductivity occurs exclusively at low temperatures is the presence of
substantial thermal fluctuations at high temperatures. The thermal energy is
3
2kBT . In conventional superconductors, the energy of electron binding, 2∆,
must be larger than the thermal energy; otherwise, the pairs will be broken up
by thermal fluctuations. So, the energy 2∆ must exceed the energy 3

2kBTc.
In the framework of the BCS theory, the ratio between these two energies,
2∆/(kBTc) � 3.52, is well above 1.5.

In the case of unconventional superconductors, the same reasoning is also
applicable for the phase-coherence energy gap: 2∆c > 3

2kBTc.
We now discuss the last inequality, namely, ∆p > ∆c. In unconventional

superconductors, the Cooper pairs condense at Tc due to their interaction with
some bosonic excitations present in the system, for example, spin fluctuations.
These bosonic excitations are directly coupled to the Cooper pairs, and the
strength of this coupling with each Cooper pair is measured by the energy 2∆c.
If the strength of this coupling will exceed the pairing energy 2∆p, the Cooper
pairs will immediately be broken up. Therefore, the inequality ∆p > ∆c must
be valid.

What will happen with a superconductor if, at some temperature, ∆p = ∆c?
Such a situation can take place either at Tc, defined formally by Eq. (4.1), or
below Tc, i.e. inside the superconducting state. In both cases, the tempera-
ture at which such a situation occurs is a critical point, Tcp. If the tempera-
ture remains constant, locally there will be superconducting fluctuations due
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to thermal fluctuations, thus, a kind of inhomogeneous superconductivity. If
the temperature falls, two outcomes are possible (as it usually takes place at
a critical point). In the first scenario, superconductivity will never appear if
Tcp = Tc, or will disappear at Tcp if Tcp < Tc. In the second possible out-
come, homogeneous superconductivity may appear. The final result depends
completely on bosonic excitations that mediate the electron pairing and that
responsible for the onset of phase coherence. The interactions of these excita-
tions with electrons and Cooper pairs, respectively, vary with temperature. If,
somewhat below Tcp, the strength of the pairing binding increases or/and the
strength of the phase-coherence adherence decreases, homogeneous supercon-
ductivity will appear. In the opposite case, superconductivity will never appear,
or disappear at Tcp. It is worth noting that, in principle, superconductivity may
reappear at T < Tcp.

The cases of disappearance of superconductivity below Tc are well known.
However, it is assumed that the cause of such a disappearance is the emer-
gence of a ferromagnetic order. As discussed in Chapter 3, the Chevrel phase
HoMo6S8 is superconducting only between 2 and 0.65 K. The erbium rhodium
boride ErRh4B4 superconducts only between 8.7 and 0.8 K. The cuprate
Bi2212 doped by Fe atoms was seen superconducting only between 32 and
31.5 K [30]. The so-called 1

8 anomaly in the cuprate LSCO, discussed in Chap-
ter 3, is caused apparently by static magnetic order [19] which may result in
the appearance of a critical point where ∆p � ∆c.

It is necessary to mention that the case ∆p = ∆c must not be confused with
the case Tpair = Tc. There are unconventional superconductors in which the
electron pairing and the onset of phase coherence occur at the same tempera-
ture, i.e. Tpair � Tc. This, however, does not mean that ∆p = ∆c because
Λ �= Λ′ in Eqs. (4.1) and (4.2). Usually, Λ′ > Λ. For example, in hole-doped
cuprates, 2∆p/kBTpair � 6 and, depending on the cuprate, 2∆c/kBTc = 5.2–
5.9.

Finally, let us go back to the third principle of superconductivity to show its
validity. The case in which the same bosonic excitations mediate the electron
pairing and the phase coherence is equivalent to the case ∆p = ∆c discussed
above. Since, in this particular case, the equality ∆p = ∆c is independent of
temperature, the occurrence of homogeneous superconductivity is impossible.

5. Proximity-induced superconductivity
The principles considered above are derived for genuine superconductivity.

By using the same reasoning as that in the previous section for proximity-
induced superconductivity, one can obtain a useful result, namely, that 2∆ ∼
3
2kBTc, meaning that the energy gap of proximity-induced superconductivity
should be somewhat larger than the thermal energy. Of course, to observe this
gap for example in tunneling measurements may be not possible if the density
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of induced pairs is low. This case is reminiscent of gapless superconductivity
discussed in Chapter 2. Hence, we may argue that

For proximity-induced superconductivity,
at low temperature, 2∆p ≥ 3

2kBTc

One should however realize that this is a general statement; the final result
depends also upon the material and, in the case of thin films, on the thickness
of the normal layer.

What is the maximum critical temperature of BCS-type superconductivity?
In conventional superconductors, Λ = 3.2–4.2 in Eq. (4.3). Among conven-
tional superconductors, Nb has the maximum energy gap, ∆ �
1.5 meV. Then, taking ∆BCS

max ≈ 2 meV and using Λ = 3.2, we have TBCS
c,max =

2∆BCS
max /3.2kB ≈ 15 K for conventional superconductors. Let us now estimate

the maximum critical temperature for induced superconductivity of the BCS
type in a material with a strong electron-phonon interaction. In such materials,
genuine superconductivity (if exists) is in the strong coupling regime and char-
acterized by Λ � 4.2 in Eq. (4.3). Assuming that the same strong coupling
regime is also applied to the induced superconductivity with 2∆ ∼ 1.5kBT ind

c

and that, in the superconductor which induces the Cooper pairs, ∆p � 2 meV,
one can then obtain that T ind

c,max ∼ 15 K × 4.2
1.5 � 42 K.

If the superconductor which induces the Cooper pairs is of the BCS type,
the value ∆ind

max = 2 meV can be used to estimate T ind
c,max independently. Sub-

stituting the value of 2 meV into 2∆ ∼ 1.5kBT ind
c , we have T ind

c,max � 31 K
which is lower than 42 K.

In second-group superconductors which are characterized by the presence
of two superconducting subsystems, the critical temperature never exceeds 42
K. For example, in MgB2, Tc = 39 K and, for the smaller energy gap, 2∆s �
1.7kBTc (see Chapter 3). At the same time, for the larger energy gap in MgB2,
2∆L � 4.5kBTc or ∆L � 7.5 meV. Then, on the basis of the estimation for
T ind

c,max, it is more or less obvious that, in MgB2, one subsystem with genuine
superconductivity (which is low-dimensional), having ∆L � 7.5 meV, induces
superconductivity into another subsystem and the latter one controls the bulk
Tc.

The charge carriers in compounds of the first and second groups of super-
conductors are electrons. Is there hole-induced superconductivity? Yes. At
least one case of hole-induced superconductivity is known: in the cuprate
YBCO, the CuO chains (see Fig. 3.9) become superconducting due to the
proximity effect. The value of the superconducting energy gap on the chains in
YBCO is well documented; in optimally doped YBCO, it is about 6 meV [19].
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Using Tc,max = 93 K for YBCO and ∆ ∼ 6 meV, one obtains 2∆/kBTc �
1.5. This result may indicate that the bulk Tc in YBCO is controlled by induced
superconductivity on the CuO chains.





Chapter 5

FIRST GROUP OF SUPERCONDUCTORS:
MECHANISM OF SUPERCONDUCTIVITY

The first group comprises classical, conventional superconductors. This
group incorporates non-magnetic elemental metals and some of their alloys.
The phenomenon of superconductivity was discovered by Kamerlingh Onnes
and his assistant Gilles Holst in 1911 in mercury, a representative of this group.

This Chapter does not set out to cover all aspects of the BCS theory of su-
perconductivity in metals; here we present only the main results of this theory.
There are many excellent books devoted exclusively to the BCS mechanism of
superconductivity, and the reader who is interested in following all calculations
leading to the main formulas of the BCS theory is referred to the books (see
Appendix in Chapter 2).

1. Introduction
In 1957, Bardeen, Cooper and Schrieffer showed how to construct a wave-

function in which the electrons are paired. The wavefunction which is adjusted
to minimize the free energy is further used as the basis for a complete micro-
scopic theory of superconductivity in metals. Thus, they showed that the su-
perconducting state is a peculiar correlated state of matter—a quantum state on
a macroscopic scale, in which all the electron pairs move in a single coherent
motion. The success of the BCS theory and its subsequent elaborations are
manifold. One of its key features is the prediction of an energy gap.

In Landau’s concept of the Fermi liquid, excitations called quasiparticles
are bare electrons dressed by the medium in which they move. Quasiparticles
can be created out of the superconducting ground state by breaking up the
pairs, but only at the expense of a minimum energy of ∆ per excitation. This
minimum energy ∆, as we already know, is called the energy gap. The BCS
theory predicts that, for any superconductor at T = 0, ∆ is related to the critical
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temperature by 2∆ = 3.52kBTc, where kB is the Boltzmann constant. This
turns out to be nearly true, and where deviations occur they can be understood
in terms of modifications of the BCS theory. The manifestation of the energy
gap in tunneling provided strong conformation of the theory.

The key to the basic interaction between electrons which gives rise to su-
perconductivity was provided by the isotope effect which was discussed in
Chapter 2. The interaction of electrons with the crystal lattice is one of the
basic mechanisms of electrical resistance in an ordinary metal. It turns out
that it is precisely the electron-lattice interaction that, under certain conditions,
leads to an absence of resistance, i.e. to superconductivity. This is why, in
excellent conductors such as copper, silver and gold, a rather weak electron-
lattice interaction does not lead to superconductivity; however, it is completely
responsible for their nonvanishing resistance near absolute zero.

We start with a qualitative description of superconductivity in metals.

2. Interaction of electrons through the lattice
Superconductivity is not universal phenomenon. It shows up in materials

in which the electron attraction overcomes the repulsion. This attractive force
occurs due to the interaction of electrons with the crystal lattice. Thus, the
electron-phonon interaction in solids is responsible for the electron attraction,
leading to the electron pairing. Phonons are quantized excitations of the crystal
lattice.

The effective interaction of two electrons via a phonon can be visualized as
the emission of a “virtual” phonon by one electron, and its absorption by the
other, as shown in Fig. 5.1. An electron in a state k1 (in momentum space)
emits a phonon, and is scattered into a state k′

1 = k1 − q. The electron in a
state k2 absorbs this phonon, and is scattered into k′

2 = k2 + q. The diagram
shown in Fig. 5.1 is the simplest way of calculating the force acting on the two
electrons. We shall consider this diagram in a moment; let us first discuss the
spectrum of lattice vibrations in a solid.

 k

 q

 +

 k
 k

 q q -  2

 1

 2

 k  1

Figure 5.1 Diagram illus-
trating electron-electron inter-
action via exchange of a vir-
tual phonon of momentum
h̄q.
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Phonons are quantized and, in different solids, propagate with different fre-
quencies, ω = E/h̄. Because the lattice in solids are periodic, one unit cell
is interchangeable with another, and the lattice vibrations can propagate from
one cell to the next without change. Thus, it is unnecessary to consider the
crystal lattice of a whole sample; it is enough to study just one unit cell. This
unit cell can be described not only in ordinary space but also in momentum
space. The simplest model for studying the spectrum of lattice vibrations is
the one-dimensional model: it gives a useful picture of the main features of
the mechanical behavior of a periodic array of atoms. The simplest model
among one-dimensional ones is the model corresponding to a monatomic crys-
tal, which can be visualized as a linear chain of masses m with the same spac-
ing a, and connected to each other by massless springs. However, it is more
practical to consider the one-dimensional model for a diatomic crystal in which
a unit cell contains two different atoms. In this model, the linear chain consists
of two different masses, M and m, which alternate along the chain, as shown
in Fig. 5.2.

 M  M M m  m

 ß  ß ß  ß  ß  ß

 a a

Figure 5.2. One-dimensional mass-spring model for lattice vibrations in a diatomic crystal.

Figure 5.3 shows schematically the energy-momentum relation E(k), ob-
tained in the framework of the one-dimensional model for a diatomic crystal
depicted in Fig. 5.2. The E(k) relation is generally known as the dispersion
relation. The momentum space in the range ±π/2a, where 2a is the period-
icity of the lattice, is known as the Brillouin zone. In Fig. 5.3, the higher-
energy oscillations are conventionally called optical modes (or branches), and
the lower-energy oscillations acoustic modes. In Fig. 5.3, there are two optical
and two acoustic branches, corresponding to longitudinal and transverse vibra-
tions of atoms. The situation in three dimensions becomes more complicated
and, in general, there are different dispersion relations for waves propagating in
different directions in a crystal as a result of anisotropy of the force constants.

In the BCS theory, the Debye spectrum of phonon frequencies is used to
determine a critical temperature Tc. The Debye model assumes that the ener-
gies available are insufficient to excite the optical modes, so the BCS theory
considers only low-energy (acoustic) phonons. In the Debye model, the Bril-
louin zone, which bounds the allowed values of k, is replaced by a sphere of
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Figure 5.3. Vibration frequencies of diatomic chain shown in Fig. 5.2 (L = longitudinal and
T = transverse).

the same volume in k-space. The Debye temperature Θ is defined by

kBΘ = h̄ωD, (5.1)

where ωD is the phonon frequency at the edge of the Debye sphere. Thus, kBΘ
(or h̄ωD) is the energy of the highest-energy phonon in the Debye sphere.

Let us go back to our electrons shown in Fig. 5.1. To enable an electron to
scatter from the state k1 into the state k′

1, the latter must be free (in accordance
with the Pauli exclusion principle). This is possible only in the vicinity of
the Fermi surface which is represented in momentum space by a sphere of
radius kF , as shown in Fig. 5.4. Now we are ready to formulate the law of
phonon-mediated interaction between electrons which forms the foundation of
the BCS theory: Electrons with energies that differ from the Fermi energy by
no more than h̄ωD are attracted to each other. Thus, in the BCS model, only
those electrons that occupy the states within a narrow spherical layer near the
Fermi surface experience mutual attraction. The thickness of the layer 2∆k is
determined by the Debye energy:

∆k

kF
∼ h̄ωD

EF
, where EF =

h̄2k2
F

2m
, (5.2)

and m is the electron mass. As we shall see, the attraction is greatest for
electrons with opposite spins (s1 = −s2) and equal and opposite wave vectors
(k1 = −k2).

The electron-electron attraction mediated by the background crystal lattice
can crudely be pictured as follows. An electron tends to create a slight distor-
tion of the elastic lattice as it moves because of the Coulomb attraction between
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 2∆  k

 k  y
 k  F

 k  x

Figure 5.4. In the BCS picture, only the electrons within the 2∆k layer near the Fermi surface
interact via phonons.

the negatively charged electron and the positively charged lattice, as illustrated
in Fig. 5.5. If the distortion persists for a brief time (retardation), a second
passing electron will feel the distortion and will be affected by it. Under cer-
tain circumstances, this can give rise to a weak indirect attractive interaction
between the two electrons which may more than compensate their Coulomb
repulsion. Thus, as shown in Fig. 5.5, the process of electron pairing in con-
ventional superconductors is local in space, but non-local in time.

 e

Figure 5.5. Polarization of a lattice near a moving electron, which in turn attracts another
electron.
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3. Main results of the BCS theory
The main idea of the BCS theory is based on the Cooper work. In 1956,

Cooper showed that two electrons with an attractive interaction can bind to-
gether in the momentum space to form a bound pair, if they are in the presence
of a high-density fluid of other electrons, no matter how weak the interaction
is. This bound state of two electrons is today known as the Cooper pair.

3.1 Instability of the Fermi surface in the presence of
attractive interaction between electrons

Let us consider two electrons in a metal, added at the Fermi surface. In the
absence of interactions, their wavefunction can be written as

ψ(r1, r2) = ei(k1r1+k2r2) = ei[q(r1+r2)+k(r1−r2)] (5.3)

where

q =
1
2
(k1 + k2), (5.4)

k =
1
2
(k1 − k2).

In the center of mass, q = 0. Then, in the presence of an interaction between
electrons (assumed attractive), the wavefunction can be presented as

ψ(r1, r2) =
∑
k

g(k)eik(r1−r2), (5.5)

where |g(k)|2 is the probability of finding one electron with momentum k and
the other one with momentum −k. Of course,

g(k) ≡ 0 for |k| < |kF |, (5.6)

because all the electronic states |k| < |kF | are completely filled with electrons
and, in accordance with the Pauli exclusion principle, the two electrons cannot
occupy these states.

The Schrödinger equation for these two electrons is

− h̄2

2m
(∇2

1 + ∇2
2)ψ + V (r1, r2)ψ = (E + 2EF )ψ, (5.7)

where EF is the Fermi energy, and V (r1, r2) is the potential energy of electron-
electron interaction. Substituting the wavefunction obtained in the center of
mass into the Schrödinger equation, we have the following equation for g(k):

h̄2

m
g(k) +

∑
k′

g(k′)Vkk′ = (E + 2EF )g(k), (5.8)
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where

Vkk′ =
1

L3

∫
V (r)ei(k−k′)r d3r, (5.9)

is a matrix element of the electron-electron interaction, and L3 is the volume.
To solve this equation, it is necessary to know Vkk′ explicitly. Taking into
account that the energies of electrons participating in pairing is |εk|, |εk′ | ≤
h̄ωD, where ωD is the Debye frequency, we choose a simple form of the
electron-electron interaction

Vkk′ =
{ −V for |εk|, |εk′ | ≤ h̄ωD

0 otherwise,
(5.10)

where

εk =
h̄2k2

2m
k2 − EF =

h̄2k2

2m
− h̄2k2

F

2m
, (5.11)

and kF is the wave vector on the Fermi surface. In this case, Equation (5.8)
transforms into

g(k)

[
E + 2EF − h̄2

m
k2

]
= −V

∑
k′

g(k′) = C, (5.12)

where C is a constant independent of k. From Eq. (5.12), one can easily obtain
the following self-consistent equation

1 = V
∑
k

1
h̄2k2/m − E − 2EF

. (5.13)

If we introduce the density of states per spin direction

N(ε) =
4π

(2π)3
k2 dk

dε
, (5.14)

we obtain

1 = V

h̄ωD∫
0

N(ε)
1

2ε − E
dε. (5.15)

Since, in metals h̄ωD 
 EF (EF ∼ 5 eV and h̄ωD ∼ 25 meV), then N(ε) �
N(0), and we can write

1 =
N(0) V

2
ln

E − 2h̄ωD

E
. (5.16)

The last equation can be re-written as

E = − 2h̄ωD[
exp 2

N(0)V − 1
] � −2h̄ωD exp− 2

N(0) V
if N(0) V 
 1. (5.17)
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The energy gain E (because E < 0) indicates that the two electrons form a
bound state and, as a consequence, other electrons can also condense into this
state.

This result is obtained under the assumption that q = 0 [see Eq. (5.5)]. In
the case if q �= 0, the energy gain is E(q) = E(0) + h̄qvF . This means that
the energy gain is a maximum when q = 0. The energy gain depends also on
the orientation of spin of each electron. The absolute value of E is a maximum
when the spins of the two electrons are oppositely directed (s1 = −s2). Since
the distance between two electrons in a pair is sufficiently large,

h̄vF

E
� 103 − 104 A

◦
, (5.18)

and since the density of conduction electrons in metals is relatively high, the
wavefunctions of different pairs are largely overlap. To estimate the distance
between electrons in a pair, we used h̄ωD � 300 K and N(0)V � 0.3. The
sketch of electron-pair wavefunction is shown in Fig. 2.3, and their overlap in
Fig. 4.1.

3.2 Electron-electron attraction via phonons
How can electrons in a solid attract each other? The Coulomb force act-

ing between electrons is always repulsive, so that, the matrix element of the
Coulomb interaction, V C , is always positive, V C > 0. In order to obtain an at-
traction between electrons, it is necessary that they interact with a “ third party,”
leading to the formation of electron pairs. In a solid, electrons constantly in-
teract with lattice vibrations.

Considering the interaction of two electrons via a virtual phonon, as shown
in Fig. 5.1, the element of the total matrix can in general be presented as

V P (k,k′,q) = 〈k,k′|V |k − q,k′ + q〉 =
Mk,k−qMk′,k′+q

εk−q − εk − h̄ωq
, (5.19)

where Mk,k−q is the matrix element of the electron-phonon interaction, and
h̄ωq is the energy of a phonon with the wave vector q shown in Fig. 5.1 [not be
confused with the vector q in Eq. (5.4)]. If we add to this process another one
in which the electron k′ emits a phonon with the wave vector −q, we obtain
that the element of the total matrix becomes

V P
kk′ =

2h̄ωq|Mk,k−q|2
(εk−q − εk)2 − (h̄ωq)2

(5.20)

in which the element of the electron-phonon matrix M depends weakly on k.
The matrix element V P

kk′ is negative if |εk−q − εk| < h̄ωq. In this case,
the electron-electron interaction is attractive. This interaction becomes repul-
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Figure 5.6. If electron pairs have a total momentum 2q, the interaction involves only the
electrons occupying k states within the dashed areas.

sive when the characteristic frequencies of electrons exceed the frequencies of
lattice vibrations. This will happen when heavy ions cannot follow the move-
ments of electrons. The interaction is a maximum when the two frequencies—
electronic and lattice vibrations—coincide. Taking into account the Coulomb
repulsion between the electrons, the total interaction (V P + V C) will be at-
tractive (i.e. negative) if |V P | > V C .

The attraction is greatest for electrons with equal and opposite wave vectors
(k1 = −k2). Why? A transition of an electron pair from the state (k1, k2)
to the state (k′

1, k′
2), as shown in Fig. 5.1, must obey the low of momentum

conservation:

k1 + k2 = k′
1 + k′

2. (5.21)

For example, if k1 + k2 = 2q as illustrated in Fig. 5.6, only the electrons
occupying the k states in the dashed areas of momentum space are allowed to
participate in the transitions. The dashed area is maximum when q = 0, and all
states within a band of width ∼ 2h̄ωD near the Fermi surface are available.

3.3 Electron distribution in the ground state of a
superconductor

In this subsection, our objective is to investigate the state of a superconduc-
tor at T = 0, i.e. when its energy is a minimum.

As shown by Cooper, in the presence of an attractive interaction, the elec-
trons in a solid will condense at low temperature in pairs. In its turn, the BCS
theory supplies a formalism capable to treat the correlations of the pairs when
the number of interacting electrons is macroscopic.
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In the framework of the BCS theory, it is first assumed that the element Vkk′q
of the matrix V = |V P | − V C (thus, V > 0) has a simple form, namely,

Vkk′q =
{ −V for |εk|, |εk′ | ≤ h̄ωD

0 otherwise.
(5.22)

As was already discussed above, this means that only electrons with energies
that differ from the Fermi energy by no more than the Debye energy h̄ωD are
attracted to each other. This layer is schematically shown in Fig. 5.4.

The second postulate of the BCS theory is that the difference in energy
between the normal and the superconducting states originates exclusively from
the energy gain of electron pairing, and other forms of energy are not affected
by the superconducting transition. Each transition (k,−k) → (k′,−k′) is
accompanied by a contribution of −V to the condensation energy. Below Tc,
the normal electrons are also present, but all become paired at T = 0. So,
the condensation energy is a maximum at T = 0. If the pair state (k,−k)
is occupied only by one electron, all the transitions (k′,−k′) → (k,−k) are
forbidden.

Let us introduce two new functions of k, namely, v2
k and fk. Suppose that

v2
k gives the probability that the pair state (k,−k) is occupied. Then, the prob-

ability for the pair state (k,−k) being empty is u2
k = 1 − v2

k. Suppose that
fk is the probability for the pair state (k,−k) is occupied by one (normal)
electron. Then, the probability for the electronic states k and −k both being
empty, i.e. being not occupied by single electrons simultaneously, is (1 - 2fk).
Finally, the probability for the pair state (k,−k) being occupied and the pair
state (k′,−k′) being empty is [v2

k(1−v2
k′)]1/2 = vkuk′ . It is worth noting that,

in the pair wavefunction in Eq. (5.5), g(k) ≡ vk.
Let us now express the first three terms in the Hemholtz free energy

F = E − TS = Ec + Ep − TS + NEF (5.23)

through the probability functions v2
k, u2

k and fk, where N is total number of
electrons and EF is the Fermi energy. The kinetic energy is

Ec = 2
∑
k

[εkfk + (1 − 2fk)v2
kεk], (5.24)

where εk is the energy of an electron in the state k measured from the Fermi
level, given by Eq. (5.11).

The potential energy is

Ep = V
∑
kk′

vkuk′ukvk′(1 − 2fk)(1 − 2fk′). (5.25)

In
TS = −2kBT

∑
k

[fk log fk + (1 − fk) log(1 − fk)], (5.26)
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we assume that the entropy comes exclusively from normal electrons which
are fermions.

In equilibrium, the free energy F has a minimum. Then, the equilibrium
values of v2

k and fk can be obtained by minimizing the free energy with respect
to v2

k and fk:
∂F

∂v2
k

= 0 and
∂F

∂fk
= 0. (5.27)

Taking these derivations and introducing the quantity

∆0 = V
∑
k′

uk′vk′(1 − 2fk′) (5.28)

which has the dimensions of energy, one obtains the following equations

Ekuk = εkuk + ∆0vk (5.29)

Ekvk = −εkvk + ∆0uk,

where
Ek =

√
ε2
k + ∆2

0. (5.30)

The solutions of these two equations are

v2
k =

1
2

(
1 − εk

Ek

)
(5.31)

u2
k =

1
2

(
1 +

εk

Ek

)
. (5.32)

The minus sign in Eq. (5.31) stems from a general argument that, as k → 0,
we ought to have v2

k → 1 while εk → −EF . The dependence of v2
k on k is

illustrated in Fig. 5.7. As one can see, for a normal metal at T = 0, v2
k has

a discontinuity at kF , while the total energy of a superconductor reaches its
minimum when the electron distribution in the vicinity of the Fermi level is
“ smeared out” over the energy interval ∼ 2∆0. It is important to emphasize
that this occurs at absolute zero! Such a ground state of the superconductor is
a consequence of the interaction between electrons.

From Fig. 5.7, one can make a very important conclusion. At T = 0, the
kinetic energy of electrons near the Fermi level, forming the superconducting
condensate, is larger than that of a normal metal. Thus, the superconducting
condensation leading to a reduction in potential energy is accompanied by an
increase in kinetic energy. Nevertheless, this reduction in potential energy is
more than enough to compensate the Coulomb repulsion and the increase in
kinetic energy. The total energy of the superconducting condensate is thereby
reduced relative to that of the conventional one-electron description of states
in a metal. Thus, in the framework of the BCS theory, superconductivity in
conventional superconductors is driven by potential energy.
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Figure 5.7. Dependence of v2
k on k at T = 0, or the probability of pair occupancy in the

superconducting ground state.

The second condition for equilibrium in Eq. (5.27) gives

fk =
1

exp Ek
kBT + 1

. (5.33)

At T = 0, fk = 0, meaning that all the electrons occupy the lowest energy
levels, and there are no excitations in the system.

3.4 Energy gap
In Eq. (5.30), Ek presents a new spectrum of elementary excitations in a

superconductor, which is separated from the ground-state energy level by an
energy gap ∆0. The new spectrum of a superconductor is sketched in Fig.
5.8. At T = 0, the Cooper pairs occupy their ground-state level separated
by ∆0 from the next energy level of elementary excitations. However, the
lowest amount of energy which can be absorbed by the superconductor is 2∆0,
and not ∆0. Why? Because if one electron becomes excited and jumps at
the first energy level above the ground-state level, its ex-partner is still at the
ground-state level. Such a situation is forbidden, so the two electrons must be
excited simultaneously. As a consequence, the minimum energy needed for
this process is 2∆0. In other words, the energy 2∆0 is necessary to break up a
Cooper pair.

It is worth to emphasize that, in a conventional superconductor, the Cooper
pairs cannot be excited. They are either at the ground-state energy level, or
they are already broken up. There is nothing in between. This, however, is
not the case for unconventional superconductors where the Cooper pairs can
be excited, being still paired.

Since the energy gap depends on temperature, ∆(T ), the minimum energy
needed for breaking up a Cooper pair varies with temperature as well. Let us
determine the ∆(T ) dependence. Substituting Eqs. (5.31), (5.32) and (5.33)
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Figure 5.8. Elementary excitation spectrum of a superconductor at T = 0. The energy gap ∆0

separates the first excited level from the ground-state level.

into Eq. (5.28), the latter one reduces to

∆(T ) = V
∑
k

∆(T )
2Ek

(
1 − 2

exp(Ek/kBT ) + 1

)
. (5.34)

The replacement of summation with integration yields, after simple algebra,

1
N(0)V

=
h̄ωD∫
0

dε√
ε2 + ∆2(T )

tanh
√

ε2 + ∆2(T )
2kBT

, (5.35)

where N(0) is the density of states of a superconductor at the Fermi level
at T = 0 (see the following subsection). This temperature dependence of
the energy gap, obtained in the framework of the BCS theory, is illustrated
in Fig. 2.12. As we shall see, near Tc the gap varies with temperature as
∆(T ) ∝ (Tc − T )1/2.

At T = 0, Equation (5.35) becomes

1
N(0)V

=
h̄ωD∫
0

dε√
ε2 + ∆2

0

. (5.36)

Carrying out the integration, we have

∆0 =
h̄ωD

sinh 1
N(0)V

� 2h̄ωD exp
(
− 1

N(0)V

)
if N(0)V 
 1. (5.37)

In reality, N(0)V ≤ 0.3. Let us estimate ∆0. Taking the Debye tempera-
ture Θ = h̄ωD/kB ∼ 280 K and N(0)V = 0.3, one obtains ∆0 ∼ 10 K =
0.86 meV.
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3.5 Density of states of elementary excitations
The lower part of the elementary excitation spectrum of a superconductor is

depicted in Fig. 5.8. By combining the two equations, Eqs. (5.11) and (5.30),
we have

Ek =
√

ε2
k + ∆2

0 =

√√√√(
h̄2k2

2m
− h̄2k2

F

2m

)2

+ ∆2
0. (5.38)

This dependence of Ek on k is illustrated in Fig. 5.9a. As one can see from this
plot and Fig. 5.8, the energy levels of elementary excitations become denser
at Ek → ∆0. In other words, the density of states near the Fermi level is the
highest.

 E  k

 k  F  k

 ∆  0

 (a)  E

 N(0)

 (b)

 ∆  0

 N  s

Figure 5.9. (a) Spectrum of elementary excitations of a superconductor, Ek (see also Fig. 5.8),
and (b) its density of states Ns at T = 0.

In a superconductor, the density of states is

N(E) = N(ε)
dε

dE
= N(ε)

∆(T )√
E2 − ∆2(T )

, (5.39)

where N(ε) is the density of states of a superconductor in the normal state.
The density of states N(E) diverges at E → ∆0, as shown in Fig. 5.9b.

Figure 5.9b presents the density of states of a superconductor at T = 0. At
finite temperatures 0 < T < Tc, however, the density of states does not diverge
at E → ∆0 because, at 0 < T , there are always excitations inside the gap, as
illustrated in Fig. 5.10. This effect can directly be observed in tunneling mea-
surements. It is worth noting that, the tunneling conductances dI(V )/dV ob-
tained in a superconductor-insulator-normal metal (SIN) junction corresponds
directly to the density of states of a superconductor if normalized to a normal-
state conductance Gn [thus, to N(ε)]. The current-voltage tunneling character-
istics for a conventional superconductor are shown in Fig. 2.20. The conduc-
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Figure 5.10. Tunneling dI(V )/dV characteristic for a SIN junction at T > 0. The dashed
line is the density of states of a superconductor at zero temperature (see Fig. 5.9b). Gn is the
normal-state conductance.

tances measured in a superconductor-insulator-superconductor (SIS) tunneling
junction are proportional to the convolution of the density-of-states function of
a superconductor with itself.

3.6 Critical temperature
In the framework of the BCS theory, one can derive an expression for the

critical temperature. At T = Tc, the gap is ∆(Tc) = 0. Then, replacing T in
Eq. (5.35) with Tc and setting ∆(T ) = 0 yields an equation with respect to Tc:

1
N(0)V

=
h̄ωD∫
0

dε

ε
tanh

ε

2kBTc
. (5.40)

Carrying out this integration, one gets

kBTc = 1.14h̄ωD exp
(
− 1

N(0)V

)
. (5.41)

Taking Eq. (5.37) into account, we have

2∆0 = 3.52kBTc. (5.42)

The last two relations are in good quantitative agreement with numerous ex-
periments. Moreover, Equation (5.41) provides an explanation for the isotope
effect (see Chapter 2): since the Debye frequency varies as ωD ∝ M−1/2,
where M is the isotope mass, one immediately obtains from Eq. (5.41) that
the product TcM

1/2 is constant for a given superconductor.
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3.7 Condensation energy
Here we calculate the condensation energy of the superconducting state at

T = 0, i.e. the difference in energy between the superconducting and normal
states:

W ≡ Es − En = (Ekin
s − Ekin

n ) + (Epot
s − Epot

n ), (5.43)

where Ekin
i and Epot

i are respectively the kinetic and potential energies. In the
normal state at T = 0, all states below the Fermi level are completely occupied
and, therefore, Epot

n = 0 and

Ekin
n =

∑
k<kF

2εk. (5.44)

Here the coefficient 2 appears because the sum is taken over pairs of states
(k,−k). Then, taking into account that, at T = 0, fk = 0, and using Eq.
(5.24), the difference of kinetic energies is

Ekin
s − Ekin

n = 2
∑

k<kF

εk(v2
k − 1) + 2

∑
k>kF

εkv2
k. (5.45)

Using Eqs. (5.30), (5.31) and (5.37), one can easily transform Eq. (5.45) into

Ekin
s − Ekin

n = N(0)∆2
0

[
1

N(0)V
− 1

2
(1 − e−2/N(0)V )

]
. (5.46)

Similarly, the potential energy of the superconducting state from Eq. (5.25) at
T = 0 is

Epot
s = Ep = −∆2

0

V
. (5.47)

Then, the condensation energy is the sum of the last two equations:

W = −1
2

N(0)∆2
0

[
1 − e−2/N(0)V

]
� −1

2
N(0)∆2

0 if N(0)V 
 1. (5.48)

Since N(0) � N/EF , where N is the total number of free conduction elec-
trons, then the condensation energy per electron is about ∆2

0/(2EF ). A similar
result was obtained in Chapter 2 by using common sense. Also in Chapter 2,
we established that the difference in free energy between the superconducting
and normal state equals H2

c /8π, where Hc is the thermodynamic critical field.
It then follows that at T = 0

H2
c

8π
=

1
2

N(0)∆2
0. (5.49)

From Eq. (2.20), Hc(T ) varies with temperature as [1−(T/Tc)2]. As T → Tc,
this dependence becomes linear with T : Hc ∝ (Tc − T ). As a consequence,
from Eq. (5.49), ∆(T ) varies with temperature at T → Tc as (Tc − T )1/2.
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3.8 Coherence length
As defined in Chapter 2, the coherence length ξGL is determined by varia-

tions of the order parameter Ψ(r), whilst the Cooper-pair size ξ is related to
the wavefunction of a Cooper pair, ψ(r). Furthermore, the coherence length
depends on temperature, ξGL(T ), while the Cooper-pair size is temperature-
independent. Since the order parameter in conventional superconductors is a
“magnified” version of Cooper-pair wavefunctions, the values of coherence
length and Cooper-pair size in conventional superconductors coincide at T =
0: ξGL(0) = ξ(0) = ξ0.

The superconducting ground state can be represented by the distribution of
electron pairs in momentum space given by the function v2

k. The sketch of the
dependence of v2

k on k is shown in Fig 5.7. In this plot, one can see that large
variations of v2

k at T = 0 can occur only within the region

∆k ∼ kF
2∆0

EF
, (5.50)

where EF = h̄2k2
F /2m is the Fermi energy. Then in real space, large vari-

ations of the order parameter of the ground state can be expected within the
interval ∆x defined by the uncertainty relation

∆x∆k ∼ 1. (5.51)

Then, it follows that

∆x ∼ EF

2∆0kF
=

1
2∆0kF

h̄2k2
F

2m
=

h̄pF

4m∆0
=

h̄vF

4∆0
, (5.52)

where pF and vF are respectively the electron momentum and velocity on the
Fermi surface. By definition, ∆x is the coherence length at T = 0, thus, the
intrinsic coherence length, ξ0 ≡ ∆x. A rigorous calculation yields

ξ0 =
h̄vF

π∆0
. (5.53)

The difference between the two expressions is only in the numerical coefficient
of π/4 � 0.785. As mentioned above, ξ0 is also the size of the Cooper pairs at
T = 0.

The estimation of ξ0 for a metallic superconductor, made in Chapter 2,
yielded ξ0 � 3×103 A

◦
. The values of the intrinsic coherence length in conven-

tional superconductors can be found in Table 2.1. In spite of the fact that two
electrons in a Cooper pair in metallic superconductors are far apart from each
other, the other Cooper pairs are only a few tens of A

◦
away, as shown schemati-

cally in Fig. 4.1. Such a high concentration of the Cooper pairs in conventional
superconductors automatically leads to the onset of phase coherence.
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3.9 Specific-heat jump
As discussed in Chapter 2, the appearance of the superconducting state is

accompanied by quite drastic changes in both the thermodynamic equilibrium
and thermal properties of a superconductor. The normal–superconducting tran-
sition is a second-order phase transition accompanied by a jump in heat capac-
ity. On cooling, the heat capacity of a superconductor has a discontinuous
jump at Tc and then falls exponentially to zero, as illustrated in Fig. 2.23. In
the framework of the BCS theory, the value of this jump in heat capacity equals
β = 1.43, as specified by Eq. (2.54). Experimentally, the value of the jump in
specific heat in conventional superconductors with a strong electron-phonon
coupling can be much larger than 1.43.

3.10 Relation between the BCS and Ginzburg-Landau
theory

The Ginzburg-Landau theory of the superconducting state, which was dis-
cussed in Chapter 2, is phenomenological. Soon after the development of
the BCS theory, Gor’kov showed that the two theories—microscopic BCS
and phenomenological Ginzburg-Landau—are basically the same at T → Tc.
However, the relation between the BCS and Ginzburg-Landau theory differs in
the so-called clean and dirty limits. To recall, the case when the mean electron
free path is larger than the Cooper-pair size, � � ξ, is known as the clean
limit. In the dirty limit, � 
 ξ. In what follows, all quantities corresponding to
“clean” superconductors will be labeled with an index “cl” and those to “dirty”
superconductors with an index “d” .

First of all, the energy-gap function in the BCS theory, ∆(r), is proportional
to the order parameter Ψ(r) in the Ginzburg-Landau theory at T → Tc as

Ψcl(r) =

[
7mv2

F N(0)
2π2k2

BT 2
c

ζ(3)

]1/2

∆(r), (5.54)

Ψd(r) =
[
πmvF N(0)l

12h̄kBTc

]1/2

∆(r), (5.55)

where ζ(3) � 1.202 is the Riemann function. The temperature dependence of
the energy gap at T → Tc is

∆(T ) � 3.06 kBTc

(
1 − T

Tc

)1/2

. (5.56)

The temperature dependences of the coherence length and magnetic penetra-
tion depth in the two limits are

ξGL,cl = 0.74 ξ0

(
1 − T

Tc

)1/2

, (5.57)
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ξGL,d = 0.85 (ξ0l)1/2
(

1 − T

Tc

)1/2

, (5.58)

λcl =
λ(0)√

2

(
1 − T

Tc

)1/2

, (5.59)

λd = 0.615 λ(0)
(

ξ0

l

)1/2 (
1 − T

Tc

)1/2

, (5.60)

where ξ0 is the intrinsic coherence length defined in Eqs. (5.53) and (2.15),
and

λ2(0) ≡ 3c2

8πe2v2
F N(0)

. (5.61)

The coefficients α and β in the Ginzburg-Landau theory can be expressed
in terms of ξ0 and λ(0) as

αcl = −1.83
h̄2

2mξ2
0

(
1 − T

Tc

)1/2

, (5.62)

αd = −1.36
h̄2

2mξ0l

(
1 − T

Tc

)1/2

, (5.63)

βcl =
0.35
N(0)

(
h̄2

2mξ2
0kBTc

)2

, (5.64)

βd =
0.2

N(0)

(
h̄2

2mξ0lkBTc

)2

. (5.65)

Finally, the Ginzburg-Landau parameter k in these two limits is

kcl = 0.96
λ(0)
ξ0

and kd = 0.725
λ(0)

l
. (5.66)

4. Extensions of the BCS theory
As is natural with a development of such importance, the appearance of the

original paper by Bardeen, Cooper and Schrieffer was followed rapidly by a
number of papers giving reformulation of the calculations and some correc-
tions to the original results. Several of these reformulations and corrections
proved important in the later development.

4.1 Critical temperature
Here we discuss an important correction to the critical temperature obtained

for the case of strong electron-phonon coupling. For convenience, we intro-
duce a new parameter λ = N(0)V called the electron-phonon coupling con-
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stant (not to be confused with the penetration depth). In the weak-coupling
limit, i.e. when λ 
 1, the influence of the Coulomb interaction on Tc in
Eq. (5.41) can be taking into account by introducing the Coulomb pseudo-
potential:

kBTc = 1.14h̄ωD exp
(
− 1

λ − µ∗

)
, (5.67)

where µ∗ is N(0) times the Coulomb pseudo-potential. Later, McMillan ex-
tended this result for the case of strong-coupling superconductors, and obtained

Tc =
Θ

1.45
exp

[
− 1.04(1 + λ)

λ − µ∗(1 + 0.62λ)

]
, (5.68)

where Θ is the Debye temperature. So, when the Coulomb interaction is taken
into account, the isotope-mass dependence of the Debye frequency appearing
in µ∗ modifies the isotope effect, and thus explains the deviation of the isotope
effect in some superconductors from the ideal value of 0.5 (see Table 2.3).

In BCS-McMillan’s expression for Tc, the Debye temperature Θ occurs not
only in the pre-exponential factor in Eq. (5.68), but also in the electron-phonon
coupling constant λ which can be presented as λ ≈ C/M〈ω2〉, where C is a
constant for a given class of materials, M is the isotope mass, and 〈ω2〉 is the
mean-square average phonon frequency, and 〈ω2〉 ∝ Θ. As a consequence,
in BCS-type superconductors, Tc increases as Θ decreases. In other words,
Tc increases with lattice softening. This, however, is not the case for high-Tc

superconductors (copper oxides) in which Tc increases with lattice stiffening
(see Fig. 6.29), thus, contrary to the case of conventional superconductors.
This fact clearly indicates that the mechanism of superconductivity in high-Tc

superconductors, which will be discussed in the next chapter, is not of the BCS
type.

4.2 Strength of the electron-phonon interaction
The electron-phonon coupling constant λ in Eq. (5.68) can be determined

experimentally. In a given material, the strength of the electron-phonon in-
teraction depends on the function α2(ω)F (ω), where F (ω) is the density of
states of lattice vibrations (the phonon spectrum); α2(ω) describes the interac-
tion between the electrons and the lattice, and ω is the phonon frequency. The
spectral function α2(ω)F (ω) is the parameter of the electron-phonon interac-
tion in the Eliashberg equations, and if this function is known explicitly, one
can calculate the coupling constant λ with the help of the following relation

λ = 2
∫

α2(ω)F (ω)
dω

ω
. (5.69)

The phonon spectrum F (ω) can be determined by inelastic neutron scat-
tering. The product α2(ω)F (ω) can be obtained in tunneling measurements.
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A comparison of experimental data obtained by these two different techniques
reveals in many superconducting materials a remarkable agreement of the spec-
tral features. The function α(ω) can be determined explicitly from these data,
which is usually smooth relative to F (ω). As an example, Figure 5.11 shows
the phonon spectrum F (ω) and the function α2(ω)F (ω) for Nb, obtained by
neutron and tunneling spectroscopies, respectively. In Fig. 5.11, one can see
that there is good agreement between the two spectra. It is worth to mention
that the phonon spectrum in metals often has two peaks, as that in Fig. 5.11.
These peaks originate from longitudinal and transverse phonons.
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Figure 5.11. Tunneling and neutron spectroscopic data for Nb (taken from [19]).

4.3 Tunneling
As we already know, tunneling dI(V )/dV characteristics obtained in an

SIN junction correspond to the density of states of quasiparticle excitations in
a superconductor. Let us derive this result. Assuming that the normal metal has
a constant density of states near the Fermi level and the transmission of the bar-
rier (insulator) is independent of energy, the tunneling conductance dI(V )/dV
is proportional to the density of states of the superconductor, broadened by the
Fermi function f(E, T ) = [exp(E/kBT ) + 1]−1. Thus, at low temperature,

dI(V )
dV

∝
+∞∫

−∞
Ns(E)

[
− ∂

∂(eV )
f(E + eV, T )

]
dE ∼= Ns(eV ), (5.70)

where V is the bias; Ns(E) is the quasiparticle density of states in a supercon-
ductor, and the energy E is measured from the Fermi level of a superconductor.
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So, the differential conductance at negative (positive) voltage reflects the den-
sity of states below (above) the Fermi level EF .

In order to smooth the gap-related structures in the density of states Ns

shown in Fig. 5.10 at T → 0, a phenomenological smearing parameter Γ was
introduced, which accounts for a lifetime broadening of quasiparticles (Γ =
h̄/τ , where τ is the lifetime of quasiparticle excitations). The energy E in the
density-of-state function is replaced by E − iΓ as

Ns(E, Γ) ∝ Re

{∫
E − iΓ√

(E − iΓ)2 − ∆2(k)
dk

}
, (5.71)

where, in the general case, the energy gap ∆(k) is k-dependent. (In a two-
dimensional case, the integration is reduced to integrating over the in-plane
angle 0 ≤ θ < 2π.)

In SIN tunneling junctions of conventional superconductors, there is good
agreement between the theory and experiment. However, for SIS-junction
characteristics, the correspondence between the smoothed BCS density of states
and experimental data is poor. This issue was raised for the first time elsewhere
[19].

4.4 Effect of impurities on Tc

How do magnetic and non-magnetic impurities affect the critical temper-
ature in conventional superconductors? It turns out that, in superconductors
described by the BCS theory, non-magnetic impurities do not alter Tc much,
whereas magnetic impurities drastically suppress the superconducting transi-
tion temperature.

The effect of non-magnetic impurities on Tc was first explained by Ander-
son in his theorem. In the normal state, the electrons may be described by wave
functions φn ↑(r) and φn ↓(r), where φn is supposed to include the effects of
the impurity scattering. The quantum number n replaces the wave number k
we used for the pure metal. The Cooper pairs in the pure metal is composed
of the states (k, ↑) and (−k, ↓). The latter state is in fact the former one but
with momentum and current reversed in time. Anderson argued that, in the im-
pure metal, one should equally pair time-reversed states, namely, φn ↑(r) and
φ∗

n ↓(r): the complex conjugate φ∗
n ↓ is the time reverse of φn ↑ just as e−ik·r is

the time reverse of eik·r. With non-magnetic impurities, φ∗
n and φn have the

same energy, and all the BCS calculations go through unmodified. In fact, the
impurity scattering washes out the effects of Fermi-surface anisotropy, so that
the BCS results apply rather better to alloys than to pure metals. Experimen-
tally, when non-magnetic impurities are added to a pure superconductor, the
critical temperature first drops sharply and then varies only slowly as a func-
tion of the impurity concentration. The first drop is related to the destruction
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of anisotropy effects, and the subsequent slow change is caused by a change in
N(0).

In the case of magnetic impurities, φ∗
n and φn have different energies. As

a consequence, this leads to a difference in energy between the two electrons
in a Cooper pair. When the mean value of this energy difference exceeds the
binding energy of the pairs, the electron pairing and, thus, the superconducting
state, can no longer occur.

The effect of suppression of the superconducting state by magnetic and non-
magnetic impurities is always used to determine the nature of the electron-
electron attraction in superconducting materials. For example, the effect of
impurities on Tc in superconductors in which superconductivity is mediated
by magnetic fluctuations should be opposite to that in conventional supercon-
ductors.

4.5 High-frequency residual losses
The vanishing of the dc resistance is the most striking feature of the super-

conducting state. However, the losses in a superconductor are non-zero for an
ac current which flows in a thin surface layer having a thickness of λ (pen-
etration depth). The surface resistance depends on the frequency ω of an ac
current (or electromagnetic field), as well as on the temperature and the energy
gap of a superconductor. At microwave frequencies and at temperatures less
than half the transition temperature, the surface resistance has the following
approximate BCS form:

Rs(T, ω) =
Cω2

T
e−∆/kBT + R0(ω), (5.72)

where C is a constant that depends on the penetration depth in the material,
and R0 is the residual resistance. Although it is not entirely clear where the
residual losses originate, it has been determined experimentally that trapped
flux and impurities are principal causes. An additional source of the residual
losses can be imperfection of the surface of a superconductor, which may not
be perfectly flat or contains non-superconducting regions (for example, oxides
etc.). Nevertheless, in conventional superconductors, the residual losses which
are determined by R0 are small in comparison, for example, with those in
high-Tc superconductors.





Chapter 6

THIRD GROUP OF SUPERCONDUCTORS:
MECHANISM OF SUPERCONDUCTIVITY

True laws of Nature cannot be linear.
—Albert Einstein

Here we consider the third group of superconductors; the second group will
be discussed in the following chapter. Such a sequence simplifies the presen-
tation of the second-group superconductors.

The third group of superconductors incorporates unconventional supercon-
ductors which are low-dimensional and magnetic (at least, these compounds
have local magnetic correlations). These superconductors are also known as
materials with strongly-correlated electrons (holes). This means that the posi-
tion and motion of each electron in these compounds are correlated with those
of all the others.

At the moment of writing, there is no exact theory of unconventional su-
perconductivity. However, the combination of two theories can describe, in
a first approximation, some pairing and phase-coherence characteristics, for
example, in superconducting cuprates. With respect to the BCS mechanism
of superconductivity which can be considered as linear, the mechanism of un-
conventional superconductivity is nonlinear, meaning that the electron-phonon
interaction in these compounds is moderately strong and nonlinear. In the ab-
sence of an exact theory of unconventional superconductivity, we shall discuss
a general description of the mechanism of unconventional superconductivity
fully based on experimental data obtained mainly in the cuprates. These data
are presented in [19]. The two theoretical models mentioned above will also
be discussed.

One could ask why it is that at present there exists no complete theory for
unconventional superconductivity given that its mechanism is in general un-

165
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derstood. The answer is very simple. There is a lack of understanding of the
normal-state properties of materials with strongly-correlated electrons. This
knowledge is crucial for understanding the mechanism of unconventional su-
perconductivity on the nanoscale, and thus, for a theoretical description of this
phenomenon.

The development of the BCS theory was possible only because, by that time,
the normal-state properties of ordinary metals were very well understood. The
development of the exact theory of unconventional superconductivity will not
be possible until we understand the normal-state properties of materials with
strongly-correlated electrons, including the cuprates, as well as understanding
those of ordinary metals. It is most likely that a room-temperature supercon-
ductor will be available earlier than the exact theory of unconventional super-
conductivity. It may sound pessimistic with respect to the theory; at the same
time, it reflects difficulties that are confronted by physicists working in this
field. On the other hand, it may sound too optimistic with respect to room-
temperature superconductivity. The truth is probably somewhere in between.

Since the mechanism of unconventional superconductivity was described in
detail in [19], the references related to this chapter can be found there. Only
a few articles will be mentioned here. We start this chapter with some impor-
tant remarks concerning materials with strongly-correlated electrons, some of
which superconduct.

1. Systems with strongly-correlated electrons

Electrons in an ordinary metal can be treated in a mean-field approximation.
Such an approach is not applicable to materials with strongly correlated elec-
trons, in which the position and motion of each electron are correlated with
those of all the others. In this class of materials, the electronic, magnetic and
crystal structures are strongly coupled, and they actively interact with each
other. This gives rise to many fascinating phenomena, such as superconduc-
tivity, colossal magnetoresistance, interacting spin- and charge-density waves,
as schematically illustrated in Fig. 6.1. Depending on temperature, all these
states in Fig. 6.1 may exist simultaneously (except coexistence of colossal
magnetoresistance and superconductivity—they are mutually exclusive). The
Fermi-liquid approach is not applicable to most of these materials.

At present it may be too early to say that in all compounds with strongly
correlated electrons, quasiparticles are solitons; nevertheless, for most of these
materials, this statement is correct. This would imply that electrical current in
some materials with strongly-correlated electrons is carried by solitons, not by
electrons/holes. As discussed in Chapter 1, the essence of the soliton concept is
that a soliton is a “compromise” achieved between two “destructive” forces—
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 Systems with strongly   

 correlated electrons
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 Magnetoresistance

 Spin-density-waves Charge-density-waves

Figure 6.1. Diagram for materials with strongly-correlated electrons.

nonlinearity and dispersion. It is then no wonder why solitons appear in such a
“harsh” environment that exists in materials with strongly-correlated electrons.
We shall consider solitons in more detail in the following subsections.

2. General description of the mechanism
Among superconductors of the third group, the cuprates are the most stud-

ied. For this reason the cuprates are chosen for presentation of the mechanism
of unconventional superconductivity. We shall also discuss superconductivity
in C60.

The undoped cuprates are antiferromagnetic Mott insulators. To become
superconducting they must be doped by either electrons or holes. The doping
can be achieved chemically, by pressure, or in a field-effect transistor configu-
ration. The crystal structure of the cuprates is layered and highly anisotropic.
The doped carriers are accumulated in the two-dimensional copper-oxide planes
(see Fig. 3.7). The CuO2 layers are always separated by layers of other atoms,
which are usually insulating or semiconducting. In chemical doping these lay-
ers provide charge carriers in the CuO2 planes; therefore, they are often called
the charge reservoirs. Superconductivity occurs at low temperature when the
doping level is not too high nor too low, approximately one doped carrier per
three Cu2+ ions (∼ 16%). For simplicity, we shall further discuss the hole-
doped cuprates; the electron-doped cuprates will be considered separately at
the end of this chapter.

What is the main cause of the onset of superconductivity in the cuprates?
After the charge-carrier doping which is absolutely necessary, the main cause
of the occurrence of superconductivity in the cuprates is their unstable lattice.
Experimentally, the lattice in the cuprates is very unstable especially at low



168 ROOM-TEMPERATURE SUPERCONDUCTIVITY

temperatures. Upon lowering the temperature, all superconducting cuprates
undergo a number of structural phase transitions. In the cuprates the unstable
lattice provokes the phase separation taking place in the CuO2 planes on the
nanoscale (∼ a few nanometers). Because of a lattice mismatch between dif-
ferent layers in the doped cuprates, below a certain temperature in the CuO2

planes there appear, at least, two different phases which fluctuate. The doped
charges prefer to join one of these phases, avoiding the other(s). By doing
so, the charge presence on one phase enlarges the difference between the two
phases. Thus, the phase separation is self-sustaining. Clusters containing
the hole-poor phase in the CuO2 planes remain antiferromagnetically ordered.
This phase separation taking place in the normal state of the cuprates on the
nanoscale is the main key point for the understanding of the mechanism of
unconventional superconductivity.

What is probably even more important is that the doped holes in the CuO2

planes, gathered in clusters having a pancake-like shape, are not distributed
homogeneously in these clusters but they form quasi-one-dimensional charge
stripes. Such a type of doping is called topological. Thus, the phase separation
into the CuO2 planes takes place not only on the nanoscale but also on a sub-
nanoscale (∼ several A

◦
). The charge stripes are a manifestation of self-trapped

states. The combination of the electron-phonon, Coulomb and magnetic in-
teractions result in the appearance of the charge stripes. The electron-phonon
interaction in the cuprates is moderately strong and nonlinear. In supercon-
ducting cuprates, the stripes are quoter-filled (i.e. one hole per two Cu sites)
and run along –O–Cu–O–Cu– bonds (see Fig. 3.7b). The charge stripes are
separated by two-dimensional insulating antiferromagnetic stripes, as shown
in Fig. 6.2. The charge stripes are dynamic : they can meander and move in the
transverse direction. Intrinsically the charge stripes are insulating, i.e. there
is a charge gap on the stripes. However, the presence of soliton-like excita-
tions on the stripes makes them conducting. These soliton-like excitations are
one-dimensional polarons called also polaronic solitons, Davydov solitons or
electrosolitons. They propagate in the middle of the charge gap. On cooling,
the polaronic solitons give rise to pairs coupled in a singlet state due to local
deformation of the lattice. Thus, the moderately strong, nonlinear electron-
phonon interaction is responsible for electron pairing in the cuprates. The pairs
of polaronic solitons—bisolitons—are formed above the critical temperature,
at Tpair > Tc, and reside on the charge stripes. They represent the Cooper
pairs in the cuprates.

In the cuprates, the long-range phase coherence is established at Tc due
to local spin fluctuations in the antiferromagnetic stripes shown in Fig. 6.2.
The fluctuating charge stripes locally induce spin excitations which mediate
the long-range phase coherence. In other words, in the cuprates the phase
coherence is locked at Tc via a spin wave oscillating in space and time. Such
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Figure 6.2. Idealized diagram of the spin and charge stripe pattern within a CuO2 plane with
hole density of 1/8. Only Cu atoms are shown; the oxygen atoms which are located between the
copper atoms have been omitted. Arrows indicate the spin orientations. Holes (filled circles)
are situated at the anti-phase domain boundaries [13].

a spin wave is locally commensurate with the lattice, as shown in Fig. 6.2;
however, it manifests itself in inelastic neutron scattering (INS) spectra by four
incommensurate peaks because of phase jumps by π at a periodic array of
domain walls (charge stripes).

Below Tc and somewhat above Tc, the charge, spin and lattice structures in
the CuO2 planes are coupled. At any doping level, the pairing ∆p and phase-
coherence ∆c energy gaps relate to one another as ∆p > ∆c.

In a first approximation, unconventional superconductivity in the cuprates
can be described by a combination of two theoretical models: the bisoliton [9,
10] and spin-fluctuation [4] theories. Some pairing characteristics of super-
conducting cuprates can be estimated by using the bisoliton model, while the
spin-fluctuation model describes phase-coherence characteristics.

3. Detailed description of the mechanism
In this section, we discuss in detail important elements of superconductivity

in the cuprates and the physics of high-Tc superconductors. We start with the
normal-state properties of the cuprates which are abnormal in comparison with
those of ordinary metals. In a sense, it is ironic to use the word “normal” in the
phrase “ the normal-state properties of the cuprates.”

3.1 Structural phase transitions
In the cuprates, the lattice is very unstable. As a consequence, the cuprates

exhibit several structural phase transitions which finally result in the occur-
rence of superconductivity.
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Structural phase transitions are probably the best documented in LSCO and
La2−xBaxCuO4 (LBCO) because of their relatively simple crystal structure
and the availability of large high-quality single crystals. As shown in Fig. 6.3
(see also Fig. 3.8), the Sr (Ba) substitution for La in LSCO (LBCO) induces
a structural phase transition from the high-temperature tetragonal (HTT) to
low-temperature orthorhombic (LTO). The HTT → LTO transition which had
been studied a decade before the discovery of superconductivity in LBCO [5],
is driven by soft phonons. At high temperatures, LSCO has the same body-
centered tetragonal structure as K2NiF4. With cooling, the HTT phase trans-
forms into the LTO phase, because of a staggered tilt of the CuO6 octahedra
(see Fig. 3.7a). The tilt angle of the octahedra is about 3.6◦ and uniform, as
shown in Fig. 6.4. In LBCO, on further cooling, the LTO phase transforms into
new phases with doubled unit cells, one of which is called the low-temperature
tetragonal (LTT) phase. In the LTT phase, the CuO6 octahedra rotate about
alternate orthogonal axes in successive layers with no change in the magnitude
of the tilt, as shown in Fig. 6.4.

The underlying interaction that gives rise to the low-temperature structural
phases, including the LTT phase, is the mismatch in preferred lattice constants
of the CuO2 layer and the intervening rare-earth oxide layers. At high Ba
doping (0.2 < x), there is no well defined LTO → LTT phase transition below
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 LTO  LTT

Figure 6.4. Tilt pattern of CuO6 octahedra in the LTO and LTT phases.

300 K, thus a crystal is a mixture of the LTO and LTT phases. Even at low
Ba (Sr) doping level, neutron and X-ray scattering measurements performed
in LBCO and Nd-doped LSCO show that the LTO and LTT phases coexist
well below the onset of the LTO → LTT structural transition. As shown in
Fig. 6.3, the HTT → LTO transition in LSCO is also observed in acoustic
measurements; however, acoustic measurements alone cannot identify the type
of a structural transition. The small structural differences between the LTO
and LTT phases have a drastic influence on electronic properties of LSCO and
LBCO. Results of some transport measurements suggest that the LTO → LTT
transition in LSCO induces intra-gap electronic states in the middle of normal-
state gap (pseudogap).

In YBCO, there are at least three structural transitions which occur at Tc,
140–150 K and 220–250 K. The transition at 220–250 K is close to that shown
in Fig. 3.10; therefore it can be associated with the HTT → LTO transition.
Unfortunately, the other two structural transitions in YBCO are unknown: the
measurements performed in YBCO with different dopings (0.55 ≤ x ≤ 1)
by ion channeling spectrometry cannot identify the type of these structural
transitions. Heat-capacity measurements in YBCO (x = 0.85–0.95) show the
presence of three anomalies in the temperature dependence of heat capacity,
occurring in each of the regular intervals 100–200 K, 205–230 K and 260–
290 K. In near optimally doped YBCO, a structural phase transition was even
observed deep in the superconducting state: a lattice distortion taking place
near 60 K induces a redistribution of holes in the CuO2 planes.

The CuO-chain oxygen ions in YBCO8 (124) undergo a correlated displace-
ment in the a direction (perpendicular to the chains) of about 0.1 A

◦
, with the
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onset of correlations occurring near 150 K. A similar effect is observed in
YBCO.

In slightly overdoped Bi2212, three structural phase transitions are observed
in acoustic measurements at 95 K, 150 K and 250 K. Again, acoustic measure-
ments cannot determine the type of the structural transitions, even one is able
to observe them in acoustic measurements.

In underdoped and optimally doped regions, some of these transitions are
almost doping level p independent. Acoustic measurements performed in un-
doped and underdoped LSCO, YBCO, NCCO, Bi- and Tl-based compounds
show that the elastic coefficients display some kind of structural transition at
maximum Tc for each compound, although some of these cuprates either are
not superconducting or have low Tc, i.e. Tc 
 Tc,max. This fact suggests that
this structural transition at Tc,max does not require the presence of supercon-
ductivity. One may then conclude that Tc,max is determined in each compound
by the underlying (unstable) lattice.

In the cuprates, the charge-stripe phase shown in Fig. 6.2, which will be
discussed in detail in the following subsection, is also induced by a structural
phase transition. As an example, Figure 6.5 shows the neutron-diffraction data
obtained in Nd-doped LSCO. In the plot, one can see that, upon cooling, the
charge order appears immediately after the lattice transformation, TCO ≤ Td,
where TCO is the onset temperature of charge ordering, and Td is the structural-
phase transition temperature. Spins located between the charge stripes become
antiferromagnetically aligned at much lower temperature TMO < TCO, as
depicted in Fig. 6.5. In the striped phase of cuprates, the charge ordering
always precedes the magnetic ordering. In other strongly-correlated electron
systems—in nickelates and manganites, the magnetic order always arrears af-
ter the charge ordering. For example, in the nickelate La2−xSrxNiO4 with
x = 0.29, 0.33 and 0.39, these two temperatures are TMO � 115, 180 and
150 K and TCO � 135, 230 and 210 K, respectively. In La2−xSrxNiO4, a
clear charge gap is formed below TCO. In the manganite La0.35Ca0.65MnO3,
TMO � 140 K and TCO � 260 K. In the latter case, the magnitude of the
charge gap 2∆(0)/kBTCO ∼ 13 is too large for a conventional charge-density-
wave (CDW) order. In the nickelates and manganates, a structural phase tran-
sition, observed in acoustic measurements, also precedes the charge ordering.
Thus, one can conclude that the striped phase in all these compounds is in-
duced by a structural phase transition. Secondly, it is charge driven and the
spin order between charge stripes is subsequently enslaved.

3.2 Phase separation and the charge distribution into the
CuO2 planes

In the cuprates and some other compounds with strongly-correlated elec-
trons, the distribution of charge carriers is not homogeneous in comparison
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Figure 6.5. Temperature evolutions of lattice, charge and spin superlattice peaks in neutron
diffraction measurements in Nd-doped LSCO. The magnetic, charge and lattice orderings are
marked by TMO , TCO and Td, respectively. The backgrounds are subtracted [13].

with that in ordinary metals: the doped charge carriers in the CuO2 planes of
the cuprates are distributed inhomogeneously. Depending on the doping level,
this inhomogeneous charge distribution takes place on the nanoscale and a sub-
nanoscale, resulting in the appearance of charge clusters and charge stripes,
respectively.

In the undoped region (p < 0.05) of hole-doped cuprates, the doped holes
form nanoscale clusters in the CuO2 planes containing diagonal charge stripes
(i.e. they run along the diagonal –Cu–Cu–Cu– direction [see Fig. 3.7b]). The
sketch in Fig. 6.6 depicts the charge distribution in a CuO2 plane as a function
of doping level. At 0 < p < 0.05, the nanoscale clusters with diagonal charge
stripes are embedded in an antiferromagnetic matrix. On lowering the temper-
ature, unconventional spin glass occurs in these clusters. In undoped cuprates,
the distance between diagonal charge stripes is sufficiently large, ∼ 8a, where
a � 3.85 A

◦
is the distance between adjacent copper sites in the CuO2 planes.

At p � 0.05, the charge stripes in most of the nanoscale clusters change
their orientation by 45◦ relative to that in the undoped region. So, they now
run along the –Cu–O–Cu– bonds (see Fig. 3.7b). Therefore, they are called
vertical (or horizontal). However, in a very small fraction of the clusters, the
stripes remain diagonally oriented.

In the underdoped region (0.05 < p < 0.13), the nanoscale clusters with
vertical charge stripes are still embedded into the antiferromagnetic matrix. As
schematically shown in Fig. 6.6, the average distance between vertical charge
stripes ds decreases in comparison with that between diagonal charge stripes.
At 0.05 < p < 0.125, 1/ds ∝ p, and ds saturates above p = 1

8 , as illustrated
in Fig. 6.7. Due to a balanced interplay among the charge, spin and lattice
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Figure 6.6. Sketch of charge distribution into a CuO2 plane as a function of doping. Anti-
ferromagnetic and metallic phases are shown in white and grey, respectively. The lines show
charge stripes (see text for more details).

structures, the average distance between vertical charge stripes in the CuO2

planes above p � 0.125 remains constant, ds � 4a, in correspondence with
that shown in Fig. 6.2. The quasi-two-dimensional spin stripes that separate
the dynamic charge stripes can be considered as a local memory effect of the
antiferromagnetic insulating phase at low doping.

The vertical charge stripes are dynamic in the clusters: they meander and
can move in the transverse direction. Therefore, they are not strictly one-
dimensional but quasi-one-dimensional. The mean length of a separate vertical
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Figure 6.7. Doping dependence of incommensurability 2δ (∝ 1/ds) of magnetic ordering,
where ds is the distance between charge stripes (see references in [19]).

charge stripe is about 30–40 A
◦

, i.e. ∼ 10a. The striped phase will be discussed
in detail in the following subsection.

In the optimally doped (p ∼ 0.16) and overdoped (0.2 ≤ p ≤ 0.27) regions,
the average distance between charge stripes remains unchanged, as shown in
Fig. 6.7. Therefore, as the doping level increases, new doped holes take over
the virginal antiferromagnetic matrix. In the optimally doped region, the pic-
ture is diametrically opposed to that in the underdoped region: now clusters
with intact antiferromagnetic order are embedded in a matrix with vertical
charge stripes, as illustrated in Fig. 6.6. The clusters with intact antiferro-
magnetic order disappears completely at p = 0.19, as shown in Fig. 6.8a. The
point p = 0.19 is a quantum critical point in the cuprates. At p = 0.19, the
CuO2 planes, in a first approximation, consist only of the striped phase shown
in Fig. 6.2. The fraction of this phase as a function of doping level is sketched
in Fig. 6.8b. Since the Cooper pairs in the cuprates originate from the striped
phase, it is the most robust at p = 0.19, and not at p = 0.16 where Tc is a
maximum for most of the cuprates.

Finally, let us consider the overdoped region (0.2 ≤ p ≤ 0.27). Above p =
0.19, new doped holes gather between stripes, forming clusters with the Fermi
sea in which the hole distribution is more or less homogeneous, as schemati-
cally depicted in Fig. 6.6. The Fermi-sea clusters are embedded in a matrix
with vertical charge stripes. As p → 0.27, the Fermi-sea clusters grow in size
and start coalescing. The fraction of the Fermi-see clusters (matrix) in the
CuO2 planes is depicted in Fig. 6.8a. At low temperature, superconductivity
in the cuprates collapses when the doping level reaches p � 0.27. However,
the hole distribution in the CuO2 planes, apparently, is not yet homogeneous:
it is most likely that in the interval 0.27 < p < 0.3, there are clusters with
vertical charge stripes imbedded in a Fermi-see matrix, as shown in Fig. 6.6.
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Figure 6.8. Fraction of a certain matrix or clusters in the CuO2 planes of cuprates at T � Tc

as a function of doping: (a) antiferromagnetic matrix or clusters (AF), Fermi-sea clusters or
matrix (M), and spin-glass clusters (SG); and (b) clusters or matrix with vertical charge stripes
(VS). Both plots are shown schematically.

The hole distribution in the CuO2 planes becomes homogeneous only above
p = 0.3. The question of hole distribution in the interval 0.27 < p < 0.3 is
not very important for the understanding of the mechanism of unconventional
superconductivity in the cuprates.

As was noted above, in undoped cuprates, unconventional spin glass occurs
at low temperatures in the clusters with diagonal charge stripes which are em-
bedded into an antiferromagnetic matrix. The fraction of this spin glass as a
function of doping level is sketched in Fig. 6.8a. At p � 0.05, the charge-
stripe orientation in most of the nanoscale clusters becomes vertical (or hor-
izontal). However, in a very small fraction of the clusters, the charge stripes
remain diagonally oriented. Therefore, this unconventional spin glass can still
be observed in the cuprates at very low temperatures and p > 0.05, for exam-
ple, by muon spin relaxation/rotation (µSR) measurements. The clusters with
diagonal charge stripes in the CuO2 planes disappear completely somewhere
between 0.16 and 0.19.

In Fig. 6.8a, the disappearance of the matrix (clusters) with local antiferro-
magnetic order at p = 0.19 does not imply the disappearance of magnetic cor-
relations above this doping level. The insulating quasi-two-dimensional stripes
that are located between vertical charge stripes remain magnetically ordered at
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low temperature. Experimentally, even in the highly overdoped region, mag-
netic relaxation is still dominant.

3.2.1 Nickelates and manganites

A similar stripe order is observed in nickelates with the NiO2 planes [13].
In the nickelates, however, the charge orientation is always diagonal as that
in the undoped cuprates. Doped holes in the nickelates are less destructive to
the antiferromagnetic background than those in the isostructural cuprates. The
phase diagram of La2−xSrxNiO4 (LSNO) is very similar to the phase diagram
of the isostructural LSCO, having a series of phases which are closely related
to the HTT, LTO and LTT phases of LSCO. Thus, there are many similarities
between the striped phases of the cuprates and nickelates.

The stripe order is also observed in manganites with the MnO2 planes. De-
pending on the doping level, the manganites can exhibit either antiferromag-
netic or ferromagnetic ordering. A mesoscopic phase separation into the MnO2

planes of the manganites is an experimental fact [41].
Charge stripes in the nickelates and manganites fluctuate slowly in time and

space, while in the cuprates very quickly. Therefore, it is much easier to ob-
serve a charge inhomogeneity in the nickelates and manganites than that in the
cuprates. As a consequence, there is ample evidence in the literature for charge
stripes in the nickelates and manganites (see references in [19]), and much less
for the cuprates. Nevertheless, there is direct evidence for dynamic charge
stripes in superconducting cuprates as well, for example, in LSCO, YBCO
(see references in [19]) and Bi2212 [42].

3.3 The striped phase
In the cuprates, the length of a separate charge stripe can vary. The mean

length is about 30–40 A
◦

, or ∼ 10a. The charge stripes in the cuprates are dy-
namic: they can meander and move in the transverse direction. In the cuprates,
the charge stripes are quoter-filled: that is one positive electron charge per two
Cu2+ sites along the stripes (in the nickelates, the charge density along the
stripes is one hole per each Ni2+ site). The pattern of charge stripes in real
space shown in Fig. 6.2, in fact, is not correct for the CuO2 planes. In Fig.
6.2, such an alternating order along the stripes has a periodicity of 4kF in mo-
mentum space, where kF is the wave number at the Fermi surface. Analysis of
INS data obtained in some cuprates show that, in the cuprates, the periodicity
of charge stripes in momentum space is not 4kF but 2kF . A real-space sketch
of a 2kF quoter-filled charge stripe is shown in Fig. 6.9. One can see that this
pattern is different from that in Fig. 6.2. The chains in YBCO have also the
2kF charge modulation observed by tunneling spectroscopy. It is worth noting
that traditional charge-ordered states such as sinusoidal CDWs, for example,
in Peierls compounds have also a 2kF charge modulation; however, they are
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Figure 6.9. Schematic ordering pattern on a 2kF quoter-filled charge stripe. In plot, • (◦)
denotes the presence (absence) of a hole.

quasi-static, contrary to the charge stripes in the cuprates. Thus, the charge
order on the stripes in the cuprates is similar to usual CDWs.

In discussing the charge distribution of the CuO2 planes in the previous sub-
section, we assumed that the vertical charge stripes run above the Cu sites. In
principle, the stripes can alternatively be centered on the Cu–O bonds. Simula-
tions of angle-resolved photoemission (ARPES) data obtained in Bi2212 show
that the stripes in Bi2212 seem to be site-centered, not bond-centered.

Why do holes doped in the CuO2 planes prefer to form stripes rather than
to be distributed homogeneously? The combination of the electron-phonon,
Coulomb and magnetic interactions results in the appearance of the charge
stripes. The charge-stripe ordering in the cuprates, nickelates and manganites
is evidence for a strong, nonlinear electron-lattice coupling. The holes in these
compounds are self-trapped.

In the cuprates as in any system with strongly-correlated electrons, the elect-
ron-electron interactions are unscreened and, as a consequence, very strong.
At low temperature, the magnetic order in the cuprates, frustrated by doped
holes, does everything to expel them from the magnetic phase. In the presence
of a strong and nonlinear electron-phonon interaction, doped holes become
self-trapped, that is, in exchange of interaction with the lattice, a doped hole
locally deforms the lattice in a way that it is attracted by the deformation. In its
turn, this local deformation created by the first hole attracts another one, and
so on. Of course, without the Coulomb repulsion, the holes attracted by the
lattice deformation would rather gather in a cluster, not in a one-dimensional
stripe. Thus, the charge stripes in the CuO2 planes are a “product” of the
electron-phonon, Coulomb and magnetic interactions. In addition, there are
other factors favoring the charge-stripe formation; for example, gathering in
one-dimensional stripes, the holes lower their kinetic energy in the transverse
direction.

The parallel arrangement of the charge stripes minimizes the Coulomb re-
pulsion between the neighboring stripes. What is the characteristic length
of the charge-stripe order in the cuprates? Experimentally, the characteristic
length of the charge-stripe order is about 80–110 A

◦
, i.e. ∼ 21–28a [42, 43].

The striped phase in Fig. 6.2 which is nearly one-dimensional will cause
the appearance of two incommensurate Bragg peaks symmetric about the fun-
damental lattice Bragg peaks for an ideal square CuO2 plane. Experimentally
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however, upon doping, the fundamental lattice Bragg peaks are replaced by
four new incommensurate peaks displaced by ±2δ from the fundamental lat-
tice peaks (see Fig. 6.33a). It was initially proposed that the appearance of
four incommensurate peaks is the consequence of the stripe orientation in the
adjacent CuO2 layers: the stripe orientation is alternately rotated by 90◦ layer
by layer, as schematically shown in Fig. 6.10a. Later, another explanation
for the appearance of four incommensurate Bragg peaks was proposed [19].
Since the charge-stripe ordering is not very long (∼ 25a), it is possible that, in
each CuO2 plane, the charge-stripe orientation in neighboring nanoscale clus-
ters with vertical charge stripes may differ by 90◦, as schematically depicted
in Fig. 6.10b. Thus, the charge stripes with vertical and horizontal orientations
may coexist in the same CuO2 plane, causing the appearance of four incom-
mensurate Bragg peaks. In this case it is possible that at high doping level thus
in the overdoped region, the stripes in the neighboring clusters with perpen-
dicular stripe orientations may merge, forming structures with the “L” and “�”
shapes.

In the cuprates, nickelates and manganites, the charge stripes are insulating
on the nanoscale scale. This means that there is a charge gap on the stripes. On
a macroscopic scale, however, the charge stripes are conducting due to soliton-
like excitations present on the stripes. Therefore, the in-plane charge transport
in the cuprates is quasi-one-dimensional, as well as that in the nickelates and
manganites.

 (a)  (b)

 CuO  2    plane

Figure 6.10. (a) Stripe orientation in adjacent CuO2 layers is assumed to be alternately rotated
by 90◦. (b) Sketch of charge-stripe clusters in a CuO2 plane having two possible orientations in
the same CuO2 plane.
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3.4 Phase diagram
Let us now discuss the phase diagram of hole-doped cuprates. The prob-

lem, however, is that the phase diagram for each superconducting cuprate, in
a sense, is unique. Of course, the differences among all these phase diagrams
are not drastic; nevertheless, the phase diagram for each cuprate has its spe-
cific features. As an example, comparing the phase diagrams for LSCO and
YBCO, shown respectively in Figs. 3.8 and 3.10, one can notice that, in these
two cuprates, the width of the antiferromagnetic phase at low doping level is
different. In addition, there are some other features in each plot. In such a situ-
ation, we have no alternative than to consider in detail a phase diagram of one
superconducting cuprate which reflects main features of the physics involved
in all cuprates.

Figure 6.11 shows an idealized phase diagram of Bi2212. In the plot, the
commensurate antiferromagnetic phase at low doping level is not shown be-
cause it was not yet observed in Bi2212: There is a technical problem to
synthesize large-size good-quality undoped single crystals of Bi2212 which
are necessary for INS and µSR measurements. Without the antiferromagnetic
scale at low doping level, Figure 6.11 depicts six temperature/energy scales for
Bi2212.

In Fig. 6.11, the spin-glass Tg temperature scale was recently observed in
Bi2212 by µSR measurements [45]. As was discussed above, this unconvention-
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Figure 6.11. Phase diagram of Bi2212: Tc is the critical temperature; Tpair is the pairing
temperature; TMT is the magnetic-transition temperature; TMO is the magnetic-ordering tem-
perature; and TCO is the charge-ordering temperature (see text for more details) [19, 44]. The
commensurate antiferromagnetic phase at low doping is not shown. The spin-glass temperature
scale Tg is shown schematically (QCP = quantum critical point).
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Figure 6.12. Schematic representation of four types of clusters (phases) existing in the CuO2

planes at different dopings. Cluster A includes the intact antiferromagnetic phase. Cluster B
includes diagonal charge stripes and a magnetic ordering between the stripes. The stripes are
schematically shown by the lines. Cluster C includes vertical charge stripes and a magnetic
ordering between the stripes. In cluster D, holes are distributed homogeneously (Fermi liquid).
The magnetic orderings in clusters A, B and C occur at TMT , Tg and TMO , respectively.

al spin glass occurs in nanoscale clusters with diagonal charge stripes, shown
schematically in Fig. 6.12. The Tg temperature scale first rises approximately
linearly as the doping level starts to increase from zero, reaches a maximum
when it crosses the Ne′el temperature scale TN (p), and then falls to zero as the
doping increases. In Bi2212, Tg � 8 K at p = 0.05, and Tg = 0 somewhere at
p � 0.16 [45].

In Bi2212, the doping level of p = 0.19 is a quantum critical point which
is located at absolute zero. In general, in a quantum critical point, a magnetic
order is about to form or to disappear. At low temperature, superconductivity
in the cuprates is the most robust at this doping level p = 0.19, and not at p =
0.16 where Tc is a maximum.

In Fig. 6.11, the TMT temperature scale starts/ends in the quantum criti-
cal point (MT = Magnetic Transition). Then, it is more or less obvious that
this temperature scale has the magnetic origin. The TMT temperature scale is
analogous to a magnetic transition temperature of a long-range antiferromag-
netic phase in heavy fermions [19]. The doping dependence TMT (p) can be
expressed as

TMT (p) � TMT, 0

[
1 − p

0.19

]
, (6.1)

where TMT, 0 = 970–990 K (see references in [19]). This temperature scale
can be observed in resistivity, nuclear magnetic resonance (NMR) and specific-
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heat measurements, and will be discussed separately. Along the transition tem-
perature TMT (p), magnetic fluctuations are very strong. The TMT temperature
scale originates from a local antiferromagnetic ordering in hole-poor clusters
(matrix) shown in Fig. 6.12. This type of clusters disappears completely at
p = 0.19.

In Fig. 6.11, the three temperature scales, TCO, TMO and Tpair, originate
from nanoscale clusters with vertical charge stripes, shown schematically in
Fig. 6.12. The TCO temperature scale corresponds to a charge-stripe order-
ing (CO = charge ordering). We already know that the striped phase in the
cuprates is charge driven, and a structural phase transition precedes the charge
ordering (see Fig. 6.5). The doping dependence TCO(p) can approximately be
expressed as

TCO(p) � 980 ×
[
1 − p

0.3

]
(in K). (6.2)

The corresponding charge gap ∆cg, observed in tunneling and ARPES mea-
surements, depends on hole concentration as

∆cg(p) � 251 ×
[
1 − p

0.3

]
(in meV). (6.3)

In the striped phase of cuprates shown in Fig. 6.2, the charge ordering is
always followed by a magnetic ordering. In Fig. 6.11, the TMO temperature
scale corresponds to a magnetic ordering (MO) occurring in insulating spin
stripes located between the charge stripes. This is shown in Fig. 6.12. The
doping dependence TMO(p) can be expressed as follows

TMO(p) � 566 ×
[
1 − p

0.3

]
(in K). (6.4)

Since the charge stripes in the CuO2 planes fluctuate very rapidly, this mag-
netic ordering must also rearrange itself quickly. The dynamic quasi-two-
dimensional spin stripes can be considered as a local memory effect of the
commensurate antiferromagnetic phase located at low dopings. In the striped
phase, the magnetic order occurring at TMO helps to stabilize the charge order.

In Fig. 6.11, the Tpair temperature scale corresponds to the formation of
Cooper pairs, the doping dependence of which can be expressed as

Tpair(p) � TCO(p)
3

=
980
3

×
[
1 − p

0.3

]
� 326

[
1 − p

0.3

]
(in K). (6.5)

The corresponding pairing energy scale ∆p depends on the doping level as
follows

∆p(p) � ∆cg(p)
3

=
251
3

×
[
1 − p

0.3

]
� 83.6

[
1 − p

0.3

]
(in meV). (6.6)
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The pairing gap manifests itself in tunneling and ARPES measurements. It
is important to emphasize that the ratio between Tpair and ∆p, obtained ex-
perimentally, clearly indicates a strong-coupling regime of electron pairing in
Bi2212:

2 ∆p � 6 kB Tpair. (6.7)

The superconducting phase appears at a critical temperature Tc shown in
Fig. 6.11. In Bi2212 and in most of the cuprates, the doping dependence Tc(p)
can be expressed as

Tc(p) � Tc,max[1 − 82.6(p − 0.16)2]. (6.8)

For Bi2212, Tc,max = 95 K. The superconducting phase is approximately lo-
cated between p = 0.05 and 0.27, having the maximum critical temperature
Tc,max in the middle, thus at p � 0.16. The corresponding phase-coherence
energy scale ∆c is proportional to Tc as

2∆c = ΛkBTc. (6.9)

In different cuprates, the coefficient Λ is slightly different: Λ � 5.45 in
Bi2212; Λ � 5.1 in YBCO; and Λ � 5.9 in Tl2201. The phase-coherence
gap ∆c manifests itself in Andreev-reflection, penetration-depth and tunneling
measurements.

Let us consider a few issues directly related to the phase diagram in Fig.
6.11. First, in Bi2212, the extensions of three temperature scales TCO(p),
TMO(p) and Tpair(p) cut the concentration axis approximately in one point, at
p = 0.3. Superconductivity however collapses at about p � 0.27. Assuming
that this collapse is due to a lack of long-range phase coherence, one can then
understand why in Fig. 6.6, the distribution of doped holes in the CuO2 plane at
0.27 < p < 0.3 is shown inhomogeneous. Second, the two temperature scales
TCO(p) and TMT (p) in Fig. 6.11 intersect the vertical axis approximately in
one point, at T ≈ 980 K. This seems logic. When, in the CuO2 planes (at p →
0), doped holes gather in nanoscale clusters at TCO to form charge stripes, the
hole-poor matrix gets an opportunity to order itself magnetically, at least, lo-
cally. It is obvious that the latter process depends on the former one. At p = 0
they occur simultaneously (or almost simultaneously) at T ∼ 980 K. In reality
however, this point is not accessible because the melting point of Bi2212 is
about 850 K. Third, in the phase diagram of Bi2212 shown in Fig. 6.11, one
can see that three temperature scales have the magnetic origin, namely, Tg(p),
TMT (p) and TMO(p). This is not odd because these three temperature scales
originate from magnetic orderings that occur in different clusters (or matrix)
sketched in Fig. 6.12. The spin glass occurs at Tg in the nanoscale clusters
with diagonal charge stripes. The TMT temperature scale originates from lo-
cal antiferromagnetic ordering in the hole-poor matrix which becomes divided
into clusters as p → 0.19. The magnetic ordering occurring in insulating spin
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stripes located between charge stripes sets in at TMO. So, all these clusters
and matrix are spatially separated. Four, the real doping dependences TMT (p),
TCO(p), TMO(p) and Tpair(p) are most likely not linear but quasi-linear. Five,
in the literature, there is discrepancy among phase diagrams inferred from dif-
ferent sets of experimental data. This is because the phase diagram of every
superconducting cuprate consists of several energy/temperature scales (at least,
seven) which have different origins. Since different experimental techniques
are sensitive to different types of correlations and have different resolutions
and different characteristic times, one can then understand why there is a dis-
crepancy among phase diagrams that can be found in the literature.

Finally, consider an interesting question: what type of clusters does the
Tc(p) temperature scale originate from? One may immediately suggest that
the Tc(p) temperature scale originates from the nanoscale clusters with vertical
stripes. The answer is yes and no. As was already emphasized, the phase dia-
gram in Fig. 6.11 is a superposition of different temperature scales originating
from three types of clusters (or matrix) depicted in Fig. 6.12. The spin-glass
temperature scale Tg(p) has no direct relation with superconductivity; the other
temperature scales in Fig. 6.11 are presented in two plots, according to their
origin, as sketched in Fig. 6.13. One can see in Fig. 6.13a that the Tc(p) tem-
perature scale is attributed mainly, but not solely, to the matrix (clusters) with
the local antiferromagnetic order. Why? The location of a quantum critical
point at p = 0.19, where magnetic fluctuations are the strongest, is the reason
for this. In the CuO2 planes, the existence of the matrix (clusters) with local
antiferromagnetic order as well as the TMT temperature scale is determined by
the location of a quantum critical point. In a sense, the superconducting phase
is “attracted” at low temperature by a quantum critical point. Of course, the
charge-stripe fluctuations in clusters with vertical charge stripes generate spin
excitations that mediate the long-range phase coherence. However, in order
to propagate, the spin excitations must use a magnetic order, local or not. A
quantum critical point provides the occurrence of magnetic order.

3.5 Pseudogap
The pseudogap is a depletion of the density of states above the critical tem-

perature. Below a certain temperature, the cuprates do have a connected Fermi
surface that appears to be consistent with conventional band theory. Above Tc,
the pseudogap dominates the normal-state low-energy excitations. The pseu-
dogap was observed for the first time in NMR measurements and therefore
mistakenly interpreted as a spin gap [8]. Later, ARPES, tunneling, Raman,
specific-heat and infrared measurements also provided evidence for a gap-like
structure in electronic excitation spectra. Thus, it became clear that the pseudo-
gap is not a spin gap but a gap to both spin and charge excitations; alternatively,
there are two spatially separated pseudogaps: one is a spin gap, and the second
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Figure 6.13. Temperature scales from Fig. 6.11: (a) the TMT (p) scale is determined by a
quantum critical point (QCP) associated with antiferromagnetic phase, while (b) the TCO(p),
TMO(p) and Tpair(p) scales originate from the striped phase shown in Fig. 6.2. The Tc(p)
scale is a mutual temperature scale caused, first of all, by the quantum critical point and also by
spin excitations present in striped-phase clusters.

is a charge gap. The magnitude of pseudogap(s) is large in the underdoped
region and decreases as the doping level increases.

So, what is the pseudogap in cuprates? There is no straight answer to this
question because the answer depends upon the technique by which it was ob-
served and upon the temperature at which it was seen. Above Tc, one may
observe four different gaps in the cuprates: (i) below TCO, a charge gap on the
charge stripes, ∆cg, (ii) below TMT , a gap having the magnetic origin, ∆NMR,
(iii) it is possible that a spin gap ∆sg sets in below TMO in hole-poor stripes in
the striped phase shown in Fig. 6.2, and (iv) below Tpair, the pairing gap ∆p.
So, generally speaking, the pseudogap in the cuprates, ∆pg, is

∆pg =
√

∆2
cg + ∆2

NMR + ∆2
sg + ∆2

p. (6.10)

However, there is no experimental technique able to detect all of these gaps
at once. The magnitudes of these four gaps are not affected much on cooling
through Tc, but the pairing gap ∆p becomes a part of the superconducting gap,

∆sc =
√

∆2
p + ∆2

c , predominant below Tc. For example, in the case of ∆cg,
below Tc there is a renormalization of low-energy excitations; thus, excitations
inside the charge gap. Let us consider this renormalization.

3.5.1 Charge gap on the stripes

The pseudogap which can be observed in tunneling and ARPES measure-
ments is a charge gap on charge stripes, manifesting itself in the form of wide
humps present in the spectra at high bias. Figure 6.14a shows an ARPES
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Figure 6.14. (a) ARPES spectrum obtained in a slightly overdoped Bi2212 single crystal with
Tc = 91 K at T � Tc; and (b) Tunneling pseudogap in slightly overdoped Bi2212 obtained in
a SIS junction at T > Tc (see references in [19]).

spectrum obtained below Tc in Bi2212. In the plot, the position of main
quasiparticle peaks measures the magnitude of ∆p, while the hump at a bias
of Vhump � 3∆p/e is caused by the charge gap on the stripes. The ratio
Vhump/Vpeak � 3, inferred from either ARPES or superconductor-insulator-
normal metal (SIN) tunneling spectra, is independent of doping level. This
ratio is determined by the ratio ∆cg/∆p � 3 in Eq. (6.6).

In superconductor-insulator-superconductor (SIS) tunneling conductances,
however, the bias ratio is about Vhump/Vpeak � 2 because the humps in SIS
conductances do not correspond directly to ∆cg but are a product of tunneling
between genuine humps and quasiparticle peaks. Thus at T 
 Tc, tunneling
dI(V )/dV and I(V ) characteristics as well as ARPES spectra consist of two
contributions caused by the superconducting condensate (bisolitons) and by
the charge gap on the stripes. In SIN conductances, these two contributions are
superimposed linearly while in SIS conductances, nonlinearly. This issue was
discussed in detail in Chapter 12 of [19].

Figure 6.14b depicts the pseudogap in a tunneling conductance obtained
by a break-junction technique in Bi2212 above Tc. In the measurements, the
temperature of 122 K is above Tpair � 120 K in slightly overdoped Bi2212
with p � 0.19. The gap-like structure in tunneling conductances disappears
upon increasing the temperature.

Consider now the charge-gap renormalization at Tc. Let us start with tun-
neling measurements. Figure 6.15a sketches the charge gap above and deep
below Tc. Above the critical temperature, there are quasiparticle excitations
at the Fermi level (at zero bias in Fig. 6.15a). As the temperature is lowered
through Tc, quasiparticle excitations at the Fermi level, thus inside the gap,
are renormalized: the charge gap deepens at low bias, as shown in Fig. 6.15a.
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However, the maximum magnitude of the gap, in a first approximation, is un-
changed. Analysis of ARPES data even suggests that a full gap opens up at
the Fermi level, as shown in Fig. 6.15b. The magnitude of this gap is slightly
smaller than the magnitude of ∆p, and its temperature dependence is reminis-
cent of the BCS temperature dependence (see references in [19]). If this is the
case, then the charge gap at T 
 Tc has an anisotropic s-wave symmetry with
an anisotropy ratio of about 3 because ∆cg,min ≈ ∆p and ∆cg,max � 3∆p.
Thus, the ratio is ∆cg,max/∆cg,min ≈ 3∆p/∆p = 3.

From Eqs. (6.5)–(6.7), the gap ratio 2∆cg/(kBTCO) � 6 is sufficiently
large, indicating a strong coupling between the lattice and holes. As noted
above, the charge stripes represent self-trapped electronic states in the CuO2

planes. In crystals, self-trapped states occur usually due to an interaction of
quasiparticles with acoustic phonons. The electron-phonon interaction in the
CuO2 planes will be discussed separately.

Finally, it is worth to mention that in the ARPES spectrum shown in Fig.
6.14a, the dip that naturally occurs from a superposition of the quasiparticle
peak and the hump has no physical meaning. In ARPES and SIN-tunneling
spectra, this dip is situated at e|V | � 2∆p(p), while in SIS tunneling conduc-
tances, it appears at e|V | ≈ 3∆p(p).

3.5.2 TMT (p) temperature scale

The TMT temperature scale shown in Fig. 6.11 manifests itself in resistivity,
NMR and specific-heat measurements. It originates from local antiferromag-
netic ordering in hole-poor matrix (clusters) depicted in Fig. 6.12. Therefore,
the energy scale related to the TMT temperature scale, ∆NMR, has also the
magnetic origin. Figure 6.16 illustrates how the temperature TMT is deter-
mined in resistivity measurements: TMT is the temperature at which, upon
cooling, the resistivity deviates from a linear temperature dependence.

 (a)

 V

 dI/dV

 −∆  cg  /e  ∆  cg  /e

 (b)

 −∆  p    /e  ∆  p    /e

 0 V

 dI/dV
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 T > T  c

 0

 T < T  c

Figure 6.15. Gap on the charge stripes above and deep below Tc, inferred from (a) tunneling
and (b) ARPES measurements (see references in [19]). In both plots, the solid lines are slightly
shifted up for clarity.
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Figure 6.16. Pseudogap in resistivity measurements: TMT is the temperature at which the
resistivity deviates on cooling from a linear dependence.

Why does the resistivity drop at TMT ? The temperature TMT is the onset
temperature of local antiferromagnetic order in either the insulating matrix, if
p 
 0.19, or insulating clusters, if p → 0.19. In nanoscale clusters with charge
stripes, holes can move easily along the stripes. To sustain electrical current
on a macroscopic scale, quasiparticles must tunnel through the insulating ma-
trix (clusters). It is mistakenly believed that an antiferromagnetic ordering
blocks electron transport. The opposite is true: electrons can tunnel through a
thin layer of NiO2 ordered antiferromagnetically about five times easier than
through a thin layer of non-magnetic metal oxides [46]. This is why the tem-
perature dependence of in-plane resistivity in the cuprates has a kink at TMT :
the resistivity simply drops at TMT .

3.6 Soliton-like excitations on charge stripes
Depending on temperature, quasiparticles in superconducting cuprates are

soliton-like excitations or pairs of these excitations, observed experimentally
in tunneling measurements [16–19]. In the CuO2 planes, the soliton-like ex-
citations appear on the charge stripes immediately after the formation of the
stripes, thus, somewhat below TCO. They become paired at Tpair shown in the
phase diagram in Fig. 6.11. Consider first the elementary excitations; the pairs
will be discussed in the following subsection.

In the cuprates the soliton-like excitations propagate in the middle of the
charge gap present on the stripes, as depicted in Fig. 6.17. Since these exci-
tations have the quantum numbers of an electron, they are fermions. Then, a
question naturally rises: How can the fermions occupy the same energy level?
There are two possible explanations to this fact: Either there is the spin-charge
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separation on the stripes or, between TCO and Tpair, there is no connected
Fermi surface in the cuprates yet. Theoretically the spin-charge separation is
indeed possible in one-dimensional systems, leading to the formation of the so-
called Luttinger liquid. However, an experimental verification of this hypothe-
sis, carried out in underdoped YBCO, showed that, within the resolution limits
of the experiment, there is no spin-charge separation in YBCO [47]. Hence, it
is most likely that, at Tpair < T < TCO, there is no connected Fermi surface
in the cuprates. This means that, at high temperatures, the charge stripes in the
CuO2 planes exist independently of each other. For example, in LSCO, upon
cooling the chemical potential literally jumps at about 250 K. Thus, if this is
the case, it is then possible that the soliton-like excitations become paired at
Tpair because they are required to. When the Fermi surface in the cuprates be-
comes connected somewhat above Tpair, the soliton-like excitations being at
the same energy level must either disappear, except for two, or be paired. The
paired quasiparticles are bosons, therefore, the Pauli exclusion principle is no
longer applicable to them.

What type of excitations can occur on the charge stripes in the cuprates?
Let us consider all possible excitations on a 2kF charge stripe sketched in Fig.
6.9. In the case of hole-doped cuprates, we are exclusively interested in the
stripe excitations with a charge of +|e|, where e is the electron charge. Figure
6.18 shows schematically three types of excitations on the 2kF charge stripes:
a soliton, a kink-up and a kink-down. In Fig. 6.18, the stripe excitations are
shown at rest; however, in reality, they are dynamic and propagate along the
stripes which themselves fluctuate in the CuO2 planes. As suggested by Za-

 valence band

 conduction band

 electrosoliton

 ∆  cg

Figure 6.17. Energy level of soliton-like excitations that reside on charge stripes in the CuO2

planes at high temperatures. ∆cg is the magnitude of the charge gap on the stripes.
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Figure 6.18. Sketch of three types of excitations on 2kF charge stripes, shown at rest: (a)
soliton; (b) kink-up, and (c) kink-down.

anen and co-workers, the kink-up and the kink-down may have different spin
orientations.

Such a description of soliton-like excitations in the cuprates is rather phe-
nomenological. In a first approximation, they can also be described mathemat-
ically in the framework of the Davydov theory of electrosolitons and bisoli-
tons for one-dimensional systems [3, 7, 9, 10]. Let us consider briefly the
electrosoliton model. As discussed in Chapter 1, solitons are nonlinear ex-
citations which are localized in space. In some systems, they represent self-
localized states (i.e. self-trapped states). In solids, if the particle-field inter-
action (electron-phonon coupling) is strong, both the particle wavefunction
and the lattice deformation will be localized. In the three-dimensional case,
this localized entity is known as a (Holstein) polaron and, in one dimension,
as a Davydov soliton (also known as an electrosoliton or polaronic soliton).
Their integrity is maintained owing to a dynamical balance between dispersion
(exchange inter-site interaction) and nonlinearity (electron-phonon coupling).
Figure 6.19 schematically shows a self-trapped state of a particle (small po-
laron or Davydov soliton). In a self-trapped state, both the particle wavefunc-
tion and the lattice deformation are localized.

 Particle wave-function

 Potential well

Figure 6.19. Sketch of a self-trapped state: a particle (electron or hole) with a given wave-
function deforms the lattice inducing a potential well which in turn traps the particle.



Third group of superconductors: Mechanism of superconductivity 191

To describe the self-focusing phenomena, the nonlinear Schrödinger (NLS)
equation is used,[

ih̄
∂

∂t
+

h̄2

2m

∂2

∂x2
+ G|ψ(x, t)|2

]
ψ(x, t) = 0. (6.11)

The equation is written in the long-wave approximation when the excitation
wavelength λ is much larger than the characteristic dimension of discreteness
in the system, i.e. under the condition ka = 2πa/λ 
 1. The equation
describes the complex field ψ(x, t) with self-interaction. The function |ψ|2
determines the position of a quasiparticle of mass m. The second term in the
NLS equation is responsible for dispersion, and the third one for nonlinearity.
The coefficient G characterizes the intensity of nonlinearity.

When the nonlinearity is absent (G = 0), the NLS equation has solutions in
the form of plane waves,

ψ(x, t) = Φ0 exp[i(ka − ω(k)t)], (6.12)

with the square dispersion law ω(k) = h̄k2/2m. With nonlinearity (G �= 0)
in the system having a translational invariance, the excited states move with
constant velocity v. Therefore, it is convenient to study solutions of the NLS
equation in the reference frame

ζ = (x − vt)/a, (6.13)

moving with constant velocity. In this reference frame the NLS equation has
solutions in the form of a complex function

ψ(x, t) = Φ(ζ) exp[i(kx − ωt)], k = mv/h̄, (6.14)

where the function Φ(ζ) is real.
The self-trapping effect occurs when two linear systems interact with one

another. Consider an excess electron in a quasi-one-dimensional atomic (molec-
ular) chain. If neutral atoms (molecules) are rigidly fixed in periodically ar-
ranged sites na of a one-dimensional chain, then due to the translational in-
variance of the system, the lowest energy states of an excess electron are deter-
mined by the conduction band. The latter is caused by the electron collectiviza-
tion. In the continuum approximation, the influence of a periodic potential is
taken into account by replacing the electron mass me by the effective mass
m = h̄2/(2a2J) which is inversely proportional to the exchange interaction
energy J that characterizes the electron jump from one node site into another.
In this approximation, the electron motion along an ideal chain corresponds to
the free motion of a quasiparticle with an effective mass m and the electron
charge.
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Taking into account small displacements of molecules of mass M (� m)
from their periodic equilibrium positions, there arises the short-range defor-
mation interaction of quasiparticles with these displacements. When the defor-
mation interaction is rather strong, the quasiparticle is self-localized. The local
displacement caused by a quasiparticle manifests itself as a potential well that
contains the particle, as schematically shown in Fig. 6.19. In turn, the quasi-
particle deepens the well.

A self-trapped state can be described by two coupled differential equations
for the field ψ(x, t) that determines the position of a quasiparticle, and the field
ρ(x, t) that characterizes a local deformation of the chain and determines the
decrease in the relative distance a → a − ρ(x, t) between molecules of the
chain, [

ih̄
∂

∂t
+

h̄2

2m

∂2

∂x2
+ σρ(x, t)

]
ψ(x, t) = 0, (6.15)

(
∂2

∂t2
− c2

0

∂2

∂x2

)
ρ(x, t) − a2σ

M

∂2

∂x2
|ψ(x, t)|2 = 0. (6.16)

The first equation characterizes the motion of a quasiparticle in the local de-
formation potential U = −σρ(x, t). The second equation determines the field
of a local deformation caused by a quasiparticle. The two equations are con-
nected through the parameter σ of the interaction between a quasiparticle and
a local deformation. The velocity c0 = a

√
k/M is the longitudinal sound ve-

locity in the chain with elasticity coefficient k. In the case of one quasiparticle
in the chain, the function ψ(x, t) is normalized by

1
a

∞∫
−∞

|ψ(x, t)|2dx = 1. (6.17)

In the reference frame ζ = (x− vt)/a moving with constant velocity v, the
following equality ∂ρ(x, t)/∂t = −v/a×∂ρ/∂ζ holds. Then, the solution for
ρ(x, t) has the form

ρ(x, t) =
σ

k(1 − s2)
|ψ(x, t)|2, if s2 = v2/c2

0 
 1. (6.18)

Substituting the expression for ρ(x, t) into Eq. (6.15), we obtain the follow-
ing nonlinear equation for the function ψ(x, t),[

ih̄
∂

∂t
+

h̄2

2m

∂2

∂x2
+ 2gJ |ψ(x, t)|2

]
ψ(x, t) = 0. (6.19)

where

g ≡ σ2

2k(1 − s2)J
(6.20)



Third group of superconductors: Mechanism of superconductivity 193

is the dimensionless parameter of the interaction of a quasiparticle with local
deformation. Substituting the function

ψ(x, t) = Φ(ζ) exp[i(kx − ωt)], k = mv/h̄ (6.21)

into Eq. (6.19) we get the equation

[h̄ω − 1
2

mv2 − J
∂2

∂ζ2
+ 2gJΦ2(ζ)]Φ(ζ) = 0, (6.22)

for the amplitude function Φ(ζ) normalized by
∫

Φ2(ζ)dζ = 1. The solution
of this equation is

Φ(ζ) =
1
2
√

g × sech(gζ/2), (6.23)

with the dispersion law

h̄ω =
1
2

mv2 − 1
8
g2J. (6.24)

The last term in Eq. (6.24) determines the binding energy of the particle and
the chain deformation produced by the particle itself. According to Eq. (6.23),
the quasiparticle is localized in a moving reference frame

∆ζ = 2π/g, (6.25)

as shown in Fig. 6.20. In this region, the field localization is characterized by
the function

ρ(ζ) =
gσ

4k(1 − s2)
sech2(gζ/2). (6.26)

The following energy is necessary for the deformation:

W =
1
2

k(1 + s2)
∫

ρ2(ζ)dζ =
1
24

g2J(1 + s2). (6.27)

 ζ

 Φ  2  (  ζ  )

 2  π  /  g

Figure 6.20. Size of a self-trapped soliton is about 2π/g (compare with Fig. 2.4).
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Measured from the bottom of the conduction band of a free quasiparticle,
the total energy (including that of the deformation) transferred by a soliton
moving with velocity v is determined by the expression

Es(V ) = W + h̄ω = Es(0) +
1
2

Msolv
2 (6.28)

in which the energy of a soliton at rest Es(0) and its effective mass Msol are
determined, respectively, by the equalities

Es(0) =
1
12

g2J, (6.29)

Msol = m (1 +
g2J

3a2k
). (6.30)

The soliton mass Msol exceeds the effective mass of a quasiparticle m if its
motion is accompanied by the motion of local deformation.

The effective potential well where the quasiparticle is placed is determined
in the reference frame ζ by the expression

U = −σρ(x, t) = −g2J sech2(gζ/2). (6.31)

The self-trapped soliton is very stable. It moves with a velocity v < c0;
otherwise, the local deformation of the chain will be not able to follow the
quasiparticle. Alternatively, the soliton can be stationary. It is worth to empha-
size that the Davydov soliton is conceptually different from the small polaron
which is three-dimensional and practically at rest because of its large mass.

The Davydov solitons belong to a large group of solitons the motion and
transformations of which are described by the NLS equation. They are called
the envelope solitons. As noted above, the NLS equation describes self-focusing
phenomena, and the term |ψ|2 in the NLS equation brings into the system the
self-interaction. The second term of the NLS equation is responsible for dis-
persion, while the third term is responsible for nonlinearity [see, for example,
Eq. (6.11)]. A solution of the NLS equation in real space is schematically
shown in Fig. 6.21a. The shape of the enveloping curve (the dashed line in
Fig. 6.21a) is the function Φ(x, t) = Φ0 sech[(x−vt)/�], where 2� determines
the width of the soliton. Its amplitude Φ0 depends on � but independent of the
soliton velocity v [see, for example, Eq. (6.23)]. The envelope solitons can
be regarded as particles but they are “mortal” (see Chapter 1). The interac-
tion between two envelope solitons is similar to the interaction between two
particles—they collide as tennis balls (see Chapter 5 in [19]).

In the envelope soliton in Fig. 6.21a, the stable groups have normally from
14 to 20 humps under the envelope, the central one being the highest one.
The groups with more humps are unstable and break up into smaller ones. The
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Figure 6.21. An envelope soliton (a) in real space, and (b) its spectrum, shown schematically.

waves inside the envelope move with a velocity that differs from the velocity of
the soliton; thus, the envelope soliton has an internal dynamics. The relative
motion of the envelope and the carrier wave is responsible for the internal
dynamics of a NLS soliton. In momentum space, the envelope soliton is also
enveloped by the “sech” hyperbolic function, as schematically shown in Fig.
6.21b. This is because the Fourier transform of the sech(πx) function yields
sech(πk).

Consider the last question related to the Davydov solitons. What can we
expect from tunneling measurements carried out in a system with the Davydov
solitons?

As discussed in Chapter 2, conductances dI(V )/dV obtained in a SIN
junction by tunneling measurements directly relate to the electron density of
states per unit energy interval in a system (voltage V multiplied by e rep-
resents energy). The solitons present in a system will manifest themselves
through the appearance of a peak in conductance. Since the internal dynam-
ics in an envelope soliton is extremely fast, tunneling measurements can only
provide information about the enveloping function. Let us present the en-
veloping curve of an envelope soliton in momentum space, sketched in Fig.
6.21b, as ϕ(k) = C0×sech [d(k − k0)], where C0 and d0 are constants [in
fact, C0 = f(d0)]. Then, the function |ϕ(k)|2 = |ϕ(k − k0)|2 = |ϕ(∆k)|2
represents the density of states around k0.

In the case of the cuprates, k0 = kF , where kF is the wave number at the
Fermi level. Set zero energy level at the Fermi level, EF . Since E ∝ k2,
then ε = E − EF ∝ k2 − k2

F = (k − kF )(k + kF ) � 2kF ∆k for ∆k 
 kF .
Thus, ∆k ∝ ε/kF ; substituting this expression into |ϕ(∆k)|2 ∝ sech2(d0∆k),
we obtain that |ϕ(ε)|2 ∝ sech2(d · ε), where d ∝ d0/2kF . This means that,
in tunneling measurements, the Davydov solitons will cause a peak centered
at zero bias having the following form sech2(d′V ), where in a first approxi-
mation, d′ is a constant. Since the amplitude C0 is independent of the soliton
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velocity, this result is valid for any v < c0, where c0 is the longitudinal sound
velocity.

To summarize, in SIN tunneling measurements performed in a system with
the Davydov solitons, one should expect to observe a peak in conductance
having the following shape

dI(V )
dV

= A × sech2(V/V0) (6.32)

where V is the applied bias, and A and V0 are constants. Bearing in mind that
tunneling current is the sum under the conductance curve, I(V ) =

∫ dI(V )
dV dV +

C, where C is a constant defined by the condition I(V = 0) = 0, the I(V )
characteristic centered at zero bias will have the following shape

I(V ) = I0 × tanh(V/V0), (6.33)

where I0 is a constant. In these equations, V0 determines the width of the
conductance peak. One must however realize that the conductance peak corre-
sponding to the solitonic states will appear in the background caused by other
electronic states present in the system. As an example, Figure 6.22a depicts
the conductance peak caused by the solitonic states; the corresponding I(V )
characteristic is sketched in Fig. 6.22b.

It is worth to mention that the soliton-like excitations are observed not only
in the cuprates [19] but also in the manganites [19] and NbSe3 [48].

3.7 Cooper pairs
Quasiparticles in superconducting cuprates below Tpair are pairs of soliton-

like excitations—bisolitons—observed experimentally in tunneling measure-
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Figure 6.22. (a) Sketch of a conductance peak caused by electrosolitons. The plot is adapted
for the cuprates where the solitons propagate in the middle of a charge gap shown in grey.
The height of the soliton peak depends on the density of added or removed electrons. (b) I(V )
characteristic corresponding to the soliton peak in plot (a). The I(V ) characteristic of the charge
gap is not shown.
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ments [16–19]. The bisolitons are the Cooper pairs in the cuprates. The mod-
erately strong and nonlinear electron-phonon interaction is responsible for cou-
pling of the soliton-like excitations. In the CuO2 planes, the bisolitons reside
on the charge stripes. At temperatures somewhat above Tc, the bisolitons prop-
agate at an energy level which is below the Fermi level by ∆p, as depicted in
Fig. 6.23.

 valence band

 conduction band

 Ε    F

 ∆  p   = ∆  cg  /3

 ∆  p
 bisoliton

 ∆  cg

Figure 6.23. Energy levels of bisolitons at temperatures somewhat above Tc. The level below
the Fermi level EF is the bonding bisoliton energy level, and that above EF is the antibonding
one. The magnitude of the pairing gap is about one third of the magnitude of the charge gap,
∆p 	 ∆cg/3.

What are the bisolitons in the cuprates? Figure 6.18 sketches three types
of possible excitations on the 2kF charge stripes present in the CuO2 planes
of the cuprates. For these three types of excitations, there are four different
combinations of the pairing: Figure 6.24 schematically shows these four com-
binations. How can the stripe excitations shown in Fig. 6.18 form the pairs
if they repel each other? Indeed, electrosolitons repel each other; however, in
conventional superconductors, two electrons forming a Cooper pair also repel
each other. The occurrence of an attractive potential between quasiparticles is
central to the superconducting state. In the cuprates, a local lattice deformation
is responsible for the pairing.

The combination (d) in Fig. 6.24 is asymmetrical and, therefore, seems less
likely to be the case realized in the cuprates. For example, the only combi-
nation suitable for the chains in YBCO, as well as for quasi-one-dimensional
organic superconductors, is the combination (a) in Fig. 6.24. Since supercon-
ductivity on the chains in YBCO is induced, it is most likely that supercon-
ductivity in the CuO2 planes is caused by different stripe excitations; hence,
either by (b) or (c) in Fig. 6.24. Indeed, the kink excitations have already been
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Figure 6.24. Sketch of possible coupling between charge-stripe excitations on 2kF stripes (see
Fig. 6.18): (a) two solitons; (b) kink-up and kink-down; (c) two kinks (up or down); and (d)
soliton and kink (up or down). The arrows schematically show the coupling.

observed by INS measurements in LSCO. Nevertheless, taking into account
that our understanding of superconductivity in the cuprates on the nanoscale is
still limited, none of these four combinations in Fig. 6.24 can be excluded.

Assuming that one of these four combinations in Fig. 6.24 can model the re-
ality, the next two questions are: Do the stripe excitations couple in momentum
space, and do they have the opposite momenta? In conventional superconduc-
tors, two electrons couple in momentum space, and the pairing is the most fa-
vorable when they have the opposite momenta. Is this the case for the cuprates
too? It is difficult to say. If the pairing in the cuprates occurs in momentum
space, then the stripe excitations on the same stripe, shown in Fig. 6.24, should
have opposite momenta and thus move in the opposite directions. At the same
time, as discussed in Chapter 4, the pairing in unconventional superconductors
may occur not only in momentum space but also in real space. In this case, the
stripe excitations on the same stripe in Fig. 6.24 can move in the same direc-
tion. Analysis of infrared measurements performed in Bi2212 indeed suggests
that quasiparticles in the Cooper pairs seem to move in the same direction.

As discussed in Chapter 5, the electron pairing in conventional supercon-
ductors is local in space but non-local in time (see Fig. 5.5). Since the size
of bisolitons in the cuprates can be as small as 15–20 A

◦
, it is possible that the

pairing in the cuprates is local in time but non-local in space, thus, opposite to
that in conventional superconductors. It is worth noting that the pairing in real
space is local in time and non-local in space.
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Let us now discuss briefly the Davydov bisoliton model [3, 7, 9, 10]. Ini-
tially, the bisoliton model did not have any relation with superconductivity and
was developed by Davydov and co-workers in order to explain electron transfer
in living tissues. Later, the bisoliton model of electron transfer in a molecular
chain was used to explain the phenomenon of superconductivity in quasi-one-
dimensional organic compounds and cuprates. The bisoliton theory is based
on the concept of bisolitons—electron pairs coupled in a singlet state due to a
local deformation of the lattice.

If a quasi-one-dimensional soft chain is able to keep some excess electrons
with charge e and spin 1/2, they can be paired in a singlet state due to the in-
teraction with a local chain deformation created by them. The potential well
formed by a short-range deformation interaction of one electron attracts an-
other electron which, in turn, deepens the well.

Assume that along a molecular chain, the elementary cells of mass M are
separated by a distance a from one other. Within the continuum approach, we
characterize their position by a continuous variable x = na. The equation of
motion of two quasiparticles with effective mass m in the potential field

U(x, t) = −σρ(x, t), (6.34)

created by a local deformation ρ(x, t) of the infinite chain, takes the form[
ih̄

∂

∂t
+

h̄2

2m

∂2

∂x2
i

+ U(xi, t)

]
ψj(xi, t) = 0, where i, j = 1, 2, (6.35)

and ψj(xi, t) is the coordinate function of quasiparticle i in the spin state j.
The local deformation ρ(x, t) is caused by two quasiparticles due to their in-

teraction with displacements from equilibrium positions. The function ρ(x, t)
characterizing this local deformation of the chain is determined by the equation(

∂2

∂t2
− c2

0

∂2

∂x2

)
ρ(x, t) +

σa2

M

∂2

∂x2

(
|ψ1(x, t)|2 + |ψ2(x, t)|2

)
= 0, (6.36)

where c0 = a
√

k/M is the longitudinal sound velocity in the chain; aσ is the
energy of deformation interaction of quasiparticles with the chain, and k is the
coefficient of longitudinal elasticity.

Due to the translational symmetry of an infinite chain, it is possible to study
the excitations propagating along the chain with a constant velocity v < c0.
In this case, the forced solution of Eq. (6.36) which satisfies the condition
ρ(x, t) �= 0 for all x and t under which |ψj(x, t)|2 �= 0 relative to the reference
frame ζ = (x − vt)/a moving with velocity v, has the form

ρ(ζ) =
σ

k(1 − s2)

[
|ψ1(ζ)|2 + |ψ2(ζ)|2

]
, where s2 ≡ v2/c2

0. (6.37)
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The total energy of local deformation of the chain is determined by

W =
1
2

k(1 + s2)
∫

ρ2(ζ)dζ. (6.38)

Substituting first ρ(ζ) into Eq. (6.35) and the latter into Eq. (6.36), one obtains
the equation for the function Ψ(x1, x2, t) which determines the motion of a
pair of quasiparticles in the potential field given by Eq. (6.34), disregarding
the Coulomb repulsion of electrons:[

ih̄
∂

∂t
+ J

(
∂2

∂ζ2
1

+
∂2

∂ζ2
2

)
+ G(|ψ1(ζ1)|2 + |ψ1(ζ2)|2

+ |ψ2(ζ1)|2 + |ψ2(ζ2)|2)
]
Ψ(x1, x2, t) = 0, (6.39)

where we introduced the following notations

J ≡ h̄2

2ma2
and G ≡ σ2

k(1 − s2)
. (6.40)

We consider further the states with a small velocity of motion, s2 
 1. In this
case, the parameter G can be replaced by the constant

G0 � σ2

k
. (6.41)

The coordinate function of a pair of quasiparticles in a singlet spin state is
symmetric and can be written in the form

Ψ(x1, x2, t) =
1√
2

[ψ1(ζ1)ψ2(ζ2) + ψ1(ζ2)ψ2(ζ1)] e−iEpt/h̄, (6.42)

where Ep is the energy of two paired quasiparticles in the potential field U(ζ).
In a chain consisting of a large number N of elementary cells and containing

N1 pairs of quasiparticles, the pairing is realized only from those states of
free quasiparticles which have a wave number close to the wave number of
the Fermi surface kF = πN1/2aN . Due to the conservation law of quasi-
momentum, a pair moving with a velocity v = h̄k/m can be formed from two
quasiparticles with the wave numbers

k1 = 2k − kF and k2 = kF . (6.43)

If the wave functions of quasiparticles in the paired state are represented by the
modulated plane waves

ψj(ζi) = Φ(ζi) exp(ikjζi), where i, j = 1, 2, (6.44)
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the coordinate function of paired quasiparticles transforms into the following
form

Ψ(x1, x2, t) =
√

2Φ(ζ1)Φ(ζ2) cos[(k − kF )(ζ1 − ζ2)] × ei[k(ζ1+ζ2)−Ept/h̄].
(6.45)

The appearance here of the cosine function results from the conditions of sym-
metry imposed.

Substituting the function Ψ(x1, x2, t) into Eq. (6.39), one obtains the equa-
tion for the amplitude functions Φ(ζi)[

∂2

∂ζ2
i

+ 4gΦ2(ζi) + Λ

]
Φ(ζi) = 0, where i = 1, 2, (6.46)

with the dimensionless parameter

g ≡ G

2J
=

σ2

2kJ(1 − s2)
≈ G0

2J
=

σ2

2kJ
for s2 
 1, (6.47)

that characterizes the coupling of a quasiparticle with the deformation field.
The energy E(v) of a pair of quasiparticles in this field is expressed in terms
of the eigenvalue Λ given by Eq. (6.46) via the relation

E(v) = Ep(0) + 2
mv2

2
− h̄vkF , (6.48)

where
Ep(0) = ΛJ + EF (6.49)

characterizes the position of the energy level of a static pair of quasiparticles
beneath their Fermi level

EF =
h̄2k2

F

m
. (6.50)

The deformation field ρ(ζ) is expressed in terms of the function Φ(ζ) as fol-
lows

ρ(ζ) = − 2σ

k(1 − s2)
Φ2(ζ). (6.51)

Therefore, the energy of the local chain deformation in Eq. (6.38) is defined
by

W =
2G(1 + s2)

1 − s2

∫
Φ4(ζ)dζ. (6.52)

Equation (6.46) admits periodic solutions corresponding to the uniform dis-
tribution of a pair of quasiparticles over the chain. The real functions Φ(ζi) of
these solutions must satisfy the conditions of periodicity

Φ(ζi) = Φ(ζi + L), where L = N/N1, (6.53)
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and normalization
L∫

0

Φ2(ζ)dζ = 1. (6.54)

The latter requires that each pair of quasiparticles should be within each period.
The exact periodic solutions of Eq. (6.46) is expressed in terms of the Jacobian
elliptic function dn(u, q) via the relation

Φq(ζi) =
√

g

2
E−1(q) × dn(u, q), where u = gζ/E(q). (6.55)

An explicit form of the Jacobian function dn(u, q) depends on a specific value
of the modulus q taking continuous values in the interval [0, 1]. The eigenvalue
Λ of Eq. (6.46) is also given in terms of the modulus q by the relation

Λq = −g2q2/E(q). (6.56)

The function E(q) is a complete elliptic integral of the second kind which
depends on the Jacobian function dn(u, q) and the complete elliptic integral of
the first kind, K(q).

We shall not follow further the exact calculations in the framework of the
bisoliton theory. They can be found elsewhere [7, 9, 10, 19]. Instead, we
consider the asymptotic case: the small density of quasiparticles, i.e. when
the inequality gL � 1 holds, where g is the dimensionless parameter which
characterizes the coupling of a quasiparticle with the chain, and L is the di-
mensionless distance between two bisolitons. In this case, the mass of a static
bisoliton is

Mbs � 2m +
8g2J

3c2
0

, (6.57)

which exceeds two effective masses of quasiparticles, 2m. In this expression,
J is the exchange interaction energy, and c0 is the longitudinal sound velocity
in the chain.

The energy gap in the quasiparticle spectrum resulting from a pairing is
determined by

∆ � 1
3
g2J. (6.58)

The energy gap is half of the energy of formation of a static bisoliton. The
bisoliton-formation energy includes not only the energy of quasiparticle pair-
ing but also the energy of the formation of a local chain deformation. The mag-
nitude of the energy gap decreases as the density of quasiparticles increases
(when gL < 5). The energy gap ∆ and the bisoliton mass Mbs do not depend
on the mass M of an elementary cell. This mass only appears in the kinetic en-
ergy of bisolitons. Therefore the isotope effect is very small, notwithstanding
the fact that the basis of the pairing is the electron-phonon interaction.
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The correlation length in a bisoliton (the size of a bisoliton) is given by

d =
2πa

g
, (6.59)

where a is the lattice constant. The enveloping wave functions Φi(x) of quasi-
particles within each period are approximated by the hyperbolic function

Φ(x) =
√

g

2
× sech(gx), (6.60)

where x is the axis along the chain. In this expression, one can see that the
maximum amplitude of a bisoliton (= g/2) is two times larger than that of an
electrosoliton in Eq. (6.23), and its width is two times smaller than that of an
electrosoliton.

When there is only one bisoliton in the chain, two quasiparticles in the
bisoliton move in the combined effective potential well

U↑↓(ζ) = −2g2J × sech2(gζ). (6.61)

The radius of this well is a half of the radius of an isolated soliton, and its depth
is twice larger than that of an electrosoliton [see Eq. (6.31)].

All these results were obtained without taking into account the Coulomb
repulsion between quasiparticles. If we take into account the Coulomb repul-
sion as a perturbation, then, at small velocities, a pairing is still energetically
profitable if the dimensionless coupling constant g is greater than some critical
value,

gcr ≈
[

e2
eff

4aπ2J

]1/2

, (6.62)

where eeff is the effective screened charge. The critical value is estimated
from the condition that the displacement of quasiparticles caused by the
Coulomb repulsion is less than the bisoliton size 2πa/g.

The bisolitons are stable because they do not interact with acoustic phonons.
This interaction is completely taken into account in the coupling of quasipar-
ticles with a local deformation. Therefore, they do not radiate phonons. The
velocity of bisoliton motion should not exceed the longitudinal sound velocity
c0 (in cuprates, c0 ∼ 105 cm/s). The bisolitons do not undergo a self-decay if
their velocity is smaller than the critical one

vcr =
2∆
h̄kF

, (6.63)

where kF is the momentum at the Fermi surface.
When Davydov proposed the bisoliton model as the mechanism for

high-Tc superconductivity in the cuprates, he did not know about the existence
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of quasi-one-dimensional charge stripes in the CuO2 planes. Hence, he needed
to locate one dimensionality in the CuO2 planes. Since the CuO2 planes in the
cuprates consist of quasi-infinite parallel chains of alternating ions of copper
and oxygen, Davydov assumed that each -Cu-O-Cu-O- chain in a CuO2 plane
can be considered as a quasi-one-dimensional system. Therefore the current
flows along these parallel chains. In the framework of the bisoliton model, he
studied the charge migration in one of these chains and all the results obtained
above were directly applied to the superconducting condensate in the cuprates.
However, Davydov mistakenly assumed that the long-range phase coherence
among the bisolitons sets in due to the overlap of their wavefunctions.

A comparison of the main characteristics of the bisoliton model and the data
obtained in some cuprates, described in [19], shows that the bisoliton model
is not a theory for high-Tc superconductivity. Firstly, it lacks the mechanism
of the onset of phase coherence. Secondly, the bisoliton model can describe
some pairing characteristics but only in a first approximation. This is probably
because in the bisoliton model the Coulomb repulsion between quasiparticles
in a bisoliton is not taken into account. However, the main idea of the bisoliton
model is correct: the moderately strong and nonlinear electron-phonon inter-
action mediates the pairing in the cuprates. The main result of the model is
that, in the presence of a strong electron-phonon interaction, the BCS isotope
effect can be absent or small. The bisoliton theory should serve as a starting
point for the future theory of unconventional superconductivity.

As an example, consider the doping dependence of the distance between two
holes in a bisoliton, derived in the framework of the Davydov model by using
experimental data obtained in Bi2212. Figure 6.25 depicts this dependence, as
well as the doping dependence g(p). The dependence d(p) in Fig. 6.25 is in
good agreement with experimental data for Bi2212.

In Fig. 6.25, one can see that the values of the coupling parameter in Bi2212,
g, is around 1. Such a result was in fact expected from the beginning. Why? As
was mentioned in Chapter 1, the balance between nonlinearity and dispersion
is responsible for the existence of solitons. The bisoliton model is based on
the NLS equation. In the NLS equation, the second term is responsible for
dispersion and the third one for nonlinearity [see, for example, Eq. (6.11)].
The coefficient in the second term, the energy of the exchange interaction, 2J ,
characterizes the “strength” of dispersion, and the coefficient in the third term,
the nonlinear coefficient of the electron-phonon interaction, G, characterizes
the “strength” of nonlinearity. The parameter g represents the ratio between the
two coefficients G and 2J [see Eq. (6.47)]. Therefore, in a sense, the coupling
parameter g reflects the balance between the nonlinear and dispersion forces.
As a consequence, it cannot be very small g 
 1, or very large g � 1. If
g 
 1, dispersion will prevail, and the bisolitons will gradually diffuse, giving
rise to “bare” quasiparticles. If g � 1, nonlinearity effects prevail, and the
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Figure 6.25. Doping dependence of the coupling parameter g (solid curve) and the corre-
sponding average size of bisolitons (grey curve) in Bi2212 at low temperature, derived in the
framework of the bisoliton model [19]. (Note that this plot slightly differs from that in [19]
which is based on the point d(0.16) = 15 A
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; this plot is founded on the point d(0.16) = 20 A
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bisolitons will become immobile and localized. Thus, g ∼ 1. In contrast, in
superconductors described by the BCS theory the parameter g is of the order
of 10−3–10−4, meaning that, in conventional superconductors, the electron-
phonon interaction is very weak and superconductivity is “ linear.”

In the previous subsection, we have derived SIN tunneling dI(V )/dV and
I(V ) characteristics for a system with electrosolitons. What can we expect
from SIN tunneling measurements carried out in a system with bisolitons?
From Fig. 6.23, it is obvious that the bisolitons will manifest themselves
through the appearance of two peaks in conductance, situated symmetrically
relative to zero bias. By using the same reasoning as that in the previous sub-
section, one can obtain that, in a SIN junction, tunneling conductance near
these two peaks can be approximated by

dI(V )
dV

= A ×
[
sech2

(
V + Vp

V0

)
+ sech2

(
V − Vp

V0

)]
, (6.64)

where V is voltage (bias); Vp is the peak bias, and A and V0 are constants. The
corresponding I(V ) characteristic is then represented by

I(V ) = I0 ×
[
tanh

(
V + Vp

V0

)
+ tanh

(
V − Vp

V0

)]
, (6.65)

where I0 is a constant. In the equations, V0 determines the width of the con-
ductance peaks. It is worth to recall that the bisoliton conductance peaks will
appear in the background caused by other electronic states present in the sys-
tem. Figure 6.26 visualizes Eqs. (6.64) and (6.65). The height of the bisoliton
peaks relative to the the background depends on the density of added or re-
moved electrons (holes): the height increases as the density increases. Figure
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Figure 6.26. Visualization of (a) Eq. (6.64) and (b) Eq. (6.65) for a SIN junction. In plot (a),
the conductance peaks are caused by bisolitons; the corresponding I(V ) characteristic is in plot
(b). In plot (a), the conductance is normalized by its maximum (peak) value.

6.27 sketches this dependence for the cuprates, observed experimentally. In the
case of the cuprates, one should however realize that there is a critical doping
level (pcr ∼ 0.3) above which the bisolitons collapse.

The bisolitons have experimentally been observed not only in the cuprates
but also at low temperature in the manganate La1.4Sr1.6Mn2O7 [19] and charge-
density-wave conductor NbSe3 [48] which never exhibit superconductivity.
Superconductivity requires not only the electron pairing but also the phase co-
herence. Since the size of bisolitons is small and their density is always low,
the bisolitons cannot establish the long-range phase coherence. In this case,
a question naturally arises: what happens with isolated bisolitons on lower-
ing the temperature, T → 0? Bisolitons propagate along charge-ordered one-
dimensional structures such as charge stripes or charge-density-waves which
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Figure 6.27. Sketch of the doping dependence of the height of quasiparticle peaks relative to
the charge gap in the cuprates: (a) underdoped, (b) optimally doped, and (c) overdoped regions.
The charge gap is schematically shown in grey. The absolute value of Vp decreases as the doping
level increases.
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are intrinsically insulating. Without having an opportunity to establish the
long-range phase coherence, the bisolitons are “condemned” to condense into
these charge-ordered one-dimensional structures and to become localized. In
the manganites, for example, the bisolitons will join at low temperature holes
on the charge stripes making them insulating not only on the nanoscale but
also on a macroscopic scale. In Chapter 3, discussing charge-transfer organic
salts, it was emphasized that the steep rise in resistivity at low temperature
in (TMTSF)2PF6 and TmBCO occurs mainly due to a charge ordering (see
Fig. 3.16). Therefore, even in the cuprates, without dynamic spin fluctuations,
the bisolitons condense at low temperatures into the insulating charge stripes,
becoming localized.

3.8 Phonons

Let us start with the isotope effect in the cuprates. The isotope effect is
the first indicator of the BCS mechanism of superconductivity. The isotope
effect was found to be extremely small in optimally doped cuprates. This fact
was initially taken as evidence against the BCS mechanism of high-Tc super-
conductivity and, mistakenly, against the phonon-pairing mechanism. If the
pairing mechanism is different from the BCS mechanism, this does not mean
that phonons are irrelevant.

In fact, there is a huge isotope effect in the cuprates. Figure 6.28 shows the
oxygen (16O vs 18O) isotope-effect coefficient αO = d ln(Tc)/d ln(M), where
M is the isotope mass, as a function of doping level in LSCO, YBCO and
Bi2212. In the plot, one can see that the oxygen-isotope effect in the cuprates
is not universal: it is system- and doping-dependent. In the underdoped region,
αO can be much larger than the BCS value of 0.5 (according to the BCS theory,
the isotope effect cannot be larger than 0.5). In the optimally doped region, the
oxygen-isotope effect is indeed small. With exception of one point in LSCO,
p = 1/8, the doping dependence of coefficient α0 is universal for these three
cuprates. The coefficient α0 has a maximum at p → 0.05. The copper (63Cu
vs 65Cu) isotope effect has also been studied in LSCO and YBCO. In LSCO,
the copper-isotope effect is similar to the oxygen-isotope effect shown in Fig.
6.28. The copper-isotope effect in YBCO is small, even at low dopings, and
can even be negative (as that in some charge-transfer organic superconductors
and hydrides).

According to the bisoliton model, such a doping dependence of α0 in Fig.
6.28 indicates that the kinetic energy of charge carriers is large in the under-
doped region and decreases as the doping level increases. ARPES measure-
ments indeed show that the rate of band dispersion, i.e. the velocity of charge
carriers, decreases as the doping level increases. Thus, by using the bisoliton
model, one can explain the isotope effect in the cuprates.



208 ROOM-TEMPERATURE SUPERCONDUCTIVITY

 0.05  0.1  0.15  0.2  0.25
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 - YBCO
 - LSCO
 - Bi2212

 α 

O

 hole concentration,  p  .

 BCS

 0.9

 1.0

Figure 6.28. Oxygen isotope effect in LSCO, YBCO and Bi2212 (see references in [19]).

If phonons were not involved in the electron pairing in the cuprates, the
isotope effect should be absent or very small. In fact, phonons are an essential
part of the mechanism of high-Tc superconductivity. Simply, phonons interact
with charge carriers in conventional superconductors and in the cuprates in a
different way. For example, in BCS-type superconductors, Tc increases with
lattice softening, while in the cuprates, Tc increases with lattice stiffening, as
shown in Fig. 6.29. So, the electron-phonon interaction is able to provide, at
least, two different mechanisms of electron pairing: linear and nonlinear. In
conventional BCS superconductors, the electron-phonon interaction is linear
and weak, while, in the cuprates, it is moderately strong and nonlinear.

It is a paradox: the effect of isotope substitution on the transition temper-
ature manifests itself when the electron-phonon interaction is weak, and can
disappear when the electron-phonon interaction becomes stronger! The main
result of the bisoliton model is that the potential energy of a static bisoliton,
formed due to a local deformation of the lattice, does not depend on the mass
of an elementary lattice cell. This mass appears only in the kinetic energy of
the bisoliton.

It is difficult to underestimate the role of phonons in superconducting cupra-
tes. Figure 6.30 shows the phonon spectrum F (ω) obtained in Bi2212 by
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Figure 6.29. Critical temperature as a function of Debye temperature for different cuprates
(see references in [19]).

INS measurements and two spectral functions α2F (ω) obtained in Bi2212 by
two independent tunneling measurements. The spectral function α2F (ω) is
the parameter of the electron-phonon interaction in the Eliashberg equations,
which characterizes the coupling strength between charge carriers and phonon
vibrations. In Fig. 6.30, one can see that charge carriers in Bi2212 are strongly
coupled to the 20 meV acoustic mode and to the 73 meV optical mode. The
73 meV branch is associated with half-breathing-like oxygen phonon modes
that propagate in the CuO2 plane. The role of phonons at 50 meV in Bi2212 is
controversial: one spectral function α2F (ω) shows a peak at 50 meV (dashed
curve), while the other exhibits a dip (solid curve). The 50 meV branch is
associated with either in-plane or out-of-plane Cu–O bond-bending vibrations.
Leaving aside the question of the 50 meV phonons, it is clear that the optical
phonons with ω = 73 meV are coupled to charge carriers in Bi2212. Indeed,
ARPES measurements performed in LSCO, YBCO, Bi2212 and Bi2201 show
a kink in the dispersion at 55–75 meV, confirming the fact that optical phonons
are coupled to charge carriers in the cuprates. Independently of the origin
of these phonon modes, their energies are unusually high, indicating that the
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Figure 6.30. Phonon spectrum F (ω) (circles) obtained by INS measurements and two spectral
functions α2F (ω) (solid and dashed curves) obtained by tunneling measurements in slightly
overdoped Bi2212 at low temperature, T � Tc (see references in [19]).

electron-phonon coupling is very strong. At this stage, the role of each phonon
branch in the mechanism of unconventional superconductivity in the cuprates
is still undetermined. Usually, in crystals, self-trapped states appear due to an
interaction of quasiparticles with acoustic phonons.

3.9 Mechanism of phase coherence along the c axis
Superconductivity requires not only the electron pairing but also the long-

range phase coherence. Within a year after the discovery of high-Tc super-
conductors, it was already established that superconductivity in the cuprates
is quasi-two-dimensional, occurring in the CuO2 planes. The mechanism of
the interlayer coupling was never studied in detail because it was always as-
sumed that the interlayer coupling originates from the Josephson coupling be-
tween superconducting CuO2 layers. Later, analysis of some experimental data
clearly indicated that the Josephson coupling between the CuO2 planes cannot
be responsible for the c-axis phase coherence in the cuprates.

The bisoliton wavefunctions in the cuprates lie in the CuO2 planes, and
they are quasi-two-dimensional. In the overdoped region, the average size of
bisolitons is comparable with the mean distance between bisolitons. So, their
wavefunctions can locally overlap in the CuO2 planes, resulting in the onset
of local in-plane phase coherence. Even, if we assume that the bisolitons are
able to establish the phase coherence in every CuO2 plane of the sample, they
cannot do it perpendicular to the planes. The purpose of this subsection is to
discuss the mechanism of phase coherence along the c axis, i.e. the mechanism
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of the interlayer coupling. In the cuprates, this mechanism has the magnetic
origin.

As was discussed in Chapter 3, many unconventional superconductors of the
third group exhibit the coexistence of superconductivity and long-range anti-
ferromagnetic order. For superconductors with a large-size coherence length,
this may not seem too surprising since, over the scale of the coherence length,
the exchange field of an antiferromagnet averages to zero. It was a surprise
when in 2000 the coexistence of superconductivity and ferromagnetism was
discovered in an alloy of uranium and germanium, UGe2. Before 2000 su-
perconductivity and ferromagnetism were always regarded as mutually ex-
clusive phenomena. Soon after the discovery of superconductivity in itiner-
ant ferromagnet UGe2, two new itinerant ferromagnetic superconductors were
discovered—zirconium zinc ZrZn2 and uranium rhodium germanium URhGe.
ZrZn2 superconducts only when it is ferromagnetic (see, for example, Fig.
6.37b). The coexistence of superconductivity and weak ferromagnetism was
found in the ruthenocuprate RuSr2RCu2O8 (see Chapter 3). As discussed in
Chapter 2, in the quasi-two-dimensional organic conductor λ-(BETS)2FeCl4,
the superconducting phase is induced by a magnetic field exceeding 18 T. All
these experimental facts clearly indicate that, in some cases, superconductivity
needs spin fluctuations. Hence, they seem to mediate superconducting corre-
lations.

3.9.1 Magnetic properties

Let us start first with the principal magnetic properties of the cuprates. The
parent compounds of superconducting cuprates are antiferromagnetic Mott in-
sulators. INS measurements show that the cuprates display a wide variety of
magnetic properties. Because INS measurements require large-size homoge-
neous single crystals, INS studies have been performed only in a few cuprates:
YBCO, LSCO, Bi2212 and Tl2201. Generally, all the cuprates exhibit com-
mon features of magnetic interactions. At the same time there are some partic-
ularities of magnetic correlations in each cuprate. YBCO is probably the most
studied cuprate.

YBCO is a double-layer cuprate and, in a first approximation, it can be
modeled as a set of weakly coupled CuO2 bilayers. By neglecting the local
anisotropy and other smaller interaction terms, the high-frequency spin dy-
namics can be described using the Heisenberg Hamiltonian for a single bilayer

H =
∑
ij

J‖Si · Sj +
∑
ij′

J⊥Si · Sj′ , (6.66)

where J‖ and J⊥ are the intralayer and interlayer superexchange constants,
respectively. The first term in the expression represents the nearest-neighbor
coupling between Cu spins Si in the same plane and the second the nearest-
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neighbor coupling between Cu spins in different planes. In YBCO, J‖ � 120
meV and J⊥ � 12 meV. INS studies reveal that, in YBCO and other cuprates,
spin-wave excitations present up to 2J‖.

By analogy with phonon-excitation spectra (see Fig. 5.3), spin-wave exci-
tations in bilayer YBCO are also split into two channels: acoustic and optical.
In the acoustic (odd) channel, pairs of neighboring spins in adjacent planes
rotate in the same sense about their average direction. In the optical (even)
channel, the spins in adjacent planes rotate in opposite directions, thus sensing
the restoring force from the interplane coupling J⊥.

Figure 6.31 schematically summarizes the temperature dependence of mag-
netic excitation spectra of underdoped YBCO. At any doping level, the low-
energy spin excitations are absent in the optical (even) channel. The excitations
in the even channel are almost unchanged across the superconducting transi-
tion, as shown in Fig. 6.31. The odd (acoustic) excitations undergo an abrupt
sharpening on cooling through Tc. This sharp mode in the odd channel is
called the magnetic resonance peak, which appears at the antiferromagnetic
wave vector Q = (π, π) exclusively below Tc. The resonance peak is caused by
a collective spin excitation. The energy position of the resonance peak, Er, as
a function of doping level scales linearly with Tc. The antiferromagnetic corre-
lations weaken in the overdoped region; however, the magnetic relaxation still
remains predominant in the highly overdoped region.

Apart from the resonance peak which is commensurate with the lattice,
INS measurements have also found four incommensurate peaks at some en-
ergy transfers, which appear in YBCO below Tc. Each spin scattering peak
occurs at an incommensurate wave vector Q ± δ, as schematically shown in
Fig. 6.32. In Fig. 6.32a, upon doping, commensurate antiferromagnetic Bragg
peaks (grey stars) caused by antiferromagnetic ordering in an ideal Mott insu-
lator disappear, and are replaced by four broadened incommensurate dynamic
peaks (black circles and squares). This indicates that spin fluctuations are dis-
placed from the commensurate peak by a small amount δ, related in the un-
derdoped region to the doping p by δ = p. The incommensurate peaks at
Q ± δ can either be caused by a sinusoidal spin-density-wave slowly fluctuat-
ing in space and time, or arise from the striped phase shown in Fig. 6.2. In the
striped phase, a spin wave is in fact commensurate locally, but the phase jumps
by π at a periodic array of domain walls termed antiphase boundaries (charge
stripes) can cause the appearance of the Q ± δ peaks. Since the period of this
magnetic structure is 8a, where a is the Cu–Cu distance in the CuO2 planes, it
is generally agreed that the incommensurate peaks originate from the striped
phase.

At any doping level, the incommensurability and the commensurate reso-
nance appear to be inseparable parts of the general features of the spin dy-
namics in YBCO, as shown in Fig. 6.32b. In optimally doped YBCO, the
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Figure 6.31. Schematic diagram summarizing the temperature evolution of magnetic excita-
tion spectra of underdoped YBCO compound (a) in the normal state, and (b) across the super-
conducting transition. The excitations in the even channel evolve smoothly with temperature.
The excitations in the odd channel undergo an abrupt sharpening at the resonance energy across
Tc.

resonance peak appears at the maximum resonance energy Er,max = 41 meV.
Below 41 meV, there are well-separated incommensurate peaks. At low en-
ergies (< 30 meV), the intensity of the incommensurate peaks is strongly re-
duced. This can be caused by the opening of a spin gap below Tc. In Fig.
6.32b, above Er,max, the peak is separated again, and the separation gradually
increases with increasing energy up to 2J‖; although the peaks have a broader
width and a much weaker intensity than those below Er,max. In the under-
doped region, the commensurate resonance peak is shifted to a lower energy
Er < Er,max, scaling with Tc, and the incommensurate peaks appear below
Er. Upon heating through Tc, the incommensurate peaks are strongly renor-
malized upon approaching Tc and disappear in the normal state.

In LSCO, the low energy magnetic excitations have been extensively stud-
ied, and the observed spin fluctuations are characterized only by incommensu-
rate peaks. The magnetic resonance peak has never been observed in LSCO.
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Figure 6.32. (a) Neutron scattering data in the reciprocal (momentum) space obtained in
LSCO. The commensurate antiferromagnetic Bragg peaks, obtained in undoped LSCO at wave
vector Q = (π, π), are shown by grey stars. Upon doping, the commensurate peaks disappear
and are replaced by four broadened incommensurate dynamic peaks (black squares and circles)
with incommensurability δ. The fundamental lattice Bragg peaks are shown by large grey dots.
Upon doping, new peaks (black triangles and ovals) are observed, which are displaced by 2δ
from the fundamental lattice peaks. (b) Energy dependence of the peak position of incommen-
surate peaks versus incommensurability δ in YBCO. There are two legs below the maximum
resonance energy Er,max = 41 meV. Above the resonance, the signal is also split. In the under-
doped region, the resonance peak appears at Er < Er,max.

Incommensurability in LSCO is consistent with that in YBCO with the same
hole doping, but in LSCO, it persists in the normal state. In LSCO, the peak
position is unchanged across Tc. Only around room temperature does the in-
commensurate structure begin to disappear. In LSCO, δ is energy-independent
but depends strongly on the doping level. In the single-layer LSCO, spin ex-
citations do not split into acoustic and optical channels as those in the double-
layer YBCO. The similarity of spin dynamics in two different cuprates, LSCO
and YBCO, demonstrate that the spin dynamics does not depend on the de-
tails of the Fermi surface, but have an analogous form to that for the striped
phase. The resonance mode observed in YBCO has also been found in the
double-layer Bi2212 and in the single-layer Tl2201. Incommensurability has
not yet been seen in Bi2212 and Tl2201, but it is expected to be observed.
As emphasized above, the incommensurate response and the resonance peak
are inseparable parts of the same phenomenon. The case of LSCO, however,
shows that the incommensurability can exist without the presence of the com-
mensurate peak but not vice versa.
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3.9.2 Correlations between magnetism and superconductivity

In YBCO, Bi2212 and Tl2201, the energy position of a magnetic resonance
peak as a function of doping level scales linearly with Tc and, as a consequence,
with the phase-coherence energy gap. From Eq. (6.9), 2∆c = ΛkBTc, where
Λ � 5.45 in Bi2212; Λ � 5.1 in YBCO; and Λ � 5.9 in Tl2201. Figure 6.33
shows the two energy scales in Bi2212, ∆p and ∆c, as a function of doping
(compare with Fig. 6.11). Figure 6.33 also depicts the energy position of a
magnetic resonance peak, Er, at different doping levels in Bi2212, YBCO and
Tl2201. In the plot, one can see that at different dopings Er � 2∆c. This rela-
tion unambiguously shows that the magnetic resonance peak intimately relates
to the onset of long-range phase coherence in the cuprates. This means that
the resonance mode is either a consequence or the mediator of phase coher-
ence. Indeed, for YBCO modest magnetic fields applied below Tc suppresses
significantly the intensity of a magnetic resonance peak.

In all layered magnetic compounds, including the undoped cuprates, the
long-range antiferromagnetic (ferromagnetic) order develops at Ne′el tempera-
ture TN (Curie temperature TC) along the c axis. At the same time, in-plane
magnetic correlations exist above TN (TC). Thus, in quasi-two-dimensional
magnetic materials the coupling along the c axis represents the last step in
establishing a long-range magnetic order. Interestingly, in all layered super-
conducting materials the phase coherence becomes long-ranged also due to
the interlayer coupling occurring at Tc. For example, infrared reflectivity
measurements performed in high-quality single crystals of LSCO show that
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the superconducting transition is accompanied by the onset of coherent charge
transport along the c axis, which was blocked above Tc. Therefore, in LSCO,
the long-range phase coherence occurs at Tc along the c axis.

In LSCO, there exists direct evidence that superconductivity is intimately
related to the establishment of antiferromagnetic order along the c axis: µSR
measurements performed in non-superconducting Eu-doped LSCO show that,
at different dopings, the superconducting phase of pure LSCO is replaced in
Eu-doped LSCO by a second antiferromagnetic phase, as depicted in Fig. 6.34.
Thus in LSCO, it is possible to switch the entire doping-dependent phase di-
agram from superconducting to antiferromagnetic. Since LSCO is a layered
compound, the main antiferromagnetic phase of Eu-doped LSCO and its sec-
ond antiferromagnetic phase develop along the c axis. Hence, the supercon-
ducting phase of pure LSCO is replaced in Eu-doped LSCO by an antifer-
romagnetic phase which arises along the c axis. This clearly indicates that
superconductivity in LSCO intimately relates to the onset of long-range anti-
ferromagnetic order along the c axis.

Elsewhere [19] it was shown that, if scaled, the phase diagram of the heavy
fermion CePd2Si2 (see Fig. 6.37a) is almost identical to the two energy scales
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Figure 6.34. Phase diagram of La1.8−xEu0.2SrxCuO4 obtained by µSR measurements (see
references in [19]). Full and open circles denote the magnetic and the structural transition tem-
peratures, respectively. The superconducting phase in pure LSCO is marked by “SC.” The struc-
tural transition from the high-temperature tetragonal (HTT) to the low-temperature orthorhom-
bic (LTO) is indicated by the dashed line. The low-temperature tetragonal phase (LTT) appears
below 120–130 K (AF = antiferromagnetic).
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of Bi2212, namely, TMT and Tc (see Fig. 6.11). It is generally agreed that
superconductivity in CePd2Si2 is mediated by spin fluctuations. Therefore,
this striking similarity suggests that the phase coherence in Bi2212, which sets
in at Tc, is mediated by spin fluctuations.

In antiferromagnetic superconductors, magnetic fluctuations which often
exist above Tc are enhanced on passing below Tc. For example, in supercon-
ducting YBCO, the antiferromagnetic ordering starts to develop above 300 K,
as shown in Fig. 6.35. This antiferromagnetic commensurate ordering with a
small moment was observed in underdoped and optimally doped YBCO. The
magnetic-moment intensity increases in strength as the temperature is reduced
below Tc, as depicted in Fig. 6.35. The magnetic-moment direction was found
in one study to be along the c axis and in-plane in the other (see references in
[19]).
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Figure 6.35. Temperature dependence of the magnetic intensity in underdoped YBCO (Tc =
54–55 K), measured at the wave vector Q = (0.5, 0.5) by polarized and unpolarized neutron
beams (see references in [19]. The antiferromagnetic order appears at a Ne′el temperature of
TN 	 310 K. The dashed line shows the background.

The energy positions of a magnetic resonance peak and incommensurate
peaks are independent of temperature. However, the intensities of the com-
mensurate peak and the incommensurate ones both exhibit a temperature de-
pendence which is very similar to the temperature dependence of ∆c (see Fig.
6.42). Figure 6.36 shows three temperature dependences of the peak inten-
sities: the commensurate resonance peak in Bi2212 and YBCO, and the in-
commensurate peaks in LSCO (x = 0). The temperature dependences of ∆c

(see Fig. 6.42) and those in Fig. 6.36 exhibit below Tc a striking similarity.
To recall, the data in Fig. 6.36 reflect exclusively magnetic properties of the
cuprates.
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Figure 6.36. Temperature dependences of the peak intensity of the incommensurate elastic
scattering in LSCO (x = 0) (Tc = 42 K) and the intensity of the magnetic resonance peak mea-
sured by INS in near optimally doped Bi2212 (Tc = 91 K) and YBCO (Tc = 92.5 K). The
neutron-scattering data are averaged, the real data have a vertical error of the order of ±10–
15%. The BCS temperature dependence is shown by the thick solid line [15, 19].

On the basis of tunneling data [17, 19], it was shown that the charge carriers
in Bi2212 are strongly coupled to the spin excitation which causes the appear-
ance of a magnetic resonance peak in INS spectra, and this magnetic excitation
seems to mediate the phase coherence in Bi2212.

In the framework of a theoretical model developed for the cuprates, which
takes into account a competition between interlayer direct hopping and hop-
ping assisted by spin fluctuations, calculations show that, at least, in the under-
doped region, the interlayer hopping assisted by spin fluctuations is predomi-
nant. Therefore, the interlayer direct hopping can be omitted. The model cap-
tures the main features of experimental data; for example, the anomalous be-
havior of the c-axis electronic conductivity in YBCO and thermoelectric power
in LSCO (see references in [19]).

3.9.3 Magnetically-mediated superconductivity

The spin-fluctuation mechanism of superconductivity was first proposed as
an explanation of superconductivity in heavy fermions [4]. This model is based
on a short-range Coulomb interaction leading to an exchange coupling J ×
SiSj between near-neighbor copper spins Si and Sj and strong magnetic spin
fluctuations. The superexchange constant is denoted by J . In the cuprates, it
has an extremely high magnitude, J ∼ 125 meV ≈ 1500 K.
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The underlying microscopic physics can be described by the t − J model
defined by the Hamiltonian

H = Ht + HJ = −t
∑

〈nm〉σ
(d†nσdmσ + H.c.) + J

∑
〈nm〉

SnSm, (6.67)

where d†nσ is the creation operator of a hole with spin σ (σ =↑, ↓) at site n
on a two-dimensional square lattice (H.c. = Hermitian conjugated). The d†nσ

operators act in the Hilbert space with no double electron occupancy. The spin
operator is Sn = 1

2d†nσσαβdnβ , and 〈nm〉 are the nearest-neighbor sites on
the lattice. At half-filling (one hole per site) the t − J model is equivalent to
the Heisenberg antiferromagnetic model, which has long-range Ne′el order in
the ground state. Upon doping, the long-range antiferromagnetic order is de-
stroyed; however, the local antiferromagnetic order is preserved. The magnetic
coupling is not local both in space and in time. Magnetically-mediated super-
conductivity may exist only in samples in which the carrier mean free path
exceeds the superconducting coherence length. In most cases this requires
samples of very high purity. The spin-fluctuation mechanism of superconduc-
tivity results in the dx2−y2 symmetry of superconducting order parameter. The
model gives the value of critical temperature in reasonable agreement with ex-
perimental data for high-Tc superconductors.

In conventional superconductors, the Cooper pairs are formed via interac-
tions between electrons and lattice vibrations (phonons). In superconducting
heavy fermions, spin fluctuations are believed to mediate the electron pairing
that leads to superconductivity. However, in reality, spin fluctuations seem to
mediate only the long-range phase coherence in the heavy fermions, as well as
in the cuprates.

Let us consider characteristic features of magnetically-mediated supercon-
ductivity. In conventional superconductors, superconductivity described by
the BCS theory has its specific features, for example, the isotope effect, the
s-wave symmetry of the order parameter, etc. What features are inherent to
magnetically-mediated superconductivity?

Quantum critical point. As discussed above, magnetically-mediated su-
perconductivity occurs near a quantum critical point. Figure 6.37 sketches
two phase diagrams: the first diagram is typical for antiferromagnetic heavy-
fermions, and the second is the phase diagram of the ferromagnetic heavy
fermion UGe2. In both phase diagrams, the density of charge carriers is changed
by applying a pressure. Near a quantum critical density nc, magnetic inter-
actions become strong and long-ranged and overwhelm other channels. In
Fig. 6.37, one sees that independently of the nature of magnetic interactions—
antiferromagnetic or ferromagnetic—the superconducting phase occurs near
a quantum critical point, where magnetic fluctuations are the strongest. In a
sense, the superconducting phase is “attracted” by a quantum critical point.



220 ROOM-TEMPERATURE SUPERCONDUCTIVITY

 Density  n  c

 T
em

pe
ra

tu
re

 Antiferro-
 magnetic

 (a)

 Density  n  c

 T
em

pe
ra

tu
re

 (b)

 Ferro-
 magnetic

 PG

 SC

 state

 CePd 2 Si 2  UGe 2

 state

 SC

Figure 6.37. Phase diagrams of heavy fermions: (a) antiferromagnetic CePd2Si2, and (b) fer-
romagnetic UGe2, shown schematically [19]. In both plots, the density is varied by pressure,
and nc is the quantum critical point (SC = superconductivity). The phase diagram in plot (a) is
typical for antiferromagnetic superconductors. In plot (b), the dashed line shows a pseudogap
(PG) found in resistivity and magnetization measurements in UGe2, indicating the presence of
a quantum critical point.

Superconducting dome. One can see in Fig. 6.37 that the superconduct-
ing phase as a function of doping has a bell-like shape. Such a shape of the
superconducting phase is typical for magnetically-mediated superconductivity.

Symmetry of the order parameter. Theoretically, the order parameter in an-
tiferromagnetic superconducting compounds has a d-wave symmetry. The d-
wave symmetry of the order parameter was indeed observed in a few magnetic
compounds, including the cuprates. For ferromagnetic superconducting ma-
terials the situation is still not clear. Theoretically, the order parameter in su-
perconductors with ferromagnetic correlations should have a p-wave (triplet)
symmetry. However, there is no experimental confirmation of this conjecture.

Temperature dependence. In magnetic superconductors, the temperature
dependence of magnetic (in)commensurate peak(s), shown in Fig. 6.36 for
cuprates, is specific and lies below the s-wave BCS temperature dependence.
At the same time, such a temperature dependence is similar to the temperature
dependence of coherence superconducting characteristics; in other words, to
the dependence ∆c(T ). In a first approximation, such a temperature depen-
dence represents the squared BCS temperature dependence.

Enhancement of spin fluctuations. As discussed above, in antiferromag-
netic superconductors, magnetic fluctuations are enhanced on passing below
Tc. This is shown in Fig. 6.35.

The magnetic resonance peak. Below Tc in antiferromagnetic superconduc-
tors, there often, but not always, occurs a specific magnetic excitation which
causes the appearance of a magnetic resonance peak in INS spectra. The en-
ergy position of a magnetic resonance peak, Er, is independent of tempera-
ture, and Er(p) = 2∆c(p). However, the intensity of the resonance mode
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depends on temperature, and increases as the temperature decreases (see Fig.
6.36). It is assumed that the spin excitation causing the appearance of a mag-
netic resonance peak is a magnon-like. Generally speaking, magnons have
a large degree of dispersion; if they were the cause of the appearance of a
resonance peak, the peak should be quite wide. However, the width of a res-
onance peak in INS spectra is very narrow. Therefore, this excitation cannot
be magnon-like. Alternatively, it was proposed that the resonance mode is a
magnetic exciton. Magnons and excitons are non-interacting plane waves. To
propagate, a magnon uses only the ground spin states—antiferromagnetic or
ferromagnetic—while an exciton only excited spin states. Since excitons are
also plane waves, they should have also a large degree of dispersion. On the
other hand, analysis of experimental data shows that the spin excitation that
causes the appearance of a resonance peak in INS spectra can be a magnetic
soliton [19].

For example, in the heavy fermion UPd2Al3, the Ne′el temperature is about
TN � 14.3 K, and Tc � 2K. Upon cooling through Tc, an abrupt enhancement
of magnetic fluctuations is observed in INS measurements, and a magnetic
resonance peak appears at Er/kBTc � 9.2.

3.9.4 Interplay between the lattice and magnetism

Here we consider an important issue related directly to the mechanism of
phase coherence in the cuprates—the interplay between the lattice and spin
fluctuations. First of all, one should distinguish the onset of phase coherence
in the CuO2 planes and between the planes. The mechanism of interlayer phase
coherence in the cuprates is magnetic, while the in-plane phase coherence oc-
curs not only due to spin fluctuations but also due to the direct hopping of
bisoliton wavefunctions. Furthermore, the lattice also plays an important role:
as was discussed above, a structural phase transition always takes place some-
what above Tc,max for each cuprate.

In the non-superconducting Gd- and Eu-doped LSCO, the frequency of spin
fluctuations upon lowering the temperature monotonically decreases, having a
kink at Tc,max � 38 K [49]. In the cuprates, superconductivity is associated
with spin fluctuations which are rapid. Below a certain frequency of spin fluc-
tuations, ωmin, the cuprates cannot superconduct [19]. Generally speaking,
the frequency of spin fluctuations depends on fluctuations of charge stripes in
the CuO2 planes and, thus, on the underlying lattice. In the cuprates, if the
charge stripes carrying bisolitons fluctuate in the CuO2 planes not fast enough
for exciting spin fluctuations capable of mediating phase coherence, supercon-
ductivity will never arise. Somewhat above Tc,max, there is a structural phase
transition which flattens the CuO2 planes and/or makes them more tetragonal.
As a consequence, the charge stripes can now fluctuate quicker and induce
spin excitations capable of mediating the phase coherence. Thus, even if the
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mechanism of interlayer coupling is magnetic, the lattice, in fact, determines
the value of Tc,max for each cuprate. In a sense, the mechanism of phase co-
herence in the cuprates is not pure magnetic but magneto-elastic.

In the cuprates, the underlying lattice determines the homogeneity of super-
conducting phase. As an example, Figure 6.38 depicts the surface of Bi2212,
YBCO and Tl2201 at low temperature. This sketch is based on tunneling mea-
surements, assuming that the surface is flat. In the sketch, the superconducting
phase in YBCO and Tl2201 near the surface is more or less homogeneous,
while in Bi2212, it forms nanoscale patches, as illustrated in Fig. 6.38. As a
consequence, tunneling measurements performed in Bi2212 are able to provide
information about the two energy gaps, ∆c and ∆p. Above the superconduct-
ing nanoscale patches (shown in grey in Fig. 6.38), tunneling measurements
can provide information about ∆c (see the last subsection in this chapter),
while between the patches where incoherent Cooper pairs are present, about
∆p. The homogeneity of superconducting phase deep inside Bi2212 is un-
known.

 Bi2212  YBCO  &   Tl2201

Figure 6.38. Superconducting phase on the flat surface of Bi2212, YBCO and Tl2201 at low
temperature, shown in grey. In underdoped Bi2212, the size of the patches is about 30 A

◦
. In the

cuprates, the superconducting phase is associated with dynamic magnetic fluctuations.

In the absence of charge-stripe fluctuations which occur due to the underly-
ing lattice, spin fluctuations become quasi-static, forming a spin wave with a
periodicity of 8a. So, one may say that the occurrence of superconductivity in
the cuprates is really a “bypass product.”

3.9.5 Origin of the resonance mode

At the moment of writing, the origin of spin excitation, which is referred to
as the magnetic resonance peak, is unknown. It is clear that this spin excitation
is a collective excitation, and has a magnitude of S = 1. It is also clear that, in
LSCO, this excitation is absent because the Cu spins in this cuprate fluctuate
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not sufficiently quick to excite it. Here we discuss a possible origin of this spin
excitation.

The magnetic interlayer coupling requires that the Cu spins in the CuO2

planes must slightly be out-of-plane in order to have a small c-axis component,
therefore they must be canted. It is possible that this may be the clue to the
problem. As was shown elsewhere [19], every charge stripe carries spin ex-
citations at its ends, as sketched in Fig. 6.39. In the striped phase shown in
Fig. 6.2, below TMO, insulating stripes between the charge stripes are anti-
ferromagnetically ordered. The spin direction in the antiferromagnetic stripes
rotates by 180◦ upon crossing a domain wall, as shown in Fig. 6.2. At the
end of each charge stripe, two antiferromagnetic stripes separated by a charge
stripe come into contact with one another. Because the spin direction in the
two antiferromagnetic stripes rotates by 180◦ upon crossing the charge stripe,
at the charge-stripe end the spin orientations in the two domains are opposite.
Therefore, any spin orientation—up or down—at the charge-stipe end induces
a local spin excitation, as shown in Fig. 6.39. In reality, the spin orientation
at each end of charge stripes is the superposition of the two: (↑ + ↓)/2. It is
then possible that the the most energetically favorable orientation of this spin
is out-of-plane (in Fig. 6.39, perpendicular to the page). If the charge stripes
fluctuate quickly, the spins at charge-stripe ends always give rise to an excita-
tion which may be the one that is referred to as the magnetic resonance peak.

 stripe

 excitations

 or:

Figure 6.39. Sketch of a charge stripe in the antiferromagnetic environment. Independently of
a spin orientation, each end of a charge stripe always carries a spin excitation.
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3.10 Energy gaps ∆p and ∆c

The energy gap is one of the most important characteristics of the supercon-
ducting state. Since the discovery of high-Tc superconductivity in the cuprates,
they have been extensively studied by different experimental techniques. Sur-
prisingly in the cuprates, different techniques have initially provided different
values of an energy gap. The discrepancy remained a mystery until it was
realized that different experimental methods probe two different energy gaps.
Moreover, the magnitudes of the two gaps strongly depend on the doping level.

The energy gap ∆p is the bisoliton pairing gap shown in Fig. 6.23, and
2∆p measures the strength of the binding of two quasiparticles. The phase-
coherence energy gap 2∆c is the condensation energy of a Cooper pair when
the long-range phase coherence appears. Hence, quasiparticles in the cuprates
undergo two condensations: the first when they become paired, and the second
when the long-range phase coherence sets in. The total energy gain per quasi-
particle is not (∆p + ∆c) but ∆t =

√
∆2

p + ∆2
c . Figure 6.40 schematically

shows these three energy gaps relative to the Fermi level (F) in three dimen-
sions. The bisoliton energy level (B) is below the Fermi level by ∆p, and it is
separated by ∆c from the energy level of the superconducting condensate (SC).
In Fig. 6.40, each Cooper pair at the SC level has two possibilities: either to
be excited or to be broken. The first possibility corresponds to the transition
SC → B in Fig. 6.40, that requires a minimum energy of 2∆c. The sec-
ond choice is the transition SC → F in Fig. 6.40 which requires a minimum
energy of 2∆t. The bisolitons at the B energy level in Fig. 6.40 are uncon-
densed Cooper pairs; therefore, they are not in phase with the superconducting
condensate. To break up a bisoliton which is at the B energy level, a minimum

 Fermi level

 SC 

 bisolitons

 F

 B

 SC

 condensate

 ∆  p
    ∆  t

 ∆  c

 E

Figure 6.40. Three energy levels of quasiparticles in unconventional superconductors in three
dimensions (for more details, see text).



Third group of superconductors: Mechanism of superconductivity 225

0

5

10

15

0 0.05 0.1 0.15 0.2 0.25 0.3
Doping level, p

2∆
/k 

T c
,m

ax
B

∆ c

∆p
∆ c

2 ∆p
2+

Figure 6.41. Low-temperature phase diagram of superconducting cuprates: the pairing energy
scale ∆p and the Cooper-pair condensation scales ∆c.

energy of 2∆p must be supplied.

Figure 6.41 shows three energy scales ∆c, ∆p and
√

∆2
c + ∆2

p in Bi2212
as a function of doping level. ∆c and ∆p are given by Eqs. (6.9) and (6.7),
respectively. Such a phase diagram is typical for hole-doped cuprates. From
Fig. 6.41, one can see that the two energy scales ∆p and

√
∆2

c + ∆2
p have

similar magnitudes. In the cuprates, depending on the type of an experiment
(bulk or surface-layer sensitive; sensitive to single-quasiparticle excitations or
to the coherence properties of the condensate), measurements may show one,
two or three energy scales which are depicted in Fig. 6.41. It is worth noting
that the pairing gap ∆p is an in-plane energy scale, while the phase-coherence
gap ∆c is mainly a c-axis energy scale.

The temperature dependences of the two energy gaps, ∆c and ∆p, are pre-
sented in Fig. 6.42. The ∆p(T ) dependence is similar to the BCS temperature
dependence, while the ∆c(T ) dependence lies below the BCS temperature de-
pendence, and is similar to the temperature dependences of (in)commensurate
peak(s) depicted in Fig. 6.36.

In conventional superconductors, the order parameter Ψ is proportional to
the Cooper-pair wavefunction ψ, and has an s-wave symmetry (angular mo-
mentum � = 0). In the cuprates, the order parameter and the Cooper-pair wave-
function are different, and have different symmetries. Therefore, the symme-
tries of the energy gaps ∆p and ∆c are also different. In the cuprates, all phase-
sensitive measurements show that the order parameter in hole- and electron-
doped cuprates has the dx2−y2 (d-wave) symmetry, shown in Fig. 6.43. Then,
the energy gap ∆c has also the d-wave symmetry. A key feature distinguishing
the dx2−y2 symmetry is that it has two positive and two negative lobes and four
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 0
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Figure 6.42. Temperature dependences of ∆p and ∆c, shown schematically. The ∆c(T ) de-
pendence lies below the BCS temperature dependence.

nodes between the lobes, as sketched in Fig. 6.43. As discussed above, spin
fluctuations mediate superconductivity exclusively with a dx2−y2 ground state.

What is the symmetry of the pairing (bisoliton) wavefunction? The pairing
wavefunction must have an s-wave symmetry. Many experiments mainly tun-
neling clearly show the presence of an s-wave component in the cuprates. To
explain these experimental data, one must assume that the Cooper-pair wave-
functions have an s-wave symmetry. Fortunately, we know that phonons are
mainly responsible for the pairing in the cuprates, and they indeed favor an
electron pairing with an s-wave symmetry.

ARPES and tunneling measurements performed in Bi2212 show that the
gap ∆p is anisotropic and has a four-fold symmetry. In addition to a usual
anisotropic s-wave symmetry, ∆p can also have an extended s-wave symmetry
schematically shown in Fig. 6.44. In the latter case, the gap is everywhere
positive (negative) except four small lobes where the gap is negative (positive).
In Fig. 6.44, the case of s-wave gap with nodes is an intermediate case between
the two cases—anisotropic and extended.

In heavy fermions, the situation is very similar. For example, in UBe13,
Andreev-reflection measurements show the presence of a d-wave gap, while
tunneling measurements show that UBe13 is an s-wave superconductor (see
references in [19]).

At the end of this subsection, let us consider a set of tunneling data to visu-
alize the two gaps ∆p and ∆c. In these tunneling data, the two gaps manifest
themselves simultaneously. Figure 6.45 shows a temperature dependence of a
conductance obtained in Ni-doped Bi2212 having Tc � 75 K (p ∼ 0.2). In the
plot, one can see that the conductance peaks are composite, especially, those
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Figure 6.43. Superconducting order parameter in hole-doped cuprates, shown in real space: it
has the dx2−y2 shape.

at 41.8 K. As was discussed in [19], these data were measured by chance near
an impurity, i.e. a Ni atom. Since Ni is a magnetic impurity in the CuO2

planes, it is able to participate in the Cu-spin fluctuations. At the same time,
Ni breaks up the Cooper pairs in the CuO2 planes. In terms of the two gaps,
this means that, in its vicinity, Ni destroys ∆p, whilst ∆c remains practically
unchanged. In Fig. 6.45, both gaps have practically the same magnitudes at
15 K, ∆p � ∆c � 17.5 meV (this can easily be seen in the corresponding
I(V ) characteristics which are not shown here; for more details, see Chapter 6
in [19]). It is important to emphasize that such a situation is only possible lo-
cally. In Fig. 6.45, one can see that the quasiparticle peaks disappear between
65.3 K and 70.3 K. This means that, locally, ∆p closes in this temperature in-
terval. Taking the mean value T∆p = (65.3 + 70.3)/2 � 67.8 K, we have
T∆p/Tc � 0.91. This enables us to determine the gap ratios for the two gaps

 anisotropic  extended

 +  +

 with nodes

 +

 +

 +  +  +

 +

 +

Figure 6.44. Possible types of s-wave symmetry of the pairing wavefunction in the cuprates,
shown in real space: (a) anisotropic, (b) extended and (c) with nodes. The case (c) is intermedi-
ate between (a) and (b).
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Figure 6.45. Temperature dependence of SIS-junction tunneling conductance obtained in a
Ni-doped Bi2212 single crystal with Tc = 75 K [19]. The conductance scale corresponds to the
70.3 K spectrum, the other spectra are offset vertically for clarity. The peak at zero bias is due
to the Josephson current in the junction.

in Bi2212:

2∆p

kBT∆p

� 35 meV
5.83 meV

� 6 (± 0.2) and (6.68)

2∆c

kBTc
� 35 meV

6.45 meV
� 5.43. (6.69)

This example is also instructive because it helps to visualize gapless super-
conductivity in unconventional superconductors. In this example, the Cooper
pairs do not exist between T/Tc = 0.91 and 1 near the Ni atom, while the
Ni spin participates in local spin fluctuations. In Fig. 6.45, one can see that
the 70.3 K conductance does not have quasiparticle peaks, but it exhibits a
small zero-bias peak due to the Josephson current. This means that, in the Ni
vicinity, between T/Tc = 0.91 and 1, the phase coherence is sustained. In
this case, superconductivity is locally gapless. Thus, in the interval T/Tc =
0.91 and 1, all Cooper pairs (bisolitons) passing by the Ni atom are broken,
while the fluctuations of Cu spins are not interrupted by the Ni atom. Thus,
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gapless superconductivity can arise in unconventional superconductors but ex-
clusively locally. This is in contrast to conventional superconductors where
gapless superconductivity can exist in a whole sample (see Chapter 2). From
this example in Fig. 6.45, one can also have a feeling for the magnetic origin
of the phase coherence mechanism in Bi2212.

3.11 Quantum critical point and the condensation energy
In cuprates, the doping level p = 0.19 is a quantum critical point where mag-

netic fluctuations are the strongest. Since spin fluctuations mediate the phase
coherence in the cuprates, superconductivity at low temperature is the most
robust at this doping level, p = 0.19, and not at p = 0.16. The superconducting
condensation energy as a function of doping has a maximum at p = 0.19, as
shown in Fig. 6.46. The maximum values of U0 for YBCO and Bi2212 are
U0,max = 2.6 J/g atoms and U0,max = 2 J/g atoms, respectively. From Fig.
6.46, superconductivity in the underdoped region is very weak. At p = 0.19,
the superconducting-phase fraction is a maximum as well, as sketched in Fig.
6.8b. The temperature/energy scale TMT in Fig. 6.11 starts/ends in the quan-
tum critical point. Hence, it has the magnetic origin.

 0.16 0  0.05  0.27 0.1  0.19  p
 0

 U  0

 U  0,max

 YBCO
 Bi2212

Figure 6.46. Superconducting condensation energy U0 as a function of doping level, obtained
in Bi2212 and YBCO by heat-capacity measurements (see references in [19]).

3.12 Effective mass anisotropy
Because of a layered structure of the cuprates, quasiparticles move much

more easily in the CuO2 planes than between the planes. Thus, anisotropy of
the crystal structure of the cuprates affects transport properties. To account
for the anisotropy, it is conventionally agreed that the effective mass changes
with crystal direction. Instead of being a single-valued scalar m, the effective
electron mass becomes a tensor. In the cuprates, to a good approximation, the
effective electron mass is a diagonal tensor, and the in-plane effective masses
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have similar values, ma ≈ mb. The value of the in-plane effective mass in
the cuprates is slightly larger than the electron mass me by a factor of between
four and five: mab � (4–5)me.

Anisotropy is defined by the ratio of the effective mass of quasiparticles in
the various directions, γ2 = mc

ma
. In YBCO, the effective mass ratio is about

γ2 ≈ 30. LSCO exhibits somewhat higher anisotropy, γ2 ≈ 200, while Bi-
and Tl-based cuprates are much more anisotropic than YBCO: in Bi- and Tl-
compounds, the ratio is about 50 000. Such a large anisotropy, which is totally
foreign to conventional superconductors, means that electrons can barely move
in the c-axis direction, and the cuprates are effectively two-dimensional.

3.13 Penetration depth

The penetration depth λ is one of the most important parameters of the
superconducting state because λ directly relates to the superfluid density as
ns ∝ 1/λ2. Table 3.6 lists the penetration-depth data for some cuprates. In
the table, one can see that, in the cuprates, λ is very large, particularly, in the
c-axis direction, meaning that ns is very low.

In the Uemura plot in Fig. 3.6, the Tc value depends linearly on the super-
fluid density in underdoped cuprates, and this dependence is universal for all
superconducting cuprates. As the doping level increases, Tc first saturates and,
in the overdoped region, decreases, making a “boomerang path” , as shown in
the lower inset of Fig. 3.6. Thus, in the overdoped region, the superfluid den-
sity falls with increased doping. The Uemura plot shows that the optimum
doping level is different for different cuprates.

Figure 6.47 shows the doping dependence of the penetration depth in LSCO;
thus, a sort of “ inverted” Uemura plot. One notes from Figs 3.6 and 6.47,
the penetration depth as a function of doping attains a minimum not in the
optimally doped region but in the slightly overdoped region. In Bi2212, the
in-plane penetration depth has the same trend.

It is worth noting that, in YBCO, due to the presence of chains, the penetra-
tion depth is smaller along the chains than that along the a axis: in YBCO with
Tc = 93 K, λa = 1550–1600 A

◦
and λb = 800–1000 A

◦
. The value λab = 1450 A

◦

listed in Table 3.6 for YBCO, represents the value of
√

λaλb.

3.14 Critical fields and current

All superconducting cuprates are type-II superconductors. Hence, they have
two critical magnetic fields: Hc1(0) and Hc2(0). In Table 3.6, one observes
that the magnitudes of the second critical magnetic field, Hc2(0), are extremely
high in the cuprates. At the moment of writing, the cuprates exhibit the largest
values of Hc2(0) amongst all unconventional superconductors.
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Figure 6.47. Absolute values of the in-plane λab and out-of-plane λc magnetic penetration
depth as a function of doping for LSCO (see references in [19]). The dashed line shows tendency
of λab at high doping, expected from Fig. 3.6.

Furthermore, due to a highly anisotropic structure of the cuprates, there is a
huge anisotropy of the critical magnetic fields applied parallel and perpendic-
ular to the CuO2 planes. Thus, in the cuprates, there are four different critical
magnetic fields: Hc1,‖(0), Hc1,⊥(0), Hc2,‖(0) and Hc2,⊥(0). The symbols ‖
and ⊥ denote the critical value of H applied parallel and perpendicular to the
CuO2 planes, respectively. In the cuprates, Hc2 is much larger when the field
is applied parallel to the CuO2 planes than that applied perpendicular to the
planes. This is because most of the conduction is in the planes: a magnetic
field applied parallel to the planes is not very effective in destroying supercon-
ductivity within the planes.

In the cuprates, the lower critical fields Hc1,‖ and Hc1,⊥ are very small. For
example, in YBCO Hc1,‖ ∼ 2× 10−2 T and Hc1,⊥ ∼ 5× 10−2 T; in Hg1223,
Hc1,‖ ≈ 3 × 10−2 T. It is interesting that the anisotropy in Hc1 has the sign
opposite to that in Hc2: Hc2,⊥ < Hc2,‖ but Hc1,⊥ > Hc1,‖.

It is worth noting that the majority of Hc2 values in Table 3.6 are approxi-
mate because they are extrapolated from the resistivity data obtained near Tc.
The magnetic fields accessible in the laboratory conditions are only of the order
of 30 T. Secondly, in metallic superconductors described by the BCS theory,
Hc2 ∝ T 2

c . In the cuprates, the relation is found to be different: Hc2 ∝ T
√

2
c ,

determined in the cuprates with low Tc.
The critical current in layered cuprates is also very anisotropic. The highest

values of the critical current Jc were obtained in epitaxial thin films of YBCO.
At liquid helium temperature, the critical current in the ab plane is almost 108

A/cm2 and, along the c axis, is of the order of 105 A/cm2.
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3.15 Coherence length and the size of a Cooper pair

As defined in Chapter 2, the coherence length ξGL is determined by varia-
tions of the order parameter Ψ(r), whilst the Cooper-pair size ξ is related to
the wavefunction of a Cooper pair, ψ(r). While the coherence length depends
on temperature, ξGL(T ), the Cooper-pair size is temperature-independent. In
contrast to conventional superconductors, the order parameter and the Cooper-
pair wavefunction in all unconventional superconductors are independent of
one another. Therefore, generally speaking, in unconventional superconduc-
tors, ξGL �= ξ at any temperature.

Let us consider first the in-plane ξGL,ab and ξab. Since the Cooper pairs in
the cuprates reside into the CuO2 planes, the size of a Cooper pair is, by def-
inition, an in-plane characteristic and thus ξ ≡ ξab. The magnetic field Hc2,⊥
directly relates to the in-plane coherence length ξGL,ab through Eq. (2.67).
As was analyzed in [19], for the cuprates, the field Hc2,⊥, in fact, yields the
value of ξ or, at least, a value which is very close to ξ. How is it possible?
This fact may indeed look odd because, by applying a magnetic field to a sys-
tem which is characterized by two coupling strengths, it is anticipated that
the weaker “bond” will first be suppressed. In the cuprates, depending on the
doping level, the strength of the electron-phonon interaction (∼ 0.6 eV) can
be four times stronger than the strength of magnetic interaction (J ∼ 0.15
eV). Experimentally, however, for cuprates the magnetic field Hc2,⊥ yields the
value of ξ which is mainly determined by the electron-phonon interaction. As
discussed above, the mechanism of in-plane phase coherence in the cuprates
is not purely magnetic: the direct wavefunction hopping largely contributes
to the onset of in-plane phase coherence. Therefore, even if the in-plane spin
fluctuations are suppressed, there will always be superconducting patches due
to the direct wavefunction hopping. It is then obvious why, in the cuprates, the
field Hc2,⊥ yields the value of ξ and not ξGL,ab. The doping dependence of ξ
in Bi2212 is shown in Fig. 6.25.

To obtain ξGL,ab in the cuprates, another method has been proposed. In
LSCO, ξGL,ab was determined by measuring the vortex-core size [50]. Fig-
ure 6.48 depicts the doping dependences of ξGL,ab and ξ in LSCO, obtained
at low temperature. The dependence ξ(p) was obtained through Hc2 as de-
scribed in the previous paragraph. In Fig. 6.48, one can see that the depen-
dence ξGL,ab(p) has an inverted bell-like shape similar to the dependence λ(p)
in Fig. 6.47. Both these dependences directly follow from the fact that the
dependence ∆c(p) has a bell-like shape (see Fig. 10.14 in [19]). At p � 1/8,
ξGL,ab(p) has a kink related to the 1

8 anomaly (see Chapter 3). At p � 0.05,
the value of ξGL,ab in LSCO is about 70 A

◦
. In Fig. 6.48, one can see that, in

the overdoped region, ξGL,ab � ξ.
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Figure 6.48. Sketch of doping dependences of in-plane ξGL and ξ in LSCO, obtained at low
temperature [50].

In the cuprates, the in-plane magnetic correlation length is sufficiently large.
For example, in LSCO, the value of in-plane magnetic correlation length is
ξm > 400 A

◦
[51]. If we substitute this value into Eq. (2.67), we obtain

that Hc,m < 0.2 T. This value is of the same order of magnitude as Hc1,⊥ ∼
0.05 T in YBCO (see above). So, it is possible that, in the cuprates, the in-plane
magnetic correlation length determines Hc1,⊥. However, one must realize that
ξm has no relations with ξGL,ab.

The in-plane coherence length ξGL,ab is determined by a length of dynamic
magnetic characteristics, and not static ones as ξm. In the cuprates, ξGL,ab re-
lates most likely to the coherence length of incommensurate spin fluctuations
which are in fact commensurate locally but manifest themselves in INS spectra
as incommensurate. For example, in underdoped YBCO, the minimum coher-
ence length of the magnetic resonance peak is practically doping-independent
and is about 16 A

◦
. At the same time, the minimum coherence length of the

incommensurate spin fluctuations decreases from 35 to 24 A
◦

as the doping
level increases [52]. Thus, in underdoped YBCO, the doping dependence of
minimum coherence length of incommensurate spin fluctuations is similar to
the dependence ξGL,ab(p) for LSCO, shown in Fig. 6.48, whilst the minimum
coherence length of the magnetic resonance peak is doping-independent [52].

Consider now the out-of-plane ξGL,c and ξc. The dependence ξGL,c(p) must
correlate with ξGL,ab(p) shown in Fig. 6.48. In contrast, ξc should increase
as the doping level increases (see Fig. 10.15b in [19]) because, as the doping
level increases, the cuprates become more three-dimensional. For cuprates,
the values listed in Table 3.6 are the values obtained by using Eq. (2.68) and,
formally, correspond to ξGL,c. However, it seems that these values are the
ξc values. Does this mean that, in the cuprates, the direct interlayer hopping



234 ROOM-TEMPERATURE SUPERCONDUCTIVITY

also contributes to the onset of long-range phase coherence? This may be so,
especially in the overdoped region.

3.16 Resistivity and the effect of the magnetic field
Consider temperature dependences of in-plane and out-of-plane resistivities

in hole-doped cuprates at different doping levels. As schematically shown in
Fig. 6.49, in the undoped region, the in-plane ρab and out-of-plane ρc resistiv-
ities both are semiconducting; that is, the resistivities first fall with decreasing
temperature, attaining their minimum values, and then sharply increase at low
temperatures. As was emphasized above, the steep rise of the resistivities is
due to a charge ordering along the charge stripes. The difference between the
absolute values of ρab and ρc is a few orders of magnitude. For example, in
YBCO, ρc/ρab ∼ 103. It is important to note that ρab and ρc attain their mini-
mum values at different temperatures.

In the underdoped region, the in-plane and out-of-plane resistivities passing
through their local minimum value both attain a maximum and then fall, van-
ishing below Tc, as shown in Fig. 6.49. The absolute values of the resistivities
decrease in comparison with those in the undoped region, and the ratio ρc/ρab

decreases as well. This means that, as the doping level increases, the two-
dimensional cuprates become quasi-two-dimensional. For example, in LSCO
(x = 0.06), the ratio is ρc/ρab = 4×103 and decreases to ρc/ρab ∼ 102 at x =
0.28. The sharp fall in ρc and ρab occurring due to the transition into the su-
perconducting state literally interrupts the rise corresponding to the insulating
charge-ordering state.

In Fig. 6.49, near the optimally doped region, the in-plane resistivity above
the critical temperature is now almost linear. However, the out-of-plane resis-
tivity remains similar to that in the underdoped region, shifting to high tem-
peratures and to low absolute values. Thus, in the optimally doped region, the
in-plane resistivity is almost metallic, while the out-of-plane resistivity still
exhibits the semiconducting behavior. In high-quality single crystals, the ex-
tension of the ρab(T ) dependence passes through zero as that in Fig. 6.50a.

In the overdoped region, both ρab and ρc become metallic, as shown in Fig.
6.49. Notably, ρc in Bi2212 is probably the only exception from the general
tendency. Figure 6.50 shows the in-plane and out-of-plane resistivities in an
overdoped Bi2212 single crystal. As one can see in Fig. 6.50b, above Tc � 80
K the out-of-plane resistivity remains semiconducting even in the overdoped
region.

In the cuprates, there is also a weak in-plane anisotropy: ρa and ρb are not
exactly the same. If, in YBCO, the in-plane anisotropy ρa/ρb at 300 K varying
from 1.23 in the underdoped region to 2.5 in the optimally doped region is
principally due to the presence of the CuO chains, whilst in other cuprates, the
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Figure 6.49. Schematic overview of transport properties of the cuprates at different dopings.
In-plane resistivity is shown at the top, and out-of-plane resistivity at the bottom. Insets depict
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weak in-plane anisotropy is due to self-organized charge stripes. For example,
in undoped LSCO, the ρb/ρa ratio increases with lowering the temperature,
attaining 1.4 at 4.2 K.

The difference between conventional and unconventional superconductors
can be illustrated by the following example. In conventional superconductors,
by applying a sufficiently strong magnetic field, the part of the resistivity curve
corresponding to the transition into the superconducting state remains steplike
but is shifted to lower temperatures. The same takes place in half-conventional
superconductors (see the next chapter). Contrary to this, the transition width
in unconventional superconductors becomes broader with increasing magnetic
field, implying that at temperatures just below Tc(H = 0), there are large phase
fluctuations. In layered unconventional superconductors, the transition widths
in resistivity become broader in both directions, along and perpendicular to the
layers.

The effect of an applied magnetic field on in-plane and out-of-plane resis-
tivities in Bi2212 is shown in Fig. 6.50. An applied magnetic field smears
the transition into the superconducting state, as shown in Fig. 6.50a. Such a
behavior in resistivity is typical for the cuprates. If the magnitude of applied
magnetic field is larger than Hc2, no transition into the superconducting state
will be observed. Instead, the low-temperature parts of ρab and ρc, camou-
flaged by the onset of the superconducting phase in zero magnetic field, will
be revealed. This trend can be seen in the behavior of ρc shown in Fig. 6.50b.

It is worth noting that, in LSCO with x = 1/8, upon applying a magnetic
field, the part of the resistivity curve corresponding to the transition into the su-
perconducting state remains steplike, and is obviously shifted to lower temper-
atures [53]. Thus, the magnetic-field trend of resistivity in the cuprate LSCO
(x = 1/8) is similar to that in conventional superconductors. This indicates that
the magnitude of the energy gap ∆c is small in LSCO with x = 1/8, meaning
that spin fluctuations in this “anomalous” LSCO are much less dynamic that
those, for example, in optimally doped LSCO.

3.17 Crystal structure and Tc

In conventional superconductors, there are no important structural effects.
This, however, is not the case for the cuprates. Since superconductivity in the
cuprates occurs in the CuO2 planes planes, the structural parameters of these
planes affect Tc the most. The geometry of a CuO2 plane is defined by the
following factors: the length of the Cu–O bond; the degree of an orthorhombic
distortion from square, and the degree of deviation from a flat plane (a buckling
angle). The Tc dependence on the Cu–O length has a bell-like shape [19]. And
hence, for superconductivity, the length of the Cu–O bond in the CuO2 planes
has a certain optimum value.
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The buckling angle of a CuO2 plane is defined as the angle at which the
plane oxygen atoms are out of the plane of the copper atoms. At fixed doping
level, the highest maximum Tc corresponds to the smallest maximum buckling
angle. The highest critical temperature Tc = 135 K is observed in mercury
compounds which have perfectly flat CuO2 planes. The orthorhombic distor-
tion is defined by the parameter b−a

b+a , where a and b are the lattice constants. All
cuprates with the high critical temperatures (> 100 K) have tetragonal crystal
structure. Therefore, for increasing Tc, the degree of orthorhombic distortion
should be as small as possible. Thus, at fixed doping level, the highest Tc will
be observed in a cuprate with flat and square CuO2 planes.

Consider now other parameters of the crystal structure outside the CuO2

planes, which affect the critical temperature. Is there a correlation between
the c-axis lattice constant and Tc? In the cuprates with two or more CuO2

layers, there are two interlayer distances: the distance between CuO2 layers
in a bi-layer (three-layer, four-layer) block, din, and the distance between the
bi-layer (three-layer, four-layer) blocks, dex. Usually din +dex � 15 A

◦
, din ≈

3–6 A
◦

and dex ≈ 9–12 A
◦

. The intervening layers between the group of the
CuO2 planes are semiconducting or insulating. Transport measurements in
the c-axis direction show that the c-axis resistivity depends exponentially on
dex; however, there is no correlation between Tc and dex. For example, in the
infinite-layer cuprate (Sr, Ca)CuO2, the distances din and dex are equal and
short, din = dex � 3.5 A

◦
; however, Tc � 110 K. Thus, the “optimal” region of

the din and dex parameters is rather wide. Comparing three superconducting
one-layer cuprates LSCO (dex � 6.6 A

◦
and Tc,max = 38 K), Hg1201 (dex �

4.75 A
◦

and Tc,max = 98 K) and Tl2201 (dex � 11.6 A
◦

and Tc,max = 95 K), one
can see that there is no correlation between Tc and dex. The large difference
in Tc, for example, between LSCO and Tl2201, is not due to the difference
between the c-axis distances in these cuprates, but due to the difference in the
structural parameters of the CuO2 planes, which were discussed above.

The intervening layers can be divided into two categories: “ structural” lay-
ers and charge reservoirs. The structural layers, like Y in YBCO, play a minor
role in the variation of Tc. At the same time, the charge reservoirs make a large
impact on Tc. Different charge reservoirs have different polarized abilities and
different abilities to polarize other ions: the higher ones are the better. The
distance between the charge reservoirs and the CuO2 planes is also important:
the shorter one is the better. In addition, the charge reservoirs also play the role
of the structural layers. For example, in LSCO, the critical temperature is very
sensitive to lattice strains induced by substituting Sr for different cations hav-
ing different ionic radius. Thus, the intervening layers can affect the electronic
structure of the CuO2 planes drastically, especially in single-layer compounds.

It is important to note that an isolated CuO2 layer will not superconduct.
Even a CuO2 layer situated on the surface of a crystal (this happens occa-
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sionally) will be semiconducting. This can easily be understood. In order to
become superconducting, a CuO2 layer must be structurally stabilized from
both sides, above and below. Of course, this is a necessary but not sufficient
condition.

3.18 Effect of impurities
One of the crucial tests for the superconducting state with a specific mech-

anism is how magnetic and non-magnetic impurities affect it. In conven-
tional superconductors, non-magnetic impurities have a small effect on Tc,
while magnetic impurities drastically affect it. In contrast, magnetic and non-
magnetic impurities have the opposite effect on superconductivity mediated by
magnetic fluctuations.

The coherence length of conventional superconductors is very large. There-
fore, the effects of an impurity on superconductivity on a microscopic scale
and a macroscopic scale are practically the same. This, however, is not the case
for the superconducting cuprates, the coherence length of which is very short.
Consequently, in the cuprates as well as in all unconventional superconduc-
tors, one must consider separately the effects of magnetic and non-magnetic
impurities on a macroscopic and microscopic scale.

On a macroscopic scale, magnetic and non-magnetic impurities have a sim-
ilar effect on Tc in the cuprates. The partial substitution of Fe, Ni and Zn for
Cu affects Tc similarly with dTc/dx ≈ – 4–5 K/at.%, independently of the
substitutional element. An exception to this rule is Zn-doped YBCO, where
Zn suppresses Tc three times faster (–12 K/at.%) than Ni does for example.
Experimentally, Zn atoms occupy not only Cu sites in the CuO2 planes, but
also Cu-chain sites. The effect of Zn-on-chain location is that Zn interrupts the
phase coherence between nearest CuO2 planes.

In the cuprates, such an effect on a macroscopic scale is because super-
conductivity in all unconventional superconductors occurs due to phonons and
spin fluctuations. Thus, a magnetic impurity affects locally the pairing, but
does not alter much local spin fluctuations. In contrast, a non-magnetic impu-
rity affects locally spin fluctuations, but does not alter much the pairing. So,
magnetic and non-magnetic doped atoms modify different “components” of
unconventional superconductivity.

On a microscopic scale, magnetic and non-magnetic impurities cause very
different effects on their local environment. Tunneling measurements per-
formed above Zn and Ni impurities situated in the CuO2 planes show that Zn
creates voids around it, suppressing locally the superconducting state. The lo-
cal Zn effect on superconductivity is reminiscent of the voids in swiss cheese.
In contrast, a magnetic Ni atom has surprisingly little effect on its local envi-
ronment in the CuO2 planes: superconductivity is not interrupted at a Ni site.
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The main conclusion from these remarkable results is that, in the CuO2 planes,
there is magnetically-mediated superconductivity.

Another surprising effect produced locally by a nonmagnetic Zn atom is that
Zn induces a local magnetic moment of 0.8µB either in hole-doped cuprates
or electron-doped NCCO, where µB is the Bohr magneton. Magnetic mo-
ments on all Cu sites around a Zn atom have a staggered order; thus a non-
magnetic Zn atom does not destroy local antiferromagnetic correlations, but
enhances them. Logically, magnetically mediated superconductivity should be
enhanced around Zn atoms as well. However, this is not the case since Zn
induces effective magnetic moments on neighboring Cu sites which are quasi-
static, and they cannot participate in dynamic spin fluctuations. Magnetic Fe
and Ni atoms locally induce an effective magnetic moment of 4.9µB and 0.6µB

in hole-doped cuprates, and 2.2µB and 2µB in electron doped NCCO, respec-
tively. Thus, in hole-doped cuprates, Ni located in the CuO2 planes reduces
slightly the effective magnetic moments on neighboring Cu spins.

The charge distribution in superconducting cuprates is inhomogeneous both
on a microscopic and a macroscopic scale: charge-stripe domains always coex-
ist either with insulating antiferromagnetic domains or conducting Fermi-sea
domains, shown in Fig. 6.12. Therefore, the same foreign atom substituting
Cu in the CuO2 planes will eventually produce different effects on supercon-
ductivity, depending on its location—in an insulating, charge-stripe or con-
ducting domain. However, it is reasonable to assume that any impurity or lat-
tice defect will attract charge-containing domains—depending on the doping
level—either charge-stripe or conducting domains. Since most studies of Cu
substitution have been carried out in underdoped, optimally doped and slightly
overdoped regions of the phase diagram, the conclusions made in these stud-
ies, first of all, reflect the effect on superconductivity by impurities located in
charge-stripe domains.

3.19 Chains in YBCO
On the nanoscale, chains in YBCO are insulating at low temperatures, hav-

ing a well-defined 2kF -modulated charge-density-wave order, where kF is the
momentum at the Fermi surface. The CDW on the chains was clearly observed
in tunneling and nuclear quadrupole resonance measurements. On a macro-
scopic scale, the chains conduct electrical current by solitons which were di-
rectly observed on the chains by tunneling measurements.

3.20 Superconductivity in electron-doped cuprates
The single-layer superconducting cuprates Nd2−xCexCuO4, Pr2−xCexCuO4

and Sm2−xCexCuO4 are electron-doped. Thorough analysis of different types
of measurements performed in the electron-doped cuprates suggests that the
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mechanism of superconductivity in these cuprates is similar to that in LSCO.
However, there are specific features exclusive to the electron-doped compounds.
Some superconducting characteristics of NCCO are listed in Table 3.6.

In the phase diagram of NCCO in Fig. 3.13, the antiferromagnetic and su-
perconducting phases do not overlap. Recent µSR measurements performed in
NCCO have demonstrated that the superconducting phase, in fact, enters into
the antiferromagnetic phase [54]. Thus, in NCCO with low doping level, su-
perconductivity and the antiferromagnetic ordering coexist. Even in optimally
doped NCCO, superconductivity and antiferromagnetism coexist, as found by
resent INS measurements [55]. Phase-sensitive measurements performed in
the electron-doped cuprates detect a d-wave symmetry of the superconducting
phase. At the same time, the presence of Cooper pairs with an s-wave wave-
function is also demonstrated by many measurements [56]. In NCCO with low
electron concentration, two energy scales were clearly observed by tunneling
measurements [56]. In addition, a pseudogap was also found in NCCO [19].

In these cuprates, doped electrons self-organize in a different way than holes
that form charge stripes in the CuO2 planes of hole-doped cuprates. It is sug-
gested that doped electrons form charge stripes oriented along the diagonal
direction relative to the –Cu–O–Cu–O– bonds in the CuO2 planes. Such a
charge ordering takes place in the nickelates. Experimentally, the strength
of the electron-lattice coupling in the electron-doped cuprates is a few times
weaker than the strength of the hole-lattice coupling [57]. This is, in fact,
typical for all solids.

By applying a magnetic field in the electron-doped cuprates, the part of the
resistivity curve, corresponding to the transition into the superconducting state
remains steplike and is shifted to lower temperatures. As was discussed above,
such a magnetic-field trend is similar to that in conventional superconductors.
This fact indicates that spin fluctuations in these cuprates are less dynamic in
comparison, for example, to those in hole-doped LSCO (x = 1

8 ).

3.21 Superconductivity in alkali-doped C60

As was discussed in Chapter 3, superconductivity in alkali-doped C60 is un-
conventional. In principle, the mechanisms of superconductivity in the cuprates
and the fullerides are similar: Phonons are responsible for the electron pair-
ing, while spin fluctuations mediate the long-range phase coherence. Since the
crystal structure of the fullerides, shown in Fig. 3.18, is simpler than that of the
cuprates, it is much easier to visualize the processes of electron pairing and the
onset of phase coherence in the fullerides than those in the cuprates. Hence,
let us consider briefly the mechanism of superconductivity in the fullerides.
Furthermore, we shall need this information in Chapters 8–10.

All the fullerides are electron-doped superconductors. In the Uemura plot of
Fig. 3.6, one of the fullerides, K3C60, is situated amongst other unconventional
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superconductors. Thus, the density of charge carriers in the fullerides is very
low. Superconductivity occurs when each C60 molecule is doped, on average,
by approximately three electrons. The coherence length in alkali-doped C60

is short, ∼ 30 A
◦

, while the penetration depth is very large, ∼ 4000 A
◦

. The
values of Hc2 in the fullerides are sufficiently large for electron-doped super-
conductors, ∼ 30–55 T. Some superconducting characteristics of the fullerides
are listed in Tables 2.2 and 3.7.

For C60, there is evidence that phonons take part in the electron pairing. At
the same time, all superconducting alkali-doped C60 exhibit strong antiferro-
magnetic correlations due to alkali spins. Phonon effects in the fullerides are
often masked by spin-fluctuation effects. It is important to note that single
crystals of C60 are structurally unstable.

Each C60 ball is a complex organic molecule with an even number of con-
jugate bonds. As discussed in Chapter 1, in such molecules, there exists a
superconducting-like state. In contrast to σ electrons which are located close
to the atomic nuclei, the π electrons in such molecules are not localized near
any particular atom, and they can travel throughout the entire molecular frame.
Hence, such complex organic molecules are very similar to a metal: the frame-
work of atoms plays the role of a crystal lattice, while the π electrons that of
the conduction electrons. In molecules with an even number of carbon atoms,
the π electrons form bound pairs analogous to the Cooper pairs in a super-
conductor. The pair correlation mechanism is principally due to two effects:
(i) the polarization of the σ core, and (ii) σ − π virtual electron transitions.
When such organic complex molecules are doped, added electrons create struc-
tural instabilities which travel throughout the entire molecular frame like dis-
locations. In doped organic complex molecules, the doped electrons tend also
to be paired in order to minimize the free energy of the system. This reasoning
is also valid for the C60 molecules.

In a C60 crystal, the C60 balls are closely packed; thus, the doped electrons
and the electron pairs can easily jump from one C60 molecule to another.

In the fullerides, below a certain temperature, the alkali spins become lo-
cally ordered; they prefer an antiferromagnetic order. Below this temperature,
the C60 balls are “ immersed” locally in the antiferromagnetic environment.
The occurrence of quasi-static magnetic order, local or not, does not automati-
cally lead to the onset of long-range phase coherence for electron pairs residing
on C60 molecules. Only sufficiently quick spin fluctuations are able to mediate
the superconducting phase coherence. In the fullerides, it is most likely that
dynamical spin fluctuations occur due to doped electrons and/or electron pairs
circulating around C60 molecules and/or jumping between C60 molecules. Lo-
cally, they frustrate the magnetic environment, creating spin excitations. If in
the cuprates, the charge stripes excite dynamical spin fluctuations, in the ful-
lerides, the electron pairs themselves seem to be responsible for this. In some
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C60 compounds, the C60 balls are not static but rotate around their center of
gravity.

3.22 Future theory
The future theory of unconventional superconductivity in the cuprates must

deal with the following processes: the formation of fluctuating charge stripes
and antiferromagnetic stripes between them; charge-stripe excitations and their
pairing; spin excitations induced by fluctuating charge stripes, and the onset of
phase coherence mediated by these spin excitations. The bisoliton theory and
the spin-fluctuation theory can be used as a starting point, but both of them
must be modified. In the framework of the bisoliton model, it is necessary
to take into account the Coulomb repulsion. The spin-fluctuation model must
deal with spin excitations different from magnons: excitons and/or solitons.

As discussed above, the bisoliton theory is a “one-dimensional” theory.
Even the BCS theory intrinsically contains one dimensionality: in the frame-
work of the BCS theory, the condition k1 = – k2 for the electron pairing reflects
the presence of one dimensionality in the theory.

3.23 Two remarks
At the end of this chapter, it is worth touching upon two issues directly

related to the mechanism of unconventional superconductivity in the cuprates.
The first one concerns the presence of a magnetic resonance peak in LSCO.
In INS studies performed in highly underdoped YBCO with a Tc near 35 K,
the magnetic resonance peak was barely visible in INS spectra [58]. Then, it
is possible that the spin excitation manifesting itself as a magnetic resonance
peak in INS spectra exists also in the LSCO cuprates, but it is extremely weak.

The second issue deals with a scenario of unconventional superconductivity
in all members of the third group, which is slightly different from that pre-
sented in this chapter. In the following chapter, we shall discuss the mechanism
of superconductivity in superconductors of the second group. The supercon-
ducting state in these materials is characterized by the presence of two interact-
ing superconducting subsystems. One of them is one-dimensional and exhibits
genuine superconductivity of unconventional type (i.e bisolitons), while super-
conductivity in the second subsystem being three-dimensional is induced by
the first one and of the BCS type.

The evidence presented in [19] unambiguously indicates that (i) the Cooper
pairs in the cuprates are soliton-like excitations and (ii) the energy gap ∆c

occurs due to spin fluctuations which are responsible for the long-range phase
coherence. The scenario of unconventional superconductivity described in this
chapter postulates that, in the cuprates, there is only one set of Cooper pairs—
bisolitons, and the order parameter Ψ is, in a sense, external for them, result-
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ing in the occurrence of an additional energy gap ∆c. In fact, the evidence
presented in [19] also admits the existence of another scenario of supercon-
ductivity which assumes the presence of two interacting subsystems as those
in superconductors of the second group. The first superconducting subsystem
represents bisolitons, as described in this chapter. The second subsystem re-
sponsible for the long-range phase coherence is the electron pairs bound by
spin fluctuations. In this case, the two energy gaps ∆p and ∆c coexist in “par-
allel” like those in superconductors of the second group.

The scenario of unconventional superconductivity described in [19] and in
this chapter was chosen because a large number of experimental facts are in
favor of this scenario. Since the second scenario of unconventional supercon-
ductivity can in principle be realized, it would be unfair categorically to deny
such a possibility. There is perhaps a 1% chance that superconductivity with
such a mechanism can exist (and was discussed in [59]).

The main purpose of this book is to discuss room-temperature superconduc-
tivity and how to synthesize a room-temperature superconductor. At this stage,
it should already be obvious to the reader that a room-temperature supercon-
ductor must be a member of the third group of superconductors. Therefore,
we need to know the actual mechanism of unconventional superconductiv-
ity. What is interesting is that all discussions and calculations presented in
Chapters 8–10 are, in fact, valid for both these scenarios of unconventional
superconductivity. So, for the practical realization, this remark is unimportant;
however, this issue is very important from an academic point of view.

3.24 Tunneling in unconventional superconductors
Tunneling spectra of conventional superconductors contain information about

one energy gap. Tunneling spectra of unconventional superconductors, for
example, of the cuprates, may contain information about three energy gaps,
namely, ∆p, ∆c and a charge gap ∆cg. So, tunneling spectra of unconventional
superconductors are much more complicated than those of conventional super-
conductors. An explanation of several features of tunneling spectra obtained in
the cuprates was presented in the last chapter of [19]. Here we consider an ex-
planation of another set of tunneling data representing a “ three-piece puzzle.”

As was discussed above, the Cooper pairs in unconventional superconduc-
tors can be excited; therefore, they can leave the superconducting condensate
being still paired. This is in contrast to conventional superconductors in which
the Copper pairs cannot be excited, having only two alternatives shown in Fig.
5.8: either to be a part of the condensate or to be broken. In unconventional
superconductors, the third option for the Cooper pairs corresponds to the tran-
sition SC → B in Fig. 6.40, which requires a minimum energy of 2∆c. This
2∆c amount of energy can be supplied by two tunneling electrons each having
an energy of ∆c. In a sense, this case corresponds to tunneling of Cooper pairs,
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and was considered in detail in [19]. However there is another option: the min-
imum required energy of 2∆c can be supplied by one tunneling electron. Here
we discuss this case.

Figure 6.51 shows the phase diagram from Fig. 6.41 with an additional
energy scale 2∆c. For this plot, the vertical axis is adapted to Bi2212 with
Tc,max = 95 K; so one can grasp directly the gap values in Bi2212. Figure
6.52a depicts the variation of tunneling gap obtained in a SIN junction on the
surface of underdoped Bi2212 with Tc � 79 K along a line. In Fig. 6.52a, one
can see that along a 140 A

◦
line the gap value varies rapidly. Furthermore, some

conductances exhibited double-gap structures. The main question is why does
there exist such a variation of gap values? What do they correspond to?

The doping level of this Bi2212 sample is about p = 0.115 and denoted in
Fig. 6.51 by the dashed line. If we use the gap values 2∆c(0.115), ∆p(0.115)
and ∆t(0.115) in Fig. 6.52a, shown by the dashed horizontal lines, then, one
can see that the minimum values of the tunneling gap correspond exactly to
2∆c(0.115). The upper values are slightly above ∆t(0.115). Hence, the tri-
angles in Fig. 6.52a seem to reflect the excitation of Cooper pairs (bisolitons);
the circles correspond to the break of uncondensed bisolitons present always
on the surface, and the squares reflect the break of condensed bisolitons. Such
a rapid spatial variation of gap value in Bi2212 can be understood by referring
to Fig. 6.38: spin fluctuations are not homogeneous on the surface of Bi2212.
This means that the triangles in Fig. 6.52a indicate the patches with the phase
coherence on the Bi2212 surface. Thus, at this stage, we have already made
good progress in understanding the data; however, there is another piece of the
puzzle.
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Figure 6.52b represents the relative height of the main conductance peak at
negative bias, related to the data in Fig. 6.52a. In the two plots in Fig. 6.52, one
can see that there is a correlation between the gap value and the height of the
peak. In patches with the phase coherence, the height of the conductance peak
is about twice higher than that in patches without the phase coherence. Why?
Does it mean that, in the different patches, the hole concentration is different?
The answer is no. It would be difficult to explain this correlation without seeing
the corresponding conductances. Figure 6.53 depicts two conductances taken
in the different patches. In this plot, one can see that the quasiparticle peaks in
the conductance measured in a patch with phase coherence are indeed higher
than those in the other conductance. However, one must also notice that these
peaks are narrower than the other ones. If we subtract in both conductances
a contribution made by a pseudogap (charge gap) and calculate amounts of
quasiparticle excitations under the obtained curves, we would find that these
amounts are approximately the same. This means that, in a first approximation,
the hole concentration in the different patches is more or less the same.

Equation (5.71) contains the clue to the last piece of the puzzle. In tunneling
measurements, the width of conductance peaks is inversely proportional to the
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Figure 6.53. Two “extreme” conductances obtained in different locations along the line in Fig.
6.52, indicated by the numbers in plot [60]. The conductances are shifted vertically for clarity.

lifetime of quasiparticles. For Bi2212, this means that quasiparticles related
to the Cooper-pair excitations live about three time longer than quasiparticles
created by the break of bisolitons. Therefore, one may conclude that, in the
cuprates, spin fluctuations stabilize the bisolitons and extend their lifetime.

It is worth noting that this explanation of the data is fully in agreement
with another set of tunneling data. In SIS-junction measurements performed
in slightly overdoped Bi2212 single crystals, the value of the Josephson prod-
uct IcRn is the highest when a tunneling gap is ∼ ∆c, and decreases as the
tunneling gap increases [61, 19].

To conclude, the tunneling data presented in Figs. 6.52 and 6.53 are now
understood; in addition, we have obtained useful information concerning the
lifetime of quasiparticles in Bi2212.



Chapter 7

SECOND GROUP OF SUPERCONDUCTORS:
MECHANISM OF SUPERCONDUCTIVITY

This chapter is the shortest in the book because a potential content of this
chapter is already presented in Chapters 5 and 6: one half in Chapter 5 and the
other half in Chapter 6. The content of the present chapter is just a “bridge”
between the two halves.

The second group of superconductors incorporates superconducting com-
pounds which are low-dimensional and non-magnetic. The superconducting
state in these materials is characterized by the presence of two interacting su-
perconducting subsystems. One of them is low-dimensional and exhibits gen-
uine superconductivity of unconventional type (i.e bisolitons), while supercon-
ductivity in the second subsystem which is three-dimensional is induced by the
first one and of the BCS type. So, superconductivity in this group of materials
can be called half-conventional or, alternatively, half-unconventional. Charge
carriers in these superconductors are electrons. As a consequence, their criti-
cal temperature is limited by ∼ 40 K and, in some of them, Tc can be tuned.
All materials of this group are type-II superconductors with a upper critical
magnetic field usually exceeding 10 T.

1. General description of the mechanism
Figure 7.1 presents a short summary of the mechanism of superconductivity

in compounds of the second group. As was emphasized above, these mate-
rials are characterized by the presence of two subsystems. Below a certain
temperature, the “nonlinear” Cooper pairs (bisolitons) are formed in a low-
dimensional subsystem. Then, the electron pairing is induced into the second
subsystem which is three-dimensional. In the second subsystem, the Cooper
pairs are “ linear” , i.e. of the BCS type. So, the Cooper pairs are “unconven-
tional” in the low-dimensional subsystem, while they are “conventional” in the
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Figure 7.1. Short summary of the mechanism of superconductivity in compounds of the sec-
ond group. In these materials, there are two interacting subsystems: one of them is low-
dimensional, while the second is three-dimensional. The first subsystem exhibits genuine su-
perconductivity of unconventional type (i.e bisolitons), whilst superconductivity in the second
subsystem is induced by the first one and of the BCS type. For more details, see text.

three-dimensional subsystem. The electron-phonon interaction is responsible
for electron pairing in both subsystems; however, the strength of this inter-
action is different in the two subsystems: it is moderately strong in the first
subsystem, while it is weak in the second.

The Cooper pairs of the first subsystem along are not able to establish the
long-range phase coherence because their size is small and their density is low.
In superconductors of the second group, the long-range phase coherence occurs
due to the onset of phase coherence among the Cooper pairs of the second
subsystem. Therefore, the order parameter of the superconducting state is the
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wavefunction of Cooper pairs of the second subsystem, as that in conventional
superconductors.

The energy gaps in the two subsystems have both an s-wave symmetry typ-
ical for electron pairing due to phonons. They are both anisotropic; however,
while the energy gap in the second subsystem is only slightly anisotropic, it is
highly anisotropic in the first one and, probably even with nodes (like that in
the cuprates). The maximum magnitude of the first gap is a few times larger
than that of the second gap. This is typical for an induced superconductivity
(see Chapter 4).

In terms of the band theory, the Fermi surface of superconductors of the
second group consists of, at least, two disconnected sections. Each section
corresponds to one of the two subsystems.

The process of the formation of low-dimensional Cooper pairs (bisolitons)
is described in Chapter 6, and the process of the formation of conventional
(three-dimensional) Cooper pairs is presented in Chapter 5. Since the onset
of long-range phase coherence in superconductors of the second group occurs
automatically due to the overlap of Cooper-pair wavefunctions in the second
subsystem as that in conventional superconductors, this process does not re-
quire a separate description.

1.1 Effect of isotope substitution on Tc

In superconductors of this group, the critical temperature must be sensitive
to the mass of some elements, similar to the effect of isotope substitution in
conventional superconductors. However, the critical temperature can be insen-
sitive to the mass of elements that form the low-dimensional subsystem. As
discussed in Chapter 6, in a system with bisolitons, the isotope effect can be
very small.

1.2 Effect of impurities on Tc

Since the electron-phonon interaction is responsible for electron pairing in
superconductors of the second group, the effect of magnetic and non-magnetic
impurities on the critical temperature is similar to that in conventional super-
conductors (see Chapter 5). Thus, magnetic impurities drastically suppress the
superconducting transition temperature, whereas non-magnetic impurities do
not alter Tc much, if their concentration is relatively small.

1.3 Magnetic-field effect on resistivity
In conventional superconductors, by applying a sufficiently strong magnetic

field, the part of resistivity curve corresponding to the transition into the su-
perconducting state (see, for example, Fig. 2.1) remains steplike but is shifted
to lower temperatures. The same effect takes place in superconductors of the
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second group because the onset of long-phase coherence in half-conventional
superconductors is identical to that in conventional superconductors.

2. MgB2

Among superconductors of the second group, MgB2 is the most studied one.
Let us briefly discuss some of its superconducting properties. Some character-
istics of MgB2 have already been discussed in Chapter 3: Table 3.2 lists some
of them.

In MgB2, superconductivity occurs in the boron layers (see Fig. 3.3). So,
the two subsystems in MgB2 are both located into the boron layers. Band-
structure calculations of MgB2 show that there are at least two types of bands
at the Fermi surface. The first one is a narrow band, built up of boron σ orbitals,
whilst the second one is a broader band with a smaller effective mass, built up
mainly of π boron orbitals.

The presence of two energy gaps in MgB2 is a well documented experimen-
tal fact. The larger energy gap ∆σ occurs in the σ-orbital band, the smaller gap
∆π in the π-orbital band. The gap ratio 2∆/(kBTc) for ∆σ is about 4.5. For
∆π, this ratio is around 1.7, so that, ∆σ/∆π � 2.7. Both energy gaps have an
s-wave symmetry. The larger gap is highly anisotropic, while the smaller one is
either isotropic or slightly anisotropic. The induced character of ∆π manifests
itself in its temperature dependence. Figure 7.2 depicts the temperature depen-
dences of the two energy gaps, obtained in tunneling and Andreev-reflection
measurements. In the plot, one can see that ∆σ follows the temperature de-
pendence derived in the framework of the BCS theory. At the same time, the
temperature dependence of ∆π lies below the BCS dependence at T → Tc.
For phonon-mediated superconductivity, this fact indicates that ∆π is induced.
Superconductivity in the π-band is induced either by interband scattering or
Cooper-pair tunneling.

Superconductivity in MgB2 is mediated by phonons. The boron isotope ef-
fect is sufficiently large, α � 0.3, while the Mg isotope effect is very small.
Due to its layered structure, below Tc, MgB2 has a highly anisotropic critical
magnetic field: Hc2,‖/Hc2,⊥ ∼ 7. The muon relaxation rate in MgB2 is about
8–10 µs−1. In the Uemura plot (see Fig. 3.6), MgB2 is literally situated be-
tween the large group of unconventional superconductors and the conventional
superconductor Nb.

In MgB2, the effect of B substitution on Tc is well studied. The boron
partial substitution by non-magnetic Al, C and Be leads to a decrease in Tc.
The results of these experiments show that this decrease is mainly due to a
structural transformation in the boron layers: the B–B distance decreases.

Finally, it is worth noting that MgB2 is very similar to graphite both crys-
tallographically and electronically. In MgB2, each atom Mg donates two elec-
trons to the boron subsystem. So, each boron acquires one electron and the
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Figure 7.2. Temperature dependence of the two energy gaps in MgB2, obtained in tunneling
and Andreev-reflection measurements [62]. The dashed lines are the BCS temperature depen-
dences.

electron configuration of a carbon atom: B−(2s22p2) ≡ C(2s22p2). Thus, the
B− sheets are electronically like graphite sheets. The main difference between
MgB2 and graphite is in the c-axis layer separation: it is about 15% shorter in
MgB2.





Chapter 8

COOPER PAIRS AT ROOM TEMPERATURE

What is now proved was once only imagined.
—William Blake (1751 - 1827)

The ultimate goal of the last three chapters of the book is to discuss mate-
rials that superconduct at room temperature. However, before we discuss the
materials, it is first necessary to discuss, from the physics point of view, the
possibility of the occurrence of superconductivity at room temperature. Thus,
in this chapter, we discuss the electron pairing at room temperature and, in the
following chapter, the onset of long-phase coherence at room temperature. The
materials will be discussed in Chapter 10.

As was mentioned in the Preface, the last three chapters of the book are
mainly addressed to specialists interested in synthesizing a room-temperature
superconductor and to researchers in the field of superconductivity.

According to the first principle of superconductivity (see Chapter 4), super-
conductivity requires electron pairing. Indeed, electron pairing is the keystone
of superconductivity. Therefore, the first question that we must deal with is:
can the Cooper pairs exist at room temperature? So, the purpose of this chapter
is to show that the Cooper pairs can exist at room temperature. In fact, they do
exist at temperatures much higher than room temperature.

As was discussed in Chapter 1, the expression “a room-temperature super-
conductor” is used here implying a superconductor having a critical tempera-
ture of Tc � 350 K. From a practical point of view, it is much better, however,
to have a superconductor with Tc ≈ 450 K.
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1. Mechanism of electron pairing at room temperature
As described in the previous three chapters, only one mechanism of electron

pairing is known at the moment of writing—only the electron-phonon interac-
tion is capable of mediating the electron pairing in solids. There are two types
of the electron-phonon interaction—linear and nonlinear. The linear interac-
tion is weak, whilst the nonlinear one is moderately strong. It is obvious that,
at high temperatures, only the nonlinear electron-phonon interaction can bind
two electrons in a pair. This means that, in a room-temperature superconduc-
tor, the Cooper pairs will be represented by bisolitons having a small size ξ.
For our ultimate goal, it is not important whether they are bound in real or
momentum space (see Chapters 4 and 6).

1.1 Electrons versus holes
Generally speaking, for room-temperature superconductivity it is not im-

portant whether quasiparticles in the material are electron- or hole-like. How-
ever, it is an experimental fact that, in solids, the strength of electron-phonon
interaction is a few times weaker than the strength of hole-phonon interac-
tion. Therefore it is most likely that in a room-temperature superconductor the
quasiparticles will be hole-like.

2. Selection process by Nature
The matter was created by Nature with some order in mind. Physicists are

interested in understanding the laws of this order. There are many ways to un-
ravel Nature’s secrets—by an observation, measurement, modelling, etc. One
widely-used method is by applying knowledge accumulated in one domain to
another one. This is exactly what we are going to do in this chapter.

The living matter, not by accident, is organic and water-based. “ In order
to create the living matter, Nature needed billions of years.” This quotation
is the first part of the prologue to this book. Indeed, we must realize that,
during billions of years, Nature has selected materials to make us and other
living creatures function. She has done a wonderful job. “This experience is
unique, and we must learn from it.” The last quotation is the second part of the
prologue and one of the main points of this book.

During evolution, Nature has tried many materials to create the living matter.
One of the main criteria for the material was that it must support an effective
signal transfer. Nowadays, we know that, in the living matter, the signal trans-
fer occurs due to charge (electron) transfer. In some cases, the electron transfer
occurs in pairs with opposite spins (see Chapter 1). The quasiparticle pairing
simplifies their propagation because, for quasiparticles, it is more profitable
energetically to propagate together than separately, one by one (see Chapter
6). So, the electron pairing occurs in living tissues first of all because of an
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energy gain; the electron spin is a secondary reason for the pairing. However,
we are more interested in the quasiparticle pairing because of spin.

This means that electron pairs in a singlet state exist at room temperature
in the living matter. Therefore, we can use these materials for synthesizing
a room-temperature superconductor. One should however realize that super-
conductivity does not occur in living tissues because it requires not only the
electron pairing but also the onset of long-range phase coherence. We shall
discuss the latter issue in the following chapter.

The idea to use organic compounds as superconducting materials is not new.
In 1964, Little proposed that long organic chains can exhibit superconductiv-
ity with a mechanism different from the BCS scenario [2]. Later, Kresin and
co-workers [23] showed that the superconducting-like state exists locally in
complex organic molecules with conjugate bonds (see Fig. 1.3). Even, before
Little’s paper [2], Pullman and Pullman have already emphasized that “ the
essential fluidity of life agrees with the fluidity of the electronic cloud in con-
jugated molecules. Such systems may thus be considered as both the cradle
and the main backbone of life” [24]. Davydov has devoted his life to studying
the electron and energy transfer in organic chains [7, 10]. Even before the dis-
covery of superconductivity in organic salts, Davydov has already known that,
in some biological processes, the quasiparticles in living tissues are paired.
Soon after the discovery of superconductivity in organic compounds in 1979,
Davydov and Brizhik proposed the bisoliton model of superconductivity in or-
ganic materials [3]. Later, Davydov has used the bisoliton model to explain
the phenomenon of high-Tc superconductivity occurring in cuprates [7, 9, 10].
Thus, the superconducting state and some biological processes have, at least,
one thing in common—in a sense they both do not like the electron spin created
by Nature at the Big Bang.

2.1 Solitons and bisolitons in the living matter
Solitons are encountered in biological systems in which the nonlinear ef-

fects are often the predominant ones. For example, many chemical reactions
in biological systems would not occur without large conformational changes
which cannot be described, even approximately, as a superposition of the nor-
mal modes of the linear theory.

The shape of a nerve pulse was determined more than 100 years ago. The
nerve pulse has a bell-like shape and propagates with the velocity of about
100 km/h. The diameter of nerves in mammals is less than 20 microns and,
in a first approximation, can be considered as one-dimensional. For almost a
century, nobody has realized that the nerve pulse is a soliton. Thus, all living
creatures including humans are literally stuffed by solitons. Living organisms
are mainly organic and, as a consequence, are bad conductors of electrical
current—solitons are what keeps us alive.
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The last statement is true in every sense: the blood-pressure pulse is some
kind of solitary wave; the muscle contractions are stimulated by solitons, etc.

In organic materials, the charge transfer by bi-solitons is energetically prof-
itable (see Chapter 6). In a bi-soliton, moving or static, two quasiparticles are
held together by a local lattice deformation. The formation of tri-solitons is
forbidden by the Pauli exclusion principle.

3. Cooper pairs above room temperature
The presence of bisolitons in the living matter signifies that the Cooper

pairs exist in some organic materials at 37 C � 310 K. Recently, living or-
ganisms have been found in extreme conditions: some survive without sun-
light, some survive in water near the boiling point. Probably the most extreme
case is the discovery of so-called black smokers or chimneys on the ocean bot-
tom on a depth of about 2 km, and shrimps dwelling next to these chimneys.
The measurement of water temperature at which the shrimps reside yielded
T ∼ 270 C. This means that the Cooper pairs exist in certain organic materials
at a temperature of about 550 K.

Polythiophene is a one-dimensional conjugated polymer. Figure 8.1a shows
its structure. It has been known already for some time that, in polythiophene,
the dominant nonlinear excitations are positively-charged electrosolitons and
bisolitons [63]. This means that the Cooper pairs with a charge of +2|e| exist
at room temperature in polythiophene. Figure 8.1b depicts a schematic struc-
tural diagram of a bisoliton on a polythiophene chain. Bisolitons have also
been observed in other one-dimensional conjugated organic polymers such as
polyparaphenylene and polypyrrole [63].

From these facts one can make a very important conclusion, namely that, for
occurrence of superconductivity at room temperature, the quasiparticle pairing
will not be the bottleneck but the onset of long-range phase coherence will.
This question is discussed in the following chapter.
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Figure 8.1. (a) Chemical structure of polythiophene. (b) Schematic structural diagram of a
positively-charged bisoliton on a polythiophene chain [63].
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In the literature, one can find a few papers reporting superconductivity above
room temperature. The results of most of these papers represent USOs (see
Chapter 1). However, at least two works seem to report genuine results or, it is
better to say, almost genuine results (see below why). The first report presents
results of resistivity and dc magnetic susceptibility measurements performed
in a thin surface layer of the complex material AgxPb6CO9 (0.7 < x < 1) [64].
The data indicate that in AgxPb6CO9 at 240–340 K there is a transition rem-
iniscent of a superconducting transition. The authors suggest that the crystal
structure of AgxPb6CO9 is quasi-one-dimensional.

The second work reports evidence for superconductivity above 600 K in
single-walled carbon nanotubes, based on transport, magnetoresistance, tun-
neling and Raman measurements [38]. The Raman measurements have been
performed on single-walled carbon nanotubes containing small amounts of the
magnetic impurity Ni : Co (≤ 1.3 %). In single-walled carbon nanotubes, the
energy gap obtained in tunneling measurements is about ∆ � 100 meV [38].
As described in Chapter 3, bulk superconductivity was already observed in
single-walled carbon nanotubes at 15 K [36].

As was discussed a few moments earlier, the electron pairing occurs in some
organic materials at ∼ 550 K. Since both these materials, AgxPb6CO9 and
the nanotubes, contain carbon, it is most likely that these reports present evi-
dence for electron pairing above room temperature, not for bulk superconduc-
tivity. Of course, fluctuations of phase coherence may always exist locally. On
the basis of these results, the reader can conclude once more that, for room-
temperature superconductivity, the onset of long-range phase coherence will
be the bottleneck, not the quasiparticle pairing.

3.1 Pairing energy in a room-temperature superconductor

Let us estimate the value of pairing energy in a room-temperature supercon-
ductor at T = 0. First of all, it is worth to recall that, in a superconductor, the
pairing energy (gap) ∆p(0), generally speaking, has no relation with a critical
temperature Tc. The pairing energy ∆p(0) is proportional to Tpair, the pairing
temperature. In conventional superconductors, ∆p(0) ∝ Tc because the onset
of long-range phase coherence in the BCS-type superconductors occurs due to
the overlap of Cooper-pair wavefunctions and, therefore, Tpair � Tc. How-
ever, in a general case, Tc ≤ Tpair. For example, in the cuprate Bi2212 at any
doping level, 1.3 Tc < Tpair, as shown in Fig. 6.11.

According to the fourth principle of superconductivity presented in Chap-
ter 4, the pairing energy gap must be ∆p(0) > 3

4kBTc. For the case Tc =
350 K, this condition yields ∆p > 23 meV. Figure 8.2 shows the pairing gap
∆p(0) as a function of Tpair. In the plot, the energy scale 3

4kBT marks the
lowest allowed values of ∆p(0) at a given temperature. It is worth noting that
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Figure 8.2. Pairing energy of quasiparticles ∆p(0) as a function of pairing temperature Tpair .
In plot, the thick vertical arrow indicates the allowed values of ∆p(0) which lie above the energy
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the cuprates, 2∆p = 6 kBTpair , as illustrated in plot. The dashed lines indicate the tempera-
tures 350, 450 and 580 K (see text).

this condition is universal and applies to any superconductor including conven-
tional ones.

As discussed above, the electron-phonon (hole-phonon) interaction in a room-
temperature superconductor is most likely moderately strong and nonlinear.
This means that, in a room-temperature superconductor, the pairing-gap ratio
2∆p/(kBTpair) must be at least 5. For example, in the cuprates
2∆p/(kBTpair) = 6 as specified in Eq. (6.7) and shown in Fig. 8.2. The
grey line in Fig. 8.2 represents the case 2∆p = 5 kBTpair. Then assuming
that Tpair ∼ 350 K, we obtain that, in a room-temperature superconductor,
the minimum value of the pairing gap is about ∆p,min � 75 meV. Is it re-
alistic to anticipate in a superconductor such a value of ∆p? The answer is
yes. In the copper oxide Bi2212, the pairing energy at a doping level of 0.05
equals 70 meV, as shown in Fig. 6.51. This experimental fact is obtained in
tunneling and angle-resolved photoemission (ARPES) measurements. If, in a
room-temperature superconductor 2∆p = 6 kBTpair as in the cuprates, then
∆p,min � 90 meV.

In Eq. (6.58), one can see that the magnitude of the pairing energy in a
bisoliton depends on the coupling parameter g and the exchange interaction
energy J . Since the value of g in most cases is ∼ 1 (see the discussion in Chap-
ter 6), the exchange interaction energy J mainly determines the magnitude of
∆p. This means that the pairing energy is large in materials with strongly-
correlated electrons. It is worth noting, however, that the expression for ∆p in
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Eq. (6.58) is obtained in the framework of the bisoliton model without taking
into account the Coulomb interaction between electrons.

Assume that, in a room-temperature superconductor, Tpair = 1.3 Tc

(� 450 K). This is more realistic. Then, for the gap ratio 2∆p/(kBTpair) =
5, this means that ∆p(0) � 97 meV and, for the gap ratio 2∆p/(kBTpair) =
6, ∆p(0) � 116 meV. For clarity, Table 8.1 lists all these values of ∆p(0).
Thus, in a room-temperature superconductor, the pairing energy should be
about ∆p(0) = 90 meV. As discussed above, in single-walled carbon nan-
otubes the energy gap obtained in tunneling measurements is around ∆ �
100 meV [38].

Table 8.1. Pairing energy of quasiparticles ∆p(0). Tpair is the pairing temperature and kB is
the Boltzmann constant

Tpair (K) ∆p(0) (meV) if 2∆p

kBTpair
= 5 ∆p(0) (meV) if 2∆p

kBTpair
= 6

350 75 90

450 97 116

580 125 150

3.2 Pairing energy in the case Tc � 450 K
For large-scale applications, it is necessary to have a superconductor with

Tc � 450 K (see Chapter 1). Assuming that in such a superconductor Tpair ≈
Tc (= 450 K), the values of the pairing energies for the two cases,
2∆p/(kBTpair) = 5 and 6, are listed in Table 8.1. The table also presents
the values of the pairing gap for the case Tpair = 1.3 Tc (� 580 K). This case
is also shown in Fig. 8.2. So, in a superconductor with Tc � 450 K, the pairing
energy must be about 120 meV.

4. Summary
The Cooper pairs in the form of bisolitons do exist at room temperature

and, even, at much higher temperatures in organic materials forming the living
matter. Every human being is a “carrier” of an enormous amount of bisolitons.
Such Cooper pairs are most likely formed in real space. However, this question
is not important from a standpoint of practical application.

For the occurrence of superconductivity at room temperature, it is necessary
to solve the problem of the onset of long-range phase coherence. This issue is
the main topic of the following chapter.





Chapter 9

PHASE COHERENCE AT ROOM TEMPERATURE

Imagination is more important than knowledge.
—Albert Einstein

The superconducting state is a quantum state occurring on a macroscopic
scale. The electron pairing is the keystone of superconductivity. However this
is only a necessary condition for the occurrence of superconductivity but not a
sufficient one. Superconductivity requires also the condensation of the electron
pairs in momentum space, i.e. the formation of a quantum condensate which is
similar to the Bose-Einstein condensate (the second principle of superconduc-
tivity discussed in Chapter 4). The process of the Cooper-pair condensation
taking place at Tc is also known as the onset of long-range phase coherence,
implying that below Tc the Cooper-pair wavefunctions are in phase (see Fig.
4.1).

The main purpose of this chapter is to discuss the onset of long-phase coher-
ence in a room-temperature superconductor. Here we shall mainly deal with
three questions. First, what mechanism (interaction) can be responsible for the
onset of phase coherence in a room-temperature superconductor? Second, is it
realistic to anticipate the onset of long-range phase coherence at Tc � 350 K?
Third, what magnitude of the coherence energy gap, ∆c, should there be in a
room-temperature superconductor?

1. Mechanisms of phase coherence
As described in Chapters 5–7, only two mechanisms of phase coherence are

known at the moment of writing: the overlap of Cooper-pair wavefunctions
(the Josephson coupling) and spin fluctuations (magnetic). The first mecha-
nism is responsible for the onset of long-range phase coherence in supercon-
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ductors of the first and the second groups, whilst the magnetic mechanism is
characteristic of unconventional superconductors of the third group. Can these
two mechanisms of phase coherence be responsible for room-temperature su-
perconductivity?

1.1 The Josephson coupling
The mechanism of the Josephson coupling is effective when the distance

between Cooper pairs is smaller than the average size of Cooper pairs. In
this case, the Cooper-pair wavefunctions become overlapped resulting in a
Bose-Einstein-like condensation of the Cooper pairs. This mechanism of the
Cooper-pair condensation is the simplest and does not lead to the appearance
of a “new” order parameter. Simply, the Cooper-pair wavefunctions “magni-
fied” multiply become the order parameter of the condensate. A characteristic
feature of this mechanism of phase coherence is that the Cooper pairs con-
dense immediately after their formation. Thus, the two processes—the electron
pairing and the onset of long-range phase coherence—occur almost simultane-
ously. In other words, Tc � Tpair.

The Josephson coupling is very robust and effective at any temperature as
long as the Cooper-pair wavefunctions exist and remain overlapped. It is how-
ever unlikely that, in a room-temperature superconductor, the Josephson cou-
pling can lead to the onset of long-range phase coherence. There are at least
two reasons against the involvement of this mechanism in room-temperature
superconductivity.

First, from the previous chapter we know that, in a room-temperature su-
perconductor, the Cooper pairs will be represented by bisolitons. The size of
bisolitons is usually small, say, a few lattice constants. In addition, the density
of bisolitons, by definition, is always small—much smaller than the density of
free electrons in metals. Taken together, this means that, in a room-temperature
superconductor, the effective overlap of bisoliton wavefunctions can hardly be
realized. In fact, this is exactly what happens in some living tissues and organic
polymers in which the bisolitons exist but the long-range phase coherence does
not occur.

Second, as will be discussed in the following chapter, the structure of room-
temperature superconductors must be low-dimensional, for example, like that
in the cuprates. This means that in such superconductors the Cooper-pair wave-
functions are also low-dimensional. Even if the overlap of Cooper-pair wave-
functions can partly occur in the conducting planes or chains, this process is
absolutely ineffective between the planes or chains (depending upon the di-
mensions). For example, in the cuprates somewhat above Tc, in the CuO2

planes locally there are fluctuations of phase coherence due to the overlap of
bisoliton wavefunctions, but it does not lead to the onset of phase coherence
between the CuO2 planes (see Chapter 6).
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To conclude, it is unlikely that, in a room-temperature superconductor, the
overlap of bisoliton wavefunctions can lead to the onset of long-range phase
coherence. Nevertheless, in Chapter 10 we shall discuss a possibility of artifi-
cial formation of a bisoliton condensate occurring due to the overlap of bisoli-
ton wavefunctions.

1.2 Spin fluctuations

Can spin fluctuations mediate the long-range phase coherence at room tem-
perature? Undoubtedly, yes. Spin fluctuations mediate the phase coherence in
the cuprates. The highest critical temperature observed in the cuprates is 164 K
(under pressure). This temperature is only twice smaller than the room temper-
ature. Hence, it is logical to anticipate that this mechanism can be responsible
for the onset of long-phase coherence at room temperature. In fact, for the
magnetic mechanism, formally, there is no temperature-limit if the third and
the forth principles of superconductivity are satisfied (see Chapter 4). Then,
one can conclude that a room-temperature superconductor must most likely be
a member of the third group of superconductors.

The characteristic features of the magnetic mechanism of phase coherence
were discussed in Chapter 6. It is worth to emphasize that, in a superconduc-
tor in which spin fluctuations mediate the phase coherence, there are always
two energy gaps, ∆p and ∆c (see Fig. 6.40). This also means that the or-
der parameter of the superconducting state Ψ is different from the Cooper-pair
wavefunction ψ. Generally speaking, in superconductors of the third group, the
order parameter has either a d-wave symmetry (in antiferromagnetic materials)
or a p-wave symmetry (in ferromagnetic materials).

1.3 Other mechanisms of phase coherence

Theoretically, phonons can also mediate the phase coherence in a supercon-
ductor. However, in reality, it is impossible. Why? According to the third
principle of superconductivity, the mechanism of phase coherence must be dif-
ferent from the mechanism of quasiparticle pairing. Since only the electron-
phonon interaction is able to bind electrons in pairs, this means that the same
mechanism cannot mediate the long-range phase coherence.

2. The magnetic mechanism

In this section we shall discuss the magnetic mechanism of phase coherence
in a room-temperature superconductor and requirements to the material and
to the coherence energy gap. We begin with the simplest question: Must the
spin correlations in a room-temperature superconductor be antiferromagnetic
or ferromagnetic?
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2.1 Antiferromagnetic or ferromagnetic?

Theoretically, in a superconductor in which the electron pairing is mediated
by magnons (i.e. spin fluctuations), the critical temperature is higher in antifer-
romagnetic materials than in ferromagnetic ones. We are however discussing a
slightly different case—the onset of phase coherence due to spin fluctuations.
These two cases are not the same. On the other hand, the strength of spin
fluctuations in both these cases is important.

Experimentally, the critical temperature indeed is on average higher in an-
tiferromagnetic materials than in ferromagnetic compounds. However, the ex-
ploration of ferromagnetic materials was started only in 2000 (see Chapter 6).
Thus, it is too early to make a final conclusion. There is even at least one
factor in favor of ferromagnetic compounds: generally speaking, the Curie
temperature TC in ferromagnetic materials is on average higher than the Ne′el
temperature TN in antiferromagnetic ones. Therefore, in the framework of our
project, ferromagnetic materials should not be excluded fully. Nevertheless, on
the basis of experimental data accumulated at the time of writing, it is better to
start with antiferromagnetic compounds.

2.2 Requirements to magnetic materials

In order to impose requirements on the material, it is necessary, first, to
understand the most important features of the magnetic mechanism. As was
noted above, the characteristic features of the magnetic mechanism of phase
coherence are presented in Chapter 6. Basically, in order to mediate super-
conducting correlations, there are three major requirements to be met by the
material.

First, the localized states in the undoped material should have spin-1/2 ground
states. At the time of writing, there is no magnetic superconductor having the
localized states with a spin other than 1/2. This is an experimental fact.

Second, the material must be in a state near a quantum critical point. This
will ensure the presence of local spin fluctuations and a high value of Tc (see
Figs. 6.37 and 6.13a). In a quantum critical point where a magnetic order is
about to form or to disappear, the spin fluctuations are the strongest. At the
moment of writing, we do not know yet how to determine from a single mea-
surement the presence/absence of a quantum critical point in a certain com-
pound. So, this should be the first intermediate goal: how to determine quickly
the presence/absence of a quantum critical point in a given compound.

In superconductors of the third group, besides the first and the second re-
quirements, superconductivity also demands the presence of dynamic spin fluc-
tuations, not quasi-static ones. These dynamic spin fluctuations mediate the
long-range phase coherence. For example, in the cuprates the spin excita-
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tions mediating the phase coherence are induced by fluctuating charge stripes.
Therefore, in a given magnetic material, the fast spin excitations must be in-
duced either by charge fluctuations, as those in the cuprates, or artificially.
The presence of fast spin fluctuations can be observed, for example, by inelas-
tic neutron scattering (INS) measurements. Working with cuprates, nickelates
and manganites, the experience accumulated by the INS community for the
last ten years in this domain is very useful. However, an attempt to induce ar-
tificially a spin excitation able to mediate the superconducting correlations has
never been made before. This is a challenge for the near future, and we shall
discuss this case in Chapter 10. By analogy with the cuprates, the frequency
of spin fluctuations must be of the order of ωsf ∼ 1012–1013 Hz = 1–10 THz
[19, 49].

It is necessary to note that these spin excitations must be coupled to quasi-
particles; otherwise, they are useless.

2.3 Coherence energy gap
Let us estimate the value of condensation energy of a Cooper pair in a room-

temperature superconductor at T = 0, i.e. 2∆c(0). The quantity ∆c is also
known as the phase-coherence gap, which is proportional to Tc (in conven-
tional superconductors, the coherence energy gap is absent). In superconduc-
tors of the third group, the magnitude of ∆c depends on the value of magnetic
(super)exchange energy J between the neighboring spins appearing in Eqs.
(6.66) and (6.67).

According to the fourth principle of superconductivity presented in Chapter
4, the coherence energy gap must be ∆c(0) > 3

4kBTc. For the case Tc =
350 K, this condition means that ∆c > 23 meV. Figure 9.1 shows the phase-
coherence gap ∆c(0) as a function of Tc. In the plot the energy scale 3

4kBTc

marks the lowest allowed values of ∆c(0) at a given temperature. On the other
hand, the magnitude of ∆c must be smaller than ∆p. Thus, in the case Tc �
350 K, the magnitude of ∆c must be smaller than the corresponding values of
∆p listed in Table 8.1.

What gap ratio should we expect for ∆c? There is no straight answer to
this question. For example, for the pairing energy ∆p, there is a reference
value—the BCS gap ratio 2∆p/(kBTc) = 3.52. For the value of the coherence
gap ∆c, the only condition known at the time of writing is the forth principle
of superconductivity presented in Chapter 4. Then, the gap ratio 2∆c/(kBTc)
can formally take any value between 3

4kBTc and 2∆p/(kBTc). As discussed
in the previous chapter, the minimum value of the latter ratio is around 5. In
this case, the maximum allowed value of ∆c is about 75 meV. This result is
obtained by assuming that Tpair � Tc (= 350 K). However, one must realize
that the maximum allowed value of ∆c(0) can be much larger than 75 meV.
As an example, if we assume that Tpair � 1.5 Tc and 2∆p/(kBTpair) = 6,
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then the maximum allowed value of ∆c(0) equals 135 meV. For instance, in
the cuprate Bi2212, the value of the ratio 2∆c/(kBTc) is 5.45, as shown in Fig.
9.1. Then, by using this gap ratio, one can easily obtain that, in the case Tc =
350 K, ∆c(0) � 82 meV.

If we assume that, in a room-temperature superconductor, 2∆c/(kBTc) ∼
4, then ∆c(0) ≈ 60 meV. The grey line in Fig. 9.1 illustrates the gap ra-
tio 2∆c/(kBTc) = 4. Is it realistic to anticipate that in a superconductor
∆c � 60 meV? The answer is yes.

Consider the values of ∆c in the cuprates: in optimally doped Tl2201 with
Tc � 95 K, the magnitude of the coherence energy gap is about ∆c(0) �
24 meV. In Hg1223 which has the highest Tc value of 135 K, ∆c(0) ≥ 30 meV
(at the time of writing, the exact value of the gap ratio for Hg1223 is unknown).
Under pressure, the critical temperature of Hg1223 rises to Tc ≈ 164 K. This
means that the magnitude of the phase-coherence gap rises as well, becoming
∆c(0) ≥ 36 meV.

As was noted above, the magnitude of ∆c depends on the value of magnetic
(super)exchange energy J . What value of J should we expect in a room-
temperature superconductor? Since the relation between ∆c and J is unknown,
we are only able to estimate J . In optimally doped Bi2212 with Tc � 95 K,
3∆c(0) � J (see Fig. 8.4 in [19]). By using the same ratio between ∆c and J
for the case Tc = 350 K, we have J ∼ 3∆c = 180 meV. For comparison, in the
undoped cuprates J = 110–150 meV (the highest J � 150 meV is in NCCO).
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Thus, the value of J ∼ 180 meV is large but looks realistic if compared with
those in the cuprates.

In the case Tc � 450 K and 2∆c/(kBTc) ∼ 4, the magnitude of the phase-
coherence gap, ∆c(0) ≈ 78 meV, is very large. Realizing Tc � 450 K may be
a real challenge for the future.

3. Tc and the density of charge carriers
Superconductivity requires the presence of electron paring and the onset of

long-phase phase coherence. In general, these two phenomena are indepen-
dent of one another. However, it is not exactly the case for superconductors
of the third group because these superconductors are systems with strongly
correlated electrons (holes). This means that, in these compounds, the elec-
tronic, magnetic and crystal structures are strongly coupled, and the changes
in one subsystem influences the other two. As an example, let us consider the
so-called Uemura plot (relation) depicted in Fig. 3.6.

In Fig. 3.6, one can see that the critical temperature of unconventional su-
perconductors is connected with the density of charge carriers, ns, divided
by the effective mass of the carriers m∗. At low temperature, the muon-spin
relaxation rate σ in Fig. 3.6 is proportional to the ratio ns/m∗. Since in super-
conductors of the third group, the onset of phase coherence occurs mainly due
to spin fluctuations, the critical temperature of these superconductors should
be independent of the ratio ns/m∗ because the density ns and the effective
mass m∗ are the characteristics of charge carriers. Therefore, they should in
principle have an effect only upon the pairing characteristics. Experimentally
however, in unconventional superconductors at low doping level, Tc ∝ ns/m∗.
As explained in the previous paragraph, this is because in third-group super-
conductors, the electronic, magnetic and crystal structures are coupled.

The Uemura relation found in unconventional superconductors can be un-
derstood in the following way. As discussed above, in superconductors of the
third group, the occurrence of superconductivity and, therefore Tc, depends
on the frequency of spin fluctuations ωsf . The spin fluctuations are induced
by charge (stripe) fluctuations. It is obvious that the frequency of charge fluc-
tuations depends on the effective mass of charge carriers: the charge carriers
having a light mass can fluctuate faster than those with a heavy mass. Indepen-
dently of this, a large number of charge carriers can induce spin fluctuations
easier than a small number of them. In this way, these two characteristics of
charge carriers, ns and m∗, affect the critical temperature in unconventional
superconductors.

Since the relation Tc ∝ ns/m∗ is universal for superconductors of the
third group, one may expect that the Uemura relation will manifest itself also
in room-temperature superconductors, if the spin fluctuations in these room-
temperature superconductors are induced by charge (stripe) fluctuations. Fig-
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ure 9.2 shows the Uemura relation at critical temperatures Tc ∼ 350 K and
Tc ∼ 450 K. In the plot, one can see that, for the case Tc ∼ 350 K,
σ ≈ 9–11 µs−1. What is interesting is that the muon-spin-relaxation rate in
MgB2 has a similar value, σ = 8–10 µs−1. As was discussed in Chapter 3,
MgB2 is similar to graphite both electronically and crystallographically (see
Figs. 3.3 and 3.19). However, MgB2 is an electron-doped superconductor.

What conditions does the Uemura relation impose on the material of room-
temperature superconductors? The Uemura relation means that, in room-
temperature superconductors, the density of charge carriers must be as large
as possible, and their effective mass must be as small as possible. From Chap-
ter 8 we know that the Cooper pairs in room-temperature superconductors will
be represented by bisolitons. By definition, the density of bisolitons is low,
much less than that of free electrons in metals. In every compound where the
bisolitons exist, their density has an upper limit above which the compound be-
comes quasi-metallic. This means that, in room-temperature superconductors,
the effective mass of charge carriers must be very small: m∗ ∼ me or, even,
m∗ < me, where me is the electron mass. For example, in single-walled nan-
otubes having a small diameter, the theoretical value of m∗ is m∗ = 0.36 me

(see Chapter 3). In general, a small value of the bisoliton effective mass signi-
fies that the size of a bisoliton must be large [63].
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It is worth noting that, in the case when the spin excitations that mediate the
phase coherence are induced artificially, the Uemura relation Tc ∝ ns/m∗ is
no longer applicable.

4. Transition temperature interval
For every superconductor, the absolute value of Tc is important; however,

one must also bear in mind that the high Tc can be useless if the transition
temperature interval ∆Tc is very large. This matter relates directly to the is-
sue of homogeneity of the superconducting phase. It would be a surprise if
one could synthesize a room-temperature superconductor having immediately
a transition temperature interval of, say, a few degrees. This is practically im-
possible. It is most likely that the first samples will have a very large ∆Tc.
The problem of large ∆Tc must be the next goal to solve. As an example, the
first test specimens of superconducting cuprates have had a very large ∆Tc. It
took more than a year of synthesizing samples of the superconducting cuprates
which showed a sharp superconducting transition.





Chapter 10

ROOM-TEMPERATURE SUPERCONDUCTORS

If you do not expect the unexpected, you will not find it.
—Heraclitus [of Ephesus] (ca 550–475 BC)

The main purpose of this chapter is to discuss materials that superconduct
above room temperature. In the context of practical application, this chapter
is the most important in the book. In the two previous chapters we learned
that, from the physics point of view, the occurrence of superconductivity is not
limited by a certain temperature and, under suitable conditions, superconduc-
tivity can occur above room temperature. After all, why should the occurrence
of superconductivity at room temperature be a special event? Of course, this
is important for humans but not for Nature. At the Big Bang, Nature did not
plan to set the Earth temperature near 300 K and to limit the occurrence of
superconductivity by this temperature. In fact, even the occurrence of super-
conductivity on a macroscopic scale was not planned by Nature (see Chapter
1). Therefore, from the physics point of view, one must not emphasize that the
onset of superconductivity above room temperature is an extraordinary event.
This is just an event.

I do not want to say that it is easy to synthesize a room-temperature super-
conductor, not at all. I want to stress that it can be done. The second important
point of this book is that, in order to realize this project, we may use some of
Nature’s experience. This will save a lot of time.

The main ideas of this chapter are based on experimental facts. At the same
time, some ideas presented here are based exclusively on intuition. As a result,
some text in this chapter will be presented in the first person, contrary to the
tradition. As a matter of fact, I have already started doing this in the previous
paragraph.

271
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A few words about new ideas. Reading this chapter, some readers may think
that this is science fiction. One should however understand that the border be-
tween reality and fiction depends on time. At present, some things look fic-
tional but can be real tomorrow. Who could have imagined 100 years ago that
soon the sky would be full of planes, everyone would carry a mobile phone,
some even a TV. One hundred years ago, the word “a TV” was simply mean-
ingless. What about computers? Video games? Brain surgery? Artificial in-
semination? Etc. The view on superconductivity evolves as well. Some ideas
described in this chapter are indeed not “ ready” for the present time but can be
tomorrow’s reality. Read the prologue to Chapter 8.

Let us consider one example. Charge inhomogeneity in the cuprates was
first discussed by Gor’kov and Sokol in 1987 [6]. However, to the best of my
knowledge, the existence of charge inhomogeneity was in general considered
for the first time by Krumhansl and Schrieffer in 1975 [65]. At the end of a
paper in which they discuss the motion of domain walls (solitons) in materials
with a Peierls transition, they wrote: “Finally, we record a few speculative
ideas, which may be worth further development. First, if these domain walls
are present in the low-temperature phase of pseudo-one-dimensional crystals
which have undergone Peierls transition, the Peierls energy gap in those walls
could go to zero, the material becoming locally metallic. One could then have a
distribution of conducting sheets (walls) in an insulating matrix. ...” [65]. So,
in 1975 this idea was speculative; however, it is obvious to every solid-state
physicist today (see Fig. 6.2).

A last remark before we discuss the plan of this chapter. I truly believe
that, at least, one idea presented in this chapter leads to room-temperature
superconductivity; maybe, not immediately, but surely in the near future. Only
the experiment is the final judge for these ideas. As was mentioned in the
Preface, I anticipate that in 2011 superconductivity will celebrate its 100th

jubilee having a transition temperature above 300 K.
This chapter is organized as follows. First, we shall analyze the properties

of superconducting materials described in Chapter 3. On the basis of this anal-
ysis and the experimental facts presented in Chapters 8 and 9, we shall then
discuss requirements for characteristics and the structure of room-temperature
superconductors. Next, we shall view a plan of our main project and, finally,
each item of the plan will be discussed in detail in the following subsections.

1. Superconducting materials: Analysis
In order to “create” new superconductors, one must first understand the

common features of existing ones and the trend in the development of new
materials. In other words, in order to predict the future, one should know the
past. Hence, it is worthwhile to analyze the properties of superconducting ma-
terials presented in Chapter 3.
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In Chapter 3 the superconducting materials are classified into three groups
according to the mechanism of superconductivity in each compound. The first
group consists of conventional superconductors; the second comprises half-
conventional ones, and unconventional superconductors form the third group.
Comparing these three groups of superconductors, one can conclude that

the third group is the largest and has the highest rate of growth in the last
twenty years, and

superconductors of the third group exhibit the highest critical temperature.

Indeed, the critical temperatures of superconductors of the first and the sec-
ond groups do not exceed 10 K and 40 K, respectively. This is because Tc in
these superconductors is limited by the strength of the linear electron-phonon
interaction. In superconductors of the third group, the critical temperature de-
pends on the strength of dynamic spin fluctuations. At the time of writing, the
cuprates show the highest Tc. If the rate of the growth of the third group will
remain in the future at the same level, then, one will soon need to make an
internal classification of this group. On the basis of these observations, it is
obvious that, in the framework of our project, we should discuss further exclu-
sively superconductors of the third group.

All superconductors of the third group are

magnetic or, at least, have strong magnetic correlations,

low-dimensional,

with strongly correlated electrons (holes),

near a metal-insulator transition,

probably, near a quantum critical point (impossible to check), and

type-II superconductors.

Superconductors of the third group have

small-size Cooper pairs (represented by bisolitons),

a low density of charge carriers ns,

a universal Tc(ns/m∗) dependence (see Fig. 3.6), where m∗ is the effective
mass of charge carriers,

large values of Hc2, Tc, λ (magnetic penetration depth) and a large gap ratio
2∆p/(kBTc),

anisotropic transport and magnetic properties,
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a complex phase diagram,

the moderately strong and nonlinear electron-phonon interaction,

an unstable lattice,

charge-donor or charge-acceptor sites (charge-reservoirs), and

a complex structure (with the exception of hydrides, deuterides and a few
heavy fermions).

In the third group:

the Tc value of hole-doped superconductors is on average a few times
higher than that of electron-doped superconductors.

superconductors with Tc > 20 K have no metal-metal bonds (only heavy
fermions have metal-metal bonds).

oxides and organic superconductors represent an absolute majority of this
group.

Considering the common features of superconductors of the third group,
one must however realize that some of these features are direct consequences
of the other. For example, the anisotropic character of transport and magnetic
properties of superconductors of the third group is a direct consequence of a
low-dimensional structure of these superconductors. The strong and nonlinear
electron-phonon interaction results in a large value of the pairing energy gap
and, therefore, in a large value of the gap ratio 2∆p/(kBTc). Since in super-
conductors of the third group, the Cooper pairs are represented by bisolitons
having a small size (a consequence of the strong and nonlinear electron-phonon
interaction) and a low density, this leads to the penetration depth and, conse-
quently, the ratio λ/ξ being large. Therefore, all superconductors of the third
group are type-II. The presence of strongly correlated electrons in these super-
conductors results in a complex phase diagram, and so on. Hence, some of
these common features of superconductors of the third group are more impor-
tant than others.

2. Requirements for high-Tc materials
We are now in a position to discuss requirements for materials that super-

conduct near room temperature. In this section, we shall first consider the
characteristics of room-temperature superconductors that are important for (i)
electron pairing and (ii) phase coherence. Then, we shall discuss (iii) the crys-
tal structure and (iv) materials of room-temperature superconductors.
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2.1 Electron pairing
From Chapter 8, we know that, in room-temperature superconductors, the

Cooper pairs should be represented by positively-charged bisolitons. On the
basis of the analysis of the properties of superconducting materials presented
in the previous section and Chapter 8, for the presence of positively-charged
bisolitons, room-temperature superconductors must be

hole-doped,

low-dimensional,

with strongly correlated holes,

near a metal-insulator transition,

with the moderately strong and nonlinear hole-phonon interaction,

with an unstable lattice, and

most likely, organic.

The electrosolitons and bisolitons appear in low-dimensional systems hav-
ing strongly correlated electrons and the moderately strong, nonlinear electron-
phonon interaction. These systems are in a state near a metal-insulator tran-
sition and have an unstable lattice. (In fact, the expression “systems with
strongly correlated electrons” partially assumes that the electron-phonon inter-
action in these systems is strong and nonlinear.) Experimentally, the bisolitons
exist above room temperature in organic compounds.

2.2 Phase coherence
From Chapter 9, we know that, in room-temperature superconductors, the

mechanism of phase coherence should most likely be magnetic. On the basis of
the analysis of the properties of third-group superconductors presented in the
previous section and Chapter 9, for the onset of long-range phase coherence
due to spin fluctuations, room-temperature superconductors must

be magnetic or, at least, have strong magnetic correlations,

have the localized states with a spin of 1/2,

have dynamic spin fluctuations,

be in a state near a quantum critical point,

most likely follow the Uemura relation Tc ∝ ns/m∗ (see Fig. 9.2), and

most likely be antiferromagnetic.
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The last constraint is based on experimental facts accumulated at the time of
writing. However, ferromagnetic materials should also be examined in the near
future (see the discussion in Chapter 9). The other requirements have already
been discussed in Chapter 9.

2.3 Structure
On the basis of the analysis of the properties of superconducting materials

presented in the previous section, the structure of room-temperature supercon-
ductors must

be low-dimensional,

be complex (with more than two sites per unit cell),

have an unstable lattice,

have electron-acceptor sites, and

have no metal-metal bonds.

In materials able to superconduct at room temperature, the unit cell must
have at least two interacting subsystems: one subsystem is quasi-metallic, and
the other is magnetic. The electron pairing takes place in the first subsystem,
whilst the onset of long-range phase coherence occurs with the participation of
the second subsystem. For example, in the cuprates, the unit cell has three sub-
systems. In addition to the quasi-metallic and magnetic subsystems mentioned
above (see Fig. 6.2), the third subsystem represents charge reservoirs. The
charge reservoirs in the cuprates are the layers that intercalate the CuO2 lay-
ers. They are usually insulating or semiconducting. In contrast, in organic
superconductors the second and the third subsystems coincide: the charge
reservoirs, after donating/accepting electrons to/from organic molecules, be-
come magnetic. Thus, in organic superconductors, one subsystem performs
two functions: to donate/accept electrons and to mediate the phase coherence.
To conclude, a room-temperature superconductor must have:
1) a subsystem with bisolitons,
2) charge reservoirs, and
3) magnetic atoms/molecules.
Experimentally, the second and the third subsystems can be represented by the
same atoms/molecules.

2.4 Materials
From Chapter 8 and the analysis of the properties of superconducting com-

pounds presented in the previous section, the material of room-temperature
superconductors must be
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multicomponent,

most likely, organic, and

probably, oxidic.

It is an experimental fact that bisolitons exist in some organic materials at
temperatures much higher than room temperature.

In Chapter 1, we have discussed the requirements for materials that super-
conduct at high temperatures, presented by Geballe in 1993 [22]. One can now
compare these requirements with those itemized in this section. The require-
ments summarized in this section include the Geballe constraints.

3. Three basic approaches to the problem
In this section, we discuss the basic approaches to the problem of room-

temperature superconductivity. In general, one may suggest three approaches
to the problem.

The first approach: synthesis. The basic idea for synthesizing a compound
able to superconduct above room temperature is straightforward. One should
take a material containing bisolitons above room temperature and dope (inter-
calate) it with atoms/molecules able to accept electrons and having an unpaired
electron after the intercalation. In this case, the intercalant atoms/molecules
will be magnetic. For instance, the structure of a Bechgaard salt shown in Fig.
3.15 is a good example. Alternatively, a material containing bisolitons can
be doped by atoms/molecules of two types. The atoms/molecules of one type
stands duty exclusively as charge reservoirs. This basic idea is more or less
obvious; the main question is what materials to use and how to achieve a right
intercalation. That is all.

The second approach consists in improving the performance of known su-
perconducting materials, for example, the cuprates. This approach is also ob-
vious.

The third approach. We already know that, by definition, the density of
bisolitons in a system cannot be large; otherwise, the system will become
metallic. As a result, the bisolitons cannot condense due to the overlap of
their wavefunctions because, in general, the average distance between bisoli-
tons is larger than the size of a bisoliton. Theoretically, this obstacle can be
overcome by creating a train of bisolitons in a specially-prepared polymer. Let
us call it the bisoliton overlap approach.

It is worth noting once more that some ideas presented in the following
sections cannot be realized at present because of technological difficulties but
can surely be realized in the near future.



278 ROOM-TEMPERATURE SUPERCONDUCTIVITY

4. The first approach
In order to synthesize a room-temperature superconductor, one needs to

know what materials to use. As was discussed above, the structure of every
superconductor of the third group has at least two interacting subsystems: the
electron pairing takes place in one subsystem, whilst the onset of long-range
phase coherence occurs with the participation of the second subsystem. In
spite of the fact that these two subsystems are interacting, we shall consider
materials of one subsystem independently of materials of the other. This is
because a number of various combinations between the materials of one sub-
system and the materials of the other is very large, and an attempt to analyze
all these combinations is simply impractical. On the other hand, discussing
these two groups of materials independently of one another, one should take
into account that, in practice, certain materials of the two subsystems can be
incompatible, i.e. cannot be used together.

We shall discuss first “pairing” materials and then “magnetic” materials
which can be used to intercalate the “pairing” ones.

4.1 Materials for electron pairing
In this subsection, we shall consider materials containing bisolitons above

room temperature intrinsically. For simplicity, let us classify the materials for
electron pairing as

organics,

living tissues, and

oxides.

Such a sorting is conventional because these three groups, in fact, overlap. For
example, the living tissues are organic and contain often oxygen.

4.1.1 Organic materials

Let us start this “ journey” by trial and error with organic materials which
are well studied and commercially available.

Polythiophene. As was already discussed in Chapter 8, polythiophene is a
one-dimensional conjugated polymer having the structure shown in Fig. 8.1a.
The dominant nonlinear excitations in polythiophene are positively-charged
electrosolitons and bisolitons [63]. In a thiophene ring, the four carbon p elec-
trons and the two sulfur p electrons provide the six p electrons that satisfy the
(4n + 2) condition necessary for aromatic stabilization. From a theoretical
point of view, the bisolitons exist in polythiophene because the energy levels
of its two degenerate ground states are not equal [63]. In other words, the two
valence-bond configurations shown in Fig. 10.1a are not equivalent. Poly-



Room-temperature superconductors 279

 S
 (a)

 (b)

 S

 S

 ≠

 [  ]
 n

Figure 10.1. (a) Two valence-bond configurations of polythiophene shown in Fig. 8.1 are not
equivalent. (b) Chemical structure of soluble poly(3-alkylthienylenes) [63].

thiophene has a few derivatives and one of them shown in Fig. 10.1b is called
poly(3-alkylthienylenes) or P3AT for short. In contrast to polythiophene, P3AT
is soluble.

Polythiophene, its derivatives and other organic conjugated polymers are
usually doped by using the so-called electrochemical method [63]. The re-
action is carried out at room temperature in an electrochemical cell with the
polymer as one electrode. To remove electrons from organic polymers, oxida-
tion is usually used. Through doping, one can control the Fermi level or the
chemical potential. In the framework of our project, we are interested in dop-
ing polythiophene by magnetic atoms/molecules. These “magnetic” materials
will be discussed below. In practice, it is impossible to foresee the structure
of a doped organic compound, even knowing materials before the beginning
of a doping procedure. Depending on their origin, concentration and size, the
dopant species after the diffusion can take different positions relative to the
polythiophene chains.

Figure 10.2 shows several examples of possible positions of dopant species
relative to polythiophene chains. It is less likely that the dopant species will oc-
cupy positions in the planes of polythiophene chains, as sketched in Fig. 10.2a.
They will most likely intercalate the polythiophene planes, as illustrated in Fig.
10.2b. In fact, the dopant atoms/molecules are even able to induce a reversible
structural transition [63]. Upon doping, the polythiophene chains and dopant
species can for example form a checker-board pattern shown schematically in
Fig. 10.2c. For instance, in Na-doped polyacetylene, the Na+ ions and poly-
acetylene chains form a modulated lattice with a “ triangular” pattern depicted
in Fig. 10.2d. In Na-doped polyacetylene, such a lattice appears exclusively at
moderate doping levels.
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Figure 10.2. Possible positions of dopant species relative to infinite polythiophene chains: (a)
in the plane of polythiophene chains; (b) between the planes; (c) a checker-border pattern, and
(d) a “ triangular” pattern realized in Na-doped polyacetylene [63].

Until now we have considered polythiophene chains having the infinite
length. By analogy with the structure of organic superconductors (see, for
example, Fig. 3.15), one should also try to use polythiophene chains having a
finite length. Taking into account that the width of a bisoliton is a few lattice
constants [10, 63], then, the length of pieces of polythiophene chains, �, should
be then 2–3 times larger; thus � ∼ 15a, where a is the lattice constant. Since
some atoms/molecules must be attached to the free ends of polymer pieces,
the two ends of a polymer piece can be closed by one another resulting in the
formation of a ring. Upon doping these rings, the dopant species can occupy
the centers of the rings, as schematically shown in Fig.10.3. It is worth noting
that the structure shown in Fig. 10.3 is similar to that of the fullerides depicted
in Fig. 3.18.

Using various magnetic atoms/molecules, one should not forget to control
the doping level of the organic polymers. It can be done, for example, by
adding a small amount of atoms/molecules of another type, which may or
may not be magnetic after the diffusion. Undoubtedly, some of these doped
polythiophene-chain materials will superconduct. The main question is what
maximum value of Tc can be attained in these organic compounds. This mainly
depends on the ability of “magnetic” materials to mediate the long-range phase
coherence.
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Figure 10.3. Possible arrangement of polythiophene rings and diffused magnetic
atoms/molecules.

Other conjugated polymers. Other conjugated polymers containing bisoli-
tons can be used instead of polythiophene. It is known that positively-charged
bisolitons exist, for example, in polyparaphenylene, polypyrrole and poly(2,5-
diheptyl-1,4-phenylene-alt-2,5-thienylene) (PDHPT) [63]. The structure of
polyparaphenylene is depicted in Fig. 10.4a. A bisoliton on a polyparapheny-
lene chain is schematically shown in Fig. 10.4b. For example, a derivative
of polyparaphenylene, p-sexiphenyl depicted in Fig. 10.4c, is widely used in

 (a)

 (b)  + +

 (c)

 (d)
 S
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 [  ]
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 C  7  H  15

Figure 10.4. (a) Chemical structure of polyparaphenylene. (b) Schematic structural diagram
of a positively-charged bisoliton on a polyparaphenylene chain [63]. (c) Molecular structure
of p-sexiphenyl, and (d) the chemical structure of soluble poly(2,5-diheptyl-1,4-phenylene-alt-
2,5-thienylene) (PDHPT).
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organic light-emitting diodes. Why not use it as a basic material for a room-
temperature superconductor? The structure of PDHPT is illustrated in Fig.
10.4d.

As established experimentally, the physical properties of polymers strongly
depend upon preparation conditions. For instance, the same polymer prepared
by different techniques has different conductivities [63]. Unfortunately for
experimentator, this fact adds one more degree of freedom for achieving the
goal.

Graphite. For the last thirty years, graphite is one of the most studied ma-
terials. Several books are dedicated to a description of the physical properties
of graphite (see, for example, [34]). It is also one of the most promising su-
perconducting materials. Graphite intercalation compounds (GICs) able to su-
perconduct were discussed in Chapter 3. Depending on their structure and the
preparation technique, there are stage 1 and stage 2 GICs. All superconduct-
ing GICs are alkali-doped and, therefore, magnetic due to alkali spins ordered
antiferromagnetically. In the superconducting GICs, the charge carriers are
however electrons, not holes. Graphite-sulphur (CS) composites exhibit su-
perconductivity at Tc = 35 K [35]. It is assumed that, in the CS composites,
superconductivity occurs in a small fraction of the samples. The resistance in
the CS composites remains finite down to the lowest measured temperature,
indicating that superconducting clusters are isolated from each other [66].

The physical properties of graphite as well as other organic polymers de-
pend on the preparation method. In most experiments, highly oriented py-
rolytic graphite (HOPG) is used. In practice, all large-size single crystals of
graphite, including commercially available ones, never have an ideal structure:
they always have intrinsic carbon defects. The last statement is also valid for
large-size single crystals of superconducting cuprates. Both graphite and the
cuprates have the layered structure.

There exist both theoretical predictions and experimental evidence that elec-
tronic instabilities in pure graphite can lead to the occurrence of superconduc-
tivity and ferromagnetism, even at room temperature ([66, 67] and references
therein). Some experiments indeed show that the superconducting and ferro-
magnetic correlations in graphite coexist [35, 66]. In graphite, an intrinsic
origin of high-temperature superconductivity relates to a topological disorder
in graphene layers [66]. (A single layer of three-dimensional graphite is called
graphene.) This disorder enhances the density of states at the Fermi level. For
example, four hexagons in graphene (see Figs. 3.19 and 10.5) can in princi-
ple be replaced by two pentagons and two heptagons [67]. Such a defect in
graphene modifies its band structure. The disorder in graphene transforms an
ideal two-dimensional layer into a network of quasi-one-dimensional channels
preferable for bisolitons. In high magnetic fields (> 20 T), the in-plane resis-
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Figure 10.5. Two basic types of graphite edges [67].

tance of graphite exhibits an anomalous behavior attributed to the formation of
charge-density-wave (CDW) [66]. This means that, in a high magnetic field,
mobile bisolitons condense into the localized CDW states.

Interestingly, the magnetization of HOPG samples shows ferromagnetic hys-
teresis loops up to 800 K [66–68]. The details of this hysteresis depend on
the sample, sample heat treatment and the direction of the applied field. The
ferromagnetic signal in graphite is weak; however, as shown experimentally,
ferromagnetic impurities cannot be responsible for this ferromagnetic order-
ing [68]. Most experimental results suggest that this ferromagnetism is intrin-
sic. Its origin is attributed partly to topological defects and in part to strong
electron correlations in graphite [66–68]. In practice, the graphene sheets are
always finite. Their electronic properties are drastically different from those
of bulk graphite. It is experimentally established that the electronic properties
of nanometer-scale graphite are strongly affected by the structure of its edges
[66–69]. The graphene edges induce electronic states near the Fermi level.
Any graphene edge can be presented by a linear combination of the two basic
edges: zigzag and armchair, shown in Fig. 10.5. The free energy of an arm-
chair edge is lower than that of a zigzag edge [69]. It is assumed that the zigzag
edges are partly responsible for the ferromagnetic ordering [67]. Finally, it is
worth noting that the magnitude of a ferromagnetic moment in graphite is age-
dependent. The storage of graphite samples at ambient conditions results in
a drastic decrease of the magnetization. As an example, a one-year storage
brings the samples to a diamagnetic state without noticeable changes in their
composition and lattice parameters [67].

Are graphite-based compounds able to superconduct above room tempera-
ture? Undoubtedly, yes. From experimental data, the bisolitons seem to exist in
graphite above T ∼ 600 K. The appearance of bisolitons at high temperatures
in graphene depends on the graphene structure: graphene sheets must be topo-
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logically disordered. This can be achieved in a few ways. As discussed above,
the hexagons in graphene can be replaced by pentagons and heptagons. Some
carbon atoms in graphene can be substituted by B, N or Al [67]. In the frame-
work of our project, B and Al are probably better than N because each N adds
an additional electron to graphene, while room-temperature superconductivity
requires holes. Instead of graphene sheets, one can for instance use nanos-
tripes of graphene [70]. Alternatively, one may use the molecules of hexaben-
zocoronene shown in Fig. 1.3c or other large molecules of conjugated hydro-
carbons. To stabilize structurally graphene nanostripes, hexabenzocoronene
or other large molecules of conjugated hydrocarbons, one can prepare a sin-
gle crystal consisting of two alternating layers: graphene and a layer of one
of these large molecules or graphene nanostripes. Then, these single crystals
must be doped by magnetic atoms/molecules responsible for long-range phase
coherence.

In principle, it should be not a problem for bisolitons to occur in graphite and
graphene-based compounds above room temperature. The main problem for
the occurrence of bulk superconductivity in graphite and other organic com-
pounds above room temperature is the question of the onset of long-range
phase coherence. One can dope graphite by atoms/molecules spins of which
are ordered antiferromagnetically after the diffusion. Alternatively, one may
try to enhance intrinsic weak ferromagnetism of graphite/graphene.

Since the bonds between adjacent layers in graphite are weak, an artificial
“ sandwich” doping can be used for graphite. By using the electrochemical
method to dope organic compounds [63], one cannot control the positions of
dopant species in the crystal structure after the diffusion. Furthermore, the
doping occurs only in a thin surface layer. For graphite however, one can
consciously control the positions of intercalant species. The idea is as follows.
By using a scanning tunneling microscope (STM), one can manipulate single
atoms/molecules putting them into the proper positions on a clean graphite
surface [71]. After such a delicate doping, one can cover the dopant species
by one or two graphene sheets. The STM doping is then repeated again and so
on. In the future, this procedure can in principle be computerized.

Fullerenes. Closed-cage molecules consisting of only carbon atoms are
called fullerenes. A molecule of the fullerene C60 is schematically shown in
Fig. 3.17. There are other fullerenes such as C20, C28, C70, C72, C100 etc.
The alkali-doped fullerenes (fullerides) able to superconduct were discussed
in Chapter 3. The unit cell of superconducting fullerides M3C60 is depicted
in Fig. 3.18, where M is an alkali atom. The superconducting fullerides
are electron-doped. To exhibit room-temperature superconductivity, the sin-
gle crystals of C60 must be doped by holes. Thus, one should find suitable
dopant species for this purpose.
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Theoretical calculations show that fullerenes having a diameter smaller than
that of C60, such as C28 [72] and C20 [73], are able to exhibit a higher value of
Tc relative to that of C60. Hence, in addition to buckyballs C60, the fullerenes
C28 and C20 are also promising candidates with which to form a room-
temperature superconductor.

One can use fullerenes not only in pure but also in polymerized form. As
an example, Figure 10.6 shows various one- and two-dimensional polymeric
solids formed from C60. Similarly to graphite, polymerized rhombohedral C60

displays weak ferromagnetism above room temperature [67–69].
In addition to experiments on single crystals of pure or polymerized fulle-

renes, the fullerenes can also be used in a combination with graphite or/and
nanotubes. One can intercalate the graphene sheets in graphite by fullerenes,
as sketched in Fig. 10.7. Such an intercalation can for example be achieved by

 (b)

 (c)

 (a)

Figure 10.6. Various one- and two-dimensional polymeric solids formed from C60 [74]. The
C60 balls are shown schematically.
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Figure 10.7. Intercalation of graphene sheets by C60 molecules.

using the STM doping discussed above. In this case, the intercalation of these
graphene–fullerene compounds by “magnetic” species can simultaneously be
done by STM.

Unlike graphene and other long organic polymers, the fullerenes have an
advantage to be packed into any form. Using insulating or semiconducting
nanotubes, one can form a one-dimensional “wire” from fullerenes by pack-
ing them into the interior of one of these nanotubes, as schematically depicted
in Fig. 10.8a. Inorganic single-walled nanotubes which are either insulat-
ing or semiconducting have recently been reported in the literature, such as
MoS2 [75], TiO2 [76] and BN [77]. Theoretically, B2O and BeB2 nanotubes
may exist as well [78]. In practice, the boron nitride nanotubes have already
been filled successfully by C60 molecules, forming quasi-one-dimensional in-
sulating wires [77]. The utilization of BN nanotubes having various diame-
ters results in different stacking configurations of C60 molecules [77]. In the
framework of our project, one should fill the nanotubes not only with fullerene
molecules but also with “magnetic” species, sticking to a certain order in the
filling. This filling order should be a subject for a separate investigation. De-
pending on the diameter of a nanotube, one may use nanoscale pistons for ap-
plying a pressure, as sketched in Fig. 10.8b. By varying the pressure, one can
change the filling factor and, therefore, the Tc value. These nanoscale pistons
in Fig. 10.8b can also be used as electrical contacts. Since carbon nanotubes
which will be discussed next can also be insulating or semiconducting, one
may use them instead of inorganic nanotubes.

Carbon nanotubes. In addition to spherical fullerenes, tubular carbon-
based structures are also called fullerenes. Here we shall call them carbon nan-
otubes or just nanotubes for short. Carbon nanotubes can be multi- and single-
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Figure 10.8. (a) C60 molecules inside an insulating nanotube [77], intercalated by magnetic
atoms/molecules. (b) Applying a pressure to C60 molecules shown in plot (a). The nanoscale
pistons can be used as electrical contacts.

walled. For simplicity, we shall discuss the single-walled nanotubes. They
show metallic, insulating and semiconducting properties depending on the he-
licity with which a graphene sheet is wrapped to form the tubule. The armchair
nanotubes are usually metallic, while the zigzag ones are semiconducting. Fig-
ure 3.20 shows a piece of armchair nanotube. Similarly to graphite, the carbon
nanotubes may also exhibit weak ferromagnetism [67–69]. Two nanotubes can
be joined by electron beam welding, forming a molecular junction [79].

Due to their remarkable electronic and mechanical properties, a great future,
in the context of practical application, awaits the carbon nanotubes. The nan-
otubes are also a promising candidate with which to form a room-temperature
superconductor. As discussed in Chapter 3, the single-walled carbon nan-
otubes with a diameter of 4.2 ± 0.2 A

◦
exhibit bulk superconductivity below

Tc � 15 K [36]. The nanotubes with a smaller diameter may display a higher
Tc. The onset of local superconductivity was observed in single-walled carbon
nanotubes containing a small amount of the magnetic impurities Ni and Co at
645 K [38]. By embedding these nanotubes into a dynamic magnetic medium,
one can witness bulk superconductivity above 450 K.
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Since the electronic properties of the nanotubes depend on the wrapping
angle of a graphene sheet, one can invent a technique of twisting a nanotube
along its main axe. In such a way, one can vary the pairing temperature Tp and,
as a result, Tc. This suggestion is obviously for the distant future.

The carbon nanotubes can in principle be used in a combination with gra-
phene sheets. They will structurally support the nanotubes, as sketched in Fig.
10.9. The “magnetic” species can for example be situated between the nan-
otubes. Alternatively, instead of graphene sheets, one can use layers of mag-
netic materials ordered antiferromagnetically. The nanotubes in the adjacent
layers can for instance be oriented perpendicular to each other. This will make
the superconductor two-dimensional.

Figure 10.9. Intercalation of graphene sheets by carbon nanotubes. In the adjacent layers, the
main axes of nanotubes may be mutually orthogonal.

Single-walled carbon nanotubes filled with C60 molecules are called
peapods. In peapods, the inner diameter of nanotubes is slightly larger than
the outer diameter of C60 molecules. In order to discuss the following idea,
it is worth to recall that, in a solid, only dynamic spin fluctuations are able to
mediate the long-range phase coherence. In the cuprates, for example, charge
fluctuations in the CuO2 planes induce these dynamic spin fluctuations. By
analogy with the cuprates, C60 or other fullerene molecules moving inside a
nanotube, as shown in Fig. 10.10a, can induce dynamic spin fluctuations in the
magnetic surroundings. The more practical cases are depicted in Figs. 10.10b
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Figure 10.10. Moving C60 molecules inside nanotubes: (a) a straight nanotube; (b) two par-
allel nanotubes closed at each end by rounded pieces of nanotubes, and (c) a round nanotube.
The purpose of such a dynamics is explained in the text.

and 10.10c: the fullerene molecules remain always inside the same nanotube.
However, in order to realize this idea, one must invent a technique allowing
to initiate the fullerene-molecule movement relative to a nanotube. Instead of
carbon nanotubes, one can in principle use the inorganic nanotubes discussed
above. Ideally, these inorganic nanotubes can be magnetic themselves; then,
there is no need for an additional doping procedure.

4.1.2 Living tissues

It is worth to recall that the main idea of the whole book is that, in order
to synthesize a room-temperature superconductor, we may use some of Na-
ture’s experience accumulated during billions of years, even if, this experience
in principle has nothing to do with superconductivity (see the discussions in
Chapters 1 and 8). After all, Nature is smarter than humans.

In principle, one can use living tissues to form a room-temperature su-
perconductor. All the descriptions presented in the previous subsection can
equally be applied to living tissues which are usually one- or two-dimensional.
One should use living tissues containing bisolitons. The main question is what
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living tissues contain the electron pairs. From Chapter 1, we know that (i) in
redox reactions, electrons are transferred from one molecule to another in pairs
with opposite spins, and (ii) electron transport in the synthesis process of ATP
(adenosine triphosphate) molecules in conjugate membranes of mitochondria
and chloroplasts is realized by pairs.

Mitochondria and chloroplasts are integral parts of almost every living cell.
In principle, one can easily use their membranes to form a room-temperature
superconductor as described in the previous subsection. The redox reactions
occur practically in every cell. One should find out what parts of the cells
are responsible for the redox reactions, and then use these tissues to form a
room-temperature superconductor.

In addition to these tissues, DNA (deoxyribonucleic acid) is also a good
choice: proximity-induced superconductivity was already observed in DNA
below 1 K [37]. It is also assumed that DNA will exhibit genuine supercon-
ductivity if one can find a technique to dope it. The double helix of DNA
has a diameter of 20 A

◦
, and it can be a few microns long. So, DNA is truly

a one-dimensional system. Charge transport through DNA is crucial for its
biological functions such as the repair mechanism after radiation and biosyn-
thesis. So far, the findings concerning conductivity of DNA are controversial
[80]. Some measurements indicate that DNA behaves as a well conducting
one-dimensional molecular wire. In contrast, other measurements show that
DNA is insulating. The available data are more or less consistent with a sug-
gestion that DNA is a wide-bandgap semiconductor [80]. This proposal is also
in good agreement with the idea that electron transport in DNA occurs due to
electrosolitons and/or bisolitons, accompanied by molecular distortion (local
deformation of the lattice).

One of the main advantages of DNA is that it can easily be attached to
electrical contacts, as shown in Fig. 10.11. A large single molecule of double-
stranded DNA can be manipulated by attaching short, single-stranded DNA
molecules to each of its ends. Then, chemical labels on the ends of these
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Figure 10.11. A single molecule of double-stranded DNA with single-stranded DNA
molecules attached to each of its ends [81]. Chemical labels on the ends of single-stranded
molecules are used to attach the DNA to an electrical lead or to a bead which can then be used
as an electrical contact. This configuration is in fact used for manipulation of DNA molecules
[81], but can stand duty as an electrical circuit.
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single-stranded molecules are used to attach the DNA molecule to electrical
leads or microscopic golden beads, as depicted in Fig. 10.11.

It is worth noting that, in living cells, DNA molecules are in a solution,
and they actively interact with the solution. Therefore, one should consider
to experiment with DNA not only in a dry environment but also in the proper
solution.

The experiments should not be restricted by the living tissues discussed
above, one can use other tissues as well. The main requirement for them is
that they must contain bisolitons.

4.1.3 Oxides

Oxides, as a class of materials, deserve to be considered as materials able
potentially to superconduct at room temperature because:

at present, oxides are the largest group of superconductors having the high-
est growth rate;

at present, oxides exhibit the highest value of Tc (cuprates);

at least, one oxide (AgxPb6CO9) exhibits some signs of local superconduc-
tivity above room temperature [64], and

oxygen, as a chemical element, is a unique acceptor of electrons and plays
a crucial role in the living matter.

All the living matter cannot function without oxygen: the redox reactions
are essential part of biochemical processes occurring in living organisms, in
some of which electrons are transferred from one molecule to another in pairs
with opposite spins (see the previous subsection). Oxygen is also a constituent
element of DNA.

Contrary to the widely-used expression “ the living matter is organic” (in-
cluding humans), oxygen, in fact, represents the heaviest part of a human body
(61 %), while C and N contribute only 23 % and 2.6 % to the total weight of
the body, respectively [82]. Of course, it is mainly water that makes us heavy
(materials containing water will be discussed below).

As was considered in Chapter 8, in a thin surface layer of the complex
oxide AgxPb6CO9 (0.7 < x < 1) at 240–340 K, there is a transition remi-
niscent of a superconducting transition [64]. Taking together, all these facts
indicate that oxides should seriously be considered as potential candidates for
a room-temperature superconductor. For example, the layers of CoO2 doped
by holes will undoubtedly superconduct (see the respective subsection below).
The question is what Tc value will they exhibit? Other layered oxides with the
spin S = 1

2 ground state should also be on the list of potential candidates. As a
pre-selection procedure, one must use the common requirements for materials
discussed above.
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In addition to layered and quasi-one-dimensional oxides, one may try to
synthesize zero-dimensional oxides similar to fullerenes. An attempt to syn-
thesize inorganic fullerene-like molecules has been successful [83]. Thus, one
may in principle synthesize various fullerene-like oxides. After the doping,
some of them may superconduct.

4.2 Materials for phase coherence
A superconductor of the third group must be magnetic or, at least, have

strong magnetic correlations. While oxides can be magnetic naturally, like
the cuprates for example, organic and living-tissue-based compounds must be
doped by magnetic species which will be responsible for long-range phase
coherence.

Unfortunately, during evolution, Nature did not need to develop such mag-
netic materials. Hence, we should only rely on accumulated scientific experi-
ence and work by trial and error. The general requirements for the magnetic
properties of room-temperature superconductors were discussed above and in
Chapter 9. In addition, a few hints can be suggested.

By doping organic materials or living tissues, one should take into account
that, after the diffusion, the dopant species must not be situated too close to
the organic molecules/tissues. Otherwise, they will have a strong influence
on bisoliton wavefunctions and may even break up the bisolitons. On the
other hand, the dopant species cannot be situated too far from the organic
molecules/tissues because bisolitons must be coupled to spin fluctuations.

Since in superconductors of the third group, spin fluctuations must be cou-
pled to quasiparticles, the dopant atoms/molecules (at least, the majority of
them) should donate/accept electrons to/from molecules (or complex struc-
tures) responsible for electron pairing. In the framework of our project, they
must accept electrons, creating holes in a material responsible for electron pair-
ing. In all known cases, the dopant species donate/accept either 1 or 3 elec-
trons. For achieving a high Tc, the dopant species should accept 2 electrons.
In this case, the electron pairs can wander around much more easily. In reality,
however, this is impractical because, after accepting/donating two electrons,
the dopant species will remain non-magnetic.

As was estimated in Chapter 9, in a room-temperature superconductor of
the third group, the value of magnetic (super)exchange energy between the ad-
jacent spins, J , should be of the order of 150–200 meV. This value is large but
realistic. In my opinion, the most difficult task to be resolved is to create dy-
namic spin fluctuations with ωsf ∼ 1012–1013 Hz. In the cuprates for example,
a structural phase transition precedes the transition into the superconducting
state. This structural transition allows the charge stripes to fluctuate quicker,
provoking a transition into the superconducting state. Therefore, synthesizing
a room-temperature superconductor, one must pay attention to its structure: the
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“distance” between failure and success can be as small as 0.01 A
◦

in the lattice
constant.

In addition to “magnetic” species which will accept electrons, one may try
to dope a material for electron pairing also by a small amount of molecular
magnets to vary the strength of magnetic correlations. Molecular magnets are
the nanoscale clusters containing a transitional metal, and they are promising
components for the design of new magnetic materials [84].

As discussed in Chapter 9, in the framework of our project, one should
start with antiferromagnetic compounds. Nevertheless, ferromagnetic materi-
als should not be excluded from the project. At present, one can find several
publications/preprints reporting room-temperature ferromagnetism in various
compounds [85–91].

Finally, what materials to use. We are interested in materials which accept
electrons after being intercalated. For example, all the compounds listed in Ta-
ble 3.7 donate electrons. They are used to intercalate fullerenes. From Chapter
3, the materials able to accept electrons from organic molecules are the follow-
ing atoms and molecules: Cs, I, Br (atoms) and PF6, ClO4, FeCl4, Cu(NCS)2,
Cu[N(CN)2]Br and Cu[N(CN)2]Cl (molecules). So, one should most likely
start with these materials.

4.2.1 Artificially-induced spin excitations

From the classical standpoint, magnetic field is detrimental to superconduc-
tivity. Experimentally, however, this is not always the case: magnetic field can
not only destroy superconductivity but also induce it. As discussed in Chapter
2, the superconducting phase in the quasi-two-dimensional organic conductor
λ-(BETS)2FeCl4 is induced by magnetic field [26, 27]. The superconducting
phase as a function of magnetic field has a bell-like shape, occurring between
18 and 41 Tesla with a maximum Tc � 4.2 K in the middle [27]. The field is
applied parallel to the conducting layers. This experimental fact demonstrates
that what should be detrimental to superconductivity can in fact induce it. The
idea which we are going to discuss now is based on this fact.

Let us consider an idea of inducing the superconducting phase by ac electro-
magnetic field, applicable to magnetic compounds containing bisolitons. As-
sume that we have a thin film of an organic compound containing bisolitons,
which is doped by magnetic species. The thickness of this thin film is of the or-
der of, or less than, a typical penetration depth in superconductors of the third
group, thus, ∼ 1000–2000 A

◦
. We know that in order to become supercon-

ducting, this complex compound should have dynamic spin fluctuations with a
frequency of ωsf ∼ 1012–1013 Hz = 1–10 THz. If such spin fluctuations are
absent, one may in principle induce them artificially. Let us place the thin film
in a weak ac electromagnetic field with ω ∼ 1–10 THz. The quasiparticles
in the film will follow the field, inducing spin excitations with a similar fre-
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quency. If the bisolitons in the thin film are not broken by the electromagnetic
field, they will be coupled to spin fluctuations which, in turn, may mediate
the long-range phase coherence for bisolitons. In this case, the thin film will
become superconducting, at least, partially.

In the above example, when the thin film will become superconducting, the
ac field will in part be expelled from the film but not fully because the thickness
of the film is of the order of the penetration depth. In such a situation, one may
expect the presence of nonlinear oscillations of the order parameter and other
self-interaction effects. Depending on an application, these effects may not be
important. In this case, one will have a room-temperature superconductor for
use in certain devices.

Let us estimate the upper limit for the frequency of ac field. The energy
h̄ω must be smaller than the coherence gap ∆c(0). It is worth to recall that
∆c(0) < ∆p(0), always. For ∆c(0) ≈ 60 meV, the condition h̄ω < ∆c(0)
yields ω < 14 THz.

One may wonder why the frequency of spin excitations able to mediate su-
perconductivity should be ωsf ∼ 1012–1013 Hz. In the absence of any com-
plete theory of unconventional superconductivity, there is no definite answer to
this question. However, if we assume that the Cooper pairs in unconventional
superconductors, i.e. bisolitons, are formed in real space, then, it is possible to
give a quantitative answer. Independently of the issue of real-momentum space
pairing, spin excitations which mediate the phase coherence must be coupled
to bisolitons. Let us denote the average lifetime of bisolitons by τ . If the fre-
quency of spin excitations is 1/ (2πωsf ) � τ , the spin excitations will not no-
tice the presence of a given bisoliton. Thus, ωsf must be 1/ (2πωsf ) ∼ τ . Since
in organic polymers, τ ∼ 10−13 s [63], then we obtain that ωsf ∼ 1/(2πτ) ∼
2 × 1012 Hz.

4.3 Materials containing water
During the writing of this book a new unconventional superconductor was

discovered: the layered cobalt oxyhydrate NaxCoO2 · yH2O (1
4 < x < 1

3
and y = 1.3–1.4) exhibits superconductivity [92]. The structure of the parent
compound NaxCoO2 consists of alternating layers of CoO2 and Na. In the
hydrated NaxCoO2, the water molecules form additional layers, intercalating
all CoO2 and Na layers. After the hydration of NaxCoO2, the c-axis lattice
parameter increases from 11.16 A

◦
to 19.5 A

◦
[93]. Thus, the elementary cell

of NaxCoO2 · yH2O consists of three layers of CoO2, two layer of Na+ ions
and four layers of H2O. The Na+ ions are found to occupy a different con-
figuration from the parent compound. The displacement of the Na+ ions is
required in order to accommodate the water molecules which form the struc-
ture that replicates the structure of ice. The oxygen positions are fixed, while
the positions of hydrogens are randomized as they are in ice. The Na and H2O
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sites are only partially occupied, while the CoO2 layers in these structures are
robust and consist of edge-sharing tilted octahedra. Each octahedron is made
up of a Co ion surrounded by six O atoms at the vertices. Within each CoO2

layer, the Co ions occupy the sites of a triangular lattice. The 1 - x fraction
of Co ions is in the low spin S = 1

2 Co4+ state, while the x fraction is in the
S = 0 Co3+ state. In the triangular lattice, the spins of Co4+ ions are ordered
antiferromagnetically.

Superconductivity in NaxCoO2 · yH2O occurs in the CoO2 layers. The su-
perconducting phase as a function of x has a bell-like shape, situated between
0.25 and 0.33 with a maximum Tc � 4.5 K near x = 0.3 [94]. NaxCoO2 ·yH2O
is a strongly anisotropic type-II superconductor with k ∼ 102 [93] and, even,
104 [95] at low temperatures. In NaxCoO2 · yH2O, Hc2 ∼ 4–5 T which yields
a coherence length of 100 A

◦
[95]. There is a strong inverse correlation be-

tween the CoO2 layer thickness and Tc: the critical temperature increases as
the thickness decreases [93]. The substitution of deuterium for hydrogen in
water molecules has no apparent effect on Tc [96].

With relevance to the phonon density of states, several features in the acous-
tic (0–40 meV) and optical (50–100 meV) phonon branches have been ob-
served by neutron scattering in NaxCoO2 [93]. Similar features are also found
in the acoustic channel of hydrated NaxCoO2, indicating that the phonons asso-
ciated with the CoO2 and Na layers are similar in the two materials. However,
in the optical phonon branch of superconducting NaxCoO2 · yH2O, the neu-
tron scattering in the energy range 50–120 meV is much stronger than that in
the parent compound. This additional scattering is assumed to be caused by
hydrogen [93].

All experimental facts indicate that the presence of water is crucial to su-
perconductivity [91–97]. There is a marked resemblance in superconducting
properties between NaxCoO2 · yH2O and the cuprates [94].

We are now in a position to discuss the significance of the discovery of
superconductivity in NaxCoO2 ·yH2O. In spite of the fact that the critical tem-
perature in NaxCoO2 · yH2O is below 5 K, this discovery is probably the most
important since 1986 when superconductivity in cuprates was found [5]. Let us
consider why. The presence of superconductivity in the CoO2 layers indicates
that, under suitable conditions, all oxide layers with the spin S = 1

2 ground
state are most likely able to superconduct when they are slightly doped by
charge carriers. This ability is not only the privilege of the CuO2 layers (RuO2

layers also superconduct). Secondly, after the discovery of superconductivity
in NaxCoO2 · yH2O, the cuprates are not the only Mott insulators able to su-
perconduct (see p. 94): sodium cobalt oxide NaxCoO2 is also a Mott insulator.
Thirdly, NaxCoO2 ·yH2O is the first superconductor containing water (ice) the
presence of which is crucial for the occurrence of superconductivity. This fact
runs counter to common sense. A similar feeling among scientists was after
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the discovery of superconductivity in cuprates in 1986. From the experimental
data, it is clear that the presence of ice in NaxCoO2 · yH2O is important for
superconductivity, at least, for two reasons. The H2O layers enlarge the c-axis
lattice parameter and, apparently, the formation of hydrogen bonds between H
and O situated in the CoO2 layers [97] plays an significant role in the occur-
rence of superconductivity in NaxCoO2 · yH2O. It is important to note that, in
DNA, it is exactly the hydrogen bonds that hold complementary base pairs to-
gether [81]. In other words, life on Earth is based on hydrogen bonds. It is not
by accident that we continue to find parallels between superconductivity and
the living matter. It is most likely that, in NaxCoO2 · yH2O, the randomized
hydrogen bonds make the CoO2 layers structurally unstable, resulting in the
occurrence of superconductivity. In addition to the two aforementioned rea-
sons, the water in NaxCoO2 may also screen Co atoms from strong Coulomb
force of the Na atoms, assisting the occurrence of superconductivity in the
CoO2 layers.

The main point of this subsection is that, in the framework of our project,
one should try to experiment with water using it as an intercalant. In addition,
as was already discussed earlier, one must attempt to dope the CoO2 layers by
holes.

5. The second approach
In this section, we consider the second approach to the problem of room-

temperature superconductivity. To recall, this approach consists in improving
the performance of known superconducting materials. This approach is not
new and was numerously used in the past. Human imagination has no limits,
and one should use it in the framework of this approach.

Before attempting to improve the critical temperature of a superconductor,
one must first consciously choose this superconductor. Let us briefly discuss
my ideas concerning what system to choose and how to improve its perfor-
mance. These ideas should not be considered as an action plan; they just rep-
resent my personal thoughts and can be ignored by the reader. In this case, one
can continue the reading with the following section.

At present, the cuprates exhibit the highest value of Tc. Hence, it is logical to
experiment with the cuprates attempting to improve their critical temperature.
In Fig. 6.51, one can see that, in underdoped cuprates, the pairing temperature
exceeds the room temperature. Therefore, the cuprates may in principle exhibit
superconductivity at room temperature.

Superconductivity in the cuprates occurs in the CuO2 layers. In a crystal, the
layers that intercalate the CuO2 layers basically perform two functions: they
structurally support the CuO2 layers and play a role of charge reservoirs. From
Chapter 6, we know that, in a superconductor of the third group, the more
the lattice is unstable, the higher the critical temperature is. Therefore, one
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should find suitable intercalant layers which make the CuO2 layers structurally
unstable in a greater degree than those in Hg1223 having the highest critical
temperature of 135 K (at ambient pressure). As an example, by applying a
pressure P to a single crystal of Eu-doped LSCO, it was shown that the deriva-
tive dTc

dP strongly depends on the direction of applied pressure, taking negative
as well as positive values [98]. In the cuprates and other superconductors, the
lattice holds the key to a higher Tc. As was discussed in the previous section,
one may also try to intercalate the CuO2 layers by organic molecules/layers.

The second suggestion represents an idea which was also discussed in the
previous section, namely, to induce in a cuprate spin excitations able to mediate
the phase coherence above its “normal” Tc.

6. The third approach
In the framework of the first approach to the problem of room-temperature

superconductivity, materials containing bisolitons must be doped by “mag-
netic” species which are responsible for the onset of long-range phase coher-
ence. To find a right combination of two materials and arrange them properly in
a crystal structure is not easy and needs a lot of time. In principle, the presence
of magnetic materials is not necessary for the occurrence of superconductivity
if one can organize the direct overlap of bisoliton wavefunctions leading to the
onset of long-range phase coherence. To solve this task is also not easy because
the density of bisolitons cannot be large and their size is small. Therefore, one
should be ingenious in tackling this problem. As was mentioned above, this
approach can be called the bisoliton overlap approach.

Before discussing a concrete suggestion, it is first necessary to introduce a
few notions. Figure 10.12a shows schematically a chain polymer, for example
polyparaphenylene depicted in Fig. 10.4a, and two bisolitons on the polymer.
Let us denote the size of a bisoliton by d (see also Fig. 6.20), and the minimum
permissible distance between two bisolitons on the same chain by Lmin. De-
note also the distance between two parallel polymer chains by �, as shown in
Fig. 10.12b. Two bisolitons on the neighboring chains can overlap [63]. This
can occur if the distance between the adjacent chains is not large, i.e. � ∼ d.
In general, d is a few lattice constants, and Lmin is of the order of several d.

Figure 10.12c shows a few parallel polymer chains and the bisolitons mov-
ing with a velocity v along these chains. The number of the chains is n ≥
Lmin/d. Assume that the distance between the adjacent chains is of the order
of d and, in one train, the bisolitons on the neighboring chains travel with a
small delay in time ∆t ∼ d/v relative to one another. In this case, the bisoli-
tons A and B shown in Fig. 10.12c will have the same phase due to the direct
overlap of bisoliton wavefunctions. However, this series of bisolitons will not
be in phase with the following one. In order to establish the phase coherence
between the two trains of bisolitons, the wavefunctions of the bisolitons B and
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Figure 10.12. Bisolitons on polymer chains shown schematically by thick straight lines. (a) d
is the size of a bisoliton (see Fig. 6.20), and Lmin is the minimum permissible distance between
two bisolitons on the same chain. (b) . is the distance between two parallel polymer chains. (c)
Bisoliton trains on parallel polymer chains, moving with a velocity v. The number of chains is
n ≥ Lmin/d, and L ≥ Lmin is the distance between bisolitons on the same chain. In one train,
bisolitons on the adjacent chains travel with a delay in time ∆t ∼ d/v relative to one another.
(d) The polymer chains from plot (c) wrapped to form a tube (for more details, see text).

C in Fig. 10.12c must overlap. This can be achieved by wrapping these chains
to form a tube (a sort of a nanotube) shown schematically in Fig. 10.12d. The
radius of this nanotube is ∼ d n/2π. In this case, all the bisolitons, from the
first to the last one, will be in phase. However, the system as whole will not be
superconducting because the ends of all the chains are not connected together
(otherwise, it is impossible to arrange the trains of bisolitons).

We are now in a position to discuss a suggestion which can be realized
in practice and can be successful. Instead of using several polymer chains,
one should take one chain and twist it in shape of a helix, as shown in Fig.
10.13a. The helix step must be h ∼ d and its radius should equal, or be

larger than, Rmin � 1
2π

√
L2

min − h2. By sending a bisoliton series along this

spiral polymer with a repetition time of
√

(2πR)2 + h2/v, one will observe
a bisoliton condensate traveling along the polymer. This can be achieved not
only at 350 K but even at 500 K. Instead of a chain polymer, one may use a
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Figure 10.13. Bisoliton trains on a helix polymer having a step of the order of the bisoliton
size d: (a) one train representing a bisoliton condensate moving along the polymer, and (b) two
trains traveling on the opposite sides of the helix. These two bisolitons trains are not in phase
(for more details, see text). The bisoliton velocity v is relative to the polymer.

carbon nanotube. Alternatively, a nanostripe of graphene [70] having a width
of a few carbon bonds can also be used.

To realize this idea in practice, one will however face, at least, three prob-
lems. First, technologically, it is not easy to twist a polymer in a helix with
a fixed radius and a fixed step. Second, one should invent a device produc-
ing trains of bisolitons with a frequency of v/

√
(2πR) + h2. Finally, certain

molecules upon receiving a charge isomerize, i.e. change their shape upon
receiving a charge [80]. This change is small [80] but in a long polymer con-
taining a large number of bisolitons the total change can be noticeable. This
can be a real problem for some polymers.

In the case shown in Fig. 10.13a, the polymer may slightly bend following
the rotation of bisolitons. To avoid this unwanted bend of the helix, one may
use two trains of bisolitons, as shown in Fig. 10.13b. In this case, the two trains
of bisolitons are not in phase with one another but, being on the opposite sides
of the helix, their actions on the helix structure are mutually compensated. In
the general case when N bisolitons travel within a single helix step, the helix
should have the following dimensions h ∼ d and R ≥ 1

2π

√
(NLmin)2 − h2.

The repetition time in the general case equals
√

(2πR)2 + h2/(vN).
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In Fig. 10.13, one can notice that the structure of the polymer is similar
to that of DNA. It is amazing that we continue to find additional parallels be-
tween superconductivity and the living matter. In fact, one may even adopt
the DNA structure for avoiding a bend of the helix discussed above. To real-
ize this, two spirals twisted in the opposite directions should be put together,
resulting in a structure similar to that of DNA. The ends of these two spirals
must be connected. If in a single helix, a bisoliton train circles in one direc-
tion, in the double helix, two bisoliton trains circle in the opposite directions
symmetrically along the main axis of the polymer.

What about DNA itself: can it exhibit superconductivity when it is charged
by a bisoliton train? The double helix of DNA has a radius of 10 A

◦
, and its

step is 34 A
◦

. Such a structure is suitable for bisolitons having the following
characteristics d ∼ 34 A

◦
and Lmin ∼

√
(2πR)2 + d2 ≈ 71 A

◦
. In practice,

the ratio Lmin/d should be at least 5. This is however not the case for DNA.
Thus, the structure of DNA is not suitable to support a bisoliton condensate:
its radius is too small. However, this does not mean that DNA cannot support
a few independent bisolitons. Therefore, DNA can be used as material for
electron pairing in the framework of the first approach discussed above.

It is worth noting that the structure of the inorganic polymer (SN)x has the
form of a helix. As discussed in Chapter 3, (SN)x becomes superconducting
below Tc = 0.3 K when doped with bromine. Its unit cell contains two parallel
spirals of (SN)x twisted in the opposite directions [99]. The onset of long-
phase coherence in (SN)x occurs due to, however, not the overlap of bisoliton
wavefunctions but spin fluctuations of unpaired electrons on Br−3 and Br−5 clus-
ters situated between the (SN)x spirals.

At the end of this section, let us discuss the issue of practical application
for such a type of superconductors. It is obvious that such room-temperature
superconductors will have a limited number of applications. For example, they
cannot be used for large-scale applications. On the other hand, they may be
perfect for use in microchips for example. Then, the next question which needs
a solution is the matter of good-quality electrical contacts. This subject is the
topic of the following section.

7. Electrical contacts
Without doubt, a room-temperature superconductor will be available in the

near future. Most likely, it will be a superconductor containing organics. One
of the main problems for use of organic materials is the issue of electrical
contacts. Organic materials cannot be soldered onto metal leads in the conven-
tional sense of this expression because metals do not wet organics. Therefore,
the quality of electrical contacts for a room-temperature superconductor will be
the next problem needed a solution. In an ideal contact, none of the electrons
entering or leaving a piece of material under the test will be scattered back by
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Figure 10.14. Laser-based technique used to solder DNA molecules [37] and carbon nan-
otubes [100] onto metal leads. (a) A target covered with DNA molecules or nanotubes is placed
above metal leads. A short pulse (∼ 10 ns) of a focused laser beam is then fired at the target, and
the target is evaporated. The detached molecules fall down. One molecule may be connected
to the leads due to locally molten metal on each side of the slit as shown in plot (b). For more
details, see text.

the contact. In early experiments with carbon nanotubes, the quality of mi-
crofabricated contacts was bad. In these experiments, the transport therefore
appeared to be diffusive rather than ballistic. Of course, in a contact between a
superconductor and a normal metal, independently of the quality of the contact
there will always be electrons scattered back because of the Andreev reflection.

As discussed above, a DNA molecule can be connected onto metal pads or
beads “chemically.” Alternatively, DNA as well as carbon nanotubes can be
soldered onto the leads by using a laser-based technique mentioned in Chapter
3. Let us consider briefly this nano-soldering technique [37, 100]. A target cov-
ered with DNA molecules or nanotubes is placed above metal leads (a golden
membrane with a slit of ∼ 300 nm), as shown in Fig. 10.14a. A short pulse (∼
10 ns) of a focused laser beam (power ∼ 10 kW) is fired at the target to detach
the molecules from the target. It is anticipated that, at least, one molecule will
fall and connect the edges of the slit below. Since the metal leads on each side
of the slit are locally molten, the molecule gets soldered into the leads, and is
suspended, as shown in Fig. 10.14b. Approximately, one out of ten attempts is
successful. The attempts to solder a nanotube or a DNA molecule lying imme-
diately on the leads were not successful. Thus, the originality of this technique
lies in the suspended character of organic giant molecules [100].

Of course, for industrial production of microchips based on a room-tempera-
ture superconductor, this technique must be improved.
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