


Chapter 1 

Argument Structure 

1.1 WHAT IS AN ARGUMENT? 

Logic is the study of arguments. An argument is a sequence of statements of which one is intended 
as a conclusion and the others, the premises, are intended to prove or at least provide some evidence 
for the conclusion. Here are two simple examples: 

All humans are mortal. Socrates is human. Therefore, Socrates is mortal. 
Albert was not at the party, so he cannot have stolen your bag. 

In the first argument, the first two statements are premises intended to prove the conclusion that 
Socrates is mortal. In the second argument, the premise that Albert was not at the party is offered as 
evidence for the conclusion that he cannot have stolen the bag. 

The premises and conclusion of an argument are always statements or propositions,' as opposed to 
questions, commands, or exclamations. A statement is an assertion that is either true or false (as the 
case may be) and is typically expressed by a declarative ~ e n t e n c e . ~  Here are some more examples: 

Dogs do not fly. 

Robert Musil wrote The Man Without Qualities. 

Brussels is either in Belgium or in Holland. 

Snow is red. 
My brother is an entomologist. 

The first three sentences express statements that are in fact true. The fourth sentence expresses a false 
statement. And the last sentence can be used to express different statements in different contexts, and 
will be true or false depending on whether or not the brother of the speaker is in fact an entomologist. 
By contrast, the following sentences do not express any statements: 

Who is the author of The Man Without Qualities? 

Please do not call after I lpm. 

Come on! 

Nonstatements, such as questions, commands, or exclamation:;, are neither true nor false. They may 
sometimes suggest premises or conclusions, but they are never themselves premises or conclusions. 

SOLVED PROBLEM 

1.1 Some of the following are arguments. Ide-ntify their premises and conclusions. 

(a) He's a Leo, since he was born in the first week of August. 

(6) How can the economy be improving? The trade deficit is rising every day. 

' ~ h i l o s o ~ h e r s  sometimes draw a distinction between statements and propositions, but it is not necessary to make that 
distinction here. 
2The distinction between a statement or proposition and the sentence used to express it is important. A sentence can be 
ambiguous or context-dependent, and can therefore express any of two or more statements-even statements that disagree in 
their being true or false. (Our fifth example below is a case in point.) However, where there is no danger of confusion we shall 
avoid prolixity by suppressing the distinction. For example, we shall often use the term 'argument' to denote sequences of 
statements (as in our definition) as well as the sequences of sentences which express them. 
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I can't go to bed, Mom. The movie's not over yet. 

The building was a shabby, soot-covered brownstone in a decaying neighbor- 
hood. The scurrying of rats echoed in the empty halls. 
Everyone who is as talented as you are should receive a higher education. Go  to 
college! 
We were vastly outnumbered and outgunned by the enemy, and their troops 
were constantly being reinforced while our forces were dwindling. Thus a direct 
frontal assault would have been suicidal. 
He was breathing and therefore alive. 

Is there anyone here who understands this document? 

Many in the U.S. do not know whether their country supports or opposes an 
international ban on the use of land mines. 

Triangle ABC is equiangular. Therefore each of its interior angles measures 60 
degrees. 

Solution 
Premise: He was born in the first week of August. 
Conclusion: He's a Leo. 

Technically this is not an argument, because the first sentence is a question; but the 
question is merely rhetorical, suggesting the following argument: 
Premise: The trade deficit is rising every day. 
Conclusion: The economy cannot be improving. 

Premise: The movie's not over yet. 
Conclusion: I can't go to bed. 

Not an argument; there is no attempt here to provide evidence for a conclusion. 

Not an argument; 'Go to college!' expresses a command, not a statement. Yet the 
following argument is suggested: 
Premise: Everyone who is as talented as you are should receive a higher education. 
Conclusion: You should go to college. 

Premise: We were vastly outnumbered and outgunned by the enemy. 
Premise: Their troops were constantly being reinforced while our forces were dwindling. 
Conclusion: A direct frontal assault would have been suicidal. 

Though grammatically this is a single sentence, it makes two distinct statements, which 
together constitute the following argument: 
Premise: He was breathing. 
Conclusion: He was alive. 

Not an argument. 

Not an argument. 

Premise: Triangle ABC is equiangular. 
Conclusion: Each of its interior angles measures 60 degrees. 

Though the premises of an argument must be intended to prove or provide evidence for the 
conclusion, they need not actually do so. There are bad arguments as well as good ones. Argument 
l.l(c), for example, may be none too convincing; yet still it qualifies as an argument. The purpose of 
logic is precisely to develop methods and techniques to tell good arguments from bad ones3 

3For evaluative purposes, it may be useful to regard the argument in l.l(c) as incomplete, requiring for its completion the implicit 
premise 'I can't go to bed until the movie is over'. (Implicit statements will be discussed in Section 1.6.) Even so, in most contexts 
this premise would itself be dubious enough to deprive the argument of any rationally compelling persuasive force. 

Since we are concerned in this chapter with argument structure, not argument evaluation, we shall usually not comment on the 
quality of arguments used as examples in this chapter. In no case does this lack of comment constitute a tacit endorsement. 
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Notice also that whereas the conclusion occurs at the end of the arguments in our initial examples 
and in most of the arguments in Problem 1.1, in argument l . l (c)  it occurs at the beginning. The 
conclusion may in fact occur anywhere in the argument, but the beginning and end are the most 
common positions. For purposes of analysis, however, it is customary to list the premises first, each on 
a separate line, and then to give the conclusion. The conclusion is often marked by the symbol ':.', 
which means "therefore." This format is called standard form. Thus the standard form of our initial 
example is: 

All humans are mortal. 
Socrates is human. 

:. Socrates is mortal. 

1.2 IDENTIFYING ARGUMENTS 

Argument occurs only when someone intends a set of premises to support or prove a conclusion. 
This intention is often expressed by the use of inference indicatovs. Inference indicators are words o r  
phrases used to signal the presence of an argument. They are of two kinds: conclusion indicators, which 
signal that the sentence which contains them or to which they are prefixed is a conclusion from 
previously stated premises, and premise indicators, which signal that the sentence to which they are 
prefixed is a premise. Here are some typical examples of each (these lists are by no means 
exhaustive): 

Conclusion Indicators 

Therefore 
Thus 
Hence 
So 
For this reason 
Accordingly 
Consequently 
This being so 
It follows that 
The moral is 
Which proves that 
Which means that 
From which we can infer that 
As a result 
In conclusion 

Premise Indicators 

For 
Since 
Because 
Assuming that 
Seeing that 
Granted that 
This is true because 
The reason is that 
For the reason that 
In view of the fact that 
It is a fact that 
As shown by the fact that 
Given that 
Inasmuch as 
One cannot doubt that 

Premise and conclusion indicators are the main clues in identifying arguments and analyzing their 
structure. When placed between two sentences to form a compound sentence, a conclusion indicator 
signals that the first expresses a premise and the second a conclus,ion from that premise (possibly along 
with others). In the same context, a premise indicator signals just the reverse. Thus, in the compound 
sentence 

H e  is not at home, so he has gone to the movie. 

the conclusion indicator 'so' signals that 'He has gone to the movie7 is a conclusion supported by the 
premise 'He is not at home7. But in the compound sentence 

H e  is not at home, since he has gone to the movie. 
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1.3 COMPLEX ARGUMENTS 

Some arguments proceed in stages. First a conclusion is drawn from a set of premises; then that 
conclusion (perhaps in conjunction with some other statements) is used as a premise to draw a further 
conclusion, which may in turn function as a premise for yet another conclusion, and so on. Such a 
structure is called a complex argument. Those premises which are intended as conclusions from 
previous premises are called nonbasic premises or intermediate conclusions (the two names reflect their 
dual role as conclusions of one step and premises of the next). Those which are not conclusions from 
previous premises are called basic premises or assumptions. For example, the following argument is 
complex: 

All rational numbers are expressible as a ratio of integers. But pi is not expressible as a ratio of integers. 
Therefore pi is not a rational number. Yet clearly pi is a number. Thus there exists a t  least one 
nonrational number. 

The conclusion is that there exists at least one nonrational number (namely, pi). This is supported 
directly by the premises 'pi is not a rational number' and 'pi is a number'. But the first of these premises 
is in turn an intermediate conclusion from the premises 'all rational numbers are expressible as a ratio 
of integers' and 'pi is not expressible as a ratio of integers'. These further premises, together with the 
statement 'pi is a number', are the basic premises (assumptions) of the argument. Thus the standard 
form of the argument above is: 

All rational numbers are expressible as a ratio of integers. 

Pi is not expressible as a ratio of integers. 

:. Pi is not a rational number. 
Pi is a number. 

. There exists at least one nonrational number. 

Each of the simple steps of reasoning which are linked together to form a complex argument is an 
argument in its own right. The complex argument above consists of two such steps. The first three 
statements make up the first, and the second three make up the second. The third statement is a 
component of both steps, functioning as the conclusion of the first and a premise of the second. With 
respect to the complex argument as a whole, however, it  counts as a (nonbasic) premise. 

SOLVED PROBLEMS 

1.6 Rewrite the argument below in standard form. 

@[YOU needn't worry about subzero temperatures in June even on the highest peaks.] 
@[1t never has gotten that cold in the summer months,] and @@[it probably never 
will.] 

Solution 

'So' is a conclusion indicator, signaling that statement 3 follows from statement 2. But the 
ultimate conclusion is statement 1.  Hence this is a complex argument with the following 
structure: 

It never has gotten below zero even on the highest peaks in the summer months. 
:. It probably never will. 
:. You needn't worry about subzero temperatures in June even on the highest peaks. 

1.7 Rewrite the argument below in standard form: 

@ [ ~ r t h u r  said he will go to the pa~ty,]  G h i c h  means t h a 3  @[~udi th  will go too.] a 
@[she won't be able to  go to the movie with us.] 
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Solution 
'Which means that' and 'so' are both conclusion indicators: the former signals a preliminary 

conclusion (statement 2) from which the ultimate conclusion (statement 3) is inferred. The 
argument has the following standard form: 

Arthur said he will go to the party. 
:. Judith will go to the party too. 
:. She won't be able to go to the movie with us. 

1.4 ARGUMENT DIAGRAMS 

Argument diagrams are a convenient way of representing inferential structure. To diagram an 
argument, circle the inference indicators and bracket and number each statement, as in Problems 1.2 
to 1.7. If several premises function together in a single step of reasoning, write their numbers in a 
horizontal row, joined by plus signs, and underline this row of numbers. If a step of reasoning has only 
one premise, simply write its number. In either case, draw an a.rrow downward from the number(s) 
representing a premise (or premises) to the number representing the conclusion of the step. Repeat this 
procedure if the argument contains more than one step (a complex argument). 

SOLVED PROBLEM 

1.8 Diagram the argument below. 

@[~oday  is either Tuesday or Wednesday.] But @[it can't be Wednesday,] 
@[the doctor's office was open this morning,] and @[that office is always closed on 
Wednesday,] m-e> @[today must be Tuesday.] 

Solution 
The premise indicator 'since' signals that statements 3 and 4 are premises supporting 

statement 2. The conclusion indicator 'therefore' signals that statement 5 is a conclusion from 
previously stated premises. Consideration of the context and meaning of each sentence reveals 
that the premises directly supporting 5 are 1 and 2. Thus the argument should be diagramed as 
follows: 

The plus signs in the diagram mean "together with" or "in conjunction with," and the arrows mean 
"is intended as evidence for." Thus the meaning of the diagram of Problem 1.8 is: "3 together with 4 
is intended as evidence for 2, which together with 1 is intended as evidence for 5." 

An argument diagram displays the structure of the argume:nt at a glance. Each arrow represents a 
single step of reasoning. In Problem 1.8 there are two steps, one from 3 and 4 to 2 and one from 1 and 
2 to 5. Numbers toward which no arrows point represent basic premises. Numbers with arrows pointing 
both toward and away from them designate nonbasic premises. The number at the bottom of the 
diagram with one or more arrows pointing toward it but none pointing away represents the final 
concl~s ion .~  The basic premises in Problem 1.8 are statements 1,  3, and 4; statement 2 is a nonbasic 
premise, and statement 5 is the final conclusion. 

"ome authors allow diagrams that exhibit more than one final conclusion, but we will adopt the convention of splitting up such 
diagrams into as many separate diagrams as there are final conclusions (these may all have the same premises). 
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Argument diagrams are especially convenient when an argument has more than one step. 

SOLVED PROBLEM 

1.9 Diagram the following argument: 
@(Watts is in Los Angeles] and @[is United States] and- 
@[is part of a fully industrialized a part of the third world,] 

@[the third world is made up exclusively of developing nations] and 
@[developing nations are by definition not fully industrialized.] 

Solution 
The words 'therefore', 'hence', and 'thus' are conclusion indicators, signifying that the 

sentence following or containing them is a conclusion from previously stated premises. (2 and 
3 are not complete sentences, since the subject term 'Watts' is missing. Yet it is clear that each 
expresses a statement; hence we bracket them accordingly.) 'Since' is a premise indicator, which 
shows that  statements 5 and 6 are intended to support statement 4. The term 'thus' in statement 
4 shows that 4 is also a conclusion from 3. Thus, 3,5, and 6 function together as premises for 4. 
The argument can be diagramed as follows: 

Because of the great variability of English grammar, there are no simple, rigorous rules for bracket 
placement. But there are some general principles. The overriding consideration is to bracket the 
argument in the way which best reveals its inferential structure. Thus, for example, if two phrases are 
joined by an inference indicator, they should be bracketed as separate units regardless of whether or 
not they are grammatically complete sentences, since the indicator signals that one expresses a premise 
and the other a conclusion. Problems 1.8 and 1.9 illustrate this principle. 

It  is also generally convenient to separate sentences joined by 'and', as we did with statements 3 
and 4 in Problem 1.8 and statements 5 and 6 in Problem 1.9. This is especially important if only one of 
the two is a conclusion from previous premises (as will be the case with statements 2 and 3 in  Problem 
1.21, below), though it is not so crucial elsewhere. Later, however, we shall encounter contexts in which 
it is useful to treat sentences joined by 'and' as a single unit. 'And' usually indicates parallel function. 
Thus, for example, if one of two sentences joined by 'and' is a premise supporting a certain conclusion, 
the other is likely also to be a premise supporting that conclusion. 

Some compound sentences, however, should never be bracketed off into their components, since 
breaking them up changes their meaning. Two common locutions which form compounds of this sort 
are 'either . . . or' and 'if.  . . then'. (Sometimes the terms 'either' and 'then' are omitted.) Someone who 
asserts, for example, 'Either it will stop raining or the river will Hood' is saying neither that it will stop 
raining nor that the river will flood. H e  or she is saying merely that one or the other will happen. To 
break this sentence into its components is to alter the thought. Similarly, saying 'If it doesn't stop 
raining, the river will flood' is not equivalent to saying that it  will not stop raining and that the river will 
flood. The sentence means only that a flood will occur if it doesn't stop raining. This is a conditional 
statement that must be treated as a single unit. 

Notice, by contrast, that if someone says 'Since it won't stop raining, the river will flood', that 
person really is asserting both that it won't stop raining and that the river will flood. 'Since' is a premise 
indicator in this context, so the sentences it joins should be treated as separate units in argument 
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analysis. Locutions like 'either . . . or' and ' i f .  . . then' are not inference indicators. Their function will 
be discussed in Chapters 3 and 4. 

SOLVED PROBLEM 

1.10 Diagram the argument below. 
 ither her the UFOs are secret enemy weapons or they are spaceships from an alien 
world.] @[lf they are enemy weapons, then enemy technology is (contrary to current 
thinking) vastly superior to ours.] @[lf they are alien spacecraft, then they display a 
technology beyond anything we can even imagine.] In any case, @h-Q@[their 
builders are more sophisticated technologically than we are.] 

Solution 

The conclusion indicator 'therefore' (together with the qualification 'in any case') signals 
that statement 4 is a conclusion supported by all the preceding statements. Note that these are 
bracketed without breaking them into their components. Thus the diagram is: 

In addition to 'either . . . or' and 'if . . . then', there are a variety of other locutions which join two or 
more sentences into compounds which should always be treated as single units in argument analysis. 
Some of the most common are: 

Only if 
Provided that 
If and only i f  
Neither. . . nor 

Unless 

Until 
When 

Before 

'Since' and 'because' also form unbreakable compounds when they are not used as premise 
indicators. 

SOLVED PROBLEMS 

1.11 Diagram the argument below. 
@[I knew her even before she went to Nepal,] a @ [ i t  was well before she returned 
that I first met her.] @[you did not meet her until after she returned,] @[I met 
her before you did.] 

Solution 

Notice that the compound sentences formed by 'before' and 'until' are treated as single units. 
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1.12 Diagram the argument below. 
 he check is void unless it is cashed within 30 days.]  he he date on the check is 
September 2,] and @[it is now October 8.1 the check is now void.] 
@[You cannot cash a check which is void.] cash this one.] 

Solution 
1 + 2 + 3  

Notice that premise I ,  a compound sentence joined by 'unless', is treated as a single unit. 

Often an argument is interspersed with material extraneous to the argument. Sometimes two or 
more arguments are intertwined in the same passage. In such cases we bracket and number all 
statements as usual, but only those numbers representing statements that are parts of a particular 
argument should appear in its diagram. 

SOLVED PROBLEM 

1.13 Diagram the argument below. 
@[she could not have known that the money was missing from the safe,] -@[she 
had no access to the safe itself.] @[1f she had known the money was missing, there is 
no reason to think that she wouldn't have reported it.] But @[she couldn't have 
known,l @[there was nothing she could have done.] if she could have 
done &mething, it was already too late to prevent the crime;] @[the money was gone.] 
G E > @ [ s h e  bears no guilt in this incident.] 

Solution 

Notice that statement 1 occurs twice, the second time in a slightly abbreviated version. To 
prevent the confusion that might result if  the same sentence had two numbers, we label it 1 in 
both its first and second occurrences. Statements 3, 5, and 6 make'no direct contribution to the 
argument and thus are omitted from the diagram. However, 5 and 6 may be regarded as a 
separate argument inserted into the main line of reasoning, with 6 as the premise and 5 as the 
conclusion: 

6 

1 
5 

1.5 CONVERGENT ARGUMENTS 

If an argument contains several steps of reasoning which all support the same (final or 
intermediate) conclusion, the argument is said to be convergent. Consider: 

One  should quit smoking. It is very unhealthy, and it is annoying to the bystanders. 
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Here the statements that smoking is unhealthy and that i t  is annoying function as independent reasons 
for the conclusion that one should quit smoking. We do not, for example, need to assume the first 
premise in order to understand the step from the second premise 1.0 the conclusion. Thus, we should not 
diagram this argument by linking the two premises and drawing a single arrow to the conclusion, as in 
the examples considered so far. Rather, each premise should have its own arrow pointing toward the 
conclusion. A similar situation may occur at any step in a complex argument. In general, therefore, a 
diagram may contain numbers with more than one arrow pointing toward them. 

SOLVED PROBLEM 

1.14 Diagram the argument below. 
 he he Bensons must be home.] @[Their front door is open.] @[their car is in the 
driveway,] and @[their television is on,] (3 @[I can see its glow through the 
window.] 

Solution 

The argument is convergent. Statements 2,3, and 4 function as independent reasons for the 
conclusion, statement 1. Each supports statement 1 s'eparately, and must therefore be linked to  
it by a separate arrow. 

Premises should be linked by plus signs, by contrast, when they do not function independently, i.e., 
when each requires completion by the others in order for the argument to make good sense. 

SOLVED PROBLEM 

1 . 5  Diagram the argument below. 
@ [ ~ v e r ~ o n e  a t  this party is a biochemist.] and @[all biochemists are intelligent.] 
chereforel) @ @[Sally is at this party,] @[Sally is intelligent.] 

Solution 

1 + 2 + 3  

The argument is not convergent; each of its premises requires completion by the others. Taken 
by themselves, none of the premises would make gclod sense as support for statement 4. 

Incidentally, note that the argument contains a premise indicator, 'since', immediately following a 
conclusion indicator, 'therefore'. This is a relatively common construction. It signals that the first 
statement following the premise indicator (in this case, 3) is a premise supporting the second (in this 
case, 4), and also that the second is supported by previously given premises. 

Convergent arguments exhibit many different patterns. Sometimes separate lines of reasoning 
converge on intermediate conclusions, rather than on final conclusions. Sometimes they converge on 
both. 
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SOLVED PROBLEM 
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1.16 Diagram the argument below. 
 he Lions are likely to lose this final game,] G o r  three reaons>@[their star 
quarterback is sidelined with a knee injury,] @[morale is low after two disappointing 
defeats,] and @[this is a road game] and @[they've done poorly on the road all season.] 
@[If they lose this one, the coach will almost certainly be fired.] But cha t ' s  not the 
only reason to think t h a g  @[his job is in jeopardy.] @ @[he has been accused by 
some of the players of closing his eyes to drug abuse among the team,] and @[no coach 
who lets his players use drugs can expect to retain his post.] 

Solution 

This argument exhibits a complex convergent structure: 

1.6 IMPLICIT STATEMENTS 

It is often useful to regard certain arguments as incompletely expressed. Argument l . l ( c )  and the 
argument of Problem 1.4, for instance, can be thought of as having unstated assumptions (see the 
footnotes concerning these arguments). There are also cases in which it is clear that the author wishes 
the audience to draw an unstated conclusion. For instance: 

One of us must do the dishes, and it's not going to be me. 

Here the speaker is clearly suggesting that the hearer should do the dishes, since no other possibility 
is left open. 

SOLVED PROBLEM 

1.17 Complete and diagram the following incomplete argument: 
@[1t was certain that none of the President's top advisers had leaked the information,] 
and yet @[it had indeed been leaked to the press.] 

Solution 
These two statements are premises which suggest the implicit conclusion: 

@[Someone other than the President's top advisers leaked the information to the 
press.] 

Thus the diagram is: 

Implicit premises or conclusions should be "read into'' an argument only if they are required to 
complete the arguer's thought. No statement should be added unless it clearly would be accepted by the 
arguer, since in analyzing an argument, it is the arguer's thought that we are trying to understand. The 
primary constraint governing interpolation of premises and conclusions is the principle of charity: in 
formulating implicit statements, give the arguer the benefit of the doubt; try to make the argument as 
strong as possible while remaining faithful to what you know of the arguer's thought. The point is to 
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minimize misinterpretation, whether deliberate or accidental. (Occasionally we may have reason to 
restructure a bad argument in a way that corrects and hence departs from the arguer's thought. But in 
that case we are no longer considering the original argument; we are creating a new, though related, 
argument of our own.) 

SOLVED PROBLEM 

1.18 Complete and diagram the following incomplete argument: 

@[Karla is an atheist,](which just goes to ~f*t>@[~ou don't have to believe in 
God to be a good person.] 

Solution 
We first consider a solution which is incorrect. Suppose someone were to reply to this 

argument, "Well, that's a ridiculous thing to say; look, you're assuming that all atheists are good 
people." Now this alleged assumption is one way of cotnpleting the author's thought, but it is not 
a charitable one. This assumption is obviously false, (and it is therefore unlikely to have been 
what the author had in mind. Moreover, the argument is not meant to apply to all atheists; there 
is no need to assume anything so sweeping to support the conclusion. What is in fact assumed 
is probably something more like: 

@[Karla is a good person.] 

This may well be true, and it yields a reasonably strong argument while remaining faithful 
to what we know of the author's thought. Thus a charitable interpretation of the argument is: 

1 + 3  

Sometimes, both the conclusion and one or more premises are implicit. In fact, an entire argument may 
be expressed by a single sentence. 

SOLVED PROBLEMS 

1.19 Complete and diagram the following incomplete argument. 

@[1f you were my friend, you wouldn't talk behind my back.] 

Solution 

This sentence suggests both an unstated premise and an unstated conclusion. The 
premise is: 

@[YOU do talk behind my back.] 

And the conclusion is: 

@[YOU aren't my friend.] 

Thus the diagram is: 

1.20 Complete and diagram the following incomplete argument. 

 he liquid leaking from your engine is water.] @[There are only three liquids in the 
engine: water, gasoline, and oil.] @[The liquid that is leaking is not oil,] @ e Q @ [ i t  
is not viscous,] and @[it is not gasoline,] @) @[it has no odor.] 
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Solution 

The premise indicator 'because' signals that statement 4 is a premise supporting statement 
3. But this step obviously depends on the additional assumption: 

@[Oil is viscous.] 

Likewise, the premise indicator 'since' shows that statement 6 supports statement 5, again 
with an additional assumption: 

@[Gasoline has an odor.] 

The conclusion of the argument is statement 1. Though no  further inference indicators are 
present, it is clear that statements 2, 3, and 5 are intended to  support statement 1. For the sake 
of completeness, we may also add the rather obvious assumption: 

@[A liquid is leaking from your engine.] 

The diagram is: 

Many arguments, of course, are complete as stated. The arguments of our initial examples and of 
Problems 1.8 and 1.10, for instance, have no implicit premises or conclusions. These are clear examples 
of completely stated arguments. In less clear cases, the decision to regard the argument as having an 
implicit premise may depend on the degree of rigor which the context demands. Consider, for instance, 
the argument of Problem 1.3. If we need to be very exacting-as is the case when we are formalizing 
arguments (see Chapters 3 and 6)-it may be appropriate to point out that the author makes the 
unstated assumption: 

Borrowed money paid back in highly inflated dollars is less expensive in real terms than borrowed money 
paid back in less inflated dollars. 

In ordinary informal contexts, however, this much rigor amounts to laboring the obvious and may not 
be worth the trouble. 

We conclude this section with a complex argument that makes several substantial implicit 
assumptions. 

SOLVED PROBLEM 

1.21 This argument is from the great didactic poem De rerum natura (On the Nature 
of the Universe) by the Roman philosopher Lucretius. Diagram it and supply missing 
premises where necessary. 

 he atoms that comprise spirit) are obviously far smaller than those of swift- 
flowing water or mist or smoke,] - @[it far outstrips them in mobility] and @[is 
moved by a far slighter impetus.] Indeed, @)[it is actually moved by images of smoke 
and mist.] So, for instance, @[when we are sunk in sleep, we may see altars sending up  
clouds of steam and giving off smoke;] and <we cannot doubt thaD@[we are here 
dealing with images.] Now we see that @[water flows out in all directions from a 
broken vessel and the moisture is dissipated, and mist and smoke vanish into thin air.] 
Be assured, QE,] that @[spirit is similarly dispelled and vanishes far more 
speedily and is sooner dissolved into its component atoms once it has been let loose 
from the human frame.] 
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In logic and mathematics, letters themselves are sometimes used as names or variables standing for 
various objects. In such uses they may stand alone without quotation marks. In item (b), for example, 
the occurrences of the letters 'x '  and ' y ' ,  without quotation marks, function as variables designating 
numbers. 

Another point to notice about item (b) (and item (d)) is that the period at the end of the sentence 
is placed after the last quotation mark, not before, as standard punctuation rules usually dictate. In 
logical writing, punctuation that is not actually part of the expression being mentioned is placed outside 
the quotation marks. This helps avoid confusion, since the expression being mentioned is always 
precisely the expression contained within the quotation marks. 

Logic may be studied from two points of view, the formal and the informal. Formal logic is the study 
of argument forms,  abstract patterns common to many different arguments. A n  argument form is 
something more than just the structure exhibited by an argument diagram, for it encodes something 
about the internal composition of the premises and conclusion. A typical argument form is exhibited 
below: 

If P,  then (2 
P 

:. Q 

This is a form of a single step of reasoning with two premises and a conclusion. The letters 'P' and 'Q' 
are variables which stand for propositions (statements). These two variables may be replaced by any 
pair of declarative sentences to produce a specific argument. Since the number of pairs of declarative 
sentences is potentially infinite, the form thus represents infinitely many different arguments, all having 
the same structure. Studying the form itself, rather than the specific arguments it represents, allows one 
to make important generalizations which apply to all these arguments. 

Informal logic is the study of particular arguments in natural language and the contexts in which 
they occur. Whereas formal logic emphasizes generality and theory, informal logic concentrates on 
practical argument analysis. The two approaches are not opposed, but rather complement one another. 
In this book, the approach of Chapters 1, 2, 7, and 8 is predom:inantly informal. Chapters 3, 4, 5 ,  6, 9, 
and 10 exemplify a predominantly formal point of view. 

Supplementary Problems 

I Some of the following are arguments; some are not. For those which are, circle all inference indicators, 
bracket and number statements, add implicit premises or conclusions where necessary, and diagram the 
argument. 

(1) You should do well, since you have talent and you are a hard worker. 

(2) She promised to marry him, and so that's just what she sh.ould do. So if she backs out, she's definitely 
in the wrong. 

( 3 )  We need more morphine. We've got 32 casualties and only 12 doses of morphine left. 

(4) I can't help you if  I don't know what's wrong-and I just don't know what's wrong. 

(5) If wishes were horses, then beggars would ride. 

(6) If there had been a speed trap back there, it would have shown up on this radar detector, but 
none did. 
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The earth is approximately 93 million miles from the sun. The moon is about 250,000 miles from the 
earth. Therefore, the moon is about 250,000 miles closer to the sun than the earth is. 

She bolted from the room and then suddenly we heard a terrifying scream. 

I followed the recipe on the box, but the dessert tasted awful. Some of the ingredients must have 
been contaminated. 

Hitler rose to power because the Allies had crushed the German economy after World War I. 
Therefore if the Allies had helped to rebuild the German economy instead of crushing it, they would 
never have had to deal with Hitler. 

[The apostle Paul's] father was a Pharisee. . . . He [Paul] did not receive a classical education, for no 
Pharisee would have permitted such outright Hellenism in his son, and no man with Greek training 
would have written the bad Greek of the Epistles. (Will Durant, The Story of Civilization) 

The contestants will be judged in accordance with four criteria: beauty, poise, intelligence, and 
artistic creativity. The winner will receive $50,000 and a scholarship to attend the college of her 
choice. 

Capital punishment is not a deterrent to crime. In those states which have abolished the death 
penalty, the rate of incidence for serious crimes is lower than in those which have retained it. 
Besides, capital punishment is a barbaric practice, one which has no place in any society which calls 
itself "civilized." 

Even if he were mediocre, there are a lot of mediocre judges and people and lawyers. They are 
entitled to a little representation, aren't they, and a little chance? We can't have all Brandeises and 
Frankfurters and Cardozos and stuff like that there. (Senator Roman Hruska of Nebraska, 
defending President Richard Nixon's attempt to appoint G. Harrold Carswell to the Supreme Court 
in 1 970) 

Neither the butler nor the maid did it. That leaves the chauffeur or the cook. But the chauffeur was 
at the airport when the murder took place. The cook is the only one without an alibi for his 
whereabouts. Moreover, the heiress was poisoned. It's logical to conclude that the cook did it. 

The series of integers (whole numbers) is infinite. If it weren't infinite, then there would be a last (or 
highest) integer. But by the laws of arithmetic, you can perform the operation of addition on any 
arbitrarily large number, call it n, to obtain n + 1. Since n + 1 always exceeds n, there is no last (or 
highest) integer. Hence the series of integers is infinite. 

The Richter scale measures the intensity of an earthquake in increments which correspond to 
powers of 10. A quake which registers 6.0 is 10 times more severe than one which measures 5.0; 
correspondingly, one which measures 7.0 releases 10 times more energy than a 6.0, or 100 times 
more than a 5.0. So a famous one such as the quake in San Francisco in 1906 (8.6) or Alaska in 1964 
(8.3) is actually over a thousand times more devastating than a quake with a modest 5.0 reading on 
the scale. 

Can it be that there simply is no evil? If so, why do we fear and guard against something which is 
not there? If our fear is unfounded, it is itself an evil, because it stabs and wrings our hearts for 
nothing. In fact, the evil is all the greater if we are afraid when there is nothing to fear. Therefore, 
either there is evil and we fear it, or the fear itself is evil. (St. Augustine, Confessions) 

The square of any number n is evenly divisible by n. Hence the square of any even number is even, 
since by the principle just mentioned it must be divisible by an even number, and any number 
divisible by an even number is even. 

The count is 3 and 2 on the hitter. A beautiful day for baseball here in Beantown. Capacity crowd 
of over 33,000 people in attendance. There's the pitch, the hitter swings and misses, strike three. 
That's the tenth strikeout Roger Clemens has notched in this game. He has the hitters off stride and 
is pitching masterfully. He should be a candidate for the Cy Young award. 

Parents who were abused as children are themselves more often violent with their own children than 
parents who were not abused. This proves that being abused as a child leads to further abuse of the 
next generation. Therefore the only way to stop the cycle of child abuse is to provide treatment for 
abused children before they themselves become parents and perpetuate this sad and dangerous 
problem. 
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(22) Assume a perfectly square billiard table and suppose a billiard ball is shot from the middle of one 
side on a straight trajectory at an angle of 45 degrees to that side. Then the ball will hit the middle 
of an adjoining side at an angle of 45 degrees. Now the ball will always rebound at an angle equal 
to but in the opposite direction from the angle of its approach. Hence it will be reflected at an angle 
of 45 degrees and hit the middle of the side opposite from where it started. Thus by the same 
principle it will hit the middle of the next side at an angle 04 45 degrees, and hence again it will return 
to the point from which it started. 

I1 Supply quotation marks in the following sentences in such a way as to make them true. 

(1) The capital form of x is X. 

(2) The term man may designate either all human beings or only those who are adult and male. 

(3) Love is a four-letter word. 

(4) Rome is known by the name the Eternal City. The Vatican is in Rome. Therefore, the Vatican is in 
the Eternal City. 

( 5 )  Chapter 1 of this book concerns argument structure. 

(6 )  In formal logic, the letters P and Q are often used to designate propositions. 

(7) If we use the letter P to designate the statement It is snowing and Q to designate It is cold outside, 
then the argument It is snowing; therefore it is cold outside is symbolized as P; therefore Q. 

Answers to Selected Supplementary Problems 

1 (2) @[she promised to marry him,] and @ @[that's just what she should do.] @ @[if she backs out, 
she's definitely in the wrong.] 

(4) @[I can't help you if I don't know what's wrong]-and @[I just don't know what's wrong.] @[I can't 
help you.] 

(5) Not an argument. 

(10) @[Hitier rose to power because the Allies had crushed the German economy after World War I.] 
C~ereforeh '>@[if the Allies had helped to rebuild the German economy instead of crushing it, they 
would never have had to deal with Hitler.] 

(11)  he apostle Paul's father was a Pharisee.] @[Paul did not receive a classical education,] @ 
@[no Pharisee would have permitted such outright Hellenism in his son,] and @[no man with Greek 
training would have written the bad Greek of the Epistles.] 
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(16) @[The series of integers (whole numbers) is infinite.] @[1f it weren't infinite, then there would be a 
last (or highest) integer.] But @[by the laws of arithmetic, you can perform the operation of addition 
on any arbitrarily large number, call it n, to obtain n + l . ] c s G > @ [ n  + 1 always exceeds n,] 
@[there is no  last (or highest)  integer.]<^) @[the series of integers is infinite.] 

(22) <A=.) @[a billiard table is perfectly square] and @-Q@[a billiard ball is shot from the 
middle of one side on a straight trajectory at an angle of 45 degrees to that side.] -@[the ball 
will hit the middle of an adjoining side at an angle of 45 degrees.] Now @[the ball will always 
rebound at an angle equal to but in the opposite direction from the angle of its a p p r o a c h . ] c ~ E 3  
@[it will an angle of 45 degrees and hit the middle of the side opposite from where 

same principle @[it will hit the middle of the next side at an angle of 45 
@[it will return to the point from which it started.] 

I1 (1) The capital form of 'x' is 'X'. 

(3) 'Love' is a four-letter word. 

(5) Chapter 1 of this book concerns argument structure. (No quotation marks) 

(7) If we use the letter 'P' to  designate the statement 'It is snowing' and 'Q' to  designate 'It is 
cold outside', then the argument 'It is snowing; therefore it is cold outside' is symbolized as 'P; 
therefore Q'. 



Chapter 2 

Argument Evaluation 

2.1 EVALUATIVE CRITERIA 

Though an argument may have many objectives, its chief purpose is usually to demonstrate that a 
conclusion is true or at least likely to be true. Typically, then, arguments may be judged better or worse 
to the extent that they accomplish or fail to accomplish this purpose. In this chapter we examine four 
criteria for making such judgments: (1) whether all the  premise;^ are true; (2) whether the conclusion 
is at least probable, given the truth of the premises; (3) whether the premises are relevant to the 
conclusion; and (4') whether the conclusion is vulnerable to new evidence. 

Not all of the four criteria are applicable to all arguments. If. for example, an argument is intended 
merely to show that a certain conclusion follows from a set of premises, whether or not these premises 
are true, then criterion 1 is inapplicable; and, depending on the case, criteria 3 and 4 may be 
inapplicable as well. Here, however, we shall be concerned with the more typical case in which it is the 
purpose of an argument to establish that its conclusion is indeeld true or likely to be true. 

2.2 TRUTH OF PREMISES 

Criterion 1 is not by itself adequate for argument evaluation, but it provides a good start: no 
matter how good an argument is, it cannot establish the truth of its conclusion if any of its premises 
are false. 

SOLVED PROBLEM 

2.1 Evaluate the following argument with respect to criterion 1: 

Since all Americans today are isolationists, history will record that at the end of the 
twentieth century the United States failed as a defender of world democracy. 

Solution 

The premise 'All Americans today are isolationists' is certainly false; hence the argument 
does not establish that the United States will fail as a defender of world democracy. This does 
not mean, of course, that the conclusion is false, but only that the argument is of no use in 
determining its truth or  falsity. (One way to produce a better argument would be to  make a 
cilreful study of the major forces currently shaping American foreign policy and to  draw 
informed conclusions from that.) 

Often the truth or falsity of one or more premises is unknown, so that the argument fails to 
establish its conclusion so far as we know. In such cases we lack sufficient information to apply criterion 
1 reliably, and it may be necessary to suspend judgment until further information is acquired. 

SOLVED PROBLEM 

2.2 Evaluate the following argument with respect to criterion 1: 

There are many advanced extraterrestrial civilizations in our galaxy. 
Many of these civilizations generate electromagnetic signals powerful (and often) 
enough to be detected on earth. 

:. We have the ability to detect signals generated by extraterrestrial civilizations. 



ARGUMENT EVALUATION [CHAP. 2 

Solution 
We d o  not yet know whether the premises of this argument are true. Hence we can d o  no  

better than to  withhold judgment on it until we can reliably determine the truth or falsity of 
the premises. This argument should not convince anyone of the truth of its conclusion-at least 
not yet. 

Criterion 1 requires only that the premises actually be true, but in practice an argument successfully 
communicates the truth of its conclusion only if those to whom it is addressed know that its premises 
are true. If an arguer knows that his or her premises are true but others do not, then to prove a 
conclusion to them, the arguer must provide further arguments to establish the premises. 

SOLVED PROBLEM 

2.3 A window has been broken. A little girl offers the following argument: "Billy 
broke the window. I saw him do it." In standard form: 

I saw Billy break the window. 
:. Billy broke the window. 

Suppose we have reason to suspect that the child did not see this. Evaluate the 
argument with respect to criterion 1. 

Solution 

Even if the child is telling the truth, her argument fails to establish its conclusion to  us, a t  
least so long as we d o  not know that its premise is true. The best we can d o  for the present is 
to  suspend judgment and seek further evidence. 

Another limitation of criterion 1 is that the truth of the premises-or their being known to be 
true-is no guarantee that the conclusion be also true. It is a necessary condition for establishing the 
conclusion, but not a sufficient condition. In a good argument, the premises must also support the 
conclusion. 

SOLVED PROBLEMS 

2.4 Evaluate the following argument with respect to criterion 1: 

All acts of murder are acts of killing. 
:. Soldiers who kill in battle are murderers. 

Solution 

Since the premise is true, the argument satisfies criterion 1. It nevertheless fails to establish 
its conclusion, for the premise leaves open the possibility that some kinds of killing are not 
murder. Perhaps the killing done by soldiers in battle is of such a kind; the premise, a t  least, 
provides no good reason to  think that it is not. Thus the premise, though true, does not 
adequately support the conclusion; the argument proves nothing. 

2.5 Evaluate the following argument with respect to criterion 1: 

Snow is white. 
:. Whales are mammals. 
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Solution 
Also in this case, the argument satisfies criterion 1: the premise is true. As a matter of fact 

the conclusion is true as well. Yet the argument does not itself establish the conclusion, for the 
premise does no job in supporting the conclusion. 

These examples demonstrate the need for further criteria of argument evaluation, criteria to assess 
the degree to which a set of premises provides direct evidence f'or a conclusion. There are two main 
parameters one must take into account. One is probabilistic: the conclusion may be more or less 
probable relative to the premises. The other parameter is the relevance of the premises to the 
conclusion. These two parameters are respectively the concerns of our next two evaluative criteria. 

2.3 VALIDITY AND INDUCTIVE PROBABILITY 

Criterion 2 evaluates arguments with respect to the probability of the conclusion given the truth of 
the premises. In this respect, arguments may be classified into two categories: deductive and inductive. 
A deductive argument is an argument whose conclusion follows necessarily from its basic premises. 
More precisely, an argument is deductive if it is impossible for its conclusion to be false while its basic 
premises are all true. An inductive argument, by contrast, is one whose conclusion is not necessary 
relative to the premises: there is a certain probability that the conclusion is true if the premises are, but 
there is also a probability that it is false.' 

The probability of a conclusion, given a set of premises, is called inductive probability. The 
inductive probability of a deductive argument is maximal, i.e., equal to 1 (probability is usually 
measured on a scale from 0 to 1). The inductive probability c~f an inductive argument is typically 
(perhaps always) less than 1.' Traditionally, the term 'deductive' is extended to include any argument 
which is intended or purports to be deductive in the sense defined above. It thus becomes necessary to 
distinguish between valid and invalid deductive arguments. Valid deductive arguments are those which 
are genuinely deductive in the sense defined above (i.e., their conclusions cannot be false so long as 
their basic premises are true). Invalid deductive arguments are arguments which purport to be 
deductive but in fact are not. (Some common kinds of "invalid deductive" arguments are discussed in 
Section 8.6.) Unless otherwise specified, however, we shall use the term 'deductive' in the narrower, 
nontraditional sense (i.e., as a synonym for 'valid' or 'valid deductive'). We adopt this usage because 
in practice there is frequently no answer to the question of whether or not the argument "purports" to 
be valid; hence, the traditional definition is in many cases simply inapplicable. Moreover, even where 
it can be applied it is generally beside the point; our chief concern in argument evaluation is with how 
well the premises actually support the conclusion (i.e., with the actual inductive probability and degree 
of relevance), not with how well someone claims they do. 

SOLVED PROBLEM 

2.6 Classify the following arguments as either deductive or inductive: 

(a) No mortal can halt the passage 
You are mortal. 

:. You cannot halt the passage of 

of time. 

time. 

 h he distinction between inductive and deductive argument is drawn differently by different authors. Many define induction in 
ways that correspond roughly with what we, in Chapter 9, call Humean induction. Others draw the distinction on the basis of the 
purported or  intended strength of the reasoning. 
 his is a matter of controversy. According to some theories of inductive logic it is possible for the conclusion of an argument to 
be false while its premises are true and yet for the inductive probability of the argument to be 1. (See R.. Carnap, Logical 
Foundations of Probability, 2d edn, Chicago, University of Chicago Press, 1962.) 
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(b) It is usually cloudy when it rains. 
It is raining now. 
It is cloudy now. . . 

(c) There are no reliably documented instances of human beings over 10 feet tall. 
:. There has never been a human being over 10 feet tall. 

(d) Some pigs have wings. 
All winged things sing. 

:. Some pigs sing. 

(e) Everyone is either a Republican, a Democrat, or a fool. 
The speaker of the House is not a Republican. 
The speaker of the House is no fool. 

:. The speaker of the House is a Democrat. 

(f) If there is a nuclear war, it will destroy civilization. 

There will be a nuclear war. 
:. Civilization will be destroyed by a nuclear war. 

(g) Chemically, potassium chloride is very similar to ordinary table salt (sodium 
chloride). 

:. Potassium chloride tastes like table salt. 

Solution 

(a) Deductive 

(b) Inductive 

(c) Inductive 

(d) Deductive 

(e) Deductive 

(f) Deductive 

(g) Inductive 

Problem 2.6 illustrates the fact that deductiveness and inductiveness are independent of the actual 
truth or falsity of the premises and conclusion; hence criterion 2 is independent of criterion 1 and is 
not by itself adequate for argument evaluation. Notice, for example, that each of the deductive 
arguments exhibits a different combination of truth and falsity. The premises and conclusion of 
Problem 2.6(a) are all true. All the statements in Problem 2.6(d), by contrast, are false. Problem 2.6(e) 
is a mix of truth and falsity; its first premise is surely false, but the truth and falsity of the others vary 
with time as House speakers come and go. None of the statements that make up Problem 2.6(f) is yet 
known to be true or to be false. Yet in items (e) and (f) alike the conclusion could not be false if the 
premises were true. Any combination of truth or falsity is possible in an inductive or a deductive 
argument, except that no deductive (valid) argument ever has true premises and a false conclusion, 
since by definition a deductive argument is one such that it is impossible for its conclusion to be false 
while its premises are true. 

A deductive argument all of whose basic premises are true is said to be sound.  A sound argument 
establishes with certainty that its conclusion is true. Argument 2.6(a), for example, is sound. 

SOLVED PROBLEM 

2.7 Evaluate the following argument with respect to criteria 1 and 2: 
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Everyone has one and only one biological father. 

Full brothers have the same biological father. 
No one is his own biological father. 
There is no one whose biological father is also his full brother. . . 

Solution 

The argument is sound. (Its assumptions are true and it is deductive.) 

Notice that when we say it is impossible for the conclusion of a deductive argument to be false 
while the premises are true, the term "impossible" is to be understood in a very strong sense. It means 
not simply "impossible in practice," but logically impossible, i.e., impossible in its very c~ncep t ion .~  The 
distinction is illustrated by the following problem. 

SOLVED PROBLEM 

2.8 Is the argument below deductive? 

Tommy T. reads The Wall Street Journal. 

:. Tommy T. is over 3 months old. 

Solution 

Even though it is impossible in a practical sense for someone who is not older than 3 
months to  read The Wall Street Journal, it is still coheremtly conceivable; the idea itself embodies 
no contradiction. Thus it is logically possible (though not practically possible) for the conclusion 
to  be false while the premise is true. In other words, the conclusion, though highly probable, is 
not absolutely necessary, given the premise. The ar,gument is therefore not deductive (not 
valid). 

On  the other hand, the argument can be transformed into a deductive argument by the 
addition of a premise: 

All readers of The Wall Street Journal are over 3 months old. 
Tommy T. reads The Wall Street Journal. 

:. Tommy T. is over 3 months old. 

Here it is not only practically impossible for the conclusion to  be false while the premises are 
true; it is logically impossible. This new argument is therefore deductive. 

As explained in Section 1.5, it is often useful to regard arguments like that of Problem 2.8 as 
incomplete and to supply the premise or premises needed to make them ded~c t ive .~  In all such cases, 
however, one should ascertain that the author of the argument would have accepted (or wanted the 
audience to accept) the added premise as true. Supplying a premise not intended by the author unfairly 
distorts the argument. It is also useful to compare the argument of Problem 2.8 with the deductive 
arguments of Problem 2.6. In no context would any of these latter inferences require additional 
premises. 

'some authors define logical impossibility as violation of the laws of logic, but this presupposes some fixed conception of logical 
laws. Typically, these are taken to be the logical truths of formal predicate logic (see Chapter 6). But since we wish to discuss 
validity both in formal logical systems more extensive than predicate logic (see Chapter 11) and in informal logic, we require this 
broader and less precise notion. 
4Some authors hold that all of what we are here calling "inductive arguments" are mere fragments which must be "completed" 
in this way before analysis, so that there are no genuine inductive arguments. 
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Thus far our examples have concerned only simple arguments, arguments consisting of a single step 
of reasoning. We now consider inductive probability for complex arguments, those with two or more 
steps (see Section 1.3). For this purpose, it is important to keep in mind that deductive validity and 
inductive probability are relations between the basic premises and the conclusion. Thus, for example, 
a deductive argument is one whose conclusion cannot be false while its basic premises are true. 
Nonbasic premises are not mentioned in this definition. 

Arguments contain nonbasic premises (intermediate conclusions) primarily as a concession to the 
limitations of the human mind. We cannot grasp very intricate arguments in a single step; so we break 
them down into smaller steps, each of which is simple enough to be readily intelligible. However, for 
evaluative purposes we are primarily interested in the whole span of the argument-i.e., in the 
probability of the conclusion, given our starting points, the basic premises. 

Nevertheless, each of the steps that make up a complex argument is itself an argument, and each 
has its own inductive probability. One might suspect, then, that there is a simple set of rules relating the 
inductive probabilities of the component steps to the inductive probability of the entire complex 
argument. (One obvious suggestion would be simply to calculate the inductive probability of the whole 
argument by multiplying the inductive probabilities of all its steps together.) But no such rule applies 
in all cases. The relation of the inductive probability of a complex argument to the inductive 
probabilities of its component steps is in general a very intricate affair. There are, however, a few 
helpful rules of thumb: 

(1) With regard to complex nonconvergent arguments, if one or more of the steps is weak, then 
usually the inductive probability of the argument as a whole is low. 

(2) If all the steps of a complex nonconvergent argument are strongly inductive or deductive, then (if 
there are not too many of them) the inductive probability of the whole is usually fairly high. 

(3) The inductive probability of a convergent argument (Section 1.4) is usually at least as high as the 
inductive probability of its strongest branch. 

Yet, because the complex ways in which the information contained in some premises may conflict with 
or reinforce the information contained in others, each of these rules has exceptions. Rules 1 to 3 allow 
us to make quick judgments which are usually accurate. But the only way to ensure an accurate 
judgment of inductive probability in the cases mentioned in these rules is to examine directly the 
probability of the conclusion given the basic premises, ignoring the intermediate steps. 

There is only one significant exceptionless rule relating the strength of reasoning of a complex 
argument to the strength of reasoning of its component steps: 

(4) If all the steps of a complex argument are deductive, then so is the argument as a whole. 

It is not difficult to see why this is so. If each step is deductive, then the truth of the basic premises 
guarantees the truth of any intermediate conclusions drawn from them, and the truth of these 
intermediate conclusions guarantees the truth of intermediate conclusions drawn from them in turn, 
and so on, until we reach the final conclusion. Thus if the basic premises are true, the conclusion must 
be true, which is just to say that the complex argument as a whole is deductive. 

SOLVED PROBLEMS 

2.13 Diagram the following argument and evaluate it with respect to criterion 2. 

@ [All particles which cannot be decomposed by chemical means are either subatomic 
particles or atoms.] Now @ [the smallest particles of copper cannot be decomposed by 
chemical means,] yet @ [they are not subatomic.] C H X ~  @ [the smallest particles of 
copper are atoms.] @ [Anything whose smallest particles are atoms is an element.] 

@ [copper is an element.] And @ [no elements are alloys.] Q-3 @ 
copper is not an alloy.] 
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Solution 

The argument is diagramed as follows: 

1 + 2 + 3  

Each of the three steps is deductive. We indicate a. deductive step on the diagram by placing a 
'D' next to the arrow representing the step. Since each step is deductive, so is the argument as 
a whole (rule 4). We signify this by placing a 'D' in a box beside the diagram. 

2.14 Diagram the argument below and evaluate it. 

@ [Random inspections of 50 coal mines in the United States revealed that 39 were in 
L 

violation of federal safety regulations.] (~hus  we may infer t h a t 3  @ [a substantial 
percentage of coal mines in the Unitedl States are in violation of federal safetv " 
;egulations.] [all federal safety regulations are federal law,] <- 

@ [a substantial percentage of coal mines in the United States are in violation of 
federal law.] 

Solution 

Here the diagram is: 

1 
1 I (Strong) 
2 + 3  II(Strong)I 

1 D 
4 

The 'I' next to the first arrow indicates that the step from statement 1 to statement 2 is inductive. 
The 'D' next to the second arrow indicates that the step from statements 2 and 3 to statement 
4 is deductive. This makes the argument as a whole inductive, which we indicate by placing an 
'I' in a box next to the diagram. The inductive probability of the first step and hence of the 
argument as a whole is fairly high; that is, the reasoning both of this step and of the argument 
as a whole is strong. The step from statement 1 to statement 2 is strong because, even though 
a sample of 50 may be rather small, statement 2 is a very cautious conclusion. It says only that 
a "substantial percentage" of mines are in violation, which is indeed quite likely, given 
statement 1. Had it said "most," the reasoning would be weaker; had it said "almost all," the 
reasoning would be even weaker. (For a more detai1:ed discussion of the evaluation of this sort 
of' inference, see Section 9.3.) 

One can see clearly that the reasoning of the argument as a whole is strong by noting that 
the conclusion, statement 4, is quite likely, given the basic premises, statements 1 and 3. This 
accords with rule 2. 

2.15 Diagram the argument below and evaluate it. 

@ [The MG Midget and the Austin-Healy Sprite are, from a mechanical point of view, 
identical in almost all aspects.] @ [Sprites have hydraulic clutches.] <Thus it seems safe 
to conclude that) @ [Midgets do  as well.1 But @ [hydraulic clutches are prone to  
malfunction due to leakage.] c~ereforh 3 @ [both Sprites and Midgets are poorly 

- 
designed cars.] 
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Solution 

The diagram is: 

1 I (Strong) 
2 + 3 + 4  II(Weak)I 

1 I (Weak) 

Statement 3 is reasonably probable, though not certain, given 1 and 2, so that the first step is 
reasonably strong. But 5 is not very likely, given 3 and 4. Statement 5 says that each car as 
a whole is poorly designed, whereas statements 3 and 4 tell us at most that one part (the clutch) 
is poorly designed. Actually, they don't even tell us that much, since the fact that hydraulic 
clutches in general are prone to leakage does not guarantee that the particular clutches found 
in these two cars are poorly designed. Thus the second step is very weak. For the same reason 
it is clear that the probability of statement 5, given the basic premises of statements 1, 2, and 
4, is low, so that the reasoning of the argument as a whole is quite weak. This accords with 
rule 1. 

2.16 Diagram the following argument and evaluate it. 

@ [Mrs Compson is old and frail,] and @ [it is unlikely that anyone in her physical 
condition could have delivered the blows that killed Mr. Smith.] Moreover, @ [two 
reasonably reliable witnesses who saw the murderer say that she was not Mrs. 
Compson.] And finally, @ [Mrs. Compson had no motive to kill Mr. Smith,] and @ [she 
would hardly have killed him without a motive.] @ [she is innocent of Mr. 
Smith's murder.] 

Solution 

\ 1 (Strong) 1 I (Strong) / m n n )  I I (Very strong) I 

This argument is convergent. Each step is strongly inductive; and when taken together, the steps 
reinforce one another. The inductive probability of the whole argument is therefore (in accord 
with rule 3) greater than the inductive probability of any of its component steps; its reasoning 
is quite strong. 

In convergent arguments, unlike nonconvergent ones, a single weak step generally does not lessen 
the strength of the whole. For example, if we added the weak step 

Mrs. Compson denies being the murderer 
:. She is innocent of Mr. Smith's murder. 

as an additional branch to the argument above, the overall inductive probability of this argument would 
remain about the same. This is because in a convergent argument no single branch is crucial to the 
derivation of the conclusion. In nonconvergent arguments, by contrast, each step is crucial, so that (as 
in Problem 2.15) one weak step usually drastically weakens the argument as a whole. This is the 
rationale behind our first rule of thumb. There are exceptions, however, as the following problem 
illustrates. 
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SOLVED PROBLEM 

2.17 Diagram the argument below and evaluate its reasoning. 

@ [All your friends are misfits.] <%s> [Jeff is a misfit,] @ [he must be one 
of your misfit friends.] But @ [misfits can't be good friends.] And 0 @ [Jeff is not - 
a good friend to you.] 

Solution 
1 +  2 

1 I (Weak) 
3 + 4  rn 

The step from statements 1 and 2 to statement 3  may appear to be deductive, but it is not. It is 
perfectly possible for all of someone's friends to be misfits and for Jeff to be a misfit and yet for 
Jeff not to be that person's friend. In fact, statement 3  is not very probable at all, given 
statements 1 and 2. The step from statements 3 and 4  to statement 5, however, is clearly 
deductive. And, surprisingly, so is the argument as a whole; for if the basic premises 2 and 4 are 
true, then 5 must be true as well. That is, if Jeff is a. misfit and misfits can't be good friends, then 
(regardless of whether or not all your friends are misfits - a now superfluous premise) Jeff is not 
a good friend to you. (He may not be a friend at all.) 

Despite its overall deductiveness, this argume.nt is unacceptably flawed by its faulty initial 
step and hence would be objectionable as a means of establishing its conclusion. 

2.4 RELEVANCE 

Not every argument with true premises and high inductive probability is a good argument, even if 
all of its component steps have high inductive probabilities as well. A conclusion may be probable or 
certain, given a set of premises, even though the premises are irrelevant to the conclusion. But any 
argument which lacks relevance (regardless of its inductive probability) is useless for demonstrating the 
truth of its conclusion. For this reason, it is said to commit a fdlacy of relevance. 

Relevance is the concern of our third evaluative criterion for arguments. Like inductive probability, 
it is a matter of degree. Among the examples of simple arguments given thus far in this chapter, the 
premises are highly relevant to the conclusion in Problems 2.2, 2.3, 2.6 (all seven arguments), 2.7,2.10 
(both arguments), and 2.12-2.16. 

SOLVED PROBLEM 

2.18 Evaluate the argument below with respect to criteria 2, inductive probability, 
and 3, degree of relevance. 

I abhor the idea of an infinitely powerful creator. 
:. God does not exist. 

Solution 
One's likes or dislikes have nothing to do with the actual existence of God; hence the 

premise is hardly relevant. It is difficult to assign any clear inductive probability to an argument 
like this, but certainly we should judge it not to be high. 

Relevance and inductive probability do not always vary together. Some arguments exhibit high 
inductive probability with low relevance or low inductive probability with high relevance. Perhaps the 
simplest cases of high inductive probability with low relevance occur among arguments whose 
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conclusions are logically necessary. A logically necessary statement is a statement whose very 
conception or meaning requires its truth; its falsehood, in other words, is logically impossible. Here are 
some examples: 

Either something exists, or nothing at all exists. 
2 + 2 = 4 .  
No smoker is a nonsmoker. 
If it is raining, then it is raining. 
Everything is identical with itself. 

(One important class of logically necessary statements, tautologies, will be studied in Chapter 3.) 
Logically necessary statements have the peculiar property that if one occurs as the conclusion of 

an argument, then the argument is automatically deductive, regardless of the nature of the premises. 
This follows from the definition of deduction. A deductive argument is one whose conclusion cannot 
(i.e., logically cannot) be false while its premises are true. But logically necessary statements cannot be 
false under any conditions. Hence, trivially, if we take a logically necessary statement as a conclusion, 
then for any set of true premises we supply, the conclusion cannot be false. 

SOLVED PROBLEM 

2.19 Evaluate the inductive probability and degree of relevance of the following 
argument: 

Some sheep are black. 
Some sheep are white. 

:. If something is a cat, then it is a cat. 

Solution 

This preposterously artifical argument has a logically necessary conclusion and is therefore 
deductive, though its premises are wholly irrelevant to its conclusion. 

Such an argument is, of course, useless as a means of demonstrating the truth of its conclusion, since 
the premises, being irrelevant to the conclusion, provide no reason to believe it. But since the 
conclusion is logically necessary, no further reason is needed to believe it; its truth is obvious as soon 
as it is understood. 

Intuitively, lack of relevance is signaled by a kind of oddity or discontinuity which we feel in the 
inference from premises to conclusion. Where the premises are highly relevant, by contrast, the 
inference is usually natural and obvious. 

SOLVED PROBLEM 

2.20 Evaluate the inductive probability and degree of relevance of the argument 
below. 

All of Fred's friends go to Freeport High. 
All of Frieda's friends go to Furman High. 
Nobody goes to both Freeport and Furman. 

:. Fred and Frieda have no friends in common. 

Solution 
The argument is deductive, and so its inductive probability is 1. Its premises are highly 

relevant to its conclusion. 
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Having a logically necessary conclusion is not the only way an argument can be deductive and yet 
lack relevance. This may also occur if an argument has inconsistent premises. A set of statements is 
inconsistent if it is logically impossible for all of them to be true simultaneously. Each of the following 
sets of statements, for example, is inconsistent: 

(a) All butterflies are insects. 
Some butterflies are not insects. 

(6) Jim is taller than Bob. 
Bob is taller than Sally. 
Sally is taller than Jim. 

( c )  This pole is either positively or negatively charged. 
It is not positively charged. 
It is not negatively charged. 

( d )  Today is both Wednesday and not Wednesday. 
Today I play golf. 

Case ( d )  is slightly different from the other cases. In all the others, the statements are inconsistent 
because they are in logical conflict. There is no conflict between the two statements of case ( d ) .  Rather, 
the first of these two contradicts itself. Hence this pair is inconsistent simply because the first statement 
can't be true under any circumstances (and hence they can't both be true). 

Any argument with inconsistent premises is deductive, regardless of what the conclusion says. 
Again this follows from the definition of deduction. An argument is deductive if it is impossible for its 
premises all to be true while its conclusion is false. Thus since it is impossible (under any conditions) 
for inconsistent premises all to be true, it is clearly also impossible for these premises to be true while 
some conclusion is false. Hence, any conclusion follows deductively from inconsistent premises. 

SOLVED PROBLEM 

2.21 Evaluate the inductive probability and degree of relevance of the argument 
below. 

This book has more than 900 pages. 
This book has fewer than 800 pages. 

. . This is a very profound book. 

Solution 

Since it is logically impossible for the book to have more than 900 and fewer than 800 pages, 
it is clearly impossible for both premises to be true while the conclusion is false. Therefore the 
argument is deductive.' The premises, however, are wholly irrelevant to the conclusion. (The 
first is also false, if 'this book' designates the book you are now reading.) 

Note that although any argument with inconsistent premises is deductive, no such argument is 
sound, since inconsistent premises cannot all be true. Hence no conclusion can ever be proved by 
deducing it from inconsistent premises. 

Just as the premises of some deductive arguments are irrelevant to their conclusions, so too the 
premises of some strongly inductive arguments exhibit little relevance. This occurs primarily when the 

'Here we would like to add, ". . . and hence its inductive probability is 1." But unfortunately matters are not so simple. Under 
some interpretations of probability, the inductive probability of an argument with inconsistent premises is undefined (see Section 
10.3). Hence under these interpretations, arguments with inconsistent premises are exceptions to the rule that the inductive 
probability of a deductive argument is 1. (They are the only exceptions.) This, however, is essentially a matter of convention 
and convenience; nothing substantial turns on it. It is simply easier to state the laws of probability if this particular exception 
is made. 
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conclusion is a very weak statement. A statement is weak if it is logically probable-i.e., probable even 
in the absence of evidence. (See Section 9.1.) As a result, it will also be probable given most sets of 
irrelevant or weakly relevant premises. 

SOLVED PROBLEM 

2.22 Evaluate the inductive probability and degree of relevance of the argument 
below. 

You haven't proved that there are exactly 2,000,001 angels dancing on the head of 
this pin. 

:. There are are not exactly 2,000,001 angels dancing on the head of this pin. 

Solution 

The fact that one hasn't proved a proposition P is slightly relevant, but not strongly 
relevant, to the truth of P. One may not be competent to produce such a proof, or perhaps the 
effort has never been made. Yet it is highly probable in a logical sense that there are not exactly 
2,000,001 angels dancing on the head of the pin. As a result, this conclusion is highly probable 
given the premise. That is, the argument is inductively strong. It is nevertheless a bad argument, 
because the premise is not strongly relevant to the conclusion. 

A good argument, then, requires not only true premises (criterion 1) and high inductive probability 
(criterion 2), but also a high degree of relevance (criterion 3). Many treatments of logic tend to slight 
relevance as a factor in argument evaluation because it is difficult to characterize precisely. Some 
logicians have argued that relevance is a purely subjective notion and therefore not a proper subject 
matter for logic. Yet clearly any account of argument evaluation which ignores relevance is 
incomplete. 

In recent years a formal discipline called relevance logic has emerged. Relevance logic is the study 
of the relation of entailment. A set of premises is said to entail a conclusion if the premises deductively 
imply the conclusion and in addition are relevant to it. In relevance logic, therefore, deductiveness and 
relevance are studied in combination as a single relation. Here, however, we shall follow the more 
standard approach of classical logic, in which inductive probability and relevance are considered as 
separate factors in argument evaluation. We shall come back to issues of relevance in Chapter 8. 

2.5 THE REQUIREMENT OF TOTAL EVIDENCE 

One crucial respect in which inductive arguments differ from deductive arguments is in their 
vulnerability to new evidence. A deductive argument remains deductive if new premises are added 
(regardless of the nature of the premises). An inductive argument, by contrast, can be either 
strengthened or weakened by the addition of new premises. Consequently, the probability of a 
conclusion inferred inductively from true premises may be radically altered by the acquisition of new 
evidence, while the certainty of a conclusion inferred deductively from true premises remains 
unassailable. 

SOLVED PROBLEMS 

2.23 Evaluate the inductive probability and degree of relevance of the argument 
below. 

Very few Russians speak English well. 
Sergei is Russian. 

:. Sergei does not speak English well. 
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Solution 

This argument is strongly inductive (i.e., has a high inductive probability) and its premises 
are quite relevant to its conclusion. 

2.24 Evaluate the inductive probability and degree of relevance of the argument 
below. 

Very few Russians speak English well. 

Sergei is Russian. 
Sergei is an exchange student at an American university. 
Exchange students at American universities almost always speak English well. 

:. Sergei does not speak English well. 

Solution 

This argument is obtained from the previous one by adding two more premises. Once again 
the premises are quite relevant, but now the inductive probability of the argument is quite low. 
The premises of this new argument are in conflict. The first two support the conclusion; the 
second two are evidence against it .  As a result, the inductive probability of this argument is 
considerably less than that of the original argument in Problem 2.23. Indeed, it seems more 
reasonable, given this evidence, to draw the opposite conclusion-namely, that Sergei does 
speak English well. 

Because of its conflicting premises, the argument of Problem 2.24 would not be an effective tool for 
demonstrating the truth of its conclusion to an audience. Hence we would not expect to encounter such 
an argument in practice. Rather, we should think of the addition of premises exhibited in Problem 2.24 
as representing our acquisition of new evidence about Sergei. As the evidence available to us increases, 
the probability of the proposition that Sergei does not speak: English well, relative to the available 
evidence, may fluctuate considerably. 

Problem 2.24 shows how this probability may diminish. The next example shows how it may 
increase. 

SOLVED PROBLEM 

2.25 Evaluate the inductive probability and degree of relevance of the argument 
below. 

Very few Russians speak English well. 

Sergei is Russian. 
Sergei is an exchange student at an American university. 

Exchange students at American universities almost always speak English well. 
Sergei is a deaf-mute. 

:. Sergei does not speak English well. 

Solution 
The argument is now deductive and hence its inductive probability is 1. The premises are 

all relevant to the conclusion, though the first four are now superfluous in establishing it, since 
the conclusion follows deductively from the final premise, 'Sergei is a deaf-mute', alone. 

Once a deductive argument has been achieved, no further additions can alter the inductive probability; 
it remains fixed at 1. If all the premises are true (and remain true), then the conclusion is certainly true; 
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no further evidence can decrease its certainty. Indeed, the argument remains deductive even if we add 
the premise 'Sergei speaks perfect English', for that premise is inconsistent with the premise 'Sergei is 
a deaf-mute', and as we saw in Section 2.4, inconsistent premises deductively imply any conclusion. (Of 
course, in this case the premises cannot both be true.) 

In summary, inductive arguments, unlike deductive arguments, can be converted into arguments 
with higher or lower inductive probability by the addition of certain premises. Thus in inductive 
reasoning the choice of premises is crucial. Using one portion of the available evidence as premises 
may make a conclusion seem extremely probable, while using another portion may make it seem 
extremely improbable. By selectively manipulating the evidence in this way, we may be able to make 
a conclusion appear as probable or as improbable as we like, even though all the assumptions we make 
may be true. 

Now, this selective manipulation of the evidence is of course illegitimate. It is precisely this 
illegitimacy that defines the concern of our fourth criterion of argument evaluation, which is called the 
requirement o f  total evidence or the total evidence condition. It stipulates that if an argument is 
inductive, its premises must contain all known evidence that is relevant to the conclusion. Inductive 
arguments which fail to meet this requirement, particularly if the evidence omitted tells strongly against 
the conclusion, are said to commit the fallacy of  suppressed evidence. 

SOLVED PROBLEM 

2.26 Evaluate the following argument with respect to criteria 1, 2, 3, and 4: 

Most cats do well in apartments. 
They are very affectionate, and love being petted. 

:. This cat will make a good pet. 

Solution 

This argument fares well with respect to the first three criteria: the premises are true and 
relevant to the conclusion, and the inductive probability is certainly high. (Notice that this is a 
convergent argument, each branch providing independent good evidence for the conclusion.) 
However, if the arguer is withholding that the cat in question has lived most of its life in a cat 
shelter, where it became aggressive and dirty, then the argument is irremediably flawed by a 
fallacy of suppressed evidence. 

Fallacies of suppressed evidence may be committed either intentionally or  unintentionally. If the 
author of the argument intentionally omits known relevant information, the fallacy is a deliberate 
deception. The omission of relevant evidence which the author knows may, however, be a simple 
blunder; the author may simply have forgotten to consider some of the available relevant facts. It  may 
also happen that an author has included among the premises all the relevant information he o r  she 
knows, but that others know relevant information of which the author is unaware. Here again, the 
argument commits a fallacy of suppressed evidence, but again the fallacy is unintentional. The author 
has done his or her best with the  available information. 

It should be noted that even if an inductive argument meets the requirement of total evidence, it 
may still lead us from true premises to a false conclusion. Inductive arguments provide no guarantees. 
It is possible, though (we hope) unlikely, that the entire body of known relevant evidence is 
misleading. 

Suppressed evidence should not be confused with implicit premises (Section 1.6). Implicit premises 
are assumptions that the author of an argument intends the audience to take for granted. Suppressed 
evidence, by contrast, is information that the author has deliberately concealed or unintentionally 
omitted. Implicit assumptions arc part of the author's argument. Suppressed evidence is not. 
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After sniffing pepper, I always sneeze. 
Yesterday I sniffed pepper. 
Yesterday I sneezed. 

We saw an eagle in the park. 
There are only two species of eagles in the park, bald and golden. 
The golden eagle is commonly seen in the park. 
The bald eagle is rarely seen in the park. 
The eagle we saw in the park was a golden eagle. 

Conservatives are always strong proponents of law and order. 
Adams is a strong proponent of law and order. 
Adams is conservative. 

You're not convinced that I'm innocent. 
You must think that I'm guilty. 

The fortune-teller said that Anne would be murdered, but not by a man or boy. 
Anne will be murdered by a woman or girl. 

Aspirin does not cure arthritis. 
Drug X is just aspirin. 
Drug X does not cure arthritis. 

All life forms observed thus far on earth are DNA-based. 
All earthly life forms are DNA-based. 

All life forms observed thus far on earth are DNA-based. 
All life forms in the universe are DNA-based. 

Joe was the only person near the victim at the time of the murder. 
Joe is the murderer. 

All human creations will eventually perish. 
Whatever perishes is ultimately meaningless. 
All human creations are ultimately meaningless. 

There are more people in the world than hairs on any one person's head. 
At least two people's heads have an equal number of hairs. 

There are more people in the world than hairs on any one person's head. 
No one is bald. 
At least two people's heads have an equal number of hairs. 

God made the universe. 
God is perfectly good. 
Whatever is made by a perfectly good being is perfectly good. 
Whatever is perfectly good contains no evil. 
The universe contains no evil. 

If there were more than one null set (set with no members), then there would be more than one set 
with exactly the same members. 
No two sets have exactly the same members. 
There is at most one null set. 

Jody has a high fever, purple splotches on her tongue, and severe headaches, but no other 
symptoms. 
Jeff has the same set of symptoms, and no others. 
Jody and Jeff have the same disease. 

We priced bicycle helmets at a number of retail outlets. 
We found none for under $25 that passed the safety tests. 
If you buy a new bicycle helmet that passes the safety tests from a retail outlet, you'll have to pay 
at least $25. 
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I1 For each of the following arguments, circle inference indicators, bracket and number each statement, and 
diagram the argument. Place a 'D' or an 'I' next to each arrow of the diagram to indicate whether the 
corresponding step of reasoning is deductive or inductive. If it is inductive, indicate its strength. If the 
argument is complex, place a 'D' or an 'I' in a box next to the diagram to indicate whether the argument 
as a whole is deductive or inductive. Again if it is inductive, indicate its strength. 

There is no greatest prime number. But of all the prime numbers we shall have ever thought of, there 
certainly is a greatest. Hence there are primes greater than any we shall have ever thought of. 
(Bertrand Russell, "On the Nature of Acquaintance") 

Since you said you would meet me at the drive-in and you weren't there, you're a liar. So I can't 
believe anything you say. So I can't possibly feel comfortable with you. 

Argument 2 is unsound, for two reasons: (i) I was at the drive-in, but you must have missed me, and 
so one of your premises is false, and (ii) your reasoning is invalid. 

The square of any integer n is evenly divisible by n. Hence the square of any even number is even, 
since by the principle just mentioned it must be divisible by that even number, and any number 
divisible by an even number is even. 

When he was 40, De Chirico abandoned his pittura metafisica; he turned back to traditional modes, 
but his work lost depth. Here is certain proof that there is no "back to where you came from" for 
the creative mind whose unconscious has been involved in the fundamental dilemma of modern 
existence. (Aniela Jaffe, "Symbolism in the Visual Arts") 

Since habitual overeating contributes to several debilitating diseases, it can contribute to the 
destruction of your health. But your health is the most important thing you have. So you should not 
habitually overeat. 

The forecast calls for rain, the sky looks very threatening, and the barometer is falling rapidly, all of 
which are phenomena strongly correlated with rain. Therefore it's going to rain. But if it rains, we'll 
have to cancel the picnic. So it looks as if the picnic will be canceled. 

There is no way to tell whether awareness continues after death, so we can only conclude that it does 
not. But we are nothing more than awareness, since without awareness we experience nothing, not 
even blackness. Thus we do not survive death. Any moral system based on the certainty of reward 
or punishment in the hereafter is therefore fundamentally mistaken. 

All citizens of voting age have the right to vote unless they are mentally disabled or have been 
convicted of a crime. Jim is a citizen of voting age, and yet he has said he did not have the right to 
vote. He's not mentally disabled. So either what he said is false, or he's been convicted of a crime. 
But he also told me he'd never been arrested, and it's impossible to be convicted of a crime if you've 
never been arrested. Thus at least one of the things he said is false. 

Just as without heat there would be no cold, without darkness there would be no light, and without 
pain there would be no pleasure, so too without death there would be no life. Thus it is clear that our 
individual deaths are absolutely necessary for the life of the universe as a whole. Death should 
therefore be a happy end toward which we go voluntarily, rather than an odious horror which we 
selfishly and futilely fend off with our last desperate ounce of energy. 

I11 Provide a rough estimate of the inductive probability and degree of relevance of each of the following 
arguments. 

(1) Roses are red. 
Violets are blue. 

:. The next rose I see will not have exactly 47 petals. 

(2) All my friends say that snorting a little nutmeg now and then is good for you. 
:. Snorting a little nutmeg now and then is good for you. 

(3) All my friends say that snorting a little nutmeg now and then is good for you. 
My friends are never wrong. 

:. Snorting a little nutmeg now and then is good for you. 



CHAP. 21 ARGUMENT EVALUATION 

Mr. Plotz owns a summer home in New Hampshire. 
He also owns his family residence in Washington, D.C. 
He owns at least two homes. 

I looked cross-eyed at a toad once, and that very same day I broke my toe. 
Looking cross-eyed at a toad is bad luck. 

Sue is an intellectual. 
Sara is not an intellectual. 
No one both is and is not an intellectual. 

Albert wears ridiculous-looking clothes. 
Albert is always bumping into things. 
Albert is stupid. 

I both love you and do not love you. 
I love you. 

IV Evaluate each of the following arguments with respect to the four criteria discussed in this chapter by 
answering the following questions: 

(1) Are the premises known to be true? 
(2) How high is the argument's inductive probability? 
(3) How relevant are the premises to the conclusion? 
(4) If the argument is inductive, is any evidence suppressed? 

On the basis of your answers to questions 1 to 4, assess the degree to which the argument accomplishes the 
goal of demonstrating the truth of its conclusion. 

(1) Very few presidents of the United States have been Hollywood actors. 
Ronald Reagan was a president of the United States. 

:. Ronald Reagan was not a Hollywood actor. 

(2) If Topeka is in the United States, then it is either in the continental United States, in Alaska, or in 
Hawaii. 
Topeka is not in Alaska. 
Topeka is not in Hawaii. 
Topeka is in the United States. 

:. Topeka is in the continental United States. 

(3) Human beings are vastly superior, both intellectually and culturally, to modern apes. 
:. Human beings and modern apes did not evolve from common ancestors. 

(4) The enemies have possessed nuclear weapons for many years. 
They have never used nuclear weapons in battle. 

:. The enemies will use their nuclear weapons in battle soon. 

(5) Of all the known planets, only one, Earth, is inhabited. 
At least nine planets are known. 

:. The proportion of inhabited planets in the universe at large is not high. 

(6) For any integer n, the number of positive integers smaller than n is finite. 
For any integer n, the number of positive integers larger than n is infinite. 
Any infinite quantity is larger than any finite quantity. 

:. For any integer n, there are more positive integers larger than n than there are positive integers 
smaller than n. 
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Without exception, all matter thus far observed has mass. 
There is matter in galaxies beyond the reach of our observation. 
The matter in these unobserved galaxies has mass. 

No promise is ever broken. 
John F. Kennedy promised that the United States would put a man on the moon by 1970. 
The United States did put a man on the moon by 1970. 

No human being has ever reached the age of 100 years. 
No one now alive will reach the age of 100 years. 

Many people find the idea of ghosts and poltergeists fascinating. 
Ghosts and poltergeists exist. 

Answers to Selected Supplementary Problems 

I (5) Inductive (strong). 

(10) Deductive. Since most means "more than half," the two groups mentioned in the premises cannot 
fail to overlap if the premises are true. Therefore, given the premises, there must be some people 
(i.e., at least one person) with two arms and two legs. 

(15) Inductive. The premises do not say that the sneezing occurs immediately; hence it may be that the 
sniffing occurred shortly before midnight yesterday though a sneeze did not result until shortly after 
midnight. The strength of this inference is difficult to estimate, since the argument itself provides no 
guidelines to how long a delay we might imagine. (Could one have sniffed pepper yesterday and not 
sneeze until a week hence? This is at least logically possible.) But if for practical purposes we 
discount such wild possibilities, then the reasoning is fairly strong. 

(20) The word 'just' means "nothing more than"; hence the argument is deductive. 

(25) Inductive. Suppose, for example, that there were only two people left in the world, one totally bald 
and one with just a single hair. Then the premise would be true and the conclusion false, so that the 
argument is not deductive. The argument is, however, fairly strong, since under most conceivable 
circumstances which make the premise true the conclusion would be true as well. 

(30) Inductive (moderately strong). 

I1 (5) @ [When he was 40, De Chirico abandoned his pittura metafisica; he turned back to traditional 
modes, but his work lost d e p t h . ] c ~ e r e  is certain proof that>@ [there is no "back to where you 
came from" for the creative mind whose unconscious has been involved in the fundamental dilemma 
of modern existence.] 

1 
1 I (Weak) 
2 

Comment: The example of a single artist hardly suffices to establish so general a thesis as statement 
2 with any substantial degree of probability. Premise 1 could be broken up into two or three separate 
statements or kept as a single unit as we have done here; this is a matter of indifference. 

(10) Just as @ [without heat there would be no cold,] @ [without darkness there would be no light,] and 
@ [without pain there would be no pleasure,] @ too @ [without death there would be no life.] 

Thus it isclear that I@ [our individual deaths are absolutely necessary for the life of the universe 
$s a whole.] @ [Death should -9 be a happy end toward which we go voluntarily, rather 
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than an odious horror which we selfishly and futilely fend off with our last desperate ounce of 
energy.] 

Comment: All three steps in this argument suffer from vagueness, so that it is difficult to evaluate any 
of them accurately. The first is not strong, because it establishes no clear and significant parallel 
between the pairs of opposites mentioned in the premises (statements 1, 2, and 3) and the pair 
mentioned in the conclusion (statement 4). (That conclusion may well be true, but it is not extremely 
likely, given just the information contained in the prernises.) The second step is also not as strong as 
it may at first appear. It may be true in general that without death there would be no life, but this 
does not by itself imply that all living things must die or that we in particular must die. Likewise, the 
third inference is hardly airtight. It seems to require the additional assumption that we should 
happily and voluntarily accept what is necessary for the life of the universe as a whole, but the truth 
of this assumption is far from obvious. With the addition of this assumption, the final inference 
would be deductive, though based on at least one dubious premise. Taken just as it stands it is not 
deductive, and its inductive strength is not clearly determinable. 

I11 (5) Low inductive probability, low relevance. 

(10) Since the conclusion is logically necessary, the argument is deductive and has maximal inductive 
probability. But (in contrast to the previous problem) the premises are not directly relevant to the 
conclusion. 

IV (5) The premises are true and relevant to the conclusion. The argument is at best moderately inductive, 
since the nine known planets constitute a very small (and nonrandom) sample upon which to base 
the extensive generalization of the conclusion. We know of no suppressed contrary evidence. Thus 
the argument provides some evidence for its conc:lusion, though this evidence is far from 
conclusive. 

(10) The premise is true, but it lacks relevance, and the inductive probability of the argument is low. This 
is a very bad argument. 



Chapter 3 

Propositional Logic 

3.1 ARGUMENT FORMS 

This chapter begins our treatment of formal logic. Formal logic is the study of argument forms, 
abstract patterns of reasoning shared by many different arguments. The study of argument forms 
facilitates broad and illuminating generalizations about validity and related topics. We shall initially 
focus on the notion of deductive validity, leaving inductive arguments to a later treatment (Chapters 8 
to 10). Specifically, our concern in this chapter will be with the idea that a valid deductive argument is 
one whose conclusion cannot be false while the premises are all true (see Section 2.3). By studying 
argument forms, we shall be able to give this idea a very precise and rigorous characterization. 

We begin with three arguments which all have the same form: 

(1) Today is either Monday or Tuesday. 
Today is not Monday. 

. . Today is Tuesday. 

(2) Either Rembrandt painted the Mona Lisa or Michelangelo did. 
Rembrandt didn't do  it. 

:. Michelangelo did. 

(3) Either he's at least 18 or  he's a juvenile. 
He's not at  least 18. 

:. He's a juvenile. 

It is easy to see that these three arguments are all deductively valid. Their common form is known by 
logicians as disjunctive syllogism, and can be represented as follows: 

Either P or Q. 
It is not the case that P 

:. Q. 

The letters 'P' and 'Q' function here as placeholders for declarative' sentences. We shall call such 
letters sentence letters. Each argument which has this form is obtainable from the form by replacing the 
sentence letters with sentences, each occurrence of the same letter being replaced by the same sentence. 
Thus, for example, argument 1 is obtainable from the form by replacing 'P' with the sentence 'Today 
is Monday' and 'Q' with the sentence 'Today is Tuesday'. The result, 

Either today is Monday or today is Tuesday. 
It is not the case that today is Monday. 

. . Today is Tuesday. 

is for our present purposes a mere grammatical variant of argument 1. We can safely ignore such 
grammatical variations here, though in some more sophisticated logical and philosophical contexts they 
must be reckoned with. An argument obtainable in this way from an argument form is called an 
instance of that form. 

'From now on we shall omit the qualificz ition 'declarative7, since we shall only be concerned with sentences that can be usec to 
express premises and conclusions of arguments (and by definition these can only be expressed by declarative sentences; see 
Section 1.1). 
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SOLVED PROBLEM 

3.1 Identify the argument form common to the following three arguments: 

(a) If today is Monday, then I have to go to  the dentist. 

Today is Monday. 

:. I have to  go to the dentist. 

(b) If you have good grades, you are eligiblc for a scholarship. 
You have good grades. 

:. You are eligible for a scholarship. 

(c) I passed the test, if you did. 

You passed the test. 
. . 

Solution 

The 

passed the test. 

hree arguments have the following form (known by logicians as modus ponens, or  
"assertive mode"): 

If P, then Q 
P. 

:. Q. 

The word 'then' is missing in the first premise of argument (b), but this is clearly immaterial: the 
meaning would not change by rewriting the premise as 

If you have good grades, then you are eligible for a scholarship. 

Likewise, the first premise of argument (c) is just ii grammatical variant of the following: 

If you passed the test, then I passed the test. 

Notice that one can detect more than one form in a particular argument, depending on how much detail 
one puts into representing it. For example, the following argument is clearly an instance of disjunctive 
syllogism, like arguments 1 to 3: 

(4) Either we can go with your car, or  we can't go at all. 
We can't go with your car. 

:. We can't go at all. 

We can see that 4 has the form of a disjunctive syllogism by replacing 'P7 with 'We can go with your 
car' and 'Q' with 'We can't go at a .  However, one can also give the following, more detailed 
representation of argument 4: 

Either P, or it is not the case that Q. 

It is not the case that P. 
. . It is not the case that Q. 

It is clear that argument 4 is an instance of this form, too, since it can be obtained by replacing 'P7 with 
'We can go with your car' and 'Q7 with 'We can go at all7. Arguments 1 to 3, by contrast, are not 
substitution instances of this argument form. As will become clear, recognizing the appropriate 
argument forms is a crucial step towards applying formal logic to everyday reasoning. 
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3.2 Identify an argument form common to the following two arguments: 

(a) If Murphy's law is valid, then anything can go wrong. 
But not everything can go wrong. 

:. Murphy's law is not valid. 

(b) If you passed the test and Jane also passed, then so did Olaf. 
Olaf did not pass. 

:. It's false that both you and Jane passed the test. 

Solution 
One form common to both argument is the following (known by logicians as modus tollens, 

o r  "denying mode"): 

If P, then Q. 
It is not the case that Q. 

:. It is not the case that P. 

Argument (b) can also be analyzed as having the following form: 

If P and Q ,  then R. 
It is not the case that R. 
I t  is not the case that P and Q. . . 

This form, however, is not common to argument (a), since in (a) there are no  sentences to 
replace 'P' and 'Q' as required. It should also be noted that the two arguments have the 
following form in common: 

However, this form is common to all nonconvergent arguments with two premises; it exhibits no  
logically interesting feature, so it may be ignored for all purposes. 

This problem shows that one can obtain instances of an argument form by replacing its sentence 
letters with sentences of arbitrary complexity. If every instance of an argument form is valid, then the 
argument form itself is said to be valid; otherwise the argument form is said to be invalid. (Thus, one 
invalid instance is enough to make the argument form invalid.) Disjunctive syllogism, for example, is 
a valid argument form: every argument of this form is such that if its premises were true its conclusion 
would have to be true. (Of course, not all instances of disjunctive syllogism are sound; some-e.g., 
argument 2 above- have one or more false premises.) The argument forms rnodus ponens and modus 
tollens in Problems 3.1 and 3.2 are likewise valid. By contrast, the following form (known as afJirming 
the consequent) is invalid: 

If P, then Q. 

Q. 
. . . P. 

Though some instances of this form are valid arguments, others are not. Here is an instance which is 
valid- and indeed sound: 

( 5 )  If April precedes May, then April precedes May and May follows April. 
April precedes May and May follows April. 

:. April precedes May. 
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The conclusion of this argument follows necessarily from its premises, both of which are true. But here 
is an argument of the same form which is invalid: 

(6) If you are dancing on the moon, then you are alive. 
You are alive. 

:. You are dancing on the moon. 

The premises are true, but the conclusion is false; hence the argument is invalid. 
Since any form that has even one invalid instance is invalid, the invalidity of argument 6 proves the 

invalidity of affirming the consequent. Though affirming the consequent also has valid instances (such 
as argument 5) ,  these are not valid as a result of being instances of affirming the consequent. Indeed, 
the reason for the validity of 5 is that its conclusion follows validly from the second premise alone; the 
first premise is superfluous and could be omitted from the argument without loss. 

3.2 LOGICAL OPERATORS 

The domain of argument forms studied by logicians is continuously expanding. In this chapter we 
shall be concerned only with a modest selection, namely those forms consisting of sentence letters 
combined with one or more of the following five expressions: 'it is not the case that', 'and', 'either . . . 
or', ' i f .  . . then', and 'if and only if'. These expressions are called logical operators or connectives. This 
modest beginning is work enough, however; for very many different forms are constructible from these 
simple expressions, and some of them are among the most widely used patterns of reasoning. 

The operator 'it is not the case that' prefixes a sentence to form a new sentence, which is called the 
negation of the first. Thus the sentence 'It is not the case that he is a smoker' is the negation of the 
sentence 'He is a smoker'. There are many grammatical variations of negation in English. For example, 
the sentences 'He is a nonsmoker', 'He is not a smoker', and 'He is no smoker' are all ways of 
expressing the negation of 'He is a smoker'. The particles 'un-'., 'ir-', 'in-', 'im-', and 'a-', used as prefixes 
to words, may also express negation, though they may express other senses of opposition as well. Thus 
'She was unmoved' is another way of saying 'It is not the case that she was moved', and 'It is impossible' 
says the same thing as 'It is not the case that it is possible'. But 'It is immoral' does not mean "It is not 
the case that it is moral." 'Immoral' means "wrong," and 'moral' means "right," but these two 
classifications are not exhaustive, for some actions (e.g., scratching your nose) are amoral-i.e., neither 
right nor wrong, but morally neutral. These actions are not moral, but they are not immoral either; so 
'not moral' does not mean the same thing as 'immoral'. True negation allows no third or neutral 
category. Thus care must be used in treating particles like those just mentioned as expressions of 
negation. 

The other four operators each join two statements into a compound statement. We shall call them 
binary operators. 

A compound consisting of two sentences joined by 'and' (or 'both . . . and') is called a conjunction, 
and its two component sentences are called conjuncts. Conjunction may also be expressed in English 
by such words as 'but', 'yet', 'although', 'nevertheless', 'whereas', and 'moreover', which share with 
'and' the characteristic of affirming both the statements they join-though they differ in expressing 
various shades of attitude toward the statements thus asserted. 

A compound statement consisting of two statements joined by 'either . . . or' is called a disjunction 
(hence the name 'disjunctive syllogism' for the argument form discussed above). The two statements 
are called disjuncts. Thus the first premise of argument 1, 'Today is either Monday or Tuesday'-which 
for logical purposes is the same as 'Either today is Monday or today is Tuesday' -is a disjunction whose 
disjuncts are 'Today is Monday' and 'Today is Tuesday'. The term 'either' is often omitted. The same 
proposition can thus be expressed even more simply as 'Today is Monday or Tuesday'. 

Statements formed by ' i f .  . . then' are called conditionals. The statement following 'if' is called the 
antecedent; the other statement is the consequent. In the sente:nce 'If you touch me, then I'll scream', 
'You touch me' is the antecedent and 'I'll scream' is the consequent. The word 'then' may be omitted. 
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SOLVED PROBLEM 

3.4 Express the following argument forms in symbolic notation, using the horizontal 
format: 

( a )  If P, then Q. 
It is not the case that P. 

- It is not the case that Q.  . . 
( b )  P  and Q.  

P. 
It is not the case that Q. . . 

( c )  P  if and only if Q. 
It is not the case that Q.  

:. It is not the case that P. 

(4 P. 
Either P  or Q. . . 

( e )  If P then Q. 
If Q then R. 
If P then R. . . 

Solution 

(a)  P-  Q ,  -P t- -Q. 

( b )  P &  Q,  PI- -Q. 
(c )  P Q,  -Q t- -P. 

(4 P t P V Q .  
( e )  P - Q ,  Q -  R t -P -R .  

3.3 FORMALIZATION 

The language consisting of the symbolic notation introduced in the previous section is called the 
language o f  propositional logic. We shall now examine the syntax of this language first by showing how 
the forms of various English sentences may be expressed as symbolic formulas (i.e., how these 
sentences may be formalized), and then by stating explicit grammatical rules ( formation rules) for the 
language itself. 

The process of formalization converts an English sentence or argument into a sentence form or 
argument form, a structure composed of sentence letters and logical operators. The sentence letters 
have no meaning in themselves; but in the context of a particular problem, they may be interpreted as 
expressing definite propositions or statements. This interpretation, however, is inessential to the form. 
In a different problem, the same sentence letters may stand for different statements. Whenever we talk 
about the meaning of a sentence letter, we are speaking of its meaning under the particular 
interpretation specified by the problem at hand. 

The formalization of simple English sentences is quite easy. If we interpret the sentence letter 'M', 
for example, as 'Today is Monday', then the sentence 'Today is not Monday' will be formalized simply 
as ' -M' .  But where English sentences contain several logical operators, formalization requires care. 
Suppose, for example, that we wish to formalize the sentence 'Today is not both Monday and Tuesday'. 
We cannot simply write ' -M & T' .  The operator '-', like the negative sign in algebra, applies to the 
smallest possible part of the formula. In the algebraic formula '-1 + 3'' for example, the '-' sign 
applies just to 'I7, so that the whole formula denotes the number 2. Similarly, in '--M & T', the '-' sign 
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applies just to 'M', so that '-M & T' means "Today is not Monday, and today is Tuesday," which is not 
what we wanted to say. We can, however, extend the part of the formula to which the operator applies 
in each case by adding brackets. In the algebraic case, this yields the formula '- (1 + 3)'' which denotes 
the negative number -4. In the logical case, it yields ' - (M &I T)', which means "It is not the case that 
today is (both) Monday and Tuesday," which is precisely what we wanted to say. 

To take a different example, suppose we wish to formalize the sentence 'Either today is Monday, 
or today is Tuesday and election day'. This is a disjunction whose second disjunct is the conjunction 
'Today is Tuesday and election day'. It is formalized as 'M V ( T  & E)'. If we leave out the brackets and 
simply write 'M v T & E ', the meaning is not clear. For this could be read as a conjunction whose first 
conjunct is the disjunction 'Today is Monday or Tuesday', so that it would express the sentence 'Today 
is Monday or Tuesday, and it's election day', which is quite different from our original statement. 

SOLVED PROBLEM 

3.5 Interpreting the sentence letter 'R' as 'It is raining' and the letter ,'S' as 'It is 
snowing', express the form of each of the following English sentences in the language 
of propositional logic: 

(a) It is raining. 

(6) It is not raining. 

(c) It is either raining or snowing. 

( d )  It is both raining and snowing. 

(e) It is raining, but it is not snowing. 

(f) It is not both raining and snowing. 

(g) If it is not raining, then it is snowing. 

( h )  It is not the case that if it is raining then it is snowing. 

(i) It is not the case that if i t  is snowing then it is raining. 

( j )  It is raining if and only if it is not snowing. 

( k )  It is neither raining nor snowing. 

( I )  If it is both snowing and raining, then it is snowing. 

(m)  If it's not raining, then it's not both snowing and raining. 

( n )  Either it's raining, or it's both snowing and raining. 

(0) Either it's both raining and snowing or it's snowing but not raining. 
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( k )  -(R v S)  or, alternatively, -R & -S; these two ways of formalizing the statement are 
equivalent and equally correct (compare Problem 3.8 below). 

(1)  (S & R) -- S 

(m) -R-+-(S&R) 

(4 R V ( S &  R )  

(4 (R & S ) V  ( S &  - R )  

Observe that these formulas are all constructed from the following three sets of symbols: 

Sentence letters: Any capital letter counts as a sentence letter; occasionally we may add numerical 
subscripts to produce additional sentence letters. Thus, for example, 'S,', 'S,', 'S3', etc., are all sentence 
letters distinct from ' S ' .  

Logical operators: -, &, V, +, - 
Brackets: (, ) 

These three sets of symbols constitute the vocabulary of the language of propositional logic. The 
vocabulary of a formal language is usually divided into logical and nonlogical symbols. The logical 
symbols of our formal language are the logical operators and brackets; the nonlogical symbols are the 
sentence letters. We have already pointed out that nonlogical symbols have different interpretations in 
different contexts; the sentence letter ' P ' ,  for example, may stand for 'Today is Tuesday' in one problem 
and 'The princess dines' in another. By contrast, the function or interpretation of logical symbols 
always remains fixed. 

A formula of the language of propositional logic is any sequence of elements of the vocabulary. 
Thus the answers to Problem 3.5 are all formulas, but so are such nonsense sequences as '((&(P'. To 
distinguish these nonsense sequences from meaningful formulas, we introduce the concept of a 
grammatical or well-formed formula-wff, for short. This concept is defined by the following rules, 
called formation rules, which constitute the grammar of the formal language. The rules use Greek 
letters (which do not belong to the vocabulary of the formal language) to denote arbitrary formulas. 

(1) Any sentence letter is a wff. 

(2) If + is a wff, then so is -4. 

(3) If + and $ are wffs, then so are (<b & $), (4) v $), (<b -+ +), and ( 4  ++ $). 

Anything not asserted to be a wff by these three rules is not a wff. 
Complex wffs are built up from simple ones by repeated application of the formation rules. Thus, 

for example, by rule 1 we see the 'P' and 'Q' are both wffs. It follows from this by rule 3 that ' (P & Q)' 
is a wff. Hence, by rule 2, '+" & Q )  ' is a wff. Or again, by rule 1, 'P' is a wff, whence it follows by 2 
that '-P' is a wff, and again by 2 that '- - P' is a wff. (We can go on adding as many negation signs 
as we like; indeed, '- - - - - - - P' is a wff!) 

Notice that rule 3 stipulates that each time we introduce one of the binary operators we also 
introduce a corresponding pair of brackets. Thus, whereas ' (P  & -Q)' is a wff, for example, 'P & -Q' 
is not. However, pairs of brackets which enclose everything else in the formula are not actually 
necessary to make the meaning of the formula clear. Thus we will adopt the unofficial convention that 
such outer brackets may be omitted, even though officially the resulting formula is not a wff. This 
convention was used implicitly in the solutions to Problems 3.4 and 3.5. If we had been following the 
formation rules to the letter, 3.5(c), for example, would have been '(R v S)' ,  rather than 'R v S'. 
Omission of outer brackets is the only deviation from the formation rules that we will allow. 
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SOLVED PROBLEM 

3.6 Use the formation rules to determine which of the following formulas are wffs 
and which are not. Explain your answer. 

Solution 
'R '  is a wff, by rule 1; so '- - -R' is a wff, by three applications of rule 2. 

Not a wff. Brackets are introduced only with binary operators (rule 3). 

Not a wff. Two or more sentence letters cam produce a wff only in combination with a 
binary operator (rule 3). 

Not officially a wff; outer brackets are missing. But we shall use such formulas 
"unofficially." 

'P' and 'Q' are wffs, by rule 1; so '(P--+ Q)' is a wff, by rule 3. This is the "official" version 
of formula (d). 

This is a wff, by application of rule 2 to formula ( e ) .  

'P', 'Q', and 'R '  are all wffs, by rule 1. Thus '(P & Q)' is a wff, by rule 3, and so 
'((P & Q) - R)' is a wff, by a second application of rule 3. 

Not officially a wff. This is the result of dropping the outer brackets from formula (g). 

'P' and 'Q' are wffs, by rule 1; hence '-I" and '-Q' ark wffs, by rule 2. But then 
'(-P & -Q)' is a wff, by 3, and so '-(-P& -Q)' is a wff, by 2. 

'P', Q ' ,  'R', and 'S' are all wffs, by 1. Hence '(P & Q)' and '(R & S)' are wffs, by 3, and 
so '((P & Q) v (R & S))' is a wff, again by 3. 
Not a wff. No rule allows us to surround sentence letters with brackets. 

Not a wff. Rule 3 allows us to combine only two sentence letters at a time. 

'P', 'Q', and 'R '  are wffs, by 1. So '-P' is a wff, by 2, and '(Q &R)' is a wff, by 3. Hence 
'(-P - (Q & R))' is a wff, by 3. 

As in part (m), 'P' and '(Q & R)' are wffs. Therefore '(P - (Q & R))' is a wff, by 3. So 
'-(P ++ (Q & R))' is a wff, by 2. 

'P' is a wff; hence ' (P& P)' is a wff, by 3, and so '- - ( P &  P)' is a wff, by two 
applications of rule 2. 
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Sentence letters are called atomic wffs; all other wffs are said to be molecular or compound. A 
subwff is a part of a wff which is itself a wff. Thus 'P' is a subwff of '-(P & Q)' and '-R' is a subwff 
of '- - R'. Each wff is regarded as a subwff of itself. 

A particular occurrence of an operator in a wff, together with the part of the wff to which that 
occurrence of the operator applies, is called the scope of that occurrence of the operator. Equivalently, 
we may say that the scope of an occurrence of an operator in a wff is the smallest subwff that contains 
that occurrence. Thus in the formula '(-P & (Q+  -R))', the scope of the first occurrence of '--' is 
'-P', the scope of the second occurrence of '-' is '-R', the scope of '4' is '(Q -+ R)', and the scope 
of '&' is the whole formula. And in the formula '-(P & (Q  V R))', the scope of 'V' is '(Q v R)', the 
scope of '&' is ' (P & (Q v R))', and the scope of '-' is the whole formula. 

Each wff has exactly one operator whose scope is the entire wff. This is called the main operator 
of that wff. A wff whose main operator is '&' (regardless of how many other operators it contains) is 
called a tonjunction; a wff whose main operator is '-' is a negation; and so on. 

Having rigorously defined our formal language, we can now use it to display the forms of English 
arguments. Ultimately, this will lead us to a method for proving deductive validity. 

SOLVED PROBLEM 

3.7 Formalize the following arguments in a horizontal format, using the sentence 
letters indicated. Use premise and conclusion indicators to distinguish premises from 
conclusions (see Section 1.2). Omit outer brackets, according to our "unofficial" 
convention, stated above. 

If God exists, then life is meaningful. God exists. Therefore life is meaningful. 
(L G) 
God does not exist. For if God exists, life is meaningful. But life is not 
meaningful. (G, L) 

If the plane had not crashed, we would have had radio contact with it. We had no 
radio contact with it. Therefore, it crashed. (C, R)  
Since today is not Thursday, it must be Friday. For it is either Thursday or Friday. 
(T ,  F )  
If today is Thursday, then tomorrow is Friday. If tomorrow is Friday, then the day 
after tomorrow is Saturday. Consequently, if today is Thursday, then the day after 
tomorrow is Saturday. (T, F, S )  

It is on a weekend if and only if it is on either a Saturday or Sunday. Therefore, 
it is on a weekend, since it is on a Sunday. (W, S,, S,) 
It is on a weekend if it is on either a Saturday or a Sunday. But it is not on a 
weekend. So it is not on a Saturday and it is not on a Sunday. (W, S,, S,) 

It is on a weekend only if it is on either a Saturday or a Sunday. It is not on a 
Saturday. It is not on a Sunday. Therefore, it is not on a weekend. (W, S,, S,) 

The grant proposal is in the mail. If the referees receive it by Friday, they'll give 
it due consideration. Therefore, they'll give it due consideration, since if the 
proposal is in the mail, they will receive it by Friday. (M, F, C )  

She's either not at home or not answering the phone. But if she's not at home, 
then she's been kidnapped. And if she's not answering the phone, she is in some 
other danger. Therefore, either she has been kidnapped or she's in some other 
danger. (H, A,  K, D )  

Solution 

(a )  G-+ L, G t L 
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G - - L ,  - L t - G  

-C-  R ,  -R t C 

T V F ,  -TI- F  

T - F , F - S l - T - S  

W++(S1vSz ) ,  s2t w 
( S ,  v S 2 ) -  W ,  - W t  -S, & -S2 

W -- ( S ,  v S,), s -S, k - W 

M , F - - C , M - F t C  

- H v - A , - H - - K , - A - + D l - K v D  

3.4 SEMANTICS OF THE LOGICAL OPERATORS 

At this point we give a rigorous formulation of the intended interpretation (semantics) of the five 
logical operators. The semantics of an expression is its contribution to the truth or falsity of sentences 
in which it occurs (more precisely, to the truth or falsity of the statements expressed by those 
sentences'). The truth or falsity of a statement is also called the truth value of the statement. So, in 
particular, the semantics of a logical operator is given by a rule for determining the truth value of any 
compound statement involving that operator on the basis of the truth values of the components. 

Note that in describing these semantic rules we shall assume the principle of bivalence, to the effect 
that true and false are the only truth values and that in every possible situation each statement has one 
and only one of them. Philosophers have argued that certain kinds of statements (e.g., vague or 
spurious statements, statements about the future, statements about infinite processes, or paradoxical 
statements such as 'I am lying') may have truth values other than true and false, or no truth value at all, 
and hence are not bivalent. Some have also argued that certain statements may have both truth values. 
These views cannot be examined here. But it is important to note that classical logic, the kind of logic 
presented in this book, applies only to bivalent statements. 'This is a limitation; on the other hand, 
nonclassical logics are invariably more complicated than classical logic and are best understood in 
contrast to classical logic, so it is convenient to master classical logic thoroughly before attempting the 
study of nonclassical 10gics.~ 

Let us then assume the principle of bivalence. The semantic rule for negation is simple. The 
negation of a statement + is true if + is false and false if + is true. (This applies regardless of whether 
4 is atomic or compound.) Using the abbreviations 'T' for "true" and 'F' for "false," we may summarize 
this rule as follows: 

This summary is called a truth table. Under '+', two possibilities are listed: either 4 is true or 4 is false. 
The entries under '-+' indicate the truth value of -4 in each case. In this way, each horizontal line of 
truth values represents a class of possible situations. The first line represents situations in which 4 is 
true. In these situations -+ is false. The second represents situations in which 4 is false. In these, -+ 
is true. Given bivalence, these are the only possibilities; hence the table completely describes the truth 
value of -+ in every possible situation. 

'Recall that the same sentence can be used to express different statements in different circumstances-even statements that 
disagree in their being true or false (see Chapter 1, footnote 2). However, where there is no danger of confusion, we shall suppress 
the distinction and speak freely of the truth value of a sentence (or of a wff). 
4Some important families of nonclassical logics are surveyed in D. Gabbay and F. Guenthner (eds.), Handbook of Philosophical 
Logic, Volume 3: Non-Classical Logics, Dordrecht, Reidel, 1986. 
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The truth table for conjunction is equally straightforward. A conjunction is true if both of its 
conjuncts are true, and false otherwise. Thus the table is: 

Since conjunction operates on two statements, there are four kinds of possible situations to consider: 
those in which + and il, are both true, those in which 4 is true and $ is false, those in which 4 is false 
and 6 is true, and those in which both 4 and $ are false. These are represented, respectively, by the four 
horizontal lines of truth values. The column under '4 & $' lists the truth value of 4 & $ in each. 

A disjunction is true if at least one of its disjuncts is true, and false otherwise: 

There is also a sense of disjunction in which 'either P or Q'  means 'either P or Q, but not both'. This 
is the exclusive sense of disjunction, as opposed to the inclusive sense characterized by the true table 
above. The operator 'v' symbolizes the inclusive sense. If we use 'xor' for the exclusive sense of 'or', 
we may write its truth table as follows: 

In logic, the inclusive sense of 'or' is standard. But in English, the exclusive sense is quite common, 
especially when 'or' is preceded by 'either'. However, there is no need to add 'xor' to our stock of 
logical operators, since statements of the form 'P xor Q' may be formalized as '(P V Q)  & -(P & Q)' 
(see Problem 3.11, below). Thus, for example, if the boss says, 'You may take either Thursday or Friday 
off', what's meant is undoubtedly the exclusive disjunction 'You may take either Thursday or Friday 
off, but not both'. The best formalization is therefore '(T v F )  & -(T & F)'. By contrast, the statement 
'She must be intelligent or rich' seems not to exclude the possibility that the person referred to is both 
intelligent and rich, and hence is best formalized as the inclusive disjunction ' IV R'. We shall treat 
English disjunctions as inclusive unless there is some compelling reason not to. (Of course, we could as 
well use 'xor' instead of 'V' and express every statement of the form 'PV Q'  as '(Pxor Q )  xor 
(P & Q)'. In this sense, our preference for 'v' is dictated merely by standard practice.) 

Of all the logical operators, '+' is least like its English translations in meaning. The meanings of 
conditionals in English are still a matter of dispute. It is widely held that there are several different 
kinds of conditionals, which assert different relationships between antecedent and consequent. The 
conditional expressed by our symbol '-.' is called the material conditional. What is asserted by 'P -+ Q' 
is precisely this: It is not the case that P and not Q. Thus if someone says, "If Paul goes, then Quinton 
will go too," using 'If. . . then' in the material sense, then that person is saying that it is not the case that 
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Paul will go and Quinton won't. This statement has the form '- ( P  & -Q)', and since it has the same 
meaning as 'P--, Q', it is true under precisely the same circumstances. We can therefore obtain the 
truth table for 'P+  Q '  by finding the truth table for '-(P & -Q)'. We can do  this by using the tables 
for - and '&'. 

To construct a truth table for a complex wfJ we find the tr~lth values for its smallest subwffs and then 
use the truth tables for the logical operators to calculate values for increasingly larger subwffs, until we 
obtain the values for the whole wff. The smallest subwffs of "-(P & -Q)' are P '  and 'Q', and so we 
copy the columns for the sentence letters 'P' and 'Q' under the occurrences of these sentence letters 
in the formula: 

The next-smallest subwff of the formula is '-Q'. The truth values for '-Q' are just the opposite of the 
truth values for 'Q'; we write them under the '-' in '---Q': 

Actually, we could have saved a bit of work and clutter by skipping the first step in the case of '-Q'. 
That is, we could have written the reverse of the 'Q' column directly under the '-' in '- Q '  without first 
writing the column for 'Q'. In succeeding problems, we sometimes skip this first step for negated 
sentence letters. 

Now the formula 'P & -Q', being a conjunction, is true only if both conjuncts are true. The only 
case in which this occurs is the second line of the table. Hence this formula is true on the second line 
and false on the others, a fact which we record by writing these truth values under '&': 

T F I  T T T F  

P  Q 
T T 

F T I  F F F T  

- ( P  & - Q> 
T F F T  

F F l  F F T F  

Finally, since '-(P & -Q)' is the negation of 'P & -Q', its truth values in each of the four kinds of 
situations are just the reverse of those listed under '&'. We write them under the initial negation sign 
and circle them to indicate that they are the truth values for the whole formula: 

P Q 

:: 
F T 

- ( P  & - Q> 
T T F F T  n F T T T F  
T F F F T  
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This, then, is the truth table for the material conditional: 

The material conditional is false if its antecedent is true and its consequent false; otherwise it is 
true. It is therefore true whenever its antecedent is false. It is also true whenever its consequent is true. 
As a result, material conditionals often have a paradoxical flavor. The sentence 'If you're dead, then 
you're alive', for example, is currently true, taking 'you' to refer to you and reading 'if . . . then' as 
the material conditional. Since you are in fact alive (otherwise you wouldn't be reading this), the 
antecedent is false and the consequent true, which makes the whole conditional true. Similarly, the 
sentences 'If you are alive, then you are reading this book) (antecedent and consequent both true) and 
'If you are dead, then you can run at the speed of light' (antecedent and consequent both false) are, 
oddly, true when 'if . . . then' is understood in the material sense. Such oddities reveal the disparity 
between the material conditional and conditionals as ordinarily understood in English. Yet the material 
conditional is by far the simplest kind of conditional, and it is the only one whose meaning can be 
represented on a truth table. Moreover, experience has shown that it is adequate for most logical and 
mathematical purposes, so that it  has been accepted as the standard conditional of logic and 
mathematics. The material conditional is the only kind of conditional considered in this chapter, though 
at the end of Section 10.7 we briefly consider two others. 

As for the biconditional, we have seen that a statement of the form 'P - Q' means the same thing 
as '(P 3 Q) & (Q 4 P)', where '-.' is the material conditional. Accordingly, '-' is called the material 
biconditional. (The meanings of other kinds of biconditionals are similarly related to the corresponding 
conditionals, but we shall not discuss other kinds of biconditionals here.) The truth table for ' P  - Q' 
may thus be obtained by constructing a truth table for ' (P--t  Q) & (Q-. P)' from the tables for the 
material conditional and conjunction. We begin by copying the columns from beneath the letters 'P' 
and 'Q' at left below the occurrences of these letters in the formula: 

Now the truth values for 'P-. Q'  and 'Q -. P' may be computed from the truth table for the material 
conditional. A material conditional is false when its antecedent is true and its consequent false; 
otherwise, it is true. Hence ' P 4  Q'  is false at the second line and 'Q -+ P' is false at the third, and both 
are true at all the other lines. We record this by writing the appropriate truth values under the 
respective occurrences of '4': 

T T T T T T T T  
T F T F F  F T T  
F T F T T  T F F  
F F F T F F T F  
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'neither P nor Q' is '-(PV Q)', which uses only negation and disjunction; see Problem 
3.5(k).) 

It is remarkable that if we did add the 'neither . . . nor' operator, then our five operators 
would all become redundant. For we could express every statement of the form '-P' as 'neither 
P nor P' and every statement of the form 'P & Q' as 'neither -P nor -Q', and we have seen 
that this gives us sufficient resources to express the other operators as well. 

3.5 TRUTH TABLES FOR WFFs 

Our presentation of the semantic rules for '-+' and '*' in Section 3.4 exemplified the construction 
of truth tables for complex wffs. Here we discuss this procedure more systematically. 

The number of lines in a truth table is determined by the number of sentence letters in the formula 
or  formulas to be  considered. If there is only one sentence letter, there are only two possibilities: the 
sentence it stands for is either true or  false. Hence the table will have two lines. If there are two sentence 
letters, there are four possible combinations of truth and falsity and the table has four lines. In general, 
if the number of sentence letters is n, the number of lines is 2". Thus if a formula contains three different 
sentence letters, its truth table has 2" 8 lines, and so on. 

To set up a truth table for a formula, write the formula at the upper right side of the table and list 
the sentence letters it contains in alphabetical order to the left. Now where n is the number of sentence 
letters, write beneath the rightmost of them a column of 2" alternating T's and F's, beginning with T. 
Then, under the next letter to the left (if any remains), write another column of 2" T's and F's, again 
beginning with T, but alternating every two lines. Repeat this procedure, moving again to the left and 
doubling the alternation interval each time, until each sentence letter has a column of T's and F's 
beneath it. If, for example, the formula contains three sentence letters, P, Q, and R, the left side of the 
table looks like this: 

T T T 
T T F  
T F T  
T F F 
F T T  
F T F  
F F T  
F F F 

Finally, using the truth tables for the logical operators, calculate the truth values of the formula by 
determining the values for it smallest subwffs first and then obtaining the values for larger and larger 
subwffs, until the values for the whole formula are discovered. The column for any wff or  subwff is 
always written under its main operator. Circle the column under the main operator of the entire wff to 
show that the entries in it are the truth values for the whole formula. 

SOLVED PROBLEMS 

3.9 Construct a truth table for the formula 

Solution 

P I  - P 
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The table has two lines, since there is only one sentence letter. We copy the column for the 
sentence letter 'P' beneath the occurrence of 'P' in the formula. The negation sign to its 
immediate left reverses the values in this column, and the negation sign to its left (which is the 
main operator of the whole formula) reverses them again, so that '- -P' has the same truth 
value as 'P' in every possible situation. 

3.10 Construct a truth table for the formula 

Solution 

We begin by copying the 'Q' column under 'Q' and the reverse of the 'P' column under the 
negation sign in '-P' (skipping the unnecessary step of copying the 'Py column under 'P'). We 
then determine the truth values for '-P V Q' from those for '-P' and 'Q', using the disjunction 
table. Since a disjunction is false if and only if both disjuncts are false, and since '-P' and 'Q' 
are both false only at line 2, '-P V Q' is false at line 2 and true at all the other lines. We circle 
the column containing the values for ' -PV Q'. Note that these values are the same as for 
'P-. Q'. This shows that for logical purposes '-PV Q' and 'P--+ Q' are synonymous, just as 
'-(P& -Q) ' and '(P -. Q)' are. 

3.11 Construct a truth table for the formula 

Solution 

This formula is the formalization of the exclusive disjunction of P with Q (see Section 3.4). 
In fact, the circled column is the correct truth table for exclusive disjunction. The truth values 
for the formula are entered in the following order. First, copy the columns for the sentence 
letters 'P' and 'Q' under the occurrences of these letters in the formula. Next, using the truth 
tables for disjunction and conjunction, determine the values for the formulas 'PV Q' and 
'P & Q' and write these under 'V' and the second occurrence of '&', respectively. The truth 
values for '-(P & Q)' are just the reverse of those for 'P & Q'; write them under '-'. Finally, 
the truth values for the entire formula are determined from the truth values for 'Pv Q' and 
'-(P & Q)', using the conjunction table. These are written under the main operator '&' and 
circled. 

P Q 
T T 
T F 
F T 
F F 

SOLVED PROBLEM 

3.12 Construct a truth table for the formula 

( P  V Q) & - ( p  & Q )  
T T T ( F ~ F  T T T  
T T F  

F T T  

T T T F F  
T T F F T  

F F F e T  F F F  
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Solution 

P I  P v -P  

[CHAP. 3 

The truth table shows that the formula 'P V -P' is true in every possible situation. 

Formulas which, like 'P v --P', are true at every line of the truth table are called tautologies, as are 
the statements they represent. Their truth tables show that tautologies are true in all possible 
circumstances. Thus tautologousness is a kind of logical necessity, the kind generated by the semantics 
of the operators of propositional logic. 

SOLVED PROBLEM 

3.13 Construct a truth table for the formula 

Solution 

P I P  & -P 

The table shows that ' P  & -P' is false in every possible situation. 

Any formula whose truth table contains only F's under its main operator is called a contradiction 
and is said to be truth-functionally inconsistent, as are all specific statements of the same form. 
Truth-functional inconsistency is one kind of inconsistency, the kind generated by the operators of 
propositional logic. Since it is the only kind that concerns us in this chapter, we will frequently refer to 
it here simply as "inconsistency"; but it should be kept in mind that not all inconsistency is 
truth-functional. The statement 'George is not identical to himself', for example, is inconsistent, but its 
inconsistency is due to the semantics of the expression 'is identical to' (see Section 6.7) as well as to the 
semantics of 'not', and hence it is not purely truth-functional. 

Formulas which are true at some lines of their truth tables and false at others are said to be 
truth-functionally contingent, as are the statements they represent. A truth-functionally contingent 
statement is one that could be either true or false, so far as the operators of propositional logic are 
concerned. Not all truth-functionally contingent statements, however, are genuinely contingent, i.e., 
capable of being either true or false, depending on the facts. The statement 'Jim is a bachelor and Jim 
(the same Jim) is married', for example, has the propositional form 'B & M ' ,  and hence is 
truth-functionally contingent, as this truth table reveals: 

But this statement is inconsistent, not contingent; what it asserts is impossible in a logical or conceptual 
sense. Its inconsistency, however, is non-truth-functional, being a consequence of the semantics of the 
expressions 'is a bachelor' and 'is married', in addition to the logical operator 'and'. 
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To summarize: If a wff is tautologous, then any statement of the same form is logically necessary 
and must always be true. If a wff is truth-functionally inconsistent, then any statement of the form is 
inconsistent and must always be false. But if a wff is truth-functionally contingent, then it is contingent 
only so  far as the operators represented in the wff are concerned. Some specific statements of the form 
will be genuinely contingent, while others will be non-truth-functionally necessary or inconsistent as a 
result of factors not represented in the wff. 

SOLVED PROBLEMS 

3.14 Construct a truth table to determine whether the following wff is tautologous, 
inconsistent, or truth-functionally contingent: 

Solution 

Because the column under the main operator '-' consists entirely of F's, the wff is 
inconsistent. 

P  Q 
T T 
T F 
F T 

3.15 Construct a truth table to determine whether the following wff is tautologous, 

( - P  V -Q> ( p  & Q >  - 
F F T T T  
F F T F F  
T T F F F F T  

inconsistent, or truth-functionally contingent: 

F F T T T 0 F F F F  

T T T  
T T F  
T F T  
T F F  
F T T  
F T F  
F F T  
F F F 

T T  T T F  
T T  T T T  

F F F  
T T  F T T  
F T  T T F  
F T  T T T  
F T  F F F  
F T  F T T  Ti 

This wff is truth-functionally contingent, beca 
under the main operator '-4'. 

iuse both T's and F's occur in the column 

3.16 Construct a truth table to determine whether the following wff is tautologous, 
inconsistent, or truth-functionally contingent: 
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T T T T 
T T T F  
T T F T  
T T F F  
T F T T  
T F T F  
T F F T  
T F F F  
F T T T  
F T T F  
F T F T  

F T F F  
F F T T  
F F T F  
F F F T  
F F F F  

T T T  T T T T  
T T T  F T F F  
T T T  F F F T  
T T T  F F F F  
T F F  F T T T  
T F F  F T F F  
T F F  F F F T  
T F F  F F F F  
F F T  F T T T  
F F T  F T F F  
F F T  F F F T  
F F T  F F F F  
F F F  F T T T  
F F F  F T F F  
F F F  F F F T  
F F F  F F F F  

The wff is tautologous, because only T's occur in the column under the main connective '--+'. 

3.6 TRUTH TABLES FOR ARGUMENT FORMS 

We are now finally in a position to provide a rigorous account of deductive validity based on the 
semantics of the logical operators. An argument form is valid if and only if all its instances are valid. An 
instance of a form is valid if it is impossible for its conclusion to be false while its premises are true, i.e., 
if there is no possible situation in which its conclusion is false while its premises are true. Now a truth 
table is in effect an exhaustive list of possible situations. Hence if we put not just a single wff on a truth 
table but an entire argument form, we can use the table to determine whether or not that form is 
valid. 

If the form turns out to be valid, then (since by definition a valid form is one all instances of which 
are valid; see Section 3.1) any instance of it must be valid as well. Hence we can use truth tables to 
establish the validity not only of argument forms, but also of specific arguments. Consider, for example, 
the disjunctive syllogism 

Either the princess or the queen attends the ceremony. 
The princess does not attend. 

:. The queen attends. 

We may formalize this as 

We can then construct a truth table for this form as follows: 

P Q  

T T 
T F 
F T 
F F F F  T F 

P V Q, - P k Q  
T T  F T 
T T F  F F 
F T T T  T 
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This table is computed in the same way as tables for single wffs, but it displays three separate wffs, 
instead of just one. We may think of these wffs as expressing an abstract argument form, a structure 
with many instances, or we may give them a specific interpretation, as when we stipulate that 'P '  means 
"the princess attends the ceremony" and 'Q'  means "the queen attends the ceremony." Under this 
specific interpretation, this sequence of wffs expresses only the argument above, which is just one 
instance of the abstract form. 

Let us consider the wffs under this specific interpretation first. The four lines of the truth table then 
stand for four distinct possibilities: either the princess and the queen both attend, the princess attends 
but the queen doesn't, the queen attends but the princess doesn't, or neither attends. Under the 
presupposition of bivalence, these are the only possible situations. In only one of these, the third, are the 
premises both true; but in this situation the conclusion is true as well. Thus there is no possible situation 
in which the premises are true and the conclusion false; the table shows that the argument is valid. 

Indeed, it shows that every argument of this form is valid. Since any such argument is composed 
of sentences P and Q which (again by the principle of bivalence) are either true or false, and since the 
table shows that no matter what combination of truth and falsity they exhibit, there is no possible 
situation in which the premises are both true and the conclusion is false, so that no instance of the form 
can be invalid. Hence the validity of the form itself is apparent. 

SOLVED PROBLEM 

3.17 Construct a truth table for the following form and use it to verify that the form 
is valid: 

Solution 

P Q R l  P - -  Q , Q R t P R  

There are four possible situations in which both premises are true, corresponding to the first, 
fifth, seventh, and eighth lines of the table. In all these situations the conclusion is also true. 
'Therefore the form is valid. 

T T T  
T T F  

T F F  
T F T  F T T  
F T F  
F F T  
F F F 

If a form is invalid, its truth table shows its validity by exhibiting one or more lines in which all the 
premises get the value T while the conclusion gets the value F: Such lines arc called counterexamples. 
The existence of even one counterexample is sufficient to establish that the argument is invalid. 

SOLVED PROBLEM 

3.18 Construct a truth table for the following form and use it to show that the form 
is invalid: 

P - Q , Q t P  

T T T T T T  
T T T T F F  
T F F F T T  

T F F F T F  1 1 F T T T T T  
F T T T F F  
F T F F T T  
F T F F T F  1: T F 
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Solution 

[CHAP. 3 

The table shows that there are two kinds of possible situations in which the premises are 
both true, those represented by the first and third lines. At  the first line, the conclusion is also 
true; but a t  the third line it is false. The third line is therefore a counterexample (we write an  ' X '  
on its right to indicate this). It is in effect a prescription for constructing instances of the form 
with true premises and a false conclusion. Any instance constructed from sentences P and Q, 
where P is false and Q is true, will fill the bill. For example, if we interpret 'P' as "whales are 
fish" and 'Q' as "whales inhabit bodies of water,'' we obtain: 

T T 
T F 
F T 

If whales are fish, they inhabit bodies of water. 
Whales inhabit bodies of water. 

Whales are fish. . . 

T T  T T  
T F F F T  
F T T T F  x 

This is an instance of the form with true premises and a false conclusion (whales are mammals, not 
fish). Since a form is invalid if it has even one such instance, this form is clearly invalid. It is in fact 
the form known as afJirming the consequent which was discussed at the end of Section 3.1. 

F F F F  F F 

In summary: To determine whether an argument form of propositional logic is valid, put the entire 
form on a truth table, making as many lines as determined by the number of distinct sentence letters 
occurring in the relevant formulas. If the table displays no counterexample, then the form is valid (and 
hence so is any instance o f  it). If the table displays one or  more counterexamples, then the form is invalid. 
Since invalid forms may have valid as well as invalid instances, the truth table test does not establish the 
invalidity of specific arguments. If we formalize an argument and then show that the resulting form is 
invalid, we are not thereby entitled to infer that the argument is invalid. But if a truth table shows a 
form to be invalid, then it shows that none of its instances is valid solely in virtue of having that form. 
Any valid instances must derive their validity at least in part from some feature of the argument which 
has been lost in the process of formalization. Argument 5 of Section 3.1, for example, is valid despite 
being an instance of affirming the consequent, which is invalid by the truth table test; when it is 
formalized as affirming the consequent (i.e., as P-. Q, Q t P),  the information that the conclusion 
follows from the second premise is lost. 

In Section 3.1 we have seen that a particular argument may in fact be an instance of several forms, 
some of which are valid and some of which are not. But if it is an instance of any valid form, then it is 
valid. For example, the argument 

If she loves me, then she doesn't hate me. 
It's not true that she doesn't hate me. 

:. She doesn't love me. 

is an instance of each of the following forms, only the first two of which are valid: 

In the third case, for example, we have formalized 'She loves me7 as 'L', 'She doesn't hate me' as 'D' ,  
and 'It's not true that she doesn't hate me' as ' N ' .  And even this list is not complete. The reader can 
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probably discover several more forms of which this argument is an instance. In formalizing an 
argument, we generally select the form which displays the most logical structure (in this case the first 
form), since if the argument is valid in virtue of any of its folrms, it will be valid in virtue of that one. 
However, if a form with less structure is valid (as is the second form on this list), then it too is an 
adequate formalization for demonstrating the validity of the argument. 

SOLVED PROBLEMS 

3.19 Construct a truth table for the following form, and use the table to determine 
whether the form is valid: 

P + Q , P + - Q k - P  

Solution 

f' Q 1 P + Q, P + -Qk-P 

The only possible situations in which the premises are both true are those represented by 
the third and fourth lines of the table. But in these situations the conclusion is also true; hence 
the form is valid. 

T T 
T F 
F T 

3.20 Construct a truth table for the following form, and use the table to determine 
whether the form is valid: 

Solution 

F F F F  F T  T 

T W T  T @  F F 
T F F T T T  
F T T F T F  

The table displays two kinds of counterexamples. The first is when 'P' and 'Q' are both true 
(first line of the table); the second when they are both false (last line of the table). Hence the 
form is invalid. 

F 
T 

T T 
T F 
F T 

3.21 Construct a truth table for the following form, and use the table to determine 
whether the form is valid: 

T T T F T T T  n n >: 
T F F F F T T  
F T T T T F F  

Solution 

P  Q R I P V  

T T T  
T T F  
T F T  
T F F 
F T T  
F T F  
F F T  
F F F  
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The form is invalid, because in situations in which 'P' and 'R' are false and 'Q' is true (line 
6 of the table), the premises are both true while the conclusion is false. 

3.22 Construct a truth table for the following form, and use the table to determine 
whether the form is valid: 

P, -P t- Q 

Solution 

Since the premises are mutually inconsistent, there is no possible 

T T 
T F 
F T 
F F 

situation in which bo 

T F T  
T F F 
F T T  
F T F 

are true. Hence there are no counterexamples; the form is valid. However, notice that every 
argument of this form is unacceptably flawed as a means of proving its conclusion: in the 
terminology of Chapter 2, criterion 1 (truth of premises) is violated, so the argument cannot be 
sound. In addition, such an argument may well violate criterion 3 (relevance). Compare 
Problem 2.21. 

3.23 Construct a truth table for the following form, and use the table to determine 
whether the form is valid: 

Solution 

P Q R 

T T T  
T T F  
T F T  
T F F 
F T T  
F T F  
F F T  
F F F  

T T  T T  T 
T T  T T  T 
T T  T F  F 
T T  T F  F 
F F  F F T  
F F  F F T  
F F  F F  F 
F F  F F  F 

The conclusion of this argument is a tautology, so there is no situation in which the premise 
is true and the conclusion false. The argument is therefore valid. As in the previous example, 
however, arguments of this form lack relevance, since their validity is totally independent of the 
relationship between premise and conclusion (compare Problem 2.19). 

3.7 REFUTATION TREES 

Truth tables provide a rigorous and complete test for the validity or invalidity of propositional logic 
argument forms, as well as a test for tautologousness, truth-functional contingency, and inconsistency 
of wffs. Indeed, they constitute an algorithm, the sort of precisely specifiable test which can be 
performed by a computer and which always yields an answer after a finite number of finite operations. 
When there is an algorithm for determining whether or not the argument forms expressible in a formal 
system are valid, that system is said to be decidable. Thus the truth tables ensure the decidability of 
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predicate logic. But they are cumbersome and inefficient, especially for problems involving more than 
two or three sentence letters. Refutation trees, the topic of this section, provide a more efficient 
algorithm for performing the same tasks. 

Given a list of wffs, a refutation tree is an exhaustive search for ways in which all the wffs on the 
list can be true. To test an argument form for validity using a refutation tree, we construct a list 
consisting of its premises and the negation of its conclusion. The search is carried out by breaking down 
the wffs on the list into sentence letters or their negations. If we find any assignment of truth and falsity 
to sentence letters which makes all the wffs on the list true, then under that assignment the premises 
of the form are true while its conclusion is false. Thus we have refuted the argument form; it is invalid. 
If the search turns up no assignment of truth and falsity to sentence letters which makes all the wffs on  
the list true, then our attempted refutation has failed; the form is valid. To illustrate, we examine some 
simple examples. 

SOLVED PROBLEMS 

3.24 Construct a refutation tree to show that the form 'P & Q I- - -P' is valid. 

Solution 
W e  begin by forming the list consisting of the premise and the negation of the 

conclusion: 

Now the premise is true if and only if 'P' and 'Q' are both true. Hence we can without 
distortion replace 'P & Q' by these two sentence letters. We show this by writing 'P' and 'Q' a t  
the bottom of the list and checking off the formula 'P & Q' to indicate that we are finished with 
it. A checked formula is in effect eliminated from the list: 

Moreover '- - -P' is true if and only if the simpler formula '-P' is true; hence we can check 
'- - -P' and replace it by ' -P ' :  

We have now broken down the original list of formulas into a list of sentence letters or  
negations of sentence letters, all of which must be .true if all the members of our original list are 
to be true. But among these sentence letters and their negations are both 'P' and '-P', which 
cannot both be true. Hence it is impossible for everything on the finished list to  be true. We  
express this by writing 'X' at the bottom of the list. 

The refutation tree is now complete. Our search for a refutation of the original argument form 
has failed; hence this form is valid. 
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3.25 Construct a refutation tree to show that the form 'P V Q, -P t- Q' is valid. 

Solution 

As before, we begin with a list consisting of the premises followed by the negation of the 
conclusion: 

Since both '-P' and '-Q' are negations of sentence letters, they cannot be analyzed 
further; but 'Pv Q' is true if and only if either 'P' or 'Q' is true. To represent the fact that 
'Pv Q '  can be true in either of these two ways, we check 'PV Q' and "branch" the tree, 
like this: 

The tree now contains two paths, each starting with the checked formula 'Pv Q'. The first 
branches to the left and ends with 'P'; the second branches to the right and ends with 'Q'. The 
three formulas on the initial list can be true if and only if all the formulas on one or both of these 
paths can be true. But the first path contains both 'P' and '-P', and the second contains both 
'Q' and '-Q'. Hence not all the formulas on either path can be true. As in the previous 
problem, we indicate this by ending each path with an X: 

This is the finished tree. Since the attempted refutation fails along both paths, the original 
argument is valid. 

3.26 Construct a refutation tree to determine whether the following form is valid: 

Solution 
Again, we form a list consisting of the premises and the negation of the conclusion: 

'- -Q' is equivalent to the simpler formula 'Q', so we check it and write 'Q' at the bottom 
of the list. Then, as in the previous problem, we check 'P V Q' and show its truth possibilities 
by branching the tree: 

The tree is now finished. All formulas on the tree have been broken down into sentence letters 
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or their negations. Moreover, both paths represent possible truth value assignments, since 
neither contains both a sentence letter and its negation. Since each path contains both 'P' and 
'Q' ,  each represents an assignment on which both these letters are true. Moreover, the tree 
indicates that under this truth value assignment all three formulas on the original list are true, 
i.e., that the premises of the form 'P V Q, P I- -Q' are true while its conclusion is false. Hence 
this form is invalid. 

The reader may wish to confirm the findings of these th.ree problems by constructing truth tables 
for their respective forms. We now consider more syste:matically the procedure by which these 
problems were solved. 

A refutation tree is an analysis in which a list of statements is broken down into sentence letters or  
their negations, which represent ways in which the members; of the original list may be true. Since the 
ways in which a statement may be true depend on the logical operators it contains, formulas containing 
different logical operators are broken down differently. All wffs containing logical operators fall into 
one of the following ten categories: 

Negation Negated negation 
Conjunction Negated conjunction 
Disjunction Negated disjunction 
Conditional Negated conditional 
Biconditional Negated biconditional 

Corresponding to each category is a rule for extending refutation trees. Problems 3.24 to 3.26 illustrated 
four of these rules. In order to state them, we need first to define the concept of an open path. A n  open 
path is any path of a tree which has not been ended with an 'X'. Paths which have been ended with an 
' X '  are said to be closed. The four rules may now be stated as follows: 

Negation (-): If an open path contains both a forinula and its negation, place an 'X' at the 
bottom of the path. 

The idea here is that any path which contains both a formula and its negation is not a path all of 
whose formulas can be true, which is what we are searching for in constructing a refutation tree. Hence 
we can close this path as a failed attempt at refutation. The negation rule was used in Problems 3.24 
and 3.25. 

Negated Negation (- -): If an open path contains an unchecked wff of the form - -+, 
check it and write + at the bottom of every open path that contains this newly checked wff. 

This rule was used in Problems 3.24 and 3.26. 

Coniunction (&): If an open path contains an unchecked wff of the form + & $, check it and 
write + and $ at the bottom of every open path that. contains this newly checked wff. 

This rule was used in Problem 3.24. 

Disjunction (v): If an open path contains an unchecked wff of the form 4 v $, check it and 
split the bottom of each open path containing this newly checked wff into two branches, at the 
end of the first of which write 4 and at the end of the second of which write $. 

This rule was used in Problems 3.25 and 3.26. 
A path isfinished if it is closed or if the only unchecked wffs it contains are sentence letters or  their 

negations, so that no more rules apply to its formulas. A tree is finished if all its paths are finished. If 
all the paths of a finished tree are closed (as in Problems 3.24 and 3.25), then the original formulas from 
which the tree is constructed cannot be true simultaneously. Thus, if the list is constructed from an 
argument form by negating its conclusion, that form is valid. On the other hand, if one or more of the 
paths of a finished tree are open (as in Problem 3.26), then the original formulas from which the tree 
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is constructed can be true simultaneously. If the list is constructed from an argument form by negating 
its conclusion, this means that the form is invalid. 

Indeed, the finished tree displays more than just the validity or invalidity of the argument form. 
Each open path o f  the finished tree is a prescription for constructing counterexamples. The only 
unchecked formulas on a finished open path are sentence letters or their negations. Any situation in 
which the unnegated sentence letters on the path are true and the negated ones are false is a 
counterexample. For example, the finished tree of Problem 3.26 shows two open paths, each containing 
both 'P' and 'Q'; thus, any situation in which 'P' and 'Q'  are both true is a counterexample to the form 
'P V Q, P t- -Q7. 

It is useful to annotate trees by numbering the lines they contain and indicating which rules and 
lines have been used to add formulas to the tree. We number lines in a column to their left and indicate 
the lines from which they are derived and the rules used to derive them to their immediate right. Rules 
are designated by the signs for the connectives they employ. Thus, for example, the annotated version 
of the tree of Problem 3.25 is as follows: 

We now state and illustrate the remaining six rules for generating refutation trees. Together with 
the four rules already given, they enable us to construct a tree for any finite set of wffs of propositional 
logic. 

Conditional (+): If an open path contains an unchecked wff of the form 4 -, +, check it and 
split the bottom of each open path containing this newly checked wff into two branches, at the 
end of the first of which write -<b and at the end of the second of which write +. 

This rule is based on the fact that -+ (I is true if and only if either 4 is false or  + is true (see the truth 
table for the material conditional). 

SOLVED PROBLEM 

3.27 Construct a refutation tree to determine whether the following form is valid: 

Solution 

We begin by writing the premises and then the negation of the conclusion (lines 1 to 4). The 
conditional rule is then applied to line 1 to obtain line 5.  The left branch closes at 6, by the 
negation rule, but the right branch remains open, and so the conditional rule is applied to 2 to 
obtain line 7. The negation rule then closes the two remaining paths. Since the finished tree is 
closed, the attempted refutation has failed and the form is valid. 
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Biconditional (-): If an open path contains an unchecked wff of the form + ++ $, check i t  and 
split the bottom of each open path containing this newly checked wff into two branches, at the 
end of the first of which write both + and $, and at the end of the second of which write both 
-4 and -$. 

This rule is an expression of the fact that <t ++ tl, is true if and only if + and tlr are either both false or  
both true. 

SOLVED PROBLEM 

3.28 Construct a refutation tree to determine whether the following form is valid: 

Solution 

Notice that it is not necessary to apply the negated negation rule in line 3 in this problem. 
The tree closes even without this move, since lincs 3 and 5 are one the negation of the other. The 
form is valid. 

Negated Coniunction (- ) :  If an open path contains an unchecked wff of the form 
-(+ & +), check it and split the bottom of each open path containing this newly checked wff 
into two branches, at the end of the first of which write -ct> and at the end of the second of 
which write -$. 

This rule depends upon the fact that -(+ & $) is true if and only if either + or $ is false. 

SOLVED PROBLEM 

3 29 Construct a refutation tree to determine whether the following form is valid: . . 

Solution 

Again, we begin with the premise and the negation of the conclusion. We analyze these by 
two steps of negated conjunction (lines 3 and 4). Two of the four paths then close, but two 
remain open, even after the applications of negated negation at line 5. Since no more rules 
apply, the tree is finished. And since there are two open paths, the form is invalid. The open 
paths indicate that situations in which 'P' is false and 'Q'  true or 'Q'  false and 'P' true are 
counterexamples. 
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Negated Disiunction ( )  If an open path contains an unchecked wff of the form 
-(+ v $), check it and write both -4 and -$ at the bottom of every open path that contains 
this newly checked wff. 

This rule is an expression of the fact that -(+ // +) is true if and only if both + and $ are false. 

SOLVED PROBLEM 

3.30 Construct a refutation tree to determine whether the following form is valid: 

Solution 

1 J P4 Q 
2 J -(p v Q> 
3 -P 2-v 

The negated disjunction rule is applied to line 2 to yield lines 3 and 4, The open path in the 
finished tree indicates that the form is invalid, and that any situation in which 'P' and 'Q' are 
both false is a counterexample. 

Negated Conditional ) :  If an open path contains an unchecked wff of the form 
-(+ -+ +), check it and write both + and -3, at the bottom of every open path that contains this 
newly checked wff. 

A negated conditional -(+ --+ +) is true if and only if the conditional + 4 + is false, hence if and only 
if + is true and $ is false; that is the justification for this rule. 

SOLVED PROBLEM 

3.31 Construct a refutation tree to determine whether the following form is valid: 

Solution 

The tree has two open paths, each indicating that the premise is true and the conclusion 
false when 'P' is true and 'Q' false. Hence the form is invalid. 

Negated Biconditional (- -): If an open path contains an unchecked wff of the form 
-(+ - +), check it and split the bottom of each open path containing this newly checked wff 
into two branches, at the end of the first of which write both <b and -$, and at the end of the 
second of which write both -+ and +. 

This rule is an expression of the fact that a negated biconditional -(+ - +) is true if and only if the 
biconditional is false, hence if and only if 4 is true and + false or 4 is false and $ true. 
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SOLVED PROBLEM 

3.32 Construct a refutation tree to determine whether the following form is valid: 

Solution 

Since the finished tree is closed, the form is valid. 

Refutation trees are useful for purposes other than testing the validity of argument forms. A list of 
wffs is truth-functionally consistent if the tree beginning with those formulas (and including no other 
formulas except for those obtained by applying the rules) contains at least one finished open path. Thus, 
a consistent list of wffs is one all members of which can be true simultaneously, since a finished open 
path represents a way to make all the formulas on the list true. If a finished tree contains no open paths, 
the list of formulas from which it is constructed is inconsistent. 

The list may consist of just one formula. If the finished tree for a single formula contains no open 
paths, then the formula is truth-functionally inconsistent. If it contains more than one open path, then 
the formula is either tautologous or truth-functionally contingent. 

Indeed, refutation trees can also be used to test specifically for tautologousness. A wfl is 
tautologous if and only if its negation is truth-functionally inconsistent. Therefore for any wff +, + is 
tautologous if and only if all the paths on the finished tree for -+ are closed (i.e., if and only if -4 is 
truth-functionally inconsistent). 

SOLVED PROBLEMS 

3.33 Construct a refutation tree to determine whether the following wff is 
tautologous: 

Solution 

We construct the tree for the negation of the wff in question. Since all paths close, our 
attempt to find a way to make its negation true has failed; it is therefore tautologous. 
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3.34 Construct a refutation tree to determine whether the following wff is 
tautologous: 

Solution 

The left-branching path remains open, showing that '- -(Q - (P & -P))' is true if 'Q' is 
false. Hence '-(Q - (P & -P))' is not tautologous. 

The reader should keep the following points in mind when constructing refutation trees: 

(1) The rules for constructing trees apply only to whole formulas, not to mere subformulas. Thus, for 
example, the use of negated negation in the following tree is impermissible: 

1 J -  P&--Q 
2 J p & Q  1 - - (incorrect) 
3 P 2 &  
4 Q 2 &  

Although removing double negations from subformulas does not produce wrong answers, it is 
unnecessary and makes trees more difficult to read. More serious problems may result from trying 
to apply some of the rules for binary operators to subformulas, since we have not defined a 
consistent procedure for doing so. 

The order in which rules are applied makes no difference to the final answer, but it is usually most 
eflcient to apply nonbranching rules jirst. After branching rules have been applied, further steps 
may require formulas to be written at the bottoms of several paths, which may necessitate more 
writing than if nonbranching rules had been applied first. Consider, for example, what happens if 
we apply the branching rule '4' first in Problem 3.30. Then the tree is: 

Here the formulas '-P' and '-Q' must each be written twice, whereas if we apply the non- 
branching rule negated disjunction first, as in Problem 3.30, we need write them only once. 

(3) The open paths of a finished tree for an argument form display all the counterexamples to that form. 
This is true even if not all the sentence letters of the form occur among the unchecked formulas 
of some open paths. Consider, for example, the invalid form 'P-. Q t- P'. Its tree is: 
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Both paths are open. The right-branching path indicates that situations in which 'P' is false while 
'Q' is true are counterexamples; on the other hand, the left-branching path indicates simply that 
situations in which 'P' is false are counterexamples. The letter 'Q' does not occur among the 
unchecked formulas of this path. This shows that the falsity of 'P' is by itself sufficient for a 
counterexample, i.e., that any situation in which 'P' is false is a counterexample, regardless of the 
truth value of 'Q'. Thus the tree indicates that there are .two kinds of counterexamples to the form: 

- 

situations in which 'P' is false and 'Q' true, and situations in which both are false. 

Table 3-1 Refutation Tree Rules 

Negation (-): If an open path contains both a formula and its negation, place an ' X '  at  the 
bottom of the path. 

Negated Negation (- -): If an open path contains an unchecked wff of the form - -+, check 
it and write + at  the bottom of every open path that contains this newly checked wff. 

Coniunction (&): If an open path contains an unchecked wff of the form + & $, check it and 
write + and $ at  the bottom of every open path that contains this newly checked wff. 

Negated Conjunction (-&): If an open path contains an unchecked wff of the form -(+ & $), 
check it and split the bottom of each open path containing this newly checked wff into two 
branches, a t  the end of the first of which write -+ and a t  the end of the second of which 
write -$. 

Disjunction (v): If an open path contains an unchecked wff of the form + v $, check it and 
split the bottom of each open path containing this newly checked wff into two branches, at 
the end of the first of which write 4 and at the end of the second of which write $. 

Negated Disiunction (-v): If an open path contains an unchecked wff of the form -(+ v $), 
check it and write both -+ and -$ at the bottom of every open path that contains this 
newly checked wff. 

Conditional (4): If an open path contains an unchecked wff of the form + -. $, check it and 
split the bottom of each open path containing this newly checked wff into two branches, at 
the end of the first of which write -+ and at the end of' the second of which write $. 

Negated Conditional (-4): If an open path contains an unchecked wff of the form -(+ -+ $), 
check it and write both + and -$ at the bottom of every open path that contains this newly 
checked wff. 

Biconditional (-): If an open path contains an unchecked wff of the form + - $, check it and 
split the bottom of each open path containing this newly checked wff into two branches, a t  
the end of the first of which write both + and $, and at  the end of the second of which 
write both -+ and -Jr .  

Negated Biconditional (--): If an open path contains an unchecked wff of the form 
-(+ ++ $), check it and split the bottom of each open path containing this newly checked 
wff into two branches, at the end of the first of which write both + and -$, and at  the end 
of the second of which write both -+ and $. 
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Supplementary Problems 

I Formalize the following statements, using the interpretation indicated below: 

Sentence Letter Interpretation 

P  Pam is going. 

Q Quincy is going. 

R  Richard is going. 
S  Sara is going. 

Pam is not going. 

Pam is going, but Quincy is not. 

If Pam is going, then so is Quincy. 

Pam is going if Quincy is. 

Pam is going only if Quincy is. 

Pam is going if and only if  Quincy is. 

Neither Pam nor Quincy is going. 

Pam and Quincy are not both going. 

Either Pam is not going or Quincy is not going. 

Pam is not going if Quincy is. 

Either Pam is going, or Richard and Quincy are going. 

If Pam is going, then both Richard and Quincy are going. 

Pam is staying, but Richard and Quincy are going. 

If Richard is going, then if Pam is staying, Quincy is going. 

If neither Richard nor Quincy is going, then Pam is going. 

Richard is going only if Pam and Quincy are staying. 

Richard and Quincy are going, although Pam and Sara are staying. 

If either Richard or Quincy is going, then Pam is going and Sara is staying. 

Richard and Quincy are going if and only if either Pam or Sara is going. 

If Sara is going, then either Richard or Pam is going, and if Sara is not going, then both Pam and 
Quincy are going. 

I1 Determine which of the following formulas are wffs and which are not. Explain your answer. 

(1) -W) 
( 2 )  P - e  

( 3 )  (P--  P )  
( 4 )  P -  P  

( 5 )  - - -(-P & Q )  

( 6 )  ( ( P -  Q N  
(7)  - ( P & Q ) & - R  

(8) ( P  -- ( P  -(P -- P ) ) )  

(9) ( P -  ( Q  - ( R  & S ) )  

(10)  ( P - ( Q v R v S ) )  

I11 Determine whether the following formulas are tautologous, truth-functionally contingent, or inconsistent, 
using either truth tables or refutation trees. 
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IV Test the following forms for validity, using either truth tables or refutation trees. 

(1) -PtP---P 

(2) P v Q ~ P & Q  

(3) p- -Q I- -(P Q) 

(4) P W ' - - ( Q & P > ) + ( P & Q >  

( 5 )  P V Q, -P, -Q !- R 
( 6 )  ( Q & R ) + P , - Q , - R k - P  

(7) - ( P v Q ) ,  R-PI--R 

(8) - ( P & Q ) , R - P k  -R 

(9) P - Q , Q - . R k P - R  

(10) P - - ( R v S ) , ( R & S ) - - Q k P - Q  

V Formalize the following arguments, using the interpretation given below, and test their forms for validity 
using either truth tables or refutation trees. 

Sentence Letter Interpretation 

C Argument form F has a counterexample. 

I The premises of argument form .Fare inconsistent. 

0 The finished tree for argument form F contains an open path. 
V Argument form F is valid. 

(1) If argument form F is valid, then its finished tree contains no open paths. Hence if its finished tree 
contains an open path, it is invalid. 

( 2 )  If the premises of argument form Fare  inconsistent, then F is valid. Therefore, if the premises of form 
F are not inconsistent, then form F is invalid. 

(3) If argument form F has a counterexample, then its premises are not inconsistent. For it is not the case 
both that it has a counterexample and that its premises are consistent. 

(4) Either argument form F has a counterexample or it is valid, but not both. Hence form F is valid if and 
only if' it has no counterexample. 

(5) The premises of argument form F are inconsistent. If the premises of F are inconsistent, then F is 
valid. F is valid if and only if its finished tree contains no open path. If its finished tree contains no 
open path, then it has no counterexample. Form F has a counterexample. Therefore, the premises of 
form F are not inconsistent. 
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Answers to Selected Supplementary Problems 

I (5) P-- Q. 

(10) Q- -P. 

(15) - ( R V Q > - p ,  or  equivalently (-K & -Q) -- P. 

(20) (S - (R v P)) & (-S -- ( P  & (2)). 

I1 (5) 'P' and 'Q' a re  wffs by rule 1 in Section 3.3; so '-P' is a wff by rule 2. Hence ' ( - P  & Q)' is a wff 
by rule 3, whence by three applications of rule 2 it follows that '- - -(-P & Q)' is a wff. 

(10) Not a wff. N o  rule allows us to disjoin three statements a t  once. 

111 (2) Truth-functionally contingent 

(4) Truth-functionally contingent 

(6) Tautologous 

(8) Truth-functionally contingent 

(1 0) Tautologous 

IV (2) Invalid 

(4) Valid 

(6) Invalid 

(8) Invalid 

(10) Invalid 

V (2) Invalid form (indeed, the argument itself is invalid) 

(4) Valid form 



Chapter 4 

The Propositional Calculus 

4.1 THE NOTION OF INFERENCE 

Chapter 3 dealt with propositional logic from a semantic point of view, using techniques for testing 
the deductive validity of argument forms based on the intended interpretation of the logical operators. 
In this chapter we present a different method for establishing deductive validity, which makes no  
explicit reference to the notion of a truth value. It is based on the idea that if an argument is deductively 
valid, one should be able to infer or derive the conclusion from the premises, that is, to show how the 
conclusion actually follows from the premises. Typically, this is how one proceeds when one offers an 
argument to support a certain statement. One does not simply list the premises and conclusion, and 
then issue a challenge to describe a possible situation in whiclh the conclusion is false while the premises 
are true. Rather, one tries to show how the conclusion can actually be reached through a finite number 
of successive steps of reasoning, each of which is fully explicit and indisputable. Obviously this 
inferential process is not captured by the method of truth lables, nor by the technique of refutation 
trees. 

The key to proving validity by means of step-by-step deductions lies in mastering the principles 
which can be appealed to in making the successive steps. These principles are called rules o f  inference. 
In this chapter we shall formulate them with reference to the language of propositional logic, though 
it will be clear that the same approach can be extended to cover other patterns of reasoning (see 
Chapters 7 and 11). Overall we shall formulate ten such rules: two-an introduction and an elimination 
rule-for each of the five logical operators. The elimination rule for an operator is used to reason from 
premises in which that operator is the main operator. The introduction rule for an operator is used to 
derive conclusions in which it is the main operator. These rules form a system called the propositional 
calculus. (The term means simply "system for performing calculations with propositions"; it indicates 
no close relationship with the differential or integral calculus of advanced mathematics.) A deduction 
in the propositional calculus is thus a series of formulas in the language of propositional logic, each of 
which is either used as a premise or obtained by applying a rule of introduction or a rule of elimination. 
A deduction is also called a derivation or proof ;  we shall use these terms synonymously. 

Other versions of the propositional calculus employ different rules Srom the ones used here. 
However, all commonly used sets of rules are equivalent, in the sense that they establish the validity of 
exactly the same argument forms, namely all and only the valid argument forms expressible in the 
language of propositional logic. 1 l i s  means that if a form can be shown to be valid by the semantic 
methods of Chapter 3, then it is also provable by the rules of the calculus. We can also express this fact 
by saying that the calculus is complete. In addition, the calculus is valid, i.e., it does not allow one to 
generate an argument which is not valid. These properties clf the calculus are of course crucial if we 
want to say that the propositional calculus provides an alternative but equivalent account of the notion 
of deductive validity. Their demonstrations, however, are beyond the scope of this book.' 

4.2 NONHYPOTHETICAL INFERENCE RULES 

In this section we introduce eight of the ten basic inference rules. The other two (the conditional 
and negation introduction rules) are different in character and will be discussed in Section 4.3. 

'The validity and completeness of a propositional calculus very similar to the one presented here are demonstrated in E. J. 
Lemmon, Beginning Logic, Indianapolis, Hackett, 1978, pp. 75-91. 
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To illustrate the concept of a derivation, consider the following argument form: 

This form is valid (see Problem 3.7(i)); hence the conclusion should be derivable from the premises. 
The derivation is as follows: 

We list the three assumptions on the first three lines of the derivation, number each line, and add the 
label 'A' to indicate that each is an assumption (a premise of the argument). Then we deduce the 
conclusion 'R' by two steps of reasoning. The first step is from lines 1 and 3 to line 4; the second is from 
2 and 4 to 5. The numbers at the right denote the lines from which 4 and 5 are derived. The two steps 
have the same form; each is an instance of the first of our ten inference rules, conditional elimination, 
which we designate by '+E': 

Conditional Elimination (-+E): From a conditional and its antecedent we may infer its 
consequent. 

This rule is also known as modus ponens (see Problem 3.1). Its validity is obvious; and since a complex 
argument consisting entirely of valid steps must itself be valid (see Section 2.3), this complex derivation 
proves the validity of our original argument form. 

Note that the rule says nothing about the complexity of the conditional to which it is applied: 
the antecedent and the consequent may be atomic (sentence letters) or they may themselves be 
compound wffs. 

SOLVED PROBLEM 

4.1 Prove: 

-P? (Q- R), -P, Q k R 

Solution 

1 -P'(Q-R) A 
2 -P A 
3 Q A 
4 Q-R 1,2--E 
5 R  3 , 4  --E 

(We omit the triple dots in front of conclusions here and in all subsequent derivation problems, 
since the citation of line numbers at right is sufficient to indicate that they are conclusions.) The 
first premise is a conditional whose antecedent is negated and whose consequent is itself a 
conditional. Line 2 contains its antecedent. Thus the derivation of its consequent at 4 is clearly 
an instance of conditional elimination, as is the step from lines 3 and 4 to line 5. 

Notice also that we drop the outer brackets from the expression ' ( Q d  R)' at step 4, where we 
detach it by conditional elimination from the assumption given in line 1. This is a result of the 
convention for dropping outer brackets (see Section 3.3), as is the fact that we write line 1 as 
'- P -. (Q  - R)' rather than ' (  P (Q R)) .  We shall employ this convention throughout this 
chapter. 
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Our second inference rule is the negation elimination :rule, which we designate by the notation 
'-E'. This rule allows us to reason from premises which are negations of negations: 

Negation Elimination (-E): From a wff of the form --4, we may infer +. 
(We use the Greek letter '4' to indicate that this rule is perfectly general, applying to all wffs whether 
atomic or compound; see Section 3.3.) The validity of negation elimination follows immediately by the 
truth table for '-' (see Problem 3.9). Invariably the negation of a false statement is true, and the 
negation of a true statement is false. Thus if we begin with a true doubly negated sentence (e.g., 'It is 
not the case that Richard Nixon was not president') and remove one of the negations ('Richard Nixon 
was not president') we get a falsehood. If we remove both, however ('Richard Nixon was president'), 
the result is again true. Thus any inference from a doubly negated statement to the result of removing 
both negations is valid. The following problem employs -E: 

SOLVED PROBLEM 

4.2 Prove: 

Solution 

The assumption in step 1 is a conditional with a negated antecedent and a doubly negated 
consequent. We derive its antecedent at line 3 by applying -E to line 2 ('--- P' is the double 
negation of '-P'). This allows us to deduce its consequent at line 4 by 3 E .  Then another step 
of -E yields our conclusion. 

It is important to note that -E would not permit us to reason from line 1 to '-P--. Q', though that 
would in fact be a valid argument (check this by computing the truth table). Line 1 is a conditional, not 
a doubly negated wff (i.e., a wff of the form --+). We must detach '--Q' from step 1 before we can 
apply -E. Negation elimination allows us to remove two negation signs only if they are the leftmost 
symbols of a wff and all the rest of the wff is included in their scope. 

The next two rules, conjunction introduction and conjunction elimination, are both extremely 
simple and obviously valid: 

Conjunction Introduction (&I): From any wffs 4 and $, we may infer the conjunction + & $. 

Conjunction Elimination (&E): From a conjunction, we may infer either of its conjuncts. 

Some authors call &I conjunction, and &E simplification. Both are used in the following problems. 

SOLVED PROBLEMS 

4.3 Prove: 

Solution 
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4.4 Prove: 

P - - ( Q & R ) , P t P & Q  

Solution 

4.5 Prove: 

(P & Q)-(R & S), --P, Q !-s 
Solution 

The fact that two different Greek letters, '+' and '+', are used in the statement of the &I rule does 
not imply that the wffs designated by these letters need be distinct. Thus the use of &I in the following 
problem, though unusual, is perfectly correct: 

SOLVED PROBLEM 

4.6 Prove: 

P I - P & P  

Solution 

Though the conjunction of a statement with itself is redundant (and hence unlikely to be uttered 
in practice), it is grammatically well formed, and thus permissible in theory. Line 1 does double 
duty in this proof, serving as the source of both of the conjuncts of line 2, so we cite it twice a t  
line 2. 

The fifth rule is used to prove disjunctive conclusions: 

Disiunction Introduction ( ~ 1 ) :  From a wff +, we may infer the disjunction of @ with any wff. 
($ may be either the first or second disjunct of this disjunction.) 

Disjunction introduction is sometimes called addition. Its validity is an immediate consequence of the 
truth table for 'v'. If either or both of the disjuncts of a disjunction are true, then the whole disjunction 
is true. Thus, for example, if the statement 'Today is Tuesday' is true, then the disjunction 'Today is 
either Tuesday or Wednesday' must also be true (as well as 'Today is either Wednesday or Tuesday', 
in which 'Today' is the second disjunct). Indeed, if today is Tuesday, then the disjunction of 'Today is 
Tuesday' with any statement (including itself) is true. Disjunction introduction is illustrated in the 
following proofs. 
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SOLVED PROBLEMS 

Solution 

4.8 Prove: 

Solution 

4.9 Prove: 

Solution 

It is instructive to compare this problem with Problem 4.6. Note that in the second step we cite 
line 1 only once, since VI is a rule that applies to only one premise. 

The disjunction elimination rule is a bit more complicated than VI, but on reflection its validity, too, 
should be apparent: 

Disjunction Elimination (vE): From wffs of the forms 4 V I), 4 -. X, and + -+ X, we may infer 
the wff x . ~  

This rule is sometimes called constructive dilemma. To illustrate, assume that today is either Saturday 
or Sunday (a disjunction). Moreover, assume that if it is Saturday, then tonight there will be a concert, 
and if it is Sunday, then again tonight there will be a concert. Then we can infer that tonight there will 
be a concert even without knowing with certainty whether it is Saturday or Sunday. Our  disjunctive 
assumption covers all relevant cases, and in each case we know there will be a concert. 

SOLVED PROBLEMS 

4.10 Prove: 

P V Q , P + R , Q + R t R  

*It is also possible to formulate this rule without mentioning the two conditionals 4 -, x and 4 -. X. Such a formulation would be 
more elegant, except that VE would become a hypothetical rule (see next section). Our treatment is dictated primarily by reasons 
of simplicity. 
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Solution 

1 P V Q  A 
2 P'R A 
3 Q'R A 
4 R  1, 2, 3 VE 

This is the formal counterpart of the concert example. At the right side of line 4 we cite the three 
assumptions needed to apply the rule. 

4.11 Prove: 

Solution 

As usual, the use of three different Greek variables in the statement of the VE rule indicates only that 
the wffs they denote may be different, not that they have to be. The following proof contains an 
application of VE (line 3) in which the variables '4' and '+' stand for the same formula. 

SOLVED PROBLEM 

4.12 Prove: 

Solution 

With respect to the statement of the V E  rule, 4 is 'P',  + is 'P', and x is ' ( Q  & R)'. Thus the 
formula + v + is ' P  v P' and the formulas 4 -+ x and + x are both ' P  -+ (Q v R)'. Since line 
2 of the proof does double duty, serving both as + --, x and as + + X, we cite it twice at the right 
side of line 3. 

Our last two rules in this section concern the biconditional. In discussing, this connective (Section 
3.2), we noted that statements of the form 4 - + are equivalent to statements of the form (4  - +) & 
($+ +). In view of this equivalence, the introduction and elimination rules for the biconditional 
function much like &I and &E." 

'Also in this case, it would be possible to formulate the rules for '-' without explicitly relying on the equivalence between 
biconditionals and conjunctions of conditionals. Biconditional introduction would then become a hypothetical rule. 
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Biconditional Introduction (*I): From any wffs of the forms ( 4  + +) and (+ -* 4), we may 
infer 4 - +. 
Biconditional Elimination (HE): From any wff of the form + ++ +, we may infer either 4 --+ + 
or ++ 4. 

The following proofs illustrate the application of these rules: 

SOLVED PROBLEMS 

4.13 Prove: 

Solution 

4.14 Prove: 

Solution 

1 P 4 Q  A 
2 ( p - Q ) + ( Q - p >  A 
3  Q - - P  1 , 2  -+E 
4 P - Q  1 , 3  ++I 

4.15 Prove: 

Solution 

1 P - Q  A 
2 P - -Q  1 --E 
3 Q'P I --E 
4 Q - P  2 , 3  --I 

The analogy between the biconditional rules and the conjunction rules may be clearly seen by 
comparing Problem 4.15 with Problem 4.3. 

4.3 HYPOTHETICAL RULES 

We have now introduced eight of the ten inference rules for the propositional calculus. The 
remaining two, the introduction rules for conditionals and negation, differ from the others in that they 
employ hypothetical reasoning. Hypothetical reasoning is reasoning based on a hypothesis, a temporary 
assumption made "for the sake of argument" in order to show that a particular conclusion would 
follow. Unlike the other assumptions of a proof, hypotheses are not asserted to be true. They are not 
premises. They are "logical fantasies," which we entertain temporarily as a special kind of proof 
strategy. 

Suppose that a runner has injured her ankle a week before a big race and that we would like to 
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persuade her to stop running for a few days in order to let the ankle heal. We assert the conditional 'If 
you keep running now, you won't be able to run the race'. Her response: 'Prove it.' 

Now the most widely applicable way to prove a conditional is to hypothesize its antecedent (i.e., to 
assume it for the sake of argument) and then show that its consequent must follow. To do that, we might 
reason this way: 

Look, suppose you do keep running now. Your ankle is badly swollen. If it is badly swollen and you keep 
running, it will not heal in a week. If it  does not heal in a week, then you won't be able to run the race. 
So you won't be able to run the race. 

This is a hypothetical argument. The word 'suppose' is a hypothesis indicator, signaling that the 
statement 'You do keep running' is a hypothesis. From this hypothesis, the conclusion 'You won't be  
able to run the race' is shown to follow. The argument employs three assumptions: 

Your ankle is badly swollen. 
If your ankle is badly swollen and you keep running, then it will not heal in a week. 

If your ankle does not heal in a week, then you won't be able to run the race. 

These are assumptions which feature as premises in our argument. We assert them to be true-unlike 
the hypothesis, which we assume only for the sake of argument and which in this case we are in fact 
trying to keep from coming true. Now, these assumptions granted, the hypothetical argument shows 
that if the hypothesis is true, then the conclusion must also be true. But this means that there is no  
logically possible situation in which the statement 'You do keep running' is true while the statement 
'You won't be able to run the racc' is falsc. Hence thc conditional 

If you keep running now, then you won't be able to run  the race. 

must be true, which is just what we set out to prove. We have deduced this conditional by hypothesizing 
its antecedent and showing that its consequent follows from that hypothesis, together with the 
assumptions. 

Of course, the soundness of the argument depends on the truth of the assumptions-and in a real 
case their truth may be in doubt. But what is novel here is that it does not depend on the truth of the 
hypothesis. The hypothesis is introduced only to show that, given the assumptions, it implies the 
conclusion 'You won't be able to run the race'. Once that has been shown, the hypothesis is discharged 
or abandoned, and the conditional conclusion is asserted on the strength of the assumptions alone. 

Let's now see how all this can be formalized. The three assumptions may be expressed 
respectively as 

and the conclusion as 

To derive the conclusion, we hypothesize its antecedent ' K '  (just as we did above in the informal 
version of the argument) and deduce its consequent ' -A '  from the three assumptions with the help of 
this hypothesis. The complete derivation looks likc this: 
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The assumptions, as always, are listed first. The hypothesis 'K' is introduced at step 4 and labeled 'H' 
to indicate that it is a hypothesis. To its left we begin a vertical line which extends downward to indicate 
the duration of the hypothetical argument, i.e., the part of the proof in which the hypothesis is assumed. 
The hypothesis is said to be in ejTect for the portion of the proof to the right of this line. Using the 
assumptions, we derive '-A7 from the hypothesis at step 7. The hypothetical derivation (steps 4 to 7) 
shows that, given our assumptions, '-A' follows from 'K', so that if '-A' is true, then 'K '  is true as well. 
Thus at line 8 we can discharge the hypothesis (and indicate we have done so by terminating the vertical 
line) and assert 'K-+ -A' on the strength of the assumptions alone. 

At this final step we cite lines 4 to 7 (the hypothetical derivation) and the rule +I, which is our 
conditional introduction rule. Some authors call this rule conditional proof. Its formal statement is as 
follows: 

Conditional Introduction (41): Given a derivation of a wff $ with the help of a hypothesis +, 
we may discharge the hypothesis and infer that + -, ~ b .  

With respect to the example above, 4 is 'K' and (J is '-A'. 

SOLVED PROBLEMS 

4.16 Prove: 

Solution 

The conclusion is the conditional 'P+ R', We hypothesize its antecedent at line 3, from which 
we derive its consequent at line 5. This enables us to discharge the hypothesis and infer the 
conditional by -I at 6. 

1 P - - + Q  A 
2 Q-R A 

4.17 Prove: 

3 
4 
5 

Solution 

P H 
Q l , 3 - E  
R 2 , 4  -E 

6 P-+R 3-5 +I 

Here the conclusion is a conditional whose antecedent is itself a conditional. We hypothesize its 
antecedent 'P + Q' at line 2 and derive its consequent 'Q' immediately at line 3, which enables 
us to obtain the conclusion itself by +I at line 4. 

1 P A 

As with other rules, it should be noted that the wffs designated by the two Greek letters '4' and '(J' 
in the statement of the -+I rule need not be distinct. This means that we understand the locution 'with 
the help of a hypothesis' in such a way that every wff can be derived with the help of itself. This is 
legitimate, since every argument whose conclusion coincides with a premise is obviously valid. 
Accordingly, the following is an unusual but perfectly licit derivation in which --+I is applied to obtain 
a conditional whose antecedent and consequent are one and the same formula. 

2 P-Q H 
3 Q I ,  2--E 
4 (p--+Q>-+Q 2-3 -I 
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SOLVED PROBLEM 

4.18 Prove: 

QkP'P 

Solution 

1 Q A 
2 l p  N 
3 P-P 2-2 -I 

Here line 2 serves as the entire hypothetical derivation, of which it is both hypothesis and 
conclusion. At line 3 the double role of 'P' becomes manifest as we introduce the conditional 
'P-- P7 by 3 1 .  At the right we write '2-2' to indicate that the hypothetical derivation begins and 
ends at the same line. Note that the proof is correct even though the premise 'Q' is not actually 
used to infer the conclusion. This is a case in which the argument is valid but commits a fallacy 
of relevance (compare Problem 2.1 9). 

Hypothetical rules can be used more than once in the course of a derivation, exactly like 
nonhypothetical rules. Thus, typically one needs a separate application of -.I for each conditional that 
must be proved (unless some simpler strategy is immediately apparent). 

Solution 

Here we derive a conjunction conclusion by deriving each conjunct and then applying &I. Each 
derivation involves an application of -+I. 

One may also need to embed a hypothetical argument within another. This is often the case when 
a conclusion is a conditional with a conditional consequent. To prove such a conclusion, one begins as 
with other conditional conclusions: hypothesize the antecedent and derive the consequent from the 
hypothesis for -+I. But since the consequent is itself a conditional, in order to derive it from the 
antecedent, we must hypothesize its antecedent for a subsidiary step of -I. The result is a nesting of 
one -1 strategy inside another. 
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SOLVED PROBLEM 

4.20 Prove: 

Solution 

We hypothesize the antecedent 'P' of the conclusion at line 2. To derive the consequent 'Q -+ R' 
from step 2, we hypothesize its antecedent 'Q' at line 3. Since this is a new hypothesis, it requires 
a new vertical line. Two hypotheses are now in effect. We derive 'R' from 'Q' at line 5. This 
enables us to discharge the hypothesis 'Q' and infer 'Q-- R' by -+I at line 6. We now have 
shown that 'Q -+ R' follows from our original hypothesis 'P'. This original hypothesis remains 
in effect until we discharge it and infer the desired conclusion by +I at line 7. 

1 ( P & Q ) + R  A 

Since -1 is the primary strategy for proving conditionals and application of VE requires two 
conditional premises, -+I is frequently used as a preliminary to VE. A common strategy when a 
disjunctive premise is present is to prove two conditionals, each linking one of the two disjuncts to the 
desired conclusion, by two separate applications of -+I. The conclusion may then be reached by a single 
step of vE. 

2 P  
3 
4 
5 
6 

SOLVED PROBLEMS 

H 
Q H 
p & Q  2 '3  &I 
R 1,4-+E 

Q-R 3-5 +I 

4.21 Prove: 

7 P+(Q-R) 2-6 +I 

Solution 

To get from the disjunctive premise 'PV Q' to the conclusion 'Q V P', we need the two 
conditionals 'P --+ (Q v P)' and 'Q --+ (Q V P)'. These are established by separate -+I proofs 
(steps 2 to 4 and 5 to 7, respectively). The conclusion then follows by vE. 

4.22 Prove: 



Solution 

T H E  PROPOSITIONAL CALCULUS 

The strategy here is essentially the same as that of the previous problem. We need the two 
conditionals on lines 7 and 13 to get from the disjunctive premise to the conclusion. These are 
obtained by separate +I  proofs (lines 2 to 7 and 8 to 14). 

Several important guidelines are to be observed when we use hypothetical reasoning: 

(1) Each hypothesis introduced into a proof begins a new vertical line. This line continues downward 
until the hypothesis is discharged by application either of - + I  or of -I (the last rule we shall 
introduce). 

(2) N o  occurrence o f  a formula to the right o f  a vertical line may  be cited in any rule applied after that 
vertical line has ended. This is to ensure that a formula derived under a hypothesis is not 
surreptitiously used after that hypothesis has been discharged. Thus, for example, though 'P' 
appears at line 3 in Problem 4.22, we must derive it anew at line 9 to show that it follows from the 
second hypothesis, ' P &  R'. We could not use it (or, indeed, any of lines 2 to 6) in proving 
' (P & R) + ( P  & (Q v R))', since these lines represent a "logical fantasy" based on the hypothesis 
of line 2, which is no longer in effect after line 6. 

(3) If  two or  more  hypotheses are in effect simultaneously, then the order in  which they are discharged 
must  be  the reverse o f  the order in which they are introduced. Thus in Problem 4.20, the hypothesis 
of line 3 must be discharged before the hypothesis of line 2 is. 

( 4 )  A proof is not  complete until all hypotheses have been discharged. Hypotheses which are not 
discharged are in effect additional assumptions, introduced illicitly into the proof. 

Our second hypothetical rule is negation introduction, also known as reductio ad absurdum or 
indirect proof.  To prove a negated conclusion by negation introduction, we hypothesize the conclusion 
without its negation sign and derive from it an "absurdity." This shows the hypothesis to be false, 
whence it follows that the negated conclusion is true. 

"Absurdity" in this context means a contradiction of the form <1, & -+, i.e., a conjunction whose 
second conjunct is the negation of the first. The chief distinction of contradictions is that they cannot 
be true (see Section 3.5). So suppose that, given certain assumptions, we can validly derive a 
contradiction from a hypothesis. Since the derivation is valid and yet it has produced a false conclusion, 
at least one of its assumptions must be false; for if they were all true, the conclusion (by the definition 
of validity) would have to be true. Thus if the given assumptions are true, it  is the hypothesis that must 
be false. That is, the falsehood of the hypothesis validly follows from the given assumptions. That is the 
basis of the rule: 

Negation Introduction (-1): Given a derivation of an absurdityfrom a hypothesis +, we may 
discharge the hypothesis and infer -6. 
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SOLVED PROBLEMS 

4.23 Prove: 

Solution 

The conclusion is the negated formula '-P', so we hypothesize 'P' at line 3. In effect, line 3 says, 
"Let's pretend that 'P' is true (and we'll show that an absurdity follows)." We succeed in 
obtaining a contradiction at line 5. This allows us to apply -I at 6, discharging the hypothesis 
and inferring its negation. 

4.24 Prove: 

Solution 

Again the conclusion is negated, and so again we hypothesize the result of removing its negation 
sign and work toward a contradiction. Deduction of the contradiction at 7 permits us to 
discharge the hypothesis and infer the conclusion. 

-I can be used together with -E to derive conclusions which are not negated. The strategy in this 
case is to hypothesize the negation of the conclusion and derive a contradiction from this hypothesis. 
We can then deduce the double negation of the conclusion by --I and remove the two negation signs 
by -E. This strategy is very powerful; it often works on problems for which simpler strategies fail. The 
next two problems are instances. 

SOLVED PROBLEMS 

4.25 Prove: 

Solution 
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4.26 Prove: 

-(-P & -Q), -PI- Q 

Solution 

Where several hypotheses are in effect at once, especially if some are for -I and some for -+I, it may 
make the proof easier to read if we label them either '(for I )  or ( for  1 )  We do this in some of the 
problems below. 

4.27 Prove: 

-Pv -Q t -(P & Q) 

Solution 

A 
H (for -I) 
H (for -I) 
3 &E 
2 ,4  &I 
3-5 -I 
2-6 --I 
H (for +I) 
H (for -I) 
9 &E 
8, 10 &I 
9-11 -1 
8-12 -+I 
1, 7, 13 VE 

To use the disjunctive premise, we employ the rule vE. But to do this, we need the conditionals 
listed on lines 7 and 13. To get them, we hypothesize their antecedents (lines 2 and 8) and seek 
in each case to prove the consequent, '-(P & Q)', for -+I. This wff, however, is negated and is 
therefore most efficiently proved by -I.  So after introducing our -+I hypotheses, we also 
hypothesize 'P & Q' for -I (lines 3 and 9). This enables us to prove the desired conditionals and 
hence to obtain the conclusion by VE at 14. 

Negation introduction may be used in rather complex and surprising ways, as the following 
problems illustrate. 

4.28 Prove: 

P - - Q t - P v Q  
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Solution 

A 
H (for -I) 
H (for -I) 
1 ,3-E 
4 VI 
2 '5  &I 
3-6 -I 
7 VI 
2 ' 8  &I 
2-9 -1 
10 -E 

1 P - Q  

There is no direct way to derive the conclusion "-P V Q' from the premise 'P - Q', but here 
we offer an indirect proof, hypothesizing the negation of the conclusion at 2 and working toward 
a contradiction. It is not possible to derive a contradiction straightforwardly from 2, so our 
approach must be more subtle. We add another hypothesis 'P', hoping to obtain a contradiction 
from it. The strategy is then to discharge this extra hypothesis as quickly as possible by -I to 
obtain its negation, which will then be used to derive a contradiction from 2. 'P' is shown to lead 
to a contradiction at 6, which gives us '-P' by -1 at 7. A further contradiction follows quickly 
at 9, which allows us to discharge our original hypothesis and obtain '--(-P V Q)' at 10. The 
desired conclusion then follows by a step of -E. 

2 
3 
4 
5 
6 
7 
8 
9 

4.29 Prove: 

- ( - p v  Q) 
P 
Q 
- P V Q  
(-P v Q) & -(-p V Q> 

-P 
- P V Q  
(-PV Q) & -(-PV Q> 

Solution 

10 --(-PVQ) 
11 - P v Q  

A 
H (for -I) 
H (for -I) 
3 VI 
2 ,4  &I 
3-5 -I 
6 -E 
H (for -I) 
8 VI 
2 , 9  &I 
8-10 -1 
11 -E 
7, 12 &I 
1'13 &I 
2-14 -1 
15 -E 

This problem is similar in overall strategy to Problem 4.28. We begin by hypothesizing the 
negation of the conclusion for -I. However, no direct route to a contradiction is evident, so we 
add an extra hypothesis '-P', seeking to derive a contradiction from it and thus obtain 'P', 
which will be used in deriving a contradiction from 2. '-P' yields a contradiction at 5, which 
allows us to infer 'P' by -I and -E at 7. We obtain 'Q' by a similarly devious strategy (lines 8 
to 12). Conjoining 'P' and 'Q' at 13 allows us finally to derive a contradiction from our original 
hypothesis ' ( P  Q ) '  at 14. We then infer its negation by -I at 15 and obtain the 
conclusion at 1.6 by -E. 

There is n o  one correct way to  construct a proof. If a form can be proved at all (i.e., if it is valid), 
it can be proved by many different permutations of the rules. The shortest, simplest, and easiest proofs, 
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however, are usually obtained by a strategy based on the structure of the conclusion. The suggestions 
of Table 4-1 are useful guides for planning such a strategy. They usually lead to reasonably efficient 
proofs, though some problems still require ingenuity and inventiveness. 

Table 4-1 Proof Strategies 
. - -- - - - 

I f  the conclusion is a(n): 

Atomic formula 

Negated formula 

Conjunction 

Disjunction 

Conditional 
Biconditional 

Then do this: 

If no other strategy is immediately apparent, hypothesize the 
negation of the conclusion for -I. If this is successful, then the 
conclusion can be obtained after the -I by -E. 
Hypothesize the conclusion without its negation sign for -I. If a 
contradiction follows, the conclusion can be obtained by -I. 
Prove each of the conjuncts separately and then conjoin them 
with &I. 
Sometimes (though not often) a disjunctive conclusion can be 
proved directly simply by proving one of its disjuncts and applying 
VI. Otherwise, hypothesize the negation of the conclusion and try 
-I. 
Hypothesize its antecedent and derive its consequent by -+I. 
Use -.I twice to prove the two conditionals needed to obtain the 
conclusion by -I. 

If the strategies of Table 4-1 fail, then try the following. If a disjunctive premise is present, try 
proving the conditionals needed to get the conclusion by vE. If not, add an extra hypothesis whose 
negation would be useful as an additional premise in the proof. Then, as in Problems 4.28 and 4.29, 
discharge this extra hypothesis as quickly as possible by -I to obtain its negation. If even this fails, try 
the same thing with a different hypothesis. Eventually (if the form you are trying to prove is in fact 
valid) you should hit on a hypothesis or series of hypotheses that will do the trick. 

Various substrategies may develop if the conclusion is more complex. For example, if the 
conclusion is ' -P & -Q', a conjunction of two negated statements, the typical strategy is to prove each 
of its conjuncts separately and then join them by &I. Since each conjunct is negated, the substrategy for 
proving each is to hypothesize it without its negation sign and use -I. Thus the proof consists of two 
hypothetical derivations for -I followed by a step of &I, as in the following problem. 

SOLVED PROBLEM 

4.30 Prove: 

Solution 

A 
H (for -I) 
2 VI  
1 , 3  &I 
2-4 -1 
H (for -I) 
6 VI 
1 , 7  &I 
6-8 -1 
5 , 9  &I 
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The ten basic inference rules presented thus far are complete in the sense that they generate a proof for 
each of the infinitely many valid forms expressible in the language of propositional logic. They are also 
valid in the sense that when applied as stated they generate only valid forms-never invalid ones. In 
spite of these facts, it is useful to have other rules besides the basic ones. These new rules, the subject 
matter of the next section, do not enable us to prove anything not provable by the ten basic rules alone, 
but they help to shorten and simplify proofs and thus save work. 

4.4 DERIVED RULES 

Every instance of a valid argument form is valid. Thus in proving the form 'P--+ Q, -Q k -P' 
(Problem 4.23), we in effect established the validity of any argument which results from that form by 
replacing 'P' arid 'Q' with sentences (no matter how complex these sentences are), for instance: 

If it is raining or snowing, then the sky is not clear. 

It is not. the case that the sky is not clear. 
:. It is not. either raining or snowing. 

(See also Problem 3.2.) In this case 'P' stands for 'It is raining or snowing' and 'Q' for 'The sky is not 
clear'. But notice that if we formalize this argument so as to reveal all of its structure, we obtain not the 
original form, but: 

This is what is called a substitution instance of the original form. A substitution instance of a wff or an 
argument form is the result of replacing zero or more of its sentence letters by wffs, each occurrence of 
the same sentence letter being replaced by the same wff. (We say "zero" instead of "one" to allow each 
form to count as a substitution instance of itself.) The second form above is a substitution instance of 
the first, because it results from the first by replacing each occurrence of 'P7 by ' ( R v S ) '  and each 
occurrence of 'Q' by ' -C' .  In proving the validity of a form, we prove the validity of all its substitution 
instances. Thus, having proved Problem 4.23, if we encounter premises '(R V S) --, -C' and '--C' in 
a proof, we know that ' - ( R  V S)' validly follows (and similarly for any other substitution instance of 
Problem 4.23). This means that we can legitimately regard the statement of Problem 4.23 (and indeed 
any previously proved argument form) as a valid inference rule. For each previously proved form, the 
associated inference rule is this: 

From the premises of any substitution instance of the form, we may validly infer the conclusion of that 
substitution instance. 

Inference rules which are derived in this way from previously proved forms are called derived 
rules.4 Many derived rules have names. The rule associated with Problem 4.23 is called modus  tollens 
(MT). It is used with the substitution instance mentioned above in the following proof: 

SOLVED PROBLEM 

4.31 Prove: 

( R v S ) - - C k - - C -  -(R V S )  

4Which rules count as derived and which as basic is a matter of convention that varies from text to text. Some texts treat all the 
rules named in this chapter as basic and thus need no distinction between basic and derived rules. Others have fewer basic rules 
and hence more derived ones. 
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To see the point of introducing derived rules such as MT, contrast the proof of Problem 4.31 with the 
following problem, which gives the simplest proof of the same form that does not employ derived 
rules. 

1 ( R v S ) - - C  A 

SOLVED PROBLEM 

2 

4.32 Prove the argument form stated in Problem 4.31 using only the ten basic rules. 

--C H (for +I) 

Solution 

3 - ( R  V S) l , 2  MT 
4 --C- -(R V S) 2-3 --I 

From now on, any previously proved form may be used as a derived rule in a proof. As justification, we 
cite the lines used as premises and the name of the derived rule (if it has one); otherwise, the problem 
number at which the associated form was proved. Among the derived rules already proved, one of the 
most useful is hypothetical syllogism (HS), the rule associated with the form ' P -  Q, Q -. R I- P - R' 
(Problem 4.16). Also useful are the rules absorption (ABS) and constructive dilemma (CD). 

1 ( R v S ) + - C  A 

SOLVED PROBLEMS 

2 
3 
4 
5 
6 

4.33 Prove the derived rule ABS, i.e.: 

P + Q t - P - ( P & Q )  

Solution 

--C H (for +I) 
R V S  H (for -I) 
-C 1 , 3  -E 
-C & --C 2 ,4  &I 

-(R V S) 3-5 -1 
7 --C- -(R v S) 2-6 +I 

4.34 Prove the derived rule CD, i.e.: 

1 P - Q  A 

Solution 

2 
3 

P H 
Q 1 , 2 - + E  

4 P & Q  2,3 &I 
5 P + ( P &  Q) 2-4 -1 

1 P V Q  A 
2 P-R A 
3 Q-S A 
4 
5 

P H (for -+I) 
R 2 ,4  - + E  

6 R v S  5 vI 
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We next consider two peculiar derived rules. The first, repeat or reiteration ( R E ) ,  allows us to derive 
in the context of a hypothetical derivation any wff that already occurs in the main derivation, provided 
that it is not part of a hypothetical derivation whose hypoth.esis has been discharged. This rule is just 
an abbreviation of two successive applications of &I and &E, as the following problem illustrates. 

7 P - + ( R v S )  4-6 -+I 

SOLVED PROBLEM 

8 
9 

4.35 Prove: 

PI- Q- P 

Q H (for --+I) 
S 3 ,8  --E 

Solution 

10 R v S  9 VI 
11 Q - ( R v S )  8-1 0 -+I 
12 R v S  1, 7,  11 VE 

Here we derive 'P' at line 4 in order to conclude 'Q -. P' by an application of +I. Steps 3 and 
4 could be abbreviated by simply entering P and citing at right the previous line in the argument 
from which it is reiterated. The abbreviated proof can be written as follows: 

1 P  A 
2 
3 
4 

The other peculiar derived rule is called contradiction (CON). It allows us to infer any wff from a 
wff together with its negation: if the premises are inconsistent, the argument is certainly valid, though 
it cannot have sound instances (see Section 2.4). 

Q H (for --+I) 
P & P  1, I &I 
P 3 &E 

1 P  A 

SOLVED PROBLEM 

5 Q-+P 2-4 --I 

2 
3 P  

4.36 Prove the derived rule CON, i.e.: 

Q H (for -+I) 
1 RE 

Solution 

4 Q-+P 2-3 -+I 

This proof is correct, even though we do not actually infer the contradiction at line 4 from '--Q'. 
The idea is this: Since ' P  & -P7 certainly follows validly from 1 and 2, it also follows validly from 
1 and 2 together with the hypothesis '-Q'. (That is what we establish at line 4.) Since this 
contradiction is necessarily false, either the hypothesis or one of the assumptions must be false. 
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So, once the assumptions are granted, it must be the hypothesis which is false (this is what we 
conclude at line 5). Of course, we know that at least one assumption must be false, since the 
assumptions are inconsistent. But that only shows that any argument of this form is unsound. All 
such arguments are nevertheless valid, as our proof shows (compare Problems 2.21 and 3.22). 

CON is useful in the proof of another important rule, disjunctive syllogism (DS), which we 
discussed in Section 3.1. 

SOLVED PROBLEM 

4.37 Prove the derived rule DS, i.e.: 

Solution 

A 
A 
H (for -I) 
2 , 3  CON 
3-4 --I 
H (for -I) 
6-6 +I 
l , 5 , 7  VE 

1 P V Q  
2 -P 

The overall strategy is to prove the conditionals needed to get the conclusion from the 
disjunctive premise 'P v Q' by vE. This involves two conditional proofs (lines 3 to 5 and 6 to 
7). The first employs CON. The second is a one-step derivation like the one of Problem 4.18. It 
is a useful exercise to prove DS using only the ten basic rules. 

3 

The following problems illustrate typical uses of some of the derived rules. 

P 

SOLVED PROBLEMS 

4 Q 
5 P - Q  
6 l Q  
7 Q-Q 
8 Q 

4.38 Prove: 

Solution 

1 -P-Q A 
2 R - S  A 
3 - P V R  A 
4 -Q A 
5 Q V s  1, 2, 3 CD 
6 S 4 , 5  DS 

4.39 Prove: 

Solution 

1 P - Q  A 
2 ( P & Q ) + R  A 
3 -R A 
4 P-. ( P  & Q) 1 ABS 
5 P - + R  2 , 4  HS 
6 -P 3 ,5  MT 
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4.5 THEOREMS 

Some wffs are provable without making any nonhypothctical assumptions. These are the theorems 
or laws of the propositional calculus. (Semantically, they are just the tautologies, i.e., those wffs all of 
whose instances are logically necessary.) To indicate that a wff is a theorem, we write the symbol ' t - '  in 
front of it. As before, this symbol asserts that the formula on its right is provable using only the 
formulas on its left as assumptions; hence when there are no formulas on its left, it asserts that the 
formula on its right is a theorem. The proof of a theorem typically begins with one or more hypotheses, 
which are later discharged by -+I or -I. 

SOLVED PROBLEMS 

4.40 Prove the theorem: 

1 -(P & -P) 

Solution 

1 1 P & - P  H 
2 -(P & -P) 1-1 -I 

This is the simplest possible reductio ad absurdurn proof. Line 1 serves as the entire hypothetical 
derivation, of which 'P & -P' is both the hypothesis and the conclusion. 

4.41 Prove the theorem: 

Solution 

4.42 Prove the theorem: 

Solution 

4.43 Prove the theorem: 

Solution 

H (for +I) 
H (for +I) 
1, 2-+E 
2-3 -+I 
1-4 -+I 

M (for +I) 
H (for -1) 
l , 2 & I  
2-3 -I 
1-4 +I 
H (for --+I) 
6 -E 
6-7 +I 
5 , 8  --I 
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4.44 Prove the theorem: 

Solution 

H (for -I) 
H (for -I) 
2 VI 
1 , 3 & I  
2-4 -1 
5 VI 
l , 6  &I 
1-7 -1 
8 -E 

Every substitution instance of a theorem is provable under any set of assumptions whatsoever. 
Therefore we may legitimately introduce a theorem or any of its substitution instances at any line of a 
proof. The derived rule which enables us to do this is called theorem introduction (TI). As with the 
other derived rules, the purpose of TI is to make proofs shorter and more efficient. When using TI, we 
cite the number of the problem at which the relevant theorem was proved. TI is used three times in the 
following proof. 

SOLVED PROBLEM 

4.45 Prove the theorem: 

Solution 

Notice that we cite no previous lines in using TI, since the instance of the theorem is not inferred 
from any previous premise. It is instructive to prove this theorem without using TI. 

4.6 EQUIVALENCES 

We shall call a biconditional which is a theorem an equivalence. If + - $ is an equivalence, then + 
and \CI .validly imply one another and are said to be interderivable. Thus 'P' and ' P  are 
interderivable in view of the equivalence proved in Problem 4.43. To prove an equivalence, we follow 
the usual strategy for proving biconditionals: prove the two conditionals needed for HI by two separate 
conditional proofs. 

SOLVED PROBLEM 

4.46 Prove the equivalence: 

t (P' Q) - -(P & -Q) 
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Like the other derived rules, equivalences enable us to prove no more than do the ten basic rules. 
Their virtue lies in their ability to shorten and simplify proofs. For the reader's convenience, the ten 
basic rules are listed in Table 4-3, and the most important of the derived rules are summarized in 
Table 4-4. 

Table 4-3 The Ten Basic Rules 

Negation introduction (-I) 

Negation elimination (-E) 
Conditional introduction (-I) 

Conditional elimination (-,E) 

Conjunction introduction (&I) 
Conjunction elimination (&E) 
Disjunction introduction (vI) 

Disjunction elimination (vE) 

Biconditional introduction (++I) 
Biconditional elimination (HE) 

Given a derivation of an absurdity from a hypothesis +, 
discharge the hypothesis and infer -4. 
From a wff of the forrn --+, infer 4. 
Given a derivation of a wff $ from a hypothesis +, 
discharge the hypothesis and infer 4 -, ~b 
From a conditional and its antecedent, infer its consequent. 

From any wffs 4 and 1.1, infer the conjunction + & +. 
From a conjunction, infer either of its conjuncts. 
From a wff 4, infer the disjunction of (b with any wff. 

From wffs of the form~s 4 V tlr, (b - X ,  and ((I -, X ,  infer X. 

From wffs of the forms 4 - 11 and ((I -+ 4, infer (b ++ $. 

From a wff of the forrn 4 ++ +, infer either + - + or + - 4. 

Table 4-4 Important Derived Rules 
-- - - - 

Modus tollens (MT) 

Hypothetical syllogism (HS) 

Absorption (ABS) 

Constructive dilemma (CD) 

Repeat (RE) 
Contradiction (CON) 

Ilisjunctive syllogism (DS) 

Theorem introduction (TI) 

Elquivalence introduction 
(Abbreviation used depends on 
e,quivalence used; see Table 4-2, 
the table of equivalences.) 

From wffs of the forms + --+ JJ and -+, 
infer -<b. 
From wffs of the forms + -+ ilr and 
JJ - X ,  infer 4 - X .  

From a wff of the form 4 -+ +, infer 
4-4 ( 4  & +;I. 
From wffs of the forms + v \)I, + -+ X ,  
and $ - w, infer x v w. 

From any wff 4, infer +. 
From wffs of the forms 4 and -4, infer 
any wff. 

From wffs of the forms 4 v \I, and -4, 
infer +. 
Any substitution instance of a theorem 
may be introduced at any line of a proof. 
If 4 and + are interderivable and + is a 
subwff of some wff X, from x infer the 
result of replacing one or more occurrences 
of 4 in x by tb. 

The following problems illustrate typical uses of equivalences and some of the other derived rules. 

SOLVED PROBLEMS 

4.49 Prove: 

P V Q , - Q t P  
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Solution 

1 P v Q  A 
2 -Q A 
3 Q V P  2 COM 
4 P  2 , 3  DS 

Notice that this form is not DS, since (in contrast to DS) the second premise is the negation of 
the second conjunct of the first premise. Thus to use DS in the proof, we must first apply COM 
at line 3. 

4.50 Prove: 

Solution 

1 ( P v Q > & < P v R )  A 
2 P v ( Q & R )  1 DIST 
3 - - P v ( Q &  R )  2 DN 
4 - P - - ( Q & R )  3 MI 

4.51 Prove: 

Solution 

1 ( - ~ v Q > v R  A 
2 < Q v R ) + S  A 
3 - P V < Q v R )  1 ASSOC 
4 P - < Q v R )  3 MI 
5 P--S  2,4  HS 

4.52 Prove: 

Solution 

4.53 Prove: 

Solution 

4.54 Prove: 

A 
A 
1 EXP 
2 DN 
3 , 4  MT 
5 DM 

A 
1 MI 
2 DN 
3 TAUT 
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Solution 

T H E  PROPOSITIONAL CA.LCULUS 

1 - P v - Q  A 
2 R - - P  A 
3 --Qv-S A 
4 -P+-R 2 TRANS 
5 - Q - - - S  3 MI 
6 - R v - S  1, 4, 5 CD 
7 - S V - R  6 COM 

Supplementary Problems 

I The following arguments are all valid. Formalize each, using the interpretation indicated below, and prove 
the validity of the resulting form, using only the ten introduction and elimination rules. 

Sentence Letter Interpretation 

C The conclusion of this argument is true. 
P The premises of this argument are all true. 
S This argument is sound. 
V This argument is valid. 

This argument is not unsound. Therefore, this argument is sound. 

This argument is sound. Therefore, this argument is not unsound. 

If this argument is sound, then it is valid. It is not valid; therefore, it is not sound. 

If' this argument is sound, then it is not invalid. It is. sound. Hence it is valid. 

If this argument is sound, then it is not invalid. So if it is invalid, then it is unsound. 

This argument is both sound and valid. Therefore, either it is sound or it is invalid. 

This argument is not both sound and invalid. It is sound. Therefore, it is valid. 

This argument is sound only if all its premises are true. But not all its premises are true. Hence it is 
unsound. 

If this argument's conclusion is untrue, then this argument is unsound. So it is not the case that this 
argument is sound and has an untrue conclusion. 

If this argument is unsound and valid, then not all its premises are true. All its premises are  true. It 
is valid. Therefore, it is sound. 

If this argument is valid and all its premises are true, then it is sound. If it is sound, then its conclusion 
is true. All its premises are true. Therefore, if this argument is valid, then its conc1usion.i~ true. 

Either this argument is unsound, or else it is valid and all its premises are true. Hence it is either 
unsound or valid. 

This argument is sound if and only if it is valid and all its premises are true. Not all its premises are  
true. Hence it is unsound. 

This argument is sound if and only if it is valid and all its premises are true. Hence if it is valid, then 
it is sound if all its premises are true. 

This argument is unsound only if either not all its premises are true or it is invalid. But it is valid and 
all its premises are true. Therefore, it is sound. 

I1 Using only the ten introduction and elimination rules, provide proofs for the equivalences listed in Table 
4-2 (except for DN, which is proved in Problem 4.43). 
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111 Using basic or derived rules, prove the validity of the following argument forms. 

P - Q , Q - R t P - R  

P - Q t - P - - Q  

- P v Q l - - ( P &  - Q )  

P - Q , P - - Q t - P  

( P - Q )  & ( P -  R )  t P - ( Q  & R )  

P - Q l - ( P &  R) - . (Q& R )  

P - + Q ~ < P v R ) - ( Q v R )  
- P - P k P  

-PI -P-Q 

P & Q t P - Q  

IV Using basic or derived rules, prove the following theorems. 
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Answers to Selected Supplementary Problems 

A 
A 
A 
H (for -I) 
3 , 4  &I 
1 , 5  --E 
2 ,6  &I 
4-7 -I 
8  -E 

1 S----V A 

A 
A 
H (for -I) 
1  WE 
3 ,4  +E 
H (for +I) 
H (for -I) 
7  &E 
6 , 8  &I 
7-9 -I 
6-10 +I 
H (for -+I) 
H (for -I) 
13 &E 
12, 14 &I 
13-15 -1 
12-16 +I 
5 ,  11,17 VE 
2,18 &I 

2  
3  
4  
5  
6  

1  ( P + Q )  &(P--R)  A 
2  ( - P v Q > & < P - + R )  1 MI 
3  ( - P v Q > & < - P v R )  2  MI 
4  - P v < Q & R )  3 DIST 
5  P - - ( Q & R )  4  MI 

-V H (for +I) 
S H (for -I) 
--V 1, 3  -E 
-V & --V 2 , 4  &I 

-S 3-5 -I 
7 -V+-S 2-6 --+I 
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TI 4.44 
1 VI 
2 ASSOC 
3 VI 
4 ASSOC 
5 COM 
6 MI 
7 MI 

(10) P&Qt-P 'Q 

1 P & Q  A 

H (for +I) 
TI 4.44 
l , 2  &I 
3 DIST 

2 P H (for +I) 
3 Q I &E 
4 P + Q  2-3 -+I 

5 P + ( ( P & Q > V < P & - Q ) >  1-4 +I 
6 
7 
8 

1 

( P & Q > V < P & - Q >  H (for +I) 
P & < Q V - Q >  6 DIST 
P 7 &E 

P V - P  H (for +I) 

9 ( ( P &  Q > v ( P &  -Q>>'P 6-8 +I 
10 P-- ((P & Q ) v  (P  & -P)) 5 , 9  -1 

2 Q V - Q  TI 4.44 
3 ( P v y p ) + ( Q v - Q >  1-2 --I 
4 Q V - Q  H (for +I) 
5 Pv-P  TI 4.44 
6 ( Q v - Q > + < P v - P )  4-5 --I 
7 (P  V -P) * (Q v -Q> 3 , 6  --I 



Chapter 5 

The Logic of Categorical Statements 

5.1 CATEGORICAL STATEMENTS 

The propositional logic of Chapters 3 and 4 concerns only logical relations generated by 
truth-functional operators, expressions like 'not', 'and', 'or', 'if . . . then', and 'if and only if'. These 
relations are fundamental, but they are still only a small part of the subject matter of logic. This chapter 
takes a preliminary look at another part, the logical relations generated by such expressions as 'all', 
'some', and 'no'. Then, in Chapter 6, we combine the material of Chapters 3,4, and 5 and add some new 
elements, thereby attaining a perspective from which .we can see how all these studies are 
interrelated. 

The main reason to go beyond propositional logic is that there are valid arguments whose validity 
does not depend solely on truth-functional operators. For e.xample, the following is a valid argument 
which cannot be understood by propositional logic alone: 

Some four-legged creatures are gnus. 
All gnus are herbivores. 

:. Some four-legged creatures are herbivores. 

Because none of the statements in the argument is truth-functionally compound, from the viewpoint of 
propositional logic these statements lack internal structure. If we try to formalize the argument in 
propositional logic, the best we can do is something like 

But this form is clearly invalid, since any three statements P, Q, and R such that P and Q are true and 
R is false constitute a counterexample. 

Yet from a more discriminating perspective, the statements of the above example do have internal 
structures, and their structures constitute a valid form. These structures consist, not of truth-functional 
relations among statements, as in propositional logic, but of relations between terms occurring within 
the statements themselves. To see this clearly, let us represent the form of the argument as follows: 

Some F are G. 
All G are H. 

:. Some F are H. 

Here the letters F '  'G', and 'H' are placeholders, not for sentences, as in propositional logic, but for 
class terms, such as 'gnu', 'herbivore', and 'four-legged creature'. Class terms (also called predicates) 
denote classes (sets) of objects. The term 'gnu', for example, denotes the class of all gnus, and the term 
'herbivore', the class of all herbivores. Every substitution of class terms for these letters (replacing each 
occurrence of the same letter by the same class term) produces a valid argument. 

SOLVED PROBLEM 

5.1 Represent the following argument in schematic form: 

All logicians are philosophers. 
Some logicians are mathematicians. 

:. Some mathematicians are philosophers. 
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Solution 

Using 'L' for 'logicians', 'P' for 'philosophers', and 'M' for 'mathematicians', the form of 
the argument can be represented thus: 

All I, are P. 
Some L are M. 

:. Some M are P. 

The class terms just mentioned are all simple common nouns; but noun phrases, such as 'blue 
thing', 'ugly bug-eyed toad', or 'friend of mine', are also class terms. Adjectives and adjective phrases 
may function as class terms as well. Thus the adjectives 'old', 'circular', and 'vicious', for example, 
denote respectively the sets of all old, circular, and vicious things; and the adjective phrase 'in the 
northern hemisphere' denotes the set of things located in the northern hemisphere. In addition, verbs 
and verb phrases may be regarded as class terms: 'move', 'love Bill', and 'have had a car wreck' denote, 
respectively, the sets of all things that move, love Bill, and have had a car wreck. 

To facilitate substitution and comparison of class terms, we shall rewrite them as common nouns 
and noun phrases if they are not already in that form. That is, we shall regard nouns and noun phrases 
as the standard form for class terms. A class term expressed as an adjective, adjective phrase, verb, or 
verb phrase can usually be converted into a noun phrase by adding the word 'things'. Thus 'old' 
becomes 'old things', 'in the northern hemisphere7 becomes 'things in the northern hemisphere', 'love 
Bill' becomes 'things that love Bill', and so on. 

SOLVED PROBLEM 

5.2 Represent the following argument in schematic form: 

All cups on the coffee table have been hand-painted by my art teacher. 

All things that have been hand-painted by my art teacher are beautiful. 
:. All cups on the coffee table are beautiful. 

Solution 

This argument is of the form: 

All C are H. 
All H are B. 

. . All C are B. 

where 'C' is replaced by the noun phrase 'cups on the coffee table', 'H' by the noun phrase 
'things that have been hand-painted by my art teacher7 (obtained by converting the verb phrase 
'have been painted by my art teacher' into standard form), and 'B' by the noun phrase 'beautiful 
things' (obtained by converting the adjective 'beautiful' into standard form). 

In statements, class terms are often related to one another by the expressions 'all' and 'some', 
which are called quantifiers. Quantifiers, like truth-functional operators, are logical operators; but 
instead of indicating relationships among sentences, they express relationships among the sets 
designated by class terms. Statements of the form 'All A are B', for example, assert that the set A is a 
subset of the set B; that is, all the members of A are also members of B. And, by a convention 
universally employed in logic, statements of the form 'Some A are B' assert that the set A shares at least 
one member with the set B. 

This is a departure from ordinary usage, according to which 'Some A are B' typically signifies that 
the set A shares more than one member with the set B. It also departs from ordinary usage in another 
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way. Typically, when we say that some A are B, we presuppose that not all A are B. Suppose, for 
example, that someone says, "Some friends of mine are angry with me." (This statement is of the form 
'Some A are B', where 'A' is replaced by the noun phrase 'friends of mine' and 'B' by the adjective 
phrase 'angry with me7-or, in standard form, 'things (or persons) that are angry with me'.) Normally, 
this would be understood as presupposing or suggesting that not all this person's friends are angry 
with him or her. This presupposition is absent from the logical notion of 'some'. In the logical sense 
of 'some', it is perfectly correct to say that some friends of mine are angry with me, even when all 
of them are. 

In  addition to the quantifiers 'all' and 'some', we shall also consider the negative quantifier 'no'. 
Statements of the form 'No A are B' assert that the sets A and B are disjoint, i.e., share no members. 

The only other expression occurring in the three arguments considered so far is 'are'. This word 
(together with its grammatical variants 'is', 'am', 'was', 'were', etc.) is called the copula, because it 
couples or joins subject and predicate. Each statement in the three arguments is therefore made up of 
a quantifier followed by a class term, a copula, and, finally, another class term. Statements so 
constructed are called categorical statements. The study of these statements is the oldest branch of 
western logic and goes back to the work of Aristotle in the fourth century B.C. (It underwent important 
revisions in the nineteenth century-a point to which we will return in Section 5.3.) In addition, we shall 
find it convenient to regard negations of categorical statements as categorical statements themselves, 
though some authors do not. 

The first class term in a categorical statement is the subject term; the second is the predicate term. 
Unnegated categorical statements come in four distinct forms, each of which is traditionally designated 
by a vowel: 

Designation Fo rrn 
A All S are P. 
E No ,S are P. 
I Some S are P. 
0 Some S are not P. 

Here 'S' stands for the subject term and 'P' for the predicate term. 
Note that 0-form statements contain the expression 'not'. 'Not' plays two very different roles in 

categorical statements. When applied to an entire sentence, it expresses truth-functional negation - the 
operation, familiar from Chapters 3 and 4, that makes true statements false and false ones true. But 
when applied to class terms, as in 0-form sentences, 'not' has a different function. In 'Some trees are 
not oaks', for example, 'not' modifies only the class term 'oaks', not the whole sentence. The result is 
a new class term 'not oaks' (or, more perspicuously, 'non-oaks'), which designates the set of all things 
which are not oak trees. (This is a motley set, containing everything from quarks to quasars-but not 
oak trees.) In general, the set of all things which are not members of a given set S is called the 
complement of S, and when 'not' is applied to class terms, it. is said to express complementation rather 
than negation. Thus 'Some trees are not oaks', where 'not' expresses complementation, asserts that the 
set of trees shares at least one member with the complement of the set of oaks, i.e., that there are trees 
that are not oaks. It is quite different in meaning from 'It is not the case that some trees are oaks', where 
'It is not the case that' expresses truth-functional negation. 'Some trees are not oaks' is true (there are 
pines and maples, for example). But 'It is not the case that some trees are oaks' is false, since 'Some 
trees are oaks' is true. 

Because of its dual role in the logic of categorical statements, 'not' is ambiguous and should be 
treated with caution. To minimize misunderstanding, in the text of this chapter we will use 'It is not the 
case that' or the symbol - to express negation and 'not' or 'non-' exclusively to express 
complementation. In the exercises, however, 'not' may be used in either sense; it is up to the reader to 
determine which, by deciding whether it applies to the entire sentence or just to a class term within the 
sentence. 
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5.2 VENN DIAGRAMS 

In working with categorical statements, it often helps to visualize relationships among sets. The 
most vivid way to do this is by Venn diagrams, an invention of the nineteenth-century mathematician 
John Venn. A categorical statement is represented in a Venn diagram by two overlapping circles, 
representing the sets designated by the statement's two terms (subject and predicate). The area inside 
a circle represents the contents of the set; the area outside it represents the contents of its complement. 
The area of overlap between the two circles stands for the members (if any) which the corresponding 
sets share. To show that a set or part of a set has no members, we block out the part of the diagram 
which represents it. 

For example, form E, 'No S are P7, asserts that the sets S and P share no members. Its Venn diagram 
therefore consists of two overlapping circles (one for S and one for P), with the overlapping part 
blocked out (see Fig. 5-1). Empty (unblocked) areas of the diagram are areas about which we have no 
information; if an area is empty, we must not assume that the corresponding set has members. Thus the 
diagram indicates that there may or may not be objects in S and there may or may not be objects in P, 
but there are no objects in both. 

Fig. 5-1 

Form A, 'All S are P', says that S is a subset of P, or (what comes to the same thing) that S has no 
members which are not also in P. Thus in its diagram the part of the S circle outside the P circle is 
blocked out (see Fig. 5-2). 

Fig. 5-2 

To show that a set or part of a set has at least one member, we put an X in the corresponding part of 
the diagram. Thus form I, 'Some S are P',  which says that S and P share at least one member, is 
represented as shown in Fig. 5-3. And the form 0, 'Some S are not P', which asserts that S has at least 
one member not in P, is as shown in Fig. 5-4. 

Fig. 5-3 
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Fig. 5-4 

Once again, areas in the diagram of a statement which are not blocked out and do not contain an X are 
areas about which the statement gives no information. They may contain members or they may not; the 
statement does not say. 

For statements involving complementation it is useful to frame the diagram. The area inside the 
frame represents the set of all things-loosely speaking, the universe. The members of a set's 
complement are then represented by the area outside the circle for that set but inside the frame. 

SOLVED PROBLEMS 

5.5 Draw a Venn diagram for 'All non-S are P'. 

Solution 

This form asserts that the complement of the set S is a subset of the set P. This means that 
any part of the complement of S which lies outside P is empty. On the diagram, the complement 
of S is represented by the area that lies outside the S circle but inside the frame. To show that 
the part of this area outside the P circle is empty, we blocked it out as in Fig. 5-5. The result 
correctly diagrams 'All non-S are P'. 

Fig. 5-5 

5.6 Draw a Venn diagram for 'Some non-S are not P'. 

Solution 

This form says that some members of the complement of S are also members of the 
complement of P. The complement of a set is represented by the area outside its circle but inside 
the frame. Thus to diagram this form we place an X outside both circles but inside the frame (see 
Fig. 5-6). 

Fig. 5-6 
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5.7 Draw a Venn diagram for 'No non-S is P'. 

Solution 
This is form E with a complemented subject term. It asserts that the complement of S shares 

no members with P, and so in the diagram we block out the area in which P and the complement 
of S overlap (see Fig. 5-7). 

Fig. 5-7 

Negation is represented on a Venn diagram by switching blocked areas and X's, i.e., blocking out 
any area in which there is an X and replacing any blocked out area with an X.' 

SOLVED PROBLEMS 

5.8 Draw a Venn diagram for '-(All S are P)'. 

Solution 
The diagram for 'All S are P' was given in Fig. 5-2. To diagram its negation, we remove the 

shading and replace it with an X (see Fig. 5-8). Note that the result is the same as the diagram 
for form I, 'Some S are not P' (Fig. 5-4). This shows that '-(All S are P) '  and 'Some S are not 
P' are different ways of saying the same thing. If one is true, the other must be as well; that is, 
each validly follows from the other. 

Fig. 5-8 

5.9 Draw a Venn diagram for '-(Some S are not P)'. 

Solution 
Again, the diagram for 'Some S are not P' is as given in Fig. 5-4. To diagram its negation, 

we block out the area that originally contained the X (see Fig. 5-9). This is just the diagram for 
'All S are P' (Fig. 5-2), which shows that statements of the form '-(Some S are not P) '  are 
equivalent to A-form statements. 

'This simple way of representing negation is correct only for the modern (Boolean) interpretation of categorical statements; 
complications arise when it is applied to the traditional (Aristotelian) interpretation, which is not discussed here. (See Section 5.3 
for a brief account of the differences between the two interpretations) 
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Fig. 5-9 

5.10 Draw a Venn diagram for '-(No S are P)'. 

Solution 

The diagram for 'No S are P' was given in Fig. 5-1. Now to diagram its negation we remove 
the shading and replace it with an X (see Fig. 5-10). The result is the same as the diagram for 
'Some S are P' given in Fig. 5-3, indicating that statements of these two forms say the same thing 
and hence validly imply one another. 

I 
Fig. 5-10 

5.3 IMMEDIATE INFERENCES 

Inferences from one categorical statement to another are called immediate inferences. As some of 
the problems of the preceding section suggest, we can test the validity of immediate inference forms 
by using Venn diagrams. The test is very simple; to check the validity of an inference form, diagram its 
premise. If in doing so you have also diagramed its conclusio:n, then the form is valid. If not, it is invalid. 
If two statement forms have exactly the same diagram, then in diagraming either, we automatically 
diagram the other. They are therefore logically equivalent; i.e., any instance of one validly follows from 
any instance of the other. This is the case, for example, with '--(All S are P)'  and 'Some S are not P', 
as Problem 5.8 illustrates, and with 'All S are P' and '-(Some S are not P)', as shown in Problem 5.9. 
Taken together, these two results say that any pair of A- and O-form statements having the same 
subject and predicate terms are contradictories; that is, each validly implies the negation of the other, 
and the negation of each validly implies the other. Any two I- and E-form statements with the same 
subject and predicate terms are also contradictories, as the reader can verify with the help of Problem 
5.10. 

Inferences from one of a pair of contradictories to the negation of the other, or vice versa, are one 
kind of immediate inference, but there are a variety of others. Two categorical statement forms are said 
to be converses if one results from the other by exchanging subject and predicate terms. Thus 'Some P 
are S' is the converse of 'Some S are P', 'All P are S' is the converse of 'All S are P',  and so on. An 
inference from a categorical statement to its converse is called conversion. Conversion is a valid 
immediate inference for forms E and I, but it is invalid for forms A and 0.2 

'Recall, however, that invalid forms generally have some valid instances. 
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SOLVED PROBLEMS 

5.11 Use a Venn diagram to show that conversion is valid for form E. 

Solution 
We compare the diagram for form E (Fig. 5-1) with the diagram for its converse (Fig. 5-11) 

and note that they are identical; each asserts just that the sets S and P share no members. Hence 
an E-form statement and its converse are logical equivalents; each validly follows from the 
other. 

Fig. 5-11 

5.12 Use a Venn diagram to show that conversion is not valid for form A. 

Solution 
The converse of 'All S are P' is 'All P are S ' ,  whose diagram is shown in Fig. 5-12. The 

diagram for 'All S are P' (Fig. 5-2) indicates that the set of things which are S and not P i s  empty; 
the diagram for 'All P are S'  indicates that the set of all things which are P and not S is empty. 
Clearly, the first set might be empty while the second is not, so that 'All S are P' is true while 
'All P are S' is false. 

- -- - - 

Fig. 5-12 

For example, let S be the set of salesmen and P the set of people. Then the premise 'All 
salesmen are people' is true (the set of things which are salesmen and not people is empty). But 
the conclusion 'All people are salesmen' is false (the set of things which are people and not 
salesmen is not empty!). Hence the form 

All S are P 
:. All P are S.  

is invalid. Notice that this same example, with 'P' standing for 'salesmen' and 'S' for 'people', 
also suffices to show that the form 

All P are S. 
:. All S are P. 

is invalid. (This form is just a notational variant of the first.) Thus conversion is an invalid form 
in both directions. 
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The reader can similarly verify that conversion is valid for form I but not for form 0. 
Two categorical statements are contrapositives if one results from the other when we replace its 

subject term with the complement of its predicate term and its predicate term with the complement of 
its subject term. Thus, for example, 'All S are P' and 'All non-P are non-S' are contrapositives. An 
inference from one of a pair of contrapositives to the other is called contraposition. Contraposition is 
valid for forms A and 0, but invalid for forms E and I. We demonstrate its invalidity for form E and 
leave the other cases to the reader. 

SOLVED PROBLEM 

5.13 Use a Venn diagram to show that contraposition is invalid for form E. 

Solution 
The contrapositive of the E-form statement 'No S are P' is 'No non-P are non-S', which 

asserts that the complement of P shares no members with the complement of S. To diagram this 
statement, we block out the area on the diagram that represents things which are both non-S 
and non-P (Fig. 5-13). 'No S are P', as its diagram shows (Fig. 5-I), asserts the emptiness of a 
wholly different subset of the universe. One of these subsets could be empty while the other is 
not; in diagraming neither premise do we automatically diagram the other; hence neither form 
implies the other. 

Fig. 5-13 

To illustrate, Let S be the set of snakes and I' the set of people. Then the premise 'No snakes 
are people' is surely true; but its contrapositive, 'No nonpeople are nonsnakes', is just as surely 
false: bees, for example, are both nonpeople and nonsnakes. Thus we see that the form 

No S are P. 
:. No non-P are non-S. 

is invalid. To see by example that the form 

No non-P are non-S. 
. . No S are P. 

is likewise invalid, suppose that everything that exists is either physical or spiritual and that 
some things, say people, are both. (This is logically possible, even if it isn't actually so.) Then the 
premise 'No nonphysical things are nonspiritual things' would be true; but the conclusion 'No 
spiritual things are physical things' would be false, people being an exception. Hence it is 
logically possible for this premise to be true while the conclusion is false. Contraposition for 
E-form propositions is thus invalid in both directions. 

The four basic categorical forms may be classified by quality and quantity. There are two qualities, 
afirmative and negative, and two quantities, universal and particular. Each of the four basic forms of 
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categorical statements has a characteristic combination of quality and quantity, as the following table 
indicates: 

QUALITY 

7 
Affirmative Negative 

Universal A E 
QUANTITY 

Particular I 0 

A third type of immediate inference is one in which we change the quality of a categorical statement 
(while keeping its quantity the same) and replace the predicate term by its complement. Such an 
inference is called obversion; statements obtainable from one another by obversion are obverses. 

The obverse of 'No S are P', for example, is 'All S are non-P'. The obverse of 'Some S are not P' is itself 
(changing the quality and canceling out the double complementation gives 'Some S are P' and then 
replacing the predicate term 'P' by its complement 'not P' returns us to 'Some S are not P'). Obverse 
categorical statements are always logically equivalent; their Venn diagrams are always identical. 

SOLVED PROBLEM 

5.14 Use a Venn diagram to show that obversion is valid for form A: 

Solution 
The obverse of the A-form 'All S are P' is 'No S are non-P'. This asserts that S shares no 

members with the complement of P, and so in the diagram we block out the area in which S and 
the complement of P overlap (see Fig. 5-14). But this diagram is equivalent to that for form A 
(Fig. 5-2), since the area inside the frame and outside the two circles is not blocked out and 
contains no X,  and is therefore not informative. 

Fig. 5-14 

The logic originally developed by Aristotle for categorical statements recognized as valid a number 
of immediate inferences that are not considered valid in modern logic. This discrepancy can be traced 
to the presupposition in Aristotelian logic that all subject and predicate terms designate nonempty sets, 
i.e., sets with at least one member. Modern logic assumes no such thing. 

To understand the effects of this presupposition, consider a pair of I- and 0-form statements with 
the same subject and predicate terms, i.e., 'Some S are P' and 'Some S are not P'. Now assume (as 
Aristotelian logic does) that the terms 'S' and 'P' designate nonempty sets. Then the set S has members; 
if none of these members is P then some (indeed all of them) must be not-P, and if none is not-P then 
some (indeed all) must be P. Hence 'Some S are P' and 'Some S are not P' cannot both be false. From 
the negation of either, we can validly infer the other. Two statements so related were called 
subcontraries in Aristotelian logic, and the relationship of subcontrariety was held to be the basis for 
valid immediate inferences. However, if we remove the presupposition that the subject term is 
nonempty, such inferences may become invalid. Suppose, for example, that 'S' is the term 'submarine 
over a mile long'. (There are, of course, no such things.) Then, no matter what 'P' is, the statements 
'Some S are P' and 'Some S are not P' are both false. It is false, for example, both that some submarines 
over a mile long are pink and that some submarines over a mile long are not pink-simply because 
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there aren't any submarines over a mile long. We cannot validly infer either of these statements from 
the negation of the other. 

The presupposition of nonemptiness limited the applicability of Aristotelian logic. Moreover, once 
this presupposition was abandoned, logic was greatly simplified. Thus Aristotelian logic was for the 
mo2t part abandoned, and the extra inferences it recognized (such as those involving subcontraries) 
were banished from subsequent logical systems. 

The acceptance of empty terms by modern logic does, however, create a problem: What is the truth 
value of A-form statements with empty subject terms? For example, is the statement 'All submarines 
over a mile long are pink7 true or false? In a sense it doesn't matter, since there aren't any such 
submarines; but the demands of generality and completeness require a decision. Modern logic achieves 
an important gain in simplicity and systematicity by the stipulation that all A-form statements with 
empty subject terms are true. After all, if the set corresponding to the subject term is empty, then it is 
certainly included in the set corresponding to the predicate term, since the empty set is included in 
every set. Thus the statement 'All submarines over a mile long are pink' is true. 

Note that, by the same pattern, the statement 'All submarines over a mile long are not pink' is also 
true. This appears contradictory, but the appearance is illusory. 'Not' in this statement expresses 
complementation, not negation. Where S is empty, 'All S are P' says merely that the empty set is a 
subset of the set P and 'All S are not P' says merely that the empty set is a subset of the complement 
of P. This is not a contradiction. 

5.4 CATEGORICAL SYLLOGISMS 

Immediate inferences are one-premise arguments whose premise and conclusion are both 
categorical statements. Categorical syllogisms are two-premise arguments consisting entirely of 
categorical statements. To qualify as a categorical syllogism.. such an argument must contain exactly 
three class terms: the subject and predicate term of the conclusion (these are, respectively, the minor 
and major terms of the syllogism) and a third term (the middle term) which occurs in both premises. In 
addition, the major and minor terms must each occur once in a premise. 

We owe the concept of a categorical syllogism to Aristotle, and this class of arguments is singled 
out for study primarily in deference to tradition. The argument with which this chapter began 

Some four-legged creatures are gnus. 
All gnus are herbivores. 

:. Some four-legged creatures are herbivores. 

is a categorical syllogism. Its major term is 'herbivores', its minor term is 'four-legged creatures', and 
its middle term is 'gnus'. 

Venn diagrams provide a quick and effective test for the validity of the forms of categorical 
syllogisms. To diagram a syllogistic form, we draw three overlapping circles to represent the three terms 
in the premises. The circles are then labeled (in any order) with letters standing for these three terms. 
For the form of the argument above, we will use the letters 'F",  'G', and 'H' for 'four-legged creatures', 
'gnus', and 'herbivores', respectively (Fig. 5-15). It is crucial that the drawing include a three-cornered 
middle region, which represents the things common to all three sets F, G, and H. 

Fig. 5-15 
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We diagram each of the premises in turn. The resulting diagram may then be used to test the form for 
validity in just the way that we tested immediate inferences; if in diagraming the premises we have 
thereby diagramed the conclusion as well, then the form is valid; if not, then it is invalid. 

SOLVED PROBLEMS 

5.15 Use a Venn diagram to determine whether the argument above is valid. 

Solution 
The first premise asserts that the set of four-legged creatures shares at least one member 

with the set of gnus, so we need to put an X in the region of overlap between circles F and G. 
This region, however, is divided into two parts by the H circle. Which of these two parts should 
contain the X? We know, of course, that gnus are herbivores, so it might seem that we should 
put the X in the three-cornered middle region. But this would be a mistake. We are diagraming 
only the information contained in the first premise; to bring in additional knowledge is 
"cheating." The first premise does not indicate whether four-legged gnus are herbivores or not. 
We show this by putting the X on the border between herbivores and nonherbivores (Fig. 5-16). 
The second premise says that the set of gnus is a subset of the set of herbivores. To diagram it, 
we block out the region representing gnus which are not herbivores (Fig. 5-17). Notice that in 
diagraming the second premise we eliminate the possibility that the X represents a nonher- 
bivore. Thus we now see that the X (which represents at least one four-legged gnu) must be 
contained in the three-cornered middle region. The premises require, in other words, that at 
least one four-legged gnu be a herbivore. But that is just what the conclusion says. Hence in 
diagraming just the premises, we have diagramed the conclusion. This shows that if the premises 
are true, then the conclusion must be true as well, i.e., that the argument is valid. Indeed, it 
shows that any argument of this form is valid, since it makes no difference to the diagram 
whether 'F', 'G', and 'H' stand for 'four-legged creatures', 'gnus', and 'herbivores' or some 
other class terms. 

Fig. 5-16 Fig. 5-17 

5.16 Construct a Venn diagram to test the following form for validity: 

No F are G. 
All G are H. 

:. No F are H. 

Solution 
The first premise asserts that sets F and G share no members. We therefore block out the 

lens-shaped area between the F and G circles. The second premise says that G is a subset of H, 
and so we block out the crescent opposite H in the G circle (Fig. 5-18). This still leaves a region 
of overlap between the F and H circles about which we have no information. It is, in other 
words, consistent with the premises that there are F's which are H but not G. Now if there are 
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Answers to Selected Supplementary Problems 

No P are C. 
:. -(Some P are C.) 

Fig. 5-21 

('P' stands for 'people' and 'C' for 'things that have conquered the world'.) We have diagramed the 
premise (Fig. 5-21), which asserts that the sets P and C share no members. But in doing so we have 
diagramed the conclusion as well. For the diagram of 'Some P are C' is just an X in the lens-shaped 
area; and to diagram its negation, '-(Some P are C)', we remove this Xand block out the area which 
contained it. The result is just the diagram for 'No P are C'. Hence the premise and conclusion are 
logically equivalent, and the inference form is valid. 

(4) No P are C. 
:. Some P are not C. 

Fig. 5-22 

(Same symbols as in Problem 1.) We have diagramed the premise (Fig. 5-22), but in doing so we have 
not diagramed the conclusion (compare Fig. 5-4). Hence this form, somewhat surprisingly, is invalid. 
This is because the premise does not guarantee that there are any people: the crescent area inside 
the P circle is empty, indicating that the premise provides no information about this region. Note 
that we have treated the 'not' in the conclusion as expressing complementation; if one treats it as 
expressing negation then the conclusion becomes 

-(Some P are C.) 

which under the current interpretation means "it is riot the case that some people have conquered 
the world." This form is the same as in Problem 1 and is therefore valid. 

(7) All M are non-P. 
:. -(Some M are P.) 

(We use 'M' for 'miracles' and 'P' for 'possible', or, in standard form, 'possible things'.) The 
premise asserts that the set M is a subset of the complement of the set P, and hence that the 
lens-shaped area between M and P is empty. The conclusion has the same form as the conclusion 
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Fig. 5-23 

of Problem 1; hence its diagram, too, is formed by blocking out this lens-shaped area (Fig. 5-23). 
Since the diagrams for the premise conclusion are identical, the inference is valid. 

(8) The statements of this argument (which, incidentally, is valid) are not categorical. 

(12) All S are N. 
All N are C. 
All S are C. . . 

(We use 'S' for 'things said by him', 'N' for 'nonsensical things', and 'C' for 'contemptible 
things'.) This is a valid categorical syllogism. (See Fig. 5-24.) 

Fig. 5-24 

(13) The statements of this argument are not categorical, but the argument is valid, since it is 
an instance of hypothetical syllogism (Section 4.4). 

(16) No P were I. 
Some P were M. 

:. No M were I. 

(We use 'P' for 'players', 'I' for 'things (or persons) that were injured', and 'M' for 'things 
(or persons) that missed practice'.) This is an invalid categorical syllogism. (See Fig. 
5-25.) 

Fig. 5-25 
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All F are N. 
Some N are K. 

:. Some F are K. 

(We use 'F' for 'fatty meals he eats', 'N' for 'nails in his coffin', and 'K' for 'things that 
are going to kill him'.) On our formalization, this is an invalid categorical syllogism (Fig. 
5-26). However, the formalization introduces some distortion, since the term 'one' in the 
conclusion of the argument may well mean "exactly one," whereas the term 'some' with 
which we have replaced it means (in its logical sense) "at least one." 

Fig. 5-26 



Chapter 6 

Predicate Logic 

6.1 QUANTIFIERS AND VARIABLES 

Chapter 5 introduced the logical concept of a quantifier ('all', 'some', 'no') in the narrow context 
of the logic of categorical statements. In this chapter we combine the quantifiers with the operators of 
propositional logic (the truth-functional connectives) to produce a more encompassing logical 
apparatus. This apparatus-known as predicate logic or quantification theory-is very powerful and 
proves adequate to testing the deductive validity of a very wide range of argument forms. 

As a first step, we note that reformulation of categorical statements reveals the presence of some 
of the logical operators of Chapters 3 and 4. Consider, for example, the A-form statement 

All S are P. 

Using the letter 'x' as a variable standing for individual objects, we may express the same statement as 
follows: 

For all x, if x is S then x is P. 

This reformulation has the same truth conditions as the original formulation: it asserts that any object 
that is contained in the set S is also contained in the set P, which is just another way of saying that S 
is included in P. However, unlike the original formulation, the new formulation contains an occurrence 
of the conditional 'if . . . then'. Likewise, the E-form statement 

No S are P. 

can be expressed as follows: 

For all x ,  if x  is S then it is not the case that x  is P .  

This asserts that any object that is contained in the set S is not contained in the set P, i.e., that S and 
P share no members, which is exactly the condition expressed by the E-form statement. Again, the new 
formulation contains a conditional; in addition it contains the negation connective 'it is not the case 
that'. 

Let us adopt the symbol 'V' to mean "for all," "for any," and the like. This symbol is called a 
universal quantifier. Moreover, instead of writing 'x is S', let us simply write 'Sx7-and treat 'x is P' 
similarly. Finally, let us use the symbolic notation for the truth-functional operators 'if . . . then', 'it is 
not the case that', etc., familiar from Chapter 3. Then our reformulations of the A-form statement 'All 
S are P' and the E-form statement 'No S are P' can be symbolized as follows, respectively: 

Vx(Sx + Px) 
Vx(Sx + - Px)  

Note that there is no need to have a special symbol for the negative quantifier 'no', since we can 
express it with the help of 'V' together with the negation connective '-'. To express I and 0 statements, 
however, it is convenient to have a second kind of quantifier. The I proposition 

Some S are P. 

may be expressed as 

For some x, x is S and x is P .  

which contains a conjunction. We adopt the symbol '3' to mean "for some," or, more precisely, "for at 
least one." (As in the previous chapter, we shall understand "some" so as to include the limit cases 
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"exactly one" and "all". See Section 5.1.) We can then rewrite the I proposition as 

3 x ( S x  & P x )  

An equivalent way of expressing the meaning of '3' in English is "there exists. . . such that." Hence the 
formula above can also be read as 

There exists an x  such that x  is S and x  is P  

Accordingly, '3' is called the existential quantifier. 
The 0 proposition 

Some S are not P. 

in this notation is 

3 x ( S x  & - P x )  

which means 

For some x ,  x  is S  and it is not the case that x  is P .  

or, equivalently, 

There exists an x such that x  is S and x  is not P.  

Notice that it is wrong to render the I proposition 'Some S are P' as 

3 x ( S x  -, P x )  

which contains a conditional rather than a conjunction. This formula means "there exists an x such that, 
if x is S, then x is P." It can therefore be true even if nothing is S. It is true, for instance, that for at least 
one x (let x be any person you like), if x has seven heads, then x is peculiar. But it is false that some 
seven-headed people are peculiar, since there aren't any seven-headed people; thus these two 
statements are not equivalent. It is similarly incorrect to use a conditional in the symbolization of an 
0 proposition. 

A and E propositions, on the other hand, must always be formalized by conditionals, rather than 
conjunctions. I t  is wrong, for example, to formalize the A proposition 'All S is P' as: 

V x ( S x  & P x )  

This means, "For all x, x is both S and P." But clearly the statement 'All sharks are predators' is not the 
equivalent of 'For all x, x is both a shark and a predator', which means that everything is a predatory 
shark. 

SOLVED PROBLEM 

6.1 Interpreting the letters 'F' and 'G' as the predicates 'is a frog' and 'is green', 
respectively, formalize each of the followi~ig sentences: 

(a) Frogs are green. 

(b) There is at least one green frog. 

( c )  Some frogs are not green. 

( d )  There aren't any green frogs. 

(e) No frogs are green. 

(f) Frogs are not green. 

(g) Not everything that is a frog is green. 
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Solution 

Vx(Fx -+ Gx). This formalization treats the plural noun 'frogs' as expressing a universal 
quantification, i.e., as meaning 'all frogs'. This is customary in predicate logic, and we shall 
follow this practice here. However, in some contexts it might be more appropriate to 
regard a plural as expressing a form of generality that allows for some exceptions. (See 
Problem 5.4(i).) 

3x(Fx & Gx) 

3x(Fx & -Gx). This formalization treats 'not' as expressing negation. If one read it as 
expressing complementation instead, one would need a separate predicate letter, say 'H', 
to represent the predicate 'non-green'; the sentence could then be formalized as an 
ordinary I-form statement, '3x(Fx & Hx). 

- 3x(Fx & Gx) 

Vx(Fx -- -Gx). This statement says the same thing as (d), hence it can also be formalized 
as '-3x(Fx & Gx)'. 

This expresses the same proposition as (e ) ,  so it can be formalized as Vx(Fx -. -Gx) or, 
equivalently, -3x(Fx & Gx). As in (c), 'not' is treated as expressing negation. If one read 
it as expressing complementation (see Section 5.1), the sentence could then be formalized 
as an ordinary A-form statement, 'Vx(Fx+ Hx) (where 'H' is interpreted as 'non- 
green'). 

-Vx(Fx -- Gx) 

The new notation reveals previously unnoticed structure in categorical propositions. But its chief 
advantage is that it allows us to combine the concepts of propositional and categorical logic to express 
a rich variety of logical structures. 

SOLVED PROBLEM 

6.2 Interpreting the letter 'R' as the sentence 'It is raining' and the letters 'F', 'G', 
'H', and 'I' as the predicates 'is a frog', 'is green', 'is hopping', and 'is iridescent', 
respectively, formalize each of the following sentences: 

Everything is a frog. 
Something is a frog. 

Not everything is a frog. 

Nothing is a frog. 
Green frogs exist. 
Everything is either green or iridescent. 

Everything is a green frog. 
It is raining and some frogs are hopping. 

If it is raining, then all frogs are hopping. 
Some things are green and some are not. 

Some things are both green and iridescent. 
Either everything is a frog or nothing is a frog. 
Everything is either a frog or not a frog. 
All frogs are frogs. 

Only frogs are green. 
Iridescent frogs do not exist. 

All green frogs are hopping. 
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( r )  Some green frogs are not hopping. 

(s) It is not true that some green frogs are hopping. 

( t )  If nothing is green, then green frogs do not exist. 

(u)  Green frogs hop if and only if it isn't raining. 

Solution 

( a )  VxFx 

( b )  3xFx 

( c )  -VxFx 

( d )  Qx-Fx (This can also be expressed as ' -3xFx' . )  

( e )  3 x ( G x & F x )  

(f Qx(Gx V Ix) 
(g) V x ( G x  & Fx) 

(h)  R  & 3x(Fx & H x )  

(i) R - + V x ( F x - + H x )  

(j) 3 x G x & 3 x - G x  

( k )  3 x ( G x & I x )  

(1)  Q x F x v V x - F x  

(m)  Vx(Fx  V - Fx) 

( n )  Vx(Fx -+ Fx) 

(0) Qx(Gx  -+ Fx) 

(p) -3x(Ix  & Fx) 

( q )  V x ( ( G x  & Fx) --, Hx)  

( r )  3 x ( ( G x & F x ) & - H x )  

( s )  - 3 x ( ( G x  & Fx) & Hx)  

( t )  Qx-  G x  -+ - 3 x ( G x  & Fx) 

( u )  V x ( ( G x  & Fx) -+ ( H x  ++ - R ) )  

One should be very careful in symbolizing sentences with quantifiers, as there is no straightforward 
way to match English phrases with the symbols 'V7 and '3'. For instance, typically a phrase such as 
'anything' stands for the universal quantifier and a phrase such as 'something' stands for the existential 
quantifier, but the overall structure of the sentence may indicate a different interpretation. Thus, in 'If 
something is cheap, then it is not of good quality', the word 'something' suggests the presence of an 
existential quantifier. But on closer inspection it is clear that the sentence expresses a universal 
quantification: it is a general statement to the effect that cheap things are not of good quality. Also, in 
English often the quantifier is not expressed by an explicit quantifier phrase, but by an adverb (such as 
'always' or 'sometimes') or even by a connective. For instance, the statement 'Only expensive things are 
nice' means that the nice things can be found only among the expensive things, and is therefore a 
categorical statement of the form 'All N are E'. 

SOLVED PROBLEM 

6.3 Interpreting the letters 'F' and 'G' as the predicates 'is a frog' and 'is green', 
respectively, formalize each of the following sentences: 

( a )  If something is a frog, then it is green. 

(6) If anything at all is a frog, then something is green. 
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(c) Anything that is a frog is green. 

( d )  If anything is green, then frogs are green. 

(e) If everything is green, then frogs are green. 

(f)  Invariably, frogs are grcen. 

(g) Occasionally, frogs are green. 

(h)  A frog is green. 

(i) A frog is always green. 

(j) Only frogs are green. 

Solution 

V x ( F x  - G x )  

3xFx  - 3 x G x .  The antecedent features the word 'anything'; this is typically a sign of 
universal quantification, but in the present context it clearly expresses an existential 
condition. (The condition could be reformulated as ' I f  there are any frogs at all'.) 

V x (  Fx - G x )  

3 x G x  - V x ( F x  - G x ) .  This case is similar to ( b ) ,  except that the consequent is a general 
claim about the color of frogs and is therefore formalized as an A-form statement. 

V x G x  - V x ( F x  - G x )  

Vx(Fx  -+ G x ) .  Here the adverb 'Invariably' reinforces the reading of the plural 'frogs' as 
expressing universal quantification. (Compare Problem 6.1 (a) . )  

3 x ( F x  & G x ) .  In  this case, the adverb 'Occasionally' weakens the reading of the plural, 
leaving room for frogs that are not green. In fact, the adverb suggests that only a few frogs 
are green, a connotation that is lost in the formalization. To capture this connotation, the 
sentence can be rendered as a conjunction 3 x ( F x  & G x )  & 3 x ( F x  & - G x ) .  

This sentence is ambiguous. I t  may be interpreted as a general statement about frogs (as 
in ( a )  and (c)), or as an existential statement of the form 3x(Fx & G x ) .  

V x ( F x -  G x ) .  In  this case the ambiguity is resolved by the adverb 'always'. 

V x ( G x  - Fx)  

6.2 PREDICATES AND NAMES 

Not all statements contain quantifiers. There are, for example, simple subject-predicate statements 
which attribute a property to an individual person or thing. We shall interpret lowercase letters from 
the beginning and middle of the alphabet as proper names of individuals, and we shall adopt the 
convention (standard in logic but contrary to English grammar) or writing the subject after the 
predicate. Thus the sentence 

Jones is a thief. 

may be formalized as 

where 'j' is interpreted as the proper name 'Jones' and 'T' as the predicate 'is a thief'. 
So far we have considered only predicates that are class terms, i.e., nouns, adjectives, or verbs which 

designate classes of objects. (See Section 5.1.) The result of combining such a predicate with a proper 
name is always a sentence, and the sentence will be true or false depending on whether or not the object 
designated by the name is a member of the class designated by the predicate. (For instance, the sentence 
'Jones is a thief' will be  true if  Jones is indeed a thief, and false otherwise.) There are, however, many 
predicates that must be combined with two or more proper names to make a sentence. In English, for 
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example, this is true of such transitive verbs as 'hits', 'loves7, or 'defies', which take both a subject and 
an object. These are usually written in logical notation in the order predicate-subject-object. Thus the 
statement 

Bob loves Cathy. 

is formalized as 

Lbc 

and the sentence 

Cathy loves Bob. 

is formalized as: 

Lcb 

Transitive verbs are just one subclass of the broader class of relational predicates, predicates which 
designate relations between two or more objects (rather than classes of objects) and which combine two 
or more proper names to make a sentence. Here are some other examples of relational predicates that 
take two names to make a sentence: 'is next to', 'thumbs his nose at', 'is taller than', 'is less than', 'is 
a subset of'. The expressions 'gave . . . to' and 'is between . . . and' are examples of predicates that take 
three names. And 'is closer to . . . than . . . is to' takes four. 

A predicate which takes only one name (a class term) is called a nonrelational or one-place 
predicate. A relational predicate which takes two names is called a two-place predicate; one which takes 
three names a three-place predicate; and so on. When sentences containing such predicates are 
formalized, the letters representing names are written after the predicate letter in the order in which 
they occur in English, unless some other order is specified. Thus the statement 

Cathy gave Fido to Bob. 

is formalized as 

SOLVED PROBLEM 

6.4 Formalize the following statements, interpreting the letters 'a', 'b', and 'c' as the 
proper names 'Alex', 'Bob', and 'Cathy'; 'iM' and 'N' as the one-place predicates 'is a 
mechanic' and 'is a nurse'; 'L' and 'T7 as the two-place predicates 'likes' and 'is taller 
than'; and 'I' as the three-place predicate 'introduced . . . to'. 

Cathy is a mechanic. 

Bob is a mechanic. 

Cathy and Bob are mechanics. 

Either Cathy or Bob is a mechanic. 

Cathy is either a mechanic or a nurse (or both). 

If Cathy is a mechanic, then she isn't a nurse. 

Cathy is taller than Bob. 

Bob likes Cathy. 

Bob likes himself. 

Cathy likes either Bob or Alex. 
Alex introduced Cathy to Bob. 

Cathy introduced herself to Bob but not to Alex. 
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SOLVED PROBLEM 

Formalize the following statements using the same interpretation as in Problem 

A mechanic likes Bob. 

A mechanic likes herself. 

Every mechanic likes Bob. 

Bob likes a nurse. 

Some mechanic likes every nurse. 

There is a mechanic who is liked by every nurse. 

Bob introduced a mechanic to Cathy. 

A mechanic introduced Bob to Alex. 

A mechanic introduced herself to Bob and Alex. 

Cathy introduced a mechanic and a nurse to Bob. 

Cathy introduced a mechanic to a nurse. 

A mechanic introduced a nurse to Cathy. 

Some mechanic introduced a nurse to a mechanic. 

Solution 

( a )  3x (Mx & Lxb)  
( 6 )  3x (Mx & Lxx) 

( c )  V x ( M x + L x b )  

( d )  3 x ( N x  & Lbx)  
( e )  3 x ( M x & V y ( N y 4 L x y ) )  

(f) -Jx(Mx & VY(NY -. L Y ~ ) )  

(g) 3x(Mx & Ibxc) 
(h )  3x (Mx & Ixba) 

(i) 3 x ( M x  & (Ixxb & Ixxa)) 

( 1 )  3x(Mx & Icxb) & 3x(Nx & Icxb) 

( k )  3 x 3 y ( ( M x  & N y )  & Icxy) 

(1) 3 x 3 y ( ( M x  & N y )  & Ixyc) 

(m) 3 3 y 3 z ( ( M x  & N y )  & ( M z  & Ixyz))  

You should keep the following points in mind when formalizing statements: 

Different variables do not necessarily designate diflerent objects. Thus, for example, the formula 
'VxVyLxy' (Problem 6.5(k)) asserts that for any x and any (not necessarily distinct) y, x likes y. It 
asserts, in other words, not only that every thing likes every other thing, but also that everything 
likes itself. 

Choice of variables makes no difference to meaning. Thus Problem 6.5(c), for example, is 
symbolized just as correctly by '3yLyy' or '-JzLzz7 as by '3xLxx7. However, when two or more 
quantifiers govern overlapping parts of the same formula, as in Problem 6.5(m), a different 
variable must be used with each. This formula could be written equivalently as 'Vy3xLyx' or 
'Vx3zLxz7, for example, but not as 'Vx3xLxx'. In this last case we cannot tell which of the two 
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final occurrences of 'x' is governed by which quantifier. We shall regard such formulas as ill 
formed, i.e., ungrammatical.' 

(3) The same variables used with two different quantifiers does not necessarily designate the same object 
in each case. Thus '3xLbx & 3xLcx' is a correct formalization of 'There is something which Bob 
likes and something which Cathy likes' (Problem 6.5(g)), a statement which neither affirms nor 
denies that each likes the same thing. But some people find it more natural to write 
'3xLbx & 3yLcy'' which is an equivalent and equally correct formalization of the same statement. 
It is legitimate to use the same variable with each quantifier in formalizing this statement because 
the quantifiers govern nonoverlapping parts of the formula (each applies only to the conjunct of 
which it is a part). 

(4) Many, if not most, English sentences which mix universlzl and existential quantifiers are ambiguous. 
Thus, the seemingly simple sentence 'Something is 1ike:d by everything' can mean either 'There is 
some one thing which is liked by everything' (Problem 6.5(1)) or 'Everything likes at least one 
thing (not necessarily the same thing or things in each case)' (Problem 6.5(m)). These more 
awkward but less ambiguous sentences are not equivalent. Indeed, suppose there is one thing that 
likes everything while there are also things that don't like anything; then the first sentence is true 
whereas the second is false. This difference in meaning is revealed formally by the difference in 
order of the quantifiers. The formalizations of these sentences are wholly unambiguous. 

(5) The order of consecutive quantijiers affects meaning only when universal and existential quantijiers 
are mixed Consecutive occurrences of universal quantifiers can be permuted without change of 
meaning, as can consecutive occurrences of existential quantifiers. Thus, whereas '3xVyLyx' 
(Problem 6.5(1)) and 'Vy3xLyx' (a variant of Problem 6.5(m)) have different meanings, '3x3yLxy' 
and '3y3xLxy' both mean simply and unambiguously "something likes something." 

(6) Nested quantijiers may combine with the truth-functional operators in many equivalent ways. For 
example, the sentence 'Cathy introduced a mechanic tcl a nurse' (Problem 6.6(k)) can be rendered 
as '3x3y((Mx & Ny) & Icxy)' but also as '3x(Mx & 3y(Ny & Icxy))'. This and similar equiv- 
alences may be verified intuitively. However, a more precise account of the syntax and semantics 
of the symbolic language is in order before we can de'al with logical equivalences in general. 

6.3 FORMATION RULES 

We now define more precisely the formal language exemplified in the previous sections. As with 
the language o f  propositional logic, we divide the vocabulary of this language into two parts, the logical 
symbols (whose interpretation or function remains fixed in all contexts) and the nonlogical symbols 
(whose interpretation varies from problem to problem): 

Logical Symbols 
Logical opera tors: '- ' ' 

9 ' ' '4' , t)' 

Quantif ier~:~ 'V', '3' 

Variables: lowercase letters from 'u' through ' z '  
Brackets: '(', ')' 

'1n some versions of predicate logic, such formulas are counted as wffs, under the convention that if a variable occurs within the 
scope of two or niore quantifiers on that variable the quantifier nearest the variable is the one that governs it. 
2Quantifier notation varies. Some authors omit the symbol for the universal quantifier and write 'for all x' as '(x)'. The existential 
quantifier is then written as '(3~)'. Sometimes both quantifier symbols and brackets are used. Occasionally the symbol 'A' is used 
instead of 'V' and 'V' instead of '3'. 
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Nonlogical Symbols 
Name letters: lowercase letters from 'a' through 't' 

Predicate letters: uppercase letters 

To ensure that we have enough nonlogical symbols for any task, we permit the addition of 
numerical subscripts to the symbols we already have. Thus 'a3' counts as a name letter and 'P147' as a 
predicate letter. Subscripted nonlogical symbols are seldom needed, however. 

We define a formula in our language as any finite sequence of elements of the vocabulary (logical 
or nonlogical symbols). 

An atomic formula is a predicate letter followed by zero or more name letters. Atomic formulas 
consisting of a single predicate letter followed by no name letters are just the sentence letters (atomic 
formulas) of the propositional calculus. They are used to symbolize whole sentences when there is no 
need to represent the internal structure of these sentences. If the number of name letters following a 
predicate letter in an atomic formula is n, then that letter represents an n-place predicate. (Sentence 
letters may be thought of as zero-place predicates.) 

The concept of a well-formed formula (wff) of the language of predicate logic is defined by the 
following formation rules (we use Greek letters to stand for expressions in our language, as 
indicated): 

(1) Any atomic formula is a wff. 

(2) If + is a wff, so is -+. 
(3) If 4 and $ are wffs, so are (+ & $), (+ V $), (+ --+ $1, and ( 4  - $). 

(4) If + is a wff containing a name letter a, then any formula of the form VP+p! or 3p+% is a wff, 
where +rj/, is the result of replacing one or more of the occurrences of a in + by some variable P 
not already in +. 

Only formulas obtainable by (possibly) repeated application of these rules are ~ f f s . ~  
Rules 2 and 3 are the same as for the language of propositional logic (see Section 3.3). Rule 1 is 

broader; in view of the definition of 'atomic formula' given above, it allows more kinds of atomic 
formulas. Rule 4 is completely new. To see how it works, let's use it to generate some quantified 
formulas from a specific unquantified wff +. Let 4 be the wff '(Fa & Gab)'. (We can tell that this 
formula is a wff, because 'Fa' and 'Gab' are wffs, by rule 1, so that '(Fa & Gab)' is a wff, by rule 3.) Now 
+ contains two name letters, 'a' and 'b'. Either can serve as what the rule calls a. Let's use 'a'. The rule 
tells us to choose some variable (3 which is not already in +. Any variable will do, since + contains no 
variables; so let (3 be the variable 'x'. Then there are three formulas of the form +PA which result from 
replacing one or more occurrences of a (that is, 'a') in + (that is, 'Fa & Gab') by P (that is, 'x'): 

(Fx & Gxb) (Both occurrences of 'a' replaced by 'x') 
(Fx & Gab) (Only first occurrence of 'a' replaced) 
(Fa & Gxb) (Only second occurrence of 'a' replaced) 

These formulas themselves are not wffs, but rule 4 stipulates that the result of prefixing any of them 
with a universal quantifier followed by 'x', that is, VP+%, is a wff. Thus 

Vx(Fx & Gxb) 
Vx(Fx & Gab) 
Vx(Fa & Gxb) 

'Some authors use somewhat different formation rules. (Some common points of variation were mentioned in notes 1 and 2.) 
Readers should compare formation rules carefully when using different texts. 
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are all wffs by rule 4. The rule also says that the result of prefixing any of them with an existential 
quantifier followed by 'x', that is, 3p+%, is a wff. Hence 

3x(Fx & Gxb) 
3x(Fx & Gab) 
3x(Fa & Gxb) 

are all wffs as well. We have thus generated six quantified wffs from the unquantified wff '(Fa & Gab)' 
by single applications of rule 4. We could have generated others by using the name 'b' for a or variables 
other than 'x7 for p. Rule 4 can be reapplied as well. For example, now that we know that 
'Vx(Fx & Gxb)' is a wff, we can apply rule 4 a second time, using 'b7 for ol and 'y' for P to obtain the 
following two wffs: 

VyVx(Fx & Gxy) 
3yVx(Fx & Gxy ) 

Notice that rule 4 is the only rule which allows us to introduce variables into a wff, and we can 
introduce a variable only by prefixing the formula with a quantifier for that variable. Thus any formula 
containing a variable without a corresponding quantifier (for example, 'Fx') is not a wff. Similarly, any 
formula containing a quantifier-plus-variable without a further occurrence of that variable (for 
example, '3xPa7) is not a wff. 

The purpose of the phrase 'by some variable P not already in <b' in rule 4 is to ensure that 
quantifiers using the same variable never apply to overlapping parts of the same formula. Thus, for 
instance, though '3xLxa' is a wff by rules 1 and 4, this clause prevents us from adding another quantifier 
on x to obtain, for example, 'Vx3xLxx7, which, as we noted earlier (comment 2, Section 6.2), is ill 
formed. Notice that this clause also prevents a formula such as 'Vx(Fx & 3xGx)' from being well 
formed, since this could be obtained by rule 4 only from something like the wff '(Fa & 3xGx)' which 
already contains 'x7. But it does not prohibit such formulas as '(3xFx & 3xGx)', where the quantifiers 
apply to nonoverlapping parts of the formula. This formula is indeed a wff, since it is obtained by rule 
3 from '3xFx' and '3xGx', which are themselves wffs, by rules 1 and 4 (see comment 3, Section 6.2). 

In general, to show that a given formula is a wff, we show that it can be constructed strictly by the 
formation rules. 

SOLVED PROBLEMS 

6.7 Show that '-3x(-Fx & VzGzx)' is a wff. 

Solution 

By rule 1, 'Fa' and 'Gba' are wffs. Hence, by rules 2 and 4, respectively, '-Fa' and 'VzGza' 
are wffs. Application of rule 3 to these two formulas shows that '(-Fa & VzGza)' is a wff. So, 
by rule 4, '3x(Fx & VzGzx)' is a wff, whence it follows by rule 2 that '-3x(Fx & VzGzx)' is 
a wff. 

6.8 Explain why the following formulas are not wffs. 

VxLxz 

(Fa) 
(3xFx & GX) 

Vx(Fx) 

(Vx Fx) 

3xVyFx 
3x3x(Fx & -Gx) 

3xFx & 3xGx 
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Solution 

( a )  The variable ' z '  lacks a quantifier. 

( b )  Atomic wffs are not cnclosed in brackets (see rule 1) .  

( c )  The final occurrence of 'x' is not quantified. Note, however, that '3x(Fx & Gx)' is a wff. 

(d) Unnecessary brackets. 

(e) Unnecessary brackets. 

( f )  'Vy' requires a second occurrence of 'y '  (see rule 4). 

(g) Quantifiers apply to overlapping parts of the formula. 

(h)  Outer brackets missing (see rule 3). 

As in the propositional calculus, we adopt the informal convention of dropping paired outer 
brackets. Thus, although the formula in Problem 6.8(h) is not officially a wff, from now on we will 
permit the use of such formulas as abbreviations for wffs where convenient. It is not permissible, 
however, to drop brackets when they are not both the outermost symbols. Thus, for example, we may 
not drop brackets from 'Vx(Fx --, Gx)'. 

6.4 MODELS 

We now define more precisely the semantics of our language, which we have implicitly 
presupposed in the previous sections. Relative to the semantics of propositional logic, there are two 
sources of complexity. One is that some atomic formulas of the language of predicate logic are treated 
as compound expressions, whereas all atomic formulas of the language of propositional logic were 
unanalyzed atomic units (sentence letters). These new atomic formulas (such as 'Fa') cannot be  
assigned a truth value directly: their truth value will have to depend on the interpretation of the 
predicate and name letters occurring therein (in our example, the letters 'F' and 'a'). The second source 
of complexity is that the new language contains logical operators-the quantifiers-which were absent 
in the language of propositional logic. The method of Venn diagrams introduced in Section 5.2 is of 
some help in visualizing the intended interpretation of these operators. But predicate logic is not just 
a reformulation of the logic of categorical statements. Its language includes wffs in which a quantifier 
combines with other quantifiers or with the truth-functional operators in ways that do not correspond 
to any categorical statements, and Venn diagrams are not adequate for dealing with such a variety of 
linguistic structures. 

The main concept needed to deal with the first difficulty is that of a model, or interpretation 
structure. A model supplies an interpretation (or semantic value) for the nonlogical symbols occurring 
in a given wff or set of wffs. The nature of the interpretation depends on the type of symbol: 

Symbol Interpretation 

name letter individual object (e.g., the Moon) 
zero-place predicate letter (sentence letter) truth value (T or F) 
one-place predicate letter class of objects (e.g., the class of people) 
n-place predicate letter (n > 1) relation between n objects (e.g., the relation that 

holds between a pair of objects just in case the first 
is bigger than the second) 

It is not assumed that different symbols of the same type have different interpretations. As with 
English names and predicates, distinct name letters can designate the same object and distinct predicate 
letters can stand for the same class or relation (think of the English predicates 'person' and 'human 
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being', for example). On the other hand, if the same predicate letter is used to represent predicates with 
a different number of places, as in 'Fa & Fbc', then we shall assume that the model interprets the letter 
in different ways, one for each distinct use. This amounts to saying that a model will treat different uses 
of a predicate letter as distinct predicates, just as an English dictionary treats a word with multiple 
meanings as distinct words (for example, the noun 'ties7 and the transitive verb 'ties'). In practice, 
however, this convention will rarely be necessary, since it is generally advisable to translate different 
predicates by distinct letters, or by the same letter with dist:inct subscripts. 

In addition to specifying an interpretation for the nonlogical symbols, a model for a wff or set of 
wffs specifies a domain or universe of interpretation: this is simply the class of objects relative to which 
the name and predicate letters are interpreted. For example, if the domain of interpretation is the class 
of living beings and 'F' is interpreted as the class of human beings, then all of us will be included in the 
interpretation; if the domain is a class of mythological creatures, however, the interpretation of 'F' may 
contain all sorts of animals, but none of us. There is no restriction on the sorts of object that may be 
included in a model's universe, as long as the universe is not empty. 

A model, then, specifies a domain or universe together with a corresponding interpretation of the 
nonlogical symbols occurring in some given wffs. Given a model, every atomic formula + built up from 
those symbols is assigned a truth value according to the following rules: 

(1) If + consists of a single sentence letter, then its truth value is the one specified directly by the 
model. 

(2) If + consists of a predicate letter followed by a single name letter, then + is assigned the value T 
if the object designated by the name letter is a member of the class designated by the predicate 
letter; otherwise 4 is assigned the value E 

(3) If + consists of a predicate letter followed by two or more name letters, then + is assigned the 
value T if the objects designated by the name letters stand in the relation designated by the 
predicate letter; otherwise + is assigned the value F. 

A sentence that is assigned the value T in a model is also said to be true in the model, and a 
sentence that is assigned the value F is also said to be false in the model. 

SOLVED PROBLEM 

6.9 Evaluate the following atomic formulas in the model given below: 

Universe: every object in the world, including people and animals 
c : Bill Clinton 
e : the Empire State Building 

P : the class of all people 
S : the class of all saxophone players 
T : the relation that holds between two thi-ngs x and y just in the case that x is taller 

than y 
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There is of course a close relationship between the notion of a model and the intuitive notion of 
an interpretation involved in formalizing English sentences. When we specify an interpretation in order 
to formalize certain sentences, we establish a correspondence between the symbols of the formal 
language and certain names and predicates of English. (See Problems 6.1 to 6.6.) When we specify a 
model, we establish a correspondence between the symbols of the formal language and certain objects, 
classes, or relations that we describe in English. However, note that there are in principle many 
different ways of describing such objects, classes, or relations. For instance, in the model of Problem 6.9 
we could have specified the interpretation of 'c' with the description 'the 42nd President of the United 
States of America' rather than with the name 'Bill Clinton'; and we could have specified the 
interpretation of the predicate letter 'P'  by listing the names of all people: although practically very 
unfeasible (if not impossible), such a description would in principle be perfectly legitimate. 

Once we know how to evaluate atomic formulas, the truth values of compound wffs that do  not 
contain quantifiers are determined as in propositional logic: we rely on the conditions specified by the 
truth tables for the truth-functional operators. (See Section 3.4.) 

SOLVED PROBLEM 

6.10 Evaluate the following wff relative to the model of Problem 6.9: 

(PC & Tce) v (-PC & Tec) 

Solution 

This wff is a disjunction. The first disjunct is a conjunction, and this conjunction is false in 
the model since its second conjunct, 'Tce', is false. The second disjunct is also a conjunction, and 
this conjunction is also false in the model since its first conjunct, '-PC', is the negation of a true 
atomic formula, and is therefore false. Thus, both disjuncts are false. Hence the disjunction is 
false, i.e., the model assigns it the value F. 

We now consider the truth conditions for quantified wffs (the second difficulty mentioned at the 
beginning of this ~ e c t i o n ) . ~  Suppose we have to evaluate the wff 'VxSx' in the model of Problem 6.9, 
where 'S' is interpreted as the class of all saxophone players relative to the class of all existing things. 
Since this wff says "Everything is a saxophone player", it is clearly false in the model: we can easily 
produce an object, say the Empire State Building, which is not a saxophone player, i.e., is not a member 
of the interpretation of 'S' in the model. We can express this more precisely by saying that there exists 
an instance of the quantified wff 'VxSx', say 'Se', which is false in the model. This instance is obtained 
by dropping the quantifier 'Vx' and replacing the variable 'x' in the formula that follows by a name 
letter, 'e ' ,  yielding an atomic formula which can be evaluated by rule (2). On  the other hand, the wff 
'3xSx' is true in the model, since we can easily find an object in the universe, say Bill Clinton, who is 
a saxophone player. That is, we can find an instance of '3xSx', say 'Sc', which is true in the model. This 

4There are many slightly different ways of defining the truth conditions of quantified wffs. The method followed here is close to 
the one presented in Benson Mates, Elementary Logic, 2d edn, New York, Oxford University Press, 1972. 
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procedure can easily be  generalized to quantified wffs whose instances are not atomic, as our next 
examples illustrate. 

SOLVED PROBLEMS 

6.11 Evaluate the following wff in the model given below: 

Vx(Px - Sx) 

Universe: the class of all people, past and present 

b : George Bush 

c : Bill Clinton 

P : the class of all twentieth-century US Presidents 

S : the class of saxophone players 

Solution 

The instance 'PC - Sc' is true in the model: it is a conditional whose antecedent is true by 
rule (2) (Bill Clinton is a member of the class of twentieth-century US Presidents) and whose 
consequent is also true by rule (2) (Bill Clinton is a saxophone player). However, the instance 
'Pb -+ Sb' is false, since its antecedent is true (Bush has been a US President in the twentieth 
century) but its consequent is false (Bush is not a saxophone player). But a universally 
quantified wff can be true only if every instance of it is true. Thus the wff 'Vx(Px - Sx)' is 
false. 

6.12 Evaluate the following wff in the model of Problem 6.11: 

34- P.r v Sx) 

Solution 

The instance '-Pb v Sb' is false in this model: it is a disjunction whose disjuncts are both 
false. The first disjunct is false because it is the negation of the atomic wff 'Pb', which is true by 
rule (2) (George Bush is a member of the class of twentieth-century US Presidents); the second 
disjunct is an atomic sentence which is also false by rule (2) (George Bush is not a saxophone 
player). However, the instance '-PC V Sc' is true in the model, since its second disjunct is true 
(Bill Clinton is a member of the class of saxophone players). An existentially quantified wff is 
true as long as at least one instance of it is true. Thus, the wff '3x(- Px v Sx)' is true. 

In some cases, it may be necessary to consider a greater number of instances than the model 
initially allows. For example, to evaluate the wff '3x-Px' in the model of Problem 6.11, it is not enough 
to consider the instances '-Pb' and '-PC'. Both these instances are false in the model, since both are 
negations of true atomic formulas. However, intuitively the fact that both Bush and Clinton are 
twentieth-century US Presidents is not enough to deny the existence of something which is not a 
twentieth-century US President: the quantifier ranges over all objects in the universe, including those 
which are not designated by any name letters for which the model is defined. To overcome this 
difficulty, we construct one more substitution instance, say '-Pa7, and we consider its truth values for 
all the possible interpretations of the new name letter 'a'. If' 'a' is interpreted as Bush or as Clinton, then 
the truth value of '-Pa' coincides with that of '-Pb' and '-PC'. But if 'a' is interpreted, for instance, 
as Walt Disney, then '-Pa7 becomes true, since it is the negation of the false atomic formula 'Pa7. 
Technically, the result of extending the given model by interpreting a new name letter 'a' is a new model 
called an a-variant of the given model. Since there is at least one a-variant that assigns the value T to 
the instance ' -Pa', the existentially quantified wff '3x-Px' is evaluated as true in the model. 
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SOLVED PROBLEM 

6.13 Evaluate the following wff in the model given below: 

3x(- Px & Mx) 

Universe: the class of all people, past and present 

c : Bill Clinton 

M : the class of all male people 

P : the class of all twentieth-century US Presidents 

Solution 
The instance '-PC & Me' is false in the given model, but this is not enough to evaluate the 

existential wff 'ax(-Px & Mx)': we must consider every object in the universe, not just Bill 
Clinton. We thus construct the new instance '-Pa & Ma' and consider all possible a-variants of 
the model, i.e., all possible ways of interpreting the new name letter 'a' on the class of all people. 
These a-variants fall into two broad categorie's. On the one hand, there are a-variants that 
interpret 'a' as an element of the class of twentieth-century US Presidents. Such models assign 
the value T to the wff 'Pa', and hence the value F to its negation '-Pa'. Therefore, they all assign 
the value F to the conjunction '-Pa & Ma'. On the other hand, there are a-variants that 
interpret 'a' as an element of the complement of the class of twentieth-century US Presidents, 
i.e., as an individual which is not a twentieth-century US President. Such a-variants assign the 
value F to the wff 'Pa', and hence the  value T to its negation '-Pa'. Furthermore, among these 
a-variants there will be some which interpret 'a' as a male person, and some which do not. Those 
that do interpret 'a' as a male person will assign the value T to the wff 'Ma', and, accordingly, 
they will assign the value T to the conjunction '-Pa & Ma'. Since there are a-variants of the 
given model in which the instance '-Pa &Ma' is true, we conclude that the existential wff 
'3x(-Px & Mx)' is true in the model itself. 

We may now state the truth conditions for quantified wffs more precisely. Let M be any model and 
suppose a is a name letter. An a-variant of M is defined, quite generally, as any model that results from 
M by freely interpreting a as an object in the universe of M. If M does not assign any interpretation to 
a, then an a-variant will be a slightly "richer" model than M: in addition to the interpretations provided 
by M, it will provide an interpretation for a as well. (This was indeed the case in the a-variants of our 
examples above.) On the other hand, if M already did assign an interpretation to a, then an a-variant 
of M will simply represent a new way of interpreting a, keeping everything else exactly as in M. In this 
case it is not assumed that the new interpretation of a is diflerent from its interpretation in M: the 
interpretation may be the same, in which case the a-variant coincides with M itself. In other words, 
whenever a model assigns an interpretation to a name letter a, it counts as an a-variant of itself. 

Using the notion of an a-variant, the truth conditions for quantified sentences are now defined as 
follows: 

(4) A universal quantification VP4 is true in a model M if the wff is true in every a-variant of M, 
where a is the first name letter in the alphabetic order not occurring in 4 and is the result of 
replacing all occurrences of P in + by a ;  if +ah is false in some a-variant of M, then VP4 is false 
in M. 

( 5 )  An existential quantification 3P+ is true in M if the wff +ah is true in some a-variant of M, where 
a and +uh are as in (4); if +Vp is false in every a-variant of M, then 3P4 is false in M. 

(In Problem 6.13, the wff + is '(-Px & Mx)', the name letter a is 'a', the variable f3 is 'x', and the 
formula +ah is '(-Pa & Ma)'.) 

We assume the alphabetic order to be defined in such a way that the first name letter after 't' is 'a,', 
the next one 'a,', and so on. Since wffs are finite sequences of symbols, we are assured that there is 
always a first name letter available. The requirement that a be alphabetically the first name letter not 
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Our next examples show that conditions (4) and ( 5 )  can be applied more than once to evaluate wffs 
which involve nested quantifiers. 

SOLVED PROBLEMS 

6.20 Evaluate the following wff in the model M given below: 

Vx(Ex --* Vy Gxy) 

Universe: the class of all positive integers 

E : the class of even integers 

G : the relation greater than 

Solution 

This wff is true in M iff the conditional 'Ea -4 VyGay' is true in every model that counts as 
an a-variant of M. Let M' be such a model. If 'a' is interpreted as an odd integer, the antecedent 
'Ea' is false in M', hence the conditional will be true regardless of the value of the consequent. 
However, suppose that M' interprets 'a' as an even integer. In this case the antecedent is true 
in M', hence the conditional will be true in M' only if the consequent, 'VyGay', is also true in 
Mr. This is a universally quantified wff, so it will be true in M'  just in case the instance 'Gab' 
(obtained by replacing 'y' with the first available name letter, 'b') is true in every b-variant of 
Mr .  But clearly this is not the case: any b-variant of M' in which 'b' is interpreted as an integer 
greater than the one designated by 'a' will make 'Gab' false. Thus, if 'a' is interpreted by M' as 
an even integer, the conditional 'Ea + VyGay' comes out false in Mr.  Since M'  is an  a-variant 
of M, it follows that the wff 'Vx(Ex -+ VyGxy)' is false in M. 

6.21 Evaluate the following wff in the model M of Problem 6.20: 

Solution 

This wff is true in M just in case the wff 'VyGay' is true in some a-variant of M. Suppose 
there is such an a-variant of M, say Mr .  If 'VyGay' is true in M', then the wff 'Gab' must be true 
in every b-variant of Mr.  But this is impossible, since no matter what number is designated by 
'a', we can consider infinitely many b-variants in which 'b' is interpreted as a greater number 
than 'a'. Thus the assumption that there is some a-variant of M in which 'VyGay' is true leads 
to a contradiction. Hence we conclude that '3xVyGxy' is false in M. (Intuitively: it is false that 
some integer is greater than all the integers.) 

6.22 Evaluate the following wff in the model M of Problem 6.20: 

Solution 
This wff is true in M just in case the wff '3xGxa' is true in every a-variant of M. Let M' be 

any such a-variant. '3xGxa' is true in M' if the wff 'Gba' is true in some b-variant of Mr .  This 
is obviously the case, for no matter what number is designated by 'a', we can always consider a 
b-variant in which 'b' is interpreted as a greater number than 'a'. Since we have made no specific 
assumptions on M', this means that '3xGxa' is true in every a-variant of M. Hence 'Vy3xGxy' 
is true in M. (Intuitively: it is true that, given any integer y, there exists an integer x that is 
greater than y.) 

These last two examples should be compared with comment 4 toward the end of Section 6.2: they 
show that wffs in which mixed consecutive quantifiers are listed in a different order have different truth 
conditions. 
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6.5 REFUTATION TREES 

The semantic rules of the previous section, together with the semantic rules for the truth-functional 
operators of Chapter 3, enable us to provide a rigorous characterization of the concept of deductive 
validity for predicate logic. Recall that an argument form is valid if and only if there is no possible 
situation in which its premises are true while its conclusion is false. A possible situation (in the relevant 
sense) is now characterized as a model in which all the nonlogical symbols occurring in the argument 
receive an interpretation. Thus, an argument form of predicate logic is valid if and only if there is no 
such model in which its premises are assigned the value true while its conclusion is assigned the value 
false. For example, we have seen in Problems 6.21 and 6.22 that there is a model in which the wff 
'Vy3xGxy' is true while the wff '3xVyGxy7 is false. This means that any argument of the form 

is invalid. By contrast, the argument in the opposite direction is valid. 

SOLVED PROBLEM 

6.23 Show the validity of the argument form: 

Solution 

If M is any model in which the premise is true, then the universe of M contains some one 
object-call it 'The One'-which bears the relation designated by 'G' to every other object in 
the universe. (The reader should verify this by a careful application of the semantic rules.) But 
if this is the case, then every object in the universe is such that there is at least one object 
(namely The One) which bears that relation to it, and therefore the conclusion is also true in the 
model. 

This characterization of validity is quite general and can be applied to every argument form that 
can be expressed in the language of predicate logic. However, our examples also show that the work 
needed to test an argument for validity in this way may be long and burdensome and may call for a lot 
of ingenuity. As with propositional logic, the characterization of validity in terms of truth-value 
assignments is significant from a theoretical viewpoint, but not very efficient when it comes to its 
practical application. 

In fact, predicate logic is worse than propositional logic in this regard. The method of truth tables 
is certainly inefficient for problems involving numerous sentence letters. Nevertheless it is a reliable, 
algorithmic method: given any argument form of propositional logic (with finitely many premises), its 
table will contain finitely many rows, so they can in principle be checked in a finite period of time. (We 
could program a computer to do the checking for us.) By contrast, our characterization of the 
procedure for testing the validity of an argument form of predicate logic gives no hint of any finite 
bound on the number of models that must be checked. In particular, there is no limit to the size of a 
model's universe, hence no limit to the number of variants to be considered in the course of evaluating 
a quantified wff. And relative to any class of objects, there is no limit to the way a predicate can be 
interpreted: any different subclass counts as a different interpretation, to which there corresponds a 
different model. Indeed, it is a fact that in predicate logic, unlike propositional logic or the logic of 
categorical statements, there is not and cannot in principle be any algorithmic procedure which reliably 
detects invalidity in every case. Predicate logic is in this sense undecidable. (The undecidability of 
predicate logic can be proved by metalogical reasoning, under a well-confirmed assumption known as 
Church's thesis.') 

'An elegant version of the proof is given in Richard Jeffrey, Formal Logic: Its Scope and Limits, 2d edn, New York, McGraw-Hill, 
1981, Chap. 6. 
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There are, however, rule-governed procedures for testing validity which yield an answer after 
finitely many operations for many, though not all, predicate logic argument forms. One such procedure 
is a generalization of the refutation tree technique of Chapter 3, and the rest of this section will be 
devoted to its outline. Like the technique of Chapter 3, this new technique enables us to discover the 
validity of a valid argument in a finite number of steps (though the number of steps may be very large, 
and we may not be able to tell in advance whether or not we are going to get an answer). But unlike 
the technique of Chapter 3, it sometimes fails to reveal the invalidity of invalid forms. 

Our generalized tree technique incorporates the refutation tree rules of propositional logic, but has 
in addition four new rules to deal with sentences containing quantifiers. For some predicate logic trees, 
just the rules of propositional logic suffice. 

SOLVED PROBLEM 

6.24 Use the refutation tree rules for propositional logic to determine whether the 
following argument form is valid: 

Solution 

All paths close, so the form is valid. Only propositional logic rules are needed, because the 
form is a substitution instance of modus tollens (MT), which is valid by propositional logic. 

Since the language of predicate logic has two logical symbols not included in the language of 
propositional logic (namely, 'V' and '3') and we need two rules for each (to deal with negated and 
unnegated sentences in which they occur), there are four new rules for refutation trees in predicate 
logic. The first is the universal quantification rule. 

Universal Quantification (V): If a wff of the form VP+ appears on an open path, then if a is 
a name letter that occurs in some wff on that path, write +Uh (the result of replacing all 
occurrences of p in + by a )  at the bottom of the path. If (and only if) no wff containing a name 
letter appears on the path, then choose some name letter a and write +ol/p at the bottom of the 
path. In either case, do not check VP+. 

The intuitive rationale for this rule is this. In a refutation tree, each step consists in the breaking 
down of a wff into simpler wff(s), all of which must be true if the former is assumed to be true. If the 
wff in question is a universally quantified formula VPb>, any wff that can be obtained from b> by 
replacing each occurrence of the variable P by a name c;u would have to be true: for if 4 is true of 
everything, then it must be true of the object denoted by a, whatever that might be. In principle there 
is no limit to the number of names that one may consider in this regard. However, in a refutation tree 
we are interested in seeing whether every path will eventually close. Accordingly, we may confine 
ourselves to those names that already appear on some open path, for only a wff involving such a name 
may be inconsistent with some other wff in the tree, forcing t:he path to close. This explains the first part 
of the rule (which applies in most cases). The second part applies in those cases when no name yet 
occurs in any open path: in such cases we have to introduce some name to start the process, so we 
choose some name a (any name will do) and write +*ha 
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This rule is a formal expression of the fact that whatever is true of everything must be true of any 
particular individual. It is used, for example, in proving the validity of: 

All frogs are green 

Everything is a frog 
:. Alf is green 

Using 'F'  for 'is a frog', 'G' for 'is green', and 'a' for 'Alf', we may formalize this argument as 

Vx(Fx -+ Gx),  VxFx t- Ga 

SOLVED PROBLEM 

6.25 Show the validity of this argument form. 

Solution 

1 V x  ( Fx -+ Gx ) 
2 V x  Fx 
3 - Ga 
4 J Fa -+ Ga I Q 

Since the name letter 'a' occurs in '-Ga' (line 3)' this is the letter we use in obtaining lines 
4 and 5 by the rule for universal quantification. The tree then closes after an application of the 
conditional rule at 6. Hence the form is valid. (With respect to the rule, here + is '(Fx-+ Gx)' ,  
the name letter a is 'a ' ,  the variable P is ' x ' ,  and the formula +ah is ' (Fa -+ Ga)' from which we 
drop the outer brackets according to our convention.) 

Note that the rule does not require that we check VP<P, since no matter how many wffs we infer 
from it by V, we still have not exhausted all its implications. But, though universally quantified wffs are 
never checked, their trees may close (in which case we know the inference being tested is valid) or may 
reach a point at which the tree is not closed but no more rules apply (in which case we know that the 
inference is invalid). 

SOLVED PROBLEM 

6.26 Construct a refutation tree to decide whether the following form is valid: 

Fa -+ Gb, Vx-Fx t- -Gb 

Solution 

1 J Fa -+ Gb 
2 Vx-  Fx 
3 J --Gb 
4 Gb 3 -- 
5 -Fa 2 V 

Applying nonbranching rules first, we check line 3 and obtain 'Gb' at 4 by double negation 
and derive '-Fa' and '-Fb' from line 2 by separate steps of the rule for universal quantification 
at 5 and 6. Notice that line 2 remains unchecked. At this point V can be applied no more, since 
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we have used it with both of the name letters that occur in wffs on the path and tl can be used 
to introduce a new name letter only if no name letters appear in wffs on the path. Hence all that 
remains is to apply the conditional rule at line 7. This fails to close the tree, and so the form is 
invalid. 

Unlike refutation trees for propositional logic, refutation trees for predicate logic do not generate 
a complete list, in any sense, of counterexamples for an invalid argument. Each open path of a finished 
refutation tree for predicate logic can be interpreted as a model universe containing just the objects 
mentioned by name on the path. The atomic wffs or negations of atomic wffs on the path indicate what 
is true of these objects in this model. 

In Problem 6.26, the two open paths (the one that branches to the right as well as the one that 
branches to the left) both represent a universe containing just two objects, a and b. In this model 
universe, b has the property G and both a and b are not F. (The paths do not specify whether or not 
a is G; this happens to be irrelevant to the case.) Now 'Fa' is false in this model; hence the premise 
'Fa + Ga' is true, since a material conditional is true if its antecedent is false. Moreover, since the only 
objects in this universe are a and b and neither is F, the premise 'Qx-Fx' is true. But the conclusion 
'-Gb' is false. This model therefore shows that there. is al: least one instance of this form whose 
conclusion can be false while its premises are true. Hence it shows that the form is invalid. 

SOLVED PROBLEM 

6.27 Construct a refutation tree to decide whether the following form is valid: 

Vx(Fx - Gx), VxGx k Fa 

Solution 

1 Vx( Fx - Gx) 
2 vx Gx 
3 -Fa 
4 J F a - + G a  I V 

The form is invalid. We apply the rule for universal quantification at 4 and 5 and the 
conditional rule at 6 as in Problem 6.25, but the tree does not close. No further rules are 
applicable, even though lines 1 and 2 remain unchecked, since we have applied tl to both 1 and 
2 for every name letter occurring in a wff on the path ('a' is the only name letter occurring in 
a wff on the path). 

In this problem, both open paths represent a model universe containing only one object, a, which 
has the property of being G but not F. In this model, the premises 'Vx(Fx -. Gx)' and 'QxGx' are true, 
but the conclusion 'Fa' is false; hence the form is invalid. It is obvious that 'QxGx' is true in the model, 
since the model contains only one object, a,  and a is G. It is also obvious that 'Fa' is false. And the truth 
of 'Vx(Fx + Gx)' follows from the fact that the class designated by 'F' is empty (see Problems 6.18 and 
6.19). 

The next two quantifier rules are rules for negated wffs. The first expresses the equivalence 
between a negated existential quantification and universally quantified negation. For instance, we have 
seen in Problem 6.2(d) that the sentence 'Nothing is a frog' can be formalized as '-3xFx' or, 
equivalently, as 'Qx'x-Fx'. The second rule expresses the matching equivalence between a negated 
universal quantification and an existentially quantified negation. Both equivalences can be verified 
semantically, but we shall leave the verification as an exercise for the reader. 
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Negated Existential Quantification (-3): If an unchecked wff of the form -3P4 appears on 
an open path, check it and write VP-+ at the bottom of every open path that contains the 
newly checked wff. 

Negated - Universal Quantification (-V): If an unchecked wff of the form -VP4 appears on 
an open path, check it and write 3P-+ at the bottom of every open path that contains the 
newly checked wff. 

SOLVED PROBLEMS 

6.28 Construct a refutation tree to decide whether the following form is valid: 
Vx(Fx - G x ) ,  - 3 x G x  I- -Fa 

Solution 

1 Vx(Fx --+ G x )  
2 J  - 3 x G x  
3 --Fa 
4 J V x - G x  2  - 3  
5 - G a  4 V 
6 J  7- Ga 
7 -Fa 6 -  --I" Ga 6 -  
8 X  3, 7 - X 5 ,  7 - 

The form is valid. Notice that there is no need to apply the negated negation rule at line 3, 
since the tree closes anyway (compare Problem 3.28). 

6.29 Construct a refutation tree to decide whether the following form is valid: 
- 3x(Fx & G x )  t- -Fa 

Solution 

1 J  - 3x(Fx & G x )  
2 4  --Fa 
3 Vx-(Fx  & G x )  1 -3 
4 Fa 2 -- 
5 J  -(Fa & G a )  3  V  

/ 1 
6  -Fa 5 -& - G a  5 -& 
7 X 4, 6 ,  - 

The open path shows that in a universe consisting of one object, a ,  which is F but not G, the 
premise is true and the conclusion false. Hence the form is invalid. Note that no further rules 
can be applied to the unchecked wffs of the open path, so that the tree is complete. 

6.30 Construct a refutation tree to decide whether the following form is valid: 
V x F x -  V x G x ,  - 3 x G x  I- 3x-Fx 

Solution 

J VxFx -- V x  G x  
J - 3 x G x  

-3x-Fx 

The form is valid. 
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The fourth and last quantifier rule allows us to simplify a wff by dropping an initial existential 
quantifier: 

Existential Quantification (3): If an unchecked wff of the form 3P4) appears on an open path, 
check it. Then choose a name letter a that does not yet appear anywhere on that path and write 
+Uh (the result of replacing every occurrence of P in cb by a) at thc bottom of every open path 
that contains the newly checked wff. 

The intuitive rationale for this rule is that if an existentially quantified wff '3x4' is true, then there 
must exist an object of which 4 is true. We may not know what that object is, but we can give it a name. 
And since we do not want to make any specific assumptions about the object, we choose a name letter 
that does not yet appear on the path on which 'iIxb>' appears. 

SOLVED PROBLEMS 

6.31 Construct a refutation tree to decide whether the following form is valid: 

3x(Fx & Gx) t 3xFx & 3xGx 

Solution 

J 3x(Fx & Gx) 
J -(3xFx & 3xGx) 
J Fa & Ga 1 3  

Fa 3 &  

This form is valid. Intuitively, at line 3 we suppose that a is one of the objects that satisfy 
the property of being .F and G, whose existence is guaranteed by premise 1. In fact, a may not 
be such an object, but since we make no specific assumption about a, we may as well think of 
it as a representative of such objects. This is enough to show that the argument is valid. The 
reader may verify that the tree would equally close if we used a different name in place of 'a' 
at line 3. (With respect to the rule, here 4 is '(Fx & Cx)', the name letter ar is 'a', the variable 
(3 is 'x', and the formula <bUh is '(Fa & Ga)', from which we drop the outer brackets.) 

6.32 Construct a refutation tree to decide whether the following form is valid: 

3x Fx t VxI7x 

Solution 

We introduce the new name letter 'a' by 3 at step 3, replace '-VxFx' by its existential 
equivalent at step 4, and introduce yet another name letter, 'b', with the second application of 
3 at 5. (The existential quantifier rule requires that this second name letter be different from the 
first.) No further rules apply. The tree is complete yet contains an open path; therefore the form 
is invalid. The tree represents a universe containing two objects, a and b, such that a is F and b 
is not F. In such a universe, '3xFx' is true but 'Vxfi' is not. 
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6.33 Construct a refutation tree to decide whether the following form is valid: 

3xFx,  3 x G x  t- 3x(Fx & G x )  

Solution 

1 J  3xFx 
2 J  3 x G x  
3 J  - 3 x ( F x & G x )  
4 Fa 1 3  
5  Gb 2 3 
6 Vx-(Fx  & G x )  3 -3  
7 J  - ( F a & G a )  6 V  

The form is invalid. The open path represents a universe containing two objects, a and b, 
such that a is F but not G and b is G but not F. Notice that in applying the rule for existential 
quantification we introduce the new name letter 'a' at line 4 and another new name letter, 'b',  
in the second application at line 5. Notice too that the tree is complete, since no further rules 
apply to the open path. 

The refutation tree test for validity of a form without premises in predicate logic is the same as for 
propositional logic: Negate the conclusion and then apply the rules to construct a tree. The form is valid 
if and only if all paths of the finished tree are closed. 

SOLVED PROBLEMS 

6.34 Construct a refutation tree to decide whether the following form is valid. 

I- VxFx -- Fa 

Solution 

1 J - (Vx Fx - Fa) 
2 V x  Fx 1 -- 
3 -Fa 1 -- 
4 Fa 2 V  
5  X 3 , 4  - 

The form is valid. 

6.35 Construct a refutation tree to decide whether the following form is valid: 

t - (3xFx  & V x -  Fx) 

Solution 

1 J  - - (3xFx  & V x  -Fx) 
2 J  3xFx & Vx-Fx 1 - 
3 J  3xFx 2 &  
4 V x -  Fx 2 &  
5 Fa 3 3 
6  -Fa 4 V  
7 X 5 . 6 -  

The form is valid. 
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The quantifier rules work the same way for wffs containing multiple quantifiers as they do for wffs 
containing single quantifiers. 

SOLVED PROBLEMS 

6.36 Construct a refutation tree to decide whether the following form is valid: 

Solution 

VxVy (Fxy -. - Fyx) 
J - - 3xFxx 
J 3xFxx 2-- 

Faa 3  3 
V y  (Fay -+ - Fya) 1 V 

,/ Faa - Faa 5V 

The form is valid. Notice that we apply the existential rule at line 3  before applying the 
universal rule at lines 5 and 6. Doing this as a general policy minimizes the length of trees. 

6.37 Construct a refutation tree to decide whether the following form is valid: 

3xvy Lxy I- v x  3 y  Lyx 

Solution 

3xVyLxy 
-vx3y Lyx 
VY Lay 1 3  
3x- 3 y  Lyx 2 -v 
- 3 y  Lyb 4 3  
V y  - Lyb 5 -3 
-Lab 6V 
Lab 3 V 
X 7,8-  

The tree's only path closes, and so the form is valid. (Compare Problem 6.23.) 

6.38 Construct a refutation tree to decide whether the following form is valid: 

3x3yLxy t 3xLxx 

Solution 

1 J 3 x 3 ~  LXY 
2 J  - 3x LXX 

3 J  3yLay 1 3  
4 Lab 3  3 
5 vx -  Lxx 2  -3 
6 - Laa 5 V 
7 - Lbb 6V  

The existential quantifier rule is used twice (steps 3  and 4), and at each use a new name 
letter is introduced. At line 6 no further rules apply, but the path remains open; the form is 
therefore invalid. 



PREDICATE LOGIC [CHAP. 6 

necessarily denote different objects. Thus, reading 'L' as "likes," this formula is true if 
even a single person likes him- or herself. Hence, to assert that at least two different 

' objects exist, we need the qualification '-x = y . 
VxVy x = y. This says, "For any objects x and y, x is identical to y," i.e., "All objects are 
identical," which is just to say that the universe contains at most one thing. 

3xVy y = x. This literally says, "There exists an object to which all objects are identical." 

3x3y(-x = y & Vz(z = x v z = y)). The clause '-x = y' asserts that x and y are two 
different things. The clause 'Vz(z = x V z = y)' says that for any object z, z is identical 
either to x or to y, i.e., that there are no objects other than x and y. 

3x(Wxh & Vy(Wyh -+ y = x)). 

3x3y((Wxh & Wyh) & -x = y). 

VxVyVz(((Wxh & Wyh) & Wzh) - ((x = y V x = z) V y = z)). 

3x3y(((Wxh & Wyh) & -x = y) & Vz( Wzh - (z = x V z = y))). 

Semantically, '=' is interpreted in every model as the identity relation. Thus, every object in the 
domain bears that relation to itself and to nothing else. The refutation tree technique can be extended 
to deal with this intended interpretation accordingly. This requires two new rules: 

Identity (=): If a wff of the form a = p appears on an open path, then if another wff <b 
containing either a or p appears unchecked on that path, write at the bottom of the path any 
wff not already on the path which is the result of replacing one or more occurrences of either 
of these name letters by the other in <b. Do not check either a = P or +. 
Negated Identity (--=): Close any open path on which a wff of the form -a = a occurs. 

The idea that every object is self-identical is expressed by the negated identity rule. The identity 
rule expresses the idea that if an identity holds between the objects designated by two names a and P, 
then those names are interchangeable in every wff <b. In other words, every statement that involves a 
is equivalent to a statement where P is used in place of a (one or more times), and vice versa. 

SOLVED PROBLEMS 

6.41 Construct a refutation tree to decide whether the following form is valid: 

a = b k Fab-+ Fba 

Solution 

1 a = b  
2 -(Fab - Fba) 
3 4  - (Faa - Faa) 1 '2 = 
4 Faa 3 -- 
5 - Faa 3 -4 

6 X 4'5 - 
At step 3 we replace both occurrences of 'b' in '-(Fab -. Fba)' by 'a' ,  using the identity 

rule. The tree closes at line 5; hence the form is valid. 

6.42 Construct a refutation tree to decide whether the following form is valid: 

Fa,Fb ka = b 

Solution 
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No rules apply here. In particular, neither identity rule operates on formulas of the form 
-a = p where a and p are distinct. The tree is therefore finished and the form is invalid. The 
open path represents a universe containing two distinct objects, both of which are F. 

6.43 Construct a refutation tree to decide whether the following form is valid: 

Solution 

We apply the identity rule with line 4 to each formula to which it can be applied, but still 
the tree does not close. The form is therefore invalid. The tree shows us that the premises may 
be true and the conclusion false in a universe in which there are objects a, b, and c such that a 
and c are identical but distinct from b.7 

6.44 Construct a refutation tree to decide whether the following form is valid: 

Solution 

The form is valid. At line 8 we replace the occurrence of 'b' in '-b = a' by 'a' to obtain 
'-a = a', which closes the tree by the negated identity rule. This form is known as the law of 
symmetry of identity. 

6.45 Construct a refutation tree to decide whether the following form is valid: 

Solution 

'Some authors allow the identity rule to be applied to an identity and itself, so that line 4 generates three more formulas, 'a = a', 
' c  = c', and 'c = a'. IJnder this looser identity rule, the tree above would not be finished until these three formulas were added. 
But the extra formulas generated by this looser version of the rule are never needed to close a tree. Our statement of the rule 
stipulates that d, is a formula distinct from a = P, which prevents the production of these superfluous formulas. 
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The form is valid. It is known as the law o f  transitivity o f  identity. 

Table 6-1 summarizes the six refutation tree rules for predicate logic with identity. 

Table 6-1 Refutation Tree Rules for Predicate Logic with Identity* 

Universal Quantification (V): If a wff of the form VP+ appears on an open path, then if a is a 
name letter that occurs in some wff on that path, write +Uh (the result of replacing all 
occurrences of p in + by a) at the bottom of the path. If no wff containing a name letter 
appears on the path, then choose some name letter a and write +-h at the bottom of the 
path. In either case, do not check VP+. 

Negated Existential Quantification (-3): If an unchecked wff of the form -3P+ appears on 
an open path, check it and write VP-+ at the bottom of every open path that contains the 
newly checked wff. 

Negated Universal Quantification (-V): If an unchecked wff of the form -VP+ appears on an 
open path, check it and write 3P-+ at the bottom of every open path that contains the 
newly checked wff. 

Existential Quantifier (3): If an unchecked wff of the form 3P+ appears on an open path, 
check it. Then choose a name letter a that does not yet appear anywhere on that path and 
write +-/p (the result of replacing every occurrence of P in + by a )  at the bottom of every 
open path that contains the newly checked wff. 

Identity (=): If a wff of the form a = P appears on an open path, then if another wff + 
containing either a or p appears unchecked on that path, write at the bottom of the path 
any wff not already on the path which is the result of replacing one or more occurrences of 
either of these name letters by the other in 4. Do not check either a = P or +. 

Negated Identity (-=): Close any open path on which a wff of the form -a = a occurs. 

'Only rules specific to predicate logic are listed here. For a listing of propositional logic rules, see Table 3-1. 

Supplementary Problems 

I Formalize the following English sentences, using the interpretation given below. (The last five require the 
identity predicate.) 

Symbol  

Names 
a 
b 
f 
m 

Interpretation 

A1 
Beth 
fame 
money 
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One-Place Predicates 
1; is famous 
(; is greedy 
1 I is a human being 

Two-Place Predicate 
I ,  likes 

Three-Place Predicate 
t' prefers . . . to  

( 1 )  Both A1 and Beth like money. 

( 2 )  Neither A1 nor Beth is famous. 

(3) Al likes both fame and money. 

(4) Beth prefers fame to  money. 

( 5 )  A1 prefers Beth to  money and to  fame. 

(6) Beth prefers something t o  Al. 

( 7 )  A1 prefers nothing to  Beth. 

Some humans are both greedy and famous. 

Anything which is greedy likes money. 

Not everything which likes money is greedy. 

If A1 and Beth are  greedy, then a greedy human being exists. 

Beth likes every human being. 

Something does not like itself. 

Something does not like something. 

Nothing likes everything. 

N o  human being likes everything. 

A1 likes every human being who likes him. 

( 1 8 )  Some of the famous like themselves. 

(19 )  The  famous d o  not all like themselves. 

(20 )  Not everyone likes everything that is famous. 

(21 )  If A1 is greedy and Beth is not, then A1 and Beth are not identical. 

(22 )  Beth likes everything except Al. 

(23 )  Al  is the only human being who is not greedy. 

( 2 4 )  A1 prefers money to  everything else. 

(25 )  Any human being who prefers money to  everything else is greedy. 

I1 Determine which of the following formulas are  wffs and which a re  not. Explain your answer. 

(Fa) 
Fab 

Fab -+ G a  

- Fxy 

Qx -, Fxy 

3 x 3 ~ - F x y  

( 3 x 3 ~ -  Fxy) 

QxEx --. Lax 

Qx(l;x -+ a = x )  

Vxb'y( Fx - - y  = x )  
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I11 Evaluate the following wffs in the model given below: 

Universe: the states of the U.S. 

c : California 
n : Nevada 
u : Utah 
E : the class of states on the East Coast 
A : the relation that holds between two adjacent states. 
C : the relation that holds between three states x, y,  and z just in case the capital of x is closer to the 

capital of y than to the capital of z .  

Ec 

-A cn 

En -+ Anc 

Cucn 4 Eu 

Cucn - Ccun 

3x-Ex 

3x(Ex & Axx) 

3x(Ex -. Axx) 

Vx-(Ex -+ Axx) 

3xVyAxy 

Vx3yAxy 

Vx3y3zCxyz 

3xVy(Axy - - Ey) 

3x3y((Ex & Ey) & Axy) 

Vx(-  Ex -+ 3y(Ey & Axy))  

Vx(Ex -- 3y(Ey & -Axy)) 

3x(Ex & Vy(Ey --. Axy))  

VxVy (Axy * Ayx) 

VxVyVz((Axy & A y z )  + Axz)  

3x(Ex & 3y3z((Ey & Ez) & (Axy & Axz) ) )  

IV Determine which of the following argument forms is valid by examining whether there exists a model in 
which the premises are true and the conclusion false. 

Fa I- Fa 

3xFx I- VxFx 

VxFx I- 3x Fx 

Fa t 3xFx 

3xFx I- Fa 

Vx-Fx t- -3xFx 

3x-Fx I- -VxFx 

-3xFx t Vx-Fx 

-VxFx I- 3x-Fx 

3x3y(Mx & Ny) t 3x(Mx & 3yNy) 

V Construct a refutation tree for each of the following forms to decide whether it is valid. 

(1)  3xFx I- Fa 

(2 )  VxFx I- Fa 
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Fa t- 3xFx 

Fa t- VxFx 

VxFx t -3x-Fx 

-3x-Fx t VxFx 

Vx-Fx t -VxFx 

-VxFx t Vx-Fx 

VxFx v VxGx I- Vx(Fx V Gx) 

Vx( Fx v Gx) k Vx Fx V Vx Gx 

t Vx(Fx v - Fx) 

I- Vx-(Fx -+ -Fx) 

t- 3xFx - -Vx-Fx 

3x( Fx & - Fx) t P 

3xFx& 3x -Fx t P 

-3xFx t Vx(Fx4 P) 

VxVy (Lxy Lyx), 3xLax t 3x Lxa 

3x3yLxy t 3xLxx 

Vx( Fx -- V y  Gy ) I- Vx  Gx 

Vx(Fx -+ 3yGy) t Ga 

t- - vxvy  -x = y 
I- V.'.rVy(-x = y - -y = x )  

Vx(Fx -+ Gx),  -Fa t 3x -x = a 

3x3yLxy I- 3x3y(Lxy & -x = y )  

t VxVy ((Fxy & x = y )  - Fyx) 

VI Formalize each of the following arguments, using the interpretation given below. Then construct a 
refutation tree to determine whether the form of the argument is valid or invalid. 

Symbol Interpretation 

Names 
P 
r 
1 

propositional logic 
predicate logic 
predicate logic with identity 

One-Place Predicates 
R is a set of rules 
S is a formal system 

Two-Place Predicates 
F is a formula of 
P is a part of 
W is a wff of 

Propositional logic is a part of predicate logic. Therefore, predicate logic is not a part of 
propositional logic. 

Propositional logic is a part of itself. Therefore, something is a part of propositional logic. 

Propositional logic is a part of predicate logic, but predicate logic is not a part of propositional logic. 
Consequently, predicate logic is not a part of itself. 

Everything is a part of itself. Therefore, propositional logic is a part of predicate logic. 

Every formal system is a set of rules. Therefore, every set of rules is a formal system. 

Since every formal system is a set of rules, anything which is not a set of rules is not a formal system. 
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It is not true that formal systems do not exist, for predicate logic is a formal system. 

Predicate logic is not a formal system. Therefore, formal systems do not exist. 

Every formal system is a part of itself. Therefore, something is a part of itself. 

Formulas of predicate logic exist. Therefore, wffs of predicate logic exist, since all wffs of predicate 
logic are formulas of predicate logic. 

Predicate logic is a formal system. Therefore, all formal systems are formal systems. 

Not every formula of predicate logic is a wff of predicate logic. Therefore, some formulas of 
predicate logic are not wffs of predicate logic. 

Every wff of a formal system is a formula of that system. Therefore, there exists a formal system not 
all of whose wffs are formulas of that system. 

If one formal system is part of a second formal system, then every wff of the first is a wff of the 
second. Predicate logic is a part of predicate logic with identity, and both are formal systems. 
Therefore, every wff of predicate logic is also a wff of predicate logic with identity. 

If one thing is a part of another and that second thing is part of a third, then the first is a part of the 
third. Predicate logic is a part o f  predicate logic with identity. Therefore, if propositional logic is part 
of predicate logic, then propositional logic is a part of predicate logic with identity. 

Everything is a part of itself. Therefore, i f  one thing is not a part of another, the two are not identical. 

Propositional logic is a part of predicate logic. Predicate logic is not a part of propositional logic. 
Therefore, predicate logic is not identical to propositional logic. 

For any objects x and y, if x is a part of y and y is a part of x, then x is identical to y. Predicate logic 
is not identical to propositional logic. Therefore, predicate logic is not a part of propositional 
logic. 

Everything is a part of itself. Therefore, if predicate logic is identical to propositional logic, then 
predicate logic is a part of propositional logic and propositional logic is a part of predicate logic. 

Predicate logic and propositional logic are formal systems. Propositional logic is a part of predicate 
logic, but predicate logic is not a part of propositional logic. Therefore, there are at least two 
different formal systems. 

Answers to Selected Supplementary Problems 

I (5) Pabm&Pabf 

(1 0) -Vx(Lxm --* Gx) 

(15) -3xVyLxy, or, equivalently, Vx-VyLxy 

(20) -Vx(Hx * Vy (Fy -+ Lxy)) 

(25) Vx((Hx & Vy(-y = m -+ Pxmy)) - Gx) 

I1 (5) Not a wff. The variable 'y' occurs without a quantifier. 

(10) 'Fa' is a wff, by rule 1; and since 'h = a' is a wff by the rule for identity, '-6 = a' is a wff, by rule 2. 
Hence '(Fa* -b = a)' is a wff, by rule 3, whence two applications of rule 4 it follows that 
'VxVy(Fx - -y = x)' is a wff. 

I11 (5) True 

(10) False 

(15) False 

(20) True 

IV (5) This argument is invalid. Any model in which 'I;' designates a nonempty class whose members do  
not include the interpretation of 'a' makes the premise '3xFx' true and the conclusion 'Fa' false. 
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If M is a model in which the premise is true, then there exists at least one a-variant M' of M in which 
'3y(Ma & Ny)' is true (by condition (5)). Hence there exists at least one b-variant M" of M' in which 
'Ma & Nb' is true (by another application of condition (5)). Since 'Ma & Nb' is true in Mu, so are 'Ma' 
and 'Na'. This means that 'Ma' is true in M' too, since M' agrees with M" on everything except possibly 
for the interpretation of 'b'. Moreover, '3yNy' must be true in M' by condition (5). Thus 'Ma & 3yNy' 
is true in M'. And since M' is an a-variant of M, this implies that '3x(Mx & 3yNy)' is true in M 
(condition (5)). Because M was arbitrarily chosen, we may now conclude that every model that makes 
'3y(Ma & Ny)' true also makes '3x(Mx & 3yNy)' true. The argument is therefore valid. 

1 Vx Fx 
2 4  --3x-Fx 
3 J 3x-Fx 2 -- 
4 -Fa 3 3 
5 Fa I V 
6 X 4,5 - 

The form is valid. 

Vx (Fx v Gx) 
J - (Vx Fx v Vx Gx) 
J -VxFx 2 -V 
J -VXGX 2 -V 
J 3x-Fx 3 -V 
4 3x-Gx 4 -V 

-Fa 5 3 
-Gb 6 3 

J Fa // Ga 1 V 

The form is invalid. 

The form is invalid. 
1 Vx(Fx - 3yGy) 
2 - Ga 
3 

>Fa - 3yY 1 V 

4 -Fa 3- J ~ Y G Y  3- 
5 Gb 4 3 
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The tree is infinite; because line 1 is never checked, the formula ' 3 y G y '  appears over and over again 
(lines 4, 7, 10, etc.), and in each of its new appearances it generates a new name letter. We can 
nevertheless see that the form is invalid, since all paths except the leftmost one eventually end 
without closing, and any tree with even one complete open path represents an invalid form. 

-VxVy ( ( F x y  & x = y ) - Fyx)  
3x -Vy ( (Fxy  & x = y )  -- Fyx)  
-Vy((Fay & a = y )  - Fya) 
3y- ( (Fay  & a = y )  - Fya) 
-((Fab & a = b )  -. Fba) 
F a b & a  = b 
- Fba 
Fa b 
a = b  
Fb b 
Fba 
X 

The form is valid. 

VI ( 5 )  1 V x ( S x  - Rx) 
2 J - V x ( R x  - S x )  
3 J 3x- ( R x  - S x )  2 -V 
4 J - (Ra  - S a )  3 3 
5 R a  4 -- 
6 -Sa 4 -- 

The form is invalid. 

J 3xFxr  
V x ( W x r  - Fxr) 

J - 3 x W x r  
Fa r 1 3  
V x -  W x r  3 -3 
-War 5 V 
- W r r  5 V 

J War--Far 2 V  
9 

10 Y- FrKv iwaY.- 
11 -Wrr 9- Frr 9- -Wrr 9- Frr 9- 

/Far< 

The form is invalid. Notice that under the given interpretation some of the paths represent universes 
involving the arcane possibility that predicate logic is a formula of itself. Although this is not a 
possibility that we would normally regard as counting against the validity of the argument, from a 
purely formal point of view it must not be ignored. The other open paths, however, exhibit more 
mundane ways in which the premises may be true and the conclusion false. 

V x V y V z ( ( P x y  & P y z )  - P x z )  
Pri 

J - (Ppr-  Ppi )  

P P ~  3 - -  
-Ppi 3 - 4  
V Y ~ ~ ( ( ~ P Y  & P Y Z )  - P P Z )  1 
V x ( ( P p r  & P r z )  -- P p z )  6 



Chapter 7 

The Predicate Calculus 

7.1 REASONING IN PREDICATE LOGIC 

In this chapter we present a system of inference rules that extends the propositional calculus of 
Chapter 4 to the full language of predicate logic with identity. The motivation for developing such as 
system-called the predicate calculus-is similar to that of Chapter 4: the characterization of validity in 
terms of truth values or refutation trees is in principle adequate, but does not capture the inferential 
process involved in a typical argument. Typically, an arguer tries to establish a conclusion by deducing 
it from the premises, not by issuing a challenge to describe a possible situation in which the premises 
are true and the conclusion false. 

Since the language of predicate logic includes the truth-functional connectives, the predicate 
calculus will include all the basic introduction and elimination rules of the propositional calculus (and 
hence all the derived rules; for summaries of both the basic and derived rules, see the end of Chapter 
4). In addition, the predicate calculus has new introduction and elimination rules for the quantifiers and 
for the identity predicate.,It can be shown that this set of rules is both valid (in the sense that the rules 
generate only argument forms that are valid in virtue of the semantics of the quantifiers, the 
truth-functional connectives, and the identity predicate) and complete (in the sense that they generate 
all valid argument forms). As with the propositional calculus, however, a rigorous proof of this fact is 
beyond the scope of this book. 

Validity and completeness are obviously very important properties, for they guarantee that the 
inferential techniques of the predicate calculus identify the same class of valid argument forms as the 
semantic techniques of Chapter 6. However, it also follows from this that the predicate calculus is 
undecidable, since the property of being a valid predicate logic argument form is undecidable. (See the 
remarks at the beginning of Section 6.5.) Thus, the inference rules of the predicate calculus do not 
always provide an answer to the question 'Is this form valid?'. If we are unable to construct a proof for 
a given form, that could mean either of two things: the form is in fact invalid, or it is valid but we are 
not skillful enough to produce a proof. 

7.2 INFERENCE RULES FOR THE UNIVERSAL QUANTIFIER 

Before introducing the quantifier rules, we first consider a proof in the predicate calculus which 
uses only rules of propositional logic. 

SOLVED PROBLEM 

7.1 Prove: 

A 
A 
H (for -+I) 
3 DN 
1 , 4  DS 
2 , 5  -E 
3-6 +I 

Solution 

1 - F a v 3 x F x  
2 3xFx- -+P 
3 
4 
5 
6 

Fa 
- -Fa 
3 x  Fx 
P  

7 F a - P  
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Notice that despite their greater internal complexity, forrr~ulas of predicate logic are treated just as 
formulas of propositional logic are by the propositional calculus rules. 

We now introduce the first of our new rules, the universal quantifier elimination rule, VE. Universal 
elimination is a formal expression of the fact that whatever is true of everything must be true of a 
particular individual, and is somewhat analogous to the universal quantification rule of the refutation 
tree technique (Section 6.5). 

Universal Elimination (VE): From a universally quantified wff Vf3+ we may infer any wff of 
the form +"h which results from replacing each . occurrence of the variable f3 in + by some name 
letter cw. 

This rule is sometimes called universal instantiation. It is used, for example, in proving the validity of: 

All men are mortal. 

Socrates is a man. 

. Socrates is mortal. 

Using 'MI' for 'is a man', 'M2' for 'is mortal', and 's' for 'Socrates', we may formalize this argument 
as: 

SOLVED PROBLEMS 

7.2 Prove the validity of this form. 

Solution 

1 V x ( M l x  -+ M2x) A 
2  Mls A 
3  M,s -+M2s  1 V E  
4  M ~ s  - 2 , 3  *E 

In the application of V E  at line 3, we derive the form of the proposition 'If Socrates is a 
man, then Socrates is mortal' from the form of 'A.11 men are mortal'. With respect to the rule V E ,  
p is ' x ' ,  ol is 's', + is ' ( M , x - +  M2x) ' ,  and 4'54 is ' ( M , s - +  M 2 s ) ' ,  from which we drop the outer 
brackets according to our convention. 

7.3 Prove: 

Vx(Fx-+ Gx) ,  VxFx k (;a 

Solution 

1 Vx(Fx-  Gx )  A 
2 VxFx A 
3 Fa -+ Ga 1 V E  
4  Fa 2 V E  
5 ( fa  3.4-E 

Since the conclusion contains the name letter 'a ' ,  this is obviously the letter to use in 
performing the two steps of V E .  

7.4 Prove: 
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The conclusion is negated, so the obvious strategy is reductio ad absurdurn. We hypothesize 
the conclusion without its negation sign at line 2 and show that this leads to a contradiction at 
line 4. That enables us to discharge the hypothesis and infer the conclusion at line 5. 

Solution 

1 -Fa A 

7.5 Prove: 

2 
3 
4 

VxVyFxy t- Faa 

Vx Fx H (for -I) 
Fa 2 VE 
Fa&-Fa 1 , 3  &I 

Solution 

1 VxVyFxy A 
2 VyFay 1 VE 
3 Faa 2 VE 

5 -VXFX 2-4 -I 

Note that two separate steps of VE are required to remove the two quantifiers. This 
derivation illustrates remark 1 near the end of Section 6.2. 

The introduction rule VI for the universal quantifier is a bit more complicated than VE. The 
fundamental idea is this: If we can prove something about an individual a without making any 
assumptions that distinguish a from any other individual, then what we have proved of a could have 
been proved of anything at all. We may therefore conclude that it holds for everything. 

Universal introduction is used in proving universally quantified conclusions. Consider, for example, 
the valid (but unsound) argument: 

All fish are guppies. 
All guppies are handsome. 

:. All fish are handsome. 

This argument is a categorical syllogism, and so we could show its validity by a Venn diagram as in 
Chapter 5. But here we will use the more powerful techniques of the predicate calculus. The argument 
may be formalized as: 

Vx(Fx - Gx), Vx(Gx - Hx) t Vx(Fx + Hx) 

SOLVED PROBLEM 

7.6 Construct a proof for this form. 

Solution 

1 Vx(Fx4Gx) A 
2 Vx(Gx-. Hx) A 
3 Fa - Ga 1 VE 
4 Ga+ Ha 2 VE 
5 Fa - Ha 3 , 4  HS 
6 Vx(Fx--, Hx) 5 VI 
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The name letter 'a', which is introduced by VE at steps 3 and 4, designates an individual about which 
we have made no assumptions ('a' does not occur in assumptions 1 and 2).' This enables the individual 
a to function in the proof as a representative of all individuals. For the purposes of the proof it does 
not matter who or what a is. All that matters is that we have made no assumptions about a, so that 
whatever we ultimately prove about a could have been proved as well about any individual. At step 5 
we prove that if a is a fish, then a is handsome. Because we have made no assumptions about a, our 
proof is perfectly general; we could replace each occurrence of the name letter 'a' in the proof with any 
other name letter without disrupting the validity of the proof down through line 5. Suppose, for 
example, that we replace 'a' with 'b'. Then at line 5 we wo~ild have proved that if b is a fish then b is 
handsome. We could prove the same thing for the individual c, the individual d-and in general for any 
individual. Thus, because we have made no special assumptions about a, lines 1 to 5 function.in effect 
as a proof that for any object x, if x is a fish, then x is handsome. That is just what VI enables us to 
conclude at line 6. 

Formally, the rule VI may be stated as follows. 

Universal Introduction (VI): From a wff + containing a name letter a not occurring in any 
assumption or in any hypothesis in effect at the line on which + occurs, we may infer any wff 
of the form t/f.3+%, where +pi/, is the result of replacing all occurrences of a in + by some 
variable P not already in 4. 

In the application of VI at line 6 of Problem 7.6, the wff + is 'Fa -+ Ha', the name letter a is 'a', the 
variable P is 'x', and the formula 4% is '(Fx + Hx)'. 

I is sometimes called universal generalization. The requirement that a not occur in any 
assumption or in any hypothesis in effect at the line on which + occurs ensures that we assume nothing 
that distinguishes the individual designated by a from any other individual. The requirement that the 
variable f.3 not occur in + ensures that Vf.3+% will be well formed (see formation rule 4). 

VI must be applied strictly as stated. In particular, the following qualifications are crucial: 

The name letter a may not appear in any assumption. The following derivation, for example, 
ignores this qualification and in consequence is invalid: 

1 Fa A 
2 VxFx 1 VI (incorrect) 

From the assumption, say, that Albert is a fish, it certainly does not follow that everything is 
a fish. 

The name letter a may not appear in any hypothesis in ejfjkt at the line on which occurs. (Recall 
that a hypothesis is in effect at a line if it is introduced 'before that line and is not yet discharged 
at that line; in other words, it is in effect if the vertical line beginning with the hypothesis extends 
down through that line.) This prevents the sort of invalidity exhibited above from occurring in the 
hypothetical parts of a proof. The following derivation is invalid because it violates this clause: 

'Some versions of the predicate calculus employ special names called "arbitrary names" for this purpose. Others use unquantified 
variables. 

1 tlx(Fx-GGX) A 
2 Fa + Ga 1 VE 
3 
4 

Fa H (for -+I) 
Ga 2 , 3  --E 

5 VxGx 4 VI (incorrect) 
6 Fa-+VxGx 3-5 -I 
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(Here 4 is 'Ga' and a is 'a'.) Clearly, from the assumption that all fish are guppies, it does not 
follow that if Albert is a fish, then everything is a guppy. The mistake is at step 5 ,  where VI is 
applied to 'Ga' even though 'a' occurs in the hypothesis 'Fa', which is still in effect. 

(3) 4% is the result of replacing all occurrences of a in @ by some variable P. The emphasis here is on  
the word 'all'. This clause prevents the following sort of mistake: 

1 QxLxx A 
2 Laa 1 VE 
3 VzLza 2 VI (incorrect) 

(Here 4 is 'Laa7, p is 'z7,  and u is 'a7.) From the assertion that everything loves itself, it does not 
follow that everything loves Albert. 4% should be 'Lzz', not 'Lzn'. Thus VI would be correctly 
used if instead of 'VzLza' we concluded 'VzLzz'. 

The following proofs illustrate correct uses of the universal quantifier rules. 

SOLVED PROBLEMS 

7.7 Prove: 

Vx(Fx & Gx)  t VxFx & VxGx 

Solution 

1 Vx(Fx& G x )  A 
2 Fa & Ga 1 V E  
3 Fa 2 &E 
4 Ga 2 &E 
5 VxFx 3 V I  
6 VxCx 4 V I  
7 VxFx&VxGx  5 , 6  &I 

To utilize the assumption 'Vx(Fx & Gx) ' ,  we instantiate it at line 2, using 'a' to designate a 
representative individual. Since we make no assumptions or hypotheses about a, the applica- 
tions of V I  at steps 5 and 6 are legitimate. 

7.8 Prove: 

Vx(Fx -+ (Gx v Hx) ) ,  Vx-Gx 1 VxFx -, VxHx 

Solution 

Vx(Fx -- (Gx V Hx) )  
Vx-Gx 
Fa + (Ga V Ha) 
- Ga 

VxFx 
Fa 
Ga v Ha 
Ha 
Vx Hx  

Vx  Fx --+ Vx  Hx  

A 
A 
1 V E  
2 V E  
H (for +I) 
5 VE 
3,6-E 
4 ' 7  DS 
8 V I  
5-9 -I 

Again, the name letter 'a' is introduced to designate a representative individual. Since the 
conclusion is a conditional, we hypothesize its antecedent at 5 in order to derive its consequent 
at 9 and then apply +I  at 10. The use o f  V I  at step 9 obeys the'VI rule, since none of our 
assumptions or hypotheses contains 'a ' .  Notice that a different strategy would be required if 
instead of the conditional conclusion 'VxFx4VxHx' we wished to prove the universally 
quantified conclusion 'Vx(Fx - Hx) ' ;  this is illustrated in thc next problem. 
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7.9 Prove: 

Vx(Fx -- (Gx // Hx)),  Vx-Gx I- Vx(Fx -- Hx) 

Solution 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Vx(Fx -- (Gx v Hx))  
Vx-Gx 
Fa -. (Ga V Ha) 
-Ga 

Fa 
Ga V Ha 
Ha 

Fa -+ Ha 
Vx(Fx -- Hx) 

Here we need to obtain the conditional 'Fa -- Ha' in order to get 'Vx(Fx -- Hx)' by VI at 
step 8, hence we hypothesize its antecedent 'Fa' instead of 'VxFx' for -+I at step 5. 

7.10 Prove: 

V x  Fax, VxVy (Fxy -+ Gyx) I- VxGxa 

Solution 
1 VxFax A 
2 VxVy (Fxy -- Gyx) A 
3 Fab 1 V E  
4 Vy(Fay + Gya) 2 V E  
5 Fab-. Gba 4 V E  
6 Gba 3'5 --E 
7 VxGxa 6 VI 

In step 3 we introduce 'b' to stand for a representative individual. Any other name letter 
would do as well, except for 'a'. We could, of course, legitimately infer 'Faa' by V E  from line 1 
at line 3, but that would block any later attempt to use VI with 'a', since 'a' occurs in the 
assumption at 1. The use of VI with '6' at step 7, however, is legitimate, since we have made no 
assumptions or hypotheses containing 'b ' .  Note that two separate steps of V E  (lines 4 and 5) are 
required to remove the quantifiers from 'VxVy(Fxy + Gyx)'. 

7.11 Prove: 

VxFx-- VxGx, -Ga I- -VxFx 

Solution 

Since the conclusion is a negated formula, a reductio strategy is in order. Thus we 
hypothesize 'VxFx' at line 3. Notice that V E  cannot be performed directly on 'VxFx-. VxGx', 
since it is a conditional, not a universally quantified wff. (This is a bit easier to see if we recall 
that its true form is '(VxFx -4 VxGx)', restoring the outer brackets dropped by convention.) 

1 VxFx- VxGx A 
2 -Ga A 
3 
4 
5 
6 

VxFx H (for - I )  
VxGx l , 3 + E  
Ga 4 V E  
Ga & -Ga 2 , 5  &I 

7 -VxFx 3-6 -I 
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7.3 INFERENCE RULES FOR THE EXISTENTIAL QUANTIFIER 

Like the universal quantifier, the existential quantifier has both an elimination and an introduction 
rule. The existential introduction rule, 31, is straightforward: from the premise that an individual has 
a certain (simple or complex) property, it follows that something (the individual in question, if nothing 
else) has that property. In formal terms: 

Existential Introduction (31): Given a wff <b containing some name letter a, we may infer 
any wff of the form 3P<b?.L, where $Yx is the result of replacing one or more occurrences of 
cx in <b by some variable f3 not already in <b. 

For example, given the assumption 'Fa & Ga' (the assumption that the individual a has the complex 
property of being both F and G), we may infer '3x(Fx & Gx)'. This is a simple two-step proof: 

1 Fa & Ga A 
2 3x(Fx & C x )  1 31 

With respect to the formal statement of the rule, + in this case is 'Fa & Gay, a is 'a', P is 'x', and 4% is 
'(Fx & Gx)'. There are several things to note about this rule: 

(1) Unlike VI, 31 places no restrictions on previous occurrences of the name letter a; a may legitimately 
appear in an undischarged hypothesis or in an assumption, as in step 1 above. 

( 2 )  Again in contrast to the case for VI, the variable P need not replace all occurrences of a in 4; it need 
replace only one or more. Thus the following proofs are both correct: 

1 Fa& Ga A 
2 3x(Fx & Ga) 1 31 

1 Fa & Ca A 
2 3x(Fa & G x )  131 

From the assumption that Alf is a frog and Alf is green, it certainly follows that something is such that 
it is a frog and Alf is green, and also that something is such that Alf is a frog and it is green. 

( 3 )  Like VI, 31 allows us to introduce only one quant$er at a time, and only at the leftmost position in 
a formula. The following inference, for example, is incorrect: 

1 Fa --+ Ca A 
2 3xFx+ Ga 1 31 (incorrect) 

To see the error clearly, note that '3xFx --, Ga' is not officially a wff; it is a conventional 
abbreviation for the wff '(3xFx + Ga)', from which it is obtained by dropping the outer brackets. 
This makes it clear that the quantifier does not occupy the leftmost position, which it must have 
if 31 is applied correctly; the leftmost symbol is a bracket. It is also apparent to intuition that this 
inference is invalid; from the assumption that if Alf is a frog then Alf is green it clearly does not 
follow that if something is a frog then Alf is green. 

The 31 rule brings with it two important presuppositions both of which are implicit in the semantics 
of the language of predicate logic: 

(1) All proper names refer to existing individuals. 

(2) At least one individual exists. 

The first presupposition is a result of the fact that 31 may be applied to any name letter. Since the 
existential quantifier asserts existence, we must always interpret name letters as referring to existing 
individuals in order to guarantee that all applications of 31 are valid. To see how invalidity may result 
if we ignore this presupposition, suppose we interpret 'a' as the name of a nonexistent individual, say 
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the Greek god Apollo, and 'M' as the predicate 'is mythological'. Then by 31 we can obtain the 
following invalid derivation: 

The premise is intuitively true (Apollo is a mythological being); but the conclusion is false, since 
mythological beings do  not actually exist. We have followed the 31 rule strictly here; our mistake 
consists not in misapplication of the rule but in using the name of a nonexistent thing. The standard 
predicate calculus is simply not equipped to deal with such names, and it is important for users of the 
predicate calculus to be aware of this limitation. Various modifications of the calculus (known as free 
logics) have been developed to deal with non-designating names or names that designate nonexistent 
things, but we shall not discuss them here. 

The second presupposition is a consequence of the first. Since name letters are always interpreted 
as referring to existing things, use of the calculus on any permissible interpretation presupposes the 
existence of at least one thing. But mere use of the calculus does not presuppose the existence of more 
than one (nonlinguistic) thing, even though (through the device of subscripts) it possesses a potential 
infinity of name letters. For two or more or even infinitely many names may all refer to the same 
individual. It is not presumed that different names must refer to different things. (See Section 6.4.) 

The following proofs further illustrate the use of 31. 

SOLVED PROBLEMS 

7.12 Prove: 

Vx(Fx v Gx )  I- 3x(Fx v Gx)  

Solution 
I V x ( F x V G x )  A 
2 Fa V Ga 1 V E  
3 3 x ( F x v G x )  2 31 

We introduce 'a' in step 2 to designate a representative individual. (We may presume that 
such an individual exists because the predicate calculus presupposes the existence of at least one 
thing.) Since we've assumed that everything is either F o r  G ,  it follows that a is either F o r  G 
and hence that something is either F or G. 

7.13 Prove: 

Vx(Fx v G x )  t- 3xFx v 3xGx 

Solution 

1 V x ( F x v G x )  A 
2 F a v  Ga 1 V E  
3 
4 

Fa H (for + I )  
3x  Fx 3 3[ 

5 3 x F x v  3xGx 4 V I  
6 F a + ( 3 x F x v 3 x G x )  3-5 --I 

Ga H (for +I)  
3xGx 7 31 
3xFx v 3xGx 8 VI 

Ga -. (3xFx v 3xCx)  7-9 --I 
3xFx v 3xCx 2, 6.. 10 V E  

The conclusion of Problem 7.12 was an existentially quantified disjunction. Here the 
conclusion is a disjunction of two existentially quantified statements; thus a different proof 
strategy is required. Having instantiated 'Vx(F1: V Gx)' at step 2, we then proceed by two 
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hypothetical proofs (lines 3-6 and 7-10) to deduce the conditionals needed to prove the 
conclusion by vE. 

7.14 Prove 

-3xFx t Vx-Fx 

Solution 

To obtain the universally quantified conclusion 'Vx-Fx', we need to get '-Fa' and then 
apply VI. Since '-Fa' is negated, a -I strategy is indicated. We therefore hypothesize 'Fa' at 
step 2 in order to derive a contradiction at step 4, which allows us to obtain '-Fa' at 5. Our 
hypothesis contains the name letter 'a', but since it is no longer in effect at line 5 and 'a' does 
not occur in the assumption, the application of VI at 6 is correct. 

1 -3xFx A 

7.15 Prove: 

2 
3 
4 

-3x(Fx & -Gx) t Vx(Fx + Gx) 

Fa H (for -I) 
3xFx 2 31 
3xFx & -3xFx 1 ' 3  &I 

Solution 

5 -Fa 2-4 -I 
6 Vx-Fx 5 VI 

- 3x(Fx & - Gx) 
Fa 

-Ga 
Fa & -Ga 

- -Ga 
Ga 

Fa -. Ga 
Vx(Fx + Gx) 

A 
H (for +I) 
H (for -I) 
2 '3  &I 
4 31 
1 , 5  &I 
3-6 -I 
7 -E 
2-8 +I 
9 VI 

As in Problem 7.14, the conclusion is universally quantified, so we follow a similar overall 
strategy. The strategy is to obtain 'Fa -. Ga' first and then apply VI. Since 'Fa-. Ga' is a 
conditional, we proceed by --+I, hypothesizing its antecedent 'Fa' at line 2. There is no 
straightforward way to derive 'Ga' from 'Fa', and so we try negation introduction, hypothesizing 
'-Ga' in hopes of obtaining a contradiction. We get the contradiction at line 6, which allows us 
to obtain 'Ga' at line 8 and hence to apply -.I at line 9. Both of our hypotheses contain 'a', but 
since neither is in effect at line 9 and our assumption does not contain 'a', the use of VI at line 
10 is legitimate. 

To reason from existential premises, we need a second existential quantifier rule, existential 
elimination (3E).2 Like -1 and -I, 3E uses hypothetical reasoning. An existential premise asserts that 
at least one thing has a (simple or complex) property. To reason from such a premise, we choose an 
individual to represent one of the things having this property and hypothesize that this individual in fact 
has this property. Then, without making any additional assumptions about this individual, we derive 
from our hypothesis whatever conclusion we are trying to prove. Since we have assumed nothing about 

'Some versions of the predicate calculus have a rule called existential instantiation, which serves roughly the same purpose as 3E 
but operates differently. The two should not be confused. 
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our representative individual except that it has the property which the existential premise ascribes to 
something, the fact that we have derived the desired conclusion from our hypothesis shows that no  
matter which individual has this property, our conclusion inust be true. We are therefore entitled to 
discharge the hypothesis and assert our conclusion on the strength of the existential premise alone. 
Existential elimination is what officially enables us to do  this. (The rationale for this rule is similar to 
the rationale for the existential quantification rule of the refutation tree technique; see Section 6.5.) 

For example, to prove the conclusion '3xFx' from the existential premise '3x(Fx & Gx)', we 
proceed as follows: 

The existential premise '3x(Fx & Gx)' asserts that at least one thing has the complex property of being 
both F and G,  but it does not tell us which thing or things do. We choose the individual a to represent 
one of these things and hypothesize at step 2 that a has this property. (This is merely a hypothesis; the 
individual a, whatever it is, need not in fact have this property.) Line 2 says in effect, "Let's suppose that 
a is one of the things that are both F and G and see what foliows." In the hypothetical derivation (lines 
2 to 4), we show that the desired conclusion '3xFx' follows. Because we make no assumptions about a 
except for the hypothesis that it is both F and G,  the hypothetical derivation has a special sort of 
generality; we could have used any other name letter in the hypothesis and still have derived the same 
conclusion. This generality is the key to the proof, for it guarantees that no matter what it is that is both 
F and G (so long as something is), the conclusion '3xFx' must be true. Thus it guarantees that '3xFx' 
validly follows from '3x(Fx & Gx)'. The 3E rule allows us to affirm this by discharging the hypothesis 
and reasserting the conclusion on the strength of '3x(Fx (4i Gx)' alone. As justification, we cite the 
existential premise, line 1, and the lines containing the hypothetical derivation, lines 2 to 4. 

1 3 x ( f i &  Gx)  r l 

We may now state the 3E rule precisely: 

2 
3 
4 

Existential Elimination (3E):  Given an existentially quantified wff 3p+  and a derivation of 
some conclusion $ from a hypothesis of the form +C% (the result of replacing each occurrence 
of the variable P in 4 by some name letter a not already in +), we may discharge and 
reassert +. Restriction: The name letter cx may not occur in r(,, nor in any assumption, nor in any 
hypothesis that is in effect at the line at which 3E is applied. 

Fu & Ga £1 (for 3E)  
Ftr 2 &E 
3xFx 3 31 

In the derivation above, 3P4 is '3x(Fx & Gx)', P is 'x', a is 'a', <bUh is 'Fa & Ga', and $ is '3xFx'. We 
shall call 4Wh a representative instance of 3P$, since in 3E, a is taken to represent one of the things that 
have the property indicated by +. 

Various aspects of this rule require elaboration: 

5 3xFx 1 , 2 4 3 E  

(1) The name letter a must not olready occur in 9. This is to prevent mistakes such as the following: 

Here 3PQ) is '3yFya'. P is 'y', a is 'a', $'$ is 'Faa', and JI is '3xFxx'. This derivation is obviously 
invalid; from the assumption that everything has a father (Vx3yFyx)' it does not follow that 
something is its own father (3xFxx). The mistake is in the application of 3E at step 5. Because 'a' 
already occurs in '3yFya', introducing 'a' at line 3 to represent the individual or individuals 
designated by the variable 'y' in this formula deprives the hypothetical derivation (lines 3 and 4) 
of generality and thus invalidates the application of 3E at 5. For if 'y' were replaced by any other 

1 Vx3yFyx A 
2 3yFya I YE 
3 
4 

Faa H (for 3E)  
3x Fxx 3 31 

5 3xFxx 3, 3-4 3 E  (incorrect) 
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name letter in forming the hypothesis at line 3, we could not derive '3xFxx' at 4. Thus the 
hypothetical derivation does not show that '3xFxx7 (someone is his own father) must be true no 
matter which individual we suppose to be a's father. (Indeed, this can be deduced only under the 
special hypothesis 'Faa'.) So we have not shown that the mere fact that a has a father (3yFya) 
implies that someone is his own father (3xFxx), which is why our use of 3E is incorrect. 

(2) The name letter a must not occur in (the conclusion of the hypothetical derivation). If this 
restriction is violated, the following sort of mistake may result: 

This is invalid; from the assumption that something hit itself (3xHxx), it does not follow that, say, 
Alice hit something (3xHax). The mistake, once again, is in the application of 3E. The formula 
+ (in this case, '3xHax') contains the name letter a (in this case, ' a ) ,  which deprives the 
hypothetical derivation of generality. For if we had introduced some other name letter, say 'b', to 
designate our representative individual a t  step 2, we could not have derived the conclusion that 
Alice hit something (3xHax); at step 3 we could derive only '3xFbx'. Thus the hypothetical 
derivation does not show that no matter what individual hit itself, Alice must have hit something, 
and so the use of 3E is incorrect. 

1 3xHxx A 

(3) a must not occur in any assumption. Here is an example of what happens if we violate this 
provision: 

2 
3 

Haa H (for 3E) 
3xHax 2 31 

Once again, the derivation is invalid. Given the assumptions that something is a giraffe (3xGx) 
and Amos is a frog (Fa), we should not be able to deduce that something is both a frog and a 
giraffe (3x(Fx & Gx)). The mistake is that the name letter a (in this case a )  occurs in the 
assumption 'Fa'. This destroys the generality of the hypothetical derivation and thus invalidates 
the use of 3E at line 6. For if we had used any name letter other than 'a' to designate our 
representative individual at step 2, we would not have been able to obtain '3x(Fx & Gx)' at line 
5. Thus the hypothetical derivation does not show that no matter which individual is a giraffe, 
something must be both a frog and a giraffe. 

4 3xHax 1, 2-3 3 E  (incorrect) 

1 3xGx A 
2 Fa A 

(4) a must not occur in any hypothesis in effect at the line at which 3E is applied. (Recall that a 
hypothesis is in effect at a line if it is introduced before that line but not yet discharged at that 
line.) This is essentially the same provision as condition 3, but applied to hypotheses rather than 
assumptions. To see the similarity with condition 3, consider the following derivation: 

3 
4 

Ga H (for YE) 
Fa & Ga 2 , 3  &I 

Like the previous example, this is invalid; given the assumption that something is a giraffe (3xGx), 
it should not follow that if Amos is a frog, then something is both a frog and a giraffe 
(Fa + 3x(Fx & Gx)). This mistake lies in the fact that the name letter rr (in this case 'a') occurs in 

5 3x(Fx & Gx) 4 31 
6 3x(Fx&Gx) 1 ,  3-5 3 E  (incorrect) 

1 3xGx A 
2 
3 
4 
5 
6 

Fa H (for - + I )  
Ga H (for 3E) 
Fa & Ga 2, 3,  &I 
3x(Fx & Gx) 4 31 

3x(Fx&Gx) 1, 3-5 3E (incorrect) 
7 Fa--+3x(Fx&Gx) 2-6 --I 
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the hypothesis at line 2, which is still in effect when 3E is applied at line 6. This destroys the 
generality of the hypothetical derivation in the same way that the assumption of 'Fa' did in the 
previous example- and thus makes the use of 3E at line 6 incorrect. 

We now consider some proofs which illustrate correct applications of 3E. 

SOLVED PROBLEMS 

7.16 Prove: 

V x ( F x  -- G x ) ,  3xFx t 3 x G x  

The assumption at line 2 asserts that something has the property F. A t  step 3 we 
hypothesize that a is one such thing. We derive our conclusion from this hypothesis at step 6. 
This hypothetical derivation obeys all the strictures on the 3 E  rule and in consequence is 
perfectly general. We could have derived the same conclusion from the hypothesis that any 
other individual has the property E: Hence the final step of 3 E  is legitimate. Notice that we must 
perform 31 at step 6 before applying 3E. If we reversed the order of these two steps, the 
conclusion of our hypothetical derivation would be 'Ga', which contains 'a' and hence would 
prevent application of 3 E  (see condition 2, above). 

Solution 

1 V x ( F x - -  G x )  A 
2 3xFx A 

7.17 Prove: 

3 
4 
5 
6 

3x(Fx  v G x )  t 3xFx v 3 x G x  

Fa H (for 3 E )  
Fa Ga 1 V E  
Ga 3 , 4  --E 
3 x  G x  5 31 

Solution 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

7 ~ X G X  2,3-6 3 E  

3x(Fx  v G x )  
Fa v G a  

Fa 
3xFx 
3 x  Fx v 3 x G x  

Fa + (3xFx  v 3 x G x )  
G a  
3 x G x  
3xFx v 3 x G x  

Ga -. ( 3 x F x  V 3 x G x )  
3xFx v 3 x G x  

3xFx v 3 x G x  

A 
H (for 3 E )  
H (for - - I )  
3 31 
4 VI  
3-5 -I 
H (for 3 1 )  
7 31 
8 \/I 
7--9 --I 
2, 6, 10 V E  
1, 2-11 3 E  

The assumption is an existentially quantified disjunction. To use it, we hypothesize a 
representative instance for 3 E  at step 2.  This representative instance is the disjunction 
'Fa v Ga', and to reason from a disjunction the: typical strategy is vE. But this requires the 
two conditionals listed on lines 6 and 10, so we obtain these conditionals by + I .  This gives us 
the conclusion by VE at line 11. We complete the proof by discharging the hypothesis and 
reasserting the conclusion by 3 E  at line 12. The reader should verify that step 12 obeys the 
3 E  rule. 
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7.18 Prove: 

[CHAP. 7 

3xFx v 3xGx 1 3x(Fx V Gx) 

Solution 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

3xFx v 3xGx 
3x Fx 

Fa 
F a v G a  
3x(Fx v Gx) 

3x(Fx v Gx) 
3x Fx - 3x(Fx V Gx) 

3xCx 
Ga 
Fa V C u  
3 x ( f i  v Gx) 

3x(Fx v Gx) 
3xGx -. 3x(Fx v Gx) 
3x(Fx v Gx) 

A 
M (for --I) 
N (for 3E)  
3 VI 
4 31 
2,3-5 3 E  
2-6 --+I 
11 (for -+I) 
11 (for 3E)  
9 VI 
10 31 
8, 9-1 1 3 E  
8-12 -1 
1, 7, 13 VE 

This is just the converse of Problem 7.17. Here we are proving an existential conclusion 
from a disjunction, so the dominant strategy is vE, rather than 3E.  Again, this requires us to  
obtain two conditionals (lines 7 and 13) by +I. Each -I proof embodies an 3 E  strategy. Both 
uses of 3E  are legitimate, even though the name letter 'a' occurs in hypotheses at lines 3 and 9, 
since these hypotheses are not in effect at the lines at which 3 E  is applied (see condition 4, 
above). 

7.19 Prove: 

3xvy Lxy t- vx3y Lyx 

Solution 

Since the assumption is existentially quantified, we hypothesize a representative instance of 
it at step 2. The use of VI at 5 is correct, since the name letter 'b' does not occur in any 
assumption or hypothesis. Likewise (as the reader should confirm), the step of 3 E  at line 6 
meets all the requirements of the 3 E  rule. The last two steps of the proof could have been 
interchanged, like this: 

1 3xVyLxy A 

The proof would still be correct. It is useful to compare this solution with Problem 6.37, to see 
the analogy between inference rules and refutation rules. 

2 
3 
4 
5 

7.20 Prove: 

VyLay /-I (for 3E)  
Lab 2 VE 
3yLyb 3 31 
Vx3yLyx 4 V I  

Vx(Fx --+ 3yLxy), 3x(Fx & Gx) t 3x3y(Gx & Lxy) 

6 Vx3yLyx 1 ,  2-5 3 E  
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Solution 

1 Vx(Fx -. 3y Lxy) A 
2 3x(Fx& Gx) A 

Fa & Ga 
Fa 3 3yLay 
Fa 
3y Lay 

Lab 
(;a 
Ga & Lab 
3y(Ga & Lay) 
3x3y(Gx & Lxy) 

3x3y(Gx & Lxy) 
3x3y(Gx & Lxy) 

H (for 3E) 
1 QE 
3 & E  
4, 5 --E 
H (for 3E) 
3 &Ei 
7, 8 &I 
9 31 
10 311 
6, 7-11 3 E  
2, 3-12 3E 

This proof requires two uses of 3E,  one for each existential quantifier in the assumptions. 
We begin at step 3 by hypothesizing a representative instance of '3x(Fx & Gx)'. Instantiating 
'Qx(Fx -. 3yLxy)' with 'a' at step 4 enables us to derive '3yLay' at line 6. To use this existential 
formula, we hypothesize a representative instance of it at 7, introducing the new name letter 'b'. 
(We could not use 'a' again and write 'Laa' as a representative instance of the formula at line 
6, since that would block correct application of 3 E  later on.) From the hypothesis in step 7 we 
derive the conclusion at line 11 and then discharge the two hypotheses by two steps of 3 E  at 
lines 12 and 13. Even though the name letter '6' occurs in a hypothesis at 7, the step of 3E at 
12 is legitimate because this hypothesis is no longer in effect at 12. Likewise, even though 'a' 
occurs in hypotheses at 3 and 7, the step of 3E al. 13 is legitimate, since these hypotheses are no 
longer in effect at 13. We need not consider occurrences of 'a' in checking step 12, since the 
relevant name letter a at this step is 'b', not 'a'; likewise, we need not consider occurrences of 
'b' in checking step 13, since a is 'a' (see the formal statement of the 3 E  rule). 

7.21 Prove: 

Solution 

Qx(F.x + - Gx) 
3x(Fx & Gx) 

Fa & Ga 
Fa -Ga 
Fa 
- Ga 
Ga 
P & - P  

P &  -P 
-3x(Fx & Gx) 

A 
H (for -I) 
H (for 3E)  
1 QE 
3 &E 
4 , s  --E 
3 &E 
6 , 7  CON 
2, 3-8 3 E  
2-9 -1 

Since the conclusion is negated, we adopt a reductio strategy, hypothesizing '3x(Fx & Gx)' 
at 2 and working toward a contradiction. Since ' 3x ( f i  & Gx)' is existentially quantified, to use 
it we must hypothesize a representative instance of it at 3. The contradiction 'Ga & -Ga' could 
have been obtained at step 8, but that would have prevented the application of 3 E  at line 9, 
since 'Ga & -Ga' contains the name 'a' (see condlition 2 for the 3 E  rule). And since we cannot 
perform -I until we have first discharged the hypothesis of line 3 by 3E, we would have reached 
an impasse. So at this point some ingenuity is required. We recall that the derived rule CON 
allows us to infer any wff from a wff together with its negation. We use this rule at step 8 to infer 
a new contradiction, 'P & -P', which does not contain 'a'. (Any other contradiction would have 
done as well, as long as it did not contain 'a'.) This opens the way to a correct use of 3E at step 
9, which allows us to complete our reductio strate:gy at step 10. 
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We conclude this section with some important points that should be kept in mind when 
constructing proofs: 

(1) All four quantifier rules operate only at the leflmost position of a formula, i.e., only on a quantifier 
whose scope is the whole formula. The rules 31 and VI enable us to introduce a quantifier as the 
leftmost symbol. Similarly, VE allows us to remove a quantifier only if it is the leftmost symbol, 
and an 3E hypothesis may be constructed only by removing the leftmost quantifier from an 
existentially quantified wff (in each case, of course, the variable governed by the quantifier is 

' ' 
replaced by a name letter). Special care must be taken when '&', 'v', ' or -' is the main 
operator of a formula, since a formula "officially" has outer brackets, though these are dropped 
by convention. Its leftmost symbol is thus officially the left outer bracket, so that when a quantifier 
is introduced it must go to the left of this bracket, and the bracket and its mate on the right must 
now appear explicitly, since they are no longer outer brackets (compare condition 3 for the 31 
rule). 

(2) To prove an existentially or universally quantified conclusion, the typical strategy is first to prove a 
formula from which this conclusion can be obtained by 31 or VI. For example, 

To Prove: First Prove: 
3xFx Fa 
Vx(Fx + Gx)  Fa --+ Ga 
Vx-  Fx -Fa 
Vx3y  Fxy 3YFaY 
~ Y F ~ Y  Fa b 
3x  Fxx Faa 

Then adopt a substrategy based on the form of the conclusion needed for 31 or VI. For example, 
in proving 'Vx(Fx -+ Gx)', we first prove 'Fa -+ Ga', and to prove this we use --+I as a substrategy 
(see Problems 7.6 and 7.9). Similarly, in proving 'Vx-Fx', we first prove '-Fa'-and since this is 
a negated formula, we would generally begin by hypothesizing 'Fa' for -I. 

(3) If the conclusion is in the form of a negation, conjunction, disjunction, conditional, or bicondi- 
tional, then it is usually best to employ the propositional calculus strategy for proving conclusions 
of that form (see Table 4-1, Section 4.3). For example, to prove the negated formula '-VxFx', use 
a -I strategy: hypothesize 'VxFx' and try to derive a contradiction (see Problems 7.4 and 7.11). 
Note that it will not do to derive '-Fa' and then apply VI, since even if this is possible under the 
assumptions given for the problem, the result will be 'Vx-Fx', which is not the intended 
conclusion. Similarly, to prove the conditional 'VxFx + VxGx7, hypothesize its antecedent and use 
- + I  (see Problem 7.8). It will not do to derive 'Fa + Ga' and then apply VI, since even if this is 
possible, it will yield only 'Vx(Fx + Gx)'. 

7.4 THEOREMS AND QUANTIFIER EQUIVALENCE RULES 

As in the propositional calculus, it is possible in the predicate calculus to prove some wffs without 
making assumptions. These wffs are the theorems of the predicate calculus. It can be shown by 
metalogical reasoning that these theorems are exactly the logical truths of predicate logic, i.e., those 
wffs which are true in every model. Logical truths are formulas whose truth is necessary regardless of 
the meanings assigned to their nonlogical symbols. Because the predicate calculus incorporates the 
propositional calculus, all theorems of the propositional calculus are also theorems of the predicate 
calculus. But the predicate calculus has additional theorems that belong to it alone. 
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SOLVED PROBLEMS 

7.22 Prove the theorem: 

t Vx(Fx -- Fx) 

Solution 

1 \ F a  H (for -.I) 
2 Fa + Fa 1-1 --I 
3 Vx(Fx-+ Fx) 2 VI 

Here, at step 2, we apply -I to a single line which is both the antecedent and consequent 
of the conditional 'Fa -4 Fa', which we are trying to prove. The final step of VI is legitimate, since 
although 'a' occurs in the hypothesis 'Fa', that hypothesis is discharged at line 2. This theorem 
can be proved even more efficiently using the derived rule TI (see Section 4.5): 

I Fa + Fa TI Chap. 4, Supp. Prob. IV(1) 
2 Vx(Fx -. Fx) 1 VI 

The theorem used here is ' P 4  P', of which 'Fa -+ Fa' is a substitution instance. Note that line 
1 is neither a hypothesis nor an assumption, so that even though it contains 'a', the application 
of VI at line 2 is legitimate. This becomes clear when we note that 'Fb - Fb', 'Fc --+ Fc', and so 
on, are all substitution instances of this theorem; indeed, no matter what name we put in place 
of 'a', we get a substitution instance. Thus the theorem clearly implies that for anything x,  
Fx -- Fx. 

7.23 Prove the theorem: 

The theorem is a conditional statement, so we use a conditional proof strategy. 

Solution 

7.24 Prove the theorem: 

1 
2 

k - (VxFx RL 3x - Fx) 

Vx Fx H (for 3 1 )  
Fa 1 VE 

3 VxFx -- Fa l , 2 - I  

Solution 

The theorem is a negation, so we hypothesize 'VxFx & 3x-Fx' for -I. This is broken into 
its conjuncts as lines 2 and 3. To use '3x-Fx' we must proceed by 3E; we hypothesize a typical 
instance of '3x- Fx' at line 4. The contradiction 'Fa & -Fa' could be obtained at 6, but we could 
not then discharge the hypothesis of step 4, since 'Fa & -Fa' contains 'a'. To overcome this 
difficulty, we instead obtain a new contradiction not containing 'a' by CON (compare Problem 
7.22). This allows us to discharge the 3 E  hypothesis of step 4 at line 7 and apply -I at 8. 

1 
2 
3 
4 
5 
6 
7 

7.25 Prove the theorem: 

VxFx RL 3x-Fx H (for -I) 
VxFx 1 &E 
3x - F.r 1 &E 

-Fa H (for 3E) 
Fa 2 VE 
P & - P  4 , 5  CON 

P & - P  3,4-6 3 E  

t VxFx V 3x-Fx 

8 -(VxFx&3x-Fx) 1-7 -I 
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Solution 
1 ( -VxFx H (for + I )  

H (for - I )  
H (for - I )  
3 31 

-Fx 2 , 4  &I 
3-5 - I  
6 -E 
7 VI 
1 ,8  &I 
2-9 - 1  

The strategy here is indirect. The theorem is a disjunction, and there is no obvious way to 
prove a disjunction. (See Table 4.1.) However, the equivalences MI and DN imply that the 
theorem is equivalent to the conditional '-VxFx -+ 3x-Fx'. Thus we can prove the theorem by 
proving this conditional (step 12) and then applying MI and DN. We begin our proof by 
hypothesizing the antecedent in the conditional, '-VxFx7, for -+I. To prove its consequent, 
'3x-Fx', we proceed by - I ,  hypothesizing the negation of the consequent at step 2 and 
introducing yet another - I  hypothesis at step 3 to obtain the necessary contradictions. The use 
of VI at 8 is permissible, since although 'a' appears in the hypothesis of step 3, this hypothesis 
is no longer in effect at line 8. 

A number of important equivalences are provable in the predicate calculus. The first of these shows 
the logical equivalence of the formulas 'Vx(Fx  -+ -Gx)' and '-3x(Fx & Gx)' ,  which are both ways of 
expressing the E-form proposition 'No F are G'. 

SOLVING PROBLEM 

7.26 Prove the equivalence: 

t- Vx(Fx -- -Gx) - -3x(Fx & Gx)  

- 3x(Fx & Gx)  
Fa 

Ga 
Fa & Ga 
3x(Fx & Gx)  
3x(Fx & Gx)  & - 3x(Fx & Gx)  

-Ga 
Fa --+ - Ga 

Solution 

H (for -+I)  
£3 (for --I)  
H (for - I )  
5 , 6  &I 
7 31 
4 , 8  &I 
6-9 -1 
5-10 + I  

1 

Vx(Fx + - Gx)  11 VI 

Vx(Fx-+-Gx) H (for -+I) 

Table 7-1 lists four equivalences which express important relationships between the universal and 
existential quantifiers. The first two of these equivalences are proved below. The third and fourth are 

2 -3x(Fx & Gx)  1 Prob. 7.21 
3 Vx(Fx- -Gx)-- -3x(Fx&Gx)  1-2 --I 
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left as exercises for the reader. It is also useful to compare these equivalences with the refutation rules 
for negated quantifiers (see Section 6.5). 

Table 7-1 Quantifier Equivalences 

t -Vx-Fx * 3xFx 
t - V x f i  * 3x- FX 
t Vx-Fx ++ -3xFx 
t VxFx - -3x-Fx 1 

SOLVED PROBLEMS 

7.27 Prove the equivalence: 

Solution 

-Fh. 
V x  -- Fx 
Vx-Fx & -Vx -Fx 

--3xFx 
3x  Fx 

-Vx- Fx + 3xFx 
3xFx 

Fa 
V x  - Fx 
- Fa 
Fa & -Fa 

-Vx- Fx 
-Vx- Fx 

3xFx -+ -Vx-Fx 
-Vx- Fx - 3xFx 

7.28 Prove the equivalence: 

Solution 

- V x f i  
-3x-Fx 
- Fa 
3x  - Fx 
3x-Fx & -3x-Fx 

--Fa 
Fa 
V x  Fx 
VxFx & -VxFx 

--3x-Fx 
3x-Ex 

H (for --+I) 
H (for - I )  
H (for - I )  
3 31 
2, 4 & I  
3-5 .-I 
6 VI 
1,7 &I 
2-8 --I 
9 -E 
2-10 -I 
H (for -+I)  
H (for 3 E )  
H (for - I )  
14 V E  
13, 15 & I  
14-16 - I  
12, 13-17 3 E  
12-18 -+I 
11, 19 -I 

H (for - I )  
H (for - I )  
H (for -I) 
3 31 
2, 4 &I 
3-5 --I 
6 -E 
7 VI 
1, 8 &I 
2-9 --I  
10 -E 
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12 -VxFx- .3x-Fx 1 - 1 1  -I 
3 x -  Fx H (for -+I) 

-Fa If (for 3 E )  
V x  Fx H (for -I) 
Fa 15 V E  
Fa & -Fa 14,16 &I 

-VXFX 15-17 -I 
- V X  FX 13, 14-18 3E 

3x-Fx --+ -VxFx 13-1 9 -I 
-\JxFx ++ 3x-Fx  12,20 -I 

[CHAP. 7 

The four quantifier equivalences are the basis for the most important derived rule of the predicate 
calculus. To state this rule clearly, we need a bit more terminology. A formula which results from a wff 
when we remove an initial quantifier-plus-variable is called an open formula on the variable. For 
example, if we remove '3x' from '3x(Fx & Gx)', the result, '(Fx & Gx)', is an open formula on 'x'. Or, 
again, if we remove 'Vz' from 'VzVx(Fxz -+ Gzx)', the result, 'Vx(Fxz --, Gzx)', is an open formula on 
'z'. An open formula is not itself a wff, since our formation rules do not permit unquantified variables. 
(See Section 6.3.) 

Now notice that in the proofs of Problems 7.27 and 7.28, all occurrences of the formula 'Fx' could 
have been replaced by occurrences of any other open formula on 'x', and the result would still be a valid 
proof. Thus, for example, by the reasoning used in Problem 7.27, we would have proved not only 
't- VxFx - -3x-Fx', but also 't- Vx(Fx & Gx) - -3x-(Fx & Gx)', '1 Vx3yLxy ++ -3x-3yLxy', and 
so on. That is, we could have proved that any wff consisting of an open formula on 'x' prefixed by 'Vx' 
is logically equivalent to the wff consisting of that same open formula prefixed by '-3x-'. Since 'F' can 
be interpreted as standing for any property, it can be interpreted as standing for any property 
expressible by an open formula on ' x .  Hence Problem 7.27 is in fact a proof of all these 
equivalences. 

It is, moreover, clear that the variable 'x' could have been uniformly replaced in Problems 
7.27 and 7.28 by any other variable without affecting the validity of the proof. Hence, for 
example, we may also regard Problem 7.27 as a proof of the equivalences 'l- VzFz - -3z-Fz' , 
't Vy(Fy & Gy) ++ -3y-(Fy & Gy)', and so on. 

In general, then, Problem 7.27 shows that any wff of the form VP$, where P is a variable and + an 
open formula on that variable, is logically equivalent to -3P-4 .  The other equivalences listed in Table 
7-1 have the same generality. Thus, since logically equivalent formulas may validly be substituted for 
one another in any context, these four equivalences give rise to the following derived rule: 

Quantifier Exchange (QE): Let + be an open formula on a variable P. Then if one member 
of the following pairs is a subwff of some wff 4, we may validly infer from JI the result of 
replacing one or more occurrences of this member by the other member of the pair: 

Like the derived rules of the propositional calculus (Sections 4.4 to 4.6), QE enables us to shorten 
and simplify proofs, but it allows us to prove nothing new. Anything provable by Q E  is already 
provable by the four quantifier introduction and elimination rules, together with the ten basic rules of 
the propositional calculus. To illustrate how QE can shorten and simplify proofs, we re-prove below the 
form of Problem 7.21: 
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SOLVED PROBLEM 

T H E  PREDICATE CALCIJLUS 

7.29 Prove: 

Vx(Fx -- -Gx) k - 3x(Fx & Gx)  

Solution 

I Vx(Fx-,-Gx) A 
2 Fa-+-Ga 1 V E  
3 -(Fa& --Ga) 2 Prob. 4.4.6 
4 - (Fa&Ga) 3 DN 
5 Vx - (Fx&Gx)  4 VI 
6 -3x(Fx & Gx)  5 QE 

Compare this with the proof of Problem 7.21. 

Some additional problems using QE follow. In each case, we shall also rely on some derived rules 
of the propositional calculus. 

SOLVED PROBLEMS 

7.30 Prove the theorem: 

t VxFx V 3x-Fx 

Solution 

7.31 Prove: 

Vx-Fx4Vx-Gx t- 3xGx-+ 3xFx 

Solution 

1 V x - F x d V x - G x  A 
2 - 3 x F x 4 V x - G x  1 QE 
3 -3xFx+-3xGx 2 QE 
4 3xCx-3xFx 3 TRANS 

7.32 Prove: 

-3xFx, -3xGx t -3x(Fx V Gx)  

Solution 

- 3xFx 
- 3x  G.w 
Vx-  Fx 
V x  - GX 
-Fa 
- Ga 
-Fa & -Ga 
-(Fa V Ga) 
Vx-(Fx & G x )  
-3x(Fx & G x )  
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It should be noted that our QE rules are somewhat more restricted than need be. They allow 
quantifier exchange only when a quantifier-plus-variable prefixes an open formula on the variable. They 
do  not, for example, license the inference 

since 'Lxy' contains 'y' in addition to 'x' and so is not an open formula just on 'x'. This inference, however, 
is valid, as is any inference in which '3y-' is replaced by '-Vy' anywhere in a wff. (The same is true for 
the other QE rules.) Some authors use wholly unrestricted QE rules, which allow inferences like the one 
above. Others restrict QE even more, allowing i t  t o  be used only on  initial quantifiers. Still others d o  not 
permit QE at all. None of these variations affect what can be proved in the logic, since anything provable 
by any version of QE is also provable by the four introduction and elimination rules. 

7.5 INFERENCE RULES FOR THE IDENTITY PREDICATE 

Our proof techniques may also be applied to forms containing the identity predicate. This requires 
two new introduction and elimination rules, both of which are related in an obvious way to the identity 
rules of the refutation tree method (Section 6.6). The identity introduction rule is Iike the derived rule 
TI  (Section 4.5) in that it introduces formulas into proofs without deriving them from previous lines. 

Identity Introduction (=I) :  For any name letter u,  we may assert cx = a at any line of a 
proof. 

Identity introduction is used in the following proofs. 

SOLVED PROBLEMS 

7.33 Prove the theorem: 

Solution 

1 a = a  = I  
2 V x x = x  I V I  

Note that the use of V I  at step 2 is legitimate, since the proof uses no assumptions or 
hypotheses containing 'a'. This theorem is known as the law ofrejlexivity of identity. 

7.34 Prove the theorem: 

Solution 

This theorem asserts the existence o f  the object denoted by 'a'. The same reasoning could 
be repeated, of course, using any name letter other than ' a .  It therefore reflects the 
presupposition, noted in Section 7.3, that all names denote existing things. 

The identity elimination rule (the rule that allows us to reason from identities as premises) is simply 
the familiar idea that if a = h, the names 'a' and 'h' are interchangeable. This rule is also called 
substitutivity of identity. 

Identity Elimination (=E): If @ is a wff containing a name letter a, then from + and either a = P 
or p = a we may infer @'%., the result of replacing one or more occurrences of a in + by P. 
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SOLVED PROBLEMS 

7.35 Prove: 

Fa, a = b t Fb 

Solution 

1 Fa A 
2 a = b  A 
3 Fb 1 , 2  =E 

7.36 Prove: 

Fa, -Fb t -a = b 

7.37 Prove the theorem: 

Solution 
1 Fa A 
2 -Fb A 
3 
4 
5 

At step 3 we use the identity 'a = b7 (line 1) to replace the first occurrence of 'a7 in 'a = a' 
(line 2) with 'b' .  That is, with respect to the statement of =E, 'a = a' is + and 'b = a' is +%. This 
theorem expresses the law of symmetry of identity whose semantic validity has been proved in 
Problem 6.44. 

a = b  H (for -I) 
Fb 1 , 3  = E  
Fb&-Fb 2 , 4  &I 

t vxvy  ( x = y - . y = x )  
Solution 

7.38 Prove the theorem: 

6 - a = b  3-5 -1 

1 
2 
3 

Solution 

a = b  H (for +I) 
a = a  =I  
b = a  1 , 2  =E 

H (for --+I) 
1 &E 
1 &E 
2 , 3  =E 
1-4 --I 
5 VI 
6 VI 
7 VI 

4 a = b - . b = a  1-3 --I 
5 Vy(a = y + y = a )  4 VI 
6 VxVy(x=y+y=x) 5 VI 

This theorem expresses the law of transitivity of identity. (Compare Problem 6.45.) 

Tables 7-2 and 7-3 summarize the inference rules (basic and derived) for predicate logic with 
identity. 
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Table 7-2 Basic Rules of Inference for Predicate Logic with Identity* 
- - - 

Universal Elimination (VE): From a universally quantified wff V/3+ infer any wff of the form 
+a& which results from replacing each occurrence of the variable /3 in + by some name 
letter a. 

Universal Introduction (VI): From a wff + containing a name letter a not occurring in any 
assumption or in any hypothesis in effect at the line on which + occurs, infer any wff of the 
form Vp+p/,, where +% is the result of replacing all occurrences of a in + by some variable 
/3 not already in +. 

Existential Introduction (31): Given a wff + containing some name letter a, infer any wff of 
the form 3P+%, where +% is the result of replacing one or more occurrences of a in + by 
some variable P not already in +. 

Existential Elimination (3E): Given an existentially quantified wff 3/3+ and a derivation of 
some conclusion + from a hypothesis of the form +Uh (the result of replacing each 
occurrence of the variable /3 in + by some name letter a not already in +), discharge 4-4 
and reassert +. Restriction: The name letter a may not occur in $, nor in any assumption, 
nor in any hypothesis that is in effect at the line at which 3E is applied. 

Identity Introduction (=I): For any name letter a, we may assert a = a at any line of a proof. 

Identity Elimination (=E): If + is a wff containing a name letter a, then from + and either 
a = /3 or /3 = a we may infer +%, the result of replacing one or more occurrences of a in + 
by P. 

*Only rules specific to the predicate calculus are listed here. For a listing of propositional calculus rules, both basic and 
derived, see Tables 4-3 and 4-4 at the end of Chapter 4. 

Table 7-3 Derived Rules of Predicate Logic 

Quantifier Exchange (QE): Let + be an open formula on variable P. Then if one member of 
any of the following pairs is a subwff of some wff +, infer from + the result of replacing one 
or more occurrences of this member by the other member of the pair: 

-QP-4, 3/34) 
-QP+, 33-4 
QP-$3 -3P4 
w+, -33-+ 

Supplementary Problems 

Construct a proof for each of the following forms, using both basic and derived rules. 

(1) VxFx 1 Fa & (Fb & (Fc & Fd)) 

(2) Vx(Fx v Gx), -Fa I- Ga 
(3) -Fa t  -Vx(Fx&Gx) 

(4) Vx(Fx* R), R k Fa 

(5) Vx(-FXV -Gx) t -(Fa& Ga) 

(6) Vx(Fx-- Gx) t Vx(-Gx-- -Fx) 
(7) Vx(Fx-+ Gx) t Vx-Gx+Vx-Fx 

(8) VxVy Fxy t VxFxx 
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H (for -I) 
H (for 3E) 
2 VE 
H (for -I) 
3 --E 
4 ,5  --E 
4 , 6  &I 
4-7 -I 
3 --E 
8 , 9  -E 
8,10 CON 
1, 2-11 3E  
1-12 -I 

(25) 1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

This surprising theorem has a number of interesting instances. It can be interpreted as stating, for 
example, that there does not exist someone x who for all y likes y if and only if y does not like him- 
or herself. This, as the derivation shows, is necessarily true! ('Lxy' can also be interpreted as "y is 
predicable of x," thinking of x and y as properties, or as "y is a member of x," thinking of x and y 
as sets, so that this argument formalizes the reasoning of the Russell antinomy; see Section 11.2.) To 
understand the derivation intuitively, it is perhaps easiest to interpret 'L' as "likes." Then, once 
again, what is to be proved is that no one likes all and only those who don't like themselves. To prove 
this, we begin with the hypothesis that someone does like all and only those who don't like 
themselves and then hypothesize further that this individual is a (lines 1 and 2). It follows by VE 
(step 3) that a likes himself if and only if he doesn't like himself. Does a, then, like himself or not? 
Suppose that he does (line 4). Then a contradiction quickly follows; so by -I he does not (step 8). 
But this too leads to a contradiction (steps 8 and 10); hence our original hypothesis leads 
unavoidably to contradiction. The contradiction exhibited on lines 8 and 10, however, cannot be used 
for 3E to complete the proof, since it contains the name letter 'a', which appears in the 3E 
hypothesis at line 2. So we can use CON to convert this contradiction into one that can be used for 
3 E  (we arbitrarily choose 'P & -P'). This enables us to perform the 3E step at line 12 and hence 
to obtain our conclusion at line 13 by -I (see Problems 7.21 and 7.24). 

3xVy(Lxy - - Lyy) 
V Y G Y  - -LYY) 
Laa ++ - Laa 

Laa 
Laa -+ - Laa 
- Laa 
Laa & - Laa 
- Laa 
- Laa --+ Laa 
Laa 
P & - P  

P & - P  

H (for -+I) 
H (for 4 1 )  
1 , 2  =E 
2-3 -1 
H (for --I) 
1 , 5  =E  
5-6 --I 
4 ,7  --I 

13 - 3xVy(Lxy -- - Lyy) 

9 a =  b--(Fa-Fb) 1-8 --I 
10 Vy(a = y4(Fa-- Fy) 9 VI 
11 VxVy(x =y-+(Fx-Fy))  10 VI 



Chapter 8 

Fallacies 

8.1 CLASSIFICATION OF FALLACIES 

In Chapters 3 to 7 we have focused on the task of testing the deductive validity of a wide class of 
argument forms. However, deductive validity was only one of the criteria for argument evaluation that 
were discussed in Chapter 2. The methods of Chapters 3 to :7 are of no help with respect to the other 
criteria: the actual truth or falsity of premises, the degree of' relevance, and the effect of suppressing 
evidence that bears upon the conclusion. Moreover, truth tables, refutation trees, Venn diagrams, and 
inference rules establish validity or invalidity only for argument forms, not for specific arguments. The 
informal evaluation techniques of' Chapter 2 do apply to specific arguments, but they rely heavily on 
intuition. In this and the following two chapters, we shall consider various techniques for evaluating 
nondeductive arguments with greater clarity and precision. We begin in this chapter with the study of 
fallacies. This is also informal, but it  augments intuition by p:roviding general accounts of some of the 
more common mistakes of ordinary reasoning. The next two chapters will then focus on inductive 
validity and the assessment of probabilistic reasoning. 

Fallacies (in the broadest sense) are simply mistakes that occur in arguments and affect their 
cogency. In Latin, the verb fallere means 'to deceive'. Fallacic~us arguments may be deceptive, because 
they often superficially appear to be good arguments. But deception is not a necessary condition of a 
fallacy, as we use that term here. Whenever we reason invalidly or irrelevantly, accept premises we 
should not, or fail to make appropriate use of relevant facts at our disposal, we commit a fallacy. 

There is no  universally accepted definition of 'fallacy'. Many authors use definitions narrower than 
the one just given, but not infrequently an author's actual use of the term is at odds with his or her 
definition. Likewise, there is no universally accepted classification of fallacies. We shall divide fallacies 
into six classes: fallacies of relevance, circular reasoning, semantic fallacies, inductive fallacies, formal 
fallacies, and fallacies of false premises. Other authors use different classificatory schemes. 

Fallacies ofrelevance occur when the premises of an argument have no bearing upon its conclusion. 
In addition, such fallacies often involve a distractive element which diverts attention away from this 
very problem. 

Circular reasoning is the fallacy of assuming what we are trying to prove. 
Semantic fallacies result when the language employedl to construct arguments has multiple 

meanings or is excessively vague in a way that interferes with assessment of the argument. 
Inductive fallacies occur when the probability of an argument's conclusion, given its premises - i.e., 

its inductive probability-is low, or at least less than the arguer supposes. 
Formal fallacies occur when we misapply a valid rule of inference or else follow a rule which is 

demonstrably invalid. 
And finally, there is a class of mistakes traditionally classified as fallacies which consist in an 

argument's having false premises. 
The next six sections correspond to each of these classifications. Our survey of fallacies is 

representative, not exhaustive. Since people are ingenious, they can come up with new and unsuspected 
ways of committing logical mistakes. But the recurrence of similar kinds of  mistakes over the two 
millennia since Aristotle drew up the first catalog of fallacies is evidence that bad reasoning habits obey 
definite patterns.. 

Many logic texts still employ Latin expressions to label certain fallacies. We furnish Latin terms 
(and their English equivalents) wherever such usage is custon~ary. 
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8.2 FALLACIES OF RELEVANCE 

Fallacies of relevance occur when the premises of an argument have no bearing upon its conclusion. 
Such arguments are often called non sequiturs (from the Latin phrase 'non sequitur', meaning "it does 
not follow"). We will distinguish a number of different fallacies of relevance, though the generic error 
is the same in each case. (For a general discussion of the role of relevance in argument evaluation, see 
Section 2.4.) 

Lack of relevance is not the only thing wrong with the arguments we will discuss in this section. 
Most fallacies of relevance occur in arguments that are invalid and have low inductive probabilities as 
well. In this section, however, we focus exclusively on the problem of irrelevance. 

Ad horninern arguments try to discredit a claim or proposal by attacking its proponents instead of 
providing a reasoned examination of the proposal itself. 'Ad horninern' means "against the person." Ad 
hominem arguments come in at least five varieties. 

(1) Ad hominem abusive arguments attack a person's age, character, family, gender, ethnicity, social 
or economic status, personality, appearance, dress, behavior, or professional, political, or religious 
affiliations. The implication is that there is no reason to take the person's views seriously. 

SOLVED PROBLEM 

8.1 What is wrong with the following argument? 

Jones advocates fluoridation of the city water supply. 

Jones is a convicted thief. 
:. We should not fluoridate the city water supply. 

Solution 

Even if  Jones is a convicted thief, this has no bearing on whether the water supply should 
be fluoridated. To dismiss Jones' view simply because Jones is reprehensible is to commit the ad 
honzinern abusive fallacy. 

In practice, the conclusions of such arguments are often left unstated or conveyed by innuendo. 
Some arguments against the person are based on libel, slander, or character assassination. In such 
cases the premises are false as well as irrelevant. 

SOLVED PROBLEMS 

8.2 Does the argument below commit an abusive ad horninern? 

Jones says he saw my client commit a crime. 

Jones is a habitual drunkard. 
:. Jones' testimony is worthless. 

Solution 

This is a borderline case. If Jones is a habitual drunkard, that surely is somewhat relevant 
to the reliability of his testimony, but the relevance in this case is not extremely strong or direct. 
Jones' observation might well have taken place when he was sober. 

8.3 Is this argument any better? 

Jones says he saw my client commit a crime on the night of April 21. 
Jones was so drunk on the night of April 21 that he was incapable of observing events 
accurately. 

:. Jones' testimony about this event is unreliable. 
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Solution 

Yes; if its premises are true, this argument presents good reasons for discarding the 
witness's testimony. There is no ad hominem fallacy here. 

(2) The fallacy of guilt by association is the attempt to repudiate a claim by attacking not the claim's 
proponent, but the company he or she keeps, or by questioning the reputations of those with 
whom he or she agrees. This is also known as poisoning the well, which suggests a fitting 
scenario: 

SOLVED PROBLEM 

8.4 What is wrong with the following argument? 

Jones advocates fluoridation of the city water supply. 
Jones spends much of his free time hanging around with known criminals, drug addicts, 

and deviants. 
:. We should not fluoridate the city water supply. 

Solution 

The premises are irrelevant to the conclusion; even if Jones has detestable friends, what he 
advocates may well be true. Notice that it would not be a fitting reply merely to  contest the 
second premise ("Jones actually spends most of hi:; free time helping the elderly and performing 
volunteer work in hospitals"). The central logical issue here is not whether Jones is the victim 
of a smear, but the failure to produce any premises germane to the conclusion. 

(3) Tu quoque ("you too") arguments attempt to refute a claim by attacking its proponent on the 
grounds that he or she is a hypocrite, upholds a double standard of conduct, or is selective and 
therefore inconsistent in enforcing a principle. The implication is that the arguer is unqualified to 
make the claim, and hence that there is no reason to tak~e the claim seriously. 

SOLVED PROBLEM 

8.5 Criticize the following argument. 

Jones believes we should abstain from liquor. 
Jones is a habitual drunkard. 

:. We should not abstain from liquor. 

Solution 

Jones' actions have no bearing on the truth or falsity of his belief, even if he holds the belief 
hypocritically; the argument commits a tu quoyue fallacy. 

It requires self-discipline to distinguish between what so:meone says and what that person does; 
to stifle one's natural resentment against insincere, opportunistic, or morally weak individuals; 
and to avoid becoming defensive when someone else recommends a course of action. But a 
rational person is one who can do this. 

(4) Vested interest arguments attempt to refute a claim by arguing that its proponents are motivated 
by the desire to gain something (or avoid losing something). The implication is that were it not for 
this vested interest, the claim's proponents would hold a different view, and hence that we should 
discount their argument. 
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8.6 What is wrong with the following argument? 

Jones supports the fluoridation bill pending in Congress. 

He does so because he owns a major fluoridation firm, which will reap huge dividends 

if the bill passes. 

:. We should not support this bill. 

Solution 

Once again, the premises are irrelevant to the conclusion. Fluoridation may well be justified 
independently of Jones' allegedly selfish motives. The argument commits the vested interest 
fallacy. Whether Jones stands to gain or lose from fluoridation is immaterial. What counts is 
whether fluoridation is hygienically desirable, whether it is cost-effective, and so forth. 

( 5 )  Circumstantial ad horninern fallacies are sometimes grouped in a single category with vested 
interest fallacies, but there is a distinction between them. The circumstantial version of the ad 
horninem fallacy is the attempt to refute a claim by arguing that its proponents endorse two or 
more conflicting propositions. The implication is that we may therefore safely disregard one or all 
of those propositions. 

SOLVED PROBLEM 

8.7 Criticize the following argument: 

Jones says he abhors all forms of superstition. 

Jones also says that breaking a mirror brings bad luck. 

:. There probably is something to superstition after all. 

Solution 

This is an ad hominem circumstantial fallacy. Jones' claims, whether consistent or not, have 
by themselves no bearing on the truth of the conclusion. 

All five kinds of ad horninem arguments attempt to refute a claim by attacking its proponents. 
Straw man arguments, by contrast, attempt to refute a claim by confusing it with a less plausible claim 
(the straw man) and then attacking that less plausible claim instead of addressing the original issue. The 
term comes from medieval fencing, where participants warmed up by practicing against dummies 
(straw men) before facing flesh-and-blood adversaries. 

A straw man argument may in fact provide good reasons against the less plausible claim that it 
confuses with the real issue, but these reasons will be irrelevant to the real issue itself. 

SOLVED PROBLEM 

8.8 Criticize the following argument: 

There can be no truth if everything is relative. 

:. Einstein's theory of relativity cannot be true. 

Solution 
The premise is completely irrelevant to the conclusion, because Einstein's theory does not 

assert that everything is relative (whatever that means). The claim that everything is relative is 
a straw man, and the argument implicitly attacks this straw man rather than examining 
Einstein's actual theory. Thus even if the premise is true (which is certainly doubtful; it is 
difficult even to see what this premise could mean), it offers no support for the conclusion. 



CHAP. 81 FALLACIES 

Notice that to correctly diagnose a straw man argument we generally need to know something about 
the claim in question. In this case, we need to know that Einstein's theory does not assert that 
everything is relative. 

Ad baculum arguments (also called appeals to force, appeals to the stick) are attempts to establish 
a conclusion by threat or intimidation. 

SOLVED PROBLEM 

8.9 Criticize the following argument: 

If you don't vote for me, Ms. Jones, I'll tell everybody you are a liar 
You ought to vote for me. . . 

Solution 

Once again, the premise is irrelevant to the justification of the conclusion. Coercion, 
threats, and intimidation may be persuasive in so:me cases, but they have no place in any scheme 
of rational appraisal. Note that it makes no difference how Jones responds to this threat; even 
if she capitulates, that does not change the fact that this sort of "reasoning" is logically 
unacceptable. 

Typically an ad baculum occurs as part of a conversation and may often be stated incompletely. In the 
case of Problem 8.9, for example, the conclusion might be left implicit. Thus ad baculum fallacies are 
difficult to distinguish from mere threats. The "offer you can't refuse" is immoral, but is it illogical? 
Consider this example: 

SOLVED PROBLEM 

8.10 Is the following a fallacious ad baculum argument? 

Parent: Clean up your room OR ELSE . . . 
Child: Or else what? 
Parent: Or else you'll get spanked. 

Solution 
No. There is no argument here, merely an ultimatum. The parent is not trying to justify or 

support a conclusion. Where there is no argument, there can be no fallacy (at least in the sense 
of 'fallacy' which we are using here). 

Ad verecundiam arguments (appeals to authority) occur when we accept (or reject) a claim merely 
because of the prestige, status, or respect we accord its proponents (or opponents). 

SOLVED PROBLEMS 

8.11 Why is this bare appeal to authority inadequate? 

My teacher says that I should be proud to be an American. 
:. I should be proud to be an American. 

Solution 

Without some further evidence that the teacher's statement is correct or justified, the 
premise is simply irrelevant to the conclusion. Saying something doesn't make it so, no matter 
how eminent the speaker. 
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8.12 Is this argument any better? 

Her teacher says that I should be ashamed to be an American. 
:. I should be ashamed to be an American. 

Solution 

No. It's another flat-footed appeal to authority. The fact that it reaches a diametrically 
opposite conclusion doesn't help at all. 

Our two examples show that the inadequacy of bare appeals to authority is especially apparent when 
authorities' opinions are in conflict. It is a simple strategy, however, to add a premise to each of these 
examples, thereby forging a link of relevance and making each of the arguments valid. 

SOLVED PROBLEM 

8.13 Do these arguments commit the fallacy of appeal to authority? 

My teacher says that I should be proud to be an American. 
Everything my teacher says is true. 

:. I should be proud to be an American. 

Her teacher says that I should be ashamed to be an American. 
Everything her teacher says is true. 

:. I should be ashamed to be an American. 

Solution 
No. The premises are now fully relevant to the conclusions; and moreover, each argument 

is now deductively valid. However, the second premise in each case can hardly be true. These 
arguments are still fallacious; we have merely shifted the location of the fallacy. The 
fundamental problem with these two arguments as well as the arguments in Problems 8.11 and 
8.12 is that they ask us to take someone else's word for the conclusion, rather than considering 
it on its own merits. 

There are, however, many occasions when an appeal to authority is either justified or else 
unavoidable. Few of us know enough physics to verify the equation E = mc2 for ourselves. Without the 
required mathematical and experimental background to confirm it, it is certainly reasonable to take 
Einstein's word (and, indeed, the word of the entire community of contemporary physicists) for it. In 
a complex society, where labor is divided and expertise segregated into specialties, it is difficult if not 
impossible for any individual to know enough to make unaided decisions on such matters. Even 
Einstein didn't master physics by himself; he was trained at a university, and learned the techniques of 
his predecessors. 

Thus much of our knowledge is based unavoidably on appeals to authority. These appeals are not 
fallacious, provided that we have good evidence that the authorities themselves have adequate 
justification for their views. Appeals to authority are nonetheless fallacious if they demand uncritical 
acceptance of the authority's pronouncements without providing evidence of the authority's reliability 
(as in Problems 8.11 and 8.12) or if they overestimate the authority's reliability (as in Problem 8.13). (In 
the latter case, the fallacy is not the fallacy of appeal to authority per se, but simply a false premise.) 

In contemporary North America, perhaps the most prevalent form of appeal to authority is the 
testimonial, exemplified by celebrities who appear in advertisements and commercials endorsing 
products, services, or brands of consumer goods. The image of the "star" actor, actress, or athlete 
surrounded by the brandished commodity is all that is necessary. Overt claims need not be made. This 
presents a problem, since without claims there can be no argument, and hence no potential fallacy to 
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expose. Moreover, we don't want to twist ads around, or put words into the mouths of commercial 
spokespersons. Provided we heed these warnings, however, .we can represent the gist of testimonials as 
arguments without creating straw men. 

SOLVED PROBLEM 

8.14 As we know, the opinions of "authorities" don't always coincide. But the 
fallacious appeal they convey is constant. Consider these two cases: 

Leslie Nielsen urges us to buy a new Chrysler. 

We should buy a new Chrysler. . . 

Kevin Costner urges us to buy a new F'ord. 

We should buy a new Ford. . . 

What is objectionable in each case? 

Solution 

Both arguments are testimonial versions of the fallacy of appeal t o  authority. In  neither 
case does the premise have any relevance to the conclusion. 

Notice that the fallacy would remain unchanged if the actor merely urged us to take a test drive. The 
fallacy is committed whenever we reason merely by the form: 

X says that P 
. P. . . 

It doesn't matter whether the results are beneficial, harmful, or neither. 
Testimonials usually exploit fame or notoriety rather than special knowledge. But this doesn't have 

to be the case. Suppose Nielsen or Costner urged aspiring thespians to enroll at the Jack Webb actor's 
school. Since Nielsen and Costner are both successful actors, t,his opinion (like the physics community's 
endorsing E = mc2) would thereby gain some relevance. As a general rule, an appeal to authority is 
relevant (and hence reasonable) in proportion to the reliability of thc authority in the field in which the 
appeal is made. 

A d  p o p u l u n ~  arguments (appeals  t o  the people)  occur when we infer a conclusion merely on the 
grounds that most people accept i t .  This fallacy has the form: 

X says that P 

. . . P. 

which makes it analogous to appeal to authority. However, the 'X' in this case stands for majority 
opinion, not the views of a specialized (or glamorous) person or minority. 

SOLVED PROBLEM 

8.15 Why is this appeal to popular belief illegitimate? 

Everybody believes that premarital sex is wrong. 
:. Premarital sex is wrong. 

Solution 

The issue is not whether "everybody" in fact believes this (though that premise is in fact 
f'alse), but what we may infer from such a premise. The argument fails t o  establish any relevant 
connection between premises and conclusion and hence it is fallacious. 



FALLACIES [CHAP. 8 

Ignoratio elenchi (missing the point) occurs when the premises of an argument warrant a different 
conclusion from the one the arguer draws. This can be very embarrassing, especially if the conclusion 
which does follow contradicts or undermines the one actually drawn. The expression "missing the 
point" is also used as a general catchphrase to describe the fallacies of relevance. However, we shall 
reserve it for the precise mistake just mentioned. 

SOLVED PROBLEM 

8.21 What point does the arguer miss? 

Any amount of inflation is bad for the economy. 

Last month inflation was running at an annual rate of 10 percent. 
This month the inflation rate is only 7 percent. 

:. The economy is on the upswing. 

Solution 

Given the premises, what follows is only that the rate of inflation is slowing down. Inflation 
is still occurring (i.e., things are still getting worse), but more slowly than before. This is very 
different from maintaining that the economy is improving; indeed, it suggests the opposite 
conclusion. 

Missing the point can be devastating, because it implies that the arguer doesn't understand what he or 
she is saying. Not all cases of missing the point have a conclusion that is in some sense opposite to what 
the premises license. But all do involve drawing the wrong conclusion, one which the premises fail to 
authorize. 

A red herring is an extraneous or tangential matter used purely to divert attention away from the 
issue posed by an argument. (The phrase stems from a method used to train hunting dogs to track down 
a scent.) Because it is irrelevant, a red herring contributes nothing to an argument, though it may 
mislead its audience into thinking otherwise. Red herrings are rhetorical devices. They enable those 
who use them to mask other defects hampering an argument, and thus to evade the real issue. 

SOLVED PROBLEM 

8.22 What is wrong with this argument? 

Some members of the police force may be corrupt, but there are corrupt politicians, 
corrupt plumbers, corrupt salespeople, and even corrupt preachers. 
There are also lots of honest cops on the job. 

:. Let's put police corruption in perspective (the implication being, of course, that police 
corruption is not as bad as it may seem). 

Solution 

Rhetorical grandiloquence is here employed to throw us "off the scent" of the real issue, 
which is what to do about police who accept bribes. The argument attempts to lull its audience 
into complacency about this issue. Notice that the first premise contains a whiff of tu quoque. 
(Why single out police for punishment? Corruption exists in all walks of life.) The second 
premise invites us to feel sympathy for honest police officers who are beleaguered by the bad 
reputation of their brethren (another diversionary tactic). Furthermore, the real conclusion 
(that police corruption is not as bad as it may seem) is not explicitly stated, so that we are less 
inclined to notice that the premises are irrelevant to it. 
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8.3 CIRCULAR REASONING 

Circular reasoning (also called petitio principii and begging the question) occurs when an argument 
assumes its own conclusion. Such an argument is always valid (since if the assumptions are all true, the 
conclusion must surely be true!). And it is not lacking in relevance (for what could be more relevant 
to a statement than that statement itself?). Furthermore, if all the assumptions happen to be true, the 
argument is actually sound. But it is useless as a means of proving its conclusion. To see this, we must 
consider the context of the argument. Either the argument is offered in a context in which the 
conclusion is already known to be true (in which case there. is no point in trying to prove it), or it is 
offered in a context in which the conclusion is doubtful. But: if the conclusion is doubtful, then so (to 
precisely the same degree) is the assumption which is identical to it. An argument which employs 
doubtful assumptions (even if they are, unbeknownst to us, true) provides no more credibility for its 
conclusion than its premises already have (see Section :2.2). Hence, in neither context does a 
question-begging argument advance the credibility of its con.clusion. 

Some authors use the term 'begging the question7 in a very broad sense, to designate any reasoning 
based on disputed premises. We shall insist, however, that the disputed premise be the conclusion 
itself-or at least a statement very closely related to it (see Problem 8.24, below). In practice, 
question-begging arguments are usually disguised, either by restating one of the premises in different 
words as the conclusion or by keeping one of the two identical statements implicit. 

SOLVED PROBLEMS 

8.23 Analyze the mistake in the following argument: 

Public nudity is immoral because it is just plain wrong. 

Solution 
The premise is 'Public nudity is just plain wrong' and the conclusion is 'Public nudity is 

immoral'. These two sentences say basically the same thing. The argument therefore begs the 
question. We can see the structure of the argument clearly by diagraming it as in Chapter 1. 
Since the conclusion and the premise are really the same proposition, we give them the same 
number (I),  so that the diagram looks like this: 

or, perhaps more illuminatingly, like this: 

which provides a graphic illustration of the argument's circularity. 

8.24 Analyze the mistake in this argument: 

Capital punishment is justified. For our country is full of criminals who commit 
barbarous acts of murder and kidnapping.. And it is perfectly legitimate to punish such 
inhuman people by putting them to death. 

Solution 
This argument argues for the conclusion that capital punishment is justified by assuming 

that it is legitimate to put certain criminals to dea.th. Obviously these two statements say the 
same thing, even though the alleged truth of the latter is psychologically strengthened by the 
statement of the other premise. So the argument begs the question. This can be made explicit 
by bracketing and numbering the statements of the argument as in Chapter 1: 



FALLACIES [CHAP. 8 

@ [Capital punishment is justified.] For @ [our country is full of criminals who commit 
barbarous acts of murder and kidnapping.] And @ [it is perfectly legitimate to  punish 
such inhuman people by putting them to death.] 

W e  could then diagram the argument in either of the ways indicated below: 

It is also possible to regard the statement that it is legitimate to  put criminals to  death as a 
restatement of the conclusion, rather than a premise. In that case the argument is not 
question-begging, but premise 2 fails to provide logical support for the conclusion. 

Question-begging epithets are phrases that prejudice discussion and thus in a sense assume the very 
point at issue. Often they suggest an ad horninem abusive attack: 'godless communist', 'knee-jerk 
liberal7, 'bleeding heart7, 'Neanderthal conservative', 'reactionary', 'bra burner', 'redneck'. They need 
not, however, be part of a question-begging argument. They often amount to nothing more than 
name-calling. 

Complex questions are a rhetorical trick somewhat akin to question-begging arguments. The 
question 'Have you stopped beating your spouse?', for example, presupposes an answer to the logically 
prior question 'Did you ever beat your spouse?'. If this implicit question has not been answered 
affirmatively, then the original question is illegitimate, a verbal trap to lure the unwary. It is illegitimate 
because it presupposes what has not been established, namely, that the person being questioned has 
beaten his or  her spouse. A complex question, of course, is not even a statement, let alone an argument. 
But its resemblance to question-begging arguments invites brief comment. 

8.4 SEMANTIC FALLACIES 

Semantic fallacies occur when the language employed to express an argument has multiple 
meanings or is excessively vague in ways that interfere with assessment of the argument's cogency. 

Ambiguity (or equivocation) is multiplicity of meaning. Most words and many phrases have more 
than one meaning. This alone does not inhibit understanding, since context usually makes the intended 
meaning clear. We expect 'ball' to mean something different at an outdoor stadium from what it means 
inside a dance pavilion. When we call someone a dummy, we don't mean that he or  she is made of 
wood. 'Puppet on  a string' has figurative as well as literal connotations. 

Despite contextual cues, ambiguity can sometimes cause trouble. Relatively abstract terms such as 
'right' and 'law' are prime candidates for troublesome equivocation, because we tend to run their 
different meanings together. A political right is not the same thing as a legal or moral right-or as the 
political right (i.e., conservativism). These senses of 'right7, in turn, are distinct from 'right' as a 
synonym for truth. A law of physics is not a law in the  same sense as a socially instituted law. 

Ambiguity generates fallacies when the meaning of an expression shifts during the course of an 
argument, causing a misleading appearance of validity. 

SOLVED PROBLEM 

8.25 Evaluate the following argument: 

It is silly to  fight over mere words. 
Discrimination is just a word. 

:. It is silly to  fight over discrimination. 
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Solution 
In this context 'discrimination' can have one of two meanings: (1) action or policy based on 

prejudice or partiality or (2) the word 'discrimination' itself. (In the latter case, the word should 
in fact be enclosed in quotation marks, as explained in Section 1.6; but unfortunately, many 
people ignore that convention.) Now if we take 'discrimination' to mean the word itself in both 
its occurrences, there is no fallacy, and the argument is valid and perhaps even sound. (It seems 
a bit odd, however, to speak of fighting over this word.) On the other hand, if we take 
'discrimination' in both its occurrences to mean discriminating action or policy, then although 
the argument is again valid, the second premise is certainly false; hence the argument fails. What 
seems most likely, however, is that the arguer intended 'discrimination' to mean the word in the 
premise and the action or policy in the conclusion. In that case, the premises may both be true, 
but they are irrelevant to the conclusion and the argument is invalid. However, confusion with 
the other two interpretations can give rise to a deceptive appearance of both relevance and 
validity. Under this third interpretation, the arguer commits a fallacy of ambiguity. 

Our analysis of this example made reference to several different interpretations and judged the 
argument differently under each. Ambiguous reasoning frequently requires such treatment. No single 
interpretation can lay claim to being the argument that is really expressed unless we have conclusive 
evidence that the arguer intended it and not the others. In the absence of such evidence, careful analysis 
requires attention to all plausible interpretations. In fact, there is yet a fourth possible interpretation 
of the argument in Problem 8.25 that we did not consider, the interpretation under which 
'discrimination' means the action or policy in the second premise and the word in the conclusion. This 
interpretation is so implausible, however (since it makes the second premise both false and irrelevant 
and invalidates the reasoning), that it can safely be ignored. 

Amphiboly is ambiguity at the level of sentence structure, i.e., ambiguity not traceable to any 
particular word in a sentence but to the way the words are assembled. One logically troublesome source 
of amphiboly is the occurrence of both universal and existential quantifiers in the same English 
sentence. As noted in Section 6.2, this generates ambiguity that can be represented in predicate logic 
by changing the relative scopes of the quantifiers. For example, the sentence 'Some number is greater 
than any number' has two meanings: 

(1) For any number x, there is some number or other (not necessarily the same in each case) which 
is greater than x. 

(2) There is some number y which is greater than all numbers.' 

Notice that this duality of meaning is not traceable to any single ambiguous word in the original 
statement, but is instead a product of that statement's structure. Under interpretation 1, the statement 
is true. For every number x, there is a greater number: x + 1, for example. But under interpretation 2 
it is false. For interpretation 2 implies that y is greater than itself (since y is greater than all numbers and 
is itself a number), which of course is impossible. 

SOLVED PROBLEM 

8.26 Evaluate the following argument: 

Some number is greater than any number. 
:. Some number is greater than itself. 

'Using 'N' for 'is a number' and 'G' for 'is greater than', these can be represented respectively in predicate logic as follows: 

(1) Vx(Nx - 3y(Ny & Gyx)) 

(2) 3y(Ny & Vx(Nx - Gyx)) 

Notice the shift in relative positions of the quantifiers. 
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Solution 

The premise is amphibolous in the way indicated above. Under interpretation 1, the 
premise is true, but the inference is invalid (obviously, since the conclusion is false). And under 
interpretation 2, the inference is valid but the premise is false. Hence under no interpretation 
is the argument sound. 

Vagueness is indistinctness of meaning, as opposed to multiplicity of meaning. Consider this 
variation on Problem 8.17: 

SOLVED PROBLEM 

8.27 What is wrong with this argument? 

Discriminating palates prefer wine x. 

I have a discriminating palate. 

I should drink wine x. . . 

Solution 

This version (in contrast to  the version of Problem 8.17) is valid, and the premises are 
relevant to  the conclusion. However, the meanings of the premises are so indistinct that their 
truth is in question. Exactly what is a "discriminating palate," and who (besides the arguer) has 
one? Anyone who likes wine x? That would be a criterion, but it would be question-begging. In 
advertising, the meanings of words are often left indistinct so that consumers may interpret 
them in whatever way they find most flattering. But that is not the end of a vagueness here. Even 
if we could decide who has a "discriminating palate," to  what things are such people supposed 
to  prefer wine x? To all other wines? To the cheapest wines? To rotten meat? Unless these 
questions are answered, nothing definite has been asserted. We cannot tell whether or not the 
premises are true, and so we should not accept the argument. 

A n  extreme version of vagueness is doublethink, in which every sentence cancels out its 
predecessor and contradicts its successor. George Orwell's novel 1984 describes a fictional society 
(Oceania) whose rulers invent a language (Newspeak) which operates on this self-destructive principle. 
Newspeak is also a systematized form of lying in which every utterance is unverifiable. There is no  
access to facts except through distorted records, all composed in Newspeak. The aim of Newspeak is to 
make thought, and therefore dissent, impossible. The fraud underlying Newspeak cannot be  grasped, 
even by the officials who introduce and maintain it. Orwell's concepts have inspired considerable 
research into the extent to which everyday conversation, scientific jargon, and military, political, 
corporate, and bureaucratic discourse in contemporary society incorporate elements of Orwellian 
doublethink. 

Accent refers to emphases that generate multiple (and often misleading) interpretations. 
Newspaper headlines, contractual fine print, commercial "giveaways," and deceptive contest entry 
forms are frequent sources of fallacies of accent. 

SOLVED PROBLEM 

8.28 Why is this newspaper headline deceptive? 

STUDENTS DEMONSTRATE 
New Laser Beam Techniques 

Used to Retrieve Coins from Vending Machines 
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Solution 
The first line encourages the reader to believe that (college?) students are engaged in 

political protest. The second makes us expect a major scientific breakthrough. The third again 
forces us to reinterpret the entire message. Reliance on the first line or first and second lines 
alone leads to erroneous conclusions. To draw such conclusions is to commit the fallacy of 
accent. 

8.5 INDUCTIVE FALLACIES 

Inductive fallacies occur when the inductive probability of an argument (i.e., the probability of its 
conclusion given its premises) is low, or at least lower th~an the arguer thinks it is. (For a general 
discussion of inductive probability, see Section 2.3.) 

Hasty generalization means fallaciously inferring a conclusion about an entire class of things from 
inadequate knowledge of some of its members. Hasty gentx-alizations are usually fallacious statistical 
or inductive generalizations (two common inductive forms discussed in Sections 9.3 and 9.4, 
respectively). Occasionally, the term is used in a broader sense, to describe any fallacious extrapolation 
from observed to unobserved data. 

SOLVED PROBLEM 

8.29 Evaluate the following argument: 

Last Monday I wrecked my car. 
The Monday before that my furnace broke. 

:. Bad things always happen to me on Mondays. 

Solution 
The inductive probability of this argument is extremely low. Two bad events on two 

Mondays are hardly sufficient to warrant a sweeping conclusion about all Mondays. This is a 
fallacy of hasty generalization. 

Hasty statistical generalizations often stem from biased, unrepresentative, or inadequate sampling 
techniques. This is a problem for social scientists, pollsters, and survey takers. Insufficient observation 
is another source of hasty generalization. What we regard as true of the world may reflect only our 
limited experience. 

Faulty analogy is an inductive fallacy associated with analogical reasoning. In analogical reasoning 
we assert that object x has certain similarities with object(s) y ,  and that y has a further property P. We 
then conclude that x has P. This form of reasoning sometimes has a fairly high inductive probability. For 
example, we may reason that since rats have many relevant physiological similarities to human beings, 
and since a certain chemical has been shown to cause cancer in rats, that same chemical is likely to cause 
cancer in humans. The inductive probability of analogical reasoning depends quite sensitively, however, 
on the degree and relevance of the similarity.? If the similarity is slight or not particularly relevant, then 
a fallacy is likely to result. 

SOLVED PROBLEM 

8.30 Is this analogical argument a good one? 

The American colonies justly fought for their independence in 1776. 
Today the American Football Alliance is fighting for its independence. 
The Alliance's cause is just too. . . 

2 ~ t  depends as well on other factors, such as the relative strengths of the premises and conclusion; these additional factors are 
discussed more thoroughly in Chapter 9. 
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Solution 
No. The disputes surrounding the Revolutionary War included religious liberty, repressive 

taxation, quartering of troops, and national sovereignty, whereas the (imagined) football 
alliance presumably seeks the right to compete for players, customers, and lucrative television 
contracts. The analogy is extremely weak at best. The two causes really have little in common, 
except for the word 'independence' and the aura it promotes. As a result, the argument has 
quite a low inductive probability (which is not, of course, to say that its conclusion is false; the 
alliance's causes may well be just, even though this argument for it is weak). Anyone who offers 
such an argument thinking that it lends much support to its conclusion thereby commits the 
fallacy of faulty analogy. 

The gambler's fallacy is an argument of the form: 

x has not occurred recently. 
:. x is likely to happen soon. 

This sort of reasoning is fallacious if 'x' designates a type of event whose occurrences are more or less 
independent (i.e., one occurrence of which does not affect the likelihood of others). Separate 
occurrences of rain or of a favored outcome in a game of chance, for example, are independent events. 
The fallacy gets its name from the propensity of gamblers who have had a run of bad luck to think "my 
luck is bound to change soon." 

SOLVED PROBLEMS 

8.31 Explain the fallacy in the following argument: 

On each of the last ten throws, this coin has come up heads. 
:. If tossed again, it is almost certain to come up tails. 

Solution 

This is an instance of the gambler's fallacy. If the coin in question is fair, then the tosses are 
independent events, and the probability of tails on the next toss is .5, regardless of what has 
happened in the past. A long string of heads, however, may provide evidence that the coin or 
the method by which it is tossed is not fair, but biased in favor of heads. In that case, the 
probability of tails on the next toss is even less than .5. In neither case does a run of heads 
increase the probability of tails on a succeeding toss. 

8.32 Why is this not an instance of the gambler's fallacy? 

This clock chimes every hour. 
It has not chimed for roughly 57 minutes. 

:. It is bound to chime soon. 

Solution 
The chimings are not independent events, but are dependent on one another in the way 

indicated by the first premise. This argument commits no fallacy. 

'False cause' is a term covering a variety of logical sins. Most simply, it means confusing a cause with 
an effect. But it may also mean offering an immediate causal explanation for an event without 
considering alternatives. Another variant is post hoc ergo propter hoc (after this, therefore because of 
this-often abbreviated to post hoc), in which a causal relationship is inferred merely from the temporal 
proximity of two or more events. What is common to all false-cause fallacies is that their conclusions 
are causal claims which are inadequately supported by their premises. (For a discussion of how causal 
conclusions may be adequately supported see Section 9.6.) 
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SOLVED PROBLEMS 

8.33 What is wrong with the following argument? 

Every prophet or messiah is a charismatic leader. 

:. The exercise of talent for leadership is a road to religious inspiration. 

Solution 

Even if the premise were true (which is doubtful), it would not make the conclusion 
probable. A correlation between leadership and inspiration does not mean that leadership 
causes inspiration. In this case, it  is obviously far more likely to be the other way around: the 
religious inspiration motivates the leadership. But even that is not a foregone conclusion. There 
are yet other logical possibilities. Perhaps some independent third factor (genetic, social, or even 
supernatural) is responsible for each of these two qualities. Or  perhaps the correlation is a 
coincidence. Nothing in the premise rules out amy of these possibilities, and so the probability 
of the conclusion, given the premise, is quite low. 

8.34 Evaluate this argument: 

Johnny 'Touchdown is a great athlete. 

Johnny 'Touchdown takes amphetamines regularly. 

:. Amphetamines help make Johnny a great athlete. 

Solution 

Again we have a correlation of two factors, but no evidence to indicate that this correlation 
is causal. The probability of the conclusion, given the premise, is low. In this case, the argument 
also suppresses important evidence (see Section 2.5), since it is common knowledge that 
although amphetamines may temporarily help to combat fatigue, they do not enhance playing 
performance; in the long run they actually impair it. 

8.35 Evaluate this reasoning: 

The patient became violently ill immediately after eating lunch. 

There were no signs of illness prior to eating, and she was in good spirits during the 
meal. 

She is in good health overall, and her medical history shows no record of physical 
problems. 

:. She was the victim of food poisoning. 

Solution 

This is essentially a case of post hoc reasoning. Though the premises do tell us a bit more 
than just that the illness occurred right after lunch, the information they contain is hardly 
sufficient to render the conclusion very probable. We need to know more. The patient should 
be carefully examined. It would help to inspect o'r analyze the food she ate. We would also want 
to know whether anyone else who ate the same food (or used the same dishes, utensils, or 
serving bowls) has become il l .  Even so, there is a variety of alternative explanations (cardiac 
arrest, stroke, asphyxiation, or sudden onset of a disease which has undergone a prior 
incubation period) available to the physician. 

However, two important qualifications need to be made with respect to this example. First, 
to  label the reasoning post hoc (a variety of false cause) is not to say that its conclusion is false. 
In this sense 'false cause' is a misnomer. It means merely that the evidence contained in the 
premises does not by itself make the conclusion very probable. Second, although the argument 
does not support its conclusion very well, it may nevertheless be prudent to consider it in 
deciding what action to take. The physician must make a fast decision; the patient's life may 
depend on it. Though not yet well confirmed, food poisoning is in this case a reasonable 
tentative hypothesis (though there are others as well). I t  might, for example, be a good idea to 
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pump the patient's stomach. If this tentative hypothesis proves wrong, the patient will undergo 
acute but short-term discomfort. I f  it proves right, the patient's life may be saved. It would be 
a mistake, however, to  act as if food poisoning were the only reasonable explanation. Heart 
attacks, for example, may follow a similar pattern. If  the patient were having a heart attack, it 
would be a grave mistake to  do  nothing but pump her stomach. 

In  addition to the fallacies discussed above, the fallacy of suppressed evidence is often classified 
as an inductive fallacy. This is the fallacy of ignoring evidence bearing negatively on an inductively 
inferred conclusion. It is, however, unlike the other fallacies discussed in this section, in that it may 
occur even if the argument's inductive probability is quite high and is not overestimated by the 
arguer. The fallacy of suppressed evidence was discussed in Section 2.5 and will not be  considered 
further here. 

8.6 FORMAL FALLACIES 

Formal fallacies occur when we misapply a valid rule of inference or else follow a rule which is 
demonstrably invalid. A n  invalid rule of inference is an argument form that has some invalid instances. 
Thus in identifying formal fallacies, i t  is not sufficient simply to show that an argument has an invalid 
form. If a formal fallacy is suspected, it is important to ascertain both that the rule on which the 
reasoning seems to be based is invalid (by using the methods of formal logic) and that the argument 
itself is invalid. Typically we show that the argument itself is invalid by finding a counterexample, an 
actual or  logically possible case in which the prcmises of the argument are true and its conclusion 
is false. 

SOLVED PROBLEM 

8.36 Is a formal fallacy committed in the following argument? 

If it rains heavily tomorrow, the game will bc postponed. 
It will not rain heavily tomorrow. 

:. The game will not be postponed. 

Solution 

Yes. The argument has an invalid form: 

and is itself invalid. The invalidity of the form can be verified by truth tables or refutation trees 
(Chapter 3). We can see that the argument itself is invalid by finding a counterexample. A 
counterexample for this argument is a situation in which the premises are both true (i.e., if it 
rains heavily tomorrow, the game will be postponed; but it's not going to  rain heavily tomorrow) 
and yet the conclusion is false. There are a number of ways in which the conclusion could be 
false (i.e., the game will be postponed) under these conditions. Perhaps it will snow heavily 
tomorrow, so that the game will be postponed because of snow. Perhaps the visiting team will 
miss its incoming flight, so that the game has to be postponed for that reason. These possibilities 
are counterexamples, and there are many others as well. The arguer has simply made a mistake 
in reasoning, supposing that the conclusion validly follows from these premises when in fact it 
does not. 

The invalid rule by which the arguer of Problem 8.36 reasoned is called denying the antecedent, and 
an invalid argument which has this form is said to commit the faNacy o f  denying the antecedent. The 
name comes from the second premise. In denying the antecedent, there is always a conditional premise 
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The converse of the fallacy of composition is the fallacy of division. Whereas in composition we 
invalidly impute characteristics of the parts to the whole, in division we invalidly impute characteristics 
of the whole to the parts. This fallacy has the following form: 

w has property F. 
p,, . . ., p, are parts of w .  

:. pl ,  . . ., p, have property F. 

SOLVED PROBLEMS 

8.41 Evaluate this argument: 

This book is written in English. 
Every sentence in this book is in English. . . 

Solution 
Fallacy of division. (The obvious assumption that the sentences of the book are parts of the 

book is suppressed.) A counterexample is that though the book is written in English, one or 
more sentences (e.g., quotations) may be in another language. Notice, however, that the 
converse argument (which has the form of fallacies of composition) is valid: 

The sentences of this book are parts of this book. 
Every sentence of this book is in E n g h h .  
This book is in English. . . 

8.42 Evaluate this argument: 

California is in the United States. 
Los Angeles and San Francisco are in California. 

:. Los Angeles and San Francisco are in the United States. 

Solution 
This argument has the form of fallacies of division, but it is not fallacious. It is in fact 

sound. 

8.7 FALLACIES OF FALSE PREMISES 

Fallacies of false premises are mistakes of just the sort the name suggests. So arguments that 
commit this fallacy may be valid, but are never sound. One: common instance is the false dichotomy. 
This fallacy is committed when we make the false assumption that only one of a number of alternatives 
holds. 

SOLVED PROBLEM 

8.43 What is wrong with the following argument? 

Either you're with us or you're against us. 
You're not with us. 

:. You must be against us. 

Solution 
In many contexts, the first premise would be false. There is a third option-namely, the 

option of remaining neutral in the (unnamed) issue at hand. Notice that the reasoning is 
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perfectly correct. The argument is an instance of disjunctive syllogism and is therefore valid. 
Moreover, the premises are quite relevant to the conclusion. The mistake, then, is merely the 
falsity of the tirst premise. 

A slippery slope fallacy occurs when the conclusion of an argument rests upon an alleged chain 
reaction, suggesting that a single step in the wrong direction will result in a disastrous or otherwise 
undesirable outcome. We may represent this form of reasoning as follows: 

A,, -+A,,+, 
It should not be the case that A,,,,. 
It should not be the case that A , .  . . 

The phrase 'it should not be the case that' is to be understood in a moral sense (and hence is an 
operator of deontic logic; see Section 11.7). Although this form may seem valid, in fact its validity 
depends on the interpretation of the conditional operator '+' and the way i t  interacts with the deontic 
~ p e r a t o r . ~  However, the fallacy usually labeled "slippery slope" is a problem not only with the validity 
of such reasoning, but also with the truth of its premises. That is why we include slippery slope in this 
section rather than the previous one. The examples below illustrate both problems. 

SOLVED PROBLEMS 

8.44 Criticize the following argument: 

I f  you step on a crack, you break your mother's back. 

If  you break your mother's back, you commit a moral outrage. 

You should not commit a moral outrage. 

:. You should not step on a crack. 

Solution 

This is a transparent slippery-slope fallacy. The first premise is false. The second may be as 
well, since breaking your mother's back by accident would not be a moral outrage. Moreover, 
depending on the interpretations of thc conditionals, the argument may be invalid in a rather 
subtle way. Imagine a sccnario in which you are going to break your mother's back, but not as 
a result of stepping on a crack. That is, you are going to  do it whether you step on a crack or not. 
Then, under certain interpretations of ' i f .  . . then' (the material interpretation, for one), the first 
premise is true. Suppose the other premises are true as well. Still, it may be false that you should 
not step on a crack, since stepping on a crack does not actually result in breaking your mother's 
back. Thus under certain interpretations of ' i f .  . . then', the argument has a counterexample and 
is therefore invalid. 

4The conditional operator has several possible meanings. So far wc hilve discussed only one. the material conditional (Section 
3.1); others are mentioned in Section 11.7. However, n full discussion of thc varieties of conditionals would involve technicalities 
that are beyond the scope of this hook. 
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8.45 Consider this argument: 

If Paul comes back to Old Bricks, Mary will certainly go away. 
If Mary goes away, then Sue will certainly accept her job offer and move to Chicago. 
If Sue moves to Chicago, her best friends will go away too. 
If they go, then eventually every single person will abandon Old Bricks. 

We should not allow that to happen. 
:. Paul should not come back. 

Solution 

This is reminiscent of the so-called "domino theory", which was often used in an attempt 
to justify American involvement in the Vietnam war. (The arguer would hold that pulling out 
of Vietnam would result in the fall of Vietnam to communism, which would start a chain of 
events leading to the fall of all neighboring countries, like the fall of a series of domino pieces.) 
This is not a transparent slippery-slope fallacy, since it is by no means easy to assess the truth 
of the premises. No time limit is specified, and it is impossible to establish in advance whether 
the predictions are correct. It would be a mistake, however, to accept any of these premises 
uncritically. 

Moreover, as in the previous problem, the argument may have invalid interpretations. To 
see this, suppose that every single person will eventually abandon Old Bricks for some reason 
or other, regardless of Paul's whereabouts. Then the conditional premises would all be true, at 
least according to the material interpretation. We may also agree on the last premise for the 
sake of the argument. Yet the conclusion could still be rejected. If Paul's decision is not going 
to halt the inevitable exodus from Old Bricks, then perhaps his coming back is for the 
best-somebody at least will live there. This is a logical point about the validity of the argument, 
not a factual or historical claim. In considering this sort of counterexample, we are saying not 
that things are fated to happen in this way, but that whether they are or are not must be carefully 
considered in evaluating the argument. As with the domino theory about Vietnam, closer 
consideration of the facts and circumstances is necessary to determine the truth of the matter. 
We should leave that to the historians. 

Supplementary Problems 

Rewrite the arguments below in standard form, and discuss the fallacy or fallacies (if any) committed in each. If 
there is no explicit argument but the passage seems to suggest one, write the suggested argument in standard form 
and evaluate it. 

(1) Marriages are like playing the horses. Some are sure things, while others are losers going out of the 
gate. The moral is, check out the contestants before you place your bets. 

(2) Every fish in this lake was biting when I baited my hooks with fresh worms two weeks ago. Fresh 
worms should enable me to catch many fish again today. 

(3) How dare you criticize my logic? You commit fallacies every time you write a paper or turn in an 
exam. 

(4) Sarah Socket recommends Louella Balsam shampoo. Sarah is a very popular actress. Therefore, I 
ought to try her shampoo. 

(5) Those who don't fight communism help it along, and Jones isn't fighting communism. 

(6) If the government doesn't stop terrorism now, it will eventually spread all over the world. If it 
spreads all over the world, there will be a nuclear conflagration. We can't have that. Therefore, the 
government must halt terrorism now. 

(7) Enormous State has the best graduate and undergraduate programs on the entire continent. 
Therefore, it is the best school on the continent. 
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There is no definite link between smoking and lung cancer, despite the surgeon general's report and 
years of scientific studies. Therefore smoking is not harmful to your lungs. 

Dante, Leonardo da Vinci, and Fellini were all Italian. They were also great artists and writers. 
Clearly, Italians are more creative than the general population. 

If we don't agree to the city's new rent proposal, the city will condemn the land and evict us. 
Therefore, we ought to sign the contract today. 

I decided not to join BEST after I discovered that the founder of the organization is a former 
used-car salesman. That told me everything I needed to know about BEST. Don't become a 
member. 

God has a providential plan for humankind. We know this because we know that God is real. And 
we know that God is real because providence is real. 

Every time I eat at Joe's Diner I get sick. I'm going to stop eating there. Then I won't get sick 
anymore. 

Nuclear weapons have not been used since 1945. Therefore, the danger of their use is currently 
very high. 

Nuclear weapons have not been used since 1945. Therefore, it is unlikely that they will ever be used 
again. 

When did you embezzle the company's pension funds? 

Once you legalize abortion, inevitably you wind up with child pornography, child abuse, and abuse 
of the aged. Complete lack of respect for life breeds complete lack of respect for the living. 
Therefore, we must outlaw abortion. 

I'm having so much fun on my vacation, I'm beginning to get nervous. Something is bound to go 
wrong before my trip is over. 

Since World War 11, most Americans have lived in cities. After 1946, most Americans began eating 
processed cereal for breakfast. Therefore, the move to the city was responsible for changes in 
American dietary behavior. 

As long as I'm paying your college tuition, you won't be allowed to major in philosophy. You should 
major in business or suffer the consequences. Since you know what's good for you, I'm sure you'll 
follow my advice. 

We have a tradition of satisfied customers. No one has ever complained about our service. If you're 
in the market, stop by our showroom. You won't regret making your next purchase here. 

Eating this piece of pie now is good for my digestion. Therefore, eating an entire pie at  once is good 
for my digestion. 

Officer, I was only driving three miles over the speed limit. That's hardly breaking the law. Besides, 
the car in the next lane over was zooming much faster, yet you pulled me over. I don't deserve a 
speeding ticket. 

Since we are purposeful creatures and we are parts of the universe, the universe must be purposeful 
as well. 

Since the universe as a whole lacks purpose and we belong to the universe, our perception of being 
purposeful must be a mere illusion. 

In T h e  Second Self, Sherry Turkle claims that both children and professional "hackers" personify 
computers, treating machines as though they were human beings endowed with feelings and 
thoughts. This research shows that "hackers" have the same mentality as children. 

If Darwin's theory of evolution was correct, then his own remote ancestors were apes. This proves 
how absurd Darwin's theory is. 

I should never watch the Yankees on TV. Whenever I do, they lose. 

If the murder weapon was a gun, police should have found powder marks in the vicinity of the body. 
The police found several powder marks on the carpet near where the victim fell. Therefore, the 
murder weapon was a gun. 
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Limp-wristed, quiche-eating Californians are incapable of serious thought. To learn anything about 
politics or  the real world, talk to a New Yorker. 

Logicians claim that the study of argument is an indispensable part of everyone's education. Since 
this helps to  keep them employed, it's not surprising that they endorse such views. Let's not be 
influenced by thinking which does not represent the majority of students, parents, or  teachers 
themselves. 

Timmy the Sheik thinks the Bears will repeat in the Super Bowl. So I've already asked my bookie 
to  put $500 on the Bears next January. By the way, did you catch Timmy's one-minute spot for the 
American Cancer Association? He's right. The odds are against you if you smoke. I'm quitting 
cigarettes today. 

A n  exhaustive survey of the class of 2000 revealed that 81 percent believe in God, 91 percent believe 
in t.he importance of family life, and 95 percent respect both of their parents. This survey also showed 
that over three-fourths (77 percent) of entering students placed "having a professional career" high 
on the list of their objectives. Clearly, the return to traditional American moral values is responsible 
for the new vocational emphasis among our college-age youth. 

We  cannot allow our school system to become bilingual. If we permit instruction in either of two 
languages, what's to  prevent introducing a third or a fourth? Besides, how can we in good conscience 
tell representatives of one ethnic community that their language isn't good enough to be taught in 
the schools, when we've already decided to grant somebody else's children that very privilege? 
Consequently, we should remain monolingual. 

Television watching is directly to blame for the alarming decline in literacy. In the United States, the 
average person (adult or  child) stares at the tube for 6.5 hours every day of the year. No  other 
activity except sleep consumes so much time. Moreover, television is passive, requiring no thought 
or effort. It allows us to  put our minds at rest. In that respect, TV is no different from sleep, with 
which it almost competes for recreational favor. During those 6.5 hours, the idiot box hypnotizes us 
and dulls our critical awareness of the world; it makes us incapable of thought and reason. Small 
wonder that Americans can no longer read and write; apart from everything else, T V  drains all their 
leisure time. 

In the ruin of a family, its immemorial laws perish; and when the laws perish, the whole family is 
overcome by lawlessness. And when lawlessness prevails, . . . the women of the family are corrupted, 
. . . [and] a mixture of caste arises. . . . And this confusion brings the family itself t o  hell and those 
who have destroyed it; for their ancestors fall, deprived of  their offerings of rice and water. By the 
sins of those who destroy a family and create a mixture of caste, the eternal laws of the caste and the 
family are destroyed. (The Bhagavad-Gita, I, 40-43) 

It is mistaken to  suppose that two wrongs don't ever make a right. For when we engage in civil 
disobedience to protest against an unjust law, we nominally break the law as soon as we protest, and 
the protest is therefore a second "wrong." Yet sureky civil disobedience is justified in such cases. 
Therefore, two wrongs sometimes do make a right. (Example courtesy of Leo Groarke) 

First offenders usually commit petty theft. Often they isre teenagers, still attending high school. They 
may have done nothing more than go on a high-speed joyride with their companions. They are 
emotionally shaken by the arrest and fingerprinting process, and their parents are quite distraught 
when they learn the news and post bail. For these reasons, law enforcement officers are inclined to  
go easy on first offenders. We agree. Think about the mistakes you made as a teen. Then give a kid 
a break. 

While the nuclear power plant has been shut down since the last radiation leak, local residents are 
still getting their electricity from alternative sources. The good weather and pretty scenery in the 
area, plus ideal shopping and recreation, mean that citizens should not worry excessively about the 
on again, off again status of a single reactor. 

Professor X was fired for refusing to give student athletes passing grades, despite pressure from the head 
football coach. In the Jan Kemp case, decided in 1986 in the Georgia courts, a college administrator 
dismissed for failing student athletes was awarded back pay and damages. Kemp's job was to  teach 
remedial English to members of the football team, whereas X is a nuclear physicist. Yet both were asked 
to compromise their principles. Both refused. Clearly the courts should reinstate professor X and 
compensate him adequately for being willing to  lose hi,s job than compromise his integrity. 
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Answers to Selected Supplementary Problems 

(1) Some horses are sure things, while others are losers going out of the gate. 

Some marriages are sure things, while others are losers going out of the gate. 
You should check out horses before you place your bets. 
You should check out the "participants" in marriage before you place your bets. . . 

This argument commits fallacies of vagueness and false analogy. (We have rewritten it to fit the 
analogical format.) The language of the argument is extremely vague. What does it mean to "place 
your bets on" a marriage'? Who does this? The couple themselves'? Onlookers? Relatives? What sort 
of marriage is a "loser"? Moreover, the analogy is weak and not clearly relevant to the conclusion 
(mainly as a result of the conclusion's vagueness). The homely advice contained in the conclusion 
may in some sense be sound, but not for the reasons given by this argument. 

(3) You commit fallacies every time you write a paper or turn in an exam. 

:. Your criticism of my logic is inappropriate. 

(We've replaced the rhetorical question with a statement that approximates its implication.) This is 
a tu quoque variant of the ad hominem fallacy. 

( 5 )  Those who don't fight communism help it along. 

Jones is not fighting communism. 

:. Jones is helping communism. 

False dichotomy. 

(8) There is no definite link between smoking and lung cancer, despite the surgeon general's 
report and years of scientific studies. 

:. Smoking cigarettes is not harmful to your lungs. 

Fallacy of ignorance. Moreover, the premise is false. 

(11) The founder of BEST is a former used-car salesman. 

:. One should not become a member of BEST. 

This is a fallacy of guilt by association, one of the varieties of ad hominem. The organization is 
attacked on the basis of a popular stereotype concerning used-car salesmen. 

(14) Nuclear weapons have not been used since 1945. 
:. The danger of their use is currently very high. 

Gambler's fallacy. There is no evidence that uses of nuclear weapons are events dependent on one 
another in this way. 

(16) This is not an argument, but it is a complex question. 

(17) Once you legalize abortion, inevitably you wind up with child pornography, child abuse, 
and abuse of the aged. 
These things must not occur. 

. We must outlaw abortion. 

This is the nub of the argument. The remaining statement, 'Complete lack of respect for life breeds 
complete lack of respect for the living', is perhaps offered as justification for the first premise. If so, 
then the inference from this statement to the first premise is a simple non sequitur. The portion of 
the argument represented above is a slippery slope whose first premise is certainly questionable and 
whose validity is questionable on deontic grounds as well. 

(21) We have a tradition of satisfied customers. 
No one has ever complained about our service. . 

You won't regret making your next purchase here. 

:. If you're in the market, you should stop by our showroom. 

This argument is not deductively valid, but it is reasonably strong. None of the fallacies discussed in 
this chapter is committed here. 
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(23) There are two arguments with the same conclusion here. The first commits the fallacy of special 
pleading: 

I was only driving three miles over the speed limit. 
That's hardly breaking the law. 

:. I don't deserve a speeding ticket. 

The second commits a tu quoque fallacy: 
The car in the next lane over was zooming much faster, yet you pulled me over. 

:. I don't deserve a speeding ticket. 

(27) If Darwin's theory of evolution was correct, then his own remote ancestors were apes. 
A theory produced by a creature whose remote ancestors were apes is absurd. 

:. Darwin's theory is absurd. 

With the addition of the implicit second premise, the argument is seen to  be question-begging. This 
fallacy is combined with a quaint ad hominem abusive fallacy (as though it were shameful to  be 
descended from apes!). 

(30) Limp-wristed, quiche-eating Californians are incapable of serious thought. 
:. To learn anything about politics or the real world, you should talk to  a New Yorker. 

Ad hominem abusive fallacy with a completely irrelevant conclusion. There is also a hint here of 
false dichotomy. Is the arguer assuming that everyone worth considering is either a Californian or 
a New Yorker? 

(34) This passage suggests two slippery-slope arguments, each with questionable premises: 

If we permit instruction in either of two languages, we may (will?) have to  introduce a third 
or  a fourth. 
We must not introduce a third or fourth language. 

:. W e  cannot allow our school system to become bilingual. 

If we do not remain monolingual, we will have to  tell the representatives of one ethnic 
community that their language isn't good enough to be taught in the schools, when we've 
already decided to  grant somebody else's children that very privilege. 

We cannot in good conscience tell representatives of one ethnic community that their 
language isn't good enough to  be taught in the schools, when we've already decided to grant 
somebody else's children that very privilege. 

:. We should remain monolingual. 

(37) When we engage in civil disobedience to protest against an unjust law, we nominally break 
the law as soon as we protest, and the protest is therefore a second "wrong." 
Surely civil disobedience is justified in such. cases. 

:. Two wrongs sometimes d o  make a right. 

The argument equivocates betwen the legal and moral senses of the term 'wrong'. A n  unjust law is 
morally wrong; justified civil disobedience against an unjust law is legally wrong but morally right. 
A fallacy is committed if the conclusion is intended to mean (as seems likely) that two moral wrongs 
sometimes make a right, since if the term 'wrong' in the first premise is intended in the moral sense, 
then that premise is false. 

(40) Professor X was fired for refusing to give student athletes passing grades, despite pressure 
from the head football coach. 
In the Jan Kemp case, decided in 1986 in the Georgia courts, a college administrator 
dismissed for failing student athletes was alwarded back pay and damages. 
Kemp's job was to teach remedial English to members of the football team, whereas X is 
a nuclear physicist. 
Yet both were asked to  compromise their principles. 

Both refused. 
:. The courts should reinstate professor X and compensate him adequately for being willing 

to  lose his job rather than compromise his integrity. 
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This is an analogical , argument, and the analogy is quite strong and relevant. (There is a disanalogy 
in that X taught physics while Kemp taught English, but that is not a relevant disanalogy.) The 
argument tacitly assumes that the Georgia decision was correct. If that assumption is true and there 
is no suppressed evidence, then this is a good inductive argument. 



Chapter 9 

Induction 

9.1 STATEMENT STRENGTH 

This chapter concerns some common kinds of inductive reasoning. In an inductive argument, the 
conclusion need not follow from the premises as a matter of logical necessity. Rather, in inductive 
reasoning we are concerned with the probability of the conclusion, given the premises, i.e., the inductive 
probability of the argument (see Section 2.3). Since inductive probability depends in turn on the 
relative strengths of the premises and conclusion, we begin with a discussion of statement strength. 

The strength of a statement is determined by what the statement says. The more it says, the stronger 
it is, regardless of whether what it says is true. A strong statement is true only under specific 
circumstances; the world must be just so in order for it to be true. A weak statement is true only under 
a wide variety of possible circumstances; it says nothing very specific, and it demands little of the world 
for its truth. 

SOLVED PROBLEM 

9.1 Some of the following statements are quite strong; the rest are quite weak. 
Distinguish the strong statements from the weak ones. 

(a) There are exactly 200 cities with populations over 100,000 in the United States. 

(b) Something is happening somewhere. 
(c) Something exists. 

(d) Hobbits are humanoid creatures, rare1:y over a meter tall, with ruddy faces and 
woolly toes, that inhabit burrows on hillsides in a land called The Shire. 

(e) If there are any crows, then some of them are male. 

(f) Jim's house is the third house on the left as you turn from Concord Street onto 
Main. 

(g) Every organism now alive has obtained its genetic material from once-living 
organisms. 

(h) Some people are sort of weird. 

(i) Every vertebrate has a heart. 

( j )  It is not true that Knoxville, Tennessee, has exactly 181,379 inhabitants this very 
second. 

Solution 

(a) Strong 

(b) Weak 

(c) Weak 

(d) Strong 

(e) Weak 

(f) strong 

(d Strong 
(h) Weak 

(i) Strong 

(j) Weak 
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Solution 
The inductive probability (and hence the strength) of the argument will be higher the 

weaker we make the conclusion. Conclusion (a) is the strongest of the three conclusions; (b) is 
the weakest. Thus (b) produces the strongest argument and (a) the weakest. 

Strengthening the premises or weakening the conclusion of an argument may not increase the 
argument's inductive probability, however, if we alter their content in a way that disrupts relevance. 

SOLVED PROBLEM 

9.6 Evaluate the inductive probability and degree of relevance of the following 
argument: 

Ninety-five percent of American families have indoor plumbing, a telephone, a 
television, and an automobile. 

The Joneses are an American family. 
:. The Joneses have indoor plumbing, a telephone, a television, and an automobile. 

What happens to inductive probability and relevance if we replace the conclusion with 
the following weaker but less relevant statement? 

(a) The Chun family of Beijing owns at least one automobile. 

What happens if we replace the original conclusion with this weaker but still highly 
relevant statement? 

(b)  The Joneses have indoor plumbing. 

Solution 
The original argument has both high relevance and a fairly high inductive probability, and 

its conclusion is strong. Conclusion (a) is weaker, but when we substitute it for the original 
conclusion both the relevance and inductive probability of the argument decrease significantly. 
If we replace the conclusion by (b), on the other hand, we have weakened the conclusion while 
preserving relevance and thereby created a stronger argument. The inductive probability of this 
new argument is at  least as high as that of the original, and we may reasonably suppose that it 
is somewhat higher. 

Since in practice we are seldom concerned with modifications to premises or conclusions unless 
they preserve relevance, we seldom encounter exceptions to the rule that strengthening premises or 
weakening the conclusion increases inductive probability. 

9.2 STATISTICAL SYLLOGISM 

Inductive arguments are divisible into two types, according to whether or not they presuppose that 
the universe or some aspect of it is or is likely to be uniform or lawlike. Those which do not require this 
presupposition may be called statistical arguments; the premises of a statistical argument support its 
conclusion for purely statistical or mathematical reasons. Those which do require it we shall call 
Hurnean arguments, after the Scottish philosopher David Hume, who was the first to study them 
thoroughly and to question this presupposition. 



CHAP. 91 INDUCTION 

SOLVED PROBLEMS 

9.7 What type of inductive argument is the following? 

98 percent of college freshmen can read beyond the sixth-grade level. 
Dave is ;I college freshman. 

:. Dave can read beyond the sixth-grade level. 

Solution 
This argument is statistical. The conclusion is quite likely, given the premises, on statistical 

grounds alone. (Of course, if there were some evidence that Dave's reading skills were deficient, 
then the conclusion would not be so likely, but that is not a special feature of this argument; all 
inductive arguments are vulnerable to contrary evidence. See Section 2.5.) 

9.8 What type of inductive argument is the following? 

Each of the 100 college freshmen survcyed knew how to spell 'logic'. 
:. If  we ask another college freshman, he or she will also know how to spell 'logic'. 

Solution 
This is a Humean argument. It is clearly nondeductive, since it is possible for its premise to 

be true while its conclusion is false. And it is not statistical, since its inductive probability 
depends on how likely it is that future observations of college freshmen resemble past ones. Any 
estimate of the inductive probability of this argu:ment presupposes an appraisal of the degree of 
uniformity or lawlikeness of certain events-in -this case, events involving the spelling abilities 
of college freshmen. That is the hallmark of a Humean argument. 

I n  the remainder of this section and in Section 8.3, we focus on inductive arguments that are 
statistical. We shall come back to various forms of Humean inference in the second part of this 
chapter. 

The most obvious value for the inductive probability of a statistical argument is simply the 
percentage figure divided by 100. Thus, the inductive probability of the argument of Problem 9.7 is .98. 
At least, this is true according to the so-called logical interpretation of inductive probability. Many 
theorists prefer some version of the so-called subjective interpretation, according to which inductive 
probability is a measure of a particular rational person's degree of belief in the conclusion, given the 
premises. According to the subjective view, the inductive probability of the argument of Problem 9.7 
may deviate from .98, depending on the knowledge and circumstances of the person whose degree of 
belief is being measured. It is not possible to explain the details of these two kinds of interpretations 
here (though some further remarks are made in Chapter 1.0). Instead, we will simply presuppose a 
logical interpretation. 

The form o f  the argument of Problem 9.7 is called statistical syllogism and can be represented as 
follows: 

n percent of F are G. 
x is F. 

:. x is G. 

Here 'F' and '(3' are to be replaced by predicates, 'x' by a name, and 'n' by a number from 0 to 100. The 
inductive probability of a statistical syllogism is@y our logical interpretation) simply n/100. Note that 
in the case in which n = 100, the argument becomes deductive and its inductive probability is 1. For 
n < 50, it is more natural for the argument to take the form: 

n percent of F a r e  G. 
x i s  F. 

. x is not G. 
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We will regard this form too as a version of statistical syllogism. Its inductive probability is 1 - n/100, 
and it becomes deductive whenever n = 0. 

In some cases, the statistics used to draw the conclusion of a statistical syllogism are not numerically 
precise. This is illustrated by the arguments in the next problem. 

SOLVED PROBLEM 

9.9 Evaluate the inductive probability of the following statistical syllogisms: 

(a)  Madame Plodsky's diagnoses are almost always right. 
Madame Plodsky says that Susan is suffering from a kidney stone. 

:. Susan is suffering from a kidney stone. 

(b )  Most of what Dana says about his past is false. 
Dana says that he lived in Tahiti and had two wives there. 

:. Dana did not live in Tahiti and have two wives there. 

(c )  Only a tiny fraction of commercial airline flights end in crashes. 
I will take a commercial airliner to Chicago. 

:. My Chicago flight will not end in a crash. 

Solution 

Each of these arguments has an inductive probability greater than .5, though to  none of 
them can we assign a precise inductive probability. The terms 'almost always' and 'only a tiny 
fraction' in arguments (a)  and (c) indicate very small and very large percentages, respectively. 
These arguments have reasonably high inductive probabilities. 'Most' in argument (6 )  simply 
means more than half; the inductive probability of this argument is therefore only slightly better 
than .5. 

Reasonably high inductive probability, of course, is only one of the criteria an argument must meet 
in order to demonstrate the probable truth of its conclusion. It must also have true and relevant 
premises, and insofar as possible it must satisfy the requirement of total evidence (Section 2.5). The 
premises of a statistical syllogism are automatically relevant in virtue of its form. But they may not be 
true, and they may not be all that is known with respect to the conclusion. 

Argument (a) of Problem 9.9, for example, may well have a false first premise, especially if Madame 
Plodsky is some sort of fortune-teller. It is an argument from authority, whose strength depends on 
Madame Plodsky's reliability. Although we depend on arguments from authority for much of our 
knowledge (i.e., we depend on the fact that much of what others tell us is true), such dependence easily 
becomes fallacious if the authority's reliability is in doubt or contrary evidence is supposed. If the first 
premise, the one asserting the authority's reliability, is omitted, then the argument is no longer a 
statistical syllogism. Its inductive probability drops significantly, and the remaining premise now lacks 
relevance to the conclusion, since in the absence of evidence that the authority is reliable, his or her 
pronouncements are not clearly relevant to the facts. The result is a fallacy of appeal to authority, a 
mistake discussed in Section 8.2. 

Argument (b), in contrast to argument (a), reasons from the unreliability of a person's 
pronouncements. This is a form of ad hominem argument (argument against the person). If the 
premises are true and there is no suppressed evidence, argument (b) is a reasonably good argument. 
However, many ad hominem arguments, instead of addressing the veracity of the person in question, 
attack the person's character, reputation, or circumstances. If, for example, we replaced the first 
premise of argument (b) by the statement 'Dana is a terrorist', then the inductive probability of the 
argument would drop, the premises would lack relevance, the argument would commit an ad hominem 
fallacy (see Section 8.2). Without some premise connecting Dana's alleged terrorist activities to the 
reliability of his pronouncements about his past, this new argument would provide little, if any, support 
for its conclusion. 
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Argument (c) would be a very strong argument if its premises were known to be true and no  
evidence were suppressed. However, there is a subtle probllem here. The conclusion of argument (c) 
concerns a future flight. Does its first premise also concern fut.ure flights, or just flights that have already 
occurred? That is, are we to read the first premise as 

(1) Only a tiny fraction of all commercial airline flights, past, present, and future, end in crashes. 

(2) Only a tiny fraction of all past commercial airline flights have ended in crashes. 

If we interpret the first premise of argument (c) as in alternative 1, then how can we know that it 
is true? Perhaps it is, at least if we take 'future' to mean the near or foreseeable future, but there may 
be some doubt. Interpreted in this way, however, the argument is clearly a statistical syllogism with 
relevant premises and a high inductive probability. If, on the other hand, we interpret the first premise 
of argument ((1) as in alternative 2, then this premise is clearly true, but the argument is, strictly 
speaking, no longer a statistical syllogism; the flight referred to in the conclusion is not among the flights 
mentioned in the first premise, since it is a future flight. Under this interpretation, the first premise is 
weaker and (in conjunction with the second) less relevant to the conclusion than under interpretation 
1, so that the argument's inductive probability is considerably lower. Indeed, since the argument now 
moves from premises about the past to a conclusion about the future, its reliability depends on how 
closely we can expect the future to resemble the past-specifically, on how consistent or uniform the 
pattern of airline crashes will be. This is the Humean presupposition, and hence under interpretation 
2 the argument is Humean. 

This is not to say that argument (c) is not a good argument. It may be a good argument under either 
interpretation, provided that we know the premises to be true and that there is no suppressed evidence. 
But under interpretation 1 we may not know the first premise to be true, and under interpretation 2, 
the argument's inductive probability is less than it is under interpretation 1 (how much less depends on 
the strength of our presupposition of uniformity). 

SOLVED PROBLEM 

9.10 Arrange the following arguments in order of decreasing inductive probability. 

(a)  85 percent of the Snooze missiles fired so falr have missed their targets. 
A Snooze missile was fired on July 4, 1997. 

:. This Snooze missed its target. 

( b )  A Snooze missile will be fired tomorrow. 
:. This Snooze will miss its target. 

(c) 85 percent of Snooze missiles fired so far have missed their targets. 
A Snooze will be fired tomorrow. 

:. This Snooze will miss its target. 

(d) No Snooze missiles have ever missed their targets. 
A Snooze was fired on July 4, 1997. 

:. This Snooze missed its target. 

( e )  95 percent of Snooze missiles fired so far have missed their targets. 
A Snooze was fired on July 4, 1997. 

:. This Snooze missed its target. 

(f) No Snooze missiles have ever missed their targets. 
A Snooze will be fired tomorrow. 

:. This Snooze will miss its target. 



INDUCTION [CHAP. 9 

Solution 

(e), (a), (c), (b), (f), (d). Argument (e) is stronger than argument (a) because its first 
premise is stronger. Argument (a) is stronger than argument (c) because (c) extrapolates from 
past to future and hence presupposes the uniformity of nature, while (a) does not. Argument ( c )  
in turn is stronger than argument (b), because (c) is based on stronger premises; (b) offers no  
real evidence in support of its conclusion. The conclusions of arguments (f) and (d) are unlikely, 
given their premises; the inductive probability in each case is less than .5. In fact, (d) deductively 
implies the negation of its conclusion, so that the inductive probability of argument (d) is 
actually 0. 

9.3 STATISTICAL GENERALIZATION 

Statistical syllogism is an inference from statistics concerning a set of individuals to a (probable) 
conclusion about some member of that set. Statistical generalization, by contrast, moves from statistics 
concerning a randomly selected subset of a set of individuals to a (probable) conclusion about the 
composition of the set as a whole. It is the sort of reasoning used to draw general conclusions from 
public opinion polls and other types of random surveys. 

SOLVED PROBLEM 

9.11 Evaluate the inductive probability of the following argument: 

Fewer than 1 percent of 1000 ball bearings randomly selected for testing from the 1997 
production run of the Saginaw plant failed to meet specifications. 

:. Only a small percentage of all the ball bearings produced during the 1997 production 
run at  the Saginaw plant fails to meet specifications. 

Solution 

The inductive probability of this argument is quite high. The size of the sample and the 
randomness of the selection strongly justify the generalization expressed by the conclusion. 
Moreover, the generalization itself involves a certain approximation, as indicated by the phrase 
'only a small percentage'. This weakens the conclusion, adding strength to the argument. 

The general form of statistical generalization is as follows: 

n percent of s randomly selected F are G. 
:. About n percent of all F are G. 

The number s indicates the size of the sample. F is a property which defines the population about which 
we are generalizing (in the case of Problem 9.11, bearings produced during the 1997 production run at 
the Saginaw plant). And G is the property studied by the survey (in this case, the property of failing to 
meet specifications). 

To say that the sample was randomly selected is to say that it was selected by a method which 
guarantees that each of the F's had an equal chance of being sampled. This in turn implies that each 
s-membered subset of the F's has an equal chance of being chosen. Now it is a mathematical fact (whose 
proof is beyond the scope of this discussion) that if s is sufficiently large, most s-membered subsets of 
a given population are approximately representative of that population. In particular, for most 
s-membered subsets of the set of F's, the proportion of G's is about the same as it is among the F's 
generally. Hence if a fairly large sample of F's is randomly selected, i t  is likely, though not certain, that 
the proportion of G's which it contains will approximate the proportion of G's among all the F's. 

The inductive probability of a statistical generalization is determined by purely mathematical 
principles. There is no need to presuppose any sort of natural uniformity. Consequently, statistical 
generalization is a statistical form of inference, not a Humean form. 
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The success of statistical generalization depends crucially on the randomness of the sampling 
technique. If the sample is not randomly chosen, then the sa~npling technique may favor samples having 
either an unusually high or an unusually low number of (3's. In such cases the sample is said to be 
biased. Attempts to apply statistical generalization with a nonrandom sampling technique commit the 
fallacy of  biased sample, which is one form of the fallacy of hasty generalization discussed in Section 8.5. 
The resulting arguments are not true statistical generalizations, since true statistical generalization 
requires randomness. Their inductive probabilities are typically quite low. 

SOLVED PROBLEM 

9.12 Evaluate the inductive probability of the following argument: 

I spoke to my three friends. They took; that course and they all got an A. 
:. Virtually everybody who took that course got an A. 

Solution 

This is obviously a weak argument. Here 'F' designates the students who took the course 
and 'G' those who got an A. Assuming a normal class size (number of F's), a sample size of 
three is not large enough to justify the generalization expressed by the conclusion. Moreover, 
the sample is biased: the friends of the arguer do not constitute a random group of F's. The 
argument commits the fallacy of hasty generalization. 

The inductive probability of a genuine statistical generalization is primarily a function of two 
quantities: the sample size s and the strength of the conclusion. Increasing s strengthens the premise in 
a way relevant to the conclusion and thus enhances the argument's inductive probability. But to 
determine the argument's inductive probability we also need to take account of the strength of its 
conclusion. Notice that in the form given above, the conclusion is 'About n percent of F are G'. If it said 
'Exactly n percent of F a r e  G', it would be much too strong, and the argument's inductive probability 
would in almost all cases be close to zero. It is very unlikely that a random sample would contain exactly 
the same proportion of G's as the population from which it was selected. Therefore, if we want our 
conclusion to be reliable, we must allow it a certain margin of error, and this is what the term 'about' 
(or a similar expression) signifies. 

If we delineate this margin of error precisely, then there are mathematical methods for determining 
the argument's inductive probability numerically. The details of these methods are beyond the scope of 
this book, but some examples will illustrate the point.' Su:ppose we take 'about n percent' to mean 
n% +- 3%. Then if s = 1000, the inductive probability of the argument turns out to be quite high, about 
.95 or perhaps a little higher. If we decrease s to 100 while keeping the conclusion the same, the 
inductive probability drops to something on the order of ..5. For samples much smaller than 100, it 
becomes unlikely that the proportion of G's in the sample is within 3 percent of the proportion of G's 
in the population. In other words, the argument's inductive probability drops below .5. 

If we interpret 'about' less strictly, we weaken the ca~nclusion and hence raise the argument's 
inductive probability. Suppose that s = 100, but instead of concluding that n% 2 3% of F are G, we 
conclude that n %  2 10% of F are G. Now once again we have a strong argument, with an inductive 
probability of .95 or slightly more. If we allow an even greater margin of error in the conclusion, the 
inductive probability gets still closer to 1. If we are willing to accept a very wide margin of error (say, 
?30%), we can get an inductive probability of .95 with a sample as small as 20 or so. These figures 
remain relatively constant, regardless of the population size (number of F's), provided that this number 
is fairly large. 

' ~ e a d e r s  who wish to understand the mathematical details of the relationships among n, s, the margin of error, and the 
probability of the conclusion, given the premise, of a statistical generalization should consult the material on confidence intervals 
in any standard work on statistics. 
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Inductive probability is thus enhanced both by increasing s (thereby strengthening the premise) 
and by increasing the margin of error in the conclusion (which weakens the conclusion). If the 
conclusion is too strong to be supported with reasonable inductive probability by the premise, the 
argument is said to commit the fallacy of small sample,  which is another version of the fallacy of hasty 
generalization (Section 7.4). 

Though the inductive probability of a statistical generalization varies mainly with s and the margin 
of error of the conclusion, n also has a small effect. If n is very large or very small (near 0 or loo), 
the argument's inductive probability is slightly higher (other things being equal) than it is if n is close 
to 50. 

SOLVED PROBLEM 

9.13 Arrange the following arguments in order of decreasing inductive probability. 

50 percent of 100 randomly selected Americans said that they favored the president's 
handling of the economy. 
Exactly 50 percent of all Americans would say (if asked under the survey conditions) that 
they favor the president's handling of the economy. 

50 percent of 1000 randomly selected Americans said that they favored the president's 

handling of the economy. 
50% + 10% of all Americans would say (if asked under the survey conditions) that they 

favor the president's handling of the economy. 

50 out of 100 Americans said that they favor the president's handling of the economy. 
Exactly 50 percent of all Americans favor the president's handling of the economy. 

50 percent of 100 randomly selected Americans said that they favored the president's 
handling of the economy. 
50% t 1 %  of all Americans would say (if asked under the survey conditions) that they 

favor the president's handling of the economy. 

50 percent of 100 randomly selected Americans said that they favored the president's 

handling of the economy. 
Exactly 50 percent of all Americans favor the president's handling of the economy. 

50 percent of 100 randomly selected Americans said that they favored the president's 
handling of the economy. 

50% + 10% of all Americans would say (if asked under the survey conditions) that they 
favor the president's handling of the economy. 

Solution 

(b), (f), (d), (a), (e), (c). Argument (b) is like argument (f), except that it employs a larger 
sample; so (b) is stronger than (f). Argument (f) is stronger than argument (d) because 
argument (d) has a stronger conclusion. For the same reason, (d) is stronger than (a). Argument 
(e) is still weaker than argument (a) because the conclusion of argument ( e )  is less relevant, 
being an assertion about what people actually believe, as opposed to what they would say. 
Argument (c), finally, has the smallest inductive probability, since it is like argument (e), except 
that its first premise is weaker, since it fails to indicate that the sample was random. 

Inductive probabilities of statistical generalizations are usually suppressed in reports of the findings 
of surveys and public opinion polls. A report might say, for example, "Sixty-two percent of the voters 
approved the president's handling of the economy, subject to a sampling error of -+3%." What this 
means is that the sample was large enough (in this case about 1000) to ensure a .95 probability that the 
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interval 62% t 3% contains the actual proportion of voters who approve of the president's handling 
of the economy. Statisticians customarily take a probability of .95 as practical certainty and hence do 
not mention that a probability is involved here. But their conclusion that 62% t 3% of the voters 
approve of the president's handling of the economy is in fact derived by statistical generalization from 
the premise that 62 percent of their sample approved the president's handling of the economy, a 
statistical generalization whose inductive probability is only .95. Thus it should be kept in mind that 
there is still a .05 probability thatthe proportion of all voters who support the president's handling of 
the economy lies outside the range 62% t 3%. 

Several precautions must be observed in evaluating statistical generalizations. For one thing, as 
noted earlier, the sample must be randomly selected. This does not mean that the sample must be 
known to contain the same proportion of G's as the population at large. If this were known, there would 
be no need for statistical generalization; we could simply deduce the proportion of G's in the population 
from the proportion of G's in the sample. It simply means that the sampling technique must ensure that 
the proportion of G's in the sample is likely to be close to the proportion of G's in the population at 
large. 

Of course, if in making a statistical generalization someone claims that a certain sample is random 
but in fact it is not, then the premise of the statistical generalization is false, and the argument must be 
rejected. This may occur, for example, when what seems to be a random sampling method (e.g., picking 
names from a phone book) actually is not. Choosing names from a phone book will not, for example, 
provide a random sample of all homeowners, since those without phones have no chance of being 
chosen. 

Like all inductive arguments, statistical generalization is vulnerable to suppressed evidence. If two 
or more random surveys get distinctly different results frorn true premises, then none of them alone 
constitutes a good argument. The requirement of total evidence demands that all of them be weighed 
in assessing the probability of the conclusion on which they bear. 

Even slight deviations from the form of statistical generalization can seriously weaken the 
argument. This is illustrated by the next example. 

SOLVED PROBLEM 

9.14 Evaluate the following argument: 

Only 10 percent of 1000 randomly selected Americans answered "yes" to  the question 

"Have you ever committed a felony?" 

:. About 10 percent of all Americans have committed felonies. 

Solution 

This argument deviates from the form of statistical generalization, because the premise 
concerns what the sampled Americans (F's) said, while the conclusion concerns what 
Americans did. That is, the property assigned to  the variable G in the premise (answering "yes" 
to the question) is not the same as the property assigned to the variable G in the conclusion 
(actually having committed a felony). But for the argument to  be a legitimate instance of 
statistical generalization, the same property must be assigned to  both occurrences of the 
variable. The only conclusion we can 1egitimate:ly draw by statistical generalization from the 
premise is: 

About 10 percent of all Americans would answer "yes" to  the question "Have you 
ever committed a felony?" (if asked under the survey conditions). 

With this new conclusion, the argument's inducti\~e probability is fairly high, though we can't say 
exactly how high, because of the vagueness of the term 'about'. The original argument lacked 
clear relevance, and its inductive probability was much lower. For it is quite possible (indeed 
likely, given the sensitive subject matter of the survey) that some of the answers received were 
less than honest. 
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Problem 9.14 illustrates a general difficulty with polling human beings: How can we be sure that the 
respondents are telling the truth? In many cases (as, for example, when voters are asked which 
candidates they prefer) there is little motive for dishonesty, and it seems fairly safe to assume that their 
responses generally reflect actual opinions. But the assumption of truthfulness should not be made 
uncritically. 

A related problem concerns human response to the way in which a question is asked. Suppose we 
wish to survey public opinion on a new piece of legislation by Senator S. The way we phrase our 
question may drastically affect the responses. If we ask, "Do you favor Senator S's government- 
bloating socialist bill?" we are likely to generate many more negative responses than if we asked the 
question more neutrally: "Do you favor Senator S's bill on government aid to the poor?" And this in 
turn will probably generate more negative responses than the positively worded "Do you favor Senator 
S's popular new bill to bring much-needed aid to the victims of poverty in America?" The final form 
of the argument, however, may conceal the way in which the question was asked: 

SOLVED PROBLEM 

9.15 Evaluate the following argument: 

51 percent of 100 randomly selected registered voters said that they favored Senator 
S's bill. 

:. About 51 percent of all voters favor Senator S's bill. 

Solution 

Like the argument of Problem 9.14, this is not a statistical generalization, since it moves 
from what the voters said to what they actually think. But this argument has an additional source 
of weakness in that we are not given the exact phrasing of the question. The question itself, for 
all we know, may have substantially biased the responses either for or  against the bill. 

Biased questions are frequently a problem in polls which are poorly conducted or conducted by those 
with a vested interest in the outcome. 

9.4 INDUCTIVE GENERALIZATION AND SIMPLE INDUCTION 

Statistical generalization allows us to arrive at a conclusion concerning an entire population from 
a premise concerning a random sample of that population. The randomness of the sample ensures the 
probability of the conclusion on purely mathematical grounds. But often it is not possible to obtain a 
random sample. This is true, for example, if the relevant population concerns future objects or events. 
Since these objects or events do not yet exist at the time the sample is taken, they have no chance of 
being included in the sample. Therefore, since randomness requires that each member of the 
population have an equal chance of being selected, no sample which we take now can be random for 
a population which includes future objects or events. 

SOLVED PROBLEM 

9.16 Evaluate the randomness of the sample in the following generalization: 

The Bats have won 10 of the 20 games they have played so far this season. 

:. The Bats will finish the season having won about half of their games. 

Solution 
The conclusion of the argument concerns a population (all Bats games this season) which 

includes future games. The sample only concerns games played so far. It is therefore not a 
random sample with respect to the relevant population. 
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number of properties x and y are claimed to have in common, but also on the specificity of these 
properties. The more specific the resemblances are, the stronger the argument. 

Another consideration in analogical reasoning is the relevance of the properties F,, F,, . . ., F, to 
the property G (see Section 8.5). Problem 9.19 is relatively strong in part because all the properties 
mentioned in the first two premises are likely to be relevant to taxonomic classification (i.e., to the 
property G, the property of being a member of the gentian family). But where relevance is lacking and 
the conclusion is strong enough to be of much interest, the argument's inductive probability will be 
quite low. 

SOLVED PROBLEM 

9.20 Estimate the inductive probability of the following argument by analogy: 

Person x was born on a Monday, has dark hair, is 5 feet 8 inches tall, and speaks 

Finnish. 
Person y was born on a Monday, has dark hair, is 5 feet 8 inches tall, and speaks 

Finnish. 
Person y likes brussels sprouts. 

:. Person x likes brussels sprouts. 

Solution 
The inductive probability is low, because the properties F, ,  F,, . . ., F,, mentioned in the first 

two premises are almost surely irrelevant to  the property G (the property of liking brussels 
sprouts). 

Still, in advance of careful investigation, it is not always clear what is relevant and what is not. It 
might turn out that dark-haired people have a gene which predisposes them to have a taste for brussels 
sprouts, so that having dark hair, for example, is relevant after all! This, of course, is unlikely. But it does 
sometimes happen that previously unsuspected but genuine connections are suggested by analogical 
reasoning which appears at first to lack relevance. 

Relevance is often difficult to determine, but in analogical arguments its role is especially 
problematic. Perhaps the best advice that can be given is simply that in evaluating analogical reasoning, 
common sense ought to prevail. 

Analogical considerations can be combined with induction by enumeration to yield hybrid 
argument forms. For example, instead of comparing x with just one object y, we may compare it with 
many different objects, all of which have the properties F,, F,, . . ., F,, and G. This strengthens the 
argument by showing that G is associated with F,, F,, . . ., F, in many instances, not just in one. 

SOLVED PROBLEM 

9.21 Arrange the following analogical arguments in order of decreasing inductive 
probability : 

(a) A common housefly x, 8 millimeters long, is being placed in a tightly closed jar 

A common housefly y, 8 millimeters long, was placed in a tightly closed jar. 
y died within a day. 

. . x will die within a day. 
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(b) A common housefly x, 8 millimeters long and 14 days old, is being placed in a tightly 
closed jar. 
A common housefly y, 8 millimeters long and 14 days old, was placed in a tightly 
closed jar. 
y died within a day. 
x will die within a day. . . 

(c) A common housefly x, 8 millimeters long, is being placed in a tightly closed jar. 

A common housefly y, 8 millimeters long, was placed in a tightly closed jar. 
y died within a day. 
x will die within 12 hours. . . 

(d) A common housefly x,  8 millimeters long and 14 days old, is being placed in a tightly 
closed jar. 
Common houseflies y, z, and w, each 8 millimeters long and 14 days old, were placed in 
tightly closed jars. 
y, z, and w died within a day. 

:. x will die within a day. 

(e) A common housefly x, 8 millimeters long and 14 days old, is being placed in a tightly 

closed jar. 
Common houseflies y, z ,  and w, each 8 millimeters long and 14 days old, were placed in 

tightly closed jars. 
y, z, and w died within a day. 

:. x will die eventually. 

(f) A common housefly x ,  8 millimeters long, is being placed in a tightly closed jar in 
Wisconsin. 

A common housefly y, 8 millimeters long, was placed in a tightly closed jar in 
Wisconsin. 
y died within a day. 

:. x will die within a day. 

(g)  A common housefly x is being placed in a tightly closed jar. 
A common housefly y was placed in a tigh.1~ closed jar. 
y died within a day. 

:. x will die within 12 hours. 

Solution 
(e), (d), (b), (f), (a), (c), (g). Argument (e) is stronger than argument (d) because its 

conclusion is weaker. Argument (d) is stronger than argument (b) because of its stronger second 
premise; the analogy in (b) is based on a sample of just one fly, instead of three. Argument (b) 
is stronger than argument (f) because the state in which the experiment is performed is surely 
less relevant to the conclusion than the age of the fly. Yet (f) is still marginally stronger than (a), 
which is like (f) except that it does not mention the state in which the experiment was 
performed (and hence has very slightly weaker premises). Argument (c) is like argument (a), 
except that it has a stronger conclusion; so (c) is weaker than (a). Finally, argument (g) is slightly 
weaker still, since it does not mention the size of the flies and hence has weaker premises. 

Analogical arguments, like all inductive arguments, are vulnerable to contrary evidence. If any 
evidence bearing negatively on the analogy is suppressed, then the argument violates the requirement 
of total evidence and should be rejected. (The conclusion should then be reconsidered in the light of 
the total available evidence.) Contrary evidence to analogical arguments often takes the form of a 
relevant disanalogy. (For more on faulty analogies, see Problem 8.30.) 



INDUCTION 

SOLVED PROBLEM 

[CHAP. 9 

9.22 Evaluate the following argument by analogy: 

Jim Jones was the leader of a religious movement which advocated peace, brother- 
hood, and a simple agrarian way of life. 

Mahatma Gandhi was the leader of a religious movement which advocated peace, 

brotherhood, and a simple agrarian way of life. 
Mahatma Gandhi was a saintly man. 

:. Jim Jones was a saintly man. 

Solution 

The argument has true premises, a fairly high inductive probability, and a reasonable 
degree of relevance. But it suppresses crucial contrary evidence: Jim Jones was the leader of a 
fanatical cult which he incited to acts of murder and mass suicide. Since the argument ignores 
this crucially relevant disanalogy between Jones and Gandhi, it should be rejected. 

9.6 MILL'S METHODS 

Often we wish to determine the cause of an observed effect. Logically, this is a two-step procedure. 
The first step is to formulate a list of suspected causes which, to the best of our knowledge, includes the 
actual cause. The second is to rule out by observation as many of these suspected causes as possible. If 
we narrow the list down to one item, it  is reasonable to conclude that this item is probably the 
cause. 

The justification of the first step (i.e., the evidence that the actual cause is included on our list of 
suspected causes) is generally inductive. The eliminative reasoning of the second step is deductive. 
Since both inductive and deductive reasoning are involved, the reasoning as a whole is inductive. (See 
Section 2.3.) 

We arrive at the list of suspected causes by a process of inductive (frequently analogical) reasoning. 
Suppose, for example, that we wish to find the cause of a newly discovered disease. Now this disease will 
resemble some familiar diseases more than others. We note the familiar diseases to which it is most 
closely analogous and then conclude (by analogy) that its cause is probably similar to the causes of the 
familiar diseases which it most closely resembles. This will give us a range of suspected causes. 

Suppose, for example, that the familiar diseases which the new disease most closely resembles are 
all viral infections. The suspected causes will then be viral. Close observation of the disease victims will 
establish which viruses are present in their tissues. We will conclude that the actual cause is probably 
one of these viruses. These viruses, then, form our list of suspected causes. 

At this stage, however, our investigation is only half finished. For it is quite likely that we will find 
several kinds of virus in the tissues of the victims. To determine which of these actully caused the 
disease, we now employ a deductive process designed to eliminate from our list as many of the 
suspected causes as possible. The kind of eliminative process we use will depend on the kind of cause 
we are looking for. 

Here we shall discuss four different kinds of causes and, corresponding to each, a different method 
of elimination. The eliminative methods were named and investigated by the nineteenth-century 
philosopher John Stuart Mill. Mill actually discussed five such methods, but the fifth (the method of 
residues) does not correspond to any specific kind of cause and will not be discussed here. Before 
discussing Mill's methods, however, we need to define the kinds of causes to which they apply. 

The first kind of cause is a necessary cause, or causally necessary condition. A necessary cause for 
an effect E is a condition which is needed to produce E. If Cis a necessary cause for E, then E will never 
occur without C, though perhaps C can occur without E. For example, the tuberculosis bacillus is a 
necessary cause of the disease tuberculosis. Tuberculosis never occurs without the bacillus, but the 
bacillus may be present in people who do not have the disease. 
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A given effect may have several necessary causes. Fire, for example, requires for its production 
three causally necessary conditions: fuel, oxygen (or some similar substance), and heat. 

The second kind of cause is a sufficient cause, or causally suficient condition. A condition C is a 
sufficient cause for an effect E if the presence of C invariably produces E. If C is a sufficient cause for 
E, then C will never occur without E, though there may be cases in which E occurs without C. For 
example (with respect to higher animal species), decapitation is a sufficient cause for death. Whenever 
decapitation occurs, death occurs. But the converse does not hold; other causes besides decapitation 
may result in death. 

A given effect may have several sufficient causes. In addition to decapitation, as just noted, there 
are many sufficient causes for death: boiling in oil, crushing, vaporization, prolonged deprivation of 
food, water, or oxygen-to name only a few of the unpleasant alternatives. 

Some conditions are both necessary and sufJicient causes of a given effect. That is, the effect never 
occurs without the cause nor the cause without the effect. This is the third kind of causal relationship. 
For example, the presence of a massive body is causally necessary and sufficient for the presence of a 
gravitational field. Without mass, no gravitational field can exist. With it, there cannot fail to be a 
gravitational field. (This does not mean, of course, that one must experience the gravitational field. 
Moving in certain trajectories relative to the field will produce weightlessness, but the field is still 
there.) 

The fourth kind of causal relation we shall discuss is causal dependence of one variable quantity on 
another. A variable quantity B is causally dependent on a second variable quantity A if a change in A 
always produces a corresponding change in B. For example, the apparent brightness B of a luminous 
object varies inversely with the square of the distance from that object, so that B is a variable quantity 
causally dependent on distance. We can cause an object to appear more or less bright by varying its 
distance from us. 

A n  effect (such as apparent brightness) may be causally correlated with more than one quantity. 
If the object whose apparent brightness we are investigating is a gas flame, its apparent brightness will 
also depend on the amount of fuel and oxygen available to it, and on other factors as well. 

SOLVED PROBLEM 

9.23 Classify the kind of causality intended by the following statements: 

(a) Flipping the wall switch will cause the light to go on. 

(b) Closing the electricity supply from the main lines will cause the light to go off. 

(c) Making a lot of noise will cause the neighbors to complain. 

(d) Pulling the trigger will cause the gun to fire. 

(e) Raising the temperature of a gas will cause an increase in its volume. 

(f) Raising the temperature of the freezer above +32 degrees Fahrenheit will cause 
the ice cubes in the freezer to melt. 

(g) Killing the President will cause new presidential elections. 

(h) Raising the temperature in the environment will cause the death of many 
plants. 

Solution 

(a )  Necessary (but not sufficient: the light will not go on unless the light bulb is working). 

(b )  Sufficient (but not necessary: the light will go off also if the wall switch is turned to the 
"off" position). 

(c )  Sufficient (but not necessary: the neighbors may complain for a number of other 
reasons). 

( d )  Necessary (but not sufficient: the gun won't fire unless it is loaded). 
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(e) Dependent (the higher the temperature, the higher the volume). 

(f) Necessary and sufficient. 

(g) Sufficient (but not necessary). 

(h) Dependent (the higher the temperature, the greater the number of plants that will die). 

Now, to reiterate, Mill's methods aim to narrow down a list of suspected causes (of one of the four 
kinds just described) in order to find a particular cause for an effect E. Each of the four methods listed 
below is appropriate to a different kind of cause: 

Mill's Method ofi Rules Out Conditions Suspected of Being: 

Agreement Necessary causes of E 
Difference Sufficient causes of E 
Agreement and difference Necessary and sufficient causes of E 
Concomitant variation Quantities on which the magnitude of E is causally dependent 

If by using the appropriate method we are able to narrow the list of suspected causes down to one 
entry, then (presuming that a cause of the type we are seeking is included in the list) this entry is a cause 
of the kind we are looking for. We now examine each of the four methods in detail. 

The Method of Agreement 

Mill's method of agreement is a deductive procedure for ruling out suspected causally necessary 
conditions. Recall that if a circumstance C is a causally necessary condition of an effect E, then E cannot 
occur without C. So to determine which of a list of suspected causally necessary conditions really is 
causally necessary for E, we examine a number of different cases of E. If any of the suspected necessary 
conditions fails to occur in any of these cases, then it can certainly be ruled out as not necessary for E. 
Our hope is to narrow the list down to one item. 

SOLVED PROBLEM 

9.24 Suppose we are looking for the necessary cause of a certain disease E, and we 
have by using our backgrcund knowledge and expertise formulated a list of five viral 
agents, V ,  through V,, which we suspect may cause E. We examine a number of 
patients with E and check to see which of the suspected causes is present in each case. 
The results are as follows: 

Case 

Circumstances 
(suspected causes presenl 
in this case) Effect 

Solution 

Patient 1 
Patient 2 
Patient 3 
Patient 4 

Only one of the five suspected causes (namely, V,) is present in each of the four patients 
with the disease. This proves that none of the suspected causes, except possibly V,, really is 
causally necessary for E. 

VI, v3, v4 
VI, v4, VS 
VI, v2 
VI, v5 

E 
E 
E 
E 
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Once V2 through V5 are eliminated as necessary causes, :it follows deductively that 

(1) If the list V, through V,  includes a necessary cause of E, then V1 is that necessary cause. 

This is the conclusion which Mill's method of agreement yie:lds. If we wish to advance further to the 
unconditional conclusion 

(2) V1 is a necessary cause of E 

then we need the premise 

(3) The list V ,  through V5 includes a necessary cause of E. 

Such a premise cannot in general be proved with certainty, but can only be established by inductive 
reasoning. Typically, such inductive reasoning will be analogical. In the case in question, it may look 
something like this: 

(4) Disease E has characteristics F,, F2, . . ., F,. 

( 5 )  The known diseases similar to E have characteristics Fl, F2, . . ., F,. 

(6) Viruses are necessary causes of the known diseases :similar to E. 
:. (7) Some virus is a necessary cause of E. 

Here the characteristics F,, F2, . . ., F, might be such things as infectiousness or the presence of fever. 
To get from statement 7 to statement 3, we need to add to statement 7 the premise that 

(8) The only viruses present in the cases of patients 1 thr'ough 4, who had E, were V1 through V5. 

Statement 8 together with statement 7 deductively implies 3: since (by definition) any necessary cause 
for E must occur in every case of E. The entire argument may now be summarized in the following 
diagram: 

4 + 5 + 6  

The basic premises in statements 4, 5, 6, and 8 are obtained by observation or previous investigation. 
Statement 1 is the conclusion obtained by using Mill's method of agreement. The reliability of the 
argument as a whole depends on the adequacy of the analogical inference (the inference from 4 ,5 ,  and 
6 to 7) and on the truth of the basic premises. The premise in statement 8, for example, could prove to 
be false if our observations of the patients were not sufficiently thorough. That would undermine the 
whole argument, since in that case the real cause of E might be a virus that was present but undetected 
in the cases we studied. The adequacy of the analogical inference, of course, depends on the factors 
discussed in Section 9.5. We should be especially wary of suppressed evidence. (Does E have any 
unusual characteristics which suggest a nonviral cause?) 

Not every application of the method of agreement works out so neatly. Suppose V1 and V2 both 
occur in all cases of E that we examine. Does that mean both are necessary for E? No, this does not 
follow. We may not have examined a large enough sample of patients to rule out one or the other. Our  
investigation is inconclusive, and we need to seek more data. 

It may also happen that the method of agreement rules out all the suspected causes on our list. In 
that case, statement 3 is false, and so either 7 or 8 must be false as well. That is, either the necessary 
cause is not viral (as our analogical argument led us to suspect) or we failed to detect some other virus 
that was present in the patients. If this occurs, we need to recheck everything and probably gather more 
data before any firm conclusions can be drawn. 
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The Method of Difference 

If we are seeking a sufficient cause rather than a necessary cause, the method to use is the method 
of difference. Recall that a sufficient cause for an effect E is an event which always produces E. If cause 
C ever occurs without E, then C is not sufficient for E. Often it is useful, however, to speak of sufficient 
causes relative to a restricted class of individuals. A small quantity of a toxic chemical, for example, may 
be sufficient to  produce death in small animals and children but not in healthy adults. Hence, relative 
to the class of children and small animals it is a sufficient cause for death, but relative to a larger class 
which includes healthy adults it is not. Claims of causal sufficiency are often implicitly to be understood 
as relative to a particular class of individuals or events. 

SOLVED PROBLEM 

9.25 A number of people have eaten a picnic lunch which included five foods, F, 
through Fs. Many of them are suffering from food poisoning. It is assumed that among 
the five foods is one which is sufficient to produce the poisoning among this group of 
people. Now suppose that we find two individuals, one of whom has eaten all five foods 
and is suffering from food poisoning and the other of whom has eaten all but Fl and 
is feeling fine. Thus if P is the effect of poisoning, the situation is this: 

What is the sufficient cause of P'! 

Solution 

Cuse 

Person 1 

Person 2 

Since P failed to occur in person 2 in the presence of F2 through FS, clearly none of these 
foods is sufficient for P. On the assumption, then, that a sufficient cause for P occurs among F, 
through F5, it follows that the cause is F,. 

The weakest part of this reasoning is the assumption that a sufficient cause for P occurs among F, 
through Fs. As with the analogous premise in our discussion of necessary causes, it generally cannot be  
proved deductively but must be supported by an inductive argument. In this case, we might argue that 
in most past cases in which food poisoning has occurred, some toxic substance present in one food has 

Circumstances 
(siispecteri szdfJicient canses) 

FI, I;z, 3 ,  F4, Fs 

6, 3 ,  (;4, FS 

been the culprit and that it has been sufficient to produce the poisoning in anyone who consumed a 
substantial amount of the food. 

Once again, it is important to see how this sort of inductive reasoning could go wrong. Perhaps 
none of the foods is by itself sufficient for P, but ingestion of F, and F2 together causes a chemical 
reaction which results in toxicity. Under these conditions we would still observe the poisoning in person 
1 and no effect on person 2, but the assumption that a sufficient cause for P occurs among F, through 
F5 would be false. 

It  may also happen that none of F, through Fs, or any combination of Fl through F5, is sufficient 
for P. A toxin may be present, say in F,, but consumption of this toxin may produce P only in certain 
susceptible individuals. That is, F, may be sufficient for P in certain people but not in every member of 
the population we are concerned with. If this is so, then once again the assumption that a sufficient 
cause for P occurs among F, through Fs is false, and so is the unqualified conclusion that F, is sufficient 
for P. These errors can occur even if we makc no faulty observations, because of the fallibility of the 

Effect 

P 

None 
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reasoning needed to establish this assumption. Therefore, caution is needed in applying the method of 
difference. 

In summary, Mill's method of difference is used to narrow down a list of suspected sufficient causes 
for an effect E. It does this by rejection of any item on the list which occurs without E. We hope to make 
enough observations to narrow the list down to one item. If we do, then we may conclude deductively 
that if there is a sufficient cause for E on the list, it is the one remaining. However, to establish that our 
list contains a sufficient cause, we must rely on induction from past experience. 

The Joint Method of Agreement and Difference 

Mill's joint method of agreement and difference is a procedure for eliminating items from a list of 
suspected necessary and sufficient causes. It incorporates nothing new; it merely involves the 
simultaneous application of the methods of agreement and difference. 

If C is a necessary and sufficient cause of E, then C never occurs without E and E never occurs 
without C. Hence, if we find any case in which C occurs but E does not or E occurs but C does not, C 
can be ruled out as a necessary and sufficient cause for E (though it may still be a necessary or sufficient 
cause, as the case may be). 

SOLVED PROBLEM 

9.26 Suppose that a student in a colle,ge dormitory notices a peculiar sort of 
interference on her television set. She has seen similar kinds of interference before and 
suspects that its necessary and sufficient cause (provided the television is on) is the 
nearby operation of some electrical appliance. This leads her to formulate the 
following list of suspected causes: 

S = electric shaver 
H  = hair dryer 

D  = clothes dryer 
W = washing machine 

She now observes which appliances are operating in nearby rooms while her television 
is on. The results are as follows (I is the interference): 

Which of the suspected causes, if any, is the necessary and sufficient cause of the 
interference? 

Case 

1 
2 
3 
4 
5 

Solution 

The only one of the suspected necessary and sufficient causes which is always present when 
I is present and always absent when I is absent is D. Hence, if one of the suspected necessary 
and sufficient causes really is necessary and sufficient for I, it must be D. 

Circumstances (suspected 
necessary and su@cient 
causes) 

H,  D ,  W 
D, w 
S ,  H ,  D ,  W 
S, H 
w, s 

Effect 

I 
I 
I 
None 
None 
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by the observation of diffraction. (We might note, incidentally, that the wave theory itself was 
succeeded by the quantum theory primarily because of the discovery of new phenomena which could 
not be predicted by the wave theory unless it too were burdened with ad hoc hypotheses.) 

Not only is (P) applied preferentially to theories which do not require ad hoc hypotheses; it is also 
(as suggested by the example above) applied preferentially to theories which are themselves simple. 
That is, other things being equal, simple theories are regarded as more highly confirmed by verification 
of their predictions than are complex theories. Various restrictions on (P) have been proposed by 
various theorists, but they are generally controversial and need not be discussed here. 

Supplementary Problems 

I Arrange each of the following sets of statements in order from strongest to weakest. 

Iron is a metal. 

Either iron is a metal or copper is a metal. 

Either iron is a metal, or copper or zinc is a metal. 

It is not true that iron is not a metal. 

Iron, zinc, and copper are metals. 

Something is a metal. 

Some things are both metals and not metals. 

Either iron is a metal or it is not a metal. 

Iron and zinc are metals. 

Most Americans are employed. 

There are Americans, and all of them are employed. 

Some Americans are employed. 

At least 90 percent of Americans are employed. 

At least 80 percent of Americans are employed. 

Someone is employed. 

About 51 percent of newborn children are boys. 

Exactly 51 percent of newborn children are boys. 

Some newborn children are boys. 

It is not true that all newborn children are not boys. 

Somewhere between one-fourth and three-fourths of all newborn children are boys. 

Leonardo was a great scientist, inventor, and artist who lived during the Renaissance. 

Leonardo did not live during the Renaissance. 

Leonardo lived during the Renaissance. 

Leonardo was a Renaissance artist. 

Leonardo was not a Renaissance artist. 

Leonardo was not a Renaissance artist and scientist. 

I1 Arrange the following sets of argument forms in order from greatest to least inductive probability. 

(1) (a)  60 per cent of observed F are G. 

x is F. 
:. x is G. 
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(b) 20 per cent of F are G. 
x is F. 

:. x is G. 

(c) 60 per cent of F are G. 
x is F. 

:. x is G. 

(2) (a) All ten observed F are G. 
All Fa re  G. . . 

(b) All ten observed F are G. 
If three more Fare  observed, they will be G. . . 

(c) All ten observed F are G. 

:. If two more Fare  observed, they will be G. 

(d) All ten observed F are G. 
:. If two more Fare  observed, at least one of them will be G. 

(e) All Fa r e  G. 
If an F is observed, it will be G. . . 

(3) (a) 8 of 10 doctors we asked prescribed product X. 
:. About 80 percent of all doctors prescribe product X. 

(b) 80 of 100 doctors we asked prescribed product X. 
:. About 80 percent of all doctors prescribe product X. 

(c) 80 of 100 randomly selected doctors prescribed product X. 
About 80 percent of all doctors prescribe product X. . . 

(d) My doctor prescribes product X. 
:. All doctors prescribe product X. 

(e) My doctor prescribes product X. 
:. Some doctor(s) prescribe(s) product X. 

(f) All 10 doctors we asked prescribe product X. 
:. All doctors prescribe product X. 

(4) (a) Objects a, b, c, and d all have properties F and G. 
Objects a, b, c, and d all have property H. 
Object e has properties F and G. 

:. Object e has property H. 

(b)  Objects a, b, c, and d all have properties F, G, and H. 
Objects a, b, c, and d all have property I. 
Object e has properties F, G, and H. 

:. Object e has property I .  

(c) Object a has property F. 
Object a has property G. 
Object b has property F. 

. . Object b has property G. 

(d) Object a has property F. 
. . Object b has property F. 

(e) Object a has properties F and G. 
Object a has property H. 
Object b has properties F and G. 

:. Object b has property H. 
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(f) Object a has property F. 
:. Objects b and c have property F. 

Objects a, b, c, d, and e have property F. 
All objects have property F. 

Objects a, b, c, d, and e have property F. 
Objects f and g have property F. 

Objects a, b, and c have property F. 
All objects have property F. 

Objects a, b, c, d, and e have property F. 
Objects a, b, c, d, and e have property G. 
Objects f and g have property F. 
Objects f and g have property G. 

Objects a, b, c, d, and e have property F. 
Objects a, b, c, d, and e have property G. 
Objects f and g have property F. 
Object f has property G. 

I11 Each of the following problems consists of a list of observations. For each, answer the following questions. 
Are the observations compatible with the assumption that exactly one cause of the type indicated 
(necessary, sufficient, etc.) is among the suspected causes? [f so, do the observations enable us to identify 
it using Mill's methods? If they do, which of the unsuspected causes is it, and by what method is it 
identified? 

(1) Circumstances (suspected 
Case necessary causes of E) 

I I 

(3) 1 I Circumstances (suspected I I 

(2) 

I Case 1 necessary causes of E) I Effect I 

Case 
Circumstances (suspected 
necessary causes of E) Effect 
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(4) 

(4 
( b )  

(4 
(4 

Effect 

Case 

( 5 )  

E 

None 

F, G, H 
F, G 
G, H 
F, H 

Case 

Circumstances (suspected 
necessary causes of E) 

E 

E 

E 
None 

Case 

Effect 

Circumstances (suspected 
sufJicient causes of E)  

E 
E 
E 
None 

Circumstances (suspected necessary 
and sufJicient causes of E) Effect 

(7) 

E 
E 

None 
None 

(8) 

Case 

(4 

Case 

Circumstances (suspected necessary 
and sufJicient causes of E) 

F, G, H 

Effect 

E 

Circumstances (suspected necessary 
and suficient causes of E )  Effect 
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( 9 )  

Answers to Selected Supplementary Problems 

(10) 

I11 (3) None of the suspected causes is necessary for E (method of agreement). 

(6) G is the only one of the suspected causes which could be necessary and sufficient for E (joint method 
of agreement and difference). 

(9) H is the only one of the suspected causal variables on which E could be dependent (method of 
concomitant variation). 

Case 

(a> 
(b) 
( 4  
( 4  

Circumstances (variables suspected 
to be relevant to E) Effect 

F, G, H 
F, G+, H+ 
F, G,  H +  
F-,  G,  H 

Case 
Circumstances (variables suspected 
to be relevant to E) Effect 



Chapter 10 

The Probability Calculus 

1 0 .  THE PROBABILITY OPERATOR 

Chapter 3 illustrates how truth tables are used to calculate the truth values of complex statements 
from the truth values of their atomic components and thereby to determine the validity or invalidity of 
argument forms. It would be useful to have something analogous for inductive reasoning: a procedure 
that would enable us to calculate probabilities of complex statements from the probabilities of simpler 
ones and thereby to determine the inductive probabilities of arguments. Unfortunately, no such 
procedure exists. We cannot always (or even usually) calculate the probability of a statement or the 
inductive probability of an argument simply from the probabilities of its atomic components. 

Yet significant generalizations about probabilistic relationships among statements can be made. 
Although these do not add up to a general method for calculating inductive probabilities, they shed a 
great deal of light on the nature of probability and enable us to solve some practical problems. The most 
important of these generalizations constitute a logical system known as the probability calculus. 

The probability calculus is a set of formal rules governing expressions of the form 'P(A)', meaning 
"the probability of A." These expressions denote numbers. We may write, for example, 'P(A) = i' 
to indicate that the probability of A is I. The expression 'A' may stand for a variety of different 
kinds of objects - sets, events, beliefs, propositions, and so on -depending upon the specific applica- 
tion. For applications of the probability calculus to logic, 'A' generally denotes a proposition, and 
sometimes an event. These two sorts of entities are formally similar, except that whereas propositions 
are said to be true or false, events are said to occur or not occur. In particular, events, like propositions, 
may be combined or modified by the truth-functional operators of propositional logic. Thus, if 'A' 
denotes an event, 'P(-A)' denotes the probability of its non-occurrence, 'P(A V B)' the probability 
of the occurrence of either A or B, 'P(A & B)' the probability of the joint occurrence of A and B, 
and so on. 

The operator 'P' can be interpreted in a variety of ways. Under the subjective interpretation, 'P(A)' 
stands for the degree of belief a particular rational person has in proposition A at a given time. Degree 
of belief is gauged behaviorally by the person's willingness to accept certain bets on the truth of A. 

Under the various logical interpretations, 'P(A)' designates the logical or a priori probability of A. 
There are many notions of logical probability, but according to all of them P(A) varies inversely with 
the information content of A. That is, if A is a weak proposition whose information content is small, 
P(A) tends to be high, and if A is a strong proposition whose information content is great, then P(A) 
tends to be low. (Compare Section 9.1.) 

Under the relative frequency interpretation, A is usually taken to be an event and P(A) is the 
frequency of occurrence of A relative to some specified reference class of events. This is the 
interpretation of probability most often used in mathematics and statistics. 

The oldest and simplest concept of probability is the classical interpretation. Like the relative 
frequency interpretation, the classical interpretation usually takes the object A to be an event. 
According to the classical interpretation, probabilities can be defined only when a situation has a finite 
nonzero number of equally likely possible outcomes, as for example in the toss of a fair die. Here the 
number of equally likely outcomes is 6, one for each face of the die. The probability of A is defined as 
the ratio of the number of possible outcomes in which A occurs to the total number of possible 
outcomes: 

-, ., Number of possible outcomes in which A occurs 
f'(A) = * 

Total number of possible outcomes 
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SOLVED PROBLEM 

1 0 .  Consider a situation in which a fair die is tossed once. There are six equally 
likely possible outcomes: the die will show a one, or a two, or a three, . . ., or a six. Let 
'A,' denote the proposition that the die will show a one, 'A,' denote the proposition 
that it will show a two, and so on. Calculate the following probabilities according to the 
classical interpretation: 

Solution 

(a) 116 

(b) 116 

(c) 516 

(d) 216 = 113 

(e) 016 = 0 (The die is tossed only once, so it cannot show two numbers.) 

(f) 0/6=O 

(g) 616 = 1 

(h) 616 = 1 

As this example illustrates, logical properties or relations among events or propositions affect the 
computation of' the probability of complex outcomes. These properties or relations can sometimes be 
verified with the help of a truth table. For instance, a contradictory (truth-functionally inconsistent) 
event such as Al & --Al can never occur, since every row of the corresponding truth table contains an 
F; so the probability of this event is zero (case (f)). In a similar way, we can sometimes see that some 
events are mutually exclusive, i.e., cannot jointly occur. 

SOLVED PROBLEM 

10.2 Show that any two events of the forms A & B and A & -B are mutually 
exclusive: 

Solution 

'Because of the associative law of propositional logic (i.e., the equivalence ASSOC), bracket placement is not crucial when 
three or more propositions are joined by disjunction alone or by conjunction alone. It is therefore customary to omit brackets 
in these cases. 
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Since there is no line of the table on which both A & B and A & -B receive the value T and 
the table exhibits all possible situations, it is clear that there is no situation in which the two 
events can jointly occur. 

In some cases, however, truth-functional considerations do not suffice, as an event may be 
impossible or two events may be mutually exclusive for non-truth-functional reasons. With reference 
to Problem lO.l(e), for instance, the truth table for 'A, & A3' will include a line in which both Al and 
A3 are T. Yet this line represents an impossible case: not for truth-functional reasons, but because of 
the nature of the die. 

Two other logical relations which are important for the probability calculus are truth-functional 
consequence and truth-functional equivalence. The former is just the kind of validity detectable by truth 
tables. In other words, proposition or event A is a truth-functional consequence of proposition or event 
B if and only if there is no line on their common truth table in which A is false and B is true. 
Truth-functional equivalence holds when A and B are truth-functional consequences of each other, i.e., 
when their truth tables are identical. There are many examples of both kinds or relations in Chapter 
3 and (in view of the completeness of the propositional calculus) in Chapter 4. 

10.2 AXIOMS AND THEOREMS OF THE PROBABILITY CALCULUS 

The probability calculus consists of the following three axioms (basic principles), together with 
their deductive consequences. These axioms are called the Kolmogorov axioms, after their inventor, the 
twentieth-century Russian mathematician, A. N. Kolmogorov: 

AX1 P(A) a 0. 
AX2 If A is tautologous, P(A) = 1. 
AX3 If A and B are mutually exclusive, P(A V B) = P(A) + P(B). 

Here 'A' and 'B' may be simple or truth-functionally complex (atomic or molecular). We shall use the 
classical interpretation to illustrate and explain these axioms, though it should be kept in mind that they 
hold for the other interpretations as well. 

AX1 sets the lower bound for probability values at zero. Zero, in other words, is the probability of 
the least probable things, those which are impossible. AX1 is true under the classical interpretation, 
since neither the numerator nor the denominator of the ratio which defines classical probability can 
ever be negative. (Moreover, the denominator is never zero, though the numerator may be.) 

It is clear that tautologies ought to have the highest possible probability, since they are certainly 
true. Thus AX2 says in effect that we take 1 to be the maximum probability. This, too, is in accord with 
the classical definition, since the numerator of this definition can never exceed its denominator. (See 
Problem lO.l(g).) 

AX3 gives the probability of a disjunction as the sum of the probabilities of its disjuncts, provided 
that these disjuncts are mutually exclusive. We can see that AX3 follows from the classical definition 
of probability by noting that a disjunctive event occurs just in case one or both of its disjuncts occurs. 
If the disjuncts are mutully exclusive, then in no possible outcome will they both occur, and so the 
number of possible outcomes in which the disjunction A V B occurs is simply the sum of the number 
of possible outcomes in which A occurs and the number of possible outcomes in which B occurs. (See 
Problem lO.l(d).) That is, if A and B are mutually exclusive, 

Number of possible outcomes in which A v B occurs 
P(A v B) = 

Total number of possible outcomes 

- - Number of possible outcomes in which A occurs 
Total number of possible outcomes 
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10.12 Prove: 

[CHAP. 10 

If A is a truth-functional consequence of B, then P(A & B) = P(B). 

Solution 

Suppose A is a truth-functional consequence of B. Then A & B is truth-functionally 
equivalent to B, since A & B is true on any line of a truth table in which B is true and false on 
any line of a truth table on which B is false. So by Problem 10.6, P(A & B) = P(B). 

10.3 CONDITIONAL PROBABILITY 

Conditional probability is the probability of one proposition (or event), given that another is true 
(or has occurred). This is expressed by the notation 'P(A I B)', which means "the probability of A, given 
B." It is not to be confused with the probability of a conditional statement, P(B - A), which plays little 
role in probability theory. (The difference between P(A I B) and P(B -A) is illuminated by Problem 
10.30 at the end of this section.) Notice that in contrast to the notation for conditional statements, the 
notation for conditional probabilities lists the consequent first and the antecedent second. This 
unfortunate convention is fairly standard, though occasionally other conventions are employed. 

The notation for conditional probability is introduced into the probability calculus by the following 
definition: 

The symbol ' = df' means "is by definition." Anywhere the expression 'P(A I B)' occurs, it is to be 
regarded as mere shorthand for the more complex expression on the right side of D l .  

The purport of this definition is easy to understand under the classical interpretation. By the 
classical definition of probability, we have: 

Number of possible outcomes in which A & B occurs 
P(A & B)  - - Total number of possible outcomes 

P(B) Number of possible outcomes in which B occurs 
Total number of possible outcomes 

- - Number of possible outcomes in which A & B occurs 
Number of possible outcomes in which B occurs 

Thus by the classical interpretation, P(A I B) is the proportion of possible outcomes in which A occurs 
among the possible outcomes in which B occurs. 

SOLVED PROBLEM 

10.13 A single die is tossed once. As in Example 10.6, let 'E' state that the result of 
the toss is an even number and 'L' state that it is a number less than 5. What is 
P (E  I L)? 

Solution 

E & L is true in two of the six possible outcomes, and L is true in four of the six. Hence 

P(E ( L )  = P(E & L) - 6 - 2 2 1  - - - - - - -  
p(L) 6 4 4 2  

Conditional probabilities are central to logic. Inductive probability (Section 2.3 and Chapter 9) is the 
probability of an argument's conclusion, given the conjunction of its premises. It is therefore a kind of 
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conditional probability. This sort of probability, however, is best understood not by the classical 
interpretation, but by the subjective interpretation or the logical interpretations, whose technical 
details are beyond the scope of this discussion. 

Note that in the case where P(B) = 0, P(A I B )  has no value, since division by zero is undefined. In 
general, theorems employing the notation 'P (A  I B)' hold only when P(B)  > 0, but it is cumbersome to 
repeat this qualification each time a theorem is stated. Therefore we will not repeat it, but it is to be 
understood implicitly. 

SOLVED PROBLEMS 

10.14 Prove: 

Solution 

A & A  is truth-functionally equivalent to A. Thus, by Problem 10.6, 

10.15 Prove: 

P ( - A I A ) = O  

Solution 

-A & A  is contradictory, and so by Problem 10.4, P(-A & A )  = 0. Thus, by D l ,  

10.16 Prove: 

If B is tautologous, P(A 1 B) = P(A).  

Solution 

Suppose B is tautologous. Then by AX2, P'(B) = 1. Moreover, A & B is truth-functionally 
equivalent to A, so that by Problem 10.6, P(A 1E B) = P(A). Thus 

In Problem 10.6 we established that truth-functionally equivalent formulas may validly be 
substituted for one another in a probability expression. The next two theorems establish this same 
result for conditional probability expressions. 

SOLVED PROBLEMS 

10.17 Prove: 

If A and B are truth-functionally equivalent, then P(A I C) = P(B I C). 

Solution 

Suppose A and B are truth-functionally equivalent. Then so are A & C and B & C. Hence 
by Problem 10.6, P(A & C) = P(B & C). But then, by Dl ,  
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10.18 Prove: 

If A and B are truth-functionally equivalent, then P ( C  I A )  = P ( C  I B ) .  

Solution 

Suppose A and B are truth-functionally equivalent. Then, by Problem 10.6, P ( A )  = P ( B ) .  
Moreover, by the reasoning of Problem 10.17, P(C & A)  = P ( C  & B ) .  Hence, by Dl,  

Our next result is of great importance, because it provides a way of calculating the probabilities of 
conjunctions. 

SOLVED PROBLEMS 

10.19 Prove: 

Solution 

Dl gives P(B ( A)  = P(B & A)IP(A) .  Hence, since B & A is truth-functionally equivalent to 
A & B ,  by Problem 10.6 we have P ( B  I A )  = P ( A  & B)IP(A) .  Multiplying both sides of this 
equation by P ( A )  yields the theorem. 

10.20 Prove: 

Solution 

By Problem 10.19, P ( A  & B )  = P ( A )  . P(B 1 A )  and also P ( B  & A )  = P ( B )  . P ( A  1 B ) .  
But A & B is truth-functionally equivalent to B & A .  Hence, by Problem 10.6, 
P ( A  & B )  = P(B & A ) .  This proves the theorem, which shows that the order of conjuncts is of 
no logical importance. 

Problems 10.19 and 10.20 give us two ways of expressing the probability of any conjunction. That 
is, for any conjunction A & B, P(A & B) = P(A). P(B I A) = P(B).  P(A ( B). 

It sometimes happens that P(A ( B )  = P(A), that is, that P(A) is unaffected by the occurrence or 
nonoccurrence of B. In such a case, we say that A is independent of B. For instance, if A is the event of 
getting a one on the first toss of a single die and B is the event of getting a one on the second toss, then 
A is independent of B, for P(A) = P(A I B) = & (The tendency to believe that tosses of dice are not 
independent is one version of the gambler's fallacy-see Section 8.5.) On the other hand, if A is the 
event of your living ten more years and B is the event of your having rabies, then clearly 
P(A) > P(A I B), so that A is not independent of B. (Note that it is difficult to make sense of these 
probabilities under the classical interpretation, since there is no set of equally likely outcomes to appeal 
to. These probabilities would therefore be best understood by one of the other interpretations 
mentioned earlier.) 

Independence is a concept peculiar to the probability calculus. It cannot be characterized 
truth-functionally as, for example, tautologousness or truth-functional equivalence can. The next 
theorem tells us that A is independent of B if and only if B is independent of A; that is, independence 
is a symmetrical relation. 
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SOLVED PROBLEM 

10.21 Prove: 

P ( A  1 B )  = P ( A )  if and only if P ( B  1 A )  = P ( B ) .  

Solution 
By Dl ,  P ( A  I B )  = P ( A )  if and only if P ( A )  = P ( A  & B)IP(B) .  Now multiplying both sides 

of this equation by P(B)IP(A)  gives P ( B )  = P ( A  & B)IP(A) ,  which (since A & B is truth- 
functionally equivalent to B & A )  is true if and only if P ( B )  = P ( B  & A)IP(A) ;  hence by Dl,  
P ( B )  = P ( B  I A) .  

Because of the symmetry of independence, instead of saying "A is independent of B" or "B is 
independent of A," we may simply say "A and B are independent," without regard to the order of the 
two terms. Independence is important chiefly because if A and B are independent, then the calculation 
of P(A & B) is very simple. This is shown by the following theorem. 

SOLVED PROBLEM 

10.22 Prove: 

If A and B are independent, then P ( A  & B )  = P ( A ) .  P ( B ) .  

Solution 
This follows immediately from Problem 10.19 and the definition of independence. 

The next result also plays a central role in probability theory. It was first proved by Thomas Bayes 
(1702-1761), one of the founders of probability theory. Bayes' theorem enables us to calculate 
conditional probabilities, given converse conditional probabilities together with some nonconditional 
probabilities (the so-called priors). It has a number of important practical applications. We shall state 
it first in a simplified version (Problem 10.23) and then in a more fully articulated form (Problem 10.25). 
Here is the simple version: 

SOLVED PROBLEM 

10.23 Prove: 

Solution 
This follows immediately from Problem 10.20. 

This version of the theorem allows us to calculate P(A ) B) if we know the converse conditional 
probability P(B I A) and the prior probabilities P(A) and P(B).  

To state the full version of Bayes' theorem, we need two additional concepts: the concept of an 
exhaustive series of propositions or events, and the concept of a pairwise mutually exclusive series. A 
series of propositions or events A,, A,, . . ., A, is exhaustive if P(A, V A, V . . . V A,) = 1. For instance, 
the series A1, A,, . . ., A6, representing the six possible outcomes of a single toss of a single die, is 
exhaustive, under the classical interpretation. Also, any series of the form A & B, A & -B, -A & B, 
-A & --B is exhaustive, as can be seen by observing that the disjunction of these four forms is a 
tautology. 
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The second crucial concept for the general version of Bayes7 theorem is that of a pairwise mutually 
exclusive series. We have already discussed mutual exclusivity for pairs of propositions or events. Now 
in effect we simply extend this idea to a whole series of them. Thus a series of propositions or events 
A 1 7 A 2 7  .. . ,  A, is pairwise mutually exclusive if for each pair A,, Aj  of its members, P(Ai & Aj) = 0. For 
instance, the exhaustive series A*, A*, . . ., A6 mentioned above is pairwise mutually exclusive, since only 
one outcome may result from a single toss. So is the other exhaustive series mentioned above, but here 
the reason is truth-functional: on no line of a truth table are any two of these statements both true. 

Now we observe an important fact about pairwise mutually exclusive and exhaustive series: 

SOLVED PROBLEM 

10.24 Prove: 

If A l  A,, . . ., A,, is a pairwise mutually exclusive and exhaustive series, then P(B)  = 

P(A, & B)  + P(A2 & B) + . . . + P(A, & B). 

Solution 

Let A,, A,, . . ., A, be a pairwise mutually exclusive and exhaustive series. Then P(A, v 
A 2 v  . . .  v A,) = 1, and so, by Problem 10.11, 

Now as can be seen by repeated application of the distributive law of propositional 
logic, (A, v A, v . . . v A,) & B is truth-functionally equivalent to (A, & B)  v (A, & B)  v 
. . . v (A,, & B). Thus, applying Problem 10.6 to item (a) we get: 

Moreover, 

(c) The series (A, & B), (A, & B), . . ., (A, & B)  is pairwise mutually exclusive. 

For consider any two members (A, & B), (Ai & B )  of this series. Since the series A,, A,, . . ., A, 
is pairwise mutually exclusive, we know that P(A, &A,) = 0. Hence, by Problem 10.8 and AX1, 
P(A, &A,  & B )  = 0. So, by Problem 10.6, P((A, & B) & (A, & B)) = 0. 

Now from item (c) it follows that for each i such that 1 i < n, 

For again, by repeated application of the distributive law, ((Al & B )  v (A2 & B)  v 
. . .  v (A, & B)) & (A,,, & B) is truth-functionally equivalent to ((A, & B)  & (A,+, & B))  v 
((A2 & B)  & (Aicl & B)) V . . . V ((A, & B) & (A,,, & B)). But by item (c), the probability of 
each of the disjuncts of this latter formula is zero; and repeated application of Problem 10.10 
implies that any disjunction whose disjuncts all have probability zero must itself have 
probability zero. Hence item (d) follows by Problem 10.6. 

The theorem then follows from formula (6) by repeated application of formula (d) and 
Problem 10.7. To see this, suppose for the sake of concreteness that n = 3. Then formula (b) will 
read: 

and we will have these two instances of formula (d): 

From Problem 10.7 we obtain: 
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which reduces by ( d l )  to: 

Now, again, by Problem 10.7: 

(d P ( ( A l &  B )  v (A2 & B ) )  
= P ( A l &  B )  + P(A2 & B )  - P( (A l  & B )  & (A2 & B ) )  

which reduces by (d")  to: 

(h)  P ( ( A l &  B )  v (A2 & B ) )  = P(Al  & B )  + P(.A2 & B )  

Combining (f) and (h) ,  we get: 

which, by ( b ' ) ,  gives: 

P ( B )  = P ( A  & B )  + P(Al  & B )  + P(A ,  & R )  

which proves the theorem for n = 3. The reasoning for other values of n is similar. 

Using the result of Problem 10.24, we now establish the general version of Bayes' theorem: 

SOLVED PROBLEM 

10.25 Prove: 

If A l ,  A2 ,  . . ., A,, is a pairwise mutually exclusive and exhaustive series and Ai is some 
member of this series, then 

Solution 
Assume A 1 ,  A2, . . ., A,, is a pairwise mutually exclusive and exhaustive series. Now by 

Problem 10.23 we know that 

and by Problem 10.24 we have: 

( b )  P ( B )  = P(Al  & B )  + P(A2 & B )  + . . . + P(.A,, & B )  

Applying Problem 10.19 to formula ( 6 )  we get 

( c )  P ( B )  = P ( A l )  P (B  I A1) + P(A2)  P ( B  I A2:) + . . . + P(A,) . P(B  I A,) 

Then applying formula ( c )  to formula ( a )  proves the theorem. 

The general version of Bayes' theorem is often expressed in the more compact summation 
notation: 

This is just a shorthand version of the equation of Problem 10.25. 
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One  practical application of Bayes' theorem is in calculating the probability that a particular 
hypothesis accounts for a particular observation. This calculation requires us to formulate a series of 
hypotheses which is pairwise mutually exclusive and exhaustive-the series A,,  Az, . . ., A, mentioned 
in the theorem. The observation is B. Now if we wish to learn the probability that a particular member 
Ai of the series of hypotheses accounts for B- that is, P(A, I B) -Bayes' theorem gives a way of finding 
the answer. 

There is a catch, however. To make the calculation, we need to know not only the probability of the 
observation, given each of the hypotheses-that is, P(B I A,) for each j such that 1 < j S n- but also the 
probability of each of the hypotheses, or P(Ai) for each such j. These latter probabilities are called prior 
probabilities, or sometimes just ~ r i 0 r . s . ~  In many cases they are difficult or impossible to determine. It 
can be shown, however, that as observations accumulate, the priors have less and less influence on the 
outcome of the calculation. This phenomenon, known as "swamping the priors," permits useful 
application of Bayes' theorem even in cases in which the priors are only very roughly known. 

SOLVED PROBLEM 

10.26 Three machines at a certain factory produce girdles of the same kind. 
Three-tenths of the girdles produced by machine 1 are defective, as are two-tenths of 
the girdles produced by machine 2 and one-tenth of the girdles produced by machine 
3. Machine 1 produces four-tenths of the factory's output, machine 2 produces 
three-tenths, and machine 3 produces three-tenths. Alma has acquired an egregiously 
defective girdle from the factory. What is the probability that the girdle was produced 
by machine 1, given that it is defective? 

Solution 
Here the observation B is that Alma's girdle is defective. This can be accounted for by three 

pairwise mutually exclusive and exhaustive hypotheses: 

A,  = Alma's girdle was produced by machine 1. 

A, = Alma's girdle was produced by machine 2. 

A, = Alma's girdle was produced by machine 3. 

We may take the probability of B given each of these hypotheses as just the respective 
proportion of defective girdles produced by each machine. Thus 

P(B I A,)  = ?fi 

P ( B I A ~ )  - h 
P(B 14) = 

Moreover, we have definite values for the priors in this case. These are just the proportions of 
the total output of the factory produced by each machine: 

'The notion of prior probability should not be confused with that of an a priori or logical probability, which was mentioned earlier 
in this chapter. Prior probabilities are usually obtained from subjective estimates or (as they will be in Problem 10.26) from 
relative frequencies of occurrence. A priori probabilities are not based on actual or estimated frequencies of events, but on the 
information content of statements. 
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Now, by Bayes' theorem, 

This is the solution to the problem. 

Our next three theorems (Problems 10.27, 10.28, and 10.29) establish the behavior of negations, 
disjunctions, and conjunctions as the first terms of conditional probabilities. They are conditional 
analogues of Problems 10.3, 10.7, and 10.19, respectively. 

SOLVED PROBLEM 

10.27 Prove: 

P(-A I B )  = 1 - P ( A  ( B )  

Solution 

By Dl ,  

But ( A  v -A) & B  is truth-functionally equivalent to B. Hence, by Problem 10.6, P ( ( A  v -A) 
& B )  = P ( B ) ,  so that P ( A  v -A ( B )  = P(B)I.P(B) = I .  Moreover, ( A  V -A) & B  is also 
truth-functionally equivalent to ( A  & B )  v (-A & H ) ,  so that by Problem 10.6, 

Now A & B  and -A & B  are mutually exclusive, so that by AX3, 

So by Dl ,  P ( A  I B )  + P(-A I B )  = 1; that is, P(--A I B )  = 1 - P(A  I B) .  

Since as we noted earlier, the inductive probability of an argument is a kind of conditional 
probability (the probability of the conclusion given the conjunction of the premises), Problem 10.27 
implies the important result that the probability of -A given a set of premises is 1 minus the probability 
of A given those premises. (And, likewise, the probability of A given a set of premises is 1 minus the 
probability of --A given those premises.) This was our justification for remarking in Section 2.3 that any 
argument whose inductive probability is less than .5 is weak, since the probability of the negation of its 
conclusion given the same premises is therefore greater than .5. 

SOLVED PROBLEMS 

10.28 Prove: 

P ( A v B I C ) = P ( A I C ) +  P ( B 1 C ) - 1 3 ( A & B I C )  
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10.32 Calculate P(-A,). 

Solution 
By Problem 10.3, we know that P(-A,) = 1 - P(A,). We saw in Problem 10.31 that 

P(Al)  = 8 .  Hence P(-A,) = I - = 2. 

10.33 Calculate P(A, & A7). 

Solution 

We can do  this directly by the classical definition, or indirectly via the probability calculus. 
Using the classical definition, we note that in only one of the 36 possible outcomes does A, & A 7  
occur. Hence P(A, &A7) = &. 

To use the probability calculus, we must recognize that A, and A, are independent. That is 
(assuming the dice are tossed fairly, so that for example we don't start with both showing the 
same face and give them just a little flick, an arrangement which would tend to make them 
show the same face after the toss), we expect that P(A, IA,) = P(A,) and P(A, / A l )  = 

P(A7). If this assumption is correct, we can apply Problem 10.19, so that P(A, &A7) = 
1 1 - 1  P(Al)  - P(A7) = 6 6 - x. This agrees with our previous calculation. 

As Problem 10.33 illustrates, we can calculate probabilities in several ways (both directly, from the 
classical definition, and indirectly, via the probability calculus). Checking one method of calculation by 
means of another helps eliminate mistakes. Problem 10.34 provides another illustration of this. 

SOLVED PROBLEM 

10.34 Find P(A // A,). 

Solution 

To solve this problem via the calculus, we appeal to Problem 10.7: 

In Problem 10.31 we determined that P(Al) = P(A7) = i ,  and in Problem 10.33 we found that 
1 - 11 P(AI &A7)  = &. Hence P(Al v A 7 )  = + 8 - 3-, - ,. 

But we could just as well have proceeded directly, via the classical definition. There are 11 
possible outcomes in which A ,  v A 7  occurs (these are just the outcomes listed in the leftmost 
column, along with those listed in the first horizontal row, of our table of the 36 outcomes). 
Hence, once again we get P(Al V A,) = $4. 

Our next set of problems involves the probabilities of dealing certain combinations of cards at 
random from a jokerless deck of 52 cards. (To say that the deal is random is to say that each card 
remaining in the deck is equally likely to be dealt. This provides the equally likely outcomes necessary 
for the classical interpretation.) 

If only one card is dealt, there are 52 possible outcomes, one for each card in the deck. If two cards 
are dealt, the number of possible outcomes is 52 51 = 2652. (There are 52 possibilities for the first card 
and 51 for the second, since after the first card is dealt, 51 remain in the deck.) In general, the number 
of equally likely outcomes for a deal of n cards is 52 51 . . (52 - (n - 1)). 

We adopt the following abbreviations: 

J = Jack K = King H = Heart D = Diamond 
Q = Queen A = Ace S = Spade C = Club 

We use numerical subscripts to indicate the order of the cards dealt. Thus 'A,' means "The first card 
dealt is an ace," 'D,' means "The third card dealt is a diamond," and so on. 
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SOLVED PROBLEM 

10.35 One card is dealt. What is the probability that it is either a queen or a heart? 

Solution 

We seek P(Ql v HI), which by Problem 10.7 is P(Ql) -t P(Hl)  - P(Ql & HI). Out  of the 52 
cards, 4 are queens, 12 are hearts, and 1 is the queen of hearts. Thus, by the classical definition 

1 - @ -  4 of probability, we have 5 + 6 - - 52 - 52 - n- 

When two or more cards are dealt, we may wish to know the probability that one is of a certain 
type, given that certain other cards have been previously dealt. Such conditional probabilities can be 
computed by ~ 1 ,  but they are most efficiently obtained directly from consideration of the composition 
of the deck. 

SOLVED PROBLEM 

10.36 Two cards are dealt. What is the probability that the second is an ace, given that 
the first is? 

Solution 
We wish to find P(A2 1 A,). Given A,, 51 cards remain in the deck, of which three are aces. 

Hence P(A2 I A,) = = h. The same figure can be obtained with a little more work by appeal 
4 - 1  to  Dl.  By Dl  we have P(A2 I Al) = P(A2 &A1)IP(A1). Now clearly P(A1) = 5 - n. But to find 

P(A2 & Al), we must consider all the 2652 outcomes possible in a deal of two cards. Of these, 
only 12 give A2 & A l .  We list them below. ('AH' means "ace of hearts," 'AS' means "ace of 
spades," and so on.) 

I First card I Second card I First card I second card 1 

Thus 

Clearly, however, the first method of calculation is simpler. 

Using conditional probabilities obtained by the first method of calculation explained in Problem 
10.36, we can easily obtain a variety of other probabilities by applying the theorems of the probability 
calculus. 

SOLVED PROBLEMS 

10.37 Two cards are dealt. What is the prob-ability that they are both aces? 

Solution 
The desired probability is P(A1 & A2), which, by Problem 10.19, is P(A1) P(A2 I Al). As we 

saw in Problem 10.36, P(Al) = A; and as we also saw in that problem, P(A2 I A,) = A. Hence 
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1 - 1  P (A l  & A 2 )  = '. 13 - 17 - 221. This is the same figure obtained above for P ( A 2 & A l ) ,  since 
12-l 
2652 - 221 - 

10.38 Five cards are dealt. What is the probability of a flush, i.e., five cards of a single 
suit? 

Solution 

We wish to find P((H1 & H2 & H3 & H4 & H S )  V (S1 & S2 & S3 & S4 & S5) V ( D l  & D2 
& D, & D4 & D,) v ( C ,  & C2 & C3 & C4 & C5)) .  Clearly these four disjuncts are mutually 
exclusive, and each is mutually exclusive from any disjunction of the others. Thus by Problem 
10.7 the desired probability is simply the sum of the probabilities of these four disjuncts. We 
shall calculate P(Hl & H2 & H, & H4 & H,). Clearly, the probabilities of the other disjuncts will 
be the same. Hence, to obtain our answer we simply multiply the result of our calculation by 
4. 

Now by four applications of Problem 10.19, P(H1 & H2 & H3 & H4 & H5) = P ( H l )  
P(H2 I H I )  . P(H3 I H1 & H2) . P(H4 I H1 & H2 & H,) . P(H5 I HI  & H2 & H3 & H4). Using the first 

i ~ . 1 2 . 1 1 . 1 0 .  Y - method of Problem 10.36, we can see that this is 3 3 JT, 8 a - 0.0004952. Multiplying by 4 
gives the probability of a flush: 0.0019808. 

10.39 In a game of blackjack, you have been dealt a king and an eight from a deck 
of 52 cards. If you ask for a third card, what is the probability that you will receive an 
ace, a two, or a three and thus not go over 21? 

Solution 

Let ' E '  stand for an eight, 'W' for a two, and ' R '  for a three. The probability we seek is 
either P(A3 v W3 V R3 ( El & K2)  or P(A3 V W3 V R3 I K1 & E2). Either of these will do; they are 
equal, and the order in which the king and the eight are dealt is not relevant to our problem. 
Hence we will calculate only the first. 

We note that A3 and W,V R3 are mutually exclusive, as are W and R3. Hence, 
by two applications of Supplementary Problem 1(2) ,  below, P(A3 V W, v R3 1 K1 & E2) = 

P(A3 I K1 & E2) + P(W3 I K1 & E2) + P(R3 I K1 & E2). Given K1 & E2, the deck contains 50 
cards, four of which are aces, four of which are twos, and four of which are threes. Hence the 

4 - 1 2 -  6 desired probability is & + & + - so - so - 23. 

Supplementary Problems 

I Prove the following theorems, using the axioms and theorems established above. (Keep in mind that all 
theorems containing expressions of the form ' P ( A  I B)'  hold only when P ( B )  > 0.) 

If P ( A )  = 0, then P ( A  v B )  = P(B) .  

P ( A  v B )  = P ( A )  + P(-A & B ) .  

If A and B are mutually exclusive, then P ( A  & B )  = 0. 

If -A and -B are mutually exclusive, then P ( A  & B )  = P ( A )  + P ( B )  - 1 

If P ( A )  = P ( B )  = 1, then P ( A  & B )  = 1 .  

If A is a truth-functional consequence of B ,  then P ( A  v B) = P(A) .  

If A is a truth-functional consequence of B ,  then P ( A )  S P(B) .  

0 9 P ( A  ( B )  S 1 .  

P ( A  1 B )  = 0 if and only if P(B  I A)  = 0. 

If A is tautologous, P ( A  I B )  = 1. 

If A is contradictory, P ( A  I B )  = 0. 
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If A and B are mutually exclusive, P(A V B I C) = P(A I C) + P(B I C). 

If A is a truth-functional consequence of B, then P(A ( B) = 1. 

If B is a truth-functional consequence of C, then P(A & B I C) = P(A I C). 

If A is a truth-functional consequence of B & C, then P(A & B I C) = P(B I C). 

If P(A) > 0 and P(B) > 0 and A and B are :mutually exclusive, then A and B are not 
independent. 

I1 Calculate and compare the values for the following pairs of expressions: 

P(A I A), P(A +A). 

P(,-A ( A), P(A + -A). 

P(A I B & - B), P((B & - B) + A). 

P(A1 I A,), P(A, -. A,), where Al is the event of rolling a one and A, is the event of rolling a two on 
a single toss of a die (use the classical definition of probability). 

Using the data given in Problem 10.26, calculate the probability that Alma's girdle was produced by 
machine 2, given that it is defective, and the probability that it was produced by machine 3, given that 
it is defective. 

Consider the following game. There are two boxes containing money: box 1 contains three $1 bills and 
three fifties; box 2 contains thirty $1 bills and one fifty. A blindfolded player is allowed to make a 
random draw of one bill from one box, but the choice of box is determined by the toss of a fair coin; 
if the result is heads, the person must draw from box '1; if it is tails, the draw is made from box 2. The 
coin is tossed and a player makes a draw. Use Bayes' theorem to calculate the probability that the 
draw was made from box 1, given that the player draws a $50 bill. 

Let Q be the hypothesis that some version of the quark theory of subatomic physics is true. Let N be 
the hypothesis that no proton decay is observed ovler a period of a year in a certain quantity of 
proton-rich liquid. Suppose that P(N I Q) = .001 and P(N 1 -Q) = .99. Suppose further that we 
estimate the prior probabilities of Q and -Q as P(Q) = .7, P(-Q) = .3. Using Bayes' theorem, 
calculate P(Q IN). Suppose P(Q) = .3, P(-Q) = .7. How strongly does this change in the priors 
affect our confidence in Q, given N? 

IV Two fair dice are tossed once. Using the probability calculus and/or the classical definition of probability, 
calculate the following. (The abbreviations used are those given just before Problem 10.31.) 
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V Five cards are dealt at random from a deck of 52. Calculate the probabilities of the following: 

(1) The first four cards dealt are aces. 

(2) The fifth card dealt is an ace, given that none of the first four was. 

(3) The fifth card dealt is a heart, given that the first four were also hearts. 

(4) The fifth card dealt is not a heart, given that the first four were hearts. 

(5) At least one of the first two cards dealt is an ace. 

(6) The ten, jack, queen, king, and ace of hearts are dealt, in that order. 

(7) Neither of the first two cards dealt is a king. 

(8) The first card dealt is an ace, and the second one is not an ace. 

(9) None of the five cards is a club. 

(10) The fifth card deal is an ace or a king, given that four have been dealt, two of which are aces and two 
of which are kings. 

VI A fair coin is tossed three times. The outcomes of the tosses are independent. Find the probabilities of the 
following: 

All three tosses are heads. 

None of the tosses is heads. 

The first toss is heads and the second and third are tails. 

One of the tosses is heads; the other two are tails. 

At least one of the tosses is heads. 

The first toss is heads, given that all three tosses are heads. 

The second toss is heads, given that the first is heads. 

The first toss is heads, given that the second is heads. 

The first toss is heads, given that exactly one of the three is heads. 

Exactly two heads occur, given that the first toss is heads. 

Answers to Selected Supplementary Problems 

I (5) Suppose P(A) = P(B) = 1. Then, by Problem 10.11, P(A & B) = P(B) = 1. 

(10) Suppose A is tautologous. Then, by AX2, P(A) = 1; and by Problem 10.11, P(A & B) = P(B).  But 
by D l ,  

(15) Suppose A is a truth-functional consequence of B & C. Then clearly (A & B)  & C is a 
truth-functional consequence of B & C. Moreover, B & C is a truth-functional consequence of 
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(A & B )  & C, so that (A & B )  & C and B & C are truth-functionally equivalent. Thus, by Problem 
10.6, P((A & B) & C)  = P(B & C). Now, by Dl ,  

P ( A & B [ C ) =  
P((A & B') & C) - P(B & C)  

- 

P(C'> P(C> 

which, again by Dl ,  is just P(B I C). 

(20) By D l  and Problem 10.6, 

P ( A ( B & C ) =  
P(A & (B & C)) - P((A & B)  & C)IP(C) P(A & B I C) 

-- - - 

P(B & C) I'(B & C)IP(C) P(B I C)  

(3) Q and -Q are mutually exclusive and exhaustive. Therefore, by Bayes' theorem, 

For P(Q) = .3, P(-Q) = .7, the answer is .00043. The change in the prior probabilities is drastic, but 
the change in P(Q I N) is rather small; Q is still very unlikely, given the observations N. Within a 
wide range of values for the priors, Q remains very unlikely, given N. 

(5) Note first that A, is truth-functionally equivalent to A, & (Al v A 2 v A 3 ) .  So, by D l  and 
Problem 10.6, 

Since A,  v A 2  and A3 are mutually exclusive, as are A, and A,, we have by two applications of 
AX3: 

But the probabilities of A,, A2, and A, are each i .  Thus the desired value is: 

(10) This probability is undefined, since P(A, & -A1) = 0. 

( 5 )  Using 'A,' for 'The first card is an ace' and 'A2' for "The second card is an ace', the probability we 
seek is P(A, vA,), which is, by Problem 10.6, 

P((A 1 & A21 V (A1 & 4 2 )  V (-A1 & A d )  

Since the disjuncts here are mutually exclusive, two applications of AX3, give simply 

P(A, & A2) + P(Al & -A.2) + P(-A, &A2)  

which by Problem 10.19 becomes: 

4 4 1 )  P(A2 IAl) + 4 4 1 )  .P(-A2 IAl) + P(-A1) .P(A2 I-A,) 

i.e., 
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(10)  If two aces and two kings have been dealt, there are two aces and two kings among the 48 remaining 
cards. That is, there are four chances out of 48 to draw an ace or a king. The probability of drawing 
an ace or a king, given that two aces and two kings have been dealt, is thus & = A. 

VI ( 5 )  Let the probability of getting a head on the nth toss be H,. We wish to determine P(H, V H2 v H,). 
By Problem 10.3, this is equal to 1 - P(-(Hl  V H2 V H3)),  which, since - (HI  V H2 v H,) is 
truth-functionally equivalent to -N1  & -H2 & -H3, is just: 

Because the tosses are independent, two applications of Problem 10.22 to P(-HI & -Hz & AH,) 
give: 

Thus P ( H , v H 2 v H 3 ) = 1  -$=;. 

(10) Using the notation of the answer to Supplementary Problem VI(5), the probability we wish to 
determine is P((H2 & - H3) v ( -H2 & H3) I H I ) .  Since the tosses are independent, this equals 
P((H2 & -H3) V ( -H2& H3)).  The disjuncts here are mutually exclusive; so, by AX3, this 
becomes 

and since the tosses are independent, this is, by Problem 10.22, 

1 1  1 1 - 1  P(H2) . P(-H,) + P(-H2) . P(H3) = 2 ., + - 2 . - 2 - 2  



Chapter 11 

Further Developments in Formal Logic 

In this chapter we introduce a smattering of topics to illustrate some of the directions in which the 
study of formal logic may be pursued. Readers who wish to explore any of these topics in detail should 
consult the works mentioned in the footnotes at various poi:nts in the chapter. 

1 1 .  EXPRESSIVE LIMITATIONS OF PREDICATE LOGIC 

The system of predicate logic presented in Chapter 7 is only the beginning of formal deductive 
logic. Though complete in one sense, it is incomplete in another. As noted at the beginning of Chapter 
7, it is complete in the sense that its inference rules generate proofs for all argument forms valid in 
virtue of the semantics of the identity predicate, the truth-functional operators, and the kinds of 
quantifiers expressible within the system.' This is known as semantic completeness. But it is incomplete 
in the sense that there are valid argument forms whose validity depends on the semantics of other sorts 
of expressions. Predicate logic does not generate proofs for these forms. 

SOLVED PROBLEM 

11.1 Consider the following form, where '7' is interpreted as "is taller than" and 'a', 
'b ' ,  and 'c' are names of individuals: 

Tab, Tbc t Tac 

From the assumptions that a is taller than b and b is taller than c, it plainly follows that 
a is taller than c. Yet the predicate calculus counts this form as invalid. If we construct 
a truth tree with the premises and the negat:ion of the conclusion, we get simply this: 

Tab 
Tbc 
- Tac 

No further moves are possible, and the single path does not close, indicating that the 
inference is invalid. What has gone wrong? 

Solution 

Just as the truth tables or truth trees of propositional logic detect validity only insofar as it 
is due to the semantics of the truth-functional operators, so the methods of predicate logic detect 
validity only insofar as it is due to the semantics of these operators, the quantifiers, and the 
identity predicate. But since none of these expressions occurs in this inference, its validity is due 
not to their semantics, but to the semantics of the predicate 'is taller than'. 

The fact is that the meanings of the predicate letters of predicate logic vary from problem to 
problem; unlike quantifiers, truth-functional operators, and the identity predicate, they do not have 
fixed meanings. Consequently, predicate logic provides no rules to account for the semantics of specific 
predicates-with the sole exception of the identity predicate. It is therefore insensitive to validity 
generated by their distinctive semantics. 

 o ore general kinds of quantifiers will be discussed in the next section. 
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We could, however, decide to give the predicate letter 'T the same logical status given to the 
symbol '=' in Chapter 6. That is, we could stipulate for this letter a fixed interpretation, so that it always 
means "is taller than". And we could adopt a new set of inference rules to go along with this 
interpretation as we did in Chapter 7 for '='. The result would be an expanded version of predicate 
logic, which we might call T logic. A plausible deductive version of T logic (the T calculus) could be 
obtained by adding the following two rules to the predicate calculus with identity: 

Rule TI: We may introduce the following formula at any line of a proof: 

VxVyVz((Txy & Tyz) - Txz) 

Rule T2: We may introduce the following formula at any line of a proof: 

VxVy ( Txy - - Tyx) 

Rule TI is a general rule to justify the sort of reasoning we recognized as valid in Problem 11.1. It 
says that the relation' 'is taller than' is transitive; that is, if one thing is taller than a second and the 
second is taller than a third, then the first thing is taller than the third. Rule T2 says that this relation 
is asymmetric; if one thing is taller than a second, then the second is not taller than the first. Both rules 
permit us to introduce obvious general truths involving the predicate 'T' at any line of a proof. Like 
statements introduced by the rule =I ,  these general truths do not count as assumptions. Statements 
which function this way in proofs are called axioms. We have encountered axioms before. The rule =I 
allows us to introduce axioms of the form 'a = a' at any line of a proof. And we examined some axioms 
for the probability calculus in a semiformal way in Chapter 10. T logic is a purely formal system with 
two axioms. In T logic we can construct proofs for a variety of new argument forms and theorems. 

SOLVED PROBLEM 

11.2 Construct a proof for the form of Problem 11.1 in T logic. 

Solution 

Tab 
Thc 
VxVyVz((Txy & Tyz) - Txz) 
Vyb'z((Tay & Tyz) + Taz) 
Vz((Tah & Tbz) - Taz) 
(Tab & Thc) --. Tac 
Tab cYr Tbc 
Tac 

In view of this proof, one may object that the argument form of Problem 11.1 was not 
invalid from the point of view of predicate logic, but only incomplete, requiring for its 
completion the suppressed assumption 'VxVyVz((Txy & Tyz) --+ Txz)'. But that objection would 
miss the point. Although adding this assumption does produce a form provable in predicate 
logic, it also changes the example. The form we wished to consider in Problem 11.1 was precisely 
the form given there; and that form is valid (its conclusion cannot be false if its premises are 
true), even though it is not provable in standard predicate logic. The objection, however, is not 
wholly incorrect, since the suggested assumption or something that implies it must be 
incorporated into any logical system in which this form is provable. The point is that in such a 
system it functions not as an assumption (whether suppressed or explicit), but as a truth of the 
logic itself. 

T logic has other desirable consequences. For example, it seems to be a logical or conceptual truth 
that the relation 'is taller than' is irreflexive, i.e., that nothing is taller than itself. Yet this is not a 
theorem of the predicate calculus. It is, however, a theorem of T logic: 
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Solution 

[CHAP. 11 

Formalization of the premise is easy: 

But the conclusion presents problems. We could introduce the three-place predicate 'has in 
common with', so that 'Hxyz ' ,  for example, would mean "x has y in common with z," and then 
write the conclusion as: 

3 x  Hcxa 

But the result is a form which is not provable in predicate logic, and the argument seems 
obviously valid. Fortunately, there is a better solution. The conclusion says that the two 
individuals have something in common. The term 'something' indicates existential quantifica- 
tion. Now the relevant thing they have in common is, of course, the property of being Mexican, 
and this property is expressed by the predicate letter ' M ' .  This suggests that the quantifier 
applies in this case not to individuals, but to a property. What is replaced by the variable it binds 
is a predicate, not a name. Following this suggestion, we can formalize the argument as 
follows: 

Mc & Ma t- 3 P ( P c  & Pa) 

The conclusion says, "There exists a property P, such that Carlos has P and Anita has P." We 
use a capital 'P' rather than lowercase, to indicate that this is a special kind of variable which 
ranges over properties, not over individuals. 

Now the conclusion of this argument is not a wff by the formation rules of Chapter 6, but it is a wff 
of a generalization of predicate logic called second-order logic. And, having formalized the argument 
this way, we see at once that it is valid by a generalized form of existential introduction. 

The name 'second-order logic' originates with a conception of logic as a hierarchical structure 
describing individuals, properties, properties of properties, and so on. Any language whose variables 
range only over individuals (people, trees, electrons, nations, or planets, for example) is a first-order 
language. Thus the system of logic presented in Chapter 6 and Chapter 7 is often called the first-order 
predicate logic, because its variables stand only for individuals. Now individuals have a variety of 
properties (such as being Mexican, being human, and being green), and any language whose variables 
range just over individuals and their properties is called a second-order language. Moreover, properties 
themselves may have properties; the property of being Mexican, for example, has the property of being 
shared by more than two people. So there are also third-order languages (whose variables range over 
individuals, their properties, and properties of their properties). Indeed, there are order n languages for 
any integer n. An entire array of such languages is called a type system or theory of types. 

Theories of types are syntactically complex, since a different style of variables is used for each 
different level of objects. We shall not consider a complete type theory here, but shall instead discuss 
only some aspects of second-order logic. Moreover, although it is possible to have second-order 
quantifiers over relations (so that the variables replace n-place predicates for n > 2), we shall consider 
only quantification over properties (so that the variables are replaceable only by one-place predicates 
or open formulas on a single variable). 

SOLVED PROBLEM 

11.5 Formalize the following statements in second-order logic, using 'a' for "Albert" 
and 'b' for "Bob": 

(a) There is at least one property which Albert has and at least one which he lacks. 

(b) For any object and any property, either that object has that property or it 
does not. 
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( c )  All objects are such that there is no property which they both have and lack. 

( d )  Albert and Bob have exactly the same properties. 

(e) For all objects x and y, x and y have exactly the same properties if and only if they 
are identical. 

Solution 

(a) 3PPa&3P-Pa 
(b) VxVP(Px V - Px) 

(c) vx - 3 P(Px & - Px) 
(d) VP(Pa ++ Pb)  

( e )  VxVy(V P(Px ++ Py ) - x = y ) 

The syntax of second-order logic, as Problems 11.4 and 1.1.5 suggest, is just that of predicate logic, 
with the addition of quantified variables over predicates. (We may reserve some letters of the alphabet 
to represent predicate variables, say 'P'  through 'Z'.) Thus, to the four formation rules of Section 6.3, 
we need add only this: 

If 4) is a wff containing a one-place predicate II, then any formula of the form V!P4)'% or 3!P+V;fi is a wff, 
where +%I is the result of replacing one or more of the occurrences of II in 4) by some predicate variable 

not already in 4. 

The semantics of this language is like that of predicate logic (see Section 6.4), except of course that 
the truth conditions of wffs involve second-order quantification. The simplest way to formulate these 
conditions is patterned after the treatment of first-order quantification. If M is a model and II a 
predicate letter, define a II-variant of M to be any model tha.t results from M by freely interpreting II 
as a subset of the universe of M. Thus, if M does not assign any interpretation to Il, a II-variant will 
extend M by providing an intepretation for the additional symbol, ll; otherwise it will simply represent 
one alternative way of interpreting I I  on the universe of M, keeping everything else exactly as in M. 
(Every model that is already defined for ll counts as a Il-variant of itself.) The truth conditions for 
quantified sentences can then be defined as follows: 

(1) A universal quantification If%€'+ is true in a model M if the wff +I1% is true in every II-variant of 
M, where Il is the first predicate letter in the alphabetic: order not occurring in 4, and 4,"! is the 
result of replacing all occurrences of T in 4 by ll; if 4r1h j.s false in some II-variant of M, then \d%€'4, 
is false in M. 

(2) An existential quantification 394 is true in M if the wff +rlh is true in some II-variant of M, where 
Il and 4%. are as in (1); if 4% is false in every II-variant of M, then 394, is false in M. 

SOLVED PROBLEMS 

11.6 Evaluate the following wff in the model M given below: 

Universe: the class of all people 

a : Bill Clinton 
b : Barbra Streisand 

Solution 
With reference to condition (2), here the wff + is '(Pa & -Pb)', the variable !P is 'P', the 

predicate letter rI is 'A', and the formula is '(Aa & -Ab)'. It is easy to  see that this sentence 
is true in any model where 'A' is interpreted as a class containing Clinton but not Barbra 
Streisand-e.g., the class of all male people. So the sentence is true by condition (2). 
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11.7 Evaluate the following wff in the same model of Problem 11.6: 

3xV P(Pa -+ Px) 

Solution 
Here we must see whether there exists any b-variant of M in which the wff 'VP(Pa -4 Pb)' 

is true (see conditon (5) of Section 6.4). Consider the b-variant M' which interprets 'b' as Bill 
Clinton, i.e., as the same object designated by 'a'. Then every A-variant of M' is sure to make 
the wff 'Aa --. Ab' true. Thus, 'VP(Pa -4 Pb)' is indeed true in M' (by condition (1) above). 
Therefore '3xVP(Pa --. Px)' is true in M. 

As for the notion of a proof, second-order logic includes all the inference rules of the predicate 
calculus, but the four quantifier rules of Sections 7.2 and 7.3 are generalized to permit VE, VI, 3E, and 
31 for quantifiers binding predicate variables. The details are fairly straightforward, and we shall not 
bother to state them precisely here. We must note, however, that in the application of these inference 
rules, not only one-place predicates but also open formulas on a single variable are allowed as 
replacements for predicate variables. This is because, like one-place predicates, open formulas on a 
single variable represent properties, though these properties are logically complex. Problem 11.9 will 
illustrate the use of a quantifier rule with an open formula. 

SOLVED PROBLEMS 

11.8 Prove that formula (b) of the solution to Problem 11.5 is a theorem of 
second-order logic. 

Solution 

1 Fav-Fa TI 4.44 
2 VP(Pa v -Pa) 1 V1 
3 3xVP(Px & - Px) 2 31 

11.9 Prove that it is a theorem of second-order logic that there is some property 
which every object has. 

Solution 

The theorem to be proved is: 

The immediate problem is to decide what sort of property 'P' might represent. One property 
which every object has is the logically complex property of being a fish or not a fish, which is 
representable by the open formula: 

As noted above, the second-order quantifier rules allow us to replace such open formulas with 
predicate variables. Thus we may reason as follows: 

1 Fav-Fa TI 3.45 
2 Vx(Fx v -Fx) 1 VI 
3 3PVxPx 2 31 

In step 3, we replace the open formula '(Fxv -Fx)' by the expression 'Px' and add an 
existential quantifier on P ' .  This corresponds to saying that since any x has the complex 
property of being a fish or not a fish, then there is some property which any x has. 
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Some philosophers and logicians have felt that there is something "fishy" about complex properties 
of the sort employed in this proof. Thus it is not universally agreed that the proof is valid. It has been 
argued on philosophical grounds that whereas the property of being a fish is indeed a property, there 
is no such thing as the logically complex property of being a fish or not being a fish. Adherents of this 
point of view would ban instantiation of second-order variables by open sentences and allow 
instantiation only by predicate letters. This point of view, however, trivializes second-order logic and 
will not be considered here. 

If we want to have the identity predicate in second-order logic, we need at least one new inference 
rule to take account of how it interacts with second-order quantification. One way to do this is to take 
formula (e) of Problem 11.7, which is known as Leibniz' law, as an axiom or as a definition of identity. 
The rules =E and =I then become redundant (in the sense that anything provable by means of these 
rules may be proved from the axiom alone) and may be dropped. 

. 

SOLVED PROBLEM 

1110 Using formula (e) of Problem 11.5 as ;an axiom, prove in second-order logic the 
theorem: 

Solution 

VxVy(VP(Px - Py) +-, x = y) 
Vy(VP(Pa - Py) - a  = y) 
VP(Pa -Pa) - a  = a  
Fa -+ Fa 
Fa ++ Fa 
VP(Pa ++ Pa) 
VP(Pa ++ Pa)--a = a 
a = a  
V x x = x  

Axiom 
1 VE 
2 VE 
TI Supp. Prob. IV (I), Chap. 4 
4 ,4  -I 
5 VI 
3 --E 
6 ,7  --E 
8 VI 

Are the four quantifier rules plus Leibniz' law a complete set of rules for second-order logic with 
identity (in the sense that they generate all forms whose validity is a function of the semantics of the 
logical symbols of our second-order language)? In part, the ,answer to this question depends on our 
concept of a property, for which forms count as valid depends on what sorts of properties there are. If 
we identify properties with sets, as our semantic rules indicate, then it can be shown that our 
second-order rules are not complete and that it is impossible in principle to state a complete set of 
rules.3 Some authors have developed alternative semantics for second-order logic, where properties are 
not identified with sets. These matters, however, are beyond the scope of this book. 

One last point is worth making. Some properties seem to be properties of themselves. For example, 
the property of being nonhuman is itself nonhuman. We call such properties self-predicable. Others are 
clearly not properties of themselves; the property of being a person, for example, is not itself a person. 
Such properties are said to be non-self-predicable. It would seem natural to express the statement that 
the property of being nonhuman is nonhuman by a formula of the form 'NN', where 'N' designates this 
property, and similarly to express the statement that the property of being a person is not a person by 
the formula '-PP'. This, however, is prohibited by the formation rules. The predicates of second-order 
logic may be attached only to names of individuals, not to other predicates. Historically, the reason for 
this restriction was the appearance of certain antinomies (unexpected inconsistencies) produced when 
predicates are permitted to apply to themselves without restriction. 

T h e  semantic incompleteness of second-order logic is established by the argument of Godel's theorem (see the end of Section 
11.4). For an elegant presentation, see Richard Jeffrey, Formal Logic: Its ~ c & e  and Limits, 2d edn, New York, McGraw-Hill, 
1981, Chap. 7. 
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The simplest of these was first noticed by Bertrand Russell in 1901 and later reformulated in 
semantic terms by K. Grelling. One version of it concerns the property of being non-self-predicable: is 
it self-predicable or not? Suppose it is not. Then the property of being non-self-predicable is itself 
non-self-predicable, and so it  is self-predicable. That contradicts our hypothesis, so the property of 
being non-self-predicable must be self-predicable. But then it does not have itself as a property, and so 
it is non-self-predicable! If we allow ourselves even to consider this property, we are driven to 
contradiction. (For a formalization of this argument in first-order logic, see Chapter 7, answer to 
Supplementary Problem (25).) 

To avoid such contradictions, Russell developed the notion of a type hierarchy (mentioned above) 
in which predicates of higher orders apply only to predicates or objects of lower orders; no predicate 
may be applied to itself. Second-order logic constitutes the first two levels of such a hierarchy. 

11.3 PREDICATE LOGIC WITH FUNCTION SYMBOLS 

We can expand the predicate calculus by adding other new categories of symbols. Function symbols 
(also known as operation symbols) are a good example. A function symbol is a symbol which, when 
attached to one or more names or other denoting terms, produces an expression which denotes a single 
object and functions grammatically as a new name. Thus function symbols differ from predicates, which 
when applied to one or more names produce sentences. One English expression which may be treated 
as a function symbol (if the subject under discussion is people) is 'the father of7 (understood in the 
biological sense). Applying this English phrase to a name produces a new English phrase which denotes 
a single new individual. Thus, applying 'the father of' to the name 'Isaac ', we get the phrase 'the father 
of Isaac', which designates the individual Abraham (assuming that the biblical Isaac is intended). This 
new phrase, which we shall call a functional expression, acts grammatically as a name; that is, it may 
occur in any grammatical context in which a name is appropriate. We may, for example, attach it to a 
one-place predicate to create a sentence, as in 'The father of Isaac was a prophet'. 

We now consider how this sentence might be expressed in an extension of the predicate calculus. 
We shall use the lowercase letters 'f', 'g', and 'h' for function symbols. The names or other functional 
expressions to which they are applied are written after them and enclosed in brackets. Thus, using 'P' 
for 'was a prophet7, 'i' for 'Isaac7, and ' f 7  for 'the father of', we may write 'the father of Isaac' as 'f(i)' 
and 'The father of Isaac was a prophet7 as 'Pf(i)'. 

Function symbols may be applied repeatedly. For example, to say that Isaac's paternal grandfather 
(the father of Isaac's father) was a prophet, we can write 'Pf(f(i))'. Moreover, the names contained in 
function symbols (as well as the functional expressions themselves) are accessible to quantification. 
Thus we may write 'Someone's paternal grandfather was a prophet7 as '3xP(f(f(x)))'. 

An expression may be treated as a functional symbol only if each expression formed by applying 
it to a name denotes a unique individual. Thus 'the son of' may not be treated as a function symbol, 
since when applied to the name of anyone who has more than one son, it denotes not one individual, 
but several, and it denotes nobody when applied to the name of anyone who has no sons. By contrast, 
'the father of7 denotes a unique individual when applied to the name of any person, since each person 
has one and only one (biological) father. 

Notice, however, that if 'a7 is the name of an inanimate object, then also the expression 'the father 
of a' denotes nothing. That is why we were careful to restrict our comments above to discussions of 
people. When using function symbols it is important to specify the domain, i.e., the set of individuals 
to which the function symbol applies. 'The father of7 may not be treated as a function symbol for 
domains which include fatherless  object^.^ 

Semantically, function symbols may be thought of as denoting operations called functions. An 
n-place function is an operation which assigns a unique object to each n-tuple (i.e., linear ordering, or 

4This is the case so long as we require each functional expression to denote something. There are logics of partial functions which 
dispense with this requirement, but we will not consider these logics here. 



CHAP 111 FURTHER DEVELOPMENTS IN FORMAL LOGIC 

list, of n objects) of members of the domain. The father-of function, for example, is a one-place 
(monadic) function which assigns to each person a single individual who is that person's father. The 
addition function of arithmetic is a two-place (binary) function which assigns to each 2-tuple (ordered 
pair) of numbers a third number which is their sum. A member of an n-tuple to which the function is 
applied is called an argument of the function. (Be careful not to confuse this meaning of 'argument' 
with the idea of a set of premises and their conclusion.) The object assigned by an n-place function to 
a given n-tuple of arguments is called the value of the function for that n-tuple. For example, the value 
of the father-of function for the argument Isaac is Abraham. The set of all values for a given domain 
is the range of the function. 

SOLVED PROBLEM 

1111 Using 'f' for 'the father of', 'm' for 'the mother of', 'a' for 'Abel', 'c' for 'Cain', 
and 'S' for 'is a sinner', formalize each of the following English sentences in the 
language of the predicate calculus with identity and function symbols. (Assume a 
domain of people.) 

(a) Cain's father is a sinner. 

( b )  If a person's father is a sinner, then that person is a sinner. 

(c) If a person's paternal grandfather is a sinner, then that person is a sinner. 

(d) Abel's mother and father are sinners, 

(e )  Abel's father is also Cain's father. 

( f)  Abel's father is someone else's father. 

As parts (e) and (f)  of Problem 11.11 suggest, two different individuals may have the same father. 
Thus a function may take the same value for two distinct arguments. The father of Abel is the same 
person as the father of Cain-namely, Adam. Still, for a given argument, the father-of function has one 
and only one value. 

The father-of function takes only one argument at a time. It is thus a one-place, or monadic, 
function. But, as noted above, there are also functions which take two or more arguments at a time. 
Consider, for example, the domain of points on a flat (Euclidean) plane. For each pair of points, there 
is exactly one point which lies midway between them. (For a pair consisting of a point and itself, the 
midpoint is that point.) Thus the expression 'the midpoint between' denotes a function which takes two 
arguments, i.e., a two-place, or binary, function on this domain. Applied to a pair of points, this function 
gives a point as its value. 

SOLVED PROBLEM 

11.12 Using 'P' for 'is a point' and 'm' for 'the midpoint between', formalize the 
following statements: 

(a )  The midpoint between a point and itself is that point. 
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( b )  For any points x and y, the midpoint between x and y is identical to the midpoint 
between y and x. 

(c) Any point is the midpoint between some pair of points. 

(d) For any points x and y, there is some point z such that y is the midpoint between 
x and z .  

(e)  For any points x and y, the midpoint between x and the midpoint between y and 
y is the midpoint between x and y. 

Solution 

When a function has more than one argument place, we write the names of the arguments 
in brackets after the function symbol and separate them with commas; thus: 

In part (e), the second argument of the first occurrence of 'm' is the value of the function m 
applied to y and y. Incidentally, all the propositions in this problem are true of points on the 
Euclidean plane. 

To accommodate function symbols in the predicate calculus with identity, we need make only 
minor modifications in the formation rules and inference rules. The new formation rules allow 
functional expressions to occur anywhere names can occur, and the rules =I, =E, VE, and 31 may now 
be performed with functional expressions in addition to names. (However, if we want any of our 
function symbols to have fixed interpretations, then we must add special rules or axioms for them. This 
is illustrated in the next section.) 

SOLVED PROBLEMS 

11.13 Prove in the predicate calculus with identity and function symbols that 
statement (c) of Problem 11.11, 'If a person's paternal grandfather is a sinner, then that 
person is a sinner', may be deduced from statement (b), 'If a person's father is a sinner, 
then that person is a sinner'. (Use the notation of Problem 11.11.) 

Solution 

We are to prove the following: 

Vx(Sf(x) --, Sx) k Vx(Sf (f(x)) --+ Sx) 

Here is the proof: 

At  step 2 we perform VE by replacing the variable 'x' with the functional expression ?(a)'. A t  
step 3 we perform VE again, using the name 'a'. 

11.14 Let 'f' be a one-place function symbol. Prove as a theorem of the predicate 
calculus with identity and function symbols that for any argument the function f has 
one and only one value. 
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Solution 
The theorem to be proved is: 

1 V x 3 y ( y  = f ( x )  & V z ( z  = f ( x )  - z = y ) )  

Here is the proof: 

1 f @ >  = f (a> = I  
2 b = f (a) -+ b = f ( a )  TI Supp. Prob. IV(1), Chap. 4 
3 V z ( z  = f ( a ) - +  z = f ( a ) )  2 VI 
4 f ( a )  = f ( a )  & V z ( z  = f(a)--.z = f ( a ) )  l , 3  &I 
5 3 y ( y  = f ( a )  & V z ( z  = f ( a )  -, z = y ) )  4 31 
6 V x 3 y ( y  = f ( x ) & V z ( z  = f ( x ) - z  = y ) )  5 VI 

The trick in setting up the proof is to realize that the object y  mentioned in the theorem must 
be f ( x )  in order to satisfy the condition ' y  = f ( x ) ' .  Thus we can see that we need to prove 
something of the form ' f ( a )  = f ( a )  & V z ( z  = f ( a )  -+ z = f ( a ) ) ' ,  which we do at line 4, in order 
to apply 31 and VI to obtain the theorem. 

11.4 FORMAL ARITHMETIC 

Many of the familiar expressions of arithmetic are function symbols, though they are not all written 
before the names to which they apply, as in the previous section. (The names used in arithmetic are the 
numerals, '0'' 'I.', '2'' etc.) The symbols '+' and ' . ', for example, denote the addition and multiplication 
functions, each of which takes two arguments. These symbols are written, however, in an infix position 
(between the names of their arguments, often with brackets surrounding the result) rather than in the 
prefix position, which is usual in logic. Thus instead of writing 'the sum of 1 and 2' as '+(I ,  2)', we write 
it as '1 + 2' or '(1 + 2)'. By contrast, the function symbol '-' , when used to denote the one-place 
negative function (which applies to a single number) rather th.an subtraction (which gives the difference 
between two numbers), is written in the prefix position, though the brackets are often omitted. 

In this section we examine six axioms and one inference rule for the arithmetic of the nonnegative 
integers (zero and the positive whole numbers). The resulting formal system generates proofs for many 
arithmetical truths and enables us to formalize and evaluate a great deal of arithmetical reasoning. 

Arithmetic can be regarded as an extension of the predicate calculus with identity. It is obtained by 
adding one name and three function symbols to the vocabulary and special axioms and/or inference 
rules for them. The name is 'O', which designates the number zero. The first two function symbols are 
the familiar '+' and '. ', which we shall write in the customary infix position with surrounding brackets. 
The third is 's', which means 'the successor of'. The successor function is a monadic function which, 
when applied to any integer, gives as its value the next integer. Thus the successor of 0 is 1, the successor 
of 1 is 2, and so on. When using 's', we shall follow bracketing conventions similar to those used in 
mathematics for '-'. That is, where 'x' denotes a number, we shall write 'sx' rather than 's(x)' for 'the 
successor of x'. Omitting the brackets makes long formulas more readable. 

Numerals other than '0' are treated as abbreviations for functional expressions built up from 's' and 
'0'. Thus '1' abbreviates 'SO', '2' abbreviates 'ssO', and so on. These abbreviations are not officially part 
of our language, but may be employed in writing formulas to avoid prolixity. As in the predicate 
calculus with identity, the symbol '=' is a predicate, not a function symbol. Like the identity symbol, the 
four arithmetical symbols have fixed interpretations. We will adopt six special axioms and one new rule 
of inference to express these interpretations.' If we keep in mind that the intended domain is the 
nonnegative integers, the axioms are fairly easy to understand: 

'The resulting system is similar to that presented in Elliot Mendelson, Introduction to Mathematical Logic, 2d edn, New York, 
Van Nostrand, 1979, Chap. 3. Mendelson's treatment is excellent and far more detailed than ours. 
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A 1  V x  -0 = sx 
A 2  VxVy (sx = sy --, x = Y )  
A 3  V x  ( x  + 0 )  = x 
A4 VxVy ( x  +sy)= s(x + y )  
A5 V x ( x . 0 )  = 0 
A6 VxVy (x - sy) = ((x . y )  + x) 

Their meanings are as follows (where x and y are any nonnegative integers): 

A 1  0 is not the successor of any nonnegative integer. 
A2 If x and y have the same successor, then they are identical, i.e., no number is the 

successor of more than one number. 
A 3  x plus 0 equals x. 
A4  x plus the successor of y equals the successor of x + y. (For instance, 2 + s3 = 

s(2 + 3) = 6.) 
A5 x times 0 equals 0. 
A6 x times the successor of y equals ((x . y)  + x). (For instance, 2 .  s3 = ( 2 . 3 )  + 2 = 8.) 

As axioms, any of these formulas may be introduced at any line of a proof. 

SOLVED PROBLEMS 

11.15 Prove as a theorem of formal arithmetic: 

Solution 

In successor notation, what we are to prove is: 

I- (ss0 + ss0) = sssso 

The proof of this simple statement is surprisingly complex: 

v x v y  ( x  + sy) = s(x + y )  
v y  (ss0 + sy) = s(ss0 + y )  
(ss0 + ss0) = s(ss0 + S O )  
(ss0 + S O )  = s(ss0 + 0 )  
(ss0 + ss0) = ss(ss0 + 0 )  
V x ( x + O ) = x  
(ss0 + 0 )  = sso 
(ss0 + ss0) = sssso 

We instantiate the variable 'x' with 'ssO' at step 2, 'y' with 'SO' at step 3, and 'y' again with '0' at 
step 4. Using line 4, we then replace '(ssO + SO)' in line 3 with 's(ss0 + 0)' by =E to obtain line 
5. A similar = E  move occurs at step 8. 

11.16 Prove as a theorem of formal arithmetic: 

Solution 

In successor notation, the theorem is: 

k (SO . ss0) = sso 

Here the proof is even more complex: 

1 v x v y  ( x  . sy) = ( ( x  . y )  + x )  
2 v y  (SO . sy) = ( ( S O  . y )  + S O )  
3 ( S O  . ss0) = ( ( S O  S O )  + S O )  
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VxVy (x + sy) = s(x + y )  
Vy ((SO . SO) + sy) = s((s0 . SO) + y )  
( (SO - SO) + SO) = s((s0 . SO) + 0 )  
(SO . ss0) = s((s0 SO) + 0) 
V x ( x  + 0)  = x  
((SO . SO) + 0 )  = (SO . SO) 
(SO ss0) = s(s0 . SO) 
(SO . SO) = ((SO - 0 )  + SO) 
(SO . ss0) = s((s0 . 0)  + SO) 
Vx  (x 0 )  = 0 
(SO - 0 )  = 0 
(SO . ss0) = s(0 + SO) 
v y  (0 + sy) = s(0 + y )  
(0 + SO) = s(0 + 0) 
(SO . ss0) = ss(0 + 0 )  
(0 + 0 )  = 0 
(SO . ss0) = sso 

This proof repays careful study, since it provides good illustrations of the uses of =I and V E  with 
function symbols. It also demonstrates how repeated application of instances A4 and A6 can be 
used to manipulate successor expressions until the desired result is attained. Roughly, the 
strategy is this: Use instances of A6 to reduce formulas containing ' . ' followed by long successor 
expressions to formulas containing ' a '  followed by shorter successor expressions and a sum. 
Then use instances of A4 to reduce formulas containing '+' followed by long successor 
expressions to formulas containing '+' followed by shorter successor expressions. Eventually, by 
continually shortening successor expressions following '+' and '.', we reduce them to '0 ' ,  at 
which point A3 or AS can be used to eliminate these occurrences of '+' and ' a '  and simplify the 
formula to achieve the desired result. 

Proofs of this sort have been criticized on the grounds that statements such as ' 2 . 1  = 2' are more 
certain than the principles used to prove them. That may well be true. But though such proofs hardly 
increase our confidence in their conclusions, they do systematically illuminate the connections between 
simple arithmetical truths and the more general principles from which they can be deduced. Moreover, 
the real value of formal arithmetic lies not in the proofs of such simple truths, but in the careful 
examination of more advanced forms of mathematical reasoning. Dissection of mathematical reasoning 
under the microscope of formal logic has in fact facilitated a :number of fundamental mathematical 
discoveries (e.g., Godel's theorem, which is briefly discussed at the end of this section) and significantly 
enhanced the unity of mathematical knowledge. 

Notice that much of the work in Problems 11.15 and 11.16 involved the removal of universal 
quantifiers by VE. In mathematics, initial universal quantifiers are generally omitted, so that A5, for 
example, would be written simply as '(x SO) = 0'. Moreover, proofs in mathematics often skip many of 
the steps (such as VE) which are required for complete formal rigor. Given the demanding complexity 
of formal proof exemplified in the last two problems, such shortcuts are obviously both desirable and 
necessary. 

The axioms alone, although they imply the particular facts codified in addition and multiplication 
tables and some other relatively simple truths, do not enable us to prove very interesting arithmetical 
generalizations. For that we need a more powerful principle of reasoning, the rule of mathematical 
induction. The name is a bit misleading; mathematical induction is actually a form of deductive 
reasoning. In fact, it can be seen as a generalization of the rule of conditional elimination. The idea is 
this: We wish to prove that a certain general fact holds for all the nonnegative integers, i.e., that they 
all have a certain (possibly very complex) property. To do this, it suffices to show two things: 

(1) Zero has this property. 
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(2) For any number x, if x has this property, then so does the successor of x. 

For condition (2) is equivalent (under the standard interpretation of arithmetic) to the following 
infinite sequence of conditional statements: 

If 0 has this property, then so does 1. 
If 1 has this property, then so does 2. 
If 2 has this property, then so does 3. 

Now condition 1 together with the first of these conditionals implies by 4 E  that 1 has the property 
in question. And the fact that 1 has this property, together with the second conditional, implies by 
+E that 2 has it, and so on. Thus, by what are in effect infinitely many steps of -E, we reach the 
conclusion that all the nonnegative integers have this property, i.e., that the desired generalization is 
true of them all. 

Of course, we cannot actually write out a proof containing infinitely many steps of -+E. Yet the 
reasoning outlined above is clearly valid. So we adopt a new rule of inference which licenses this 
reasoning."ntuitively, the rule says that if we have established conditions 1 and 2, we can directly 
infer: 

(3) Every nonnegative integer has this property. 

In formal terms, the rule is this: 

Mathematical Induction (I): Given a wff + containing the name letter '0' and a wff of the 
form Vex(+% -+ + ~ h ) ,  we may infer tla@%, where +% is the result of replacing one or more 
occurrences of '0' in 4 by some variable cx not already in +, and P A  is the result of replacing 
those same occurrences of '0' in 4 by sa. 

Here +% is an open formula on a expressing the property about which we wish to generalize, + is 
condition 1, Vex(+% -+ +"A) is condition 2, and Va+% is the conclusion (3). 

SOLVED PROBLEM 

11.17 Prove the following theorem of formal arithmetic: 

Solution 
Notice that this is not the same as A3, since the positions of the occurrences of 'x' and '0' 

flanking the plus sign are reversed. Despite its similarity to A3, this theorem cannot be proved 
directly from the axioms, since we have no rule which allows us to go directly from something 
of the form 'a + 0' to something of the form '0 + a'. Its proof requires rule I. We wish to show 
that all numbers have a certain complex property: the property of being such that, when added 
to zero, they yield themselves as the result. The proof is as follows: 

"any authors treat mathematical induction as an additional axiom, rather than as a rule of inference. The difference is merely 
one of style; it does not change what we can prove. We treat it as an inference rule to emphasize its similarities with other rules, 
particularly -+E, and also because it generally functions as an inference rule in mathematical proofs. 
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V x ( x  + 0 )  = x  
(0 + 0 )  = 0 

(0 + a)  = a 
VxVy ( x  + sy) = s(x + y )  
V y  (0  + sy) = s(0 + y )  
(0 + sa) = s(0 + a )  
(0 1- sa) = sa 

(0 + a )  = a --, (0 + sa) = sa 
Vx((0 + X )  = x 3 (0 + SX)  = SX)  
V x ( O + x ) = x  

A3 
1 V E  
H (for -+I) 
A4 
4 V E  
5 V E  
3 , 6  =E 
3-7 + I  
8 V I  
2 ,9  1 

We prove that 0 has the relevant property at step 2. Then at step 9 we deduce that if any number 
has it, then so does that number's successor. The theorem follows by mathematical induction at 
step 10. With reference to  the formal statement o f the  rule I, the formula 4 containing '0' is that 
shown at step 2. Replacing the last two occurrences o f  0 in this formula by some variable a (in 
this case, ' x ' )  yields @A, that is, ' (0  + x )  = x' .  The Formula Va(+% -+ F A )  is represented in step 
9, and the conclusion Va+% appears in line 10. 

Problem 11.17 illustrates a pattern common to most elementary proofs by mathematical induction. 
Zero is shown to have the relevant property, and then a hypothetical derivation followed by a step of 
-+I and a step of VI establishes that if any number has it:, so does that number's successor. The 
derivation of the statement that zero has the property is called the basis cuse of the proof. Thus, in 
Problem 11.17, t.he basis case consists of steps 1 and 2. The hypothetical derivation together with the 
steps of +I and VI  (steps 3 through 9 in Problem 11.17) is known as the inductive portion of the proof. 
This inductive portion begins with a hypothesis called the irzductive hypothesis (step 3). This same 
pattern is evident again in the next problem. 

SOLVED PROBLEM 

11.18 Prove the following theorem of formal arithmetic: 

t- VyVx (sx + y )  = s(x + y )  

Solution 

Notice that this theorem is related to A4 in much the same way that Problem 11.17 is 
related to  A3. Here, however, there are two universally quantified variables, rather than one. 
When two or  more initial universal quantifiers are present, the induction can be attempted in 
several different ways. In this case, we can try to' prove either that all numbers x have the 
property expressed by the open formula 'Vy (sx + y )  = s(x + y) '  or that all numbers y have the 
property expressed by the open formula 'Vx  (sx + y )  = s(x + y) ' .  In the first case we say that the 
induction is on 'x ' ;  in the second, that it is on ' y ' .  Sometimes a theorem can be proved by 
induction on one variable but not by induction on another. Even if it can be proved by induction 
on several different variables, the proof is often much easier by induction on one than by 
induction on others. In this case proof by induction on 'y' is most efficient: 

1 V x ( x + O ) = x  
2 ( a + O ) = a  
3 sa = sa 
4 s(a + 0 )  = sa 
5 (sa + 0 )  = sa 
6 (sa + 0 )  = s(a + 0 )  
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The formal arithmetic outlined in this section is strong enough to provide proofs for all of the 
familiar laws governing the nonnegative integers. It is possible, using the symbols of this system, to 
define additional predicates such as 'is less than' and 'is greater than' (see Supplementary Problem IV, 
below) and additional function symbols such as 'the square o f7 ,  'the smallest power of 10 greater than', 
and so on. Subtraction and division are not function symbols for the nonnegative integers, since these 
operations may result in numbers which are not nonnegative integers. They cannot therefore be 
represented by function symbols; but, as we shall see in the next section for the case of subtraction, they 
can be handled in other ways. 

Nevertheless, the formal arithmetic presented here is serriantically incomplete; some truths about 
the nonnegative integers which are formulable in this notation cannot be proved as theorems. This 
incompleteness cannot be remedied. A celebrated metalogical proof due to Kurt Godel has established 
that for any system containing the axioms and rules given here (and indeed, any system containing 
certain even weaker axioms and rules), some truths expressible in that system cannot be proved within 
that ~ y s t e m . ~  

11.5 FORMAL DEFINITIONS 

The formalization of relatively simple ideas often produces forbiddingly complex formulas. Such 
formulas can be made more comprehensible by systematic rewriting or abbreviation. That is the role 
of formal definition. The simplest sort of formal definition is d.irect replacement of one expression by 
another, generally shorter expression. This was illustrated in the previous section, where we took the 
familiar numerals as abbreviations for successor expressions. 

More complicated, but also more useful, are contextual definitions, or definitions in use. In a 
contextual definition, a symbol is defined not by substituting it for other symbols, but by showing how 
entire formulas in which it occurs can be systematically translated into formulas in which it does not 
occur. Consider, for example, the definition of the familiar subtraction symbol '-' in the language of 
formal arithmetic: 

Dl: 

(The symbol '=dI'  means "is by definition.") Thus D l  indicates that '(x - y) = z' is to be regarded as 
an alternative way of writing '('y + z) = x'. Notice that '-' does not simply abbreviate some other 
symbol or set of symbols. Rather, the formula in which '-' occurs is translated into a different formula 
in which 'x ' ,  'y', and '2' occur in a different order. 

The definition is to be understood in a completely general way, so that the variables 'x', ' y ' ,  and 'z' 
may stand for any name, variable, or functional expression. It applies to subformulas as well as 
whole formulas. ' n u s  D l  allows us to rewrite '(2 + 1) = 3' as '(3 - 2) = l', '(SO + SO) = ssO' as 
'(ssO - SO) = SO', 'Vx (x + 0) = x' as 'Vx (x - x )  = O', and so on. 

Definitions may be used like inference rules in proofs, allowing replacement of either version of the 
defined formula by the other. They are not counted as inference rules, however, since they do not 
enable us to infer anything new, but only to rewrite previously stated formulas in an alternative 
notation. 

SOLVED PROBLEMS 

11.20 Prove the following theorem of formal arithmetic: 

I- vx (x - 0) =: x 

'For a very readable introduction to Godel's incompleteness theorem, see Ernest Nagel and James R. Newman, Godel's Proof, 
New York, New York University Press, 1958. 
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Solution 
The theorem is simply an alternative way of writing the formula 'Vx (0 + x )  = x7. But this 

formula was proved as a theorem in Problem 11.17. Hence the proof is straightforward: 

11.21 Prove the following theorem of formal arithmetic: 

Solution 

The theorem is a triply quantified conditional. We use a -I strategy involving D l  to obtain the 
appropriate conditional at 8, and then introduce the quantifiers by VI. 

1 
2 
3 
4 
5 
6 
7 

Contextual definitions have their limitations. D l  enables us to introduce '-' (flanked by names, 
variables, or functional expressions) only on the left side of an identity predicate. It does not allow us 
to use '-' in other contexts. It does not, for example, permit us to write '1 = (3 - 2)', where '-' appears 
to the right of '='. For that we need the parallel definition: 

( a -  b ) = c  
( b + c ) = a  
VxVy ( x  + y)  = ( y  + x )  
W b + y ) = ( y + b )  
( b  + c )  = (c  + b)  
( c + b ) = a  
( a - c ) = b  

But even with D2 there are contexts in which we may not write - '  , such as in the expression 
's(0 - 0) = SO', where - occurs within a functional expression. Introducing ' -  into functional 
expressions presents special problems, since whenever x is less than y, (x  - y) is not a nonnegative 
integer and hence is not in the domain. Definitions to handle such cases must therefore include certain 
restrictions. We shall not discuss these technicalities here.8 

8 ( a -  b ) = c - . ( a - c ) =  b  
9 V z ( ( a - b ) = z - ( a - z ) = b )  

10 VyVz((a - y )  = z - ( a  - z )  = y)  
11 VxVyVz((x - y) = z -+ ( x  - z )  = y )  

11.6 DEFINITE DESCRIPTIONS 

One of the most notable applications of contextual definition occurs in Bertrand Russell's theory 
of definite descriptions. Definite descriptions are expressions which purportedly denote a single object 
by enumerating properties which uniquely identify it. In English they are usually phrases beginning 
with the definite article 'the7. The following expressions are definite descriptions: 

The current president of the United States 
The summit of Mount Everest 
The steel tower in Paris 
Isaac's father (i.e., the father of Isaac) 

 or detailed discussions, see Patrick Suppes, Introduction to Logic, New York, Van Nostrand, 1957; or Benson Mates, 
Elementary Logic, 2d edn, New York, Oxford University Press, 1972, pp. 197-204. 
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Functional expressions may be used to formalize some definite descriptions (e.g., 'the father of 
Isaac'-see Section 11.3), but they cannot be used to formalize others. The phrase 'the big tower in', for 
example, does not denote a function when applied to the domain of cities (or virtually any other 
domain), since some cities have no big tower and others have more than one. Russell's theory handles 
definite descriptions in either case. 

Russell uses the symbol '9' for 'the'. Like a quantifier, this symbol must be followed by a variable. 
For example, if 'F' is the predicate 'is the father of' (as opposed to the functional phrase 'the father of') 
and 'i' is the name 'Isaac', the expression 'Isaac's father' is written as 'ixFxi'. This means: "the (unique) 
x such that x is the father of Isaac." Definite descriptions, like functional expressions, act grammatically 
like names. So to say 'Isaac's father was a prophet', we wr~ite 'PucFxi', with the definite description 
following the predicate. 

SOLVED PROBLEM 

11.22 Using 'S' for 'is made of steel', 'T' for 'is a tower', 'P' for 'is in Paris', and 'M' 
for 'is magnificent', formalize the sentence 'The steel tower in Paris is magnificent'. 

Solution 
The definite description 'The steel tower in Paris' is formalized as 'ix((Sx & Tx) & Px)'. 

Read literally, this means, "the x such that x is made of steel and x is a tower and x is in Paris." 
To formalize the entire statement, we simply attach the predicate 'M' to the description: 
'Mix((Sx & Tx) & Px)'. 

All formalized definite descriptions have the form 'ucFx', where 'x' may be replaced by any variable 
and 'Fx' by any open sentence on that variable. Thus, the simplest statements containing definite 
descriptions all have the form 'GixFx', where G may be replaced by any one-place predicate. This may 
be read as "The F is G." The statements 'The father of Isaac was a prophet' and 'The steel tower in Paris 
is magnificent' both have this form. (In the latter case, 'Fx' is replaced by the open formula 
'(Sx & Tx) & Px'.) 

According to Russell's theory, such expressions make th.e following rather complex assertion: 

There is exactly one F, and it is G. 

Now this can be formalized without using the symbol 'I' in predicate logic with identity: 

3x((Fx & Vy(Fy -+ x = y)) & Gx) 

(compare part ( I )  of Problem 6.40). Thus the symbol 'I' ma:y be defined contextually for occurrences 
following one-place predicates as follows: 

D : GixFx =df  3x((Fx & Vy(Fy -+ x = y)) & Gx) 

where 'G' is any one-place predicate. By this definition, the formula of Problem 11.22 is shorthand for 
the rather intimidating formula: 

3x((((Sx & Tx) & Px) & Vy(((Sy & Ty) & Py) --. x = y)) & Mx) 

This says "There is an x such that x is made of steel and x is a tower and x is in Paris, and for all y if y 
is made of steel and y is a tower and y is in Paris, y is the same as x; and x is magnificent," or, more 
succinctly, "There is exactly one steel tower, x, in Paris, and x is magnificent." 

The formula is a legitimate wff of the predicate calculus, regardless of whether there is one steel 
tower in Paris, or many or none. (In the latter two cases it  is simply false.) Since the definition eliminates 
'I' in favor of the terminology of the predicate calculus, no new axioms or inference rules are needed. 
All the implications of formulas containing definite descriptions can be handled by the rules of the 
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predicate calculus with identity. The following problem, for example, illustrates the validity of 
existential introduction over definite descriptions: 

SOLVED PROBLEM 

11.23 Prove: 

GixFx t 3xGx 

Solution 

A number of interesting complexities and ambiguities arise when definite descriptions occur in 
contexts more complicated than the subject position of a one-place predicate. For these cases, the 
definition D must be generalized to allow 'GixFx' to stand for any wff containing a single occurrence 
of ' ~Fx ' .  But we shall not discuss these complexities here.' 

1 GixFx A 
2 3x((Fx & Vy(Fy -+ x = Y)) & Gx) 1 D 

11.7 MODAL LOGIC 

3 
4 
5 

Formal logic can be expanded in still other directions. One extension which has undergone rapid 
development recently is modal logic. Modal logic-the name comes from the Latin 'modus' (mode or 
mood)-is the logic of expressions such as 'could', 'would', 'should', 'may', 'might', 'ought', and so on, 
which express the grammatical "mood" of a sentence. The most thoroughly investigated of the modal 
expressions are 'It is possible that' and 'It is necessary that'. In modal logic these are represented 
respectively by the symbols ' 0' and 'o'.l0 Syntactically they function just like negation, prefixing a wff 
to create a new wff. But semantically they are quite different, since they are not truth-functional; we 
cannot always determine the truth value of a sentence of the form ' 0 P' or 'UP '  simply from the truth 
value of 'P'. 

Suppose, for example, that a certain stream is polluted. Let 'P' represent the statement that this is 
so. Then 'P' is true and '-P' is false. But the statements 

(Fa&Vy(Fy-+a= Y)) & Ga H (for 3E) 
Ga 3 &E 
3xGx 4 31 

U P  (It is necessary that this stream is polluted.) 

6 3xGx 2,3-5 3E 

and 

- P  (It is necessary that this stream is not polluted.) 

are both false. Neither condition is necessary. The condition of the stream is a contingent fact; it is not 
bound to be one way or the other. Thus the operator '0' may produce a false sentence when prefixed 
either to a false sentence or to a true sentence. 

Similarly, the statements 

O P  (It is possible that this stream is polluted.) 

'A brief account may be found in Jeffrey, op. cit., pp. 118-122. A more thorough but more technical treatment is given in Donald 
Kalish, Richard Montague, and Gary Mar, Logic: Techniques of Formal Reasoning, 2d edn, New York, Harcourt Brace 
Jovanovich, 1980, Chaps. VI and VIII. 
'"Sometimes the letter 'M', the first letter of the German term 'moglicherweise' (possibly), is used for 'it is possible that', and 'L,' 
(signifying logical truth) or  'N' for 'it is necessary that'. 
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and 
0-P (It is possible that this stream is not polluted.) 

are both true. Both conditions are possible. Hence, again wt: cannot determine the truth value of the 
modal statement solely from the truth value of its nonmodal component. 

There are two exceptions to this rule. If 'P' is true, than ' UP' is certainly true, since if something 
is actually the case it is clearly possible. And if 'P' is false, then 'UP '  is false, since what is not the case 
is certainly not necessary. In general, however, the truth value of a modal statement depends not only 
on the actual truth values of its components, but also on the truth values that these components might 
have. The truth value of a modal statement, then, can be thought of as a function of the truth values of 
its components in various possible worlds. (The notion of a "possible world" is a source of some 
philosophical controversy. Here we shall use it to refer to any conceivable state of affairs, any one of 
the many ways things could have been besides the way they actually are.) 

Statements of the form ' UP' are true if and only if 'P' is true in at least one possible world. Since 
the actual world (the universe) is a possible world, if 'P' is true in the actual world, that makes ' UP' 
true. But ' UP' may be true even if 'P' is false in the actual world, provided only that 'P' is true in some 
possible world. 

Similarly, statements of the form 'UP '  are true if and only if 'P' is true in all possible worlds. Thus 
if 'P' is false in the actual world, ' U P '  is false. But if 'P' is true in the actual world, ' U P '  may be either 
true or false, depending upon whether or not 'P' is true in all the other possible worlds as well. 

SOLVED PROBLEM 

11.24 Formalize the following statements, using the operators 'a' and '0' and the 
sentence letter 'P' for 'Pete is a postman'. 

(a )  It is impossible that Pete is a postman. 

(b) Pete might not be a postman. 

( c )  It is not true that Pete must be a postman. 

(d) It is necessary that Pete is not a postman. 

(e) Necessarily, if Pete is a postman, then Pete is a postman. 

(f)  It is necessarily possible that Pete is a postman. 

( g )  It is possible that Pete is a postman arid possible that he is not. 

(h )  It is impossible that Pete both is and is not a postman. 

(i) If it is necessary that Pete is a p0stma.n' then it is necessary that it is necessary 
that Pete is a postman. 

( j )  It is necessary that it is necessary that if Pete is a postman then Pete is a 
postman. 

Solution 

(a) -0P  

(b) 0-P 

(c) - U P  

(d) 0-P 

(4 w ' - + P )  

(f) o O P  
(g) O P &  0-P 
(h)  -O(P&-P)  

( i)  UP-. OOP 

(1) ow'  --, P) 
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Notice the difference in meaning when the relative positions of a modal operator and a negation 
sign are changed, as in the pair (a) and (b) or the pair (c) and (d). 

Actually, the terms 'possible' and 'necessary7 themselves have various shades of meaning. There 
are conditions which are logically possible (they violate no law of logic) but not physically possible 
(they violate the laws of physics). It is, for example, logically possible but not physically possible to 
accelerate a body to a speed faster than the speed of light. And there are conditions which are 
physically possible but not practically possible (at least with current technologies). For example, it is 
physically possible to supply all of the earth's energy needs with solar power; but this is not practically 
possible now. And there are other senses of possibility as well. 

The different concepts of possibility have different logics, and for some the appropriate logic is still 
a matter of controversy. We shall be concerned exclusively with the logic of logical possibility. Thus we 
shall count something as possible if we can describe it without inconsistency. But what, exactly, is 
inconsistency? We have thus far characterized this notion only vaguely as falsehood due to semantics 
alone. That's clear enough when we are working with a formal language which has a well-defined 
semantics (e.g., propositional or predicate logic), but none too clear for natural languages. 

Alternatively, we might say that a thing is logically possible if its description violates no law of logic. 
But what is a law of logic? There is near universal agreement that the theorems of the predicate calculus 
should count as logical laws. But what of the theorems of T logic (Section 11.1), second-order logic 
(Section 11.2), or formal arithmetic (Section 11.4)? Just how far does the domain of logic extend? 
Moreover, if logic includes formal arithmetic (which, as we noted, is incomplete), should we count 
those arithmetical truths which cannot be proved in our system of formal arithmetic as logical laws? 

There is yet a deeper issue here. In Section 2.3 we defined a valid argument as one such that it is 
logically impossible (not logically possible) for its conclusion to be false while its premises are true. If 
we now define logical possibility in terms of logical laws, how can we define the notion of a logical law 
without presupposing some concept of validity and thus making our definitions viciously circular? Will 
the concept of a possible world help, or is that too ultimately circular or insufficiently clear? 

These difficulties have led some philosophers to reject the notions of possibility and necessity 
altogether, along with our conception of validity and a whole array of related ideas," but that response 
is drastic. Still, it must be admitted that these concepts are fraught with unresolved difficulties. 
Fortunately, the formal development of much of modal logic does not depend upon solutions to these 
philosophical difficulties, so that much progress has been made in spite of them. 

This section presents a system of propositional modal logic known as S5. We shall not discuss 
quantified modal logic. S5, the most powerful of five modal calculi invented by the logician C. I. Lewis, 
is widely regarded as the system which best codifies the concept of logical possibility, though it may well 
be too powerful for other concepts of possibility. 

Our version of S5 will be based on the propositional calculus of Chapter 4, together with four 
axiom schemas and a new rule of inference. An axiom schema, as opposed to an axiom, is a formula 
each substitution instance of which counts as an axiom. (Recall from Section 4.4 that a substitution 
instance of a wff is the result of replacing zero or more of its sentence letters by wffs, each occurrence 
of the same sentence letter being replaced by the same wff.) An axiom schema thus represents infinitely 
many axioms. The axiom schemas are as follows: 

" ~ o s t  notably, W. V. 0. Quine, in "Two Dogmas of Empiricism." in From a Logical Point of View, Cambridge, Mass., Harvard 
University Press, 1953. For a discussion of these and other criticisms of modal logic, see Susan Haack, Philosophy of Logics, 
Cambridge, Cambridge University Press, 1978, Chap. 10. 
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Any substitution instance of these schemas counts as an axiom. Thus, for example, the following 
substitution instances of AS1 are all axioms: 

AS1 itself says that it is possible that P if and only if it is not necessary that not-p.12 It asserts, 
in other words, that 'P7 is true in some possible world if and only if it is not the case that in all 

' 3' possible worlds '9' is true. This is clearly correct, since 1 is false in any possible world in which 
'-P' is true. 

AS2 says that if it is necessary that if P then Q, then if it is necessary that P, it is necessary that Q. 
Thinking in terms of possible worlds, this means that if 'P -+ 1Q7 is true in all possible worlds, then if 'P' 
is true in all possible worlds, so is 'Q'. 

AS3 asserts that if it is necessary that P, then P. That is, if 'P' is true in all possible worlds, then 'P' 
is true in the actual world (or in any world at which we consider the axiom's truth). 

AS4 is the only one of the axioms whose truth may not 'be obvious upon reflection. The intuition 
behind it is this: What counts as logically possible is not a matter of contingent fact but is fixed 
necessarily by the laws of logic. Thus if it is possible that P, then it is necessary that it is possible 
that P.13 

In the language of possible worlds, AS4 means: If 'P7 is true in some possible world, then it is true 
in all possible worlds that 'P' is true in some possible world. 

In addition to the four axioms, S5 has a special inference rule, the rule of necessitation: 

Necessitation (N): If 4 has been proved as a theorem, then we may infer 04. 

Theorems, in other words, are to be regarded as necessary truths. But N allows us to infer o+ from + 
only if 4 is a theorem, i.e., has been proved without making any assumptions. The following use of N, 
for example, is not legitimate: 

1 P A 
2 OP N (incorrect) 

However, any formula in a derivation containing no assumptions (provided that the formula is not part 
of a hypothetical derivation) is a theorem, since it is proved on no assumptions by the part of the 
derivation which precedes it. 

We now prove some theorems of S5. The equivalences of propositional logic (Section 4.6), which 
are valid for modal logic as well as propositional logic, figure prominently in the proofs. The first 
theorem establishes the obvious truth that if P then it is possible that P. 

SOLVED PROBLEMS 

11.25 Prove the theorem: 

' 2~n  many treatments of modal logic, AS1 is regarded as a definition; the language of such systems contains only one modal 
operator, 'a'; and ' 0 ' is introduced as mere abbreviation for '-0-'. However, treating AS1 as an axiom schema yields equivalent 
results Still other systems have '0' as the sole modal operator and treat '[I' as an abbreviation for ' -0-' .  (Problem 11.26 
provides a clue as to why this works.) These, too, yield equivalent results. 
 his reasoning is not plausible for some nonlogical forms of possibility; hence AS4 is rejected in some versions of modal logic. 
Omitting AS4 from our system yields a weak modal logic called T. Other versions of modal logic have been constructed by 
replacing AS4 by various weaker axioms (See the comments following Problem 11 30,  below.) 
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Solution 

1 O-P--P AS3 
2 --P4-0-P 1 TRANS 
3 P--0-P 2 DN 
4 OP--0-P AS 1 
5 -0-P- O P  4 HE 
6 P- O P  3 ,5  HS 

Notice that a substitution instance of AS3 is used at 1. The proof can be shortened by treating 
AS1 as an equivalence in the manner of Section 4.6. Then, instead of steps 4,5, and 6, we simply 
have: 

11.26 Prove the theorem: 

Solution 

AS1 
1 DN 
2 --E 
2 -E 
3 TRANS 
4 TRANS 
5,6 -I 
7 DN 

Compare this theorem with AS1. Again, this result can be proved more efficiently if AS1 is used 
as an equivalence. The proof is left to the reader as an exercise. 

11.27 Prove the theorem: 

Solution 

11.28 Prove the theorem: 

Solution 

The next theorem is somewhat surprising. It shows that if it is possible that a proposition is 
necessary, then it is indeed necessary. 
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VI Prove the following theorems of S5 modal logic: 

Answers to Selected Supplementary Problems 

a = b  
VP(Pa * Pb) 
Fa * Fb 
Fa + Fb 
VP(Pa + Pb) 

a = b + VP(Pa 4 Pb)  
VP(Pa --. Pb) 

Fb 
-Fa 
-Fa+ -Fb 
- Fb 
Fb & -Fb 

--Fa 
Fa 

Fb - Fa 
Fa + Fb 
Fa - Fb 
VP(Pa ++ Pb) 
a = b  

VP(Pa --+ Pb) --+ a = b 
a = b-VP(Pa- -Pb)  

H (for +I) 
1 LL 
1 V E  
1 --E 
4 VI 
1,5--I 
H (for 3 1 )  
H (for 4 1 )  
H (for -I) 
7 VI 
9,10 --E 
8,11 &I 
9-12 -1 
13 -E 
8-1 4 -1 
7 VI  
l 5 , l 6  --I 
17 VI 
18 LL 
7 , 1 9 4  
6,20 -1 

Comment: This theorem is important, because it shows that the condition that a and b have the same 
properties (i.e., a = b )  is equivalent to the simpler condition that b have all the properties that a has. 
Thus Leibniz' law itself may be formulated more simply but equivalently as: 

a = b =dfVP(Pa --+ Pb)  

Notice how 'P' is instantiated by the complex predicate ' F  at step 10. 



CHAP. 111 FURTHER DEVELOPMENTS IN FORMAL LOGIC 

V x - 0  = sx 
-0 = so 

-a = sa 
VxVy (sx = sy - x = Y >  
Vy(sa = sy - a = Y 1 
sa = ssa - a = sa 
-sa = ssa 

-a = sa- -sa = ssa 
Vx(-x = sx -+ -sx = ssx) 
V x  -x = sx 

V x  -0 = sx 
-0 =so  
VxVy ( x  + sy) = s(x + y )  
V y  (a + sy) = s(a + y)  
(a + S O )  = s(a + 0 )  
V x  ( x  + 0 )  = X 

(a + 0 )  = a 
(a + S O )  = sa 
-0 = SO& (a + S O )  = sa 
3z(-0 = z & (a + z )  = sa) 
u < sa 
sa > a 
3yy 'a  
Vx3y  y > x 

A1 
1 V E  
H (for 3 1 )  
A2 
4 V E  
5 V E  
3 , 6  MT 
3-7 --I 
8 i f 1  
2,9 1 

A1 
1 V E  
A4 
3 V E  
4 V E  
A3 
6 V E  
5,7 =E 
2 ,8  &I 
9 31 
10 D3 
11 D5 
12 31 
13 VI 

V ( 5 )  The argument form is: 

-B?x(Cx & Lax) t- 3x((Cx & Lax) & Vy((Cy & Lay) -. x = y ) )  --, 3x((Cx & Lax) & -Bx) 

Here is the proof: 

-,Bix(Cx & Lax) 
- 3x(((Cx & Lax) & Vy((Cy & Lay) + x = Y ) )  & B x )  
V x  - ( ( (CX & Lax) & V y  ((Cy & Lay) -+ x = y ) )  & Bx) 

3x((Cx & Lax) & Vy((Cy & Lay) --. x = Y ) )  
(Cb & Lab) & Vy((Cy & Lay) --. b = y )  
-(((Cb & Lab) & Vy((Cy & Lay) - b = y ) )  & Bb) 
-((Cb & Lab) & Vy((Cy & Lay) --, b = Y ) )  V -Bb 
--((Cb & Lab) & Vy((Cy & Lay) + b = y ) )  
-Bb 
Cb & Lab 
(Cb & Lab) & -Bb 
3x((Cx & Lax) & - Bx) 

3x((Cx & Lax) & - Bx) 
3x((Cx & Lax) & Vy((Cy & Lay) -+ x = y ) )  -+ 3x((Cx & Lax) & - Bx) 

H ( for -+I) 
2 &E 
1-2 -1 
3 N 
AS2 

A 
1 D 
2 QE 
H ( for  + I )  
H ( for  3 E )  
3 V E  
6  DM 
5 DN 
7 , 8  DS 
5 &E 
9,lO &I 
11 31 
4,5-12 3E 
4-13 +I 
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4,5 --E 
H (for 4 1 )  
7 &E 
7-8 -1 
9 N  
AS2 
10 , l l  -E 
H (for -1) 
6,13 --E 
12,13 -E 
14,15 &I 
13-16 -1 
TI Supp. Prob. IV(2), Chap. 4 
18 N 
AS2 
19,20 -E 
AS2 
21,22 HS 
H (for - + I )  
24 &E 
24 &E 
23'25 --E 
26,27 -E 
24-28 4 1  
17,29 -1 

The overall strategy here is -1. The first 17 lines of the proof establish the first of the two required 
conditionals. Lines 18 to 29 establish the second. On lines 1 to 12 we prove two conditionals, 'o(P & 
Q )  - UP' and 'o(P & Q) -3 oQ', which are needed in the proof of the first conditional. 

H (for - + I )  
1 AS1 
2 DM 
TI Supp. Prob. IV(8) 
3,4 MT 
5 DM 
6 AS1 
7 AS1 

This proof makes frequent use of equivalences. DM is used at steps 3 and 6, and AS1 is used as an 
equivalence at steps 2, 7, and 8. 



A-form categorical statement. A statement of the form 'All S are P'. 

a priori probability. Inherent probability; probability considered apart from the evidence. The a priori probability 
of a statement is inversely related to its strength. 

a-variant. Any model that results from a given model upon freely interpreting the name letter a. 

absorption (ABS). The valid inference reference rule P-+ Q t P -+ ( P  & Q). 

abusive ad hominem argument. A species of ad  hominem argument which attempts to refute a claim by 
attacking personal characteristics of its proponents. 

accent, fallacy of. A fallacy of ambiguity caused by misleading emphasis. 

ad baculum argument. (See appeal to force.) 

ad hoc hypothesis. An auxiliary hypothesis adopted without independent justification in order to enable a 
scientific theory to  explain certain anomalous facts. 

ad hominem argument. An argument which attempts to refute a claim by discrediting its proponents. 

ad ignorantjam argument. (See appeal to ignorance.) 

ad misericordiam argument. (See appeal to pity.) 

ad populum argument. (See appeal to the people.) 

ad  verecundiam argument. (See appeal to authority.) 

affirmative categorical statement. An A- or I-form categorical statement. 

affirming the consequent. The invalid argument form P--, Q, Q t- P. 

algorithm. A rigorously specified test which could in principle be carried out by a computer and which always 
yields an answer after a finite number of finite operations. 

ambiguity. Multiplicity of meaning. 

amphiboly. Ambiguity resulting from sentence structure. 

antecedent. The statement P in a conditional of the form 'If P, then Q'. 

antinomy. An unexpected inconsistency. 

appeal to authority. An argument that a claim is true because some person or authority says so. 

appeal to force. An argument which attempts to establish its conclusion by threat or intimidation. 

appeal to ignorance. Reasoning from the premise that a claim has not been disproved to  the conclusion that it 
is true. 

appeal to pity. An argument that a certain action should be excused or a special favor be granted on grounds of 
extenuating circumstances. 

appeal to the people. Reasoning from the premise that an idea is widely held to the conclusion that it is 
correct. 

argument. A sequence of statements, of which one is intended as a conclusion and the others, called premises, are 
intended to prove or at least provide some evidence for the conclusior~. 

argument of an n-place function. One of an n-tuple of objects to which an n-place function is applied. 
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association (ASSOC). The equivalences ( P  v (Q V R)) ++ ((P v Q) v R) and ( P  & (Q & R)) - ((P & Q) & R). 

assumption. A premise that is not also a conclusion from previous premises. 

asymmetric relation. A relation R such that for all x and y, if Rxy, then not Ryx.  

atomic formula. The simplest sort of wff of a formal language; an atomic formula of the language of predicate 
logic is a predicate letter followed by zero or more name letters. 

axiom. A formula which does not count as an assumption and yet may be introduced anywhere in a proof; 
intuitively, an axiom should express an obvious general truth. 

axiom schema. A formula each substitution instance of which counts as an axiom. 

basic premise. (See assumption.) 

begging the question. (See circular reasoning.) 

biconditional. A statement of the form ' P  if and only if Q'. 

biconditional elimination (WE). The valid inference rule P ++ Q I- P --. Q or P - Q I- Q - P. 

biconditional introduction (4). The valid inference rule P -+ Q, Q -+ P t- P ++ Q. 

bivalence, principle of. The principle that says that true and false are the only truth values and that in every 
possible situation each statement has one of them. 

categorical statement. A statement which is either an A-, E-, I-, or 0-form categorical statement, or a negation 
thereof. 

categorical syllogism. A two-premise argument consisting entirely of categorical statements and containing 
exactly three class terms, one of which occurs in both premises, and none of which occurs more than once in a single 
premise. 

circular reasoning. The fallacy of assuming a conclusion we are attempting to prove. 

circumstantial ad hominem. A kind of ad hominem argument which attempts to refute a claim by arguing that 
its proponents are inconsistent in their endorsement of that claim. 

class. A collection (possibly empty) of objects considered without regard to order or description. Also called 
a set. 

class term. A term denoting a class (set) of objects. 

classical interpretation. The notion of probability by which the probability of an event A relative to a situation 
is the number of equipossible outcomes in which that event occurs divided by the total number of equipossible 
outcomes. 

commutation (COM). The equivalences (P  v Q) ++ (Q V P) and (P & Q) ++ (Q & P). 

complement of a set. The set of all things which are not members of the set in question. 

completeness, semantic. With respect to a formal system and a semantics for that system, the property that each 
argument form expressible in that system which is valid by that semantics is provable in the system. 

complex argument. An argument consisting of more than one step of reasoning. 

composition, fallacy of. Invalidly inferring that a thing must have a property because one, or some, or all of its 
parts do. 

conclusion indicator. An expression attached to a sentence to indicate that it states a conclusion. 

conditional. A statement of the form 'If P, then Q'. Conditionals are also expressible in English by such locutions 
as 'only if '  and 'provided that'. 

conditional elimination (-E). The valid inference rule P -+ Q, P t- Q. Also called modus ponens 

conditional introduction (-4). The valid inference rule which allows us to deduce a conditional after deriving its 
consequent from the hypothesis of its antecedent. 
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conditional probability. The probability of one proposition or event, given another 

conjunct. Either of a pair of statements joined by the operator 'and'. 

conjunction. The truth functional operation expressed by the term 'and'; the conjunction of two statements is true 
if and only if both statements are true. Derivatively, a conjunction is any statement whose main operator is '&'. 

conjunction elimination (&E). The valid inference rule P & Q t P or P & Q t Q. 

conjunction introduction (&I). The valid inference rule P, Q I- P & Q. 

consequence, truth-functional. Statement or statement form A is a truth-functional consequence of statement 
or statement form B if there is no line on their common truth table on which B is true and A is false. 

consequent. The statement Q in a conditional of the form 'If P, then Q'. 

constructive dilemma (CD). The valid inference rule P v Q, P --+ R, Q --. S t R v S. 

contextual definition. A type of formal definition in which the use of a symbol is explained by showing how entire 
formulas in which it occurs can be systematically translated into formulas in which it does not occur. 

contradiction. A truth-functionally inconsistent statement. Also, the valid inference rule CON: P, -P t Q 

contradictories. Two statements, each of which validly implies tht: negation of the other. 

contrapositive. The result of replacing the subject term of a categorical statement with the complement of its 
predicate term and replacing its predicate term with the complement of its subject term. 

convergent argument. An argument containing several steps of reasoning which support the same intermediate 
or final conclusion. 

converse. The result of exchanging the subject and predicate terms of a categorical statement. 

copula. Any variant of the verb 'to be' which links the subject and predicate terms of a categorical statement. 

counterexample. A possible situation in which the conclusion of an argument or argument form is false while the 
assumptions are true. A counterexample shows the argument or argument form to be invalid. 

counterfactual conditional. The sort of conditional expressed in English by the subjunctive mood. Counterfac- 
tuals are intermediate in strength between material and strict conditionals. 

decidability. A formal system is decidable if there exists an algorithm for determining for any argument form 
expressible in that system whether or not that form is valid. Propositional logic is decidable; predicate logic 
is not. 

deductive argument. An argument such that it is logically impossible for its conclusion to be false while its 
assumptions are all true. 

definite description. An expression which purportedly denotes a single object by enumerating properties which 
uniquely identify it. Definite descriptions in English typically begin wi.th the word 'the'. 

De Morgan's laws (DM). The equivalences -(P & Q )  ++ (-P V -Q) and -(p v Q )  ++ ( -p& -Q). 

denying the antecedent. The invalid inference rule P --+ Q, -P t -Q. 

deontic logics. Logics dealing with moral concepts. 

derivation. (See Proof.) 

derived rule of inference. A rule of inference which is not one of the basic or defining rules of a formal system 
but which can be proved in that system. 

disjunct. Either of a pair of statements joined by the operator 'or'. 

disjunction. Any statement whose main operator is 'or' in either the inclusive or exclusive sense. 

disjunction elimination (vE). The valid inference rule PV Q, P-+ R, Q -+ R t- R. 
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disjunction, exclusive. A binary truth-functional operation which when applied to a pair of statements yields a 
third statement which is true if  and only if exactly one of the pair is true. 

disjunction, inclusive. A binary truth-functional operation which when applied to a pair of statements yields a 
third statement which is true if and only if at least one of the pair is true. 

disjunction introduction ( ~ 1 ) .  The valid inference rule P I- P v Q or Q I- P v Q. 

disjunctive syllogism (DS). The valid inference rule P V  (3, - P  t Q. 

distribution (DIST). The equivalences ( P  & ( Q  V R)) +-+ ((P & Q)  V ( P  & R ) )  and ( P  v (Q & R)) ++ ((P v (2) & 
( P  V R)) .  

division, fallacy of. Invalidly inferring that a thing's parts must have a property because the thing itself does. 

domain of a function. The set of objects to which a function may be applied; the set of possible arguments for 
the function. 

domain of interpretation. (See universe o f  interpretation.) 

double negation (DN). The equivalence P +-+ --P. 

E-form categorical statement. A statement of the form 'No S are P' 

entailment. The relationship which holds between statement or set of statements S and a statement A if it is 
logically impossible for A to be false while S is true, and if at the same time S is relevant to A.  

epistemic logics. Logics dealing with the concepts of knowledge and belief. 

equivalence. A biconditional which is a theorem. 

equivalence, truth-functional. The relationship that holds between two statements or statement forms if they 
have the same truth table. 

equivocation. (See ambiguity.) 

existential elimination (3E). A rule of inference which, provided that certain restrictions are met (see Section 7.3), 
allows us to infer a conclusion after deriving that conclusion from a hypothesized instance of an existentially 
quantified formula. 

existential introduction (31). The valid inference rule that allows us to infer an existentially quantified wff from 
any of its instances. 

existential quantifier. The symbol '3, which means "for at least one." English terms expressing the same meaning 
are also sometimes called existential quantifiers. 

exportation (EXP). The equivalence ((P & Q) -+ R )  - ( P  -+ (Q -4 R)) .  

fallacy. Any mistake that affects the cogency of an argument. 

fallacy of relevance. Reasoning which is mistaken because the premises are not sufficiently relevant to the 
conclusion. 

false-cause fallacy. Concluding that one event causes another on the basis of insufficient evidence. 

false dichotomy, fallacy of. Reasoning which is faulty because of a false disjunctive premise. 

faulty analogy, fallacy of. Analogical reasoning whose inductive probability is low because of the inadequacy of 
the analogy on which it is based. 

first-order logic. Quantificational logic whose quantifiers range only over individual objects. 

formal fallacy. Mistaken reasoning resulting from misapplication of a valid rule of inference or application of an 
invalid rule. 

formal language. A rigorously defined language. 

formal logic. The study of argument forms. 
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formal system. A formal language together with a set of inference rules and/or axioms for that language. (The 
propositional calculus, for example, is a formal system.) 

formation rules. A set of rules which define the well-formed formulas (wffs) of some formal language. 

formula. Any finite sequence of elements of the vocabulary of some formal language. 

free logic. A modification of predicate logic in which proper names are not assumed to designate existing 
objects. 

function. An operation which for some n assigns unique objects to n-tuples of objects. 

function symbol. A symbol which when applied to some definite number n of names or other denoting terms 
produces a complex term which denotes a single object. 

functional expression. An expression formed by applying an n-place function symbol to n denoting terms. 

gambler's fallacy. An argument of the form: 

x has not occurred recently. 
x is likely to happen soon. . . 

where 'x' designates an event whose occurrences are independent. 

guilt by association, fallacy of. A species of ad hominem argument in which a claim is attacked by pointing out 
that one or more of its proponents are associated with allegedly unsavory characters. 

hasty generalization. Fallaciously inferring a statement about an entire class of things on the basis of information 
about some of its members. 

higher-order logics. Logics which use special variables for quantification over properties or relations in addition 
to the variables used for quantification over individual objects. 

Humean argument. An inductive argument which presupposes the uniformity of nature. 

hypothesis. An assumption introduced into a proof in order to show that certain consequences follow, but which 
must be discharged before the proof is completed. 

hypothetical derivation. A derivation which begins with a hypothesis and ends when that hypothesis is 
discharged. 

hypothetical syllogism (HS). The valid inference rule P -+ Q, Q -+ R t P -+ R. 

I-form categorical statement. A statement of the form 'Some S are P' 

identity elimination (= E). The rule that allows us to infer the result of replacing one or more occurrences of a name 
letter a by a name letter P in any wff containing a, using that wff together with a = P or P = a as premises. 

identity introduction (=I). The rule that allows us to write a = a, for any name letter a, at any line of a proof. 

identity predicate. The symbol '=', which means "is identical to." 

ignoratio elenchi. The fallacy of drawing a conclusion different from (and perhaps opposed to) what the argument 
actually warrants. Also called missing the point. 

immediate inference. An inference from a single categorical statement as premise to a categorical statement as 
conclusion. 

inconsistent set of statements. A set of statements whose semantics alone prevents their simultaneous truth; 
a set of statements whose simultaneous truth is logically impossible. 

inconsistent statement. A statement whose semantics alone prevents its truth; a statement whose truth is 
logically impossible. 

independence. The relationship which holds between two propositions (or events) when the probability of either 
is unaffected by the truth (or occurrence) of the other. 



GLOSSARY 

slippery-slope argument. An argument of the form: 

An-*An+,. 
It should not be the case that An+]. 

:. It should not be the case that A]. 

sound argument. A valid argument whose assumptions are all true. 

standard form. A format for writing arguments in which premises are listed before conclusions and the 
conclusions are prefixed by ':.'. 

statement. A thought of the kind expressible by a declarative sentence. 

statistical argument. An inductive argument which does not presuppose the uniformity of nature. 

statistical generalization. An argument of the form: 

n percent of s randomly selected F are G. 
About n percent of all Fare G. . . 

statistical syllogism. An argument of the form: 

n percent of F are G. 
x is F. 

. . xis  G. 

straw man fallacy. An attempt to refute a person's claim which confuses that claim with a less plausible claim not 
advanced by that person. 

strength of a statement. The information content of a statement. 

strict conditional. A kind of conditional which is true if and only if its antecedent necessarily implies its 
consequent. 

strong reasoning. High inductive probability. 

subject term. The first of the two class terms in a categorical statement. 

subjective probability. A person's degree of belief in a proposition, as gauged by that person's willingness to 
accept certain wagers regarding that proposition. 

subwff. A part of a wff which is itself a wff. 

sufficient cause. A condition which always produces a certain effeclt. 

suppressed evidence, fallacy of. A violation of the requirement of total evidence so serious as to constitute a 
substantial mistake. 

symmetrical relation. A relation R such that for all x and y, if Rxy, then Ryx. 

syntax. Grammar; the syntax of a formal language is encoded in its formation rules. Formal inference rules are 
syntactic, since they refer only to grammatical form, not to truth conditions; whereas truth tables, Venn diagrams, 
and refutation trees are semantic in nature. 

tautology. A wff of propositional logic whose truth table contains only T's under its main operator. Derivatively, 
any statement whose formalization is such a wff. (The term 'tautology' is also sometimes used, though not in this 
book, to designate any logically necessary truth.) Also, either of the equivalences called TAUT: P ++ ( P  & P) or 
P - (PvP) .  

theorem. A wff of some formal system which is the conclusion of some proof of that system that does not contain 
any nonhypothetical assumptions. 



GLOSSARY 

theorem introduction (TI). The inference rule that permits inserting a theorem at any line of a proof. 

transitive relation. A relation R such that for all x, y, and z ,  if Rxy and Ryz, then Rxz. 

truth-functionally contingent wff. A wff of the propositional calculus whose truth table contains a mix of T's and 
F's under its main operator. 

truth-functionally inconsistent wff. A wff of the propositional calculus whose truth table contains only F's under 
its main operator. Any statement whose formalization is such a wff is also said to be truth-functionally 
inconsistent. 

truth table. A table listing the truth value of a wff under all possible assignments of truth values to its atomic 
subwffs. 

truth value. The truth or falsity of a statement or wff, often designated by 'T' or 'F' respectively. 

tu quoque fallacy. A species of a d  hominem fallacy in which an attempt is made to refute a belief by arguing that 
its proponents hold it hypocritically. 

type system. A formal system with a number of different styles of variables, each intended to be interpreted over 
one of a series of hierarchically arranged domains. 

universal categorical statement. An A- or E-form categorical statement. 

universal elimination (VE). The valid inference rule that allows us to infer from a universally quantified wff any 
instance of that wff. 

universal generalization. (See universal introduction.) 

universal instantiation. (See universal elimination.) 

universal introduction (Vl). A valid inference rule which, provided that certain restrictions are met (see Section 
7.2), allows us to infer a universally quantified statement from a proof of one of its instances. 

universal quantifier. The symbol 'V', which means "for all." English terms which express the same meaning are 
sometimes also called universal quantifiers. 

universe (of interpretation). A nonempty class of objects relative to which a model specifies an interpretation 
for the nonlogical symbols of predicate logic. 

valid argument. (See deductive argument.) 

valid form. An argument form every instance of which is valid. 

value of a function. The object assigned by an n-place function to a given n-tuple of arguments. 

Venn diagram. A representation of relationships among class terms used to display the semantics of categorical 
statements and to  test some arguments in which they occur for validity. (See Chapter 5.) 

vested interest fallacy. A kind of a d  hominem fallacy in which an attempt is made to refute a claim by arguing 
that its proponents are motivated by desire for personal gain or to avoid personal loss. 

weak reasoning. Low inductive probability. 

wff. A well-formed formula of some formal language, as defined by the formation rules of that language. 




