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Preface

This book is an introduction to statistical field theory, an important subject of
theoretical physics that has undergone formidable progress in recent years. Most of
the attractiveness of this field comes from its profound interdisciplinary nature and its
mathematical elegance; it sets outstanding challenges in several scientific areas, such
as statistical mechanics, quantum field theory, and mathematical physics.

Statistical field theory deals, in short, with the behavior of classical or quantum
systems consisting of an enormous number of degrees of freedom. Those systems have
different phases, and the rich spectrum of the phenomena they give rise to introduces
several questions: What is their ground state in each phase? What is the nature of
the phase transitions? What is the spectrum of the excitations? Can we compute
the correlation functions of their order parameters? Can we estimate their finite size
effects? An ideal guide to the fascinating area of phase transitions is provided by a
remarkable model, the Ising model.

There are several reasons to choose the Ising model as a pathfinder in the field of
critical phenomena. The first one is its simplicity – an essential quality to illustrate
the key physical features of the phase transitions, without masking their derivation
with worthless technical details. In the Ising model, the degrees of freedom are simple
boolean variables σ�i, whose values are σ�i = ±1, defined on the sites�i of a d-dimensional
lattice. For these essential features, the Ising model has always played an important
role in statistical physics, both at the pedagogical and methodological levels.

However, this is not the only reason of our choice. The simplicity of the Ising
model is, in fact, quite deceptive. Despite its apparent innocent look, the Ising model
has shown an extraordinary ability to describe several physical situations and has a
remarkable theoretical richness. For instance, the detailed analysis of its properties in-
volves several branches of mathematics, quite distinguished for their elegance: here we
mention only combinatoric analysis, functions of complex variables, elliptic functions,
the theory of nonlinear differential and integral equations, the theory of the Fredholm
determinant and, finally, the subject of infinite dimensional algebras. Although this is
only a partial list, it is sufficient to prove that the Ising model is an ideal playground
for several areas of pure and applied mathematics.

Equally rich is its range of physical aspects. Therefore, its study offers the pos-
sibility to acquire a rather general comprehension of phase transitions. It is time to
say a few words about them: phase transitions are remarkable collective phenomena,
characterized by sharp and discontinous changes of the physical properties of a statis-
tical system. Such discontinuities typically occur at particular values of the external
parameters (temperature or pressure, for instance); close to these critical values, there
is a divergence of the mean values of many thermodynamical quantities, accompanied
by anomalous fluctuations and power law behavior of correlation functions. From an
experimental point of view, phase transitions have an extremely rich phenomenology,
ranging from the superfluidity of certain materials to the superconductivity of others,
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from the mesomorphic transformations of liquid crystals to the magnetic properties of
iron. Liquid helium He4, for instance, shows exceptional superfluid properties at tem-
peratures lower than Tc = 2.19K, while several alloys show phase transitions equally
remarkable, with an abrupt vanishing of the electrical resistance for very low values
of the temperature.

The aim of the theory of phase transitions is to reach a general understanding of
all the phenomena mentioned above on the basis of a few physical principles. Such
a theoretical synthesis is made possible by a fundamental aspect of critical phenom-
ena: their universality. This is a crucial property that depends on two basic features:
the internal symmetry of the order parameters and the dimensionality of the lattice.
In short, this means that despite the differences that two systems may have at their
microscopic level, as long as they share the two features mentioned above, their critical
behaviors are surprisingly identical.1 It is for these universal aspects that the theory
of phase transitions is one of the pillars of statistical mechanics and, simultaneously,
of theoretical physics. As a matter of fact, it embraces concepts and ideas that have
proved to be the building blocks of the modern understanding of the fundamental
interactions in Nature. Their universal behavior, for instance, has its natural demon-
stration within the general ideas of the renormalization group, while the existence
itself of a phase transition can be interpreted as a spontaneously symmetry breaking
of the hamiltonian of the system. As is well known, both are common concepts in
another important area of theoretical physics: quantum field theory (QFT), i.e. the
theory that deals with the fundamental interactions of the smallest constituents of the
matter, the elementary particles.

The relationship between two theories that describe such different phenomena may
appear, at first sight, quite surprising. However, as we will see, it will become more
comprehensible if one takes into account two aspects: the first one is that both theories
deal with systems of infinite degrees of freedom; the second is that, close to the phase
transitions, the excitations of the systems have the same dispersion relations as the
elementary particles.2 Due to the essential identity of the two theories, one should
not be surprised to discover that the two-dimensional Ising model, at temperature T
slightly away from Tc and in the absence of an external magnetic field, is equivalent
to a fermionic neutral particle (a Majorana fermion) that satisfies a Dirac equation.
Similarly, at T = Tc but in the presence of an external magnetic field B, the two-
dimensional Ising model may be regarded as a quantum field theory with eight scalar
particles of different masses.

The use of quantum field theory – i.e. those formalisms and methods that led to
brilliant results in the study of the fundamental interactions of photons, electrons, and
all other elementary particles – has produced remarkable progress both in the under-
standing of phase transitions and in the computation of their universal quantities. As
will be explained in this book, our study will significantly benefit from such a possi-
bility: since phase transitions are phenomena that involve the long distance scales of

1This becomes evident by choosing an appropriate combination of the thermodynamical variables
of the two systems.

2The explicit identification between the two theories can be proved by adopting for both the path
integral formalism.
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the systems – the infrared scales – the adoption of the continuum formalism of field
theory is not only extremely advantageous from a mathematical point of view but also
perfectly justified from a physical point of view. By adopting the QFT approach, the
discrete structure of the original statistical models shows itself only through an ultra-
violet microscopic scale, related to the lattice spacing. However, it is worth pointing
out that this scale is absolutely necessary to regularize the ultraviolet divergencies of
quantum field theory and to implement its renormalization.

The main advantage of QFT is that it embodies a strong set of constraints coming
from the compatibility of quantum mechanics with special relativity. This turns into
general relations, such as the completeness of the multiparticle states or the unitarity of
their scattering processes. Thanks to these general properties, QFT makes it possible to
understand, in a very simple and direct way, the underlying aspects of phase transitions
that may appear mysterious, or at least not evident, in the discrete formulation of the
corresponding statistical model.

There is one subject that has particularly improved thanks to this continuum
formulation: this is the set of two-dimensional statistical models, for which one can
achieve a classification of the fixed points and a detailed characterization of their classes
of universality. Let us briefly discuss the nature of the two-dimensional quantum field
theories.

Right at the critical points, the QFTs are massless. Such theories are invariant
under the conformal group, i.e. the set of geometrical transformations that implement
a scaling of the length of the vectors while preserving their relative angle. But, in two
dimensions conformal transformations coincide with mappings by analytic functions
of a complex variable, characterized by an infinite-dimensional algebra known as a
Virasoro algebra. This enables us to identify first the operator content of the mod-
els (in terms of the irreducible representations of the Virasoro algebra) and then to
determine the exact expressions of the correlators (by solving certain linear differential
equations). In recent years, thanks to the methods of conformal field theory, physicists
have reached the exact solutions of a huge number of interacting quantum theories,
with the determination of all their physical quantities, such as anomalous dimensions,
critical exponents, structure constants of the operator product expansions, correlation
functions, partition functions, etc.

Away from criticality, quantum field theories are, instead, generally massive. Their
analysis can often be carried out only by perturbative approaches. However, there are
some favorable cases that give rise to integrable models of great physical relevance.
The integrable models are characterized by the existence of an infinite number of con-
served charges. In such fortunate circumstances, the exact solution of the off-critical
models can be achieved by means of S-matrix theory. This approach makes it possi-
ble to compute the exact spectrum of the excitations and the matrix elements of the
operators on the set of these asymptotic states. Both these data can thus be employed
to compute the correlation functions by spectral series. These expressions enjoy re-
markable convergence properties that turn out to be particularly useful for the control
of their behaviors both at large and short distances. Finally, in the integrable cases,
it is also possible to study the exact thermodynamical properties and the finite size
effects of the quantum field theories. Exact predictions for many universal quantities
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can also be obtained. For the two-dimensional Ising model, for instance, there are
two distinct integrable theories, one corresponding to its thermal perturbation (i.e.
T �= Tc, B = 0), the other to the magnetic deformation (B �= 0, T = Tc). In the last
case, a universal quantity is given, for instance, by the ratio of the masses of the lowest
excitations, expressed by the famous golden ratio m2/m1 = 2 cos(π/5) = (

√
5 + 1)/2.

In addition to their notable properties, the exact solution provided by the integrable
theories is an important step towards the general study of the scaling region close to
the critical points. In fact, they permit an efficient perturbative scheme to study non-
integrable effects, in particular to follow how the mass spectrum changes by varying
the coupling constants. Thanks to this approach, new progress has been made in
understanding several statistical models, in particular the class of universality of the
Ising model by varying the temperature T and the magnetic field B. Non-integrable
field theories present an extremely interesting set of new physical phenomena, such
as confinement of topological excitations, decay processes of the heavier particles, the
presence of resonances in scattering processes, or false vacuum decay, etc. The analytic
control of such phenomena is one of the most interesting results of quantum field theory
in the realm of statistical physics.

This book is a long and detailed journey through several fields of physics and
mathematics. It is based on an elaboration of the lecture notes for a PhD course,
given by the author at the International School for Advances Studies (Trieste). During
this elaboration process, particular attention has been paid to achieving a coherent
and complete picture of all surveyed topics. The effort done to emphasize the deep
relations among several areas of physics and mathematics reflects the profound belief
of the author in the substantial unity of scientific knowledge.

This book is designed for students in physics or mathematics (at the graduate
level or in the last year of their undergraduate courses). For this reason, its style is
greatly pedagogical; it assumes only some basis of mathematics, statistical physics,
and quantum mechanics. Nevertheless, we count on the intellectual curiosity of the
reader.



Structure of the Book

In this book many topics are discussed at a fairly advanced level but using a pedagog-
ical approach. I believe that a student could highly profit from some exposure to such
treatments.

The book is divided in four parts.

Part I: Preliminary notions (Chapters 1, 2, and 3)

The first part deals with the fundamental aspects of phase transitions, illustrated by
explicit examples coming from the Ising model or similar systems.

Chapter 1: a straighforward introduction of essential ideas on second-order phase
transitions and their theoretical challenge. Our attention focuses on some important
issues, such as order parameters, correlation length, correlation functions, scaling be-
havior, critical exponents, etc. A short discussion is also devoted to the Ising model
and its most significant developments during the years of its study. The chapter also
contains two appendices, where all relevant results of classical and statistical mechanics
are summarized.

Chapter 2: this deals with one-dimensional statistical models, such as the Ising
model and its generalizations (Potts model, systems with O(n) or Zn symmetry, etc.).
Several methods of solution are discussed: the recursive method, the transfer matrix
approach or series expansion techniques. General properties of these methods – valid
on higher dimensional lattices – are also enlighted. The contents of this chapter are
quite simple and pedagogical but extremely useful for understanding the rest of the
book. One of the appendices at the end of the chapter is devoted to a famous problem
of topology, i.e. the four-color problem, and its relation with the two-dimensional Potts
model.

Chapter 3: here we discuss the approximation schemes to approach lattice statistical
models that are not exactly solvable. In addition to the mean field approximation, we
also consider the Bethe–Peierls approach to the Ising model. Moreover, there is a
thorough discussion of the gaussian model and its spherical version – two important
systems with several points of interest. In one of the appendices there is a detailed
analysis of the random walk on different lattices: apart from the importance of the
subject on its own, it is shown that the random walk is responsible for the critical
properties of the spherical model.
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Part II: Two-dimensional lattice models (Chapters 4, 5, and 6)

This part provides a general introduction to the key ideas of equilibrium statistical
mechanics of discrete systems.

Chapter 4: at the beginning of this chapter there is the Peierls argument (it permits
us to prove the existence of a phase transition in the two-dimensional Ising model).
The rest of the chapter deals with the duality transformations that link the low- and
the high-temperature phases of several statistical models. Particularly important is
the proof of the so-called star–triangle identity. This identity will be crucial in the
later discussion of the transfer matrix of the Ising model (Chapter 6).

Chapter 5: two exact combinatorial solutions of the two-dimensional Ising model
are the key topics of this chapter. Although no subsequent topic depends on them,
both the mathematical and the physical aspects of these solutions are elegant enough
to deserve special attention.

Chapter 6: this deals with the exact solution of the two-dimensional Ising model
achieved through the transfer matrix formalism. A crucial role is played by the com-
mutativity properties of the transfer matrices, which lead to a functional equation for
their eigenvalues. The exact free energy of the model and its critical point can be
identified by means of the lowest eigenvalue. We also discuss the general structure of
the Yang–Baxter equation, using the six-vertex model as a representative example.

Part III: Quantum field theory and conformal invariance (Chapters 7–14)

This is the central part of the book, where the aims of quantum field theory and
some of its fundamental results are discussed. A central point is the bootstrap method
of conformal field theories. The main goal of this part is to show the extraordinary
efficiency of these techniques for the analysis of critical phenomena.

Chapter 7: the main reasons for adopting the methods of quantum field theory to
study the critical phenomena are emphasized here. Both the canonical quantization
and the path integral formulation of the field theories are presented, together with the
analysis of the perturbation theory. Everything in this chapter will be needed sooner
or later, since it highlights most of the relevant aspects of quantum field theory.

Chapter 8: the key ideas of the renormalization group are introduced here. They
involve the scaling transformations of a system and their implementations in the space
of the coupling constants. From this analysis, one gets to the important notion of
relevant, irrelevant and marginal operators and then to the universality of the critical
phenomena.

Chapter 9: a crucial aspect of the Ising model is its fermionic nature and this
chapter is devoted to this property of the model. In the continuum limit, a Dirac
equation for neutral Majorana fermions emerges. The details of the derivation are
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much less important than understanding why it is possible. The simplicity and the
exactness of the result are emphasized.

Chapter 10: this chapter introduces the notion of conformal transformations and
the important topic of the massless quantum field theories associated to the critical
points of the statistical models. Here we establish the important conceptual result
that the classification of all possible critical phenomena in two dimensions consists of
finding out all possible irreducible representations of the Virasoro algebra.

Chapter 11: the so-called minimal conformal models, characterized by a finite
number of representations, are discussed here. It is shown that all correlation functions
of these models satisfy linear differential equations and their explicit solutions are given
by using the Coulomb gas method. Their exact partition functions can be obtained by
enforcing the modular invariance of the theory.

Chapter 12: free theories are usually regarded as trivial examples of quantum
systems. This chapter proves that this is not the case of the conformal field theories
associated to the free bosonic and fermionic fields. The subject is not only full of
beautiful mathematical identities but is also the source of deep physical concepts with
far reaching applications.

Chapter 13: the conformal transformations may be part of a larger group of sym-
metry and this chapter discusses several of their extensions: supersymmetry, Zn trans-
formations, and current algebras. In the appendix the reader can find a self-contained
discussion on Lie algebras.

Chapter 14: the identification of a class of universality is one of the central questions
in statistical physics. Here we discuss in detail the class of universality of several
models, such as the Ising model, the tricritical Ising model, and the Potts model.

Part IV: Away from criticality (Chapters 15–21)

This part of the book develops the analysis of the statistical models away from criti-
cality.

Chapter 15: here is introduced the notion of the scaling region near the critical
points, identified by the deformations of the critical action by means of the relevant
operators. The renormalization group flows that originate from these deformations
are subjected to important constraints, which can be expressed in terms of sum rules.
This chapter also discusses the nature of the perturbative series based on the conformal
theories.

Chapter 16: the general properties of the integrable quantum field theories are the
subject of this chapter. They are illustrated by means of significant examples, such
as the Sine–Gordon model or the Toda field theories based on the simple roots of a
Lie algebra. For the deformations of a conformal theory, it is shown how to set up an
efficient counting algorithm to prove the integrability of the corresponding model.
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Chapter 17: this deals with the analytic theory of the S-matrix of the integrable
models. Particular emphasis is put on the dynamical principle of the bootstrap, which
gives rise to a recursive structure of the amplitudes. Several dynamical quantities, such
as mass ratios or three-coupling constants, have an elegant mathematic formulation,
which also has an easy geometrical interpretation.

Chapter 18: the Ising model in a magnetic field is one of the most beautiful ex-
ample of an integrable model. In this chapter we present its exact S-matrix and the
exact spectrum of its excitations, which consist of eight particles of different masses.
Similarly, we discuss the exact scattering theory behind the thermal deformation of
the tricritical Ising model and the unusual features of the exact S-matrix of the non-
unitary Yang-Lee model. Other important examples are provided by O(n) invariant
models: when n = 2, one obtains the important case of the Sine–Gordon model. We
also discuss the quantum-group symmetry of the Sine–Gordon model and its reduc-
tions.

Chapter 19: the thermodynamic Bethe ansatz permits us to study finite size and
finite temperature effects of an integrable model. Here we derive the integral equations
that determine the free energy and we give their physical interpretation.

Chapter 20: at the heart of a quantum field theory are the correlation functions of
the various fields. In the case of integrable models, the correlators can be expressed
in terms of the spectral series based on the matrix elements on the asymptotic states.
These matrix elements, also known as form factors, satisfy a set of functional and
recursive equations that can be exactly solved in many cases of physical interest.

Chapter 21: this chapter introduces a perturbative technique based on the form
factors to study non-integrable models. Such a technique permits the computation of
the corrections to the mass spectrum, the vacuum energy, the scattering amplitudes,
and so on.

Problems Each chapter of this book includes a series of problems. They have dif-
ferent levels of difficulty: some of them relate directly to the essential material of the
chapters, other are instead designed to introduce new applications or even new topics.
The problems are an integral part of the course and their solution is a crucial step for
the understanding of the whole subject.

Mathematical aspects Several chapters have one or more appendices devoted to
some mathematical aspects encountered in the text. Far from being a collection of for-
mulas, these appendices aim to show the profound relationship that links mathematics
and physics. Quite often, they also give the opportunity to achieve comprehension of
mathematical results by means of physical intuition. Some appendices are also devoted
to put certain ideas in their historical perspective in one way or another.

References At the end of each chapter there is an annotated bibliography. The list
of references, either books or articles, is by no means meant to be a comprehensive
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survey of the present literature. Instead it is meant to guide the reader a bit deeper if
he/she wishes to go on. It also refers to the list of material consulted in preparing the
chapters. There are no quotations of references in the text, except for a few technical
points.
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1
Introduction

La sapienza è figliola della sperienza.

Leonardo da Vinci, Codice Forster III, 14 recto

In this chapter we introduce some general concepts of statistical mechanics and phase
transitions, in order to give a rapid overview of the different topics of the subject
and their physical relevance. For the sake of clarity and simplicity, we will focus our
attention on magnetic systems but it should be stressed that the concepts discussed
here are of a more general nature and can be applied to other systems as well. We
will analyze, in particular, the significant role played by the correlation length in the
phase transitions and the important properties of universality observed in those phe-
nomena. As we will see, near a phase transition the thermodynamic quantities of a
system present an anomalous power law behavior, parameterized by a set of critical
exponents. The universal properties showed by phase transitions is manifested by the
exact coincidence of the critical exponents of systems that share the same symmetry
of their hamiltonian and the dimensionality of their lattice but may be, nevertheless,
quite different at a microscopic level. From this point of view, the study of phase tran-
sitions consists of the classification of all possible universality classes. This important
property will find its full theoretical justification in the context of the renormalization
group ideas, a subject that will be discussed in one of the following chapters.

In this chapter we will also introduce the Ising model and recall the most significant
progress in the understanding of its features: (i) the duality transformation found by
H.A. Kramers and G.H. Wannier for the partition function of the bidimensional case
in the absence of a magnetic field; (ii) the exact solution of the lattice model given
by L. Onsager; and (iii) the exact solution provided by A.B. Zamolodchikov (with
methods borrowed from quantum field theory) of the bidimensional Ising model in a
magnetic field at the critical value Tc of the temperature.

In the appendices at the end of the chapter one can find the basic notions of the
various ensembles used in statistical mechanics, both at the classical and quantum
level, with a discussion of their physical properties.

1.1 Phase Transitions
1.1.1 Competitive Principles

The atoms of certain materials have a magnetic dipole, due either to the spin of the
orbital electrons or to the motion of the electrons around the nucleus, or to both of
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Fig. 1.1 Magnetic domains for T > Tc.

Fig. 1.2 Alignment of the spins for T < Tc.

them. In many materials, the magnetic dipoles of the atoms are randomly oriented
and the total magnetic field produced by them is then zero, as in Fig. 1.1. However,
in certain compounds or in substances like iron or cobalt, for the effect of the in-
teractions between the atomic dipoles, one can observe a macroscopic magnetic field
different from zero (Fig. 1.2). In those materials, which are called ferromagnetic, this
phenomenon is observed for values of the temperature less than a critical value Tc,
known as the Curie temperature, whose value depends on the material in question. At
T = Tc these materials undergo a phase transition, i.e. there is a change of the physical
properties of the system: in our example, this consists of a spontaneous magnetization
on macroscopic scales, created by the alignment of the microscopic dipoles.

The occurrence of a phase transition is the result of two competitive instances: the
first tends to minimize the energy while the second tends to maximize the entropy.

• Principle of energy minimization
In ferromagnetic materials, the configuration of the magnetic dipoles of each atom
(which we denote simply as spins) tend to minimize the total energy of the system.
This minimization is achieved when all spins are aligned. The origin of the atomic
dipole, as well as their interaction, is due to quantum effects. In the following,
however, we focus our attention on the classical aspects of this problem, i.e. we
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will consider as given the interaction among the spins, and those as classical
degrees of freedom. In this framework, the physical problem can be expressed
in a mathematical form as follows: first of all, to each spin, placed at the site i
of a d-dimensional lattice, is associated a vector �Si; secondly, their interaction is
described by a hamiltonian H. The simplest version of these hamiltonians is given
by

H = −J
2

∑
〈ij〉

�Si · �Sj , (1.1.1)

where J > 0 is the coupling constant and the notation 〈ij〉 stands for a sum to
the neighbor spins. The lowest energy configurations are clearly those in which
all spins are aligned along one direction.

If the minimization of the energy was the only principle that the spins should
follow, we would inevitably observe giant magnetic fields in many substances.
The reason why this does not happen is due to another competitive principle.

• Principle of entropy maximization
Among the extraordinarily large number of configurations of the system, the ones
in which the spins align with each other along a common direction are quite spe-
cial. Hence, unless a great amount of energy is needed to orientate, in a different
direction, spins that are at neighbor sites, the number of configurations in which
the spins are randomly oriented is much larger that the number of the configura-
tions in which they are completely aligned. As is well known, the measure of the
disorder in a system is expressed by the entropy S: if we denote by ω(E) the num-
ber of states of the system at energy E, its definition is given by the Boltzmann
formula

S(E) = k logω(E), (1.1.2)

where k is one of the fundamental constants in physics, known as the Boltzmann
constant.

If the tendency to reach the status of maximum disorder was the only physical
principle at work, clearly we could never observe any system with a spontaneous
magnetization.

Classification scheme of phase transitions
In the modern classification scheme, phase transitions are divided into two broad
categories: first-order and second-order phase transitions. First-order phase transi-
tions are those that involve a latent heat. At the transition point, a system either
absorbs or releases a fixed amount of energy, while its temperature stays constant.
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First-order phase transitions are characterized by a finite value of the correlation
length. In turn, this implies the presence of a mixed-phase regime, in which some
parts of the system have completed the transition and others have not. This is what
happens, for instance, when we decrease the temperature of water to its freezing
value Tf : the water does not instantly turn into ice, but forms a mixture of water
and ice domains. The presence of a latent heat signals that the structure of the
material is drastically changing at T = Tf : above Tf , there is no crystal lattice and
the water molecules can wander around in a disordered path, while below Tf there
is the lattice of ice crystals, where the molecules are packed into a face-centered
cubic lattice. In addition to the phase transition of water, many other important
phase transitions fall into this category, including Bose–Einstein condensation.

The second class of phase transitions consists of the continuous phase transitions,
also called second-order phase transitions. These have no associated latent heat and
they are also characterized by the divergence of the correlation length at the critical
point. Examples of second-order phase transitions are the ferromagnetic transition,
superconductors, and the superfluid transition. Lev Landau was the first to set up a
phenomenological theory of second-order phase transitions. Several transitions are
also known as infinite-order phase transitions. They are continuous but break no
symmetries. The most famous example is the Kosterlitz–Thouless transition in the
two-dimensional XY model. Many quantum phase transitions in two-dimensional
electron gases also belong to this class.

As the example of the magnetic dipoles has shown, the macroscopic physical sys-
tems in which there is a very large number of degrees of freedom are subjected to two
different instances: one that tends to order them to minimize the energy, the other
that tends instead to disorder them to maximize the entropy. However, to have real
competition between these two different tendencies, one needs to take into account
another important physical quantity, i.e. the temperature of the system. Its role is
determined by the laws of statistical mechanics.

1.1.2 Partition Function

One of the most important advances witnessed in nineteenth century physics has been
the discovery of the exact probabilistic function that rules the microscopic configura-
tions of a system at equilibrium. This is a fundamental law of statistical mechanics.1

To express such a law, let us denote by C a generic state of the system (in our example,
a state is specified once the orientation of each magnetic dipole is known). Assume
that the total number N of the spins is sufficiently large (we will see that a phase tran-
sition may occur only when N → ∞). Moreover, assume that the system is at thermal

1In the following we will mainly be concerned with the laws of classical statical mechanics. More-
over, we will use the formulation of statistical mechanics given by the canonical ensemble. The different
ensembles used in statistical mechanics, both in classical and quantum physics, can be found in the
appendix of this chapter.



Phase Transitions 7

equilibrium, namely that the spins and the surrounding environment exchange energy
at a common value T of the temperature. Within these assumptions, the probability
that a given configuration C of the system is realized, is given by the Boltzmann law

P [C] =
e−E(C)/kT

Z
, (1.1.3)

where E(C) is the energy of the configuration C while T is the absolute temperature.
A common notation is β = 1/kT . The expectation value of any physical observable O
is then expressed by the statistical average on all configurations, with weights given
by the Boltzmann law

〈O〉 = Z−1
∑

C
O(C) e−βE(C). (1.1.4)

The quantity Z in the denominator is the partition function of the system, defined by

Z(N, β) =
∑

C
e−β E(C). (1.1.5)

It ensures the proper normalization of the probabilities,
∑

C P [C] = 1. For its own def-
inition, this quantity contains all relevant physical quantities of the statistical system
at equilibrium. By making a change of variable, it can be expressed as

Z(N, β) =
∑

C
e−βE(C) =

∑
E

ω(E) e−βE =
∑
E

e−βE + logω(E)

=
∑
E

eβ[TS −E] ≡ e−β F (N,β), (1.1.6)

where F (N, β) is the free energy of the system. This is an extensive quantity, related to
the internal energy U = 〈H〉 and the entropy S = −〈

(
∂F
∂T

)
N
〉 by the thermodynamical

relation
F = U − T S. (1.1.7)

Namely, we have

〈U〉 =
∂

∂β
(βF )

(1.1.8)

〈S〉 = β2 ∂F

∂β
.

The extensive property of F comes from the definition of Z(N, β), because if the
system is made of two weakly interacting subsystems, Z(N, β) is given by the product
of their partition functions.2 The proof of eqn (1.1.7) is obtained starting with the

2This is definitely true if the interactions are short-range, as we assume hereafter. In the presence
of long-range forces the situation is more subtle and the extensivity property of the free energy may
be violated.
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identity ∑
C
eβ[F (N,β)−E(C)] = 1.

Taking the derivative with respect to β of both terms we have

∑
C
eβ[F (N,β)−E(C)]

[
F (N, β) − E(C) + β

(
∂F

∂β

)
N

]
= 0,

i.e. precisely formula (1.1.7). This equation enables us to easily understand the occur-
rence of different phases in the system by varying the temperature. In fact, moving
T , there is a different balance in the free energy between the entropy (that favors
disorder) and the energy (that privileges there order). Therefore may exist a critical
value T = Tc at which there is a perfect balance between the two different instances.
To distinguish in a more precise way the phases of a system it is necessary to introduce
the important concept of order parameter.

1.1.3 Order Parameters

To characterize a phase transition we need an order parameter, i.e. a quantity that has
a vanishing thermal average in one phase (typically the high-temperature phase) and
a non-zero average in the other phases. Hence, such a quantity characterizes the onset
of order at the phase transition. It is worth stressing that there is no general procedure
to identify the proper order parameter for each phase transition. Its definition may
require, in fact, a certain amount of skill or ingenuity. There is, however, a close
relation between the order parameter of a system and the symmetry properties of
its hamiltonian. In the example of the magnetic dipoles discussed so far, a physical
quantity that has a zero mean value for T > Tc and a finite value for T < Tc is the
total magnetization, �M =

∑
i
�Si. Hence, a local order parameter for such a system is

identified by the vector �Si since we have

〈�Si〉 =
{

0; T > Tc
�S0 �= 0; T < Tc.

(1.1.9)

When the system is invariant under translations, the mean value of the spin is the
same for all sites.

For what concerns the symmetry properties, it is easy to see that the hamiltonian
(1.1.1) is invariant under an arbitrary global rotation R of the spins. As is well known,
the set of rotations forms a group. In the case of vectors with three components,3 the
group is denoted by SO(3) and is isomorphic to the group of orthogonal matrices 3×3
with determinant equal to 1, with the usual rule of multiplication of matrices.

In the range T > Tc, there is no magnetization and the system does not have
any privileged direction: in this phase the symmetry of its hamiltonian is perfectly
respected. Vice versa, when T < Tc, the system acquires a special direction, identified
by the vector �S0 = 〈�Si〉 along which the majority of the spins are aligned. In this

3It will become useful to generalize this example to the situation in which the spins are made up
of n components. In this case the corresponding symmetry group is denoted by SO(n).
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case, the system is in a phase which has less symmetry of its hamiltonian and one says
that a spontaneously symmetry breaking has taken place. More precisely, in this phase
the symmetry of the system is restricted to the subclass of rotations along the axis
identified by the vector �S0, i.e. to the group SO(2). One of the tasks of the theory of
phase transitions is to provide an explanation for the phenomenon of spontaneously
symmetry breaking and to study its consequences.

1.1.4 Correlation Functions

The main source of information on phase transitions comes from scattering experi-
ments. They consist of the study of scattering processes of some probe particles sent
to the system (they can be photons, electrons, or neutrons). In liquid mixtures, near
the critical point, the fluid is sufficiently hot and diluted that the distinction between
the liquid and gaseous phases is almost non-existent. The phase transition is signaled
by the remarkable phenomenon of critical opalescence, a milky appearance of the
liquid, due to density fluctuations at all possible wavelengths and to the anomalous
diffusion of light.4 For magnetic systems, neutrons provide the best way to probe these
systems: first of all, they can be quite pervasive (so that one can neglect, to a first
approximation, their multiple scattering processes) and, secondly, they couple directly
to the spins of the magnetic dipoles. The general theory of the scattering processes
involves in this case the two-point correlation function of the dipoles

G(2)(�i,�j) = 〈�Si · �Sj〉. (1.1.10)

When there is a translation invariance, this function depends on the distance difference
�i−�j. Moreover, if the system is invariant under rotations, the correlator is a function
of the absolute value of the distance r =| �i − �j | between the two spins, so that
G(2)(�i,�j) = G(2)(r). Strictly speaking, any lattice is never invariant under translations
and rotations but we can make use of these symmetries as long as we analyze the
system at distance scales much larger than the lattice spacing a.

As is evident by its own definition, G(2)(r) measures the degree of the relative
alignment between two spins separated by a distance r. Since for T < Tc the spins
are predominantly aligned along the same direction, to study their fluctuations it is
convenient to subtract their mean value, defining the connected correlation function

G(2)
c (r) = 〈(�Si − �S0) · (�Sj − �S0)〉 = 〈�Si · �Sj〉− | �S0 |2 . (1.1.11)

When T > Tc, the mean value of the spin vanishes and G
(2)
c (r) coincides with the

original definition of G(2)(r).
Nearby spins usually tend to be correlated. Away from the critical point, T �= Tc,

their correlation extends to a certain distance ξ, called the correlation length. This is
the typical size of the regions in which the spins assume the same value, as shown
in Fig. 1.3. The correlation length can be defined more precisely in terms of the

4Smoluchowski and Einstein were the first to understand the reason of this phenomenon: the
fluctuations in the density of the liquid produce anologous fluctuations in its refraction index. In
particular, Einstein showed how these fluctuations can be computed and pointed out their anomalous
behavior near the critical point.
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ξ

Fig. 1.3 The scale of the magnetic domains is given by the correlation length ξ(T ).

asymptotic behavior of the correlation function5

G(2)
c (r) 	 e−r/ξ, r 
 a, T �= Tc. (1.1.12)

At the critical point T = Tc, there is a significant change in the system and the
two-point correlation function takes instead a power law behavior

G(2)
c (r) 	 1

rd−2+η
, r 
 a, T = Tc. (1.1.13)

The parameter η in this formula is the anomalous dimension of the order parameter.
This is the first example of critical exponents, a set of quantities that will be discussed
thoroughly in the next section. The power law behavior of G(2)

c (r) clearly shows that,
at the critical point, fluctuations of the order parameter are significantly correlated
on all distance scales. Close to a phase transition, the correlation length diverges:6

denoting by t the relative displacement of the temperature from the critical value,
t = (T − Tc)/Tc, one observes that, near the Curie temperature, ξ behaves as (see
Fig. 1.4)

ξ(T ) =
{
ξ+ t−ν , T > Tc;
ξ− (−t)−ν , T < Tc,

(1.1.14)

where ν is another critical exponent.
The two different behaviors of the correlation functions – at the critical point and

away from it – can be summed up in a single expression

G(2)
c (r) =

1
rd−2+η

f

(
r

ξ

)
. (1.1.15)

This formula involves the scaling function f(x) that depends only on the dimensionless
ratio x = r/ξ. For large x, this function has the asymptotic behavior f(x) ∼ e−x, while
its value at x = 0 simply fixes the normalization of this quantity, which can always be

5This asymptotic behavior of the correlator can be deduced by quantum field theory methods, as
shown in Chapter 8.

6This is the significant difference between a phase transition of second order and one of first order.
In phase transitions of first order the correlation length is finite also at the critical point.
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Fig. 1.4 Behavior of the correlation length as a function of the temperature near T = Tc.

chosen as f(0) = 1. It is worth stressing that the temperature enters the correlation
functions only through the correlation length ξ(T ).

Aspects of phase transitions. It is now useful to stop and highlight the aspects
of phase transitions that have emerged so far. The most important property is that,
at T = Tc, the fluctuations of the order parameter extend significantly to the entire
system, while they are exponentially small away from the critical point. This means
that the phase transition taking place at Tc is the result of an extraordinary collective
phenomenon that involves all the spins of the system at once.

This observation poses the obvious theoretical problem to understand how the
short-range interactions of the spins can give rise to an effective interaction that ex-
tends to the entire system when T = Tc. There is also another consideration: if one
regards the correlation length ξ as a measure of the effective degrees of freedom in-
volved in the dynamics, its divergence at the critical point implies that the study of
the phase transitions cannot be faced with standard perturbative techniques. Despite
these apparent difficulties, the study of phase transitions presents some conceptual
simplifications that are worth underlining. The first simplification concerns the scale
invariance present at the critical point, namely the symmetry under a dilatation of
the length-scale

a → λa.

Under this transformation, the distance between two points of the system gets reduced
as

r → r/λ.

The correlation function (1.1.13), thanks to its power law behavior, is invariant under
this transformation as long as the order parameter transforms as

�S → λ(d−2+η)/2 �S. (1.1.16)
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Fig. 1.5 Conformal transformation. It leaves invariant the angles between the lines.

Expressed differently, at the critical point there is complete equivalence between a
change of the length-scale and the normalization of the order parameter. The diver-
gence of the correlation length implies that the system becomes insensitive to its mi-
croscopic scales7 and becomes scale invariant. Moreover, in Chapter 11 we will prove
that, under a set of general hypotheses, the global dilatation symmetry expressed
by the transformation a → λa can be further extended to the local transformations
a → λ(�x) a that change the lengths of the vectors but leave invariant their rela-
tive angles. These are the conformal transformations (see Fig. 1.5). Notice that in
the two-dimensional case, the conformal transformations coincide with the mappings
provided by the analytic functions of a complex variable: studying the irreducible
representations of the associated infinite dimensional algebra, one can reach an exact
characterization of the bidimensional critical phenomena.

The second simplification – strictly linked to the scaling invariance of the critical
point – is the universality of phase transitions. It is an experimental fact that physi-
cal systems of different nature and different composition often show the same critical
behavior: it is sufficient, in fact, that they share the same symmetry group G of the
hamiltonian and the dimensionality of the lattice space. Hence the critical properties
are amply independent of the microscopic details of the various interactions, so that
the phenomenology of the critical phenomena falls into different classes of universality.
Moreover, thanks to the insensitivity of the microscopic details, one can always charac-
terize a given class of universality by studying its simplest representative. We will see
later on that all these remarkable universal properties find their elegant justification
in the renormalization group formulation. In the meantime, let’s go on and complete
our discussion of the anomalous behavior near the critical point by introducing other
critical exponents.

7Although the system has fluctuations on all possible scales, it is actually impossible to neglect
completely the existence of a microscopic scale. In the final formulation of the theory of the phase
transitions this scale is related to the renormalization of the theory and, as a matter of fact, is
responsible of the anomalous dimension of the order parameter.
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1.1.5 Critical Exponents

Close to a critical point, the order parameter and the response functions of a statistical
system show anomalous behavior. Directly supported by a large amount of experi-
mental data, these anomalous behaviors are usually expressed in terms of power laws,
whose exponents are called critical exponents. In addition to the quantities η and
ν previously defined, there are other critical exponents directly related to the order
parameter. To define them, it is useful to couple the spins to an external magnetic
field �B

H = −J
2

∑
〈ij〉

�Si · �Sj − �B ·
∑
i

�Si. (1.1.17)

To simplify the notation, let’s assume that �B is along the z axis, with its modulus
equals B. In the presence of B, there is a net magnetization of the system along the
z axis with a mean value given by8

M(B, T ) = 〈Szi 〉 ≡ 1
Z

∑
C
Szi e

−βH = −∂F
∂B

. (1.1.18)

The spontaneous magnetization is a function of T alone, defined by

M(T ) = lim
B→0

M(B, T ), (1.1.19)

and its typical behavior is shown in Fig. 1.6. Near Tc, M has an anomalous behavior,
parameterized by the critical exponent β

M = M0(−t)β , (1.1.20)

where t = (T − Tc)/Tc.

0.2 0.4 0.6 0.8 1 1.2
T/Tc

0.2

0.4

0.6

0.8

1
M(T)

Fig. 1.6 Spontaneous magnetization versus temperature.

8By translation invariance, the mean value is the same for all spins of the system.
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Another critical exponent δ is defined by the anomalous behavior of the magneti-
zation when the temperature is kept fixed at the critical value Tc but the magnetic
field is different from zero

M(B, Tc) = M0B
1/δ . (1.1.21)

The magnetic susceptibility is the response function of the system when we switch on
a magnetic field

χ(B, T ) =
∂M(B, T )

∂B
. (1.1.22)

This quantity presents a singularity at the critical point, expressed by the critical
exponent γ

χ(0, T ) =
{
χ+ t−γ , T > Tc;
χ− (−t)−γ , T < Tc.

(1.1.23)

Finally, the last critical exponent that is relevant for our example of a magnetic system
is associated to the critical behavior of the specific heat. This quantity, defined by

C(T ) =
∂U

∂T
, (1.1.24)

has a singularity near the Curie temperature parameterized by the exponent α

C(T ) =
{
C+ t−α, T > Tc;
C− (−t)−α, T < Tc.

(1.1.25)

A summary of the critical exponents of a typical magnetic system is given in Table 1.1.
The critical exponents assume the same value for all statistical systems that belong

to the same universality class while, varying the class of universality, they change corre-
spondingly. Hence they are important fingerprints of the various universality classes.
In Chapter 8 we will see that the universality classes can also be identified by the
so-called universal ratios. These are dimensionless quantities defined in terms of the
various response functions: simple examples of universal ratios are given by ξ+/ξi,
χ+/χ−, or C+/C−. Other universal ratios will be defined and analyzed in Chapter 8.

Let’s end our discussion of the critical behavior with an important remark: a statis-
tical system can present a phase transition (i.e. anomalous behavior of its free energy
and its response functions) only in its thermodynamic limit N → ∞, where N is the
number of particles of the system. Indeed, if N is finite, the partition function is a

Table 1.1: Definition of the critical exponents.

Exponent Definition Condition
α C ∼| T − Tc |−α B = 0
β M ∼ (Tc − T )−β T < Tc, B = 0
γ χ ∼| T − Tc |−γ B = 0
δ B ∼|M |δ T = Tc
ν ξ ∼| T − Tc |−ν B = 0
η G

(2)
c ∼ r−(d−2+η) T = Tc
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regular function of the temperature, without singular points at a finite value of T ,
since it is expressed by a sum of a finite number of terms.

1.1.6 Scaling Laws

The exponents α, β, γ, δ, η, and ν, previously defined, are not all independent. Already
at the early stage of the study on phase transitions, it was observed that they satisfy
the algebraic conditions9

α+ 2β + γ = 2;
α+ β δ + β = 2;
ν(2 − η) = γ;
α+ ν d = 2,

(1.1.26)

so that it is sufficient to determine only two critical exponents in order to fix all
the others.10 Moreover, the existence of these algebraic equations suggests that the
thermodynamic quantities of the system are functions of B and T in which these
variables enter only homogeneous combinations, i.e. they satisfy scaling laws.

An example of a scaling law is provided by the expression of the correlator, eqn
(1.1.15). It is easy to see that this expression, together with the divergence of the
correlation length (1.1.14), leads directly to the third equation in (1.1.26). To prove
this, one needs to use a general result of statistical mechanics, known as the fluctuation-
dissipation theorem, that permits us to link the response function of an external field
(e.g. the magnetic susceptibility) to the connected correlation function of the order
parameter coupled to such a field. For the magnetic susceptibility, the fluctuation-
dissipation theorem leads to the identity

χ =
∂M(B, T )

∂B
=

∂

∂B

[
1
Z

∑
C
Szi e

−βH
]

= β
∑
j

(
〈Szj Szi 〉− | 〈Szi 〉 |2

)
= β

∑
r

G(2)
c (r), (1.1.27)

which can be derived by using eqns (1.1.17) and (1.1.5) for the hamiltonian and the
partition function, together with the definition of the mean value, given by eqn (1.1.4).

Substituting in (1.1.27) the scaling law (1.1.15) of the correlation function, one has

χ = β
∑
r

G(2)
c (r) = β

∑
r

1
rd−2+η

f

(
r

ξ

)

	
∫
dr rd−1 1

rd−2+η
f

(
r

ξ

)
= Aξ2−η, (1.1.28)

9The last of these equations, which involves the dimensionality d of the system, generally holds
for d less of dc, known as upper critical dimensions.

10As discussed in Chapter 8, the critical exponents are not the most fundamental theoretical quan-
tities. As a matter of fact, they can all be derived by a smaller set of data given by the scaling
dimensions of the relevant operators.
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where A is a constant given by the value of the integral obtained by the substitution
r → ξz

A =
∫
dz z1−η f(z).

Using the anomalous behavior of ξ(t) given by (1.1.14), we have

χ 	 ξ2−η 	 t−ν(2−η), (1.1.29)

and, comparing to the anomalous behavior of χ expressed by (1.1.23), one arrives at
the relation

ν(2 − η) = γ.

A scaling law can be similarly written for the singular part of the free energy
Fs(B, T ), expressed by a homogeneous function of the two variables

Fs(B, T ) = t2−α F
(
B

tβδ

)
. (1.1.30)

It is easy to see that this expression implies the relation

α+ βδ + β = 2, (1.1.31)

i.e. the second equation in (1.1.26). In fact, the magnetization is given by the derivative
of the free energy Fs(B, T ) with respect to B

M =
∂Fs
∂B

∣∣∣∣
B=0

= t2−α−βδ F ′(0).

Comparing to eqn (1.1.20), one recovers eqn (1.1.31). Scaling relations for other ther-
modynamic quantities can be obtained in a similar way.

In Chapter 8 we will see that the homegeneous form assumed by the thermody-
namic quantities in the vicinity of critical points has a theoretical justification in the
renormalization group equations that control the scaling properties of the system.

1.1.7 Dimensionality of the Space and the Order Parameters

Although the world in which we live is three-dimensional, it is however convenient to
get rid from this slavery and to consider instead the dimensionality d of the space as
a variable like any other. There are various reasons to adopt this point of view.

The first reason is of a phenomenological nature: there are many systems that,
by the particular nature of their interactions or their composition, present either
one-dimensional or two-dimensional behavior. Systems that can be considered one-
dimensional are those given by long chains of polymers, for instance; in particular if
the objects of study are the monomers along the chain. Two-dimensional systems are
given by those solids composed of weakly interacting layers, as happens in graphite.
Another notable example of a two-dimensional system is provided by the quantum Hall
effect, where the electrons of a thin metallic bar are subjected to a strong magnetic
field in the vertical direction at very low temperatures. Examples of two-dimensional
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critical phenomena are also those relative to surface processes of absorption or phe-
nomena that involve the thermodynamics of liquid films.

It is necessary to emphasize that the effective dimensionality shown by critical
phenomena can depend on the thermodynamic state of the system. Namely there
could be a dimensional transmutation induced by the variation of the thermodynamic
parameters, such as the temperature: there are materials that in some thermodynamic
regimes appear as if they were bidimensional, while in other regimes they have instead a
three-dimensional dynamics. Consider, for instance, a three-dimensional magnetic sys-
tem in which the interaction along the vertical axis Jz is much smaller than the interac-
tion J among the spins of the same plane, i.e. Jz � J . In the high-temperature phase
(where the correlation length ξ(T ) is small), one can neglect the coupling between
the next neighbor planes, so that the system appears to be a two-dimensional one.
However, decreasing the temperature, the correlation length ξ(T ) increases and, in
each plane, there will be large areas in which the spins become parallel and behave
as a single spin but of a large value. Hence, even though the coupling Jz between the
planes was originally small, their interaction can be quite strong for the large values
of the effective dipoles; correspondingly, the system presents at low temperatures a
three-dimensional behavior.

There is, however, a more theoretical reason to regard the dimensionality d of a
system as an additional parameter. First of all, the existence of a phase transition of
a given hamiltonian depends on the dimensionality of the system. The fluctuations
become stronger by decreasing d and, because they disorder the system, the critical
temperature decreases correspondingly. Each model with a given symmetry selects
a lower critical dimension di such that, for d < di its phase transition is absent.
For the Ising model (and, more generally, for all models with a discrete symmetry)
di = 1. For systems with a continuous symmetry, the fluctuations can disorder the
system much more easily, since the order parameter can change its value continuously
without significantly altering the energy. Hence, for many of these systems we have
di = 2.

The critical exponents depend on d and, for each system, there is also a higher
critical dimension ds: for d > ds, the critical exponents take the values obtained in the
mean field approximation that will be discussed in Chapter 3. For the Ising model, we
have ds = 4. The range

di < d < ds

of a given system is therefore the most interesting interval of dimensions, for it is the
range of d in which one observes the strongly correlated nature of the fluctuations.
This is another reason to regard d as a variable of statistical systems. In fact, the
analysis of their critical behavior usually deals with divergent integrals coming from
the large fluctuations of the critical point. To regularize such integrals, a particularly
elegant method is provided by the so-called dimensional regularization, as discussed in
a problem at the end of the chapter. This method permits us, in particular, to define
an expansion parameter ε = d−ds and to express the critical exponents in power series
in ε. Further elaboration of these series permits us to obtain the critical exponents for
finite values of ε, i.e. those that correspond to the actual value of d for the system
under consideration.
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1.2 The Ising Model
After the discussion on the phenomenology of the phase transitions of the previous
section, let us now introduce the Ising model. This is the simplest statistical model
that has a phase transition. The reason to study this model comes from two different
instances: the first is the need to simplify the nature of the spins in order to obtain a
system sufficiently simple to be solved exactly, while the second concerns the definition
of a model sufficiently realistic to be compared with the experimental data.

The simplification is obtained by considering the spins σi as scalar quantities with
values ±1 rather than the vector quantities �Si previously introduced. In this way, the
hamiltonian of the Ising model is given by

H = −J
2

∑
〈i,j〉

σi σj − B
∑
i

σi, σi = ±1. (1.2.1)

When B = 0, it has a global discrete symmetry Z2, implemented by the transformation
σi → −σi on all the spins.

Even though the Ising model may appear as a caricature of actual ferromagnetic
substances, it has nevertheless a series of advantages: it is able to provide useful infor-
mation on the nature of phase transition, on the effects of the cooperative dynamics,
and on the role of the dimensionality d of the lattice. In the following chapters we
will see, for instance, that the model has a phase transition at a finite value Tc of the
temperature when d ≥ 2 while it does not have any phase transition when d = 1.
Moreover, the study of this model helps to clarify the aspects of the phase transitions
that occur in lattice gases or, more generally, in all those systems in which the degrees
of freedom have a binary nature.

The elucidation of the mathematical properties of the Ising model has involved a
large number of scientists since 1920, i.e. when it was originally introduced by Wilhelm
Lenz.11 The first theoretical results are due to Ernst Ising, a PhD student of Lenz at
the University of Hamburg, who in 1925 published a short article based on his PhD
studies in which he showed the absence of a phase transition in the one-dimensional
case. Since then, the model has been known in the literature as the Ising model.

After this first result, it is necessary to reach 1936 to find ulterior progress in the
understanding of the model. In that year, using an elementary argument, R. Peierls
showed the existence of a critical point in the two-dimensional case, so that the Ising
model became a valid and realistic tool for investigating phase transitions. The exact
value of the critical temperature Tc on a two-dimensional square lattice was found by
H.A. Kramers and G.H. Wannier in 1941, making use of an ingenious technique. They
showed that the partition function of the model can be expressed in a systematic way
as a series expansion both in the high- and in the low-temperature phases, showing
that the two series were related by a duality transformation. In more detail, in the
high-temperature phase the variable entering the series expansion is given by βJ ,

11One has only to read Ising’s original paper to learn that the model was previously proposed by
Ising’s research supervisor, Wilhelm Lenz. It is rather curious that Lenz’s priority has never been
recognized by later authors. Lenz himself apparently never made any attempt later on to claim credit
for suggesting the model and also never published any papers on it.
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while in the low-temperature phase the series is in powers of the variable e−2βJ . The
singularity present in both series, together with the duality relation that links one to
the other, allowed them to determine the exact value of the critical temperature of the
model on the square lattice, given by the equation sinh (J/kTc) = 1.

The advance of H.A. Kramers and G.H. Wannier was followed by the fundamental
contribution of Lars Onsager, who announced at a meeting of the New York Academy
of Science, on 28 February 1943, the solution for the partition function of the two-
dimensional Ising model at zero magnetic field. The details were published two years
later. The contribution of Onsager constitutes a milestone in the field of phase transi-
tions. The original solution of Onsager, quite complex from a mathematical point of
view, has been simplified with the contribution of many authors and, in this respect,
it is important to mention B. Kaufman and R.J. Baxter. Since then, there have been
many other results concerning several aspects, such as the analysis of different two-
dimensional lattices, the computation of the spontaneous magnetization, the magnetic
susceptibility and, finally, the correlation functions of the spins. In 1976, B. McCoy,
T.T. Wu, C. Tracy, and E. Barouch, in a remarkable theoretical tour de force, showed
that the correlation functions of the spins can be determined by the solution of a
nonlinear differential equation, known in the literature as the Painleve’ equation. A
similar result was also obtained by T. Miwa, M. Jimbo, and their collaborators in
Kyoto: in particular, they showed that the monodromy properties of a particular class
of differential equation can be analyzed by using the spin correlators of the Ising model.

In the years immediately after the solution proposed by Onsager, in the community
of researchers there was considerable optimism of being able to extend his method to
the three-dimensional lattice as well as to the bidimensional case but in the presence of
an external magnetic field. However, despite numerous efforts and numerous attempts
that finally proved to be premature or wrong, for many years only modest progress
has been witnessed on both the arguments.

An exact solution of the three-dimensional case is still unknown, although many of
its properties are widely known thanks to numerical simulations and series expansions –
methods that have been improved during the years with the aid of faster and more
efficient computers. The critical exponents or the equations of state, for instance,
are nowadays known very accurately and their accuracy increases systematically with
new publications on the subject. It is a common opinion among physicists that the
exact solution of the three-dimensional Ising model is one of the most interesting open
problems of theoretical physics.

The analysis of the two-dimensional Ising model in the presence of a magnetic
field has received, on the contrary, a remarkable impulse since 1990, and considerable
progress in the understanding of its properties has been witnessed. This development
has been possible thanks to methods of quantum field theory and the analytic S-matrix,
which have been originally proposed in this context by Alexander Zamolodchikov. By
means of these methods it was possible to achieve the exact determination of the spec-
trum of excitations of the Ising model in a magnetic field and the identification of their
interactions. Subsequently G. Delfino and G. Mussardo determined the two-point cor-
relation function of the spins of the Ising model in a magnetic field while Delfino and
Simonetti calculated the correlation functions that involve the energy operator of the
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model. In successive work, G. Delfino, G. Mussardo, and P. Simonetti systematically
studied the properties of the model by varying the magnetic field and the tempera-
ture. This analysis was further refined in a following paper by P. Fonseca and A. B.
Zamolodchikov, which led to the thorough study of the analytic structure of the free
energy in the presence of a magnetic field and for values of temperature different from
the critical value. Besides these authors, many others have largely contributed to the
developments of the subject and, in the sequel, there will be ample possibility to give
them proper credit.

In the following chapters we will discuss the important aspects of the Ising model
and its generalizations. In doing so, we will emphasize their physical properties and to
put in evidence their mathematical elegance. As we will see, this study will bring us
face to face with many important arguments of theoretical physics and mathematics.

Ernst Ising
The Ising model is one of the best known models in statistical mechanics, as is
confirmed by the 12 000 articles published on it or referring to it from 1969 to
2002. Therefore it may appear quite paradoxical that the extraordinary notoriety
of the model is not accompanied by an analogous notoriety of the scientist to whom
the model owes its name. The short biographical notes that follow underline the
singular history, entangled with the most dramatic events of the twentieth century,
of this humble scientist who became famous by chance and remained unaware of
his reputation for many years of his life.

Ernst Ising was born in Cologne on the 10 May 1900. His family, of Jewish
origin, moved later to Bochum in Westfalia where Ernst finished his high school
studies. In 1919 he started his university studies at Goettingen in mathematics and
physics and later he moved to Hamburg. Here, under the supervision of Wilhelm
Lenz, he started the study of the ferromagnetic model proposed by Lenz. In 1925
he defended his PhD thesis, devoted to the analysis of the one-dimensional case
of the model that nowadays bears his name, and in 1926 he published his results
in the journal Zeitschrift fur Phyisk. After his PhD, Ising moved to Berlin and
during the years 1925 and 1926 he worked at the Patent Office of the Allgemeine
Elektrizitatsgesell Schaft. Not satisfied with this employment, he decided to take
up a teaching career and he taught for one year at a high school in Salem, near the
Lake Costance. In 1928 he decided to return to university to study philosophy and
pedagogy.

After his marriage with Johanna Ehmer in 1930, he moved to Crossen as a
teacher in the local grammar school. However, when Hitler came to power in 1933,
the citizens of Jewish origin were removed from public posts and Ising lost his job
in March of that year. He remained unemployed for approximately one year, except
for a short period spent in Paris as a teacher in a school for foreign children. In 1934
he found a new job as a teacher at the school opened from the Jewish community
near Caputh, a city close to Potsdam, and in 1937 he became the dean of the same
school. On 10 November 1938 he witnessed the devastation of the premises of the
school by the boys and the inhabitants of Caputh, urged by local politicians to
follow the example of the general pogrom in action against the Hebrew population
throughout Germany.
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In 1939 Ernst and Johanna Ising were caught in Luxemburg while they were
trying to emigrate to the United States. Their visa applications were rejected due to
the limits put on immigration flows. They decided though to remain there, waiting
for the approval of their visa that was expected for the successive year. However,
just on the day of his 40th birthday, the Germans invaded Luxemburg, and all
consular offices were closed: this cut off any possibility of expatriation. Despite all
the troubles, Ising and his family succeeded, however, surviving the horrors of the
war, even though from 1943 until the liberation of 1944, Ernst Ising was forced to
work for the German army on the railway lanes.

It was only two years after the end of the war that Ising and his wife left Europe
on a cargo ship directed to United States. There he initially taught at the State
Teacher’s College of Minot and then at Bradley University, where he was Professor
of Physics from 1948 till 1976. He became an American citizen in 1953 and in 1971
he was rewarded as best teacher of the year. Ernst Ising died on 11 May of 1998 in
his house at Peoria, in the state of the Illinois.

The life and the career of Ernst Ising were seriously marked by the events of the
Nazi dictatorship and of the Second World War: after his PhD thesis, he never came
back to research activity. He lived quite isolated for many years, almost unaware
of the new scientific developments. However, his article published in 1925 had a
different fate. It was first quoted in an article by Heisenberg in 1928, devoted to
the study of exchange forces between magnetic dipoles. However the true impulse
to its reputation came from a famous article of Peierls, published in 1936, whose
title read On the Model of Ising for the Ferromagnetics. Since then, the scientific
literature has seen a large proliferation of articles on this model.

In closing these short biographical notes, it is worth adding that it was only in
1949 that Ising became aware of the great fame of his name and of his model within
the scientific community.

Appendix 1A. Ensembles in Classical Statistical
Mechanics

Statistical mechanics is the field of physics mainly interested in the thermodynamic
properties of systems made of an enormous number of particles, typically of the order
of the Avogadro number NA ∼ 1023. To study such systems, it is crucial to make use of
probabilistic methods for it is generally impossible to determine the trajectory of each
particle and it is nevertheless meaningless to use them for deriving the thermodynamic
properties. On the contrary, the approaches based on probability permit us to compute
in a easier way the mean values of the physical quantities and their fluctuations.

The statistical mechanics of a system at equilibrium can be formulated in three
different ways, which are based on the microcanonical ensemble, canonical ensemble,
or grand-canonical ensemble. For macroscopic systems, the three different ensembles
give the same final results. The choice of one or another of them is then just a question
of what is the most convenient for the problem at hand. In this appendix we will recall
the formulation of the three ensembles of classical statistical mechanics while in the
next appendix we will discuss their quantum version.
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Original system

Ensemble

...

Fig. 1.7 From the initial system to the ensemble.

It is convenient to introduce the phase space Γ of the system. Let’s assume that
the system is made of N particles, each of them identified by a set of d coordinates
qi and d momenta pi. The phase space Γ is the vector space of 2d × N dimensions,
given by the tensor product of the coordinates and momenta of all the particles. In
the phase space, the system is identified at any given time by a point and its motion
is associated to a curve in this space. If the system is isolated, its total energy E is
conserved: in this case the motion takes place along a curve of the surface of Γ defined
by the equation H(qi, pi) = E, where H(qi, pi) is the hamiltonian of the system.

For a system with a large number of particles not only is it impossible to follow its
motion but it is also useless. The only thing that matters is the possibility to predict the
average properties of the system that are determined by the macroscopic constraints to
which the system is subjected, such as its volume V , the total number N of particles,
and its total energy E. Since there is generally a huge number of microscopic states
compatible with a given set of macroscopic constraints, it is natural to assume that
the system will visit all of them during its temporal evolution.12 Instead of considering
the time evolution of the system, it is more convenient to consider an infinite number
of copies of the same system, with the same macroscopic constraints. This leads to
the idea of statistical ensembles (see Fig. 1.7). By using an analogy, this is equivalent
to looking at an infinite number of snapshots of a single movie rather than the movie
itself. The ensembles then provide a statistical sampling of the system.

12The validity of these considerations is based on an additional assumption, namely the ergodicity
of the system under consideration. By definition a system is ergodic if its motion passes arbitrarily
close to all points of the surfaces of the phase space identified by the macroscopic conditions alone.
The motion of systems that have additional conservation laws is usually not ergodic, since it takes
place only on particular regions of these surfaces.
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Since each system is represented by a single point in phase space, the set of systems
associated to the ensemble corresponds to a swarm of points in phase space. Because
the Liouville theorem states that the density of the points at any given point remains
constant during the time evolution,13 a probability density ρ̃i(q, p) is naturally defined
in Γ. Hence, we can determine expectation values of physical quantities in terms of
expectation values on the ensemble (a procedure that is relatively easy) rather than as
a time average of an individual system (a procedure that is instead rather complicated).
If the system is ergodic we have in fact the fundamental identity

〈A〉 = lim
t→∞

1
t

∫ t

0
dτ A [q(τ), p(τ)] =

∫
dq dpA(p, q) ρ̃(q, p).

The different ensembles are defined by the different macroscopic conditions imposed
on the system. Let’s discuss the three cases that are used most often.

Microcanonical ensemble. The microcanonical ensemble is defined by the following
macroscopic conditions: a fixed number N of particles, a given volume V , and a given
value of the energy in the range E and E + Δ. In this ensemble the mean values are
computed in terms of the probability density ρ(q, p) defined by

ρ(q, p) =
{

1 ifE < H(p, q) < E + Δs,
0 otherwise (1.A.1)

i.e. for any physical quantity A we have

〈A〉 =
∫
dq dpA(q, p) ρ(q, p)∫

dq dp ρ(q, p)
.

The fundamental physical quantity in this formulation is the entropy. Once this quan-
tities is known, one can recover all the rest of the thermodynamics. The entropy is a
function of E and V , defined by

S(E, V ) = k log Ω(E, V ), (1.A.2)

where k is the Boltzmann constant and Ω is the volume in the phase space Γ of the
microcanonical ensemble

Ω(E, V ) =
∫
dq dp ρ(q, p).

The absolute temperature is then given by

1
T

=
∂S(E, V )

∂E
,

13According to a theorem by Liouville, dD
dt

= 0, hence the density D satisfies the differential
equation ∂D

∂l
= −{H, D}. At equilibrium, the density D does not vary with time and then satisfies

{H, D} = 0. This means that it is only a function of the integrals of motion of the system.
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while the pressure P is defined by

P = T
∂S(E, V )

∂V
.

For the differential of S we have

dS(E, V ) =
∂S

∂E
dE +

∂S

∂V
dV =

1
T

(dE + PdV ),

i.e. the first law of the thermodynamics.

Canonical ensemble. The canonical ensemble permits us to deal with the statistical
properties of a system that is in contact with a thermal bath much larger than the
system itself. In this ensemble, the assigned macroscopic conditions are given by the
total number N of the particles, the volume V of the system, and its temperature T .
In this ensemble we cannot fix a priori the value of the energy, for it can be freely
exchanged between the system and the thermal bath. These conditions are considered
to be more closely related to the actual physical situations, since the temperature of a
system can be easily tuned while it is more difficult to ensure the isolation of a system
and the constant value of its energy. The probability density of the canonical ensemble
takes the form of the Gibbs distribution

ρ(q, p) = e−β H(q,p),

with β = 1/kT . The partition function is given by

ZN (V, T ) =
∫
dq dp e−β H(q,p).

The mean values are computed according to the formula

〈A〉 =
1
ZN

∫
dq dpA(q, p)e−β H(q,p).

As discussed in the text, the partition function ZN permits us to recover the thermody-
namics of the system. The equivalence between the microcanonical and the canonical
ensembles can be proved by analyzing the fluctuations of the energy

ΔE2 = 〈H2〉 − 〈H〉2.
A simple calculation gives

〈H2〉 − 〈H〉2 = kT 2 ∂〈H〉
∂T

= kT 2 CV ,

where CV is the specific heat. Since in a macroscopic system 〈H〉 ∝ N but also
CV ∝ N (by the extensive nature of both quantities), the fluctuations of the energy
are of gaussian type, namely in the limit N → ∞ we have

lim
N→∞

ΔE2

〈H〉2 = 0.

In other words, even though in the canonical ensemble the energy is a quantity that is
not fixed but is subjected to fluctuations, as a matter of fact it assumes the same value
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in the utmost majority of the systems of the ensemble. This proves the equivalence
between the two ensembles.

Grand canonical ensemble. With the reasoning that we used to introduce the
canonical ensemble, i.e. the possibility to control the temperature rather than its con-
jugate variable given by the energy, to introduce the grand canonical ensemble one
argues that it is not realistic to assume that the total number N of the particles of a
system is known a priori. In fact, experiments can usually determine only the mean
value of this quantity. Hence, in the grand canonical ensemble one posits that the sys-
tem can have an arbitrary number of particles, with its mean value determined by its
macroscopic conditions. By introducing the quantity z = eβμ, where μ is the fugacity,
the probability density of the grand canonical ensemble is given by

ρ(q, p,N) =
1
N !

zNe−β H(q,p). (1.A.3)

The term N ! in this formula takes into account the identity of the configurations
obtained by the permutation of N identical particles. By integrating over the coordi-
nates and the momenta present in (1.A.3), we arrive at the probability density relative
to N particles. In its normalized form, it is expressed by

ρ(N) =
1
Z
zN

N !
ZN (V, T ),

where ZN (V, T ) is the partition function of the canonical ensemble with N particles,
whereas the denominator of this formula defines the grand canonical partition function

Z(z, V, T ) =
∞∑

N=0

zN

N !
ZN (V, T ).

The mean value of the number of particles of the system can be computed by the
formula

〈N〉 =
∞∑

N=0

N ρ(N) = z
∂

∂z
logZ(z, V, T ). (1.A.4)

The fundamental formula of the grand canonical ensemble links the pressure P to the
partition function Z

P =
1
βV

logZ(z, V, T ). (1.A.5)

The equation of state, i.e. the relationship among P , V , and 〈N〉, is obtained by
expressing z by using eqn (1.A.4) and substituting it in (1.A.5).

The equivalence of this ensemble to the previous ones can be proved by showing
that the fluctuations of the number of particles are purely gaussian. It is easy to prove
that, in an infinite volume and away from the critical points of the system, one has in
fact

lim
V →∞

〈N2〉 − 〈N〉2
〈N〉2 = 0.

This equation shows that, even though the number of particles of the system is not
fixed a priori, it has the same value in almost all copies of the ensemble.
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Appendix 1B. Ensembles in Quantum Statistical
Mechanics

In this appendix we will recall the main formulas of statistical mechanics in the context
of quantum theory. In quantum mechanics any observable A is associated with a
hermitian operator that acts on a Hilbert space. At each time t, the state of an isolated
system is identified by a vector | Ψ(t)〉 that evolves according to the Schrödinger
equation

i�
∂

∂t
| Ψ(t)〉 = H | Ψ(t)〉, (1.B.1)

where H is the hamiltonian. By using the linear superposition principle, each state of
the system can be expressed in terms of a complete set of states | ψn〉 provided by the
orthonormal eigenvectors of any observable A

A | ψn〉 = an | ψn〉, 〈ψn | ψm〉 = δn,m.

This means that | Ψ〉 is given by

| Ψ〉 =
∑
n

cn | ψn〉. (1.B.2)

For the completeness relation of these states,∑
n

| ψn〉 〈ψn |= 1.

The coefficients cn of the expansion (1.B.2) are expressed by the scalar product cn =
〈Ψ | ψn〉, and the square of their modulus | cn |2 expresses the probability to obtain
the eigenvalues an as a result of the measurement of the observable A on the state
| Ψ〉. Hence

〈Ψ | Ψ〉 =
∑
n

| cn |2 = 1.

Let’s now discuss the statistical properties of quantum systems. As in the classical
case, in the presence of a large number of particles it is highly unrealistic to determine
the behavior of a system by solving the Schrödinger equation: first of all, this is an
impossible goal to pursue in almost all systems and, secondly, it cannot be used to
predict the thermodynamic properties. Hence, also in the quantum case, one needs to
use a statistical formulation: one has to take into account the incomplete information
on the state of the system and extract the predictions only on the mean values of the
observables. To do so, let us imagine that the system under study can be considered
as a subsystem of a larger one (external world) and in thermodynamic equilibrium.
Denote by H the hamiltonian of such subsystem, En the spectrum of its eigenvalues,
and | ϕn〉 its eigenvectors (without the temporal term). We can use | ϕn〉 to express
the states of the system, as in eqn (1.B.2), but in this case the coefficients cn(t) have
the meaning of wavefunctions of the external world.
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Suppose we consider at a given time instant the quantum mean value of an observ-
able O on the state | Ψ〉. According to the rules of quantum mechanics, this is given
by the expectation value

〈Ψ(t) | O | Ψ(t)〉 =
∑
n,m

c∗n(t) cm(t) 〈ϕn | O | ϕm〉 =
∑
n,m

c∗n(t) cm(t)On,m, (1.B.3)

where On,m = 〈ϕn | O | ϕm〉. Since we have only partial information on the system,
we have to take a statistical average. Under the hypothesis of ergodicity,14 this is
equivalent to taking the time average of (1.B.3). Defining

ρm,n = cm(t) c∗n(t) ≡ lim
t→∞

1
t

∫ t

0
cm(τ) c∗n(τ) dτ, (1.B.4)

the statistical average of the observable O can be expressed by the formula

〈O〉 = 〈Ψ | O | Ψ〉 =
∑
n,m

ρm,nOn,m = Tr(ρO), (1.B.5)

where the operator ρ, defined by its matrix elements (1.B.4), is the density matrix.
Since the trace of an operator is independent of the basis, the final result (1.B.5) does
not depend on the basis of the eigenvectors that we used to expand the state | Ψ〉. It
should be stressed that the average (1.B.5) that involves the density matrix has two
aspects: from one side, it includes the quantum average on the state, but, on the other
hand, it performs the statistical average on the wavefunctions of the environment.
Both averages are simultaneously present in the formula (1.B.5).

In quantum statistical mechanics, the density matrix corresponds to the probability
distribution of classical statistical mechanics. Hence, also in this case, we can introduce
three different ensembles.

Microcanonical ensemble. As in the classical case, the microcanonical ensemble is
defined by the following macroscopic conditions: a fixed number N of particles, a fixed
volume V , and the energy of the system in the range E and E + Δ. Correspondingly,
the density matrix assumes the form

ρn,m = δn,m wn, wn =
{

1; E < En < E + Δ
0; otherwise

and the thermodynamics is derived starting from the entropy

S(E, V ) = k log Ω(E, V ),

where
Ω(E, V ) = Tr ρ.

14In quantum mechanics this implies the absence of non-trivial integrals of motion, i.e. a set of
observables that commute with the hamiltonian and that can be simultaneously diagonalized with it.
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Canonical ensemble. In this ensemble the macroscopic variables are given by the
fixed number N of particles, the volume V , and the temperature T . The corresponding
expression the density matrix is given by

ρn,m = δn,m e−βEn ,

with the partition function expressed by

ZN (V, T ) = Tr ρ =
∑
n

e−βEn .

In this ensemble, the thermodynamics is derived starting from the free energy

FN (V, T ) = −β−1 log ZN (V, T ).

Grand canonical ensemble. In the grand canonical ensemble the macroscopic vari-
ables are the volume V and the temperature T . In this case the density matrix acts
on a Hilbert space with an indefinite number of particles. Denoting by En,N the n-th
energy level with N particles, the density matrix is expressed by

ρn,N = zN e−β En,N ,

where z = eβμ. The equation of state is similar to the classical one

P =
1
βV

logZ(z, V, T ),

where Z(z, V, T ) is the grand canonical partition function

Z(z, V, T ) =
∑
N,n

zN e−β En,N .

Indistinguishable particles and statistics. A central idea of quantum theory is
the concept of indistinguishable particles: for a system with many identical particles,
an operation that exchanges two of them, swapping their positions, leaves the physics
invariant. This symmetry is represented by a unitary transformation acting on the
many-body wavefunction. In three spatial dimension, there are only two possible sym-
metry operations: the wavefunction of bosons is symmetric under exchange while that
of fermions is antisymmetric. The limitation to one of the two possible kinds of quan-
tum symmetry comes from a simple topological argument: a process in which two
particles are adiabatically interchanged twice is equivalent to a process in which one
of the particles is adiabatically taken around the other. Wrapping one particle around
another is then topologically equivalent to having a loop. In three dimensions, such
a loop can be safely shrink to zero and, therefore, the wavefunction should be left
unchanged by two such interchanges of particles. The only two possibilities are that
the wavefunction changes by a ± sign under a single interchange, corresponding to the
cases of bosons and fermions, respectively.
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For the same topological reason, the concept of identical-particle statistics becomes
ambiguous in one spatial dimension. In this case, for swapping the positions of two
particles, they need to pass through one another and it becomes impossible to dis-
entangle the statistical properties from the interactions. If the wavefunction changes
sign when two identical particles swap their positions, one could say that the particles
are non-interacting fermions or, equivalently, that the particles are interacting bosons,
where the change of sign is induced by the interaction as the particles pass through one
another. This the main reason at the root of the possibility to adopt the bosonization
procedure for describing one-dimensional fermions in terms of bosons and vice versa,
as we will see in Chapter 12.

In two dimensions, a remarkably rich variety of particle statistics is possible: here
there are indistinguishable particles that are neither bosons nor fermions, and they
are called anyons. In abelian anyons, the two-particle wavefunction can change by an
arbitrary phase when one particle is exchanged with the other

ψ(r1, r2) → eiθ ψ(r1, r2). (1.B.6)

There could also be non-abelian anyons. In this case there is a degenerate set of
g states ψa(r1, . . . , rn) (a = 1, 2, . . . , g), with anyons at the positions r1, r2, . . . , rn.
The interchanges of two particles are elements of a group, called the braid group (see
Problem 15). If βi is the operation that interchanges particles i and i + 1, it can be
represented by a g × g unitary matrix γ(βi) that acts on these states as

ψa → [γ(βi)]ab ψb.

The set of the (n − 1) matrices γ(βi) (i = 1, 2, . . . , n − 1) satisfy the Artin relations,
discussed in Problem 15.

The situation of non-abelian anyons is realized, for instance, by trapping electrons
in a thin layer between two semiconductor slabs. At a sufficiently strong magnetic field
in the orthogonal direction and at a sufficiently low temperature, the wavefunction
of the two-dimensional electron gas describes a deeply entangled ground state. The
excitations above the ground state carry electron charges that are fractions of the
original electron charge and have unusual statistical properties under the interchange
of two of them. The anyons of this system give rise to the spectacular transport effects
of the fractional quantum Hall effect.
Free particles. An important example of quantum statistical mechanics is provided
by a system of free particles. This system can be described by the states of a single
particle, here denoted by the index ν. Since the particles are indistinguishable at the
quantum level, to specify a state of the system it is sufficient to state the occupation
number nν of each of its modes. If εν is the energy of the ν-th mode, the total energy
of the system is given by

E =
∑
ν

nν εν ,

while the total number of particles is

N =
∑
ν

nν .
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For three-dimensional systems, there are only two cases: the first is relative to Fermi–
Dirac (FD) statistics, the second to Bose–Einstein (BE) statistics. In the first case,
each mode can be occupied by at most one particle, so that the possible values of nν
are

nν = 0, 1 Fermi–Dirac

while, in the second case, each mode can be occupied by an arbitrary number of
particles. In this case the possible values of nν coincide with the natural numbers

nν = 0, 1, 2, . . . Bose–Einstein.

The most convenient ensemble to describe the thermodynamics of this system is the
grand canonical one. The corresponding partition function is

Z(z, V, T ) =
∞∑

N=0

∑
{nν}∑
nν=N

zN e−β
∑

nνεν =
∑
N=0

∑
{nν}∑
nν=N

∏
ν

(
z e−βεν

)nν
.

To perform the double sums, it is sufficient to sum independently on each index nν ,
for every term in one case appears once and only once in the other, and vice versa.
Hence

Z(z, V, T ) =
∑
n0

∑
n1

· · ·
[(
ze−βε0

)n0 (
ze−βε1

)n1 · · ·
]

=

[∑
n0

(
ze−βε0

)n0

] [∑
n1

(
ze−βε1

)n1

]
· · · (1.B.7)

=
∏
ν

[∑
n

(
ze−βεν

)n]
,

where the final sum is on the values 0, 1 for the fermionic case and on all the integers
for the bosonic case. In the first case we have

ZF (z, V, T ) =
∏
ν

[
1 + ze−βεν

]
,

while, in the second case, one has a geometrical series

ZB(z, V, T ) =
∏
ν

[
1

1 − ze−βεν

]
.

The two expressions can be unified by the formula

Z(z, V, T ) =
∏
ν

(
1 ± z e−β εν

)±1
,
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where the + sign referes to Fermi–Dirac statistics whereas the − sign refers to Bose–
Einsten. The equation of state of both cases is

β P V = log Z(z, V, T ) = ±
∑
ν

log
(
1 ± z e−β εν

)
,

where the variable z is related to the average number of particles by the equation

N = z
∂

∂z
log Z(z, V, T ) =

∑
ν

z e−βεν

1 ± z e−β εν
. (1.B.8)

The last expression shows that the occupation average of each mode is given in both
cases by

〈nν〉 =
z e−βεν

1 ± z e−βεν
. (1.B.9)

Let’s briefly discuss the main features of the Fermi–Dirac and Bose–Einstein
distributions.

Fermi–Dirac. As is well known, the Fermi–Dirac distribution of free particles turns
out to be a surprisingly good model for the behavior of conduction electrons in a
metal or for understanding, in the relativistic case, the existence of an upper limit of
the mass of the dwarf stars (Chandrasekhar limit).

In order to discuss the fermion system in more detail, let’s put z = eβμ and let’s
consider the occupation average n(ε) in the limit T → 0

n(ε) =
1

e(ε−μ)/kT + 1
−→

{
1, if ε < μ
0, if ε > μ.

(1.B.10)

Note that in general the chemical potential depends on temperature. Its zero temper-
ature value is the called the Fermi energy, εF = μ(T = 0). The physical origin of the
sharp shape of the limit expression (1.B.10) is the Pauli exclusion principle that posits
that no two particles can be in the same level of the system. At zero temperature,
the particles occupy the lowest possible energy levels up to a finite energy level εF .
In momentum space, the particles fill a sphere of radius pF , called the Fermi sphere.
In this regime the gas is said to be degenerate. To compute εF , let’s consider the gas
inside a cube of side L with periodic boundary conditions, for simplicity. The energy
of a single particle is just the kinetic energy E = p2

2m and the components pi of the
momentum are quantized as

pi =
2π�

L
qi, qi = 0,±1,±2, . . .

For large L it is natural to replace the sum (1.B.8) with an integral, according to the
rule ∑

q

−→ V

(2π�)3

∫
d�p, (1.B.11)

where V = L3. If the spin of a particle is s, for a given momentum �p there are 2s+ 1
single particle states with the same energy ε(p) and the normalization condition at
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Fig. 1.8 Fermi-Dirac distribution at T = 0 (dashed line) and at T �= 0 (continuous line).

T = 0 becomes

N = (2s+ 1)
V

(2π�)3

∫
ε<εF

d3p = (2s+ 1)
V

(2π�)3
4π
3
p3
F . (1.B.12)

Hence,

εF =
�

2

2m

(
6π2

2s+ 1
N

V

)2/3

. (1.B.13)

We can define a Fermi temperature TF by εF ≡ kTF . The Fermi energy and tempera-
ture provide useful energy and temperature scales for understanding the properties of
fermion systems. For instance, the conduction electron density for metals is typically
of order 1022 per cubic centimeter, which corresponds to a Fermi temperature of or-
der 105 kelvin. This implies that at room temperature the system can be reasonably
approximated by the degenerate distribution (1.B.10). Furthermore, notice that the
Fermi energy (1.B.13) increases by increasing the density of the gas and, at sufficiently
high density, εF can be higher than any energy scale εI associated to the interactions
between the particles. This means that, counter-intuitively, in fermion systems the free
particle approximation becomes better at higher values of the density!

At finite temperatures but smaller than the Fermi temperature T < TF , n(ε) differs
from its zero-temperature form only in a small region about μ of width a few kT , as
shown in Fig. 1.8. In computing integrals of the form J =

∫∞
0 f(ε)n(ε)dε, the way they

differ from the zero temperature values
∫ μ=εF

0 f(ε)n(ε)dε depends on the form of f(ε)
near μ. Integrating by parts, such integrals can be expressed as

J = −
∫ ∞

0
g(ε)n′(ε) dε, (1.B.14)

where g(ε) = f ′(ε). Note that n′(ε) is sharply peaked at ε = μ, particularly at low
temperature. If g(ε) does not vary rapidly in an interval of order kT near μ, the value
of the integral can thus be estimated by replacing g(ε) with the first few term of its
Taylor expansion about ε = μ

g(ε) =
∞∑
n=0

1
n!
dng(μ)
dεn

(ε− μ)n.
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Substituting this expansion the integral (1.B.14) becomes

J = −
∞∑
n=0

1
n!
dng(μ)
dεn

∫ ∞

0
n′(ε) (ε− μ)n dε.

The various integrals can be evaluated with the substitution x = (ε−μ)/kT and since
n′ vanishes away from ε = μ, the lower limit of the integrals can be enlarged to −∞
without significant error. So∫ ∞

0
n′(ε)(ε− μ)n dε = −(kT )n In

where
In =

∫ ∞

−∞

xn ex

(ex + 1)2
dx.

Since ex/(ex + 1) = 2/ cosh(x/2) is an even function, for n odd In vanish. The even
ones can be expressed in terms of the Riemann function ζ(s) =

∑∞
n=1

1
ns as

I2n = (2n)!(2 − 22−2n)ζ(2n).

The first representatives are

I0 = 1, I2 =
π2

3
, I4 =

7π4

15
.

In this way we recover the so-called Sommerfeld expansion of the integral J (where we
have inserted the original function f(ε))∫ ∞

0
f(ε)n(ε)dε

=
∫ μ

0
f(ε)dε+

π2

6
(kT )2f ′(μ) +

7π4

360
(kT )4f ′′′(μ) + O

(
kT

μ

)
.

Applying the formula above, it is possible to compute the dependence of the chemical
potential on the temperature

μ = εF

[
1 − π2

12

(
kT

εF

)2

− π4

80

(
kT

εF

)4

+ · · ·
]
,

and the expression for the internal energy

U =
3
5
NεF

[
1 +

5
3

(
kT

εF

)2

+ · · ·
]
,

For the pressure we have

P =
2
5
N

V
εF

[
1 +

5π2

12

(
kT

εF

)2

+ · · ·
]
.

This formula shows that even at zero temperature there is a non-zero value of the
pressure, another manifestation of the Pauli principle.
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Bose–Einstein. In three dimensions the boson gas presents the interesting phe-
nomenon of Bose–Einstein condensation, i.e. a first-order phase transition. This phe-
nomenon was predicted by Einstein in 1924. The condensation was achieved for the
first time in atomic gases in 1995: the group of E. Cornell and C. Wieman was first,
with 87Rb atoms, followed by the group of W. Ketterle with 23Na atoms and the group
of R. Hulet with 7Li atoms. In these experiments the atomic gas was confined by a
magnetic and/or optical trap to a relatively small region of space and at a tempera-
ture of order nanokelvins. In order to discuss this remarkable aspect of bosons in more
detail, let’s consider, as before, the gas inside a cube of side L with periodic boundary
conditions. The components pi of the momentum are quantized as

pi =
2π�

L
qi, qi = 0,±1,±2, . . .

and the energy of a single particle is E = p2

2m . Since the mean value (1.B.9) of the
number of particles for each mode ν has to be positive (in particular, the mode relative
to the zero energy), for the variable z we have

0 ≤ z ≤ 1.

To compute the mean value of the density of the particle in the limit L→ ∞, it seems
natural to replace the sum (1.B.8) with an integral, according to the rule (1.B.11). In
this way, we have

N

V
=
∫

d�p

�3

1
z−1 eβp2/2m − 1

, (1.B.15)

which, by a change of variable, can be written as

N =
V

λ3 g(z), (1.B.16)

where

g(z) =
4√
π

∫ ∞

0
dx

x2 e−x2

z−1 − e−x2 =
∞∑
n=1

zn

n3/2 .

The quantity

λ =

√
2π�2

mkT

has the dimension of a length and it is called the thermal wavelength, for it expresses
the order of magnitude of the de Broglie wavelength associated to a particle of mass
m and energy kT . λ can be regarded as the position uncertainty associated with
the thermal momentum distribution. The lower the temperature, the longer λ. When
atoms are cooled to the point where λ is comparable to the interatomic separation,
the atomic wavepackets overlap and the indistinguishability of particles becomes an
important physical effect. The function g(z) is an increasing function of z, as shown
in Fig. 1.9. At z = 1 the function reaches its highest value, expressed in terms of the
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Fig. 1.9 Plot of the function g(z).

Riemann function ζ(x) by

g(1) =
∞∑
n=1

1
n3/2 = ξ

(
3
2

)
	 2.612...

and, for all values of z between 0 and 1, the function g(z) satisfies the inequality

g(z) ≤ g(1) = 2.612...

From eqn (1.B.16) the conclusion seems then to be that there exists a critical density
of the system given by

Nmax = g(1)
V

λ3 .

But this is impossible due to the bosonic nature of the gas. In fact, if we had reached
this critical density, what prevents us adding further particles to the system? Hence,
there should be a mistake in the previous derivation, particularly in the substitution
of the sum (1.B.8) with the integral (1.B.15). The cure of this drawback is to isolate
the zero-mode before making the substitution of the sum with the integral. This is
given by

n0 =
z

z − 1
,

and for z → 1, it is evident that it can be arbitrarily large, i.e. comparable with the
sum of the entire series. Instead of (1.B.16), the correct version of the formula is then

N =
V

λ3 g(z) +
z

z − 1
.

Expressing it as

λ3 n0

V
= λ3 N

V
− g(z),

it is easy to see that n0/V > 0 when the temperature and the density of the particles
satisfy the condition

λ3N

V
≥ g(1) = 2.612 . . . (1.B.17)

In this case, a finite fraction of the total number of the particles occupies the lowest
energy level and a condensation phenomenon takes place. The system undergoes a
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phase transition from a normal gas state to a Bose–Einstein condensation, in which
there is a macroscopic manifestation of the quantum nature of the system. The phase
transition (which is of first order) is realized when we have

λ3 N

V
= g(1).

This equation defines a curve in the space of the variables P-n-T. In particular, keeping
fixed the density d = N/V , this equation identifies a critical temperature Tc given by

kTc =
2π�

2

m[d g(1)]2/3
,

Notice that Tc decreases when the mass of the particles increases. As previously men-
tioned, the Bose–Einstein condensation was realized for the first time in 1995 by using
alkaline gases and, since then, it has become a research field under rapid development.
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Problems

1. Lattice gas
Consider a lattice gas in which the particles occupy the sites of a d-dimensional lattice,
with the constraint that each site cannot be occupied by more than one particle. Let
ei be a variable that takes values {0, 1}: 0 when the site is vacant and 1 when it is
occupied. The interaction energy of each configuration is given by

H = J
∑
〈ij〉

ei ej .

Show that the grand canonical partition function of the lattice gas can be put in
correspondence with the canonical partition function of the Ising model. Argue that the
phase transition of the lattice gas, which consists of the condensation of the particles,
belongs to the same universality class of the Ising model.

2. Potts model
In the Potts model, the spin variable σi assumes q values, as {0, 1, . . . , q − 1}. The
energy of the configurations is given by

H = −J
∑
〈ij〉

δσi,σj ,
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where

δa,b =
{

1 if a = b
0 if a �= b.

a Identify the symmetry transformations of the spins that leave the hamiltonian
invariant.

b Show that for q = 2, the Potts model is equivalent to the Ising model.
c Discuss the configuration of the minimum energy in the antiferromagnetic limit

J → −∞.

3. Theorem of equipartition
Consider a classical one-dimensional harmonic oscillator, with hamiltonian

H =
p2

2m
+
mω2x2

2
,

a Determine the surface E = constant in the phase space and derive the thermody-
namics of the system by using the microcanonical ensemble.

b Put the system in contact with a thermal bath at temperature T . Compute the
partition function in the canonical ensemble and show that the mean value of the
energy is independent both of the frequency and the mass of the particle, i.e.〈

p2

2m

〉
=
〈
mω2x2

2

〉
=

1
2
〈H〉 =

1
2
kT.

c Show that
〈(E − 〈E〉)2〉 = (kT )2.

4. Equation of state for homogeneous potentials
Consider a system of classical particles whose interaction potential is given by a
homogeneous function of degree η

U(λ�r1, λ�r2, . . . , λ�rN ) = λη U(�r1, �r2, . . . , �rN ).

Show that the equation of state of such a system assumes the form

P T−1+3/η = f

(
V

N
T−3/η

)
,

where, in principle, the function f(x) can be computed once the explicit expression U
of the potential is known.

5. Zeros of the partition function
Consider a classical system with only two states of magnetization, both proportional
to the volume V of the system: M = ±αV . In the presence of an external magnetic
field B, the Hamiltonian is given by

H = BM.
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a Compute the partition function in the canonical ensemble and determine its zeros
in the complex plane of the temperature. Show that in the thermodynamic limit
V → ∞, there is an accumulation of zeros at T = ∞.

b Compute 〈M〉 as a function of B and study the limit of this function when V → ∞.

6. Two-state systems
Consider a system of N free classical particles. The energy of each particle can take
only two values: 0 and E(E > 0). Let n0 and n1 be the occupation numbers of the
two energy levels and U the total energy of the system.

a Determine the entropy of the system.
b Determine 〈n0〉, 〈n1〉 and their fluctuations.
c Express the temperature T as a function of U and show that it can take negative

values.
d Discuss what happens when a system at negative temperature is put in thermal

contact with a system at positive temperature.

7. Scaling laws
Given the equation of state of a magnetic system in the form

B = M δ Q
(

t

M1/β

)
,

a prove that the parameters β and δ in the expression above are the critical exponents
of the system, as defined in this chapter;

b Show the identity γ = β(δ − 1).

8. First-order phase transitions
In second-order phase transitions, the state with the lowest value of the free energy
changes continuously when the system crosses its critical point. On the contrary, in a
first-order phase transition, the order parameter changes discontinuously.

a Study the behaviour of the minima of the free energy

F (x) = a(T )x2 + x4

by varying the temperature T as a(T ) = (T − Tc) and determine if we are in the
presence of a first- or second-order phase transition.

b Analyze the same questions for the free energy given by

F (x) = (x2 − 1)2 (x2 + a(T ))

with the same expression for a(T ).
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9. Ergodic system
Consider a classical dynamical system with a phase space (0 < q < 1; 0 < p < 1) and
equation of motion given by

q(t) = q0 + t; p(t) = p0 + α t.

a Discuss the trajectories in the phase space when α is a rational and irrational
number.

b Show that the system is ergodic when α is irrational, i.e. the time averages of all
functions f(q, p) coincide with their average on the phase space.

Hint. Use the fact that the volume of the phase space is finite to expand any function
of the coordinate and momentum in Fourier series.

10. Density of states
Determine the number of quantum states with energy less than E for a free particle in
a cubic box of length L. Compare this quantity with the volume of the classical phase
space and find the corresponding density of states of the system.

11. Quantum harmonic oscillator
The one-dimensional quantum oscillator has an energy spectrum given by En =
�ω(n+ 1/2), n = 0, 1, 2, . . .

a Compute the partition function in the canonical ensemble.
b Compute the specific heat as a function of the temperature and discuss how this

quantity differs from the analogous classical expression.

12. Riemann function
The Riemann function ζ(β) is defined by

ζ(β) =
∞∑
n=1

1
nβ
.

a Interpret this expression as the partition function in the canonical ensemble of a
quantum system and identity the discrete spectrum of the energies.

b Compute the density of states and the entropy of the quantum system. Interpret
the singularity of ζ(β) at β = 1 as a phase transition.

13. Bose–Einstein condensation
In Appendix B we saw that, in three dimensions, an ideal gas with bosonic statistics
presents a Bose–Einstein condensation for sufficiently low temperature. Discuss if the
same phenomenon can take place in one and two dimensions. Study if a Bose–Einstein
condensation can happen for a harmonic oscillator in dimension d = 1, 2, 3.
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Fig. 1.10 Integration contour C.

14. Dimensional regularization
Let d the dimension of the space. Discuss the convergence of the integral

I(d) =
∫ ∞

0

rd−1

r2 + 1
dr

by varying d.
a Determine, in its convergent domain, the exact expression of the integral as a func-

tion of d and identify the position of its poles.
b Analytically continue the definition of the integral in any other domain.
c Compute its value for d = 1

3 and d = π.
Hint. Consider the integral in the complex plane∮

C

zd−1

z2 + 1
dz

where C is the contour shown in Fig. 1.10.

15. Braid group
The braid group on n strands, denoted by Bn, is a set of operations which has an
intuitive geometrical representation, and in a sense generalizes the symmetric group
Sn. Here, n is a natural number. Braid groups find applications in knot theory, since
any knot may be represented as the closure of certain braids. From the algebraic point
of view, the braid group is represented in terms of generators βi, with 1 ≤ i ≤ (n− 1);
βi is a counterclockwise exchange of the i-th and (i + 1)-th strands. β−1

i is therefore
a clockwise exchange of the i-th and (i+ 1)-th strands. The generators βi satisfy the
defining relations, called Artin relations (see Fig. 1.11):

βi βj = βj βi for | i− j |≥ 2
βi βi+1 βi = βi+1 βi βi+1 for 1 ≤ i ≤ n− 1.
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21

==

==

β β

Fig. 1.11 Top: The two elementary braid operations β1 and β2. Middle: Graphical proof
that β2β1 �= β1β2, hence the braid group is not abelian. Bottom: the Yang–Baxter relation
of the braid group.

The second is also called the Yang–Baxter equation. The only difference from the
permutation group is that β2

i �= 1, but this is an enormous difference: while the per-
mutation group is finite (the dimension is n!), the braid group is infinite, even for just
two strands. The irreducible representation of the braid group can be given in terms
of g×g dimensional unitary matrices, βi → γi, where the matrices γi satisfy the Artin
relations.

a Consider the group B3. Prove that

γ1 =
(
e−7iπ/10 0
0 −e−3iπ/10

)
, γ2 =

(
−τe−iπ/10 −i√τ
−i√τ −τeiπ/10

)

provide a representation of the Artin relations. Here τ = (
√

5−1)/2, which satisfies
τ2 + τ = 1.

b Both matrices γi (i = 1, 2) are matrices of SU(2) and can be written as

γi = exp
[
i
θi�ni
2

· �σ
]

where σj (j = 1, 2, 3) are the Pauli matrices and θi is the angle of rotation around
the axis �ni. Identify the angles and the axes of rotation that correspond to γ1
and γ2.
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c By multiplying the γi (and their inverse) in a sequence of L steps, as in the example
below

AL = γ1 γ2γ
−1
1 γ2 . . . γ1︸ ︷︷ ︸
L

.

one generates another matrix AL of SU(2), identified by the angle α of rotation
around an axis �n, AL = exp

[
iα�n2 · �σ

]
. Argue that making L sufficiently large, one

can always find a string of γi and its inverse that approximates with an arbitrary
precision any matrix of SU(2).



2
One-dimensional Systems

If our highly pointed Triangles of the Soldier class are formidable, it may be readily
inferred that far more formidable are our Women. For, if a Soldier is a wedge, a
Woman is a needle.

Edwin A. Abbott, Flatland

In this chapter we present several approaches to get the exact solution of the one-
dimensional Ising model. As already mentioned, the one-dimensional case does not
present a phase transition at a finite value of the temperature. However we will show
that the origin T = B = 0 of the phase diagram may nevertheless be regarded as a crit-
ical point: by using appropriate variables, one can define the set of critical exponents
and verify that the scaling relations are indeed satisfied.

In this chapter we also discuss three different generalizations of the Ising model:
the first is given by the q-state Potts model, a system that is invariant under the
permutation group Sq of q objects; the second is provided by a system of spins with n
components, invariant under the continuum group of transformations O(n); the third
one is the so-called Z(n) model, i.e. a spin system that is invariant under the set of
the discrete rotations associated to the n-th roots of unity. We compute the parti-
tion function of all these models, pointing out their interesting properties. Finally, we
analyze the thermodynamics of the so-called Feynman gas, i.e. a one-dimensional gas
of particles with a short-range potential V (| xi − xj |): the results of this analysis will
be useful when we face in later chapters the study of the correlation functions of the
two-dimensional models.

2.1 Recursive Approach

The first method we are going to introduce is based on a recursive approach: it permits
us to obtain the exact solution of the one-dimensional Ising model in the absence of
an external magnetic field.

Consider a linear chain of N Ising spins (see Fig. 2.1) in the absence of an external
magnetic field, with free boundary conditions on the first and the last spin of the
chain. The more general hamiltonian of such a system is given by

H = −
N−1∑
i=1

Jiσi σi+1,
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1 2 3 NN−1

Fig. 2.1 Linear chain of N Ising spins.

with an interaction Ji that may change from site to site. The partition function is
expressed by

ZN =
1∑

σ1=−1

1∑
σ2=−1

· · ·
1∑

σN=−1

exp

(
N−1∑
i=1

Jiσiσi+1

)
, (2.1.1)

where we have introduced the notation Ji = βJi. The recursive method consists of
adding an extra spin to the chain and expressing the resulting partition function ZN+1
in terms of the previous ZN . By adding another spin, we have

ZN+1 =
1∑

σ1=−1

1∑
σ2=−1

· · ·
1∑

σN=−1

exp

(
N−1∑
i=1

Jiσiσi+1)

)
1∑

σN+1=−1

exp (JNσNσN+1) .

(2.1.2)
The last sum can be easily computed

1∑
σN+1=−1

exp (JNσNσN+1) = eJNσN + e−JNσN = 2 cosh(JNσN ) = 2 coshJN ,

and the result is independent of σN , a particularly important circumstance. This per-
mits us to rewrite eqn (2.1.2) as

ZN+1 = (2 coshJN )ZN ,

and the iteration of this relation leads to

ZN+1 =

(
2N

N∏
i=1

coshJi

)
Z1.

Since the partition function Z1 of an isolated spin is equal to the number of its states,
i.e. Z1 = 2, the exact expression of the partition function of N spins is given by

ZN = 2N
N−1∏
i=1

coshJi. (2.1.3)

To see whether there is a critical value Tc of the temperature (below which the system
presents a magnetized phase), it is useful to compute the two-spin correlation function

G(2)(r) = 〈σkσk+r〉 = Z−1
N

∑
{σ}

σkσk+r exp

(
N−1∑
i=1

Jiσiσi+1

)
, (2.1.4)
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where the first sum stands for a concise way of expressing the sum on the ±1 values of
all the N spins. If r = 1, the correlation function is obtained by taking the derivative

G(2)(1) = 〈σkσk+1〉 = Z−1
N

∂

∂Jk

∑
{σ}

exp

(
N−1∑
i=1

Jiσiσi+1

)
.

Thanks to the identity σ2
i = 1, valid for the Ising spins, the formula can be easily

generalized to arbitrary r

ZN G(2)(r) =
∂

∂Jk

∂

∂Jk+1
· · · ∂

∂Jk+r−1
ZN . (2.1.5)

Substituting in this formula eqn (2.1.3), one has

G(2)(r) =
r∏

i=1

tanhJk+i−1. (2.1.6)

This expression makes it possible to check in an easy way the validity of simple physical
intuition. It correctly predicts that, by taking the limit Ji → 0 that breaks the chain
into two separate blocks, if the site i is placed between k and k + r, the correlation
function vanishes; vice versa, if the site i is external to the interval (k, k + r), the
correlation function is unaffected by the limit Ji → 0.

If the system is homogeneous, with the same coupling constant J for all spins, we
have the simpler expression

G(2)(r) = (tanhJ )r (2.1.7)

that can be written in a scaling form as

G(2)(r) = exp [−r/ξ] .

The correlation length ξ, in units of the lattice space a, is given by

ξ(J ) = − 1
log tanhJ . (2.1.8)

We can use this expression for ξ to identify the possible critical points of the system,
since ξ diverges at a phase transition. It is easy to see that ξ has only one singular
point, given by

J = βJ =
J

kT
→ ∞,

i.e. T = 0 (if J is a finite quantity). One arrives at the same conclusion by analyzing
the possibility of having a non-zero expectation value of the spin, i.e. a non-vanishing
limit

| 〈σ〉 |2 = lim
r→∞G(2)(r). (2.1.9)

Since for finite βJ the hyperbolic tangent entering G(2)(r) is always less than 1, the
spontaneous magnetization always vanishes, except for the limiting case βJ = ∞, i.e.
T = 0.
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The absence of an ordered phase in a finite interval of the temperature T of the
one-dimensional Ising model can be readily explained by some simple thermodynamic
considerations. In fact, let’s assume that at a sufficiently low temperature the system
is a complete ordered state, i.e. with all spins aligned, for istance, σi = 1. The energy
of this configuration is E0 = −(N − 1)J . The configurations of the system with the
next higher energy are those in which an entire spin block is inverted at an arbitrary
point of the chain (see Fig. 2.2). Their number is N − 1 (it is equal to the number of
sites where this inversion of the spins can take place) and their energy is E = E0 +2J .
At a temperature T , the variation of the free energy induced by these excitations is
expressed by

ΔF = ΔE − T ΔS = 2J − kT ln(N − 1), (2.1.10)

and, for N sufficiently large, it is always negative for all value of T �= 0. Hence, the
ordered state of the system is not the configuration that minimizes the free energy.
Since the configurations with inverted spin blocks disorder the system, the ordered
phase of the one-dimensional Ising model is always unstable for T �= 0.

The absence of a spontaneous magnetization at a finite T does not imply, however,
the absence of a singularity at T = 0. Let’s compute, for instance, the magnetic
susceptibility at B = 0 by using the fluctuation-dissipation theorem

χ(T,B = 0) =
β

N

N∑
i=1

N∑
j=1

〈σi σj〉. (2.1.11)

For simplicity, consider the homogeneous case 〈σi σj〉 = v|i−j|, with v = tanhβJ . In
the sum above, there are

• N terms, for which | i− j |= 0. Each of them gives rise to a factor v0 = 1.
• 2(N − 1) terms, for which | i − j |= 1. They correspond to the N − 1 next

neighboring pairs of spins of the open chain and each of them brings a term v1.

(a)

(b)
Fig. 2.2 (a) Ordered low-energy state; (b) excited state.
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• 2(N − 2) terms, for which | i− j |= 2 and a term v2, and so on, till we arrive at
the last two terms for which | i− j |= N −1, each of them bringing a factor vN−1.

Hence, the double sum (2.1.11) can be expressed as

χ(T,B = 0) =
β

N

(
N + 2

N−1∑
k=1

(N − k) vk
)
.

By using
N−1∑
k=1

vk =
1 − vN

1 − v
,

N−1∑
k=1

kvk = v
∂

∂v

N−1∑
k=1

vk,

we arrive at

χ(T,B = 0) =
β

N

[
N

(
1 +

2v
1 − v

)
− 2v(1 − vN )

(1 − v)2

]
.

This expression can be simplified by taking the thermodynamic limit N → ∞

χ(T,B = 0) = β
1 + v

1 − v
= β e2J/kT ,

and this expression presents an essential singularity for T → 0.
It is also interesting to study the case J < 0 that corresponds to the antiferromag-

netic situation. In such a case, the minimum of the energy of the system is realized by
those configurations where the spins alternate their values by moving from one site to
the next one. The two-point correlation function of the spins is given by eqn (2.1.7)
also in the antiferromagnetic case. However, for negative values of J , it changes its sign
by changing the lattice sites, as shown in Fig. 2.3. The oscillating behavior of this func-
tion is responsable for a partial cancellation of the terms entering the series (2.1.11)
of the magnetic susceptibility that indeed remains finite for all values of temperature.

Using the previous formulas, we can explicitly compute the mean energy U and
the specific heat C at B = 0. For the mean energy we have

〈U〉 = − ∂

∂β
(ln ZN (T,B = 0)) = −

N−1∑
i=1

Ji tanhJi = −J(N − 1) tanhJ ,

where the last identity holds in the homogeneous case, while for the specific heat
we get

C(T,B = 0) =
∂〈U〉
∂T

= k(N − 1)
( J

coshJ

)2

. (2.1.12)

The plot of this function is shown in Fig. 2.4. Similar functions, with a pronounced
maximum, are obtained for the specific heat of all those substances which have only
one energy gap ΔE and, in the literature, are known as Schottky curves. The reason
why the one-dimensional Ising model is equivalent to a system with only one energy
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Fig. 2.3 Two-point correlation function of the spins in the ferromagnetic case (upper curve)
and in the antiferromagnetic case (lower curve).
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Fig. 2.4 Specific heat of the one-dimensional Ising model versus temperature.

gap ΔE will become clear after the discussion in the next section on the transfer
matrix of the model.

By using eqn (2.1.3), we can also compute the entropy of the system

S(T,B = 0) =
∂

∂T

[
1
β

lnZN

]
= (2.1.13)

= k [N ln 2 + (N − 1) ln coshJ − (N − 1)J tanhJ ] .

The plot of the entropy is in Fig. 2.5. For T → 0, the entropy goes correctly to the
value k ln 2: at T = 0, there are in fact only two effective states of the system, the one
in which all spins are up and the other one in which all spins are down. For T → ∞, we
have instead S → Nk ln 2: in this limit all spins are free to fluctuate in an independent
way and, correspondingly, the available number of states of the systems is given by 2N .
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Fig. 2.5 Entropy versus temperature.

2.2 Transfer Matrix

The exact solution of the one-dimensional Ising model can be obtained by using the
alternative method of the transfer matrix. This method presents a series of advantages:
unlike the recursive method, it also can be applied when there is an external magnetic
field. Moreover, it has many points in common with a discrete formulation of quantum
mechanics, in particular the Feynman formulation in terms of a path integral. The
transfer matrix method relies on a set of ideas that go beyond the application to the
one-dimensional case and permits us to show the remarkable relationship that links
classical systems of statistical mechanics in d dimensions with quantum systems in
(d− 1), as will be discussed in more detail in Chapter 7. In the two-dimensional case,
for instance, it permits us to obtain the exact solution of the Ising model in the absence
of an external magnetic field (see Chapter 6).

To study the one-dimensional case, let us consider once again a chain of N spins.
For simplicity, we consider here the homogeneous case, in which there is only one
coupling constant J , with hamiltonian

H = −J
N−1∑
i=1

σi σi+1 −B

N∑
i=1

σi. (2.2.1)

We firstly analyze the periodic boundary condition case while more general boundary
conditions will be considered later.

2.2.1 Periodic Boundary Conditions

Assuming periodic boundary conditions, the chain has a ring geometry, implemented
by the condition

σi ≡ σN+i.
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The transfer matrix method is based on the observation that the sum on the spin
configurations can be equivalently expressed in terms of a product of 2 × 2 matrices,
as follows

ZN =
∑
{σ}

V (σ1, σ2)V (σ2, σ3) · · · V (σN , σ1), (2.2.2)

where the matrix elements of V (σ, σ′) are defined by

V (σ, σ′) = exp
[
J σσ′ +

1
2
B(σ + σ′)

]
, (2.2.3)

with J = βJ and B = βB. Explicitly

〈+1 | V | +1〉 = eJ +B;
〈−1 | V | +1〉 = e−J ;
〈+1 | V | −1〉 = e−J ;
〈−1 | V | −1〉 = eJ −B,

and therefore V can be written as

V =
(
eJ +B e−J

e−J eJ −B

)
. (2.2.4)

It is easy to see that the product of the matrix V correctly reproduces the Boltzmann
weights of the Ising model configurations. In this approach, the configuration space of
a single spin may be regarded as the Hilbert space of a two-state quantum system: the
states will be denoted by | +1〉 and | −1〉, and the completeness relation is expressed
by the formula ∑

σ=±1

| σ〉〈σ |= 1. (2.2.5)

The original one-dimensional lattice can be seen as the temporal axis, along which the
quantum dynamics of the two-state system takes place. In more detail, the transfer
matrix V plays the role of the quantum time evolution operator for the time interval
Δt = a (see Fig. 2.6)

| σi+1〉 = V | σi〉 ≡ e−aH | σi〉. (2.2.6)

In this formula H expresses the quantum hamiltonian which must not be confused with
the original classical hamiltonian H given in eqn (2.2.1). By adopting this scheme based
on a two-state Hilbert space, it becomes evident that the one-dimensional Ising model
presents only one energy gap ΔE : one has, then, a natural explanation of the Schottky
form of the specific heat, discussed in the previous section.



Transfer Matrix 53

i+1i−1 i

VV

Fig. 2.6 Transfer matrix as quantum time evolution operator.

Quantum hamiltonian. It is an interesting exercise to find an explicit expression
for the quantum hamiltonian H. Let us recall that, in the linear space of 2 × 2

matrices, a basis is provided by the identity matrix 1 =
(

1 0
0 1

)
and by the Pauli

matrices σ̂i

σ̂1 =
(

0 1
1 0

)
, σ̂2 =

(
0 −i
i 0

)
, σ̂3 =

(
1 0
0 −1

)
. (2.2.7)

They satisfy

{σ̂k, σ̂l} = 2δkl, [σ̂k, σ̂l] = 2 i εklm σ̂m (2.2.8)

where {a, b} = ab + ba, [a, b] = ab − ba and εklm is the antisymmetric tensor in all
three indices, with ε123 = 1.

In terms of these matrices, V can be written as

V =
(
eJ coshB

)
1 + e−J σ̂1 +

(
eJ sinhB

)
σ̂3. (2.2.9)

Let us determine the constants C, c1, c2, c3 so that V is expressed as

V = C exp [ c1σ̂1 + c2σ̂2 + c3σ̂3 ] . (2.2.10)

By making a series expansion of the exponential

exp [c1σ̂1 + c2σ̂2 + c3σ̂3] =
∞∑
k=0

(c1σ̂1 + c2σ̂2 + c3σ̂3)
k

k!
, (2.2.11)

and using the anticommutation rule (2.2.8), it is easy to see that we arrive at

(c1σ̂1 + c2σ̂2 + c3σ̂3)
2n = r2n+1,

(c1σ̂1 + c2σ̂2 + c3σ̂3)
2n+1 = (c1σ̂1 + c2σ̂2 + c3σ̂3) r2n,
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where r =
√
c21 + c22 + c23. By summing the series (2.2.11), eqn (2.2.10) becomes

V = C

[
cosh r 1 +

sinh r
r

(c1 σ̂1 + c2 σ̂2 + c3 σ̂3)
]
.

Comparing this expression with eqn (2.2.9), we have

C cosh r = eJ coshB,

C
sinh r
r

c1 = e−J,

C
sinh r
r

c2 = 0,

C
sinh r
r

c3 = eJ coshB,

from which it immediately follows that c2 = 0. From the ratio between the fourth
and the second equation, we have

c3 = c1 e
2J sinhB.

Summing the square of the second and the fourth equations and subtracting the
square of the first equation, we get

C2 = 2 sinh 2J ,

i.e. C =
√

2 sinh 2J . Finally, by taking the ratio of the square of the first and the
second equations and using eqn (2.2.1), c1 is given by the solution of the trascen-
dental equation

tanh
[
c1
√

1 + e4J sinh2 B
]

=

√
1 + e4J sinh2 B
e2J coshB . (2.2.12)

Hence, the quantum hamiltonian H is given by

H = −1
a

[(
1
2

log(sinh 2J )
)

+ c1
(
σ̂1 + e2J sinhB σ̂3

)]
, (2.2.13)

where c1 is the solution of (2.2.12). This expression simplifies when B = 0

H = −1
a

[(
1
2

log(sinh 2J )
)

+ c1 σ̂1

]
, (2.2.14)

with tanh c1 = e−2J . It is interesting to study the limit a → 0 of this expression,
the so-called hamiltonian limit. To do that, it is convenient to subtract the first term
of the hamiltonian (2.2.14), which corresponds anyhow to an additive constant. One
can get a finite expression for H in the limit a→ 0 only by taking the simultaneous
limit J → ∞, with the combination y ≡ a e2J kept fixed. This relationship between
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the coupling constant J and the lattice space a is perhaps the simplest equation of
the renormalization group: it is the one that guarantees that the physical properties
of the system remain the same even in the limit a→ 0. Consider, for instance, the
correlation length ξ

ξ = − a

log(tanhJ )
;

ξ remains finite in the limit a→ 0 only by increasing correspondingly the coupling
constant among the spin, keeping fixed their combination y.

Let’s come back to the computation of the partition function. By using eqn (2.2.2)
and the completeness (2.2.5), one has

ZN =
∑

σ1=±1

∑
σ2=±1

· · ·
∑

σN=±1

〈σ1 | V | σ2〉〈σ2 | V | σ3〉 · · · 〈σN | V | σ1〉

=
∑

σ1=±1

〈σ1 | V N | σ1〉 = TrV N . (2.2.15)

The fact that ZN is expressed in terms of the trace of the N -th power of the operator
V is clearly due to the periodic boundary conditions we adopted. The simplest way
to compute the trace of V N consists of bringing V into a diagonal form. Being an
hermitian matrix, it can be diagonalized by means of a unitary matrix U

U−1 V U = D =
(
λ+ 0
0 λ−

)
,

with λ+ ≥ λ−. If we define the quantity φ by the relation

cot 2φ = e2J sinhB, (2.2.16)

the explicit expression for U is given by

U =
(

cosφ − sinφ
sinφ cosφ

)
. (2.2.17)

Since the trace of a product of matrices is cyclic, by inserting in (2.2.15) the identity
matrix 1 in the form UU−1 = 1 we have

TrV N = TrU U−1 V N = TrU−1 V N U = TrDN = λN+ + λN− . (2.2.18)

We need now to determine explicitly the two eigenvalues: by an elementary computa-
tion, they are given by

λ± = eJ coshB ±
√
e2J cosh2 B − 2 sinh(2J ). (2.2.19)

The free energy per unit spin is then expressed by

F (β,B) = − 1
βN

lnZN = − 1
β

{
lnλ+ +

1
N

ln

[
1 +
(
λ−
λ+

)N]}
. (2.2.20)
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In the thermodynamic limit N → ∞, taking into account that λ+ > λ− for any value
of B, the free energy is determined only by the larger eigenvalue λ+:

F (β,B) = − 1
β

ln
[
eJ coshB +

√
e2J cosh2 B − 2 sinh(2J )

]
. (2.2.21)

Taking the derivative with respect to B of this expression, we obtain the mean value
of the magnetization

〈σ〉 =
eJ sinhB√

e2J cosh2 B − 2 sinh 2J
. (2.2.22)

The graph of this function, for different values of the temperature, is given in Fig. 2.7.
The free energy (2.2.21) is an analytic function of B and T for all real values of

B and for positive values of T . The magnetization is an analytic function of B that
vanishes if B = 0. The system does not then present any phase transition at finite
values of T , as we have previously seen. However, in the limit T → 0 at B finite, the
magnetization presents a discontinuity, expressed by

〈σ〉 = ε(B), (2.2.23)

where the function ε(x) is defined by

ε(x) =

⎧⎨
⎩

1 if x > 0;
0 if x = 0;
−1 if x < 0.

Correlation function. The transfer matrix method can also be applied to com-
pute the correlation functions of the spins. To this aim, it is convenient to write the
correlator as

〈σ1σr+1〉 = Z−1
N

∑
{σ}

σ1V (σ1, σ2) · · ·σr+1V (σr+1, σr+2) · · ·V (σN , σ1). (2.2.24)

-10 -5 5 10
B
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1
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Fig. 2.7 Magnetization versus the magnetic field B, for different values of the temperature.
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Introducing the diagonal matrix S, with matrix elements

Sσ,σ′ = σ δσ,σ′ ,

i.e.

S =
(

1 0
0 −1

)
,

eqn (2.2.24) can be written as

〈σ1σr+1〉 = Z−1
N Tr

(
S V r S V N−r

)
. (2.2.25)

For the expectation value of σ, we have

〈σ〉 = Z−1
N Tr S V N . (2.2.26)

Using the unitary matrix U that diagonalizes V , we get

U−1 S U =
(

cos 2φ − sin 2φ
− sin 2φ − cos 2φ

)
.

Substituting this expression and the diagonal form of V in eqns (2.2.25) and (2.2.26),
in the limit N → ∞ we have

〈σiσi+r〉 = cos2 2φ+ sin2 2φ
(
λ−
λ+

)r
,

〈σi〉 = cos 2φ.

Hence, the connected two-point correlation function is given by

G(2)
c (r) = 〈σiσi+r〉 − 〈σi〉 〈σj〉 = sin2 2φ

(
λ−
λ+

)r
. (2.2.27)

Besides its elegance, this formula points out an important conceptual aspect of general
validity, namely that the correlation length of a statistical system is determined by
the ratio of the two largest eigenvalues of the transfer matrix

ξ =
1

lnλ+/λ−
. (2.2.28)

2.2.2 Other Boundary Conditions: Boundary States

Let’s now proceed to the computation of the partition function of the one-dimensional
Ising model with N spins but with boundary conditions of type (a, b) relative to the
two spins at the end of the chain. The quantum mechanical interpretation given for
the transfer matrix is particularly useful to solve this problem. In fact, the boundary
condition of type (a) for the first spin of the chain can be implemented by associating to
this spin a special state | a 〉 of the Hilbert space. Analogously, the boundary condition
of type (b) for the last spin of the chain can be put in relation with another vector
| b 〉. These two vectors play the role of the initial and final states respectively of the
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time evolution of the corresponding quantum system and, for that reason, they are
called boundary states. Hence, in order to compute the partition function Z(a,b), we
have simply to evaluate the matrix element of the quantum time evolution operator
between the initial 〈a | and the final state | b〉

Z
(a,b)
N =

∑
σ2=±1

· · ·
∑

σN−1=±1

〈a | V | σ2〉〈σ2 | V | σ3〉 · · · 〈σN−1 | V | b〉

= 〈a | V N−1 | b〉. (2.2.29)

This expression can be made explicit by using the unitary matrix U that diagonalizes
V . By inserting in (2.2.29) both on the right and left sides of the operator V the
identity operator as UU−1 = 1, we have

Z(a,b) = 〈a | U U−1 V N−1 U U−1 | b〉 = 〈a | U DN−1 U−1 | b〉. (2.2.30)

It is interesting to consider some explicit examples. Consider, for instance, the partition
function with boundary conditions σ1 = σN = 1. In this case we have

| a〉 = | b〉 =| +〉 =
(

1
0

)
.

Using the expressions for U , D, and | +〉 to compute the matrix element (2.2.30), we
have

Z++
N = 〈+ | U DN−1 U−1 | +〉 (2.2.31)

= (1, 0)
(

cosφ − sinφ
sinφ cosφ

)(
λN−1

+ 0
0 λN−1

−

)(
cosφ sinφ
− sinφ cosφ

) (
1
0

)

= λN−1
+ cos2 φ+ λN−1

− sin2 φ.

It is easy to obtain the partition functions also in other cases: for instance, with an
obvious choice of the notation, we have

Z−−
N = λN−1

+ sin2 φ+ λN−1
− cos2 φ ;

Z+−
N = Z−+

N = sinφ cosφ (λN−1
+ − λN−1

− ),
(2.2.32)

where the boundary condition σ = −1 is expressed by the vector

| −〉 =
(

0
1

)
.

For free boundary conditions, the corresponding vector is given by

| f 〉 =
(

1
1

)
,

and the corresponding partition function is

Zff
N = Z++

N + Z−−
N + 2Z+−

N = λN−1
+ + λN−1

− + sin 2φ
(
λN−1

+ − λN−1
−
)
. (2.2.33)

When B = 0 (which corresponds to φ = π/4), this expression coincides with (2.1.3),
obtained by the recursive method.
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The boundary conditions should not affect the bulk properties of the system when
N is very large. Indeed, in the thermodynamic limit N → ∞, they only enter a
correction of order O (1/N) to the free energy. In the case of fixed boundary conditions,
for instance, in the large N limit we have

F (++) = − 1
βN

lnZ(++)
N = − 1

β
lnλ+ − 1

βN
ln cos2 φ.

The first term is the same for all boundary conditions and coincides with the free
energy per unit volume of the system, whereas the second term is associated to the
free boundary condition.

2.3 Series Expansions
In this section we discuss another method to compute the partition function of the
one-dimensional Ising model. It is worth mentioning that the nature of this method
is quite general: it can be applied to higher dimensional lattices and, as a matter
of fact, it is presently one of the most powerful approaches to analyze the three-
dimensional case. The proposal consists of identifying a perturbative parameter in the
high-temperature region and expressing the partition function as a series expansion
in this small parameter. In the one-dimensional case the application of this method is
particularly simple.

Let us consider once again the partition function in the absence of a magnetic field
and, initially, with periodic boundary conditions. It can be written as

ZN (T ) =
∑
{σ}

e−β H =
∑
{σ}

N∏
i=1

eJσiσi+1 . (2.3.1)

For any pair of Ising spins, there is the identity

eJσiσj = coshJ + σiσj sinhJ = coshJ (1 + σiσj tanhJ ) (2.3.2)

that permits us to express eqn (2.3.1) as

ZN (T ) = coshN J
∑
{σ}

N∏
i=1

(1 + σiσi+1 v), (2.3.3)

where v ≡ tanhJ . The parameter v is always less than 1 for all temperatures (except
for T = 0) and, in particular, it is quite small in the high-temperature phase. Once
the product in (2.3.3) is developed, one gets a polynomial of order N in the variable
v, whose coefficients are expressed in terms of combinations of the spins σi. Consider,
for example, a lattice made of three spins. In this case we have

3∏
i=1

(1 + σiσi+1 v) = (1 + vσ1σ2)(1 + vσ2σ3)(1 + vσ3σ1)

= 1 + v(σ1σ2 + σ2σ3 + σ3σ1) + v2(σ1σ2σ2σ3 + σ1σ2σ3σ1 + σ2σ3σ3σ1)
+v3(σ1σ2σ2σ3σ3σ1).
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Fig. 2.8 Graphs relative to a lattice with 3 spins.

We can associate a graph to each of the eight terms of the expression above, by simply
drawing a line for each pair of spins entering the product. The whole set of such
graphs is shown in Fig. 2.8. Since v appears each time that a term σiσi+1 is involved,
it follows that all graphs of order vl contain exactly l lines. In order to compute the
partition function we need, however, to sum over all values ±1. Thanks to the following
properties of the spins of the Ising model

1∑
σj=−1

σlj =
{

2 if l is even
0 if l is odd

the only non-vanishing contributions come from those graphs where all vertices are of
even order (i.e. with an even number of lines). These are the closed graphs.

The observation made above is completely general and applies to lattices of arbi-
trary dimension. In the one-dimensional case, it leads to a particularly simple result:
in fact, among the 2N initial graphs, the only ones that give rise to a non-vanishing
result are the graph of order v0 (i.e. the one without any line) and the graph of order
vN (i.e. the one in which the lines link all sites and give rise to a ring). Hence, in the
one-dimensional case of a lattice with N sites and periodic boundary conditions, we
have

ZN (T ) = coshN J (2N + 2NvN ) = 2N (coshN J + sinhN J ) (2.3.4)

which coincides with the one obtained by the transfer matrix method, eqn (2.2.15).
It is easy to see the difference between the case in which the chain is closed

(periodic boundary conditions) and the case in which the chain is open (free boundary
conditions). In the absence of periodic boundary conditions, the only graph that has
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all even vertices is the one without lines, i.e. the graph of order v0. Hence, for the
free boundary conditions, this method leads directly to the result that was previously
obtained by the recursive method

ZN (T ) = 2N coshN−1 J . (2.3.5)

For an arbitrary lattice in which the interaction is restricted to the next neighbor
spins, the series expansion approach permits us to express the partition function in
the following form

ZN (T ) = 2N (coshJ )P
P∑
l=0

h(l) vl, (2.3.6)

where P is the total number of segments of the lattice and h(l) is the number of graphs
that can be drawn on it by using l lines, with the condition that each vertex is of even
order. Hence, in the series expansion approach, the solution of the Ising model on an
arbitrary lattice reduces to solving the geometrical problem of the counting of the
close graphs on the lattice under investigation.

2.4 Critical Exponents and Scaling Laws

The one-dimensional Ising model does not have a phase transition at a finite value
of the temperature. However, the point B = T = 0 of the phase diagram can be
considered a critical point of the system, for the correlation length ξ diverges in corre-
spondence with these values. This leads to a definition of critical exponents that verify
the scaling relations (1.1.26). In Chapter 1, we adopted the variables t = (T − Tc)/Tc
and B in order to characterize the displacement from the critical point. In this case,
in view of the condition Tc = 0, it is more convenient to use the variables B = B/kT
and

t = exp(−2J ) = exp(−2J/kT ). (2.4.1)

Looking at the divergence ξ with respect to the new variable t, ξ ∼ (2t)−1, we have

ν = 1.

Analogously, the divergence of the magnetic susceptibility, given by χ ∼ t−1, fixes the
value of the critical exponent γ

γ = 1.

At the critical point the correlation function of the spins is constant, hence

η = 1.

Since the spontaneous magnetization always vanishes for B = 0, the exponent β is
identically null:

β = 0.
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In an external magnetic field, the magnetization at T = 0 is a discontinous function
and therefore the critical exponent δ is infinite:

δ = ∞.

Finally, in the vicinity of the critical point the singular part of the free energy can be
written as

Fsing ∼ t

√
1 +

B2

t2
.

Comparing with the scaling law (1.1.30) of the free energy, we obtain the two relations

α = 1, βδ = 1.

It is an easy exercise to check that the critical exponents derived above satisfy the
scaling laws (1.1.26).

2.5 The Potts Model

The Ising model can be generalized in several ways. One possibility is provided by the
Potts model. It consists of a statistical model in which, at each site of a lattice, there is
a variable σi that takes q discrete values, σi = 1, 2, . . . , q. In this model, two adjacent
spins have an interaction energy given by −J δ(σi.σj), where

δ(σ, σ′) =
{

1 if σ = σ′;
0 if σ �= σ′,

and the hamiltonian reads
H = −J

∑
〈ij〉

δ(σi, σj). (2.5.1)

This expression is invariant under the group Sq of the permutations of q objects. This
is a non-abelian group if q ≥ 3. For the type of interaction, it is clear that the nature
of the values taken by the spins is completely inessential: instead of the q values listed
above, one can consider other q distinct numbers or variables of other nature. One can
conceive, for instance, that the q values stand for q different colors. When q = 2, as
the two distinct values we can take ±1: thanks to the identity δ(σ, σ′) = 1

2 (1 + σσ′),
making the change J → 2J , the Potts model is equivalent to the original Ising model.

The partition function of the Potts model defined on a lattice ofN sites is expressed
by a sum of qN terms (J = βJ)

ZN =
∑
{σ}

exp

⎡
⎣J ∑

〈ij〉
δ(σi, σj)

⎤
⎦ . (2.5.2)

In the one-dimensional case, it can be exactly computed by using either the recursive
method or the transfer matrix approach.
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Recursive method. Consider a chain of N spins with free boundary conditions at
the last spins of the chain. Adding an extra spin, the partition function becomes

ZN+1 =

⎛
⎝ q∑

σN+1=1

eJ δ(σN ,σN+1)

⎞
⎠ ZN . (2.5.3)

Making use of the identity

exδ(a,b) = 1 + (ex − 1) δ(a, b), (2.5.4)

the sum in (2.5.3) can be expressed as

q∑
σN+1=1

e[J δ(σN ,σN+1)] =
q∑

σN+1=1

[
1 + (eJ − 1) δ(σN , σN+1)

]
= q + (eJ − 1).

The recursive equation is expressed by

ZN+1 =
(
q − 1 + eJ ) ZN .

Since Z1 = q, the iteration of the formula leads to the exact result

ZN = q
(
q − 1 + eJ )N−1

. (2.5.5)

In the thermodynamic limit, the free energy per unit of spin is given by

F (T ) = − lim
N→∞

1
βN

lnZN = − 1
β

ln
(
eJ + q − 1

)
. (2.5.6)

Transfer matrix. Equally instructive is the computation of the partition function
done with the transfer matrix method. For simplicity, let’s assume periodic boundary
conditions, i.e. σN+1 ≡ σ1. In the transfer matrix formalism, the spins are associated
to a vector of a q-dimensional Hilbert space, with the completeness relation given by

q∑
σ=1

| σ〉 〈σ |= 1.

Analogously to the Ising model, the partition function can be expressed as

ZN = Tr V N , (2.5.7)

where the transfer matrix V is a q × q matrix, whose elements are

〈σ | V | σ′〉 = exp [J δ(σ, σ′)] . (2.5.8)
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Hence, V has diagonal elements equal to eJ whereas all the other off-diagonal elements
are equal to 1:

V =

⎛
⎜⎜⎜⎜⎜⎜⎝

eJ 1 1 · · · 1 1
1 eJ 1 · · · 1 1
1 1 eJ · · · 1 1
· · · · · · · · · eJ · · · 1
1 1 · · · · · · eJ 1
1 1 · · · · · · 1 eJ

⎞
⎟⎟⎟⎟⎟⎟⎠ . (2.5.9)

To compute the trace of V N it is useful to determine the eigenvalues of V , which are
solutions of the equation

D = || V − λ1 ||= 0. (2.5.10)

Denote x ≡ eJ − λ. The determinant (2.5.10) can be computed by using the well-
known property that a determinant does not change by summing or subtracting rows
and columns. Subtracting the second column from the first one, the third column from
the second one, and so on, we have

D =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

x− 1 0 0 · · · 0 1
1 − x x− 1 0 · · · 0 1
0 1 − x x− 1 · · · 0 1
· · · · · · · · · x− 1 0 1
0 0 · · · · · · x− 1 1
0 0 · · · · · · 1 − x x

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
.

Summing the first row and the second one, we get

D =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

x− 1 0 0 · · · 0 1
0 x− 1 0 · · · 0 2
0 1 − x x− 1 0 · · · 1
0 · · · · · · x− 1 · · · 1
0 0 · · · · · · x− 1 1
0 0 · · · · · · 1 − x x

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
.

If we now sum the second row and the third one, the third row and the fourth one,
and so on, we have the final expression

D =

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣

x− 1 0 0 · · · 0 1
0 x− 1 0 · · · 0 2
0 0 x− 1 0 · · · 3
0 · · · 0 x− 1 · · · 4
0 0 · · · · · · x− 1 q − 1
0 0 0 · · · 0 x+ q − 1

∣∣∣∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣∣∣∣
.

So the determinant of the secular equation is given by

|| V − λ1 ||=
(
eJ − 1 − λ

)q−1
(eJ − q + 1 − λ) = 0, (2.5.11)
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and the roots are expressed by

λ+ = eJ + q − 1, λ− = eJ − 1. (2.5.12)

For q ≥ 0, we have λ+ ≥ λ−. The eigenvalue λ+ is not degenerate, while λ− is
(q− 1) times degenerate. The physical origin of this degeneration is obvious, since the
interaction of the Potts model only distinguishes if two sites are in the same state or
not: there is only one way in which they can be equal but (q − 1) ways in which they
can be different. Once the eigenvalues of V are known, the partition function (2.5.7)
can be expressed as

ZN = TrV N = λN+ + (q − 1)λN− . (2.5.13)

In the thermodynamic limit, the free energy per unit spin depends only on the largest
eigenvalue λ+:

F (T ) = − lim
N→∞

1
βN

lnZN = − lim
N→∞

1
βN

[
N lnλ+ + ln

[
1 + (q − 1)

(
λ−
λ+

)N]]

= − 1
β

ln
(
eJ + q − 1

)
. (2.5.14)

This result coincides with (2.5.6).

Series expansion. Let us now consider the solution of the Potts model obtained in
terms of the high-temperature series expansion. Since this method points out some
interesting geometrical properties, it is convenient to study the general case of a Potts
model defined on an arbitrary lattice L as, for instance, the one shown in Fig. 2.9.
Putting

v ≡ eJ − 1,

and using the identity (2.5.4), the partition function (2.5.2) can be written as

ZN =
∑
{σ}

∏
〈ij〉

[1 + v δ(σi, σj)] . (2.5.15)

Note that v is a small parameter when the temperature T is very high. Let E be the
total number of links of the graph L. Inside the sum (2.5.15) there is a product of E
factors, each of them being either 1 or v δ(σi, σj). Expanding the product above, there
are 2E terms: their graphical representation is obtained by drawing a line on the link
between the sites i and j when the factor v δ(σi, σj) is present. In such a way, there
is a one-to-one correspondance between the terms in (2.5.15) and the graphs that can
be drawn on the lattice L. Let us now consider one of these graphs G, made of l links
and C connected components (an isolated site is considered as a single component).
The corresponding term in ZN contains a factor vl and, thanks to the factor δ(σ, σ

′
)

that accompanies v, all spins that belong to the same component have the same value.
Summing over all possible values of σi, the contribution of this graph to the partition
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Fig. 2.9 Lattice L and graph G.

function amounts to qC vl. Considering all graphs G of the lattice L, the partition
function can thus be expressed in terms of a sum over graphs:

ZN =
∑
G
qC vl. (2.5.16)

For the analytic form of this expression, q does not necessarily have to be an integer
and therefore this formula can be used to define the Potts model for arbitrary values
of q. This observation is useful, for instance, in the study of percolation1 (associated
to the limit q → 1 of the Potts model) or in the analysis of the effective resistance
between two nodes of an electric circuit made of linear resistances (expressed in terms
of the limit q → 0 of the model).
Chromatic polynomial. It is interesting to study the Potts model in the limit J →
−∞, i.e. when the temperature T goes to zero and the model is antiferromagnetic.
In such a limit, neighbor sites should necessarily take different values in order to
contribute to the partition function ZN : hence this quantity provides in this case the
number of ways in which it is possible to color the sites of L with q colors, with the
constraint that two neighbor sites do not have the same color. The expression obtained
by substituting v = −1 in ZN is a polynomial PN (q) in the variable in q, called the
chromatic polynomial of the graph L.

In the one-dimensional case, taking the limit J → −∞ in the partition function
(2.5.5) associated to the free boundary condition of the chain, we get

Pa
N (q) = q (q − 1)N−1. (2.5.17)

1For the elaboration of this topic, see the suggested texts at the end of the chapter.
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The zeros q = 0 and q = 1 of this polynomial clearly show that, if we wish to distinguish
neighbor sites by means of different colors, it is impossible to color a one-dimensional
lattice by having only one color or none. The combinatoric origin of (2.5.17) is simple:
in fact, the first site can be colored in q different ways but, once a color is chosen, the
next site can be distinguished by employing one of the (q − 1) remaining colors, and
this argument repeats for the other sites.

For periodic boundary conditions, taking the limit J → −∞ in the corresponding
expression (2.5.13) of the partition function, we have

Pc
N (q) = (q − 1)N + (−1)N (q − 1) = (q − 1)

[
(q − 1)N−1 + (−1)N

]
. (2.5.18)

Although this expression differs from (2.5.17), it is easy to see that it has the same
real roots q = 0 and q = 1. It is an exercise left to the reader to derive it by using a
combinatoric argument.

For planar two-dimensional lattices, the limit J → −∞ of the Potts model is
deeply related to a famous problem of topology, i.e. the four-color problem. It consists
of proving the conjecture that any geographical planar map, in which different neighbor
nations are distinguished by different colors, can be drawn using only four colors. If
one assumes the validity of this result, the conclusion is that the partition function of
the Potts model for any planar graph, in the limit J → −∞, does not ever have q = 4
among the set of its zeros. A brief discussion of the four-color problem is reported in
Appendix 2C.

2.6 Models with O(n) Symmetry

Another interesting generalization of the Ising model is provided by the O(n) model, in
which each spin �Si is a n-component vector associated to a point of the n-dimensional
sphere

| �Si |2=
n∑

k=1

(Si)2k = 1.

In the one-dimensional case, the hamiltonian of the model is given by

H = −
N−1∑
i=1

Ji �Si · �Si+1, (2.6.1)

and this expression is clearly invariant under the rotations of the vectors �Si associated
to the O(n) group. In this formulation, the Ising model is obtained in the limit n→ 1.
The sum the configurations of the O(n) model consists of the integrals of the solid
angles of the n-dimensional spins

ZN (T ) =
∫
dΩ(n)

1

∫
dΩ(n)

2 · · ·
∫
dΩ(n)

N exp

[
N−1∑
i=1

Ji
�Si · �Si+1

]
, (2.6.2)
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where
dΩ(n) = sinn−2 θn−1dθn−1 sinn−3 θn−2dθn−2 · · · dθ1,

0 ≤ θ1 ≤ 2π,
0 ≤ θk ≤ π.

The solid angle is given by

Ω(n) =
∫
dΩ(n) =

2πn/2

Γ
(
n
2

) , (2.6.3)

where Γ(x) is the function that generalizes the factorial to arbitrary real and complex
numbers.2

To prove (2.6.3), let’s consider the well-known identity of the gaussian integral

I =
∫ +∞

−∞
dx e−x2

=
√
π.

By taking the product of n such integrals, we have (r2 = x2
1 + x2

2 + · · · + x2
n)

In =
[∫ +∞

−∞
dx e−x2

]n
=
∫
dnx e−r2 =

Ω(n)
2

∫ ∞

0
dt t

n
2 −1 e−t =

Ω(n)
2

Γ
(n

2

)
.

On the other hand, In = πn/2 and therefore we arrive at (2.6.3).
Using

Γ
(

1
2

)
=

√
π,

it is easy to check that we obtain the known values of planar and three-dimensional
solid angle when n = 2 and n = 3. For n = 1 it correctly reproduces the sum of
the states of the Ising model, i.e. Ω(1) = 2, since a one-dimensional sphere consists
of two points. Other interesting properties of the n-dimensional solid angle are
discussed in Appendix 2B.

To compute (2.6.2) we can use the recursive method. Let’s add an extra spin to the
system, so that

ZN+1(T ) =
(∫

dΩ(n)
N+1 exp

[
JN

�SN · �SN+1

])
ZN (T ).

Since the n-th axis can always be chosen along the direction of the spin �Sn, we have
�SN · �SN+1 = cos θn−1. Integrating over the remaining angles θ1, θ2, . . . , θn−2 we get

ZN+1(T ) =
(

Ω(n− 1)
∫ π

0
dθn−1 sinn−2 θn−1e

JN cos θn−1

)
ZN (T ). (2.6.4)

2The properties of the function Γ(x) and the Bessel functions Iν(x) that enter the discussion of
this model are reported in Appendix 2A.
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Although this is not an elementary integral, it can nevertheless be expressed as a closed
formula in terms of the Γ(x) function and the Bessel functions Iν(z)∫ π

0
dθn−1 sinn−2 θn−1e

JN cos θn−1 =
√
π Γ
(
n−1

2

)
(JN

2

)n−2
2

In−2
2

(JN ).

Substituting Ω(n− 1) in (2.6.4) and simplifying the resulting expression, we get

∫
dΩ(n)

N+1 exp
[
JN

�SN · �SN+1

]
=

[
(2π)n/2

In−2
2

(JN )

J
n−2

2
N

]
≡ λ1(JN ). (2.6.5)

The recursive equation is then given by

ZN+1 = λ1(JN ) ZN .

Let us consider, for simplicity, the case of equal couplings. By iterating (2.6), we obtain

ZN (T ) = [λ1(J )]N−1
Z1,

where Z1 is the partition function of a single spin. This is simply expressed by the
phase space of the configuration of a single spin, i.e. by the n-dimensional solid angle
(2.6.3), so that the final expression is

ZN (T ) =
2πn/2

Γ
(
n
2

) [λ1(J )]N−1 =
2πn/2

Γ
(
n
2

) [(2π)n/2
In−2

2
(J )

J n−2
2

]N−1

. (2.6.6)

The free energy, per unit spin, of the O(n) model is

β F (β) = − 1
N

logZN = −N − 1
N

log

[
In−2

2
(J )

J n−2
2

]
− 1
N

log Ω(n),

and in the thermodynamic limit N → ∞

β F (β) = − log

[
In−2

2
(J )

J n−2
2

]
. (2.6.7)

As for the Ising model, also for the O(n) model it is possible to obtain the exact
expression of the two-point correlation function (see Fig. 2.10)

〈�Si · �Si+r〉 =

[
In

2
(J )

In−2
2

(J )

]r
. (2.6.8)

Expressed as
〈�Si · �Si+r〉 ≡ e−r/ξ,
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Fig. 2.10 Typical behavior of the two-point correlation function of the spins, as a function
of the distance r between the spin, for n ≥ 1.

we can determine the correlation length of the model that, in units of the lattice space
a, is given by

ξ(J ) = − 1

log
[

In
2

(J )

In−2
2

(J )

] . (2.6.9)

The proof of (2.6.8) comes from the following identity of the Bessel functions

d

dx

[
x−μ Iμ(x)

]
= x−μ Iμ+1(x).

Taking the derivative with respect to J of eqn (2.6.5), this identity permits us to
compute the integral∫

dΩ(n) �S exp[J �S · �S′] =
[
(2π)n/2

In
2
(J )

J n−2
2

]
�S′ ≡ λ2(J ) �S′.

We then have∫
dΩ(n)

1

∫
dΩ(n)

2 · · ·
∫
dΩ(n)

N
�Si · �Si+r exp

[
N−1∑
i=1

J �Si · �Si+1

]

= [λ1(J )]i−1 [λ2(J )]r [λ1(J )]N−i 2πn/2

Γ
(
n
2

) .
Dividing this expression by the partition function ZN , given by (2.6.6), we arrive
at the final result (2.6.8) of the correlators.
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It is interesting to observe that all expressions considered so far are analytic func-
tions of the parameter n and, for that reason, they can be used to study the behavior
of the O(n) model for arbitrary values of n, not necessarily integers. This is a useful
observation: it extends to higher dimensions and permits us to study, for instance,
the statistical properties of polymers,3 whose dilute phase is described by the limit
n→ 0.

It is important to underline that in the range n < 1 there could be surprising
behaviors that need further considerations for their correct physical interpretation.
The following analysis aims to study the nature of the model by varying the parameter
n. It is convenient to define the quantity

Λ(J ) ≡ λ2

λ1
=

[
In

2
(J )

In−2
2

(J )

]
,

and to distinguish the cases: (i) n ≥ 1; (ii) 0 ≤ n ≤ 1; and (iii) n ≤ 0.
• In the first interval, n ≥ 1, using eqns (2.A.9) and (2.A.13) given in Appendix 2A,

it is easy to check that for all values of J , i.e. of the temperature, we have

λ1(J ) > 0, Λ(J ) < 1.

The first condition, as can be seen in (2.6.6), implies that the partition function
of the model is a positive quantity and, consequently, that the free energy is a
real function. The second condition, using eqn (2.6.8), implies that the correlator
has the usual behavior of a decreasing exponential, as a function of the distance
r between the spins.

Both results agree with what is expected on the basis of physical considerations.
When n = 1, using the identity

I 1
2
(J )

J 1
2

=

√
2
π

coshJ ,

one recovers the previous expressions of the partition function and correlator of
the one-dimensional Ising model.

To study the limit n → ∞, we need to use the asymptotic expressions of the
Bessel functions

Iν(νx) 	 1√
2πν

eν(
√

1+x2−ξ−1

(1 + x2)1/4
, ν → ∞,

with

ξ−1 = ln

(
1 +

√
1 + x2

x

)
.

When n → ∞ an interesting result is obtained by taking, simultaneously, the
limit J → ∞. It is convenient to introduce x ≡ 2J /(n − 2) and express all

3The relation between the O(n) model and the statistics of polymers is due to De Gennes. Those
who are interested in further development of this issue can consult the bibliographic references given
at the end of the chapter.



72 One-dimensional Systems

thermodynamic quantities in terms of this variable. Consider, for instance, the
ratio of the two eigenvalues λ2 and λ1 in this double limit:

λ2(x)
λ1(x)

= e−ξ−1
.

This allows us to identify the parameter ξ with the correlation length of the
model. This quantity diverges for T → 0, whereas it vanishes for T → ∞. The
last limit corresponds to the full disordered state of the system, where each spin
is independent and completely uncorrelated with the others. The internal energy
is given by

U = − ∂

∂x
lnλ1(x),

and, using the asymptotic expression of the Bessel functions, it can be expressed
as

U(x)
n

=
1 −

√
1 + x2

x
. (2.6.10)

This formula shows that the internal energy, relative to each component of the
spin, remains finite in the double limit n→ ∞, J → ∞, with x finite.

• In the second interval, 0 ≤ n < 1, using (2.A.9) and (2.A.13), it is easy to see
that, for all values of J , we have

λ1(J ) > 0.

However, the inequality
Λ(J ) < 1,

is not always true: in this interval of values of n, it is always possible to find a
value Jc such that, for J > Jc, we have Λ(J ) > 1, as shown in Fig. 2.11.

From eqn (2.6.9), the correlation length ξ(J ) is positive for J < Jc while,
for J > Jc, it becomes negative! Moreover, it diverges at Jc, as shown in
Fig. 2.12. The critical value Jc moves toward the origin by decreasing n and,
when n → 0, we have Jc = 0. In such a limit, taking into account the factor
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Fig. 2.11 Λ as a function of J . The dashed line corresponds to n = 0.3, the other curve to
n = 0.6.
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Fig. 2.12 Plot of the correlation length in the vicinity of J = Jc.
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Fig. 2.13 Correlation function 〈�Si · �Si+r〉 as a function of the separation r, for n = 0.

Γ
(
n
2

)
in the denominator of (2.6.6), the partition function vanishes linearly4 in

the variable n, while the correlation function is finite and takes the form

lim
n→0

〈�Si · �Si+r〉 =
[
I0(J )
I−1(J )

]r
. (2.6.11)

Note that, for all the values of temperature, this is an exponential increasing func-
tion of the distance of the spins! Namely, increasing the separation between the
spins, their correlation increases exponentially, instead of decreasing – a behavior
that is quite anti-intuitive from a physical point of view (see Fig. 2.13).

• Let us consider the last interval, n < 0. Using eqns (2.A.9) and (2.A.13), the
Bessel function In−2

2
(J ) is always positive (as a function of J ), in the following

ranges of n
−4k < n < −4k + 2, k = 1, 2, 3, . . . (2.6.12)

4This implies that there exists the finite limit limn→0
∂Z
∂n

.
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0−2−4−6−8

Fig. 2.14 The continuous intervals and the points identified by the circles are those in which
the free energy is real.

In the other intervals

−4k − 2 < n < −4k, k = 0, 1, 2, 3, . . . (2.6.13)

there are instead values of J where In−2
2

(J ) assumes negative values. Corre-
spondingly, the free energy per unit of spin, given by (2.6.7), is a real function
of J only in the intervals (2.6.12), whereas in the other intervals it develops an
imaginary part that signals the thermodynamic instability of the system. Finally,
for n = −2k, where k = 0, 1, 2, . . ., In−2

2
(J ) is always positive and therefore the

free energy is real for those values. The behavior of the free energy of the model
is given in Fig. 2.14.

Let’s now analyze the ratio Λ(J ), by starting with the study of the positivity of
such a quantity. This is determined by the positivity of the functions In−2

2
(J ) and

In
2
(J ). The investigation of the first function coincides with what has been done

previously with the free energy. Concerning the second function, this is positive
for all values of J in the intervals

−4k − 2 < n < −4k, k = 1, 2, 3, . . . (2.6.14)

In the other intervals of n, there are instead values of J where this function takes
negative values. In conclusion, there is no interval of n where the two functions are
both positive. This implies that, for any negative n with n �= −2k (k = 0, 1, 2, . . .),
there is always a value Jc in which the correlation length diverges, assuming
complex values in an interval J < Jc near the origin. For n = −2k, instead,
Λ(J ) is real but larger that 1, so that the correlation length is negative for all
values of the temperature: the correlation function of the spin thus increases by
increasing their separation.

The above analysis aimed to show the possibility of studing the behavior of the model
by varying continuously the number n of the components of the vector �Si. From this
point of view, the one-dimensional O(n) model is a paradigm of an important class
of models that we will meet again in the following chapters and that will allow us to
make progress in important fields of theoretical physics.

2.7 Models with Zn Symmetry
Beside the generalizations of the Ising models given by the Potts and the O(n) models,
there is another possible extension provided by the Zn models. In this case, the spins
are planar vectors of unit length, which can be identified by their discrete angles θi
with respect to the horizontal axes

α(k) =
2πk
n
, k = 0, 1, 2, . . . , n− 1. (2.7.1)
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Fig. 2.15 Possible values of the spins in the Z6 model.

They can be associated to the n (complex) roots of unity as in Fig. 2.15. The hamil-
tonian of the Zn model is defined by

H = −J
∑
〈ij〉

�Si · �Sj = −J
∑
〈ij〉

cos(θi − θj), (2.7.2)

and is invariant under the abelian group Zn generated by the discrete rotations of the
angles θi. In terms of the index k defined in (2.7.1), this symmetry is implemented by
the transformations

k → k +m (modn), m = 0, 1, . . . n. (2.7.3)

For some particular values of n, the Zn models coincide with previously defined models.
For instance, when n = 2, one recovers the familiar Ising model or, equivalently, the
two-state Potts model. When n = 3, the Z3 model is equivalent to the three-state
Potts model: it is sufficient to put J = 2

3JPotts to have the coincidence of the two
hamiltonians. Finally, when n → ∞ the Zn model becomes equivalent to the O(2)
model, i.e. that model invariant under an arbitrary rotation of the spins.

In the one-dimensional case, the solution of the Zn model can be achieved by using
the recursive method. Let us consider firstly the partition function of N spins

ZN =
n−1∑
θ1=0

· · ·
n−1∑
θN=0

exp

[
J

N−1∑
i=0

cos
(

2π
n

(θi − θi+1

)]
. (2.7.4)

For N = 1, Z1 is equal to the number of possible states of the system, i.e. Z1 = n.
Adding a new spin to the chain, one has

ZN+1 = ZN

n−1∑
θN+1=0

exp
[
J cos

(
2π
n

(θN − θN+1

)]
,

where the last sum is independent of θN . Indeed, whatever the value taken by this
variable, the sum over the angle θN+1 in the argument (θN − θN+1) implies that this
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quantity spans all possible values (2.7.1), i.e. θN can be eliminated by a simple change
of variable. Hence, the partition function satisfies the recursive equation

ZN+1 = μ1(J , n) ZN , (2.7.5)

where we have defined

μ1(J , n) ≡
n−1∑
k=0

exp
[
J cos

2πk
n

]
. (2.7.6)

By iterating (2.7.5), with the initial condition Z1 = n, we get

ZN = n [μ1(J , n)]N−1
. (2.7.7)

It is easy to compute the correlation function of two spins

G(r) = 〈�Si · �Si+r〉 = 〈cos(θi − θi+r)〉.

For this, one needs the identity∑
{�S}

�S eJ �S·�S′
= μ2(J , n) �S′,

where the sum is over all discrete values of the vector �S of the Z(n) model and

μ2(J , n) =
∂

∂J μ1(J , n).

Following the same steps as the Ising and the O(n) models, one has

G(r) =
(
μ2

μ1

)r
. (2.7.8)

When n = 2, both the partition function and the correlator coincide with those of the
Ising model. When n → ∞, a finite result is obtained by properly rescaling the sum
over the states, i.e. multiplying the sum by 2π/n and then taking the limit. In this
way, the previous formula becomes

lim
n→∞

2π
n

∞∑
k=0

[ . . . ] −→
∫ 2π

0
dα [ . . . ].

Hence
lim
n→∞μ1(J , n) = 2πI0(J ), lim

n→∞μ2(J , n) = 2πI1(J ), (2.7.9)

where I0(x) and I1(x) are the Bessel functions. It is evident that one recovers the
results of the O(2) model.
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Fig. 2.16 Feynman gas.

2.8 Feynman Gas

In this section we discuss a particular one-dimensional gas, known as Feynman’s gas.
Even though it does not belong to the class of systems related to the Ising model,
we will see in Chapter 20 that the thermodynamics of this system provides useful
information on the spin–spin correlation fucntion of the bidimensional Ising model!
For that reason, but also for the peculiarity of this gas, it is useful to present its exact
solution.

Let us consider a set ofN particles, forced to move along an interval of length L. Let
x1, x2, . . . , xn be their coordinates, while V (| xi − xj |) is their interaction potential.
We assume that V (r) is a short-range potential, so that we will consider only the
interactions among particles which are close to each other, neglecting all the rest. In
this case, the partition function of the system can be written as5

ZN (L) =
∫

0<x1<x2·xN<L

e−β[V (x1−x2)+V (x2−x3)+···V (xN−1−xN )] dx1dx2 · · · dxN .
(2.8.1)

In order to solve the model and find its equation of state, it is natural to find a
recursive equation that links ZN to ZN+1. It is convenient to modify slightly the
original problem:6 this consists of inserting an extra particle in the system but kept
fixed at the position y (see Fig. 2.16). The partition function of the new version of the
problem, denoted by PN (y, L), is expressed by

PN (y, L) =
∫
y<x1<x2·xN<L

e−β[V (y−x1)+V (x1−x2)+···V (xN−1−xN )] dx1 · · · dxN . (2.8.2)

Let’s add a new particle in the position a. It only couples to the particle placed at
y, a variable that can now vary on the total interval. Hence we obtain the recursive
equation

PN+1(a, L) =
∫
a<y

e−βV (a−y)dy

∫
y<x1<x2·xN<L

e−β[V (y−x1)+V (x1−x2)+··· ] dx1 · · · dxN

=
∫
a<y<L

e−βV (a−y) PN (y, L) dy. (2.8.3)

5The integral over the moments pi of the particles is gaussian and can be done straightforwardly.
It leads to a normalization constant of the partition function, put equal to 1 for simplicity.

6It is easy to prove that, in the thermodynamic limit, this new version does not change the
macroscopic properties of the system.
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The grand canonical partition function of the gas of particles placed in the interval
(y, L) is given by7 (see Appendix A of Chapter 1)

Z(y, L, z) =
∞∑

N=0

zN PN (y, L), (2.8.4)

where z = eβμ (μ is the fugacity of the gas). In the grand canonical ensemble we have
the equation of state

Z = eβ P (z)V ,

where P (z) is the pressure of the gas and V its volume. Since V = L− y, we have

eβ P (z) (L−y) =
∞∑

N=0

zN PN (y, L). (2.8.5)

Multiply both the left and right terms of (2.8.3) by zN+1 and sum over N . By using
(2.8.4) and its expression given by (2.8.5), one obtains the integral equation

eβ P (z) (L−a) = z

∫ L

x

eβ P (z) (L−y) e−βV (a−y) dy.

Simplifying the common terms present in the left and right sides, in the thermodynamic
limit L→ ∞ this expression can be written as

z−1 =
∫ ∞

0
e−β P (z) x e−βV (x) dx. (2.8.6)

This is the central equation of the Feynman gas: it permits us to find the pressure P
as a function of z and then to derive all the thermodynamic quantities. For instance,
the mean density of particles per unit length is expressed by

ρ(z) = lim
L→∞

〈N〉
L

=
z

β

dP (z)
dz

. (2.8.7)

For physical considerations, ρ(z) > 0. Hence, P (z) is a monotonic increasing function
of z and varying z−1 in the left-hand side of (2.8.6), there is only one solution for P (z),
as shown in Fig. 2.17.

Appendix 2A. Special Functions

In this appendix we present some properties of the special functions used in the text,
namely the Γ(z) function and the Bessel functions Iν(x).

7In this expression the term 1/N ! is absent for the ordering of the coordinates in the integrals.
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Fig. 2.17 Graphical solution of (2.8.6). The solid line is the right-hand side of this equation,
whereas the dashed line corresponds to a given value of the left-hand side of (2.8.6), i.e. z−1.

The Γ(z) function
The Γ(z) function is an analytic function of the complex variable z. For Re z > 0 it is
defined by the integral representation

Γ(z) =
∫ ∞

0
dt tz−1 e−t. (2.A.1)

To obtain Γ(z) for other values of z, we can use its analytical continuation. This can
be implemented by using the functional equation

Γ(z + 1) = z Γ(z) (2.A.2)

that is satisfied in the domain of convergence of the integral (2.A.1). In fact, by inte-
grating by part the expression in (2.A.1), one has

Γ(z) =
tze−t

z

∣∣∣∣∞
0

+
1
z

∫ ∞

0
dt tze−t,

and the first term on the right-hand side vanishes when Re z > 0, so that we arrive at
(2.A.2). By using eqn (2.A.2), we have

Γ(z) =
Γ(z + 1)

z
.

Since Γ(z+ 1) is defined when Re z > −1, we have obtained the analytic continuation
of the Γ(z) function in the strip −1 < Re z < 0. Repeating the same reasoning, we
can further extend its definition in the next strip −2 < Re z < −1, and in all other
points of the half-plane Re z < 0 as well. For instance, if we wish to compute Γ

(
− 1

2

)
,

by using (2.A.2), we have

Γ
(
−1

2

)
= −2 Γ

(
1
2

)
,

and the right-hand side can be computed by using (2.A.1). Since Γ
( 1

2

)
=

√
π, we have

Γ
(
− 1

2

)
= −2

√
π.
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Note that (2.A.2) implies Γ(n+ 1) = n!, when n is a positive integer: since Γ(1) =
Γ(2) = 1, the iterative application of (2.A.2) gives

Γ(n+ 1) = nΓ(n) = n(n− 1) · · ·Γ(1) = n!.

For that reason, the Γ(z) function is considered the generalization, to all real and
complex numbers, of the factorial.

The Γ(z) function has a pole at z = 0. In fact, Γ(1) = 1, and from (2.A.2), we have

Γ(z) 	 1
z
, z → 0.

We can again use (2.A.2) to prove that Γ(z) has other simple poles at z = −n, with
n = 1, 2, 3, . . . This result can also be obtained as follows: since the convergence of the
integral (2.A.1) only depends on the behavior near the origin, it is convenient to split
the interval of the integration as

Γ(z) =
∫ 1

0
dt tz−1e−t +

∫ ∞

1
dt tz−1e−t.

The second integral is always convergent, while the first one converges only when
Re z > 0. In this interval we can use the series expansion

e−t =
∞∑
k=0

(−1)k
tk

k!
,

and, if we integrate term by term, we have

Γ(z) =
∞∑
k=0

(−1)k
1

k!(z + n)
+
∫ ∞

1
dt tz−1e−t. (2.A.3)

This expression coincides with the original definition of Γ(z) in the domain Re z > 0,
but it is also valid for other values of z, i.e. it provides the analytic continuation of the
Γ(z) function for all complex values of z. Equation (2.A.3) makes explicit the presence
of the poles of this function for all negative integers, with residues given by

lim
z→−n

(z + n) Γ(z) =
(−1)n

n!
.

The plot of Γ(z), for real values of z, is given in Fig. 2.18.
When z is very large, Γ(z) admits the asymptotic expansion

Γ(z) 	 zz−1/2 e−z
√

2π, z → ∞. (2.A.4)

The simplest way to derive this formula is to start from the integral representation
(2.A.1) and use the saddle point method, discussed in Appendix A of Chapter 3. With
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Fig. 2.18 Plot of the Γ(x) function for real values of x.

the change of variable t = zx in (2.A.1), we have

Γ(z + 1) = zz+1
∫ ∞

0
dx ez(log x−x). (2.A.5)

The expression in the exponential

ϕ(x) ≡ log x− x,

goes to minus infinity both at x→ 0 and x→ ∞ and has a maximum at x = 1. When
z → ∞, the integral (2.A.5) is then dominated by the values around the maximum of
ϕ(x). Expanding around x = 1

ϕ(x) = −1 − (x− 1)2

2
+ · · ·

and substituting in (2.A.5), one has

Γ(z + 1) 	 zz+1e−z

∫ ∞

0
e−z

(x−1)2

2 	
√

2πzz+1/2e−z.

Using Γ(z + 1) = zΓ(z), one arrives at eqn (2.A.4). When z = n, with n integer, one
has

n! 	 nn e−n
√

2πn,

i.e. the Stirling approximation of the factorial.

The Γ(z) function satisfies many mathematical identities that can often be proved
by making use of the functional equation (2.A.2) and its analytic properties. One of
them is the so-called reflection formula

Γ(z) Γ(1 − z) =
π

sinπz
. (2.A.6)

To prove it, let’s define Φ(z) ≡ Γ(z) Γ(1− z). Using (2.A.2), it is easy to see that Φ(z)
is a periodic function, with a period equal to 2, i.e. Φ(z + 2) = Φ(z). Moreover, Φ(z)
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has simple poles at all integer values of z, i.e. z = 0,±1,±2, . . . Hence, the function
obtained by multiplying Φ(z) with the infinite product

z
∞∏
k=1

(
1 − z2

k2

)
.

which has precisely simple zeros at z = 0,±1,±2, . . ., is a function without any sin-
gularities in the complex plane. Therefore, according to Liouville’s theorem, it is a
constant, in this case equal to 1, as can be seen by taking the limit z → 0. Hence,
using the identity

sinπz
π

= z
∞∏
k=1

(
1 − z2

k2

)
, (2.A.7)

we arrive at eqn (2.A.6). It is interesting to note that this formula permits us to prove

∞∑
k=1

1
k2 =

π2

6
. (2.A.8)

In fact, using the series expansion

sinπz 	 πz − (πz)3

3!
+ · · ·

and comparing the z3 terms of the right- and left-hand sides of (2.A.7), one gets
(2.A.8). This result was originally obtained by Euler.

The Bessel functions Iν(x)

The Bessel functions Iν(z) are defined by the series expansion

Iν(z) =
(z

2

)ν ∑
k=0

1
k!Γ(k + ν + 1)

(z
2

)2k
. (2.A.9)

For generic ν, they are regular functions of z in the complex plane, with a branch cut
along the real negative semi-axis. When ν = ±n, they are instead entire functions of
z. The functions Iν(z) are solutions of the differential equation

z2 d
2w

dz2 + z
dw

dz
− (z2 + ν2)w = 0. (2.A.10)

Iν(z) and I−ν(z) are linearly independent except if ν = n, when

I−n(z) = In(z). (2.A.11)

In fact, substituting ν = −n in (2.A.9), the first n terms of the series expansion vanish,
since these are the poles of Γ(x) and therefore one has the identity (2.A.11).
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For Re ν > 1
2 , Iν(z) admits the integral representation

Iν(z) =

(
z
2

)ν
√
π Γ
(
ν + 1

2

) ∫ π

0
e±z cos θ sin2ν θ dθ. (2.A.12)

When z → 0 (with fixed ν) Iν(z) has the behavior

Iν(z) 	 1
Γ(ν + 1)

(z
2

)ν
, z → 0 (ν �= −n) (2.A.13)

as can be seen from the series expansion (2.A.9), whereas for z → ∞ (with fixed ν )

Iν(z) 	 ez√
2πz

[
1 − (4ν2 − 1)

8z
+

(4ν2 − 1)(4ν2 − 9)
2(8z)2

+ · · ·
]
, z → ∞. (2.A.14)

This behavior can be easily checked by the asymptotic expansion around z = ∞

Iν(z) 	 ez
∞∑
n=0

an
zn+α

, z → ∞

where α and the coefficients an are fixed by substituting this expression into the
differential equation (2.A.10). The plot of these functions is shown in Fig. 2.19.

For large values of the index ν, one has

Iν(νx) 	 1√
2πν

eν(
√

1+x2−ξ−1

(1 + x2)1/4
, ν → ∞, (2.A.15)
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Fig. 2.19 Iν(x) for real values of x (ν = −1/3 dashed line, ν = 1 central line, ν = 2 thick
line).
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with

ξ−1 = ln

(
1 +

√
1 + x2

x

)
.

Using (2.A.9), it is easy to prove that the Bessel functions satisfy the recursive equa-
tions

Iν−1(z) − Iν+1(z) =
2ν
z
Iν(z) (2.A.16)

Iν−1(z) + Iν+1(z) = 2
dIν
dz

(z).

For ν = n, an integer number, their generating function is given by

e(z/2) (t+1/t) =
+∞∑

n=−∞
In(z) tn. (2.A.17)

The Bessel functions Kν(x)

In other chapters of this book we will need the modified Bessel functions Kν(x). These
are also solutions of the differential equation (2.A.10) and can be expressed as linear
combinations of the Iν(x)

Kν(x) =
I−ν(x) − Iν(x)

sinπν
. (2.A.18)

When ν is an integer, their definition involves the limit ν → n of the above expression.
The series expansion of these functions directly comes from that of the Iν(x). The
lowest orders for x→ 0 are given by

K0(x) = − log x− γ + log 2 + · · · (2.A.19)
Kν(x) = 2ν−1Γ(ν)x−ν + · · ·

For large values of x, their aymptotic behavior is

Kν(x) 	
√

π

2x
e−x

[
1 +

(4ν2 − 1)
8x

+
(4ν2 − 1)(4ν2 − 9)

2(8x)2
+ · · ·

]
. (2.A.20)

They satisfy the recursive equations

Kν−1(x) −Kν+1(x) = −2ν
x
Kν(x) (2.A.21)

Kν−1 +Kν+1(x) = −2K ′
ν(x).

Their integral representation is given by

Kν(x) =
∫ ∞

0
e−z cosh t cosh(νt) dt. (2.A.22)
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Appendix 2B. n-dimensional Solid Angle

The solid angle in n-dimensional space is expressed by the formula

Ω(n) =
∫
dΩ(n) =

2πn/2

Γ
(
n
2

) . (2.B.1)

This is an analytic function of n and, for this reason, can be computed for arbitrary
values of n, not necessarily integers. However, its behavior is rather peculiar: for the
presence of the Γ(x) in its denominator (that diverges both at x = 0 and x→ ∞) the
n-dimensional solid angle goes to zero at the two edges of the positive semi-axis, and
presents a maximum at nm 	 7.2 (see Fig. 2.20).

While it is easy to understand that Ω(n) should vanish when n → 0 (if there is
no space, the solid angle between its axes must vanishes as well), it is apparently
paradoxical that it also vanishes when the number of the dimensions increases to
infinity: our geometrical intuition would rather suggest that the solid angle should
increase by increasing the dimensions, in sharp contrast however with the formula
(2.B.1). There is a way to understand the asymptotic behavior of Ω(n) for large n.
Using the asymptotic expansion

Γ(x) 	 xx−1/2 e−x
√

2π, x→ ∞

we have

Ω(n) 	 2πn/2(
n
2

)n−1
2

en/2√
2π
, n→ ∞. (2.B.2)

Let us consider an n-dimensional cube, with side of length 1: its volume is given by

V = 1 × 1 × 1 · · · × 1 = 1.
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Fig. 2.20 The solid angle Ω(n) as a function of n.
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r

Fig. 2.21 Cube and sphere of unit volume.

On the other hand, the estimate of such a volume can be reached by using a sphere of
radius r, of the order of the distance from the center of the cube to one of its vertices,8

namely (see Fig. 2.21)

r 	
√

1
2

+
1
2

+ · · · + 1
2

=
√
n

2
. (2.B.3)

Let us call an the proportional constant

r(n) = an

√
n

2
, (2.B.4)

Since the volume of an n-dimensional sphere of radius R is given by

V (n) =
Rn

n
Ω(n),

posing V (n) = 1 and using the asymptotic behavior of Ω(n), it is easy to see that the
decreasing behavior of the solid angle is compensated by the increasing of the term
[r(n)]n. This argument provides the explanation of the unusual behavior of the solid
angle Ω(n) for large n. It is interesting to note that, for n→ ∞, we have

a∞ =
1√
πe
.

Appendix 2C. The Four-color Problem

The four-color problem has been, for a long time, one of the most famous open prob-
lems of mathematics and it has played an important role in the development of modern

8This formula shows the counter-intuitive behavior of n-dimensional spaces: in fact, increasing
the number of the dimension, the volume of the unit cube is always equal to 1, whereas its diagonal
diverges as

√
n.
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applied mathematics. Since 1852, several ideas pursued for its solution have
contributed to the progress of many other fields of mathematics: graph theory, for
instance, or topology have both received an enormous stimulus from this problem.

As with many other famous problems (Fermat’s last theorem, for instance), its
statement is rather simple: the four-color conjecture states that four colors are enough
to color any geographical map (drawn on a plane or a sphere), with the constraint
that regions with a common border have a different color.

Let’s make a few comments. First of all, the conjecture refers to maps consisting
of contiguous regions, i.e. regions that share a border not made of a single point.
Otherwise, as a map consisting of sliced pies for instance, it would be necessary to use
as many colors as the number of slices (see Fig. 2.22).

The second comment is that the four-color conjecture does not refer to maps that
consist of disconnected regions. In this case, in fact, it is easy to show examples of maps
with five regions which need five colors to distinguish them. One of these examples is
in Fig. 2.23: the region indicated by the letter E is considered a unique region, even
though it is made by two disconnected parts.

After these remarks, let us discuss in detail the four-color conjecture, starting
from its history. The problem owes its origin to the mathematician Francis Guthrie
in 1852: a few months after he graduated at University College, London, he wrote a
letter to his brother Frederick, who was completing his studies at the same college
under the supervision of the mathematician Augustus De Morgan. In this letter, he

Fig. 2.22 This map is excluded from the four-color conjecture.

B

E

A

CE

D

Fig. 2.23 Map with disconnected regions that does not fall into the four-color theorem.
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expressed his feeling that four colors seem sufficient to distinguish the regions of a
planar geographical map and asked him whether he was aware of any proof of that
statement. Frederick’s answer was negative and also De Morgan, asked about the
problem, was not aware of any proof of the statement. However, De Morgan quickly
showed that four colors are indeed necessary to color any planar map, pointing out an
explicit example for which three colors are not sufficient. This map, shown in Fig. 2.24,
is made of four regions, each of them adjacent to all the others, so that three colors
are not sufficient.

As discussed below, using Euler’s formula for the graphs, De Morgan was also able
to prove that it is impossible to draw a planar map with five regions, each of them
adjacent to the remaining four. Following this result, he stated that the case in which
it is necessary to use five colors never occurs, namely that the four-color conjecture is
true. However, he also realized that his conclusion was wrong: the fact that five mutual
adjacent regions in the plane cannot exist is not equivalent to proving the four-color
conjecture.

It is easy to see that it is not correct to assume, as done by De Morgan, that the
number of colors necessary to draw a map is equal to the number of countries mutually
adjacent. A counter-example is shown in Fig. 2.25. Although there are no more than
three regions mutually adjacent in this map, nevertheless it is necessary to use four
colors: three for the external ring and one for the central region.

B C

A

D

Fig. 2.24 A map that needs four colors.

A

DC

F
EB

Fig. 2.25 A counter-example to the presumed proof by De Morgan of the four-color
theorem.
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To summarize: the map of Fig. 2.24 points out a local obstruction to draw a map
using three colors, whereas the map shown in Fig. 2.25 provides an example of a global
obstruction to color a map with only three colors. Therefore, the result by De Morgan
on the impossibility to draw a map in which five regions are mutually adjacent, only
addresses the local aspect of the problem and not the global one. Many solutions of the
four-color theorem that have been proposed during the years show the same mistake
made by De Morgan. The official birthday of the four-color conjecture is 13 June 1878,
when the English mathematician Arthur Cayley discussed the problem at the London
Mathematical Society. His contribution was published in the proceedings of the Society
and this was the first written version of the problem and its official birthday.

As we have seen, the four-color conjecture is easy to state but this simplicity
is deceptive. It has surely been deceptive for many mathematicians, even famous,
who have attempted to prove it. Hermann Minkowski, for instance, told his students
that, in his opinion, the conjecture was not proved yet simply because only mediocre
mathematicians had been involved in it and he would have been surely able to achieve
its solution. But, after a long period spent on the problem, he was forced to admit his
failure. God punishes me for my arrogance, my proof has unfortunately many flaws,
was his last comment.

The difficulty of the proof is because the statement refers to all possible maps.
From this point of view, to establish that a given map can be colored by four colors
is not particularly useful. Let us see how topology and graph theory can help in a
clearer formulation of the problem. As far as the theorem is concerned, it is obvious
that the shapes and the actual sizes of the regions are completely irrelevant: they can
be deformed with continuity without altering the nature of the problem. The only
thing that matters is the relation among the different regions, i.e. the topology of
the map. This can be highlighted by means of the dual graph (see Fig. 2.26). As we
will see in other parts of the book, this concept plays an important role in statistical
physics and enters the solution of the Ising model and other similar models (see, for

Fig. 2.26 Dual graph of a map.
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instance, Chapter 4). The dual graph of a map is obtained as follows. Firstly, inside
each region let’s draw a point, denoted as a vertex; secondly, let’s join the vertices by
a line according to the rule that two vertices will be linked to each other if and only if
their regions share a common border. At the end of this procedure, we have obtained
the dual graph of the original map. The dual graph shows immediately the topological
properties of the initial map and, at the same time, points out the close relationship
between the four-color problem and the Potts model discussed in the text. In fact,
the coloring problem of a map can be easily formulated in terms of the dual graph as
follows: color the vertices of the dual graph in such a way that each pair of connected
vertices has a different color. Note that an important property of the dual graphs is
that all its links can never cross. For that reason, they are only a subclass of more
general graphs.

Graph theory allows us to obtain some useful information on the dual graph. Let
F be the number of faces (i.e. the different regions of the area of the plane spanned
by the graph), V the number of vertices, and E the number of edges of a given graph.
Euler found a formula that links these quantities together:

V − E + F = 1. (2.C.1)

It is easy to check the validity of Euler’s formula by analyzing a few examples,
such as those shown in Fig. 2.27. The proof of this theorem is not difficult and it is
interesting to follow its main steps. It consists of simplifying the graph by means
of two procedures which never alter the combination V − E + F , till we arrive at
the most elementary graph made of only one point, for which it trivially holds that
V − E + F = 1.

Starting from an arbitrary graph, the first procedure consists of removing one of
its external edges (see Fig. 2.28). In this way, E decreases by 1, the same happens

(b)(a)
Fig. 2.27 For every graph, it holds that V −E +F = 1. In the graph (a), we have V = 7,
E = 10, and F = 4, while in the second V = 7, E = 9, and F = 3.
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Fig. 2.28 When an external edge is removed, the quantity V − E + F does not change its
value.

Fig. 2.29 If an isolated vertex and the edge that links it to the rest of the graph are
removed, the quantity V − E + F does not change its value.

for F , while F remains unchanged. Hence, in this procedure the expression V −E+F
does not change.

Let’s image that, by iterating this procedure we have a vertex that is linked to
the rest of the graph by only one edge. At this point, there is the second procedure
to use: it consists of removing both the vertex and the edge (see Fig. 2.29). In
this operation V decreases by 1, the same happens for E, while F instead remains
unchanged. Hence, also in this case, the combination V −E+F is the same before
and after the procedure.

Starting from the initial graph and acting by the two procedures, we can sys-
tematically remove all the external edges and vertices, until we reach a graph made
of only one vertex. The final graph has V = 1 with E = F = 0. Since in all these
operations the quantity V − E + F is always the same, we thus arrive at Euler’s
formula (2.C.1).

By using Euler’s formula, it is easy to prove the theorem by De Morgan previously
mentioned: there does not exist any planar map in which there are five countries, each
of them that shares a border with the remaining four (see Fig. 2.30). This means that
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A

B

C D

E

Fig. 2.30 De Morgan’s theorem: It is impossible to draw a planar graph of five vertices so
that each vertex is linked to the others. However one proceeds, there will always be two vertices
that cannot be linked by an edge without crossing the previous edges (in the figure these are
the A and C vertices).

it is impossible to draw a graph with five vertices, each of them linked to the other
four, without crossing its edges.

The proof is by contradiction. Let us assume that there exists a graph made of five
vertices, each of them linked to the other four. It is convenient to consider the region
outside the graph as an additional face, so that each edge always separates two faces.
If we do so, Euler’s formula gets modified as follows:

V − E + F = 2. (2.C.2)

In the graph under investigation V = 5. Since, by hypothesis, each of them is linked
to the other four vertices, we have E = 5 · 4/2 = 10. Hence, from Euler’s formula one
should find F = 7. Let us use this last result to do the computation differently: since
there are seven faces, each of them with three edges (the external face is included as
well in this computation), one should have 3 · 7 = 21 edges. However, since each of
them separates two faces, the previous number should be twice the number of the
edges. But 21 is an odd number, so that we arrive at a contradiction. This implies
that the initial hypothesis is false, i.e. that it is impossible to draw a planar graph
with five vertices, each of them linked to the others. The result found by De Morgan
is not enough, though, to prove the four-color theorem. The history of all the different
attempts to prove this theorem is an interesting chapter of mathematics, too long to
be summarized.9 Here we will only mention two important developments. The first
refers to the study by Beraha who, during his PhD thesis, noticed that the chromatic
polynomial of a planar graph often has zeros close to the sequence of numbers

Bn = 4 cos2(π/n), n = 2, 3, 4 (2.C.3)

known in the literature as Beraha numbers. He was able to prove that any Beraha
number that is not an integer (with the possible exception of B10 for which his proof

9The interested reader may read the article by Kenneth Appel andWolfgang Haken, The solution of
the four color problem, published in Scientific American, n. 237, October 1977. Additional references
are given at the end of the chapter.
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did not apply) could be a zero of the chromatic polynomial of a finite graph. Vice
versa, he also proved that certain graphs with the shape of a strip of length L and
finite width have zeros that converge to each Beraha number (not an integer), when
L→ ∞. In other work made in collaboration with Kahane, he also observed that some
families of graphs have the zeros of their chromatic polynomials that converge to the
value q = 4, which seems to be their accumulation point when L→ ∞.

The original idea of Beraha and Kahane was to find a planar graph with a zero of
the chromatic polynomial at q = 4. The discovery of such a graph would have been a
counter-example of the four-color conjecture. By a twist of fate, between the submission
of the article (1976) and its publication, the conjecture turned into a theorem! In
fact, in 1976 two mathematicians at the University of Illinois, Kenneth Appel and
Wolfgang Haken, announced that they were able to prove the validity of the four-color
conjecture, although along a different path with respect to traditional mathematical
demonstrations. Indeed, one of the main steps of the proof relied on the crucial use
of computer analysis. Besides the remarkable result on the four-color problem, the
important aspect of the proof by Appel and Haken is precisely the unusual method
that was adopted for the proof. This has radically changed the concept of mathematical
proof. According to their own words, “Obviously it would be possible that, some day,
someone will find a shorter proof of the four color theorem. However, it may also be
that such a demonstration does not exist at all: in this case, a new kind of theorem
has emerged, a theorem that does not admit a traditional demonstration. Even though
the four color theorem will not belong to such a category, nevertheless it provides a
good example for a theorem of such a kind and there is no reason to think that this is
an isolated case, there may be a large number of problems where such an analysis is
indeed needed.”
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Problems

1. Ising model with vacancies
Consider the one-dimensional Ising model with the familiar hamiltonian

H = −J
N∑
i=1

Si Si+1

but with the values of the spins Si = {0,±1}. The null value may be interpreted as
a vacancy of the corresponding site. Use the transfer matrix method to compute the
partition function of the system.

2. Multiple couplings
Consider the one-dimensional Ising model with N spins σi = ±1, with the hamiltonian
given by

H = −J1

N−1∑
i=1

σi σi+1 − J2

N−2∑
i=1

σiσi+2.

Compute the free energy of such a system and analyze its behavior by varying the
parameters J1 and J2.

Hint. It is convenient to define τi = σiσi+1 which assume values τi = ±1.

3. Grand canonical partition function
Consider a one-dimensional lattice gas on M sites. The variable ti has values 0 and 1,
according to whether the relative site is occupied or not. The Hamiltonian is given by

H = −J
M∑
i=1

ti ti+1
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with ti+M = ti. Moreover, we assume that

M∑
i=1

ti = N.

a Compute the grand canonical partition function Z(z,M, T ) of such a system.
b Show that for J > 0 the zeros of Z(z,M, T ) are along the circle | z |= e−J in the

complex plane in the variable z, where J = βJ .

4. Ising model in a magnetic field
Let’s consider the one-dimensional Ising model with nearest neighbor interactions in
the presence of a magnetic field. Show that the partition function ZN (T,B) is an even
function of B and compute its first non-vanishing term of the series expansion with
respect to B.

5. Ising model in a purely imaginary magnetic field
Consider the one-dimensional Ising model with next neighbor interaction in the pres-
ence of a purely imaginary magnetic field B = ih. Study the correlation length of the
model, expressed by eqn (2.2.28), and show that there exist an infinite number of pairs
(J , h) for which it diverges.

6. Correlation functions
For the one-dimensional Ising model with next neighbor interaction:
a compute the correlation function 〈σi σjσkσl〉, with i > j > k > l;
b use the expression of the quantity above to compute the derivative of the correlation

function 〈σi σjσk〉 with respect to the magnetic field B, for B = 0.

7. Potts model
Consider the one-dimensional q-state Potts model, whose hamiltonian is given by

H = −J
N∑
i=1

δ(σi, σi+1).

a Compute the expectation value 〈δ(σk, σk+1)〉.
b Study this quantity for negative values of q.

8. One-dimensional Tonks gas
Consider a gas made of molecules of size a that can move freely along a line of length
L. Their interaction potential is given by

U(xi − xj) =
{

+∞ , if | xi − xj |< a
0 , if | xi − xj |> a.

Compute the exact expression of the partition function of the system and its equation
of state.
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9. One-dimensional gas
Considerar a one-dimensional gas of N particles, with potential interaction

V (x1, x2, . . . , xN ) = −
∑
i<j

log tanh2
(
xi − xj

2

)
.

a Discuss the validity of the next neighbor approximation for this potential.
b Give a numerical estimate of the gas pressure at z = 1

2π .
c Compute the mean values of the number of particle per unit length and check the

validity of the next neighbor approximation.

10. Thermodynamics of one-dimensional oscillators
Consider a set of N particles of mass m placed along a line of length L. Let pi and qi
be their momentum and coordinate respecively. Their hamiltonian is

H =
N∑
i=1

p2
i

2m
+

1
2
k

N−1∑
i=1

(qi − qi+1)2.

a Determine the frequencies of the normal modes of the system.
b Compute the partition function.



3
Approximate Solutions

The approximate computations are a fundamental part of physical science.

Steven Weinberg

The exact solutions of one-dimensional systems discussed in the previous chapter
are particularly simple and mathematically elegant. Unfortunately, they are more an
exception than a rule: for higher dimensional lattices, the computation of the partition
functions of statistical models usually poses a formidable problem from a mathemat-
ical point of view. For that reason, it is of the utmost importance to develop some
approximate methods that permit us to analyze the most relevant physical aspects
and to extract an estimate of critical exponents or other thermodynamic quantities.
In this chapter we will discuss several approximate solutions of the Ising model and
its generalizations.

3.1 Mean Field Theory of the Ising Model
In the Ising model, each spin interacts both with the external magnetic field and the
one created by neighbor spins. The magnetic field created by the spins is obviously
a dynamical variable, which cannot be controlled by external knobs, for its value
changes with the fluctuations of the configurations. The mean field approximation
consists of replacing the magnetic field created by the spins by its thermal average.
This substitution gives rise to an interaction among all spins, so that the mean field
solution is essentially equivalent to solve the model in the limit d→ ∞: for an infinite-
dimensional lattice, the mean field solution is then an exact one. Although this limit
may appear artificial and distant from the actual physical features of magnets, we shall
nevertheless see that the mean field solution is able to capture the main properties of
phase transition in the Ising model, in a particularly simple way that is also sufficiently
accurate.

Consider the Hamiltonian of a d-dimensional lattice with N spins

H = −J
2

∑
〈i,j〉

σi σj −B
∑
i

σi. (3.1.1)

Let’s introduce the magnetization, defined by

m =
1
N

〈
N∑
i=1

σi

〉
, (3.1.2)
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and let’s express the product of the spins as

σi σj = (σi −m+m)(σj −m+m)
= m2 +m (σi −m) +m (σj −m) + (σi −m)(σj −m).

The last term is quadratic in the spins, of the form (σi − 〈σ〉)(σj − 〈σ〉). The mean
field approximation consists of completly neglecting this term, replacing the previous
Hamiltonian with

H = −J
2

∑
〈i,j〉

σi σj −B
∑
i

σi

	 −J
2

∑
〈i,j〉

[−m2 +m(σi + σj)] − B
∑
i

σi. (3.1.3)

Let z be the coordination number of the lattice, i.e. the number of neighbor spins with
whom each spin interacts.1 The first term in (3.1.3) can be expressed as

−J
2

∑
〈i,j〉

(−m2) =
1
2
Jzm2

∑
i

=
1
2
JNzm2,

while
−J

2
m
∑
〈i,j〉

(σi + σj) = −Jzm
∑
i

σi.

In the mean field approximation, the hamiltonian thus becomes

Hcm =
1
2
NJzm2 − (Jz m+B)

∑
i

σi. (3.1.4)

Since all spins are decoupled, it is simple to compute the partition function

Zcm
N (T,B) =

∑
{σ}

e−βHcm = e− 1
2 NJ zm2

( ∑
σ=±1

e(J zm+B)σ

)N

= e− 1
2 NJ zm2

[2 cosh(2Jm+ B)]N . (3.1.5)

The free energy per spin is expressed by

F cm(T,B) = − 1
βN

lnZN =
1
2
Jzm2 − 1

β
ln [2 cosh(Jm+ B)] . (3.1.6)

Since the magnetization is given by the derivative of F with respect to B, it must
satisfy the self-consistency equation

m = −∂F
∂B

= tanh(J zm+ B). (3.1.7)

This equation was first obtained by Bragg and Williams and, for this reason, the mean
field solution is also known as the Bragg–Williams approximation. To see whether there

1For example, a two-dimensional square lattice, z = 4, whereas in a three-dimensional cubic lattice
z = 6.



Mean Field Theory of the Ising Model 99

-1 -0.5 0.5 1

-1

-0.5

0.5

1

Fig. 3.1 A graphical solution of eqn (3.1.8).

is a spontaneous magnetization as B → 0, one needs to look for non-zero solutions of
the trascendental equation

m = tanh(J zm). (3.1.8)

This problem can be solved by a graphical method, i.e. by checking whether the plot of
the function on the right-hand side of (3.1.8) has intersections or not with the straight
line y = m, as shown in Fig. 3.1. The value m = 0 is obviously always a solution of
(3.1.8). However, when the derivative at the origin of the function tanh(J zm) on the
right-hand side of (3.1.8) is greater than 1, there are two other solutions (of different
sign but equal in absolute value) ±m0. Hence, for J z = 1, i.e. when the temperature
becomes equal to

Tc =
Jz

k
, (3.1.9)

the system undergoes a phase transition, from a disordered to an ordered phase. For
T < Tc the spins are oriented along the direction of the external magnetic field before
it will be set to zero: hence, one has m = m0 if B → 0+ while m = −m0 in the other
limit B → 0−. If the mean value of the magnetization is different from zero, the Z2
symmetry of the model is spontaneously broken: in the ordered phase, the only effect
left from the original Z2 symmetry of the hamiltonian is the mapping between the two
different solutions, i.e. m0 → −m0 and vice versa.

Let us now compute, in the mean field approximation, the critical exponents. Using
the variable

t =
T − Tc
Tc

,

with Tc given in (3.1.9), eqn (3.1.7) can be written more conveniently as

m = − B

kTc
+ (1 + t) arcthm. (3.1.10)

Consider firstly the case B = 0. Close to the critical point t ≈ 0 and the spontaneous
magnetization is also small. By expanding the right-hand side of the equation above,
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we have

m0 = (1 + t) arcthm0 = (1 + t)
[
m0 +

1
3
m3

0 +
1
5
m5

0 + · · ·
]
.

Solving with respect to m0, we obtain

m0 = (−3t)
1
2 {1 + O(t)}. (3.1.11)

Hence, the critical exponent β is given by

β =
1
2
. (3.1.12)

In order to compute the magnetic susceptibility, we derive both terms of (3.1.10) with
respect to B. Since χ = ∂m0

∂B , we have

χ = − 1
kTc

+ (1 + t)
(

1
1 +m2

)
χ.

For B = 0 and T > Tc, one has m0 = 0 and therefore χ satisfies the equation

χ = − 1
kTc

+ (1 + t)χ.

Hence
χ =

1
kTc

t−1.

In the same way, at B = 0 but T < Tc, one obtains

χ =
1

2kTc
(−t)−1.

Hence, for the critical exponent γ we get the value

γ = 1. (3.1.13)

With the above computation we can also determine the universal ratio

χ+

χ−
= 2.

To obtain the exponent δ, consider the equation of state (3.1.10) at t = 0. By using
the series expansion of the hyperbolic function and simplifying the result, one has

B

kTc
	 1

3
m3 + Om5,

i.e. m 	 B1/3 and therefore
δ = 3. (3.1.14)
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Finally, to obtain the exponent α it is convenient to consider the free energy (3.1.6)
in the vicinity of the critical point. Using eqn (3.1.7) and the identity

coshx =
1

(1 − tanh2 x)1/2
,

the free energy can be equivalently expressed as

F cm(T,B) =
1
2
Jzm2 − 1

2β
ln
[

4
(1 −m2

0)

]
. (3.1.15)

Let us take B = 0. For T > Tc, one has m0 = 0 and the free energy is simply equal to

F cm(T, 0) = − 1
β

ln 2.

For T < Tc, m0 �= 0 and by series expanding (3.1.15) we have

F cm(T, 0) = − 1
β

ln 2 − 1
2β
m2

0(1 − J z) + · · ·

Using (3.1.11), for t sufficiently small and negative, the free energy is given by

F cm(T, 0) 	 − 1
β

ln 2 − 3
4
t2 + · · ·

Since F 	 t2−α, for the critical exponent α we get

α = 0. (3.1.16)

Note that in the mean field approximation both the free energy and the mean value of
the internal energy do not have a discontinuity at T = Tc, while the specific heat has a
jump. Since each spin interacts with all the others, the spin–spin correlation function
does not depend on their separation, so that η = 0. The last critical exponent ν can
be extracted by the scaling laws and its value is ν = 1/2.

In summary, the mean field approximation is efficient in showing the existence of a
phase transition in the Ising model and in predicting its qualitative features. However,
there are many aspects that are unsatisfactory from a quantitative point of view. For
instance, it predicts the occurrence of a phase transition even for the case d = 1, that
is excluded by the exact analysis of Chapter 2. Moreover, even when there is a phase
transition, as in d = 2 or d = 3, the mean field theory gives an estimate of the critical
temperature that is higher than its actual value and the critical exponents differ from
their known values in both cases, as shown in Table 3.1.

The universality of the results obtained in this approximation is due to the absence
of spin fluctuations: once we substitute the dynamical magnetization of the spins with
its thermal average, the long-range correlation among all spins suppresses in fact their
fluctuations with respect to their mean value. This long-range order favors the energy
contribution in the free energy but does not take into proper account the entropy
contribution: for this reason, one obtains a value of the critical temperature Tc higher
than the actual one.
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Table 3.1: Critical exponents of the Ising model for various lattice dimensions.

Exponents Mean field Ising d = 1 Ising d = 2 Ising d = 3
α 0 1 0 0.119 ± 0.006
β 1/2 0 1/8 0.326 ± 0.004
γ 1 1 7/4 1.239 ± 0.003
δ 3 ∞ 15 4.80 ± 0.05
ν 1/2 1 1 0.627 ± 0.002
η 0 1 1/4 0.024 ± 0.007

3.2 Mean Field Theory of the Potts Model

The mean field approximation for the q-state Potts model shows a novel aspect with
respect to the Ising model: a second-order phase transition for q ≤ 2 but a first-order
phase transition for q > 2.

In the mean field theory, each of the N spins of the lattice interacts with all the
remaining (N − 1) ones. In this approximation the Hamiltonian can be written as

Hmf = − 1
N
J z
∑
i<j

δ(σi, σj), (3.2.1)

where z is the coordination number of the lattice and we have introduced, for conve-
nience, a factor 1/N in the coupling constant. To solve the model, let’s firstly write
the free energy of the system

F [C] = U [C] − TS[C] (3.2.2)

as a function of the configurations C of the spins and then let’s proceed to determine its
minimum. Such a computation can be simplified by noticing that the energy is a highly
degenerate function of the system configurations. Consequently, it is more convenient
to express the Hamiltonian in terms of a proper set of variables that makes explicit
such a degeneracy. Given a configuration C of the spins, let us denote by xi = Ni/N
the fraction of the spins that are in the i-th state, with i = 1, 2, . . . , q. Obviously

q∑
i=1

xi = 1. (3.2.3)

Since there are 1
2Ni(Ni − 1) couplings of the type i in the hamiltonian (3.2.1), the

energy U [C] of this configuration is given by

U [C] = − 1
2N

Jz

q∑
i=1

Ni(Ni − 1).



Mean Field Theory of the Potts Model 103

Dividing by the number of spins and taking the limit N → ∞, one has

U [C]
N

	 −1
2
Jz

q∑
i=0

x2
i . (3.2.4)

Since there are
N !

N1!N2! . . . Nq!

different ways of organizing the spins without changing the energy, there is an entropy
equal to

S[C] = k log
(

N !
N1!N2! . . . Nq!

)
.

By using the Stirling approximation for each of these terms log z! 	 z log z (with
z 
 1) together with the definition of the xi’s, we have

S[C]
N

	 −k
q∑

i=1

xi log xi. (3.2.5)

Hence, the free energy per spin reads

F (xi) = −
q∑

i=1

[
Jz

2
x2
i − k xi log xi

]
.

This expression has to be minimized but taking into account the normalization condi-
tion (3.2.3). The latter constraint can be identically satisfied by using the
parameterization

x1 =
1
q

[1 + (q − 1)s] ,

xi =
1
q

(1 − s) , i = 2, 3, . . . , q,

with 0 ≤ s ≤ 1. In the ferromagnetic case (J > 0) this position takes into account
the possible symmetry breaking of the permutation group Sq in the low-temperature
phase. Substituting the expressions for xi in (3.2.4) and (3.2.5), we have

β

N
[F (s) − F (0)] =

q − 1
2q

J z s2 − 1 + (q − 1)s
q

log [1 + (q − 1)s]

−q − 1
q

(1 − s) log(1 − s)

	 −q − 1
2q

(q − J z)s2 +
1
6
(q − 1)(q − 2)s3 + · · · (3.2.6)

where J = βJ . Expanding this function in powers of s, one sees that for q = 2 the
cubic term changes its sign: it is negative for q < 2 while positive for q > 2. This
means that there could be a first-order phase transition. Let us consider the two cases
separately:
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Fig. 3.2 Graphical analysis of eqn (3.2.7).

• q < 2. The minimum condition for the function in (3.2.6) is expressed by the
equation

J z s = log
[
1 + (q − 1)s

1 − s

]
, (3.2.7)

which always has s = 0 as a solution. For J z > q (where q is the derivative of
the right-hand side at s = 0), there is however another solution s �= 0, as can be
easily seen graphically by plotting both terms of (3.2.7) as done in Fig. 3.2. The
two solutions coincide when

J = Jc =
q

z
.

This condition identifies the critical value of the second-order phase transition
that occurs for q ≤ 2. Note that, for q = 2, we recover the critical temperature of
the Ising model in the mean field approximation,2 given by eqn (3.1.9). The plot
of the free energy is shown in Fig. 3.3.

• q > 2. In this case we have a different situation: varying J , there is a critical value
at which the minimum of the free energy jumps from s = 0 to s = sc, as shown
in Fig. 3.4. This discontinuity is the fingerprint of a first order phase transition.
In this case the critical values Jc and sc are obtained by simultaneously solving
the equations F ′(s) = 0 and F (s) = F (0), i.e.

z Jc =
2(q − 1)
q − 2

log(q − 1),

sc =
q − 2
q − 1

.

Computing the internal energy of the system, given by

U = −Jz q − 1
2q

s2min,

2To obtain the Ising model one has to make the substitution J → 2J .
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Fig. 3.3 Plot of the free energy for q < 2: J > Jc (upper curve), J = Jc (black curve), and
J < Jc (lower curve).
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Fig. 3.4 Plot of the free energy for q > 2: J > Jc (upper curve), J = Jc (black
curve), and J > Jc (lower curve).

one sees that at J = Jc this function has a jump that corresponds to a latent
heat L per unit spin equal to

L = Jz
(q − 2)2

2q(q − 1)
.

3.3 Bethe–Peierls Approximation
The mean field approximation of the Ising model can be refined by adopting a formu-
lation proposed by H.A. Bethe and R. Peierls. As for the Potts model, it is convenient
to initially express the hamiltonian in terms of variables that take into account its
degeneracy. For a given configuration of the spins, let us define

N+ = total number of spins with value +1
N− = total number of spins with value −1.
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Each couple of nearest neighbor spins can only be one of the following types: (++),
(−−), or (+−). Denote by N++, N−−, and N+− the total number of these pairs. These
quantities are not independent: besides the obvious relationship

N+ +N− = N,

we also have
zN+ = 2N++ +N+−;
zN− = 2N−− +N+−,

(3.3.1)

where z is the coordination number of the lattice. These identities can be proved as
follows: once a site where the spin with value +1 is selected, draw a line that links
this site to all the nearest neighbor ones, so that there are z lines. Repeating the same
procedure for all those sites where the spins have value 1, we then have zN+ lines.
However, the pairs of next neighbor spins of the type (++) will have two lines while
those of the type (+−) have only one, so that we reach the first formula in (3.3.1).
Repeating the same argument for the spins with value −1, one obtains the second
relationship. Eliminating N+−, N−−, and N− from the previous equations we have

N+− = zN+ − 2N++;
N− = N −N+;

N−− =
z

2
N +N++ − zN+.

Since ∑
〈ij〉

σiσj = N++ +N−− −N+− = 4N++ − 2zN+ +
z

2
N,

∑
i

σi = N+ −N−,

the hamiltonian of the model can be expressed as

H = −J
∑
〈ij〉

σiσj −B
∑
i

σi (3.3.2)

= −4JN++ + 2(Jz −B)N+ −
(

1
2
Jz −B

)
N.

The energy of the system depends only on the two quantities N++ and N+ (the total
number of the spins N is considered fixed) and therefore it is a degenerate function
of the spin configurations. It is convenient to define an order parameter L (relative to
the large-distance properties of the system) and an order parameter c (relative to its
short distances):

N+

N
≡ 1

2
(L+ 1) (−1 ≤ L ≤ +1) (3.3.3)

N++
1
2zN

≡ 1
2
(c+ 1) (−1 ≤ c ≤ 1). (3.3.4)
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In terms of these order parameters we have∑
〈ij〉

σiσj =
1
2
zN(2c− 2L+ 1),

N∑
i=1

σi = NL,

and the energy per unit spin can be written as

1
N
E(L, c) = −1

2
Jz(2c− 2L+ 1) −BL. (3.3.5)

After these general considerations, let us discuss the Bethe–Peierls method, focus-
ing on the case B = 0. Consider an elementary cell of the lattice, i.e. a site where the
spin is in a state s together with its z neighbor sites. Denote by P (s, n) the probability
that n of these spins are in the state +1. If s = +1, then P (s, n) is also equal to the
probability to have n pairs (++) and (z−n) pairs (+−). Vice versa, if s = −1, P (s, n)
is the probability to have n pairs (+−) and (n− z) of the type (−−). Given n, there

are
(
z
n

)
= z!/((n!(z−n)!) ways of selecting n among the z next neighbor spins. Let’s

assume that these probabilities can be written as

P (+1, n) =
1
q

(
z
n

)
eJ (2n−z)ρn; (3.3.6)

P (−1, n) =
1
q

(
z
n

)
eJ (z−2n)ρn, (3.3.7)

where q is a normalization factor while ρ is a quantity that takes into account the
overall effects of the lattice. While ρ will be determined later, q is obtained by imposing
the normalization of the total probability

z∑
n=0

[P (+1, n) + P (−1, n)] = 1,

namely

q =
z∑

n=0

[(
ρe2J )n e−J z +

(
ρe−2J )n eJ z

]
=
(
eJ + ρe−J )z +

(
ρeJ + e−J )z .

Using the order parameters L and c defined by eqns (3.3.3) and (3.3.4), and employing
P (+1, n), one has

N+

N
=

1
2
(L+ 1) =

z∑
n=0

P (+1, n) =
1
q

(
eJ + ρe−J )z , (3.3.8)
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N++
1
2zN

=
1
2
(c+ 1) =

1
z

z∑
n=0

nP (+1, n) =
ρ

q
eJ (e−J + ρeJ )z−1

. (3.3.9)

We can now proceed to directly compute the magnetization. Note that

z∑
n=0

P (+1, n) =
{

probability to find a spin
with value + 1 in the center

1
z

z∑
n=0

n [P (+1, n) + P (−1, n)] =
{

probability to find a spin with value
+1 among the next neighbor sites.

To have a consistent formulation, these two probabilities must be equal. Using (3.3.6)
and (3.3.7), one arrives at the equation for the variable ρ

ρ =
(

1 + ρe2J

ρ+ e2J

)z−1

. (3.3.10)

Assuming we have solved this equation and found the value of ρ, 〈L〉 and 〈c〉 can be
obtained through eqns (3.3.8) and (3.3.9):

〈L〉 =
ρx − 1
ρx + 1

, (3.3.11)

〈c〉 =
2ρ2

(1 + ρe−2J )(1 + ρx)
− 1, (3.3.12)

where x ≡ z/z − 1. The internal energy is given by

1
N
U(T ) = −1

2
Jz (2〈c〉 − 2〈L〉 + 1) , (3.3.13)

whereas the spontaneous magnetization is expressed by

1
N

〈
N∑
i=1

σi

〉
= 〈L〉. (3.3.14)

It is now necessary to solve eqn (3.3.10). Note that this equation has the following
properties:

1. ρ = 1 is always a solution;
2. if ρ0 is a solution, then also 1/ρ0 is a solution;
3. interchanging ρ with 1/ρ is equivalent to interchange 〈L〉 → −〈L〉;
4. ρ = 1 corresponds to 〈L〉 = 0, while ρ = ∞ corresponds to 〈L〉 = 1.

To find the solution of eqn (3.3.10), it is useful to use a graphical method, similarly
to the mean field solution: one plots the right- and the left-hand side functions of eqn
(3.3.10) and determines the points of their intersection, as shown in Fig. 3.5.
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Fig. 3.5 Graphical solution of eqn (3.3.10).

An important quantity is the value of the derivative of the function on the right-
hand side, computed at ρ = 1

g =
(z − 1)(e4J − 1)

(1 + e2J )2
. (3.3.15)

In fact, if g < 1, the only solution consists of ρ = 1. Vice versa, if g > 1, there are
three solutions, ρ = 1, ρ0, and 1/ρ0. Excluding the solution ρ = 1 (which corresponds
to 〈L〉 = 0) and 1/ρ0 (which is equivalent to exchanging the spins +1 with those of
−1), the only physically relevant solution is given by ρ0. In this approach, the critical
temperature is given precisely by the condition g = 1, namely

kTc =
2J

ln [z/(z − 2)]
. (3.3.16)

For T > Tc we have

ρ = 1;
〈L〉 = 0; (3.3.17)

〈c〉 =
1

2(1 + e−2J )
.

For T < Tc, we have instead ρ > 1 and 〈L〉 > 0, i.e. there is a spontaneous magneti-
zation in the system.

The expression (3.3.16) of the critical temperature predicted by the Bethe–Peierls
approximation correctly predicts that, in one dimension where z = 2, Tc = 0. In two
dimensions, for a square lattice (z = 4), it provides the estimate kTc/J = 2/ ln 2 =
2.885, which is smaller than the one obtained in the mean field approximation kTc/J =
4 but still higher than the exact value kTc/J = 2/ ln(1 +

√
2) = 2.269 which we will

determine in Chapter 4.

3.4 The Gaussian Model

In the Ising model, the computation of the partition function is based on the sums of
the discrete variables σi = ±1. Notice that such a discrete sum can be written as an
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integral on the entire real axis by using the Dirac delta function3

∑
σi=±1

[· · · ] =
∫ +∞

−∞
dσi δ(σ2

i − 1) [· · · ] .

Using the properties of δ(x), the Ising model can then be regarded as a statistical model
where the spins assume all continuous values of the real axis but with a probability
density given by

PI(σi) =
1
2

[δ(σi − 1) + δ(σi + 1)] . (3.4.1)

With the above notation, the sum on the configurations of a single spin assumes the
form ∑

σi=±1

[· · · ] =
∫ +∞

−∞
dσi PI(σi) [· · · ] ,

and the usual mean values of the Ising model are given by

〈σi〉 ≡
∫ +∞

−∞
dσi PI(σi)σi = 0, (3.4.2)

〈σ2
i 〉 ≡

∫ +∞

−∞
dσi PI(σi)σ2

i = 1.

We can now conceive to approximate the Ising model by substituting the probability
density PI(σi) – given by eqn (3.4.1) – with another probability density P (σi) that
shares the mean values 〈σi〉 and 〈σ2

i 〉 of (3.4.2). A function with such a property is,
for instance, the gaussian curve4 (see Fig. 3.6)

PG(σ) =

√
1
2π

exp
[
−σ

2

2

]
. (3.4.3)

The spin model defined by this new probability density is known as the gaussian model.

Since thermal averages are computed according to the formula

〈A〉 =
1
Z

∫ +∞

−∞
· · ·
∫ +∞

−∞

N∏
i=1

P (σi) Ae−βH dσ1 · · · dσN ,

3The Dirac delta function δ(x), with x real, satisfies the properties:

δ(x) =
{
0 x �= 0
+∞ x = 0

with
∫ +∞

−∞ δ(x) = 1. Moreover, δ[f(x)] =
∑

i
1

|f ′(xi)| δ(x−xi), where xi are the roots of the equation
f(x) = 0.

4Although PI(σ) and PG(σ) give rise to the same mean values of eqn (3.4.2), they nevertheless differ
for what concerns the mean values of the higher powers of the spins. For PI(σ) we have 〈σ2n〉 = 1,
while for PG(σ), 〈σ2n〉 = [1 · 3 · 5 · · · (2n − 1)].
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Fig. 3.6 Probability density P (σ): from the Ising model to the gaussian model.

where

Z =
∫ +∞

−∞
· · ·
∫ +∞

−∞

N∏
i=1

P (σi) e−βH dσ1 · · · dσN ,

it is obvious that the presence of P (σ) in the sum over the states can be equivalently
interpreted as a new term in the hamiltonian, so that

H −→ H′ = H− 1
β

N∑
i=1

log[P (σi)].

The thermal averages computed with the new Boltzmann factor

〈A〉 =
1
Z

∫ +∞

−∞
· · ·
∫ +∞

−∞
Ae−βH′

dσ1 · · · dσN ,

clearly coincide with the previous ones. Hence, we can reformulate the gaussian model
as a system where the spins assume a continuous set of values, with an interaction
given, up to a constant, by the hamiltonian

H =
1
2β

N∑
i=1

σ2
i − J

∑
〈ij〉

σi σj −B

N∑
i=1

σi. (3.4.4)

Let us now proceed to the computation of its partition function

ZN =
∫ +∞

−∞
· · ·
∫ +∞

−∞
exp

⎡
⎣−1

2

N∑
i=1

σ2
i + J

∑
〈kl〉

σkσl + B
∑
l

σl

⎤
⎦ dσ1 · · · dσN ,

where J = J/kT and B = B/kT . To simplify the formulas, it is convenient to introduce
a matrix notation: let σ be an N -component vector σ = (σ1, σ2 . . . σN ), and let V be
a N ×N matrix defined by

σT V σ =
1
2

∑
l

σ2
l − J

∑
〈kl〉

σkσl.
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Moreover, let B be an N -dimensional vector, with all its components equal to B. In
terms of these new notations, the partition function is written as

ZN =
∫ +∞

−∞
· · ·
∫ +∞

−∞
exp
[
−σTVσ + BTσ

]
dσ1 · · · dσN .

The integral over the variables σj is gaussian and can be performed using the formula5

∫ +∞

−∞
· · ·
∫ +∞

−∞
exp
[
−xTVx+ hTx

]
dx1 · · · dxN = (π)N/2 [detV]−

1
2

exp
[
1
4
hTV−1h

]
(3.4.5)

so that we arrive at

Zn = π
N
2 [ detV]−

1
2 exp

[
1
4
BTV−1B

]
.

Cyclic matrix. It is necessary, however, to verify if there are eigenvalues of the
matrix V with a real part that is either zero or negative. Their explicit expression
clearly depends on the nature of the matrix V , namely from the underlying lattice
structure of the gaussian model. Let us consider, for simplicity, a d-dimensional cubic
lattice of length L in all its directions, with periodic boundary conditions. In this case,
N = Ld. For the (discrete) translation invariance of the lattice, the matrix elements
of V depends only on the difference of its indices

V�i,�j = V (�i−�j).

For a cubic lattice, the only components that are different from zero are those for
which �i−�j = 0 and

�i−�j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(±1, 0, 0, 0, . . .)
(0,±1, 0, 0, . . .)
(0, 0,±1, 0, . . .)
(0, 0, 0,±1, . . .)
· · ·

The periodic boundary conditions put the additional constraints

V (i+ L, j) = V (i, j + L) = V (i, j).

A matrix that satisfies all the above properties is called a cyclic matrix and its eigen-
values can be easily determined by using the Fourier series. The result is

λ(ω1, . . . , ωd) =
1
2
− J (cosω1 + . . .+ cosωd), (3.4.6)

5The validity of this formula relies on the condition that all the eigenvalues of V are positive. As
we will see, when this condition is not satisfied, the system undergoes a phase transition.



The Gaussian Model 113

where each frequency ωj can take one of the L possible values 0, 2π/L, 4π/L, . . . ,
2π(L− 1)/L. From eqn (3.4.6) it follows that the eigenvalues have a positive real part
only if

|J | < 1
2d
. (3.4.7)

This condition determines the range of validity of the gaussian model and identifies
the critical temperature of the model, given by

J

kTc
=

1
2d
. (3.4.8)

It is easy to understand the origin of this critical point by directly analyzing the
hamiltonian (3.4.4). Note that the coupling constant of the first term explicitly depends
on the temperature through the parameter 1/β. At high temperatures, i.e. β → 0, the
minimum of the hamiltonian is reached by the configuration in which all spins have a
zero value, σi = 0. In the opposite limit, β → ∞, i.e. in the low-temperature phase,
the second term may prevail over the first one. In such a case, the hamiltonian density
per unit spin H/N can be made arbitrarily negative by allowing the spins to align
with each other and grow without any bound on their modulus. Hence, in the low-
temperature phase, the energy of the model is not bounded from below. The two
physical pictures, so qualitatively different, obtained in the high- and low-temperature
phases, clearly signal the existence of a phase transition, with the critical temperature
given in (3.4.8). The low-temperature phase of the model is however pathological: as
a matter of fact, the model is only defined for T > Tc and therefore it only has a high-
temperature phase. In the next section we will see how to get around this difficulty by
posing a bound on the higher values of the spins.

Transfer matrix in 1-D. The analysis done is completely general and applies to
arbitrary lattices. However, it is an interesting exercise to solve the one-dimensional
gaussian model by using the transfer matrix. To this purpose, consider the hamil-
tonian of the one-dimensional gaussian model

H =
1
2β

N∑
i=1

σ2
i − J

N∑
i=1

σiσi+1.

The transfer matrix T of the model has a set of continuous indices: denoting by x
and y the values of the spin of two neighbor sites, we have

〈x |T | y〉 = T (x, y) = exp
[
−1

4
(x2 + y2) + J xy

]
.
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To compute the partition function, we have to diagonalize this matrix by solving
the integral equation ∫ +∞

−∞
T (x, y)ψ(y) dy = λψ(x). (3.4.9)

Note that the norm of the integral operator is finite only if

|J | < 1
2
. (3.4.10)

In fact, it is only in this interval that the kernel of the integral operator is square
integrable

||T ||2 ≡
∫ +∞

−∞

∫ +∞

−∞
〈x|T |y〉 〈y|T |x〉 dx dy (3.4.11)

=
∫ +∞

−∞

∫ +∞

−∞
exp
[
−1

2
(x2 + y2) + 2J xy

]
dx dy

=
2π√

1 − 4J 2
.

The integral operator is symmetric in its indices T (x, y) = T (y, x) and, for its
reality, it is then a hermitian operator. The general theory of integral equations6

tells us that the eigenvalues λn of such an operator are real and discrete, while the
corresponding eigenfuctions ψn form a complete set of orthonormal functions. The
operator T admits the spectral decomposition

T (x, y) =
∞∑
n=0

λn ψn(x)ψn(y), (3.4.12)

and its eigenvalues satisfy the identity

||T ||2 =
∞∑
n=0

λ2
n. (3.4.13)

To determine the spectrum of the integral equation (3.4.9), we can use a very
elegant algebraic method that is similar to the one used to find the spectrum of
the quantum one-dimensional harmonic oscillator.7 Let us introduce the differential
operator A

A =
1√
2

(
ux+ u−1 d

dx

)
, (3.4.14)

6See, for instance, D. Porter and D. Stirling, Integral Equations, Cambridge University Press,
Cambridge, 1990.

7See, for instance, C. Cohen–Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics, John Wiley &
Sons, New York, 1977.
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and its hermitian conjugate8 A†

A† =
1√
2

(
ux− u−1 d

dx

)
. (3.4.15)

These operators satisfy the commutation relation[
A,A†] = 1. (3.4.16)

Choosing

u2 ≡ u2
∗ =

1
2

√
1 − 4J 2, (3.4.17)

the differential operator A satisfies the operator equation

AT = ξ T A, (3.4.18)

with the constant ξ given by

ξ =
1 − 2u2

∗
2J =

1 −
√

1 − 4J 2

2J . (3.4.19)

To prove (3.4.18), let us initially apply this relation to an arbitrary function ψ(x)∫ ∞

−∞

(
ux+ u−1 d

dx

)
T (x, y)ψ(y) dy = ξ

∫ ∞

−∞
T (x, y)

(
uy + u−1 d

dy

)
ψ(y) dy.

Integrating by parts the last term on the right-hand side, and taking into account
the arbitrariness of the function ψ(x), we get(

ux+ u−1 d

dx

)
T (x, y) = ξ

(
uy − u−1 d

dy

)
T (x, y).

Equating the terms that are proportional to x and y in both terms, we obtain(
u− 1

2u

)
= −ξ J

u
, (3.4.20)

ξ

(
u+

1
2u

)
=

J
u
.

Hence, we arrive at eqn (3.4.19) with u∗, given by (3.4.17), a value that comes from
the consistency condition of the systems of equations (3.4.20).

Taking the hermitian conjugate of (3.4.18), the operator T also satisfies

T A† = ξA† T. (3.4.21)

8It is important to recall that the differential operator d
dx

is antihermitian.
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The two functional equations (3.4.18) and (3.4.21) satisfied by T enable us to reach
some important consequences about its spectrum. Suppose we have identified a
real eigenfunction ψ(x) of this operator, with eigenvalue λ. Applying to ψ(x) the
operator A†, we see that ψ′(x) = A† ψ(x) is also an eigenfunction of T but with
the eigenvalue λ′ = ξ λ. Hence, the iterated application of A† to the eigenfunction
ψ(x) gives rise to the sequence of eigenfunctions

(
A†)n ψ(x). Since for |J | < 1/2

we have ξ < 1, we obtain the sequence of decreasing eigenvalues

λ > λ ξ > λ ξ2 > , . . . > λ ξn. (3.4.22)

Vice versa, making use of (3.4.18), the iterated application of the operator A to
the eigenfunction ψ(x) also generates a sequence of eigenfunctions ψ̃n = Anψ, but
this time with a sequence of increasing eigenvalues

λ < λ ξ−1 < λξ−2 < . . . < λ ξ−n. (3.4.23)

Since the T is bounded in the interval (3.4.10), a maximum eigenvalue λmax ≡ λ0
must necessarily exist. This implies that the sequence (3.4.23) must stop and the
eigenfunction that corresponds to the maximum eigenvalue λ0 satisfies the equation
Aψ0(x) = 0, i.e. (

u∗x +
1
u∗

d

dx

)
ψ0(x) = 0. (3.4.24)

Therefore

ψ0(x) = A0 exp
[
−u

2
∗ x

2

2

]
,

where the constant A0 =
√

u2∗
π is fixed by the normalization condition

∫ +∞

−∞
ψ2

0(x) dx = 1.

We could directly compute the maximum eigevalue λ0 by substituting ψ0(x) in the
integral equation. However, in order to control all the results obtained above, it
is convenient to proceed in a more general way. Note that the application of the
operator T to a generic gaussian function g(x) = A exp[−λ2x2/2] produces another
gaussian function

T g(x) = A

∫ +∞

−∞
dy exp

[
−1

4
(x2 + y2) + J xy

]
exp
[
−λ

2

2
y2
]

= A0

∫ +∞

−∞
dy exp

[
−1

4
x2 − 1

4
(1 + 2λ2)y2) + J xy

]

= Ã exp

[
− λ̃

2

2
x2

]
,
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with a new exponent λ̃2, given by

λ̃2 =
1
2
− J 2

λ2 + 1/2
,

and a new normalization constant

Ã0 = A0

√
2π

λ2 + 1/2
. (3.4.25)

If the gaussian g(x) is an eigenfunction of T , λ̃2 should be obviously equal to the
previous one λ2 and we get the equation

λ2 =
1
2
− J 2

λ2 + 1/2
. (3.4.26)

The solution is given by

λ2 = u2
∗ =

1
2

√
1 − 4J 2,

and coincides with the condition (3.4.17), previously obtained for the eigenfunction
ψ0(x).

Substituting in (3.4.25) the value of u2
∗, we obtain the maximum eigenvalue

λ0 =

√
2π

u2∗ + 1/2
=

√
4π

1 +
√

1 − 4J 2
. (3.4.27)

The sequence of eigenvalues is now given by eqn (3.4.22), with λ = λ0. In particular,
it is easy to check the validity of the identity (3.4.13): in fact, for the right-hand
side of this equation we have

∞∑
k=0

λ2
k = λ2

0

∞∑
k=0

ξ2k =
λ2

0

1 − ξ2
,

and, substituting the two expressions (3.4.27) and (3.4.19), we precisely obtain the
norm of the operator T , expressed by eqn (3.4.11).

Once the maximum eigenvalue is known, the free energy per unit spin of the
model is given by

β F = − lim
N→∞

1
N

logZN = − log λ0(J ). (3.4.28)

Note, that when the temperature tends to its critical value

Jc → 1
2
,
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correspondingly ξ → 1 . This implies a collapse of all eigenvalues of the transfer
matrix. Since the transfer matrix of a classical statistical system can be associated
to a hamiltonian H of a quantum system by means of the formula

T ≡ e−aH,

the collapse of all eigenvalues of T corresponds to a very singular point of degeneracy
of the quantum hamiltonian H. At J = Jc we have a significant mixing of all
eigenstates of H, with a drastic and discontinous change of the fundamental state
of the system: the systems then undergoes a phase transition.

Using the spectral decomposition9 of the operator T , eqn (3.4.12), is easy to see
that the quantum hamiltonian H assumes the form

H = −1
a

[(
log

1 −
√

1 − 4J 2

2J

)
A† A +

1
2

log
(

4π
1 +

√
1 − J 2

)]
. (3.4.29)

In the limit J → Jc, the coefficient in front of A† A vanishes and, as expected,
there is an infinite degeneration of the eigenvalues of H.

To cure the pathological features of the low-temperature phase of the gaussian model,
T.H. Berlin and M. Kac proposed a more sophisticated version of the model, the so-
called spherical model. This model has the additional advantage of being more similar
to the Ising model than the gaussian model itself.

3.5 The Spherical Model

The spherical model, introduced and solved by Berlin and Kac in 1952, consists of
an interesting variant of the Ising model, or better, of the gaussian model. Like the
last one, the N spins of the spherical model interact with their first neighbors and an
eventual external field, and assume all real values. However, they are subject to the
condition

N∑
j=1

σ2
j = N. (3.5.1)

When there is homogeneity in the spins, this condition is equivalent to 〈σ2
i 〉 	 1, just

like in the original Ising model. However it is obvious that there is a difference between
these two models: in fact, while in the Ising model the sum over the spin configurations
corresponds to a sum over all the vertices of an N -dimensional hypercube, in the
spherical model this sum is replaced by an integral over the N -dimensional spherical
surface that passes through them.

9The normalized eigenfunctions ψn(x) are given by ψn(x) = 1√
n!

(
A†)n

ψ0(x), and we have

〈ψm | A† A | ψn〉 = n δnm.
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Besides its intrinsic interest,10 one could however doubt its physical content, inas-
much as the condition (3.5.1) depends on the dimension N of the system. This is in fact
equivalent to having an interaction between all the spins. This objection has found,
however, a valid answer in the equivalence (shown by H.E. Stanley in 1968) between
the spherical model and a spin model with O(n) symmetry and nearest neighbor in-
teractions, in the limit in which n → ∞. Namely, Stanley has proved that the model
with Hamiltonian

H = −J
∑
〈ij〉

�σi · �σj ,

where each spin is an n-dimensional vector satisfying

| �σi |2 = n

in the limit n→ ∞, is equivalent to the spherical model.11

Let’s now compute the partition function of the model and its equation of state.
Although not particularly demanding, the following calculations require, however, a
certain mathematical skill. The partition function is given by the multidimensional
integral

ZN =
∫ +∞

−∞
· · ·
∫ +∞

−∞
dσ1 · · · dσNδ

(
N −

∑
σ2
j

)
exp

⎡
⎣J∑

〈kl〉
σkσl + B

∑
l

σl

⎤
⎦ ,
(3.5.2)

with J = J/kT and B = B/kT . The constraint (3.5.1) is enforced by the Dirac delta
function. Using

δ(x) =
1
2π

∫ +∞

−∞
eisx ds,

and noting that we can insert in the integral the term

eμ(N−∑
l σ

2
l )

(which is equal to 1, thanks to eqn (3.5.1)), the partition function can be rewritten as

ZN =
1
2π

∫ +∞

−∞
· · ·
∫ +∞

−∞
dσ1 · · · dσN

∫ +∞

−∞
ds (3.5.3)

exp

⎡
⎣J ∑

〈kl〉
σkσl + B

∑
l

σl + (μ+ is)(N −
∑
l

σ2
l )

⎤
⎦ .

10As we will see below it is exactly solvable, with a different behavior with respect to the mean
field solution for d ≥ 3, while for d = 1 and d = 2 it does not have a phase transition.

11Note that the model considered by Stanley differs from the one discussed in Section 2.6 since the
modulus of the spin is n1/2 instead of 1.
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It is convenient to adopt the compact notation of the previous section. Let us define
an N ×N matrix V by means of

σT V σ = (μ+ is)
∑
l

σ2
l − J

∑
〈kl〉

σkσl.

Hence

ZN =
1
2π

∫ +∞

−∞
· · ·
∫ +∞

−∞
dσ1 · · · dσN

∫ +∞

−∞
ds exp

[
−σTVσ + BT σ + (μ+ is)N

]
.

(3.5.4)

We can choose a sufficiently large value of the arbitrary constant μ in such way that all
the eigenvalues of the matrix V have a positive real part (we will specify this condition
in more detail ahead, see eqn (3.5.7)). Under these conditions, we can exchange the
integration order over the variables σj and s: the integration over the variable σj is
gaussian and can be carried out thanks to the formula (3.4.5), so that

Zn =
1
2
π

N
2 −1
∫ +∞

−∞
ds [detV]−

1
2 exp

[
(μ+ is)N +

1
4
BTV−1B

]
. (3.5.5)

To proceed further, it is necessary to specify the nature of the matrix V . For simplicity,
also in this case we choose a cubic lattice with N = Ld and with periodic conditions
along all directions. V is therefore a cyclic matrix and we can repeat the main steps
of the analysis of the previous section. The eigenvalues of V are obtained in terms of
the Fourier series, with the final result given by

λ(ω1, . . . , ωd) = μ+ is− J (cosω1 + . . .+ cosωd), (3.5.6)

where each frequency ωj assumes the L values 0, 2π/L, 4π/L, . . . , 2π(L− 1)/L. From
(3.5.6) it is easy to see that the real part is positive if the constant μ satisfies

μ > J d. (3.5.7)

Since the determinant of a matrix is given by the product of its eigenvalues, we have

[ detV] = exp [ln detV] = exp

[∑
ω1

. . .
∑
ωd

lnλ(ω1, . . . , ωd)

]
.

In the thermodynamic limit L → ∞, the eigenvalues become dense and the sum over
them can be converted into an integral

ln detV = N [lnJ + g(z)] ,

where we have defined
z = (μ+ is)/J ,

and

g(z) =
1

(2π)d

∫ 2π

0
. . .

∫ 2π

0
dω1 . . . dωd ln

⎡
⎣z − d∑

j=1

cosωj

⎤
⎦ . (3.5.8)

The function g(z) is analytic when Re z > d and has a singular point at z = d.
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We can take further advantage of the cyclic nature of the matrix V to show that
the constant vector B is the eigenvector of V corresponding to its minimum eigenvalue
μ+ is− J d = J (z − d). Hence

BTV−1B = BT 1
J (z − d)

B =
NB2

J (z − d)
.

Putting together the last formulas and making a change of variable from s to z, the
partition function can be expressed as

ZN =
( J

2πi

)(
π

J

)N
2
∫ c+i∞

c−i∞
dz exp[Nφ(z)], (3.5.9)

where the function φ(z) is defined by

φ(z) = J z − 1
2
g(z) +

B2

4J (z − d)
. (3.5.10)

For the condition on the eigenvalues of V , the integration contour γ is chosen as in
Fig. 3.7, with c = (μ−J d)/J > 0. Since φ(z) is an analytic function in the semi-plane
Re z > d, the value of the integral in eqn (3.5.9) does not depend on the value of the
constant c, as long as this constant is positive. In the thermodynamic limitN → ∞, ZN

can be estimated by using the saddle point method, discussed in Appendix 3A. Con-
sider the behavior of φ(z) when z is real and positive, in the case in which J > 0 and
B �= 0. It is easy to see that the function diverges both for z → d and z → ∞, assuming
positive values in between. Therefore the function φ(z) must have a minimum at some
positive point z0 and since φ′′(z) > 0, this is the only minimum. Let us choose the con-
stant c to be exactly equal to z0. Since φ(z) is an analytic function, along the direction
of the new path of integration γ it will present a maximum at z = z0. Such a maximum
rules the behavior of the integral in the limit N → ∞ and therefore the free energy is
given by

−F/kT = lim
N→∞

1
N

lnZN =
1
2

ln
(
π

J

)
+ φ(z0). (3.5.11)

γ

c

z

Fig. 3.7 Contour of integration in the complex plane.
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The value z0 is determined by the zero of the first derivative of φ(z) and is a solution
of the saddle point equation

J − B2

4J (z0 − d)2
=

1
2
g′(z0). (3.5.12)

Since there is a unique positive solution of this equation, it permits us to define F as
a function of J and B, for J > 0 and B �= 0. In Appendix 3B we will show that this
equation permits us to establish an interesting relation between the spherical model
and brownian motion on a lattice.

Equation of state. The equation of state of the spherical model can be derived as
follows. Let us first take a derivative of (3.5.11) with respect to B, keeping J fixed.
Based on (3.5.12) and taking into account that z0 also depends on B, one has

− d

dB

(
F

kT

)
=

B
2J (z0 − d)

+ φ′(z0)
dz0
dh

.

However, z0 is exactly the value where the first derivative of φ(z) vanishes. Using
the thermodynamic relation

M(B, T ) = − ∂

∂H
F (B, T ),

we have
M =

B
2J (z0 − d)

=
B

2J(z0 − d)
.

We can now eliminate the variable (z0 − d) by using the saddle point equation
(3.5.12), with the result

2J(1 −M2) = kTg′
(

B

2JM

)
.

This is the exact equation of state of the spherical model that links the quantities
M , B, and T .

Let us now discuss in more detail the saddle point equation (3.5.12) to see if there
is a phase transition in the spherical model. The function g′(z) is expressed by the
multidimensional integral

g′(z) =
1

(2π)d

∫ 2π

0
. . .

∫ 2π

0

1

z −∑d
j=1 cosωj

dω1 . . . dωd. (3.5.13)

Using the identity
1
a

=
∫ ∞

0
e−at dt,
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and the integral representation (2.A.12) of the Bessel function I0(t), given in
Appendix A of Chapter 2,

I0(t) =
1
2π

∫ 2π

0
et cosω dω,

g′(z) can be expressed in a more convenient form as

g′(z) =
∫ ∞

0
e−tz [I0(t)]

d
dt. (3.5.14)

This formula has the advantage of showing the explicit dependence of the dimension
d of the lattice, which can be regarded as a continuous variable and not necessarily
restricted to integer values.

Let us study the main properties of g′(z). From the asymptotic behavior of I0(t),

I0(t) 	 et√
2πt

, t→ ∞ (3.5.15)

it follows that the integral (3.5.14) converges when Re z > d. Consequently, g′(z) is
an analytic function in this semiplane. For real z, g′(z) is a positive function, that
monotonically decreases toward its null value when z → ∞. For z → d, using once
again (3.5.15), the integral diverges when d ≤ 2, while it converges when d > 2

lim
z→d

g′(z) =
{

∞, 0 < d < 2
g′(d) <∞, d > 2.

This implies that there is a phase transition for B = 0 only when d > 2. Consider, in
fact, eqn (3.5.12) when B = 0

2J = g′(z). (3.5.16)

If g′(z) diverges for z → d, however we vary the value of J (i.e. the value of the
temperature), there is always a root z0 of the equation that varies with continuity, as
shown by its graphical solution of Fig. 3.8.

Vice versa, if g′(z) converges towards the finite value g′(d) when z → d, there is
a solution z0 that varies with continuity as long as J < g′(d). However, when the
function reaches the value J = g′(d), there is a discontinous change in the nature of
the equation. Since the function g′(z) cannot grow more than its limit value g′(d),
further increasing J the root z0 of the equation remains fixed at its value z0 = d, as
shown in Fig. 3.9. The appearance of a spontaneous magnetization below the critical
temperature may be regarded qualitatively as a condensation phenomenon akin to
Bose–Einstein condensation of integer spins atoms (see Appendix B of Chapter 1).
The phase transition point is identified, for d > 2, by the condition

Jc =
J

kTc
=

1
2
g′(d). (3.5.17)
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g’(z)

zd

J

Fig. 3.8 Graphical solution of the saddle point equation for d < 2.

g’(z)

zd

1

2

J

J

Fig. 3.9 Graphical solution of the saddle point equation for d > 2. There is a phase transition
when J = g′(d).

From the detailed analysis of the model, as proposed in one of the problems at the end
of the chapter, one arrives to the following conclusions: first of all, there is no phase
transition for d ≤ 2, while for d > 2 there is a phase transition with the values of the
critical exponents as follows: α assumes the value

α =
{
−(4 − d)/(d− 2), 2 < d < 4,
0, d > 4,

while β is given by

β =
1
2
.

For the critical exponent γ we have

γ =
{

2/(d− 2), 2 < d < 4,
1, d > 4.



The Saddle Point Method 125

Finally, the value of the critical exponent δ is

δ =
{

(d+ 2)/(d− 2), 2 < d < 4,
3, d > 4.

Using these results, it is easy to establish the validity of the first two scaling laws
(1.1.26). The other two scaling laws permit us to determine the critical exponent ν

ν =
{

1/(d− 2), 2 < d < 4,
1/2, d > 4.

and the critical exponent η
η = 0.

In conclusion, the spherical model has the interesting property that its critical
exponents vary with the dimensionality d of the lattice in the range 2 < d < 4,
while they assume the values predicted by the mean field theory for d > 4. One ex-
pects to find the same behavior in the critical exponents of the Ising model, obviously
with a different set of values for the two models.

Appendix 3A. The Saddle Point Method

In many mathematical situations, one faces the problem of estimating the asymptotic
behavior of a function J(s) when s→ ∞. Some examples were shown in the previous
chapter (the asymptotic behavior of the Γ(s) function or the Bessel functions Iν(s))
and in this chapter (the partition function of the spherical model). In this appendix
we study how to solve this problem when the function J(s) is expressed as an integral,
of general form

J(s) =
∫

C
g(z) esf(z) dz. (3.A.1)

In the following we will consider the case in which s is a real variable. The contour
C is chosen in such a way that the real part of f(z) goes to −∞ at both points of
integration (so that the integrand vanishes in these regions) or as a closed contour in
the complex plane.12

If the variable s assumes quite large positive values, the integrand is large when
the real part of f(z) is also large and, vice versa, is small when the real part of f(z) is
either small or negative. In particular, for s→ +∞, the significant contribution of the
integral comes from those regions in which the real part of f(z) assumes its maximum
positive value. To see this, expressing f(z) as

f(z) = u(x, y) + i v(x, y),

12In the following we assume that the function g(z) is significantly smaller than the term esf(z) in
the regions of interest.
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one has
J(s) =

∫
C
g(z) esu(x,y) eisv(x,y) dz.

If we make the hypothesis that the imaginary part of the exponent, iv(x, y), is ap-
proximately constant in the region where the real part has its maximum, i.e. v(x, y) 	
v(x0, y0) = v0, one can approximate the integral as follows

J(s) 	 eisv0

∫
C
g(z) esu(x,y) dz.

Far from the point of the maximum of the real part, the imaginary part can oscillate
in an arbitrary way, for the integrand is anyway small and the phase factor quite
irrelevant.

Let us now discuss the properties of the maximum point of sf(z). The real part of
sf(z) has a maximum, at a given s, corresponding to the maximum of the real part
of f(z), i.e. u(x, y). This point is determined by the equations

∂u

∂x
=

∂u

∂y
= 0.

From the Cauchy–Riemann equations satisfied by the analytic functions, these equa-
tions can be expressed as

df(z)
dz

= 0. (3.A.2)

It is important to stress that the maximum of u(x, y) is such only along a particular
contour. In fact, for all points of the complex plane at a finite distance from the origin,
neither the real nor the imaginary parts of an analytic function have an absolute max-
imum or an absolute minimum. This is a direct consequence of the Laplace equation
satisfied by both functions u and v

∂2u

∂x2 +
∂2u

∂y2 = 0;

∂2v

∂x2 +
∂2v

∂y2 = 0.

If the second derivative with respect to x of one of the functions u or v is positive,
its second derivative with respect to y is necessarily negative. Hence, none of the
two functions can have an absolute maximum or minimum. The vanishing of the first
derivative of f(z), eqn (3.A.2), implies that we are in the presence of a saddle point: this
is a stationary point that is a maximum of u(x, y) along one contour, but a minimum
along another (see Fig. 3.10).

The problem is then how to choose a path of integration C that satisfies the follow-
ing conditions: (a) there exists a maximum of u(x, y) along C; (b) the contour passes
through the saddle point, so that the imaginary part v(x, y) has the smallest varia-
tion. From complex analysis, it is known that the curves associated to the equations
u = constant and v = constant form a system of orthogonal curves, and the curve
v = c (where c is a costant) is always tangent to the gradient ∇u of u. Hence, this
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Fig. 3.10 Saddle point of an analytic function.

is the curve along which we have the maximum decreasing of the function each time
we move away from the saddle. Therefore this is the curve to select as the contour of
integration C.

At the saddle point, the function f(z) can be expanded in its Taylor series

f(z) 	 f(z0) +
1
2
(z − z0)2 f ′′(z0) + · · ·

Along C, the quadratic correction of the function is both real (the imaginary part is
constant along the chosen path) and negative (since we are moving along the path of
fastest decrease from the saddle point). Assuming f(z0) �= 0, we have

f(z) − f(z0) 	 1
2
(z − z0)2 f ′′(z0) ≡ − 1

2s
t2,

where we have defined the new variable t. Expressing (z − z0) in polar coordinates

(z − z0) = δ eiα,

(with the phase being fixed), we get

t2 = −sf ′′(z0) δ2 e2iα.

Since t is real, one has
t = ±δ | sf ′′(z0) |1/2,

and substituting in (3.A.1), we obtain13

J(s) 	 g(z0) esf(z0)
∫ +∞

−∞
e−t2/2 dz

dt
dt. (3.A.3)

Since
dz

dt
=
(
dt

dz

)−1

=
(
dt

dδ

dδ

dz

)−1

= | sf ′′(z0) |−1/2 eiα,

13The integral has been extended to ±∞ since the integrand is small when t is large.
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eqn (3.A.3) becomes

J(s) 	 g(z0) esf(z0) eiα

| sf ′′(z0) |1/2
∫ +∞

−∞
e−t2/2 dt. (3.A.4)

The integral is now gaussian (equal to
√

2π) so the asymptotic behavior of J(s) is
given by

J(s) 	
√

2π g(z0) esf(z0) eiα

| sf ′′(z0) |1/2
, s→ +∞. (3.A.5)

Two comments are in order. Sometimes the integration contour passes through
two or more saddle points. In such cases, the asymptotic behavior of J(s) is obtained
by summing all the contributions (3.A.5) relative to the different saddle points. The
second comment is about the validity of the method: in our discussion we have assumed
that the only significant contribution to the integral comes from the region near the
saddle point z = z0. This means that one should always check that the condition

u(x, y) � u(x0, y0)

holds along the entire contour C away from z0 = x0 + iy0.

Appendix 3B. Brownian Motion on a Lattice

In this appendix we will recall the basic notions of brownian motion on a d-dimensional
lattice. We will also show the interesting relation between this problem and the spher-
ical model discussed in the text.

Binomial coefficients. Let us initially consider the one-dimensional case, with lattice
sites identified by the variable s, with s = 0,±1,±2, . . .: the problem consists of
studying the motion of a particle that, at each discrete time step tn, has a probability
p and q = 1 − p to move respectively to the neighbor site on its right or on its left
(see Fig. 3.11). Suppose that at t0 = 0 the particle is at the origin s = 0: what is the
probability Pn(s) that at time tn (after n steps) the particle is at site s? There are
several way to determine such a quantity. One of the most elegant methods consists

i+1i−1 i

q p

Fig. 3.11 Brownian motion on a one-dimensional lattice.
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of assigning a weight eiφ to the jump toward the right site and a weight e−iφ to the
one toward the left site and to consider the binomial

(
peiφ + qe−iφ

)n
.

For n = 1, one has (
peiφ + qe−iφ

)
,

from which we can see that the coefficient p in front of eiφ represents the probability
that, after the first step, the particle is at site s = 1, placed to the right of the origin,
whereas the coefficient q in front of the other exponential e−iφ gives the probability
that the particle is at site s = −1 on the left of the origin. Similarly, considering the
expression (

peiφ + qe−iφ
)2
,

and expanding the binomial, the coefficient p2 in front of the term e2iφ gives the
probability that the particle is at site s = 2 after two steps, the coefficient 2pq in
front of e0iφ gives the probability to find the particle at origin, while the coefficient
q2 in front of e−2iφ expresses the probability to find the particle at site s = −2. More
generally, we have that

Pn(s) = coefficient in front of eisφ in
(
peiφ + qe−iφ

)n
.

Thanks to the identity

1
2π

∫ π

−π

e−iφa dφ = δa,0,

such a coefficient can be filtered by means of the Fourier transform, so that

Pn(s) =
1
2π

∫ π

−π

(
peiφ + qe−iφ

)n
e−isφ dφ. (3.B.1)

In the symmetric case, p = q = 1
2 , we have

Pn(s) =
1
2π

∫ π

−π

(cosφ)n e−isφ dφ =
1
2n

n![ 1
2 (n+ s)

]
!
[1
2 (n− s)

]
!
. (3.B.2)

In this case, if n is even, the only possible values of s are also even, with | s |≤ n,
while if n is odd then s is also odd, with | s |< n.

The origin of the binomial coefficient becomes evident by looking at Fig. 3.12. In
fact, the computation of Pn(s) is equivalent to counting the number of different paths
that start from the origin and reach the point s after n steps. In these paths each turn
to the right or to the left is weighted by p and q, respectively.
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t

Fig. 3.12 Two paths that lead to the same point after n steps.

Continuous probability. When n → ∞ the integral (3.B.6) can be estimated
by the saddle point method. In this limit, the dominant term of the integral
comes from the values of φi near the origin, so that expanding in series the term[ 1
d (cosφ1 + · · · + cosφd)

]n and keeping only the quadratic terms, one has[
1
d

(cosφ1 + · · · + cosφd)
]n

= exp
[
n log

1
d

(cosφ1 + · · · + cosφd)
]

	 exp
[
− n

2d
(
φ2

1 + φ2
2 + · · · + φ2

d

)]
.

Changing variables xi = φi n
1/2 and performing the integral (3.B.6), one obtains

the gaussian distribution

Pn(�s) 	
(

d

2πn

)d/2
exp
[
− d

2n
�s · �s
]
. (3.B.3)

If we now denote by a the lattice spacing and by τ the time interval between each
transition, the variable �x = a�s is the distance of the particle from the origin after the
time t = nτ . The function Pn(�s) in (3.B.3) is related to the continuous probability
density P (�x, t) to find the particle in the volume d�x nearby the point �x

P (�x, t) =
1

(4πDt)d/2 exp
[
−�x · �x

4Dt

]
, (3.B.4)

where D = a2

2dτ is the diffusion constant. In fact, the function P (�x, t) satisfies the
differential equation of the diffusion process(

∂

∂t
−D∇2

)
P (�x, t) = 0,
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where ∇2 is the laplacian operator in d dimensions. The dispersion of the probability
density P (�x, t) is expressed by the mean value 〈| �x |2〉, computed with respect to
the probability distribution (3.B.4): this quantity grows linearly with time:

〈 | �x |2〉 = 2D t. (3.B.5)

Generalization. The analysis of the one-dimensional case can be easily generalized
in higher dimensional lattices. Consider, for instance, a d-dimensional cubic lattice in
which, at each discrete temporal step, there are 2d possible transitions to the neighbor
sites. For simplicity, let us assume that all these probabilities are the same and equal
to 1

2d . Assigning the weight eiφi for the jump ahead and e−iφi for the jump back along
the i-th direction, the probability of finding the walker at site s with coordinates
�s = (s1, s2, . . . , sd) after n steps is expressed by the d-dimensional Fourier transform

Pn(�s) =
1

(2π)d

∫ π

−π

· · ·
∫ π

−π

[
1
d
(cosφ1 + cosφ2 + · · · cosφd)

]n
e−i�s·�φ ddφ. (3.B.6)

The problem can be easily generalized to the cases where there are transitions be-
tween arbitrary sites, not necessarily next neighbor. Let �si and �sj be two sites of
a d-dimensional lattice, with total number of sites equal to Ld. Assuming periodic
boundary conditions along all directions, we have the equivalence relationships

(s1, s2, . . . , sd) ≡ (s1 + L, s2, . . .) ≡ (s1, s2 + L, s3, . . .) ≡ . . .

Let p(�si − �sj) be the probability of the transition �sj −→ �si. For simplicity we assume
that this probability is time independent and a function only of the distance between
the two sites. Let us denote, as before, by Pn(�s) the probability that the particle is at
site �s after n steps. This function satisfies the recursive equation

Pn+1(�s) =
∑
�sj

p(�s− �sj)Pn(�sj), (3.B.7)

with the initial condition
P0(�s) = δ�s,0. (3.B.8)

Due to their probabilistic nature, Pn(�s) and p(�s) satisfy the normalization conditions∑
�s

Pn(�s) = 1,
∑
�s

p(�s) = 1. (3.B.9)

To solve the recursive equation (3.B.7) let us introduce the generating function14

G(�s, w) =
∞∑
n=0

Pn(�s)wn. (3.B.10)

14A brownian motion is transient if G(0, 1) is a finite quantity, while it is recurrent if G(0, 1) is
instead divergent. The origin of this terminology will become clear below.
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Let’s now multiply eqn (3.B.7) by wn+1 and sum over n. Taking into account the
definition of G(�s, w) and the initial condition (3.B.8), the generating function G(�s, w)
satisfies the equation

G(�s, w) − w
∑
�s′
p(�s− �s′)G(�s′, w) = δ�s,0, (3.B.11)

where the convolution term comes from the translation invariance of the lattice. This
suggests finding its solution by expanding G(�s, w) in a Fourier series. Let g(�k,w) and
λ(�k) be the Fourier transforms of G(�s, w) and p(�s):

g(�k,w) =
∑
�s

G(�s, w) exp
[
i�k · �s

]
; (3.B.12)

λ(�k) =
∑
�s

p(�s) exp
[
i�k · �s

]
,

with �k = 2π
L �r and rj = 0, 1, 2, . . . , (L − 1). In terms of these quantities, eqn (3.B.11)

can be written as
g(�k,w) − wλ(�k) g(�s, w) = 1,

from which
g(�k,w) =

1

1 − wλ(�k)
. (3.B.13)

Taking now the inverse Fourier transform, the solution of (3.B.11) is

G(�s, w) =
1
Ld

L−1∑
{rj=0}

exp (−2πi�r · �s/L)
1 − wλ (2π�r/L)

. (3.B.14)

Since Pn(�s) is the coefficient of wn in G(�s, w), expanding in series the expression above
we obtain

Pn(�s) =
1
Ld

L−1∑
{rj=0}

[
λ

(
2π�r
L

)]n
exp (−2πi�r · �s/L) . (3.B.15)

When L→ ∞, the generating function G(�s, w) is expressed by the integral

G(�s, w) =
1

(2π)d

∫ 2π

0
· · ·
∫ 2π

0

exp(−i�s · �k)
1 − wλ(�k)

d�k. (3.B.16)

If the transitions are only those between next neighbor sites of a cubic lattice, the
function λ(�k) is given by

λ(�k) =
1
d

d∑
j=1

cos kj ,

and G(�s, w) can be written as

G(�s, w) =
1

(2π)d

∫ π

−π

· · ·
∫ π

−π

exp(−i�s · �k)
1 − w d−1

∑d
j=1 cos kj

d�k. (3.B.17)
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Note that G̃(�s, w) ≡ wG(�s, w) satisfies the equation[
−∇2

s + (w−1 − 1)
]
G̃(�s, w) = δ�s,0,

where ∇2
s is the discrete version of the laplacian operator on the d-dimensional lattice

∇2
s f(�s) ≡ 1

2d

d∑
μ=1

[f(�s+ �eμ) + f [�s− �eμ − 2f(�s)] .

This function is analogous of the euclidean propagator of a free bosonic field of mass
m: in fact, rescaling the quantities by the lattice space a according to �s→ �s/a, �k → �ka
and imposing

w−1 = 1 + m2 a
2

2d
,

we have

D(�s,m2) = lim
a→0

1
2dad−2 G̃

(
�s

a
, w

)
=
∫ +∞

−∞

dd�k

(2π)d
ei
�k·�s

k2 +m2 . (3.B.18)

The relationship between the spherical model and brownian motion should now
be clear. In fact, the function g′(z) defined by (3.5.13) and entering the saddle point
equation of model (3.5.16) is nothing else but the generating function of the brownian
motion on a cubic lattice! More generally, the spherical model with coupling con-
stants Jij is related to the brownian motion with a probability transitions p(�si − �sj)
proportional to Jij . There is, in fact, the following identity

g′(z) =
1
z
G(0, dz−1). (3.B.19)

Transient and recurrent brownian motion. As discussed in the text, there is a
phase transition in the spherical model only if g′(d) is finite. For brownian motion,
this condition implies that the corresponding brownian motion is transient and not
recurrent. For d = 1 and d = 2 the brownian motion is always recurrent:15 this means
that a brownian motion that starts from the origin will always come back to the origin
with probability equal to 1. For d ≥ 3, G(0, 1) is a finite quantity and this implies that
the brownian motion is transient: this means that there is a finite probability that the
walker never comes back to the origin. These results are part of the famous problem
posed by Polya about the probability of the random walk to return to a given site and
its dependence on the dimensionality of the lattice. To derive these results, in general
it is useful to introduce the following functions:

• Pn(�s,�s0) = probability to be at site �s after n steps, where �s0 is the starting point;
• Fn(�s,�s0) = probability to be at site �s for the first time after n steps, where �s0 is

the starting point;

15In the two-dimensional case, this result gives support to the popular saying All roads lead to
Rome.



134 Approximate Solutions

together with their corresponding generating functions

G(�s,�s0;w) = δ�s,�s0 +
∞∑
n=1

Pn(�s,�s0)wn, (3.B.20)

F(�s,�s0;w) =
∑
n=1

Fn(�s,�s0)wn.

The functions Pn and Fn satisfy

P0(�s,�s0) = δ�s,�s0 , (3.B.21)

Pn(�s,�s0) =
n∑

k=1

Pn−k(�s,�s)Fk(�s,�s0).

In fact, the particle can reach the site �s for the first time after k steps and can come back
later to the same site in the remaining (n− k) steps. So, the sum over k corresponds
to all independent ways to implement the transition �s0 → �s in n steps. Multiplying
these equations by wn, summing on n, and using the generating functions, one has

G(�s,�s0;w) =
∑
n=0

Pn(�s,�s0)wn

= δ�s,�s0 +
∞∑
n=1

n∑
k=1

wk Fk(�s,�s0) wn−k Pn−k(�s,�s) (3.B.22)

= δ�s,�s0 +G(�s,�s, w)F(�s,�s0, w).

Hence
F(�s0, �s0, w) = 1 − [G(�s0, �s0, w)]−1

,
F(�s,�s0, w) = G(�s,�s0, w)/G(�s,�s, w) if �s �= �s0.

(3.B.23)

These formulas can now be used to study the nature of the brownian motion on
different lattices. If we have translation invariance, G(�s,�s0;w) = G(�s − �s0;w) and
analogously for F . Note that F(0, 1) is exactly the probability that a particle comes
back soon or later to its starting point. In fact

F(0, 1) = F1(0) + F2(0) + · · · (3.B.24)

and therefore this quantity corresponds to the sum of the probabilities of all indepen-
dent ways to come back to the origin, i.e. for the first time after one step, two steps,
etc. On the other hand, from (3.B.23) one has

F(0, 1) = 1 − [G(0, 1)]−1
, (3.B.25)

so that the particle has probability equal to 1 to come back to the origin if G(0, 1) is
a divergent quantity, as we saw it happen for d = 1 and d = 2. On the contrary, in
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three dimension and for a cubic lattice we have

G(0, 1) =
1

(2π)3

∫ 2π

0

∫ 2π

0

∫ 2π

0

d3�k

1 − 1
3 (cos k1 + cos k2 + cos k3)

=

( √
6

32π3

)
Γ
(

1
24

)
Γ
(

5
24

)
Γ
(

7
24

)
Γ
(

11
24

)
= 1.516386059.... (3.B.26)

so that the probability to return to the origin is equal to

F(0, 1) = 0.34053733... (3.B.27)

Number of distinct points visited in the brownian motion. Denoting by Sn
the mean value of the distinct points visited by the walker after n steps, let’s now
derive the following asymptotic value when n→ ∞ for various lattices

Sn 	

⎧⎪⎨
⎪⎩
( 8n
π

) 1
2 d = 1,

πn
log n d = 2,
Cd n d ≥ 3,

(3.B.28)

where the constant Cd depends on the structure of the lattice. For their derivation,
observe that

Sn = 1 +
′∑
�s

[F1(�s) + F2(�s) + · · · + Fn(�s)] ,

where the sum is over all sites of the lattice but the origin. The first term of this
expression is related to the origin, i.e. to the initial condition of the particle. With the
definition previously given for Fn(�s), each term in the sum represents the probability
that a site of the lattice has been visited at least once in the first n steps. Consider now

Δk = Sk − Sk−1, k = 1, 2, . . .

Since S0 = 1 and S1 = 2, one has Δ1 = 1. Moreover

Δn =
′∑
�s

Fn(�s) = −Fn(0) +
∑
�s

Fn(�s),

where the sum is now extended to all lattice sites. The generating function of Δn is
given by

Δ(w) =
∞∑
n=1

wn Δn = −F(0, w) +
∑
�s

F(�s, w).
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From (3.B.22) one has

F(�s, w) =
G(�s, w) − δ�s,0

G(0, w)
.

Since for any n ∑
�s

Pn(�s) = 1,

one gets ∑
�s

G(�s, w) = 1 + w + w2 + · · · =
1

1 − w
.

Therefore
Δ(w) = −1 +

1
(1 − w)G(0, w)

. (3.B.29)

Taking into account that

S0 = 1, S1 = 2
Sn = 1 + Δ1 + Δ2 + · · · + Δn, n ≥ 1

the generating function of Sn is expressed by

S(w) =
∞∑
n=0

wn Sn

= (1 − w)−1 [1 + wΔ1 + w2Δ2 + · · ·
]

(3.B.30)

= (1 − w)−1 [1 − Δ(w)]−1 =
[
(1 − w)2G(0, w)

]−1
.

Consider G(0, w) for various lattices. For d = 1, we have

G(0, w) =
1
2π

∫ π

−π

dk

1 − w cos k
=

1√
1 − w2

. (3.B.31)

For d = 2 we have

G(0, w) =
1

(2π)2

∫ π

−π

∫ π

−π

dk1 dk2

1 − 1
2w(cos k1 + cos k2)

=
2
π
K(w), (3.B.32)

where

K(w) =
∫ π/2

0

dα√
1 − w2 sin2 α

(3.B.33)

is the elliptic integral of first kind. For w → 1, K(w) has a logarithmic singularity, so
that

G(0, w) 	 − 1
π

log(1 − w) + O(1), z → 1. (3.B.34)

For d ≥ 3, G(0, w) has a finite limit for w → 1, in particular for d = 3 it is given by
(3.B.26).

To derive the asymptotic behavior of Sn we need the following theorem.
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Theorem 3.1 Let U(y) =
∑

n ane
−ny be a convergent series for all values y > 0,

with an > 0. If, for y → 0, U(y) behaves as

U(y) ∼ Φ(y−1),

where Φ(x) = xσ L(x) is an increasing positive function of x that goes to infinity when
x→ ∞, with σ ≥ 0 and L(cx) ∼ L(x) for x→ ∞, then

a1 + a2 + · · · + an ∼ Φ(n)
Γ(σ + 1)

. (3.B.35)

If we now substitute the different expressions of G(0, 1) in (3.B.29), put z = e−y, and
study the limit y → 0, we have

Δ(y) 	

⎧⎨
⎩

(2/y)1/2 d = 1,
π/(y log 1/y) d = 2,
1/yG(0, 1) d ≥ 3.

(3.B.36)

Hence
d = 1, σ = 1

2 , L(x) = 21/2,
d = 2, σ = 1, L(x) = π/ log x,
d ≥ 3, σ = 1, L(x) = 1/G(0, 1).

(3.B.37)

Putting now ai = Δi in (3.B.35), we obtain the asymptotic behavior (3.B.28) of the
mean value of the distinct sites visited after n steps, in the limit n→ ∞.

Relation with prime numbers. It is interesting to note that for d = 2 the number
of distinct sites visited in n steps is proportional to the number of prime numbers less
than the integer n. This quantity has been estimated originally by Gauss: denoting by
Π(n) the number of primes less than n, Gauss found the asymptotic form of such a
function:

Π(n) 	 n

logn
. (3.B.38)

The coincidence between this aspect of number theory and brownian motion has an
elementary explanation that clarifies some important aspects of the prime numbers.

Gauss’s law can be derived in a simple way by employing the sieve of Eratosthenes.
Let us denote by P (n) the probability that an integer n is a prime number. Since a
generic integer n has probability 1/pi of being divisible by pi (this comes directly from
the sieve of Eratosthenes), the probability that the number n is not divisible by pi is
equal to (1−1/pi). Assuming that there is no correlation between the prime numbers,
the probability that the number n is not divisible for all prime pi less than n/2 (i.e.
the probability that n is itself a prime) is given by

P (n) 	
(

1 − 1
2

)(
1 − 1

3

)(
1 − 1

5

)
· · · =

∏
pi<n

(
1 − 1

pi

)
. (3.B.39)
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By taking the logarithm of both sides, we have

logP (n) 	
∑
pi<n

log
(

1 − 1
pi

)
	 −

∑
pi<n

1
pi
.

The last sum over the primes pi can be written as a sum over the integers by using
the probability P (k) and therefore

logP (n) 	 −
n∑
k

P (k)
k

	
∫ n

1

P (k)
k

dk.

Taking the derivative with respect to n of both terms we see that P (n) satisfies the
differential equation

dP (n)
dn

= −P
2(n)
n

,

whose solution is the celebrated probability of the prime numbers P (n) = 1/ log n.
The key point of this derivation is the iterative nature of the sieve of Eratosthenes.

From an algorithmic point of view, this procedure consists of the following steps:
(a) once a prime number pi has been identified, one cancels all its multiples; (b) the
next prime pi+1 is then the first integer number after pi that has survived step (a).
One then repeats iteratively steps (a) and (b). In light of this observation, any other
sieve on the natural numbers implemented with the same rules will produce the same
probability law P (n) 	 1/ logn. We can adopt, for instance, a sieve purely based on
probabilistic laws. For instance, if we select the number 2 as a prime number, we can
proceed to cancel all next numbers with probability 1/2. After this procedure, we take
the first number ni that has survived this sieve and proceed to cancel all numbers
n > ni with probability 1/ni, and so on. After all steps of this procedure have been
completed, the set E of the survived numbers are prime numbers only on average,
although they follow the same Gauss’s law (3.B.38). In other words, the probability
that a generic integer number n belongs to the set E is given by Gauss’s law (3.B.38).

The arithmetic situation then looks similar to statistical mechanics, where there
are general laws that are easy to establish if one considers a large number of similar
ensembles but whose origin may appear mysterious if analyzed on a particular sample.

Note that, for large n, eqn (3.B.39) can be cast as the probability that the next
two numbers belong to the same set, i.e.

P (n+ 1) 	 P (n)
[
1 − 1

n
P (n)

]
. (3.B.40)

This equation has the following interpretation. For large n one expects that P (n+ 1)
and P (n) are almost equal, but the difference is that the number n can cancel the
next number with probability 1/n but it is not true vice versa! The probability that
n belongs to the set and simultaneously that cancels (n + 1) is given by the product
of the probabilities 1

n × P (n). Therefore, the probability that this does not happen is
given by

[
1 − 1

nP (n)
]
, i.e. the factor present on the right-hand side of (3.B.40).
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It should be noted that (3.B.40) is the equation satisfied by the probability to visit
a new site in two-dimensional brownian motion. In fact, in a brownian motion the mean
square distance from the origin after n steps is r2 	 n. Therefore, in two-dimensional
brownian motion, after n steps the particle is localized in a circle of radius

√
n. Let

P (n) be the probability that the particle visits a new site at the n-th step. What is the
probability that the particle will visit a new site at the (n+ 1)-th step? Going from n
to (n+1), the area A of the circle varies as ΔA/A = 1/n and the probability that these
sites have already been visited is given by the product P (n) × ΔA/A = P (n) × 1/n.
The probability that these sites have not already been visited is given by 1 − 1

nP (n).
Since for large n, P (n+ 1) and P (n) must be proportional, we arrive at eqn (3.B.40)
and therefore P (n) 	 1/ logn. The average number of distinct sites that have been
visited is given by the total area A 	 πn mutiplied by the probability P (n) = 1/ log n,
i.e. Sn 	 πn/ logn.

We leave as an exercise the elementary derivation of the asymptotic behavior of
Sn in d = 1 and d ≥ 3.
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Problems

1. Mean field theory for antiferromagnetic systems
a Prove that the mean field theory can be applied to antiferromagnetic systems defined

on a square lattice.
b Generalize this result to all lattices that admit two sublattices such that the next

neighbor sites of one are sites of the other and vice versa. This occurs, for instance,
in the two-dimensional hexagonal or square lattices.

c What happens if one considers a triangular lattice?

2. Mean field theory for coupled lattices
Consider a system of Ising spins made of two-dimensional square lattices A and B,
coupled together. Let Ja and Jb be the coupling constants between next neighbor
spins in the lattices A and B respectively, and J the coupling constant betwen the
next neighbor spins of the two lattices, as in Fig. 3.13.

a Generalize the mean field theory to this system and show that the spontaneous
magnetizations of the two lattices satisfy the coupled system of equations

Ma = f(JaMa + JMb)
Mb = f(JbMb + JMa).

Determine the explicit form of the function f .

Ja

Jb
J

Fig. 3.13 Layers of Ising spins.
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b Estimate the critical temperature Tc in the mean field approximation.
c Show that, for T > Tc, the magnetic susceptibility is expressed by the ratio of a

linear and quadratic polynomial in T .
d Discuss the case Ja = Jb > 0 while J < 0 and study the magnetic susceptibility for

these values of the couplings.
e Discuss the limits J → ±∞.

3. Spontaneous magnetization at low temperature
Show that, when T is much less than Tc, the mean field theory of a ferromagnet
predicts a spontaneous magnetization that differs from its saturation value for terms
that are exponentials in −1/T .

4. Quantum magnets
Consider the hamiltonian

H = −1
2

∑
R,R′

J(R−R′) �S(R) · �S(R′)

where J(R−R′) > 0 and �S(R) is the quantum operator of spin S.
a Prove initially the following result: the largest (smallest) diagonal element that a

hermitian operator can have is equal to its largest (smallest) eigenvalue.
b Use this result to prove that, for R �= R′, 〈�S(R) · �S(R′)〉 ≤ S2.
c Let | S〉R be the eigenvectors Sz(R) with the maximum eigenvalue

Sz(R) | S〉R = S | S〉R.

Prove that the state | 0〉 =
∏

i | S〉R is an eigenvector of the hamiltonian with
eigenvalue

E0 = −1
2
S2
∑
R,R′

J(R−R′).

Hint. Express the hamiltonian in terms of the ladder operators S±(R) = (Sx ±
iSy)(R) and use the condition S+(R) | S〉R = 0.

d Use the result of a to show that E0 is the smallest eigenvalue of the hamiltonian.

5. Critical exponents of the spherical model
Use the equation of state and the other relations discussed in the text to derive the
critical exponents of the spherical model.

6. Brownian motion with boundary conditions
Let

P (s, t) =
1√

4ΠDt
exp[−s2/(4Dt)]

be the probability distribution in the continuum limit of the one-dimensional brownian
motion.
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a Find the probability distribution Pa(s, t) when the s = s0 > 0 is an absorbent point,
i.e. when Pa(s0, t) = 0 for all t ≥ 0.

b Find the probability distribution Pr(s, t) when the point s = s0 > 0 is a pure
reflecting point, i.e. when it holds the condition ∂Pr

∂x (s0, t) = 0 for all t ≥ 0.
Hint. Use P (s, t) and the linearity of the problem to set up the method of solution.

7. Distinct points visited in brownian motion
Give a physical argument for the mean value of the number of distinct sites visited in
brownian motion and show that this mean value depends on the dimensionality of the
lattice as predicted by eqn (3.B.28).

8. Markov processes
Brownian motion is a particular example of a general class of stochastic processes
known as Markov processes, characterized by a transition probability w(i → j) =
wij between the discrete states {A} = {a1, a2, a3, . . . , an} of a stochastic variable A
(wij ≥ 0 and

∑n
j=1 wij = 1). These transitions take place at discrete time steps

tn = n. Denoting by Pi(n) the probability to be in the i-th state at time n, it satisfies
the recursive equation

Pi(n+ 1) =
n∑

j=1

wij Pj(n).

Using a matrix formalism, it can be expressed as P (n+ 1) = WP (n).
a Prove that the eigenvalues of the matrix W satisfy the condition | λi |≤ 1.
b Show that the system reaches an equilibrium distribution Pi(∞) for t → ∞ that

is independent of the initial condition if and only if the matrix W has only one
eigenvalue of modulus 1.

c Assuming that the conditions of the point b are satisfied, prove that

lim
n→∞(W )n = M =

⎛
⎜⎜⎜⎜⎜⎜⎝

m1, m2, . . . ,mn

m1, m2, . . . ,mn

.

.

.
m1, m2, . . . ,mn

⎞
⎟⎟⎟⎟⎟⎟⎠

with limn→∞ Pi(n) = mi

9. Brownian motion on a ring
Consider brownian motion on a ring of N sites, with a transition rate to next neigh-
bor sites equal to 1/2. Let Pn(s) be the probability to find the walker at site s at
time n (s = 1, 2, . . . , N). Show that if N is an odd number, there is a unique sta-
tionary probability distribution n → ∞. Vice versa, if N is an even number, for
n → ∞, the distribuition probability can oscillate between two different probability
distributions.
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10. Langevin equation and brownian motion
Consider a particle of mass m in motion in a fluid (for simplicity we consider one-
dimensional motion), subjected to a frictional force proportional to the velocity and
a random force η(t) due to the random fluctuations of the fluid density. Denoting by
x(t) and v(t) the position and the velocity of the particle at time t, the equations of
motion of the particle are

dv(t)
dt

= − γ

m
v(t) +

1
m
η(t),

dx(t)
dt

= v(t),

where γ > 0 is the friction coefficient. Assume that η(t) is a random variable, with
zero mean and delta-correlated

〈η(t)〉η = 0, 〈η(t1)η(t2)〉η = 2γkBT δ(t1 − t2)

where kB is the Boltzmann constant, T is the temperature, and the average 〈 〉η is
with respect to the probability distribution of the stochastic variable η(t).
a Let x0 and v0 be the position and velocity of the particle at t = 0. Integrating

the equations of motion and taking the average with respect to η, show that the
correlation function of the velocity is

〈v(t2)v(t1)〉η =
(
v2
0 − kBT

m

)
e−(γ/m)(t1+t2) +

kBT

m
e−(γ/m)(t2−t1).

with t2 > t1.
b Compute the variance of the displacement and show that

〈(x(t) − x0)2〉η =
m2

γ

(
v2
0 − kBT

m

)(
1 − e−(γ/m)t

)2

+
2kBT
γ

[
t− m

γ

(
1 − e−(γ/m)t

)]
.

c Assuming that the particle is in thermal equilibrium, we can now average over all
possible initial velocities v0. Let’s denote this thermal average by 〈 〉T . By the
equipartion theorem we have 〈v2

0〉T = kBT/m. Show that, for t 
 m/γ, the
thermal average of the variance of the displacement becomes

〈〈(x(t) − x0)2〉η〉T 	 (2kBT/γ)t.
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4
Duality of the Two-dimensional
Ising Model

Being dual is in the nature of things.

Elias Canetti

In this chapter we will begin our study of the Ising model on the two-dimensional
lattice. In two dimensions the model has a phase transition, with critical exponents
that have different values from those obtained in the mean field approximation. For
this reason, it provides an important example of critical phenomena. As we will see in
great detail in this chapter and in the next, among all exactly solved models of sta-
tistical mechanics, the two-dimensional Ising model is not only the one that has been
most studied but it is also the model that has given a series of deep mathematical
and physical results. Many solutions of the model stand out for the ingenious meth-
ods used, such as the theory of determinants, combinatorial approaches, Grassmann
variables, or elliptic functions. Many results have deeply influenced the understanding
of critical phenomena and have strongly stimulated new fields of research. Ideas that
have matured within the study of the two-dimensional Ising model, such as the duality
between its high- and low-temperature phases, have been readily generalized to other
systems of statistical mechanics and have also found important and fundamental app-
lications in other important areas such as, for instance, quantum field theory. Equally
fundamental is the discovery that in the vicinity of the critical point, the dynamics of
the model can be described from the relativistic Dirac equation for Majorana fermions.

This chapter is devoted to the study of some properties of the model that can
be established by means of elementary considerations. We will discuss, in particular,
the argument by Peierls that permits us to show the existence of a phase transition
in the model. We will also present the duality relation that links the expressions of
the partition functions in the low- and high-temperature phase of a square lattice,
and the partition functions of the triangle and hexagonal-lattices. In the last case,
it is necessary to make use of an identity, known as the star–triangle equation, that
will be useful later on to study the commutativity properties of the transfer matrix.
At the end of the chapter, we will also discuss the general formulation of the duality
transformations for lattice statistical models.
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4.1 Peierls’s Argument

In 1936 R. Peierls published an article with the title On the Model of Ising for the
Ferromagnetism in which he proved that the Ising model in two or higher dimensions
has a low-temperature region in which the spontaneous magnetization is different from
zero. Since at high temperature the system is disordered, it follows that there must
exist a critical value of the temperature at which a phase transition takes place.

Peierls’s argument starts with the initial observation that to each configuration of
spins there corresponds a set of closed lines that separate the regions in which the spins
assume values +1 from those in which they assume values −1, as shown in Fig. 4.1.
If it is possible to prove that at sufficiently low temperatures the mean value of the
regions enclosed by the closed lines is only a small fraction of the total volume of the
system, one has proved that the majority of the spins is prevalently in the state in
which there is a spontaneous magnetization.

There are several versions of the original argument given by Peierls. The simplest
generalizes the argument already used in the one-dimensional case (see Chapter 2,
Section 2.1) and concerns the stability of the state with a spontaneous magnetization.
Let’s consider the two-dimensional Ising model at low temperatures and suppose that
it is in the state of minimal energy in which all the spins have values +1. The thermal
fluctuations create domains in which there are spin flips, such as the domain in Fig. 4.1.
The creation of such domains clearly destabilizes the original ordered state. There is
an energetic cost to the creation of the domain shown in Fig. 4.1, given by

ΔE = 2J L, (4.1.1)

where L is the total length of the curve. There are, however, many ways of creating
a closed curve of a given total perimeter L. In fact, the domain in which the spins
are flipped can be placed everywhere in the lattice and moreover can assume different
shapes. To estimate the number of such configurations, imagine that the closed line is
created by a random motion on the lattice of total number of steps equal to L. If we

Fig. 4.1 Closed lines that enclose a region with a flipped value of the spin.
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assume that at each step of this motion there are only two possibilities,1 we have 2L

ways of drawing a closed curve of length L. The corresponding variation of the entropy
is given by

ΔS = k ln(2L). (4.1.2)

Hence the total variation of the free energy associated to the creation of such a
domain is

ΔF = ΔE − TΔS = 2JL− kT ln(2L) (4.1.3)
= L(2J − kT ln 2).

Therefore the system is stable with respect to the creation of such domains of arbitrary
length L (i.e. ΔF ≥ 0) if

T ≤ Tc =
2J
k ln 2

= 2.885
J

k
. (4.1.4)

Note that such an estimate is surprisingly close to the exact value of the critical
temperature Tc = 2.269...J/k that we will determine in the next section.

4.2 Duality Relation in Square Lattices

Peierls’s argument shows that the two-dimensional Ising model has two different
phases: the high-temperature phase in which the system is disordered and the low-
temperature phase in which the system is ordered, with a non-zero spontaneous mag-
netization. The exact value of the critical temperature at which the phase transition
happens was first determined by H.A. Kramers and G.H. Wannier by using a duality re-
lation between the high- and the low-temperature partition functions.2 The self-duality
of the two-dimensional Ising model on a square lattice is one of its most important
properties, with far-reaching consequences on its dynamics. To prove it, we need to
study the series expansions of the high/low-temperature phase of the model. We will
see that these expansions have an elegant geometrical interpretation in terms of a
counting problem of the polygons that can be drawn on a lattice. In the next section
we will consider the square lattice and, in later sections, the triangle and hexagonal
lattices.

4.2.1 High-temperature Series Expansion

Consider a square lattice L with M horizontal links and M vertical links. In the
thermodynamical limit M → ∞, M coincides with the total number N of the lattice
sites. In the following we will consider a Hamiltonian with different coupling constants,

1On a square lattice, starting from a given site, one can move in four different directions. However,
taking four instead of two as possible directions of the motion gives an upper estimate of the entropy,
since it does not take into account that the final curve is a closed contour.

2The self-duality of the model that we are going to discuss only holds in the absence of an external
magnetic field.



150 Duality of the Two-dimensional Ising Model

along the horizontal and vertical directions. Let J and J ′ be these coupling constants,
respectively. For the partition function of the model at zero magnetic field we have

ZN =
∑
{σ}

exp

⎡
⎣K∑

(i,j)

σiσj + L
∑
(i,k)

σiσk

⎤
⎦, (4.2.1)

where the first sum is on the spins along the horizontal links and the second sum along
the vertical links, with

K = β J ; L = β J ′.

By using the identity

exp [xσiσl] = coshx (1 + σiσl tanhx), (4.2.2)

the partion function can be written as

ZN = (coshK coshL)M
∑
{σ}

∏
(i,j)

(1 + vσiσj)
∏
(i,k)

(1 + wσiσk), (4.2.3)

with
v = tanhK; w = tanhL.

Both parameters v and w are always less than 1 for all values of the temperature, except
for T = 0 when their value is v = w = 1. In particular, they are small parameters
in the high-temperature phase and it is natural to look for a series expansion of the
partition function near T = ∞.

If we expand the two products in (4.2.3), we have 22M terms, since there are 2M
factors (one for each segment), and each of them has two terms. We can set up a
graphical representation for this expansion associating a line drawn on the horizontal
link (i, j) to the factor vσiσj and a line on the vertical link (i, k) to the factor wσiσk.
No line is drawn if there is instead the factor 1. Repeating this operation for the
22M terms, we can establish a correspondence between these terms and a graphical
configuration on the lattice L. The generic expression of these terms is

vrwsσn1
1 σn2

2 σn3
3 . . .

where r is the total number of horizontal lines, s the total number of vertical lines,
while ni is the number of lines where i is the final site. It is now necessary to sum
over all spins of the lattice in order to obtain the partition function. Since each spin
σi assumes values ±1, we have a null sum unless all n1, n2, . . . , nN are even numbers
and, in this case, the result is 2N vrws. Based on these considerations, the partition
function can be expressed as

ZN = 2N (coshK coshL)M
∑
P

vrws, (4.2.4)

where the sum is over all the line configurations on L with an even number of lines
at each site, i.e. all closed polygonal lines P of the lattice L. Therefore, apart from a
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prefactor, the partition function is given by the geometrical quantity

Φ(v, w) =
∑
P

vrws. (4.2.5)

It is easy to compute the first terms of this function. The first term is equal to 1 and
corresponds to the case in which there are no polygons on the lattice. The second term
corresponds to the smallest closed polygon on the lattice L , i.e. a square with unit
length, as shown in Fig. 4.2. The number of such squares is equal to N , since they can
be placed on any of the N sites of the lattice. Each of them has a weight (vw)2, hence
the second term of the sum (4.2.5) is equal to N(vw)2. The next closed polygonal
curve is a rectangle of six sides: there are two kinds of them, as shown in Fig. 4.3, each
with a degeneracy equal to N , and width v4w2 for the first and v2w4 for the second.

Using the first terms, the function Φ(v, w) is given by

Φ(v, w) = 1 +N(vw)2 +N(v4w2 + v2w4) + · · · (4.2.6)

The computation of the next terms becomes rapidly more involved although it can be
clearly performed in a systematic way: presently, the first 40 terms of such a series
are known. For our purposes it is not necessary to introduce all these terms, since the
duality properties can be established just by exploiting the geometrical nature of the
sum (4.2.5).

Fig. 4.2 Second term of the high-temperature expansion.

Fig. 4.3 Third term of the high-temperature expansion.
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4.2.2 Low-temperature Series Expansion

In the low-temperature phase, according to Peierls’s argument, the spins tend to align
one with another. The series expansion of the partition function in this phase can be
obtained as follows. For a given configuration of the spins, let r and s be the numbers
of vertical and horizontal links in which the two adjacent spins are antiparallel. Since
M is the total number of vertical links as well as of the horizontal ones, we have
(M − r) vertical links and (M − s) horizontal links in which the adjacent spins are
parallel. The contribution to the partition function of such a configuration is

exp [K(M − 2s) + L(M − 2r)] .

Besides a constant, this expression depends only on the number of links in which the
spins are antiparallel. These segments will be called antiparallel links.

It is now convenient to introduce the concept of a dual lattice. This notion, which
is familiar in crystallography, has already been met in the discussion of the four-color
problem (see Appendix C of Chapter 2). For any planar lattice L, we can define another
lattice LD that is obtained by placing its sites at the center of the original lattice L and
joining pairwise those relative to adjacent faces, i.e. those sharing a common segment.
It is easy to see that the dual lattice of a square lattice is also a square lattice, simply
displaced by a half-lattice space with respect to the original one (see Fig. 4.4), while
the dual lattice of a triangular lattice is a hexagonal one and vice versa.

Given the geometrical relation between the dual and the original lattices, it is easy
to see that the spins can be equivalently regarded as defined on the sites of the original
lattice L or at the center of the faces of the dual lattice LD. This allows us to introduce
a useful graphical formalism. Given a configuration, we can associate to its antiparallel
links a set of lines of the dual lattice by the following rule: if two next neighbor spins
are antiparallel, then draw a line along the segment of LD that crosses them, draw no
line if they are parallel. By applying this rule, on the dual lattice LD there will be r
horizontal lines and s vertical lines. However, it is easy to see that there should always

Fig. 4.4 Dual square lattices.
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Fig. 4.5 Polygons that separate the domains with spins +1 and −1.

be an even number of lines passing through each site, since there is an even number
of next successive changes among the adjacent faces. The drawn lines must therefore
form closed polygons on the dual lattice LD, as illustrated in Fig. 4.5.

It is evident that the closed polygons that have been obtained in this way are
nothing else that the perimeters of the different magnetic domains where, inside them,
all spins are aligned in the same direction. Since for any given set of polygons there
are two corresponding configurations (one obtained from the other by flipping all the
spins), the partition function can be written as

ZN = 2 exp[M(K + L)]
∑
P̃

exp[−(2Lr + 2Ks)], (4.2.7)

where the sum is over all closed polygons P̃ on the dual lattice LD. This is the low-
temperature expansion, because when T → 0, both K and L are quite large and the
dominant terms are given by small values of r and s. Therefore, also in this case the
partition function is expressed by a geometrical quantity

Φ̃
(
e−2L, e−2K) =

∑
P̃

exp[−(2Lr + 2Ks)]. (4.2.8)

Consider the first terms of this series. The first term is equal to 1 and corresponds to
the situation in which all spins assume the same value. The second term corresponds
to the configuration in which there is only one spin flip: in this case there are two
horizontal antiparallel links and two vertical antiparallel links that altogether form
a square. The degeneracy of this term is equal to N , since the spin that has been
flipped can be placed on any of the N sites of the lattice. The next term is given by
the rectangle with six segments that can be elongated either horizontally or vertically:
these rectangles correspond to next neighbor spins that are antiparallel to all other
spins of the lattice. Taking into account the degeneracy N and the orientation of the
rectangle, the contribution of this term to the partition function is N(e−4L−8K +
e−8L−4K). With these first terms, the function Φ̃(e−2L, e−2K) is expressed by

Φ̃
(
e−2L, e−2K) = 1 +Ne−4L−4K +N(e−4L−8K + e−8L−4K) + · · · (4.2.9)
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From what was said above, it should now be clear that all terms of the function Φ̃
have the same origin as those of the function Φ.

4.2.3 Self-duality

In the last two sections we have shown that the partition function of the two-dimensional
Ising model on a square lattice can be expressed in two different series expansions, one
that holds in the high-temperature phase, the other in the low-temperature phase,
given in eqns (4.2.4) and (4.2.7), respectively. The final expressions involve a function
that has a common geometric nature, i.e. a sum over all the polygonal configurations
that can be drawn on the original lattice and its dual. For finite lattices, L and LD

differ only at the boundary. In the thermodynamical limit this difference disappears
and the two expressions can be obtained one from the other simply by a change of
variables. For N → ∞ one has M/N = 1: substituting K and L in eqn (4.2.5) with K̃
and L̃ given by

tanh K̃ = e−2L; tanh L̃ = e−2K , (4.2.10)

and comparing with eqn (4.2.8), we have in fact

Φ̃
(
e−2K̃ , e−2L̃

)
= Φ(v, w). (4.2.11)

This implies the following identity for the partition function

ZN [K,L]
2N (coshK coshL)N

=
ZN [K̃, L̃]

2 exp[N(K̃ + L̃)]
. (4.2.12)

Equation (4.2.10) can be expressed in a more symmetrical form:

sinh 2K̃ sinh 2L = 1; sinh 2L̃ sinh 2K = 1. (4.2.13)

Analogously, eqn (4.2.12) can be written as

ZN [K,L]
(sinh 2K sinh 2L)N/4 =

ZN [K̃, L̃]
(sinh 2K̃ sinh 2L̃)N/4

. (4.2.14)

These equations show the existence of a symmetry of the two-dimensional Ising model
and establish the mapping between high- and low-temperature phases of the model.
Large values of K and L are equivalent to small values of K̃ and L̃, and vice versa large
values of K̃ and L̃ correspond to small values of K and L. It must be stressed that
this correspondence between the two phases can also be useful from a computational
point of view.

We can now identify the critical point. Let’s consider first the isotropic case, i.e.
K = L and, correspondingly, K̃ = L̃. At the critical point the partition function
presents a divergence: assuming that this happens at the value Kc, the same should
happen also at K̃ = Kc thanks to eqn (4.2.14). These two values can be different but,
making the further hypothesis that there is only one critical point – a hypothesis that
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L

K

A

B

Fig. 4.6 Critical curve.

is fully justified from the physical point of view – these two values must coincide and
the critical point is thus identified by the condition

sinh 2Kc = 1; T square
c = 2.26922...J. (4.2.15)

The arguments presented above were given originally by Kramers and Wannier.
Let us consider now the general case in which there are two coupling constants.

Note that combining eqn (4.2.13), we have

sinh 2K sinh 2L =
1

sinh 2K̃ sinh 2L̃
. (4.2.16)

This equation implies that, under the mapping (K,L) → (K̃, L̃), the region A in
Fig. 4.6 is transformed into the region B and vice versa, leaving invariant the points
along the curve

sinh 2K sinh 2L = 1. (4.2.17)

If there is a line of fixed points in A, there should be another line of fixed points
also in B. Assuming that there is only one line of fixed points, this is expressed by
eqn (4.2.17). Therefore this is the condition that ensures the criticality of the Ising
model with different coupling constants along the horizontal and vertical directions.
This equation plays an important role both in the solution proposed by Baxter for the
Ising model and in the discussion of its hamiltonian limit.

4.3 Duality Relation between Hexagonal and
Triangular Lattices

The duality transformation of the square lattice can be generalized to other lattices.
In this section we discuss the mapping between the low- and high-temperature phases
of the Ising model defined on the triangular and hexagonal lattices shown in Fig. 4.7.

Let us introduce the coupling constants Ki and Li (i = 1, 2, 3) relative to the
triangle and hexagonal lattices, respectively, as shown in Fig. 4.8. In the absence of a



156 Duality of the Two-dimensional Ising Model

Fig. 4.7 Dual lattices: hexagonal and triangular lattices.
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Fig. 4.8 Coupling constants on the triangular and hexagonal lattices.

magnetic field, the partition function of the hexagonal lattice is given by

ZH
N (L) =

∑
{σ}

exp
[
L1

∑
σlσi + L2

∑
σlσj + L3

∑
σlσk

]
, (4.3.1)

with Li = Li/kT . In the exponential term, the sums refer to all next neighbor pairs
of spins along the three different directions of the hexagonal lattice. Similarly, in the
absence of the magnetic field, we can write the partition function on the triangular
lattice as

ZT
N (K) =

∑
{σ}

exp
[
K1

∑
σlσi + K2

∑
σlσj + K3

∑
σlσk

]
, (4.3.2)

with Ki = Ki/kT and the sums in the exponentials on all next neighbor pairs of spins
in the three different directions of the triangular lattice.

Let’s consider the high-temperature expansion of the partition function on the
triangular lattice. Put vi = tanhKi, we have

ZT
N (K) = (2 coshK1 coshK2 coshK3)

∑
P

vr11 vr22 vr33 , (4.3.3)
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where the sum is over all closed polygons on the triangular lattice, with the number
of sides equal to ri (i = 1, 2, 3) along the three different directions.

Consider now the low temperature expansion of the partition function on the hexag-
onal lattice. This is obtained by drawing the lines corresponding to the antiparallel
links on the dual lattice. Since the triangular lattice of N sites is the dual of the
hexagonal lattice with 2N sites, in this case we have3

ZH
2N (L) = e[N(L1+L2+L3)]

∑
P

exp[−2L1r1 + L2r2 + L3r3], (4.3.4)

where the sum is over the closed polygons of the triangular lattice with the number of
sides ri (i = 1, 2, 3) along the three directions.

Since in both expressions there is the same geometrical function given by the sum
over polygons drawn on the triangular lattice, imposing

tanhK∗
i = exp[−2Li], i = 1, 2, 3 (4.3.5)

the two partition functions are related as

ZH
2N (L) = (2a1a2a3)N/2 ZT

N (K∗), (4.3.6)

where
ai = sinh 2Li = 1/ sinh 2K∗

i , i = 1, 2, 3.

The relation (4.3.5) can be written in a more symmetrical way as

sinh 2Li sinh 2K∗
i = 1. (4.3.7)

As in the square lattice, the duality relation (4.3.7) implies that when one of the
coupling constant is small, the other is large and vice versa. However, the duality
relation alone cannot determine in this case the critical temperature of the two lattices,
since they are not self-dual. Fortunately, there exists a further important identity
between the coupling constants of the two lattices that permits us to identify the
singular points of the free energies of both models. This identity is the star–triangle
identity and, because of its importance, it is worth a detailed discussion.

4.4 Star–Triangle Identity
The star–triangle identity plays an important role in the two-dimensional Ising model.
In addition to the exact determination of the critical temperature for triangular and
hexagonal lattices, this identity also enables us to establish the commutativity of the
transfer matrix of the model for special values of the coupling constants. This aspect
will be crucial for the exact solution of the model discussed in Chapter 6.

To prove such an identity, first observe that the sites of the hexagonal lattice split
into two classes, i.e. the hexagonal lattice is bipartite. The sites of type A interact only
with those of type B and vice versa, while there is no direct interaction between sites
of the same type (see Fig. 4.9). The generic term that enters the sum in the partition

3For large N , the number of links along each of the three directions is equal to N .
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Fig. 4.9 Bipartition of the hexagonal lattice: site of type A (black sites) and type B (white
sites).

function (4.3.1) can be written as∏
b

W (σb;σi, σj , σk), (4.4.1)

where the product is over all sites of type B and the above quantity is expressed by
the Boltzmann weight

W (σb;σi, σj , σk) = exp [σb(L1σi + L2σj + L3σk] . (4.4.2)

Since each spin of type B appears only once in (4.4.1), it is simple to sum on them in
the expression of the partition function, with the result

ZE
N (L) =

∑
σa

∏
i,j,k

w(σi, σj , σk), (4.4.3)

where

w(σi, σj , σk) =
∑

σb=±1

W (σb;σi, σj , σk) = 2 cosh(Liσi + L2σj + L3σk). (4.4.4)

The value of each spin is ±1 and using the identity

cosh[Lσ] = coshL, sinh[Lσ] = σ sinhL

we have

w(σi, σj , σk) = c1c2c3 + +σjσkc1s2s3 (4.4.5)
+σiσjs1s2c3σiσks1c2s3,

where we have defined
ci ≡ coshLi, si ≡ sinhLi.

It is important to note that the quantity w(σi, σj , σk) can be written in such a way
to be proportional to the Boltzmann factor of the triangular lattice! This means that
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there should exist some parameters Ki and a constant D such that

w(σi, σj , σk) = D exp [K1σjσk + K2σiσk + K3σjσk] . (4.4.6)

These parameters can be determined by expanding the exponential as

exp[xσaσb] = cosh x+ σaσb sinh x,

and comparing with eqn (4.4.5). Doing so, we obtain the important result that the
products sinh 2Li sinh 2Ki are all equal

sinh 2L1 sinh 2K1 = sinh 2L2 sinh 2K2 = sinh 2L3 sinh 2K3 ≡ h−1 (4.4.7)

with the constant h equal to

h =
(1 − v2

1)(1 − v2
2)(1 − v2

3)

4 [(1 + v1v2v3)(v1 + v2v3)(v2 + v1v3)(v3 + v1v2)]
1/2 , (4.4.8)

where vi = tanhKi, while the constant D is expressed by

D2 = 2h sinh 2L1 sinh 2L2 sinh 2L3.

The identity (4.4.6) admits a natural graphical interpretation: as shown in Fig. 4.8,
summing over the spin of type B at the center of the hexagonal lattice (the one at
the center of the star), a direct interaction is generated between the spins of type A
placed at the vertices of a triangle. In this way one can switch between the Boltzmann
factor of the star of the hexagonal lattice and the Boltzmann factor of the triangular
lattice.

4.5 Critical Temperature of Ising Model in Triangle and
Hexagonal Lattices

By using the star–triangle identity, it is now easy to determine the critical tempera-
tures of the Ising model on triangular and hexagonal lattices. In fact, substituting the
identity (4.4.6) in (4.4.3), the consequent expression is precisely the partition function
of the Ising model on a triangular lattice made of N/2. Hence, rescaling N → 2N ,
one has

ZH
2N (L) = DN ZT

N (K). (4.5.1)

Using this equation, together with the duality relation (4.3.6), we obtain a relation
that involves the partiton function alone of the triangular lattice

ZT
N (K) = h−N/2 ZT

N (K∗), (4.5.2)

with
sinh 2K∗

i = h sinh 2Ki, i = 1, 2, 3, (4.5.3)

and h given in (4.4.8). Thanks to (4.5.3), there is a one-to-one correspondance between
the point (K1,K2,K3) (relative to the high-temperature phase of the model) and the
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point (K∗
1,K∗

2,K∗
3) (relative to the low-temperature phase). If, in the space of the

coupling constants, there is a line of fixed points under this mapping, this clearly
corresponds to the value h = 1. For equal couplings (K1 = K2 = K3 ≡ K), from
(4.4.8) we have the equation

(1 − v2)3

4 [(1 + v3)v3(1 + v)3]1/2
= 1, (4.5.4)

with v = tanhK. Taking the square of both terms of this equation and simplifying the
expression, one arrives at

(1 + v)4(1 + v2)3(v2 − 4v + 1) = 0.

The only solution that also satisfies (4.5.4) and has a physical meaning is given by

vc = 2 −
√

3.

This root determines the critical temperature of the homogeneous triangular
lattice

tanh
K

kTc
= 2 −

√
3,

or, equivalently

sinh
2K
kTc

=
1√
3
. (4.5.5)

Numerically
T tr
c = 3.64166...K. (4.5.6)

Using eqn (4.3.7) we can obtain the critical temperature of the Ising model on a
homogeneous hexagonal lattice

sinh
2L
kTc

=
√

3. (4.5.7)

Its numerical value is given by

Thex
c = 1.51883...L. (4.5.8)

It is interesting to compare the value of the critical temperatures (4.5.6) and (4.5.8)
with the critical temperature of the square lattice T square

c = 2.26922J , given by
eqn (4.2.15). At a given coupling constant, the triangular lattice is the one with the
higher critical temperature, followed by the square lattice, and then the hexagonal
lattice. The reason is simple: the triangular lattice has the higher coordination num-
ber, z = 6, the hexagonal lattice has the lower coordination number, z = 3, while the
square lattice is in between the two, with z = 4. The higher number of interactions
among the spins of the triangular lattice implies that such a system tends to magnetize
at higher temperatures than those of the other lattices.
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4.6 Duality in Two Dimensions

In the previous sections we showed that the duality property of the Ising model, both
for the square lattice and the hexagonal/triangular lattices, can be established on the
basis of a geometrical argument, i.e. counting the closed polygons on the original lattice
and its dual. However, the duality properties of a statistical model can be characterized
in a purely algebric way by considering a particular transformation of the statistical
variables entering the partition function. A particularly instructive example is the
following. Consider the expression

Z(β) = β1/4
∞∑

n=−∞
e−πβn2

. (4.6.1)

This can be interpreted as the partition function of a quantum system with energy
levels given by En = πn2. This expression is obviously useful for determining the
numerical value of the partition function in the low-temperature phase (β 
 1), since
in this regime the sum is dominated by the first terms. In the high-temperature phase
(β � 1), the situation is rather different and many terms are actually needed to
reach a sufficient degree of accuracy. However, using the Poisson resummation formula
discussed in Appendix 4B, it is easy to see that we have

Z(β) = β1/4
∞∑

n=−∞
e−πβn2

= β1/4
∞∑

m=−∞

∫ ∞

−∞
dx e−πβx2

e2πimx

= β−1/4
∞∑

m=−∞
e−πm2/β . (4.6.2)

Hence this partition function satisfied the important duality relation

Z(β) = Z

(
1
β

)
. (4.6.3)

In view of this identity, the partition function in the high-temperature phase can be
efficiently computed by employing its dual expression: for β � 1 a few terms of (4.6.2)
are indeed enough to saturate the entire sum. This example shows that, sometimes,
simple algebraic transformations permit us to establish important duality relations of
the partition functions. In this section we focus our attention on these aspects of the
two-dimensional statistical models.
Curl and divergence. In two dimensions, the duality relation is strictly related to
the curl and the divergence of a vector field. In fact, a two-dimensional vector field �v
with vanishing line integral along a close loop C∮

C
d�s · �v = 0, (4.6.4)
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satisfies the equation
∇ ∧ �v = 0. (4.6.5)

In this case, �v can be expressed as the gradient of a scalar function Φ, i.e. �v = �∇Φ.
Going to the components, we have

�v = (v1, v2) =
(
∂Φ
∂x

,
∂Φ
∂y

)
, if �∇ ∧ �v = 0. (4.6.6)

Vice versa, a vector field �v with vanishing flux across a close surface S∮
S
d�Σ · �v = 0, (4.6.7)

satisfies the equation
�∇ · �v = 0, (4.6.8)

and it can always be expressed as �v = �∇ ∧ �Ψ, where in two dimensions �Ψ = (ψ,ψ) is
a vector function of equal components. Explicitly

�v = (v1, v2) =
(
∂ψ

∂y
,−∂ψ

∂x

)
, if �∇ · �v = 0. (4.6.9)

The comparision between eqn (4.6.6) and eqn (4.6.9) shows that we can swap between
them by exchanging x←→ −y.
Curl and divergence on a lattice. The above equations have a counterpart for
variables that live on a lattice. Consider a square lattice and its dual, where the sites
of the first lattice are identified by the coordinates (i, j) while those of the dual by the
coordinates

(
i+ 1

2 , j + 1
2

)
. Suppose that there are some statistical variables defined

along the links of the original lattice: denote by ρi+ 1
2 ,j

the variable defined along the
horizontal segment that links the site (i, j) to the site (i+ 1, j) and by ρi,j+ 1

2
the one

defined along the vertical segment that links (i, j) to (i, j+1). If the circulation along
the perimeter S of the elementary cell of the lattice is zero (see Fig. 4.10), we have

ρi+ 1
2 ,j

+ ρi+1,j+ 1
2
− ρi+ 1

2 ,j+1 − ρi,j+ 1
2

= 0.

This is the discrete version of the curl-free equation on the sites of the dual lattice.
It can be identically satisfied in terms of a variable φi,j defined on the sites of the
original lattice, by imposing

ρi+ 1
2 ,j

= φi+1,j − φi,j ,

ρi,j+ 1
2

= φi,j+1 − φi,j .

Vice versa, the discrete version on a lattice of the divergence-free condition (4.6.8) is
given by

ρi+ 1
2 ,j

− ρi− 1
2 ,j

+ ρi,j+ 1
2
− ρi,j− 1

2
= 0.

This can be satisfied by expressing the variables ρ in terms of a discrete curl of a
variable ψi+ 1

2 ,j+
1
2

defined on the dual lattice

ρi+ 1
2 ,j

= ψi+ 1
2 ,j+

1
2
− ψi+ 1

2 ,j− 1
2
,

ρi,j+ 1
2

= −ψi+ 1
2 ,j+

1
2

+ ψi− 1
2 ,j+

1
2
.

(4.6.10)

After these general considerations, let’s see two examples.
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Fig. 4.10 Circulation along the links of the original lattice. The site at the center belongs to
the dual lattice.

4.6.1 Self-duality of the p-state Model

Consider a statistical model with scalar variables φi,j defined on the N × N sites of
a square lattice, with periodic boundary conditions. Assume that these variables take
discrete values on the interval (p an integer)

1 ≤ φij ≤ p,

and their hamiltonian is a function of the differences of the next neighbor values

H = −
N∑
i,j

[K1 (φi+1,j − φi,j) +K2 (φi,j+1 − φi,j)] . (4.6.11)

Introducing the notation
ρi+ 1

2 ,j
= φi+1,j − φi,j ;

ρi,j+ 1
2

= φi,j+1 − φi,j ,

together with K1 = βJ1, K2 = βJ2 for the coupling constants along the horizontal
and vertical directions, respectively, the partition function is given by

Z[K] = Trφ exp
[
K1ρi+ 1

2 ,j
+K2ρi,j+ 1

2

]
. (4.6.12)

In this expression we adopt the notation4

Trφ ≡
N∏
i=1

N∏
j=1

1√
p

p∑
φi,j=1

and we have taken into account the periodic boundary conditions

φi+N,j = φi,j ,
φi,j+N = φi,j .

4We have inserted the factor 1/
√

p in order to make the final expressions of the partition function
symmetric.
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There are then N2 variables φi,j over which it is necessary to sum in order to obtain
Z[K]. However, since the hamiltonian depends on them only through the variables ρ,
it would be more convenient to use directly these quantities. Since their number is
equal to 2N2, we need to implement the N2 conditions of vanishing circulation

Ri+ 1
2 ,j+

1
2
≡ ρi+ 1

2 ,j
+ ρi+1,j+ 1

2
− ρi+ 1

2 ,j+1 − ρi,j+ 1
2

= 0, (mod p). (4.6.13)

This can be done by introducing N2 variables ψi+ 1
2 ,j+

1
2
, that take p integer values,

conjugated to each of Ri+ 1
2 ,j+

1
2

and defined on the sites of the dual lattice. We can
insert in the partition function the N2 expressions

Δi+ 1
2 ,j+

1
2

=
1
p

p∑
ψ

i+ 1
2 ,j+ 1

2
=1

exp
[
−2πi

p
ψi+ 1

2 ,j+
1
2
Ri+ 1

2 ,j+
1
2

]
.

They are equal to 1 if the condition (4.6.13) is satisfied and 0 otherwise. Hence, the
partition function can be equivalently written as

Z[K] = Trρ Δi+ 1
2 ,j+

1
2

exp
[
K1ρi+ 1

2 ,j
+K2ρi,j+ 1

2

]
,

namely

Z[K] = Trρ Trψ exp
[
K1ρi+ 1

2 ,j
+K2ρi,j+ 1

2
− 2πi

p
ψi+ 1

2 ,j+
1
2
Ri+ 1

2 ,j+
1
2

]
. (4.6.14)

where

Trψ ≡ 1
p

p∑
ψ

i+ 1
2 ,j+ 1

2
=1

.

Notice that the sum on the ρ’s can be explicitly performed. Each variable ρ appears in
three terms: for instance, considering ρi+ 1

2 ,j
, its contribution to the partition function

is equal to

G =
1
p

p∑
ρ

i+ 1
2 ,j

=1

exp
[
ρi+ 1

2 ,j

(
K1 −

2πi
p

(ψi+ 1
2 ,j+

1
2
− ψi+ 1

2 ,j− 1
2
)
)]

. (4.6.15)

If we now define the dual coupling constant in terms of the Fourier transform of the
original coupling constant

eK̃σ =
1√
p

p∑
b=1

eKb exp
(−2πiσb

p

)
, (4.6.16)

eqn (4.6.15) can be expressed as

G =
1√
p

exp
[
K̃2

(
ψi+ 1

2 ,j+
1
2
− ψi+ 1

2 ,j− 1
2

)]
. (4.6.17)



Duality in Two Dimensions 165

By summing on all variables ρ in (4.6.14), the partition function can be equivalently
expressed in terms of the variables ψ of the dual lattice and it fulfills the important
self-duality relation

Z[K] = Z[K̃] (4.6.18)

with

Z[K̃] = Trψ
N∏
i=1

N∏
j=1

exp
[
K̃2

(
ψi+ 1

2 ,j+
1
2
− ψi+ 1

2 ,j− 1
2

)]
× exp

[
K̃1

(
ψi+ 1

2 ,j+
1
2
− ψi− 1

2 ,j+
1
2

)]
. (4.6.19)

In conclusion, the dual coupling constants are defined by the Fourier transform of
the original couplings, eqn (4.6.16). More precisely, the coupling K̃2 relative to the
vertical links is determined by the original coupling K1 of the horizontal links, while
the coupling K̃1 of the horizontal links depends on the coupling K2 of the vertical
links of the original lattice. This procedure can be clearly implemented also when the
couplings are not constant but change along the sites of the lattice.

4.6.2 Duality Relation between XY Model and SOS Model

The application of the duality transformation does not necessarily lead to the same
model. Even though in these cases we cannot predict the critical temperature of the
model, the duality relation that links two different models can nevertheless be useful
for studying the excitations in their high- and low-temperature phases respectively.
For instance, this is the case of the XY model that is related by duality to the SOS
(Solid on Solid) model. The statistical variables of the XY model are the angles θi
(with values between −π and π) defined on each site of the lattice. The hamiltonian is

H = −
∑
〈r,r′〉

f̂(θr − θr′), (4.6.20)

where f̂(θ) is a periodic function, with period 2π

f̂(θ + 2π) = f̂(θ).

The usual choice is5

f̂(θr − θr′) = J [1 − cos(θr − θr′)] . (4.6.21)

The partition function is given by

Z[K] =
∏
r

∫ π

−π

dθr
2π

∏
〈r,r′〉

ef(θr−θr′ ), (4.6.22)

5For simplicity in the sequel we only consider the homogeneous case.



166 Duality of the Two-dimensional Ising Model

with f = βf̂ . Since every term of this sum is a periodic function of the angles, it can
be expanded in the Fourier series

ef(θ−θ′) =
∞∑

n=−∞
ef̃(n) exp(2πi n(θ − θ′)). (4.6.23)

For the inverse formula we have

ef̃(n) =
∫ π

−π

dθ

2π
ef(θ) exp(−2πi nθ).

Using eqn (4.6.23), the partition function becomes

Z[K] =
∏
r

∫ π

−π

dθr
2π

∏
〈r,r′〉

∑
{nr,r′ }

ef̃(nr,r′ ) exp(2πi nr,r′(θr − θr′)), (4.6.24)

where nr,r′ are variables with integer values defined on the links between the next
neighbor sites r and r′. In two dimensions, every angle θr enters the expression for
four different terms, i.e. those relative to the segments that link the site r to its four
next neighbor sites. By adopting the previous notation for the coordinates of the sites
and for the variables defined along the links, the term in which θi,j is present is given
by (see Fig. 4.11)

exp
[
θi,j(ni+ 1

2 ,j
+ ni,j+ 1

2
− ni− 1

2 ,j
− ni,j− 1

2

]
.

Thanks to the identity
1
2π

∫ π

−π

dα eiαx = δx,0,

by integrating over θr in (4.6.24), we have

1
2π

∫ π

−π

dθre
iθr

∑
r′ nr,r′ = δ∑

r′ nr,r′ ,0,

i.e. the variable nr,r′ defined along the links has zero divergence. Referring to the
general discussion of the previous section, the variables nr,r′ can then be expressed in

n

n

i

i

n i −1 , n i + j,2 j 1
2

j
2

+ 1

,

,

1
2

−j

Fig. 4.11 Condition of the vanishing divergence of the variables nr,r′ .
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terms of the differences of the integer value variables ms defined on the sites of the
dual lattice. In such a way, the original definition (4.6.22) of the partition function
becomes a sum over all possible integer values of the variables ms, defined on the sites
s of the dual lattice

Z[K] =
∑

{ms}

∏
〈s,s′〉

ef̃(ms−ms′ ). (4.6.25)

Hence, the dual model corresponding to the XY model is the SOS model, so called
because the integer variables ms can be regarded as the heights (either positive or
negative) of a surface of a solid.

Appendix 4A. Numerical Series

In this appendix we will briefly discuss a numerical method for extracting useful infor-
mation on the critical behavior of the thermodynamical quantities by using the first
terms of their perturbative series. Let us consider a thermodynamical quantity, the
partition function for instance, and suppose that such a quantity is expressed by a
series expansion in the parameter x:

f(x) =
∑
n=0

anx
n. (4.A.1)

The problem consists of obtaining the parameters xc and γ relative to its behavior
close to the critical point xc

f(x) ∼ b (xc − x)−γ = b x−γ
c

(
1 − x

xc

)−γ

, (4.A.2)

if the only information available is the first k terms of the series (4.A.1).
The solution of this problem is the following. First of all, the estimate of the

critical point xc can be done by means of the convergence radius of the series (4.A.1)
by assuming that there is no other singularity (also complex) closer to the origin.
Expanding the right-hand side of (4.A.2) in a power series we have

f(x) ∼ b x−γ
c

[
1 + γ

(
x

xc

)
+
γ(γ + 1)

2!

(
x

xc

)2

+ · · · γ(γ + 1) · · · (γ + k − 1)
k!

(
x

xc

)k
+ · · ·

]
. (4.A.3)

Considering the ratio of the next two coefficients of this series and comparing with the
corresponding ratio of the series (4.A.1) we have

Rn =
an
an−1

=
1
xc

[
1 +
(
γ − 1
n

)]
. (4.A.4)

Hence, with the hypothesis made above on the singularities of the function f(x), a
plot of the ratios Rn versus the variable 1/n should show a linear behavior, whose
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slope provides an estimate of the quantity x−1
c (γ − 1), whereas its value at the origin

gives an estimate of x−1
c .

As an example of this method, let us consider the susceptibility of the Ising
model on a two-dimensional triangular lattice. The high-temperature series expansion
of this quantity is known up to the twelfth term and it is given by (v = tanhβJ)

χ(T ) = 1 + 6v + 30v2 + 138v3 + 606v4 + 258v5

+ 10818v6 + 44574v7 + 181542v8 + 732678v9 (4.A.5)
+ 2.935.218v10 + 11.687.202v11 + 46.296.210v12 + · · ·

Employing the ratios Rn obtained by these coefficients, we arrive at the following
estimates of the critical temperature and the coefficient γ:

v−1
c 	 3.733 ± 0.003; γ 	 1.749 ± 0.003

which are remarkably close to their exact values:

v−1
c = 2 +

√
3 = 3.73205...; γ =

7
4

= 1.75.

Appendix 4B. Poisson Resummation Formula

Consider the series

f(x) =
∞∑

m=−∞
G(x+mT ), (4.B.1)

where G(x) is a function that admits a Fourier transform. Since f(x) is a periodic
function

f(x) = f(x+ T ),

it can be expressed in a Fourier series

f(x) =
∞∑

n=−∞
cn exp

[
2πinx
T

]
,

with the coefficients given by

cn =
1
T

∫ T

0
dy f(y) exp

[
−2πiny

T

]
.

Substituting the expression of f(x), we have

cn =
1
T

∞∑
m=−∞

∫ T

0
dy G(y +mT ) exp

[
−2πiny

T

]
.
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By making the change of variable y +mT → z, we obtain

cn =
1
T

∞∑
m=−∞

∫ (m+1)T

mT

dz G(z) exp
[
−2πinz

T

]

=
1
T

∫ ∞

−∞
dz G(z) exp

[
−2πinz

T

]
=

1
T
Ĝ

(
2πn
T

)
,

where Ĝ(p) is the Fourier transform of the function G(x)

Ĝ(p) =
∫ ∞

−∞
dz G(z) e−ipz.

In such a way, the original series (4.B.1) can be expressed as
∞∑

m=−∞
G(x+mT ) =

1
T

∞∑
m=−∞

Ĝ

(
2πm
T

)
exp
[
2πim
T

]
. (4.B.2)

This equation is known as the Poisson sum formula. It is also equivalent to the fol-
lowing identity for the δ(x) function

∞∑
m=−∞

δ(x−mT ) =
1
T

∞∑
m=−∞

exp
[
2πimx
T

]
. (4.B.3)
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Problems

1. Three-dimensional lattices
Generalize Peierls’s argument to the Ising model on three dimensional lattices and
prove that the model admits a phase transition.

2. Low-temperature series in the presence of a magnetic field
Consider the two-dimensional Ising model on a square lattice with equal coupling
along the horizontal and vertical links and in the presence of an external magnetic
field B. Generalize the discussion on the series expansion of the free energy in the
low-temperature phase and show that ZN can be written as

ZN = exp[2NK +NβB]
∞∑

r,s=1

n(r, s) exp[−2Kr] exp[−sβB]

where K = βJ and n(r, s) is the number of closed graphs made of r links on the dual
lattice, having in their internal region s points of the original lattice.

3. Free energy
Consider the high-temperature series expansion of a homegeneous Ising model on a
two-dimensional square lattice

ZN =(2 coshβJ)2N

×
[
1 +Nv4 + 2Nv6 + 2Nv8 +

1
2
N(N − 9)v8 + · · ·

]

(v = tanhβJ). In the thermodynamic limit, one should have ZN 	 (Z1)N = e−Nβf ,
where f is the free energy per unit site. Using the formula above to find the high series
expansion of Z1

Z1 = 2(coshβJ)2 (1 + v4 + 2v6 − 2v8 + · · · ).
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4. Poisson sum rule
a Generalize the Poisson sum rule to the d-dimensional case.
b Using the Poisson sum rule show

∞∑
n=0

1
x2 + n2 =

1
2x2 − π

2x
+
π

x

1
1 − e−2Pix

.

5. Self-duality
Consider the function

Z(K) = K1/4
∞∑

n=−∞
e−πKn2

that satisfies

Z(K) = Z

(
1
K

)
.

a Show that in this case the duality relation does not imply a phase transition at
K = 1.

b How many terms are necessary in the original expression to compute Z(K) with
a precision 10−4 for K = 0.01? How many terms are needed to reach the same
precision by using its dual expression?

6. Critical temperature of the three-state model
Using the self-duality of the three–state model to determine its critical temperature.

7. Quadratic model
Let

βH = −J
2

∑
〈r,r′〉

(Φr − Φr′)2 +
1
4

lnJ

be the hamiltonian of a two-dimensional system where its variables assume all real
values. Show that the model is self-dual under the transformation J ←→ 1/J .



5
Combinatorial Solutions of the
Ising Model

To make a correct conjecture on an event, it seems that it is necessary to calculate the
number of all the possible cases exactly and to determine their combinatorics.

Jacob Bernoulli, Ars Conjectandi

There are many methods to solve exactly the two-dimensional Ising model at zero
magnetic field. Some of these methods have proved to be quite general and they have
been employed in the solution of other important models of statistical mechanics. This
is the case, for instance, for the method of commuting transfer matrices, based on the
solution of the Yang–Baxter equations, which will be discussed in the next chapter.
On the contrary, other methods prove to be applicable only to the Ising model, such
as the two combinatorial approaches that we are going to discuss in this chapter.
Both methods are quite ingenious and original and this alone justifies their detailed
analysis. The first method, which starts from the high-temperature series expansion of
the Ising model, finally reduces the free energy computation to a problem of a random
walk on a lattice. The second method, which also starts from the high-temperature
series, transforms the problem of computing the free energy of the Ising model into a
counting problem of dimer configurations on a lattice.

5.1 Combinatorial Approach

5.1.1 Partition Function

The combinatorial solution of the Ising model, originally proposed by M. Kac and
J.C. Ward, has its starting point in the high-temperature series expansion of the
partition function, discussed in Section 4.2.1 of the previous chapter. The elegant
solution presented here is due to N.V. Vdovichenko. In the following we consider, for
simplicity, only the homogeneous case in which there is only one coupling constant, so
that in the partition function only the parameter v = tanhβJ enters. The partition
function on a square lattice is given by

ZN = 2N (1 − v2)−N Φ(v). (5.1.1)

with
Φ(v) =

∑
r

grv
r, (5.1.2)
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Fig. 5.1 Graph of order v10.

Fig. 5.2 Self-intersecting graph.

where gr is the number of closed graphs, not necessarily connected, given by an even
number r of links. The graph shown in Fig. 5.1, for instance, is one of the terms of
order v10 present in the summation (5.1.2).

There are three steps in Vdovichenko’s method of solution: (a) the first step con-
sists of expressing the sum over the polygons as a sum over the closed loops without
intersections; (b) the second step in transforming the sum over the closed loops with-
out intersections into a sum over all possible closed loops; (c) in the last step, the
problem is reduced to a random walk on a lattice that can be easily solved.

Let’s discuss the implementation of the first step, i.e. how to organize the sum over
the polygons in terms of their connected parts. Let’s observe that each graph consists
of one or more connected parts. For non-self-intersecting graphs this statement is
obvious: the graph of Fig. 5.1, for instance, consists of two disconnected parts. But for
self-intersecting graphs the statement can be ambiguous and there could be different
connected parts according to the different decompositions. In order to clarify this
issue, consider the graph in Fig. 5.2. This can be decomposed in three different ways,
as shown in Fig. 5.3: it can be decomposed into one or two connected parts without
intersections or into one connected part but with intersection. It is easy to show that
this rule is quite general, namely there are always three possible decompositions for
all the self-intersections of a graph.

The sum over the polygons given in eqn (5.1.2) can be organized into a sum over
the connected parts of the graphs but one has to be careful to count properly the
different terms, in particular to not count the same configuration more than once.
This problem can be solved by weighting each graph by a factor (−1)n, where n is
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Fig. 5.3 Three different decompositions in the connected parts for a self-intersecting graph.

a b c

Fig. 5.4 Graph with repeated bonds.

the total number of self-intersections of a loop. In this way, all extra terms in the sum
disappear. In the example of Fig. 5.3, the first two terms are weighted by +1, and the
last term by −1, so that in the final expression there is correctly only one term.

Notice that, by adopting the prescription given above to perform the sum over
the closed loops, one can include in the sum also the graphs with repeated bonds;
the simplest of them is given in Fig. 5.4. These graphs are obviously absent in the
original formulation of the high-temperature expansion of the model, since in some of
their sites there is an odd number of links. However, with the new weight associated
to the diagrams, it is easy to see that these terms are canceled in the sum. In fact, in
the connected decomposition part of these graphs, each common link can be passed
through in two different ways, one without intersection (as in Fig. 5.4b), the other
with self-intersection, as shown in Fig. 5.4c. Hence, the connected parts of this graph
have equal and opposite signs and therefore they cancel in the sum.

There is still a disadvantage in the procedure of assigning a weight to the graphs
because it depends on a global property of the graph such as the number of its inter-
sections. It would be more convenient to express the weight (−1)n in a local way. This
is possible thanks to the familiar geometrical property that the total angle of rotation
spanned by the tangent going around a closed plane loop is 2π(l + 1) where l is an
integer (positive or negative), with a parity that coincides with the number ν of the
self-intersection of the loop. Hence, we can assign a phase factor eiα/2 to each point
of the loop, where the angle of rotation α takes values α = 0,±π

2 in correspondence
with the angle of the change of direction to the next bond, so that the product of all
these factors going around the loop gives (−1)ν+1. For a set of s loops we will have
(−1)n+s, with n =

∑
ν.

In summary, we can automatically take into account the number of self-intersections
of a loop by weighting each node by eiα/2 and multiplying the graph (given by a set of
s loops) by the factor (−1)s, since this term will compensate the same factor present
in the previous expression (−1)n+s.

Let’s now denote by fr the sum over single loops of r links, each loop weighted
according to the prescription above. The sum on all pairs of loops with total number
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21 3 4

Fig. 5.5 Possible directions of movement on a square lattice.

r of links is then given by
1
2!

∑
r1+r2=r

fr1fr2 ,

where the factor 2! in the denominator takes into account that the permutation of the
two indices gives rise to the same pair of loops. An analogous factor n! is present in
the denominator for the sum on n loops. Therefore, the function Φ can be written as

Φ(v) =
∑
s=0

(−1)s
1
s!

∞∑
r1,r2,···=1

vr1+r2+···+rsfr1 . . . frs
. (5.1.3)

Since in Φ there are terms corresponding to sets of loops with any possible total length1

r = r1 + r2 + · · · , in the sum (5.1.3) the indices r1, r2, . . . assume independently all
values from 1 to ∞, so that

∞∑
r1,r2,···=1

vr1+r2+···+rsfr1 . . . frs =

( ∞∑
r=1

vrfr

)s

.

Hence Φ is expressed as

Φ(v) = exp

[
−

∞∑
r=1

vrfr

]
. (5.1.4)

With this expression we have completed the steps (a) and (b) of Vdovichenko’s method.
It remains then to evaluate explicitly the quantity fr.

Since in a square lattice there are four different directions in which one can move,
it is convenient to number them by the index μ = 1, 2, 3, 4, as shown in Fig. 5.5. Let’s
introduce a new function Wr(i, j, μ): this is defined as the sum over all possible paths
of length r that start from a given point of coordinates (i0, j0) along a direction μ0
and arrive at a point of coordinate (i, j) along the direction μ. The paths entering the
definition of Wr(i, j, μ) are weighted with the factors eiα/2 previously introduced. If
we now choose (i0, j0) as the initial point , Wr(i0, j0, μ0) becomes the sum over all
loops leaving and returning to the same point.2 We then have the identity

fr =
1
2r

∑
i0,j0,μ

Wr(i0, j0, μ), (5.1.5)

where the term 1/(2r) takes into account the fact that in the sum on the right-hand
side each loop can be crossed in two opposite directions and can have any of its r

1The loops with a number of sites larger than the number N of the sites of the lattice do not
contribute to the sum, since they necessarily contain repeated bonds.

2It is understood that these closed loops cannot pass through the same links in the opposite
direction. This means that the last step of these walks cannot be along the opposite direction of μ0.
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nodes as a starting point. Thanks to its definition, the function Wr(i, j, μ) satisfies the
recursive equations

Wr+1(i, j, 1) = Wr(i− 1, j, 1) + e−iπ
4Wr(i, j − 1, 2) + 0 + ei

π
4Wr(i, j + 1, 4),

Wr+1(i, j, 2) = ei
π
4Wr(i− 1, j, 1) +Wr(i, j − 1, 2) + e−iπ

4Wr(i+ 1, j, 3) + 0 (5.1.6)
Wr+1(i, j, 3) = 0 + ei

π
4Wr(i, j − 1, 2) +Wr(i+ 1, j, 3) + e−iπ

4Wr(i, j + 1, 4),
Wr+1(i, j, 4) = e−iπ

4Wr(i− 1, j, 1) + 0 + ei
π
4Wr(i+ 1, j, 3) +Wr(i, j + 1, 4).

Let us consider, for instance, the first of them. One can reach the point i, j, 1 by taking
the last (r+1)-th step from the left, from below or from above but not from the right.
The coefficients present in the equation come from the phase factors relative to the
change of directions. With the same argument one can derive the other equations in
(5.1.6). Introducing the matrix Λ of the coefficients, the recursive equations can be
written as

Wr+1(i, j, μ) =
∑

i′,j′,μ′
Λ(ijμ | i′j′μ′)Wr(i′, j′, μ′) (5.1.7)

which admits a suggestive interpretation: this equation can be interpreted as a Markov
process associated to a random walk on the lattice, with the transition probability
between two next neighbor sites expressed by the relative matrix element of Λ. Since
there are four possible directions for this motion, keeping fixed all other parameters,
Λ is a 4× 4 matrix in the indices μ′ and μ, whose graphical interpretation is shown in
Fig. 5.6.

In the light of the interpretation given above of the recursive equations, the tran-
sition probability relative to a path of total length r is expressed by the matrix Λr.
Notice that the diagonal elements of this matrix express the probability to return to
the initial point after traversing a loop of length r, i.e. they coincide withWr(i0, j0, μ0).
Therefore we have

TrΛr =
∑

i0,j0,μ

Wr(i0, j0, μ),

Λ =

Fig. 5.6 Matrix elements of Λ.
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and, comparing with eqn (5.1.5), we arrive at

fr =
1
2r

TrΛr =
1
2r

∑
a

λra, (5.1.8)

where λa are the eigenvalues of the matrix Λ. Using this expression in (5.1.4) and
interchanging the indices of the sum, we have

Φ(v) = exp

[
−1

2

∑
i

∞∑
r=1

1
r
vrλri

]

= exp

[
1
2

∑
i

log(1 − vλi)

]
=
∏
i

√
1 − vλi. (5.1.9)

The last thing to do is to determine the eigenvalues of Λ. The diagonalization of this
matrix with respect the coordinates k and l of the lattice can be easily done by using
the Fourier transformation. In fact, defining

Wr(p, q, μ) =
L∑

k,l=0

e− 2πi
L (pk+ql)Wr(k, l, μ),

with N = L2, and taking the Fourier transform of (5.1.6), we have

Wr+1(p, q, 1) = ε−pWr(p, q, 1) + ε−q α−1Wr(p, q, 2) + εq αWr(p, q, 4),
Wr+1(p, q, 2) = ε−p αWr(p, q, 1) + ε−qWr(p, q, 2) + εp α−1Wr(p, q, 3), (5.1.10)
Wr+1(p, q, 3) = ε−q αWr(p, q, 2) + εpWr(p, q, 3) + εq α−1Wr(p, q, 4),
Wr+1(p, q, 4) = ε−p α−1Wr(p, q, 1) + εp αWr(p, q, 3) + εqWr(p, q, 4).

(5.1.11)

(where ε = e2πi/L and α = eiπ/4). Since Wr(p, q, μ) appears with the same indices p
and q both on the left- and right-hand sides of these equations, the Fourier transform
of the matrix Λ is diagonal with respect to these indices and we have

Λ(p, q, μ | p, q, μ′) =

⎛
⎜⎜⎝

ε−p α−1ε−q 0 αεq

αε−p ε−q α−1εp 0
0 αε−q εp α−1εq

α−1ε−p 0 αεp εq

⎞
⎟⎟⎠ . (5.1.12)

An easy computation shows that

4∏
i=1

(1 − vλi) = Det(1 − vΛ) (5.1.13)

= (1 + v2)2 − 2v(1 − v2)
(

cos
2πp
L

+ cos
2πq
L

)
.
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Coming back to the original expression (5.1.1), we then have

ZN = 2N (1 − v2)−N
L∏
p,q

[
(1 + v2) − 2v(1 − v2)

(
cos

2πp
L

+ cos
2πq
L

)]1/2
, (5.1.14)

and the free energy of the Ising model is expressed as

−F (T )
kT

= logZN

= N log 2 −N log(1 − v2) (5.1.15)

+
1
2

L∑
p,q=0

log
[
(1 + v2)2 − 2v(1 − v2)

(
cos

2πp
L

+ cos
2πq
L

)]
.

When L→ ∞, the sum becomes an integral

−F (T )
kT

= logZN

= N log 2 −N log(1 − v2) (5.1.16)

+
N

2(2π)2

∫ 2π

0

∫ 2π

0
log
[
(1 + v2)2 − 2v(1 − v2) (cosω1 + cosω2)

]
dω1dω2.

This expression shows that F (T ) is an extensive quantity, since it is proportional to the
total number N of the sites of the lattice. Besides the value v = 1 (which corresponds
to T = 0), F (T ) has a singular point at a finite value of T when the argument of the
logarithm inside the integral vanishes. As a function of ω1 and ω2, the argument of the
logarithm has a minimum when cosω1 = cosω2 = 1 and the corresponding value is

(1 + v2)2 − 4v(1 − v2) = (v2 + 2v − 1)2.

It is easy to see that this expression has a minimum, with a null value, only for the
positive value

v = vc =
√

2 − 1.

The corresponding critical temperature Tc, fixed by

tanh
J

kTc
= vc , kTc = 2.26922 . . . J, (5.1.17)

determines the phase transition point. The expansion of the function F (T ) in a power
series in t = k(T − Tc)/J around this critical point shows that it has both a singular
and a regular part. The regular part is simply obtained by substituting t = 0 in
its expression. In order to determine the singular part, it is sufficient to expand the
argument of the logarithm in a power series in t, in ω1 and ω2. In this way, the integral
in (5.1.16) becomes ∫ 2π

0

∫ 2π

0
log
[
a1t

2 + a2(ω2
1 + ω2

2)
]
dω1dω2, (5.1.18)
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where a1 and a2 are two constants expressed by

a1 = 32(3 − 2
√

2)
(

J

kTc

)4

, a2 = 2(3 − 2
√

2).

Computing the integral, the behavior of the free energy in the vicinity of the phase
transition is given by

F (T ) 	 A− B

2
(T − Tc)2 log | T − Tc |, (5.1.19)

where A and B are two other constants, with B > 0. The specific heat, expressed
by the second derivative of F (T ) with respect to T , has in this case a logarithmic
singularity rather than a power law behavior

C ∼ B log | T − Tc | .
Correspondingly the critical exponent α of the two-dimensional Ising model is

α = 0.

5.1.2 Correlation Function and Magnetization

In this section we briefly discuss the main steps that lead to the computation of the
two-point correlation function of the Ising model in terms of the combinatorial method.
Because of the mathematical intricacy of the formulas employed in this method, we
will present only the final result. As shown in the following chapters, the computation
of the correlation functions can be done in a more efficient way (in the continuum
limit) by using the methods of quantum field theory.

In order to simplify the notation, in the following the coordinates of a generic site of
the lattice will be denoted by one index alone, i.e. i ≡ (i1, i2). Observe that knowledge
of the two-point correlation function

G(| i− j |) = 〈σiσj〉, (5.1.20)

can be used to see whether or not the system possesses a non-zero magnetization

M2 = lim
|i−j|→∞

〈σiσj〉. (5.1.21)

Let’s focus attention on the computation of G(| i− j |), defined by

〈σiσj〉 =
1
Z

∑
{σ}

σiσj exp

⎡
⎣K∑

(k,l)

σkσl

⎤
⎦ , (5.1.22)

with K = β J . Using the familiar identity

exp [xσkσl] = coshx (1 + σkσl tanhx) ,

the numerator of (5.1.22) can be written as

coshK2N
∑
{σ}

σiσj
∏
(k,l)

(1 + vσkσl), (5.1.23)

where v = tanhK. Expanding the product one obtains 22N terms. Using the same
graphical method discussed in Section 4.2.1, we draw a line along the segment (k, l) if
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i

j

Fig. 5.7 Graphs that enter the computation of the correlator 〈σiσj〉.

this enters one of the terms of the expansion. This line has a weight equal to v. Once
all the lines are drawn, we need to sum over the values of the spins. The difference
with the computation of the partition function in this case consists of the presence of
the spins σi and σj and one has a non-vanishing result only if there is at least one
curve that starts from the site i and ends at the site j as shown in Fig. 5.7, where all
other contributions are made of closed graphs.

Clearly the closed graphs that appear in the expansion of the numerator are the
same as those that enter the expression of the partition function ZN and therefore
they simplify with the term ZN in the denominator. Hence the correlation function
can be expressed by the series

〈σiσj〉 =
∑
k

hk v
k, (5.1.24)

where hk is the number of graphs of length k (also self-intersecting) that connect the
two end points. A simple example helps in clarifying the content of such a formula.

Consider the correlator of two nearest neighbor spins. The graphs relative to the
lowest orders in v, i.e. v1, . . . , v5, are shown in Fig. 5.8. Therefore, in this case, the
first terms of the series are

v + 2v3 + 6v5 + · · ·
This example highlights a general and important aspect of the problem. Since the
correlation function is nothing else but a conditional probability that the two spins σi
and σj have the same value, for two neighbor spins such a probability is determined
by two different effects: (1) the direct interaction between σi and σj , with a weight
v; (2) the sum of all indirect interactions between the two spins, with a weight vk for
those indirect interactions that involving k spins.

Although it is generally difficult to compute the generic coefficient hk of the series
(5.1.24), for their geometrical origin it is, however, easy to determine the first non-
vanishing coefficient. Denoting by s1 =| j1 − i1 | and s2 =| j2 − i2 | the horizontal and
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Order  v

Order  v

Fig. 5.8 First-order terms of the correlation function of two nearest neighbor spins.

vertical distances between the spins σi and σj , the number of paths of total length
s1 + s2 (made of s1 horizontal steps and s2 vertical steps) is given by (s1 + s2)!/s1! s2!
and therefore

〈σiσj〉 	 (s1 + s2)!
s1! s2!

vs1+s2 + · · · (5.1.25)

A further analysis of the series (5.1.24) (which is not discussed here) permits us to
reach the following conclusions: for T �= Tc, the two-point correlation function decays
exponentially at large distances as

〈σiσj〉 	 M2 +A exp
[
−| i− j |

ξ

]
, (5.1.26)

where A > 0 is a constant. Near Tc, the correlation length ξ diverges as

ξ 	 | T − Tc |−1, (5.1.27)

and the critical exponent ν of the two-dimensional Ising model is

ν = 1.

The spontaneous magnetization M2 can be extracted by the limit (5.1.21) and its
exact expression, originally obtained by C.N. Yang, is

M2 =

⎧⎨
⎩
[
1 −
(

1−v2

2v

)4
]1/4

, T < Tc

0, T > Tc.

(5.1.28)
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Hence the exact value of the critical exponent β is

β =
1
8
.

Finally, at T = Tc, the correlator decays algebraically as

〈σiσj〉 	 1
| i− j |1/4 , (5.1.29)

and for the critical exponent η we have

η =
1
4
.

The remaining critical exponents δ and γ can be obtained by the scaling laws (1.1.26)

δ = 15; γ =
7
4
.

These are the exact expressions of all the critical exponents of the two-dimensional
Ising model.

5.2 Dimer Method

From the geometrical nature of its high-temperature series expansion, the
two-dimensional Ising model can be put into correspondence with the problem of
counting the number of dimer configurations on a particular lattice. As we will see,
this is a problem of a combinatorial nature that can be solved by evaluating the Pfaffian
of an antisymmetrical matrix A.

The Pfaffian of an antisymmetric 2N × 2N matrix

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

0, a1,2, · · · , a1,2N
−a1,2, 0, · · · , a2,2N
.
.
.
−a1,2N , −a2,2N , · · · , 0

⎞
⎟⎟⎟⎟⎟⎟⎠

is defined as

PfA =
′∑
P

δP ap1,p2 ap3,p4 · · · ap2N−1,p2N
, (5.2.1)

where p1, . . . , p2N is a permutation of the set of numbers 1, 2, . . . , 2N , δP is the par-
ity of the permutation (±1 if the permutation P is obtained by an even/odd number
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of transpositions), and the sum
∑′

P is over all permutations that satisfy the con-
ditions

p2m−1 < p2m, 1 < m < N ;
p2m−1 < p2m+1, 1 < m < N − 1. (5.2.2)

For instance, if 2N = 4, one has

PfA = a12a34 − a13a24 + a14a23.

Notice that, from the antisymmetry of the matrix A, its Pfaffian can also be
expressed as

PfA =
1

N ! 2N
∑
P

δP ap1,p2 ap3,p4 · · · ap2N−1,p2N
, (5.2.3)

where the sum is over all possible permutations.
The computation of the Pfaffian of a matrix is simplified thanks to this important

identity:
PfA = (detA)1/2. (5.2.4)

Unlike Pfaffians, the determinants are in fact easier to compute, in particular by
the property that the determinant of a product of matrices is equal to the product
of the determinants.

A dimer is an object that can cover the links between nearest neighbor sites, with
the condition that a given site cannot be occupied by more than one dimer. The
combinatorial nature of the dimer problem consists of determining the number of
possible dimers covering a lattice, such that all sites are occupied and none of them
are occupied more than once. If the lattice is made of N sites, the number of dimers
is N/2, hence N must be an even number. Before addressing the study of the Ising
model in terms of the dimer formulation, it is convenient to study initially the dimer
covering of a square lattice.

5.2.1 Dimers on a Square Lattice

The relationship between the dimer covering of a square lattice and the Pfaffian of a
matrix can be highlighted by considering a 4 × 4 lattice. If we enumerate the sites as
shown in Fig. 5.9, the dimer configuration can be identified by the pairs of numbers

(1, 2) , (3, 7) , (4, 8) , (5, 6) , (9, 13) , (10, 11) , (12, 16) , (14, 15),

or, more generally, by

(p1, p2) , (p3, p4) , (p5, p6) , · · · (p2N−1, p2N ),

where (p1, p2, . . . , p2N ) is a permutation of (1, 2, . . . , 2N) that satisfies the constraints
(5.2.2) relative to the Pfaffian of a matrix. Assigning the matrix elements according
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14 15 16

Fig. 5.9 Dimer configuration of a 4 × 4 square lattice.

to the rule

| Ap,p′ |=

⎧⎨
⎩
z1, if p > p′, where p and p′ are horizontal nearest neighbor sites
z2, if p > p′, where p and p′ are vertical nearest neighbor sites
0, otherwise

(5.2.5)
it is easy to see that there is a one-to-one correspondence between the dimer configu-
rations and the terms present in the definition of the Pfaffian of the matrix A defined
above. If we introduce the generating function of the dimers, defined by the formula

Φ(z1, z2) =
∑
n1,n2

g(n1, n2) zn1
1 zn2

2 , (5.2.6)

where g(n1, n2) is the number of dimers that cover completely the lattice, with n1
placed horizontally and n2 placed vertically ( n1 +n2 = N/2), it seems natural to put

Φ(z1, z2) = PfA. (5.2.7)

There is, however, an obstacle: in fact, while g(n1, n2), present in the generating func-
tion of the dimers, is a positive quantity, the definition of the Pfaffian of A involves
also negative terms, i.e. those relative to the odd permutations of the indices. Hence,
in order to make eqn (5.2.7) valid, in addition to the modulus (5.2.5) of the matrix
elements Ap,p′ , it is also necessary to introduce a phase factor that ensures the posi-
tivity of all terms present in Pf A. Thanks to a theorem due to P.W. Kasteleyn, this
task can be accomplished for all planar lattices, i.e. for those lattices that do not have
crossings of the links. For instance, in the case of a square lattice, an assignment that
ensures the validity of eqn (5.2.7) is given by

Ap,p′ =

⎧⎨
⎩
z1, for the horizontal links that are nearest neighbor
(−1)p z2, for the vertical links that are nearest neighbor
0, otherwise.

(5.2.8)

Notice that the definition of Ap,p′ given in (5.2.8) is equivalent to assigning a set of
arrows along the links of the lattice, as shown in Fig. 5.10. In this way, the original
lattice becomes an oriented lattice. In the presence of the arrows, the lattice acquires
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Fig. 5.10 Assignment of the arrows in the dimer problem on a square lattice. The arrows in
the up and the right directions correspond to the positive links, while the others correspond to
the negative links.

(q  q  S) (q  q  D)
1 2 1 2

Fig. 5.11 Elementary cell in the oriented square lattice.

a periodicity along the horizontal axes under a translation of two lattice steps. It is
therefore convenient to assume, as an elementary cell, not the one of unit length but
the one drawn in Fig. 5.11, identified by its horizontal position q1 and its vertical
position q2: these coordinates form the vector �q = (q1, q2). Concerning its internal
points, the one on the left is identified by (q1, q2, S) while the one on the right by
(q1, q2, D).

Let us consider the matrix elements of the matrix A�q,�p = A(�q, �p). They are them-
selves 2 × 2 matrices, given by

A�q,�p = A(q1, q2; p1, p2) =
(
a(q1, q2, S; p1, p2, S) a(q1, q2, S; p1, p2, D)
a(q1, q2, D; p1, p2, S) a(q1, q2, D; p1, p2, D)

)
. (5.2.9)

The only non-vanishing matrix elements of A�q,�p are given by

A(q1, q2; q1, q2) =
(

0 z1
−z1 0

)
= α(0, 0),

A(q1, q2; q1 + 1, q2) =
(

0 0
z1 0

)
= α(1, 0)
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A(q1, q2; q1 − 1, q2) =
(

0 −z1
0 0

)
= α(−1, 0), (5.2.10)

A(q1, q2; q1, q2 + 1) =
(
−z2 0
0 z2

)
= α(0, 1),

A(q1, q2; q1, q2 − 1) =
(
z1 0
0 −z2

)
= α(0,−1).

It is important to stress that the matrix A only depends on the difference of the indices

A(�q; �p) = A(�p− �q).

Imposing periodic boundary conditions along the two directions

A(�q + �N) = A(�q),

where �N = (N1, N2), A becomes a cyclic matrix that can be easily diagonalized with
respect to the indices �q and �p by a Fourier transform.3 The matrix elements of A�q,�p are
2× 2 matrices and, consequently, its diagonal form with respect to �q and �p consists of
2×2 matrices placed along its main diagonal. Denoting the latter matrices by λ(β1, β2)
we have

λ(β1, β2) =
∑
�q

A(�q) ei�q·�β ,

where each frequency βi can have the Ni values 0, 2π/Ni, 4π/N1, . . . , 2π(Ni − 1)/Ni.
Hence, the determinant of A is expressed by the product of the determinants of the
2 × 2 matrices λ

1
N1N2

log DetA =
1

N1N2

N1−1∑
k1=0

N2−1∑
k2=0

log Detλ
(

2πk1

N1
,
2πk2

N2

)
. (5.2.11)

In the thermodynamic limit Ni → ∞ the sum can be converted to an integral

lim
Ni→∞

1
N1N2

log DetA =
1

(2π)2

∫ 2π

0

∫ 2π

0
dβ1 dβ2 log Detλ(β1, β2), (5.2.12)

where the matrix λ(β1, β2) is explicitly given by

λ(β1, β2) =
∑
q1,q2

α(q1, q2) eiq1β1+iq2β2

= α(0, 0) + α(1, 0) eiβ1 + α(−1, 0) e−iβ1

+α(0, 1) eiβ2 + α(0,−1) e−iβ2

=
(
z2 e

−iβ2 − z2 e
iβ2 z1 − z1 e

−iβ1

z1 e
iβ1 − z1 z2 e

iβ2 − z2 e
−iβ2

)
. (5.2.13)

3The procedure is similar to the one employed in the gaussian and spherical models, discussed in
Chapter 3.
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Computing the determinant of this matrix and using the important identity (5.2.4),
we have

lim
Ni→∞

2
N1N2

log PfA =
1

(2π)2

∫ 2π

0

∫ 2π

0
dβ1 dβ2 log

[
4
(
z2
1 sin2 β1

2
+ z2

2 sin2 β2

2

)]

=
1

(2π)2

∫ 2π

0

∫ 2π

0
dβ1 dβ2 log 2

[(
z2
1 + z2

2)
)

−z2
1 cosβ1 − z2

2 cosβ2
]
. (5.2.14)

From the relation Φ(z1, z2) = PfA which links the generating function of the dimers
to the Pfaffian of the matrix A, by plugging in (5.2.14) the values z1 = z2 = 1, we
obtain the total number of dimers covering a square lattice. The computation of the
integral (proposed as Problem 4 at the end of the chapter), gives

lim
Ni→∞

2
N1N2

log Φ(1, 1) =
4G
π
, (5.2.15)

where G is the Catalan constant, whose numerical value is

G = 1 − 1
32 +

1
52 − 1

72 + · · · = 0.9159655 . . .

In conclusion, the number of dimer coverings of a square lattice ofN sites, with periodic
boundary conditions on both directions, in the limit N → ∞ is given by,4

D 	 exp
[
NG

π

]
, N → ∞ (5.2.16)

By using the same method, employing the sum instead of the integral, one can obtain
the dimer covering of finite lattices. For instance, for a 8 × 8 lattice, as that of a
chessboard, the number of dimers is 32, and the number of their coverings of the
lattice is D = 24(901)2 = 12088816, as was originally shown by Michael Fisher.

5.2.2 Dimer Formulation of the Ising Model

For the two-dimensional Ising model on a square lattice there is a one-to-one corre-
spondence between the closed graphs of the high-temperature expansion and the dimer
configurations relative to the lattice shown in Fig. 5.12, known as the Fisher lattice.
Both lattices have, as a building block, an elementary cell with four external lines,
see Fig. 5.13. We can associate to the eight possible configurations of the lines of the
Ising model in the elementary cell eight possible dimer configurations on the Fisher
lattice, as shown in Fig. 5.14 (by rotation, the configuration (c) gives rise to three
other configurations whereas the configuration (d) only one). In such a way, to each
closed graph of the high-temperature expansion of the Ising model on a square lattice
there corresponds a dimer configuration on the Fisher lattice, and vice versa.

4Since the elementary cell of the oriented lattice is double the elementary cell of the ordinary
lattice, we have N = 2N1 N2.
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Fig. 5.12 Fisher lattice.
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Fig. 5.13 Elementary cells of the square and Fisher lattices.

Let us consider the high-temperature expansion of the partition function of the
model, given in eqn (4.2.4), here written as

(2 coshK coshL)−N ZN =
∞∑

r,s=0

n(r, s)vr ws, (5.2.17)

where n(r, s) is the number of closed graphs having r horizontal and s vertical links.
Assigning weight v to the dimers along the segments a1 and a3, weight w to the dimers
placed on the segments a2 and a4, and weight 1 to all internal dimers of the cell, it is
easy to see that the right-hand side of eqn (5.2.17) may be interpreted as the generating
function of the dimer configurations on the Fisher lattice. In turn, this function can
be expressed in terms of the Pfaffian of an opportune antisymmetric matrix A. Hence
we can follow the same steps for the computation of the dimer covering on the square
lattice, with the only difference that, instead of the two internal points of the square
lattice, this time the elementary cell has six internal points as shown in Fig. 5.13, with
the corresponding orientation of the links. However, as in the previous case, the only
matrices different from zero are α(0, 0), α(±1, 0), and α(0,±1), so that the matrix of
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(a)

(b)

(c)

(d)

Fig. 5.14 Correspondence between the lines of the Ising model on a square lattice and the
dimers on the Fisher lattice.

the eigenvalues is given in this case by

λ(β1, β2) =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 1 0 −v e−iβ1 0
−1 0 1 0 0 −w e−iβ2

−1 −1 0 1 0 0
0 0 −1 0 1 1

v eiβ1 0 0 −1 0 1
0 w eiβ2 0 −1 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠ , (5.2.18)
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and therefore

Detλ(β1, β2) = (1 + v2)(1 + w2) − 2v(1 − w2) cosβ1 − 2w(1 − v2) cosβ2. (5.2.19)

Computing the Pfaffian of the matrix A, we obtain the free energy of the Ising model:
in the thermodynamic limit and in the homogeneous case v = w, it is given by

−F (T )
kT

= lim
N→∞

log ZN = − log 2 + log(1 − v2) (5.2.20)

− 1
2(2π)2

∫ 2π

0

∫ 2π

0
log
[
(1 + v2)2 − 2v(1 − v2) (cosφ1 + cosφ2)

]
dβ1 dβ2.

This expression coincides with eqn (5.1.16).
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Problems

1. High-temperature series
Determine the first three terms of the high-temperature expansion of the correlation
function 〈σi+2,j σi,j〉 of two spins separated by two lattice sites.

2. Pfaffian and determinant

Prove that for a 2N × 2N antisymmetric matrix A we have the identity

(PfA)2 = detA.

3. Number of dimers
a Give an argument to justify the exponential growth of eqn (5.2.16) for the dimer

coverings in N , where N is the number of sites of a lattice.
b Use eqn (5.2.16) to estimate the number of dimer coverings of a 4×4 square lattice.

4. Generating function of dimers on a square lattice
Consider the function

F (x, y) =
1

(2π)2

∫ 2π

0

∫ 2π

0
dβ1 dβ2 log [x+ y − x cosβ1 − y cosβ2] .

Its value at x = y =, i.e. F (2, 2), provides the solution to the problem of the dimer
covering of a square lattice, eqn (5.2.14).

a Prove that
F (x, 0) = log

x

2
.

b Show that we have the identity

∂F

∂x
=

2
πx

arctan
√
x

y
.

c Expanding in power series the term arctan
√

x
y and integrating term by term, show

that
F (2, 2) =

4G
π

where G is the Catalan constant.



6
Transfer Matrix of the
Two-dimensional Ising Model

I did much of the work in the writing room of the P & O liner Arcadia, in the
Atlantic and Indian Oceans. This was good for concentration, but not for
communication.

Rodney J. Baxter

In this chapter we study the solution of the two-dimensional Ising model by means
of the transfer matrix. Unlike the methods discussed in the previous chapter, the
transfer matrix approach has greater generality and can used to solve exactly other
two-dimensional models. Even if the general ideas behind this approach have been
explained in Chapter 2 by means of the one-dimensional case, their application to the
two-dimensional cases requires more powerful and sophisticated mathematical tools:
for instance, the study the eigenvalues of the transfer matrix in the Ising model for
T �= Tc needs to employ elliptic functions. The same is also true for other models. In
order to present in the simplest possible way the main lines of this method, in the
following we focus attention only on the solution of the model at T = Tc because this
case can be analyzed in terms of simple trigonometric functions.

An important condition is required for implementing the method efficiently: the
commutativity of the transfer matrix for different values of the coupling constants. In
the Ising model, for instance, this condition can be satisfied by the transfer matrix
TD(K,L) along the diagonal of the square lattice. If the coupling constants K and L
fulfill the condition

sinh 2K sinh 2L = sinh 2K ′ sinh 2L′. (6.0.1)

the transfer matrix has the property1

[TD(K,L), TD(K ′, L′)] = 0. (6.0.2)

Equation (6.0.2) implies that the eigenvectors of the transfer matrix do not change
if the coupling constants vary along the curve given by eqn (6.0.1). This is a cru-
cial circumstance for the exact diagonalization of TD(K,L). Equally important is the
possibility to implement the commutativity of the transfer matrices by means of a

1[A, B] denotes the commutator of the two matrices A and B and it is given by [A, B] = AB−BA.
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particular conditions (of local nature) satisfied by the Boltzmann weights. These con-
ditions are known as the Yang–Baxter equations and they play an important role in all
exactly solvable models: they enter not only the solution of statistical models but also
S-matrix theory, the formalism of quantum groups, and the classification of knots.

6.1 Baxter’s Approach

There are several ways to define a transfer matrix for the two-dimensional Ising model
and each of them shows certain advantages. The transfer matrix that we discuss in
this section is associated to the square lattice rotated by 45 degrees, as shown in
Fig. 6.1. The coupling constants K and L, originally placed along the horizontal and
vertical directions, are now defined along the diagonals. This lattice is particularly
useful to establish the commutativity properties of the transfer matrix defined on it.
As is evident from Fig. 6.1, the sites of this lattice can be divided into two classes,
A and B, identified by the empty and filled circles: each row of type A is followed by
one of type B and vice versa. Let m be the total number of rows: assuming periodic
boundary conditions along the vertical direction, m is necessarily an even integer.
Moreover, imposing periodic boundary conditions also along the horizontal direction,
it is easy to see that there is an equal number n of sites both for the rows of type A and
type B. For each row, there are 2n possible spin configurations and in the following
they will be simply denoted by μr

μr = {σ1, σ2, . . . , σn}row r.

Since the spins of type A interact only with those of type B and vice versa, it is
convenient to introduce two transfer matrices V and W , both of dimension 2n ×
2n (see Fig. 6.2). Denoting collectively by μ the spins of the lower row and by μ′

those of the upper row, the operators V (K,L) and (K,L) are defined by their matrix
elements2

Vμ,μ′(K,L) = exp

[
n∑
i=1

(K σi+1 σ
′
i + Lσi σ

′
i)

]
, (6.1.1)

K

L

L

K

1 2 3

1 2 3

1 2 3 n

n+ 1

n+ 1

Fig. 6.1 Square lattice rotated by 45 degrees.

2With this choice of matrix elements, the application of two transfer matrices A and B, one after
the other, corresponds to their multiplication in the order AB.
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K L

1 2 3

1 2 3 n

n+ 1

K

1 2 3 n+ 1

1 2 3 n

LV

W

Fig. 6.2 Transfer matrices V and W .

Wμ,μ′(K,L) = exp

[
n∑
i=1

(K σi σ
′
i + Lσi σ

′
i+1)

]
. (6.1.2)

In both formulas we have assumed the periodic boundary conditions σn+1 ≡ σ1 and
σ′
n+1 ≡ σ′

1.
All statistical weights of the model are generated by the iterated application of the

operators V and W to the configuration of the first row. The partition function is thus
expressed as

ZN (K,L) =
∑
μ1

∑
μ2

. . .
∑
μm

Vμ1,μ2 Wμ2,μ3 Vμ3,μ4 . . .Wμm,μ1 ,

namely
ZN (K,L) = Tr (VWVW . . . V W ) = Tr (VW )m/2. (6.1.3)

Since the trace of a matrix is independent of its representation, the most convenient
way to compute the partition function (6.1.3) consists of diagonalizing the matrix VW ,
so that

Z(K,L) = λm1 + λm2 + · · · + λm2n , (6.1.4)

where λ2
1, λ

2
2, . . . are the eigenvalues of VW . In the thermodynamic limit (where both

m and n go to infinity) it is only the maximum eigenvalue that matters because, taking
initially the limit m→ ∞, with n finite, we have3

Z(K,L) = (λmax)m
[
1 +
(

λ1

λmax

)m
+
(

λ2

λmax

)m
+ · · ·

]
	 (λmax)m . (6.1.5)

So we arrive at a formula that is quite analogous to the one-dimensional Ising model.
From an algebraic point of view, though, there is a substantial difference between the
two cases: while in the one-dimensional case the problem consists of diagonalizing a

3With real coupling constants, the matrix V W has all matrix elements positive. The matrices
that share such a property are knows as positive matrices. The Perron–Frobenius theorem, whose
proof is proposed as a problem at the end of the chapter, states that any finite-dimensional positive
matrix has a unique maximum eigenvalue, also positive. The corresponding eigenvector has all its
components positive as well.
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2 × 2 matrix, in the two-dimensional case it is necessary to find the eigenvalues of a
2n×2n matrix, in the limit n→ ∞. The mathematical difficulty of such a problem can
be faced by taking advantage of some important properties of the transfer matrices.

6.1.1 Commutativity of the Transfer Matrices

The operators V and W explicitly depend on the coupling constants of the lattice, as
shown by their definition (6.1.1) and (6.1.2). Consider now the product of V with W
but with different coupling constants, as shown in Fig. 6.3

V (K,L)W (K ′, L′). (6.1.6)

Denoting by μ = {σ1, . . . , σn} the spins of the lower row, by μ′ = {σ′
1, . . . , σ

′
n} the

spins of the upper row and by μ′′ = {σ′′
1 , . . . , σ

′′
n} those of the half-way row, the matrix

elements of this operator between the states μ and μ′ are obtained according to the
usual rule of the product of matrices, namely as a sum over the intermediate states μ′′

(V (K,L) W (K ′, L′))μ,μ′ =
∑
{σ′′}

n∏
j=1

exp
[
σ′′
j (Kσj+1 + Lσj +K ′σ′

j + L′σ′
j+1)
]
.

Since each intermediate spin σ”j appears only in a single term of the expression,4 the
sum over these spins is particularly simple and the matrix elements of the operator
(6.1.6) assume the factorized form

(V (K,L) W (K ′, L′))μ,μ′ =
n∏

j=1

X(σj , σj+1;σ′
j , σ

′
j+1), (6.1.7)

with the elementary statistical weight X(a, b, c, d) explicitly given by (see Fig. 6.4)

X(a, b, c, d) =
∑

σ′′=±1

exp [σ′′(La+Kb+K ′c+ L′d) ] (6.1.8)

= 2 cosh [La+Kb+K ′c+ L′d] , a, b, c, d = ±1.

’’

V(K, L)

W(K’, L’)

K

1 2 3 n + 1

1 2 3 n

L

K L

1 2 3 n + 1

Fig. 6.3 Product of V and W with different coupling constants.

4This is one of the mathematical advantages of the transfer matrix defined on the diagonal of the
lattice.
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L K

L’K’

a b

c d

X(a, b ; c, d)      =

Fig. 6.4 Elementary statistical weight X(a, b; c, d).

Exchanging the role of the coupling constans (K,L) and (K ′, L′), one obtains, in
general, a different result for the product VW . There is, however, the identity

V (K,L)W (K ′, L′) = V (K ′, L′)W (K,L), (6.1.9)

if the coupling constants satisfy the equation

sinh 2K sinh 2L = sinh 2K ′ sinh 2L′. (6.1.10)

To prove this result, let’s observe that for the factorized form (6.1.7) of the product
VW , the transformation

X(a, b, c, d) −→ eMac X(a, b, c, d) e−Mbd

does not change the expression (6.1.7). This observation permits us to satisfy eqn
(6.1.9) by solving a simpler problem, i.e. the problem to find a number M such that

eMac X(a, b; c, d) = X ′(a, b; c, d) eMbd, (6.1.11)

where X ′ is the statistical weight obtained by changing K → K ′ and L → L′ in the
original X. In summary, in order to satisfy the global commutativity condition (6.1.9),
it is sufficient to find a solution to the local condition (6.1.11). This problem can be
solved by using the star–triangle identity discussed in Section 4.3.1. Let us consider, in
fact, the graphical representation of eqn (6.1.11) given in Fig. 6.5a: both in the right
and left diagrams there is a triangle, given by the interaction of the relative spins.
Imposing

K1 = L, K2 = K ′, K3 = M

and changing each triangle into a star, with the relative coupling constants Li given
by eqn (4.4.7), it is easy to see by looking at Fig. 6.5b that the two expressions are
equal if

L1 = K, L2 = L′,

namely, if the coupling constants satisfy the condition

sinh 2K sinh 2L = sinh 2K ′ sinh 2L′. (6.1.12)

Equation (6.1.9) can be further elaborated and entirely expressed in terms of the
matrix V . Thanks to the periodic boundary conditions, it is in fact evident that W
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K

L’

M

K’

K
L

L’
M

L

K’
L’

K

a b

c d d

ba

c

=

L’

K

a ab b

c c dd

= (b)

(a)

L

L

L L

L

L

1

12

2

3 3

Fig. 6.5 Star–triangle transformation of eqn (6.1.11), where the sum over the spins is
represented by the black circles.

differs from V simply by a translation of a lattice spacing. With the help of the operator
T , with matrix elements

Tμ,μ′ = δ(σ1, σ
′
2) δ(σ2, σ

′
3) . . . δ(σn, σ

′
1), (6.1.13)

and whose effect is to move the lattice of a lattice spacing to the right, one can verify
that

W (K,L) = V (K,L)T. (6.1.14)

Moreover

V (K,L) = T−1 V (K,L)T, W (K,L) = T−1W (K,L)T. (6.1.15)

Using (6.1.14), eqn (6.1.9) becomes

V (K,L)V (K ′, L′) = V (K ′, L′)V (K,L), (6.1.16)

where the coupling constants satisfy eqn (6.0.1).

6.1.2 Commutativity of the Transfer Matrices: Graphical Proof

The commutativity relation (6.1.16) can be proved in a graphical way. To this end we
must first consider the square lattice in its usual orientation and then define two sets
of operators Pi(K) and Qi(L) by means of their matrix elements

(Pi(K))μ,μ′ = exp[Kσiσi+1] δ(σ1, σ
′
1) . . . δ(σn, σ

′
n)

(Qi(L))μ,μ′ = δ(σ1, σ
′
1) . . . δ(σi−1, σ

′
i−1) exp[Lσiσ′

i]
× δ(σi+1, σ

′
i+1 . . . δ(σn, σ

′
n).

(6.1.17)

Pi(K) creates the statistical weight of the spins σi and σi+1 placed on the same
horizontal row (without changing their values from the row μ to the next one), while
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Vi(L) creates the statistical weight of the spins σi and σ′
i, placed on the next neighbor

two rows. The result of these operators is visualized in Fig. 6.6. It is possible to adopt
a uniform notation by defining the operators Ui(K,L)

Ui(K,L) =
{
Pj(K), i = 2j
Qj(L), i = 2j − 1. (6.1.18)

These operators satisfy

Ui(K,L)Uj(K ′, L′) = Uj(K ′, L′)Ui(K,L), | i− j |≥ 2. (6.1.19)

Suppose we are dealing with a set of coupling constants (K1,K2,K3) and (L1, L2, L3)
linked to one another by the star–triangle relation (4.4.7):

sinh 2K1 sinh 2L1 = sinh 2K2 sinh 2L2 = sinh 2K3 sinh 2L3 = h−1. (6.1.20)

Using the explicit expression of the matrix elements of Pi and Qi, it is easy to show
that

Ui+1 U
′
i U

′′
i+1 = U ′′

i U
′
i+1 Ui, (6.1.21)

where we have introduced the notation Ui = Ui(K1, L1), U ′
i = Ui(K2, L2) and U ′′

i =
Ui(K3, L3). The graphical interpretation of this equation is given in Fig. 6.7. Let us

P (K)
i

Q (L)
j

Fig. 6.6 Action of the operators Pi(K) and Qj(L) on the square lattice.

=

j j + 1 j j+1

i = 2j

= i = 2j −1

Fig. 6.7 Graphical form of eqn (6.1.21). The full circle corresponds to the couplings (K1, L1),
the empty circle to (K2, L2), and the line to (K3, L3).
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Fig. 6.8 The operator V (K, L) on the square lattice.

consider now the operator V (K,L) given by the product

V (K,L) = U1(K,L)U2(K,L) . . . UN (K,L), (6.1.22)

with N = 2n: its action consists of introducing the statistical weights along the main
diagonal of the lattice as shown in Fig. 6.8. It is easy to see that V (K,L) coincides
with the transfer matrix considered in the previous sections.

Let (Ki, Li) (i = 1, 2, 3) be three different pairs of coupling constants that satisfy
the star–triangle equation (6.1.20) and let’s define

V = U1 U2 . . . UN , V ′ = U ′
1 U

′
2 . . . U

′
N .

Using iteratively eqns (6.1.19) and (6.1.21), one can show that these operators satisfy
the condition

V V ′(U ′−1
N U ′′

N UN ) = (U1 U
′′
1 U

′−1
1 )V ′ V. (6.1.23)

The graphical proof is given in Fig. 6.7, where the sequence of diagrams is generated
by the repeated application of the graphical identities of Fig. 6.9. The terms within
the parentheses of eqn (6.1.23) refer to the spins at the boundary and they disappear
if we adopt periodic boundary conditions. In this case we have then the commutativity
relation (6.1.16)

V (K,L)V (K ′, L′) = V (K ′, L′)V (K,L). (6.1.24)

6.1.3 Functional Equations and Symmetries

The factorized form (6.1.7) of VW allows us to write down a functional equation
for the matrix elements of this operator. Consider the elementary statistical weight
X(a, b ; c, d), given by the formula (6.1.8). For the values

K ′ = L+
iπ

2
, L′ = −K, (6.1.25)

we have

X(a, b ; c, d) = 2 cosh
[
L(a+ c) +K(b− d) +

iπc

2

]
= ic sinh [L(a+ c) +K(b− d)] .

(6.1.26)
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Fig. 6.9 Graphical proof of the commutativity relation of the transfer matrices along the
diagonal of the square lattice.

Hence, it is different from zero only in two cases:

• a = c and b = d, where we have

X(a, b; a, b) = 2ia sinh 2La = 2i sinh 2L;

• or a �= c and b �= d, and in this case

X(a, b;−a,−b) = −2ia sinh 2Kb = −2iab sinh 2K.

Corresponding to the particular values (6.1.25) of the coupling constants, the matrix
elements of VW are expressed as

(
V (K,L) W

(
L+

iπ

2
,−K

))
μ,μ′

= (2i sinh 2L)n δ(σ1, σ
′
1) δ(σ2, σ

′
2) . . . δ(σn, σ

′
n)

+(−2i sinh 2K)n δ(σ1,−σ′
1) δ(σ2,−σ′

2) . . . δ(σn,−σ′
n). (6.1.27)

If we introduce the identity operator I, with matrix elements

Iμ,μ′ = δ(σ1, σ
′
1) δ(σ2, σ

′
2) . . . δ(σn, σ

′
n), (6.1.28)

and the operator R, with matrix elements

Rμ,μ′ = δ(σ1,−σ′
1) δ(σ2,−σ′

2) . . . δ(σn,−σ′
n) (6.1.29)
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(both matrices have dimension 2n× 2n), eqn (6.1.27) can be written in an operatorial
form as

V (K,L) W
(
L+

iπ

2
,−K

)
= (2i sinh 2L)n I + (−2i sinh 2K)n R. (6.1.30)

As we will see in the next section, this formula is extremely useful to determine the
eigenvalues of the matrices V and W , and to find the inverse of the matrix V (K,L)
(see Problem 2 at the end of the chapter).

Let’s discuss the symmetry properties of the matrices V and W . Interchanging K
with L and σi with σ′

i, the matrix W becomes the transpose of V :

W (K,L) = V T (L,K), (6.1.31)

V (K,L)W (K,L) = [V (L,K)W (L,K)]T . (6.1.32)

Since changing the sign of K and L is equivalent to changing the sign of σ1, . . . , σn or
σ′

1, . . . , σ
′
n, we also have

V (−K,−L) = RV (K,L) = V (K,L)R, (6.1.33)

with a similar relation for the matrix W .
Let p be the number of spin pairs (σj+1, σ

′
j) with opposite value and q the number

of spin pairs (σj , σ′
j) with opposite values. Hence, p + q counts the total number of

changes of signs that we have in the sequence σ1, σ
′
1, σ2, σ

′
2, . . . , σ

′
n. So p+ q is an even

number and, from the definition (6.1.1), it follows that

Vμ,μ′(K,L) = exp [(n− 2p)K + (n− 2q)L] . (6.1.34)

In the thermodynamic limit n → ∞ there is no difference whether n is an even or an
odd number and, imposing for simplicity

n = 2s, (6.1.35)

where s is an integer, eqn (6.1.34) can be written in terms of two numbers p′ and q′

that belong to the interval (0, s)

Vμ,μ′(K,L) = exp [±2p′K ± 2q′ L] . (6.1.36)

The variables p′ and q′ are either both even or odd, so the matrix V (K,L) satisfies
the relation

V
(
K ± i

π

2
, L± i

π

2

)
= V (K,L), (6.1.37)

with a similar relation for W (K,L).
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6.1.4 Functional Equations for the Eigenvalues

Let us proceed to the determination of the eigenvalues of V (K,L) by using the func-
tional equations satisfied by this operator. Suppose that K and L are two complex
numbers subject to the condition

h−1 = sinh 2K sinh 2L, (6.1.38)

where h is a given real number. In this case, thanks to eqn (6.1.38), there is an infinite
number of transfer matrices that commute with each other, see eqn (6.1.16). They
also commute with T , eqn (6.1.15), and with R, eqn (6.1.33). These commutation
properties imply that, for all the values of K and L that satisfy eqn (6.1.38), the
transfer matrices have a common basis of eigenvectors. These eigenvectors can depend
neither on K nor on L, but they can be functions of h. Denoting by y(h) one of these
eigenvectors and by v(K,L), t, and r the eigenvalues of the matrices V (K,L), T , and
R, we have

V (K,L) y(h) = v(K,L) y(h);
T y(h) = t y(h); (6.1.39)
Ry(h) = r y(h).

The eigenvalues t and c also satisfy

tn = r2 = 1, (6.1.40)

so they are complex numbers of unit modulus, independent of K and L. Notice that
if K and L satisfy eqn (6.1.38), the same happens with K ′ and L′ defined in (6.1.25).
Hence, applying the functional relation (6.1.30) to the vector y(h), we have

v(K,L) v
(
L+

iπ

2
,−K

)
t = (2i sinh 2L)n + (−2i sinh 2K)n r. (6.1.41)

Let λ2(K,L) ≡ λ2
i be one of the eigenvalues5 of the matrix V (K,L)W (K,L). Since

y(h) is also an eigenvector of this matrix and W = V T , we have

λ2(K,L) = v2(K,L) t. (6.1.42)

With the definition
λ(K,L) = v(K,L)

√
t, (6.1.43)

eqn (6.1.41) becomes a functional equation that has to be satisfied by the eigenvalues
of the transfer matrix

λ(K,L) λ
(
L+

iπ

2
,−K

)
= (2i sinh 2L)n + (−2i sinh 2K)n r. (6.1.44)

5In the following we will omit, for brevity, the index i. The different eigenvalues will be identified
by the different solutions of the functional equation (6.1.44).
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6.2 Eigenvalue Spectrum at the Critical Point

In this section we show how it is possible to determine the spectrum of the transfer
matrix only using the commutativity property and the analytic structure of the eigen-
values, together with the functional equation (6.1.44). A crucial aspect of the solution
is the appropriate parameterization of the coupling constants K and L that satisfy
eqn (6.1.38): a clever parameterization will allow us to take advantage of the powerful
theorems of complex analysis and to extract the analytic properties of the eigenvalues.

The actual implementation of this program presents a different level of complexity
according to the value of the parameter h. In order to highlight the main steps of such
a method, it is convenient to discuss the simplest case:6 this corresponds to the value
h = 1 for which the system is at the critical point

sinh 2K sinh 2L = 1 (6.2.1)

(see Chapter 4 and, in particular, Section 4.2.3). Equation (6.2.1) can be identically
satisfied by imposing

sinh 2K = tan u,
sinh 2L = cot u. (6.2.2)

The coupling constants K and L are both real and positive for the values u that fall
in the range (0, π2 ). The parameterization (6.2.2) allows us to write exp(±2K) and
exp(±2L) as

exp(2K) = (1 + sinu)/ cosu,
exp(−2K) = (1 − sinu)/ cosu,

exp(2L) = (1 + cosu)/ sinu,
exp(2L) = (1 − cosu)/ sinu.

(6.2.3)

These expressions have the following important properties:

1. they are periodic functions of u, with period period 2π;
2. they are meromorphic functions7 of u, with simple poles.

Since the eigenvalues λ(K,L) of the transfer matrix can be regarded as functions
of u, it is convenient to adopt the notation λ(u) and write the functional
equation (6.1.44) as

λ(u)λ(u+
π

2
) = (2i cotu)n + (−2i tanu)n r. (6.2.4)

Expressing exp(±2K) and exp(±2L) in terms of the functions (6.2.3), the matrix
elements of Vμ,μ′ assume the form

Vμ,μ′ =
A(u)

(sinu cosu)s
, (6.2.5)

6In the general case one has to use a parameterization in terms of elliptic functions.
7A meromorphic function has only poles as singularities in the complex plane.
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where A(u) is a polynomial in sinu and cosu, of total degree 2s. Hence its general
expression is given by

A(u) = e−2isu (a0 + a1 e
iu + · · · + a2n e

4isu) . (6.2.6)

Let’s now consider the first equation in (6.1.39), which actually consists of 2n equations.
Using known theorems of linear algebra, the eigenvalues v(K,L) are expressed as linear
combinations of the matrix elements of V (K,L), whose coefficients are given by ratios
of the components of the eigenvectors y(h). For the commutativity of all matrices
involved in the problem, such ratios are functions only of the variable h but totally
independent of u. This is a crucial property for the considerations that follow because
it implies that each eigenvalue v(K,L) is expressed by a linear combination of terms
as (6.2.5) and therefore it has the same form. The same is true for λ(u), defined in
(6.1.43).

Notice that replacing u with u+ π is equivalent to changing K in −K ± iπ2 and L
in −L± iπ2 , as evident from eqns (6.2.3). However, these substitutions are equivalent
to multiplying V by R, as one can see from eqn (6.1.33). Hence, denoting v(K,L) by
v(u), the first of the equations (6.1.39) becomes

V (K,L) R y(h) = v(u+ π) y(h), (6.2.7)

where we have taken into account once again the independence of y(h) of the variable
u. Using the first and the last equation in (6.1.39), we have

v(u+ π) = r v(u),

namely
λ(u+ π) = r λ(u). (6.2.8)

Since the generic form of λ(u) is given by (6.2.5) and r = ±1, for the periodicity
(6.2.8) the corresponding polynomial A(u) in (6.2.6) only has the even coefficients c2k
different from zero when r = 1, while it only has the odd coefficients c2k+1 different
from zero when r = −1. Then the eigenvalues λ(u) can be expressed as

λ(u) = ρ (sinu cosu)−s
l∏

j=1

sin(u− uj) (6.2.9)

where ρ and u1, u2, . . . , ul are constants to be determined, with

l =
{

2s, if r = +1
2s− 1, if r = −1.

Substituting this expression into the functional equation (6.2.4), we have

ρ2
l∏

j=1

sin(u− uj) cos(u− uj) = 22s (cos4s u+ r sin4s u
)
. (6.2.10)
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This identity must be satisfied for all values of u. This expression can be simplified by
the substitution

x = e2iu, xj = e2iuj .

We then have

ρ2
(
i

4

)l l∏
j=1

(x2 − x2
j )

xj
= 2−2s xl−2s [(x+ 1)4s + r (x− 1)4s

]
. (6.2.11)

Both polynomials on the right- and on the left-hand sides are of degree l in the variable
x2 and therefore the constants ρ and x1, . . . , xl are determined by the identity of these
two polynomials. Since x2

1, . . . , x
2
l are the l distinct zeros of the left term, the same

should hold for the term on the right-hand side. So, they are fixed by the condition[
(x+ 1)4s + r(x− 1)2s

]
= 0,

whose solutions are given by

x2
j = − tan2 θj

2
, j = 1, . . . , l

where

θj =
{
π (j − 1

2 )/2s, if r = +1
π j/2s, if r = −1.

All these values of θj fall in the range (0, π), so that, defining

ϕj =
1
2

ln tan
θj
2
, j = 1, . . . , l

we have
uj = ∓π

4
− i ϕj , j = 1, . . . , l. (6.2.12)

Since the sign ∓1 of each solution can be chosen independently, there are 2l possible
solutions. There is, however, an extra condition coming from the limits u → ±i∞,
where exp(2K) = exp(2L) → ±i. Since the matrix elements of the transfer matrix do
not change if we alter the sign of exp(2K) and exp(2L), we have

λ(i∞) = λ(−i∞).

From the general expression of the eigenvalues, eqn (6.2.9), one can check that this
condition is automatically satisfied when r = −1, while if r = 1, it leads to the
condition

(u1 + · · · + u2s)/π = N +
1
2
s,

where N is an integer. This implies that only 2s − 1 among the possible signs of the
solutions (6.2.12) can be chosen in an independent way. Therefore, as expected, in
both cases r = ±1 there are 22s−1 eigenvalues λ.
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To summarize, the eigenvalues λ(u) are given by

λ(u) = ρ (sinu cosu)−s
l∏

j=1

sin
(
u+ iϕj +

1
4
ηjπ

)
, (6.2.13)

where η1, . . . , ηl have values ±1 and, for r = 1 there is the further condition

η1 + · · · + η2s = 2s− 4M, (6.2.14)

where M is an integer.

6.3 Away from the Critical Point

The analysis done for the eigenvalues at the critical point T = Tc can also be performed
for generic values of T . As previously mentioned, this requires a parameterization in
terms of the elliptic functions and will not be pursued here. We only mention that this
analysis leads to the determination of the maximum eigenvalues of the transfer matrix
whose final expression is given by

log λmax =
1
2

2s∑
j=1

F
[
π

(
j − 1

2

)
/2s
]
, (6.3.1)

where the function F(θ) is

F(θ) = log
{

2
[
cosh 2K cosh 2L+ h−1(1 + h2 − 2h cos 2θ)1/2

]}
. (6.3.2)

In the thermodynamic limit, when s→ ∞, the free energy is given by

−F/kBT =
1
2π

∫ π

0
F (θ) dθ. (6.3.3)

The analysis of the singularity that arises in this expression when h → 1 is proposed
as an exercise.

6.4 Yang–Baxter Equation and R-matrix

At the heart of the solvability of many lattice statistical models there is the commu-
tativity of the transfer matrix that, as a sufficient condition, needs the Yang–Baxter
equation satisfied by the Boltzmann weights R. Let’s elaborate on this problem in
more abstract terms. Consider Fig. 6.10, where each of the lines stands for a vector
space spanned by the statistical variables. Let’s denote the three vector spaces by V μ

p1
,

V ν
p2

, and V λ
p3

, with μ, ν, and λ that label the different multiplets and the pi’s that
denote the spectral parameters of the Boltzmann weights. Two or more adjacent lines,
for example those representing the spaces V μ

p1
and V ν

p2
, are tensor products of those

spaces, V μ
p1

⊗ V ν
p2

. The Boltzmann weight R, associated to the operation of crossing
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p p
1 3

p
2

p

=

p
1 3

p
2

(b)(a)

Fig. 6.10 Yang–Baxter equation satisfied by the Boltzmann weights (here represented by the
dots) as functions of the spectral parameter p.

the lines in the diagram, can be abstractly described as a mapping from a vector space
of the initial states to the vector space of the final state,

Rμν(p1 − p2) : V μ
p1

⊗ V ν
p2

→ V ν
p2

⊗ V μ
p1
. (6.4.1)

Here it is assumed that, from the homogeneity of the lattice, the Boltzmann weights
depends only on the difference p1−p2 of the spectral parameters. This matrix is usually
referred to as the R-matrix and satisfies the Yang–Baxter equation of Fig. 6.10

(Rμν(p1 − p2) ⊗ 1)(1 ⊗Rμλ(p1 − p3))(Rνλ(p2 − p3) ⊗ 1)
= (1 ⊗Rνλ(p2 − p3))(Rμλ(p1 − p3) ⊗ 1)(1 ⊗Rμν(p1 − p2)).

(6.4.2)

The Yang–Baxter equation is nonlinear and usually it it is difficult to solve directly.
Nevertheless its solution has been found for many lattice models, leading to the exact
determination of their free energy. An essential property is the invariance of R under a
quantum group symmetry, a topic that will be discussed in more detail in Section 18.9,
whereas further aspects of R-matrices and the Yang–Baxter equation can be found
throughout the literature quoted at the end of the chapter. Here we present the main
features of this formalism through the study of a significant example.

6.4.1 Six-vertex Model

Consider a square N×N lattice where the fluctuating variables α are attached to each
bond connecting the nearest-neighbor lattice sites. The vertex Boltzmann weight Rγδ

αβ

corresponds to each configuration around any lattice site

Rγδ
αβ =

δ

γ − |
| − α

β

Denoting the energy of the vertex by ε(α, β, γ, δ), one has Rγδ
αβ = exp [−ε(α, β, γ, δ)/

kBT ] . In the six-vertex model each bond can accept one of the two states characterized
by an incoming or outgoing arrow associated to the values α = ±. Furthermore, the
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only allowed configurations of this model are those in which there are two incoming
and two outgoing arrows at each vertex, i.e.

R++
++ =← ↑

↑ ←, R−−
−− =→ ↓

↓ →

R+−
+− =← ↓

↓ ←, R−+
−+ =→ ↑

↑ →

R+−
−+ =← ↓

↑ →, S−+
+− =→ ↑

↓ ←

A configuration of the system in shown in Fig. 6.11. Assuming invariance under + ⇔ −,
we can parameterize the Boltzmann weights as

R++
++ = R−−

−− = a = sin(γ − p)
R+−

+− = R−+
−+ = b = sin p

R+−
−+ = R−+

+− = c = sin γ

where p is the spectral parameter whereas γ is the coupling constant. The weights can
be arranged as a 4 × 4 matrix

Rγδ
αβ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

← ↑
↑ ←

← ↓
↓ ← ← ↓

↑ →

→ ↑
↓ ← → ↑

↑ →

→ ↓
↓ →

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎝
a
b c
c b

a

⎞
⎟⎟⎠ (6.4.3)

It is not difficult to check that this R-matrix satisfies the Yang–Baxter equation (6.4.2).
To express the partition function in terms of the matrix R, let’s define the monodromy
matrix (the sum over the repeated indices is implicit):

L
γ{δ}
α{β}(p, γ) ≡ Rγδ1

α2β1
(p, γ)Rα2δ2

α3β2
(p, γ) · · · RαNδN

αβN
(p, γ) ≡

(
A B
C D

)
. (6.4.4)

...          ...            ...  

...          ...            ...  

...          ...            ...  

Fig. 6.11 A configuration of the six-vertex model with periodic boundary conditions.
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In this formula we have a matrix product with respect to the horizontal space but
a tensor product with respect to the N vertical space. Therefore the final result is a
2 × 2 matrix with entries that are operators in VN = ⊗N

k=1V
(k)
v (V (k)

v is the vertical
space associated to the k-th column, in our case V (k)

v = C2). The graphical form of
the monodromy matrix is

{δ}
γ− −α

{β}
= −|−|− · · · −|−|− =

⎛
⎜⎜⎜⎝

← ← ← →

→ ← → →

⎞
⎟⎟⎟⎠ .

With periodic boundary conditions along the horizontal and vertical axes, the transfer
matrix of the model is

T (p, γ) = Trh L(p, γ), (6.4.5)

and the partition function is the trace in the tensor product of the vertical space

Z(p, γ) = Trv[T (p, γ)]N . (6.4.6)

Since the R-matrix satisfies the Yang–Baxter equation (6.4.2), the monodromy matrix
satisfies

Rα′′β′′
α′β′ (p− p′)Lα′{γ′′}

α{γ′} (p)Lβ′{γ′}
β{γ} = L

β′′{γ′′}
β{γ′} (p′)Lα′′{γ′}

α′{γ} (p)Rα′β′
αβ (p− p′). (6.4.7)

This implies that the operators A,B,C, and D of the monodromy matrix satisfy the
commutation relations

A(p)B(p′) =
a(p′ − p)
b(p′ − p)

B(p′)A(p) − c(p′ − p)
b(p′ − p)

B(p)A(p′)

D(p)B(p′) =
a(p− p′)
b(p− p′)

B(p′)D(p) − c(p′ − p)
b(p′ − p)

B(p)D(p′) (6.4.8)

[C(p), B(p′)] =
c(p− p′)
b(p− p′)

−A(p)D(p′).

Equation (6.4.7) also reflects the integrability of the model since it yields the commu-
tativity of the transfer matrix for different spectral parameters

[T (p), T (p′)] = 0, (6.4.9)

whose proof of (6.4.9) is similar to the one given in Section 6.1.2. Notice that this
equation represents an infinite set of conservation laws for the operators tn:

[tn, tm] = 0, log T (p) = −
∑
n

tn p
n. (6.4.10)
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The lowest conserved charges can be identified with the momentum and the hamilto-
nian of the associated quantum system8

t0 = iP, t1 = H.

Using the commutativity of the transfer matrices, their maximal eigenvalue can be
found, in principle, along the lines discussed for the Ising model in previous sections.
Equivalently, the solution of the model can be addressed by the Bethe ansatz approach,
as sketched in Problem 4. Here we simply report the final result for the free energy
per unit site:

−F/kBT = log λmax(p, γ) (6.4.11)

= log sin(γ − p) +
∫ ∞

−∞

dt

t

sinh[(π − γ)t] sinh[2pt]
2 cosh γt sinhπt

.

Let’s conclude by outlining the origin of the quantum group symmetry of the model.
First, let’s write the R-matrix (6.4.3) in terms of the Pauli matrices σ3 and σ± =
1
2 (σ1 ± iσ2) as

R =

⎛
⎜⎜⎝
a
b c
c b

a

⎞
⎟⎟⎠ =

⎛
⎜⎝ sin

( 1
2γ − σ3(p− 1

2γ
)

σ− sin γ

σ+ sin γ sin
( 1

2γ + σ3(p− 1
2γ
)
⎞
⎟⎠ . (6.4.12)

It is easy to see that the Yang–Baxter equation (6.4.2) satisfied by the R-matrix implies
the usual SU(2) relations of the Pauli matrix, i.e.

[σ3, σ±] = ±2σ±, [σ+, σ−] = σ3.

Taking the limits of the spectral parameter p → ±i∞, let’s write the monodromy
matrix similarly to eqn (6.4.12)

L =
(
A B
C D

)
=

⎛
⎜⎝ sin

( 1
2γ − J3(p− 1

2γ
)

J− sin γ

J+ sin γ sin
( 1

2γ + J3(p− 1
2γ
)
⎞
⎟⎠ . (6.4.13)

From the Yang–Baxter equation (6.4.7) satisfied by the monodromy matrix, we can
obtain the commutation relations for the J ’s:

[J3, J±] = ±2J±, [J+, J−] =
sin(γJ3)

sin γ
. (6.4.14)

These are the commutation relations of the quantum group SUq(2) that will be dis-
cussed in further detail in Section 18.9. Notice that one recovers the usual SU(2)
commutation relations when γ → 0.

8The one-dimensional quantum system associated to the classical two-dimensional six-vertex model
is the Heisenberg chain and its continuum limit is described by the Sine–Gordon model.
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Problems

1. Perron–Frobenius theorem
Consider a finite dimensional positive matrix M , i.e. with all its matrix elements
positive, Mij > 0. Assume, for simplicity, that M is also a symmetric matrix. Prove
that its maximum eigenvalue is positive and non-degenerate. Moreover, prove that
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the corresponding eigenvectors have all the components with the same sign (which,
therefore, can be chosen to be all positive).

2. Inverse of the matrix V
Consider the operator R defined in eqn (6.1.29). Using the property R2 = I, prove
that the inverse of the operator A = (2i sinh 2L)n I + (−2i sinh 2K)n R is given by

A−1 =
1

(2 sinh 2K)2n − (2 sinh 2L)2n
[(2i sinh 2L)n I − (−2i sinh 2L)n R] .

Use this expression and the functional equation (6.1.30) to determine the inverse of
the operator V (K,L).

3. Free energy
Analyze the expression of the free energy of the Ising model, given in eqn (6.3.3), as
a function of the parameter h. Show that, with t = (T − Tc)/Tc = h − 1, for t → 0
one has

F 	 t2 log |t|.

4. Bethe ansatz equation
The solution of the six-vertex model consists in finding the eigenvalues of the transfer
matrix

T (p)ψ = (A(p) +D(p))ψ = λψ.

This problem can be solved by the algebraic Bethe ansatz, whose main steps are as
follows. Define the pseudo-vacuum φ, as the state annihilated by the operator C(p)

C(p)φ = 0, ∀p.

a Prove that

φ{β} =
N∏
k=1

δβk,+ = ↑ · · · ↑ .

b Prove that φ{β} is an eigenstate of A and D with eigenvalues

A(p)φ = aN (p)φ
D(p)φ = bN (p)φ .

However, applying B to φ, one gets neither an eigenvector nor zero, B(p)φ �= φ, 0.
This suggests looking for an eigenstate of the transfer matrix in the form

ψ = B(p1) . . . B(pn)φ

where the parameters pi are to be determined.
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c Show that, applying A(p) and D(p) to ψ and pushing them through all the B’s by
the commutation relations (6.4.8), one gets

(A(p) +D(p))ψ = (λA(p) + λB(p))ψ + unwanted terms

where

λA(p) = aN (p)
n∏

k=1

a(pk − p)
b(pk − p)

, λB(p) = bN (p)
n∏

k=1

a(pk − p)
b(pk − p)

.

The unwanted terms, coming from the second terms in eqn (6.4.8), contain a B(p)
and so they can never give a vector proportional to ψ, unless they vanish. Show
that this happens if the Bethe ansatz equations hold:(

b(pj)
a(pj)

)N n∏
k=1

a(pj − pk)
b(pj − pk)

b(pk − pj)
a(pk − bj)

= −1, j = 1, 2, . . . n.

Notice that the eigenvalue problem of the transfer matrix has been transformed into
a set of transcendental equations above for the spectral parameters p1, . . . , pn. A fur-
ther elaboration of the solution of the Bethe ansatz equations leads to the expression
(6.4.11) of the free energy of the model.
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Quantum Field Theory and
Conformal Invariance
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7
Quantum Field Theory

Surely you are joking Mr. Feynman!

7.1 Motivations
The statistical models we have analyzed so far are defined on a lattice and they have
a microscopic length-scale given by the lattice spacing a. In all these models there is,
however, another length-scale provided by the correlation length ξ: this is a function
of the coupling constants and can be varied by varying the external parameters of
the systems. When the system is sufficiently close to its critical point, the correlation
length is much larger than the microscopic scale, ξ 
 a. It is then natural to assume
that the configurations of the system are sufficiently smooth on many lattice spacings
and to adopt a formalism based on continous quantities like a field ϕ(x) (see Fig. 7.1).

As we will show in the sequel of this book, the quantum field theory formulation of
statistical models has the important advantage of greatly simplifying the study of crit-
ical phenomena: it helps us to select the most important aspects of phase transitions –
those related to the symmetries and the dimensionality of the system – and to reach
results of great generality. It is worth stressing that the advantage of this method is not
only limited to these technical aspects, for the use of quantum field theory in statistical
mechanics permits us to achieve a theoretical synthesis of wide scope. Quantum field
theory (QFT) was originally developed to describe elementary particles and to rec-
oncile the principles of special relativity with those of quantum mechanics. After the
quantization of the electromagnetic field, the subject has witnessed a rapid evolution

Fig. 7.1 Continous formulation in terms of a field theory.
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and has been applied to the analysis of weak interactions, responsible for many ra-
dioactive decays, and of strong interactions, responsible for the forces of quarks inside
hadrons. The degree of refinement reached by this formalism is proved by the incredi-
ble precision by which we are able to control nowadays physical effects on a subatomic
scale. Moreover, its exceptional theoretical richness has led to extraordinary advances
in several fields of physics and mathematics. String theory – a subject developed in
recent years in an attempt to unify all fundamental interactions including gravity –
can be considered, for instance, as a natural and elegant development of quantum field
theory.

The reason why QFT plays a central role both in the context of elementary particles
and critical phenomena is due, in a nutshell, to the principle of universality. This is a
primary aspect of all local interactions and it is noteworthy that it naturally emerges
from the analysis of the renormalization group. Besides, there is a more fundamental
reason, for it is possible to show that any relativistic quantum theory will look at
sufficiently low energy like a quantum field theory.1 In short, this is the most general
theoretical framework to describe a set of excitations above the ground state2 of a
system with infinite degrees of freedom.
Transfer matrix formalism. An obvious question at this point is how can it be
possible that a classical statistical system with short-range interactions is equivalent
to a relativistic quantum theory. The answer is in the transfer matrix formalism (see
Fig. 7.2). Notice that the partition function of a statistical system with short-range
interactions can be seen in two equivalent ways: either as a sum over classical variables
in a d-dimensional euclidean space with a classical hamiltonian H({si}), or as the trace
of a time evolution operator T = e−τ H({Φi}) associated to a quantum hamiltonian H
in (d−1) dimensions of certain appropriate variables Φi. This equivalence is expressed
by the identity3

Z =
∑
{si}

e−H({si}) = TrΦi

∏
τ

e−τ H({Φi}). (7.1.1)

The quantum hamiltonian H({Φi}) is the first step toward the quantum field theory.
Translation and rotation invariance of the quantum theory emerge in fact when the
lattice spacing goes to zero. Finally, making a change of the time variable τ → −it, one
arrives at a relativistic theory in (d − 1) space dimensions and one time dimension.
Vice versa, one can start from a QFT that is relativistically invariant in d space-
time dimensions and, with the transformation of the time coordinate t → iτ , define
a euclidean QFT. Once discretized, this theory can be considered for all purposes as
a statistical model in d dimensions. In summary, at the root of the equivalence of
the formalisms that describe elementary particles and critical phenomena, there is the
possibility to adopt either an operatorial or a functional integral approach to a QFT.

1See S. Weinberg, The Quantum Theory of Fields, Vol. I Foundations, Cambridge University Press,
Cambridge, 1995.

2The ground state is also called the vacuum state of the system.
3In the following we will always skip the Planck constant � (considered to be equal to 1) in all

formulas.
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τ

T

x

Fig. 7.2 A classical statistical system in d dimensions and the corresponding quantum system
in (d−1) dimensions. When the lattice spacing goes to zero one gets a continuous theory both
isotropically and translationally invariant.

This chapter is an introduction to the main concepts of QFT based on the two
approaches mentioned above. Since it is impossible to cover in a few pages all aspects
of such a large subject, we focus attention only on those aspects that are useful for
the comprehension of the following parts of the book and we refer to the references at
the end of the chapter for further reading.

7.2 Order Parameters and Lagrangian

Let’s start our discussion with the functional formalism of the euclidean QFT that is
at the root of the continuous formulation of statistical models. This formalism relies on
the possibility to substitute the sum over the classical discrete variables {si} in terms
of a functional integral on the continuous variables ϕ(x), also classical. This happens
near a phase transition point, when the correlation length ξ is much larger than the
lattice spacing a:

Z =
∑
{si}

e−H({si}) 	
∫

Dϕ(x) e−S({ϕ}), ξ 
 a. (7.2.1)

Let’s comment on this expression. The first problem that arises in the functional
approach is the identification of the order parameter of the statistical system. As
already discussed in Chapter 1, to solve this problem one has to rely on the symmetry
of the hamiltonian and on some physical intuition. For instance, in the presence of a
Z2 symmetry, the role of the order parameter can be played by a scalar quantity ϕ(x)
that takes values on all of the real axis, odd under the Z2 transformation, ϕ(x) →
−ϕ(x). For a system that is instead invariant under O(n) symmetry, just to make
another example, one can take as order parameter a field with n components Φ(x) =
[φ1(x), φ2(x), . . . , φn(x)] that transforms as a vector under the O(n) transformations.

Action and lagrangian. Once the order parameter is identified, one needs next to
introduce the Boltzmann weight associated to its different configurations. Only in
this way, in fact, can one further proceed to compute statistical averages, correlation
functions, and all the other thermodynamic quantities. In analogy with what was done
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for the statistical systems defined on a lattice, the probability of the field configuration
can be assumed to be proportional to4

W (ϕ, {g}) = exp[−S(ϕ, {g}] = exp
[
−
∫
dxL(x)

]
, (7.2.2)

where S is the action of the theory, given by an integral on a lagrangian density L(x).
The latter is a local quantity, generically expressed in terms of a polynomial of the
fields and their derivatives. To simplify the notation, in the following we focus our
attention on a QFT of a scalar field ϕ(x), odd under the Z2 symmetry. In this case,
restricting attention to those terms that are at most of degree 2 in the derivatives,5

the most general expression of the action is given by

S =
∫
dx
[
1
2
(∂jϕ)2 + g1ϕ+

g2
2
ϕ2(x) + · · · + gn

n!
ϕn(x) + · · ·

]
. (7.2.3)

In d-dimensional euclidean space, the definition of the derivative term is meant to be
a sum over the repeated indices

(∂jϕ)2 ≡ (∂jϕ)(∂jϕ) =
d∑

i=1

(
∂ϕ

∂xi

)2

.

The lagrangian theory (7.2.3) is also known as the Landau–Ginzburg theory. To cope
with the perturbative analysis of such an action, the custom is to isolate firstly its free
part, expressed by the quadratic terms

S0 =
∫
dxL0 =

∫
dx
[
1
2
(∂jϕ)2 +

m2

2
ϕ2(x)

]
, (7.2.4)

and consider the remaining terms in (7.2.3) as the interactive part, denoted by SI =∫
dxLI . In the expression above, m is the mass parameter.6 It is also convenient to

introduce the concept of the manifold of the coupling constants, defined as the space
spanned by the set of all couplings {g} = (g1, g3, . . . , gn, . . .).

Once the lagrangian is given, the partition function of the system is obtained by
summing up all possible configurations of the order parameter

Z[{g}, a] =
∫

Dϕ exp[−S[ϕ, {g}]]. (7.2.5)

In writing this expression we have emphasized that the partition function depends both
on the coupling constants gi and the microscopic cut-off a provided by the lattice
spacing of the original theory. Even if we have adopted a continuous formalism to

4In the following we will often use the notation x to denote a vector quantity. Similarly, we will
use dx = ddx.

5This can be justified by demanding the causality of the theory.
6In the canonical quantization of the theory, m can indeed be identified with the mass of the

particle created by the field ϕ(x).
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describe a statistical model, it is in fact necessary to take into account the microscopic
scales of the systems, and we will see later several effects of such a dependence. Notice
that an obvious reason to introduce the microscopic scale a is related to the definition
of the measure Dϕ: with this notation we mean a measure on all possible values of
the field ϕ(x). Since ϕ is a continuous quantity defined on each point of the space,
Dϕ is not a priori well-defined. In order to make sense of it, one can proceed in two
equivalent ways.
The measure. The first approach to define a measure consists of considering the
field as a collection of discrete quantities ϕi, defined only on N sites of a lattice with
spacing length a, so that Dϕ can be expressed as a product of the differentials of all
these variables, whose number can be enormously large but in any case finite:

Dϕ =
N∏
i

dϕi. (7.2.6)

The second equivalent approach makes use of the translation invariance of the system.
This invariance allows us to decompose the field into its Fourier components

ϕ(x) =
1√
N

∑
k

ϕ(k) eikx.

When N is finite, the frequencies are discrete. Furthermore, in the presence of a
microscopic scale a, they satisfy the condition

|k| ≤ Λ 	 1
a
.

The lattice space a acts then as an ultraviolet cut-off. This turns out to be a very
useful quantity, since it permits us also to regularize the divergent terms coming from
the perturbative formulation of the theory. In the second approach the measure Dϕ is
also given by the differential of a finite number of variables:

Dϕ =
∏

0≤|k|≤1/a

dϕ(k). (7.2.7)

Notice that in both cases the problem to control the behavior of Dϕ when N → ∞,
or, equivalently, a → 0 still remains open. This is a problem not only of the measure
but of the entire quantum field theory.
Engineering dimensions. As a matter of fact, the ultraviolet cut-off a also enters
other key aspects. Consider, for instance, the engineering dimensions of the coupling
constants in the action (7.2.3). To determine such quantities, it is necessary to fix
initially the dimension of the scalar field ϕ. Since A is a dimensionless quantity, each
term of the lagrangian should have dimension a−d. Consider then the kinetic term
(∂jϕ)2: imposing the dimension of the field equal to [ϕ] = axϕ , we have the condition
a−2 a2 xϕ = a−d and therefore

[ϕ] = a1−d/2. (7.2.8)
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Once the dimension of ϕ(x) is known, it is easy to obtain the dimensions of the various
coupling constants

[gm] = amd/2−m−d ≡ aδm . (7.2.9)

It is interesting to observe that each coupling constant has a particular dimension d(m)
s

(the so-called upper critical dimension) in which it is dimensionless. For instance g3
is dimensionless for d = 6, g4 for d = 4, and so on. Notice that the quantity δm is
positive when

d ≥ d(m)
s =

2m
m− 2

. (7.2.10)

Critical behavior. On the basis of the information above, we can already formulate
some educated guesses on the critical behavior of the theory – guesses that need how-
ever to be refined by further analysis. For a lagrangian with higher coupling constant
given by gn, the corresponding statistical theory is expected to present two different
regimes by varying d:

(a) for d > d
(n)
s , the critical behavior is expected to be described by the mean field

theory, with a classical value for the critical exponents;
(b) for d < ds the system is instead expected to present strong fluctuations with a

corresponding significant change of its thermodynamic singularities.

The simplest way to understand these two different critical behaviors is to study the
sign of the exponent δn: when δn > 0 (i.e. d > d

(n)
s ), sending to zero the lattice space

a, the corresponding coupling constant becomes smaller, while when δn < 0 (d < d
(n)
s )

the coupling constant becomes larger. Consequently, for what concerns the critical
behavior, in the first case the microscopic fluctuations are expected to be irrelevant
while in the second case to be relevant. Anticipating the results and the terminology
of the renormalization group that will be discussed in the next chapter, the coupling
constants gn with δn > 0 are called irrelevant, those with δn < 0 are called relevant,
and, finally, those with δn = 0, marginal.

The previous analysis was carried out for a theory invariant under a Z2 symme-
try but the same scenario holds for other theories with different internal symmetry.
Namely, each theory has a lower critical dimension di, below which there is no longer
a phase transition, and an upper critical dimension ds, beyond which the critical
exponents take classical values. The strong fluctuation regime of the order parameters
is expected to occur in between, i.e. in the range of dimensions d satisfying

di ≤ d ≤ ds. (7.2.11)

For systems with short-range interactions and a discrete symmetry, such as the Ising
or the Potts models, the lower critical dimension is always di = 1, whereas for those
with a continuous symmetry, such as the O(n) model, di = 2. In the range (7.2.11)
the critical exponents assume values that are different from their mean field solution
and their determination requires more sophisticated theoretical tools.
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7.3 Field Theory of the Ising Model
In order to clarify the formulation of a statistical model in terms of a euclidean QFT,
it is instructive to study in some detail the case of the Ising model. Consider the
partition function of this model, generally expressed as

Z =
∑
{si}

exp

⎡
⎣∑

i,j

Jij si sj +
∑
i

hi si

⎤
⎦ . (7.3.1)

Let us use an identity valid for the gaussian integral:

∫ +∞

−∞

∏
i

dφi exp

⎡
⎣−1

4

∑
i,j

φi J
−1
ij φj +

∑
i

φi si

⎤
⎦ = A exp

⎡
⎣∑

i,j

Jijsi sj

⎤
⎦ (7.3.2)

(where A is a normalization constant that will be disregarded from now on). This
identity allows us to express the partition function (7.3.1) in terms of a lagrangian of
a bosonic field φi, thus swapping from the formulation based on the discrete variables
si = (±1) to the one based on the continuous variables φi = (−∞,+∞). Substituting
the identity (7.3.2) in eqn (7.3.1), we have in fact

Z =
∑
{si}

exp

⎡
⎣∑

i,j

Jij si sj +
∑
i

hi si

⎤
⎦

=
∑
{si}

∫ +∞

−∞

∏
i

dφi exp

⎡
⎣−1/4

∑
i,j

φi J
−1
ij φj +

∑
i

(φi + hi) si

⎤
⎦ (7.3.3)

=
∫ +∞

−∞

∏
i

dφi exp

⎡
⎣−1

4

∑
i,j

(φi − hi) J−1
ij (φj − hj)

⎤
⎦ ∑

{si}
exp

[∑
i

φi si

]
.

The sum over the spin configurations in the last term can now be explicitly performed
because the spins are decoupled:

∑
{si}

exp

[∑
i

φi si

]
=
∏
i

(2 cosh φi) = A′ exp

[∑
i

log[cosh φi]

]

(where A′ is another constant). By means of the linear transformation

φi → 1
2
J−1
ij φj ,

we arrive (up to multiplicative constants) at the expression

Z = e− 1
4

∑
i,j hi J

−1
ij hj (7.3.4)

×
∫

Dφ exp

⎡
⎣−∑

i,j

Jijφi φj +
∑
i

log[cosh (2Jik φk)]

⎤
⎦ .
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Quadratic part. Notice that the dependence on the magnetic fields is factorized
in the prefactor. To understand the nature of the field theory obtained above, it is
useful to study its quadratic part. Using the Fourier transform both for the φi and the
coupling constants

φi = φ(ri) =
1√
N

∑
k

φ(k) eik·ri ,

Jij = J(ri − rj) =
1
N

∑
k

J(k) eik·(ri−rj),

we have ∑
i,j

Jijφi φj =
∑
k

J(k)φ(k)φ(−k) =
∑
k

J(k) |φ(k)|2.

One should be careful that a quadratic term is also present in the expansion of

log[coshx] =
1
2
x2 − 1

12
x4 + · · ·

explicitly given by
2
∑
i

(Jijφj)2 = 2
∑
k

|J(k)|2 |φ(k)|2.

Putting together the two quadratic terms, the free part of the lagrangian reads∫
dxL0 =

∑
k

[
J(k) − 2 |J(k)|2

]
|φ(k)|2. (7.3.5)

Let’s now expand this expression in powers of k to the second order:7

J(k) 	 J0 (1 − ρ2 k2).

If the model has a next neighbor coupling J̃ and the lattice has a coordination number
z, we have

J0 =
∑
r

J(r) = (z βJ̃)/2, (7.3.6)

where β = 1/kT . The coefficient ρ is of the same order of the lattice spacing a, for it
is defined by the average

J0 ρ
2 k2 =

1
2

∑
r

J(r) (k · r)2 	 J0 k
2 a2.

Coming back to eqn (7.3.5), we have∫
dxL0 = J0

∑
k

[
(1 − 2J0) + (4J0 − 1) ρ2 k2] |φ(k)|2. (7.3.7)

7In the inverse Fourier transform, higher orders give rise to higher derivative terms, whose coupling
constants are irrelevant.
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When the temperature T decreases, J0 increases and therefore there is a critical value
Tc of T for which the term (1 − 2J0) vanishes:8

Tc = z J̃/k, (7.3.8)

which coincides with the critical temperature of the mean field solution of the Ising
model. At T = Tc the zero mode of the field becomes unstable, because the correspond-
ing integral on this variable in the functional integral (7.3.4) is no longer damped.
Hence, Tc signals a phase transition. Imposing

1 − 2J0 =
T − Tc
Tc

4J0 − 1 = 1 + O(T − Tc)

J0 =
1
2

+ O(T − Tc)

and substituting in eqn (7.3.7), one has∫
dxL0 =

1
2

∑
k

(
T − Tc
Tc

+ ρ2 k2
)

|φ(k)|2.

Finally, defining

ϕ(x) = ρφ(x), m2 =
1
ρ2

T − Tc
Tc

one arrives at

S0 =
∫
dxL0 =

∫
dx

1
2
[
(∂jϕ)2 +m2 ϕ2] =

1
2

∑
k

(k2 +m2)|ϕ(k)|2. (7.3.9)

Further interaction terms of the action can be recovered taking into account the higher
terms from the expansion of the term log[coshx]. They will be discussed later in this
chapter.

7.4 Correlation Functions and Propagator

Once the Boltzmann weight of the field configurations is defined, one can proceed to
define the correlation functions. They are expressed by the functional integral

G(n)(x1, . . . ,xn) = 〈ϕ(x1) . . . ϕ(xn)〉 =
1
Z

∫
Dϕϕ(x1) . . . ϕ(xn) exp [−S(ϕ, {g})] .

(7.4.1)

8Notice that, increasing T , there is another value of the temperature for which the other term
(4J0 − 1) vanishes and then changes sign. This happens because the original matrix Jij is ill-defined
since it has negative eigenvalues (all its diagonal terms are zero and correspondingly the sum of its
eigenvalues vanishes). Since s2

i = 1, this drawback can be cured as in the spherical model by adding
the identity matrix I to Jij with a proper coefficient in front to ensure the positivity of the eigenvalues.
Notice, however, that this operation has the effect of spoiling the simple lattice relation (7.3.6) above.
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For a compact expression of these quantities, it is sufficient to couple the field ϕ(x) to
an external current J(x), defining a new partition function

Z[J ] =
∫

Dϕ exp
[
−S(ϕ, {g}) +

∫
dx J(x)ϕ(x)

]
. (7.4.2)

In this way

G(n)(x1, . . . ,xn) =
1

Z[J ]
δnZ[J ]

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

. (7.4.3)

One can similarly define the correlation functions in momentum space, given by

Ĝ(n)(k1, . . . ,kn) =
∫
dx1 . . . dxn e

−ik1·x1+...kn·xn G(n)(x1, . . . ,xn). (7.4.4)

Since ∫
dx J(x)ϕ(x) =

∫
dk

(2π)d
J(−k)ϕ(k),

one has
Ĝ(k1, . . . ,kn) = (2π)nd

1
Z[J ]

δnZ

δJ(−k1) . . . J(−kn)
. (7.4.5)

It is interesting to determine the scale dimensions of the quantities given above: for
the correlation functions in real space we have

[G(n)(x1, . . . , xn)] = [ϕ]n = an(1−d/2) = Λn(d/2−1), (7.4.6)

while for those in momentum space

[G(n)(ki)] = Λ−nd [G(n)(xi)] = Λ−n(1/2d+1). (7.4.7)

For the translation invariance, the Fourier transform (7.4.4) always has a prefactor
δd(
∑n

i ki). Dividing by this term and denoting by Ḡ(n)(ki) the remaining expression,
we have

[Ḡ(n)(ki)] = Λd−n(1/2d+1). (7.4.8)

The propagator. A special role is played by the two-point correlation function of the
free theory

G
(2)
0 (x1 − x2) = Δ(x1 − x2) = 〈ϕ(x1)ϕ(x2)〉0. (7.4.9)

This is the so-called propagator of the theory for reasons that will be immediately
clear. Its computation is elementary: expressing the free action as

S0 =
∫

dx
[
1
2
(∂jϕ)2 +

m2

2
ϕ2
]

=
1
2

∫
dxϕ(x)

[
−∂2 +m2] ϕ(x), (7.4.10)

and computing the gaussian integral in (7.4.2), we arrive at

Z0[J ] = exp
[
1
2

∫
dx dy J(x) Δ(x − y) J(y)

]
, (7.4.11)
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where Δ(x − y) is, formally, the inverse matrix (−∂2 +m2) in coordinate space

Δ(x − y) ≡
〈
x
∣∣∣∣ 1
−∂2 +m2

∣∣∣∣y
〉
.

A more transparent form is given by its Fourier transform

Δ(x − y) =
∫

0≤|k|≤Λ

dk
(2π)d

exp [ik · (x − y)]
k2 +m2 , (7.4.12)

where Λ = 1/a is the ultraviolet cut-off. The euclidean propagator can be computed
for any dimension d (and for Λ = ∞) as follows. Going to radial coordinates and
denoting by r and k the modulus of the distance and momentum, we have

Δ(r) =
∫

ddk

(2π)d
eik·x

k2 +m2 =
Ω(d− 1)

(2π)d

∫ ∞

0
dk

kd−1

k2 +m2

∫ π

0
dθ sind−2 θ eikr cos θ,

where Ω(d−1) is the solid angle coming from the integration over the (d−1) remaining
angles (its explicit expression is given in eqn (2.B.1)). In order to proceed further, we
need some integrals involving the Bessel functions∫

dθ sin2ν θ eikr cos θ =
Γ
(
ν + 1

2

)
Γ
( 1

2

)(
kr
2

)ν Jν(kr),∫ ∞

0
dk kν+1 Jν(ak)

k2 +m2 = mν Kν(ma).

Using these formulas and simplifying the expressions coming from the Γ functions, the
final result is

Δ(r) = (2π)−d/2
(m
r

)d−2
K d−2

2
(mr). (7.4.13)

Substituting in this formula the relevant values of d (using for d = 1 and d = 3 the
known expressions for K± 1

2
(x)) one easily recovers the results shown in Table 7.1.

Table 7.1: Propagator, by varying the dimension d, in the limit Λ � m and for
x = |x| � Λ−1. In the third column there is the value at the origin when Λ � m. K0(r)
and K1(r) are the modified Bessel functions.

d Δ(x) (Λ = ∞) Δ(0) (Λ 
 m)

1 1
2m e−mx 1

2m

2 1
2π K0(mx) 1

2π log
( Λ
m

)
3 1

4πx e
−mx Λ

2π2

4 m
2π2x K1(mx) Λ2

16π2
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=
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Fig. 7.3 Propagator of the free theory and its graphical representation.

Let’s comment on other properties of the propagator. It is easy to see that, for any
dimension d, Δ(x) decreases exponentially for x → ∞ as e−mx. Hence, for distance
separations of a few units ofm−1, the fluctuations of the order parameter are essentially
uncorrelated. This means that the correlation length of the system can be identified
with the inverse of the mass parameter m

ξ =
1
m
. (7.4.14)

When m decreases the correlation length ξ increases and for m→ 0 its divergence can
be interpreted as the onset of a phase transition.

Notice that the value of Δ(x) at the origin depends on the dimensionality of the
system and on the cut-off. If for d = 1 the dependence is rather weak, for d ≥ 2 there
is instead a divergence when Λ → ∞. This makes, once more, evident the crucial role
played by the ultraviolet cut-off a and by the dimension d of the system.

Finally, since Δ(x) satisfies the differential equation

(−∂2
x1

+m2) Δ(x1 − x2) = δd(x1 − x2), (7.4.15)

this quantity is also the Green function of the system. From a physical point of view,
it describes the propagation of a fluctuation of the field ϕ(x) from position x1 to x2. It
is convenient to assign to it a graphical representation in terms of a line that connects
the two points x1 and x2, as shown in Fig. 7.3. An analogous representation is also
associated to its Fourier transform

Δ(k) = 〈ϕ(k)ϕ(−k)〉 =
1

k2 +m2 . (7.4.16)

7.5 Perturbation Theory and Feynman Diagrams

In the presence of interactions, it is often impossible to compute exactly the functional
integral (7.4.2). For this reason it is important to develop a perturbative formalism
based on a power expansion in the coupling constants. It should be stressed that
such an approach has some limitations: the most obvious one is that it is restricted
to small values of the coupling constants and therefore is unable to catch the strong
coupling behavior of the theory. Unfortunately, this is not the only limitation: in most
cases, the perturbative series have zero radius of convergence and, at best, they can
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g

Fig. 7.4 Vertex of the interaction corresponding to g
4!ϕ

4.

be asymptotic series (see Problem 2). Furthermore, in some quantum field theories
there are non-perturbative aspects associated for instance to topological excitations,
such as solitons or vortices, that are totally inaccessible to the perturbative approach
(see Problem 7). Despite all these drawbacks, it is nevertheless important to study the
perturbative formulation since it provides useful information on the analytic nature of
the various amplitudes and on the corrections to the free theory behavior.

For the sake of simplicity, we focus our attention on a lagrangian that has only one
interaction term, given by ϕ4. Isolating the free part, the action can be written as

S = S0 +
g

4!

∫
dxϕ4(x) = A0 + AI . (7.5.1)

As for the propagator, we can also associate a graphical representation to the interaction
term g

4! ϕ
4: this is given by a vertex with four external lines, as shown in Fig. 7.4.

The perturbative definition of the theory is obtained by expanding the Boltzmann
weight in powers of g:

e−S0−SI = e−S0

[
1 − SI +

1
2
S2
I + · · ·

]
.

Consider for instance the perturbative definition of the partition function

Z[g] =
∫

Dϕe−S0

[
1 − SI +

1
2
S2
I − · · ·

]
. (7.5.2)

Wick’s theorem. Order by order in g, all integrals that enter the expression above are
of gaussian nature and can be explicitly computed by a generalization of the following
gaussian integral in n variables

〈xk1 . . . xkm
〉 ≡ N

∫ ∏
i

dxi xk1 . . . xkm
e− 1

2

∑
i,j xi Aij xj (7.5.3)

=
∑
P

A−1
kp1kp2

. . . A−1
pkm−1kpm

where N is a constant that ensures the correct normalization of the integral, whereas
the last sum is over all possible ways of pairing the indices k1, . . . , km. This expression
expresses the content of Wick’s theorem in field theory.
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Partition function. The partition function (7.5.2) can be written in a compact way as

Z[g, J ] = exp
[
− g

4!

∫
dx

δ4

δJ4(x)

]
exp
[
1
2

∫
dx dyJ(x) Δ(x − y) J(y)

]
. (7.5.4)

an expression that, in the more general case of interaction term LI , generalizes to

Z[{g}, J ] = exp
[
−
∫
dxLI

[
δ

δJ(x)

]]
Z0[J ]. (7.5.5)

Let’s come back to the analysis of eqn (7.5.4). For the presence of the fourth derivative
with respect to the current J(x), the first correction is obtained by expanding Z0[J ] up
to second order and then taking the functional derivative with respect to the external
currents J(x1), . . . , J(x4) by using the functional relation

δ4

δJ4(z)
[J(z1)J(z2)J(z3)J(z4)] = 4! δd(z − z1) δd(z − z2) δd(z − z3) δd(z − z4).

The result is

δZ/Z0 = −g
(

1
8

∫
dz1 Δ(0) +

1
4

∫
dz1 dz2 dz3 Δ(0) Δ(z1 − z2)J(z2) Δ(z1 − z3) J(z3)

+
1
4!

∫
dz1 . . . dz5 Δ(z1 − z2) J(z2) Δ(z1 − z3) J(z3)

× Δ(z1 − z4) J(z4) Δ(z1 − z5)J(z5)
)
.

This expression, as well as all the others relative to higher perturbative orders, can
be easily put in graphical form, as shown in Fig. 7.5: in this figure each empty circle
(having four external legs) is associated to an integration variable and to the coupling
constant g, each line that connects the points x and y is associated to Δ(x−y) and each
black circle relative to the point zi corresponds to the insertion of a current J(zi). From
Wick’s theorem, all currents must be contracted among them: in the first diagram of
Fig. 7.5, for instance, this is realized by contracting pairwise the four currents present
at the vertex, in the second diagram by contracting two of the currents of the vertex

+ +

J(z  )

J(z  ) J(z  ) J(z  )

J(z  )J(z  )

zzz
1 1 1

2 2

3

3

4 5

Fig. 7.5 First perturbative terms of the partition function.
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Fig. 7.6 Two different corrections of order g4 to the partition function.

with two external currents, and the remaining ones among themselves and, finally,
in the last diagram, by contracting all four currents of the vertex with the external
currents. In this procedure, there are certain combinatorial terms that it is necessary
to take into account on which we shall comment soon.

Sending to zero all the currents, the only term that survives is the first one. In the
Fourier transform, the first diagram in Fig. 7.5 corresponds to

δZ = −g
8
V

[∫
0<|k|<1/a

ddk

(2π)d
1

k2 +m2

]2
, (7.5.6)

where V is the volume of the system. Note that, in the absence of the cut-off 1/a, this
gives rise to a divergent correction for d ≥ 2.

The graphical representation that we used, originally proposed by Feynman, is
extremely useful for systematic bookkeeping of the perturbative expansion. The per-
turbative order is given by the number of vertices of the graph: the graphs in Fig. 7.6,
for instance, correspond to two different corrections of order g4 to the partition
function.

Correlation functions. As for the partition function, a similar expansion also exists
for the correlation functions. Since their definition is

G(x1, . . . ,xn) =
1

Z[J ]
δnZ

δJ(x1) . . . δJ(xn)

∣∣∣∣
J=0

,

in addition to the functional derivatives with respect to the currents of the inter-
action term, in this case we have also the derivatives with respect to the currents
J(x1), . . . , J(xn) coupled to the fields. Note that, at each perturbative order there
are also the disconnected graphs coming from the expansion of the partition function
of the denominator. For instance, at first order, the two-point correlation function is
expressed by the graphs in Fig. 7.7.
Connected correlation functions. In order to eliminate the disconnected graphs
coming from the partition function and define instead the connected correlation func-
tions Gc(x1, . . . , xn), it is convenient to introduce the functional F [J ] defined as

Z[J ] = exp[F [J ]]. (7.5.7)
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Fig. 7.7 First-order correction to the two-point correlation function.

This functional corresponds, up to a sign, to the free energy of the statistical systems
and it is easy to show that

Gc(x1, . . . ,xn) =
δnF [J ]

δJ(x1) . . . J(xn)

∣∣∣∣
J=0

. (7.5.8)

Using this formula, for the first representatives of the connected correlation functions
one has

G(1)
c (x) = 〈ϕ(x)〉

G(2)
c (x1,x2) = 〈ϕ(x1)ϕ(x2)〉 − 〈ϕ(x1)〉 〈ϕ(x2)〉

G(3)
c (x1,x2,x3) = 〈ϕ(x1)ϕ(x2)ϕ(x3)〉 − 〈ϕ(x1)ϕ(x2)〉 〈ϕ(x3)〉 (7.5.9)

〈ϕ(x2)ϕ(x3)〉 〈ϕ(x1)〉 − 〈ϕ(x1)ϕ(x3)〉 〈ϕ(x2)〉
+2 〈ϕ(x1)〉 〈ϕ(x2)〉 〈ϕ(x3)〉.

Similar expressions are obtained for the connected correlation function in momentum
space defined by

Gc(k1, . . . ,kn) =
δnF [J ]

δJ(−k1) . . . J(−kn)

∣∣∣∣
J=0

. (7.5.10)

There are of course divergent terms also in the perturbative expansion of the connected
correlators. For instance, at first order in g, the correction of the connected two-point
function 〈ϕ(k)ϕ(−k)〉 is given by the diagram on the right side in Fig. 7.7, whose
explicit form reads

−g
2

[Δ(k)]2
∫

0≤|k|≤Λ

ddk

(2π)d
1

k2 +m2 .

This expression is divergent for d ≥ 2. More complicated terms, which may also present
a nested structure of divergences of the internal loops, appear to higher order. Such
a graph (of order g2) is shown in Fig. 7.8 and its analytic expression apart from the
two external propagators Δ(k) is given by

g2
4

6

∫
0≤|qi|≤1/a

ddq1
(2π)d

ddq2
(2π)d

1
(q21 + g2)(q22 + g2)[(k − q1 − q2)2 + g2]

.

Neglecting the possible divergences coming from each loop and focusing, instead, on a
simple counting of the power of all the momenta, it is easy to see that, in the absence
of the cut-off 1/a, this integral diverges when d ≥ 3.
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Fig. 7.8 Correction of order g2 to the propagator.

Combinatorial factors. Let’s now stop for a moment and discuss briefly the combi-
natorial factors of the perturbative terms. They come from the number of equivalent
ways of contracting the currents. Let’s see, for instance, how to arrive at the factor 1

8
in the first correction to the partition function, eqn (7.5.6): expanding Z0[J ] to the
second term

Z
(2)
0 =

1
2

(
1
2

)2 ∫
dx1 . . . dx4J(x1) Δ(x1 − x2)J(x2) J(x3)Δ(x3 − x4) J(x4).

To this expression we have to apply the differential operator

− g

4!

∫
dx
[

δ

δJ(x)

]4
.

The first derivative of this operator can act on any of the four possible currents
J(x1), ..., J(x4) of the third diagram of Fig. 7.5: hence, there are four possibilities.
The second derivative can act on any of the three remaining terms, the third deriva-
tive on any of the two remaining terms, and finally, the last one has only one choice.
Putting together all these factors, we have: 4 × 3 × 2 equivalent ways of contracting
the currents; there is in addition a coefficient

( 1
2

)3 coming from Z
(2)
0 and, finally, a

factor 1/4! coming from the interaction vertex. Hence the final coefficient is given by

4 × 3 × 2 ×
(

1
2

)3

× 1
4!

=
1
8
. (7.5.11)

After this brief excursion in the perturbative series expansion, it is worth formulating
more precisely the Feynman rules that enable us to compute the correlation func-
tions either in coordinate or momentum space. Below we state the Feynman rules for
the ϕ4 theory since their generalization to theories with other vertices ϕr is rather
straighforward.

Correlation functions in coordinate space

In order to compute the gn correction of the connected correlation function Gc(x1, . . . ,
xm) one must:
• Draw all connected and distinct graphs with n vertices (of four legs) and m

external legs. The latter are identified by the coordinates x1, . . . ,xm of the ex-
ternal points. Connect all the legs by the lines relative to the propagators. Two
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diagrams are equivalent if they can be deformed one into the other by moving the
vertices of the external points but without cutting any line. For the computation
of each diagram, the steps are as follows:
1. Assign to each graph a factor (−g)n.
2. Associate to each vertex a coordinate zi.
3. Assign to each line that connects the points x and y the propagator Δ(x−y).
4. Integrate over all coordinates of the internal points.
5. Multiply by 1/2 for each line whose final points arrive at the same vertex.
6. Multiply by (p!)−1 for each set of p lines that link two vertices.
7. Divide by r if the internal points of the graph can be transformed in r ways,

leaving the graph invariant.
• Finally, sum over all diagrams.

Correlation functions in momentum space

To compute the gn corrections to the connected correlation function Gc(k1, . . . ,km)
the rules are similar:

• Draw all connected and distinct graphs with n vertices (with four legs) and m
external legs, the last ones identified by the coordinates k1, . . . ,km of the external
momenta, and connect all these legs by means of the lines of the propagators. Two
diagrams are equivalent if they can be deformed one to the other by moving the
vertices or the external points without cutting any lines. To compute explicitly
the contribution of the each diagram, the steps are the following:
1. Assign to each of them a factor (−g)n.
2. Substitute each line with the expression of the propagator 1/(q2i +m2), where

qi is the momentum of the line, making sure that the conservation of the
momenta is enforced at each vertex where several lines meet. Assign the
momenta ki to the external lines.

3. Integrate over all the momenta that have not been fixed by the conservation
laws, with a factor (2π)−d for each integral. The integrals are computed with
a cut-off Λ.

4. Multiply by 1/2 for each line whose final points arrive at the vertex.
5. Multiply by (p!)−1 for each set of p lines that link two of the same vertices.
6. Finally, divide by r if the internal points of the diagrams can be transformed

in r ways by leaving invariant the graph.
• Finally, sum over all the diagrams.

7.6 Legendre Transformation and Vertex Functions

The expectation value of the field ϕ(x), in the presence of an external current, is
given by

〈ϕ(x)〉 ≡ ϕ̄(x) =
δF [J ]
δJ(x)

. (7.6.1)
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We can define the Legendre transform Γ[ϕ̄] of the functional F [J ] by

Γ[ϕ̄] + F [J ] =
∫
dx ϕ̄(x) J(x). (7.6.2)

Γ is a function of ϕ̄ after the elimination of J(x) by means of eqn (7.6.1). It is easy to
prove that

δΓ[ϕ̄]
δϕ̄(x)

= J(x). (7.6.3)

This expression can be regarded as the inverse formula of (7.6.1). The formulas above
have the following interesting property. If the system is in its ordered phase, one has

ϕ̄(x) =
δF [J ]
δJ(x)

∣∣∣∣
J=0

= v �= 0 (7.6.4)

and this implies
δΓ

δϕ̄(x)

∣∣∣∣
ϕ̄(x)=v

= 0, (7.6.5)

i.e. Γ[ϕ̄] has a stationary point for a non-vanishing constant value of the field.
Differentiating with respect to ϕ̄(y) the terms of both sides in (7.6.1), one finds

δ(x − y) =
δ2F [J ]

δJ(x)δϕ̄(y)
=
∫
dz

δ2F [J ]
δJ(x)δJ(z)

δJ(z)
δϕ̄(y)

=
∫
dz

δ2F [J ]
δJ(x)δJ(z)

δ2Γ
δϕ̄(z) δϕ̄(y)

. (7.6.6)

When J → 0, δ2F [J]
δJ(x)δJ(z) = G

(2)
c (x, z), and therefore the expression

δ2Γ[ϕ̄]
δϕ̄(x) δϕ̄(y)

≡ Γ2(x,y) (7.6.7)

is the “inverse matrix” of the connected two-point function. This statement becomes
more evident going to a Fourier transform, because eqn (7.6.6) becomes

Γ(2)(k)G(2)
c (k) = 1. (7.6.8)

The function Γ(2) is also called the vertex function of the two-point correlation function:
it corresponds to the sum of all Feynman graphs of the two-point correlation function
that cannot be separated by removing one line. These graphs are called one-particle
irreducible (see Fig. 7.9).

There is an interesting graphical representation of (7.6.8): denoting by X(k) the
sum of all one-particle irreducible graphs that remain once the external legs are re-
moved, the perturbative expression of the connected two-point function is expressed
by the geometrical series

G(2)
c (k) = Δ(k) + Δ(k)X(k) Δ(k) + · · · =

1
Δ−1(k) −X(k)

=
1

Γ(2)(k)
(7.6.9)

whose graphical representation is shown in Fig. 7.10.
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ba

Fig. 7.9 The graph (a) is one-particle irreducible whereas the graph (b) is not one-particle
irreducible: the latter breaks in two by cutting the intermediate line.
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Fig. 7.10 The connected two-point function is expressed by the infinite series made of the
one-particle irreducible diagrams X(k) without the external legs.

We can proceed in a similar way to define the higher vertex functions, given in
coordinate and momentum space by

Γ(n)(x1, . . . ,xn) =
δnΓ[ϕ̄]

δϕ̄(x1) . . . δϕ̄(xn)

∣∣∣∣
J=0

,

Γ(n)(k1, . . . ,kn) =
δnΓ[ϕ̄]

δϕ̄(−k1) . . . δϕ̄(−kn)

∣∣∣∣
J=0

.

For translation invariance, Γ(n)(k1, . . . ,kn) always has a prefactor δd(
∑n

i=1 ki). The
vertex functions where we have factorized this δ function are denoted by Γ̄(n)(ki).
These functions can be seen as the most fundamental objects of the theory since their
knowledge enables to obtain all other correlation functions. They are related to the
connected correlation functions Ḡ(n)

c (k1, . . . ,kn) by the relationship

Ḡ(n)
c (k1, . . . ,kn) = −G(2)

c (k1) . . . G(2)
c (kn) Γ̄(n)(k1, . . . ,kn) +Q(n), (7.6.10)

where the Q(n) are the terms coming from the graphs that are reducible by a cut of a
line. The graphical representation of the first representatives of the vertex function is
shown in Fig. 7.11. The dimension of these quantities is

[Γ(n)(xi)] = [G(n)(xi)] [V ]−n [G(2)]−n = Λn(d/2+1), (7.6.11)

where V is the volume of the system. For their Fourier transform we have

[Γ(n)(ki)] = Λ−n(d/2−1), (7.6.12)
[Γ̄(n)(ki)] = Λn+d−nd/2.
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Fig. 7.11 Vertex functions Γ(3) and Γ(4), together with their relation to the corresponding
connected correlation functions.

7.7 Spontaneous Symmetry Breaking and Multicriticality

The vertex functions enter the expansion of the functional Γ[ϕ̄]

Γ[ϕ̄] =
∑
n

1
n!

∫
dx1 . . . dxn Γ(n)(x1, . . . ,xn) ϕ̄(x1) . . . ϕ̄(xn). (7.7.1)

In order to determine whether there is or is not spontaneous symmetry breaking in
the system, one needs to check if there is a non-vanishing uniform solution v of the
field for eqn (7.6.5). Substituting this value for ϕ̄ in (7.7.1), this equation becomes

Γ[v] =
∑
n

1
n!

[∫
dx1 . . . dxn Γ(n)(x1, . . . ,xn)

]
vn. (7.7.2)

Taking the Fourier transform of Γ(n)(x1, . . .xn)

Γ(n)(k1, . . .kn) =
∫ n∏

i

dki
(2π)d

ei
∑

i ki·xi Γ(n)(x1, . . . ,xn)

= (2π)d δd
(∑

ki
)

Γ̄(n)(k1, . . . ,kn)

(where the δd(
∑

ki) comes from the translation invariance) and substituting in (7.7.2)
one has

Γ[v] = (2π)d δd(0)
∑
n

1
n!

Γ̄(n)(0, . . . , 0)vn ≡ (2π)d δd(0)U(v). (7.7.3)

The term (2π)d δd(0) denotes the proportionality of this quantity to the volume of the
system. The quantity U(v) is called the effective potential of the theory.
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At zero order in perturbation theory, the effective potential U(v) exactly coincides
with the polynomial terms of the action, with the substitution ϕ→ v. Let us analyze
the physical scenario that comes from the expression of U(v) at this order, keeping
in mind that higher perturbative corrections may alter the values of the coupling
constants through the renomalization procedure that will be briefly discussed in the
next section.

7.7.1 Universality Class of the Ising Model

Consider the effective potential at zero order for the ϕ4 theory:

U0(v) = h v +
m2

2
v2 +

g

4!
v4. (7.7.4)

Consider the case h = 0. For m2 > 0, this function has a unique minimum at the
origin: in this case the Z2 symmetry of the theory is not broken for the expectation
value of the field is zero. However, when m2 < 0, the effective potential has two
minima at vc = ±

√
−6m2/g. In this case there is an expectation value for the field

different from zero (see Fig. 7.12). The choice of any of the two values implies a
spontaneous symmetry breaking of the Z2 invariance. This can be seen explicitly by
choosing, for instance, ϕ̄ = vc and making the substitution ϕ(x) → ϕ′(x) = ϕ(x) − vc
in the lagrangian. Disregarding an additive constant, the lagrangian of the new field
is given by

L =
1
2
(∂jϕ′)2 −m2(ϕ′)2(x) +

g vc
3!

(ϕ′)3(x) +
g

4!
(ϕ′)4(x). (7.7.5)

The mass parameter of the new field is twice the value of the original expression (m2 is
negative in this case) and moreover there is the term (ϕ′)3 that is no longer invariant
under the transformation ϕ′ → −ϕ′. Hence, the fluctuations around any of the two
vacua vc do not respect any longer the original Z2 symmetry of the model.

One may erroneously think that the Z2 symmetry of the theory can be re-established
by a tunneling effect, as happens in quantum mechanics when a particle is in a dou-
ble well symmetric potential. However, in field theory, this is impossible because the
effective potential given in eqn (7.7.3) contains a term that is proportional to the
volume V of the system. In the thermodynamic limit V → ∞, the potential barrier

a b

Fig. 7.12 (a): m2 > 0, there is no spontaneous symmetry breaking; (b) m2 < 0, there is
spontaneous symmetry breaking, with an expectation value of the field different from zero.
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between the two minima is therefore infinite and consequently the symmetry cannot
be restored by a tunneling effect between the vacua.

Notice that the field theory with an interactive term ϕ4 has all the essential features
of the class of universality of the Ising model. More specifically: (i) a Z2 symmetry,
under which the order parameter is odd, and (ii) the possibility to have a non-zero
vacuum expectation value of the order parameter when the mass term changes its
sign. The identification between the two theories become more evident if we make the
assumption that the mass parameter depends on the temperature as

m2(T ) 	 (T − Tc). (7.7.6)

The upper critical dimension of the ϕ4 theory is d = 4 and, indeed, beyond this
dimension the Ising model has critical exponents that coincide with their mean field
values. For 1 < d < 4, on the contrary, the Ising model has non-trivial values of the
critical exponents.

It is important to anticipate that in d = 2, in addition to the ϕ4 bosonic theory, the
Ising model also admits a formulation in term of a fermionic theory. Such a fermionic
formulation of the model will be discussed in detail in Chapter 9.

7.7.2 Universality Class of the Tricritical Ising Model

A different class of universality from the Ising model is described by the so-called
Blume–Capel model. It involves two statistical variables defined on each site of a
lattice:

• a spin variable sk, with values ±1;
• a vacancy variable tk, with values 0 and 1. This variable specifies whether the site

is empty (0) or occupied (1).
The more general lattice hamiltonian for these variables (with only next neighbor
interactions) is given by

H = −J
N∑

〈i,j〉
sisjtitj + Δ

N∑
i=1

ti −H

N∑
i=1

siti (7.7.7)

−H3

N∑
〈i,j〉

(sititj + sjtjti) −K

N∑
〈i,j〉

titj .

In this expression H is an external magnetic field, H3 is an additional staggered mag-
netic field, J is the coupling constant between two next neighbor spins of occupied
sites and, finally, Δ is the chemical potential of the vacancies. When H = H3 = 0 the
solution of the Blume–Capel model on the lattice shows that there is a tricritical point
at (Jc,Δc). At a tricritical point a line of first-order phase transition meets the line
of a second-order phase transition. Let us see how these physical aspects are captured
by a bosonic lagrangian theory with the higher power of interaction given by ϕ6. The
most general action of this theory is

S =
∫
ddx

[
1
2
(∂jϕ)2 + g1ϕ+ g2ϕ

2 + g3ϕ
3 + g4ϕ

4 + ϕ6
]
, (7.7.8)
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where the tricritical point is identified by the conditions g1 = g2 = g3 = g4 = 0.
Comparing with the Blume–Capel model, the statistical interpretation of the coupling
constants is as follows: g1 plays the role of an external magnetic field h (the equivalent
of H), g2 measures the displacement of the temperature from its critical value (T −
Tc) (the equivalent of J − Jc), g3 plays the role of the staggered magnetic field (the
equivalent of H3) and, finally, g4 corresponds to (Δ − Δc).

From the study of the effective potential, it is easy to see that this theory presents
a tricritical point. Putting equal to zero all coupling constants of the odd powers of
the field, in the remaining even sector we have

U0(Φ) = g2 v
2 + g4 v

4 + v6. (7.7.9)

The critical line of the second-order phase transition is identified by the condition of
zero mass (i.e. infinite correlation length) – see Fig. 7.13:

g2 = 0, g4 > 0. (7.7.10)

At a line of first-order phase transition there is an abrupt collapse of the vacua. To
identify such a line, let’s look at the sequence of the potentials (d) and (e) of Fig. 7.14.
This sequence shows that, moving with continuity the parameters of the model, the
two farthest external vacua become suddenly degenerate with the central one. Hence,
the line of the first-order phase transition is characterized by the presence of three
degenerate vacua and therefore is identified by the condition

g2 > 0, g4 = −2
√
g2. (7.7.11)

In conclusion, the point g1 = g2 = g3 = g4 = 0 is indeed a tricritical point.
By varying the parameters in eqn (7.7.8), the effective potential of this model

can take different shapes and consequently its phenomenology can be rather rich. A
dimensional analysis shows that the upper critical dimension of the lagrangian theory
(7.7.8) is d = 3. At this dimension and beyond, the critical exponents take their
classical mean field values, while for 1 < d < 3 they change significantly their values
for the strong fluctuations of the order parameters. The exact solution of this model
for d = 2 will be discussed in detail in Chapter 14.

2nd order 
phase
transition

1st order phase 
transition

tricritical
point

g
4

g2

Fig. 7.13 Phase diagram of the tricritical Ising model in the sub-space of the even coupling
constants.
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a  b c

d e f

Fig. 7.14 Some examples of the effective potential of the tricritical Ising model by vary-
ing its couplings: (a) critical point; (b) high-temperature phase; (c) low-temperature phase;
(d) metastable states; (e) first-order phase transition; (f) asymmetric vacua in the presence
of magnetic fields.

7.7.3 Multicritical Points

Statistical systems that are invariant under a Z2 symmetry and with multicritical
behavior can be described by bosonic field theory with interaction ϕ2n (n > 3).
The criticality of these models is reached by fine tuning 2(n − 1) parameters: in the
lagrangian description this procedure corresponds to putting equal to zero all cou-
pling constants of the powers of the field less than ϕ2n (except that of ϕ2n−1 that can
always be eliminated by a shift of the field ϕ, as suggested in Problem 5). The detailed
description of these classes of universality in d = 2 will be presented in Chapter 11.

7.8 Renormalization

In the previous sections we have seen that the perturbative expansion gives rise to
expressions that typically diverge when the lattice spacing a is sent to zero. This is
a well-known problem in quantum field theory. Even though its complete analysis
goes beyond the scope of this book, we would like nevertheless to draw attention to
the main aspects of this topic, using as a guide the Landau–Ginzburg lagrangians.
The renormalization of a theory consists of the possibility to eliminate the physical
effects coming from the lattice spacing a – after all, an arbitrary parameter – by
an appropriate choice of the coupling constants. For a given dimensionality d of the
system, this procedure can be implemented only for certain lagrangians but not for
others. To present the main results of this analysis, it is sufficient to focus our attention
on the vertex functions Γ̄(E)(ki). It is useful to introduce initially the following concept.

Degree of superficial divergence. The Feynman diagrams that enter the vertex
functions Γ̄(E)(ki) are generally expressed by multiple integrals. The degree of superfi-
cial divergence D of these expressions is defined as the difference between the number
of momenta of the numerator, coming from the differentials ddki, and the number of
momenta of the denominator, the latter coming from the powers k2 of the propagators.
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Denoting by L the number of integration variables and by I the number of internal
lines of the graph, the superficial divergence D is given by

D = Ld− 2I. (7.8.1)

If D = 0 the diagram is logarithmically divergent, if D = 1 it is linearly divergent, and
so on, while if D < 0 the diagram is superficially convergent. The reason to distinguish
betwen the actual divergent nature of the integral and its superfical divergence comes
from the possibility of having nested divergencies: when this happens, the integral can
have an actual divergence that is different from the one indicated by its index D. An
example is provided by the last diagram in Fig. 7.15: for d = 4 this diagram has a
degree of superficial divergence D = −2 but it actually has an internal loop that is
logarithmically divergent.

The key point to introduce such a concept is that the superficial divergence D of
an amplitude can be fixed only by using considerations of graph theory. Let us denote
by E the number of external lines and by nr the number of vertices corresponding to
the interaction ϕr. There is an elementary relationship between these two quantities:
since a vertex of type r has r lines that start from it and each external line has only
one ending point, we have

E + 2I =
∑
r

r nr,

namely

I =
1
2
(
∑
r

r nr − E). (7.8.2)

D = −2

D = 0 

D = 2

Fig. 7.15 Degree of superficial divergence of some graphs of the vertex functions (in the
dashed box) with E = 2, E = 4 and E = 6, for the ϕ4 theory in d = 4.
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The number L of integrals coincides with the number of loops of the graph. In turn, this
is equal to the number of internal lines I minus the number of conservation laws of the
momenta. Each interaction carries a δ function but we must be careful in considering
the one that corresponds to the prefactor δ(

∑E
j kj) associated to the total conservation

law of the momenta of the E external lines. Hence

L = I − (nr − 1). (7.8.3)

Substituting this expression and eqn (7.8.2) in (7.8.1) we have

D =
(
d+ E − 1

2
Ed

)
+
∑
r

nr

(
1
2
rd− d− r

)

=
(
d+ E − 1

2
Ed

)
+
∑
r

nrδr, (7.8.4)

where the exponent δr is the one defined in eqn (7.2.9). In conclusion, the degree of
superficial divergence of an amplitude is given by the sum of two terms: the first is
independent of the perturbative order while the second, on the contrary, depends on
the type of interaction and on the perturbative order. It is worth noting that the origin
of the two terms in (7.8.4) can be traced back by a dimensional analysis: the first term,
in fact, simply expresses the dimensionality of the vertex function Γ̄(E)(ki) while the
second term takes into proper account the dimensionality of the coupling constants
and the perturbative order in which they are involved.
Renormalizable lagrangian. Fixing the dimensionality d of the system, if we require
that independently of the perturbative order only a finite number of vertex functions
is divergent, the coupling constant has to be dimensionless, i.e. δr = 0. This condition
determines which of the lagrangians is renormalizable in d dimensions: this lagrangian
corresponds to a Landau–Ginzburg one with the highest interaction power ϕr equal to

r =
2d
d− 2

. (7.8.5)

Vice versa, if we start with a lagrangian with ϕr as its highest interaction term, there is
a critical dimension, identified by the upper critical dimension ds given in eqn (7.2.10),
in which this lagrangian is renormalizable. Obviously the presence of terms with δr < 0
can only decrease the superficial divergence of the amplitudes. For this reason we can
focus our attention only on the case in which δr = 0.

Consider, for instance, the lagrangian theory

L =
1
2
(∂jϕ)2 +

m2

2
ϕ2 +

g4
4!
ϕ4. (7.8.6)

Such a theory has ds = 4. If we choose the dimension d of the system exactly equal
to ds, its divergent amplitudes (with D ≥ 0) correspond to diagrams with external
lines E ≤ 4, as can be seen by eqn (7.8.4). Since the amplitudes with an odd number
of external legs vanish9 for the symmetry ϕ → −ϕ, it remains to consider only those

9This is certainly true in the symmetric phase of the theory. In the broken symmetry phase of
the model the argument has to be modified accordingly but it still remains true that the model is
renormalizable.
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with E = 2 and E = 4. Note that the divergent vertex functions are those coming
from the terms ϕ2 and ϕ4 already present in the lagrangian! Such a theory is therefore
renormalizable since it is possible to cure all the divergences of the vertex functions
Γ̄(2) and Γ(4) by adjusting a set of counterterms that have exactly the same form of
the original lagrangian

L → L +
A

2
(∂jϕ)2 +

B

2
ϕ2 +

C

4!
ϕ4. (7.8.7)

Bare quantities. The coefficients A,B,C are (divergent) functions of the cut-off a,
chosen in such a way to cancel order by order the divergences of the perturbative
series. Observe that, defining

ϕ0 = (1 +B)1/2 ϕ,
m2

0 = (m2 +A)(1 +B)−1, (7.8.8)
g0 = (g4 + C)(1 +B)−2,

the modified lagrangian (7.8.7) can be written as

L =
1
2
(∂ϕ0)2 +

m2
0

2
ϕ2

0 +
g4
0

4!
ϕ4

0, (7.8.9)

which is similar to the initial one. However, this transformation changes radically the
meaning of the parameters. All quantities, including the field itself, depend now on
the cut-off and are non-universal. For these reasons they are called bare quantities.
They only serve to remove the infinities. In order to link the bare quantities to the
physical parameters of the theory, such as the physical value of the mass or the coupling
constant, it is necessary to determine (say, experimentally) the latter quantities at a
given value of the momenta of the vertex functions (for instance, at zero momenta)
and then use eqn (7.8.8) for inverting these relations. It is only after are know the
experimental values m2

exp and λexp that the theory acquires its predictive power, since
it is only then that the formalism is able to determine uniquely all other amplitudes.
These quantities become finite functions of m2

sp and λsp and, of course, of the external
momenta.

From what was said above, it should be clear that not all the lagrangians are
renormalizable. For instance, adding an interaction term ϕ5 to the ϕ4 theory in d = 4,
with δ5 = 1, this term produces an infinite sequence of divergent vertex functions. The
perturbative cure of these terms relentlessly leads to the addition of counterterms with
arbitrary powers of ϕn in the lagrangian, i.e. we arrive at a theory with an infinite
number of parameters. In this case we lose any predictive power of the theory defined
in the limit a→ 0.
Effective theories. On the other hand, it should be said that if there are reasons
to consider the lattice spacing as a finite physical quantity that plays an important
role in the problem under consideration, a priori there is no reason to exclude non-
renormalizable lagrangians. This is, in particular, the modern view about the renor-
malization problem in quantum field theory and it can be perfectly justified by the
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renormalization group approach. In conclusion, the final meaning of quantum field
theories is that of effective theories, i.e. theories that present a dependence on the
length-scale L or, equivalently, on the energy-scale E at which we are analyzing the
physical systems. From this point of view, the important point is the possibility to
control how the physical properties vary by varying the length or the energy scales. As
we will see in the next chapter, in the (infinite-dimensional) manifold of the couplings
a change of these scales has the effect of inducing a motion of the point that represents
the system. The properties of this motion will be the object of the renormalization
group analysis.

7.9 Field Theory in Minkowski Space

Quantum field theories describe the excitations of a physical system. These excitations
share the same properties of the elementary particles: they can be created at a given
point of the system and annihilated at another, or they can propagate for a given
time interval causing scattering processes in the meantime. In the next two sections
we highlight these aspects closely related to elementary particles. For doing so, it is
necessary first to define the quantum field theory in Minkowski space and, secondly,
to adopt an operatorial formalism. We choose to illustrate these features using the
Landau–Ginzburg lagrangians as an example, in particular the ϕ4 theory. Let’s start
our discussion from the measure with which we have weighted the configurations of
the field ϕ in the d-dimensional euclidean space

W ({ϕ}) = exp[−S] = exp
[
−
∫
ddxL(x)

]
, (7.9.1)

with

L =
1
2
(∂jϕ)2 + U(ϕ), (7.9.2)

U(ϕ) =
m2

2
ϕ2 +

g

4!
ϕ4.

Let us now select one of the d coordinates, say x0 = τ , and promote it to the role of a
euclidean time variable. Finally, let’s make the transformation τ → −it. As discussed
below, this innocent transformation changes completely the meaning of the theory.

Making the same transformation τ → −it in the derivative term (∂jϕ)2 of the
lagrangian, we get a new expression of W ({ϕ}), that we denote by W̃ ({ϕ})

W̃ ({ϕ}) = exp[ i S̃ ] ≡ exp
[
i

∫
dd−1x dt L̃

]
, (7.9.3)

where

L̃ =
1
2

[(
∂ϕ

∂t

)2

− (∇ϕ)2
]
− U(ϕ). (7.9.4)

Comparing L̃ with the quantity in (7.9.2) we note two differences: the first is that there
is a relative sign between the derivatives concerning the spatial coordinates and the
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one relative to the time variable; the second is that all polynomial terms have changed
sign. However, the most important effect is in the quantity W̃ , which is now a complex
quantity. Hence this quantity has lost the original meaning of probability, acquiring
instead the meaning of amplitude, in the usual meaning of quantum mechanics. To
clarify this point, we will briefly recall the quantization of a particle that moves in an
n-dimensional space.

Quantum mechanics of a particle. Let

L(q) =
1
2

n∑
i=1

(q̇i)2 − V (q), (7.9.5)

be the lagrangian of a particle (q̇i = dqi/dt),

A =
∫ t

0
dtL(q), (7.9.6)

its action, and H the hamiltonian, defined by the Legrendre transformation

H(q, p) =
n∑
i=1

pi qi − L =
n∑
i=1

p2
i

2
+ V (q). (7.9.7)

The components of the momentum

pi =
δL

δq̇i
= q̇i,

together with the coordinates qi, are now operators that satisfy the commutation
relations

[qk, pl] = i � δk,l, [qk, ql] = 0, [pk, pl] = 0. (7.9.8)

Denoting by En the eigenvalues of the hamiltonian and |En 〉 its eigenvectors, the
amplitude that such a particle moves in a time interval t from the point q0 (where
it is localized at the time t = 0) to the point qf , is given by the time evolution of
the unitary operator e−itH/�

〈qf , t | q0, 0 〉 = 〈qf | e−itH/� | q0 〉 =
∞∑
n=0

〈qf |En 〉〈En | q0 〉 e−it En/�, (7.9.9)

where we have used the completeness relation

∞∑
i=1

|En 〉 〈En | = 1.
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t

q

q

q
f

0

Fig. 7.16 The Feynman integral, namely a sum over the classical trajectories that link
the initial and the final points, each trajectory weighted by eiA where A is the action of
each trajectory. The dashed line corresponds to the classical trajectory, a solution of the
classical equation of motion.

However this is not the only way to compute such an amplitude: as shown by
Feynman (see Appendix 7A), it can also be obtained by means of a path inte-
gral over all the classical trajectories that connect the points (q0, 0) and (qf , t)
(see Fig. 7.16). In this approach each path is weighted by exp(iA/�), namely10

〈qf , t | q0, 0 〉 =
∫
q(0) = q0
q(t) = qf

Dq exp(iA/�). (7.9.10)

In the semiclassical limit � → 0, the integral can be estimated by the saddle point
method: the most important contribution comes from the trajectory for which the
action is stationary, δA = 0, i.e. the trajectory that satisfies the classical equation
of motion

d

dt

(
δL

δq̇i

)
− δL

δqi
= 0. (7.9.11)

As shown in Appendix 7A, by means of the path integral we can also compute the
time-ordered correlation function of the operators

〈qf t|T [Q(t1) . . . Q(tk)] |q0, 0〉 =
∫
q(0) = q0
q(t) = qf

Dq q(t1) . . . qk(t) exp(iA/�), (7.9.12)

with t1 > t2 > . . . > tk.

Coming back to the field theory, and in particular to eqn (7.9.3), we see then that
W̃ ({ϕ}) can be interpreted as the weight of a classical configuration of the field ϕ(x, t)

10Also in this case, to define the measure Dq it is necessary to make the variable q discrete on the
slices tk = kε (k = 0, 1, . . . , N) of the time interval t, with ε = t/N , so that Dq =

∏N
k=0 dqk/

√
2πε.
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in the computation of a quantum amplitude (we have imposed � = 1)

〈ϕf (x, t) |ϕ0(x, 0) 〉 =
∫
ϕ(x, t) = ϕf (x)
ϕ(x, 0) = ϕ0(x)

Dϕ exp
[
i S̃
]
. (7.9.13)

With this interpretation of W̃ ({ϕ}), we can now proceed as in the quantum mechanics
of a particle but, this time, back-to-front: instead of using the path integral, we will
adopt the operatorial approach to describe the dynamics associated to the lagrangian
(7.9.4). In QFT the role of the operators qi(t) is played by the field ϕ(x, t), regarded
as an operator that acts at each point (x, t) of space-time. The operator formalism
that we have just defined is relativistically invariant, as discussed in Appendix 7B. In
this appendix one can also find the relevant definitions used in the following.

The field ϕ(x, t) satisfies the operator differential equation coming from the Euler–
Lagrange equation of motion

∂μ

(
∂L̃

∂(∂μϕ

)
− ∂L̃
∂ϕ

= 0 (7.9.14)

which, for the ϕ4 theory, reads(
� +m2) ϕ(x, t) = − g

3!
ϕ3(x, t), (7.9.15)

where

� =
∂2

∂t2
−∇2.

The conjugate momentum is defined by

π(x, t) =
δL̃

δϕ̇(x, t)
=

∂ϕ

∂t
. (7.9.16)

As ϕ(x, t), also π(x, t) is an operator. In analogy with quantum mechanics, we postulate
that these operators satisfy the equal-time commutation relation

[ϕ(x, t), π(y, t)] = i δd(x− y),
[ϕ(x, t), ϕ(y, t)] = 0, (7.9.17)
[π(x, t), π(y, t)] = 0.

In terms of π(x) we can define the hamiltonian density by the Legendre transform

H(x, t) = π(x, t) ϕ̇(x, t) − L̃ =
1
2

[(
∂ϕ

∂t

)2

+ (∇ϕ)2
]

+ U(ϕ). (7.9.18)

The hamiltonian and the momentum are given by

H =
∫
dd−1xH(x, t), (7.9.19)

P = −
∫
dd−1xπ(x, t)∇ϕ(x, t).
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As a consequence of the equation of motion (7.9.15), both are conserved quantities

dH

dt
=

dP
dt

= 0 (7.9.20)

and can be expressed in terms of the stress–energy tensor Tμν(x). This quantity is
defined by (see Appendix 7C)

Tμν(x) =
∂L̃

∂(∂μϕ)
∂νϕ− gμν L̃. (7.9.21)

Tμν is a conserved quantity: it satisfies

∂μ T
μν(x) = 0, (7.9.22)

and therefore

H =
∫
T 00(x) dd−1x, P (i) =

∫
T 0i(x) dd−1x. (7.9.23)

7.10 Particles

To understand the nature of the excitations ϕ(x, t) it is sufficient to consider the free
theory (g = 0). In this case the operatorial equation satisfied by the field is(

� +m2) ϕ(x, t) = 0. (7.10.1)

A plane wave ei (kẋ−Et) is a solution of this equation if

E2 = k2 +m2. (7.10.2)

One easily recognizes that this is the dispersion relation of a relativistic particle. Taking
into account the two roots of this equation, the most general solution of (7.10.1) is
given by a linear superposition of plane waves

ϕ(x, t) =
∫
dΩk

[
Ak e

ik·x−iEkt + A†
k e

−ik·x+iEkt
]
. (7.10.3)

In this expression and in the next ones that follow, Ek =
√

k2 +m2. The coefficients
Ak and A†

k are a set of operators, called annihilation and creation operators, respec-
tively. In writing this solution we have adopted a relativistically invariant differential
measure

dΩk ≡ dd−1k

(2π)d−12Ek
.

From the quadratic nature of the relativistic dispersion relation, there are both positive
and negative frequencies in the mode expansion of the field. The negative frequencies
can be interpreted as the propagation, back in time, of an antiparticle, a statement
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that becomes evident if one considers a complex scalar field11 (see Problem 8). Using
(7.9.16), we obtain the conjugate momentum

π(x, t) = −i
∫
dΩk Ek

[
Ak e

ik·x−iEkt − A†
k e

−ik·x+iEkt
]
. (7.10.4)

The commutation relations of Ak and A†
k can be recovered by imposing the validity

of eqn (7.9.17)

[Ak, A
†
p] = (2π)d−1 2Ek δ

d−1(k − p), (7.10.5)

[Ak, Ap] = [A†
k, A

†
p] = 0.

Besides the relativistic normalization of these operators, they are the exact analogs of
the annihilation and creation operators of the harmonic oscillator.

Substituting the expressions for ϕ(x, t) and π(x, t) in H we have

H =
1
2

∫
dΩk

(
A†

kAk +AkA
†
k

)
Ek =

∫
dΩk

(
A†

kAk +
1
2

)
Ek, (7.10.6)

where we have used the commutation relation (7.10.5). The term

E0 =
1
2

∫
dΩk Ek

is infinite and corresponds to the vacuum energy. Since this quantity is a constant, it
can be safely subtracted, so that the new definition of the hamiltonian is

H =
∫
dΩk A

†
kAkEk. (7.10.7)

This redefinition employs the normal product of the operators: a product of operators
is normally ordered if all the creation operators are on the left side of the annihilation
operators. Denoting the normal order by : :, the new hamiltonian can be expressed as

H =
1
2

∫
ddx :

(
π2 + (∇ϕ)2 +m2ϕ2) : (7.10.8)

Note that the annihilation and creation operators are associated to plane waves with
positive and negative time frequency, respectively. Indicating by ϕ(+)(x) and ϕ(−)(x)
these two terms in the decomposition of ϕ(x)

ϕ(x) = ϕ(+)(x) + ϕ(−)(x),

one has, for instance

: ϕ(x)ϕ(y) := ϕ(+)(x)ϕ(+)(y)+ϕ(−)(x)ϕ(+)(y)+ϕ(−)(x)ϕ(−)(y)+ϕ(−)(y)ϕ(+)(x).

Substituting the expressions for ϕ(x) and π(x) in the momentum operator, we have

P =
∫
dΩk

(
A†

kAk +
1
2

)
k =

∫
dΩk A

†
kAk k. (7.10.9)

Notice that in this case the zero point of the momentum is absent since, in the inte-
gration, it is cancelled by the equal and opposite contributions coming from ±k.

11For a real scalar field, a particle coincides with its antiparticle.
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In the expression for both the energy and the momentum there is the operator

Nk = A†
kAk. (7.10.10)

This is the key observation that supports an interpretation of quantum field theory in
terms of particles. In the following we prove that the operators Nk are simultaneously
diagonalizable and their eigenvalues are the integer numbers

nk = 0, 1, 2, . . . (7.10.11)

In this way, the energy and the momentum associated to the field ϕ can be written as

E =
∫
dΩk nkEk, P =

∫
dΩk nk k. (7.10.12)

From this expression it is clear that these quantities coincide with the energy and
momentum of a set of scalar particles of mass m, with a relativistic dispersion relation.
This set contains nk1 particles of momentum k1, nk2 particles of momentum k2, etc.

The statement that all Nk commute is a simple consequence of the commutation
relation (7.9.17)

[Nk1 , Nk2 ] = A†
k1

[Ak1 , A
†
k2

]Ak2 +A†
k2

[A†
k1
, Ak2 ]Ak1

=
(
A†

k1
Ak1 −A†

k1
Ak1

)
2Ek δ

d−1(k1 − k2) = 0. (7.10.13)

As in the familiar harmonic oscillator, the spectrum (7.10.11) derives from the com-
mutation relations

[Nk, A
†
k] = A†

k, [Nk, Ak] = −Ak. (7.10.14)

These expressions say that A†
k creates a particle of momentum k while Ak annihilates

such a particle. The state with the minimum energy is the vacuum state, in which
there are no particles

Nk | 0 〉 = 0. (7.10.15)

This implies Ak | 0 〉 = 0 and the multiparticle states with momenta k1, . . . ,kn are
given by

|nk1 , nk2 , . . .〉 =
1

(nk1 !nk2 ! . . .)1/2

(
A†

k1

)nk1
(
A†

k2

)nk2
. . . | 0 〉. (7.10.16)

Since the operators A†
ki

commute with each other, these states are symmetric under an
exchange of the indices and therefore satisfy the Bose–Einstein statistics. The Hilbert
space constructed in this way is called the Fock space of the theory.

In the light of this discussion, let us see what is the interpretation of the state
ϕ(x) | 0 〉. From the field expansion and the action of the operators A and A†, one has

ϕ(x, 0) | 0 〉 =
∫

dΩk e
−ik·x |k 〉, (7.10.17)

where we have indicated by |k 〉 = A†
k | 0 〉 the one-particle state of momentum k.

Therefore the state ϕ(x)| 0 〉 is given by a linear superposition of one-particle states
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of various moment. In other words, applying the field to the vacuum state we have
created a particle at the point x. This interpretation is further supported by computing
the matrix element

〈 0 |ϕ(x) |k 〉 = eip·x. (7.10.18)

This is the coordinate representation of the wavefunction of a one-particle state, just
as in quantum mechanics 〈x|p〉 = eipx is the wavefunction of the state | p 〉.

7.11 Correlation Functions and Scattering Processes

In defining the correlation functions in Minkowski space we shall take into account
that the fields are operators and therefore they do not generally commute. Quantities
of interest are the vacuum expectation values of the T-ordered product of operators.12

In the free case, the only non-zero correlation function of the field ϕ is the two-point
correlators. It can be computed by using the commutation relations (7.10.5) and the
relations A | 0〉 = 0 and 〈0 |A† = 0

ΔF (x− y) = 〈0 |T [ϕ(x)ϕ(y)] | 0 〉
= 〈0 |ϕ(+)(x)ϕ(−)(y)] | 0 〉 θ(x0 − y0) + 〈0 |ϕ(+)(y)ϕ(−)(x)] | 0 〉 θ(y0 − x0)

=
∫
dΩk

[
e−ik·(x−y) θ(x0 − y0) + eik·(x−y) θ(y0 − x0)

]
. (7.11.1)

This quantity is the so-called Feynman propagator that can be written in a relativistic
invariant way as

ΔF (x− y) =
∫

ddk

(2π)d
i

k2 −m2 + iε
e−ik·(x−y). (7.11.2)

In this formula k2 = k2
0 − k2 and the i ε term in the denominator is equivalent to a

prescription in computing the integral over the time component of the momentum:
using the residue theorem for the integral on dk0 it is easy to see that one obtains the
previous formula (see Fig. 7.17). Note that using the analytic continuation k0 = ik0

E ,
the so-called Wick rotation, the Feynman propagator becomes (up to a factor i) the
propagator of the euclidean quantum field theory, previously analyzed.

The Feynman propagator can also be obtained by generalizing the formula (7.9.12)
in the limit T → ∞, where T is the time separation between the two vacuum states
on the right- and on left-hand sides

〈0 |T [ϕ(x)ϕ(y)]| 0 〉 =
1
Z0

∫
Dϕϕ(x)ϕ(y) ei

∫
dd−1xdt L̃0 . (7.11.3)

As usual, Z0 gives the proper normalization

Z0 =
∫

Dϕei
∫
dd−1xdtL̃0 .

12In the following formulas, all vectors are d-dimensional with the Minkowski metric. Hence x
denotes (x0,x) and p · x = p0 x0 − p · x.
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E
k

−E k

Fig. 7.17 Integration contour of the variable k0, which is equivalent to the i ε prescription
in the denominator of (7.11.2).

Analogously to the euclidean case, we can couple the field to an external current and
define (ddx ≡ dd−1xdt)

Z0[J ] =
∫

Dϕ exp
{
i

∫ [
L̃0 + J(x)ϕ(x)

]
ddx

}
. (7.11.4)

The integral is gaussian

Z0[J ] = exp
{
i

2

∫ ∫
J(x) ΔF (x− y) J(y) ddx ddy

}
,

and then

ΔF (x− y) = (−i)2 δ2Z[J ]
δJ(x)δJ(y)

. (7.11.5)

In the interactive case, the partition function is given by

Z[J ] = exp
{
i

∫
L̃I

[
−i δ

δJ(x)

]
ddx

}
Z0[J ], (7.11.6)

and the correlation functions are defined by

G(x1, . . . , xn) = 〈0 |T [ϕ(x1) . . . ϕ(xn)] | 0 〉 = (−i)n δn Z[J ]
δJ(x1) . . . δJ(xn)

. (7.11.7)

They admit an expansion in terms of Feynman graphs, analogously to the one pre-
viously analyzed. One should take into account, though, an extra factor i for each
vertex and a different expression for the propagator. The perturbative properties of
the correlation functions are similar to those previously discussed.

Finally, we would like to comment on a different interpretation of the Feyman
graphs in Minkowski space. Since the lines are now associated to the propagation of
the particles, the various interaction vertices can be considered as the points of the
scattering processes. For instance, the connected four-point function shown in Fig. 7.18
can be employed to compute the probability of the elastic scattering of two in-going
particle of momenta k1 and k2 and out-coming particles with the same momenta.

Analogously, the connected n-point correlation functions can be used to compute
the production processes of (n − 2) particles that originate from the collision of two
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Fig. 7.18 Elastic scattering amplitude of two particles, given by the infinite sum of all
elementary interaction processes ruled by the interaction vertices.
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Fig. 7.19 Production amplitude of a multiparticle state following a collision of two initial
particles.

initial particles, if they have enough energy in their center of mass (equal or larger
than the sum of the mass of the (n − 2) particles, see Fig. 7.19). In the absence of
conservation laws, all these processes are allowed by the relativistic laws. They will be
studied in detail in Chapter 17.

Appendix 7A. Feynman Path Integral Formulation

Let Q(t) be the coordinate operator of a quantum particle in the Heisenberg represen-
tation and |q, t〉 its eigenstates

Q(t) |q, t〉 = q |q, t〉.
In the Schrödinger representation QS is a time-independent operator, related to Q(t)
by the unitary relation Q(t) = eitH/� QS e

−itH/�. QS has time-independent eigen-
states, QS |q〉 = q |q〉, and their relation to the previous one is given by |q〉 = e−itH/�

|q, t〉. These states satisfy the completeness relation∫
dq |q〉 〈q| = 1.

It is also useful to introduce the eigenstates of the momentum operator in the Schrödinger
representation

P |p〉 = p |p〉.
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They satisfy the completeness relation∫
dp

2π
|p〉〈p| = 1,

and their scalar product matrix elements with the states |q〉 is 〈q|p〉 = eipq/�. Let’s
compute the amplitude

F (q′, t′; q, t) = 〈q′, t′|q, t〉 = 〈q′|e−i(t′−t)H/� |q〉 (7.A.1)

dividing the interval T = (t′ − t) in (n+ 1) time slices

t = t0, t1, . . . , tn+1 = t′, tk = t0 + kε.

In the limit n→ ∞, we have

ei(t
′−t)H/� 	 e−iεH/� e−iεH/� . . . e−iεH/�.

Inserting n times the completeness relation of the eigenstates |q〉 into eqn (7.A.1) we
get

F (q′, t′; q, t) =
∫ n∏

k=1

dqk 〈q′|e−iεH/�|qn〉〈qn|e−iεH/�|qn−1〉 . . . 〈q1|e−iεH/�|q〉. (7.A.2)

These matrix elements can be computed exactly in the limit ε → 0. With the hamil-
tonian given by H = p2

2m + V (q), inserting the completeness relation of the |p〉 state
we have

〈qk|e−iεH/�|qk−1〉 =
∫

dp

2π
dp′

2π
〈qk|p〉〈p|e−iεH/�|p′〉〈p′|qk−1〉

=
∫

dp

2π
dp′

2π
ei(pqk−p′qk−1)/� e

−iε/�

(
p2

2m +V (
qk+qk−1

2 )
)

δ(p− p′) (7.A.3)

=
∫

dp

2π
eip(qk−qk−1) e

−iε/�

(
p2

2m +V (
qk+qk−1

2 )
)

=
1√
2πε

e
iε/�

[
(qk−qk−1)2

2ε2
−V (

qk+qk−1
2 )

]

.

Making the hypothesis that in the limit ε→ 0, qk−1 tends to qk, we have

(qk − qk−1)2

ε2
→ (q̇)2

and therefore the matrix element is expressed by the lagrangian associated to this part
of the trajectory

〈qk|e−iεH/�|qk1〉 	 1√
2πε

eiε/�L(q̇k,qk). (7.A.4)

Coming back to (7.A.2), one thus has

F (q′, t′; q, t) = lim
n→∞

∫ n∏
k=1

dqk√
2πε

eiε/�
∑n

k=1[ 1
2 q̇

2
k−V (qk)]

≡
∫

Dq ei/�
∫ t′

t
dt L(q,q̇) =

∫
Dq ei/�A. (7.A.5)
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Let us now consider the correlation function of two operators Q(t1)Q(t2), with t1 > t2.
Repeating the same argument given above, one arrives at a representation of this
quantity in terms of a path integral

〈q′, t′|Q(t1)Q(t2)|q, t〉 =
∫

Dq q(t1) q(t2) ei/�A. (7.A.6)

However, notice that on the right-hand side the order of the two variables is irrelevant.
The path integral expression is then equal to the matrix elements on the left-hand side
with the established order, in which the only important thing is that t1 > t2. If t1
was less than t2, the right-hand side would be equal to the matrix element of the two
operators but in reversed order. This leads to the definition of the time ordering of
the operators

T [Q(t1)Q(t2)] =
{
Q(t1)Q(t2), t1 > t2
Q(t2)Q(t1), t2 > t1

(7.A.7)

with an obvious generalization for an arbitrary number of them. In such a way, we
arrive at the formula

〈q′, t′|T [Q(t1) . . . Q(tk)]|q, t〉 =
∫

Dq q(t1) . . . q(tk) ei/�A. (7.A.8)

Appendix 7B. Relativistic Invariance

The Lorentz transformations in (d+1) dimensions leave invariant the front line of the
light, defined by

s2 = t2 − x2
1 − · · · − x2

d−1.

The speed of light c has been imposed equal to 1 and we have also used t = x0 to
make the notation uniform. More generally, with the definition of the metric tensor

gμν = gμν =

⎛
⎜⎜⎜⎜⎝

1 0 0 0 . . . 0
0 −1 0 0 . . . 0
0 0 −1 0 . . . 0

. . . . . . . . . . . . . . . . . .
0 0 0 0 . . . −1

⎞
⎟⎟⎟⎟⎠

the Lorentz transformations Λμ
ν are defined by the condition to leave invariant the

metric, i.e.
gμν Λμ

ρ Λν
σ = gρσ (7.B.1)

(with a sum over the repeated indices). Thanks to the metric tensor we can rise or low
the indices of a vector or of a tensor. We have

xμ = (t,x), xμ = gμνx
ν = (t,−x).
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For the derivative we have

∂μ =
∂

∂xμ
=
(

∂

∂x0 ,∇
)
.

The space with such a metric is called Minkowski space. In order to characterize the
infinitesimal form of these transformations, let’s impose

Λμ
ν 	 δμν + ωμν .

Substituting into (7.B.1), one has

ωμν + ωνμ = 0. (7.B.2)

In d dimensions the number of free parameters of an antisymmetric matrix is equal to
d(d− 1)/2. If we add to these transformations also the translations xμ → xμ + aμ, we
arrive at the Poincarè group.

Invariant expressions under the Poincarè group are generically given by scalar
products with respect to the metric tensors, such as

p · x = gμν p
μ xν = pμ xμ = p0 x0 − p · x.

Another invariant quantity is given by

∂μ ∂μ = � =
∂2

∂(x0)2
−∇2.

The momentum of a massive particle satisfies

p2 = pμ pμ = E2 − p2 = m2, (7.B.3)

where m is the mass.
Since the norm of the vectors (with respect to the metric g) is an invariant, the

distance between two points can be classified as follows: (a) if (x1 − x2)2 > 0, this is a
time-like separation; if (x1−x2)2 < 0 this is a space-like separation; and if (x1−x2)2 = 0
we have a light-like separation (see Fig. 7.20). Time-like points are related to each other
by a causality relation while the space-like points are not. In the latter case, in fact,
to have a causal relation between them, a signal should travel faster than the speed of
light. For light-like events, the temporality of two events is given by the time that is
necessary to the light to travel from x1 to x2.

It is easy to prove that the volume elements

ddx ≡ dx0 dx1 . . . dxd−1, (7.B.4)

and the momentum volume elements

ddp ≡ dp0 dp1 . . . dpd−1 (7.B.5)

are both invariant: under a Lorentz transformation, to a dilatation of the time com-
ponent there corresponds a contraction of the space component, and the two terms
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space-like

time-like

light-like

x

t

Fig. 7.20 With x2 placed at the origin, the point x1 can be in one of the three positions
shown in the figure. For time-like distances, the event x2 can be in a causal relation with the
event x1. For space-like distances, the two events cannot be linked by a causal relation, since
their time separation is larger than the time that the light would spend to cover their spatial
distance.

compensate each other. Using the invariance of the momentum infinitesimal volume,
one can prove the invariance of the measure dΩk. In fact, it can be written as

dΩk =
dd−1k

(2π)d−12Ep
=

ddp

(2π)d
(2π) δ(k2 −m2)

∣∣∣∣
k0>0

. (7.B.6)

The lagrangian that appears in (7.9.3) is a scalar density. It gives rise to the equation
of motion thanks to the principle of minimum action

0 = δS̃ =
∫
ddx

{
∂L̃
∂ϕ

δϕ+
∂L̃

∂(∂μϕ)
δ(∂μϕ)

}
(7.B.7)

=
∫
ddx

{[
∂L̃
∂ϕ

− ∂μ
∂L̃

∂(∂μϕ)

]
δϕ+ ∂μ

(
∂L̃

∂(∂μϕ)
δϕ

)}
.

The last term is a total divergence and it gives rise to a surface integral. This vanishes
if we assume that the variation of the field is zero at the boundary. In this way, we
arrive to the Euler–Lagrange equation of the field

∂L̃
∂ϕ

− ∂μ
∂L̃

∂(∂μϕ)
= 0. (7.B.8)

Appendix 7C. Noether’s Theorem

There is a deep relation between the symmetries and the conservation laws of a system.
This is the content of Noether’s theorem. Suppose we change infinitesimally the field

ϕ(x) → ϕ′(x) + α δϕ, (7.C.1)

where α is an infinitesimal parameter and δϕ is a deformation of the field. Such a
transformation is a symmetry of the system if it leaves invariant the equations of
motion. To guarantee this condition it is sufficient that the action remains invariant
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under the transformations (7.C.1). More generally, the action is allowed to change up
to a surface term, since the latter does not effect the equation of motion. Hence, under
(7.C.1), the lagrangian can change at most by a total divergence

L̃ → L̃ + α∂μJ μ(x).

Comparing this expression with the expression that is explicitly obtained by varying
the field in the lagrangian according to (7.C.1) one has

α∂μJ μ =
∂L̃
∂ϕ

(αδϕ) +

(
∂L̃

∂(∂μϕ)

)
∂μ(αδϕ) (7.C.2)

= α∂μ

(
∂L̃

∂(∂μϕ)
δϕ

)
+ α

[
∂L̃
∂ϕ

− ∂μ
∂L̃

∂(∂μϕ)

]
δϕ.

The last term vanishes for the equation of motion and therefore we arrive at the
conservation law

∂μ j
μ(x) = 0, jμ(x) ≡ ∂L̃

∂(∂μϕ)
δϕ− J μ. (7.C.3)

Let’s see the consequence of this result if the system is invariant under the translations
xμ → xμ − aμ. The field changes as

ϕ(x) → ϕ(x+ a) = ϕ(x) + aμ∂μ ϕ(x). (7.C.4)

Since the lagrangian is a scalar quantity, it transforms in the same way:

L̃ → L̃ + aμ∂μL̃ = L̃ + aν ∂μ(δμν L̃).

Using (7.C.3), we obtain the so-called stress–energy tensor

Tμ
ν ≡ ∂L̃

∂(∂μϕ)
∂νϕ− L̃ δμν (7.C.5)

that satisfies
∂μ T

μ
ν = 0. (7.C.6)

The energy and the momentum of the system is given by

E =
∫
ddxT 00(x, t), P ν =

∫
ddxT 0ν(x, t) (7.C.7)
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Problems

1. Lagrangian theory with Z3 symmetry
Consider a lagrangian of a complex field Φ(x) and its conjugate Φ†(x) which under a
Z3 transformation transform as

Φ(x) → e2πi/3 Φ(x), Φ†(x) → e−2πi/3 Φ†(x).

Write down the most general lagrangian that is invariant under these transfomations.

2. Perturbative series
Consider the one-dimensional integral

I(λ) =
∫ +∞

−∞
dx e−αx2+λx4

.
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Write the perturbative series of this expression expanding the term e−λx4
in a power

series of λ. Compute the perturbative coefficients and show that the series has zero
radius of convergence. Give a simple argument of this fact.

3. Correlation functions and Feynman graphs
Draw the Feynman diagrams relative to the g2 correction of the four-point correlation
function G(x1, . . . , x4) for the ϕ4 theory. Discuss the convergence of the integrals as
functions of the dimensionality d of the system.

4. ϕ3 lagrangian theory
Calculate the first non-vanishing perturbative order of the partition function for the
lagrangian theory with interaction g

3! ϕ
3. Determine the upper critical dimension ds

and discuss the renormalization of this theory.

5. Dimensional regularization
An alternative way to regularize the integrals encountered in perturbative series of
quantum field theory consists of the dimensional regularization. The main idea behind
this approach is to consider the integrals as functions of the dimensionality d of the
system, regarded as a continuous variable. Once they are evaluated in the region of
the complex plane d where they converge, their values in other domains are obtained
by analytic continuation. Prove the validity of the formula∫

ddp

(2π)d
1

(p2 + Δ)n
=

1
(4π)d/2

Γ
(
n− d

2

)
Γ(n)

(
1
Δ

)n−d/2

.

Discuss the analytic structure of this expression as a function of d.

6. Invariant functions
Consider the functions

Δ(±)(x) =
i

(2π)d)

∫
dd−1k

∫
C(±)

dk0
eik·x

k2 −m2 ,

where the contours of integration are shown in Fig. 7.21.

a Show that the correlation function of the commutator of the field is given by

〈0 | [ϕ(x), ϕ(y) ] | 0 〉 = Δ(x− y),

where
Δ(x− y) = Δ(+)(x− y) + Δ(−)(x− y).

b Prove that Δ(x) vanishes for equal times

Δ(x − y, 0) = 0.

Using Lorentz invariance, argue that the relation above implies the vanishing of
Δ(x − y) for all space-like intervals. From a physical point of view, the com-
mutativity of the field for space-like intervals is a consequence of the causality
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Fig. 7.21 Contours of integration C(+) and C(−) for Δ(+)(x) and Δ(−)(x).

principle: since space-like points cannot be related by light signals, the measures
done at the two points cannot interfere and therefore the operators commute.

c Prove that Δ(x) and Δ(±)(x) satisfy the homogenous equation

(� +m2) Δ(x) = (� +m2)Δ(±)(x) = 0,

while the Feynman propagator, which corresponds to an infinite contour of inte-
gration, satisfies

(� +m2) ΔF (x) = −i δd(x).

7. Field theories with soliton solutions
Consider the lagrangian field theory in 1 + 1 dimensions

L̃ =
1
2
(∂μϕ)2 +

m2

β2 [cos(βϕ) − 1] .

a Expand in powers of β and show that this model corresponds to a Landau–Ginzburg
theory with an infinite number of couplings.

b Write the equation of motion of the field ϕ(x, t).
c Prove that the configurations

ϕ(±)(x, 0) = ±4 arctan [exp(x− x0)]

(where x0 is an arbitrary point) are both classical solutions of the static version
of the equation of motion.

d Show that these configurations interpolate between two next neighbor vacua. These
configurations correspond to topological excitations of the field, called solitons
and antisolitons.

e Compute the stress–energy tensor and use the formula H =
∫
T 00(x) dx to deter-

mine the energy of the solitons. Since they are static, their energy corresponds to
their M . Prove that

M =
8m
β
.

Note that the coupling constant is in the denominator, so that this is a non-
perturbative expression.
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8. Antiparticles
Consider the free theory of a complex field φ(x). In Minkowski space the action is

S =
∫
ddx
(
∂μφ

∗ ∂μφ−m2φ∗ φ
)
.

a Show that the Hamiltonian is given by

H =
∫
dd−1x (π∗π + ∇φ∗ · ∇φ+m2φ∗φ).

b Prove that the system is invariant under the continuous symmetry

φ→ eiαφ, φ∗ → e−iαφ.

Use Noether’s theorem to derive the conserved charge

Q = −i
∫

dd−1x(π∗φ∗ − πφ).

c Diagonalize the hamiltonian by introducing the creation and annihilation operators.
Show that the theory contains two sets of operators that can be distinguished by
the different eigenvalues of the charge Q: the first set describes the creation and
the annihilation of a particle A while the second one describes the same processes
for an antiparticle Ā.

d Show that the propagation of a particle in a space-like interval is the same as the
propagation of an antiparticle back in time.

9. Conserved currents
Consider a multiplet of n scalar fields, Φ = (φ1, . . . , φn).
a Write the most general lagrangian that is invariant under a rotation of the vector Φ

Φk → (R)klΦl.

b Use the Noether theorem to derive the conserved currents associated to this
symmetry.



8
Renormalization Group

Everything must change so that nothing changes.
Giuseppe Tomasi di Lampedusa, Il Gattopardo

8.1 Introduction
At a critical point, the correlation length ξ diverges: the statistical fluctuations extend
on all scales of the system and any attempt to solve the dynamics by taking into
account only a finite number of degrees of freedom fails. In the absence of an exact
solution of the model under consideration, the computation of the critical exponents
is often obtained only by numerical methods and Monte Carlo simulations.

Leaving apart the problem of computing the critical exponents, there is how-
ever a general approach to phase transitions that has the advantage of conceptually
simplifying many of their aspects. This approach goes under the name of the renor-
malization group (in short, RG). Beside its practical use, the fundamental ideas of the
RG provide a theoretical scheme and a proper language to face critical phenomena
and, in particular, to understand their universal properties and scaling laws.

It is worth stressing that the terminology is inappropriate for two reasons: (i) the
transformations of the RG are irreversible and therefore they do not form a group,
as usually meant in mathematics; (ii) moreover, they do not necessarily concern the
renormalization of a theory, i.e. the cure of the divergencies of the perturbative series.
As a matter of fact, the main concepts of the renormalization group have a wider
spectrum of validity.

There are many specialized books on the renormalization group and its technical
aspects. The interested reader can find a small list of them to the end of the chapter.
The aim of this chapter is to present in the simplest possible way the physical scenario
provided by the RG, introducing the appropriate terminology and emphasizing the
main concepts with the help of some significant examples. Other important aspects of
the RG will be discussed in more detail in Chapter 15, in relation with two-dimensional
quantum field theories near to their critical points.

What is the key idea behind the renormalization group? The answer to this question
is: a continuous family of transformations of the coupling constants in correspondence
to a change of the length-scale of a physical system. In any physical system there are
various length-scales and the main assumption of the renormalization group is that
they are couple together in a local way. If one is interested in studying, for instance, the
fluctuations of a magnetic system on a scale of the order of 1000 Å , it is reasonable
to assume that it would be sufficient to consider only the degrees of freedom with



Introduction 265

l

H

H

H n+1

n+1n–1

n–1

n

n
l l

Fig. 8.1 Length-scales and sequence of the effective hamiltonians for the degrees of freedom
of each length shell.

comparable wavelengths L, say those in the range 800 Å < L < 1200 Å. The degrees
of freedom with very short wavelength, of the order of a few atomic spacings, should
not matter. If this is indeed the case, one is led to the conclusion that the interactions
have a shell structure: the fluctuations of the system on scales of 1–2 Å only influence
those on scales 2–4 Å, the last ones influence those on scales 4–8 Å, and so on. This
sequence is ruled by a family of effective hamiltonians associated to the degrees of
freedom that are relevant to each shell of the length-scale, as shown in Fig. 8.1.

There are two important aspects that emerge in this cascade scenario. The first
aspect concerns the scaling invariant properties. With the absence of a characteristic
length to compare with, the fluctuations of the intermediate lengths tend generally
to be the same, besides a simple rescaling. There is, however, no scale invariance for
those fluctuations with wavelengths comparable to a length parameter, such as the one
provided for instance by the lattice spacing. The second aspect is the amplification or
de-amplification phenomena that take place in the course of the cascade process. A
small change of temperature may have a negligible effect at the atomic scale but, if
this effect gets amplified to the large scales of the system, it may produce significant
macroscopic changes. This is precisely what happens at the critical value Tc of the
temperature, when the correlation length diverges, inducing all other thermodynam-
ical singularities. Concerning the de-amplification effects, they are at the root of the
universality properties of the critical phenomena: it is thanks to them that two mag-
netic materials, with quite different atomic compositions, may nevertheless share the
same critical behavior.

To implement the ideas of the RG, the first steps consist of isolating a particular
shell of length-scale and defining a procedure that permits us to pass to the next
one. In the case of critical phenomena, this procedure involves a statistical average
of all fluctuations within a certain range of lengths. This is equivalent to studying
the behavior of the system under a length-scale x → x′ = x/b or, tantamountly,
under a rescaling of the lattice spacing a → a′ = ba. In doing so, one is simply
looking at the system under a different magnifying glass. As a result, an effective
hamiltonian is defined for the degrees of freedom that were not averaged. Implementing
iteratively this average procedure, one is able to determine the amplification and de-
amplification factors λi. These are the eigenvalues of the linearized version of the
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iterative procedure: under a small change of the initial interactions, the λi are the
quantities responsible for their amplification/deamplification to the next iteration. If
a coupling constant gets amplified, it is called a relevant coupling. If, on the contrary,
it gets deamplified, is called an irrelevant coupling. The instability nature of a critical
point is determined by the number of its relevant couplings.

Roughly speaking, there are two different ways to implement the RG ideas. The
first method is usually employed in contexts of quantum field theory to deal with the
divergence of the Feynman diagrams discussed in the previous chapter. Since these
computations are usually carried out in momentum space, this implementation of the
RG goes under the heading of the renormalization group in k space. The second way
is known as the real space renormalization group. This approach is more relevant in a
statistical mechanics context, in particular in the discussion of systems defined on a
lattice. Moreover, it is more intuitive. For this reason, in the following we will mainly
follow this approach.

8.2 Reducing the Degrees of Freedom

Let us consider a statistical system defined on a d-dimensional regular lattice of lat-
tice spacing a, with degrees of freedom si placed on its sites. Let H({si}, gk) be the
hamiltonian of the system, where gk are the coupling constants of the various inter-
actions among the spins si. For reasons that will become clear later, it is convenient
to include in the hamiltonian all the possible coupling constants that are compatible
with the nature of the degrees of freedom. For instance, if the si are Ising variables,
the hamiltonian H can be written as H = H(+) +H(−), where the ± signs refer to the
even and odd sectors of the Z2 symmetry of the model. In the even sector, the most
general hamiltonian is given by

H(+)({si}, gk) =
∑
i,j

g
(2)
ij si sj +

∑
i,j,k,l

g
(4)
ijklsi sj sk sl + · · · (8.2.1)

whereas in the odd sector, the most general hamiltonian is expressed by

H(−)({si}, gk) =
∑
i

g
(1)
i si +

∑
i,j,k

g
(3)
ijksi sj sk + . . . (8.2.2)

In the formulas above, the indices are not necessarily restricted to next neighbor sites.
The partition function is given by

Z({gk}) =
∑
{si}

exp [−H({si}, gk)] , (8.2.3)

where we have included the factor β = 1/KT in the definition of the coupling constants
of the hamiltonian. At given values of the gk, the system has a correlation length ξ(gk)
that is a function of the couplings. This quantity measures the number of degrees of
freedom effectively coupled together and one expects that, the smaller is ξ(gk), the
more effective and accurate is a perturbative study of the model. This observation
suggests we look for a scale transformation a→ b a that establishes a correspondence
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between the system with correlation length ξ and the one with correlation length
ξ′ = ξ/b < ξ. The idea is that, if such a transformation exists, its implementation may
lead to a solvable or, at least, to a simpler model. Note, however, that, if the initial
system is exactly at the critical point, this transformation will leave it invariant: in
this case ξ = ∞ and therefore it remains a divergent quantity under any rescaling of
the lattice spacing.

Spins within a sphere of radius ξ are correlated with each other. Therefore, those
within a length shell ba (b > 1) satisfying

a� b a� ξ

act somehow as a single unit. We can imagine zooming in on the system, organizing the
variables in spin blocks. Namely, let’s divide the original lattice into blocks, denoted
by Bk, each of them made of bd spins. If N is the total number of sites, there are N b−d

blocks. Once this partition has been done, let’s assign to each block a new variable
σ

(1)
i according to a certain law that involves the spins si present in each block

σ
(1)
i = f({si}), with i ∈ Bk. (8.2.4)

Postponing until later the discussion of the nature of this law, for the time being
let’s note that the effect of this transformation is to change the model into a new
one, defined on a lattice with a new lattice spacing a′ = b a. After all the dynamical
variables have been changed according to the transformation (8.2.4), it is convenient
to scale the new lattice by a factor b−1 (without altering, though, the spins), so that
we come back to a lattice equal to the original one. What we have described above is
the implementation of the real space renormalization group, which therefore consists
of the iteration of the series of transformations

σ
(n+1)
k = f({σ(n)

i }), with i ∈ Bk (8.2.5)

where σ(n)
i denote the spin variables of the n-th step of this procedure (see Fig. 8.2).

An important aspect of this transformation is its local nature: the definition of the
variables σ(n+1)

k only involves the variables σ(n)
i and not the original spins si. Note

that at each step of the procedure we lose information on the fluctuations of the spins
that occur on the factor scale b.

8.3 Transformation Laws and Effective Hamiltonians

There are several reasonable choices of the transformation laws f({σi}) for updating
the spin variables and each of them gives rise to different RG coarse grainings of the
system. However, one should realize that what really matters is the asymptotic behav-
ior of the adopted iterative procedure. In the limit n→ ∞ the difference between the
transformation laws may be washed out, leading to the same physical scenario. In
the real space version of the renormalization group, the two versions mostly used are
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Fig. 8.2 Sequence of a renormalization group transformation in real space: from the original
lattice, with lattice spacing a and variables si, to a new lattice with a′ = ba and block spins
σi. Finally, a scale transformation restores the original lattice spacing a.

the following:

• Decimation. This law assigns to the spin σ
(n+1)
k the value of one of the spins

σ
(n)
i of the block Bk, say the central one

σ
(n+1)
k = σ

(n)
j , j ∈ Bk.

• Majority rule. This law assigns to the spin σ
(n+1)
k the value of the majority of

the spins σ(n)
i of the block Bk, namely

σ
(n+1)
k = A(n)

∑
i∈Bk

σ
(n)
i ,

where A(n) is a normalization constant. One has to be careful to implement the
latter procedure for it depends on the nature of the spins σi. For instance, if they
are Ising variables with values ±1, it is convenient to choose blocks with an odd
number of spins, in order to avoid the possibility of generating a null value for
the next block spins. The normalization constant A(n) is useful to re-establish the
correct range of values ±1 for the new variable.

Note the irreversible nature of both transformations above: knowing the value σ(n+1)
k

it is indeed impossible to trace back the spins σ(n)
i that have generated it.

Given a transformation law, it is convenient to introduce the operator

T (σ(n+1)
k , σ

(n)
i ) =

{
1 , if σ(n+1)

k = f({σ(n)
i })

0 , otherwise.
(8.3.1)
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It satisfies ∑
{σ(n+1)

k }
T (σ(n+1)

k , σ
(n)
i ) = 1. (8.3.2)

Fixed the transformation law of the spins, we pass to determine the effective hamilto-
nianH(n+1)({σ(n+1)

i }, g(n+1)
k ) for the new block spins. Since the transformation (8.2.5)

depends only on the configurations of the spins σ(n)
i , the new hamiltonian will be de-

termined by the n-th step hamiltonian H(n)({σ(n)
i }, g(n)

k ) as follows. Let’s denote by

P ({σ(n)
i }) = exp

[
−H(n)

(
{σ(n)

i }, g(n)
k

)]
,

the probability of realizing a configuration σ
(n)
i and define the new hamiltonian by

means of the conditional probability

exp
[
−H(n+1)

(
{σ(n+1)

k }, g(n+1)
k

)]
(8.3.3)

=
∑

{σ(n)
i }

∏
blocks

T (σ(n+1)
k , σ

(n)
i ) exp

[
−H(n)

(
{σ(n)

i }, g(n)
i

)]
.

In other words, assigning the new block spins σ(n+1)
k according to the transformation

law, the spins σ(n)
i of the previous step are averaged using as weight their Boltzmann

factor. The result is the Boltzmann factor of the new block spins.
To avoid the introduction of some additive constants as we go on in the iteration

of the procedure, it may be useful to fix a normalization condition for the sequence of
hamiltonians, as for instance∑

{σ(n)
i }

H(n)
(
{σ(n)

i }, gi
)

= 0.

Using this normalization, one has∑
{σ(n+1)

k }
exp
[
−H(n+1)

(
{σ(n+1)

k }, g(n+1)
k

)]
=
∑

{σ(n)
i }

exp
[
−H(n)

(
{σ(n)

i }, g(n)
i

)]
(8.3.4)

and the same value of the partition functions

Z(n+1)(g(n+1)
k ) = Z(n)(g(n)

i ). (8.3.5)

This equality also holds for the expectation value of any function X of the variables
σ

(n+1)
k : this is independent whether we compute it by using H(n+1) or H(n) in view of

the identity

〈X〉 =
1

Z(n+1)

∑
{σ(n+1)

k }
X({σ(n+1)

k }) exp
[
−H(n+1)

(
{σ(n+1)

k }, g(n+1)
k

)]

=
1

Z(n)

∑
{σ(n)

i }
X({σ(n+1)

k }) exp
[
−H(n)

(
{σ(n)

i }, g(n)
i

)]
. (8.3.6)
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This allows us to refer to the expectation values without specifying which effective
hamitonian has been used.
Manifold of the coupling constants. To implement successfully the procedure of
the RG it is obviously important that the new effective hamiltonian H(n+1) has the
same functional form as H(n), so that the model remains the same at each step of
the sequence, beside a change in the value of its coupling constants. As a matter
of fact this is impossible if we restrict attention to the hamiltonians with a finite
number of couplings, since at each step new couplings are generated: for instance,
starting from a hamiltonian with interaction among the next neighbor spins, the new
hamiltonian has a new interaction among the spins separated by more than a lattice
spacing and, furthermore, interactions that involve more than two spins. For this
reason, it is convenient to start from the very beginning with the ensemble of all
possible coupling constants that are compatible with the symmetry of the model and
the nature of the statistical variables. Let’s introduce then the manifold of the coupling
constants and denote by {g(n)} ≡ (g(n)

1 , g
(n)
2 , . . .) the set of all the couplings of the

effective hamiltonian H(n). In such a manifold, the application of eqn (8.3.3) can be
interpreted as a motion of the point {g} that identifies the system. This motion is
made in discrete time steps and ruled by

{g(n+1)} = R({g(n)}), (8.3.7)

where R is, in general, a complicated nonlinear transformation. Starting from a point
{g(0)} and applying (8.3.7), the point of the system evolves in the sequence {g(1)},
{g(2)}, . . ., giving rise in this way to a renormalization group trajectory, as shown in
Fig. 8.3. It is important to stress that all points of the trajectory describe the same
physical situation: they simply correspond to an observation of the system with a
different magnifying glass. Note that under the transformation (8.3.7), the correlation
length has to be measured with respect to the new lattice spacing and therefore it
changes as

ξ(g(n+1)) = b−1 ξ(g(n)). (8.3.8)

Hence, it shrinks by a factor b at each step of the procedure.

A
B

C

Fig. 8.3 Trajectories of the renormalization group and fixed points: A is a repulsive fixed
point, B is an attractive fixed point, whereas C is a mixed fixed point.
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8.4 Fixed Points

The mathematical nature of the renormalization group transformations is the same as
dynamical systems, an important subject of physics and mathematics. An example of
a dynamical system is provided by the logistic map discussed in Problem 1 at the end
of the chapter. A priori, one could expect an arbitrary behavior for the trajectories
that starts from a point P in the space of the coupling constants, with oscillations,
discontinuities, or a zig-zag behavior. However, in all cases of physical relevance, one
observes a smooth convergence toward some fixed points. A fixed point is a point in the
manifold of the coupling constants that remains invariant under the mapping (8.3.7):

g∗ = R(g∗). (8.4.1)

At a fixed point, the correlation length either diverges or vanishes, as can be easily
seen from eqn (8.3.8) evaluated at g = g∗

ξ(g∗) = b−1 ξ(g∗). (8.4.2)

Nature of fixed points. The fixed points where ξ = ∞ are called critical points,
whereas those ξ = 0 are called trivial fixed points. The fixed points can be further
classified by their stability nature: they can be attractive, repulsive, or mixed. One has
an attractive fixed point if, in a neighborhood of g∗, the iteration of the transformations
g(n) converges to g∗. One has instead a repulsive fixed point if the iteration of the RG
transformations that start near g∗ moves the point away from g∗. A mixed fixed point
has both kinds of trajectories in its vicinity.
Linearization. The nature of the fixed points can be determined by studying the
linear version of the transformation (8.3.7): putting g = g∗ + δg, one has

g∗ + δg′ = R(g∗ + δg) 	 R(g∗) + K δg = g∗ + K δg,

namely
δg′

a = Kab δgb, (8.4.3)

where the matrix Kab is defined as

Kab =
∂Ra

∂gb
. (8.4.4)

This matrix is not necessarily symmetric and for this reason it is necessary to distin-
guish between the right and the left eigenvectors. Denoting by λi its eigenvalues and
by Δi its left eigenvectors K, we have∑

a

Δi
aKab = λi Δi

a. (8.4.5)

In terms of Δi
a let’s now define a linear combination of the displacements δga

ui ≡
∑
a

Δi
a δga. (8.4.6)
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These linear combinations are called scaling variables. They have the important quality
of transforming in a multiplicative way under the RG transformations

u
′
i =
∑
a

Δi
a δg

′
a =

∑
a,b

Δi
aKab δgb (8.4.7)

=
∑
b

λi Δi
b δgb = λi ui.

If b is the rescaling parameter of the block spins, it is common to parameterize λi as
λi = byi where the quantities yi are improperly called the eigenvalues of the renormal-
ization group: in Section 8.9 we will show that they determine the critical exponents
of the statistical model. Disregarding the case in which yi is a complex number,1 we
can have the following cases:

1. yi > 0. In this case the corresponding ui is a relevant variable. A repeated appli-
cation of the transformations moves its value away from the critical point.

2. yi < 0. In this case ui is an irrelevant variable. Starting sufficiently close to the
fixed point, the iteration of the transformation shrinks the initial value to zero.

3. yi = 0. In this case ui is a marginal variable. Iterating the transformation, the
value of this variable does not change.

Critical surface. To continue the analysis, let’s assume that the dimension of the
space of the coupling constants is m and let’s consider a fixed point g∗ with n relevant
variables and (m − n) irrelevant variables. This means that there exists a (m − n)-
dimensional surface C, called the critical surface, that is the attractive basin for the
fixed point g∗. As shown below, on this surface the correlation length is infinite. The
coupling constants gk of the system depend generally on the external parameters of
the system, such as temperature, pressure, or magnetic field. Varying these external
parameters, the point {g} of the coupling constants varies correspondingly. When
there are n relevant variables, in order to intercept the critical surface it is necessary
to choose appropriately n external control parameters. In all cases of physical interest,
the temperature is one of these parameters and its value has to be tuned to its critical
value T = Tc to hit the critical surface. This may not be enough: if there are magnetic
fields, they must be switched off and it may also be necessary to tune appropriately the
chemical potential. Once such a fine tuning of the n experimental parameters has been
done, the point {g} in on the critical surface. If we now apply the RG transformations,
their iterations of the RG move the point toward the critical point g∗, independently
of its initial position on C, as shown in Fig. 8.4. This is, in a nutshell, the origin of the
universal behavior of the critical phenomena: hamiltonians that differ only for their
irrelevant operators give rise to the same critical behavior.

Let’s now prove that the correlation length diverges on the critical surface. Suppose
that the physical system is represented by the point {g} in the space of the coupling
constants and, after n iterations, by {g(n)}. Using eqn (8.3.8), we have the sequence

1In this case the trajectories are spirals that converge to the fixed point g∗ if Re yi < 0 or diverge
from it if Re yi > 0.
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C g* g’
g"

Fig. 8.4 Once the trajectory reaches the critical surface, the evolution of the coupling
constants under the renormalization group converges to the fixed point g∗, independently of
the initial position g

′
or g

′′
. Points outside the critical surface move away from it.

of identities
ξ(g) = b ξ(g(1)) = b2 ξ(g(2)) = · · · = bn ξ(g(n)).

If the initial point {g} was on the critical surface, in the limit n → ∞ the sequence
of {g(n)} converges to {g∗}, i.e. limn→{g(n)} = {g∗}: since ξ(g∗) = ∞ and b > 1, we
have that ξ(g) = ∞ for all points of the critical surface.
Properties of the RG flows. The physical nature of the problem is quite helpful in
clarifying both the geometrical nature of the trajectories and some of their properties.
For instance:

• The RG trajectories can only intersect at the fixed points.
• Switching on a relevant variable in a hamiltonian that is at a fixed point g∗

i , the
corresponding flow moves the system away from it. At the end of this motion,
the point {g} reaches either a trivial fixed point (with a zero correlation length)
or another critical point g∗

f . The approach to both final points is obviously along
one of their irrelevant directions.

• During the motion along the RG flows, the point may pass close to other fixed
points g∗

a (a = 1, 2, . . .), as shown in Fig. 8.5. If the trajectory is sufficiently close
to them, there could be a series of interesting cross-over phenomena. According
to the scale by which one monitors the system, one can observe the following
behaviors: (i) over a short distance, the critical behavior ruled by the original
fixed point g∗

i ; (ii) on intermediate scales, the scaling behavior associate to the
nearest fixed points met along the flow; (iii) at large distance, the scaling behavior
ruled by the final fixed point g∗

f .
In order to clarify the concepts introduced so far, it is useful to discuss some simple
examples.

8.5 The Ising Model
The first example is the one-dimensional Ising model. As the initial hamiltonian we
take the one with the nearest neighbor interaction

H(si;J) = −J
∑
i

si si+1. (8.5.1)
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g*

g*

g*

g*

i

f

1

2

Fig. 8.5 Renormalization group trajectory obtained by perturbing the hamiltonian of the fixed
point g∗

i with a relevant variable. The final point corresponds to the hamiltonian of the new
fixed point g∗

f , while the cross-over phenomena are ruled by the intermediate fixed points met
along the trajectory.

s s s s ss
1 2 3 4 5 6

σ σ
1 2

(a)

(b)

Fig. 8.6 Spin blocks in the one-dimensional Ising model and the decimation transformation.

Each pair of spins has the Boltzmann weight

W (si, si+1; v) = eJ si si+1 = cosh J (1 + vsi si+1), (8.5.2)

with v = tanhJ . To apply the RG transformations, we divide the system into blocks,
each made of three spins, and then we apply the decimation rule: for each block we
choose as a spin of the new system the one that is at the center, as shown in Fig. 8.6.

Consider two neighbor blocks. To implement the RG procedure, it is necessary
to sum over the spins s3 and s4, keeping fixed, though, the values of the spins at the
center of the two blocks, here denoted as σ1 ≡ s2 and σ2 = s5. In the partition function
the terms that involve the degrees of freedom of two neighbor blocks are

eJσ1 s3 eJs3 s4 eJs4 σ2 .

Using the identity eJxaxb = cosh J (1 + v xa xb) for all the three terms of the previous
equation, one has

(cosh J)3 (1 + v σ1 s3) (1 + v s3 s4) (1 + v s4 σ2).
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Expanding this product and summing over s3 and s4, one gets

22(cosh J)3 (1 + v3σ1σ2).

Beside a multiplicative normalization constant (independent of the spins), this expres-
sion is of the same form as (8.5.2) and therefore it defines the new Boltzmann weight
W (σ1, σ2; v′) of the block spins σ1 and σ2 with

v′ = v3. (8.5.3)

The new hamiltonian of the system is thus given by

H(σi; J ′) = N ′ p(J) − J ′ ∑
i

σi σi+1, (8.5.4)

where N ′ = N/3 is the number of sites of the new lattice, while the value of the new
coupling constant is

J ′ = tanh−1 [(tanhJ)3
]
, (8.5.5)

p(J) is the contribution to the free energy coming from the degrees of freedom on which
we have summed, and it ensures the correct normalization of the partition functions
of the two systems

p(J) = −1
3

log
[
(cosh J)3

cosh J ′

]
− 2

3
log 2.

Let’s now use the transformation law of the coupling constants, eqn (8.5.3), to study
the physical content of the model. It is useful to make a plot of this mapping, as done
in Fig. 8.7. It is easy to see that the mapping has two fixed points: v∗

1 = 0 and v∗
2 = 1.

The first is an attractive fixed point, while the second is repulsive: unless v is exactly
v = 1, each iteration moves the values of v to the origin. Recall that we have absorbed
in J a factor β = 1/kT . This means that the high-temperature phase around T → ∞
corresponds to the values close to v → 0, while the low-temperature phase around
T → 0 corresponds to values v → 1, with v = 1 when T = 0.

Since the effective coupling constant moves toward smaller values at each iteration,
the large-scale degrees of freedom are described by an effective hamiltonian whose
temperature increases: this is the region where the system is in its paramagnetic phase
and has a finite correlation length. This happens for all values of v (except v = 1) and
therefore we are led to the conclusion that the one-dimensional Ising model is always
in its disordered phase. As we have seen earlier, this conclusion is indeed confirmed
by the exact solution of this model, discussed in Chapter 2. It is also easy to derive how
the correlation length depends on the coupling constant: one simply needs to employ
the transformation law

ξ(v
′
) =

1
3
ξ(v), (8.5.6)

and substitute v
′
with eqn (8.5.3). Hence, the correlation length satisfies the functional

equation

ξ(v3) =
1
3
ξ(v), (8.5.7)
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v*2
v’

v

v*1

1

Fig. 8.7 Renormalization group equation for the one-dimensional Ising model. v∗
1 = 0 and

v∗
2 = 1 are the two fixed points, the former an attractive one, the latter a repulsive one.

Starting from any value v �= 1, the next iterations move the value of v toward the origin.

whose solution is given by

ξ(v) = − ξ0
log v

= − ξ0
log tanhJ

. (8.5.8)

This expression is in agreement with the behavior of ξ(v) discussed in Chapter 2.
Note that ξ is always finite, except when J → ∞ (T → 0), where it diverges as
ξ 	 e1/T . This gives further evidence that the one-dimensional Ising model is always
in a paramagnetic phase, expect when T = 0.

Even in the absence of simple analytic expressions, the arguments presented above
help us to understand the phase diagram of the Ising model on higher dimensional
lattices. Firstly, let’s consider closely the one-dimensional case: if we refer to the spin
variables of two neighbor blocks, in the limit J → ∞ the equation that fixes the new
coupling constant can be written as

J ′ 	 J 〈s3〉σ1=1 〈s4〉σ2=1, (8.5.9)

where 〈s3〉σ1=1 is the mean value of the spin at the edge of the block, with the condition
that the spin in the middle of the block assumes value 1. Since these mean values
are always less than 1 (except at J = ∞), one has J ′ < J and therefore the low-
temperature fixed point is always unstable.

However, for d-dimensional lattices (with d > 1), the situation is different. Consider
once again the transformation law of the couplings in the limit J → ∞. The value of
the new coupling constants is essentially determined by the expectation values of the
spins along the boundary of the blocks. Since there are bd−1 of them, we have

J ′ 	 bd−1 J, J → ∞. (8.5.10)

For d > 1, we have then J ′ > J , i.e. the low-temperature fixed point is now attractive!
On the other hand, it is easy to convince oneself that the high-temperature fixed point
is also attractive. The attractive nature of both fixed points implies that the Ising
model in d > 1 should have a critical value at a finite value of the coupling constant,
i.e. there should exist a critical temperature Tc at which the model undergoes a phase
transition (see Fig. 8.8).
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T=0 T=ooT = T c

Fig. 8.8 Phase diagram and renormalization group flows of the d-dimensional Ising model,
with d > 1. In this case, both low and high temperature fixed points are attractive, while
the fixed point between them is unstable with respect to the scaling variable associated to the
temperature.

8.6 The Gaussian Model
Another simple example of RG transformations is given by the gaussian model, whose
variables si = ϕi take values on all of the real axis. The hamiltonian of this model,
expressed in the k-space, is expressed by

H =
1
2

∫
|k|<1/a

(g2 + k2) |ϕ(k)|2 ddk. (8.6.1)

The microscopic origin of the model is encoded in the cut-off 1/a present in the inte-
gration over the momenta. The partition function is

Z =
∫ ∏

|k|<1/a

dϕ(k) e−H . (8.6.2)

In order to implement the renormalization group procedure, let’s integrate over the
degrees of freedom of the field in the shell of the momenta 1/ba < |k| < 1/a. This is
equivalent to defining the new block spins, with scale parameter equal to b. The new
hamiltonian is determined by the equation

e−H′
=
∫ ∏

1/ba<|k|<1/a

dϕ(k) e−H. (8.6.3)

Since each variable is decoupled from the others and each integral is gaussian, disre-
garding an inessential additive constant, the new hamiltonian is easily computed:

H ′ =
1
2

∫
|k|<1/ba

(g2 + k2) |ϕ(k)|2 ddk. (8.6.4)

To restore the initial lattice spacing, let’s make the change of variable k → k/b, so
that

H ′ =
1
2

∫
|k|<1/a

(g2 + k2 b−2) b−d |ϕ(k)|2 ddk. (8.6.5)

We need to renormalize the new block variables. This can be done by requiring that
the kinetic term k2 |ϕ(k)|2 keeps the same form also in the new hamiltonian. Making
the scale transformation on the field

ϕ′ = b(d+2)/2 ϕ,
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we arrive at

H ′ =
1
2

∫
|k|<1/a

(g′
2 + k2) |ϕ′(k)|2 ddk. (8.6.6)

We have thus obtained the transformation law of the coupling constant

g′
2 = b2 g2 (8.6.7)

which shows the relevant nature of this variable. The fixed points of the transformation
law are: g2 = 0, which is a critical point of the model, and g2 → ∞, which is a trivial
fixed point. In fact, the correlation length is given by ξ(r0) = 1/

√
g2, and in the former

case it diverges, while in the latter it goes to zero.

8.7 Operators and Quantum Field Theory

As discussed in the previous chapter, close to a critical point, where the correlation
length ξ is much larger than the lattice spacing, it is natural to adopt the quantum
field theory formalism to describe the dynamics of the statistical systems. For the sake
of simplicity, let’s focus our attention on a theory with a Z2 internal symmetry. The
order parameter is the scalar field ϕ(x) that transforms as ϕ → −ϕ under the Z2
symmetry. The more general action of such a model is given by

S =
∫
ddx

[
1
2
(∂μϕ)2 + g1ϕ+

g2
2
ϕ2 + · · · + gn

n!
ϕn + · · ·

]
. (8.7.1)

The manifold of the coupling constants is described by the set {g} = (g1, g2, . . . , gn, . . .).
The partition function of the system is expressed by the functional integral

Z[{g}, a] =
∫

Dϕ exp[−S[ϕ, {g}]]. (8.7.2)

In the previous chapter, we stressed the fundamental role played by the lattice spacing
a even in the continuum theory. In terms of such a parameter, the “engineering”
dimensions of the coupling constants

[gn] = and/2−n−d ≡ aδn , (8.7.3)

can be regarded as their scaling dimensions with respect to the gaussian fixed point,
identified by the condition g1 = g2 = g3 = · · · = 0. At the gaussian point, the relevant
coupling constants are those with δn < 0, the irrelevant ones those with δn > 0, while
the marginal ones are associated to the condition δn = 0.

In addition to the gaussian fixed point, there may be other fixed points. They can
be reached, for instance, by perturbing the gaussian action by some relevant operators,
as shown in an explicit example discussed in Section 8.10. Let’s then suppose that we
are at a new fixed point, characterized by the action S∗ and by a new set of m relevant
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variables, denoted by λi (i = 1, 2, . . . ,m). If φi(x) are the fields conjugated to these
variables, in the vicinity of the new fixed point the action can be written as

S = S∗ + λ1

∫
ddxφ1(x) + · · · + λm

∫
ddxφm(x). (8.7.4)

Under a scaling transformation x→ x/b, λi scale as byi λi whereas the volume element
ddx scales as b−d ddx. If we require that the action does not depend on the arbitrary
parameter b, the fields φi(x) must then scale as2

φi → bxi φi, (8.7.5)

with
xi = d− yi. (8.7.6)

It is easy to prove that, at the fixed point, the two-point correlation functions of the
fields φi(x) have the scaling form

Gi(r1 − r2) = 〈φi(r1)φi(r2)〉 =
1

|r1 − r2|2xi
. (8.7.7)

Let’s denote by Gi(r1 − r2,S) the correlation function computed by the formula

〈φi(r1)φi(r2)〉 =
1
Z

∫
Dφφi(r1)φi(r2) e−S , (8.7.8)

using the action S. Making a RG transformation that changes the physical lengths by
b, the action S becomes S ′, while the fields φi scale according to eqn (8.7.5). We arrive
then at the functional equation

Gi((r1 − r2)/b,S ′) = b2xi Gi(r1 − r2,S). (8.7.9)

If the initial action S is the one relative to the fixed point S∗, we have S ′ = S∗ and
therefore the equation above becomes

Gi((r1 − r2)/b,S∗) = b2xi Gi(r1 − r2,S∗). (8.7.10)

The solution, except for a multiplicative factor, is provided by eqn (8.7.7).
Role of the microscopic scale. The expression (8.7.7) for the scaling form of the
correlation function gives us the opportunity to make an important comment on the
role played by the microscopic scale a. Suppose that the field φi(x) in (8.7.7) coincides
with the field ϕ(x) that appears in the action (7.2.3). Since the engineering dimension
of this field is a1−d/2, one could expect that its correlation function should take the
form

Gi(r) =
1

rd−2 . (8.7.11)

If 2xi �= (d − 2) obviously this expression does not coincide with the one given in
eqn (8.7.7). This seems to preclude the possibility that the field ϕ(x) could ever have

2The same argument also holds for the conjugate fields of the irrelevant variables, with their scaling
dimension also given by (8.7.6). For simplicity we focus attention only on the relevant terms.
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an anomalous dimension. There is, however, a way out: the scaling law (8.7.7) can be
conciliated with the engineering dimension of the field if there exists a length-scale a
able to absorb the canonical dimension of the field. In other words, the exact expression
of the propagator of the scaling field is not that in eqn (8.7.7) but

Gi(r) =
1

ad−2

(a
r

)2xi

. (8.7.12)

If we make a scaling transformation of all the dimensional quantities of the problem,
the correlator scales according to the canonical dimension of the field

Gi → a−(d−2)Gi.

Vice versa, if we would like to observe the system under a different magnifying glass,
we shall rescale the length-scales but keep fixed the lattice spacing of the system:
in this case, we obtain instead the anomalous behavior expressed by eqn (8.7.7). In
conclusion, the expression (8.7.7) that is usually assumed as the propagator of the
scaling fields has to be rather regarded as a shortening of the general formula (8.7.12),
where the lattice spacing a was taken to be 1.

Note that the functional equation (8.7.9) can be empoyed to find the general form
of the correlation functions of the scaling fields in the vicinity of the fixed point.
Suppose, for simplicity, that S∗ is perturbed by only one relevant field, with coupling
constant λk. In this case, eqn (8.7.9) becomes

Gi(r/b, bykλk) = b2xi Gi(r, λk), (8.7.13)

whose general solution can be written as

Gi(r, λk) =
1
r2xi

fi

(
λ1/yk r

)
. (8.7.14)

In this formula fi is a homogeneous function of the distance r and of the coupling
constant λk, whose explicit form can be obtained only by studying the details of the
model.

8.8 Functional Form of the Free Energy

The linearized form of the renormalization group equations permits us to easily derive
the scaling form of the free energy in the vicinity of the fixed point and the relationships
between the critical exponents. Consider a statistical system with n relevant coupling
constants λi. In the field theory formulation, in the vicinity of the fixed point the
action is given by

S = S∗ +
n∑
i

λi

∫
ddxφi(x). (8.8.1)

In the Ising model, for instance, there are two relevant variables, given by the magnetic
field h ≡ λ1 and by the displacement of the temperature from the critical value T−Tc ≡
λ2: the conjugate fields are φ1(x), which correspond to the continuum limit of the spin
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variable si, and φ2(x), associated to the continuum limit of the energy density, given
on the lattice by

∑
j si si+êj .

Since the variables λj in the action (8.8.1) have dimensions [λj ] = ayj , the theory
has a finite correlation length. Selecting one of the couplings, say λi, in the thermo-
dynamic limit the correlation length can be expressed as

ξ({λj}) = a (Kiλi)
− 1

yi Li

(
K1λj

(Kiλi)φ1i
, · · · , Kjλj

(Kiλi)φji
, · · ·
)
, (8.8.2)

where Ki 	 1/λ(0)
i are some non-universal metric terms that depend on the units by

which we measure the coupling constants, Li are universal homogeneous functions of
the (n− 1) ratios Kjλj/(Kiλi)φji , with j �= i, and finally

φji =
yj
yi
, (8.8.3)

are the so-called cross-over exponents. There are many (but equivalent) ways of
expressing this scaling law of the correlation length, according to which coupling con-
stant we choose as prefactor. Each way selects its own scaling function L of the above
ratio of the couplings. When λk → 0 (k �= i) with λi �= 0, eqn (8.8.2) can be written as

ξi = a ξ0i λ
− 1

yi
i , ξ0i ∼ K

− 1
yi

i . (8.8.4)

Consider now the free energy of the system, f [λi], defined by

Z[{λi}] =
∫

Dφie−[S∗+
∑n

i=1 λi

∫
φi(x) ddx] ≡ e−N f(λi). (8.8.5)

By virtue of the identity (8.3.4) of the partition functions, making a RG transformation
we have

e−N f({λ}) = e−Np({λ})−N ′ f({λ′}),

where p({λ}) is an additive constant related to the degrees of freedom on which we
have integrated. Since the new number of sites is N ′ = b−dN , we have the functional
equation

f({λ}) = p({λ}) + b−d f({λ′}). (8.8.6)

The function p({λ}) is an analytic function of the coupling constant, since it involves a
sum over a finite number of spins. If we are interested in studying the singular behavior
of the free energy, we can safely discard this term and arrive at a functional equation
that involves only the singular part of f

fs({λ}) = b−d fs({λ′}). (8.8.7)

Substituting in it the expression for the new coupling constants given by the RG
transformations, we have

fs({λk}) = b−d fs({byk λi}). (8.8.8)
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Iterating this equation, the irrelevant variables go to zero (this is a manifestation of the
universality of the critical behavior) and the free energy, as a function of the relevant
variables alone, satisfies

fs({λj}) = b−nd fs({bnyj λi)}. (8.8.9)

As for the correlation length, there are many ways to express the general solution of
this equation. Selecting once more one of the couplings, say λi, we have

f({λi}) = fi[{λj}] ≡ (Kiλi)
− d

yi Fi

(
K1λj

(Kiλi)φ1i
, · · · , Kjλj

(Kiλi)φji
, · · ·
)− d

yi

. (8.8.10)

The functions Fi are universal homogeneous functions of the (n−1) ratiosKjgj/(Kigi)φji .
As we will see below, there are some obvious advantages in considering different
expressions for these scaling functions, obtained by changing the selecting variable
λi. In fact, in several physical applications, there is only one coupling constant kept
different from zero till the end, and the best choice of expressing the free energy
depends on this situation. As we are going to show, even in the absence of an explicit
expression of the Fi’s (which can be explicitly found only by solving exactly the model
by other methods), the functional dependence of the free energy is sufficient to obtain
useful information on the critical behavior of the model.

8.9 Critical Exponents and Universal Ratios

Let’s discuss the definition of several thermodynamical quantities associated to the
derivates of the free energy. In the following, we adopt the notation 〈...〉i to denote the
expectation values computed with an action that has, at the end, only λi as coupling
constant different from zero. The first quantities of interest are the expectation values
of the fields φj that can be parameterized as

〈φj〉i = − ∂fi
∂λj

∣∣∣∣λk=0 ≡ Bji λ
d−yj

yi
i , (8.9.1)

with

Bji ∼ KjK
d−yj

yi
i . (8.9.2)

Equivalently

λi = Dij (〈φj〉i)
yi

d−yj , (8.9.3)

with
Dij ∼ 1

KiK
yi

d−yj

j

. (8.9.4)

The generalized susceptibilities are defined by

Γ̂i
jk =

∂

∂λk
〈φj〉i = − ∂2fi

∂λk∂λj
. (8.9.5)
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These quantities are obviously symmetric with respect to the lower indices. By the
fluctuation-dissipation theorem, they are related to the off-critical correlation func-
tions as

Γ̂i
jk =

∫
dx 〈φk(x)φj(0)〉i. (8.9.6)

Taking out the dependence on the coupling constant λi, we have

Γ̂i
jk = Γi

jk λ
d−yj−yk

yi
i , (8.9.7)

with

Γi
jk ∼ KjKkK

d−yj−yk
yi

i . (8.9.8)

As shown by the formulas above, the various quantities contain the metric factors
Ki and their expressions are therefore not universal. However, we can consider some
special combinations of these quantities in which the metric factors are cancelled out.
Here we give some examples of the so-called universal ratios

(Rc)ijk =
Γi
iiΓ

i
jk

BjiBki
; (8.9.9)

(Rχ)ij = Γi
jjDjjB

D−4Δj
2Δj

ji ; (8.9.10)

Ri
ξ =

(
Γi
ii

)1/D
ξ0i ; (8.9.11)

(RA)ij = Γi
jj D

4Δj+2Δi−2D

D−2Δi
ii B

2Δj−D

Δi
ij ; (8.9.12)

(Q2)ijk =
Γi
jj

Γk
jj

(
ξ0k
ξ0j

)D−4Δj

. (8.9.13)

As the critical exponents, these pure numbers characterize the universality class of
a given model. It is worth emphasizing that, from an experimental point of view, it
should be simpler to measure universal amplitude ratios rather than critical exponents:
in fact to determine the former quantities one needs to perform several measurements
at a single, fixed value of the coupling which drives the system away from criticality
whereas to determine the latter, one needs to make measurements over several decades
along the axes of the off-critical couplings. Moreover, although not all of them are
independent, the universal ratios are a set of numbers larger than the critical exponents
and therefore permit a more precise determination of the class of universality. Finally,
being universal quantities, they can be theoretically computed by analyzing the sim-
plest representative of the class of universality under scrutiny.

Some of the quantities above have a familiar meaning in the context of the Ising
model. In particular, they permit us to express all critical exponents in terms of rational
functions of the eigenvalues yi of the renormalization group. To compare with the
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formulas of Chapter 1, it is convenient to use the notation h = λ1 and t = λ2.
Consider, for instance, the specific heat

C(T ) =
∂2f

∂t2

∣∣∣
h=0

=
{
C+ t

d/yt−2 , T > Tc
C−(−t)d/yt−2 , T < Tc.

(8.9.14)

From the definition of the critical exponent α, C(T ) 	 |t|−α, we get

α = 2 − d/yt. (8.9.15)

The spontaneous magnetization of the system is obtained by

M(T ) =
∂f

∂h

∣∣∣
h=0

= M0 (−t)(d−yh)/yt . (8.9.16)

Comparing with the definition of the critical exponent β, M(T ) 	 (−t)β , one has

β =
d− yh
yt

. (8.9.17)

The susceptibility at zero magnetic field is given by

χ(T ) =
∂2f

∂h2

∣∣∣
h=0

=
{
χ+t

(d−2yh)/yt , T > Tc
χ−(−t)(d−2yh)/yt , T < Tc.

(8.9.18)

Comparing with the definition of the critical exponent γ, χ(T ) 	 |t|−γ , one obtains

γ =
d− 2yh
yt

. (8.9.19)

In order to derive finally the exponent δ, one needs to consider the general expression
of the magnetization

M(T, h) =
∂f

∂h
=

1
h0

∣∣∣∣ tt0
∣∣∣∣(d−yh)/yt

F ′
(

h/h0

|t/t0|yh/yt

)
, (8.9.20)

with the choice of the scaling form of the free energy given by (t0 and h0 are the metric
factors)

f(t, h) =
∣∣∣∣ tt0
∣∣∣∣d/yt

F
(

h/h0

|t/t0|yh/yt

)
. (8.9.21)

To have a finite limit of this expression when |t| → 0, it is necessary that F ′(x) behaves
as F ′

0 x
d/yh−1 when x→ ∞, so that

M(T = 0, h)M0 h
(d−yB)/yt . (8.9.22)

Comparing with the definition of the exponent δ, M(h) 	 h1/δ, one has

δ =
yh

d− yh
. (8.9.23)
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Hence, all critical exponents are expressed in terms of the eigenvalues yh and yt of the
renormalization group equations of this model. Moreover, there is a natural explanation
of the existence of the scaling laws

α+ 2β + γ = 2,
α+ β δ + β = 2. (8.9.24)

Using the scaling form (8.7.14) of the correlation function, with λk = t, we have

ξ =
{
ξ+ t

−1/yt , T > Tc
ξ− (−t)−1/yt , T < Tc

(8.9.25)

and comparing with the definition of ξ 	 |t|−ν , one arrives at

ν = 1/yt. (8.9.26)

Comparing, instead, with the critical expression of the correlator Gi(r) = 1/rd−2+η,
we can extract the last critical exponent

η = d+ 2 − 2 yh. (8.9.27)

In terms of these expressions one can easily check the validity of the other scaling laws

α+ dν = 2
γ = ν(2 − η). (8.9.28)

Concerning the universal ratios of the Ising model, presently their analytic expressions
are only available for the two-dimensional case.3 They have been computed by using
quantum field theory methods away from the critical point – a subject that will be
discussed in the following chapters. Here we simply report the exact values of some of
these quantities4

C+/C− = 1,
χ+/χ− = 37.6936...,
ξ+/ξ− = 2, (8.9.29)

C+ χ+/M
2
0 = 0.318569...,

C
1/2
+ ξ+ = 1/

√
2π,

χ+ M−δ
0 M δ−1

0 = 6.7782 . . . .

8.10 β-functions
In the previous sections we have seen that to a scaling transformation of the lengths
there corresponds a change of the coupling constants that leaves the physical content

3The one-dimensional model has only the paramagnetic disorder phase and therefore there is only
a subset of the previous defined universal ratios.

4See G. Delfino, Integrable field theory and critical phenomena: the Ising model in a magnetic
field, J. Phys. A 37 (2004), R 45.
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of a theory unchanged. In a continuum formulation of critical phenomena, we can make
a scaling transformation x → x′ = x/b, where b is an arbitrary real parameter. If b
is infinitesimally close to 1, b 	 1 + δl, the coupling constants change infinitesimally
as well

ga → g′
a = ga +

dga
dl

δl + O((δl)2), (8.10.1)

and the RG transformation become the differential equation

dga
dl

= βa({g}). (8.10.2)

We have thus introduced the βa({g})-functions. They are the vector fields that fix the
RG flow. These functions are fundamental quantities of the theory for the following
reasons. First of all, their zeros identify the fixed point of the theory, since these are the
points where the coupling constants do not vary. Secondly, their derivatives, computed
at the fixed points, are directly related to the eigenvalues yi of the renormalization
group: in fact, at the fixed points, the linearized matrix of the renormalization group
is given by Kab = δab + ∂βa

∂gb
δl, with eigenvalues (1 + δl)yi 	 1 + yi δl. Hence, the yi’s

are nothing else but the derivatives of the βa-functions at the fixed points g∗.
In most cases, the βa({g})-functions are only known perturbatively as series expan-

sions in the coupling constants. If ga corresponds to a scaling variable with eigenvalue
ya with respect to the fixed point g∗ = (0, 0, 0, . . .) (here chosen as the origin in the
manifold of the couplings), the first term of their expansion is simply

βa({g}) = ya ga + · · · (8.10.3)

Solving at this order the differential equation (8.10.2), one easily finds the result pre-
viously discussed: the coupling constants with ya > 0 grow and get away from the
origin, those with ya < 0 shrink to zero.

It is obviously interesting to evaluate the higher orders of the β-functions. It should
be said that this computation becomes more and more difficult by increasing the orders
of the perturbation theory and it is far beyond the scope of this book. However, as we
will show in detail in Chapter 15, there is a particularly elegant result for the quadratic
terms. At this order, in fact, the βa-functions are expressed as

βa({g}) = ya ga −
∑
b,c

Cabc gb gc + · · · (8.10.4)

where Cabc are the same coefficients that enter the three-point correlation function of
the scaling fields φai (conjugate to the variables gi) at the critical point. Thanks to
the scaling properties of the fields φi, the general form of these correlators is

〈φa(r1)φb(r2)φc(r3)〉 = Cabcr
xc−xa−xb
12 rxb−xa−xc

13 rxa−xb−xc
23 , (8.10.5)

where rij = |ri − rj | and xa = d− ya.
ε-expansion. Particularly significant is the case in which the new zero of the βa-
functions (8.10.4) is close to the origin. In this circumstance, one can deduce the
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universal properties of the new fixed point in terms of the fixed point at the origin.
This happens, for instance, in the lagrangian theory

S =
∫
ddx

[
1
2
(∂μΦ)2 + g2Φ2 + g4Φ4

]
,

where Φ(x) = [φ1(x), φ2(x), . . . , φn(x)] is a field with n components. For this model,
the lowest orders of the two β-functions are given by

β2({g}) =
dg2
dl

= 2g2 − 8(n+ 2)g2 g4 + · · ·
(8.10.6)

β4({g}) =
dg4
dl

= (4 − d)g4 − 8(n+ 8) g2
2 + · · ·

It is easy to see that, in addition to the origin, there is a new fixed point at g∗ =
(g2, g4) = (0, (4 − d)/8(n + 8). This has a perturbative nature (i.e. compatible with
the perturbative approach used to computed the β-functions) if ε ≡ (4 − d) � 1.
Computing the derivatives of the βa at this new fixed point, we can extract the relative
critical exponents

α =
4 − n

2(n+ 8)
ε+ · · ·

β =
1
2
− 3

2
ε

n+ 8
+ · · ·

γ = 1 +
n+ 2

2(n+ 8)
ε (8.10.7)

δ = 3 + ε

ν =
1
2

+
n+ 2

4(n+ 8)
ε.

The first significant feature of these expressions is their difference with respect to
the classical values obtained by the mean field theory discussed in Chapter 3. The
second relevant feature is the analytic nature of the parameter n, which allows us
to compute the critical exponents for any value of this parameter, not necessarily an
integer. Note that for n = 1 we obtain a Z2 invariant theory, while for n → ∞ we
get the spherical model. The third aspect that is worth a comment is the nature of
these series expansions: it is generally believed that they are only asymptotic series,
therefore with zero radius of convergence. There are, however, efficient techniques to
cure the problem and sum this kind of series (such as the Borel resummation method).
Note that, substituting in the formulas above n = 1 and ε = 1, one gets an estimate
of the critical exponents of the three-dimensional Ising model. We leave as an exercise
the comparison of these values with those obtained by the numerical simulations that
were reported in Chapter 3.
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Problems

1. Logistic map
Consider the map

xn+1 = fr(xn) = r xn(1 − xn).

This was introduced by P.F. Verhulst in 1845 to model the growth of a population in a
region of a finite area: the population at time n+1, expressed by xn+1, is proportional
to the population xn at time n, but at the same time is also proportional to the
remaining area. This quantity is decreased proportional to xn, namely (1−xn). Despite
the innocent aspect, this map has a remarkable mathematical structure.

a Prove that for r < 1 the map has a unique (stable) fixed point at the origin.
b Prove that for 1 < r < 3, there exist two fixed points, at x = 0 and x = 1 − 1/r,

the first of them unstable, while the second is a stable one.
c Prove that also the second fixed point becomes unstable when r > 3. Show that for

3 < r < r1 there are two stable fixed points x1 and x2 of the map fr[fr[x]] ≡
f

(2)
r (x), i.e. they are solutions of the equations x2 = fr(x1) and x1 = fr(x2).

d Show that there is a value r2 > r1 when the two previous fixed points x1 and x2
become unstable. More generally, prove that there exists a sequence of values rn
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such that for rn−1 < r < rn there is a set of 2n−1 points characterized by the
conditions

fr(x∗
i ) = x∗

i+1, f (2n−1

r (x∗
i ) = x∗

i .

e Define the family of functions gi(x) by the limit

gi(x) = lim
n→∞(−α)n f (2n)

rn+i

[
x

(−α)n

]
.

Show that they satisfy the functional equation

gi−1(x) = (−α) gi
[
gi

(
−x

α

)]
≡ T gi(x).

Study the features of the function g(x), defined as the “fixed point” of the trans-
formation law T

g(x) = T g(x) = −α g
[
g
(
−x

α

)]
.

Prove, in particular, that α is a universal parameter.

2. Universal ratios
Consider the mean field solution of the Ising model and, with the notation used in
Chapter 1, compute the universal ratios

C+ χ+/M
2
0 , χ+M

δ−1
0 M−δ

0 .

3. Approximated values of the critical exponents
Use the formulas (8.10.7) to obtain an approximate values of the three-dimensional
Ising model and the spherical model. Compare with the numerical values obtained
for the three-dimensional Ising model and with the exact expressions of the spherical
model.

4. β-functions
Consider a statistical system with the space of the coupling constants described by
the variables (x, y2). The fixed point is identified by the origin (0, 0). Suppose that the
β-functions of these coupling constants are given by

dx

db
= −y2,

dy2

db
= −2x y2.

Study the renormalization group flows, with initial conditions (x0, y
2
0), and show that

they are hyperbolas in the plane (x, y). Identify the nature of the coupling constants,
i.e. if they are relevant, irrelevant, or marginal.



9
Fermionic Formulation of the
Ising Model

There are different kinds of scientists, such as second or third rank physicists who
try their best but do not get too far. There are also first class scientists, who make
discoveries of great importance. But then there is the genius. Majorana was one of
them. He had what nobody else in the world has, unfortunately he was lacking the
most natural quality, simple common sense.

Enrico Fermi

9.1 Introduction

In this chapter we will study the continuum limit formulation of the two-dimensional
Ising model, starting from the hamiltonian limit of its transfer matrix. We will first
derive the quantum hamiltonian of the model and then we will study its most
important properties, such as the duality transformation. This symmetry involves the
order and disorder operators and we will clarify their physical interpretation. After-
wards, we will see how to diagonalize the quantum hamiltonian by means of particular
fermionic fields. The operator mapping between the order/disorder operators and the
fermionic fields is realized by the so-called Wigner–Jordan transformation: this brings
the original hamiltonian to a quadratic form in the creation and annihilation operators
of the fermions. The determination of the spectrum is then obtained by a Bogoliubov
transformation, a technique extremely useful also in other contexts, such as super-
conductivity phenomena. In the limit in which the lattice spacing goes to zero, the
Ising model becomes a theory of free Majorana fermions. They satisfy a relativistic
dispersion relation and their mass is a direct measurement of the displacement of the
temperature from the critical value Tc.

It is important to stress that the fermionic formulation of the two-dimensional Ising
model is crucial for the understanding of many of its physical properties and for the
computation of its correlation functions. This formulation will be used in other parts
of the book to illustrate several other aspects of this model. Given the importance of
this subject, in the final section of this chapter we present another approach to show
the fermionic content of this model and to derive the Dirac equation satisfied by the
Majorana fermion.
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9.2 Transfer Matrix and Hamiltonian Limit
In this section we consider the transfer matrix on a square lattice with the standard
orientation of the lattice. Consider a square lattice with N = n2 spins, made of n
rows and n columns. The lattice spacing along the vertical and horizontal directions
are τ and α, respectively. The spins, here denoted by σi,j , satisfy periodic boundary
conditions

σi+n,j = σi,j , σi,j+n = σij .

Below we will also use the notation σi and σ′
i to denote spins of next neighbor rows,

where the index i labels in this case the position of the spins along these rows. Denoting
with μa (a = 1, 2, . . . n) the set of all spins that belong to the row a

μa = {σ1, σ2, . . . σn}a-row,

a configuration of the system is specified by the ensemble {μ1, . . . μn}. The a-th row
interacts only with the next neighbor rows, namely μa−1 and μa+1. Let E(μa, μa+1) be
the interaction energy between two next neighbor rows and E(μa) the energy coming
from the interactions of the spins placed on the a-th row, eventually also subjected to
an external magnetic field B. Assuming the usual hamiltonian of the model, we have

E(μ, μ′) = −J ′
n∑

k=1

σkσ
′
k,

E(μ) = −J
n∑

k=1

σkσk+1 −B

n∑
k=1

σk,

where J ′ and J are the couplings along the vertical and horizontal directions, respec-
tively (see Fig. 9.1). The total energy of a configuration of the system is then

E(μ1, . . . μn) =
n∑

a=1

[E(μa, μa+1) + E(μa)] ,

and its partition function is given by

Z =
∑
μ1

∑
μ2

. . .
∑
μn

exp [−βE(μ1, . . . μn)] . (9.2.1)

α
τ

T

J’
J

Fig. 9.1 Lattice parameters and transfer matrix.
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Let’s introduce the transfer matrix T . It is a 2n × 2n matrix, with elements given by

〈μ | T | μ′ 〉 = exp [−β (E(μ, μ′) + E(μ))] . (9.2.2)

In terms of T , the partition function is expressed as

Z =
∑
μ1

∑
μ2

. . .
∑
μn

〈μ1 | T | μ2 〉〈μ2 | T | μ3 〉 . . . 〈μn | T | μ1 〉

=
∑
μ1

〈μ1 | Tn | μ1 〉 = Tr Tn. (9.2.3)

The operator T can be further decomposed in terms of three operators

T = V3 V2 V1,

where the Vi are 2n × 2n matrices whose elements are given by

〈σ1 . . . σn | V1 | σ′
1 . . . σ

′
n 〉 =

n∏
k=1

eLσk σ′
k , (9.2.4)

〈σ1 . . . σn | V2 | σ′
1 . . . σ

′
n 〉 = δσ1σ′

1
. . . δσnσ′

n

n∏
k=1

eK σk σk+1 , (9.2.5)

〈σ1 . . . σn | V1 | σ′
1 . . . σ

′
n 〉 = δσ1σ′

1
. . . δσnσ′

n

n∏
k=1

eβ B σk . (9.2.6)

In these formulas we have introduced the notation K = βJ and L = βJ ′. To have a
more convenient expressions, let’s introduce the operators

σ̃1(a) = 1 × 1 × . . .×
a︷︸︸︷
σ1 ×1 . . .× 1 (9.2.7)

σ̃2(a) = 1 × 1 × . . .×
a︷︸︸︷
σ2 ×1 . . .× 1 (9.2.8)

σ̃3(a) = 1 × 1 × . . .×
a︷︸︸︷
σ3 ×1 . . .× 1 (9.2.9)

They are defined by the direct product of 2 × 2 matrices, where the σi are the usual
Pauli matrices, whereas 1 is the unit matrix. For a �= b it is easy to see that these
operators commute with each other:

[σ̃i(a), σ̃j(b)] = 0. (9.2.10)

When a = b, they satisfy instead the commutation and anticommutation relations of
the Pauli matrices

[σ̃i(a), σ̃j(a)] = 2i εijkσ̃k(a), (9.2.11)
{σ̃i(a), σ̃j(a)} = 2δij . (9.2.12)
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In terms of the σ̃i(a)’s, the transfer matrix P can be put in an operatorial form as
follows

T =
n∏

a=1

[
eβB σ̃3(a) eK σ̃3(a) σ̃3(a+1) eL σ̃1(a)

]
. (9.2.13)

As discussed in Chapters 2 and 7, we can associate to a transfer matrix T of a classical
statistical system in d dimensions a quantum hamiltonian H in (d− 1) dimensions. In
our case we have

T ≡ e−τ H , (9.2.14)

where τ is the lattice spacing along the vertical direction of the lattice and H is the
one-dimensional quantum hamiltonian. To obtain an explicit expression for H it is
necessary to use the Baker–Campbell–Hausdorf formula for the exponential of two
non-commuting operators

eA eB = eA+B+ 1
2 [A,B]+ 1

12 ([A,B],B]+[A,[A,B]])+···.

Its expression, for a finite value of τ , is neither convenient nor particularly illuminating.
To gain a better insight, it is useful to consider the so-called hamiltonian limit, i.e.
the situation that arises when τ → 0. For simplicity, we will deal below only with the
case when the magnetic field is absent, B = 0.
Matrix elements. In taking the hamiltonian limit, we shall be careful that the physi-
cal content of the system does not change: from the renormalization group analysis we
know that this can be achieved by rescaling appropriately the coupling constants (see
Fig. 9.2). To determine their dependence on the lattice spacing and, correspondingly,
the expression of H that emerges in this limit, we can proceed as follows. For τ → 0,
expanding the expression (9.2.14), we have

T 	 1 − τ H. (9.2.15)

Fig. 9.2 Hamiltonian limit. The circle in the lattice on the right is the set of points in which
the correlation function 〈σ(r)σ(0)〉 is constant. If in the new lattice the coupling constants
were not rescaled, the circle becomes an ellipse. Only an appropriate rescaling of the couplings
leaves invariant the physical content of the original model.
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Let’s now consider explicitly some matrix elements of the operator T . If there are
non-spin flips going from the a-row to the (a+ 1)-row, we have

T (0 spin − flips) = exp

[
K
∑
i

σi σi+1

]
= 1 +K

∑
i

σi σi+1 + · · · (9.2.16)

	 1 − τ H0 spin−flips.

When there is only one spin flip in going from a row to the next one, we have

T (1 spin − flip) = exp(−2L) exp

{
1
2

∑
i

[
σiσi+1 + σ′

iσ
′
i+1
]}

(9.2.17)

	 −τ H1 spin−flip,

and, finally, when there are k spin flips the matrix element is

T (k spin − flips) = exp(−2k L) exp

{
1
2

∑
i

[
σiσi+1 + σ′

iσ
′
i+1
]}

(9.2.18)

	 −τ Hk spin−flips.

From eqn (9.2.16), we infer that
K ∼ τ, (9.2.19)

while from eqns (9.2.17) and (9.2.18)

exp(−2L) ∼ τ. (9.2.20)

From these two equations, we see that K and exp(−2L) have to be proportional to
each other and we denote by λ the proportionality factor

K = λ exp(−2L). (9.2.21)

We can identify the vertical lattice spacing with

τ = exp(−2L) (9.2.22)

and put the horizontal coupling constant of the spins equal to

K = λ τ. (9.2.23)

In summary, the physical content of the model does not change in the limit τ → 0
if we rescale the vertical coupling constant as in eqn (9.2.22) and the horizontal one
as in eqn (9.2.23). These formulas show that, in the hamiltonian limit, L grows very
large while K becomes extremely small.
Critical value. The value λ = 1 identifies the critical point of the model. In fact, the
scenario that emerges from the rescaling of the couplings can be easily derived from
the discussion of Chapter 4, where we have seen that the critical line is given by

sinh 2K sinh 2L = 1. (9.2.24)

Any pair of the coupling constants K and L that satisfies this equation corresponds to
a critical situation of the Ising model, with an infinite value of the correlation length.
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L

K

λ > 1

λ < 1

ordered

disordered

Fig. 9.3 Phase diagram of the Ising model.

If we consider the L → ∞ asymptotic expression of this equation, when sinh 2L →
1
2 exp(2L) and sinh 2K → 2K, we get

K = exp(−2L).

Comparing with eqn (9.2.21), we see that λ = 1 identifies the critical point of the
model. Concerning the other values of λ, as already shown in Chapter 4, λ > 1 identifies
the ordered phase of the model while λ < 1 corresponds to the disordered phase. The
phase diagram is shown in Fig. 9.3. The parameter 1/λ provides a measurement of the
displacement of the temperature from its critical value, as we will see in detail in the
next section.

Once the lattice spacing τ has been identified with (9.2.22), we can proceed to
derive the expression of the quantum hamiltonian that emerges in the limit τ → 0

H = − lim
τ→0

1
τ

log T.

The only processes that survive in this limit are those without a spin flip or those
which induce only one spin flip, and correspondingly H is given by

H = −
n∑

a=1

[σ̃1(a) + λ σ̃3(a) σ̃3(a+ 1)] . (9.2.25)

In the hamiltonian limit, the two-dimensional classical Ising model is thus described
by a simple one-dimensional quantum hamiltonian. In the basis in which the operators
σ̃3(a) are diagonal, the term responsible for their spin flips is the operator σ̃1(a).

9.3 Order and Disorder Operators
In the thermodynamic limit, the sum is extended over all sites between −∞ and +∞
and the hamiltonian becomes

H = −
∞∑

a=−∞
[σ̃1(a) + λ σ̃3(a) σ̃3(a+ 1)] . (9.3.1)



296 Fermionic Formulation of the Ising Model

To find its spectrum, let’s first introduce the so-called disorder operators

μ̃3

(
r +

1
2

)
=

r∏
ρ=−∞

σ̃1(ρ), (9.3.2)

μ̃1

(
r +

1
2

)
= σ̃3(r)σ̃3(r + 1). (9.3.3)

These operators are defined on the sites of the dual lattice, placed between two next
neighbor sites of the original lattice. From their definition, μ̃1(r + 1/2) is sensitive to
the alignment of two next neighbor spins. The other operator μ̃3(r + 1/2), acting on
the original spins of the lattice, makes a spin flip of all those placed on the left-hand
side of the point r, as shown in Fig. 9.4. Hence, starting from an ordered configuration
of the spins, μ̃3 creates a kink excitation. This is a topological configuration that
interpolates between the two states in which all spins are aligned either up or down,
i.e. the ground states of the system. Since a kink changes the boundary conditions
of the system, inspecting the values of the spins at the edge of the chain, one can
easily infer whether there is an even or odd number of kinks in the system. It is also
evident that the kink configurations tend to disorder the system and this justifies the
terminology adopted for such an operator.

It is easy to check that the disorder operators μ̃i satisfy the same algebra as the
operators σ̃i. Moreover, we have the algebraic relations

μ̃2
3 = μ̃2

1 = 1,

μ̃3

(
r − 1

2

)
μ̃3

(
r +

1
2

)
= σ̃1(r),

∏
m<n

μ̃1

(
m+

1
2

)
= σ̃3(n+ 1),

[
μ̃1

(
r +

1
2

)
, μ̃3

(
r′ +

1
2

)]
= 2δr,r′ , (9.3.4)[

μ̃3

(
r +

1
2

)
, μ̃3

(
r′ +

1
2

)]
= 0,[

μ̃3

(
r +

1
2

)
, σ̃1(r′)

]
= 0.

μ3(r + 1/2)

rr

Fig. 9.4 Action of μ̃3 on an ordered configuration of spins and creation of a kink state.
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We can now use the disorder operators to express the hamiltonian (9.3.1) as

H = −
∑
r

[
μ̃3

(
r − 1

2

)
μ̃3

(
r +

1
2

)
+ λμ1

(
r +

1
2

)]

= −λ
∑
r

[
λ−1 μ̃3

(
r − 1

2

)
μ̃3

(
r +

1
2

)
+ μ1

(
r +

1
2

)]
. (9.3.5)

This can be written as
H(σ̃ ;λ) = λH(μ̃ ;λ−1). (9.3.6)

Since the variables σ̃i and μ̃i satisfy the same algebra, this expression simply
expresses a symmetry of the system. This symmetry is nothing else but the Kramers–
Wannier duality of the Ising model that expresses the invariance of the model under the
substitutions

μ̃1 ↔ σ̃1

μ̃3 ↔ σ̃3 (9.3.7)
λ↔ λ−1.

Equation (9.3.6) implies that each eigenvalue H satisfies the functional equation

E(λ) = λE(λ−1). (9.3.8)

Hence, there is a correspondence of the spectra for λ > 1 and λ < 1. Equation (9.3.8)
leads to some important consequences, such as the exact value of λ for which the
quantum hamiltonian is critical. To find this value, it is necessary to look for the
vanishing of the mass gap, i.e. the difference between the two lowest eigenvalues.
Denoting by m(λ) the mass gap of the model, eqn (9.3.8) implies that, if m(λ∗) = 0
at a given critical value λ∗, then m(λ) must also vanish at λ−1

∗ . Assuming that there
is only one critical point, the two values above must coincide and therefore

λ∗ = λ−1
∗ → λ∗ = 1. (9.3.9)

As we previously mentioned, the critical value is indeed λ∗ = 1.

9.4 Perturbation Theory

The function m(λ) can be explicitly found by using perturbation theory. By adding a
constant, let’s first write the hamiltonian as

H =
∑
a

[(1 − σ̃1(a)) − λσ̃3(a) σ̃3(a+ 1)] . (9.4.1)

In the high-temperature phase, λ is a small parameter and the hamiltonian can be
split as

H = H0 + λV,
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where

H0 =
∑
a

[1 − σ̃1(a)],

V = −
∑
a

σ̃3(a) σ̃3(a+ 1).

To determine the first energy level in perturbation theory in λ, initially we have to
identify the ground state of H0 and its energy. It is easy to see that such a state has
zero energy and it is characterized by the condition

σ̃1(a) | 0 〉 = | 0 〉, ∀a. (9.4.2)

In the basis in which σ̃3(a) is diagonal, the ground state is expressed by the tensor
product of the vectors

|v1(a)〉 =
1√
2

(
1
1

)
,

each of them defined at the corresponding site of the lattice. The other eigenstate of
σ̃1(a) (with eigenvalue −1) is expressed by the vector

|v2(a)〉 =
1√
2

(
1
−1

)
.

Note that the operator σ̃3(a), which enters the perturbation V , maps one state to the
other, v1(a) ↔ v2(a).

With the ground state given by the tensor product | 0 〉 = ⊗a| v1(a) 〉, one can
obtain an excited state by substituting, at an arbitrary point a of the system, the
vector v2(a) for v1(a). Since the localization of this vector is arbitrary, this energy
level has a degeneracy equal to the number n of the lattice sites.1 One can take care
of this degeneracy by introducing states with a well-defined quantum number of the
lattice momentum. The state at zero momentum is obviously the only one invariant
under translation and it is given by the linear combination

| − 1 〉 =
1√
n

∑
a

σ̃3(a) | 0 〉, (9.4.3)

with 〈−1 | −1 〉 = 1. The energy of this excited state can be computed perturbatively

E = E0 + λ E1 + λ2E2 + · · ·, (9.4.4)

where

E1 = 〈−1 |V | − 1 〉,
E2 = 〈−1 |V gV | − 1 〉, (9.4.5)
E3 = 〈 −1 |V gV gV | − 1 〉 − 〈−1 |V | − 1 〉 〈−1 |V g2V | − 1 〉 ,
· · · = · · · (9.4.6)

1n here provides an infrared cut-off, to be sent to infinity in the thermodynamic limit.
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with the operator g defined by

g =
1

E0 −H
[1 − | − 1 〉 〈−1 |] .

It is easy to see that E0 = 2. For the next term we have

E1 = 〈−1 |V | − 1 〉 (9.4.7)

= − 1
n

∑
a,a′

〈 0 |σ̃3(a)
∑
b

[σ̃3(b) σ̃3(b+ 1)] σ̃3(a′) | 0 〉.

There are only two terms that contribute to this expression: a = b and b + 1 = a′,
or a′ = b and b + 1 = a. Since σ̃2

3 = 1, both terms give a factor n that cancels the
normalization factor. Hence E1 = −2.

If one carries on the computation to higher order (a task that we do not report
here), there is a remarkable result: all of them are zero! In other words, the perturbative
series truncates and coincides with its first two terms. For λ < 1, the exact mass gap
is thus given by

m(λ) = 2(1 − λ).

This expression explicitly confirms that it vanishes at λ = 1. We can then use the
duality relation, m(λ) = λm(λ−1), to obtain the mass gap for λ > 1. So, for all
values of λ, the mass gap is expressed by

m(λ) = 2 |1 − λ|. (9.4.8)

9.5 Expectation Values of Order and Disorder Operators

In the ordered phase of the Ising model, described by λ > 1, the hamiltonian H(σ̃ ;λ)
with periodic boundary conditions has two possible vacuum states. The simplest way
to obtain this result is to consider the limit λ → ∞, in which the states with the
minimum energy of the hamiltonian (9.3.1) are those in which the expectation values
of σ̃3(a) and σ̃3(a+ 1) coincide. Denoting by

|w1(a) 〉 =
(

1
0

)
, |w2(a) 〉 =

(
0
1

)

the two eigenvectors of σ̃3(a) at the site a (with eigenvalues ±1), there are then two
degenerate states of minimum energy, given by

| 0+ 〉λ=∞ = ⊗a |w1(a) 〉, | 0− 〉λ=∞ = ⊗a |w2(a) 〉. (9.5.1)

The system will choose one of them, say | 0+ 〉, by the mechanics of spontaneous sym-
metry breaking: this can be induced by switching on a positive magnetic field B on
all sites of the system and, once the spins are polarized in the direction of the field,
switching B off.

For λ > 1 but finite, the corresponding vacuum states cannot be expressed by a
simple expression such as those given above. However, even in the absence of an explicit
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formula, let’s denote by | 0 〉λ the vacuum state of H(σ̃ ;λ) after the spontaneous
symmetry breaking (this corresponds to | 0+ 〉). On this state, the operator σ̃3(r) has
a non-vanishing expectation value

λ〈 0|
∑
a

σ̃3(a)|0 〉λ �= 0. (9.5.2)

The self-duality of the model allows us to interpret this result in an interesting way.
Consider, in fact, the following hamiltonian

λ−1H(σ̃ ;λ) +B
∑
a

σ̃3(a). (9.5.3)

Applying a duality transformation, we have

λ−1H(σ̃ ;λ) +B
∑
a

σ̃3(a) = H(μ̃ ;λ−1) +B
∑
a

∏
b<a

μ̃1(b+ 1/2).

Expanding to first order in B, we obtain

λ〈 0|
∑
a

σ̃3(a) | 0 〉λ = λ−1〈 0|
∑
a

∏
b<a

μ̃1(b+ 1/2) | 0 〉λ−1 , (9.5.4)

where | 0 〉λ−1 is the vacuum state of H(μ̃ ;λ−1). Since the operators σ̃1 and σ̃3 are
equivalent to μ̃1 and μ̃3, eqn (9.5.4) establishes that the operator μ̃3(a + 1/2) =∏

b<a σ̃1(m) has a non-zero expectation value in the high-temperature ground state of
the model. This operator creates a kink excitation in the system and therefore the high-
temperature ground state can be regarded as a kink condensate. Notice that the energy
of the kink state is mostly localized around the point b and consequently the kink
behaves as a localized particle. The kink state with the lowest energy is that at zero
momentum, which can be written as

|1 kink 〉 =
1√
n

∑
a

∏
b<a

σ̃1(b) | 0 〉λ−1=0. (9.5.5)

From the duality relation, its mass coincides with the expression previously computed,
m(λ) = 2|1 − λ|.

For λ < 1, i.e. in the high-temperature phase, there is a similar argument: the
operator σ̃3 has a non-zero expectation value in the ground state of the system (which,
in this phase, is unique) and consequently we have a vanishing expectation value of
the disordered operator μ̃3 in the low-temperature phase.

9.6 Diagonalization of the Hamiltonian
The quantum hamiltonian of the Ising model can be explicitly diagonalized by means
of the Wigner–Jordan transformation. To simplify the following expression, it is con-
venient to start from the hamiltonian

H = −
∑
a

[σ̃3(a) + λ σ̃1(a) σ̃1(a+ 1)] (9.6.1)
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which is unitarily equivalent to the previous one (9.3.1). Denoting the site of the lattice
by a = −n,−n+ 1, . . . , n (we will consider later the limit n→ ∞), let’s introduce the
operators

c(a) =
n∏

b=−n

eiπ σ̃+(b) σ̃−(b) σ̃−(a), (9.6.2)

c†(a) = σ̃+(a)
n∏

b=−n

e−iπ σ̃+(b) σ̃−(b), (9.6.3)

where

σ̃+(a) =
1
2

[σ̃1(a) + iσ̃2(a)] , (9.6.4)

σ̃−(a) =
1
2

[σ̃1(a) − iσ̃2(a)] .

It is easy to show that c(a) and c†(a) are fermionic operators that satisfy the anticom-
mutation relations {

c(a), c†(b)
}

= δa,b, {c(a), c(b)} = 0. (9.6.5)

We can now write the hamiltonian (9.6.1) in a convenient form in terms of these new
operators. As shown in Problem 2 at the end of the chapter, we have in fact

σ̃3(a) = 2 c†(a) c(a) − 1, (9.6.6)
σ̃1(a) σ̃1(a+ 1) =

[
c†(a) − c(a)

] [
c†(a+ 1) − c(a+ 1)

]
.

so that

H = −2
∑
a

c†(a) c(a) − λ
∑
a

[
c†(a) − c(a)

] [
c†(a+ 1) − c(a+ 1)

]
(9.6.7)

is a quadratic expression of the fermionic operators. To diagonalize it, the first step is
to take the Fourier transform

c(a) =
1√

2n+ 1

∑
k

e−ika ck, c†(a) =
1√

2n+ 1

∑
k

eika c†k, (9.6.8)

where ck and c†k are the fermionic annihilation and creation operators in momentum
space, and the momenta k take the discrete values

k = 0, ± 2π
2n+ 1

± 4π
2n+ 1

, . . . ,± 2πn
2n+ 1

.

Substituting eqn (9.6.8) into (9.6.1), one has

H = −2
∑
k>0

(1 + λ cos k) (c†k ck + c†−k c−k) + 2iλ
∑
k>0

sin k (c†k c
†
−k + ck c−k). (9.6.9)

This hamiltonian is quadratic in ck e c†k but this is still not sufficient to determine its
spectrum. In fact, the ground state of H is not the state annihilated by the operators
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ck, since in the hamiltonian above there is also present a term (c†k c
†
−k + ck c−k). We

need then to rewrite the hamiltonian in a canonical form in terms of some opportune
creation and annihilation fermionic operators η†

k and ηk:

H =
∑
k

[· · · ] η†
k ηk. (9.6.10)

Bogoliubov transformation. To achieve such a goal, it is necessary to make a
Bogoliubov transformation: we introduce the operators

ηk = Uk ck + iVk c
†
−k , η−k = Uk c−k − iVk c

†
k

η†
k = Uk c

†
k − iVk c−k , η†

−k = Uk c−k + iVk ck,
(9.6.11)

where, in all these formulas, k > 0. The real coefficients Uk and Vk of this transforma-
tion are determined by the following requests:

• the operators ηk and η†
k must be fermionic operators;

• the hamiltonian must be in a diagonal form in these new variables.
Imposing the validity of the relations

{ηk, η†
p} = δk,p, {ηk, ηp} = {η†

k, η
†
p} = 0, (9.6.12)

we arrive at the equation
U2
k + V 2

k = 1. (9.6.13)

This allows us to parameterize these functions as

Uk = cos θk, Vk = sin θk. (9.6.14)

Inverting now eqn (9.6.11)

ck = Uk ηk − iVk η
†
−k, c−k = Uk η−k + iVk η

†
k

c†k = Uk η
†
k + iVk η−k, c†−k = Uk η−k − iVk ηk,

(9.6.15)

and inserting these formulas into the hamiltonian (9.6.9), we have

H =
∑
k>0

[
−2(1 + λ cos k)(U2

k − V 2
k ) + 4λ sin k Uk Vk

]
(η†

kηk + η†
−kη−k) (9.6.16)

+
∑
k>0

[
4i(1 + λ cos k)Uk Vk + 2iλ sin k (U2

k − V 2
k )
]
(η†

kη
†
−k + ηkη−k).

In order to bring the hamiltonian into the form (9.6.10), we need to impose

4(1 + λ cos k)Uk Vk + 2λ sin k (U2
k − V 2

k ) = 0. (9.6.17)

Using (9.6.14), one has

2Uk Vk = sin 2θk, U2
k − V 2

k = cos 2θk,
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and eqn (9.6.17) becomes

4(1 + λ cos k) sin 2θk + 2λ sin k cos 2θk = 0. (9.6.18)

We have then the following equation for the angle θk

tan 2θk = − λ sin k
1 + λ cos k

. (9.6.19)

The geometric interpretation of this equation is given in Fig. 9.5; taking into account
the (−) sign, its solution is expressed by

sin 2θk =
λ sin k√

1 + 2λ cos k + λ2
, (9.6.20)

cos 2θk = − 1 + λ cos k√
1 + 2λ cos k + λ2

.

Spectrum of the hamiltonian. With this determination of Uk and Vk, coming back
to eqn (9.6.16), we have

H = 2
∑
k

Λk η
†
k ηk + costant (9.6.21)

where

Λk =
√

1 + 2λ cos k + λ2. (9.6.22)

The plot of this function is given in Fig. 9.6. Its minimum is at k = ±π, with a value

Λ±π = 2|1 − λ|

that is in agreement with the perturbative analysis done in the previous section.

2 θ

1 + λcos k

λ sin k

Fig. 9.5 Relation between the parameters of the Bogoliubov transformation.
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π− π

2 | 1 − λ |

2 | 1 + λ |

Fig. 9.6 Dispersion relation of the fermionic particle.

In taking the continuum limit, it is convenient to restore the lattice spacing α and
measure the momentum with respect to its minimum value, i.e.

k = π + k′α.

Let’s also define the energy with the correct physical dimension

E(k′) =
Λk

2α
.

In the continuum limit α → 0, we shall take k → π in order to have a finite value of
the momentum, and therefore

E(k′) =

√
(1 − λ)2

α2 + λk′2. (9.6.23)

We arrive in this way at a relativistic dispersion relation. If λ is sufficiently close to
the critical value, λ 	 1, we have the dispersion relation of a fermionic particle with
mass

m =
(1 − λ)
α

. (9.6.24)

At λ = 1, it becomes the dispersion relation of a massless particle

E(k′) 	 |k′|. (9.6.25)

In terms of the fields

η(a) =
1√

2n+ 1

∑
k

eika ηk, η†(a) =
1√

2n+ 1

∑
k

e−ika η†
k

we can define the new fermionic fields

ψ1(a) =
1
2
(η(a) + η†(a)), ψ2(a) =

1
2i

(η(a) − η†(a)). (9.6.26)
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They satisfy the relations

ψ†
i (a) = ψi(a),

{ψi(a), ψj(b)} = δij δab, (9.6.27)

ψ2
i (a) =

1
2
.

Hence they are neutral fermionic fields, also known in the literature as Majorana
fermions.

9.7 Dirac Equation
In this section we present another way to show the fermionic content of the two-
dimensional Ising model. Note that, using eqn (9.3.1), we can determine the equation
of motion of the operator σ̃3(r)

∂

∂τ
σ̃3(r) = [H, σ̃3(r)] = −iσ̃2(r) = σ̃1(r)σ̃3(r). (9.7.1)

Using the dual expression (9.3.5) of the hamiltonian, we can also derive the equation
of motion of the operator μ̃3(r + 1/2)

∂

∂τ
μ̃3

(
r +

1
2

)
=
[
H, μ̃3

(
r +

1
2

)]
= −i λ μ̃2

(
r +

1
2

)
(9.7.2)

= λ μ̃1

(
r +

1
2

)
μ̃3

(
r +

1
2

)
= λ σ̃3(r) σ̃3(r + 1) μ̃3

(
r +

1
2

)
.

These equations of motion are nonlinear and difficult to solve. However, they can be
put in a linear form by defining

ψ1(r) = σ̃3(r) μ̃3

(
r +

1
2

)
, (9.7.3)

ψ2(r) = σ̃3(r) μ̃3

(
r − 1

2

)
. (9.7.4)

Using the algebraic properties of the variables σ̃i and μ̃i, the equation of motion for
these new variables can be written as

∂ψ1(r)
∂τ

= −ψ2(r) + λψ2(r + 1), (9.7.5)

∂ψ2(r)
∂τ

= −ψ1(r) + λψ1(r − 1). (9.7.6)

Restoring the lattice spacing α with the substitution (r ± 1) → (r ± α) and going to
the continuum limit α→ 0, we have

∂ψ1(r)
∂t

= −(1 − λ)ψ2(r) + λ
∂ψ2(r)
∂r

α, (9.7.7)

∂ψ2(r)
∂t

= −(1 − λ)ψ1(r) − λ
∂ψ1(r)
∂r

α. (9.7.8)
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The two fields ψ1(r) and ψ2(r) can be organized in a spinorial field

ψ(r) =
(
ψ1(r)
ψ2(r)

)
, (9.7.9)

with anticommutation relations

{ψ1(r), ψ2(r′)} = 2δr,r′ (9.7.10)
{ψ2(r), ψ2(r′)} = 2δr,r′ . (9.7.11)

A compact expression for the equation of motion is then given by(
γ0 ∂

∂t
+ γ3 ∂

∂r
+m

)
ψ = 0, (9.7.12)

with t = ατ , m = (1 − λ)/α and with the euclidean γ matrices given by

γ0 =
(

0 1
1 0

)
, γ3 =

(
1 0
0 −1

)
.

We arrive in this way at a Dirac equation for a free fermionic neutral field, i.e. a
Majorana fermion.

Note that the equation of motion can be derived from the euclidean action

S =
∫
d2x ψ̄ (γμ∂μ +m) ψ, (9.7.13)

where ψ̄ ≡ ψ γ0. For reasons that will become clearer later, it is convenient to intro-
duce the complex coordinates z = x + it e z̄ = x − it, with ∂z = 1

2 (∂x − i∂t) and
∂z̄ = 1

2 (∂x + i∂t), and define two new fermionic components by

Ψ(z, z̄) =
ψ1 + iψ2√

2
, Ψ̄(z, z̄) =

ψ1 − iψ2√
2

. (9.7.14)

In these new variables, the action becomes

S =
∫
d2z
[
Ψ ∂z̄ Ψ + Ψ̄ ∂z Ψ̄ + im Ψ̄ Ψ

]
, (9.7.15)

with the equation of motion given by

∂z̄ Ψ =
im

2
Ψ̄, ∂z Ψ̄ = − im

2
Ψ. (9.7.16)

When the mass of the fermion field vanishes, Ψ becomes a purely analytic field while Ψ̄
a purely anti-analytic one. The duality of the Ising model is expressed by the invariance
of this fermionic theory under the transformations

m→ −m
Ψ → Ψ

Ψ̄ → −Ψ̄.
(9.7.17)
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As we shall prove in Chapter 14, in the continuum limit of the model the order and
disorder operators satisfy the operator relation

σ(z, z̄)μ(z′, z̄′) =
1√

2|z − z′|1/4
[
ω (z − z′)1/2 Ψ(z′, z̄′) + ω̄ (z̄ − z̄′)1/2 Ψ̄(z′, z̄′)

]
,

(9.7.18)
when |z − z′| → 0, with ω = exp(iπ/4), ω̄ = exp(−iπ/4).

The interpretation of the fermionic field in terms of particle excitations is obtained
by making an analytic continuation to Minkowski space. In two dimensions it is con-
venient to parameterize the relativistic dispersion relations in terms of the rapidity θ
as follows: E = m cosh θ and p = m sinh θ. The mode expansion of the fermionic field
becomes

Ψ(x, t) =
∫

dθ

2π

[
ωe

θ
2 A(θ) e−im(t cosh θ−x sinh θ) + ω̄e

θ
2 A†(θ) eim(t cosh θ−x sinh θ)

]
(9.7.19)

Ψ̄(x, t) = −
∫

dθ

2π

[
ω̄e− θ

2 A(θ) e−im(t cosh θ−x sinh θ) + ωe− θ
2 A†(θ) eim(t cosh θ−x sinh θ)

]
,

where A(θ) and A†(θ) are, respectively, the annihilitation and creation operators of a
neutral fermionic particle. They satisfy the anticommutation relations{

A(θ), A†(θ)
}

= 2π δ(θ − θ). (9.7.20)

Using this mode expansion and the anticommutation relations it is easy to compute
the correlation functions of the fermionic field (see Problem 4).
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Problems

1. Anticommutation relations
Prove that the operators c(a) and c†(b) satisfy the anticommutation relations

{c(a), c†(b)} = δa,b.

2. Fermion identities
Prove that

c(a) c†(a+ 1) = −σ̃−(a) σ̃+(a+ 1)
c†(a) c†(a+ 1) = σ̃+(a) σ̃+(a+ 1)
c(a) c(a+ 1) = −σ̃−(a) σ̃−(a+ 1).

Moreover, show that the order operators of the Ising model can be expressed in terms
of the fermion operators c(a) and c†(a) as

σ̃3(a) = 2 c†(a) c(a) − 1,
σ̃1(a) σ̃1(a+ 1) =

[
c†(a) − c(a)

] [
c†(a+ 1) − c(a+ 1)

]
.

3. Duality
Show that the Dirac equation (9.7.12) withm > 0 is linked by a unitary transformation
to the one with m < 0. The map between the two hamiltonians establishes the duality
relation of the Ising model in its fermionic formulation.

4. Correlation functions
Use the mode expansion of the fermion field, given in eqn (9.7.19), and the anti-
commutation relations of the operators A(θ) and A†(θ), to compute the correlation
functions

G1(x, t) = 〈0|Ψ(x, t)Ψ(0, 0)|0〉
G2(x, t) = 〈0|Ψ̄(x, t)Ψ(0, 0)|0〉.
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5. XXZ model
Consider the quantum spin chain of the XXZ model with Hamiltonian

H = J1

N∑
k=1

(SxkS
x
k+1 + SykS

y
k+1) + J2

∑
k

SzkS
z
k+1.

Assume periodic boundary conditions. The spin operator �S is in the 1/2 representation
and given by �S = 1/2�σ, where �σ is the set of Pauli matrices.
a Show that the sign of J1 in H can be chosen freely without changing the physical

properties of the model. Show that the same is not true for the sign of J2.
b Discuss the symmetry of the system when J2/J1 → 0 and J2/J1 → ∞.
c Use the fermionic representation of the operators S±

k = Sxk ± iSxk and S3
k to write

the hamiltonian as

H =
J1

2

N∑
a=1

[
c†(a)c(a+ 1) + c†(a+ 1)c(a)

]

+J2

N∑
a=1

(
c†(a)c(a) − 1

2

)(
c†(a+ 1)c(a+ 1) − 1

2

)
.

d Consider the case J2 = 0, the so-called XY model. Use the Bogoliubov transforma-
tion to find in this case the spectrum of the fermionic form of the hamiltonian.



10
Conformal Field Theory

A physical law must possess mathematical beauty.

P.A.M. Dirac

10.1 Introduction
In the previous chapters we have seen that, coming close to a critical point, the
correlation length of a statistical system diverges and consequently there are fluctua-
tions on all possible scales. In such a regime, the properties of the statistical systems
can be efficiently described by a quantum field theory. Right at the critical point, the
correlation length is infinite: the corresponding field theory is therefore massless and
becomes invariant under a dilation of the length-scales

xa → λxa.

Under this transformation the fields Φi associated to the order parameters transform as

Φi → λdi Φi,

where di here denote their anomalous dimensions. Finding the spectrum of the anoma-
lous dimensions is a central problem of the theory: in fact, from Chapter 8 we know that
they determine the critical exponents of the various thermodynamic quantities. The
singularities of these thermodynamic functions are associated to the fixed points of the
renormalization group. In turn, in the vicinity of the fixed points there is a surface of
instability that is spanned by the relevant operators present at the fixed points. In order
to determine all fixed points and the spectrum of the operators nearby, A. Polyakov
has put forward the hypothesis that the critical fluctuations are invariant under
the set of conformal transformations. These transformations have the distinguished
property of stretching locally the lengths of the vectors but leaving their relative
angles invariant. It is important to stress that in systems with local interactions that
are invariant under translations and rotations, the invariance under a global dilatation
automatically implies an invariance under the conformal transformations. From this
point of view, the classification of the fixed points of the renormalization group is
equivalent to finding all possible quantum field theories with conformal symmetry.

It is worth emphasizing that the construction of such theories is based on an
approach that is completely different from the lagrangian formalism that is usually
used in quantum field theory and that was discussed in Chapter 7. The approach
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that we present in this chapter is based on the algebra of local fields. We assume
first of all the existence of a basis of local operators that include among others the
order parameters. Secondly, we make the hypothesis that any other quantity, such
as products of order parameters, can be expanded in terms of the local operators of
the basis. In this way, one is naturally led to introduce the concept of the Operator
Product Expansion (OPE) and its corresponding algebra.

In this chapter we study the general properties of these conformal invariant theo-
ries, pointing out the peculiar aspects that arise in two dimensions. The next chapter
will be devoted to the analysis of an important class of two-dimensional conformal field
theories, the so-called minimal models: their remarkable property is to have an opera-
torial algebra that closes within a finite number of conformal families. Other aspects
of two-dimensional conformal theories will be the subject of subsequent chapters.

10.2 The Algebra of Local Fields

The main goal of a quantum field theory is the determination of the correlation
functions

G(x1, x2, . . . , xn) = 〈A1(x1)A2(x2) . . . An(xn)〉.

where Ai(xi) are regular local functions that, for simplicity, we will assume are con-
structed in terms of only one fundamental field ϕ(x). Below we consider the euclidean
formulation of the theory and our definition of the vacuum expectation values is pro-
vided by the functional integral, with Boltzmann weight given by the action S[ϕ] of
the field ϕ

G(x1, . . . , xn) ≡ 1
Z

∫
DϕA1(x1) . . . An(xn) e−S[ϕ]. (10.2.1)

The correct normalization is ensured by the partition function Z

Z =
∫

Dϕe−S[ϕ].

In order to clarify the important concept of the algebra of the local field, it is useful to
initially consider the free bosonic field φ(x). In this case, using φ(x) and the normal
ordered product of its powers,1 we can define the local scalar densities

φ(x), : φ2(x) :, : φ3(x) :, . . . : φn(x) : . (10.2.2)

In a euclidean D-dimensional space-time, the scalar field φ(x) has dimension equal to
dϕ = (D−2)/2 (in mass units) and the dimensions of the composite fields (10.2.2) are
given by2

dφ, 2dφ, 3dφ, . . . , ndφ (10.2.3)

1By normal ordered product we mean here the subtraction of the divergent term coming from the
propagator of the product of two operators, i.e. : φ2(x) := limy→x φ(x)φ(y) − 〈0|φ(x)φ(y)|0〉. All
other normal ordered products can be iteratively constructed starting from this relation.

2In the following discussion we assume D �= 2. The D = 2 case will be discussed in detail later.
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as is easily seen by applying Wick’s theorem. For instance

〈: φ2(x) : : φ2(y) :〉 = 2 [〈φ(x)φ(y)〉]2

and the singularity 1/r2dφ of the correlator 〈φ(x)φ(y)〉 for r = |x1−x2| → 0, gives rise
to

〈: φ2(x) : : φ2(y) :〉 ∼ 1
r4dφ

.

An analogous result holds for the composite operators : φn(x) :, so that we arrive at
the sequence of dimensions (10.2.3).

The set of fields {: φn(x) :}, to which we have to add the identity operator I ≡ φ0,
can be used to express any other regular density A(x) of the free bosonic field. This
is done by the series expansion of A(x)

A(x) =
∞∑
n=0

an : φn(x) : . (10.2.4)

Basis of local operators. As in the free case, we make the hypothesis that there is a
similar set of fields also in the interacting theories. Namely, we assume the existence of
a numerable set of fields3 ϕi(x), that are eigenvectors of the dilation operator, whose
dimensions are defined by the condition

ϕi(x) = λdi ϕi(λx). (10.2.5)

Moreover, we assume that any other operator can be expressed as a linear combination
of the fields above:

A(x) =
∞∑
n=0

anϕn(x). (10.2.6)

At the critical point, the propagator of these operators is

Dij(x1 − x2) ≡ 〈ϕi(x1)ϕj(x2)〉 =
Aij

| x1 − x2 |di+dj
, (10.2.7)

where the numerical constant Aij expresses their normalization.
In an interactive theory, however, the dimensions di are not expressed in a simple

way as in the free theory. As a matter of fact, one of the fundamental problems is the
determination of their values.

It is worth saying that the validity of the operatorial identity (10.2.6), as well as
other identities of similar nature that we will meet later on, has to be understood
in a weak sense: this means that it can be used straighforwardly in expressions that
involve correlation functions but it can give rise to inconsistencies if interpreted strictly
as an operatorial identity (see Problem 1). So, for instance, to calculate the correlation

3For simplicity we consider below only scalar fields. Quantities with spin will be considered later.
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function 〈A(x)B(y) . . . C(z)〉, we can use the expansion (10.2.6) to express any of these
fields – say A(x) – arriving in this way at the expression

〈A(x)B(y) . . . C(z)〉 =
∞∑
n=0

an 〈ϕn(x)B(y) . . . C(z)〉.

In the vicinity of the critical point, the theory has a mass scale m that is a small
quantity (it is related to the correlation length ξ by the relation ξ = m−1), and the
vacuum expectation values of the fields ϕn can be expressed as

〈ϕn(x)〉 = μnm
dn , (10.2.8)

where μn are dimensionless quantities. At the critical point m→ 0 and all fields ϕn(x)
(n = 1, 2, . . .), but the identity operator, have zero expectation value4

〈ϕn(x)〉 = 0, n = 1, 2, . . . (10.2.9)

Operator algebra. So far we have discussed the operatorial expressions that refer to
a given point. Consider now the product of two fluctuating fields A(x1)B(x2) placed
at two distinct points. If their separation is much less than the correlation length ξ of
the system, in particular if we consider the limit x1 → x2, it is a natural hypothesis
that the properties of this composite operator become those of a local operator, so
that it can be expanded in the same basis ϕn given above:

A(x1)B(x2) =
∞∑
k=0

β(x1, x2)ϕk(x2), (10.2.10)

where the coefficients β(x1, x2) contain the dependence on the coordinates x1 and x2.
If we specialize this relation to the case in which both A(x1) and B(x2) are themselves
members of the basis, we arrive at the operator algebra

ϕp(x1)ϕq(x2) =
∞∑
r=0

Cr
pq(x1, x2)ϕr(x2). (10.2.11)

The function Cr
pq(x1, x2) can be further constrained. If the system is invariant under

translations, it can only depend on the separation | x1 −x2 | of the two points. At the
critical point, the system is also invariant under the scale transformation x→ λx and,
for the transformation law of the fields ϕn, it is easy to see that Cr

pq(| x1 − x2 |) is a
homogeneous function of degree dr − dp − dq. Hence, it can be written as

Cr
pq(x1, x2) = crpq

1
| x1 − x2 |dp+dq−dr

, (10.2.12)

where crpq are pure numbers, known as the structure constants of the operator algebra.

4This result is obvious if dn > 0. We will see later that, for the conformal invariance of the theories
of the fixed points, the same conclusion also holds when there are fields with negative dimensions.



314 Conformal Field Theory

To summarize, the hypothesis of an algebra of the local fields consists of: (i) the
existence of a basis made of scaling operators ϕi(x) with dimensions di; (ii) the validity
of the operatorial algebra

ϕp(x1)ϕq(x2) =
∞∑
r=0

crpq
1

| x1 − x2 |dp+dq−dr
ϕr(x2), (10.2.13)

which holds at the critical point of the theory. The solution of the field theories that
describe the fixed points of the renormalization group consists of finding the spectrum
of the dimensions di of the scaling fields, together with the set of structure constants
crpq: once all these quantities are known, one can compute in principle any other cor-
relation functions (see Problem 2).

Some consequences. Note that there are some immediate consequences of the oper-
ator algebra: first of all, to be consistent, the algebra (10.2.13) has to be associative.
Consider the four-point correlation functions of the fields ϕi(x) shown in Fig. 10.1:

Gijkl(x1, x2, x3, x4) = 〈ϕi(x1)ϕj(x2)ϕk(x3)ϕl(x4)〉. (10.2.14)

As shown in Fig. 10.2, using the operator algebra this correlator can be computed in
two equivalent ways:

• expanding the product ϕi(x1)ϕj(x2) and then contracting the resulting field
ϕm(x2) with the field ϕn(x4) that comes from an analogous expansion of the
product ϕk(x3)ϕl(x4) (with a sum over the intermediate indices m and n);

• alternatively, expanding the two pairs ϕi(x1)ϕk(x3) and ϕj(x2)ϕl(x4), with a final
sum over the indices of the propagators of the resulting fields.

The equivalence of these two procedures is known as the duality symmetry of the
four-point correlation function. It corresponds to the associativity condition of the
operatorial algebra and consists of the infinite number of constraints∑
m,n

Cm
ij (x1−x2)Dm,n(x2−x4)Cn

kl(x3−x4) =
∑
m,n

Cm
ik (x1−x3)Dm,n(x3−x4)Cn

jl(x2−x4).

(10.2.15)

i j

k l

Fig. 10.1 Four-point correlation functions of the scaling fields.
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Σ
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k l
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i

m n
l

j

Fig. 10.2 Duality of the four-point correlation function that corresponds to the associativity
condition of the algebra (10.2.13).

Using the expressions (10.2.7) and (10.2.12), this set of equations can be in principle
enforced to determine all the scaling dimensions di and the structure constants crpq
of the algebra. For this reason they are known as conformal bootstrap equations:5 if
we were able to solve them, the dynamical data would be determined self-consistently
from the theory itself. They were proposed originally by A. Polyakov as an alternative
approach to solve the quantum field theories of the critical points. Unfortunately
their direct solution proved to be extremely difficult and not much progress has been
achieved by their analysis. An important step forward can instead be obtained by
studying the important consequences of an additional symmetry of the fixed points,
namely the conformal symmetry.

10.3 Conformal Invariance
At the critical point, a statistical system is invariant under a global dilatation of
the length-scale, x → λx. Consider now two subsystems, separated by a distance L
considerably larger than their linear dimension l: in this case, it is obvious that the
fluctuations will be more uncorrelated when the ratio L/l becomes large as in Fig. 10.3.
However, near the critical point, there does not exist any length-scale and the ratio
above can be made arbitrarily large. In this way we arrive at the conclusion that the
two subsystems are statistically independent, i.e. that the system is not only invariant
under a global dilatation but also under the local scale transformations

x→ λ(x)x (10.3.1)

also called conformal transformations. The previous considerations can be formulated
as a theorem, developed originally by A. Polyakov:6 a physical system with local
interactions that is invariant under translations, rotations, and a global dilatation,
is also automatically invariant under the larger class of conformal transformations.
Before presenting the detailed analysis of this important result, it is useful to discuss
the main properties of conformal transformations.

5The term “bootstrap” denotes the circumstance in which a physical theory owes its validity to
its internal consistency. Later we will meet other theories based on bootstrap methods.

6A.M. Polyakov, Conformal symmetry of critical fluctuations, JETP Lett. 12 (1970), 381.
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L

l

Fig. 10.3 Subsystems of linear dimension l separated by a distance L � l.

10.3.1 Conformal Transformations in D Dimensions

By definition, a conformal transformation of the coordinates x → x′ is an invertible
mapping that leaves invariant the metric tensor gμ,ν(x) up to a local scale factor

g′
μν(x

′) = Λ(x) gμν(x). (10.3.2)

It is useful to characterize the infinitesimal form of such transformations: using the
tensor properties of the metric gμ,ν(x), under the transformation

xμ → x′μ = xμ + εμ(x) (10.3.3)

we have
gμν → gμν → gμν + (∂μεν(x) + ∂νεμ(x)).

If we now impose the conformal invariance of the metric, eqn (10.3.2), we have

∂μεν(x) + ∂νεμ(x) = ρ(x) gμν , (10.3.4)

where the local function ρ(x) can be easily determined by taking the trace of both
terms of this expression

ρ(x) =
2
D
∂ · ε

whereD is the dimension of the space. If we now take the limit of a flat euclidean space,
with the usual metric δμν = diag(1, 1, . . . , 1), we obtain the differential equations that
characterize the infinitesimal conformal transformations

∂μεν(x) + ∂νεμ(x) =
2
D
∂ · ε δμν . (10.3.5)

Note that from these equations it follows that

[δμν� + (D − 2)∂μ∂ν ] ∂ · ε = 0. (10.3.6)

The two previous equations imply that the third derivative of ε must vanish, so that
ε can be at most a quadratic function of x. Hence we have the following cases:
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• If ε is of zero order in x
εμ = aμ (10.3.7)

we recover the usual translation transformations.
• If ε is of first order in x, there are two different situations:

εμ = ωμν xν (10.3.8)

with ωμν an antisymmetric tensor ωμν = −ωνμ, or

εμ = λxν . (10.3.9)

The first case corresponds to rotations while the second one is associated to the
global dilatation.

• When ε is a quadratic function of x one has

εμ = bμx2 − 2xμb · x. (10.3.10)

Its finite form gives rise to the so-called special conformal transformation

x′μ

x′2 =
xμ

x2 + bμ. (10.3.11)

This can be interpreted as the result of an inversion plus a translation.
Since in D-dimensional euclidean space there are D translation axes and D(D − 1)/2
possible rotations, it is easy to see that the set of all conformal transformations forms
a group, with the number of generators equal to

(D + 1)(D + 2)
2

. (10.3.12)

All these transformations can be characterized by a very simple geometrical property:
they translate, rotate, or stretch the vectors placed at a given point but leave invariant
their relative angle.

Constraints on correlation functions. It is instructive to study the constraints on
the functional form of the scalar functions G(x1, . . . , xN ) that are conformally invari-
ant. To be invariant under translations and rotations, these functions can only depend
on the relative distances |xi−xj |. Furthermore, to be invariant under a dilatation, the
dependence on the distances can only be through their ratio, such as

|xi − xj |
|xk − xl|

.

Since under the special conformal transformation (10.3.11) we have

|x′
i − x′

j | =
|xi − xj |

(1 + 2b · xi + b2x2
i )(1 + 2b · xj + b2x2

j )
,

it is evident that, for N ≤ 3, it is impossible to define conformally invariant trans-
formations of the distances and therefore, in this case, the only conformally invariant
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functions with N ≤ 3 variables are only the constants. On the contrary, for N ≥ 4, by
using four different points, we can define the so-called harmonic ratios

Rikmn ≡ |xi − xk||xm − xn|
|xi − xm||xk − xn|

. (10.3.13)

These quantities are invariant under all conformal transformations. For N points the
number of independent harmonic ratios is N(N − 3)/2 and any arbitrary function of
them is consequently conformally invariant.

10.3.2 Polyakov’s Theorem

Let us now present the theorem due to Polyakov on the conformal symmetry of physical
systems with local interactions that are invariant under translations, rotations, and a
global dilatation. Its proof is simple.

Due to the locality of the theory, there exists a local field Tμν(x), called the stress–
energy tensor,7 defined by the variation of the local action S[ϕ] under the transforma-
tion (10.3.3)

δS =
1

(2π)D−1

∫
dDxTμν(x) ∂μεν(x). (10.3.14)

Let’s derive the equations fulfilled by the stress–energy tensor for the conformal in-
variance of the theory, expressed by the condition δS = 0. The translation invariance
implies the conservation law

∂μT
μν(x) = 0, (10.3.15)

obtained by integrating eqn (10.3.14) by parts and using the invariance of S under
an arbitrary variation of the parameter aμ in the expression (10.3.7) for ε. The rota-
tional invariance implies that the stress–energy tensor is symmetric with respect to its
indices

Tμν(x) = T νμ(x), (10.3.16)

as can be seen by substituting in eqn (10.3.14) the transformation (10.3.8). The in-
variance under dilatation, given by the transformation (10.3.9), finally leads to a zero
trace condition

Tμ
μ (x) = 0. (10.3.17)

In view of eqns (10.3.15), (10.3.16), and (10.3.17), the action is automatically invariant
under the conformal transformations that satisfy eqn (10.3.5).

10.4 Quasi-Primary Fields

The conformal invariance of a statistical system at a critical point permits us to prove a
series of important results on the correlation functions of a special class of its operators.

7The factor (2π)D−1, which is unusual with respect to the definition of this field as derived from
Noether’s theorem, is introduced here for later convenience.
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These operators are called quasi-primary and in this section they will be denoted as
Qn(x). They have the property of transforming under a generic conformal mapping as

Qn(x) =
∣∣∣∣∂x′

∂x

∣∣∣∣dn/D

Qn(x′), (10.4.1)

where
∣∣∣∂x′
∂x

∣∣∣ is the Jacobian of the mapping. For the transformations associated to the
translations and rotations we have ∣∣∣∣∂x′

∂x

∣∣∣∣ = 1,

while for the dilatation and the special conformal transformations we have,
respectively, ∣∣∣∣∂x′

∂x

∣∣∣∣ = λD,

∣∣∣∣∂x′

∂x

∣∣∣∣ = 1
(1 + 2b · x+ b2x2)D

.

The transformation law (10.4.1) of the primary fields is obviously more specific than the
simple scaling law (10.2.5) and therefore it imposes more restrictive conditions on the
correlation functions of these fields. They satisfy the equation

〈Q1(x1)Q2(x2) . . . Qn(xn)〉 =
∣∣∣∣∂x′

∂x

∣∣∣∣d1/D

x=x1

. . .

∣∣∣∣∂x′

∂x

∣∣∣∣d1/D

x=xn

〈Q1(x′
1)Q2(x′

2) . . . Qn(x′
n)〉.

(10.4.2)
Let us consider the two-point correlation functions

G
(2)
ab (x1, x2) = 〈Qa(x1)Qb(x2)〉. (10.4.3)

Due to the translation and rotational invariance, it depends on the relative distance
| x1 − x2 |. The dilatation invariance implies that G(2)

ab behaves as | x1 − x2 |−da−db .
Finally, using the invariance under the special conformal transformation (10.3.11), we
arrive at the condition

δ G
(2)
ab = −[da (b · x1) + db (b · x2)]G

(2)
ab . (10.4.4)

This implies that G(2)
ab (| x1 − x2 |) is different from zero only when da = db. Hence,

the two-point correlation functions of the quasi-primary fields satisfy an orthogonality
condition. By an appropriate normalization of these fields, their general expression is
then

〈Qa(x1)Qb(x2)〉 =
δab

| x1 − x2 |2da
. (10.4.5)

Consider now the three-point correlation functions of the quasi-primary fields

G
(3)
abc(x1, x2, x3) = 〈Qa(x1)Qb(x2)Qc(x3)〉. (10.4.6)

As usual, the invariance under translations and rotations implies that this correlator
depends on the relative distances xij ≡| xi − xj | (i, j = 1, 2, 3). The invariance
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under the infinitesimal transformations of eqn (10.3.11) gives rise to the homogeneous
equations

1
2

∑
i<j

xij
∂G(3)

∂xij
[(b · xi) + (b · xj)] = −

∑
i

di (b · xi)G(3),

whose solution is given by

〈Qa(x1)Qb(x2)Qc(x3)〉 =
Cabc

xd3−d1−d2
12 xd2−d1−d3

13 xd1−d2−d3
23

. (10.4.7)

The numerical constant Cabc cannot be fixed by the conformal invariance. However,
using the orthogonality condition (10.4.5), it is easy to see that it coincides with the
structure constant cabc of the algebra (10.2.13), relative to these three fields.

In conclusion, thanks to the conformal invariance, one can determine the exact
expression of the two- and three-point correlation functions of the quasi-primary
operators. The same is not true for the higher point correlation functions. In this
case, in fact, the N -point correlation functions can have an arbitrary dependence on
the N(N − 3)/2 harmonic ratios. For instance, the general form of the four-point
function can be expressed as

G(4)(x1, x2, x3, x4) = F

(
x12x34

x13x24
,
x12x34

x23x41

) ∏
i<j

x
−(di+dj)+d/2
ij , (10.4.8)

with d =
∑4

i=1 di whereas F is an arbitrary function of the two independent harmonic
ratios. For D �= 2 and in the absence of additional information, the explicit expression
of F cannot be determined. As we will see in the next sections, this goal can, however,
be achieved when D = 2.

10.5 Two-dimensional Conformal Transformations

Let’s consider in more detail the conformal transformations in a euclidean space when
D = 2. In this case, something remarkable happens: in fact, eqns (10.3.5) become

∂1ε1 = ∂2ε2, ∂1ε2 = −∂2ε1, (10.5.1)

i.e. the Cauchy–Riemann conditions relative to the functions of a complex variable! In
other words, if we introduce the notation

ε(z) = ε1 + i ε2
ε̄(z̄) = ε1 − i ε2

(10.5.2)

and consider the new variables
z = x1 + i x2
z̄ = x1 − i x2

in two dimensions the conformal transformations coincide with the analytic mappings
of the complex plane

z → f(z), z̄ → f̄(z̄). (10.5.3)
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Fig. 10.4 Conformal transformation of two vectors.

It is well known that the analytic maps of the complex plane have the property of
preserving the angle between two vectors placed at the same point. The proof is
simple. Consider an analytic map u = f(z) and suppose that f ′(z0) �= 0, where z0
is the intersection point of the two vectors γ1 and γ2, as shown in Fig. 10.4. We
have

f ′(z0) = lim
Δz→0

Δu
Δz

≡ k eiβ .

Suppose now we choose the direction in which the variation Δz goes to zero along
the curve γ1, so that Δu moves along the transformed curve Γ1. In this case we have

β = argf ′(z0) = lim
Δu→0

argΔu− lim
Δz→0

argΔz = Φ1 − φ1,

where φ1 and Φ1 are the angles of the curves γ1 and Γ1 with respect to the horizontal
axis of the corresponding planes. However, the same quantity is obtained by taking
the limit along the direction of the curve γ2, since the derivative of a function of a
complex variable is independent of the path along which it is computed. We have
then

β = Φ2 − φ2,

where φ2 and Φ2 are respectively the angles of the curves γ2 and Γ2 with respect
to the horizontal axis of the corresponding planes. Taking the difference between
these two equations we have

φ2 − φ1 = Φ2 − Φ1 = α.

Hence, the angle between two arbitrary curves that pass through the point z0 at
which f ′(z0) �= 0 is equal to the angle between the two transformed curves. The
modulus of the two vectors is instead dilated by the factor k.

As we will see later, in two-dimensional conformal field theories there is a natural
splitting in the variables z and z̄. To simplify the notation, in the following we focus
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attention only on the transformations that involve the variable z, keeping in mind
that the same analysis applies to the variable z̄ as well. Moreover, thanks to the
splitting of the two variables, it is useful to consider z and z̄ as two independent
quantities. This is equivalent to regarding the original coordinates (x1, x2) as variables
of C2 rather than of �2 and to consider the new quantities (z, z̄) simply as a change
of variables. Obviously the original real variables are recovered imposing in C2 the
equation z = z̄. As we will show below, this procedure permits a remarkable efficiency
in the development of the formalism. From the definition of z and z̄ we have

∂z = 1/2(∂1 − i∂2)
∂z̄ = 1/2(∂1 + i∂2)

∂1 = (∂z + ∂z̄)
∂2 = i (∂z − ∂z̄).

(10.5.4)

In euclidean two-dimensional space, the line element is

ds2 = gμνdx
μ dxν = dx2 + dy2 = dz dz̄.

The complex metric is then gzz = gz̄,z̄ = 0 and gz z̄ = gz̄ z = 1
2 and therefore the

components of the stress–energy tensor in these coordinates are given by

Tzz ≡ T (z, z̄) = 1
4 (T11 − T22 + 2iT12),

Tz̄z̄ ≡ T̄ (z, z̄) = 1
4 (T11 − T22 − 2iT12),

Tzz̄ = Tz̄z ≡ 1
4 Θ(z, z̄) = 1

4 (T11 + T22) = 1
4T

μ
μ .

(10.5.5)

In complex coordinates, the conservation law (10.3.15) becomes

∂z̄ T (z, z̄) + 1
4∂z Θ(z, z̄) = 0;

∂z T̄ (z, z̄) + 1
4∂z̄ Θ(z, z̄) = 0. (10.5.6)

Furthermore, at the critical point the trace Θ(z, z̄) of the stress–energy tensor vanishes:

∂z̄T (z, z̄) = ∂zT̄ (z, z̄) = 0. (10.5.7)

Hence, at criticality, T depends only on z while T̄ depends on z̄: the former is then
an analytic operator while the latter is an anti-analytic one. These properties will be
important in the sequel.

Let’s now use the complex coordinates to investigate some aspects of
two-dimensional conformal invariance. Imposing

z′ = z + ε(z), ε(z) =
∞∑

n=−∞
anz

n+1,

every conformal transformation can be characterized by the coefficients an of the
Taylor–Laurent expansion of ε(z) at the origin. An analogous result holds for the
variable z̄. As a result of these transformations, to first order in ε a scalar function
g(z, z̄) changes as

g(z′, z̄′) − g(z, z̄) ≡ δg = −(ε(z) ∂ + ε̄(z̄) ∂̄) g(z, z̄)

=
∞∑

n=−∞
(anln + ān l̄n) g(z, z̄),
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where we have introduced the operators

ln = −zn+1 ∂, l̄n = −z̄n+1 ∂̄, (10.5.8)

with ∂ = ∂z and ∂̄ = ∂z̄. They satisfy the commutation relations

[ln, lm] = (n−m) ln+m;[
l̄n, l̄m

]
= (n−m) l̄n+m;[

ln, l̄m
]

= 0.
(10.5.9)

The conformal symmetry is then expressed in terms of the direct sum of two isomorphic
infinite dimensional algebras.
An apparent paradox. The above result may appear paradoxical: how can we have
in two dimensions an infinite dimensional symmetry when, in the last section, we have
established that the number of real parameters of the conformal symmetry is finite
and equal, in D dimensions, to (D + 1)(D + 2)/2? In the light of this, for D = 2 we
should have only six real parameter transformations and not an infinite number of
them.

The explanation of this paradox is as follows: in two dimensions there is only one
particular class of analytic functions that are well-defined and invertible on all of the
Riemann sphere (i.e. the complex plane plus the point at infinity) (see Fig. 10.5).
These are the Moebius transformations, given by

w(z) =
az + b

cz + d
, (10.5.10)

with a, b, c, d ∈ C and ad − bc �= 0. Since a uniform rescaling of the parameters does
not change the final expression of w(z), we can always assume that they satisfy the
condition ad− bc = 1. The set of all these transformations is isomorphic to the group

Fig. 10.5 The Riemann sphere, alias the complex plane plus the point at infinity.
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SL(2, C)/Z2, where the quotient with respect to Z2 comes from the invariance of the
mapping (10.5.10) under the multiplication of all the parameters for −1. Hence there
are only three complex parameters, alias six real parameters, in agreement with the
general result of the previous section.8 The detailed study of these functions – an
argument that is itself interesting – can be found in Appendix 10A. Here we simply
note that a Moebius transformation is uniquely defined by the correspondence between
three different points of the z-plane and three different points of the w-plane. If we
denote the chosen three points of the z-plane z1, z2, and z3 and the corresponding
points of the w-plane w1, w2, and w3, it is easy to prove the identity

(w1 − w)(w3 − w2)
(w1 − w2)(w3 − w)

=
(z1 − z)(z3 − z2)
(z1 − z2)(z3 − z)

. (10.5.11)

This relation is an implicit expression of the desired Moebius function. By solving
eqn (10.5.11) for w, we get an explicit expression of the coefficients a, b, c, d of the
Moebius transformation in terms of the given numbers z1, z2, z3 and w1, w2, w3. This
result also shows that w(z) depends at most on three complex parameters. Note that
eqn (10.5.11) states that the harmonic ratio of four points of the complex plane is
invariant under a Moebius transformation.

An equivalent way to achieve the same result consists of considering the vector
field that generates the conformal transformations in the space of the functions g(z):

v(z) = −
∑
n

an ln =
∑
n

an z
n+1 ∂z.

Requiring that the vector field is regular near the origin, we have an �= 0 only for
n ≥ −1. We can study its behavior in a neighborhood of the point at infinity by using
the transformation z = −1/y

v(z) =
∑
n

an

(
−1
y

)n+1 (
dz

dy

)−1

∂y =
∑
n

an

(
−1
y

)n−1

∂y.

Requiring that the vector field is also regular at infinity, we have an �= 0 only for
n ≤ 1. In conclusion, the only conformal transformations that are globally defined on
the Riemann sphere are those expressed by a quadratic expression z. They correspond
to anln with n = 0,±1, with three arbitrary complex parameters. The same result is
obtained for the anti-analytic vector field. However the number of parameters does not
double since the generators of the two algebras (10.5.9) that preserve the real section
of C2 are expressed by the linear combinations

ln + l̄n, i(ln − l̄n). (10.5.12)

Note that the generators l0, l±1 form a finite subalgebra of (10.5.9), where l−1 =
−∂z is the generator of the translations, l0 = −z∂z the generator of the dilatations,

8The real projection of C2 is obtained by taking (10.5.10) together with its complex conjugate
w̄(z̄). Obviously this procedure does not enlarge the number of independent parameters.
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and finally l1 = −z2∂z the generator of the special conformal transformations. In
particular, l0 + l̄0 is the operator that generates the global dilatations on the real
section of C2, while i(l0 − l̄0) is the operator of the rotations.

To summarize, in two dimensions, it is necessary to distinguish between the global
and the local conformal transformations: the former are given by the Moebius mappings
whereas the latter are expressed by all other analytic functions. Note that, except
for the Moebius transformations, any other analytic function is either not uniquely
invertible or not well-defined on all of the complex plane.9 For instance, the function
f(z) = z3 is defined on all the complex plane but is not uniquely invertible. Vice
versa, f(z) = log z has a branch cut along the positive axis and jumps by 2πi each
time we cross it. It is also worth recalling that, for the well-known Liouville theorem,
an analytic function cannot be small everywhere unless it is a constant: one has to
keep in mind this result for properly interpreting the Polyakov theorem that is based
on the infinitesimal nature of the transformations.

The considerations above should clarify some basic aspects of conformal invariance
in two dimensions but the question of how to interpret the apparent symmetry of
the theory under the infinite dimensional class of local conformal transformations is
still open. As we will see in the next sections, the answer to this question can be
summarized as follows: the local conformal transformations z → f(z) present, at
the quantum level, an anomaly. In particular, the two algebras (10.5.9) need a central
extension for the fluctuations of a quantum field theory near the phase transition point.
For this anomaly, the theory is invariant only under the Moebius transformations
and not under all conformal transformations. But, even in the absence of an exact
invariance of the physical systems under a generic analytic map, we will show that
we can nevertheless control how the system behaves under a local conformal map
and this proves to be the key to achieving the exact solution of many statistical
models.

10.6 Ward Identity and Primary Fields

The correlation functions of the local fields, by the definition given by eqn (10.2.1),
satisfy a Ward identity. To derive it, consider an arbitrary infinitesimal change of the
coordinates

xμ → x′μ = xμ + εμ(x)

and denote by δAi the corresponding variation of the fields under this transformation

Ai(x) → Ai(x) + δAi(x). (10.6.1)

Under this change of variables, the action changes as

δS =
1

(2π)D−1

∫
dDxTμν(x) ∂μεν(x).

9Analytic functions are also called holomorphic functions. Analytic functions with a finite number
of poles are called meromorphic functions whereas those having only zeros in any finite region of the
complex plane are called entire functions.
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Since a change of coordinates does not alter the description of the physical system, we
have δ〈A1(x1) . . . An(xn)〉 = 0. This leads to the Ward identity

n∑
i=1

〈A1(x1) . . . δAi(xi) . . . An(x)〉 − 1
(2π)D−1

∫
dDx〈Tμν(x)A1(x1) . . . An(xn)〉 ∂μεν(x)

−
[

1
(2π)D−1

∫
dDx〈Tμν(x)〉 ∂μεν(x)

]
〈A1(x1) . . . An(xn)〉 = 0. (10.6.2)

Let’s now specialize this equation to the case of two-dimensional quantum field theory.
First of all, let’s define the primary operators φi(z, z̄): they have the distinguishing
property to change as follows

φi(z, z̄) =
(
df

dz

)Δi
(
df̄

dz̄

)Δ̄i

φ′
i(z

′, z̄′), (10.6.3)

under an arbitrary conformal transformation z → z′ = f(z), z̄ → z̄′ = f̄(z̄), where
the two real quantities Δi and Δ̄i are the conformal weights. Note that the expression
above can be written as

φ′
i(z

′, z̄′)dz′Δi dz̄′Δ̄i = φi(z, z̄)dzΔi dz̄Δ̄i .

This enables us to consider the primary field φi(z, z̄) as a “tensor” of degree (Δi, Δ̄i)
under the conformal transformations. Obviously a primary field is also a quasi-primary
field but the reverse is not true, since the quasi-primary operators transform as
“tensors” only under global conformal transformations (expressed, in two dimensions,
by the Moebius mappings). To derive the infinitesimal transformation law of the pri-
mary fields, impose z′ = z + ε(z) and z̄′ = z̄ + ε̄(z̄), and expand up to first order

δφi ≡ φ(z, z̄) − φ′(z′, z̄′) = [(Δi ∂ε+ ε∂) + (Δ̄i ∂̄ε̄+ ε̄∂̄)]φi(z, z̄). (10.6.4)

Consider the n-point correlation function 〈φ1(x1) . . . φn(xn)〉 of the primary fields in
the two-dimensional euclidean plane. Denote by S a circle of radius sufficiently large
to include all the points x1, x2, . . . , xn as shown in Fig. 10.6. Suppose now we make an
infinitesimal change of coordinates xμ → xμ + εμ(x), where εμ(x) is a regular analytic
function for |z| ≤ R whereas, outside this region, only a differentiable function but
rapidly decreasing to zero at infinity. εμ(x) is then an arbitrarily small quantity in
any region of the plane. Such a transformation is obviously controlled by the Ward
identity (10.6.2). At the critical point of the theory 〈Tμν(x)〉 = 0 and therefore we can
neglect the last term in (10.6.2). For the second term, the only contribution to the
integral comes from the region |x| > R since, inside the circle, the theory is conformally
invariant and we can apply the Polyakov theorem . If we denote generically by X the
product of the n primary field, we have

1
2π

∫
d2x 〈Tμν(x)X〉∂μεν(x) =

1
2π

∫
|x|>R

d2x 〈Tμν(x)X〉∂μεν(x). (10.6.5)
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Fig. 10.6 Correlation functions of the primary fields.

Integrating by parts the right-hand side of this expression and neglecting the surface
term at infinity (which vanishes by the rapidly decreasing behavior of εν), we have

1
2π

∫
|x|>R

d2x 〈Tμν(x)X〉∂μεν(x) = − 1
2π

∫
|x|>R

d2x εν 〈∂μTμν(x)X〉

+
1
2π

∫
C

dΣnμεν 〈TμνX〉,

where nμ is a unit vector orthogonal to the surface Σ of the circle C. The first term in
the right-hand side vanishes by the conservation law of the stress–energy tensor. By
using the complex coordinates z, z̄ and the corresponding components of the stress–
energy tensor, we can express the second term on the right-hand side as

1
2π

∫
C

dΣnμεν 〈TμνX〉 =
1

2πi

∮
C

dzε(z) 〈T (z)X〉 − 1
2πi

∮
C

dz̄ ε̄(z̄) 〈T̄ (z̄)X〉,

with ε(z) = ε1 + iε2 and ε̄(z̄) = ε1 − iε2.
Consider now the first term of the Ward identity (10.6.2) which, for the primary

fields, is expressed by

n∑
i=1

[(Δi∂iε(z) + ε(z)∂i) + (Δ̄i∂̄iε̄(z̄) + ε̄(z̄)∂̄i)]〈φ1(x1) . . . φn(xn)〉.

We can use the complex coordinates (zi, z̄i) to identify the points in the plane and
apply the Cauchy theorem to write the analytic and anti-analytic terms as

n∑
i=1

[(Δi∂iε(z) + ε(z)∂i)]〈φ1(x1) . . . φn(xn)〉

=
1

2πi

∮
C

dzε(z)
n∑
i=1

[
Δi

(z − zi)2
+

1
z − zi

∂i

]
〈φ1(z1, z̄1) . . . φn(zn, z̄n)〉,
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n∑
i=1

[(Δ̄i∂̄iε̄(z) + ε̄(z)∂̄i)]〈φ1(x1) . . . φn(xn)〉

= − 1
2πi

∮
C

dz̄ ε̄(z)
n∑
i=1

[
Δ̄i

(z̄ − z̄i)2
+

1
z̄ − z̄i

∂̄i

]
〈φ1(z1, z̄1) . . . φn(zn, z̄n)〉.

Now putting together all the terms of the Ward identity, we arrive at

1
2πi

∮
C

dz ε(z)

[
n∑
i=1

[
Δi

(z − zi)2
+

1
z − zi

∂i

]
〈φ1(z1, z̄1) . . .〉 − 〈T (z)φ1(z1, z̄1) . . .〉

]

− 1
2πi

∮
C

dz̄ε̄(z̄)

[
n∑
i=1

[
Δ̄i

(z̄ − z̄i)2
+

1
z̄ − z̄i

∂̄i

]
〈φ1(z1, z̄1) . . .〉 − 〈T̄ (z̄)φ1(z1, z̄1) . . .〉

]
= 0.

Since the two functions ε(z) and ε̄(z̄) can be varied independently, the two terms of
this equation must vanish separately. So, we have the conformal Ward identity for the
analytic sector

〈T (z)φ1(z1, z̄1) . . .〉 =
1

2πi

∮
C

dz ε(z)

[
n∑
i=1

[
Δi

(z − zi)2
+

1
z − zi

∂i

]
〈φ1(z1, z̄1) . . .〉

]
,

(10.6.6)
and an analogous one for the anti-analytic sector

〈T̄ (z̄)φ1(z1, z̄1) . . .〉 =
1

2πi

∮
C

dz̄ε̄(z̄)

[
n∑
i=1

[
Δ̄i

(z̄ − z̄i)2
+

1
z̄ − z̄i

∂̄i

]
〈φ1(z1, z̄1) . . .〉

]
.

(10.6.7)

The two sectors are decoupled. We can use these Ward identities and the Cauchy
theorem to extract the singular terms of the OPE of the primary field φi(z, z̄) with
the analytic component T (z) of the stress–energy tensor:

T (z1)φi(z2, z̄2) =
Δi

(z1 − z2)2
φi(z2, z̄2) +

1
z1 − z2

∂φ(z2, z̄2) + regular terms. (10.6.8)

An analogous result holds for the anti-analytic part:

T̄ (z̄1)φi(z2, z̄2) =
Δ̄i

(z̄1 − z̄2)2
φi(z2, z̄2) +

1
z̄1 − z̄2

∂φ(z2, z̄2) + regular terms. (10.6.9)

Notice that, for what concerns the Ward identity, the primary field φi(z, z̄) may be
regarded as made up of a product of two chiral primary fields Φ(z) and Φ̄(z̄), the
first depending only on z while the second only on z̄, φi(z, z̄) = Φi(z) Φ̄i(z̄). This
factorization is extremely useful to deal with the algebraic properties of the primary
fields but is not a faithful representation of the actual nature of the primary fields.
As we shall show later, the correlation functions of the primary field φi(z, z̄) are not
simply given by the product of the correlation functions of the chiral primary fields
Φi(z) and Φ̄(z̄).
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The primary fields play an important role in conformal field theory. As a matter of
fact, their transformation law (10.6.3) is the simplest possible and leads to an operator
product expansion with T (z) and T̄ (z̄) in which there are at most second-order poles.
Any other field of the theory has an OPE with the stress–energy tensor of higher order
poles: to see this, it is sufficient to consider the operator product expansion of T (z)
with a derivative of the primary field. In addition to the simplicity of their operator
product expansion, the primary fields are also the building blocks of the representation
theory of conformal symmetry. As we will show in the following sections, all conformal
fields of the theory are organized in conformal families that are uniquely identified
by the primary fields. These families form irreducible representations of the quantum
version of the conformal algebra.

10.7 Central Charge and Virasoro Algebra

In this section we analyze the quantum version of the conformal algebra that, as we
will see, is deeply related to the stress–energy tensor. First of all, it is necessary to note
that the role played by the stress–energy tensor in the theory is twofold: on one hand,
it is the generator of the conformal transformations; on the other hand it is a conformal
field itself. Since it satisfies a conservation law, its scaling dimension coincides with its
canonical dimension, equal to dT = dT̄ = 2. The two-point correlation function of its
analytic part is generically different from zero and can be expressed as

〈T (z1)T (z2)〉 =
c/2

(z1 − z2)4
, (10.7.1)

where the real coefficient c is the central charge of the conformal algebra. The same
holds for the anti-analyitic component

〈T̄ (z̄1)T̄ (z̄2)〉 =
c̄/2

(z̄1 − z̄2)4
. (10.7.2)

For a relativistic and parity invariant theory, it is easy to show that c = c̄. From now
on we focus attention only on T (z), keeping in mind that the same results will also
hold for T̄ (z̄). The quantity c is generally different from zero, as can be seen by the
analysis of two simple but significant examples of conformal field theories.

10.7.1 Example 1. Free Neutral Fermion

Consider the lagrangian of a neutral bidimensional fermion (Majorana fermion)

L =
λ

2π

[
ψ
∂

∂z̄
ψ + ψ̄

∂

∂z
ψ̄

]
.

The equations of motion are
∂

∂z̄
ψ =

∂

∂z
ψ̄ = 0.

Hence ψ(z) is a purely analytic field (with conformal weight Δ = 1
2 , as can be

easily seen directly from the lagrangian) while ψ̄(z̄) is a purely anti-analytic field
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with conformal weight Δ̄ = 1
2 . Their two-point correlation functions are

〈ψ(z1)ψ(z2) =
1
λ

1
z1 − z2

; (10.7.3)

〈ψ̄(z̄1)ψ̄(z̄2) =
1
λ

1
z̄1 − z̄2

.

The analytic part of the stress–energy tensor is obtained by Noether’s theorem:

T (z) = −λ
2

: ψ(z)
∂

∂z
ψ(z) : . (10.7.4)

The two-point correlator of T (z) can be obtained by the correlator (10.7.3) applying
Wick’s theorem

〈T (z1)T (z2)〉 =
λ2

4
〈: ψ(z1)∂1ψ(z1) : : ψ(z2)∂2ψ(z2) :〉

=
λ2

4
[〈ψ(z1)∂2ψ(z2)〉 〈∂1ψ(z1)ψ(z2)〉 − 〈ψ(z1)ψ(z2)〉 〈∂1ψ(z1)∂2ψ(z2)〉]

=
1
4

[
− 1

(z1 − z2)4
+

2
(z1 − z2)4

]
=

1
4(z1 − z2)4

. (10.7.5)

For this system we then have c = 1
2 .

10.7.2 Example 2. Free Bosonic Field

Consider now the lagrangian of a neutral free boson

L =
g

4π
(∂μΦ)2.

The correlation function of this field is given by

G(z, z̄) = 〈Φ(z1, z̄1)Φ(z2, z̄2)〉 = − 1
2g

log z12 −
1
2g

log z̄12. (10.7.6)

Note that the free bosonic field Φ(z, z̄) is not a scaling operator itself. However we can
construct scaling operators as the fields ∂zΦ or eiαΦ using the field Φ. For the analytic
part of the stress–energy tensor, derived from Noether’s theorem, we have

T (z) = −g : (∂zΦ)2 : (10.7.7)

Its two-point correlation function can be computed by (10.7.6) using Wick’s theorem

〈T (z1)T (z2)〉 = g2 〈: (∂1Φ(z1))2 : : (∂2Φ(z2) :)2〉
= g2 [2 (〈∂1Φ(z1)∂2Φ(z2)〉)2

]
=

1
2(z1 − z2)4

.

Therefore the central charge of this system is c = 1.
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Conformal anomaly. Let’s come back to the general discussion on the stress–energy
tensor. In the presence of a central charge different from zero, the OPE of T (z) with
itself has the singular terms

T (z1)T (z2) =
c/2

(z1 − z2)4
+

2
(z1 − z2)2

T (z2) +
1

z1 − z2
∂T (z2) + · · · (10.7.8)

Therefore, the infinitesimal conformal transformation of T (z) is given by

δT (z) = (2∂ε+ ε∂)T (z) +
c

12
∂3ε(z). (10.7.9)

The term proportional to c may be interpreted as a quantum anomaly. Consider, in
fact, the Ward identity for the one-point function of this operator

δ〈T (w)〉 =
1

2πi

∮
dz ε(z) 〈T (z)T (w)〉 =

c

12
∂3ε(z),

where, in the last line, we used the expression (10.7.1) of the correlator and then the
Cauchy theorem. This term is obviously zero for the global conformal transformations10

but is instead different from zero for all the local conformal mappings. This means that,
passing from the euclidean plane in which 〈T (z)〉piano = 0 to another geometry with
the conformal transformation z → f(z), in the new geometrical domain the energy
density is different from zero! It is for this reason that the central charge is also called
a “conformal anomaly”. It is also called a “trace anomaly”, because in a conformal
field theory defined on a curved manifold it is no longer true that the trace Θ of the
stress–energy tensor vanishes as a consequence of the scaling invariance of the theory:
in fact the curvature R of the manifold introduces a length-scale and in this case it is
possible to prove that

〈Θ〉 = − c

12
R. (10.7.10)

A non-zero value of c gives rise to a measurable physical effect, known as the Casimir
effect. This will be analyzed in Section 9, using the main properties of T (z) that we
are going to discuss.
Properties of the stress–energy tensor. The first property is its transformation
law under a local conformal mapping z → η

T (z) = T (η)
(
dη

dz

)2

+
c

12
{η, z}, (10.7.11)

where the last term is the Schwartz derivative

{η, z} ≡ d3η/dz3

dη/dz
− 3

2

(
d2η/dz2

dη/dz

)2

. (10.7.12)

10For these transformations ε(z) is at most quadratic in z.
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The second important aspect of the stress–energy tensor is its Taylor–Laurent expan-
sion (say, around the origin) in terms of the operators Ln

T (z) =
∞∑

−∞

Ln

zn+2 . (10.7.13)

The Schwartz derivative. The Schwartz derivative of a function of a complex
variable has the following properties:

1. {η, z} = 0 if and only if η(z) is a Moebius transformation η(z) = az+b
cz+d ;

2. it satisfies {
aη + b

cη + d
, z

}
= {η, z}{

η,
az + b

cz + d

}
= {η, z} (cz + d)4;

3. under the sequence of transformations z → η → γ one has

{γ, z} = {γ, η}
(
dη

dz

)2

+ {η, z}.

The last equation ensures the correct transformation properties of the stress–energy
tensor. In fact, for the two individual mappings we have

T (z) = T (η)
(
dη

dz

)2

+
c

12
{η, z}

T (η) = T (γ)
(
dγ

dη

)2

+
c

12
{γ, η, }

and therefore, substituting the second of these equations into the first

T (z) =

[
T (γ)

(
dγ

dη

)2

+
c

12
{γ, η, }

] (
dη

dz

)2

+
c

12
{η, z}

= T (γ)
(
dγ

dz

)2

+
c

12
{γ, z}.

Their action on a generic conformal field A(z, z̄) is defined as follows

LnA(z1, z̄1) =
1

2πi

∮
C1

dz (z − z1)n+1 T (z)A(z1, z̄1), (10.7.14)

where C1 is a closed contour around the point z1. In other words, the application of
Ln to A(z1, z̄1) filters the conformal field that appears in front of the power (z−z1)−n
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Fig. 10.7 Exchange of the integration contours for the commutator [Ln, Lm].

in the operator product expansion of T (z) with A(z1, z̄1). The application of two of
these operators is given by

Ln LmA(z1, z̄1) =
(

1
2πi

)2 ∮
C′

1

dz′
∮
C1

dz (z′ − z1)n+1 (z − z1)m+1 T (z′)T (z)A(z1, z̄1),

(10.7.15)

where both the two contours C ′
1 and C1 have the point z1 inside, with C ′′

1 external
to C1.

It is interesting to note that the operator expansion (10.7.8) can be equivalently
expressed in terms of the commutator [Ln, Lm]. To compute this quantity, we need
to exchange the two integration contours, paying attention to the singular terms of
the OPE encountered in this exchange. The situation is graphically given in Fig. 10.7:
it involves11 an integral over the contour Cz around the singularities and an integral
over the contour C1 of the point z1

[Ln, Lm] =
(

1
2πi

)2 ∮
Cz

dz′
∮
C1

dz (z′ − z1)n+1 (z − z1)m+1 T (z′)T (z)

=
(

1
2πi

)2 ∮
Cz

dz′
∮
C1

dz (z′ − z1)n+1 (z − z1)m+1

×
(

c/2
(z′ − z)4

+
2

(z′ − z)2
T (z) +

1
z′ − z

∂T (z)
)
.

11In the integrals we have omitted the field A(z1, z̄1) since it appears on both members of the
equation.
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Let’s consider separately the results of integration of each term. For the first term we
have

c

2

(
1

2πi

)2 ∮
Cz

dz′
∮
C1

dz
(z′ − z1)n+1 (z − z1)m+1

(z′ − z)4

=
c

2 · 3!
(n+ 1)n(n− 1)

1
2πi

∮
C1

dz(z − z1)n+m−1

=
c

12
n(n2 − 1) δn+m,0.

For the second term

2
(

1
2πi

)2 ∮
Cz

dz′
∮
C1

dz
(z′ − z1)n+1 (z − z1)m+1

(z′ − z)2
T (z)

= 2 (n+ 1)
1

2πi

∮
C1

dz(z − z1)n+m+1 T (z)

= 2(n+ 1)Ln+m.

For the last term(
1

2πi

)2 ∮
Cz

dz′
∮
C1

dz
(z′ − z1)n+1 (z − z1)m+1

z′ − z
∂T (z)

=
1

2πi

∮
C1

dz(z − z1)n+m+2 ∂T (z)

= − 1
2πi

∮
C1

dz∂(z − z1)n+m+2 T (z) − (n+m+ 2)Ln+m.

Now putting together all the expressions above and keeping in mind that analogous
results hold for the anti-analytic part of the stress–energy tensor, we arrive at the
commutation relations

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1) δn+m,0,[

L̄n, L̄m

]
= (n−m) L̄n+m +

c

12
n(n2 − 1) δn+m,0, (10.7.16)[

Ln, L̄m

]
= 0.

These relations define the so-called Virasoro algebra: it provides the quantum version
of the classical conformal algebra (10.5.9) and the two coincide when c = 0.
An important remark. As a result of this analysis we have achieved a very
important conceptual point that is worth emphasizing: in two dimensions the problem
of classifying all possible universality classes of critical phenomena simply consists of
identifying all irreducible representations of the Virasoro algebra. From this point of
view, the numerous variety of critical phenomena is on the same footing as the different
behavior of the irreducible representations of the rotation group where, according to
the value of the angular momentum, the phenomenology is different but the underlying
algebraic structure is the same.
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z

η

Fig. 10.8 Conformal transformation of the complex plane onto the cylinder. Circles of
different radius are mapped onto different sections of the cylinder.

10.8 Representation Theory

Let us discuss the representations of the Virasoro algebra. They can be equivalently
analyzed in terms of conformal fields or in terms of vectors in a Hilbert space. There
is in fact an isomorphism between the two pictures that can be established as follows.

Radial quantization. Consider the conformal transformation

η =
L

2π
log z (10.8.1)

that maps the entire complex plane into the infinite cylinder strip of width L, as can
be seen by writing η = τ + iσ and expressing z as z = ρeiα (see Fig. 10.8)

τ =
L

2π
log ρ, σ =

L

2π
α.

Circles of the z-plane are mapped in orthogonal sections of the cylinder. In particular,
the origin is transformed in the section of the cylinder placed at −∞, whereas the
point at infinity of the z-plane is mapped in the section of the cylinder at +∞. For
this reason, the map (10.8.1) gives rise to the so-called radial quantization scheme in
which the longitudinal direction of the cylinder is regarded as time, while the transverse
direction as (compactified) space. Circles in the z-plane correspond to surfaces of equal
time on the cylinder. Note that the temporal inversion τ → −τ is implemented by the
transformation z → 1/z̄.

In the radial quantization scheme we can introduce the R-ordered product of the
fields, analogously to the usual T -ordered product

R[φ1(z)φ2(w)] =
{
φ1(z)φ2(w) , if |z| < |w|
φ2(w)φ1(z) , if |w| < |z|. (10.8.2)

We can also relate their operator product expansion with the commutation relations,
as we have already seen for the Virasoro generators. To this aim, let β(z) and γ(z) be
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Fig. 10.9 Commutator as the difference of circular contours.

two analytic fields and consider the integral∮
w

β(z) γ(w) dz, (10.8.3)

around the point w, taken in an anti-clockwise direction. By using the radial quantiza-
tion of these operators, (10.8.3) can be expressed as a difference of integrals computed
along the circular contours of radius |w| ± ε, as shown in Fig. 10.9. These contours
correspond to two slightly different time instants and therefore∮

w

β(z) γ(w) dz =
∮
C1

β(z)γ(w) dz −
∮
C2

γ(w)β(z)dz = [Γ, β(w)] , (10.8.4)

where the operator Γ is given by the integral

Γ =
∮
γ(z) dz

taken along a circle around the origin. In the limit ε→ 0 the commutator so obtained
corresponds to the usual equal time commutator of quantum field theory.

Equation (10.8.4) allows us to compute the commutator of the generators of the
Virasoro algebra with any primary field of conformal weight Δ. Using eqn (10.6.8), we
have

[Ln, φ(w, w̄)] =
1

2πi

∮
w

dz zn+1 T (z)φ(w, w̄)

=
1

2πi

∮
w

dz zn+1
[
Δφ(w, w̄)
(z − w)2

+
∂φ(w, w̄)
z − w

+ . . .

]
(10.8.5)

= Δ(n+ 1)wnφ(w, w̄) + wn+1∂φ(w, w̄).

A similar expression holds for the anti-analytic generators L̄n.

Hilbert space of conformal states. In the cylinder geometry it is possible to intro-
duce a Hilbert space and a hamiltonian H that will rule the (euclidean) time evolution
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of the states. The explicit form of H will be given later. H also determines the time
evolution of the fields A(σ, τ)

A(σ, τ) = eHτ A(σ, 0) e−Hτ . (10.8.6)

To construct the Hilbert space we assume firstly the existence of a vacuum state
| 0〉. Any other state of this space can be constructed by acting on the vacuum state
with certain operators, as it happens for the creation operators of usual quantum field
theories. The initial states are those at t→ −∞ and, thanks to the conformal mapping
on the cylinder, they can be defined as

| Ain〉 = lim
z,z̄→0

A(z, z̄) | 0〉. (10.8.7)

To introduce the final state, we need to define the adjoint operator of a conformal
operator, here given by

[A(z, z̄)]† = A

(
1
z̄
,
1
z

)
1
z2Δ̄

1
z̄2Δ . (10.8.8)

The reason for this definition lies in the relationship that exists between the usual
definition of the adjoint operator in the present formulation and in the formulation
done in Minkowski space: the factor i that is present in the Minkowski formulation and
is instead absent in the time evolution (10.8.6) must be compensated by an explicit
transformation of the time inversion τ → −τ . The other extra factors in (10.8.8) are
necessary to preserve the transformation properties of the adjoint operator under the
conformal transformations. In fact, parameterize the point at infinity in terms of the
map w = 1/z and denote by Â(w, w̄) the operator in these new coordinates. It is
natural to impose

〈Afin |= lim
w,w̄→0

〈0 | Â(w, w̄). (10.8.9)

For the primary and quasi-primary fields, it is now possible to link Â(w, w̄) to A(z, z̄)
since

Â(w, w̄) = A(z, z̄)
(
∂z

∂w

)Δ (
∂̄ z̄

∂̄ w̄

)Δ̄

= A

(
1
w
,

1
w̄

)
(−w−2)Δ (−w̄−2)Δ̄,

and therefore

〈Afin | = lim
w,w̄→0

〈 0 | Â(w, w̄) = lim
z,z̄→0

〈 0 | A
(

1
z
,
1
z̄

)
1
z2Δ

1
z̄2Δ̄

= lim
z,z̄→0

〈 0 | [A(z, z̄)]† =
[

lim
z,z̄→0

A(z̄, z) | 0〉
]

= | Ain〉†.

The final states can thus be defined as

〈Afin | ≡ lim
z,z̄→∞〈0 | A(z, z̄) z2Δ z̄2Δ̄. (10.8.10)
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For the stress–energy tensor, the definition (10.8.8) of the adjoint operator implies the
equality of the expressions

T †(z) =
∞∑

−∞

L†
n

z̄n+2 and T

(
1
z̄

)
1
z̄4 =

∞∑
−∞

Ln

z̄−n+2 ,

namely
L†
n = L−n. (10.8.11)

An analogous formula holds for the generators L̄n of T̄ (z̄). Applying now T (z) (T̄ (z̄))
to the vacuum state

T (z) |0〉 =
∞∑

−∞

Ln

zn+2 |0〉,

and demanding their regularity at the origin, we arrive at the conditions that identify
this state

Ln |0〉 = 0, n ≥ −1,
L̄n |0〉 = 0, n ≥ −1. (10.8.12)

In particular, the conditions L0,±1|0〉 = 0 and L̄0,±1|0〉 = 0 establish that the vacuum
state is invariant under SL(2, C) transformations: the vacuum state is the same for
all the observers related by the global conformal transformations. Moreover, these
relations imply that the vacuum expectation values of T and T̄ vanish:

〈0 | T (z) | 0〉 = 〈0 | T̄ (z̄) | 0〉 = 0. (10.8.13)

10.8.1 Representation Theory: The Space of the Conformal States

For the sake of simplicity, let us focus our attention only on the analytic sector of the
theory (similar results hold for the anti-analytic one). Consider the state created by
the analytic component of the primary field φΔ(z) of conformal weight Δ

| Δ 〉 ≡ φΔ(0) | 0 〉. (10.8.14)

Using the operator product expansion (10.6.8) and the definition (10.7.13) of T (z) in
terms of the Ln’s, it is easy to show that

L0 | Δ〉 = Δ | Δ〉
Ln | Δ〉 = 0, n > 0. (10.8.15)

Hence, | Δ 〉 is an eigenstate of L0 (with eigenvalue Δ). It can be normalized as

〈Δ|Δ〉 = 1. (10.8.16)

Consider now the descendant states of | Δ〉, i.e. the states that are obtained by acting
on | Δ〉 by the operators Ln with a negative index. To avoid an over-counting of these
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states,12 it is convenient to introduce an ordering, for instance

| Δ;n1, n2, . . . nk〉 ≡ L−n1 L−n2 . . . L−nk
| Δ〉

n1 ≤ n2 ≤ . . . ≤ nk.
(10.8.17)

Using the commutation relations of the Virasoro algebra, we have

L0 | Δ;n1, n2, . . . nk〉 = (Δ +N) | Δ;n1, n2, . . . nk〉, N =
k∑

i=1

ni. (10.8.18)

This shows that the descendant states are also eigenstates of L0 with an eigenvalue
related to their level N . The negative modes L−m of the Virasoro algebra behave
then as the creation operators of the familiar quantum harmonic oscillator, the only
difference is that they move bym the eigenvalues of the state they act on. This situation
is graphically represented in Fig. 10.10.
Structure of the Hilbert space. The Hilbert space of the conformal states has
a nested structure. To reach the level N , for instance, we can act directly with the
operator L−N on the state | Δ〉 or we can act on any descendant of a level M (M < N)
with LM−N or with any other ordered sequence of operators L−nj . . . L−nk

that satisfy
the condition

∑k
i=j ni = M − N . This nested structure gives rise to an exponential

growth of the dimensions of the L0-eigenspaces. These dimensions can be computed
noting that the problem consists of determining in how many ways a positive integer
number N can be expressed as sum of all possible integer numbers less that it. This
combinatorial problem can be solved in terms of the generating function

f(q) =
∞∏
n=1

1
1 − qn

. (10.8.19)

N=0

N=1

N=2

N=3

.

.

..

Fig. 10.10 Levels of different N and action of the operators L−m.

12For the commutation relations of the Virasoro algebra, any other ordering can be expressed as a
linear combination of the states given in the text.
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Denoting by P (N) the dimension of the space at level N , we have
∞∑

N=0

P (N) qN =
∞∏
n=1

1
1 − qn

. (10.8.20)

To check the validity of this expression is sufficient to expand each factor on the right-
hand side in terms of the geometrical series and then gather together the various terms
to form the powers of qN . Expanding in series the function f(q) we have

f(q) = 1 + q + 2q2 + 3q3 + 5q4 + 7q5 + 11q6 + 15q7 + 22q8 + 30q9 + 42q10 + · · ·
from which we can read the values of P (N). As anticipated, they grow extremely fast
and their asymptotic estimate is given by the Hardy–Ramanujan formula

P (N) 	
exp
[
π
√

2N
3

]
4
√

3N
. (10.8.21)

Let’s now investigate in more detail the descendent states. At the level N = 1
there is only the state L1 | Δ〉 and its norm is easily obtained using eqn (10.8.11), the
commutation relations (10.8.16), and the properties (10.8.15) of the state | Δ〉:

〈Δ | L†
−1 L−1 | Δ〉 = 〈Δ | L1 L−1 | Δ〉

= 〈Δ | [L1, L−1] | Δ〉
= 〈Δ | 2L0 | Δ〉
= 2Δ〈Δ|Δ〉 = 2Δ.

We can also easily compute the norm of the descendant state L−m | Δ〉:
〈Δ | Lm L−m | Δ〉 = 〈Δ | [Lm, L−m] | Δ〉

= 2m 〈Δ | L0 | Δ〉 +
c

12
m(m2 − 1) 〈Δ|Δ〉

= 2mΔ +
c

12
m(m2 − 1).

The computation soon becomes more involved for the other matrix elements of the
P (N) × P (N) matrix, called the Gram matrix, given by the scalar product of the
various descendants of the level N

M (N) =

⎛
⎜⎜⎜⎜⎝

〈Δ|LN
1 L

N
−1|Δ〉 . . 〈Δ|LN

1 L−N |Δ〉
. . . .
. . . .
. . . .

〈Δ|LNL
N
−1|Δ〉 . . 〈Δ|LNL−N |Δ〉

⎞
⎟⎟⎟⎟⎠ . (10.8.22)

As an explicit example, we present here the computation of the Gram matrix of level
N = 2, given by

M (2) =
(

4Δ(2Δ + 1) 6Δ
6Δ 4Δ + c/2

)
. (10.8.23)

When the determinant of all the Gram matrices M (N) is different from zero, all
the descendant states are linearly independent and their set provides, by construc-
tion, an irreducible representation of the Virasoro algebra. The space of states VΔ so
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constructed is called the conformal family (or the Verma module) of the primary field
φΔ(z) where the seed state | Δ〉 behaves as the highest state vector of the Virasoro
algebra.

10.8.2 Representation Theory: The Space of Conformal Fields

The representation theory of the Virasoro algebra can also be developed on the space
of conformal fields, similarly to that in the Hilbert space of the states. This study
provides, however, useful information on the structure of the conformal families.

Given a conformal field A(z), by the definition of the operators Ln, we have

T (z)A(w) =
∞∑

−∞

1
(z − w)n+2 (LnA)(w). (10.8.24)

If we specialize this expression to the case where A(z) is a primary field of conformal
weight Δ, with an OPE given by (10.6.8), we can easily extract the action of Ln on
this primary field

(L0φ)(z) = Δφ(z),
(L−1φ)(z) = ∂φ(z), (10.8.25)
(Lnφ)(z) = 0 n ≥ 1.

The other Lm with negative index create the descendant fields

φ(m)(z) ≡ (L−m φ)(z),

and we can recover all other fields by recurrence

φ(n1,n2,...,nk)(z) ≡ (L−n1L−n2 . . . L−nk
φ)(z), (10.8.26)

adopting the usual ordering n1 ≤ n2 ≤ · · · ≤ nk. These fields are also eigenvectors of
L0 with eigenvalues given by

L0 φ
(n1,n2,...,nk)(z) = (Δ + n1 + n2 + . . . nk)φ(n1,n2,...,nk)(z). (10.8.27)

Note that a significant example of a descendant field is provided by the stress–energy
tensor! In fact, taking the identity operator I as a primary field, we have

(L−2I)(w) =
1

2πi

∮
dz

1
z − w

T (z)I = T (w). (10.8.28)

This explains the more complicated transformation law of T (z), given by eqn (10.7.11),
with respect to that of a primary field: it is because it is a descendant field.

When the descendant fields (10.8.26) are all linearly independent, they form to-
gether with the primary field φ(z) an irreducible representation of the Virasoro al-
gebra. Since (L−1φ)(z) = ∂φ(z), we also deduce that in the conformal family of the
operator φ(z) there are automatically all the derivatives of the primary fields and its
descendants.



342 Conformal Field Theory

Let’s now prove a result that will be extremely important for the development of
the formalism:

All correlation functions of the descendant fields can be obtained by acting with
linear differential operators La on the correlation functions of the primary fields.
The operators La are uniquely fixed by the Virasoro algebra.

We present this result for the simplest case of a correlation function of the primary
fields φi(zi) (i = 1, . . . , n − 1) and the descendant field (L−k φn)(z) of the primary
field φn, where we have

〈φ1(z1) . . . φn−1(zn−1)(L−kφn)(z)〉 = L−k 〈φ1(z1) . . . φn−1(zn−1)φ(z)〉. (10.8.29)

The linear differential operator L−k is expressed as

L−k = −
n−1∑
i=1

[
(1 − k)Δi

(zi − z)k
+

1
(zi − z)k−1

∂

∂zi

]
. (10.8.30)

To prove eqn (10.8.29) is convenient to start from the Ward identity

〈T (z)φ1(z1) . . . φn(zn)〉 =
n∑
i=1

[
Δi

(z − zi)2
+

1
z − zi

∂

∂zi

]
〈φ1(z1) . . . φn(zn)〉,

and consider the limit z → zn. Using eqn (10.8.24), the left-hand side of the Ward
identity becomes

∞∑
k≥0

(z − zn)k−2〈φ1(z1) . . . (L−kφn)(zn),

and, for the Cauchy formula

〈φ1(z1) . . . φn−1(zn−1)(L−kφn)(z)〉

=
1

2πi

∮
zn

dz(z − zn)1−k

[
n∑
i=1

[
Δi

(z − zi)2
+

1
z − zi

∂

∂zi

]
〈φ1(z1) . . . φn(zn)〉

]
.

Since the residue at infinity of this expression vanishes, we can use the residue theorem
of complex analysis to express the contour integral around the point zn in terms
of the contour integrals (taken clockwise) around the points zi (i = 1, . . . , n − 1).
However, the last quantities are simply the opposite of the contour integrals taken in
the usual anticlockwise direction, and we have then the situation shown in Fig. 10.11.
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z

z znnn–1
z

z2

1

_=

Fig. 10.11 Theorem of the residues applied to eqn (10.8.31).

Hence

〈φ1(z1) . . . φn−1(zn−1)(L−kφn)(z)〉

= − 1
2πi

n−1∑
j=1

∮
zj

dz(z − zn)1−k

[
n∑
i=1

[
Δi

(z − zi)2
+

1
z − zi

∂

∂zi

]
〈φ1(z1) . . . φn(zn)〉

]

= −
n−1∑
j=1

[
(1 − k)Δj

zj − zn)k
+

1
zj − zn)k−1

∂

∂zj

]
〈φ1(z1) . . . φn(zn).

We obtain in this way eqn (10.8.29). Similar formulas can be easily derived for all
other descendant fields.

There are several important consequences of eqn (10.8.29) and the like.

Orthogonality of conformal families. The first consequence is on the orthogonal-
ity condition of the two-point correlation functions of the descendant fields. In fact,
the orthogonality condition (10.4.5) of the primary fields automatically implies that
also the two-point correlation functions of the descendant fields of two different fam-
ilies vanish. Hence, there is complete orthogonality between two different conformal
families.
Structure constants of descendant fields. The second important consequence con-
cerns the structure constants of the descendant fields in the operator algebra (10.2.13).
As an outcome of the existence of the linear differential operators La, these quantities
are proportional to the structure constants cijp of the primary fields, with a pro-
portionality coefficient that is uniquely determined by the Virasoro algebra. In more
detail, denoting by C

(k,k̄)
ijp the structure constant of two primary fields φi, φj with a

descendant φ(k,k̄)
p at the levels k and k̄ of the primary field φp, we have

C
(k)
ijp = Cijp β

(k)
ijp β̄

(k̄)
ijp , (10.8.31)

where β(k)
ijp is a rational expression of the conformal weights Δi (alias) and the central

charge c. The same for β̄(k)
ijp , a function of Δ̄i and c. Both quantities can be computed
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in a purely algebraic way by applying the relative operators La of the descendant field
to its three-point correlation functions with the two primary fields.

Notice that eqn (10.8.31) implies that, if Cijp = 0, then all other structure con-
stants of the descendant fields vanish as well. In another words, if two primary fields
φi and φj do not couple to the primary field φp, they do not couple either to any
of its descendants. Hence, in two-dimensional conformal field theories, the determina-
tion of the structure constants of the operatorial algebra (10.2.13) simply reduces to
determining only the structure constants of the primary fields.

10.9 Hamiltonian on a Cylinder Geometry and the
Casimir Effect

Consider a conformal theory defined on a cylinder of width L with periodic boundary
conditions. The coordinates along the cylinder are given by −∞ < τ < +∞ and
0 ≤ σ ≤ L. This theory can be analyzed in terms of the conformal transformation

w ≡ τ + iσ =
L

2π
log z, (10.9.1)

that maps the plane into the cylinder. Using the transformation law (10.7.11) of the
stress–energy tensor, we have

Tcyl(w) =
(

2π
L

)2 [
Tpl(z) z2 − c

24

]
, (10.9.2)

with an analogous expression for T̄ . We can now define the hamiltonian of this con-
formal theory in terms of the space integral of T̂ττ

H =
1
2π

∫ L

0
T̂ττ (σ) dσ =

1
2π

∫ L

0
(T (σ) + T̄ (σ)) dσ

=
2π
L

(L0 + L̄0) −
πc

6L
, (10.9.3)

where we have used eqn (10.9.2) and the definition of the Virasoro generators in the
complex plane

L0 =
1

2πi

∮
zT (z) dz, L̄0 = − 1

2πi

∮
z̄T̄ (z̄) dz̄.

The theory on the cylinder also has a translation invariance along the σ axis and
therefore we can also define the momentum operator P :

P =
1
2π

∫ L

0
T̂τσ dσ =

2π
L

(L0 − L̄0). (10.9.4)

This operator commutes with H. From the explicit expressions for H and P it can be
seen that their eigenvectors are in one-to-one correspondance with the eigenvectors of
L0 + L̄0 and L0 − L̄0. The minimum value E0 of the energy is

E0 = −πceff
6L

, (10.9.5)
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where
ceff = c− 24Δmin, (10.9.6)

is the effective central charge, given by the central charge c and the minimum eigenvalue
Δmin of L0. For unitary theories Δmin = 0 and therefore ceff = c. Futhermore, for
unitary theories c > 0. For non-unitary theories, Δmin is generically negative as well
as the central charge c. However, as we shall see in the next chapter, an interesting
observation is that the effective central charge of all minimal conformal models (either
unitary or not) is always positive:

ceff = c− 24Δmin > 0. (10.9.7)

The finite expression (10.9.5) of the ground state energy on a cylinder is known as the
Casimir effect: it depends on its width L and vanishes in the limit L → ∞ when the
cylinder reduces to a plane. In addition to its conceptual relevance, this formula is
useful to identify which conformal theory is behind the critical behavior of a statistical
model defined on a lattice: in fact, it is sufficient to study its ground state energy on
a cylinder geometry as a function of L and extract accordingly its effective central
charge.

The previous expressions of H and P are also useful to determine the transfer
matrix of the conformal models. For simplicity, let’s focus attention on a unitary
conformal model, with c > 0 and Δi > 0. In the plane, the two-point correlation
function of a primary field is

〈φ(z, z̄)φ(z′, z̄′) = (z − z′)−2Δ (z̄ − z̄′)−2Δ̄. (10.9.8)

Using the transformation law (10.6.3) of the primary fields under a conformal transfor-
mation and the map (10.9.1), we can immediately write down the correlation function
on the cylinder

〈φ(w, w̄)φ(w′, w̄′) =
(π
L

)2(Δ+Δ̄) 1
(sinhπ(w − w)/L)2Δ (sinhπ(w̄ − w̄′)/L)2Δ̄

.

Imposing w = τ + iσ and w′ = τ ′ + iσ′, for τ > τ ′ this expression can be expanded as

(π
L

)2x ∞∑
N,N̄=0

aN aN̄ exp[−2π(x+N + N̄)(τ − τ ′)/L]

× exp[2πi(s+N + N̄)(σ − σ′)/L], (10.9.9)

where x = Δ + Δ̄ is the scaling dimension of the operator, s = Δ − Δ̄ is its spin, and
the coefficients aN are given by

aN =
Γ(x+N)
Γ(x)N !

.

The expression above can be compared with the one computed using the transfer
matrix. In the transfer matrix approach, the conformal fields φ(u, v) are regarded
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as operators that act on states of the Hilbert space on the cylinder, with the time
evolution provided by eqn (10.8.6). Hence

〈φ(w, w̄)φ(w′, w̄′) ≡ 〈0 | eHτφ(0, σ)e−HτeHτ ′
φ(0, σ′)e−Hτ ′ | 0〉.

On the other hand, we can use the momentum operator P to express φ(0, σ) as

φ(0, σ) = e−iPσφ(0, 0)eiPσ.

Inserting now in the expression of the correlation function the completeness relation
of the eigenstates | n, k〉 of the energy and the momentum, one has

〈φ(w, w̄)φ(w′, w̄′) =
∑
n,k

| 〈0 | φ(0, 0) | n, k〉 |2 e−(En−E0)(τ−τ ′)+ik(σ−σ′). (10.9.10)

Comparing with (10.9.9), one derives that the energy and the momentum of these
states are given, as expected, by

En = E0 + 2π(x+N + N̄)/L, pn = 2π(s+N + N̄)/L (10.9.11)

with E0 = −πc/(6L). The matrix element of the operator φ on the ground state, here
denoted by | φ〉, is

〈 0 | φ(0, 0) | φ〉 =
(

2π
L

)x
, (10.9.12)

while the matrix elements on the descendant states are given by

| 〈 0 | φ(0, 0) | φ,N, N̄〉 |2 =
(

2π
L

)2x

aN aN̄ . (10.9.13)

The same considerations can be made for the three-point functions of the primary
fields. Trasforming their expression from the plane to the cylinder and expanding it
for τ1 
 τ2 
 τ3, we have

〈φi(τ1, σ1)φj(τ2, σ2)φk(τ3, σ3)〉 = Cijk

(
2π
L

)xi+xj+xk

e−2πxi(τ1−τ2)/L e−2πxk(τ2−τ3)/L

× e2πisi(σ1−σ2)/L e2πisk(σ2−σ3)/L. (10.9.14)

Comparing this expression with the one obtained by the operatorial formalism, one
can conclude that the structure constants Cijk of the primary fields is given by the
matrix element of the lowest energy states of the conformal families

〈φi | φ(0, 0) | φk〉 = cijk

(
2π
L

)xj

. (10.9.15)

Its derivation is left as an exercise.
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Appendix 10A. Moebius Transformations

In this appendix we discuss some important aspects of the Moebius trasformations.
They are closely related to the group of isometries of the hyperbolic plane and three-
dimensional hyperbolic surfaces. An important subgroup of these transformations is
given by the modular group that plays an important role in the classification of the
partition functions of the conformal theories.

As discussed in the text, the Moebius transformations are given by

w(z) =
az + b

cz + d
, (10.A.1)

with a, b, c, d complex numbers that satisfy ad − bc �= 0. Since multiplying all these
numbers by a common factor does not alter the mapping (10.A.1), we can always
assume that they satisfy the condition

ad− bc = 1. (10.A.2)

Any Moebius trasformation, which is not simply a linear function, can be obtained as
the composition of two linear transformations and one inversion. In fact, if c = 0, the
map is linear. If, on the contrary, c �= 0, it can be written

w(z) =
a

c
+

bc− ad

c(cz + d)
. (10.A.3)

This expression shows that the original mapping can be decomposed into a sequence
of the three transformations

z1 = cz + d, z2 =
1
z1
, w =

a

c
+
bc− ad

c
z2. (10.A.4)

Group structure. The Moebius transformations form a group. This means that the
class of these functions contains the identity and the inverse transformations and,
furthermore, that the product of two Moebius transformations belongs to the same
set. It is easy to prove this statement. With the choice b = c = 0, a = d = 1, we
obtain the identity transformation w(z) = z. To determine the inverse, we need to
solve the equation w(z) = f(z) for the variable z in terms of in w, with the final result
(expressed in the variable z) given by

dz − b

−cz + a
. (10.A.5)

This corresponds to the substitutions a → d, b → −b, c → −c and d → a. As
a by-product of this computation, one obtains that the combination ad − bc is an
invariant quantity. Consider now the product of two transformations: let z2 = f2(z)
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and w = f1(z2) be the two transformations with parameters ai, bi, ci, di (i = 1, 2). The
final result is given by

f3(z) =
a3z + b3
c3z + d3

, (10.A.6)

with
a3 = a1a2 + b1c2 , b3 = a1b2 + b1d2
c3 = c1a2 + d1c2 , d3 = c1b2 + d1d2.

(10.A.7)

These composition laws can be elegantly expressed in terms of a matrix algebra, as-
sociating to the transformation (10.A.1) the matrix

W =
(
a b
c d

)
. (10.A.8)

The condition (10.A.2) becomes det W = 1. Hence the inverse matrix exists and is
given by

W−1 =
(
d −b
−c d

)
, (10.A.9)

which corresponds to (10.A.5). It is also simple to see that the composition law (10.A.7)
corresponds to the usual matrix multiplication law. The decomposition (10.A.4) im-
plies that any Moebius transformation is either linear or it can be decomposed as
W1W2W3, where Wi are expressed by the matrices

W1 =
(
a1 b1
0 1

)
, W2 =

(
0 1
1 0

)
, W3 =

(
a3 b3
0 1

)
. (10.A.10)

Harmonic ratio. It is immediate to show that the harmonic ratio of four distinct
points z1, . . . , z4 is invariant under a Moebius map, namely

(w1 − w4)(w3 − w2)
(w1 − w2)(w3 − w4)

=
(z1 − z4)(z3 − z2)
(z1 − z2)(z3 − z4)

, (10.A.11)

where the wi are the images of the points zi under the mapping (10.A.1). Note that
this equation has an important consequence. Namely, imposing w4 = w e z4 = z, we
have

(w1 − w)(w3 − w2)
(w1 − w2)(w3 − w)

=
(z1 − z)(z3 − z2)
(z1 − z2)(z3 − z)

, (10.A.12)

which can be written in the form (10.A.1), where the coefficients a, b, c, d are uniquely
fixed in terms of the points zi and wi. This means that a Moebius trasformation is
uniquely determined once we fix the mapping of three different points in the complex
plane. A close look at eqn (10.A.1) shows that the point z = −b/a is mapped onto the
point w = 0, the point z = −d/c onto the point at infinity w = ∞ and, finally, the
point at infinity of the z-plane onto the point w = a/c.
Circles onto circles. An important geometrical property of the Moebius transforma-
tions is that they map circles onto circles, including in this terminology also straight
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lines, regarded as circles of infinite radius.13 To prove this, it is sufficient to show
that each of the three elementary transformations (10.A.4) in which any Moebius
transformation can be decomposed, has this property. Let’s write initially the general
expression of a line and a circle in complex coordinates: for a straight line we have

ax+ by + c = 0, a, b, c ∈ � (10.A.13)

and using z = x+ iy, z̄ = x− iy, it reads

Az + Ā z̄ + c = 0, A =
a− ib

2
. (10.A.14)

For a circle of radius r, whose center is in z0, we have (z − z0)(z̄ − z̄0) = r2, namely

z z̄ +Bz̄ + B̄z + C = 0, B = −z0, C = |B|2 − r2. (10.A.15)

Under a translation and a rotation, expressed generally by the transformation z →
az + b, both (10.A.14) and (10.A.15) keep their form. Under the inversion z = 1/w,
z̄ = 1/w̄, eqn (10.A.14) becomes

cww̄ +Aw̄ + Āw = 0. (10.A.16)

If c = 0 (the original line passes through the origin), this equation defines a new
straight line that passes through the origin. Vice versa, if c �= 0, the equation above
defines a circle of radius |A|/|c|, centered at −A/c. Acting now with an inversion
transformation on (10.A.15), it becomes

Cw w̄ +Bw + B̄w̄ + 1 = 0. (10.A.17)

If C = 0 (this corresponds to the original circle that passes through the origin) we
have a straigh line. Otherwise, it defines a new circle, with center at z0 = −B̄/C and
radius r2 = |B|2/|C|2 − 1/C.

Closely related to the property discussed above, there is the transformation law
that involves the internal and external points of the circles. Let Di be the set of
internal points of the circle C in the z-plane and De the set of its external points, with
an analogous definition of D′

i and D′
e for the points relative to the circle C ′ in the

w-plane, in which the circle C is mapped. There can be only two cases: (i) the first,
in which Di is mapped onto D′

i and correspondingly De onto D′
e; (ii) the second, in

which Di is mapped onto D′
e while De onto D′

i. The proof is left as an exercise.
Symmetric points. We also mention, without proof, another characteristic property
of the Moebius map: it transforms symmetric points with respect to a circle onto
symmetric points of the image circle. Two points p and q are symmetric with respect
to a circle of center z0 and radius r if z0, p and q are aligned in the given order, with
the distances |z0 − p| and |z0 − q| that satisfy the condition (see Fig. 10.12)

|z0 − p| |z0 − q| = r2. (10.A.18)

13This is a natural assumption on the Riemann sphere associated to the complex plane.
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p

q

z
0

Fig. 10.12 Symmetric points p and q with respect to a circle of radius r.

Denoting by w0 the center of the image circle, R its radius, and p′ and q′ the image
points of p and q, one finds that

|w0 − p′| |w0 − q′| = R2. (10.A.19)

Fixed points. It is interesting to observe that the Moebius transformations can also
be characterized by the properties of their fixed points. These are the points left
invariant by the map (10.A.1)

z = w(z). (10.A.20)

They can be of four different types: parabolic, elliptic, hyperbolic, and lossodromic.
This classification has both a geometrical and algebraic meaning, as shown by the
figures given below. The different classes can be distinguished by the trace TrM = a+d
of the matrix M . In more detail, the Moebius transformations are

• parabolic, if a+ d = ±2;
• elliptic, if a+ d is a real number, with | a+ d | ≤ 2;
• hyperbolic, if a+ d is a real number, with | a+ d | ≥ 2;
• lossodromic, if a+ d is a complex number.

Since the trace of a matrix is invariant under a conjugation transformation

M → U−1MU, (10.A.21)

where U is also a Moebius transformation, all members of a conjugate class are of the
same type.

Solving the second-order algebraic equation (10.A.20) and denoting the two roots
as γ1,2, we have

γ1,2 =
(a− d) ±

√
(a− d)2 + 4bc
2

=
(a− d) ±

√
(a+ d)2 − 4
2

, (10.A.22)

where we have used the relation ad − bc = 1. Except for the trivial cases c = 0, and
a = d, or b = c = 0, in which there is an infinite number of fixed points (since the
transformation is the identity), there are in general two distinct fixed points. However
they coalesce when

(TrM)2 = (a+ d)2 = 4. (10.A.23)
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Fig. 10.13 Transformation of the complex plane under a Moebius map of parabolic type.

Let us consider the two cases separately. When the two fixed points coincide, we are
in the presence of parabolic transformations. All these transformations are conjugated
to the matrix

Mp =
(

1 1
0 1

)
. (10.A.24)

If γ denotes the only fixed point, their general form is

1
w − γ

=
1

z − γ
+ β, (10.A.25)

where β is a free parameter related to the translations. In the parabolic case we have
that: (i) any circle that passes through the fixed point is transformed onto a tangent
circle that passes through the fixed point; (ii) any family of tangent circles is then
transformed into itself; (iii) the internal region of each circle is transformed onto itself.
Under this class of transformations the way in which the plane changes is shown in
Fig. 10.13.

When there are two distinct fixed points, eqn (10.A.12) implies

w − γ1

w − γ2
= κ

z − γ1

z − γ2
, (10.A.26)

where κ is a constant that depends on γ1, γ2, z2, and w2. Hence, the general expression
of a Moebius trasformation with two distinct fixed points depends on an additional
constant κ. Using the conjugation transformation, the two points γ1,2 can be mapped
one at 0 and the other to ∞, Consequently, all these transformations are conjugated
to the matrix

M =
(
λ 0
0 λ−1

)
(10.A.27)

with λ2 = κ. This matrix corresponds to the mapping w = κz. For this reason,
the constant κ is called the multiplier of the transformation. We have an elliptic
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Fig. 10.14 Transformation of the complex plane under a Moebius map of elliptic type.

transformation when
0 ≤ (a+ d) ≤ 4. (10.A.28)

This condition is equivalent to |κ| = 1, namely κ = eiα, with α a real parameter.14 In
this case we have the following properties: (i) an arc of a circle passing through the
fixed points is transformed to another arc of a circle passing through them but rotated
by an angle α with respect to the original one; (ii) each circle orthogonal to the circles
passing through the fixed points is transformed onto itself and the same holds for its
internal region. The nature of this transformation is shown in Fig. 10.14.

We have a hyperbolic transformation when

(a+ d)2 ≥ 4, (10.A.29)

namely when κ is a real number. Note that w′(γ1) = κ whereas w′(γ2) = κ−1 so
that, if κ > 1, γ1 is a repulsive point, whereas γ2 is an attractive point. Their role
is swapped if κ < 1. For the hyperbolic transformations we have: (i) each circle that
passes through the fixed points is transformed onto itself, namely each of the two
arcs of which the circle is composed is mapped on itself; (ii) the internal region of a
circle passing through the fixed points is mapped onto itself; (iii) each circle that is
orthogonal to a circle passing through the fixed points is transformed to an analogous
circle. The way the hyperbolic transformations act is shown in Fig. 10.15.

Finally, we have a lossodromic transformation in the remaining cases, namely when
(TrM)2 does not belong to the interval [0, 4]. In this case the multiplier is given by
κ = Aeiα. Hence its action is a combination of the motions shown in Figs 10.14 and
10.15. Each arc passing through the fixed points is transformed to a similar arc but
rotated by α, while a circle orthogonal to the circles passing through the fixed points is
transformed onto another orthogonal circle. The lossodromic transformations do not
have, in general, fixed circles expect in the case in which α = π.

14Since the multiplier of Mn is κn, the only Moebius transformations of finite order are elliptic and
they correspond to rational values of α.
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Fig. 10.15 Transformation of the complex plane under a Moebius map of hyperbolic type.

Let’s now discuss two particular examples of Moebius transformations that may be
useful later on. The first is the transformation that maps the upper half-plane Im z > 0
in the internal region of the circle |w| < 1. Its general expression is

w(z) = λ
z − α

z − ᾱ
, |λ| = 1, Imα > 0. (10.A.30)

To prove that the upper half-plane is mapped onto the internal points of the circle,
consider the points along the real axis. For those points we have |z−α| = |z− ᾱ|, and
therefore they are mapped to the points of the circle |w| = 1. On the other hand, the
point z = α is transformed onto the origin w = 0. For the properties of the Moebius
map discussed above, this is sufficient to conclude that any other point of the domain
Im z > 0 is mapped inside the circle. Note that the point z = ᾱ is mapped onto
w = ∞ and this is enough to conclude that the lower half-plane is transformed onto
the external region of the circle |w| = 1.

The second map we consider is the one that maps the disk |z| < 1 onto the disk
|w| < 1. Its general expression is

w(z) = λ
z − α

ᾱz − 1
, |λ| = 1, |α| < 0. (10.A.31)

Note, in fact, that the points of the circle in the z-plane are expressed by z = eiφ and
for those points we have

|w| = |λ|
∣∣∣∣ eiφ − α

ᾱeiφ − 1

∣∣∣∣ =
|α− eiφ|
|ᾱ− e−iφ| = 1. (10.A.32)

Since z = 0 is mapped onto the point λα, with |λα| < 1, this is sufficient to conclude
that all internal points of the circle in the z-plane are mapped onto the internal point
of the circle in the w-plane.
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Problems

1. Operatorial identities
There is a simple example that shows the necessity of considering the operatorial
identities only in a weak sense, i.e. true only for the matrix elements. Consider an
interacting scalar field ϕ(x) and suppose that for x0 → −∞ its interactions vanish. In
this case it seems natural to impose the operatorial identity

lim
x0→−∞ϕ(x) = ϕin(x)

where ϕin(x) is a free bosonic field. However, this leads to a contradiction. In fact, if
the relation above were true, we would have

lim
x0→−∞ lim

y0→−∞〈0 | φ(x)φ(y) | 0〉 = 〈0 | ϕin(x)ϕin(y) | 0〉.
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Since ϕin(x) is a free field, the right hand side is the usual progagator Gfree(x− y) of
a scalar free field

Gfree(x− y) =
∫

ddp

(2π)d
1

p2 −m2 e
ip(̇x−y).

a Use the Lorentz invariance to fix the dependence on the coordinates of the propa-
gator G(x− y) of the interacting field ϕ(x).

b Argue that the propagator does not coincide in the limit x0 → −∞ with
Gfree(x− y).

2. Correlation functions
Assuming the validity of the operator product expansion, show that all the correlation
functions of a massless field theory can be expressed in terms of the propagators and
the structure constants.

3. Laplace equation and conjugate harmonic functions
1. Show that the real and imaginary parts of an analytic function of a complex

variable z
f(z) = Ω(x, y) + iΨ(x, y)

are both harmonic functions, i.e. they satisfy the Laplace equation

∇2Ω = ∇2Ψ = 0.

2. Vice versa, use the Cauchy–Riemann equations to show that if Ω(x, y) is a function
that satisfies the Laplace equation, then there exists another harmonic function
Ψ(x, y) (called the conjugate function of Ω) such that f(z) = Ω+iΨ is an analytic
function of complex variable.

4. Hydrodynamics of an ideal fluid in two dimensions
Consider the stationary motion of an incompressible and irrotational fluid in two
dimensions. Denoting by �v(x, y) = (v1, v2) the vector field of its velocity at the point
(x, y) of the plane, it satisfies

�∇�̇v = 0, �∇ ∧ �v = 0.

1. Show that these conditions imply the existence of a potential Ω that satisfies the
Laplace equation. Moreover, show that, introducing the conjugate function Ψ and
defining f(z) = Ω + iΨ (the so-called complex potential), one has

df

dz
=

∂Ω
∂x

+ i
∂Ψ
∂x

=
∂Ω
∂x

− i
∂Ω
∂y

= v1 − iv2 = v̄.

The complex vector field of the velocity is then given by

v =
(
df

dz

)
.
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Fig. 10.16 Conformal map of two domains.

2. Study the flux lines of the velocity associated to the analytic function

f(z) =
iγ

2π
ln z

and show that the vector field of the velocity corresponds to a vortex, localized
at the origin. Give an interpretation of the parameter γ.

3. Study the flux lines of the velocity relative to the potential

f(z) = v0

(
z +

a2

z

)
+
iγ

2π
ln z.

Determine the points where the velocity vanishes and study their location by
varying the parameter γ.

5. Moebius transformations
Show that the transformation w = (z − a)/(z + a), a =

√
c2 − ρ2 with c and ρ real

and 0 < ρ < c, maps the domain delimited by the circle |z− c| = ρ and the imaginary
axis, onto the annulus domain delimited by |w| = 1 and a concentric circle of radius
δ, as shown in Fig. 10.16. Find, in particular, the value of δ.

6. Operatorial expansion in the channel of the identity operator
Let φi(z) a primary field of a conformal field theory with central charge c. Let Δi be
its conformal weight. Prove that the Ward identity uniquely fixes the first terms of
the operator expansion in the channel of the identity operator, namely

φi(z)φi(w)
1

(z − w)2Δi

[
I +

2Δi

c
T (w) + · · ·

]
.

7. Casimir effect
Consider two parallel horizontal planes, separated by a distance a along the axis z.
Suppose that a massless field theory is defined between the two planes, with boundary
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conditions that ensure a non-zero value of the expectation value of the stress–energy
tensor Tμν , tμν(t, �x) ≡ 〈0 | Tμν(t, �x) | 0〉. The system is assumed to be time invariant.
Thanks to the symmetry of the problem, tμν can be written in terms of the metric
tensor gμν and the tensors made up of the unit vector ẑμ = (0, 0, 0, 1).

1. Write the most general expression of tμν based on the considerations given above.
2. Show that the conservation law ∂μTμν(t, �x) = 0 and the zero trace condition

of Tμν uniquely determine tμν up to a constant. Use dimensional analysis to fix
this constant (up to a numerical coefficient) in terms of the only dimensional
parameter of the problem.

3. Use the final form of tμν to compute the force per unit area between the two
planes.



11
Minimal Conformal Models

Small is beautiful.

Anonymous

11.1 Introduction
In this chapter we discuss a particular class of conformal theories, the so-called
minimal models. The peculiarity of these models consists in the finite number of their
conformal families that close an OPE. The anomalous dimensions of the conformal
fields and the central charge of these theories can be computed exactly and, in par-
ticular, assume rational values. Furthermore, of the minimal models we can explicitly
compute both the correlation functions of the order parameters and the partition func-
tion on a torus, i.e on a cylinder with periodic boundary conditions on both directions.
Their mathematical elegance is accompanied by an important physical interpretation:
as discussed in more detail in Chapter 14, the conformal minimal models describe
the scaling limit of an infinite number of statistical models with a discrete symmetry,
among which we find the Ising model, the tricritical Ising model, the Potts model, the
Yang–Lee edge singularity, etc. In addition, the unitary minimal models can be put
in correspondence with the critical Landau–Ginzburg theories with power interaction
φ2(p−1) (p = 3, 4, . . .): as a matter of fact, they provide the exact solution of these the-
ories at their multicritical point. For all these reasons, the minimal conformal models
play a crucial role in the modern understanding of critical phenomena.

This chapter focuses on the general discussion of the minimal models of the Virasoro
algebra. We will initially highlight the presence of null vectors in the representations
of the Virasoro algebra corresponding to discrete values of the conformal dimensions
and the central charge, encoded in the Kac determinant of the so-called degenerate
fields. Later we will discuss the fusion rules that derive from the particular structure
of the Verma modulus of the degenerate fields and the Coulomb gas formalism that
allows us to compute the exact expressions of the correlation functions. Finally, we will
study the modular invariance of these models and the partition functions compatible
with this symmetry. Further aspects of these models will be addressed in the following
chapters.

11.2 Null Vectors and Kac Determinant
The starting point in the study of minimal models is the presence of particular null-
vectors inside the conformal families. This circumstance is of utmost importance not
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only for the study of conformal theories at the critical point but also for their off-critical
deformations. For this reason, it deserves to be investigated in detail.

From Section 10.8, we know that a conformal family1 is identified by the vector
| φΔ〉 associated to the primary field φΔ. This vector satisfies the conditions

L0 | Δ〉 = Δ | Δ〉
Ln | Δ〉 = 0 n = 1, 2, . . .
〈Δ | Δ〉 = 1.

(11.2.1)

A conformal family is built on such a vector and on all its descendants obtained
by applying to it an ordered string of creation operators L−n. The vector | Δ〉, as
already noticed in the previous chapter, plays the role of highest weight vector of the
Virasoro algebra. For arbitrary values of Δ and c, all the descendant vectors are linearly
independent and the set of all these vectors form then an irreducible representation
of the Virasoro algebra. However, for particular values of Δ and c, there are some
null-vectors: in such a case, to have an irreducible representation we have to factorize
with respect to these states. Before we describe the general case, it is convenient to
familiarize ourselves with some simple examples of null-vectors at the lowest levels of
the conformal families.

Let’s start from the level N = 1. Given the primary state | Δ〉, at this level there
is only one descendant state given by | X1〉 = L−1 | Δ〉. If we request that this is a
null-vector, its norm must vanish

〈X1 | X1〉 = 〈Δ | L1L−1 | Δ〉
= 2〈Δ | L0 | Δ〉 = 2Δ〈Δ | Δ〉 = 0.

This equation has the only solution Δ = 0. In other words, the only conformal family
that has a null-vector at level N = 1 is the family of the identity operator I.

A more interesting situation occurs at the level N = 2. In this case there are two
possible descendant states, the first given by L2

−1 | Δ〉 and the second by L−2 | Δ〉.
Let’s determine the conditions for which a linear combination of these states

| X2〉 = (L−2 + αL2
−1) | Δ 〉 (11.2.2)

gives rise to a null-vector. If | X2〉 = 0, the same is true for the vectors obtained by
applying to it either L1 or L2. In the first case, using the commutation relations of
the Virasoro modes and the properties of the primary state | Δ〉, we have

L1 | X2〉 = (L−2L1 + 3L−1 + 2a(L−1L0 + L0L−1)) | Δ〉
= (3 + 2a(2Δ + 1))L−1 | Δ〉 = 0.

This condition then fixes the coefficient a of the linear combination (11.2.2)

a = −3
2

1
2Δ + 1

. (11.2.3)

1In this section we focus our attention only on the analytic sector of the theory. As usual, analogous
considerations can be done for the anti-analytic sector.
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Now applying L2 to | X2〉 and again making use of the commutation relations of the
Virasoro modes and the conditions of | Δ〉, we get

[L2, L−2] | Δ〉 + a[L2, L
2
−1] | Δ〉 =

(
4L0 +

c

2

)
| Δ〉 + 3aL1L−1 | Δ〉

=
(
4L0 +

c

2
+ 6aL0

)
|Δ〉 =

(
4Δ +

c

2
+ 6aΔ

)
|Δ〉 = 0

namely

c = −4Δ(2 + 3a) =
2Δ(5 − 8Δ)

2Δ + 1
. (11.2.4)

Summarizing the result of this computation, if the central charge c of the conformal
model and the conformal weight Δ of the field under scrutiny are related by the
condition (11.2.4), then there exists a linear combination of the descendants at the
level N = 2 of this primary field φΔ that leads to a null-vector.

It is worth pointing out that there is a general way to determine whether or not
a null-vector at the level N of a conformal family exists. It consists of computing
the zeros of the determinant of the Gram matrix at level N (see Section 10.8.1). For
N = 2, the Gram matrix is given by

M (2) =
(

4Δ(2Δ + 1) 6Δ
6Δ 4Δ + c/2

)

and its determinant can be written as

||M (2)|| = 2(16Δ3 − 10Δ2 + 2cΔ2 + cΔ) = 32(Δ − Δ1,1)(Δ − Δ1,2)(Δ − Δ2,1)

where

Δ1,1 = 0, Δ(1,2),(2,1) =
1
16

(5 − c) ±
√

(1 − c)(25 − c). (11.2.5)

Note the appearance of the solution Δ1,1 = 0, whose presence was expected. It corre-
sponds to the possibility of having a null-vector at level N = 1 that, obviously, will also
give rise to a null-vector at level N = 2, if we act on it by the arising operator L−1.
The other two zeros Δ1,2 and Δ2,1 correspond to the condition (11.2.4) previously
derived.
Kac determinant. Remarkably, the zeros of the Gram matrix of level N can be
computed exactly. This important mathematical result, due to M. Kac, is a crucial
step in the development of two-dimensional conformal theories. The corresponding
formula, the so-called Kac determinant, is given by

detM (N) = AN

∏
r,s≥1;rs≤N

[Δ − Δr,s]
P (N−rs)

, (11.2.6)

where P (N − rs) is the number of partitions of the integer number (N − rs) and
AN is a positive constant that is not important for the discussion that follows. The
zeros Δr,s can be parameterized in different ways. One of them, particularly useful for
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the Coulomb gas formulation that we will discuss later, is expressed in terms of two
parameters, called charges α±

Δr,s(c) = Δ0 +
1
4
(rα+ + sα−)2,

Δ0 =
1
24

(c− 1), (11.2.7)

α± =
√

1 − c±
√

25 − c√
24

.

Equivalently, imposing

α+ =
√
t, α− = − 1√

t

the previous conformal quantities can be expressed as

c = 13 − 6
(
t+

1
t

)
(11.2.8)

Δr,s =
1
4
(r2 − 1)t+

1
4t

(s2 − 1) − 1
2
(rs− 1).

Note that, fixing the value of the central charge, there are two possible values of t:

t = 1 +
1
12

[
1 − c±

√
(1 − c)(25 − c)

]
,

but we can choose any of the two, since this does not change the Kac determinant.
The parameter t is real only in the cases c < 1 or c > 25, while it is generally complex
in the interval 1 < c < 25.

A third way to write the conformal data consists of the parameterization of the
central charge and the zeros of the Kac determinant given by

c = 1 − 6
q(q + 1)

(11.2.9)

Δr,s =
[(q + 1)r − qs]2 − 1

4q(q + 1)

where the real parameter q is related to the central charge c by

q = −1
2
± 1

2

√
25 − c

1 − c
. (11.2.10)

Note that the Kac formula does not predict the eigenvalues of the matrix M (N) but
only their product. In fact, at each level N , the number of roots Δr,s is larger than
the number P (N) of its eigenvalues. Another important observation is that the first
null-vector of the conformal family V (c,Δr,s) occurs at the level N = rs, since the
combinatoric function P (N − rs) vanishes, by definition, for N < rs. The multiplicity
of the zeros, given by P (N−rs), has the same origin as the one previously pointed out
in the explicit computation of the null-vectors at level N = 2: namely, among the zeros
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of the polynomial at level N , there are also those corresponding to the null-vectors of
lower levels. At level N , there are in fact the null-vectors generated by the P (N − rs)
combinations of L−n1 . . . L−nk

, with
∑
ni = N − rs, applied to the null-vectors of

level rs.

11.3 Unitary Representations

With the explicit formula of the Kac determinant, one can identify the values of
c and Δ that give rise to the unitary irreducible representantions of the Virasoro
algebra, in which there are no states with negative norm. Before proceeding with the
mathematical analysis of this problem, it should be said that, strictly speaking, the
unitary condition is not necessary in statistical mechanics: many non-unitary models
find their applications in the discussion of interesting statistical mechanics, also pro-
viding a useful generalization of ordinary quantum field theories. In the sections to
come, we will see that there are certain statistical models that require the presence of
negative anomalous dimensions.

Coming back to the problem of determining the unitary representations, from the
mathematical point of view we have to initially determine those regions of c and Δ
in which the Kac determinant is negative: in these regions there are definitely states
whose norm is negative and the corresponding representations are not unitary. Vice
versa, in the regions where the determinant is positive, a further analysis is needed to
exclude the presence of such negative norm states, since an even number of them ends
up in a positive value of the determinant.

It is easy to see that for c < 0 the corresponding conformal theories are non-unitary:
in fact it is sufficient to consider the stress–energy tensor of these theories, associated
to the descendant L−2 | 0〉 of the identity family, to see that the norm of this state is
given by

〈0 | L2 L−2 | 0〉 =
c

2
(11.3.1)

and, for c < 0, this is a negative quantity.
For c > 1, all representations with Δ > 0 are unitary. It is necessary to distinguish

two cases: (i) 1 < c < 25 and (ii) c > 25. In the first case, expressing Δr,s(c) as

Δr,s =
1 − c

96

⎡
⎣((r + s) + (r − s)

√
25 − c

1 − c

)2

− 4

⎤
⎦ ,

one can see that Δr,s either has an imaginary part or, for r = s, is a negative quantity.
For c > 25, they are instead all negative. The non-zero value of the Kac determinant in
the region {c > 1; Δ > 0} implies that all eigenvalues of M (N) are positive. In fact, for
large values of Δ, the Gram matrix is dominated by its diagonal elements, i.e. those
with the higher powers of Δ. Since these elements are all positive in this region, this
shows that the eigenvalues of M (N) are all positive for large values of Δ. Moreover,
the determinant never vanishes in the region c > 1 and Δ > 0, implying that all its
eigenvalues remain positive in the entire region.
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For c = 1, the Kac determinant vanishes at Δn = n2

4 , with n an integer number,
but otherwise it is never negative; even in this case, there is no problem in having
unitary representations for Δ > 0.

Hence, the only subtle case is posed by the analysis of the region 0 < c < 1 and
Δ > 0. This problem has been studied by D. Friedan, Z. Qiu, and S. Shenker,2 and
their results can be summarized as follows: all point of the region R : {(c,Δ) | 0 <
c < 1; Δ > 0} correspond to non-unitary representations, except the discrete series
associated to these values of the central charge and the conformal weights

c = c(q) = 1 − 6
m(m+ 1)

, q = 2, 3, 4, . . . (11.3.2)

Δ = Δr,s(q) =
[(q + 1)r − qs]2 − 1

4q(q + 1)
, (1 ≤ r ≤ q, 1 ≤ s ≤ q + 1)

where m is an integer number. These discrete values of the central charges and con-
formal weights define the so-called conformal minimal unitary models, in the following
denoted by Mm.

11.4 Minimal Models
In the interval 0 < c < 1, the unitary condition selects the discrete set of values
(11.3.2). In this section we shall see that is possible to introduce a more general class
of minimal models, from now on denoted by Mp,q, whose central charge and conformal
weights are expressed by the rational values

c = 1 − 6
(p− q)2

pq
, (p, q) = 1 (11.4.1)

Δr,s =
[(pr − qs]2 − (p− q)2]

4pq
, (1 ≤ r ≤ q − 1, 1 ≤ s ≤ p− 1)

where p and q are two coprime integers, i.e. without common divisors. Note that in
all these models we have Δ1,1 = 0 and this conformal weight corresponds to the
identity operator I. The unitary minimal models are recovered by the choice p = q+1
in eqn (11.4.1). In all other cases, the minimal conformal theories are non-unitary,
characterized by a negative value of the central charge and some of its conformal
weights. The lowest negative conformal weight is given by

Δmin = Δ1,n = Δq−1,p−n =
1 − (p− q)2

4pq
. (11.4.2)

Note that, even though the central charge of these minimal models is negative, their
effective central charge

ceff = c− 24Δmin = 1 − 6
pq

(11.4.3)

is instead always a positive quantity.

2D. Friedan, Z. Qiu, S. Shenker, Conformal invariance, unitarity and two-dimensional critical
exponents, Phys. Rev. Lett. 52 (1984), 1575.
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As anticipated in the introduction to this chapter, the conformal minimal models
satisfy a series of important properties and they are nowadays the most studied and
understood conformal theories. In particular, they play an essential role both in the
qualitative and quantitative analysis of the phase transitions that take place in two-
dimensional systems. To orientate the reader in the discussion to come, it is convenient
to briefly summarize their main features:

1. in the minimal models, the number of conformal families is finite and the confor-
mal weights are expressed by the rational numbers given in eqn (11.4.1);

2. the operator product expansion of any pair of conformal fields of these theories
involves only a finite number of the operators of the same minimal model;

3. the correlation function of all the conformal fields satisfies a set of linear differen-
tial equations that can be exactly solved;

4. the structure constants of the conformal algebra can be exactly computed;
5. their partition functions on a torus geometry can be exactly determined.

Finally, these minimal conformal models provide the exact solution, at criticality, of
a significant series of statistical models, such as the Ising model, the tricritical Ising
model, the Potts model, etc., and among the non-unitary models, the Yang–Lee edge
singularity, self-avoiding random walks, percolation, etc. Thanks to them, there has
been a great advance in the comprehension of the classes of universality. Let’s now go
on with the detailed discussion of the aspects summerized above.

11.4.1 Kac Table

The zeros of the Kac determinant, expressed for instance by eqn (11.2.7), can be
graphically associated to a set of points with integer coordinates (r, s) of the first
quadrant of a cartesian plane. For the nature of these points, it is naturally to define a
lattice on this plane, as in Fig. 11.1. This graphical representation is extremely useful
to illustrate some remarkable properties of the Kac formula of the minimal models.

The dashed line in Fig. 11.1 has a slope tan θ = −α+/α−. If δr,s stands for the
distance of a point (r, s) of the lattice from this straight line, the zeros of the Kac
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Fig. 11.1 Kac table.
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determinant can be written as

Δr,s = Δ0 +
1
4
(α+ + α−)2 δ2r,s. (11.4.4)

When the slope is irrational, the line obviously never meets a point of the lattice. On
the contrary, if it is rational, there exist two coprime integers p and q, with p > q,
such that

pα− + qα+ = 0. (11.4.5)

In this case, the line passes through the point (q, p). In the rational case, it is easy to
see that the zeros of the Kac determinant satisfy the properties

Δr,s = Δr+q,s+p,
Δr,s = Δq−r,p−s.

(11.4.6)

These relations can be easily interpreted from a geometrical point of view: the point
(r, s) of the lattice has the same distance from the line of slope p/q of the infinite series
of points (r + nq, s+ np) obtained by reflection with respect to the same line.

We can express the central charge and conformal weights according to the formula
(11.4.1) that identifies the most general minimal models. Note that, in addition to
eqns (11.4.6), there are also the relations

Δr,s + rs = Δq+r,p−s = Δq−r,p+s

Δr,s + (q − r)(p− s) = Δr,2p−s = Δ2q−r,s.
(11.4.7)

These expressions imply that the null-vector at the level N = rs of the conformal
family Vr,s is itself a highest weight vector of the Virasoro algebra, because its conformal
weight is also expressed in terms of the Kac table! Moreover, besides the null-vector
at the level rs, the conformal family Vr,s also contains another null-vector at the level
(q − r)(p − s). In turn, these two null-vectors generate additional null-vectors and so
on. Therefore, inside the conformal family of the primary field φr,s, there is an infinite
nested structure of null-vectors. This null-vector hierarchy deeply influences both the
correlation functions and the characters of such primary operators.

11.4.2 Differential Equations

For the minimal models, either unitary or non-unitary, the conformal weights coincide
with the zeros of the Kac determinant. Let’s study how this circumstance leads to a
result of great relevance for the correlation functions of their primary fields.

The primary field associated to Δr,s has its first null-vector at the level N = rs:
this vector is expressed by a particular linear combination of the P (rs) descendant
states φ(n1,n2,...)

r,s of φr,s present at that level. Denoting the null-vector by φnullr,s , its
general expression is

φnullr,s (z) = [a1L
rs
−1 + a2L

rs−2
−1 L−2 + · · · arsL−rs]φr,s(z) =

∑
aiφ

(n1,n2,...)
r,s , (11.4.8)

where all the coefficients ai can be fixed by imposing the linear dependence of the
vectors involved in the expression above. Any correlation functions in which such a
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null-vector enters obviously vanishes

〈φnullr,s (z)φ1(z1) . . . φn(zn)〉 = 0. (11.4.9)

On the other hand, we have seen in Section (10.8.2) that the correlation functions of
the descendant fields φ(n1,n2,...)

Δ at the levelN of a primary field are obtained applying a
linear differential operator of order N to the correlation functions of the primary fields
alone. Since the null-vector is also expressed by a linear combination of descendant
field, once we identify the linear differential operator associated to each of them and
collect all the terms, we arrive at the following important conclusion: by virtue of
the null-vector at level rs, the correlation functions of the primary field φr,s(z) are
solutions of a linear differential equation of order rs:

Drs〈φr,s(z)φ1(z1) . . . φn(zn)〉 = 0. (11.4.10)

We have previously observed that the null-vectors of the conformal family Vr,s are
infinite in number and organized in a nested structure. There is, for instance, another
null-vector at the level (q− r)(p− s) and this implies that the correlation functions of
the field φr,s are also solutions of another linear differential equation of order (q−r)(p−
s). All other null-vectors lead to an infinite hierarchy of linear differential equations
satisfied by these correlators

Da〈φr,s(z)φ1(z1) . . . φn(zn)〉 = 0, (11.4.11)

whose order a is equal to the level a of the various null vectors: the explicit form can
be determined making use of the linear combination of the null-vector in terms of the
descendant fields at the level a.

For this underlying structure of linear differential operators, not surprisingly the
OPE of the primary fields of the minimal models are severely constrained.

11.4.3 Operator Product Expansion and Fusion Rules

Let’s initially focus our attention on the conformal field φ1,2 of the minimal models.
Its first null vector occurs at the level N = 2 and its explicit expression is

φnull1,2 (z) =
[
L−2 −

3
2(2Δ1,2 + 1)

L2
−1

]
φ1,2(z). (11.4.12)

Hence the correlation functions of this field satisfy the linear differential equation{
3

2(2Δ1,2 + 1)
∂2

∂z2 −
n∑
i=1

[
Δi

(z − zi)2
+

1
z − zi

∂

∂zi

]}
〈φ1,2(z)φ1(z1) . . . φn(zn)〉 = 0.

(11.4.13)
Consider now the operator product expansion of the field φ1,2(z) with any other pri-
mary field φΔ(z1)

φ1,2(z)φΔ(z1) =
∑
Δ′

CΔ′
(1,2),Δ (z − z1)Δ

′−Δ−Δ1,2 [φΔ′(z1) + · · · ] . (11.4.14)

This expansion has to be compatible with the differential equation satisfied by the field
φ1,2(z). Inserting this operator expansion in eqn (11.4.13) and the most singular term
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in this expression equal to zero, we arrive at the characteristic equation associated to
the differential equation

3x(x− 1)
2(2Δ1,2 + 1

− Δ + x = 0, (11.4.15)

where x = Δ′ − Δ − Δ1,2. This is a second-order algebraic equation that shows that
the OPE of φ1,2 with any other conformal field cannot have more than two conformal
families. Furthermore, it permits us to determine the conformal weight of the primary
field φΔ′ that is generated by the operator expansion with φΔ. Remarkably enough,
if Δ is expressed by one value of the Kac formula, i.e. Δ = Δr,s, then the solutions of
the characteristic equation also belong to the set of values of the Kac table! Namely,
if Δ = Δr,s, the two solutions of the quadratic equations are given by

Δ′ = {Δr,s−1,Δr,s+1} . (11.4.16)

Simplifying the notation of the OPE to its skeleton form, we can write

φ1,2 × φr,s = [φr,s−1] + [φr,s+1], (11.4.17)

and, in particular
φ1,2 × φ1,2 = [I] + [φ1,3]. (11.4.18)

In other words, only degenerate fields enter the OPE of φ1,2 with any of the degenerate
field φr,s. It must be stressed, though, that the result above does not take into account
the actual value of the structure constant: as it is, it only states which conformal
families may possibly enter the OPE. As we will see later, the vanishing of one or
more of the structure constants further reduces the number of conformal families. In
this case we say that a truncation of the OPE has occurred.

Repeating the same analysis for the degenerate field φ2,1 the same conclusions are
reached, the only difference is the swapping of the relative indices. With the same
notation introduced above, we have in fact

φ2,1 × φr,s = [φr−1,s] + [φr+1,s]
φ2,1 × φ2,1 = [I] + [φ3,1].

(11.4.19)

The graphical interpretation of these results is immediate: by using iteratively the
operator product expansion of the operators φ1,2 and φ2,1 it is possible to generate all
the other degenerate fields of the minimal models, i.e. we can move horizontally and
vertically along the Kac lattice, visiting all its points, as shown in Fig. 11.2.

An explicit example of the phenomenon of truncation is provided by the OPE of
the fields φ1,2 and φ2,1. Using the formulas above, either with respect to the first field
and the second one, we have

φ1,2 × φ2,1 = [φ0,2] + [φ2,2]
φ1,2 × φ2,1 = [φ2,0] + [φ2,2].

(11.4.20)

Since the two different ways should lead to the same result, the structure constants
that involve both the fields φ0,2 and φ2,0 must vanish. So, we are in the presence of a
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Fig. 11.2 Action of the operators φ1,2 (dashed line) and φ2,1 (continous line).

truncation of the operator product expansion of φ1,2 × φ2,1 that reduces then to the
expression

φ1,2 × φ2,1 = [φ2,2]. (11.4.21)

We can now iteratively insert the operators φ1,2 and φ2,1, using at the same time
the associativity of the operator algebra, to compute the fusion rules of the other
degenerate fields. Consider, for instance, the product of three fields φ2,1 × φ2,1 × φr,s.
Applying the fusion rules (11.4.19) twice, we get

φ3,1 × φr,s = [φr+2,s] + [φr,s] + [φr−2,s]. (11.4.22)

Analogously, consider φ1,2 × φ1,2φr,s. Using eqn (11.4.17) twice, we arrive at

φ1,3 × φr,s = [φr,s+2] + [φr,s] + [φr,s−2]. (11.4.23)

It is easy to check that these are precisely the fusion rules that are compatible with
the linear differential equations of the third-order satisfied by the fields φ3,1 and φ1,3,
as proposed in Problem 1.
Fusion rule. Carrying on a similar analysis for the other fields, one can reach the
general formula of the fusion rules relative to two arbitrary degenerate fields of the
Kac table

φr1,s1 × φr2,s2 =
min (r1+r2−1,2q−1−r1−r2)∑

r3=|r1−r2|+1

min (s1+s2−1,2p−1−s1−s2)∑
s3=|s1−s2|+1

[φr3,s3 ] (11.4.24)

where both indices are summed in steps of 2. These fusion rules can be written in a
more transparent form noting that they are similar to the fusion rules of two irreducible
representations of spins j and j′ of SU(2). To this end, it is useful to use as indices
ri = 2j1 + 1 and ri = 2j′

i + 1. This similarity explains the null values of the structure
constants for all odd values of r (corresponding to the vector representations of SU(2))
as well as their vanishing when there are two even indices and one odd (corresponding
to two spinor representations and one vector representation). However, there is an
important difference between the fusion rules of conformal field theory and those of
SU(2), as clearly shown by the upper restriction of the two sums that involve the
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parameters q and p. In fact, the fusion rules of the minimal models are not those
of SU(2) but those of the quantum group SUq(2). In the minimal models there are
two quantum groups:3 the first SUq1(2) with q1 = exp(iπq/p) acting on the rows, the
second SUq2(2) with q2 = exp(iπp/q) acting on the column. Since q1 and q2 are both
roots of unity, the representations of the corresponding quantum groups get restricted
and their composition laws are expressed by the fusion rules given above.

11.4.4 Verlinde Algebra

It is important to formulate in a more abstract way the fusion rules for better analyzing
their properties. Denoting by φi a generic primary field, the algebraic structure of the
fusion rules can be expressed by simply putting to 1 all the non-zero structure constants
by

φi × φj =
∑
k

Nk
ij φk, (11.4.25)

where Nk
ij is a set of integers that express the number of independent fusions that

relate φi and φj to the field φk. For the minimal models, these numbers can only be
0 and 1, but for conformal theories with an extended algebra they can be generically
integers.

From their definition, the quantities Nk
ij are symmetric with respect to the indices

i and j. The associativity condition of the algebra (11.4.25) leads to a quadratic
condition for the quantities Nk

ij : this can be derived by the two possible ways of
applying eqn (11.4.25) to the product of three fields

φi × φj × φl =
{∑

kN
k
ijφk × φl =

∑
k,pN

k
ijN

p
klφp

φi ×
∑

kN
k
jlφk =

∑
k,pN

k
jlN

p
ikφp.

(11.4.26)

Using the matrix notation (Ni)kj = Nk
ij and the symmetry with respect to the indices

i, j, the identity of the two expressions above reads

NiNl = NlNi. (11.4.27)

This condition can also be expressed as

Nj Nl =
∑
k

Nk
jlNk. (11.4.28)

The commutativity of the matrices Ni, shown in eqn (11.4.27), implies that all these
matrices can be diagonalized simultaneously and their eigenvalues λ(n)

i form a one-
dimensional representation of the fusion rules. Note that the algebra (11.4.25), known
as the Verlinde algebra, is very similar to the formula that appears in the theory of
finite groups and that rules the composition law of their irreducible representations.
Further properties of the Verlinde algebra can be found in Problem 6 at the end of
the chapter.

3For the notation and the theory of quantum groups, see Section 18.9.
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11.5 Coulomb Gas
Above we have seen that the correlation functions of the primary fields of the minimal
models, for their null-vectors, satisfy a series of linear differential equations. Hence, to
determine the correlators explicitly, one can adopt the following strategy:

1. find the explicit expression of the null-vectors;
2. translate this expression into the corresponding linear differential equation;
3. find its solutions.

All these steps can be explicitly implemented for the minimal models. However, there
exists a more efficient way to find the final expressions of the correlators. The method
has been proposed by Dotsenko and Fateev and it enables us to write down directly the
final expression of the correlation functions without passing through the three steps
given above. It is based on a modified version of the Coulomb gas in two dimensions.
To explain what it consists of, it is necessary to discuss first the conformal field theory
associated to a free massless bosonic field. Further details on this theory will be given
in Section 12.4 of the next chapter.

11.5.1 Free Theory of a Bosonic Field

Consider the action of a free massless scalar field in two dimensions

S =
g

16π

∫
d2x ∂μϕ∂

μϕ. (11.5.1)

The propagator of this theory needs both an ultraviolet and an infrared cut-off, given
respectively by a and R, and it can be written as

G(z, z̄) = 〈ϕ(z, z̄)ϕ(0, 0)〉 =

{
− 2

g log z
a − 2

g log z̄
a , z, z̄ �= 0

− 4
g log R

a , z = z̄ = 0. (11.5.2)

Note that this correlator is also the Green function of a two-dimensional electrostatic
problem, and for this reason, the formalism we are going to present is also known as
the Coulomb gas approach. To simplify the formula to come, in this section we choose
for the coupling constant the value g = 1.

As is evident from the form of its propagator, ϕ(x) is not a conformal field. However,
conformal fields can be constructed in terms of some of its composite operators, as
for instance all derivative fields ∂nz ∂

m
z̄ ϕ or the exponential operators Ṽα = eiαϕ, also

known as vertex operators. The quantity α entering the exponential is also called the
charge parameter. Let’s focus attention on the analytic part of the theory. It is easy
to see that the n-point correlation functions of the vertex operators can be computed
by means of Wick’s theorem or directly by the functional integral, for the action is
quadratic,

n∏
i=1

〈Ṽαi
(zi) 〉 =

( a
R

)(
∑n

i αi)2 ∏
i<j

(zij
a

)−2αiαj

. (11.5.3)

We need to get rid of the two cut-offs. To eliminate the dependence from the ultravi-
olet cut-off, it is sufficient to subtract all the tadpole contributions coming from the
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contractions of the the field ϕ(z) with itself. This can be implemented defining the
renormalized vertex operator

Ṽα(z) → Vα = lim
a→0

a−α2/2 eiαϕ ≡ : eiαϕ : . (11.5.4)

To eliminate the dependence on the infrared cut-off, so as to have a non-zero limit
of the correlation functions when R → ∞, it is necessary to impose the neutrality
conditions of all the charges

n∑
i=1

αi = 0. (11.5.5)

This is in agreement with the well-known result of statistical mechanics that a system
of electric charges is unstable unless it has a zero total charge.

Looking at the two-point correlation functions of the renormalized vertex operators
satisfying the neutrality condition

〈Vα(z)V−α(w)〉 =
1

(z − w)2α2 , (11.5.6)

we can extract the conformal weight of the two vertex operators V±α(z), given by

Δα = Δ−α = α2. (11.5.7)

The analytic component of the stress–energy tensor associated to the action (11.5.1)
is

T (z) = −1
4

: (∂zϕ)2 :, (11.5.8)

and, as we have previously seen, the central charge of this system is C = 1.
One may wonder if it would be possible to modify the Coulomb gas in such a way

as to have values of the central charge different from C = 1 and conformal weights
equal to those of the Kac table of the minimal models. This is indeed possible, as
discussed in the next section.

11.5.2 Modified Coulomb Gas

Consider a vertex operator with charge −2α0 and suppose we insert it in a correlation
function, moving its position to infinity (i.e. on the north pole of the Riemann sphere
associated to the complex plane) using the prescription (10.8.10). With this procedure
we can define a new set of correlators given by

〈〈Vα1(z1) . . . Vαn
(zn)〉〉 ≡ lim

R→∞
R8α2

0 〈V−2α0(R)Vα1(z1) . . . Vαn
(zn)〉. (11.5.9)

Note that to recover the translation invariant of these quantities (which is expressed by
the dependence on the coordinates only through the differences zi−zj), it is necessary
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to place the vertex operator V−2α0 just at infinity. This new set of correlation functions
for the vertex operators Vα1 . . . Vαn

satisfies a different neutrality condition

n∑
i=1

αi = 2α0. (11.5.10)

In agreement with that, the two-point correlation function of the vertex operators is
now given by4

〈Vα(z)V2α0−α(w)〉 =
1

(z − w)2α(α−2α0)
. (11.5.11)

The new conformal weights are then

Δα = Δ2α0−α = α(α− 2α0). (11.5.12)

This result can be directly confirmed by the operator product expansions of the vertex
operators with the new expression of the stress–energy tensor. To derive the new stress–
energy tensor, one should observe that placing a charge at infinity is equivalent to
modifying the original action (11.5.1) in such a way as to make anomalous the original
U(1) symmetry implemented by ϕ → ϕ + η. In a generalized system of coordinates,
this can be realized by coupling the field ϕ to the scalar curvature R of the space
manifold

S =
1
8π

∫
d2x

√
g(∂μϕ∂μϕ+ 2iα0Rϕ). (11.5.13)

This new action is no longer invariant under a shift of the ϕ and its variation becomes

δS = i
α0

4π

∫
d2x

√
gR. (11.5.14)

In two dimensions this is just a topological term that can be computed by the Gauss–
Bonnet theorem ∫

d2√gR = 8π(1 − h), (11.5.15)

where h is the number of handles of the Riemann surface on which is defined the
field theory (11.5.13) and for a sphere we have h = 0. Corresponding to the new
action (11.5.13), there is a new version of the stress–energy tensor given by Noether’s
theorem and its analytic component reads

T (z) = −1
4
(∂ϕ)2 + iα0 ∂

2ϕ. (11.5.16)

Its two-point function is given by

〈T (z)T (w)〉 =
1 − 24α2

0

2(z − w)4
. (11.5.17)

4In the following instead of using the notation 〈〈. . .〉〉 we switch back to the simpler notation 〈. . .〉
to denote the correlation functions also in the modified Coulomb gas system.
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In conclusion, with a charge at infinity, the central charge of the theory assumes a
different value from the original C = 1 and is now

C = 1 − 24α2
0. (11.5.18)

The operator product expansion of the new stress–energy tensor with the vertex
operator Vα(w) becomes

T (z) : eiαφ(w) : =
α2 − 2α0α

(z − w)2
: eiαφ : +

iα

(z − w)
: ∂ϕ eiαϕ : + : T (z)eiαϕ :

=
α(α− 2α0)
(z − w)2

Vα(w) +
1

z − w
∂Vα(w) + . . . (11.5.19)

This formula clearly shows that, in the presence of the charge at infinity, the conformal
weight of the vertex operator Vα is effectively given by eqn (11.5.12).

It is also important to discuss the conformal trasformation of the scalar field. In the
absence of the charge at infinity, under the transformation z → f(z), φ(z) trasforms
as φ(z) → φ(f(z)). But with the charge at infinity, there is a change of the boundary
conditions and the field transforms instead as

φ(z) → φ(f(z)) + 2iα0 ln f ′(z), (11.5.20)

whose infinitesimal form is

δφ(z) = ε(z)∂zφ(z) + 2iα0ε
′(z). (11.5.21)

11.5.3 Screening Operators

The modified Coulom gas formalism allows us to describe the conformal models with
central charge less that 1 and, in particular, the minimal models. In this approach the
primary fields are associated to the vertex operators. Notice that, assigning the con-
formal weight Δ of the primary field, there are however two different vertex operators
Vα and V2α0−α that can be put in correspondence with it, because the charges satisfy
the quadratic condition Δ = α(α − 2α0). The two-point correlation function of the
primary field φΔ is different from zero but, in the formalism of the Coulomb gas, it
can be computed in four different ways, namely

〈φΔ(z)φΔ(0)〉 →

⎧⎪⎪⎨
⎪⎪⎩

〈Vα(z)V2α0−α(w)〉
〈V2α0−α(z)Vα(w)〉
〈Vα(z)Vα(w)〉
〈V2α0−α(z)V2α0−α(w)〉.

(11.5.22)

The first two expressions automatically satisfy the neutrality condition (11.5.10): hence
they are different from zero and give rise to the usual expression 〈φΔ(z)φΔ(w)〉. On
the contrary, the last two expressions do not fulfill the neutrality condition (11.5.10)
and are therefore zero. There is then the problem of correcting this drawback, in such
a way that one can equivalently use either Vα(z) or V2α0−α(z) to represent the primary
field φΔ(z).
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The solution to this problem consists of the introduction of the so-called screening
operators. Such operators, once inserted in the correlators, should be able to absorb
the extra charge that spoils the neutrality condition without altering, though, the con-
formal properties of the correlators. To satisfy such conditions, the screening operators
must have zero conformal weight but non-zero charge. It is impossible to fulfill these
conditions in terms of local operators but there is no problem in finding them in terms
of a closed contour integral of an operator of conformal weight equal to 1. Hence,
denoting by Vα± the vertex operators of these fields with conformal weight Δ = 1, we
can unite

Q± =
∮
dz Vα±(z), (11.5.23)

where the charges α± satisfy the equation

α±(α± − 2α0) = 1. (11.5.24)

The solutions of this equation are

α± = α0 ±
√
α2

0 + 1. (11.5.25)

Note that
α+ + α− = 2α0
α+ α− = −1. (11.5.26)

Inserting an integer number of these operators Q± in the correlation functions, we can
therefore screen the extra charge present in their vertex operator representation. Ob-
viously this cancellation mechanism takes place only if the extra charge is expressible
in terms of integer multiplies of Q±. Consider, for instance, the third expression in
(11.5.22): inserting now an integer number of screening operators, it becomes

〈Vα(z)Vα(w)Qr
+Q

s
−〉 (11.5.27)

and the neutrality conditions translates into the condition

2α+ rα+ + sα− = 2α0 = α+ + α−. (11.5.28)

Hence we can screen the extra charge of the original expression only if the charges α
present in the system satisfy the quantization condition

α = αr,s =
1
2
(1 − r)α+ +

1
2
(1 − s)α−. (11.5.29)

In this case, there is complete equivalence of the operators Vαr,s
and V2α0−αr,s

, after
all, the logic consistency of the modified Coulomb gas. Corresponding to the values
(11.5.29) the conformal weights of the fields are given by

Δr,s =
1
4
(rα+ + sα−)2 − α2

0. (11.5.30)

They assume the form (11.2.7) given by the Kac table and the symmetry α→ 2α0−α
translates into the transformation (r, s) → (−r,−s). To recover the minimal models,



Coulomb Gas 375

we need, however, to impose an additional quantization condition on the charges α±
(p > q)

qα+ + pα− = 0, (11.5.31)

where p and q are two coprime integers. With this last condition, it is easy to see that
eqns (11.5.18) and (11.5.30) reproduce the central charge and the conformal weights
of the minimal models, eqn (11.4.1), and we have moreover the periodicity relation

αr,s = αr+q,s+p. (11.5.32)

In the next section we discuss how to compute the correlation functions of the minimal
models using the Coulomb gas formalism.

11.5.4 Correlation Functions

The correlation functions of the primary fields φr,s satisfy an infinite number of linear
differential equations in coincidence of their null-vector hierarchy. The main advantage
of the Coulomb gas formalism is to provide the solutions of the differential equations
directly in terms of their integral representation. In this section we initially discuss
the implementation of this formalism for the simplest cases of the correlators of the
fields φ1,2 and φ2,1.

Consider the holomorphic part of the four-point correlation function of the primary
field

G(z1, z2, z3, z4) = 〈φn,m(z1)φ1,2(z2)φ1,2(z3)φn,m(z4)〉. (11.5.33)

This quantity is surely different from zero since there exists a common conformal chan-
nel – given by the family of the identity operator – in the operator product expansion
of φ1,2 × φ1,2 and φn,m × φn,m. Since the primary fields φr,s can be associated either
to Vαr,s

or V2α0−αr,s
, the correlation function (11.5.33) admits 16 different expressions

in terms of the vertex operators of the Coulomb gas. Out of these expressions, the one
that needs the least number of screening operators is the following5

〈Vαn,m(z1)Vα1,2(z2)Vα1,2(z3)V2α0−αn,m(z4)〉.

The extra charge present in this representation is 2α1,2, thus its screening requires
only one operator Q−. This leads to the integral representation

〈φn,m(z1)φ1,2(z2)φ1,2(z3)φn,m(z4)〉 (11.5.34)

=
∮
C

dv 〈Vα1,2(z1)Vα1,2(z2)Vαn,m
(z3)V2α0−αn,m

(z4)Vα−(v)〉.

From the analytic nature of the integrand as a function of v, the integral does not
depend on the precise shape of the contour, although it must be chosen to enclose
the points z1, . . . , z4 otherwise it could be shrunk to a point, with a vanishing result.

5The other expressions lead to the integral representation of the solutions of the higher order
differential equations satisfied by the same correlator.
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Performing the expectation values of the vertex operators in the integrand by using
Wick’s theorem

n∏
i=1

〈Vαi
(zi)〉 =

n∏
i<j

(zij)2αiαj

one has ∮
C1

du1〈Vαn,m
(z1)Vα1,2(z2)Vα1,2(z3)V2α0−αn,m

(z4)Vα+(u1)〉

= (z12z13)2α1,2αn,m(z23)2α
2
1,2(z14)2αn,m(2α0−αn,m)(z24z34)2α1,2(2α0−αn,m)

×
∮
dv(v − z1)2α−αn,m [(v − z2)(v − z3)]2α−α1,2(v − z4)2α−(2α0−αn,m).

To simplify the expressions, let’s use the Moebius invariance to fix three out of the
four points of the correlator: we then impose z1 = 1, z3 = 0 and z4 = ∞, leaving as a
free position z2 = z. In this way we arrive at

〈φn,m(1)φ1,2(z)φ1,2(0)φn,m(∞)〉 = z2α2
1,2(1 − z)2α1,2αn,m

×
∮
C

dv v2α−α1,2(v − 1)2α−αn,m(v − z)2α−α1,2 .

Consider now the integral

F (z, a, b, c) =
∮
dv va(v − 1)b(v − z)c, (11.5.35)

with
a = 2α−α1,2 b = 2α−αn,m c = 2α−α1,2. (11.5.36)

The integrand, as a function of the complex variable v, has branch cuts at the points
v = 0, 1, z. To be closed, the integration contour must cross each cut twice. There are
several ways to choose such a contour, although only two of them are independent: the
most convenient choice consists of the paths shown in Fig. 11.3. If the integral along
these paths converges, the first contour can be restricted to the interval C1 = [1,∞]
while the second to the interval C2 = [0, z]. With this choice of the paths of integration,
we have defined two different functions

I1(z, a, b, c) =
∫ ∞

1
dv va(v − 1)b(v − z)c

=
Γ(−a− b− c− 1)Γ(b+ 1)

Γ(−a− c)
F (z;−c,−a− b− c− 1,−a− c)

(11.5.37)

I2(z, a, b, c) =
∫ z

0
dv va(v − 1)b(z − v)c

=
Γ(a+ 1)Γ(c+ 1)

Γ(a+ c+ 2)
z1+a+c F (z;−b, a+ 1, a+ c+ 2)

where F (z, α, β, γ) is a hypergeometric function (see Appendix 11A for its properties).
The two functions above set up the vector space of the solutions of the second-order
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1 oo z0

1 oo 0 z

Fig. 11.3 Independent contours.

differential equation satisfied by the correlation functions of the primary field φ1,2. An
analogous result is obtained if we consider the anti-analytic part of the correlator, so
that the general form of the correlation function in the physical plane is expressed
as a linear combination of the analytic and anti-analytic solutions of the differential
equation

G(z, z̄) = 〈φn,m(1, 1)φ1,2(z, z̄)φ1,2(0, 0)φn,m(∞)〉 (11.5.38)
= |z|4α1,2 |1 − z|4α1,2αn,m Y (z, z̄),

where

Y (z, z̄) =
2∑

i,j=1

XijIi(z)Ij(z̄).

Monodromy invariance. The explicit expression of the coefficients Xij can be
obtained by the condition that the correlation functions is an unambiguous function
of the points in the plane, i.e. independent of the paths by which we reach the points.
To implement such a condition, we have to analyze the monodromy group associated to
the functions Ii(z). They have the singular points z = 0, 1,∞. If we make an analytic
continuation along a close contour that encloses one of these points, as in Fig. 11.4,
they do not return to their original value, instead the new function – which is still
a solution of the linear differential equation – is expressed as a linear combination of
the Ii’s

Ii(z) → (g0)ijIj(z)
Ii(z) → (g1)ijIj(z).

(11.5.39)

Note that it is sufficient to consider the monodromy properties only around the points
z = 0, 1, since those around the point z = ∞ follow from them. The monodromy
matrix (g0)ij , in our case, is diagonal:

g0 =
(

1 0
0 e2πi(a+c+1)

)
. (11.5.40)
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10 z

Fig. 11.4 Analytic continuation of the functions Ii(z) around the singular points z = 0, 1.

Imposing the invariance of the correlation function (11.5.38) under this transformation
immediatety leads to the conditions X12 = X21 = 0 and, after that, the function Y (z, z̄)
reduces to diagonal form:

Y (z, z̄) =
2∑

i=1

XiiIi(z)Ii(z̄). (11.5.41)

To determine the remaining coefficients X11 e X22 we must impose the invariance
under the monodromy transformation g1. The simplest way to do that is to express
initially the functions Ii(z) in terms of another basis that has the series expansion in
the variable (1 − z)

Ii(z) =
2∑

j=1

aij Îj(1 − z). (11.5.42)

For the hypergeometric functions this can be done using the Gauss formulas: with
s(x) ≡ sin(πx) we have6

I1(z; a, b, c) =
s(a)

s(b+ c)
Î1(1 − z; b, a, c) − s(c)

s(b+ c)
Î2(1 − z; b, a, c)

(11.5.43)

I2(z; a, b, c) = −s(a+ b+ c)
s(b+ c)

Î1(1 − z; b, a, c) − s(b)
s(b+ c)

Î2(1 − z; b, a, c).

Substituting eqn (11.5.42) in (11.5.41) we get

Y (z, z̄) =
∑

i,j,k=1,2

Xiiaijaik Îj(1 − z)Îk(1 − z̄). (11.5.44)

Since the monodromy matrix of the functions Îi(1 − z) around the point z = 1 is
diagonal, the monodromy invariance implies that the quadratic form in Îi must be
diagonal as well. Hence

X11

X22
= −a21a22

a12a11
=

s(a+ b+ c)s(b)
s(a)s(c)

. (11.5.45)

6Note the exchange of the indices a and b in the functions on the right-hand side of these
expressions.
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It is clear that, besides an overall constant λ (simply related to the normalization of
the operators and that cannot be fixed by the monodromy invariance), the correlation
function is given by

G(z, z̄) = 〈φn,m(1, 1)φ1,2(z, z̄)φ1,2(0, 0)φn,m(∞)〉 = λ |z|4α1,2 |1 − z|4α1,2αn,m

×
[
s(b)s(a+ b+ c)

s(a+ c)
|I1(z; a, b, c)|2 +

s(a)s(c)
s(a+ c)

|I2(z; a, b, c)|2
]
. (11.5.46)

λ can be fixed once we specify the normalization of the conformal fields that we choose
to be

〈φΔ(z, z̄)φΔ(w, w̄)〉 = 1/|z − w|4Δ. (11.5.47)

With the values of the parameters a, b, c of the hypergeometric functions given in
eqn (11.5.36), it is now easy to see that the function I2(z; a, b, c) corresponds to the
channel of the conformal family of the identity operator present in this correlator.
This means that in the limit z → 0 the singularity coming from this term is precisely
1/|z|4Δ1,2 . Hence, using the numerical factor in the function I2(z; a, b, c), the value of
λ that implements the normalization condition (11.5.47) is given by

λ =
(

Γ(a+ c+ 2)
Γ(a+ 1)Γ(c+ 1)

)2
s(a+ c)
s(a)s(c)

. (11.5.48)

Structure constants. We can now extract the exact value of some of the structure
constants of the conformal operator algebra. The operator product expansion of the
field φ1,2 with itself is

φ1,2(z, z̄)φ1,2(0, 0) =
1

|z|4Δ1,2
{I + . . .} + C

(13)
(12,12)

1
|z|2(2Δ1,2−Δ1,3)

{φ1,3 + . . .} .
(11.5.49)

Substituting this expression on the right-hand side of (11.5.46), in the limit z → 0 we
have

1
|z|4Δ1,2

〈φn,m(1)φn,m(∞)〉 + C
(13)
(12,12)

1
|z|2(2Δ1,2−Δ1,3)

〈φn,m(1)φ1,3(0)φn,m(∞)〉.
(11.5.50)

The three-point correlator 〈φn,m(1)φ1,3(0)φn,m(∞)〉 in this case is precisely equal to
the structure constant C(13)

(nm),(nm). Comparing now (11.5.50) with the right-hand side
of eqn (11.5.46) in the limit z → 0, the singularity with power law 1/|z|(2(2Δ1,2−Δ1,3)

is reproduced by the function |I1(z; a, b, c)|2. Taking into account the value of λ and
the numerical factor in the definition of this function we thus arrive at the formula

C
(13)
(12,12) C

(13)
(nm,nm) =

s(a+ b+ c)s(b)
s(a)s(c)

(
Γ(a+ c+ 2)Γ(−a− b− c− 1) Γ(b+ 1)

Γ(a+ 1)Γ(c+ 1)Γ(−a− c)

)2

.

(11.5.51)
It is worth stressing that the analysis of the singularities of the four-point correla-
tion functions allows us to determine only the product of the structure constants, in
agreement with the associative nature of the operator product expansion discussed in
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the previous chapter (see eqn (10.2.15) and Fig. 10.2). Plugging in the formula above,
n = 1 and m = 2, we can determine (up to a sign that we choose to be positive) the
structure constant C(13)

(12,12) is

C
(13)
(12,12) =

Γ(2 − 2ρ)
Γ(2ρ)

[
− γ3(ρ)
γ(3ρ− 1)

]1/2
γ(1 − ρ)
γ(2 − 3ρ)

, (11.5.52)

where we introduce the notation

ρ ≡ α2
−, γ[x] ≡ Γ(x)/Γ(1 − x).

Once C(13)
(12,12) is known, we can now use eqn (11.5.51) to determine the other structure

constant

C
(13)
(nm,nm) =

Γ(2 − 2ρ)
Γ(2ρ)

[
− γ3(ρ)
γ(3ρ− 1)

]1/2
γ(n+ (1 −m)ρ)

γ(1 + n− (1 +m)ρ)
. (11.5.53)

The exact expression of the correlator 〈φnm(1, 1)φ12(z, z̄)φ12(0, 0)φnm(∞)〉 permits
us to easily derive other structure constants. In fact, going in the dual channel and
studying the limit z → 1, one can extract the structure constants C(n,m±1)

(12,nm) . The
simplest way to do such a computation is to express the functions Ii(z) in terms of
the functions Îi(1 − z) and write the correlator as

G(z, z̄) = 〈φn,m(1, 1)φ1,2(z, z̄)φ1,2(0, 0)φn,m(∞)〉

= λ
s(c)s(a+ b+ c) + s(a)s(b)

s(a+ c)s2(b+ c)
(11.5.54)

×|z|4α1,2 |1 − z|4α1,2αn,m

[
s(a)s(a+ b+ c) |Î1(1 − z; b, a, c)|2

+s(b)s(c) |Î2(1 − z; b, a, c)|2
]
.

It is now necessary to use the OPE

φ1,2(z, z̄)φn,m(1, 1) = C
(n,m+1)
(12,nm)

1
|z − 1|2γ+

{φn,m+1 + . . .}

+C(n,m−1)
(12,nm)

1
|z − 1|2γ−

{φn,m−1 + . . .}

with

γ± = Δ1,2 + Δn,m − Δn,m±1.

Substituting this formula on the left-hand side of (11.5.54), the first function |Î1(1 −
z, b, a, c)|2 is easily identified with the intermediate states coming from the conformal
family φn,m+1, whereas the second function |Î2(1 − z; a, b, c)|2 is associated to the
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intermediate states of the family of φn,m−1. Using the value of λ given above and the
normalization of the functions Îi, one obtains the structure constants

C
(n,m+1)
(12,nm) =

[
γ(2 − 2ρ)γ(n−mρ)

γ(1 − ρ)γ(1 + n− (1 +m)ρ)

]1/2
(11.5.55)

C
(n,m−1)
(12,nm) = C

(n,m+1)
(12,nm)

√
− γ(n+ (1 −m)ρ)
γ(−n− (m+ 1)ρ)

Γ2(mρ+ 1 − n)
Γ2(n+ 1 −mρ)

. (11.5.56)

Other correlators. Let’s briefly comment on the computation of the other correlators,
referring the reader to the original articles for their derivation. Suppose, for instance,
we wish to compute the correlator of the primary field φn,m(z, z̄)

G = 〈φn,m(z1, z̄1)φn,m(z2, z̄2)φn,m(z3, z̄3)φn,m(z4, z̄4)〉.

The first step consists of expressing the analytic and anti-analyitic parts in terms of the
vertex operator representation that needs the smallest number possible of screening
operators. A possible choice is∮

C1

du1 . . .

∮
Cn−1

dun−1

∮
S1

dv1 . . .

∮
Sm−1

dvm−1

〈Vαn,m(z1)Vαn,m(z2)Vαn,m(z3)V2α0−αn,m(z4)Vα+(u1) . . .
Vα+(un−1)Vα−(v1) . . . Vα−(vm−1)〉.

In this expression there are n×m independent contours that, correspondingly, define
a similar number of independent functions Ii(z) (i = 1, 2, . . . , nm). These functions
span the vector space of the solutions of the linear differential equation of order n×m
satisfied by the correlation function. Together with the anti-analytic part, we arrive
at a linear combination of these functions that provides the most general solution

G =
nm∑
i,j=1

XijIi(z)Ij(z̄). (11.5.57)

The coefficients Xij can be determined by imposing the monodromy invariance
under the monodromy group identified by the functions fiIi(z) and the normaliza-
tion of the two-point functions. After all these steps, we can obtain the complete
determination of all structure constants of the conformal theory. As a further example
of their expressions, we report here the value

C
(n,m+2)
(13,nm) =

2ρ− 1
(m+ 1)ρ− n

[
γ(2 − 3ρ)γ(n−mρ)

γ(1 − ρ)γ(1 + n− (m+ 2)ρ)

]1/2
, (11.5.58)

with the notation previously introduced.
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11.6 Landau–Ginzburg Formulation

The aim of this section is to show that the minimal unitary models Mq describe the
dynamics of the multicritical points of a quantum field theory of a massless scalar
field ϕ with polynomial interaction of highest power ϕ2(q−1). This is the so-called
Landau–Ginzburg theory, where the euclidean action is given by

S =
∫
d2x

[
1
2
(∂μϕ)2 + V (ϕ)

]

and the general form of the potential is expressed by the normal order powers of the
field ϕ

V (ϕ) = g1ϕ+ g2 : ϕ2 : + · · · + g2(q−2) : ϕ2(q−2) : +g : ϕ2(q−1) : . (11.6.1)

Note the absence of the term ϕ2(q−1)−1: this term can always be removed by a shift of
the field ϕ → ϕ + const and absorbed in the linear term g1ϕ. Below we assume that
the higher coupling constant g is fixed to a positive value. By varying the different
parameters gi, the shape of V (ϕ) can greatly vary. Nevertheless, there always exists
a set of values of the coupling constants for which the potential presents (q − 1)
degenerate ground states: for instance in the ϕ4 theory, this situation is realized by a
family of curves associated to the parameter a, and the potential, shown in Fig. 11.5,
given by

V (ϕ) = g(ϕ2 − a2)2. (11.6.2)

Analogously, for the φ6 theory, there is a family of potentials that presents three
degenerate vacua by varying the parameter b, as shown in Fig. 11.6

V (ϕ) = gϕ2 (ϕ2 − b2)2. (11.6.3)

In the general case, these vacua correspond to the (q−1) different phases of the model.
In the space of the coupling constants, the point at which all the coupling constants
but g vanish is then a multicritical point: at this point, characterized by the vanishing
of the first (2q − 3) derivatives, there is a coalescence of (q − 1) different phases.

The operator content of the Landau–Ginzburg theory with potential (11.6.1) con-
sists of 2(q − 2) scalar relevant fields, associated to the various powers : ϕk :

Fig. 11.5 Potential with two degenerate vacua for the ϕ4 theory.



Landau–Ginzburg Formulation 383

Fig. 11.6 Potential in the ϕ6 theory with three degenerate vacua.

(k = 1, 2, . . . , 2(q− 2)), and the irrelevant operators given by all their other derivative
fields, as : ϕk ∂μϕ∂μϕ :. At the multicritical point, the equation of motion in complex
coordinates is given by

∂z ∂z̄ϕ ∼ : ϕ2q−3 : . (11.6.4)

Such an equation has to be understood as an operator identity once inserted in the
correlation functions. Namely, each time that in a correlation function the field : ϕ2q−3 :
appears, it can be replaced by ∂z ∂z̄ϕ:

〈· · · : ϕ2q−3 : · · · 〉 = 〈· · · ∂z ∂z̄ϕ · · · 〉.

Let’s now show how these features of the Landau–Ginzburg theory are implemented
by the minimal unitary models Mq.
Counting of the operators. To start with, notice that these models have a number
of relevant fields precisely equal to 2(q − 2): they correspond to the scalar conformal
fields φΔ,Δ(z, z̄) with conformal weight Δ < 1. As already noticed, in these models
the formula of the conformal weights

Δr,s =
((q + 1)r − qs)2 − 1

4q(q + 1)
(11.6.5)

is proportional to the distance of the points of the Kac lattice to the straight line of
slope q/(q+1) and therefore a such a counting problem simply reduces to determining
how many points of the lattice fall inside the strip identified by the condition Δr,s < 1,
as shown in Fig. 11.7.
Identification of the operators. The first thing to do is to identify the most relevant
field of the conformal model Mp with the scalar field ϕ that enters the Landau–
Ginzburg lagrangian. It is easy to check that such a conformal field is the one placed
at the position (2, 2) of the Kac table, with conformal weight

Δ = Δ2,2 =
3

4q(q + 1)
. (11.6.6)

With the position ϕ ≡ φ2,2, let’s now proceed toward the recursive definition of the
normal product of the higher powers of ϕ by means of the OPE provided by the
conformal theory. Remember that, in conformal field theory, to define the composite
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θ

δ

Fig. 11.7 The relevant operators correspond to the lattice points that satisfy Δr,s < 1, i.e.
those inside the strip shown in the figure.

operator : A2 : (x) of an operator A(x) (with anomalous dimension η1), one has to
consider the OPE of A(x) with itself

A(x)A(0) − 〈A(x)A(0)〉 = |x|η2−2η1 A2(0) + · · · (11.6.7)

Once the most singular terms of this expression have been subtracted, the identification
of the operator : A2 : is made through the limit

: A2(0) :≡ A2 = lim
x→0

|x|2η1−η2 (A(x)A(0) − 〈A(x)A(0)〉) . (11.6.8)

The higher-power composite operators : Ak+1 : are defined in an analogous way, and
they coincide with those conformal fields selected by the limit

: Ak+1 : (0) = lim
x→0

|x|η1+ηk−ηk+1

⎡
⎣A(x) : Ak(0) : −

k/2∑
l=1

Cl |x|ηk−2l−η1−ηk : Ak−2l : (0)

⎤
⎦ .

(11.6.9)
Note that the most singular terms of this expansion come from the previous operators
: Ak−2l :, with l = 1, 2, . . . , < k/2, and therefore they must be subtracted. In this
expression ηp are the anomalous dimensions of the composite fields : Ap : whereas the
coefficients Cp are the relative structure constants that ensure the existence of the
limit.

Given the above definition of the normal order and the identification of ϕ with
φ2,2, it is easy to see that the composite operator : ϕ2 : ends up to be the conformal
field φ3,3. In fact, the fusion rules of φ2,2 are

φ2,2 × φ2,2 = [1] + [φ3,3] + [φ1,3] + [φ3,1] (11.6.10)

and, once we have subtracted the contibution coming from the identity family, the
most singular term in the expansion and the one that survives in the limit (11.6.8) is
given by the conformal field φ3,3. One can then proceed to identitfy the higher powers
of ϕ, with the final result given by (see Fig. 11.8)

: ϕk =
{
φk+1,k+1 k = 0, 1, . . . q − 2
φk−q+3,k−q+2 k = q − 1, q, q + 1, 2q − 4. (11.6.11)
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Fig. 11.8 The correspondence between the conformal fields and the composite operators ϕk

for the minimal model M6.

The anomalous dimension ηk = 2Δk of these composite operators is obtained using
eqn (11.6.5)

ηk =

{
(k+1)2−1
2q(q+1) k = 0, 1, 2, . . . , q − 2

(k+3)2−1
2q(q+1) k = q − 1, q, . . . , 2q − 4.

(11.6.12)

The key point in the route to establish the identification of the conformal model
Mq with the ϕ2(q−2) Landau–Ginzburg theory is met when we consider the operator
expansion ϕ : ϕ2(q−2) : = φ2,2 φq−2,q−1. The most singular contribution in this product
comes from the conformal fields φq−3,q−2 ≡: ϕ2q−5 and φq−1,q2 = φ2,2, and both must
be subtracted in the proper definition of the composite operator ϕ2q−3. After these
subtractions, the first term that remains is the first descendant of the conformal field
φ2,2, that is nothing else but ∂z ∂z̄ϕ. In this way we arrive at the operator identity

: ϕ2q−3 : = ∂z ∂z̄ ϕ (11.6.13)

which coincides with the equation of motion (11.6.4) of the Landau–Ginzburg theory.
Finally, the other conformal fields that enter the Kac table of the minimal model Mp

can be identified with the irrelevant composite fields : ϕk ∂μϕ∂μϕ.

11.7 Modular Invariance
In the two-dimensional conformal theories there is a natural splitting of the analytic
and anti-analytic parts of the fields. This algebraic separation is stated by the Ward
identity and is quite useful in many contexts (like finding the irreducible represen-
tations, the linear differential equations, etc.). However, to recover the real physical
situation we have to combine together the analytic and the anti-analytic parts.

In the previous section we have seen that, in an infinite plane, a way to establish
the correct combination of the two sectors is given by the condition of the monodromy
invariance of the correlation functions. There is, however, another approach to finding
the physical content of the conformal theories. Proposed originally by J.L. Cardy,
this approach consists of studying the properties of a conformal field theory defined
on a torus, i.e. a cylinder with periodic boundary conditions along both directions.
From the geometrical symmetry of this problem, there are quite severe constraints
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L

L

R

R

L-channel R-channel

Fig. 11.9 A torus geometry, i.e. a cylinder with periodic boundary conditions along both
directions, and the relative quantization channels.

on the operator content of the theories. Before discussing in detail the mathematical
formalism of this approach, it is useful to present its main idea by means of a simple
example. Consider a rectangle of sides L along the vertical direction and R along
the horizontal one. For computing the partition function of a conformal field theory
defined on such a geometry there are two possible ways (see Fig. 11.9):

• In the first approach, one considers the vertical axis as the time direction, with the
time propagation ruled by a hamiltonian HR. This quantization scheme defines
the so-called L-channel of the theory. In this case the partition function can be
expressed as

Z1(L,R) = Tr e−LHR . (11.7.1)

• In the second approach, one considers instead the horizontal axis as the time
direction, with a time evolution implemented by a hamiltonian HL. This quanti-
zation scheme defines the so-called R-channel of the theory and, correspondingly,
the partition function is given by

Z2(R,L) = Tr e−RHL . (11.7.2)

The two ways of computing the partition function are obviously equivalent and this
leads to the identity

Z1(L,R) = Z2(R,L), (11.7.3)

which expresses the modular invariance of the theory. As we are going to see in the
next section, by enforcing the validity of eqn (11.7.3) we can characterize the operator
content of the conformal theories, given by an appropriate combination of their analytic
and anti-analytic sectors.

11.7.1 Torus Geometry

Let’s now refine the previous considerations by studying the mathematical properties
that are relevant for modular invariance. A torus is defined by specifying two indepen-
dent vectors in the plane and identifying the points that differ by a linear combination
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of them with integer coefficients. In this way, the plane takes the periodic structure of
a lattice. In the complex plane, such vectors can be specified by two complex numbers
ω1 and ω2, the so-called periods of the lattice, and a torus is therefore defined by the
equivalence relation

z ≡ z + nω1 +mω2 n,m ∈ N. (11.7.4)

Such a tiling of the plane is not unique. Let ω′
1,2 be in fact two new periods. Since

they give to the same lattice structure, they can be expressed as a linear combination
with integer coefficients of the original periods ω1 and ω2:(

ω′
1
ω′

2

)
=
(
a b
c d

)(
ω1
ω2

)
a, b, c, d ∈ Z
ad− bc = 1. (11.7.5)

The determinant of such a transformation should not vanish since, by the symmetrical
role of the two sets of periods, the linear combination should be invertible. Moreover
its normalization is fixed by the condition that the area of the elementary cell of the
lattice is the same, if expressed on the basis given by ω′

1,2 or ω1,2.
In the complex plane, two lattices correspond to two conformally equivalent torus

geometries if they differ just by a rotation and a dilatation. We can use this freedom
to reduce the pair of periods (ω1, ω2) to the values (1, τ), where the complex number
τ = ω2/ω1, with Im τ > 0 is the modular parameter. Without losing generality, we can
choose as vertices of the torus the points {0, 1, τ, (1+ τ)}. The physical request is that
the conformal theories defined on such a geometry should not depend either on the
scale or on the orientation of the lattice, i.e. the condition that the theory presents a
modular invariance. Since under the change (11.7.5) the modular parameter transforms
according to the Moebius map

τ → aτ + b

cτ + d
ad− bc = 1 (11.7.6)

the corresponding symmetry group coincides with the 2 × 2 linear transformations
with integer coefficients and determinant equal to 1. Furthermore, since all parame-
ters a, b, c, d can be changed by sign without affecting the final transformation, the
modular group Γ is given by SL(2, Z)/Z2 and consists of the group of discontin-
uous diffeomorphisms of the torus, i.e. the set of all those transformations of the
torus that cannot be obtained adiabatically starting from the identity transformation.
Such a discrete group can be generated by the repeated action of the operators (see
Problem 5)

T : τ → τ + 1 alias T =
(

1 0
1 1

)
S : τ → −1/τ alias S =

(
0 1
−1 0

) (11.7.7)

whose graphical representation is shown in Fig. 11.10. These transformations satisfy

S2 = (ST )3 = 1. (11.7.8)

The fundamental domain of the modular group is defined as that region of the upper
half complex plane for which any pair of its points cannot be related by a modular
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Fig. 11.10 Transformation of the lattice under the action of the generators T and S.

1−1 0

Fig. 11.11 Fundamental domain of the modular group Γ (dashed area).

transformation, whereas any other external point can be reached from one of its interior
points by a modular transformation. The usual choice of the fundamental domain is
the following: − 1

2 < Re τ < 1
2 , | τ |≥ 1 (see Fig. 11.11).

11.7.2 Partition Function and Characters

In order to define the partition function on a torus, it is necessary to specify the
time and space directions of the lattice. Let’s initially choose as space direction that
along the real axis of the complex plane, while the time direction is the imaginary
axis. This choice introduces the L-channel, according to the terminology above. The
translations along these axes are implemented by the momentum operator P and by
the hamiltonian H, respectively. The partition function is then

Z(τ, τ̄) = Tr exp{−HIm τ − i P Re τ}. (11.7.9)

For H and P we can use the expression previously derived for a cylinder of width R
(in the present case R = 1), namely

H =
2π
R

(
L0 + L̄0 −

c

12

)
, P =

2π
R

(L0 − L̄0) (11.7.10)
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where L0 and L̄0 are the generators of the Virasoro algebra. Substituting these ex-
pressions in (11.7.9) and collecting the various terms we get

Z(τ, τ̄) = Tr exp
{

2πi
[
τ(L0 −

c

24
)
]
−
[
τ̄(L̄0 −

c

24
)
]}

. (11.7.11)

Defining the parameters
q ≡ e2πiτ , q̄ ≡ e−2πiτ̄ (11.7.12)

the partition functions can be expressed as

Z(q, q̄) = Tr
(
qL0−c/24 q̄L̄0−c/24

)
. (11.7.13)

The eigenstates of (L0, L̄0) are organized in terms of the irreducible representations
given by the Verma modules of the direct sum of the two Virasoro algebras. Hence
we can decompose the trace on these states into the sum of these representations and
write then

Z(q, q̄) =
∑
Δ,Δ̄

NΔ,Δ̄ χΔ(q)χΔ̄(q̄), (11.7.14)

where the non-negative integers NΔ,Δ̄ represent the number of times the representa-
tions associated to the conformal weights (Δ, Δ̄) enter the trace, whereas χΔ(q) are
the characters of the Virasoro algebra, defined by

χΔ(q) ≡ q−c/24Tr qL0 |Δ = q−(c/24)+Δ
∞∑
n=0

dΔ(n)qn . (11.7.15)

The coefficients dΔ(n) are the weights of the vector spaces at the level n in the repre-
sentation identified by the conformal weight Δ.

The problem is now to determine the set of integers NΔ,Δ̄ that ensures the modular
invariance of the partition function. This means that Z must be a function invariant
both under T : τ → τ + 1 and S : τ → −1/τ :

Z(τ) = Z(τ + 1),
Z(τ) = Z(−1/τ). (11.7.16)

For the minimal conformal models, the explicit expression of the characters of the
degenerate fields ϕr,s is provided by the Rocha–Caridi formula

χr,s(q, c) = η−1(q) q− (c−1)
24 +Δr,s

∞∑
k=−∞

qpp
′k2
(
qk(rp′−sp) − qk(rp′+sp)

)
, (11.7.17)

where η(q) is the Dedekind function

η(q) = q1/24
∞∏
k=1

(
1 − qk

)
. (11.7.18)
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To find which integers NΔ,Δ̄ ensure the validity of eqns (11.7.16) it is necessary to
analyze how the characters transform under the action of the two generators of the
modular group. T acts on the characters in a particularly simple way:

T : χΔ(q) → e2πi(Δ−c/24) χΔ(q). (11.7.19)

The invariance of the partition function under this transformation implies thatNΔ,Δ̄ =
0, unless Δ − Δ̄ = k, where k is an integer.

Consider now the action of S. Note that this transformation implements an
exchange of the space and time axes of the theory. This implies that if we had com-
puted the partition function swapping the role of the two directions, we would have
obtained an expression similar to the previous (11.7.14)

Z(q̃, ˜̄q) =
∑
Δ,Δ̄

NΔ,Δ̄ χΔ(q̃)χΔ̄(˜̄q), (11.7.20)

but with the fundamental difference given by the presence of the quantity q̃ = e−2πi/τ

instead of the original variable q. The equality of this expression with the one in
eqn (11.7.14) has two important consequences:

1. there should exist a linear transformation that link the characters expressed in
terms of the variables q and q̃;

2. there should exist a stringent condition on the coefficients NΔ,Δ̄ that ensures the
identity of the two expressions of the partition function.

Let’s address the first point. Note that the expression for the characters of the degen-
erate fields in the minimal models is very similar to the infinite series that define the
θi(z) functions, given in general by an infinite sum of exponentials, with a quadratic
expression for k in the exponent. As for the θi(z) functions, the characters present
remarkable properties under the transformation τ → −1/τ , whose derivation requires
the Poisson resummation formula. Here we only state the final result relative to the
minimal models identified by the pair of coprime integer numbers p, p′:

χr,s(q̃) =
∑
r′,s′

Sr
′s′

rs χr′s′(q), (11.7.21)

where

Sr
′s′

rs =
(

8
pp′

)1/2

(−1)(r+s)(r′+s′) sin
πrr′

p
sin

πss′

p′ . (11.7.22)

This formula shows that the characters χr,s change according to a finite-dimensional
representation of the modular group Γ. Note that the matrix elements7 Sr

′s′
rs are sym-

metric and real. Moreover, since the transformation S is unitary, we have S2 = 1.
Denoting by R this finite-dimensional representation, the combination of the char-
acters in the partition function transforms as M ≡ R ⊗ R∗. Therefore to find the

7The pair of indices (rs), as well as (r′s′), has to be considered as a single index that identifies
the corresponding conformal field.
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Fig. 11.12 The ADE classification of regular polyhedra. The polyhedra are convex, with all
equivalent vertices. A similar classification holds for convex polyhedra with equivalent faces
and the two series are related by face-vertex duality.

modular invariant expressions of the partition functions we have to determine the
integer coefficients NΔ,Δ̄ that satisfy the condition (expressed in matrix notation)

M N = N. (11.7.23)

In other words, we shall find the eigenvectors, with non-negative integer components
and with eigenvalue equal to 1, of the matrix M . An additional condition is N0,0 = 1:
this enforces the presence of the identity operator in the partition function with mul-
tiplicity equal to 1.

The general solution of this mathematical problem has been found by Cappelli,
Itzykson, and Zuber. It has a remarkable structure: in fact, the modular invariant
partition functions can be put in correspondence with the series ADE that classify the
simply laced Lie algebra.8 At first sight it may seem surprising to see conformal field
theories being classified by the ADE Lie algebra but, on the other hand, Lie algebras
arise whenever integrability and local symmetries are involved. The classical example
is the classification of regular convex polyhedra shown in Fig. 11.12.

The explicit expressions of the partition functions are reported in Table 11.1. With-
out claiming full justification of these formulas (we refer the reader to the original
literature for all details), it is however possible to understand the origin of some of
them. For instance, a natural solution of eqn (11.7.23) is provided by the diagonal
combination, i.e. by the integers NΔ,Δ̄ = δΔ,Δ̄. The partition functions associated to
this solution involve all the scalar primary fields of the Kac table of a given model. To
present another class of solutions, consider the case of unitary minimal models, where
p′ = p+1. We assume that the indices r, s run over all possible values of the Kac table

8The discussion of Lie algebras can be found in the Appendix of Chapter 13.
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Table 11.1: Modular invariant partition functions of the conformal minimal models.

p, p′ 1
2

p′−1∑
r=1

p−1∑
s=1

| χrs |2 (Ap′−1, Ap−1)

p′ = 4ρ+ 2
p ≥ 1

1
2

p−1∑
s=1

⎧⎪⎨
⎪⎩

4ρ+1∑
r odd =1
r =2ρ+1

| χrs |2 +2 | χ2ρ+1,s |2

+
2ρ−1∑

r odd =1

(χrsχ∗
r,p−s + c.c.)

}
(D2ρ+2, Ap−1)

p′ = 4ρ
p ≥ 2

1
2

p−1∑
s=1

{ 4ρ−1∑
r odd =1

| χrs |2 + | χ2ρ,s |2

+
2ρ−2∑

r even =2

(χrsχ∗
r,p′−s + c.c.)

}
(D2ρ+1, Ap−1)

p′ = 12
1
2

p−1∑
s=1

{
| χ1s + χ7s |2 + | χ4s + χ8s |2

+ | χ5s + χ11s |2
}

(E6, Ap−1)

p′ = 18
1
2

p−1∑
s=1

{
| χ1s + χ17s |2 + | χ5s + χ13s |2 + | χ7s + χ11s |2

+ | χ9s |2 +[(χ3s + χ15s)χ∗
9s + cc]

}
(E7, Ap=1)

p′ = 30
1
2

p−1∑
s=1

{
| χ1s + χ11s + χ19s + χ29s |2

+ | χ7s + χ13s + χ17s + χ23s |2
}

(E8, Ap−1)

(1 ≤ r ≤ p; 1 ≤ s ≤ p + 1) and therefore each primary field appears twice. It is easy
to see that if p is an odd number, we have

Srsr
′s′ = (−1)s−1Sr

′,p′−s′
rs = (−1)s

′−1Sr
′s′

r,p′−s. (11.7.24)

This identity implies that the combination made by the characters

χrs + χr,p′−s (s odd) (11.7.25)

defines an invariant subspace. Therefore the partition function given by

Z =
1
2

∑
r

∑
s odd

| χrs + χr,p′−s |2 (11.7.26)
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is invariant under the S transformation. It is also easy to check that Δrs−Δr,p+1−s is
always an integer if p = 1 (mod 4), and in this case, the above partition function is also
invariant under T . Similar invariant expressions can be found for all values of p ≥ 5.

In addition to these two infinite series of solutions, there are others that are relative
to particular values of p′, given by p′ = 12, 18, 30. As we mentioned above, all the
modular invariant solutions can be put in correspondence with the ADE algebras that
appear in so many branches of mathematics, as in the classification of finite subgroups
of the group of rotations or in the classification of the critical points in the theory
of catastrophies. V. Pasquier has also shown that the modular invariant partition
functions can be obtained as a continuum limit of certain discrete lattice statistical
models defined in terms of Dynkin diagrams. The modular invariant partition functions
of the conformal minimal models are reported in Table 11.1.

Appendix 11A. Hypergeometric Functions

Let a, b, and c be complex numbers. The hypergeometric differential equation

z(z − 1)
d2w

dz2 + [(a+ b+ 1)z − c]
dw

dz
+ abw = 0, (11.A.1)

has three singular regular points at z = 0, 1,∞. When c is different from zero or it
is a negative integer, an analytic solution of this equation in the vicinity of z = 0 is
expressed by the series

F (z; a, b, c) =
∞∑
n=0

(a)n(b)n
(c)n

zn

n!
, c �= 0,−1,−2, . . . (11.A.2)

where

(a)n ≡ a(a+ 1) . . . (a+ n− 1) =
Γ(a+ n)

Γ(a)
.

If a or b are equal to zero or are negative integers, the series truncates and the hyper-
geometric function becomes a simple polynomial.

Since the hypergeometric differential equation is of second order, it admits a second
solution, usually written in the form

w2(z) = z1−c F (z; a− c+ 1, b− c+ 2, 2 − c). (11.A.3)

It is easy to see that if c is an integer, either the two solutions coincide or one of them
diverges. In the second case, the second solution presents a logarithmic contribution.
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Problems

1. Null-vector at the third level
1. Show that the linear combination that gives rise to null-vectors at level N = 3 is

given by [
L−3 −

2
Δ + 1

L−1L−2 +
1

(Δ + 1)(Δ + 2)
L3

−1

]
φΔ = 0

with Δ = Δ1,3 or Δ = Δ3,1.
2. Determine the differential equation satisfied by the correlators of the primary

fields φ1,3 and φ3,1.
3. Show that the fusion rules of the fields φ1,3 and φ3,1 given in eqns (11.4.22) and

(11.4.23) are compatible with the differential equation satisfied by their correlation
functions.

2. Structure constant
For the minimal unitary models, identified by the integer p, compute the limiting value
of C(13)

(13)(13) for p→ ∞.

3. Fusion rules
Consider the minimal models M2,2n+1 (n = 1, 2, . . .). Compute the central charge
and the effective central charge by identifying the operator with the lowest conformal
weight. Determine the fusion rules of these models.

4. Non-unitarity model M3,5
The non-unitarity model M3,5 has the following Kac table.

3
4 0
1
5 − 1

20
− 1

20
1
5

0 3
4

With the identification of the fields

1 = Φ0,0, σ = Φ− 1
20 ,− 1

20
;

ϕ = Φ 1
5 ,

1
5
, ψ = Φ 3

4 ,
3
4

prove that the fusion rules of this model are given by
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ψ × ψ = 1, ψ × σ = ϕ;
σ × σ = 1 + ϕ, ψ × ϕ = σ;
ϕ× ϕ = 1 + ϕ, ϕ× σ = σ + ψ.

Compute the four-point correlation functions involving ψ and σ and determine the
exact expressions of the structure constants of the conformal algebra.

5. Modular group
Prove that any matrix

M =
(
a b
c d

)
with integer coefficients and satisfying ad− bc = 1, can be obtained by multiplication
of suitable powers of the elementary matrices

T =
(

1 0
1 1

)
S =

(
0 1
−1 0

)
.

6. Quantum dimensions
Denote the number of linearly independent states having N fields of type a as Ha(N ).
The quantum dimension da of the excitations of type a is given by studying the
behavior Ha(N ) for large N , which behaves as Ha(N ) 	 dN

a . To compute da, let’s
fuse M φa fields recursively using the Verlinde algebra

φa · φa · . . . · φa =
∑
{ck}

N c1
aaN

c2
ac1 · · ·N cM−1

acM−2
φcM−1 .

Observe that this is the product of (M − 1) copies of the matrix (Na)cb = N c
ab, so that

in the limit M → ∞, the product will be dominated by the largest eigenvalue of Na.

1. If Sba is the unitary matrix that simultaneously diagonalizes all the matrices Na

of the Verlinde algebra, show that the fusion coefficients are expressed by

N c
ab =

∑
j

Sja S
j
b S

c
j

Sj0
,

where 0 denotes the identity field and the sum is over all fields entering the algebra.
2. Show that the largest eigenvalue (and therefore the quantum dimension da) is

given by

da =
S0
a

S0
0
.

3. Consider the algebra

1 · 1, 1 · φ = φ, φ · φ = 1 + φ.

Compute the quantum dimension dφ and show that it is equal to the golden ratio

dφ =
√

5 + 1
2

.



12
Conformal Field Theory of Free
Bosonic and Fermionic Fields

Science is spectral analysis. Art is light synthesis.

Karl Kraus

12.1 Introduction

In this chapter we discuss two explicit examples of conformal field theories. We start
our analysis with the free massless bosonic theory that we have already seen in the
previous chapter. After, we discuss the conformal field theory of a complex fermion
operator (a Dirac fermion) using its decomposition in the real Majorana components.
The central charge of both bosonic and fermion theories is c = 1 and this suggests the
existence of an equivalence between them. The transformation that maps a bosonic
into a fermion theory and vice versa is known as bosonization: it provides a useful
tool both for the comprehension of the conformal theories and for a wide range of
applications, in particular in low-dimensional condensed matter systems.

12.2 Conformal Field Theory of a Free Bosonic Field

This section is devoted to the detailed analysis of the conformal field theory of a
massless bosonic field that was employed in Chapter 11 for the Coulomb gas approach.
Despite the simple form of the lagrangian of this model, it presents a rich operator
content and a remarkable duality property of its partition function on a torus. Later
we will also established the equivalence of this theory with the theory of massless Dirac
fermions.

12.2.1 Quantization of the Bosonic Field

Let ϕ(x, t) be a free bosonic and real field, with action

S =
g

2

∫
d2x ∂μϕ∂

μϕ. (12.2.1)
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Let’s assume that the model is defined on a cylinder of width L with periodic boundary
conditions ϕ(z + L, t) = ϕ(x, t). Expanding the field in its Fourier modes

ϕ(x, t) =
∑
n

e2πnx/L ϕn(t)

ϕn =
1
L

∫ L

0
dx e−2πinx/L ϕ(x, t)

and substituting this expression into the action, we have

S =
1
2
gL
∑
n

[
ϕ̇n ϕ̇−n −

(
2πn
L

)2

ϕn ϕ−n

]
. (12.2.2)

Let Π(x, t) = g∂t ϕ(x, t) be the conjugate momentum of the field, with commutation
relations (at a given time t)

[ϕ(x, t),Π(y, t)] = i δ(x−y) [ϕ(x, t), ϕ(y, t)] = 0 [Π(x, t),Π(y, t)] = 0. (12.2.3)

Expanding also Π(x, t) in Fourier series and denoting by πn the conjugate momenta
of ϕn, we have

πn = g L ϕ̇−n, [ϕn, πm] = i δnm (12.2.4)

with ϕ†
n = ϕ−n and π†

n = π−n. We can define the hamiltonian of the system by using
the Legendre transformation

H =
1

2gL

∑
n

[πn π−n + (2πng)2 ϕn ϕ−n]. (12.2.5)

This is the hamiltonian of a set of decoupled harmonic oscillators of frequencies ωn =
2π|n|/L. Note that the oscillator with n = 0 has zero frequency. To take into account
this feature, it is convenient to explicitly separate the zero mode ϕ0 of the field and
introduce, for the other modes, the operators an and ān through the formulas

ϕn =
i

n
√

4πg
(an − ā−n), (12.2.6)

πn =
√
πg n (a−n + ān).

These operators satisfy the commutation relations

[an, am] = nδn+m,0 [an, ām] = 0 [ān, ām] = nδn+m,0. (12.2.7)

For the zero mode we have
[ϕ0, π0] = i. (12.2.8)

Substituting these new operators into eqn (12.2.5) we obtain

H =
1

2πgL
π2

0 +
2π
L

∑
n>0

(a−nan + ā−nān), (12.2.9)
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and therefore

[H, a−n] =
2π
L
na−n , [H, ā−n] =

2π
L
n ā−n, [H,ϕ0] = 0. (12.2.10)

These expressions show that a−n and ā−n (with n > 0) act as raising operators of the
theory: applying one of these operators to an energy eigenstate with eigenvalue E, we
obtain another energy eigenstate with eigenvalue E+2πn/L. The operators an and ān
(with n > 0) act instead as annihilation operators of the theory: their application to an
eigenstate with eigenvalue E gives rise to another energy eigenstate with eigenvalue
E − 2πn/L. Equation (12.2.10) helps us to easily obtain the time evolution of the
operators in the Heisenberg representation

an(t) = an(0) e−2πint/L

ān(t) = ān(0) e−2πint/L ϕ0(t) = ϕ0 +
1
gL

π0t. (12.2.11)

Hence, the solution of the equation of motion of the field ϕ(x, t) reads

ϕ(x, t) = ϕ0 +
1
gL

π0t+
i√
4πg

∑
n=0

1
n

(
an e

2πin(x−t)/L − ā−n e
2πin(x+t)/L

)
, (12.2.12)

where all the operators that appear in this formula are those relative to the time
t = 0. Equivalently, adopting a euclidean formulation, with t = −iτ and introducing
the coordinates

z = e2π(τ−ix)/L, z̄ = e2π(τ+ix)/L,

we have

ϕ(z, z̄) = ϕ0 −
i

4πg
π0 ln(zz̄) +

i√
4πg

∑
n=0

1
n

(
an z

−n + ā−n z̄
−n
)
. (12.2.13)

This expression explicitly shows the decoupling of the analytic and anti-analytic com-
ponents of the field, both due to the the equation of motion ∂̄ ∂ϕ = 0 and the periodic
boundary conditions chosen for the field ϕ

ϕ(z, z̄) = φ(z) + φ̄(z̄), (12.2.14)

where

φ(z) =
1
2
ϕ0 −

i

4πg
π0 ln z +

i√
4πg

∑
n=0

1
n
an z

−n

(12.2.15)

φ̄(z̄) =
1
2
ϕ0 −

i

4πg
π0 ln z̄ +

i√
4πg

∑
n=0

1
n
ān z̄

−n.

According to the negative or positive value of the index n, the operators an create or
annihilate the analytic excitation of the field ϕ, with a similar situation for ān with
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respect to the anti-analytic excitations.1 It is also convenient to define

θ(z, z̄) = φ(z) − φ̄(z̄), (12.2.16)

the so-called dual field of ϕ. It satisfies ∂μϕ = −i εμν∂ν θ, and in complex coordinates

∂zϕ = ∂zθ,
∂z̄ϕ = −∂z̄θ. (12.2.17)

It is easy to verify that in the original Minkowski space, it satisfies the commutation
relation (at fixed time t)

[ϕ(x, t), θ(y, t)] = −i ε(x− y), (12.2.18)

where ε(v) is the step function

ε(v) =
{

1, v > 0
0, v < 0.

Equation (12.2.18) clearly shows the non-local relationship between ϕ and θ.
We have already noticed that ϕ is not a scaling field, whereas scaling fields are the

two currents J(z) = i∂ϕ and J̄(z̄) = −i∂̄ϕ that both generate a U(1) symmetry. The
expansion of these fields is given by

i ∂ϕ = i ∂φ =
1√
4πg

∑
n=0

an z
−n (12.2.19)

(with a similar formula for i ∂̄ϕ), where we have introduced the notation

a0 = ā0 ≡ π0√
4πg

.

We can now use the previous expression to define the analytic part of the stress–energy
tensor

T (z) = −2πg : ∂φ(z) ∂φ(z) :=
1
2

∑
n,m

z−n−m−2 : an am : (12.2.20)

and extract the modes Ln of the Virasoro algebra of this theory

Ln =
1
2

∞∑
m=−∞

an−m am (n �= 0)

(12.2.21)

L0 =
1
2
α2

0 +
∞∑

m=1

a−m am

1It is interesting to observe that the formulas given in the text appear also in string theory, in
particular they enter the quantization of the closed string, with the zero mode ϕ0 associated to the
center of mass of the string and π0 to its total momentum.
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The hamiltonian (12.2.9) can be written as

H =
2π
L

(L0 + L̄0) −
π

6L
. (12.2.22)

The term −π/6L is obtained by the normal order of an by using the regularization
given by the Riemann function ζ(s) =

∑∞
n=1 n

−s for the divergent series∑
n>0

n = ζ(−1) = −1/12.

Comparing this formula with the general expression previously derived for H on a
cylinder geometry, eqn (10.9.3), we see that the central charge of the free bosonic
theory is c = 1. Starting from the scalar field ϕ, in addition to ∂ϕ, we can construct
an infinite series of scaling operators, given by the vertex operators

Vα,ᾱ(z, z̄) = : eiαφ(z)+iᾱφ̄(z̄) : (12.2.23)

whose conformal weights are

Δα =
α2

8πg
, Δ̄α =

ᾱ2

8πg
. (12.2.24)

They satisfy the operator product expansion

Vα,ᾱ(z, z̄)Vβ,β̄(w, w̄) = (z − w)αβ/4πg (z̄ − w̄)ᾱ β̄/4πg Vα+β,ᾱ+β̄(w, w̄) + · · · (12.2.25)

An interesting interpretation of the vertex operators is given in the next section.

12.2.2 Vertex Operators

Since the hamiltonian (12.2.5) does not depend on ϕ0, it commutes with its conjugate
momentum π0 and this quantity can be used as a quantum number to identify the
various eigenstates of H. For the decoupling of the analytic and anti-analytic sectors,
we can focus attention on one of them, say the analytic one. Let us consider then
the analytic part of the vertex operator (12.2.23), denoting by p0 the value of the
conjugate momentum to the zero mode ϕ0 in this sector. Let’s introduce the “ground
states” | α 〉, with α = p0/

√
4πg. They are characterized by the algebraic conditions

an | α 〉 = 0 (n > 0),
a0 | α 〉 = α | α 〉. (12.2.26)

From eqn (12.2.21), it can be easily seen that | α 〉 has conformal weight α2

8πg and any
other states of the Fock space of this theory are obtained by acting on | α〉 with the
creation operators a−n (n > 0). These ground states are in one-to-one correspondence
with the vertex operators. In fact, as shown in Problem 1, the ground state | α〉 comes
from the application of the vertex operator Vα(z) =: eiαφ(z) to the conformal vacuum
state | 0 〉

| α 〉 = Vα(0) | 0 〉. (12.2.27)

Up to now, the real parameter α is a free quantity. However, we can constrain the
set of its values by noting that the lagrangian of the massless scalar field is invariant
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under the transformation ϕ→ ϕ+δ, where δ is a constant. This is the U(1) symmetry
generated by the current i∂ϕ and permits us to identify the field ϕ with ϕ+2πR: this
compactification is equivalent to regarding ϕ as an angular variable along a circle of
radius R. In this new interpretation, the most general boundary conditions are given
by

ϕ(x+ L, t) ≡ ϕ(x, t) + 2πmR, (12.2.28)

where m ∈ Z is the number of times that ϕ winds in its internal space when the
space coordinate reaches the edge of the cylinder. The compactification of ϕ induces a
quantization in integer multiples of 1/R of its conjugate momentum π0: the operator
associated to the zero mode also becomes an angular variable and, with the identifica-
tion ϕ0 ≡ ϕ0 +2πR, only the exponentials eieϕ0/R, with e ∈ Z, are well-defined. Since
[ϕ0, π0] = i, we then have

e−ieϕ0/R π0 e
ieϕ0/R = π0 +

e

R
. (12.2.29)

In complex coordinates and in terms of the integers e and m introduced above, the
new expansion of the field is given by

ϕ(z, z̄) = ϕ0 − i

(
e

4πgR
+
mR

2

)
ln z +

i√
4πg

∑
p=0

1
p
ap z

−p

(12.2.30)

−i
(

e

4πgR
− mR

2

)
ln z̄ +

i√
4πg

∑
p=0

1
p
āp z̄

−p.

For the modes L0 and L̄0 we have

L0 =
∑
p>0

a−pap + 2πg
(
mR

2
+

e

4πgR

)2

,

(12.2.31)

L̄0 =
∑
p>0

ā−pāp + 2πg
(
mR

2
− e

4πgR

)2

.

In terms of the integers e and m we can now define the most general expression of the
vertex operator

Ve,m(z, z̄) = : exp
[
i

(
e

4πgR
+
mR

2

)
φ(z) + i

(
e

4πgR
− mR

2

)
φ̄(z̄)
]

:

= : exp
[
i

e

4πgR
ϕ(z, z̄) + i

mR

2
θ(z, z̄)

]
: (12.2.32)
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whose anomalous dimension and spin are given by

ηe,m = Δ + Δ̄ =
1

4πg

(
e2

(4πgR)2
+
m2R2

4

)
,

(12.2.33)

Se,m = Δ − Δ̄ =
em

(4πg)2
.

To simplify the formula below, it is convenient to assume g = 1/4π. With such a
choice, the previous expressions become

ηe,m =
(
e2

R2 +
m2R2

4

)
,

(12.2.34)
Se,m = em.

Note that the simultaneous substitutions R ↔ 2/R and m ↔ e leave invariant the
spectrum of both the anomalous dimensions and spins. This observation will be useful
in the discussion of the partition functions of the next section. In the language of the
Coulomb gas, the integers e and m can be identified with the electric and magnetic
charges of the system, respectively. The reason for this interpretation becomes evident
if one considers the operator expansion

ϕ(z1, z̄1)Ve,m(z2, z̄2) = −
[
e

R
ln |z12|2 +

mR

2
ln
z12
z̄12

]
Ve,m(z2, z̄2) + · · · (12.2.35)

If we consider only the purely electric vertex operator

Ve,0(z2, z̄2) = : ei
e
R ϕ(z2,z̄2) :

and we wind ϕ(z1, z̄1) around the point (z2, z̄2) at which the vertex operator acts (by
making the analytic continuation z12 → e2πi z12, z̄12 → e−2πi z̄12), this operation does
not induce any discontinuity in the field ϕ. However, repeating the same operation in
the presence of the purely magnetic vertex operator

V0,m(z2, z̄2) = : ei
mR
2 θ(z2,z̄2) :

the field ϕ(z1, z̄1) has a jump equal to 2πmR. The most general vertex operator Ve,m is
a combination of electric and magnetic vertex operators and its two-point correlation
function is given by

〈Ve,m(z1, z̄1)V−e,−m(z2, z̄2)〉 =
1

| z12 |η
(
z12
z̄12

)S
. (12.2.36)

Let’s now discuss the partition function of the bosonic field on a torus, highlighting
its remarkable duality properties.
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12.2.3 Free Bosonic Field on a Torus

Let us initially consider the partition function of a gaussian free bosonic theory. In
this case the variable ϕ takes values on all the real axis. In terms of the path integral,
its expression would be

Z(τ) =
∫

Dϕ e−S , (12.2.37)

with
S =

g

2

∫
d2x (∂ϕ)2 = −g

2

∫
d2xϕ�ϕ, (12.2.38)

where we have assumed periodic boundary conditions on both directions of the torus

ϕ(z + τ, z̄ + τ̄) = ϕ(z, z̄),
ϕ(z + 1, z̄ + 1) = ϕ(z, z̄). (12.2.39)

The definition (12.2.37) presents certain drawbacks. For the quadratic expression of
the action, the functional integral reduces to the product of the eigenvalues λn,m of
the laplacian � on the torus

Z ∼
∏
n,m

(
1

λn,m

)1/2

. (12.2.40)

Among the eigenvalues, there is λ0,0 = 0, which corresponds to the zero mode of the
field associated to its constant configuration. The original definition of the partition
function (12.2.37) is therefore divergent. For the correct definition of this quantity it
is necessary to restrict the functional integration only to the non-zero modes of the
field ϕ. To this end, let’s define

ZB(τ) = 2π
∫

Dϕ
√
Aδ

(∫
d2xϕ(x)ϕ0

)
e−S , (12.2.41)

where A is the area of the torus A = Im τ , ϕ0 = A−1/2 is the normalized eigenfunction
of the zero mode on this geometry and the prefactor 2π has been inserted for future
convenience. The integral

∫
d2xϕ(x)ϕ0 obviously filters the zero mode of the field, on

which it is no longer necessary to integrate for the delta-function inserted into the
functional integral.

To compute (12.2.41), expand ϕ on the basis of the normalized eigenfunctions ϕn,m
of the operator �

ϕ =
∑
n,m

cn,m ϕn,m.

The eigenvalues corresponding to the boundary conditions (12.2.39) are given by

λn,m = (2π)2 |nk2 +mk1|2,

where k1,2 are the vectors of the basis of the lattice that is dual to the original lattice
defined by the periods ω1,2. With the choice (ω1, ω2) = (1, τ), one has

k1 = −i ω2/A = −i τ/A, k2 = iω1/A = i/A



Conformal Field Theory of a Free Bosonic Field 405

namely

λn,m =
(

2π
A

)2

|n−mτ |2. (12.2.42)

For the partition function (12.2.41) we then have

ZB(τ) = 2π
√
A

∫ ′∏
n,m

dcn,me
− g

2

∑
n,m λn,mc2n,m =

√
A

det′ g
2π �

=
√
A

′∏
n,m

(
1

g
2πλn,m

)1/2

(12.2.43)

where the index in the product means the omission of the term n = m = 0. To evaluate
this infinite product we use the regularization given by the Riemann zeta function.
We recall that, with the usual definition of this function, ζ(s) =

∑∞
n=1 n

−s, we have
ζ(−1) = − 1

12 , ζ(0) = − 1
2 and ζ ′(0) = dζ(0)

ds = −1
2 ln 2. So, with this regularization,

we have for instance
∞∏
n=1

a = aζ(0) = a−1/2,

∞∏
n=−∞

a = a2ζ(0)+1 = 1.

Other useful formulas are
∞∏
n=1

nα = e−αζ′(0) = (2π)α/2,

∞∏
n=−∞

(n+ a) = a

∞∏
n=1

(−n2)
(

1 − a2

n2

)
= 2i sinπ a.

Applying these expressions, one has

det′ g

2π
� =

∏
(n,m)=(0,0)

(√
g

A

)2

(n−mτ) (n−mτ̄)

=
(
A√
g

)2
⎛
⎝∏

n=0

n2

⎞
⎠ ∏

m=0,n∈Z

(n−mτ) (n−mτ̄)

=
(
A√
g

)2

(2π)2
∏

m>0,n∈Z

(n−mτ) (n+mτ) (n−mτ̄) (n+mτ̄)

=
(2πA)2

g

∏
m>0

(
e−iπmτ − eiπmτ

)2 (
e−iπmτ̄ − eiπmτ̄

)2
=

(2πA)2

g

∏
m>0

(q q̄)−m (1 − qm)2 (1 − q̄m)2

=
(2πA)2

g
(q q̄)

1
12

∏
m>0

(1 − qm)2 (1 − q̄m)2 =
(2πA)2

g
η2 η̄2,
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where η(q) is the Dedekind function

η(q) = q
1
24

∞∏
m=1

(1 − qm). (12.2.44)

Substituting in (12.2.43), we arrive at the final expression of the partition function of
a gaussian bosonic field on a torus:

ZB(τ) =
g1/2

(Im τ)1/2η(q) η(q̄)
. (12.2.45)

To check that this function is invariant under the modular group, we need the trans-
formations of the Dedekink function under T and S:

η(τ + 1) = eiπ/12 η(τ),
η(−1/τ) =

√
−iτ η(τ). (12.2.46)

These formulas are derived by using the identity

η(τ) =
1
2
θ2(τ) θ3(τ) θ4(τ), (12.2.47)

and the modular tranformations of the Jacobi θi(τ) functions, discussed in Problem 2
at the end of the chapter.

Let’s now generalize the previous result (12.2.45) when the scalar field ϕ is com-
pactified on a circle of radius R. The equations of motion are obviously the same as for
the gaussian case but the boundary conditions are different. Instead of those expressed
by (12.2.39), we have in fact

ϕ(z + ω1, z̄ + ω̄1) = ϕ(z, z̄) + 2πRm,
ϕ(z + ω2, z̄ + ω̄2) = ϕ(z, z̄) + 2πRn. (12.2.48)

The integers (m,n) identify a specific topological class of field configurations of ϕ and,
integrating over these configurations, we define the corresponding partition function
Zm,n. To compute such a quantity, let’s decompose the field in terms of its classical
solution ϕclm,n (which satisfies the boundary conditions (12.2.48)) and of its fluctuation
ϕ̃, that is a fully periodic function

ϕ = ϕclm,n + ϕ̃,

ϕclm,n = 2πR
[
z

ω1

mτ̄ − n

τ̄ − τ
− z̄

ω1∗
mτ − n

τ̄ − τ

]
. (12.2.49)

Substituting this expression in the action (12.2.38), we can decompose this quantity
into the action S[ϕ̃] of the periodic field and into the action S[ϕclm,n] relative to the
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classical configuration of the field. The latter quantity is expressed by

S[ϕclm,n] =
g

2

∫
d2x (∇ϕclm,n)2,

= 2g
∫
dz dz̄ ∂ϕclm,n ∂̄ϕ

cl
m,n

= 8π2 g R2A
1

|ω|2
∣∣∣∣mτ − n

τ − τ̄

∣∣∣∣ (12.2.50)

= 2π2 g R2 |mτ − n|2
Im τ

.

The functional integral on the periodic term ϕ̃ of the field gives rise to the prefactor
ZB(τ) previously computed and therefore

Zm,n(τ) = ZB(τ) exp
[
−2gπ2R2 |mτ − n|2

Im τ

]
. (12.2.51)

Let’s determine the transformation properties of this expression under the modular
group. For a generic modular transformation, the parameter τ changes as

τ → (aτ + b)/(cτ + d)

and therefore

|mτ − n|2
Im τ

→ |(maτ + bm)/(cτ + d) − n|2 |cτ + d|2
Im [(aτ + b)(cτ + d)]

=
|(ma− nc)τ + bm− dn|2

Im τ
,

where we use the formula

Im [(aτ + b)(cτ + d)] = Im[(ad− bc)τ ] = Im τ (ad− bc = 1).

Hence, under a modular transformation, the indices (m,n) transform with the matrix(
m
n

)
→
(
a −c
−b d

) (
m
n

)
, (12.2.52)

so that
Zm,n(τ + 1) = Zm,n−m,
Zm,n(−1/τ) = Z−n,m.

(12.2.53)

To have a modular invariant partition function one simply needs to sum over all sectors
relative to the different boundary conditions. We arrive then at the final expression

Z(R) =
√

2πg R
1

Im τ |η(τ)|2
∑
m,n

exp
[
−2gπ2R2 |mτ − n|2

Im τ

]
, (12.2.54)
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where the prefactor
√

2πg R comes from integration over the zero mode of the field.
This term can also be justified in a different way, i.e. transforming the previous
expression with the Poisson resummation formula

∞∑
n=−∞

exp[−πan2 + bn] =
1√
a

∞∑
k=−∞

exp

[
−π
a

(
k +

b

2πi

)2
]
. (12.2.55)

Imposing for simplicity g = 1/4π and

a = R2/2τ2 b = πmR2τ1/τ2 τ = τ1 + iτ2

we arrive at

Z(R) =
1

|η(τ)|2
∑

e,m∈Z

q(e/R+mR/2)2/2 q̄(e/R−mR/2)2/2. (12.2.56)

Comparing with eqn (11.7.13), it is easy to see that the expressions for L0 and L̄0
coincide with those given in (12.2.31). The spectrum of the anomalous dimensions and
spins, given in eqn (12.2.34), shows that the partition function is symmetric under the
simultaneous change of e↔ m and R ↔ 2/R. This leads to the duality relation of the
partition function (12.2.56)

Z(R) = Z(2/R). (12.2.57)

The computation of the partition function for the self-dual value R =
√

2 is proposed
in Problem 4 at the end of the chapter.

12.3 Conformal Field Theory of a Free Fermionic Field

In this section we discuss the conformal theory of the complex fermion field (Dirac
field)

Ψ(z, z̄) =
(
χ(z, z̄)
χ̄(z, z̄)

)
, (12.3.1)

in euclidean space. The action is

S =
λ

2π

∫
d2x Ψ̄ γμ ∂μ Ψ, (12.3.2)

where Ψ̄ = Ψ† γ0, while the euclidean Dirac matrices γμ satisfy the algebra

{γμ, γν} = 2δμ,ν . (12.3.3)

We choose as representation of the γμ matrices

γ0 = σ1 =
(

0 1
1 0

)
, γ1 = σ2 =

(
0 −i
i 0

)
, (12.3.4)

where σi are the usual Pauli matrices. The two-dimensional analog of the γ5 matrix
is here given by σ3. In complex coordinates, the euclidean Dirac operator associated
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to this fermion is

D = γ0∂τ + γ1∂x =
(

0 2∂z
2∂z̄ 0

)
, (12.3.5)

and the equations of motion are

∂z̄χ(z, z̄) = 0,
∂zχ̄(z, z̄) = 0. (12.3.6)

They show that χ(z, z̄) = χ(z) is a purely analytic field whereas χ̄(z, z̄) = χ̄(z̄) is
purely anti-analytic. The two-point correlation functions are

〈χ†(z1)χ(z2)〉 =
1
λ

1
z1 − z2

,

〈χ̄†(z̄1) χ̄(z̄2)〉 =
1
λ

1
z̄1 − z̄2

, (12.3.7)

〈χ†(z1) χ̄(z̄2)〉 = 〈χ̄†(z̄1)χ(z2)〉 = 0.

It should be noticed that the complex fermion field Ψ can be written in terms of the
two real Majorana fermions ψ1 and ψ2, with ψi = ψ†

i

Ψ(z, z̄) =
(
χ(z)
χ̄(z̄)

)
=

1√
2

(
ψ1 + iψ2
ψ̄1 + iψ̄2

)
. (12.3.8)

Since χ† = (ψ1 − iψ2)/
√

2, the analytic component of the stress-energy tensor of this
theory is

T (z) =
λ

2
: (∂Ψ† Ψ − Ψ† ∂Ψ) : = −λ

2
: (ψ1∂ψ1 + ψ2∂ψ2) : (12.3.9)

and is given by the sum of the stress–energy tensors relative to the two real fermions
ψ1 and ψ2. From the correlator 〈T (z1)T (z2)〉 (which can be computed using the results
of Chapter 11 for the Majorana fermion), one obtains the value of the central charge,
c = 1. Analogous formulas hold for the anti-analytic component of the fermion field.

To study the quantization of Ψ it is sufficient to consider the quantization of its
Majorana components. We deal with this problem in the next section.

12.3.1 Quantization of the Free Majorana Fermion

In this section and in the next ones, we denote by ψ(z) and ψ̄(z̄) the analytic and
anti-analytic components of the Majorana fermion, with action2

S =
1
2π

∫
d2x
[
ψ ∂z̄ ψ + ψ̄ ∂z ψ̄

]
. (12.3.10)

The equations of motion
∂z ψ̄ = 0,
∂z̄ψ = 0, (12.3.11)

2To simplify the notation from now on we take λ = 1.
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show that the two components are decoupled. Moreover, ψ depends only on z, whereas
ψ̄ depends only on z̄. The conformal weights of the two fields are

ψ →
(

1
2
, 0
)

ψ̄ →
(

0,
1
2

)
.

As seen previously, the analytic and anti-analytic components of the stress–energy
tensor associated to the action (12.3.10) are

T = −1
2

: ψ∂zψ :, T̄ = −1
2

: ψ̄∂z̄ψ̄ : . (12.3.12)

Let’s now focus attention on the analytic sector, since analogous considerations can
be applied to the anti-analytic one.

Given the conformal weight of ψ(z), the operator product expansion with itself is

ψ(z1)ψ(z2) =
1

z1 − z2
+ · · · (12.3.13)

In the complex plane, the mode expansion of the Taylor–Laurent series reads

ψ(z) =
∞∑

n=−∞

ψn
zn+1/2 , (12.3.14)

where
ψn =

∮
C

dz

2πi
zn−1/2 ψ(z), (12.3.15)

with C a closed contour around the origin. Using eqn (12.3.13), we can derive the
anticommutation relations of the modes: we simply need to use the operator product
expansion and exchange, as usual, the order of the contours around the origin

{ψn, ψm} =
[∮

dz

2πi
,

∮
dw

2πi

]
zn−1/2 wm−1/2 ψ(z)ψ(w)

=
∮

dw

2πi
wm−1/2

∮
dz

2πi
zn−1/2 1

z − w
(12.3.16)

=
∮

dw

2πi
wm+n−1 = δn+m,0.

Neveu–Schwarz and Ramond sectors. It is worth stressing that we can choose two
different monodromy properties of the field ψ(z). In fact, the fermion field is naturally
defined on the double covering of the complex plane: with a branch cut that starts
from the origin, when the coordinate z goes around the origin

ψ(e2πi z) = ±ψ(z) (12.3.17)

we can adopt either periodic (P) or antiperiodic (A) boundary conditions. The first
case defines the so-called Neveu–Schwarz (NS) sector, while the second defines the
so-called Ramond (R) sector. In the Neveu–Schwarz sector, the mode expansion of the
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field is given in terms of half-integer indices, while in the Ramond sector the indices
n of the (12.3.14) are instead integers

ψ(e2πi z) = ψ(z), n ∈ Z + 1
2 , (NS)

ψ(e2πi z) = −ψ(z), n ∈ Z, (R). (12.3.18)

It is also convenient to introduce the operator (−1)F , where F is the fermionic number,
defined in terms of its anticommutation with the field ψ

(−1)F ψ(z) = −ψ(z) (−1)F .

This operator satisfies
(
(−1)F

)2 = 1 and{
(−1)F , ψn

}
= 0, ∀n. (12.3.19)

There are some interesting consequences of the integer or half-integer mode expansion
of the field both for its correlation functions and for the operator content. Let’s analyze
first the periodic case: to compute its two-point function of the vacuum state, we can
use the anticommutations of its modes, keeping in mind that

ψn | 0〉 = 0, n > 0
〈0 | ψn = 0, n < 0. (12.3.20)

Hence, we have

〈0 | ψ(z)ψ(w) | 0〉 = 〈0 |
∞∑

n=1/2

ψn z
−n−1/2

−∞∑
m=−1/2

ψm w−m−1/2 | 0〉

=
∞∑

n=1/2

z−n−1/2 wn−1/2 =
1
z

∞∑
n=0

(w
z

)n
=

1
z − w

. (12.3.21)

Let’s consider now the two-point correlation function when the field satisfies the
antiperiodic boundary conditions. In such a case, we have to take into account the
presence of the zero mode of the field that satisfies

{ψ0, ψ0} = 1, {(−1)F , ψ0} = 0. (12.3.22)

Applying ψ0 to an eigenstate of L0 does not change its eigenvalue. This means that the
ground state of the Ramond sector must realize a representation of the two-dimensional
algebra given by ψ0 and (−1)F . The smallest irreducible representation consists of a
doublet of operators σ and μ, the so-called order and disorder operators, with the
same conformal weight. In this space, a 2 × 2 matrix representation of ψ0 and (−1)F

is given by

ψ0 =
(

0 1
1 0

)
, (−1)F =

(
1 0
0 −1

)
(12.3.23)

In this representation the fields σ and μ are eigenvectors of (−1)F with eigenvalue +1
and −1, respectively.
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In the presence of the order/disorder fields, the OPE of the fermionic field is

ψ(z)σ(w) ∼ (z − w)−1/2 μ(w) + · · · ; ψ(z)μ(w) ∼ (z − w)−1/2 σ(w) + · · ·
(12.3.24)

Therefore we can interpret the two-point correlation function of the field ψ(z) with
antiperiodic boundary conditions as their correlation in the presence of these two fields,
placed at the origin and at infinity, respectively:

〈ψ(z)ψ(w)〉A ≡ 〈 0 | σ(∞)ψ(z)ψ(w)σ(0) | 0〉 = 〈 0 | μ(∞)ψ(z)ψ(w)μ(0) | 0〉.
(12.3.25)

To compute these correlators, we can use the expansion in integer modes of ψ: sepa-
rating the zero mode, and using in this computation simply its vacuum expectation
value ψ2

0 = 1
2 , we obtain

〈ψ(z)ψ(w)〉A =

〈∑
n=0

ψn z
−n−1/2

−∞∑
m=0

ψm w−m−1/2

〉
A

=
∞∑
n=1

z−n−1/2 wn−1/2 +
1
2

1√
z w

(12.3.26)

=
1√
zw

(
w

z − w
+

1
2

)
=

1
2

√
z
w +

√
wz

z − w
.

Note that, in the limit z → w, this result correctly reproduces the operator product
expansion (12.3.13), as expected, because this relation expresses a local property of
the field and is insensitive to the boundary conditions chosen for it.

It is now easy to compute the conformal weights of the fields σ and μ. Let’s firstly
use the Ward identity

T (z)σ(0) | 0〉 =
Δσ

z2 σ(0) | 0〉 + · · ·

which leads to
〈T (z)〉A ≡ 〈0 | σ(∞)T (z)σ(0) | 0〉 =

Δσ

z2 . (12.3.27)

The left-hand side of this equation can be evaluated using both the definition of the
normal order

T (z) = lim
η→0

1
2

(
−ψ(z + η)∂zψ(z) +

1
η2

)
(12.3.28)

and the correlation function (12.3.26). Hence,

〈T (z)〉A = lim
w→z

[
−1

4
∂w

(√
z/w +

√
w/z

z − w

)
+

1
2(z − w)2

]
=

1
16z2 (12.3.29)

and so
Δσ = Δμ =

1
16
. (12.3.30)
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Bosonic order/disorder operators. It is interesting to remark that an analogous
result for the periodic and antiperiodic boundary conditions also holds for the
bosonic field. In fact, in view of the symmetry of the action under ϕ→ −ϕ, also in
this theory we can adopt antiperiodic boundary conditions. Consider, for instance,
J(z), the analytic component of the current, with expansion

J(z) = i ∂zΦ(z) =
∑
n

an z
−n−1. (12.3.31)

When J(e2πi z) = J(z), n ∈ Z, while when J(e2πi z) = −J(z), we have n ∈ Z+1/2.
As for the fermions, in the antiperiodic case we can introduce the order/disorder
operators ς and τ , with operator expansion

∂Φ(z) ς(w) = (z − w)−1/2 τ(w) + · · · (12.3.32)

Contrary to the fermionic case, in this case the two fields have different confor-
mal weights, related by Δτ = Δς + 1

2 . In the presence of antiperiodic boundary
conditions, the two-point correlation function of the current is given by

〈 ∂Φ(z) ∂Φ(w) 〉A ≡ 〈 0 |σ(∞)∂Φ(z) ∂Φ(w)σ(0) |0 〉. (12.3.33)

Repeating the same computation as in the fermionic field, we have

−〈 ∂Φ(z) ∂Φ(w)〉A =

(√
z
w +
√

w
z

)
2(z − w)2

. (12.3.34)

The conformal weight of ς can be derived by the vacuum expectation value of the
stress–energy tensor

〈T (z)〉A = −1
2

lim
z→w

〈
∂Φ(z)∂Φ(w) +

1
(z − w)2

〉
A

=
1

16z2 (12.3.35)

namely Δς = 1
16 .

Using eqn (12.3.14), the stress–energy tensor becomes

T (z) =
1
2

∑
n,k

(
k +

1
2

)
z−n−2 : ψn−k ψk : (12.3.36)

where by the normal order : : we mean an ordering of the operators, with the lowest
index placed on the left. Since T (z) =

∑
n Ln z

−n−2, the Virasoro generators are

Ln =
1
2

∑
k

(
k +

1
2

)
: ψn−k ψk : . (12.3.37)
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For the generators Ln (with n �= 0) there is no problem to implement the normal
order, since the operators involved in their definition anticommute. However, we have
to pay attention to the definition of L0, in which there may be an additive constant
coming from the anticommutation of the operators ψ−k and ψk. This constant can be
determined by the vacuum expectation of T (z). However, we have to distinguish the
Neveu–Schwarz and the Ramond sectors

L0 =
∑
k>0

k ψ−k ψk

(
NS, k ∈ Z +

1
2

)
(12.3.38)

L0 =
∑
k>0

k ψ−k ψk +
1
16

(R, k ∈ Z) .

12.3.2 Fermions on a Torus

To discuss the partition function of the fermionic theory, let’s initially consider the
transformation that maps the plane in a cylinder geometry of width L. This is given
by

w =
L

2π
log z. (12.3.39)

Since the fermionic field has conformal weight 1/2, the field ψ on the cylinder is related
to the field ψpl on the plane by the transformation

ψ(w) =
(
dz

dw

)1/2

ψpl(z) =

√
2πz
L

ψpl(z). (12.3.40)

Let x be the space coordinate along the cylinder and τ its euclidean time variable,
such that w = τ − ix. At a fixed τ , using eqn (12.3.40) and the mode expansion of the
field in the plane, we can easily derive the expansion of the field on the cylinder

ψ(x) =

√
2π
L

∑
k

ψk e
2πikx/L. (12.3.41)

Since it is a free theory, the euclidean time evolution of the modes is expressed by

ψk(t) = ψk(0) e−2πkτ/L, (12.3.42)

and therefore, for any x and τ , we have the expansion

ψ(w) =

√
2π
L

∑
k

ψk e
−2πkw/L, (12.3.43)

where ψk = ψk(0). Notice that, for the transformation law (12.3.40), on the cylinder
there is a swapping of the boundary conditions with respect to those of the plane:
the Ramond field, which has an integer mode expansion, now corresponds to periodic
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boundary conditions while the Neveu–Schwarz field, with half-integer modes, satisfies
antiperiodic boundary conditions

ψ(x+ 2πL) = ψ (Ramond)
ψ(x+ 2πL) = −ψ (Neveu−Schwarz). (12.3.44)

It is interesting to compute L0 for the two boundary conditions

(L0)cyl =
1
2

∑
n

n : ψ−nψn : =
∑
n>0

nψ−nψn − 1
2

∑
n>0

n. (12.3.45)

The last term is obviously divergent but it can be regularized in terms of the Riemann
zeta function. In the Ramond case, the sum is over all the integers

∞∑
n=1

n = ζ(−1) = − 1
12
.

In the Neveu–Schwarz case, the sum runs over the half-integers n = (2k + 1)/2. Such
a series can be written as a sum over all the integers, minus the sum over the even
numbers

1
2

∞∑
k=0

(2k + 1) =
1
2

[ ∞∑
m=1

m−
∞∑

m=1

2m

]
= −1

2
ζ(−1) =

1
24
.

Hence

(L0)cyl =
∑
n>0

ψ−n ψn +
{ 1

24 Ramond
− 1

48 Neveu−Schwarz (12.3.46)

where, for Ramond, the sum is over the integers and for Neveu–Schwarz, the half-
integers. To interpret the presence of the additional constant, one needs to recall the
transformation law of T in passing from the plane to the cylinder:

Tcyl(w) =
(
dz

dw

)2

Tpl(z) +
c

12
{z, w} =

(
2π
L

)2 [
z2 Tpl(z) −

c

24

]
. (12.3.47)

Substituting T (z) =
∑

n Lnz
−n−2, we get

Tcyl(w) =
(

2π
L

)2
[∑

n

Lnz
−n − c

24

]
=
(

2π
L

)2 ∑
n

(
Ln − c

24
δn,0

)
e−2πnw/L

namely
(L0)cyl = L0 −

c

24
. (12.3.48)

Since the Majorana fermion has a central charge c = 1
2 , in the Neveu–Schwarz sector

we correctly recover the ground state energy given by − 1
48 . In the Ramond sector, we

have to take into account the conformal weight of the ground states of this sector,
equal to 1

16 : the difference 1
24 − (− 1

48 ) = 1
16 is precisely the conformal weight of this

state.
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Calculus for anticommuting quantities. To proceed, it is necessary to briefly recall
the mathematical properties of the anticommuting variables. Let αi (i = 1, . . . , n) be a
set of anticommuting variables {αi, αj} = 0. Since α2

i = 0, any function f(α1, . . . , αn)
of these variables, once expanded in series, is at most a polynomial of first order αi.
Moreover, for anticommuting variables the integration rules are∫

dαi = 0
∫
dαi αj = δij (12.3.49)

namely, the integration corresponds to taking the derivative. Consider the quantity

I =
∫
dα1 . . . dαn exp [−αiAijαj ] , (12.3.50)

where Aij is an antisymmetric matrix of dimension n, where n is an even number.
Expanding the exponential, in power series by the nature of the variables αi, there is
only a finite number of terms

I =
∫
dα1 . . . dαn

∏
i<j

(1 − αiAijαj). (12.3.51)

Now expanding the product, the only terms that survive the integration are those in
which each variable appears only once, and therefore there are n/2 matrix elements
of Aij , with the result

I =
∑
p∈Sn

ε(p)Ap(1)p(2)Ap(3)p(4) · · ·Ap(n−1)p(n), (12.3.52)

where ε(p) is the sign of the permutation p. The expression above is the “Pfaffian”
of the matrix A, Pf(A), a quantity that was introduced in Chapter 5. It satisfies the
identity

(Pf(A))2 = detA. (12.3.53)

Partition function. Based on the previous formulas, let’s now compute the partition
function on a torus of the fermion system with action S given by (12.3.10)

Z =
∫

DψDψ̄ e−S = (det ∂)1/2 (det ∂̄)1/2 = (det �)1/2. (12.3.54)

It is necessary to specify the boundary conditions on the torus, along both the hori-
zontal and vertical directions

ψ(z + ω1) = e2πiν ψ(z)
ψ(z + ω2) = e2πiμ ψ(z). (12.3.55)

We assume that the same conditions are imposed for the anti-analytic component.
Requiring that the action is periodic on a torus under a shift of any of its periods,
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there are only four possibilities:

(μ, ν) = (0, 0) (P, P )
(μ, ν) =

(
0, 1

2

)
(P,A)

(μ, ν) =
( 1

2 , 0
)

(A,P )
(μ, ν) =

(1
2 ,

1
2

)
(A,A)

(12.3.56)

where P and A denote the periodic and the antiperiodic boundary conditions, respec-
tively. If zμ,ν denotes the functional integral on the chiral component with boundary
condition of type μ along the vertical axis (the time direction) and type ν along the
horizontal axis (the space direction), for the partition function we have

Zμ,ν = | zμ,ν |2 . (12.3.57)

The quantities zμ,ν can be easily computed in terms of the characters of the fermionic
theory. Let’s consider, firstly, the simplest case (A,A), in which we have

zA,A = q−c/24 trA qL0 = q−1/48 trA qL0 , (12.3.58)

where q = e2πiτ , c = 1/2, and the trace is taken in the antiperiodic sector of the
theory, i.e. Neveu–Schwarz. Similarly, we have

zA,P =
1√
2
q−1/48 trP qL0 , (12.3.59)

where this time the trace is taken in the periodic sector, i.e. the Ramond sector (the
factor 1/

√
2 that enters the definition of this quantity is introduced to simplify later

its modular properties).
It is necessary to discuss separately the case of periodic boundary conditions along

the vertical axis. Since the natural boundary conditions for a fermionic field are the
antiperiodic ones, to change them and make them periodic it is necessary to introduce
in the trace an operator that anticommutes with the fermion. Such an operator is just
(−1)F , that was previously introduced, and for the remaining partition functions we
then have

zP,A = q−1/48 trA (−1)F qL0 (12.3.60)

zP,P = q−1/48 trP (−1)F qL0 . (12.3.61)

The computation of these two traces is elementary. For each fermionic mode there are
only two states and therefore, for each term of type qnψ−nψn , we have

tr qnψ−nψn = 1 + qn

(12.3.62)
tr (−1)F qnψ−nψn = 1 − qn
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and therefore

tr q
∑

n>0 nψ−nψn = tr
∏
n>0

qnψ−nψn =
∏
n>0

(1 + qn)

(12.3.63)

tr (−1)F q
∑

n>0 nψ−nψn = tr
∏
n>0

(−1)F qnψ−nψn =
∏
n>0

(1 − qn).

Using the expression for L0 given in (12.3.46), in the two antiperiodic (NS) cases
(with half-integer mode expansion) and in the periodic (R) case (with integer mode
expansion), we get

zAA(τ) = q−1/48trA qL0 = q−1/48
∞∏
n=0

(1 + qn+1/2) =

√
θ3(τ)
η

zPA(τ) = q−1/48trA(−1)F qL0 = q−1/48
∞∏
n=0

(1 − qn+1/2) =

√
θ4(τ)
η

zAP (τ) =
1√
2
q−1/48trP qL0 = q1/24

∞∏
n=0

(1 + qn) =

√
θ2(τ)
η

zPP (τ) =
1√
2
q−1/48trP (−1)F qL0 = q1/24

∞∏
n=0

(1 − qn) = 0

where θi(τ) are the Jacobi functions defined in Problem 2. Note that the partition
function zPP vanishes, for the zero mode present with these boundary conditions and
the integration rules (12.3.49). Under the modular transformation τ → τ + 1, the
partition functions change as

zAA(τ + 1) = e−iπ/24 zPA(τ)
zPA(τ + 1) = e−iπ/24 zAA(τ) (12.3.64)
zAP (τ + 1) = eiπ/12 zAP (τ)

while under τ → −1/τ

zAA(−1/τ) = zPA(τ)
zPA(−1/τ) = zAP (τ) (12.3.65)
zAP (−1τ) = zPA(τ).

In light of these transformations, the modular invariant partition function is obtained
by including all the three boundary conditions, namely

Z = | zAA |2 + | zAP |2 + | zPA |2 =
∣∣∣∣θ2η
∣∣∣∣+
∣∣∣∣θ3η
∣∣∣∣+
∣∣∣∣θ4η
∣∣∣∣ . (12.3.66)

In Chapter 14 we will show that this partition function corresponds to the square of
the partition function of the Ising model.
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12.4 Bosonization

As we have seen in Appendix B of Chapter 1, in a system with one-dimensional space
there is no distinction between the statistical and the interaction properties of the
particles. The term “bosonization” refers to the possibility of describing a relativistic
theory of Dirac fermions in (1 + 1) dimensions in terms of a bosonic theory. Such
a possibility permits in many cases a drastic simplification of the original fermionic
theory.

The original idea of this transformation is due to D.C. Mattis and E.H. Lieb, who
were able to exactly solve in this way the Thirring model. An important step forward in
condensed matter physics was achieved by A. Luther and I. Peschel. In quantum field
theory, the most famous work is due to Sidney Coleman, who proved the equivalence
of the Sine–Gordon and the massive Thirring model.

In this section we present the main formulas of the dictionary that links the
fermionic and bosonic fields. Note that the equivalence of these two theories is also
suggested by the common value of their central charge, c = 1.

12.4.1 Bosonization Rules

The two-point correlation functions of the two components of the complex fermion
field Ψ(z, z̄) defined in (12.3.8) are given by eqn (12.3.7). Given the free nature of the
theory, the multipoint correlators are computed in terms of Wick’s theorem. Focusing
attention on the analytic part of Ψ we have

〈χ†(z1) . . . χ†(zn)χ(w1) . . . χ(wn)〉 = det
(

1
zi − wj

)
. (12.4.1)

With the choice g = 1/4π, the propagators of the bosonic field are 〈φ(z1)φ(z2)〉 =
− ln z12 and 〈φ̄(z̄1)φ̄(z̄2)〉 = − ln z̄12. Let’s consider the purely analytic vertex operators
V+1 =: eiφ(z) : and V−1 =: e−iφ(z), together with those purely anti-analytic V̄+1 =:
eiφ̄(z̄) : and V̄−1(z̄) =: e−iφ̄(z̄) :. Using these expressions and Wick’s theorem, it is easy
to prove that

〈eiφ(z1) . . . eiφ(zn) e−iφ(w1) . . . e−iφ(wn)〉 =

∏
i<j(zi − zj)(wi − wj)∏

i,j(zi − wj)
. (12.4.2)

At first sight, this expression seems different from the correlation functions of the
fermion fields. However, there is a mathematical identity, due to Cauchy, that states
the identity of the two expressions! Namely,

∏
i<j(zi − zj)(wi − wj)∏

i,j(zi − wj)
= det

(
1

zi − wj

)
. (12.4.3)

To prove this identity, it is sufficient to check that both expressions have the same poles
and zeros. Based on this equality between the correlation functions of the fermionic
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and bosonic fields, it is natural to establish the following correspondence between the
two operators3

χ(z) = : eiφ(z) :
χ†(z) = : e−iφ(z) :

χ̄(z̄) = : e−iφ̄(z̄) : (12.4.4)

χ̄†(z) = : eiφ̄(z̄) : .

With these expressions, one can establish the operator identities

χ̄†(z̄)χ(z) = Ψ̄
(1 + σ3)

2
Ψ = : eiϕ(z,z̄) :

(12.4.5)

χ†(z) χ̄(z̄) = Ψ̄
(1 − σ3)

2
Ψ = : e−iϕ(z,z̄) : .

(σ3 is the Pauli matrix) or, equivalently

Ψ̄ Ψ = : cosϕ :; Ψ̄σ3 Ψ = i : sinϕ : . (12.4.6)

It is necessary, however, to pay particular attention to establish the bosonic espression
of the fermionic current. In fact, a naive application of the bosonization rules would
lead to

Ψ̄γ0Ψ = Ψ̄σ1Ψ = χ†χ+ χ̄†χ̄

and therefore
χ†(z)χ(z) → e−iφ(z)+iφ(z) = 1,

an identity that is clearly false. To understand the origin of the discrepancy, we must
recall that the normal order exponential operators do not obey the usual additive rule
of the exponentials. In fact,

: eiαφ(z1) : : eiβφ(z2) : = (z1 − z2)αβ : eiαφ(z1)+iβφ(z2) : . (12.4.7)

Taking this relation into account, it is convenient to compute the fermionic current
corresponding to two points slightly separated, so that

χ†(z1)χ(z2) = (z1 − z2)−1 : e−i(φ(z1)−φ(z2)) : (12.4.8)

=
1

z1 − z2
− i∂zφ+ · · ·

If we omit the first term of this equation (which corresponds to the identity operator
present in the OPE of the two fermionic fields), this is equivalent to defining the normal
order of the operators as

: χ†(z)χ(z) : = lim
η→0

[
χ†(z + η)χ(z) − 〈χ†(z + η)χ(z) 〉

]
.

3For g �= 1/4π the formulas change as follows: χ → ei
√

4πgφ and similarly for the others. Strictly
speaking, when there are several fermions, it is necessary to update the formulas above by introducing
the so-called Klein factors that implement the correct anticommutation relations of the fermion fields.
To simplify the discussion we neglect here this aspect of the problem.
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We arrive then at the operator identity

: χ†(z)χ(z) := −i ∂zφ(z). (12.4.9)

Repeating the same considerations for the anti-analytic part, we get an equivalent
formula (with a change of sign)

: χ̄†(z̄) χ̄(z̄) := i ∂z̄φ̄(z̄). (12.4.10)

Going back to euclidean coordinates (x0, x1), we have

j0 = : Ψ̄σ1Ψ := −i (∂zφ(z) − ∂z̄φ̄(z̄))
= −i [(∂z − ∂z̄)φ+ (∂z − ∂z̄)φ̄] (12.4.11)
= −∂x1ϕ(x0, x1)

and similarly

j1 = : Ψ̄σ2Ψ := ∂x0ϕ (12.4.12)

where σ2 is the Pauli matrix. It is easy to prove that this current is conserved ∂μjμ = 0,
and its bosonization expression is

: Ψ̄γμΨ := −εμν ∂νϕ. (12.4.13)

Other useful bosonization formulas are discussed in Problem 6 and 7 at the end of the
chapter. A summary of the bosonization rules is given in Table 12.1.

Table 12.1: Bosonization formulas.

Bosonic theory Fermionic theory

AB = g
2

∫
d2(∂ϕ)2 AF =

∫
d2x[χ̄†∂zχ+ χ†∂z̄ χ]

ϕ(z, z̄) = φ(z) + φ̄(z̄)
θ(z, z̄) = φ(z) − φ̄(z̄) Ψ(z, z̄) =

(
χ(z)
χ̄(z̄)

)
: ei

√
4πgφ : χ

: e−i
√

4πgφ : χ†

: e−i
√

4πgφ̄ : χ̄

: ei
√

4πgφ̄ : χ̄†

−i√4πg ∂zφ : χ†χ(z) :
i
√

4πg ∂z̄φ̄ : χ̄†χ̄(z) :
: cos

√
4πgϕ : : Ψ̄ Ψ :

i : sin
√

4πgϕ : : Ψ̄σ3 Ψ :
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Problems

1. Vertex operators
In order to prove that the ground states | α〉 of the free bosonic theory are obtained
by applying the vertex operators Vα(z, 0̄) to the conformal vacuum | 0〉 it is necessary
to show that Vα(0, 0) is an eigenstate of π0 with eigenvalue α and, furthermore, that
an Vα(0, 0) | 0〉 = 0, with n > 0. To this end:

1. Prove the validity of the formula

[B, eA] = eA [B,A]

assuming that the commutator [B,A] is a constant.
2. Impose B = π0, A = iαϕ(z, z̄), and show that

[π0, Vα] = αVα.

Consequently
π0 Vα(0, 0) | 0〉 = αVα(0, 0) | 0〉.
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3. Show that

[an, Vα(z, z̄)] = α zn Vα(z, z̄)

and conclude that an annihilates Vα(0, 0) | 0〉 .

2. Modular transformations of the θi(τ ) functions
Let’s denote by θi(z, τ) the Jacobi theta functions, with θ1(τ) = 0, while the others
have the infinite series and product representations

θ2(τ) =
∑
n∈Z

q(n+1/2)2/2 = 2 q1/8
∞∏
n=1

(1 − qn) (1 + qn)2

θ3(τ) =
∑
n∈Z

qn
2/2 =

∞∏
n=1

(1 − qn) (1 + qn+1/2)2

θ4(τ) =
∑
n∈Z

(−1)n qn
2/2 =

∞∏
n=1

(1 − qn) (1 − qn−1/2)2.

Use these expressions and the Poisson resummation formula (12.2.55) to prove

θ2(τ + 1) = eiπ/4 θ2(τ), θ2(−1/τ) =
√
−iτ θ4(τ)

θ3(τ + 1) = θ4(τ), θ3(−1/τ) =
√
−iτ θ3(τ)

θ4(τ + 1) = θ3(τ), θ4(−1/τ) =
√
−iτ θ2(τ).

3. Dedekind function
The Dedekind function is defined by the infinite product (q = e2iπτ )

η(τ) = q1/24
∞∏
n=1

(1 − qn).

1. Use the definition of the θi(τ) functions in terms of the infinite product to prove
the identity

η3(τ) =
1
2
θ2(τ) · θ3(τ) θ4(τ).

2. Use the modular transformations of θi(τ) to prove

η(τ + 1) = eiπ/12 η(τ)
η(−1/τ) =

√
−iτ η(τ).
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4. Bosonic partition function at the self-dual point
Consider the expression (12.2.56) of the partition function of a bosonic field with a
compactification radius R equal to the self-dual value R =

√
2:

Z(
√

2) =
1

|η(τ)|2
∑

n,m∈Z

q
1
4 (n+m)2 q̄

1
4 (n−m)2 .

Prove that this expression can be written as

Z(
√

2) = |C0|2 + |C1|2

where

C0(τ) =
1
η

∑
k∈Z

qm
2

=
θ3(2τ)
η(τ)

C1(τ) =
1
η

∑
k∈Z

q(m+1/2)2 =
θ2(2τ)
η(τ)

.

5. Jacobi identity
The aim of this exercise is to prove, by physical arguments, the Jacobi identity

∞∏
n=1

(1 − qn)(1 + qn−1/2w)(1 + qn−1/2w−1) =
∞∑

n=−∞
qn

2/2 wn

which holds for |q| < 1 and w �= 0. Consider then the partition function of a free
system of f fermions and f̄ antifermions, with energy levels E = E0(n − 1

2 ), n ∈ Z,
and total fermion number N = Nf −Nf̄ . Let q = e−E0/T and w = eμ/T .

1. Show that the grand canonical partition function is given by

Z(w, q) =
∑
f,f̄

e−E/T+μN/T =
∞∑

N=−∞
wN ZN (q) (12.4.14)

=
∞∏
n=1

(1 + qn−1/2w)(1 + qn−1/2 w−1)

where ZN (q) is the partition function at a given number N of the fermions.
2. Consider now Z0. The lowest energy states that contribute to this quantity have

all negative energy levels occupied (they form the Dirac sea, with a total energy
normalized to the value E = 0) whereas the excited states are described by the
integers k1 ≥ k2 ≥ k3 ≥ · · · ≥ kl > 0 with

∑l
i ki = M . The energy of these states

is E = ME0. Prove that Z0 is given by

Z0 =
∞∑

M=0

P (M) qM =
∞∏
n=1

1
1 − qn

where P (M) is the combinatoric function that expresses in how many ways an
integer M is expressed as a sum of numbers smaller than it.
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3. Consider now the sector with fermionic number N , where the first positive levels
are occupied. Argue that this sector contributes with the factor

q1/2 · · · qN−3/2 qN−1/2 = q
∑N

n=1(j−1/2) = qN
2/2

in their partition function, while the remaining excitation gives rise to the same
partition function Z0, so that

ZN = qN
2/2 Z0.

4. Now use eqn (12.4.14) to prove the Jacobi identity.

6. Quantum Pythagoras’s theorem
A regularization of the normal order : A(x)B(x) : of two operators can be obtained
by the limit limη→0 : A(x− η/2)B(x+ η/2) : and an average on all directions of η, so
that the final expression is invariant under the rotations. The average is equivalent to
the substitution ημην/|η|2 → 1

2δ
μν .

Use this regularization and the bosonization formulas of the text to prove the
quantum version of the Pythagoras’s theorem

(: cosϕ :)2 + (: sinϕ :)2 = −1
4

(∂ϕ)2

(Observe that (: cosϕ :)2 �=: cos2 ϕ :.)

7. Equivalence of the Sine–Gordon and Thirring models
Consider the Sine–Gordon model of a scalar bosonic field ϕ, whose lagrangian is

L =
1
2
(∂ϕ)2 +

m2

β2 (cosβϕ− 1).

Use the bosonization formulas to prove that this lagrangian can be transformed into
the lagrangian of the Thirring model

L = iΨ̄γμ ∂μΨ −M Ψ̄ Ψ − 1
2
g (Ψ̄γμΨ) (Ψ̄γμΨ)

where Ψ is a complex fermionic field, with the coupling constants related as

β2

4π
=

1
1 + g

π

.

Note that β2 = 4π is equivalent to g = 0, i.e. a free fermionic model!



13
Conformal Field Theories with
Extended Symmetries

Ideas are incredibly similar when you have a chance to know them.

Samuel Beckett

13.1 Introduction

This chapter deals with those field theories that present, in addition to conformal
invariance, a symmetry under a larger group of transformations. These models can
have interesting applications in a wide range of topics, such as the study of fundamental
interactions, statistical mechanics, and condensed matter.

Our first example will be the superconformal models that have, in addition to
the Virasoro generators, also their fermionic partners. The minimal models of these
theories have a finite number of conformal families and rational values of the central
charge and conformal weights. As in the pure bosonic case, the fusion rules of the
unitary superconformal minimal models admit a remarkable interpretation in terms of
Landau–Ginzburg theories. We will also study the conformal models that are invariant
under the discrete ZN symmetry, the so-called parafermion models. Finally, our study
will focus on the conformal theories invariant under a current algebra based on a Lie
group G and their lagrangian realization provided by the Wess–Zumino–Witten model.

A conformal theory is usually formulated in terms of an associative algebra that
involves mutually local fields. However it is also useful to consider theories that have
non-local fields. This is the case for both the superconformal and parafermion models.
It is therefore convenient to define here the concept of non-local fields and refer to it
later on: a field O1(x) is γ-local with respect to another field O2(x2) if their product
O(x1)O(x2) acquires a phase exp(2πiγ) when the variable x1 is analytically continued
clockwise along a closed contour that encloses the point x2, see Fig. 13.1.

13.2 Superconformal Models

In this section we present the main properties of conformal theories in which there
is also a supersymmetry, i.e. a symmetry that links the bosonic and fermionic fields.
They are a generalization of the conformal theories previously encountered. Since
any supersymmetric theory is also superconformal on short scales, the classification
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x

x2

1

Fig. 13.1 A closed loop of the variable x1 around the point x2.

of the superconformal fixed points gives us useful information on the realization of
all possible supersymmetric theories. Here we focus our attention only on the two-
dimensional supersymmetric theories, referring the reader to the texts suggested at
the end of the chapter for a broader discussion of the supersymmetric theories and
their application in various fields of physics.

In two dimensions, superconformal invariance is associated to two supercurrents,
G(z) and Ḡ(z̄), the former a purely analytic field while the latter is a purely anti-
analytic one. They are both fermionic fields, with conformal weights (3

2 , 0) and (0, 3
2 ),

respectively. The algebra of these generators is defined by the singular terms of their
OPE: for G(z) we have

G(z1)G(z2) =
2c

3(z1 − z2)3
+

2
z1 − z2

T (z2) + · · · (13.2.1)

with an analogous expression for Ḡ. The parameter c is the central charge, the same
quantity that enters the operator expansion of T (z)

T (z1)T (z2) =
c

2(z1 − z2)4
+

2
(z1 − z2)2

T (z2) +
1

z1 − z2
∂T (z2) + · · · (13.2.2)

The field G(z) (and Ḡ) is itself a primary field, with operator product expansion

T (z1)G(z2) =
3

2(z1 − z2)2
G(z2) +

1
z1 − z2

∂G(z2) + · · · (13.2.3)

Let’s define the generators Ln and Gn through the expansions

T (z) =
∞∑

n=−∞

Ln

z2+n
; G(z) =

∞∑
m=−∞

Gm

z3/2+m
(13.2.4)

namely

Ln =
∮
C

dz

2πi
zn+1T (z); Gm(z) =

∮
C

dz

2πi
zm+1/2G(z).

Note that, in the expansion of the field G(z), the indices can assume either integer
or half-integer value. In fact, G(z) is a fermionic field and, as we have seen in the
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previous chapter for the free fermionic field ψ, is defined on the double covering of the
plane, with a branch cut starting from the origin: making the analytic continuation
z → e2πi z, we can have two possible boundary conditions

G(e2πi z) = ±G(z). (13.2.5)

In the periodic case (relative to +), called the Neveu–Schwarz (NS) sector, the indices
m are half-integers, m ∈ Z + 1

2 . In the anti-periodic case (relative to −), called the
Ramond (R) sector, the indices m are instead integer numbers, m ∈ Z.

The OPE that involve T (z) and G(z) can be equivalently expressed as algebraic
relations of their modes. Exchanging the order of the integration contours and taking
into account the singular terms of their expansion (see Section 10.7), we arrive at the
infinite-dimensional algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)δn+m,0

[Ln, Gm] =
1
2

(n− 2m)Gn+m (13.2.6)

{Gn, Gm} = 2Ln+m +
c

3

(
n2 − 1

4

)
δn+m,0.

The peculiar aspect of this algebra is the simultaneous presence of commutation and
anticommutation relations.

As in the pure conformal case, the classification of superconformal theories reduces
to finding all irreducible representations of the algebra (13.2.6) with the central charge
c as a free parameter. The space A of these representations is given by the direct sum
of the Neveu–Schwarz and Ramond subspaces:

A = ANS ⊕ AR.

Furthermore, each of the subspaces is decomposed into the direct sum of the super-
conformal families

ANS = ⊕l[Φl]NS ; AR = ⊕λ[Φλ]R, (13.2.7)

where the primary fields Φl and Φλ of this algebra satisfy

LnΦa = 0 n > 0
L0Φa = Δa Φa

GmΦa = 0 m > 0.
(13.2.8)

As for the Virasoro algebra, the representations are built starting from the primary
fields and applying to them the creation operators Ln and Gm, with n,m < 0. So, the
representations are uniquely identified by the conformal weights Δa of the primary
fields. The same considerations hold for the anti-analytic sector of the theory.
Super-space. It is interesting to note that the operators

δε =
∮
C

dz

2πi
ε(z)T (z); δω =

∮
C

dz

2πi
ω(z)G(z) (13.2.9)

can be interpreted as the (holomorphic) generators of the infinitesimal change of the
coordinates (Z, Z̄) = (z, θ; z̄, θ̄) of a 2 + 2 dimensional super-space, where z and z̄



Superconformal Models 429

are the usual complex coordinates, whereas θ and θ̄ are fermionic coordinates. For the
analytic part of this super-space, we have the following superconformal transformation

z → z + ε(z) − ω(z)θ; θ → θ +
1
2
ε′(z) + ω(z). (13.2.10)

Hence, ε(z) and ω(z) are the bosonic and fermionic infinitesimal transformatiosn
respectively. The peculiar nature of (13.2.10) consists of being the conformal transfor-
mation of the 1-form dz + θ dθ. It is therefore convenient to consider G(z) and T (z)
as the components of a super-stress–energy tensor

W (z, θ) = G(z) + θ T (z). (13.2.11)

Neveu–Schwarz sector. In the NS sector the representations are given in terms of
the superfields

Φl(Z, Z̄) = Φl(z, z̄) + θ ψl(z, z̄) + θ̄ ψ̄l(z, z̄) + iθ θ̄ Φ̃l(z, z̄) (13.2.12)

where the primary field Φl is the first component while ψl = G−1/2Φl, ψ̄l = Ḡ−1/2Φl

and Φ̃l = −iG−1/2Ḡ−1/2Φl.
Ramond sector. In the Ramond sector the field GmAr cannot be local with respect
to the fields of AR and consequently the space AR naturally decomposes into two
locality classes: AR = A(+)

R ⊕ A(−)
R , where all fields are mutually local in each class

while any field A(+)
R is semilocal (with a semilocal index equal to 1/2) with respect to

A
(−)
R . The operators Gm act in AR as Gm : A(ε)

R → A(−ε)
R , with ε = ±. This implies,

in particular, that the primary fields in the Ramond sector are organized in a doublet
of fields Φλ ∈ A(ε)

R , with the operators G0 and Ḡ0 that act on them as 2× 2 matrices.
From the algebraic relations of the modes, we also have

G2
0 = L0 −

c

24
. (13.2.13)

Hence, for a scalar field Φλ with conformal weights (Δλ, Δ̄λ) we get

G0 Φ(ε)
λ = 2−3/2 (1 + iε)βλ Φ(−ε)

λ ; Ḡ0 Φ(ε)
λ = 2−3/2 (1 − iε)βλ Φ(−ε)

λ

where c̃ = 2/3c and the parameter β subjected to the condition

Δλ − c̃

16
=

1
4
β2
λ.

The only exception to these transformation laws is given by the Ramond field Φ(0) of
conformal weight Δ(0) = c̃/16 = c/24, if such a field actually exists in the theory: in
this case, in fact, G0Φ(0) = Ḡ0Φ(0) = 0 and therefore the second component is not
necessarily present.
Irreducible representations and minimal models. The irreducible representa-
tions of the superconformal algebra are determined in the same way as those of
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the Virasoro algebra previously discussed. In this case, the conformal weights can be
expressed similarly to (11.2.7), namely

Δr,s = Δ0 +
1
4
(rβ+ + sβ−)2 +

1
32

[1 − (−1)r+s], (13.2.14)

where

Δ0 = (c̃− 1)/16 (13.2.15)

β± =
1
4

(√
1 − c̃±

√
9 − c̃

)
; β+ β− = −1

2
.

In this formula r and s are two natural numbers: for the NS fields, r + s ∈ 2Z,
whereas for the Ramond fields r + s ∈ 2Z + 1. These degenerate fields have similar
properties to the usual degenerate conformal fields, namely their operator product
expansion enters only degenerate fields. Similarly, their correlation functions satisfy
linear diffential equations. When the parameter ρ = −β−/β+ becomes a rational
number, the operator algebra closes within a finite number of superconformal families.
Particularly interesting are the unitary superconformal series, here denoted by SMp

(p = 3, 4, 5, . . .), with
ρ =

p

p+ 2
.

In this case there are [p2/2] primary fields Φr,s, where the indices r and s assume the
values r = 1, 2, . . . , (p− 1); s = 1, 2, . . . (p+ 1) (where [x] is the integer part of x). The
central charge and the conformal weights take the discrete values

c =
3
2

[
1 − 8

p(p+ 2)

]
, p = 3, 4, . . . (13.2.16)

Δr,s =
[(p+ 2)r − ps]2 − 4

8p(p+ 2)
+

1
32

[1 − (−1)r+s].

The modified Coulomb gas method can be generalized to the superconformal model,
both in the Neveu–Schwarz and Ramond sectors, and permits us to determine the
exact values of the structure constants of the operator algebra. It is interesting to
note that, in the Ramond sector, the representation of the conformal fields can be
implemented in terms of the magnetization operator σ of the Ising model, as will be
discussed in detail in the next chapter.
Additional symmetry. The operator algebra of the minimal models SMp may
present additional symmetry, according to the value of p. In fact, if p ∈ 2Z + 1,
the spaces A(+)

R and A(−)
R are isomorphic and therefore, for these values of p, the

models are invariant under the duality transformation A(+)
R → A(−)

R , similarly to the
Kramers–Wannier duality of the Ising model. If p is instead an even number, the model
SMp contains the vacuum field Φ p

2 ,
p
2 +1 of the Ramond sector and therefore it is not

invariant under duality. However, it has a symmetry Z2 × Z2, espressed in the form

Φr,s → (ε1)r+1 (ε2)s+1 Φr,s

where the parameters ε1,2 can be either ±1.
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Landau–Ginzburg theory. Using arguments that are similar to those presented in
the previous chapter, it can be shown that the unitary superconformal models SMp are
associated to a supersymmetric Landau–Ginzburg theory. The superpotential relative
to the minimal models is given by W (Φ) = gΦp and the action reads

A =
∫
d2x d2θ

[
−1

2
DΦ D̄Φ +W (Φ)

]
(13.2.17)

where
D = ∂θ − θ ∂z D̄ = ∂z̄ − θ̄ ∂z̄

are the covariant derivatives, θ and θ̄ are fermionic variables, while Φ(z, z̄, θ, θ̄) is a
superfield

Φ(z, z̄, θ, θ̄) = ϕ+ θ ψ + θ̄ ψ̄ + i θ̄ θ χ.

The integration over the fermionic variables θ and θ̄ is done according to the rules of
fermionic calculus presented in Section 12.3 of the previous chapter.

Identifying also in this case the NS superconformal primary field that sits in the
position (2, 2) of the Kac table with Φ, i.e. Φ2,2 ≡ Φ, and using the fusion rules of
the superconformal minimal model, one can recursively define the composite operators
: Φk : and show that their fusion rules lead to the operator identity

D D̄Φ 	 Φp−1. (13.2.18)

This formula coincides with the equation of motion that can be derived by the super-
symmetric action (13.2.17).

As for the minimal models of the Virasoro algebra, also for the superconformal
minimal models we can determine the exact expression of the modular invariant par-
tition functions on a torus. On this topic, we refer the reader to the original work by
A. Cappelli, quoted at the end of the chapter.

The series of superconformal minimal models has an intersection with the Virasoro
minimal models: in the next chapter we will see that the model SM3 describes the
tricritical Ising model, which coincides with the second minimal model of the Virasoro
unitary series. The supersymmetry of this model provides a different interpretation of
the primary fields and gives a reason for the particular relationships that exist among
the structure constants of the conformal model. Furthermore, notice that the second
minimal superconformal model has central charge c = 1 and can be regarded as a
particular realization of the gaussian free bosonic theory analyzed in Chapter 12. It is
worth stressing that supersymmetry, so long searched for in particle accelerators, has
found its first physical realization in statistical mechanics!

13.3 Parafermion Models

Non-local operators naturally appear in field theories associated to the continuum limit
of lattice statistical models with a ZN symmetry. These theories have been investigated
in detail by V. Fateev and A. Zamolodchikov. ZN is an abelian group, generated by
the powers of the generator Ω, and its elements are given by Ω,Ω2, . . . ,ΩN−1, with
ΩN = 1. In these models, the order parameter has (N − 1) components, here denoted
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by σk, k = 1, 2, . . . , (N − 1): they are scalar fields, with σ†
k = σN−k, and conformal

weights dk = dN−k. These fields form a representation of ZN and satisfy

Ωσk = ωk σk, ω = exp(2πi/N). (13.3.1)

Statistical models that are invariant under a ZN symmetry can also be invariant under
duality. For the self-dual theories, in addition to the (N−1) order parameters, there are
other (N−1) operators μl (l = 1, 2, . . . , N−1), with μ†

l = μN−l. These are the disorder
operators, with the same conformal weights as the order parameters, dl = dN−l. The
fields μl and σk are mutually local among themselves, but are non-local with respect
to each other: the semilocal parameter of the fields σk and μl is equal to γkl = kl/N .
The disorder fields form a representation of the dual group Z̃N , generated by Ω̃ and
satisfy

Ω̃μl = ωl μl. (13.3.2)

In light of this operator content, the self-dual models possess an enlarged symmetry
ZN × Z̃N . This allows us to introduce the concept of charge: we say that a field O(k,l)

has a charge (k, l) with respect to the group ZN × Z̃N if

ΩO(k,l) = ωk O(k,l), Ω̃O(k,l) = ωlO(k,l)

with the integers k and l that are defined modulo N . Under an OPE, there is an
abelian composition law for these fields, given (up to the actual value of the structure
constants) by

O(i)
(k,l) O

(j)
(k′,l′) =

∑
k

O(k)
(k+k′,l+l′), (13.3.3)

where the sums over the indices are modulo N . With the definition given above, the
fields σk have charge (k, 0) while μl have charge (0, l). In general, the semilocal index of
two fields O(k,l) and O(k′,l′) is equal to γ = (kl′ +k′l)/N . In addition to the symmetry
ZN×Z̃N , we also assume that these theories are invariant under the charge conjugation
C and parity P transformations, with

C : σk → σ†
k; μl → μ†

l ;
P : σk → σk; μl → μl.

(13.3.4)

In the next chapter we will see that the simplest representative of these theories is pro-
vided by the Ising model, invariant under the group Z2×Z̃2. In the operator content of
this theory there is a Majorana fermion, whose analytic and anti-analytic components
are ψ(z) and ψ̄(z̄), respectively, which appear in the short-distance expansion of the
order and disorder parameters

σ(z, z̄)μ(0, 0) =
1√
2

(zz̄)−1/2
[
z1/2 ψ(0) + z̄1/2ψ̄ + · · ·

]
. (13.3.5)

These fields satisfy the analyticity and anti-analyticity conditions ∂z̄ψ = ∂zψ̄ = 0. We
can now generalize these formulas to the case ZN : for the operator product expansion
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of σk(x)μk(0) and σk(x)μ
†
k(0) we impose

σk(z, z̄)μk(0, 0) = zΔk−2dk z̄Δ̄k−2dk ψk(0, 0) + · · · (13.3.6)

σk(z, z̄)μ
†
k(0, 0) = zΔ̄k−2dk z̄Δk−2dk ψ̄k(0, 0) + · · ·

where we have also used the symmetry (13.3.4). The fields ψk and ψ̄k are operators
with conformal weights Δk and Δ̄k. From the semilocality of the operators σk and μk
we can easily derive the condition

Δk − Δ̄k = −k
2

N
(modZ). (13.3.7)

Let’s assume that in the self-dual critical theory the condition Δ̄k = 0 holds. The
fields ψk and ψ̄k satisfy

∂z̄ψk = 0; ∂zψ̄k = 0, (13.3.8)

so that ψk = ψk(z) and ψ̄k = ψ̄k(z̄). In this case the conformal weights Δk coincide
with the spins of the fields and their general expression is then

Δk = mk −
k2

N
, (13.3.9)

wheremk are integer numbers. The operators ψk and ψ̄k have charge equal to (k, k) and
(k,−k) respectively, and they are semilocal to each other. In contrast with the scalar
order and disorder fields previously introduced, these fields have spins and therefore
it is natural to call them parafermions. The simplest expression for (13.3.9) that also
satisfies the condition Δk = ΔN−k is provided by

Δk =
k(N − k)

N
. (13.3.10)

In the following we assume that these are the conformal weights of the parafermions.
The fields ψk generate a closed operatorial algebra

ψk(z1)ψl(z2) = Ck,l (z12)−2kl/N ψk+l(z2) + · · · (13.3.11)

ψk(z1)ψ
†
k(z2) = (z12)−2Δk

[
1 +

2Δk

c
z2
12 T (z2) + · · ·

]

where T (z) is the analytic component of the stress–energy tensor, Ck,l are the structure
constants of this algebra, whereas c is the central charge. These parameters can be
fixed by imposing the associativity of this algebra. This condition leads to the values
of the structure constants

Ck,l =
Γ(k + l + 1)Γ(N − k + 1)Γ(N − l + 1)

Γ(k + 1)Γ(l + 1)Γ(N − k − l + 1)Γ(N + 1)
, (13.3.12)

and the central charge

c =
2(N − 1)
N + 2

. (13.3.13)
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As for the Virasoro and the superconformal agebras, the fields of the self-dual
ZN×Z̃N can be classified by the irreducible representation of the parafermionic algebra
(13.3.11). Their Hilbert space is decomposed into parafermionic conformal families

A = ⊕N−1
k=0 [σk]ψ , (13.3.14)

whose primary operators are the order parameters σk. Their conformal weights can be
obtained by expressing T (z) in terms of the normal order of the fields ψk and ψ†

k, and
then using the operator product expansion (13.3.6). As a result we have

dk =
k(N − k)
N(N + 2)

. (13.3.15)

In the next section we will show that the parafermionic theories also naturally appear
in the Kac–Moody algebra SU(2)N . In particular, using the results relative to this
theory we can easily derive all the other conformal data of the parafermionic models.
For instance, for the structure constants that enter the operator product expansion

σk1(z, z̄)σk2(0, 0) = Ck1,k2(zz̄)
2dk1+k2−dk1−dk2 σk1+k2 + . . .

with the operators normalized as

〈σk(z, z̄)σ†
k′〉 = δk,k′ (zz̄)−2dk ,

one has

Ck1,k2 =
Γ
(

1
N+2

)
Γ
(

1+k1+k2
N+2

)
Γ
(
N−k1+1
N+2

)
Γ
(
N−k2+1
N+2

)
Γ
(
N+1
N+2

)
Γ
(
N−k1−k2+1

N+2

)
Γ
(
k1+1
N+2

)
Γ
(
k2+1
N+2

) . (13.3.16)

These quantities can be extracted by the four-point correlation functions of the σk
operators. The simplest of them is given by

〈σ1(z1, z̄1)σ
†
1(z2, z̄2)σk(z3, z̄3)σ

†
k(z4, z̄4)〉 = (z12z̄12)−2d1 (z34z̄34)−2dk G1,k(x, x̄),

where x and x̄ are the harmonic ratios

x =
z12z24
z14z23

, x̄ =
z̄12z̄24
z̄14z̄23

,

and the function G(1, k)(x, x̄) is expressed by

G1,k(x, x̄) = (xx̄)−k/N(N+2)
Γ
(

1
N+2

)
Γ
(

N
N+2

)
Γ
(
N+1
N+2

)
Γ
(

2
N+2

)

×

⎡
⎣Γ
(

k+2
N+2

)
Γ
(
N−k+1
N+2

)
Γ
(
N−k
N+2

)
Γ
(

k+1
N+2

) F (1)(k, x)F (1)(k, x̄) (13.3.17)

+
Γ
(
1 − k

N+2

)
Γ
(

k+1
N+2

)
Γ
(

k
N+2

)
Γ
(
1 − k+1

N+2

) (xx̄)(N+1−k)/(N+2)

(N + 1 − k)2
F (2)(k, x)F (2)(k, x̄)

⎤
⎦ .
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In this formula F (i) are the hypergeometric functions

F (1)(k, x) = F

(
k

N + 2
,− 1

N + 2
,
k + 1
N + 2

; x
)

;

F (2)(k, x) = F

(
N + 1
N + 2

,
N − k

N + 2
,
2N − k + 3
N + 2

; x
)
.

Similarly one can also obtain the exact expression of the correlators that involves the
order and disorder operators, the simplest example being

〈μ1(z1, z̄1)μ
†
1(z2, z̄2)σk(z3, z̄3)σ

†
k(z4, z̄4)〉 = (z12z̄12)−2d1 (z34z̄34)−2dk H1,k(x, x̄),

where H(1, k)(x, x̄) is given by

H1,k(x, x̄) = x̄k/N (xx̄)−k/N(N+2)
Γ
(
1 + 1

N+2

)
Γ
(

N
N+2

)
Γ
(
N+1
N+2

)
Γ
(

2
N+2

)

×

⎡
⎣ Γ
(

k+2
N+2

)
Γ
(
N−k+1
N+2

)
Γ
(
N−k
N+2

)
Γ
(
1 + k+1

N+2

) F (1)(k, x)F (2)(N − k, x̄) (13.3.18)

+
Γ
(
1 − k

N+2

)
Γ
(

k+1
N+2

)
Γ
(

k
N+2

)
Γ
(
1 + N+k+1

N+2

) x (xx̄)−(k+1)/(N+2) F (1)(k, x)F (2)(N − k, x̄)

⎤
⎦ .

This expression clearly shows that moving the point (z2, z̄2) along a closed contour
that encloses the point (z3, z̄3), the correlation function acquires a phase factor, related
to the non-locality of the two operators.

13.3.1 Relation with Lattice Models

The formulas of the previous section provide the exact solution of the quantum field
theories of the critical points with a ZN symmetry. It is useful to investigate their
relation with the exactly solvable theories defined on a lattice that share the same
symmetry. These theories are defined in terms of the variables σr, defined on any
site r of the lattice, that take values ωq, q = 0, 1, . . . (N − 1). Assuming that their
interaction is restricted to nearest neighbors, the partition function can be written as

Z =
∑
{σr}

e− ∑
r,a=1,2 H(σr,σr+ea ) =

∑
{σr}

∏
r,a

W (σr, σr+ea), (13.3.19)

where ea are the basis vectors of the lattice. The hamiltonian must be invariant under
the ZN transformations and the charge conjugation C

H(ωσ, ωσ′) = H(σ, σ′) = H(σ†, σ†,′). (13.3.20)
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Consequently, the Boltzmann weights W (σ, σ′) can be written as

W (σ, σ′) = e−H(σ,σ′) =
N−1∑
k=0

wk (σ†σ′)k, (13.3.21)

where the real and positive parameters wk satisfy the condition wk = wN−k. As
normalization we will choose w0 = 1. Hence, such models are parameterized by the
parameters wk, with k = 1, 2, . . . ≤ [N/2], where [x] is the integer part of the number x.

The duality transformation of these lattice models can be performed as discussed
in Chapter 4: the spins σr are replaced by the dual spins μl, associated to the sites of
the dual lattice, with their interaction described by the same type of formulas shown
in (13.3.19) and (13.3.21), where the dual parameters w̃k are expressed in terms of the
original parameters wi as

w̃k =

(
1 +

N−1∑
q=1

wq ω
kq

) (
1 +

N−1∑
q=1

wq

)−1

. (13.3.22)

The system is then self-dual if it satisfies the conditions

w̃k = wk, k = 1, 2, . . . (N − 1). (13.3.23)

For N = 2, 3, these lattice models coincide with the Ising and the three-state Potts
models, respectively. Equation (13.3.23) identifies in both cases their critical tempera-
ture. For N = 4, the corresponding model is a special case of the Ashkin–Teller model.
The self-dual line is described by

w2 + 2w1 = 1, (13.3.24)

and the exact solution of this model can be found in the book by Baxter.1 Its phase
diagram is shown in Fig. 13.2. There are three phases, according to the values of the
parameters: phase I, where 〈σ〉 �= 0 and 〈μ〉 = 0; phase II, where 〈σ〉 = 0 and 〈μ〉 �= 0;
finally phase III, where 〈σ〉 = 〈μ〉 = 0. The points of the segment AB of the diagram,
that belong to the line (13.3.24), are all critical points of the system and therefore the
critical exponents vary continuously along AB. There is however a peculiar point C,
identified by the equations

w1 =
sin(π/16)
sin(3π/16)

, w2 = 1 − 2w1, (13.3.25)

where it is possible to show that the corresponding critical theory is precisely given
by the parafermionic conformal theory Z4 × Z̃4 previously analyzed.

1R. J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, New York, 1982.
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Fig. 13.2 Phase diagram of the Z4 lattice model.
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Fig. 13.3 Phase diagram of the lattice Z5 model.

Similarly, for a lattice model with Z5 symmetry, one has the phase diagram shown
in Fig. 13.3. Also in this case there are three distinct phases, with the same charac-
terization used for the previous Z4 model. The critical line is given by

w1 + w2 =
1
2
(
√

5 − 1). (13.3.26)

This line contains, in particular, two symmetric bifurcation points C and C ′, whose cor-
responding theory in the continuum can be shown to coincide with the parafermionic
conformal theory Z5 × Z̃5.

In general, the points of the critical lines of the self-dual models described by the
parafermionic theory have been identified by V. Fateev and A. Zamolodchikov. They
correspond to the values

wk =
k−1∏
l=0

sinπl/N + π/4N)
sin(π(l + 1)/N − π/4N)

. (13.3.27)
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13.4 Kac–Moody Algebra

In this section we consider the conformal field theories characterized by a set of analytic
currents Ja(z) of conformal weights (Δ, Δ̄) = (1, 0) and an analogous set of anti-
analytic currents J̄a(z̄) of conformal weights (0, 1). As usual, we focus our attention
on the analytic sector, with similar results for the anti-analytic one. Conformal theories
based on a current algebra prove to be an important tool in the development of both
string theory and condensed matter physics. Moreover, they give rise to one of the
most general realizations of conformal field theory: the minimal models previously
discussed are in fact a particular cases of them.

Let’s start our discussion with the OPE of the currents. For dimensional reasons,
this can be written as

Ja(z1) Jb(z2) =
k̃ab

(z1 − z2)2
+

ifabc

z1 − z2
Jc(z2) + · · · (13.4.1)

where, in the last term, it is meant to be a sum over the index c. The structure constants
fabc are obviously antisymmetric in the indices a and b. For the associativity of this
operator expansion, they satisfy the Jacobi identity

∑
d

(
fade f bcd + fcde fabd + f bde fcad

)
= 0. (13.4.2)

Therefore these quantities also play the role of the structure constants of a Lie algebra2

G. In the following we assume that this algebra is associated to a compact Lie group,
characterized by a positive definite Cartan matrix. In this case the indices a, b, etc.,
run over the values 1, . . . , |G| = dimG. In the algebra G it is always possibile to choose
a basis such that

k̃ab = k̃ δab. (13.4.3)

The algebra (13.4.1), defined by the operator expansion of the currents, is called the
affine algebra or Kac–Moody algebra. Expanding the currents in modes, for instance
at the origin

Ja(z) =
∞∑

n=−∞

Jan
zn+1 , (13.4.4)

we can translate the operator expansion (13.4.1) into the commutation relations of the
modes [

Jam, J
b
n

]
= i fabc Jcm+n + k̃ m δab δm+n,0. (13.4.5)

Note that the zero modes of the currents, Ja0 , give rise to the usual commutation
relations of the generators of the Lie algebras.

2The basic properties of the Lie algebras are summarized in the appendix at the end of the chapter.
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The representation theory of the affine algebras can be developed along the lines
of the Virasoro algebra. Also in this case, it is possible to define a vacuum state | 0 〉,
annihilated by all positive modes of the currents

Jan | 0 〉 = 0 n ≥ 0. (13.4.6)

There is also the notion of primary field ϕl(r), in this case made of a field multiplet,
that satisfies the operator expansion

Ja(z1)ϕl(r)(z2) =
(Ra

(r))
lk

z1 − z2
ϕk(r)(z2) + · · · (13.4.7)

where (Ra
(r))

lk are the matries of the generators Ja, in the representation labeled by
(r). The highest weight vectors of the Kac–Moody algebra are obtained acting with
the primary fields on the vacuum state

| (r) 〉 = ϕ(r)(0) | 0 〉. (13.4.8)

In particular, this multiplet of states gives rise to a representation of the zero modes
of the algebra, i.e. of the group G

Ja0 |(r) 〉 = Ra
(r) |(r) 〉, Jan |(r) 〉 = 0 n > 0. (13.4.9)

As for the stress–energy tensor and the primary fields of the Virasoro algebra, also in
this case it is possible to prove that a Ward identity is satisfied by the currents:

〈Ja(z)ϕ(r1)(z1) . . . ϕ(rn)(zn)〉 =
n∑

j=1

Ra
(rj)

z − zj
〈ϕ(r1)(z1) . . . ϕ(rn)(zn)〉. (13.4.10)

13.4.1 Virasoro Operators and Sugawara Formula

For the conformal field theories ruled by a set of currents it is natural to assume
that the stress–energy tensor can be expressed as their composite operator. Since the
conformal weight of T (z) is equal to 2, while that of the currents Ja is 1, it should be
possible to express T (z) as a quadratic expression of Ja, invariant under the group.
This reasoning leads to the ansatz

T (z) =
1
γ

|G|∑
a=1

: Ja(z) Ja(z) : =
1
γ

⎛
⎝ lim

w→z

|G|∑
a=1

Ja(w) Ja(z) − k |G|
(w − z)2

⎞
⎠ . (13.4.11)

Expressing T (z) =
∑
Ln/z

n+2, for the generators of the Virasoro algebra we have

Ln =
1
γ

∞∑
m=−∞

: Jam+n J
a
−m : . (13.4.12)
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The constant γ in these formulas can be fixed demanding that the currents Ja(z) are
themselves primary fields with conformal weights(1, 0), fulfilling the OPE

T (z1)Ja(z2) =
Ja(z2)

(z1 − z2)2
+
∂Ja(z2)
z1 − z2

+ · · · (13.4.13)

Note that this relation is equivalent to the commutation relations

[Lm, J
a
n ] = −nJam+n. (13.4.14)

To determine γ, consider the expression for L−1 and apply this operator to a highest
weight state | (r) 〉. Using eqn (13.4.9), it is easy to check that in this procedure only
the first term is different from zero, with the result

L−1 | (r) 〉 =
2
γ
Ja−1R

a
(r) | (r) 〉. (13.4.15)

Applying to both terms of this expression Jb1 and using eqn (13.4.14), we obtain

Rb
(r) | (r) 〉 =

2
γ

(ifabcJc0 + k̃δab)Ra
(r) | (r) 〉

=
2
γ

(
ifabc

1
2
ifdcaRd

(r) + k̃Rb
(r)

)
| (r) 〉 (13.4.16)

=
2
γ

(
1
2
CA + k̃

)
Rb

(r) | (r) 〉,

where we have defined the Casimir invariant CA in the adjoint representation of the
algebra through the formula

CA δ
ab =

∑
c,d

facdf bcd. (13.4.17)

From (13.4.16) we arrive at the value of the constant γ

γ = 2k̃ + CA. (13.4.18)

Once we have determined γ, we can compute the central charge of these theories by
the two-point correlator of T (z)

〈T (z1)T (z2)〉 =
cG
2

1
(z1 − z2)4

. (13.4.19)

Since

T (z) =
1/2

k̃ + CA/2

|G|∑
a=1

: Ja(z)Ja(z) : (13.4.20)

and

〈Ja(z1)Jb(z2)〉 =
k̃ δab

(z1 − z2)2
, (13.4.21)
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this yields

cG =
k̃ |G|

k̃ + CA/2
. (13.4.22)

In the literature the relation that links T (z) to the currents Ja is known as the
Sugawara formula.

13.4.2 Maximal Weights

In this section we discuss the representations of the Kac–Moody algebra associated to
the irreducible and unitary maximal weights. These are also the representations that
are irreducible for the ordinary Lie algebras and since they have the lowest eigenvalue
of L0, are called vacuum representations. The unitary conditions are expressed by
Ja†(z) = Ja(z) and this implies Ja†

n = Ja−n. In the Cartan basis, the generators
are given by Hi(z) and E±α(z), where i = 1, . . . , rG are the indices that identify
the generators that commute with each other, while the positive roots α denote the
creation and annihilation operators. In this basis the highest weight states that form
a vacuum representation satisfy

Hi
n |λ 〉 = E±α

n |λ 〉 = 0, n > 0 (13.4.23)
Hi

0 |λ 〉 = λi |λ 〉, Eα
0 |λ 〉 = 0, α > 0.

The remaining states are obtained acting on the state |λ 〉 either by E−α
0 or by any

mode Ja−n, with n > 0.
The constant k̃ of the Kac–Moody algebra depends on the chosen normalization

of the structure constants. Hence it is convenient to consider the following quantity
k = 2k̃/ψ2, called the level of the affine algebra, that is independent of the normal-
ization of the structure constants. For the unitary conformal theories, the constant k
is quantized and takes only integer value. To show this, it is convenient to consider
firstly the case G = SU(2). With the normalization fabc =

√
2 εabc and ψ2 = 2, the

generators are given by

I± =
1√
2
(J1

0 ± iJ2
0 ) I3 =

1√
2
J3

0 . (13.4.24)

They satisfy [
I+, I−] = 2I3,

[
I3, I±] = ±I±. (13.4.25)

With the chosen normalization, the operator 2I3 has integer eigenvalues on any finite-
dimensional representation of the group. There is, however, another set of operators
that fulfill the same algebra SU(2) given by

Ĩ+ =
1√
2
(J1

+1 − iJ2
+1)

Ĩ− =
1√
2
(J1

−1 + iJ2
−1) (13.4.26)

Ĩ3 =
1
2
k − 1√

2
J3

0 .
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It is easy to show that they satisfy the relations [Ĩ+, Ĩ−] = 2Ĩ3, [Ĩ3, Ĩ±] = ±Ĩ±. These
commutation relations imply that also the operator 2Ĩ3 = k − 2I3 possesses integer
eigenvalues and, consequently, k is an integer number, k ∈ Z.

The argument presented above is not only valid for SU(2) but also for any other
algebra G. In fact, the highest root ψ always gives rise to a SU(2) subalgebra, gener-
ated by

I± = E±ψ
0 , I3 = ψ ·H0/ψ

2. (13.4.27)

This subalgebra is accompanied by another SU(2) subalgebra given by

Ĩ± = E∓ψ
±1 Ĩ3 = (k̃ − ψ ·H0)/ψ2 (13.4.28)

so that, repeating the steps of the previous argument, we arrive at the conclusion that
also in this case the level k = 2/̃ψ2 = 2Ĩ3 + 2I3 can take only integer values.
Conformal weights and constraint thereof. Let’s now compute the conformal
weights of the vacuum representations. Equation (13.4.12) yields

L0 | (r) 〉 =
1/2

k̃ + CA/2

∑
a,m

: JamJ
a
−m : | (r) 〉 (13.4.29)

=
1/2

k̃ + CA/2

∑
a

Ra
(r)R

a
(r) | (r) 〉 =

Cr/2
k̃ + CA/2

| (r) 〉,

where Cr is the Casimir invariant in the (r) representation. Thus, the conformal weight
of the multiplet made of the primary fields ϕ(r)(z) is

Δr =
Cr/2

k̃ + CA/2
=

Cr/ψ
2

k + h̃G
, (13.4.30)

where h̃G is the dual Coxeter number. However not all the representations can be
accepted. To understand the constraint to which they are subjected, let’s consider
once again the SU(2) case. For this algebra, the vacuum states transform in the spin
j representation and therefore

L0 | (j) 〉 =
j(j + 1)
k + 2

| (j) 〉. (13.4.31)

Fixing k, the only values of the spin j that can appear in this formula are those that
satisfy the condition

2j ≤ k. (13.4.32)

To this end, let’s analyse in more detail the (j) representation. The (2j + 1) states
of this representation are identified by their eigenvalue with respect to I3, namely
I3| (j),m 〉 = m | (j),m 〉. Consider then the state with the maximum value of m, i.e.
m = j, and the matrix element

〈 j | Ĩ+Ĩ− | j 〉 = 〈 j |
[
Ĩ+, Ĩ−

]
| j 〉 = 〈 j | (k − 2I3) | j 〉 = k − 2j ≥ 0. (13.4.33)

Hence, eqn (13.4.32) implies that for a fixed value of k, there are only k + 1 possible
values of j, given by j = 0, 1

2 , . . . ,
k
2 .
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It is immediate to generalize the condition (13.4.32) to all other groups. Instead
of | j 〉, one needs to consider in the general case the state |λ 〉, where λ is the highest
weight of the vacuum representation. Using the previous argument, one arrives at the
constraint

2ψ · λ/ψ2 ≤ k. (13.4.34)

This is the condition that determines the representations that can appear in the algebra
at a fixed value of k.

With the identification of the primary fields of the Kac–Moody algebras, the
remaining states that form the Verma modules of these theories are obtained by act-
ing on the primary fields by the operators Ja−n. As for the conformal theories with
c < 1, these representations contain certain null-vectors, which are necessary to mode
out in order to define the irreducible representations. For the affine algebras, one can
show that all the null-vectors are descendents of only one primitive null-vector. For a
generic affine algebra, this state is constructed using the generators (13.4.28) of the
subalgebra SU(2). Note, in fact, that the eigenvalues of 2Ĩ3 on the state with highest
weight | (r), λ 〉 are given by M = k− 2ψ · λ/ψ2. The set of states generated acting by
subsequent powers of Ĩ− on | (r)λ 〉 form then an irreducible and finite dimensional
representation of the algebra (13.4.28). Hence M is an integer number and we have

(Ĩ−)M+1 | (r)λ 〉 = 0. (13.4.35)

This is precisely the primitive null-vector of the Verma module. For the group SU(2)
and its j representation, this condition translates into the equation

(J+
−1)

k−2j+1 | (j), j 〉 = 0. (13.4.36)

Correlation functions. Let’s now address the correlation functions of the primary
fields. As shown below, they satisfy a linear first-order differential equation. Consider,
in fact, the Sugawara formula for the generator L−1 of the Virasoro algebra3

L−1 =
1

k̃ + CA/2
(Ja−1J

a
0 + Ja−2J

a
1 + · · · ). (13.4.37)

Acting on a primary field, it yields(
L−1 −

∑
a J

a
−1R

a
(r)

k̃ + CA/2

)
ϕ(r) = 0. (13.4.38)

Consider now the Ward identity (13.4.10) and multiply both terms of this expression
for Ra

(rk). Taking the limit z → zk and using the operator product expansion of the cur-
rents, we arrive at the linear differential equation, called the Kniznik–Zamolodchikov

3Each term in the normal order product appears twice and this cancels the factor 1/2 in the
formula (13.4.12).
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equation⎡
⎣(k̃ + CA/2

) ∂

∂zk
+
∑
a,j =k

Ra
(rj)R

a
(rk)

zj − zk

⎤
⎦ 〈ϕr1(z1) · · ·ϕrn(zn)〉 = 0. (13.4.39)

To obtain the final expression of the correlator it is necessary to implement the usual
steps. Namely: solve this equation with the correct asymptotic expansion, together
with the one relative to the anti-analytic part, and impose the monodromy invariant
condition on the solutions.

13.4.3 Wess–Zumino–Witten Models

The conformal models that satisfy a Kac–Moody algebra differ from the other confor-
mal models by an important property: they can be consistently defined by a lagrangian
formalism based on a nonlinear sigma model with a topological term. The aim of this
section is to present the main steps of this derivation. Consider initially the action

S0 =
1

4λ2

∫
d2xTr (∂μg−1∂μg), (13.4.40)

where λ2 is a dimensionless positive constant. The bosonic field g(x) is a matrix with
values in a semisimple Lie group g. To have a real action, g(x) must belong to a unitary
representation of such a group. For the trace, we adopt the normalization

Tr (tatb) = 2 δab, (13.4.41)

where ta are the generators of the Lie algebra in the representation under consideration.
Note that if g is a unitary matrix, g−1∂μg is an antihermitian matrix since

(g−1∂μg)† = ∂μg
−1 g = −g−1∂μg, (13.4.42)

and ∂μg
−1 = −g−1∂μgg

−1, where the last relation comes from the identity
∂μ(gg−1) = 0.

Although the theory above is conformally invariant at the classical level, it is well
known that this invariance is broken at the quantum level by the renormalization
procedure. For the ultraviolet divergences one is forced to introduce a length-scale and
therefore the β(λ) function is different from zero. At the quantum level, the theory
becomes asymptotically free and its spectrum is purely massive.

The breaking of conformal invariance of the action (13.4.40) at the quantum level
can be directly checked by the absence of conserved currents that are purely analytic
and anti-analytic. Under the variation g → g + δg, we have

δS0 =
1

2λ2

∫
d2xTr

[
g−1 δg ∂μ(g−1∂μg)

]
, (13.4.43)



Kac–Moody Algebra 445

and therefore we get the equations of motion

∂μ(g−1∂μg) = 0. (13.4.44)

They can be interpreted as the conservation law of the currents

Jμ = g−1∂μg. (13.4.45)

Switching to complex coordinates and introducing the notation

J̄z = g−1∂zg, J̄z̄ = g−1∂z̄g, (13.4.46)

we have
∂zJ̄z̄ + ∂z̄J̄z = 0. (13.4.47)

In order to have a separate conservation law of the two components of the currents, it
is necessary that each of the two terms of this equation vanishes separately. However,
this is impossible, because this would lead to some inconsistencies. In fact, assuming
that ∂z(g−1∂z̄g) = 0, one would also have

∂z∂z̄g = ∂z̄g g
−1 ∂zg. (13.4.48)

The left-hand side is clearly symmetric under the exchange z ↔ z̄ and this would
imply the identity

∂z̄g g
−1 ∂zg = ∂zg g

−1 ∂z̄ g. (13.4.49)

However, this identity is generically false for the elements of a non-commutative group,
since it would correspond to the equality ABC = CBA, with A = ∂z̄g, B = g−1 and
C = ∂zg.

In order to have separate conservation of the analytic and anti-analytic compo-
nents, the correct choice is

Jz = ∂zg g
−1, Jz̄ = g−1 ∂z̄g. (13.4.50)

In this case, the conservation of one quantity implies the conservation of the other

∂z(g−1∂z̄g) = g−1 ∂z̄(∂zg g−1) g. (13.4.51)

Hence, the question is whether it is possible to modify the action (13.4.40) in such a
way that the conserved currents become those defined by eqn (13.4.50) instead of those
given in eqn (13.4.46). There is indeed a positive answer and the way to implement it
is to use the Wess–Zumino term

Γ = − i

24π

∫
B

d3y εijk Tr
(
g̃−1 ∂g̃

∂yi
g̃−1 ∂g̃

∂yj
g̃−1 ∂g̃

∂yk

)
. (13.4.52)

This expression needs an explanation. Imagine the original complex plane, with the
point at infinity, compactified into the Riemann sphere S. The matrix g is then a map
of the surface S onto the group G. However, this map can be extended to a new map
g̃(y), from all the internal points of the three-dimensional sphere B, with boundary
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G

S

B g

Fig. 13.4 The map g̃ of the three-dimensional sphere B (with boundary given by the
two-dimensional surface S) onto the group G.

given by the surface S, onto the group G, as shown in Fig. 13.4. The new matrix g̃ is
the one that appears in eqn (13.4.52), where the coordinates of the three-dimensional
sphere are denoted by y1, y2 and y3.

The Wess–Zumino term (13.4.52) has the important property of being defined
up to an additive quantity that is an integer multiple of 2π. This ambiguity comes
from the existence of topologically distinct ways of extending the original map g to
the map g̃ that involve the internal points of the three-dimensional sphere. Alth-
ough the expression (13.4.52) is a three-dimensional integral, its integrand is a total
derivative and therefore its final value depends only on the values of g̃ at the bound-
ary, i.e. on the original function g. To understand the origin of the ambiguity of Γ,
let’s consider the case G = SU(2). The parameter space of this group is a three-
dimensional sphere, whose parameterization is given by the angles ψ, θ and ϕ, with a
line element

ds2 = dψ2 + sin2 θ (dθ2 + sin2 θ dϕ2). (13.4.53)

Using the parameterization of the matrix g in terms of ψ, θ, ϕ and the Pauli matrices

g = exp
(
i

2
ϕσ3

)
exp
(
i

2
θ σ1

)
exp
(
i

2
ψ σ3

)
(13.4.54)

=
(

cos(θ/2) exp[i(ϕ+ ψ)/2] i sin(θ/2) exp[i(ϕ− ψ)/2]
i sin(θ/2) exp[i(ψ − ϕ)/2] cos(θ/2) exp[−i(ϕ+ ψ)/2]

)
,

it is easy to see that the integrand in eqn (13.4.52) corresponds to the Jacobian of the
transformation from the coordinates (ψ, θ, ϕ) to (y1, y2, y3)

ΓSU(2) =
i

4π

∫
d3y

∂(ψ, θ, ϕ)
∂(y1, y2, y3)

=
i

4π

∫
d2xεμνϕ sin θ ∂μθ ∂νψ (13.4.55)

and this explicitly shows that Γ depends only on the boundary values of g̃. However,
the result of the integration cannot be expressed in a local form in terms of g. This
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matrix is in fact periodic in ϕ, whereas Γ is not: when ϕ changes of 2πn, Γ changes in

ΔΓ = i
n

2

∫
d2x εμν sin θ ∂μθ ∂νψ. (13.4.56)

The last integral is however an integer, since it expresses the number of times the vector
field �n = (cos θ, sin θ cosψ, sin θ sinψ) wraps round the three-dimensional sphere.

It is important to stress that the explicit result shown for SU(2) also applies to all
other semisimple Lie groups, by a topological theorem due to Bott. For this ambiguity
of the Wess–Zumino term, the coupling constant that multiplies Γ must necessarily be
an integer, here denoted by k. Hence, let’s consider the new action

S = S0 + k Γ, (13.4.57)

and its variation under g → g + δg. For δS0 we have the previous result (13.4.43),
whereas for δΓ we have

δΓ =
i

8π

∫
d2x εμν Tr (g−1δg ∂μ(g−1∂νg)). (13.4.58)

Putting together the two terms, the equation of motion becomes

∂μ(g−1∂μg) + i
λ2k

4π
εμν∂

μ(g−1∂νg) = 0 (13.4.59)

which, in complex coordinates, can be written as(
1 +

λ2k

4π

)
∂z(g−1∂z̄g) +

(
1 − λ2k

4π

)
∂z̄(g−1∂zg) = 0. (13.4.60)

This equation shows that, choosing

λ2 =
4π
k
, (13.4.61)

we have the desired conservation law

∂z(g−1∂z̄g) = 0. (13.4.62)

Since λ2 is a positive quantity, the integer k is positive as well. Choosing the other
solution, λ2 = −4π/k with k < 0, we obtain instead the conservation of the dual
current, ∂z̄(g−1∂zg) = 0. With this choice of the coupling constant, the solution of
the equation of motion assumes the factorized form

g(z, z̄) = h(z)h̄(z̄), (13.4.63)

where h(z) and h̄(z̄) are two arbitrary functions. The separated conservation law of
the analytic and anti-analytic components of the currents implies furthermore the
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invariance of the action under the transformation

g(z, z̄) → G(z) g(z, z̄) Ḡ−1(z̄), (13.4.64)

where G and Ḡ are two arbitrary matrices of the group G, in the same representation
of g. For infinitesimal values, we have

G(z) 	 1 + ω(z), Ḡ(z̄) 	 1 + ω̄(z̄),

and
δωg = ω g, δω̄g = −ω̄g.

With the choice (13.4.61), the variation of the action under g → g+ δωg+ δω̄g is given
by

δS =
k

4π

∫
d2xTr (g−1 δg

[
∂z(g−1∂z̄g)

]
) (13.4.65)

=
k

2π

∫
d2xTr [ω(z)∂z̄(∂zgg−1) − ω̄(z̄)∂z(g−1∂z̄g)],

which clearly vanishes after an integration by parts. Therefore, the original global
symmetry G × G of the sigma model, in the presence of the Wess–Zumino term, is
enhanced with the choice (13.4.61) to a local symmetry G(z) × G(z̄). The analytic
currents

J(z) ≡ −k Jz(z) = −k ∂zg g−1, (13.4.66)
J̄(z̄) ≡ k Jz̄(z̄) = kg−1 ∂z̄g,

give rise to the Kac–Moody current algebra of the previous section, where k is the
same integer that enters the operator product expansion (13.4.1).

This scenario can be explicitly confirmed by a perturbative computation of the
β-function. For instance, for the group SO(N) one gets

β(λ) = −λ
2(N − 2)

4π

[
1 −
(
λ2k

4π

)2
]
, (13.4.67)

and this function has a fixed point at λ2 =
∣∣ 4π
k

∣∣, as shown in Fig. 13.5. At these values
of the coupling constant the correlation length of the model diverges and the theory
acquires a conformal symmetry described by the Kac–Moody algebra.

13.5 Conformal Models as Cosets

The conformal theories associated to the Kac–Moody algebra are useful to construct a
vast class of models. The method that we are going to present here, known as the coset
approach, is based on a simple observation. Consider a group G and one of its sub-
group H. The currents associated to the original group will be generically denoted
by JaG, while those of H by J iH , where the index i assumes values on the adjoint
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Fig. 13.5 Renormalization group flows of the coupling constant λ2. The strong coupling
region is on the right of the graph. The coupling constant stops its growth at the fixed points
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representation of H, namely i = 1, . . . , |H|, where |H| = dimH. Using the Sugawara
formula, we can construct the two stress–energy tensors associated to these groups4

TG =
1/2

kG + h̃G

|G|∑
a=1

: JaG(z)JaG(z) : (13.5.1)

and

TH =
1/2

kH + h̃H

|H|∑
i=1

: J iH(z)J iH(z) : . (13.5.2)

For the OPE of the currentsJ iH with both stress–energy tensors we have

TG(z1)J iH(z2) =
J iH(z2)

(z1 − z2)2
+
∂J iH(z2)
z1 − z2

+ · · · (13.5.3)

TH(z1)J iH(z2) =
J iH(z2)

(z1 − z2)2
+
∂J iH(z2)
z1 − z2

+ · · ·

As a consequence, the operator product expansion of (TG − TH) with J iH does not
have singular terms. Since TH is entirely constructed in terms of the currents J iH ,
TG/H ≡ TG − TH also has an operator expansion without singular terms with TH .
Imposing

TG = (TG − TH) + TH ≡ TG/H + TH , (13.5.4)

we have an orthogonal decomposition of the original Virasoro algebra – associated to
TG – in two Virasoro algebras that commute with each other – associated to TG/H ,

4In the following we assume the normalization ψ2 = 1.
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and TH , respectively. The central charge of the Virasoro algebra associated to TG/H

is thus given by

cG/H = cG − cH =
kG |G|
kG + h̃G

− kH |H|
kK + h̃H

. (13.5.5)

A significant class of conformal field theories is obtained by the coset G×G/G, where
the group G in the denominator corresponds to the diagonal subgroup of the two
groups in the numerators. Denoting by Ja(1) and Ja(2) the currents in the two groups
of the numerators, for those of the denominator we have Ja = Ja(1) + Ja(2). The most
singular part of their operator expansion is given by

Ja(z1)Jb(z2) 	 Ja(1)(z1)J
b
(1)(z2) + Ja(2)(z1)J

b
(2)(z2) 	

(k1 + k2) δab

(z1 − z2)2
+ · · · (13.5.6)

and therefore the level of G at the denominator is k = k1 + k2. An important example
of this construction is

G/H = SU(2)k−1 × SU(2)1/SU(2)k. (13.5.7)

The central charge of these theories is

cG/H =
3(k − 1)
k + 1

+ 1 − 3k
k + 2

= 1 − 6
(k + 1)(k + 2)

. (13.5.8)

Note that, with the position q = k + 1 = 3, 4, . . ., these values coincide with those of
eqn (11.3.2), i.e. the same central charge of the unitary minimal models of the Virasoro
algebra!

Another significant example is obtained by considering

G/H = SU(2)k−1 × SU(2)2/SU(2)k+1

whose central charge is

cG/H =
3(k − 1)
k + 1

+
3
2
− 3(k + 1)

k + 3
=

3
2

(
1 − 8

(k + 1)(k + 3)

)
. (13.5.9)

These are the values of the central charge of the minimal unitary superconformal
models, given in eqn (13.2.16).

Finally, let’s analyze how to obtain the states of the model associated to the coset
G/H. To this end, it is necessary to study the decomposition of the representations ofG
in the splitting (13.5.4) of the stress–energy tensors. Let |cG, λG 〉 be the representations
of the affine algebra associated to G, where cG is the central charge relative to the level
kG and λG is the highest weight of the vacuum representation. Since TG = TG/H +TH ,
these representations decompose into a direct sum of the irreducible representations

|cG, λG 〉 = ⊕j

[
|cG/H ,Δ

j
G/H 〉 ⊗ |cH , λjH 〉

]
, (13.5.10)

where |cG/H ,ΔJ
G/H 〉 denotes the irreducible representation of TG/H with the lowest

eigenvalue of L0 given by Δj
G/H . Some significant examples of this formula will be

discussed in the next chapter.
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13.5.1 Relation with Parafermions

There is an important relationship between the Kac–Moody theories based on the
group SU(2) and the parafermionic models. This relationship can be established as
follows. Let’s initially introduce a free massless boson satisfying the equation ∂ ∂̄ϕ = 0

ϕ(z, z̄) = φ(z) + φ̄(z̄),

with correlators
〈φ(z)φ(0)〉 = 2 log z
〈φ̄(z)φ̄(0)〉 = 2 log z̄
〈φ(z)φ(0)〉 = 0.

Its stress–energy tensor Tb(z) = (∂φ)2 generates a Virasoro algebra with central charge
c = 1. Suppose that, in addition to this bosonic field, there are also the parafermionic
fields associated to ZN × Z̃N , that are decoupled by ϕ. In terms of the operators of
both theories let’s construct the currents

J3(z) = N ∂φ(z),

J+(z) = N ψ1(z) : ei/N
1/2 φ(z), (13.5.11)

J−(z) = N ψ† : e−i/N1/2 φ(z).

It is easy to check that the conformal weights of these currents are (1, 0): this is obvious
for J3, for the other two currents their conformal weight is given by the sum of the
conformal weights of the two fields

Δ± =
N − 1
N

+
1
N

= 1.

Using the operator expansion of the fields ψ1, ψ
†
1 and the vertex operator of the bosonic

field φ, one can check that these currents satisfy

Ja(z1)Jb(z2) =
N qab

(z1 − z2)2
+

fabc
z1 − z2

Jc(z2) + · · · (13.5.12)

where q00 = 1/2q+− = 1/2q−+ = 1, whereas fabc are the structure constants of SU(2)

f0+
+ = −f+0

+ = −f0−
− = f−0

− = 1,
f+−
0 = −f−+

− = 2,

Hence these currents give rise to a Kac–Moody algebra SU(2) of level k = N . The
stress–energy tensor of such a theory is the sum of the stress-energy tensor of the free
bosonic theory and that of the parafermionic model

Tt(z) = Tb(z) + Tpf (z), (13.5.13)

and the central charge is the sum of the central charges of the two theories

ct = 1 +
2(N − 1)
N + 2

=
3N
N + 2

. (13.5.14)

This indeed coincides with the central charge of the Kac–Moody algebra SU(2) of level
k = N . In the light of this result, the parafermionic models ZN can be considered as the
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coset theory SU(2)N/U(1). This permits us to identify the fields of the parafermionic
theory in terms of the decomposition of the representations of SU(2)N with respect
to the subgroup U(1), an observation that greatly simplifies the computation of the
correlation functions of the parafermionic models.

Appendix 13A. Lie Algebra

In this appendix we recall the main results of the Lie algebra, inviting the reader to
consult the literature at the end of the chapter for further analysis on the subject.
First of all, for any compact Lie group with n parameters there is a Lie algebra of
dimension n and vice versa. For the compact groups there are the following properties:
(a) there is always a unitary representation; (b) any irreducible representation is finite-
dimensional; (c) in order to find a representation of the group it is sufficient to find a
representation of the algebra.

A Lie algebra G of dimension n is a vector space with an internal composition law
given by

(λi, λj) → [λi, λj ] =
∑
k

fkij λk, (13.A.1)

where fkij are the structure constants of the algebra and [ , ] is the commutator. This
composition law satisfies the Jacobi identity

[x, [y, z]] + [z, [x, y]] + [y, [z, x]] = 0. (13.A.2)

A representation of the Lie algebra is obtained by associating each of its elements x to
a matrix M(x), with the condition M([x, y]) = [M(x),M(y)]. Particularly important
is the adjoint representation given by x → ad(x), where ad(x) is a linear application
of G in itself, defined by

ad(x)y = [x, y]. (13.A.3)

For the Jacobi identity, we have [ad(x), ad(y)] = ad([x, y]). In terms of this represen-
tation we can define a bilinear form, i.e. a scalar product among the elements of the
algebra, by the formula

〈x|y〉 = Tr (ad(x) ad(y)). (13.A.4)

An invariant subspace under the adjoint representation is called an ideal I of G, namely
y ∈ I if ad(x)y = [x, y] ∈ I, for every x ∈ G. The ideals are crucial for the further
analysis of the Lie algebras. In fact, there are three classes of algebras:

1. The simple Lie algebras that have no ideals at all.
2. The semisimple Lie algebras that do not have abelian ideals.
3. All other algebras.

Presently there is a complete mathematical theory only for the first two classes. Let’s
now introduce another useful concept: a subalgebra C is a Cartan subalgebra if it has
the properties: (a) C is a maximal abelian subalgebra, i.e. there is no other subalgebra
that contains C; (b) if h ∈ C, then in any representation of C on a complex vector
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space A(h) is a diagonalizable operator. The dimension r of C is the rank of G. Let’s
now recall, without giving proofs, the theory of semisimple Lie algebras.

Let G be an n-dimensional Lie algebra (with complex coefficients) and C its Cartan
subalgebra of dimension r.

• Any operator ad(hi) with hi ∈ C is diagonalizable in G. Since [hi, hj ] = 0, there
exists a set of common eigenvectors eα1,...,αr , with

ad(hi)eα1,...,αr = αi eα1,...,αr .

• The hi can always be chosen (by an appropriate choice of the basis) in such a way
that the eigenvalues αi are all real. The r-dimensional vector α = (α1, . . . , αr)
is called a root. The algebra G can be written as a direct sum G = C ⊕a Ga,
where C corresponds to the null root (0, . . . , 0) while Ga corresponds to the vector
subspace associated to the non-vanishing root a. It is possible to prove that this
is a one-dimensional space. Hence there are n− r non-vanishing roots.

• Consider the restriction of the scalar product (13.A.4) in C, namely

gij = Tr (ad(hi) ad(hj)).

In the basis {hi, eα}, the operators ad(hi) are diagoonal and therefore gij =∑
α αi αj . Since gij = gji and gij is a real matrix, it can be diagonalized. Moreover,

one can show that gij is a non-singular positive definite matrix. Hence, introducing
its inverse by the definition gijg

jk = δki , we can define a scalar product among
the roots

〈α|β 〉 =
∑
i

αi βi =
∑
i,j

gij αi βj . (13.A.5)

One can always choose a basis in which gij = δij , so that 〈α|β〉 =
∑

i αiβi. As
we shall see soon, in the basis {hi, eα} all the commutation relations of the Lie
algebra are fixed by the roots.

Roots. The roots are the building blocks of the Lie algebras. They satisfy a series of
properties enumerated below:

1. If α is a root, then kα is a root only if k = 0,±1. Hence the n− r roots come in
pairs and we have n− r = 2m.

2. If α and β are two roots, they uniquely identify two non-negative integers p and
q such that β− pα, β− (p− 1)α, . . . , β+ qα are the only roots of the form β+kα.
This series of roots is called the string α containing β. Exchanging α with β, we
can identify two other non-negative integers p′ and q′ that characterize the string
β containing α. These numbers satisfy

p− q = 2
〈α|β〉
〈α|α〉 , p′ − q′ = 2

〈α|β〉
〈β|β〉 . (13.A.6)

Since
−p ≤ (q − p) ≤ q, −p′ ≤ (q′ − p′) ≤ q′
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if α and β are two non-vanishing roots we have that

β − 2
〈α|β〉
〈α|α〉 α, α− 2

〈α|β〉
〈β|β〉 β,

are also non-vanishing roots. Note that the first is obtained by reflecting β with
respect to the orthogonal plane to α, while the second is reflecting α with respect
to the orthogonal plane to β.

3. Since
ad(hi)[eα, eβ ] = [hi, [eα, eβ ]] = (αi + βi)[eα, eβ ]

there are the following cases:
(a) α+ β �= 0, with α+ β not a root. In this case [eα, eβ ] = 0, otherwise [eα, eβ ]

would be an eigenvector of ad(hi) and α+ β a root.
(b) α+ β = 0, in this case [eα, e−α] ∈ C and then it can be written as

[eα, e−α] =
∑
i

λi hi. (13.A.7)

Choosing the normalization 〈eα|e−α〉 = 1 (which determines the roots up to
a factor dα such that dαd−α = 1), one has λi = αi.

(c) α + β �= 0, but with α + β a root. Since the space of eigenvectors is one-
dimensional, one has [eα, eβ ] = Nα,βeα+β and the coefficient Nα,β satisfies
the conditions

Nα,β = Nβ,−α−β = N−α−β,α = −Nβ,α. (13.A.8)

From the normalization condition 〈eα|e−α〉 = 1, we can always choose dα in
such a way that Nα,β = −N−α,−β and, in this case, we arrive at the condition

N2
α,β =

q(p+ 1)
2

〈β|β〉. (13.A.9)

This relation determines Nα,β up to a sign, which can be chosen to satisfy
the relations (13.A.8).

In summary, all the commutation relations of the Lie algebra are encoded in the
following formulas

[hi, hj ] = 0,
[hi, e±α] = ±αi e±α, (13.A.10)

[eα, e−α] =
∑
i

αi hi,

[eα, eβ ] =
{

0 if α+ β �= 0 and α+ β is not a root
Nα,βeα+β if α+ β �= 0 and α+ β is a root.

As we anticipated earlier, the roots of a Lie algebra uniquely fix its structure.
Hence the classification of the Lie algebras reduces to studing the vector space of
dimension r that satisfies the properties discussed above.
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Simple roots. A root is called positive if its first non-vanishing component is positive.
A root is simple if: (a) it is a positive root; and (b) it cannot be written as a sum of
positive roots. The simple roots have two important properties that are easy to prove:
(i) if α and β are simple roots, then α− β is not a root; (ii) 〈α|β〉 ≤ 0 and moreover

2
〈α|β〉
〈α|α〉 = p− q = −q, (13.A.11)

since, for the point (a), p = 0.
The utility of the simple roots is stated by the following theorem: there are exactly

r simple roots, all linearly independent, and any other positive root can be written
as their linear combination. In addition, if α is a positive root but not simple, there
always exists a simple root α(k) so that α−α(k) is a positive root. These two properties
ensure that all the roots of the algebra can be determined in terms of the simple roots.
From eqn (13.A.6) we infer that there are severe constraints on the angle between two
roots and the ratio of their lengths. In fact, since

2
〈α|β〉
〈α|α〉 = m, 2

〈α|β〉
〈β|β〉 = n (13.A.12)

one has
(〈α|β〉)2

〈α|α〉 〈β|β〉 =
mn

4
= cos2 ϕα,β ≤ 1 (13.A.13)

and, if m,n �= 0,
〈α|α〉
〈β|β〉 =

n

m
. (13.A.14)

If we now specialize these equations to the case in which α and β are simple roots, we
have both m,n < 0 and there are only the following cases

m n ϕ 〈α|α〉/〈β|β〉
−1 −1 120◦ 1
−1 −2 135◦ 2
−1 −3 150◦ 3
0 0 90◦ arbitrary

The scalar product of the simple roots defines the Cartan matrix

Aij =
2〈αi|αj〉
〈αj |αj〉

. (13.A.15)

The matrix elements of Aij are necessarily integers and its diagonal elements are equal
to 2. If the roots do not have the same length, Aij is not a symmetric matrix. It is
convenient to introduce a special notation for the quantity 2αi/|αi|2, with |αi|2 =
〈αi|αi〉

α∨
i =

2αi
|αi|2

. (13.A.16)
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Hence the Cartan matrix can be elegantly written as Aij = 〈αi|α∨
j 〉. Let’s also define

the dual Coxeter number, given by

h̃G =
r∑

i=1

α∨
i + 1. (13.A.17)

Since any semisimple Lie algebra is the direct sum of simple algebras, it is sufficient
to discuss the classification of the latter ones.

Classification of the simple Lie algebras. This problem consists of finding all
sets of r simple roots that satisfy the condition discussed above, with none of them
orthogonal to the others. The fundamental result of the theory can be expressed in a
graphical way in terms of the Dynkin diagrams. In fact, since the length of the simple
roots can take at most two values, let’s associate a circle to each root. Two circles are
linked by one, two, or three lines according to whether their angle is equal to 120◦,
135◦ or 150◦, respectively. If the two roots are orthogonal the relative circles are not
connected. The black circles are associated to the shorter roots. The final classification
of the simple Lie algebras is given in Fig. 13.6.
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Fig. 13.6 Simple Lie algebras and Dynkin diagrams.
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These algebras are all distinct when r ≥ 4. Note that
1. When r = 1 there is only one Lie algebra, A1.
2. When r = 2 the Dynkin diagrams of B2 and C2 are identical, therefore the two

algebras coincide.
3. When r = 3 A3 and D3 have the same Dynkin diagram, so A3 = D3.
4. There are four families of algebras with an arbitrarily large number of simple

roots: the series Ar that corresponds to the group of unitary matrices SU(r+ 1);
the series Br, relative to group of orthogonal matrices O(2r + 1); the series Cr

relative to the sympletic matrices Sp(2r) (these are the linear transformations U
that leave invariant an antisymmetric non-singular matrix I, namely U t I U = I),
and the series Dr that corresponds to the group of orthogonal matrices O(2r). In
additional to these families, there are five exceptional algebras, called G2, F4, E6,
E7, and E8.

5. Among the Lie algebras, only An, Dn, and the three exceptional algebras E6, E7,
E8 have roots all of the same length. These algebras are known as simply laced
algebras.

Let’s now discuss representation theory.

Representation theory. Let’s recall that a representation to a Lie algebra on a
complex vector field L is defined by a linear map x→ T (x), where x ∈ G and T is an
operator that acts in L, such that T ([x, y]) = [T (x), T (y)]. In the following we only deal
with the finite-dimensional representations, to which applies the Weyl theorem: any
finite-dimensional representation of a semisimple Lie algebra is completely reducible.
Hence we can restrict our attention only to the irreducile representations.

Choosing a basis {hi, eα, e−α} in G, let {Hi, Eα, E−α} be the corresponding op-
erators in a given representation. It is always possible to implement the conditions
Hi = H†

i and E†
α = E−α. The Hi’s are a set of hermitian operators that commute

with each other. Hence they can be simultaneously diagonalized and their eigevalues
are real. Let M = (M1, . . . ,Mr) be the set of eigenvalues on a common eigenvectors
of the Hi

Hi |M 〉 = Mi |M 〉. (13.A.18)

M can be regarded as an r-dimensional real vector and it is called the weight vector.
Denoting by LM the space of eigenvectors associated to the weight M , the vector space
L decomposes as

L = ⊕LM . (13.A.19)

In general, the spaces LM are not one-dimensional and therefore the operators Hi do
not form a complete set of commuting operators. Therefore some of the weights M
can be degenerate. There is no general procedure to remove this degeneracy. However,
it is possible to show that the number of operators that commute with all Hi that
permits us to remove such a degeneracy is at most equal to (n− 3r)/2.

Properties of the weight vectors. If |M 〉 is a vector of LM , from the commutation
relations of Hi with Eα we get

HiEα |M 〉 = (αi +M)Eα |M 〉. (13.A.20)
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Supposing that Eα|M 〉 �= 0, we have that also M + α = (M1 + α1, . . . ,Mr + αr) is
a weight and Eα|M 〉 belongs to LM+α. If EαEα|M 〉 �= 0, we can repeat the same
reasoning to conclude that also M +2α is a weight, with E2

α|M 〉 belonging to LM+2α.
For recurrence, if Ek

α|M 〉 �= 0, then M + kα is a weight and Ek
α|M 〉 ∈ LM+kα.

However, since L is a finite dimensional space, such a procedure must stop, i.e. there
should exist an integer q such that Eq

α|M 〉 �= 0 (therefore M + qα is a weight) but
Eq+1
α |M 〉 = 0. Repeating the same steps with E−α we can determine an integer p such

that Ep
−α|M 〉 �= 0 but Ep+1

−α |M 〉 = 0. From this we derive that these vectors

M − pα, . . . ,M + qα (13.A.21)

are all and only the weight vectors of the form M + kα. The operators Eα and E−α

are the raising and lowering operators of the spectrum. In terms of the tensor gij we
can introduce a scalar product among the weights and the roots

〈M |α〉 =
∑
ij

gijαiMj ,

〈M |M ′〉 =
∑
ij

gijMiM
′
j .

If p and q are the integers previously introduced, one has

2〈M |α〉
|α|2 = p− q,

and therefore

M − 2〈M |α〉
|α|2

is a weight. It is worth stressing that the considerations done above are very similar
to those used for the roots – a circumstance not surprising since the roots are nothing
else but the weight vectors of a particular representation, the adjoint.

Since the r simple roots α(i) form a basis in the r-dimensional space of real vectors,
any weight can be expressed in terms of them as

M =
r∑

i=1

Miα
(i). (13.A.22)

We can introduce an order in this space. We say that M > M ′ if the first component of
the vector M−M ′ is positive. For a finite number of distinct weights, there exists then
a highest weight vector, i.e. a weight that is greater than the other. As a consequence
of this definition, if α is a positive root and |Λ 〉 is an eigenvector belonging to the
space of the highest weight, then Eα|Λ 〉 = 0.

Let R be the representation of G in the linear space L, and |Λ, 1 〉, |Λ, 2 〉, . . . , |Λ, k 〉
a set of independent vectors belonging to the space of the highest weight Λ. Consider
the subspace L(1) defined by the vectors

E−αE−β . . . |Λ, 1 〉, (13.A.23)

obtained by applying a finite product of E−α (including the repetition of the same
operator) where α, β, . . . are positive roots. It is easy to see that this is an invariant and
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irreducible space. It is obviously invariant under the action of the operators Hi and
E−α, while applying one of the operators Eα (with α > 0), this can be moved, using its
commutation relations, to the end of the product, where we get Eα|Λ, 1 〉 = 0. Doing
so, we generate a sequence of vectors having the form (13.A.23). If the representation
R is irreducible we then have R = L(1). In L(1) there is only one independent vector
with highest weight Λ, all other weights have the form

Λ −
∑
α>0

kαα, (13.A.24)

where kα are integer numbers, equal to the number of times the operator E−α appears
in (13.A.23).

The importance of the concept of the highest weight is stressed by the following
theorems due to Cartan. The first theorem states that two irreducible representations
that have the same highest weight are equivalent. The second theorem states that an
r-dimensional vector Λ is the highest weight vector of an irreducible representation if
and only if

Λαi =
2〈Λ|α(i)〉
|α(i)|2 , (13.A.25)

is a non-negative integer for any simple root α(i). Hence, once we choose a set of
simple roots α(i), any set of non-negative integers (Λα1 ,Λα2 , . . . ,Λαr

) uniquely defines
an irreducible representation of G and all representations are obtained in this way. The
other weights have the form (13.A.24) and are obtained by applying the decreasing
operators E−α.
Other useful formulas. In this last part of the appendix we discuss some formulas
entering the formalism of the Kac–Moody algebras. The constant CA/2 that appears
in the expression of the stress–energy tensor and the central charge generally depends
on the chosen normalization of the structure constants fabc. Let Ra

(r) the matrices of
a representation (r) of G, with dimension dr and normalization

TrRa
(r)R

b
(r) = lr δ

ab. (13.A.26)

Summing over the indices a and b, in the range 1, . . . , |G|, we get

Cr dr = lr |G| (13.A.27)

where Cr is the quadratic Casimir operator in the representation r. Summing instead
only over the indices of the Cartan subalgebra of G (a, b = 1, . . . , rG), we get

dr∑
j=1

μ2
(j) = lr rG (13.A.28)

where rG is the rank of G and μ are the weights of the representation (r).
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Table 13.1: Dual Coxeter numbers of the Lie algebras.

SU(n) (n ≥ 2) h̃SU(n) = n l(n) = 1
2ψ

2

SO(n) (n ≥ 4) h̃SO(n) = n− 2 l(n) = ψ2

E6 h̃E6 = 12 l(27) = 3ψ2

E7 h̃E7 = 18 l(56) = 6ψ2

E8 h̃E8 = 30 l(248) = 30ψ2

Sp(2n) (n ≥ 1) h̃Sp(2n) = n+ 1 l2n = 1
2ψ

2

G2 h̃G2 = 4 l(7) = ψ2

F4 h̃F4 = 9 l26 = 3ψ2

For the adjoint representation, we have dA = |G| and

CA = l(A) = r−1
G

|G|∑
a=1

α2
(a) (13.A.29)

where α are the roots. Denoting by ψ the highest root, the quantity h̃G ≡ CA/ψ
2 is

independent of the normalization and it is expressed by

h̃G =
CA

ψ2 =
1
rG

(
nL +

(
S

L

)2

nS

)
. (13.A.30)

In this formula nS,L is the number of the short (long) roots of the algebra (the highest
root ψ is always a long root) whereas S/L is the ratio of their lengths. As seen above,
for the Lie algebras the roots can have at most two different lengths. The quantity h̃G
is the dual Coxeter number, previously defined by the formula (13.A.17).

The simply laces algebras (A,D,E) have simple roots of the same length. The
remaining algebras have roots of two different lengths and their ratio L/S is

√
2 for

SO(2n+ 1), Sp(2n) and F4, while it is
√

3 for G2.
We can now easily compute all dual Coxeter numbers for the compact Lie algebras;

see Table 13.1.
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Problems

1. Spontaneous supersymmetry breaking
Let Q be the generator of a N = 1 supersymmetric theory and Q† its adjoint operator.
With a proper normalization one has

{Q,Q†} = H,

where H is the hamiltonian of the system.
a Show that the hamiltonian of a supersymmetric theory contains no negative eigen-

values.
b Show that any state whose energy is not zero cannot be invariant under a super-

symmetry transformation.
c Show that supersymmetry is spontaneously broken if and only if the energy of the

lowest lying state (the vacuum) is not exactly zero.
d Consider the two-dimensional superconformal models on a cylinder, for which Q =

G0 and H = Q2 = L0 − c/24. Show that in the first model of the minimal unitary
series, given by the tricritical Ising model, supersymmetry is broken while in the
second minimal model, given by the gaussian field theory, it is exact.

2. Central charge of the parafermions
On a physical basis argue why in the limitN → ∞ the central charge of the parafermionic
systems is equal to c = 2.

3. Polyakov–Wiegman identity
Consider the action of the sigma model with a Wess–Zumino topological term

S(g) =
k

16π

∫
d2xTr (∂μg−1∂μg) + k Γ.

Prove the identity

S(gh−1) = S(g) + S(h) +
k

2π

∫
d2xTr (g−1∂z̄g h

−1∂z h).

Show that this identity gives rise to the invariance of the action under the transfor-
mation

g(z, z̄) → G(z) g(z, z̄)G−1(z̄).
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4. Correlation functions of the currents
For the conformal models with a Kac–Moody algebra, compute the four-point corre-
lation functions of the analytic currents

〈Ja(z1)Jb(z2)Jc(z3)Jd(z4)〉.

5. Bosonization of the SU(2)1 theory
Verify that the central charge of the theory SU(2)1 is c = 1. Compute the spectrum
of the conformal weights of this theory and determine a representation of the corre-
sponding conformal fields in terms of the vertex operators of a bosonic field ϕ.



14
The Arena of Conformal Models
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14.1 Introduction

In this chapter we will study some significant minimal conformal models. As shown
in Chapter 11, these models provide explicit examples of exactly solved quantum
field theories: of these theories we know the operator content, the fusion rules of
their fields, the corresponding structure constants, the correlation functions of the
order parameters and, finally, their modular invariant partition function on a torus.
Despite this large amount of knowledge, there is still an important open problem,
namely the identification of the classes of universality they are describing. Is there
a way to associate these exactly solved critical theories to the continuum limit of
lattice statistical models? Unfortunately there is no direct method to answer this
question: the identification of the various classes of universality can be achieved only by
comparison of the critical exponents predicted by conformal field theory with the values
obtained by the exact solution of the models defined on a lattice, further supporting
this identification on the basis of the symmetry of the order parameters. This has
been the approach followed, for instance, by Huse who identified a particular critical
regime of the lattice RSOS models solved by Andrew, Baxter, and Forrester with the
unitarity minimal models of conformal field theory. In this chapter, rather than going
into a technical analysis of this identification, we prefer to analyze in detail the first
minimal models (in the following denoted, in general cases, by Mp,q and Mq for the
unitary cases), in particular those corresponding to the Ising model, the tricritical
Ising model and the Yang–Lee model. We will also discuss the three-state Potts model
as an example of a statistical model associated to a partition function of the type
(A,D), according to the notation introduced in Chapter 11. Finally, we will study the
statistical models of geometric type (as, for instance, those that describe self-avoiding
walks) and their formulation in terms of conformal minimal models.

14.2 The Ising Model

Consider the first minimal unitary conformal model, obtained by substituting q = 3 in
eqn (11.3.2). Such a model has the central charge c = 1

2 and the Kac table is reported
in Table 14.1.
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Table 14.1: Kac table of the minimal unitary model M3.

1
2

1
16 0

0 1
16

1
2

To denote the operator content of this theory let’s introduce the notation1

1 = (0, 0)
ψ =

( 1
2 , 0
)

ψ̄ =
(
0, 1

2

)
ε =

( 1
2 ,

1
2

)
σ =

( 1
16 ,

1
16

)
μ =

( 1
16 ,

1
16

)
.

(14.2.1)

Below we present a series of arguments to show that the conformal field theory de-
scribed by this minimal model corresponds to the exact solution of the two-dimensional
Ising model at its critical point.

The first indication comes from the numerical values of the Kac table. Assuming
that the scalar field σ can be associated to the continuum limit of the magnetization
field of the two-dimensional Ising model, for the corresponding critical index η the
value is

η =
1
4
, (14.2.2)

and coincides with the exact value known for this critical index from the exact lattice
solution. Analogously, assuming that the scalar field ε describes the continuum limit of
the energy operator of the two-dimensional Ising model (i.e. the conjugate operator to
the temperature displacement |T −Tc|), we can derive the critical exponents ν and α:

ν = 2 − 2Δε = 1, α = 2 − 1/(1 − Δε) = 0. (14.2.3)

Also in this case, these quantities coincide with their known exact values obtained by
the lattice solution.

Further support for the hypothesis that the class of universality is that of the Ising
model comes from the skeleton form of the fusion rules. Using the results of Chapter
11, the operator algebra that involves the fields σ, μ and the chiral field ψ (with
analogous relations for the antichiral field ψ̄) is given by

ψ ψ = 1
ψ σ = μ
ψ μ = σ.

(14.2.4)

1(Δ, Δ̄) are the conformal weights provided by the Kac table.
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These relations show that ψ is a fermionic field (here subject to antiperiodic bound-
ary conditions) and that the operators σ and μ play the role of order and disorder
fields. The fermionic structure present in the conformal model M3 perfectly matches
the fermionic structure identified in the lattice version of the Ising model, discussed
in Chapter 9, where we have showed that the continuum limit of the Ising model
corresponds to a free fermionic theory for a Majorana field, with central charge c = 1

2 .
From the algebra of the scalar fields we have

σ σ = 1 + ε
μ μ = 1 + ε
ε σ = σ
ε μ = μ
ε ε = 1.

(14.2.5)

This algebra highlights the Z2 spin symmetry of the Ising model, under which both
σ and μ are odd fields (σ → −σ, μ → −μ) while ε is even, ε → ε. Moreover, at
its critical point the Ising model is also invariant under the Kramers–Wannier duality
transformation, under which ε← −ε and σ ↔ μ. The odd parity of ε under the duality
transformation naturally explains the absence of ε in the operator product expansion
of this field with itself.

Finally, note that the algebra (14.2.5) of the scalar fields can also be interpreted
as the algebra of the composite operators of a ϕ4 Landau–Ginzburg theory – a theory
notoriously associated to the class of universality of the Ising model. In fact, following
the general discussion presented in Section 11.6, let’s impose σ ≡ ϕ. Using the operator
expansion, we have : ϕ2 : = ε and : ϕ3 : = ∂z ∂z̄ϕ. This shows that this conformal
model provides the exact solution of the field theory associated to the lagrangian

L =
1
2
(∂μϕ)2 + gϕ4.

Let’s now discuss the correlation functions and the structure constants of this model.

14.2.1 Operator Product Expansion and Correlation Functions

If we identify the chiral field ψ with the analytic component of the Majorana fermion
of the Ising model and ψ̄ with its anti-analytic component, the continuum limit of the
energy operator ε is given by2 ε(z, z̄) = i ψ̄(z̄)ψ(z). The fermionic representation of
this operator permits us to easily compute all its correlators using Wick’s theorem.
Since Wick’s theorem always involves the contractions pairwise of different fields, it is
easy to see that the only non-zero correlators are those with an even number of fields
ε. The same conclusion can be reached based on the duality property of the model,
since under this transformation ε → −ε and therefore only the correlation functions
with an even number of ε can be different from zero. Using the factorization in the
analytic and anti-analytic components, we have

2The i in this definition is necessary for the anticommutation rule of the fermionic field and the
positivity of the correlation function 〈ε(z, z̄)ε(w, w̄)〉 = 1

|z−w|2 .
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G2n = 〈ε(z1, z̄1) . . . ε(zn, z̄n)〉
= (−1)n〈ψ(z1)ψ̄(z̄1) . . . ψ(zn)ψ̄(z̄n)〉 (14.2.6)
= 〈ψ(z1) . . . ψ(zn)〉 〈ψ̄(z̄1) . . . ψ̄(z̄n)〉.

For each of the two terms, Wick’s theorem leads to the sum of all possible two-point
correlation functions multiplied by the sign of the corresponding permutation. The
final result can be expressed in terms of a Pfaffian of the (2n) × (2n) antisymmetric
matrix A, with matrix elements Aij = −Aji = 〈ψ(zi)ψ(zj)〉 = 1/(zi − zj). We have
then

〈ε(z1, z̄1) . . . ε(zn, z̄n)〉 =

∣∣∣∣∣Pf
[

1
zi − zj

]
1≤i,j≤2n

∣∣∣∣∣
2

(14.2.7)

= det
[

1
zi − zj

]

since the square of the Pfaffian of an antisymmetric matrix A is equal to its
determinant.

For the computation of the correlation functions that involve the fields σ and μ,
we can proceed in two different ways.

• The first method consists of applying the general strategy explained in Chapter
12: the operators σ and μ occupy the position (1, 2) in the Kac table and therefore
their correlators satisfy a second-order linear differential equation, whose explicit
solution can be obtained by using the modified Coulomb gas approach. If we
consider, for instance, the four-point correlation function3

F (η, η̄) = 〈σ(∞)σ(1, 1)σ(η, η̄)σ(0, 0)〉,

one gets

F (η, η̄) =
(

1
ηη̄(1 − η)(1 − η̄)

)1/8 [
| Y+(η) |2 + | Y−(η) |2

]
, (14.2.8)

where
Y±(η) =

√
1 ±
√

1 − η.

From the analysis of the singularity of this expression for η → 0 and the operator
expansion

σ(z1, z̄1)σ(z2, z̄2) =
1

|z1 − z2|1/4
[1 + · · · ] + Cε

σσ |z1 − z2|3/4 [ε(z2, z̄2) + · · · ]

one infers that the function | Y+(η) |2 corresponds to the channel of the identity
operator 1 while | Y−(η) |2 corresponds to the channel of the operator ε. Using

3We use the Moebius invariance to fix three of the four points of this correlator at the positions
z1 = ∞, z2 = 1 and z4 = 0.
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=

Fig. 14.1 Expansion of the correlation functions in conformal blocks.

the decomposition of the correlators in the conformal blocks showed in Fig. 14.1,
we arrive at the quadratic equation for the structure constant Cε

σσ

(Cε
σσ)2 =

1
4
.

Note that this equation cannot fix the sign of the structure constant: hence our
choice to take the positive sign

Cε
σσ =

1
2

(14.2.9)

is purely arbitrary. There is a point, though, with the choice of the sign of the
structure constants. In order to appreciate this aspect, it is sufficient to observe
that the four-point correlation function of the disorder operator

F (η, η̄) = 〈μ(∞)μ(1, 1)μ(η, η̄)μ(0, 0)〉,

is expressed in terms of the same function (14.2.8) and, from the singular term of
its expression, we arrive at the same quadratic equation for the structure constant
Cε
μμ: (

Cε
μμ

)2 =
1
4
.

However, in this case, we have to choose the negative solution

Cε
μμ = −1

2
. (14.2.10)

To prove that this is the right choice, consider the four-point correlation function
that involves both fields

G(η, η̄) = 〈μ(∞)σ(1, 1)σ(η, η̄)μ(0, 0)〉.

It satisfies the same second-order differential equation fulfilled by the previous
correlators. However, its solution must take into account the semilocal property
of these fields, i.e. the correlator should acquire a (−1) sign when the variable η
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is analytically continued along the close contours that enclose either the origin or
the point at infinity. Hence, in this case, the solution is given by

G(η, η̄) =
1
2

(
1

ηη̄(1 − η)(1 − η̄)

)1/8

[Y+(η)Y−(η̄) + Y−(η)Y+(η̄)] . (14.2.11)

Studying the singularities that are present in this expression when η → 1 we get
the equation

Cε
σσ C

ε
μμ = −1

4
, (14.2.12)

which clearly shows the equal and opposite value of the two structure constants.
Other correlation functions can be computed as well using straightforwardly the

modified Coulomb gas. Instead of presenting these results, let’s go on to illustrate
another efficient method to compute the correlation functions of the Ising model.

• The second method for computing the correlators of the Ising model is based on
the bosonization rules, exploiting the circumstance that the Ising model is a free
fermionic theory. As a theory of real Majorana fermions, it cannot be directly
bosonized but, if we consider two copies of the same theory, we can define a
Dirac fermion theory that can be instead bosonized. Let i = 1, 2 be the index of
each copy of the Ising model. In terms of the two Majorana fermions ψ1 and ψ2
(together with their anti-analytic components), we can define the Dirac field as

Ψ(z, z̄) =
(
χ(z)
χ̄(z̄)

)
=

1√
2

(
ψ1 + iψ2
ψ̄1 + iψ̄2

)
(14.2.13)

and apply the bosonization rule

χ(z) = eiφ(z), χ̄(z̄) = e−iφ̄(z̄). (14.2.14)

It is now essential to provide the bosonization representation of the various fields
of the two copies of the Ising model. Let’s start from the energy operator of the
two-copy model, given by ε̃ = ε1 × ε2. Using eqn (12.4.6) we have

(Ψ̄Ψ)(z, z̄) = ψ1ψ̄1 + ψ2ψ̄2 (14.2.15)
= i(ε1 + ε2) = cosϕ(z, z̄).

Since ψ1 ψ2 = i∂zϕ we also have

ε1ε2 = (iψ1ψ̄1) (iψ2ψ̄2) = ψ1ψ2 ψ̄1ψ̄2 (14.2.16)
= −∂zϕ∂z̄ϕ.

Using these expressions and the correlators of the bosonic field ϕ, one easily
recovers the previous expressions (14.2.7) of the correlators of the εi operators.

Let’s consider now the correlators of the spin fields. For the two-copy model,
the spin operator is expressed by the product of the spin operators of each copy,
σ̃ = σ1 × σ2. Since the two copies do not interact with each other, the correlation
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functions of σ̃ provide the square of the correlation functions of the original Ising
model. Taking into account the conformal weight of the spin field, we can impose

σ̃ →
√

2 cos
ϕ

2
(14.2.17)

and, using the two-point correlation function of this vertex operator, we find

〈σ̃(z, z̄)σ̃(w, w̄)〉 = 〈σ(z, z̄)σ(w, w̄)〉2 =
1

|z − w|1/2 . (14.2.18)

Equation (14.2.17) enables us to compute all the (squares of the) correlators of
the field σ of the Ising model. In fact,

〈σ(z1, z̄1) · · ·σ(zn, z̄n)〉2 = 2n/2
〈

n∏
i=1

cos
ϕ

2
(zi, z̄i)

〉

= 2−n/2
∑

{αi=±1}

∏
i<j

|zi − zj |αiαj/2. (14.2.19)

To characterize the disorder operator μ̃ = μ1 × μ2 of the two-copy system, it is
necessary to use duality. Under this transformation ε → −ε, while σ ↔ μ, and
therefore in the bosonization formalism this symmetry is implemented by the
substitution ϕ→ π − ϕ. In this way, we arrive at the identification

μ̃(z, z̄) →
√

2 sin
ϕ

2
(z, z̄). (14.2.20)

We can now easily compute the mixed correlator

〈σ(z1, z̄1)μ(z2, z̄2)σ(z3, z̄3)μ(z4, z̄4)〉2 (14.2.21)

=
1
2

|z13z24|1/2
z14z23z12z34|1/2

[
−1 +

|z12z34|
|z13z24|

+
|z14z23|
|z13z24|

]
.

Thanks to this expression we can fix the operator product expansion of the order
and disorder operators

σ(z1, z̄1)μ(z2, z̄2) =
Cψ
σμ (z1 − z2)1/2 [ψ(z2) + · · · ] + Cψ̄

σμ (z̄1 − z̄2)1/2
[
ψ̄(z̄2) + · · ·

]
|z1 − z2|1/4

.

Analyzing the limit z1 → z2 and z3 → z4, we have

Cψ
σμ =

eiπ/4√
2

Cψ̄
σμ =

e−iπ/4
√

2
.
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In conclusion, from the bosonization procedure we get the following OPE

ψ(z1)σ(z2, z̄2) =
eiπ/4√

2(z1 − z2)
1
2
μ(z2, z̄2)

ψ(z1)μ(z2, z̄2) =
e−iπ/4

√
2(z1 − z2)

1
2
σ(z2, z̄2)

(14.2.22)

ψ̄(z̄1)σ(z2, z̄2) =
e−iπ/4

√
2(z̄1 − z̄2)

1
2
μ(z2, z̄2)

ψ̄(z̄1)μ(z2, z̄2) =
eiπ/4√

2(z̄1 − z̄2)
1
2
σ(z2, z̄2).

Note that, in the basis of σ and μ chosen above, the 2 × 2 matrix representations of
the zero-modes ψ0 and ψ̄0 of the fermionic field are non-diagonal and given by

ψ0 =
1√
2

(
0 eiπ/4

e−iπ/4 0

)
, ψ̄0 =

(
0 e−iπ/4

eiπ/4 0

)
.

14.2.2 Coset Constructions and E8 Algebra

At the critical point, remarkably enough, the Ising model can be described by two
different coset conformal models. The first coset is based on the affine algebra of the
group SU(2), namely

M3 =
SU(2)1 ⊗ SU(2)1

SU(2)2
. (14.2.23)

The representations of the affine algebra SU(2) at the level k = 1 are given by the
multiplets of spin (0)1 and (1

2 )1, with conformal weights equal to 0 and 1
4 , whereas the

representations at the level k = 2 are given by the multiplets of spin (0)2, ( 1
2 )2 and

(1)2, with conformal weights 0, 3
16 , and 1

2 . The products of the two representations of
SU(2)1 decompose as

(0)1 × (0)1 = [(0)Ising ⊗ (0)2] ⊕
[(

1
2

)
Ising

⊗ (1)2

]

(0)1 ×
(

1
2

)
1

=
(

1
16

)
Ising

⊗
(

1
2

)
2

(14.2.24)

(
1
2

)
1
×
(

1
2

)
1

= [(0)Ising ⊗ (1)2] ⊕
[(

1
2

)
Ising

⊗ (0)2

]

and therefore one recovers the Kac table of the model.
Quite surprisingly, the second coset construction uses the exceptional algebra E8.

Consider, in fact, the coset
(E8)1 ⊗ (E8)1

(E8)2
. (14.2.25)

The dual Coxeter number of E8 is h̃ = 30. Using formula (13.5.5) given in Chapter 13,
we have c = 1

2 . At level k = 1 there is only the representation of the identity field, with
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conformal weight equal to 0. At level 2, there are instead three different representations,
here denoted by the symbol Πi, of the conformal weights

(E8)2 → {1,Π1,Π7} = {0, 15
16 ,

3
2} . (14.2.26)

In particular, Π1 is the adjoint representation of the group E8. Their components,
with respect to the basis of the simple roots of E8 (n1, n2, . . . , n8, with ni integers) are

1 → (0, 0, 0, 0, 0, 0, 0, 0)
Π1 → (1, 0, 0, 0, 0, 0, 0, 0)
Π7 → (0, 0, 0, 0, 0, 0, 1, 0).

(14.2.27)

The Ising model is obtained by the decomposition

(0)1 × (0)1 = [(0)Ising ⊗ (0)2] ⊕
[
( 1
16 )Ising ⊗ ( 15

16 )2
]
⊕
[
( 1
2 )Ising ⊗ ( 3

2 )2
]
.

(14.2.28)
The underlying E8 structure of the Ising model will be decisive to understand its
off-critical behavior when an external magnetic field is present.

14.2.3 Characters and Partition Function

The Kac table of the minimal model M3 has three fields and there are correspondingly
three different characters of the Virasoro algebra, χ0, χ 1

2
, and χ 1

16
. Their explicit

expression can be computed by the Rocha–Caridi formula given in eqn (11.7.17) but,
as we show below, they can also be computed by taking advantage of the fermionic
formulation of the model and using the results of Section 12.3.2.

On a cylinder, the fermion has an expansion in half-integer or integer modes
according if it satisfies antiperiodic or periodic boundary conditions along the space
direction. Consider initially the antiperiodic case. If | 0 〉 is the lowest energy state in
this sector, the excited states are given by ψ−n1 . . . ψ−nk

| 0〉, where ni ∈ Z + 1
2 . We

can use the expression of L0 =
∑

n>0 nψ−nψn to order their sequence as the growth
of their eigenvalues:

L0 eigenvalue state

0 |0〉
1
2 ψ−1/2 |0〉
3
2 ψ−3/2 |0〉
2 ψ−3/2 ψ−1/2 |0〉
5
2 ψ−5/2 |0〉
3 ψ−5/2 ψ−1/2 |0〉
7
2 ψ−7/2 |0〉
4 ψ−7/2 ψ−1/2 |0〉 ψ−5/2 ψ−3/2 |0〉
· · · · · ·

(14.2.29)

We have then

TrA qL0 = 1 + q1/2 + q3/2 + q2 + q5/2 + q3 + q7/2 + 2q4 + · · · (14.2.30)
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The states (14.2.29) form a representation of the Virasoro algebra with c = 1
2 but such

a representation is reducible for it can be decomposed into the direct sum of the two
representations [0] ⊕

[1
2

]
of the minimal model M3. First of all, note that the states

with conformal weights Δ = 0 and Δ = 1
2 appear only once in the tower of these states.

This means that these conformal families have a multiplicity equal to 1. Furthermore,
note that the states that belong to the family [0] are obtained by applying an even
number of fermionic fields, while those of the family

[ 1
2

]
are obtained by acting on

|0〉 by an odd number of operators ψ−n. These two sets are therefore distinguished
by their opposite eigenvalue with respect to the operator (−1)F , and the irreducible
representations are recovered by using the projectors 1

2 (1 ± (−1)F )

χ0(q) ≡ q−1/48 TrΔ=0q
L0 = q−1/48 TrA

1
2
(1 + (−1)F ) qL0

(14.2.31)

χ 1
2
(q) ≡ q−1/48 TrΔ= 1

2
qL0 = q−1/48 TrA

1
2
(1 − (−1)F ) qL0 .

Let’s now consider the periodic sector of the fermionic field, whose expression for L0
on the cylinder is given by

L0 =
∑
n>0

nψ−nψn +
1
16

n ∈ Z.

The zero mode of the fermionic field has a two-dimensional representation space,
spanned by |σ〉 = | 1

16 〉+ and |μ〉 = | 1
16 〉−, which have eigenvalues ±1 with respect

to the operator (−1)F . The tower of states in the periodic sector is expressed by

L0 eigenvalue state

1
16 + 0 | 1

16 〉±
1
16 + 1 ψ−1 | 1

16 〉±
1
16 + 2 ψ−2 | 1

16 〉±
1
16 + 3 ψ−3 | 1

16 〉± ψ−2 ψ−1 | 1
16 〉±

· · · · · ·

(14.2.32)

Hence, there are two irreducible representations associated to the two states | 1
16 〉±. One

may think of separating them using once more the projectors 1
2 (1 ± (−1)F ). However

in this sector TrR (−1)F qL0 = 0 identically because at each level there is always the
same number of states with equal and opposite fermion number. In conclusion, there
is the same expression for the character of the two families (another manifestation of
the self-duality of the model) and this is given by

χ 1
16

(q) ≡ q−1/48 TrP
1
2
(1 ± (−1)F )qL0 = q1/24 (1 + q + q2 + 2q3 + · · · ). (14.2.33)

Partition functions. We can now use the characters χ0, χ 1
2
, and χ 1

16
to compute

different partition functions on a torus and extract the relative operator content of the
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model. Adopting the order of the characters given above, the modular matrix S that
implements their transformation under τ → −1/τ is

S =
1
2

⎛
⎝ 1 1

√
2

1 1 −
√

2√
2 −

√
2 0

⎞
⎠ . (14.2.34)

If we consider the partition function with periodic boundary conditions along both
horizontal and vertical axes of the torus, this quantity is given by the diagonal solution
of the modular equation

ZPP (q) = | χ0(q) |2 + | χ 1
2
|2 + | χ 1

16
|2 . (14.2.35)

In the presence of these boundary conditions, the operator content of the theory is
expressed by the scalar conformal families {1}, {ε}, and {σ}.

We can also use the Z2 symmetry of the model to implement other boundary
conditions. Suppose we would like to compute the partition function with periodic
boundary conditions along the space axis but with antiperiodic ones along the time
axis for the spin field. This corresponds to computing the trace of an operator that
implements a change of sign to the conformal family of the spin field σ → −σ but that
leaves invariant both the identity and energy fields. The final expression is then

ZAP = | χ0 |2 + | χ 1
2
|2 − | χ 1

16
|2 . (14.2.36)

Also in this case the operator content of the theory is expressed by the scalar conformal
families {1}, {ε}, and {σ}, with a negative multiplicity of the last family for the given
boundary conditions.

We can now use the modular transformation τ → −1/τ that induces a change of
the horizontal and vertical axes to compute the partition function with antiperiodic
boundary conditions along the horizontal axis and periodic along the vertical axis.
Using eqn (14.2.34) to transform the characters, we have

ZPA = χ∗ χ 1
2

+ χ∗
1
2
χ0+ | χ 1

16
|2 . (14.2.37)

The operator content of the theory with these boundary conditions is expressed by the
conformal scalar family {σ} but, in this case, there are also the chiral and antichiral
families {ψ,1} and {1, ψ̄}.

It is interesting to observe that the combination ZAP + ZPA is invariant, by con-
struction, under the modular transformation S, and it is also invariant under T 2,
where T implements the transformation τ → τ + 1. The partition function expressed
by this combination

Z = ZAP + ZPA = | χ0 + χ 1
2
|2 (14.2.38)

corresponds to the operator content of the Ising model given by the fields 1, ψ, ψ̄ and
ε that are all mutually local. The spin field is not local with respect to both ψ and ψ̄
and is therefore absent in this situation.
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14.3 The Universality Class of the Tricritical Ising Model
Let’s now discuss the universality class of the Tricritical Ising Model (TIM), associ-
ated to the second unitary minimal model M4. One of its microscopic realizations is
provided by the Blume–Capel model that was discussed in Section 7.7.2. Equivalently,
this class of universality can be associated to a Landau–Ginzburg lagrangian based on
a scalar field ϕ, a formulation that has the advantage of easy bookkeeping of the Z2
symmetry property of each order parameter. The euclidean action is

S =
∫
dDx

[
1
2
(∂μϕ)2 + g1ϕ+ g2ϕ

2 + g3ϕ
3 + g4ϕ

4 + ϕ6
]
, (14.3.1)

with the tricritical point identified by the condition g1 = g2 = g3 = g4 = 0. We
recall that the statistical interpretation of the coupling constants reads as follows: g1
plays the role of an external magnetic field h, g2 measures the displacement of the
temperature from its critical value, i.e. g2 ∼ (T − Tc), g3 may be regarded as a sub-
leading magnetic field h′ and, finally, g4 may be interpreted as a chemical potential
for the vacancies.

In two dimensions – the case of interest here – there are strong fluctuations of the
order parameters and this implies that the critical exponents and the universal ratios
are quite different from their estimates provided by a mean field theory. We can use
the conformal theory to obtain an exact solution of this model at its critical point. In
fact, as we show below, it is described by the second unitary minimal model M4: its
central charge is c = 7

10 and the exact values of its conformal weight are

Δl,k =
(5l − 4k)2 − 1

80
,

1 ≤ l ≤ 3
1 ≤ k ≤ 4. (14.3.2)

They are organized in the Kac Table 14.2.
There are six scalar primary fields and, out of them, four are relevant operators: the

operator product expansion algebra and the relative structure constants are reported in
Table 14.3. The correlation functions of these fields can be computed straightforwardly
using the modified Coulomb gas, as proposed in Problem 2, and will not be presented
here.
Landau–Ginzburg. The six primary fields perfectly match the identification pro-
vided by the composite fields of the Landau–Ginzburg theory and by the symmetries

Table 14.2: Kac table of the unitary minimal model M4.

3
2

6
10

1
10 0

7
16

3
80

3
80

7
16

0 1
10

6
10

3
2
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Table 14.3: Fusion rules of the tricritical Ising model.

even ∗ even
ε ∗ ε = [1] + c1 [t]
t ∗ t = [1] + c2 [t]

ε ∗ t = c1 [ε] + c3 [ε′′] c1 = 2
3

√
Γ( 4

5 )Γ3( 2
5 )

Γ( 1
5 )Γ3( 3

5 )

c2 = c1
even ∗ odd c3 = 3

7
ε ∗ σ′ = c4 [σ] c4 = 1

2
ε ∗ σ = c4 [σ′] + c5 [σ] c5 = 3

2c1
t ∗ σ′ = c6 [σ] c6 = 3

4
t ∗ σ = c6 [σ′] + c7 [σ] c7 = 1

4c1
c8 = 7

8
odd ∗ odd c9 = 1

56
σ′ ∗ σ′ = [1] + c8 [ε′′]
σ′ ∗ σ = c4 [ε] + c6 [t]
σ ∗ σ = [1] + c5 [ε] + c7 [t] + c9 [ε′′]

of the model. There are two different Z2 symmetries, one associated to the spin trans-
formation, the other to the duality.

With respect to the Z2 spin symmetry ϕ→ −ϕ we have

1. two odd fields: the magnetization operator σ = φ 3
80 ,

3
80

≡ ϕ and the sub-leading
magnetic operator σ′ = φ 7

16 ,
7
16

≡: ϕ3 :;
2. four even fields: the identity operator 1 = φ0,0, the energy operator ε = φ 1

10 ,
1
10

≡:
ϕ2 :, and the density operator t = φ 6

10 ,
6
10

≡: ϕ4 :, associated to the vacancies. Fi-
nally, there is also the irrelevant field ε” = φ 3

2 ,
3
2
. The operator product expansion

of these fields gives rise to a subalgebra of the fusion rules.

As for the Ising model, also for the TIM there is another Z2 associated to the duality
transformation, under which the fields change as

• the magnetization order parameters change into the disorder operators

μ = D−1σD = φ̃ 3
80 ,

3
80
, μ′ = D−1σ′D = φ̃ 7

16 ,
7
16

; (14.3.3)

• the even fields transform instead in themselves

D−1εD = −ε, D−1tD = t, D−1ε′′D = −ε′′, (14.3.4)

ε and ε′′ are odd fields while t is an even field under this transformation.

Supersymmetry. It is interesting to note that this critical model provides an explicit
realization of a supersymmetric field theory. In fact, the TIM is also the first model of
the minimal unitary superconformal series: the Z2 even fields enter the definition of a
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superfield of the Neveu–Schwarz sector

N (z, z̄, θ, θ̄) = ε(z, z̄) + θ̄ ψ(z, z̄) + θ ψ̄(z, z̄) + i θθ̄ t(z, z̄), (14.3.5)

while the Z2 odd magnetization operators form two irreducible representations of the
Ramond sector. The supersymmetric Landau–Ginzburg model can be written as

S =
∫
d2x d2θ

[
1
2
DN D̄N + N 3

]
, (14.3.6)

where D and D̄ are the covariant derivatives

D =
∂

∂θ
− θ

∂

∂z
, D =

∂

∂θ
− θ

∂

∂z
. (14.3.7)

Note that the supersymmetry and the organization of its Z2 even primary fields in a
superfield are at the root of the relationships that link the various structure constants
(see, for instance, the identity c2 = c1).
Exceptional algebra E7. In addition to the conformal and superconformal invari-
ance, the TIM holds another surprise. In fact, it can also be realized in terms of a
coset on the exceptional algebra E7

M4 =
(E7)1 ⊗ (E7)1

(E7)2
. (14.3.8)

For E7, the dual Coxeter number is h̃ = 18 and therefore the central charge of this
coset theory is c = 7

10 . At the level k = 1, the possible representations are given by
the identity 1 and the representation Π6, with conformal weights equal to 0 and 3

4 ,
respectively:

(E7)1 → {1,Π6} = {0, 3
4}. (14.3.9)

Their components with respect to the simple roots of E7 (n1, n2, . . . , n7, with ni inte-
gers) are

1 → (0, 0, 0, 0, 0, 0, 0)
Π6 → (0, 0, 0, 0, 0, 1, 0). (14.3.10)

At the level k = 2, there are instead the representations

(E7)2 → {1,Π1,Π2,Π5,Π6} = {0, 9
10 ,

21
16 ,

7
5 ,

57
80} , (14.3.11)

with the corresponding fundamental weights given by

Π1 → (1, 0, 0, 0, 0, 0, 0)
Π2 → (0, 1, 0, 0, 0, 0, 0)
Π5 → (0, 0, 0, 0, 1, 0, 0).

(14.3.12)
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Π1 is the adjoint representation E7. We can recover the conformal weights of the TIM
by the decomposition of the various representations

(0)1 × (0)1 = [(0)TIM ⊗ (0)2] +
[(

1
10

)
TIM

⊗ (Π1)2

]
+
[(

6
10

)
TIM

⊗ (Π5)2

]

(0)1 ×
(

3
4

)
1

=
[(

7
16

)
TIM

⊗ (Π2)2

]
+
[(

3
80

)
TIM

⊗ (Π6)2

]
(14.3.13)(

3
4

)
1
×
(

3
4

)
1

=
(

3
2

)
TIM

⊗ (0)2 .

Note that the energy operator Φ 1
10 ,

1
10

is associated to the adjoint representation of E7,
an observation that will be crucial in the analysis of the off-critical model, when the
temperature is moved away from its critical value T �= Tc.

14.4 Three-state Potts Model
On a square lattice, the hamiltonian of the three-state Potts model is given by

H = −J
2

∑
x,α

(σx σ̄x+α + σ̄x σx+α) = −J
∑
x,α

cos(ηx − ηx+α), (14.4.1)

where the discrete spin variables are represented by σ = exp(iη), σ̄ = exp(−iη), with
η = 0,± 2π

3 . It is known that this model has a duality symmetry and, at its self-dual
point Jc = 2

3 log(
√

3+1), presents a second-order phase transition. The lattice theory
is exactly solvable and consequently all critical exponents are known. In this section
we plan to show that the conformal theory that emerges at the critical point coincides
with the unitary minimal model M5. More precisely, the operator content of the three-
state Potts model is given only by a subset of the Kac table of the conformal model
M5. The subset of fields are those entering the modular invariant partition function
of type (A,D).

To find the field theory description of the microscopic statistical model, let’s assume
that there exists the continuum limit of its spin and energy operators, here denoted
by σ(x), σ̄(x), and ε(x). Moreover, let’s assume that

σ(x1)σ̄(x2) + σ̄(x1)σ(x2) =
1

|x1 − x2|2Δσ
+ Cε

σσ̄

1
|x1 − x2|2Δσ−Δε

ε(x2) + · · ·

ε(x1)σ(x2) = Cσ
εσ

1
|x1 − x2|Δε

σ(x2) + · · · (14.4.2)

ε(x1)ε(x2) =
1

|x1 − x2|2Δε
.

From the known expression of the critical exponents α = 1
3 and β = 1

9 coming from the
exact solution of the lattice model, we can infer the conformal weights of the scaling
operators

Δσ = Δσ̄ =
1
15
, Δε =

2
5
. (14.4.3)

Let’s now consider the Kac table of the minimal model M5, reported in Table 14.4.
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Table 14.4: Kac table of the unitary minimal model M5.

3 13
8

2
3

1
8 0

7
5

21
40

1
15

1
40

2
5

2
5

1
40

1
15

21
40

7
5

0 1
8

2
3

13
8 3

In this table there is the field Φ3,3 = Φ2,3, with conformal weight Δσ = 1
15 and the

field Φ2,1 = Φ3,5 with Δε = 2
5 . It is therefore natural to identify these conformal fields

with the scaling operators associated to the spin and energy operators of the lattice
model. However the exact solution of the lattice model does not have operators with
conformal weights 1

8 , 1
40 , 21

40 , and 13
8 . What is then the correct identification of the Z3

Potts model?
To answer this question, one should recall that, for p ≥ 5, the conformal minimal

model Mp admits two different partition functions. The first of them is the purely
diagonal partition function, i.e. the one in which all fields of the Kac table appear
each with multiplicity equal to 1. This leads to the expression

Zdiag =
1
2

4∑
r=1

5∑
s=1

|χr,s|2. (14.4.4)

The field theory associated to the operator content of this partition function does not
correspond to the three-state Potts model but it rather defines the critical theory of
a Landau–Ginzburg scalar field ϕ, that presents only a Z2 invariance ϕ → −ϕ. Its
action is

S =
∫
d2x

[
1
2
(∂μϕ)2 + ϕ8

]
. (14.4.5)

There is, however, another modular invariant partition function associated to the min-
imal model M5 expressed by

ZPotts =
∑
r=1,2

{
|χr,1 + χr,5|2 + 2|χr,3|2

}
. (14.4.6)

The operator content identified by this partition function is different from the previous
one: it involves only a subset of the fields of the Kac table of the minimal model M5.
There are, in fact, only the fields Φr,s with s = 1, 5 and r = 1, 2. Combining the analytic
and the anti-analytic parts, the critical theory described by this partition function has
the scalar fields given in Table 14.5. These fields close an operator algebra, also in the
absence of the other fields of the Kac table. Their skeleton fusion rules are reported
in Table 14.6.
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Table 14.5: Scalar operators of the non-diagonal partition function of the model M5.

(r, s) Δ Field Interpretation

(1, 1) or (4, 5) 0 1 Identity

(2, 1) or (3, 5) 2
5 ε energy

(3, 3) or (2, 3) 1
15 σ spin

(3, 1) or (2, 5) 7
5 X

(4, 1) or (1, 5) 3 Y

(4, 3) or (1, 3) 2
3 Z

Table 14.6: Fusion rules of the scalar fields of the three-state Potts model.

ε× ε = 1 +X ε× σ = σ + Z

ε×X = ε+ Y ε× Y = X

σ × σ = 1 + ε+ σ +X + Y + Z σ ×X = σ + Z

σ × Y = σ σ × Z = ε+ σ +X

X ×X = 1 +X X × Y = ε

X × Z = σ Y × Y = 1

Y × Z = Z Z × Z = 1 + Y + Z

In addition to these scalar fields there are certain fields with spin, here denoted by
their conformal weights Φ(Δ,Δ̄). They are constructed by combining in a non-diagonal
way the analytic and anti-analytic fields: W = Φ(3,0), W̄ = Φ(0,3), J = Φ( 7

5 ,
2
5 ), and

J̄ = Φ( 2
5 ,

7
5 ).

It is interesting to observe that the three-state Potts models at criticality can
also be obtained by the parafermionic theory ZN with N = 3. It is easy to check
the equality of the central charges of both theories, as well as the conformal weights
of the spin operator Δσ = 1

15 . The role of the parafermionic current is here played by
the chiral operator Φ1,3, with conformal weight Δψ = 2

3 .
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Generalization. Remarkably, the analysis presented for the three-state Potts model
can be generalized to the Q-state Potts model, where Q is regarded as a continuous
variable (see Chapter 2). The range of values of Q for which the Potts model is critical
is given by the interval Q ∈ (1, 4): for Q = 1, the Potts model describes the critical
phenomenon of percolation, for Q = 2 we have the usual Ising model, while for Q > 4,
the Potts model presents a first-order phase transition that cannot be described by a
conformal field theory. The relation that identifies the minimal models Mp with the
Q-state Potts model is

Q = 4 cos2
π

p+ 1
, (14.4.7)

and it is easy to check that it correctly reproduces, for p = 3 the Ising model (withQ =
2), for p = 5 the three-state Potts model and for p → ∞ the four-state Potts model.
The exact solution of the lattice models is known for generic values of Q and therefore
all values of the thermal and magnetic critical exponents are known as well. This
permits the identification of the anomalous dimension of several order parameters, as

XTn
= 2Δn+1,1 =

n2 + ny

2 − y
, (14.4.8)

XHn
= 2ΔN−1−n,n =

(2n1)2 − y2

4(2 − y)
,

where we have introduced the notation

N ≡ p+ 1
2

, y ≡ 1
N
. (14.4.9)

14.5 The Yang–Lee Model

Among the minimal non-unitary models, a simple but particularly significant exam-
ple is given by the model M2,5. Its central charge is c = −22/5 and the Kac table
consists of only one row, as shown in Table 14.7. In addition to the identity operator,
there is only a field ϕ of conformal weight Δ = −1/5. Hence the effective central
charge is ceff = c − 24Δmin = 2/5. As shown originally by J.L. Cardy, this model
admits a statistical interpretation in terms of a field theory associated to the Yang–
Lee zero singularities of the Ising model. Let’s discuss the main steps that lead to this
conclusion, by initially recalling the Yang–Lee theorem. The partition function of a
statistical model defined on a lattice is an analytic function of its parameters as long
as the number N of the fluctuating variables is finite. Its singularities only emerge in
the thermodynamical limit N → ∞. Consider the Ising model at a given value T of
the temperature and in the presence of an external magnetic field B. As a function
of B, at finite N , the zeros of the partition function cannot be on the real axis of B,

Table 14.7: Kac table of the minimal non-unitary model M2,5.

0 − 1
5 - 1

5 0
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since Z is expressed by a sum of positive terms. Hence they are placed in complex
conjugate points of the complex plane B and they tend to accumulate along certain
curves in the limit N → ∞. In particular, as shown by C.N. Yang and T.D. Lee, in the
Ising model these zeros accumulate along the imaginary axis B = ih. Correspondingly
the free energy of the system can be expressed in terms of the density of these zeros
along the imaginary axis

F (b) = logZ =
∫ +∞

−∞
dx ρ(x, T ) log(h− ix), (14.5.1)

with the magnetization given by

M =
∂F

∂B
=
∫ +∞

−∞
dx

ρ(x, T )
h− ix

. (14.5.2)

Below the critical temperature, i.e. for T < Tc, the distribution of the zeros extends to
the real axis, so that ρ(0, T ) �= 0. Consequently the magnetization is a discontinuous
function of the variable B when it crosses the real axis, and the system presents a
first-order phase transition. Precisely at T = Tc we have ρ(0, Tc) = 0 and there is
a second-order phase transition. In the high-temperature phase T > Tc, the system
is paramagnetic and the distribution of the zeros starts from two symmetric critical
values ±hc(T ) and then extends along the magnetic axis (see Fig. 14.2).

In the vicinity of hc, the density of the zeros has an anomalous behavior

ρ(h, T ) = (h− hc)σ. (14.5.3)

An analogous anomalous behavior is present in the magnetization, as a function of the
(complex) magnetic field

M(ih) 	 (h− hc)σ. (14.5.4)

T < T
c

T = T 
c

T > T
c

+h

−h

Fig. 14.2 Density of the zeros of the partition function of the Ising model in the complex
plane of the variable B by varying the temperature.
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Thanks to the thermodynamic relations discussed in Chapter 1, one can link the critical
exponent σ to the critical exponent η of the operator corresponding to the fluctuations
of the model in the presence of an imaginary magnetic field

σ =
1
δ

=
d− 2 + η

d+ 2 − η
. (14.5.5)

Fisher has identified the effective action of the order paramter, given by the Landau–
Ginzburg theory:

S =
∫
ddx

[
1
2
(∂ϕ)2 + i(h− hc)ϕ+ ig ϕ3

]
. (14.5.6)

Note that the non-unitarity of the model manifests itself in the imaginary value of the
coupling constant. In two dimensions, a model that could reproduce the dynamics of
such a theory should satisfy two main requests: (i) it must be a non-unitary model;
(ii) it must have only one relevant field ϕ satisfying the fusion rule

ϕ× ϕ = 1 + Cϕ
ϕ,ϕ ϕ, (14.5.7)

with a purely imaginary structure constant Cϕ
ϕ,ϕ.

These are precisely the features of the minimal non-unitary model M2,5 whose
structure constant is given by

Cϕ
ϕ,ϕ = i

[
Γ2
( 6

5

)
Γ
( 1

5

)
Γ
( 2

5

)
Γ
( 3

5

)
Γ3
( 4

5

) ]1/2
. (14.5.8)

This quantity can be computed by using the exact expression of the four-point correla-
tion function of the field ϕ. Since this field occupies the position (1, 2) of the Kac table,
its correlators are given either by solving the corresponding second-order differential
equation or applying the modified Coulomb gas method. The result is

〈ϕ(z1, z̄1)ϕ(z2, z̄2)ϕ(z3, z̄3)ϕ(z4, z̄4)〉 (14.5.9)

=
∣∣∣∣ z13 z24
z12 z23 z34 z14

∣∣∣∣−4/5 {
|F1(η)|2 + C2 |F2(η)|2

}
where η is the harmonic ratio η = z12z34/z13z24 and Fi(η) are the hypergeometric
functions

F1(η) = F

(
3
5
,
4
5
,
6
5
, η

)
(14.5.10)

F2(η) = η−1/5 F

(
3
5
,
2
5
,
4
5
, η

)
.

The value of the critical exponent σ predicted by this conformal model is σ = −1/6,
in reasonable agreement with its numerical determination σ = −0.163.
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14.6 Conformal Models with O(n) Symmetry
As we have seen in Chapter 2, the spin models with a continuous symmetry O(n)
provide a generalization of the Ising model and, in particular, their limit n → 0
describes the universality class of self-avoiding random walks. In these theories, the
spins are vectors �S with n components and length |�S|2 = n. Taking advantage of
the universality of critical phenomena, we can choose any microscopic lattice to study
their behavior. The most convenient one turns out to be a lattice with coordination
number equal to 3, as for instance the hexagonal lattice shown in Fig. 14.3.

We assume that the partition function of the system is expressed by

Z =
∫ ∏

k

d�Sk
∏
〈i,j〉

(1 + x �Si ˙�Sj), (14.6.1)

where the product on i and j is on the nearest neighbor sites. The integration rules
on the spins are ∫

dSa Sa = 0∫
dSa (Sa)2 = 1∫
d�S S2 = n.

Now expand the product
∏

〈i,j〉(1+x�Si · �Sj) and integrate over the values of the spins:
due to the coordination number of the lattice and the integration rules stated above,
the only terms that are different from zero are those relative to the self-avoiding closed
circuits. Since each of these circuits carries a factor n coming from the integration on
the spins and a factor x for each of its segments, the partition function becomes

Z =
∑

closed circuit

nNC xNS , (14.6.2)

where NC is the number of close a circuits, while NS is the number of segments. We
can use this expression to analytically continue the definition of the model to arbitrary

Fig. 14.3 Hexagonal lattice and one of its closed spin circuits.
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values of n, not necessarily integers. The partition function presents a critical point
xc given by

xc = (2 +
√

2 − n)−1/2, (14.6.3)

at which there is a second-order phase transition. This is described by a conformal
field theory with central charge c(n) = 1− 6/k(k+ 1), where the relation that links n
and k is expressed by

n = 2 cos(π/k), k ≥ 1. (14.6.4)

Note, in particular, that c = 0 when n = 0 but its derivative ∂c/∂n at n = 0 is different
from zero and equal to 5/3π. For n = 1, c = 1/2 and we recover the Ising model. The
anomalous dimension of the energy operator of these theories is

ηe = 2(k − 1)/(k + 1), (14.6.5)

i.e. ηe = 2/3 for n = 0. This exponent is related to the exponent ν that characterizes
the divergence of the correlation length by the relation ν = 1/(2 − xe) = 3/4. This
value is in perfect agreement with the critical exponent of the exact lattice solution of
the self-avoiding random walk found by B. Nienhuis.

References and Further Reading
For exactly solved lattice models and their identification with minimal models of
CFT see:

G.E. Andrew, R.J. Baxter and P.J. Forrester, Eight-vertex SOS model and generalized
Rogers–Ramanujan-type identities, J. Stat. Phys. 35 (1984), 193.

D. Huse, Exact exponents for infinitely many new multicritical points, Phys. Rev. B
30 (1984), 2908.

A review article on the universality class of the tricritical point is:

I. Lawrie, S. Serbach, Theory of tricritical points, in Phase Transitions, Vol. 9 (1984),

The superconformal invariance of the two-dimensional tricritical Ising model was
pointed out by Friedan, Qiu, and Shenker and studied in the articles:

D. Friedan, Z.A. Qiu, S. Shenker, Superconformal invariance in two-dimensions and
the tricritical ising model, Phys. Lett. B 151 (1985), 37.

Z.A. Qiu, Supersymmetry, Two-dimensional critical phenomena and the tricritical
Ising model, Nucl. Phys. B 270 (1986), 205.

G. Mussardo, G. Sotkov, M. Stanishkov, Ramond sector of the supersymmetric mini-
mal models, Phys. Lett. B 195 (1987), 397.



486 The Arena of Conformal Models

The identification of the universality class of the three-state Potts model with unitary
minimal model M5 is discussed in the article:

V.S. Dotsenko, Critical behavior and associated conformal algebra of the Z(3) Potts
model, Nucl. Phys. B 235 (1984), 54.

The identification of the minimal non-unitary model M2,5 with the Yang–Lee edge
singularity of the zeros of the partition function has been proposed in:

J.L. Cardy, Conformal invariance and the Yang–Lee edge singularity in two dimen-
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Problems

1. Correlator of the Ising model
Consider the following correlator of the two-dimensional Ising model

H(η, η̄) = 〈σ(∞)ε(1, 1)ε(η, η̄)σ(0, 0)〉.

Use the modified Coulomb gas to show that it is given by

H(η, η̄) =
1
4

∣∣∣∣ η + 1
η1/2(1 − η)

∣∣∣∣ .

2. Structure constants
Use the modified Coulomb gas to compute the correlation functions of the tricritical
Ising model. Determine the values of the structure constants given in the text.

3. Vacua of the multicritical Ising model
Consider the potential of the multicritical Ising model

V (ϕ) = g1ϕ+ g2ϕ
2 + g3ϕ

3 + g4ϕ
4 + g5ϕ

5 + g6ϕ
6 + ϕ8.

a Show that, by fine tuning the parameters, the model has a phase with four degen-
erate vacua.

b Argue that this is enough information to conclude that the universality class of this
model does not coincide with that of the three-state Potts model, although the
two models share the same value of the central charge.
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15
In the Vicinity of the Critical Points

Lume v’è dato a bene e a malizia.

Dante Alighieri

15.1 Introduction
In the previous chapters we have dedicated ample space to the study of two-dimensional
statistical systems at criticality, providing their exact solutions in terms of confor-
mal field theories. In this chapter we start investigating the deformations of conformal
field theories that move the statistical systems away from criticality. As pointed out
in Chapter 8, in the renormalization group approach the characterization of the uni-
versality classes must include, in addition to the conformal theory of the fixed points,
also the description of the scaling region nearby.

The scaling region is a multidimensional space, parameterized by the coupling
constants of the relevant scalar fields ΦΔi,Δi

(x) that are present in the conformal
field theory of the fixed point under scrutiny. These operators are identified by the
condition xi = 2Δi < 2. The fixed point action is unstable for the insertion of these
operators, and any renormalization group flow that starts from a given fixed point
can be obtained by a combination of the couplings of these relevant fields. If S∗ is the
conformal action of the fixed point and n is the number of its relevant fields, the most
general deformation is given by

S = S∗ +
n∑
i=1

λi

∫
ϕi(x) d2x. (15.1.1)

As discussed in Section 15.2, for what concerns the ultraviolet divergences encountered
in the perturbative series of the theory (15.1.1), the quantum field theories defined by
the relevant deformations of a conformal action are of the super-renormalizable type.
In other words, the relevant operators do not influence the short-distance behavior
of the system but, on the contrary, they drastically change the large-distance scales.
The first effect of their presence is the breaking of the conformal invariance and the
generation of a mass scale, a function of the coupling constants. The latter are, in fact,
dimensional quantities, expressed in terms of a mass scale M by

M = Di λ
1

2−2Δi
i , (15.1.2)
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where the coefficients Di are pure numbers that can be fixed once we choose a nor-
malization of the operators. In the following we adopt the conformal normalization,
identified by the short-distance behavior of their two-point correlation function

〈ϕi(r)ϕj(0)〉 	 δij
r2xj

, r → 0. (15.1.3)

Excluding the possibility of pathological cases, such as for instance the presence of
limit cycles of the renormalization group, there are in general two different physical
scenarios associated to the action (15.1.1):

1. In the first scenario, the final point of the renormalization group flow is also a
fixed point associated to another conformal field theory. In this case, the quantum
field theory associated to this RG flow has an ultraviolet behavior ruled by the
conformal field theory CFT 1 of the starting point, while its infrared behavior is
controlled by the conformal field theory CFT 2 of the final point. The occurrence of
this scenario can be detected by studying the behavior of the two-point correlation
functions Gi(r) = 〈ϕi(r)ϕi(0)〉: in this case they present a power law behavior in
both regimes r → 0 and r → ∞

Gi(r) =

{
r−2x(1)

i , r → 0
r−2x(2)

i , r → ∞
(15.1.4)

with x
(1)
i �= x

(2)
i . These two quantities are the anomalous dimensions of the field

ϕi with respect to the initial and final conformal field theories respectively.
Quantum field theories of this type have massless excitations, i.e. the physi-

cal correlation length of the problem is infinite all along the RG flow. However
the conformal invariance is broken for the non-vanishing values of the βi ({λj})
functions of the coupling constants, as we shall see in the following sections.

2. In the second scenario, which is by far the most common one, the system presents
a finite correlation length ξ. In this case, the infrared behavior of the theory is
ruled by a massive quantum field theory. Once again, the identification of this
circumstance can be done by looking at the two-point correlation functions: in
this case, for r → ∞ they present an exponential decay while for r → 0 thay have
a power law behavior, determined by the initial conformal theory CFT 1

Gi(r) =
{
r−2xi , r → 0
e−mir , r → ∞.

(15.1.5)

In this expression mi = ξ−1 is the mass of the lightest particle that couples to
the field ϕi.

From a geometrical point of view, the nature of the renormalization group flows in the
multidimensional coupling constant space is show in Fig. 15.1.

The analysis of the off-critical theories poses a series of interesting questions,
such as:

• Is there a way to predict whether a deformation of a conformal action gives rise
to a massless or a massive theory?
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λ{ }

Fig. 15.1 Renormalization group flows in the coupling constant space.

• If the off-critical theory is massive, is it possible to determine its mass spectrum?
• Is it possible to characterize the operator content of the off-critical theory and its

correlation functions?
• Do the off-critical correlation functions satisfy differential equations? Of what

kind?
• Is it possible to determine the thermodynamics of these models?
• What are the relationships between the conformal data – such as, central charge,

anomalous dimensions, and structure constants – and the off-critical data, such
as the mass spectrum?

Presently there is no general answer to all these questions. However there is a series
of important results that permit us to reach satisfactory control of the off-critical
theories, at least from a perturbative point of view. It should be pointed out that
the situation can be undoubtedly better for particular deformations: as we will see
in the following chapters, certain off-critical theories are in fact severely constrained
by the presence of infinite conserved charges. These theories correspond to integrable
models that can be exactly solved by a formalism based on the S-matrix. Their study
turns out to be decisive to solve some of the above-mentioned questions.

In this chapter we initially study the nature of the perturbative series associ-
ated to the perturbed action, reformulating the renormalization group equations that
they give rise to. Later we discuss two general results of the RG flows, known as the
c-theorem and Δ-theorem, that permit us to obtain extremely useful information on
the theories of the initial and final fixed points.

15.2 Conformal Perturbation Theory

In the vicinity of the critical point, the action of the theory can always be expressed
as (15.1.1). The unperturbed action corresponds to the conformal field theory of the
fixed point, of which we know in principle all correlation functions. This allows us
to define the perturbative series for any physical quantity away from criticality. For
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simplicity, hereafter, we consider the case in which the deformation is made only by
one relevant scalar field ϕ(x) of conformal weights (Δ,Δ). The expectation value of
any operator A of the perturbed theory is expressed by the series

〈A〉λ =
1
Zλ

〈
A exp

[
−λ
∫
d2xϕ(x)

]〉
0

(15.2.1)

=
1
Zλ

∞∑
n=0

(−λ)n

n!

∫
d2x1 . . . d

2xn 〈Aϕ(x1) . . . ϕ(xn)〉0

where

Zλ =
〈

exp
[
−λ
∫
d2xϕ

]〉
0
. (15.2.2)

In this expression, 〈· · · 〉0 are the correlation functions of the unperturbed conformal
field theory. In the computation of the integrals of the perturbative series, there are,
however, both ultraviolet and infrared divergences. They can be regularized by intro-
ducing an ultraviolet cut-off ε and an infrared cut-off R – quantities that finally have
to be sent to the limits ε→ 0 and R → ∞.

For what concerns the ultraviolet properties of the perturbative series, the quantum
field theories defined by deformations of the relevant fields are of the super-normalizable
type. Therefore the ultraviolet divergences can be dealt with the standard renormaliza-
tion methods: they lead to a redefinition of the local fields and, when the deformation
operator is marginal (i.e. with conformal weight Δ = 1), also to a renormalization of
the couling constant.

The infrared divergences are of different type. They cannot be absorbed in the
redefinition of the local quantities and, for this reason, they give rise to non-analytic
expressions in the coupling constants. The physical origin of this phenomenon is easy
to understand. In fact, the vacuum state of the deformed theory (as well as all other
excited states) is not adiabatically related to the vacuum states of the conformal the-
ory:1 if, for instance, the perturbed system corresponds to a massive theory, the new
Hilbert space is set by the Fock space of the multiparticle states, whereas the original
Hilbert space is spanned by the Verma modules of the conformal states. In particu-
lar, the vacuum of the perturbed theory is the state without any particle excitations,
whereas the vacuum of the unperturbed theory is characterized in a completely differ-
ent way, since it is the state annihilated by all Ln with n ≥ −1.

The different nature of the ultraviolet and infrared divergences permits their sep-
arate treatment, providing the key to controlling the theory perturbatively. Let’s first
discuss the ultraviolet properties and later the infrared ones.
Ultraviolet divergences. To understand the ultraviolet structure of the theory, let’s
consider initially what we can learn from the first-order calculation. Let Φ(0) be a
field of the perturbed theory (to become later a renormalized field), obtained as a

1One can draw an analogy with a quantum mechanics problem. Consider a free particle system
on a line, in which we switch on a potential like g|x| that cuts off the free asymptotic states. The
perturbed system has all and only bound states that are not adiabatically related to the energy
eigenstates of the unperturbed system. In particular, their energies scale as a function of the coupling
constant according to the non-analytic law g2/3.



Conformal Perturbation Theory 493

deformation of the field Φ̃(0) of the original conformal theory. Denote by X a generic
product of other fields and consider the correlator 〈XΦ(0)〉. Its perturbative definition
is given by

〈X Φ(0)〉λ 	 〈X Φ̃(0)〉0 − λ

∫
ε<|x|<R

d2x 〈X Φ̃(0)ϕ(x)〉0 + · · · (15.2.3)

This integral is ultraviolet divergent only if the operator product expansion

ϕ(x) Φ̃(0) =
∑
k

Ck
ϕΦ |x|2(Δk−ΔΦ−Δ)Ak(0) (15.2.4)

contains the fields Ak with conformal weights Δk that fulfill the equation

γk ≡ Δk − ΔΦ − Δ + 1 ≤ 0. (15.2.5)

In this case, to obtain a finite expression at the first-order of the correlation functions
it is sufficient to define the renormalized operator by

Φ = Φ̃ + λ
∑
k

bk ε
2γkAk + O(λ2), (15.2.6)

where

bk = π
Ck
ϕΦ

γk
.

This formula shows that, in general, the renormalization procedure induces a mixing
of the original operators with those of lower conformal weights.
Off-critical operator product expansion. Let’s now analyze in more detail the
renormalization procedure of the ultraviolet and infrared divergences by studying
the two-point correlation function of the renormalized field Φ(x), whose perturbative
expression is given by

〈Φ(x)Φ(0)〉 =
∞∑
k=0

(−λ)n

n!
〈Φ̃(x)Φ̃(0)ϕ(y1) . . . ϕ(yn)〉0 d2y1 . . . d

2yn. (15.2.7)

To evaluate the behavior of this correlator (at least in the limit |x| → 0, even though
the final expression also holds for finite values of x), it is convenient to start from the
operator product expansion

Φ(x)Φ(0) =
∑
k

Ck
ΦΦ(x)Ak(0), (15.2.8)

where Ak (k = 0, 1, . . .) is a complete set of fields and Ck
ΦΦ(x) are their relative

structure constants with the field Φ. Since the structure constants are local quantities,
they are analytic functions of the coupling constant λ and therefore can be expanded in
power series theoreof. The fields Ak are the renormalized expressions of the operators
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Ãk present at the critical point: denoting by (Δk, Δ̄k) their conformal weights, on the
basis of a simple dimensional analysis argument, we have

Ck
ΦΦ(x) = xΔk−2ΔΦ x̄Δ̄k−2barΔΦ

∞∑
n=0

C
k (n)
ΦΦ (λ r2−2Δ)n, (15.2.9)

where r = (x x̄)1/2. However, the price to pay for the analyticity of the structure
constants is the presence of the vacuum expectation values of some of the operators
Ak. These are non-local quantities and therefore non-analytic with respect to the
coupling constant. For dimensional reason, their expression is given by

〈Ak(0)〉λ = λ
Δk
1−Δ Qk, (15.2.10)

where Qk are pure numbers. The set of these vacuum expectation values encodes im-
portant information on the infrared properties of the theory and cannot be determined
by perturbation theory. Obviously many of them vanish for symmetry reasons as, for
instance, those of fields with spin or those of the derivative fields. Selecting only those
with vacuum expectation value different from zero, we have

〈Φ(x)Φ(0)〉λ =
∑
ν

Cν
ΦΦ(x) 〈Aν(0)〉λ. (15.2.11)

It is worth mentioning that the exact vacuum expectation values of the primary fields
can be computed for integrable deformations of conformal theories and the relevant
formulas will be presented in Chapter 20. Together with the perturbative expressions
of the structure constants, discussed below, the vacuum expectation values permit the
determination of the correlation functions.
Renormalization. Consider now the renormalization of these fields by analyzing the
matrix elements

Ĩkl (λ,R, ε) = 〈Ãl(∞)Ãk(0)〉 (15.2.12)

=
∞∑
n=0

(−λ)n

n!

∫
ε<|yi|<R

〈Ãk(∞) Ãl(0)ϕ(y1) . . . ϕ(yn)〉0 d2y1 . . . d
2yn.

By means of the ultraviolet and infrared cutoffs, all these integrals are finite and the
quantities Ĩkl (λ,R, ε) are regular functions of λ. Adopting the conformal normalization
of the fields, we have

Ĩkl (λ,R, ε) = δkl + O(λ). (15.2.13)

From the invariance under rotations, the matrix Ĩkl is diagonal in the spin of the fields
and it is therefore possible to consider any spin sector separately. For simplicity we
discuss only the spin zero sector, that of the scalar fields.

In the limit ε→ 0, the matrix elements Ĩkl (λ,R, ε) become singular and it is natural
to assume that they have a factorized form

Ĩkl (λ,R, ε) =
∑
k′
Uk
k′(λ, ε) Ik

′
l (λ,R) (15.2.14)
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where Ik
′

l (λ,R) are the elements of the renormalized matrix whereas Uk
k′(λ, ε) are the

elements of the renormalization matrix. Both are regular functions of λ. For dimen-
sional reasons, we have

Uk
l (λ, ε) =

∞∑
n=0

U
k (n)
l (λ ε2−2Δ)n

ε2(Δl−Δk) . (15.2.15)

When ε→ 0, it is necessary to keep only the terms with negative powers ε. For Δ < 1,
there is only a finite number of them. Organizing the fields Ai in increasing order of the
conformal weights Δ0 ≤ Δ1 ≤ Δ2 . . ., the matrix Uk

l assumes a triangular form, i.e.

Uk
l (λ, ε) = 0, Δk > Δl. (15.2.16)

The inverse matrix of U obviously has the same properties (15.2.15) and (15.2.16) as
U and we can then define the renormalized fields as

Ak =
∑
l

(U−1)lk Ãl. (15.2.17)

With the normalization Uk
l (λ, ε) = δkl + O(λ), for the renormalized fields we have

Ak = Ãk + · · · (15.2.18)

with a finite number of other terms, corresponding to the operators with lower con-
formal weights. In this way, we recover the result previously obtained to first order.

It is necessary to stress that the analysis done above can become more involved
in the presences of “resonances” of the conformal weights, namely if it happens that
Δk − Δl = n(1 − Δ). In this case, there are also logarithmic divergences and the
factorized form (15.2.14) becomes ambiguous since it depends on an arbitary renor-
malization point. Although this is an interesting question, it is however outside the
scope of the present analysis.

The elements of the renormalized matrix

Ikl (λ,R) = 〈Ãk(∞)Al(0)〉λ, (15.2.19)

are independent of the ultraviolet cut-off ε and they have the same structure as the
matrix U

Ikl (λ,R) =
∞∑
n=0

I
k (n)
l (λR2−2Δ)n

R2(Δl−Δk) , (15.2.20)

where, now, it is necessary to keep the terms with positive powers of R. The sum of
this series produces a non-trivial dependence on R. Although it is not easy to find their
exact expression, it is natural to assume that these series behave in a homogeneous
way: this means that there exists the limit

lim
R→∞

Ikl (λ,R)
Ik0 (λ,R)

= λ
Δk
1−Δ Q

(k)
l (15.2.21)

and that this limit corresponds to the vacuum expectation values of the operators.
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It is also convenient to define the quantities

Gk
ΦΦ(λ, x,R) = 〈Ãk(∞) Φ(x) Φ(0)〉λ (15.2.22)

=
∞∑
n=0

(−λ)n

n!

∫
|yi|<R

〈Ãk(∞) Φ(x) Φ(0)ϕ(y1) . . . ϕ(yn)〉0 d2y1 . . . d
2yn.

Since Φ are the renormalized fields, all the integrals are ultraviolet convergent and it
is not necessary to introduce the ultraviolet cut-off ε. Substituting this expression in
the operator expansion (15.2.8), it yields

Ck
ΦΦ(x) =

∑
l

Gl
ΦΦ(λ, x,R) (I−1)kl (λ,R). (15.2.23)

Structure constants. The quantity above is now finite in the limit R → ∞ and allows
us to compute the structure constants of the renormalized fields. As an
explicit example, we present here their first-order term. Let Ck

ΦΦ, Ck
ϕ,Φ, and Ck

ϕ l

be the structure constants of the conformal theory, namely

〈Ãk(∞)Φ(x)Φ(0)〉0 = Ck
ΦΦ (x x̄)Δk−2ΔΦ)

〈Ãk(∞)ϕ(x)Φ(0)〉0 = Ck
ϕΦ (x x̄)Δk−Δ−ΔΦ) (15.2.24)

〈Ãk(∞)ϕ(x)Ãl(0)〉0 = Ck
ϕ l (x x̄)

Δk−Δl−Δ).

At first order, we have

Ĩkl (λ,R, ε) = δkl − λπCk
ϕ l

R2(Δk−Δl−Δ+1) − ε2(Δk−Δl−Δ+1)

Δk − Δl − Δ + 1
, (15.2.25)

and, therefore, at the same perturbative order in λ

Ikl (λ,R) = δkl − λπ,Ck
ϕ l

R2(Δk−Δl−Δ+1)

Δk − Δl − Δ + 1
(15.2.26)

Uk
l (λ, ε) = δkl + λπ,Ck

ϕ l

ε2(Δk−Δl−Δ+1)

Δk − Δl − Δ + 1
.

Hence, at first order in λ the structure constants are given by

Ck
ΦΦ(x) = Ck

ΦΦ (x x̄)Δk−2ΔΦ (15.2.27)

−λ
∫

|y|<R

〈Ãk(∞)ϕ(y)Φ(x)Φ(0)〉0 d2y + λπ
∑
l

Cl
Φφ Ck

ϕ lR
2(Δk−Δl−Δ+1)

Δk − Δl − Δ + 1
.

Substituting the operator expansion (15.2.8), it is easy to see that the last term of the
previous expression is the one that cancels the infrared divergences, so that the final
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expression that is finite at the first perturbative order is

Ck
ΦΦ(x) = r2(Δk−2ΔΦ) (15.2.28)

×
(
Ck

ΦΦ + λπr2−2Δ
∑
l

[
Cl

ΦφC
k
ϕ l

Δk − Δl − Δ + 1
−

Cl
ϕΦCk

Φ l

Δl − ΔΦ − Δ + 1

]
+ O(λ2)

)
.

It should be said that this series is not particularly convenient from a practical point
of view. The most efficient way to compute the first-order correction of the structure
constants is in fact through the integral

C
k (1)
ΦΦ (r) = −λ

∫ ′

〈Ãk(∞)ϕ(y)Φ(x)Φ(0)〉0 d2y, (15.2.29)

where the index in the integral means that one has to neglect all divergent terms
that appear in the limit R → ∞. This is equivalent to regarding the integral as an
analytic expression of the conformal weights of the fields. For instance, the integral of
the three-point correlation function of the fields Φi, Φj , and Φk of conformal weights
Δi,Δj , and Δk produces the analytic function

Jijk(x) =
∫ ′

d2y 〈Φi(x)Φj(0)Φk(y)〉0 = Cijk r
2(1−Δi−Δj−Δk) (15.2.30)

× 2π
Γ(Δi − Δj − Δk + 1) Γ(Δj − Δi − Δk + 1) Γ(2Δk − 1)

Γ(2 − 2Δk) Γ(Δi + Δk − Δj) Γ(Δj + Δk − Δi)
.

15.3 Example: The Two-point Function of the
Yang–Lee Model

A simple application of the formalism developed in the previous section is the compu-
tation of the off-critical correlation function of the Yang–Lee model (see Section 14.5).
Suppose we perturb the CFT action S0 of this model by adding the perturbation of
the field ϕ with Δ = −1/5

S = S0 + ig

∫
d2xϕ(x).

For this model a sensible QFT is obtained if the coupling constant is purely imaginary
as shown above, with g > 0. The off-critical two-point function of the field ϕ(x) can
be written as

G(r) = 〈ϕ(x)ϕ(0)〉 = CI
ϕϕ(r) 〈I〉+Cϕ

ϕϕ(r) 〈ϕ(0)〉+CT̄ T
ϕϕ (r) 〈: T̄ T : (0)〉+ · · · (15.3.1)

The structure constants have a regular perturbative expansion that, taking into
account the conformal weight of the field ϕ, is given by

CI
ϕϕ = r4/5

(
1 +QI

1t+QI
2t

2 + · · ·
)

Cϕ
ϕϕ = Cϕ

ϕϕ

(
1 +Qϕ

1 t+Qϕ
2 t

2 + · · ·
)

C T̄ T
ϕϕ =

1
121

r24/5
(
1 +QT̄ T

1 t+QT̄ T
2 t2 + · · ·

)
where t = gr12/5 is the dimensionless coupling constant and Cϕ

ϕϕ is the (imaginary)
structure constant of the CFT, given in eqn (14.5.8). All coefficientsQO

i can in principle
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Fig. 15.2 Plot of −G(r) versus the distance r at g = 1.

be computed using the perturbative scheme of the previous section: the numerical
values of the first ones are

QI
1 = 0.319800 . . .

Qϕ
1 = 0.02122 . . .

We also need the vacuum expectation value of the various fields, 〈I〉, 〈ϕ(0)〉, etc.
entering eqn (15.3.1). Here we take into account only 〈I〉 and the vacuum expectation
value of the field ϕ that can be computed exactly (see Chapter 20) with value

〈ϕ〉 = ig−1/6 5
24

√
3

(
12
25

)5/6(12
π

)1/6
(

Γ
( 1

3

)
Γ
( 5

6

))2 (∣∣∣∣∣Γ
(
− 1

5

)
Γ
( 3

5

)
Γ
( 2

5

)
Γ
( 6

5

)
∣∣∣∣∣
)5/12

= 0.840184 . . . ig−1/6.

Substituting the expressions given above for the structure constants and the vac-
uum expectation values, one can obtain an estimate of the function G(r) up to order
O(r24/5). The plot of this function, with a minus sign in front, is given in Fig. 15.2.

This example is particularly significant to enlighten the role played by the vac-
uum expectation value of the various fields for the off-critical correlators. Notice that,
because of the presence of a non-zero value of 〈ϕ〉, the two-point correlation function
G(r) behaves for small r not as r4/5, as one could expect naively from CFT reasons,
but rather as r2/5. Furthermore, the competition between the terms coming from the
families I and ϕ, which have opposite sign, produces the curve drawn above, which
starts to bend for values of r 	 ξ, where ξ is the finite correlation function of the
off-critical model, whose exact value can be determined by the thermodynamic Bethe
ansatz analysis of Chapter 19:

ξ = g−5/12
(

25
12

)5/12 ( π
12

)1/12
(

Γ
( 5

6

)
Γ
( 1

3

)) (
∣∣∣∣∣ Γ
( 2

5

)
Γ
( 6

5

)
Γ
(
− 1

5

)
Γ
( 3

5

)
∣∣∣∣∣
)5/24

= 0.37836... g−5/12.
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15.4 Renormalization Group and β-functions

In this section we reconsider the renormalization group theory in the perspective
pursued in this chapter. We also present the computation at lowest orders of the
β-functions.

The key ideas of the renormalization group can be expressed as follows. Each the-
ory is described by an action S(g, a) that is a function of a certain number of dimen-
sionless coupling constants2 g = {g1, g2, . . .} and an ultraviolet cut-off that cures the
divergences coming from the short-distance operator expansions. The main hypothesis
consists of the existence of a one-parameter family of flows in the manifold G of the
coupling constants, RtG → G, such that the quantum field theory described by the
action S(Rtg, e

ta) is equivalent to the theory described by the action S(g, a). In more
detail, both theories give rise to the same result over a range of scales |x| 
 eta. Our
main interest here is the two-dimensional theories but the results given below can be
easily generalized to quantum field theories in higher dimensions. As a starting point,
let’s consider the correlation functions of the local fields Ai(x), defined as usual by the
functional integral

〈A1(x1) . . . An(xn)〉 =
∫

DϕA1(x1) . . . An(xn) e−S[ϕ], (15.4.1)

where we have included in the definition of the action S an additive constant that
ensures the correct normalization of the expression above (this permits us to avoid
the introduction of the normalization factor Z−1). Consider now the Ward identity
coming from the substitution

xμ → x′μ = xμ + εμ(x).

Since3

δS =
∫
d2xTμν(x) ∂μεν(x).

and
Ai(x) → Ai(x) + δAi(x), (15.4.2)

we have

n∑
i=1

〈A1(x1) . . . δAi(xi) . . . An(x)〉 −
∫

d2x〈Tμν(x)A1(x1) . . . An(xn)〉 ∂μεν(x) = 0.

(15.4.3)
For a global dilatation, the variation of the fields is given by

δA(x) = ε

(
1
2
xμ ∂μ + D̂

)
A(x), (15.4.4)

2Dimensionful couplings can be rescaled by appropriate powers of the cut-off a and expressed by
their dimensionless version.

3With respect the formula of Chapter 10, we have absorbed a factor 1/(2π) in the definition of Tμν .
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where D̂ is the operator that implements the internal transformation of the fields
under this transformation. Defining the trace of the stress–energy tensor

Θ(x) ≡ Tμ
μ (x) (15.4.5)

and substituting the last two equations in (15.4.3) we get

n∑
i=1

〈(
1
2
xμ∂μ + D̂i

)
A1 . . . An

〉
−
∫

d2x〈Θ(x)A1(x1) . . . An(xn)〉 = 0. (15.4.6)

Let’s now discuss the nature of the action. We assume that it is given by an integral
over a local expression of the fields

Sg =
∫
d2xLg, (15.4.7)

which depends on a certain number of dimensionless couplings {ga} = {g1, g2, . . .}. For
instance, the perturbed conformal field theories (15.1.1) have, as coupling constants,
those of the relevant fields, rescaled by the ultraviolet cut-off, i.e. gi = a2(1−Δi) λi.
From the property of L, the derivative

ϕi(x) =
∂L
∂gi

(15.4.8)

is a local field of the theory. If we consider only homogeneous and isotropic interactions,
these are scalar fields and the space of all of them, O(0), may be regarded as the
tangent space to G at the point {g1, g2, . . .}. The fields Ai(x) can also depend on the
coupling constants and their variation, varying the couplings, is expressed in terms of
an operator B̂i

B̂k Ai(x) =
∂

∂gk
Ai(x). (15.4.9)

The necessity to introduce a coupling dependence of the fields is obvious in view of the
ultraviolet divergences and the implementation of their renormalization, as discussed
in the previous section. For the correlation function (15.4.1) this implies

∂

∂ga
〈A1(x1) . . . An(xn)〉 =

n∑
i=1

〈A1(x1) . . . B̂aAi(xi) . . . An(xn)〉 (15.4.10)

−
∫
d2x 〈ϕa(x)A1(x1) . . . An(xn)〉.

The trace of the stress–energy tensor belongs to the space O(0) and can be expressed
in terms of the fields of this space as

Θ(x) =
∑
a

βa(g)ϕa(x). (15.4.11)

The coefficients βa(g) are the β-functions of the theory. To see this, note that if dt is
the infinitesimal parameter of the dilatation, xμ → (1 + dt)xμ, the trace Θ(x) can be
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also defined as
Θ(x) =

dL
dt
, (15.4.12)

an expression that can be written as

Θ(x) =
∑
a

∂L
∂ga

∂ga
∂t

=
∑
a

∂ga
∂t

ϕa(x). (15.4.13)

Hence the βa-functions express the variation of the coupling constant under a change
of the length-scale

βa({g}) =
∂ga
∂t

. (15.4.14)

Combining now eqn (15.4.10) with eqn (15.4.11) and using the definition of the βa
functions, we arrive at the celebrated Callan–Symanzik equation

n∑
i=1

〈(
1
2
xμi

∂

∂xμi
+ γ̂(i)(g)

)
A1(x1) . . . An(xn)

〉
(15.4.15)

−
∑
a

βa(g)
∂

∂ga
〈A1(x1) . . . An(xn)〉 = 0,

where the linear operators γ̂(i)(g), defined by

γ̂(g) = D + βa(g)Ba, (15.4.16)

act on the fields Ai(x). The operator γ̂ is the matrix of the anomalous dimensions.
Since the stress–energy tensor is a conserved quantity, it does not renormalize and
therefore its anomalous dimension coincides with the canonical one

γ̂(g)Θ = 2Θ. (15.4.17)

In this way we easily obtain the action of γ̂(g) on the fields of the basis in the
space O(0)

γ̂(g)ϕa ≡ γba(g)ϕb =
(

2δba −
∂βb

∂ga

)
ϕb. (15.4.18)

In the renormalized theory, every βa-function and any matrix element of the operator
γ̂ do not depend on the initial point of the renormalization group R0. In particular,
two field theories corresponding to coupling constants g(t1) and g(t2) that belong to
the same integrated curve of their evolution equation

dga = βa(g) dt, (15.4.19)

differ only by a scale transformation of the length-scale xμ → e(t1−t2) xμ. Therefore the
scaling properties of the theory only depend on the vector fields βa(g). The simplest
and, at the same time, the most important characteristic of these functions is associ-
ated to the fixed points g∗ that satisfy the equation Rtg

∗ = g∗. These are the points
where the β-functions vanish, βa(g∗) = 0. These conditions identify the critical points
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of the system, where the correlation length diverges. If, in addition to the location of
the fixed points, we also know the derivatives of the β at these points, eqn (15.4.18)
allows us to compute the anomalous dimensions of the various operators. We will see
an interesting example of this formalism in the next section.

Let’s now discuss how to determine the first terms of the βa(g)-functions by us-
ing the perturbative expansion of the partition function of the perturbed conformal
theories, with an action given in eqn (15.1.1). It is convenient to take care firstly of
the dimensionality of the coupling constants: introducing a as a length-scale and si-
multaneously as ultraviolet cut-off, they can be expressed as λi = gia

−2(1−Δi), where
gi are now the dimensionless couplings. In terms of these quantities, the perturbative
expansion of Z is given by

Z =
∫

Dϕ exp

[
−S∗ −

∑
i

gi

∫
d2x

a2(1−Δi)
ϕi(x)

]
= Z∗

[
1 −
∑
i

gi

∫
d2x

a2(1−Δi)
〈ϕi(x)〉

+
1
2

∑
i,j

gi gj

∫
|x1−x2|>a

〈ϕi(x1)ϕj(x2)〉
d2x1

a2(1−Δi)

d2x2

a2(1−Δj)
+ · · ·

⎤
⎦ .

To find the β-functions, we shall address the question of how to change the coupling
constants gi under the infinitesimal scale transformation a→ (1 + δt)a in such a way
that the partition function remains invariant.

Observe that, in the perturbative expansion of Z, the length-scale a appears both
explicitly (in the factors a2−2Δi of the denominators) and implicitly, as a cut-off of
the integrals. If the rescaling of a is done with the infinitesimal parameter δt, there is
an additive effect of the different dependences in the computation of the β-functions.
Let’s consider then the two different terms separately.

The first dependence of the coupling constants from a is simple to take into account.
In fact, a change of a is compensated by the substitution

gi → (1 + δt)2(1−Δi) gi 	 gi + 2(1 − Δi)gi δt. (15.4.20)

The effect of a change of the cut-off in the integrals can instead be estimated by the
operator product expansion. Consider, for instance, the second perturbative order.
The integral, after a rescaling of a, can be written as∫

|x1−x2|>a(1+δt)
[ · · · ] =

∫
|x1−x2|>a

[ · · · ] −
∫
a<|x1−x2|<a(1+δt)

[ · · · ]. (15.4.21)

The first terms produces the original contribution in Z, and the second term can be
computed through the operator expansion of the conformal theory

∑
k

Cijka
2(Δk−Δi−Δj)

∫
a<|x1−x2|<a(1+δt)

〈ϕk(x2)〉
d2x1

a2(1−Δi)

d2x2

a2(1−Δj)
. (15.4.22)

The integral over x1 gives the area of the infinitesimal annulus, i.e. 2πa2 δt. Taking
into account the powers of a and the original negative sign of this contribution, see
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eqn (15.4.21), in the partition function the term above gives

−πδt
∑
i,j,k

Cijk gi gj

∫
〈ϕk(x)〉

d2x

a2(1−Δk) . (15.4.23)

The presence of this term in Z can then be compensated by a redefinition of the
coupling constant gk

gk → gk − π
∑
i,j

Cijkgi gj δt. (15.4.24)

Gathering together the two contributions given in eqns (15.4.20) and (15.4.24), we
arrive at the first terms of the β-functions

dgk
dt

≡ βk(g) = 2(1 − Δk) gk − π
∑
i,j

Cijk gi gj + · · · (15.4.25)

A few comments are in order:
• The β-functions rule the ultraviolet behavior of the field theories and therefore

it is not surprising that their first coefficients are expressed by the conformal
data, such as the conformal weights and structure constants of the primary fields.
Note that when the coupling constant gk corresponds to a relevant operator with
Δk < 1, the first term is responsible for the repulsive nature of the fixed point at
the origin, gi = 0. Vice versa, if the coupling constant corresponds to an irrelevant
operator with Δk > 1, the origin becomes an attractive fixed point.

• The formula (15.4.25) can be generalized to higher dimensional field theories, as
long as we know the structure constants and the anomalous dimensions of the
operators.

• The higher order terms of the β-functions can be computed, in principle, iterat-
ing the argument given above. It is easy, if fact, to see the iterative nature of the
renormalization procedure: the terms of order gni

i g
nj

j gnk

k · · · influence the renor-
malization of the terms gni−1

i g
nj−1
j gnk+1

k · · · . However their explicit computation
soon becomes involved and will not be discussed here.

• Focusing attention only on the first perturbative terms of the β-functions given in
eqn (15.4.25), it is important to establish the range of validity of these expressions.
We expect that we can trust them when the coupling constants are those of the
quasi-marginal operators, for which |εi| ∼ ε � 1, where εi ≡ (1 − Δi). In these
cases, in fact, the nonlinear terms become comparable with the linear term when
gi ∼ ε. This process can give rise to new fixed points in the region gi ∼ ε, which
is a range compatible with the perturbative nature of the approach itself. In the
next section we will present an interesting realization of this situation.

When the coupling constant corresponds to a strongly relevant operator, the
eventual fixed points are localized at a finite distance from the origin, i.e. outside
the perturbative regime of the formalism. In this case, the evolution equations
of the coupling constants give, in general, only a qualitative indication of the
renormalization group flows and caution must be used in extracting quantitative
predictions.
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• It is interesting to observe that, at the lowest perturbative orders, the evolu-
tion equations of the coupling constants are irrotational flows, generated by the
gradients of a scalar function. In fact, they can be written as

ġk =
∂

∂gk
C̃(g), (15.4.26)

where the function C̃(g) is defined as

C̃(g) =
∑
i

(1 − Δi) g2
i −

π

3

∑
ijl

Cijlgi gj gl. (15.4.27)

This observation will be useful in the discussion in Section 15.6.

15.5 C-theorem
For the deformations of the unitary conformal models there is an important theorem
associated to the renormalization group flows. The theorem, due to A.B. Zamolod-
chikov, states the following: for a two-dimensional field theory that is unitary, invariant
under rotations, and for which conservation of the stress-energy tensor holds, there
exists a function of the coupling constants C({λi}) that decreases along the flows,
being stationary only at the fixed points. Its value at the fixed points coincides with
the central charge c of the corresponding conformal field theories. There is a simple
proof of this theorem. Let T , Θ, and T be the components of spin 2, 0, and −2, re-
spectively, of the stress–energy tensor. For their dimensions and spins, the off-critical
correlators of these quantities can be parameterized as

〈T (z, z)T (0, 0)〉 =
F (m zz)

z4 ,

〈T (z, z)Θ(0, 0)〉 =
G (m zz)
z3z

, (15.5.1)

〈Θ(z, z)Θ(0, 0)〉 =
H (m zz)
z2z2 ,

where m is a mass scale. Using the conservation law of the stress–energy tensor in
complex coordinates (given in eqn (10.5.6))

∂zT + 1
4 ∂zΘ = 0,

∂zT + 1
4 ∂zΘ = 0,

(15.5.2)

we obtain the differential equations for the scalar functions F , G and H

Ḟ + 1
4

(
Ġ− 3G

)
= 0;

Ġ−G+ 1
4

(
Ḣ − 2H

)
= 0,

(15.5.3)

where τ = m2zz̄ = (mR)2 and

Ḟ ≡ dF (x)
d log τ

.
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Defining

C ≡ 2F −G− 3
8
H, (15.5.4)

we have

Ċ = −3
4
H. (15.5.5)

The hypothesis of unitarity implies that H is a positive quantity and therefore C is
a non-decreasing function of the distance τ , at fixed values of the coupling constants.
At the critical points, the trace vanishes, Θ = 0, and consequently G = H = 0
with F = 1

2c. Hence the function C assumes the value of the central charge of the
corresponding conformal field theory.

The same theorem can be reformulated in terms of the coupling constants. In
fact, fixing the parameter τ (for instance, τ = 1), the quantities F,G, and H become
functions of the coupling constants g. From the dimensionless nature of the function
C(R, g) and its independence of the cut-off, it satisfies the renormalization group
equation (

1
2
R
∂

∂R
−
∑
a

βa
∂

∂ga

)
C(R, g) = 0. (15.5.6)

Using now eqn (15.4.11), we get

βa
∂

∂ga
C(g) = −3

4
Gab(g)βa(g)βb(g), (15.5.7)

where
Gab(g) = Gab(1, g), Gab(zz̄, g) = (mz z̄)2 〈ϕa(z, z̄)ϕ(0, 0)〉

is a symmetric matrix that is positive definite by the unitarity of the theory. As a
by-product of this result, we see that Gab(g) may be regarded as a metric tensor in
the space G of the coupling constants, with line element ds2 = Gab(g)dga dgb.

The c-theorem admits also an integral formulation that ends up in a sum rule.
Integrating eqn (15.5.5) from the ultraviolet fixed point at r = 0 and the infrared
fixed point at r = ∞, and denoting by Δc = c1− c2 the difference of central charges of
the two conformal theories emerging in these limits, we have the equivalent expressions

Δc =
3
4

∫ ∞

0
d(r2) r2 〈Θ(r)Θ(0)〉

=
3
4π

∫
d2r r2 〈Θ(r)Θ(0)〉 (15.5.8)

=
3
2

∫
dr r3 〈Θ(r)Θ(0)〉.

This formula remarkably links the second moment of the off-critical correlation func-
tion of Θ to the variation of the central charges along the renormalization group flow
(an infrared massive theory corresponds to c2 = 0).
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The expression above can also be written in terms of the correlation function of the
perturbing field. Consider, in fact, a conformal field theory perturbed, for simplicity,
by only one relevant scalar field ϕ, with conformal weight Δ

S = S∗ + λ

∫
d2xϕ(x). (15.5.9)

Let’s examine the renormalization of the analytic component T (z) of the stress–energy
tensor. To the first order we have

〈T (z) · · · 〉λ = 〈T (z) · · · 〉0 − λ

∫
d2z1 〈T (z)ϕ(z1, z̄1) · · · 〉 + · · ·

From the operator expansion

T (z)ϕ(z1, z̄1) =
Δ

(z − z1)2
ϕ(z1, z̄1) +

1
z − z1

∂zϕ(z1, z̄1) + · · ·

=
Δ

(z − z1)2
ϕ(z, z̄) +

1 − Δ
z − z1

∂zϕ(z, z̄) + · · ·

one can see that the integral is ultraviolet divergent and needs to be regularized. This
can be done by inserting in the integral the step function4 H((z − z1)(z̄ − z̄1) − a2)),
where a is the ultraviolet cut-off. The most singular term vanishes after the angular
integration but, for the presence of the function H and the cut-off a, the quantity ∂z̄T
is no longer zero. In fact,

∂z̄T = −λ
∫

1 − Δ
(z − z1)

(z − z1) ∂zϕ(z, z̄) δ(|z − z1|2 − a2) d2z1

= −π λ (1 − Δ) ∂zϕ. (15.5.10)

Since the stress–energy tensor satisfies the conservation law

∂z T +
1
4
∂z Θ = 0,

comparing with the equation above we get

Θ = 4π λ(1 − Δ)ϕ(z, z̄) + · · · (15.5.11)

Note that this expression can be directly recovered from eqn (15.4.12), for Θ is the
conjugate field to the scale transformation x → tx: in the action (15.5.9), d2x →
t2 d2x while ϕ → t2Δ ϕ, therefore taking the derivative with respect to t, we obtain
eqn (15.5.11), with the additional factor 2π that takes into account the conformal
normalization of the operators. Let’s now see some interesting applications of the c-
theorem.

4H(x) = 0 if x < 0, while H(x) = 1 if x > 0.
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15.6 Applications of the c-theorem
In this section we initially study the renormalizion group flow associated to the defor-
mation Φ1,3 of the minimal conformal models. Later, we present two applications of
the sum rule of the c-theorem, relative to the Ising model and the lagrangian theory
of the Sine–Gordon model.

15.6.1 Minimal Conformal Models Mp perturbed by the Φ1,3 Operator

The first significant application of the c-theorem is in the study of the unitary minimal
models Mp perturbed by the relevant operator Φ1,3

S = Sp + λ

∫
d2xΦ1,3(x). (15.6.1)

Φ1,3 is an operator characterized by two specific properties. The first property is related
to the operator product expansion with itself, that has the skeleton form

Φ1,3 × Φ1,3 = 1 + C1 Φ1,3 + C2 Φ1,5. (15.6.2)

Since Φ1,5 is an irrelevant operator, the operator expansion above implies the renor-
malization of the field Φ1,3, which does not mix with any other fields. The second
property is related to its conformal weight

Δ1,3 = 1 − 2
p+ 1

≡ 1 − ε. (15.6.3)

For p sufficiently large, Φ1,3 is a quasi-marginal operator and therefore we are in the
condition of the validity of eqn (15.4.25). The structure constant C1 tends to a finite
limit for p→ ∞: using its exact expression (obtained by substituting in eqn (11.5.53)
the indices (n,m) with (1, 3)), one has

C1(ε) =
4√
3

(1 − 2ε)2

(1 − ε)(1 − 3ε/2)

[
Γ(1 − ε/2) Γ(1 + 3ε/2)
Γ(1 + ε/2) Γ(1 − 3ε/2)

]1/2
×Γ(1 − 2ε) Γ2(1 + ε)

Γ(1 + 2ε) Γ2(1 − ε)
=

4√
3

(
1 − 3ε

2
+ · · ·

)
. (15.6.4)

The β-function of the dimensionless coupling constant g associated to λ is then

ġ = β(g) = 2ε g − πC1 g
2 + · · · (15.6.5)

The plot of this function, given in Fig. 15.3, shows the existence of a new fixed point.
As shown in Section 15.4, the β-function can be written as the gradient of a scalar
function

ġ =
∂

∂g
C̃(g),

where C̃(g), in this case, is given by

C̃(g) = ε g2 − π

3
C1 g

3. (15.6.6)
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β (g)

gg*

Fig. 15.3 β-function relative to Φ1,3 deformation of the unitary minimal models. The slope of
the tangents at the fixed points is directly related to the anomalous dimension of the operator.

This expression allows us to easily compute the function C(g) entering the c-theorem.
In fact, both functions have the same stationary points and, at this perturbative order,
they must be proportional to each other, so

C(g) = c+ α C̃(g) + O(g4).

The proportionality constant can be fixed by a perturbative computation of C, using
eqns (15.5.5) and (15.5.11):

C = c− 3
4
(4π)2 (1 − Δ)2 g2

∫ 1

0

r4

r4Δ
d(r2)
r2

+ · · ·

= c− 6π2 εg2 + · · · (15.6.7)

i.e. α = −6π2.
The fixed point of the β-function is at g∗ = 2ε/πC1, and this value is compatible

with the perturbation expansion. Substituing it in C(g) we get an estimate of the
central charge of the new fixed point

C(g∗) = c− 8ε3

C2
1

+ O(ε4). (15.6.8)

Substituting in this expression ε 	 2/p and the value of the structure constant given
above, we have

C(g∗) = c(p) − 12
p3 . (15.6.9)

At this perturbative order, the new value of the central charge coincides with that of
the unitary minimal model Mp−1. Hence, the deformation Φ1,3 associated to a positive
sign of the coupling constant gives rise, for large values of p, to a massless RG flow
between two nearest conformal field theories

Mp → Mp−1 (15.6.10)

This scenario is compatible with the Landau–Ginzburg formulation of these unitary
minimal models. In fact, in the Landau–Ginzburg formulation, the field Φ1,3 of the
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model Mp corresponds to the operator : ϕ2(p−1)−2 :. Once we switch on this defor-
mation, the highest power : ϕ2(p−1) : that defines the original conformal theory Mp

becomes irrelevant. Consequently, the infrared dynamics of the perturbed system is
described by a Landau–Ginzburg model with interaction : ϕ2(p−2), i.e. the one that
corresponds to the conformal theory Mp−1.

In this RG flow there is also an evolution of the other fields, so that they occupy
different positions in the Kac table of the starting and ending conformal field theory.
Hence, also the anomalous dimensions of the operator change accordingly, and their
variation can be computed using eqn (15.4.18), evaluated at g = g∗. Let’s compute,
for instance, the anomalous dimension at the new fixed point g∗ of the original field
Φ1,3: the derivative of β at this fixed point is

∂β

∂g
(g∗) = −2 ε (15.6.11)

and therefore the conformal weight of the field at this new fixed point is
Δ′ = 1 + 2/(p+ 1). At this perturbative order, it coincides with the conformal weight
of the irrelevant field Φ3,1 of the conformal model Mp−1. Hence, in the RG flow, the
operator Φ(p)

1,3 of Mp transforms in to the operators Φ(p−1)
3,1 of Mp−1.

In addition to the field Φ1,3, one can also study the evolution of the other fields of
the Kac table. Consider, for instance, those along the main diagonal of the Kac table
of the starting conformal theory, Φ(p)

n,n. To follow their evolution, some preliminary
data are needed. Their operator product expansion with Φ(p)

1,3 reads

Φ(p)
n,n Φ(p)

1,3 = C(n,n)
(n,n),(1,3)

[
Φ(p)
n,n

]
+ C(n,n+2)

(n,n),(1,3)

[
Φ(p)
n,n+2

]
+ C(n,n−2)

(n,n),(1,3)

[
Φ(p)
n,n−2

]
.

For large p, the structure constants tend to

C(n,n)
(n,n),(1,3) =

(n− p)2(p+ 1)
2
√

3(p− 1)
+ O(ε) (n ≤ p)

C(n,n)
(n,n),(1,3) =

(n2 − 1)
8
√

3
ε2 + O(ε3) (n� p)

C(n,n+2)
(n,n),(1,3) =

(
p+ 2
3p

)1/2

+ O(ε)

C(n,n−2)
(n,n),(1,3) =

(n2 − 1)1/2√
3n

+ O(ε).

The conformal weights of the operators Φ(p)
n,n are

Δ(p)
(n,n) =

n2 − 1
4p(p+ 1)

=
n2 − 1

16
ε2
(
1 +

ε

2
+ · · ·

)
, (15.6.12)

and, for n� p, they are strongly relevant. Their operator expansion with Φ1,3 shows
that they do not mix with any other operators. To determine in which fields they
transform along the RG flow, one must compute their anomalous dimensions at g = g∗
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Fig. 15.4 Mappings of the conformal fields in the massless RG flow Mp → Mp−1 induced
by Φ(p)

1,3. Here N = 2(p − 1).

in terms of the derivative of β(n)-functions of these fields with respect the coupling
constant g. Using the general formula (15.4.25), one obtains

∂β(n)

∂g
= −2πC(n,n)

(n,n),(1,3) g + · · · (15.6.13)

so that, at the new fixed points, the anomalous dimensions are

γ̂(g∗) Φn,n = γ(n,n)(g∗) Φn,n =
[
2Δ(n,n) + 2πC(n,n)

(n,n),(1,3) g
∗
]

Φn,n

= 2 ε2
n2 − 1

16

(
1 +

3ε
2

+ · · ·
)

=
n2 − 1

4p(p− 1)
+ O(ε4).

This implies the mappings
Φ(p)
n,n → Φ(p−1)

n,n , (15.6.14)

The analysis can be extended to all other fields and the final result is summarized in
Fig. 15.4.

15.6.2 Ising Model at Temperature T �= Tc

Consider the two-dimensional Ising model in its fermionic formulation at T �= Tc. At
the critical point the action is

S∗ =
∫
d2x
[
ψ ∂z̄ ψ + ψ̄ ∂z ψ̄

]
, (15.6.15)

and the perturbation that moves the system away from the critical point is given by
the mass term im

∫
ψ̄ ψ d2x. To compute the correlator of Θ(x) = im ψ̄ ψ we need



Applications of the c-theorem 511

the propagator of the massive fermionic field

〈 ψ̄(z, z̄)ψ(0, 0) 〉 = −im
∫

d2p

(2π)2
e

i
2 (pz̄+p̄z)

p2 +m2 = −i m
2π

K0(mr)

〈ψ(z, z̄)ψ(0, 0) 〉 = −i
∫

d2p

(2π)2
p̄ e

i
2 (pz̄+p̄z)

p2 +m2 = 2 ∂z
1
2π

K0(mr)

= −m

2π
z̄

z
K1(mr) (15.6.16)

〈 ψ̄(z, z̄)ψ̄(0, 0) 〉 = − m

2π
z

z̄
K1(mr)

with r =
√
zz̄, where Ki(x) are the modified Bessel functions. Applying Wick’s

theorem, we have

〈Θ(r)Θ(0, 0)〉 = −m2 〈ψ̄(r)ψ(r)ψ̄(0)ψ(0)〉
= − |〈ψ̄(r)ψ(0)〉|2 + 〈ψ(r)ψ(0)〉 〈ψ̄(r)ψ̄(0)〉 (15.6.17)

=
(
m2

2π

)2 [
K2

1 (mr) −K2
0 (mr)

]
.

Substituting this expression into the sum rule (15.5.8) and computing the integral, we
get

Δc =
1
2
. (15.6.18)

Since c = 1
2 is the central charge of the critical Ising model, we have an explicit check

that the perturbed theory has central charge c = 0, i.e. a purely massive field theory.

15.6.3 A Lagrangian Theory: The Sine–Gordon Model

Another interesting example of the c-theorem sum rule comes from a lagrangian theory
with a varying coupling constant. Consider the Sine–Gordon model, with lagrangian

L = :
1
2
(∂μϕ)2 +

m2

β2 (cosβϕ− 1) : (15.6.19)

Let’s restrict attention to the range β2 < 8π, where cosβϕ is a relevant operator. This
massive model (with c = 0) can be regarded as a deformation of the free massless
bosonic theory with c = 1. Adopting this interpretation, we have

λϕ ≡ ε(x) =
m2

β2 : (cosβϕ− 1) :

with anomalous dimension

2Δ =
β2

4π
.

Equation (15.5.8) becomes

Δc = 3π
(

2 − β2

4π

)2 ∫
d2x | x |2 〈ε(x)ε(0)〉. (15.6.20)

Since the left-hand side of (15.6.20) does not depend on β (in particular, it is identically
equal to 1), the same must hold for the right-hand side. Note that the sum rule is
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already saturated at zero order in β by the term that corresponds to the free massive
theory. At this order we have in fact

ε(r) =
m2

2
ϕ2(r), Δ = 0;

〈ε(r)ε(0)〉 =
m4

2
〈ϕ(r)ϕ(0)〉2 =

m4

8π2 K
2
0 (mr),

and therefore

Δc0 = 3π
m4

2π2

∫
d2x | x |2 K2

0 (m | x |) = 3
∫ ∞

0
dR R3 K2

0 (R) = 1. (15.6.21)

This implies that, expanding in power series with respect to β2, on the right-hand side
of (15.6.20) all coefficients but the constant must vanish. Let’s check the validity of
this conclusion on the first non-trivial term: taking the first derivative with respect to
β2 and imposing β2 = 0 we have

1
3π

d(Δc)
dβ2

∣∣∣∣
β2=0

= − 1
π

∫
d2x | x |2 〈ε(x)ε(0)〉 + 4

∫
d2x | x |2 d

dβ2 〈ε(x)ε(0)〉.

The first term has already been computed in the free massive theory. To compute the
second term, let’s expand cos(βϕ) up to fourth order and then use Wick’s theorem,
with the result

1
3π

d(Δc)
dβ2 |β2=0 = − 1

12π2 +
m6

(2π)4

∫
d2x d2z | x |2 K2

0 (m | x− z |) K2
0 (m | z |).

(15.6.22)
The last integral can be easily computed: changing the variable

| x− z | → | t |,

it is expressed by the product of the integrals

2π
∫∞
0 R3 K2

0 (R) dR = 2π
3 ;

2π
∫∞
0 R K2

0 (R) dR = π

(the term (15.6.22) with the scalar product �x·�z vanishes after the angular intergration).
Inserting this expression in (15.6.22), one can see that the variation of the central
charge by varying β2 is effectively zero, as it should be. The perturbative check can
be easily generalized to the next order and it is natural to conjecture its validity to
all perturbative orders. Hence, using the c-theorem we can generate in this case an
infinite number of identities that involve the integrals of the correlation functions of
the Sine–Gordon model.

15.7 Δ-theorem

The c-theorem provides useful information on the RG flow induced by the relevant
fields of a conformal field theory. There is another theorem that permits us to follow
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directly the change of the anomalous dimensions of the various fields. Its formulation
is due to Delfino, Simonetti and Cardy.

Consider the off-critical correlators of the components T (z, z̄) and Θ(z, z̄) of the
stress–energy tensor with a field Φ, where the latter is the deformed primary field of
the perturbed conformal theory. These correlators can be parameterized as

〈T (z, z̄)Φ(0, 0)〉 =
U(mz z̄)

z2 ,

〈Θ(z, z̄)Φ(0, 0)〉 =
V (mz z̄)

zz̄
.

Using the conservation of the stress–energy tensor, eqn (15.5.2), we arrive at the
differential equation

Ḋ =
1
4
V, (15.7.1)

where D = U + 1
4V and the dot denotes the logarithmic derivative zz̄ d

dzz̄ . Since the
trace Θ is related to the perturbing field by the relation (15.5.11), the short-distance
expansion of the function V is determined by the operator product expansion with
the perturbing field Φ, i.e.

V (x) 	 2π λ (2 − 2Δ)C0
ϕΦ |x|2(Δ0−ΔΦ−Δ+1 〈A0〉, (15.7.2)

where A0 is the most relevant operator that appears in this expansion. It is necessary
to distinguish two cases:

1. If
Δ0 − ΔΦ − Δ + 1 > 0, (15.7.3)

then V (x) vanishes in the conformal limit x → 0. In this case the function D is
stationary at the fixed point and coincides with U . If the operator Φ does not
mix with other fields under renormalization, we can straightforward by use its
operator expansion with T and for the function U we have

U(x) 	 ΔΦ 〈Φ〉. (15.7.4)

If the perturbed theory is associated to massless flow to another conformal field
theory, the same analysis can be repeated near the other fixed point and, inte-
grating over all distance scales, we establish the sum rule

Δuv
Φ − Δir

Φ = − 1
4π〈Φ〉

∫
d2x 〈Θ(x)Φ(0)〉. (15.7.5)

If the RG flow leads to a massive theory, we have instead Δir
Φ = 0.

2. If we have instead
Δ0 − ΔΦ − Δ + 1 < 0, (15.7.6)

the function V (x) does not vanish at the origin and the attempt to use
eqn (15.7.5) fails for the divergence of the integral. This is a simple consequence
of the mixing of the operator Φ under renormalization. In this case, the
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function U(x) does not present the behavior of eqn (15.7.4) at short distances. Its
correct behavior is obtained by directly integrating eqn (15.7.1), namely

U(x) 	 πλ(1 − Δ)C0
ϕΦ

1 − γ0

γ0
|x|2γ0 γ0 < 0

U(x) 	 2πλ(1 − Δ)C0
ϕΦ 〈A0〉 log |x| γ0 = 0

where we introduce the notation γ0 = Δ0 − ΔΦ − Δ + 1.

It is worth stressing that the Δ-theorem, as expressed by eqn (15.7.5), can be easily
generalized to quantum field theories of any dimensions when the integral converges
both in the ultraviolet and the infrared regions. Indeed it simply expresses the Ward
identity relative to the trace of the stress–energy tensor of any field theory, i.e. the
field responsible for the global scale transformations.
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16
Integrable Quantum Field Theories

This belief is handed down in Beersheba: that, suspended in the heavens, there exists
another Beersheba, where the city’s most elevated virtues and sentiments are poised,
and that if the terrestrial Beersheba will take the celestial one as its model the two
cities will become one.

Italo Calvino, Invisible Cities

16.1 Introduction

An integrable quantum field theory is characterized by an infinite number of conserved
charges. In classical mechanics, the existence of a sufficient number of integrals of
motion allows us to pass from the initial coordinates and momenta to the angle-action
variables, thus finding the exact solution of the equation of motion by quadrature.
Similarly, if in a quantum field theory there are an infinite number of conservation
laws, we can derive the exact mass spectrum of its excitations, the S-matrix of the
scattering processes, the correlation functions, the thermodynamics, and so on, in short
its exact solution. For reasons that will become clearer later, non-trivial integrable
quantum field theories can only occur in (1 + 1) dimensions.1 In higher dimensions,
in fact, they are either free theories or models with non-local interactions. Hence we
focus our attention only on two-dimensional models.

In (1 + 1) dimensions, using the complex notation to denote the analytic and anti-
analytic indices of tensor quantities, the conservation law of a current with components
(Ts+1,Θs−1) is written as

∂z̄Ts+1 = ∂zΘs−1, (16.1.1)

and this leads to the conservation of the charges

Qs =
∮

[Ts+1 dz + Θs−1dz̄] . (16.1.2)

The integer index s that identifies the integrals of motion is called the spin of the
operator Qs. The value s = 1 always corresponds to the stress–energy tensor, with

1A remark on the notation: in the following we will use the terminology “(1 + 1) dimensions” if
we want to stress the Minkowski version of a two-dimensional quantum field theory, while we will use
the terminology “two dimensions” to denote both a generic two-dimensional quantum field theory or
its euclidean version.
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Q1 = P, where P = E + P is the analytic part of the total momentum of the system.
The set of values of s is specific to each integrable model, as we will see in the examples
presented in this chapter.

In the previous chapters we stress that an important aspect of the two-dimensional
conformal theories is the splitting of the analytic and anti-analytic sectors. If we take,
in this case, as Ts+1 any independent descendent field at the level (s+1) of the identity
conformal family, it is easy to see that the conservation laws (16.1.1) are identically
satisfied for, in conformal theories, Ts+1 is a purely analytic field satisfying ∂z̄Ts+1 = 0.
Hence, all two-dimensional conformal theories have an infinite number of conservation
laws and therefore can also be considered as integrable models.

Perturbing the conformal theories by means of the insertion of one or more rele-
vant fields, there is a breaking of the factorization of the analytic/anti-analytic sectors.
Consequently, there is in general the destruction of all the hierarchy of the conserved
currents of the conformal point. As we have seen in the previous chapter, the analysis
of the models away from criticality can always be carried out by perturbative tech-
niques, but this approach rarely leads to an exact solution of the model. It is therefore
a circumstance of the utmost importance that some particular deformations of the crit-
ical action lead to the definition of integrable models also away from criticality. This
possibility opens in fact more interesting scenarios than the perturbative approach,
since it allows us to solve exactly the statistical models also away from criticality.

In the first part of this chapter we discuss the integrable quantum field theories that
are associated to a lagrangian density. In the second part, we examine the conditions on
the deformations of a conformal theory that lead to the existence of conserved currents
and an integrable theory away from the critical point. The physical consequences of
this remarkable circumstance will be the objects of our study in the following chapters.

16.2 The Sinh–Gordon Model

Consider the two-dimensional euclidean space and the lagrangian theory of the so-
called Sinh-Gordon model. Its action is given by2

S =
∫
d2x

[
1

16π
(∂μφ)2 +

μ2

g2 cosh(
g√
8π
φ(x))

]
. (16.2.1)

With this normalization, in the limit μ→ 0 the two-point correlation function is

〈φ(x)φ(y)〉 = −2 log(x2 + y2). (16.2.2)

The Sinh–Gordon model provides the simplest example of a general class of integrable
models, the so-called Toda field theories discussed in more detail in Section 16.6. The
action (16.2.1) is invariant under the Z2 transformation φ→ −φ. The potential of the
lagrangian

V (φ) =
μ2

g2 cosh(
g√
8π
φ),

2The numerical factors of this definition are chosen in such a way as to match the notation of the
general Toda field theories, discussed below.
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has a unique minimum at the origin, with a quadratic curvature equal to μ2. Hence,
in Minkowski space, this theory describes the interactions of a relativistic particle of
(bare) mass μ. In euclidean space, though, there are several equivalent ways to consider
this field theory according to the different splittings of the action

S = S0 + SI . (16.2.3)

In this expression S0 plays the role of the unperturbed action, with SI of its deforma-
tion. This splitting leads to different expressions of the central charge of the conformal
theory that emerges in the ultraviolet regime of the Sinh–Gordon model. Which central
charge will be selected is in fact related to the choice of S0, while the central charge
in the infrared regime is always Cir = 0 since, independently of the various splittings,
the theory is always massive in its infrared regime.

One should not be surprised that the action (16.2.1) can describe different ultra-
violet fixed points. As a matter of fact, the value of the central charge is not linked to
the lagrangian but is instead related to the definition that we assume for the associated
stress–energy Tμν(x). This is an operator intrinsically defined up to a total divergence:
if we denote by T̃μν the stress–energy tensor coming from Noether’s theorem, there is
in fact a one-parameter family (labeled by the parameter α) of stress–energy tensors
associated to the same lagrangian given by

Tμν(x) = T̃μν(x) + α (∂μ∂ν − gμν�)φ(x), (16.2.4)

T̃μν(x) =
[
∂μφ∂νφ − ημν

(
1
2
(∂φ)2 − V (φ)

)]
.

We recall that, in the modified Coulomb gas formalism, the presence of α is equivalent
to introducing a charge at infinity and, as shown in Chapter 11, this changes the
conformal properties of the fields and leads to different values of the central charge.
Let’s see the four different ways of interpreting the theory (16.2.1), each of them
corresponding to a particular choice of the parameter α.
Feynman perturbation approach. The first approach is based on standard per-
turbation theory defined by the Feynman graphs. In this case, first we expand in
power series in g the hyperbolic term present in the lagrangian, identifying as S0 the
expression

S0 =
1

16π

∫
d2x
[
(∂μφ)2 + μ2φ2)

]
, (16.2.5)

and as SI all the other terms of the series expansion. In this approach, the Sinh–Gordon
model appears as a Landau–Ginzburg theory with an infinite number of interaction
terms, all even in the field φ. Since in two dimensions the field φ is dimensionless,
the theory is renormalizable. The only ultraviolet divergences come from the tadpole
graphs, such as those shown in Fig. 16.1. Calling Λ the ultraviolet cut-off, these diver-
gences can be removed at once by redefining the exponentials in terms of the normal
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Fig. 16.1 Tadpole diagrams entering the two-point correlation function.

order product3 with respect to an arbitrary mass scale μ

e
± g√

8π
φ(x) →: e± g√

8π
φ(x) : =

(
Λ
μ

)g2/8π

e
± g√

8π
φ(x)

. (16.2.6)

The removal of the divergences is equivalent to the renormalization of the mass term
μ2. This choice of S0 corresponds to α = 0 in eqn (16.2.4). The corresponding ultra-
violet central charge is then Cuv = 1, as one can easily derive by applying the c-theorem
discussed in the previous chapter.
Deformation of gaussian action. An alternative way to consider the Sinh–Gordon
model consists of taking as S0 only the kinetic term and as SI the Z2 invariant com-
bination of the vertex operators

SO =
1
8π

∫
d2x(∂μφ)2, SI =

μ2

g2

∫
d2x
(
e

g√
8π

φ + e
− g√

8π
φ
)
. (16.2.7)

In this case, S0 is explicitly associated to the conformal theory of a free gaussian
bosonic field (discussed in Chapter 12), whose ultraviolet central charge is Cuv = 1.
Also in this case α = 0, but with T̃μν only expressed by the kinetic part ∂μφ∂νφ, while
all the remaining terms are considered as part of its trace.
Deformation of Liouville action I. A third way to look at the Sinh–Gordon model
is to take as S0 the Liouville action

S0 =
∫
d2x

[
1

16π
(∂μφ)2 + λ e

g√
8π

φ

]
, (16.2.8)

and as SI the deformation given by the relevant operator e− g√
8π

φ. Although the Liou-
ville action is formally invariant under conformal transformations, its correct quanti-
zation requires the introduction of a charge at infinity

Q+ =
1
2

(
g√
8π

+
√

8π
g

)
. (16.2.9)

3This definition of the normal order prohibits a propagator starting and ending at the same point.
It is similar to the definition adopted in Section 11.5.1 for the vertex operators, even though in this
case the conformal weights of the exponential operators are negative, Δ = − g2

8π
.
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This quantization method is done along the lines of the Coulomb gas approach dis-
cussed in Section 11.5.1. The charge at infinity shifts the value of the ultraviolet central
charge, which is no longer Cuv = 1 but

Cuv = 1 + 24Q2
+. (16.2.10)

There is also a shift of the conformal weights of the vertex operators eαφ(x), now
given by

Δ(α)
+ = −α2 + 2αQ+. (16.2.11)

The reason to quantize the Liouville theory with the charge at infinity should now
be clear: in fact, it is only in this way that the vertex operator e

g√
8π

φ(x), present
in the action (16.2.8), acquires a conformal weight equal to 1, so that the action
(16.2.8) becomes conformally invariant at the quantum level. For the perturbing op-
erator e− g√

8π
φ(x), its new conformal weight is instead

Δ− = −1 − g2

4π
. (16.2.12)

Deformation of Liouville action II. In this Liouville approach, we can obviously
exchange the role played by the two exponentials, namely we can take as S0 the
Liouville theory defined by the other exponential

S0 =
∫
d2x

[
1

16π
(∂μφ)2 + λe

− g√
8π

φ

]
, (16.2.13)

and as perturbation SI the one induced by the vertex operator e
g√
8π

φ(x). As in the pre-
vious case, this Liouville action needs a charge at infinity for its correct quantization,
this time given by

Q− = −1
2

(
g√
8π

+
√

8π
g

)
. (16.2.14)

This charge at infinity modifies the values of the central charge and the conformal
weights of the vertex operators eαφ(x), which can be obtained by substituting Q+ →
Q− in the previous formulas (16.2.10) and (16.2.11). In this scheme the operator
e
− g√

8π
φ(x) has conformal weight equal to 1, while that of e

g√
8π

φ(x) is

Δ+ = −1 − g2

4π
. (16.2.15)

Integrability. It is worth stressing that, independently of how we interpret the theory
in the ultraviolet regime, the Sinh–Gordon model enjoys a fundamental property: it is
an integrable model. To obtain the classical expression of the conserved charges Qs,
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it is convenient to rescale for simplicity the field as φ(x) → gφ√
8π

and impose μ = 1.
Let’s also introduce the light-cone coordinates σ and τ :

σ =
1
2
(x− t); τ =

1
2
(x+ t).

In these coordinates the equation of motion becomes

∂σ ∂τ φ(σ, τ) = sinh(φ). (16.2.16)

There is a conserved charge Qs if there exists a current with components (J0
s , J

1
s )

satisfying the equation ∂μJμs = 0. This can be written in light-cone coordinates defining
J0
s = Ts+1 + Θs−1 and J1

s = Ts+1 − Θs−1. For the densities Ts+1[φ] and Θs−1[φ] we
have

∂

∂σ
Ts+1[φ] =

∂

∂τ
Θs−1[φ]. (16.2.17)

The index s refers to the spin of this current, related to the difference of the partial
derivatives ∂nτ and ∂kσ present in the expression of the densites, s = n − k − 1. The
charge Qs

Qs =
∫ ∞

−∞
dx J0

s =
∫

[Ts+1 dτ + Θs−1 dσ] (16.2.18)

is a conserved quantity since, by eqn (16.2.17), it satisfies

dQs

dt
= 0. (16.2.19)

To explicitly find the densities Ts+1[φ] and Θs−1[φ], let’s define the field φ̂(σ, τ), the
solution of the so-called Bäcklund transformations

∂σ(φ̂− φ) = 2 ε sinh
(

1
2
(φ̂+ φ)

)
, (16.2.20)

∂τ (φ̂+ φ) =
2
ε

sinh
(

1
2
(φ̂− φ)

)
.

Assuming that φ(σ, τ) is a solution of the equation of motion, eqns (16.2.20) provide
another solution. In fact, acting with ∂τ of the first of them and using the second
equation, we have

∂τ ∂σ(φ̂− φ) = 2 sinh
1
2
(φ̂− φ) cosh

1
2
(φ̂+ φ) =

[
sinh(φ̂) − sinh(φ)

]
.

The field φ̂(z, z̄, ε) can be expressed in power series of the parameter ε

φ̂(σ, τ, ε) =
∞∑
n=0

φ(n)(σ, τ) εn (16.2.21)
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where φ(n)(σ, τ) can be computed by plugging it into (16.2.20) and comparing term
by term in ε. For the first terms we have4

φ̂(0) = φ , φ(1) = 2φτ ,
φ̂(2) = 2φττ , φ(3) = 2φτττ − φ3

τ/3,
φ̂(4) = 2φττττ − 2φ2

τ φττ , · · ·
(16.2.22)

The existence of this series expression gives us the possibility of obtaining an infinite
number of conservation laws starting from a finite number of them. To this end we
can use, for instance (

1
2
ψ2
σ

)
τ

+ (1 − coshψ)σ = 0, (16.2.23)

or a similar equation (
1
2
ψ2
τ

)
σ

+ (1 − coshψ)τ = 0, (16.2.24)

whose validity can be easily checked employing the equation of motion (16.2.16) satis-
fied by φ. Using, for instance, eqn (16.2.24) and substituting eqn (16.2.22), we obtain
an infinite number of conserved densities. The first non-trivial expressions (i.e. those
that cannot be expressed as total derivative) are

T2 =
1
2
φ2
τ

T4 = 2φ2
ττ + 2φτ φτττ (16.2.25)

T6 = 2φ2
τττ + 4φττ φττττ − 6φ2

ττφ
2
τ − 2φ3

τφτττ + 2φτφτττττ .

In general, it can be proved that non-trivial conservation laws are obtained for all odd
values of s

s = 1, 3, 5, . . . (16.2.26)

The set of these values of s constitutes the spectrum of the conserved charges. It is
also possible to show that the classical expressions of the conserved currents, suitably
modified, keep their meaning also at the quantum level and that the corresponding
charges are in involution, i.e. they commute with each other

[Qs,Qs′ ] = 0. (16.2.27)

In the next chapter we will see how the involution nature of the conserved charges and
the spectrum of s strongly influence the structure of the massive excitations and their
dynamics.

4φτ ≡ ∂τφ e φσ ≡ ∂σφ.
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16.3 The Sine–Gordon Model
Under the analytic continuation g → ig, the Sinh–Gordon model becomes the Sine–
Gordon model, with the euclidean action given by

S =
∫
d2x

[
1

16π
(∂μφ)2 − μ2

g2 cos(
g√
8π

φ(x))
]
. (16.3.1)

As seen in Chapter 12, this theory enters the bosonization procedure. However, there
is a wider range of phenomena where the Sine–Gordon model plays a crucial role: it
describes, for instance, the dislocation of a crystal subjected to an external force; in
quantum optics, it describes the propagation of a light wave in a material made of two
quantum levels and, in superconductivity, it plays an important role in the theory of
magnetic flux of a Josephson junction.

For the Sine–Gordon model we can also adopt the four different approaches dis-
cussed for the Sinh–Gordon model to study its ultraviolet limit. Because of their
similarity, we will not repeat their analysis here. However, it is important to note the
following circumstance: adopting the quantization scheme of the Liouville theory, since
now the exponentials are complex, we get an ultraviolet central charge less than 1

Cuv = c = 1 − 24Q2, Q = ±
(

g√
8π

− g√
8π

)
(16.3.2)

(the sign of Q depends on the particular choice of the exponential that enters the
Liouville action). This implies that, with an appropriate choice of the coupling con-
stant g, the central charge c can take the values of the minimal models Mp,q. When
this happens, it is easy to see that the perturbing operator of the Liouville action
corresponds to the operator Φ1,3 of the minimal models.

The Sine-Gordon model has an infinite sequence of conserved charges in involution
that ensures both its classical and quantum integrability. It is useful to provide an
explicit sequence of the first quantum densities Ts+1, in the quantization scheme of
the Liouville theory, adopting the complex coordinates z = t + ix and z̄ = t − ix. If
T (z) is the analytic component of the stress–energy tensor associated to the Liouville
theory

T (z) = −1
2
(∂z φ)2 + iQ ∂2

zφ, (16.3.3)

and (AB)(z) denotes the normal order of two operators as defined by their operator
product expansion

(AB)(z) =
∮
z

dw

w − z
A(w)B(z),

we have

T2 = T,

T4 = (T 2) (16.3.4)

T6 = (T (T 2)) +
c+ 2
12

(T ∂2
zT ),

T8 = (T (T (T 2))) +
c+ 8

6
(T (T∂2

zT )) +
1

180
(c2 + 4c− 101)(T∂4

zT ).
· · · = · · ·
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| 0 > | 0 >| 0 >
n−1 n n+1

Fig. 16.2 Potential of the Sine–Gordon model and sequence of the infinite equivalent vacua.

The dynamics of the model is better understood if we consider its formulation in
Minkowski space. To simplify the notation, let’s rescale the field as φ → φ/

√
8π, so

that the action in Minkowski space becomes

S =
∫
d2x

[
1
2
(∂μφ)2 +

μ2

g2 cos gφ(x)
]
.

The potential of the theory

V (φ) =
μ2

g2 [1 − cos( gφ)] (16.3.5)

(to which we have added, for convenience, a constant) presents an infinite series of
degenerate minima placed at φ = 2πn/g (n = 0,±1, . . .), as shown in Fig. 16.2. In the
quantum version, they correspond to an infinite family of equivalent vacua, denoted
by | 0 〉n. Around each minimum, the potential has a quadratic concavity μ2 that can
be associated to the mass of the scalar particle created out of the vacuum by the
field φ. This scalar particle does not however, exhaust, the spectrum of the excitations
of the the model. In the Sine–Gordon model there are in fact topological excitations
of finite energy, associated to those field configurations that interpolate between two
degenerate vacua.
Topological excitations. The topological excitations can be specified by two integers
(n1, n2) that label the vacua 2πn1/g and 2πn2/g reached by the field φ(x) at x→ ±∞.
Let’s define then the topological charge

Qt = n1 − n2 =
1

2πg

∫ ∞

−∞
dx

∂φ

∂x
. (16.3.6)

From the periodicity of V (φ), the field φ is defined modulo 2π/g, i.e. at any given
point x the value of the field can be changed as φ(x) → φ(x) + 2πk, maintaining,
though, the continuity of its configurations. The topological charge is insensitive to
these transformations as long as we keep fixed the final values assumed by the fields.

Let’s write down the energy of a generic configuration of φ(x, t)

E[φ] =
∫ ∞

−∞
dx

[
1
2

(
∂φ

∂t2

)2

+
(
∂φ

∂x2

)2

+ V (φ)

]
, (16.3.7)
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and the equation of motion of the model

∂2φ

∂t2
− ∂2φ

∂x2 =
∂V

∂φ
. (16.3.8)

The classical expression of the elementary topological configurations, i.e. those asso-
ciated to Qt = ±1, can be obtained by looking at the static solutions of the equation
of motion. In this case the first term on the right-hand side vanishes and the equation
of motion reduces to

∂2φ

∂x2 = −∂V
∂φ

.

This expression coincides, formally, with the equation of motion of classical mechanics
of a fictitious particle described by the coordinate φ(x) and subjected to the potential
−V (φ) (note the change of sign in the potential). In this interpretation, the original
variable x in the field φ(x) plays the role of time coordinate of the classical particle.
As with any classical system subjected to a conservative force, it has an integral of
motion given by its mechanical energy (which must not to be confused with E[φ]),
given by

W =
1
2

(
dφ

dx

)2

− V (φ). (16.3.9)

The value of the constant of motion W can be immediately determined. In fact, if
we require that the static solutions φ(x) have a finite energy E[φ], we must have
at x → ±∞ both V (φ) → 0 and (∂φ/∂x) → 0. In analogy with the newtonian
motion of the particle, this means that the particle at x ±∞ has to be in one of the
maxima of the potential −V (φ) and, furthermore, that its velocity has to vanish both
at the starting and ending points. For the constant W we have W = 0. Instead of
solving the second-order equation of motion (16.3.8), for the static solutions we can
take advantage of the mechanical analogy and find the solution by quadrature from
eqn (16.3.9):

dφ

dx
= ±
√

2V (φ) → (x− x0) = ±
∫ φ(x)

φ(x0)

dφ̄√
2V (φ̄)

, (16.3.10)

where x0 is an arbitrary constant of integration. Performing the integral, with the
explicit expression of V (φ) given in (16.3.5), we get

φ̄(x) = ±4/g arctan [expm(x− x0)] . (16.3.11)

The first solution, the one with the positive sign, has topological charge Qt = 1 and
corresponds to a soliton that interpolates between the vacuum φ̄ = 0 and the next one
at 2π/g or, equivalently, between a generic pair of vacua 2πn/g and 2π(n+ 1)/g. The
second solution, the one with the negative sign, has instead Qt = −1 and corresponds
to an antisoliton that interpolates between a generic pair of vacua 2πn/g e 2π(n−1)/g,
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Fig. 16.3 Solitonic solutions and their energy density ε(x).

as shown in Fig. 16.3. The origin of the terminology is in the peculiar form assumed
by the energy density ε(x) of these solutions entering the formula

E[φ̄] =
∫ ∞

−∞
dx ε(x), ε(x) =

4μ2

g2

1
cosh2m(x− x0)

. (16.3.12)

As shown in Fig. 16.3, ε(x) has a shape strongly localized at x0 that rapidly decreases
to zero outside an interval large of order 1/m. For this localization property, the
solitonic solutions of the Sine–Gordon model can be interpreted as particle excitations
of the system and the energy (16.3.12) of the static solution corresponds to the mass
Ms of the soliton/antisoliton

Ms =
8μ2

g2 . (16.3.13)

The non-perturbative nature of the solitonic solutions is revealed by the dependence on
the coupling constant, placed in the denominator of the expression above. The particle
nature of these excitations is further confirmed by using the Lorentz invariance of the
equation of motion: given a static solution φ̄(x), we can use a Lorentz transformation5

to transform it into a solution that moves with velocity v

φ̄(x) → φ̄

[
m(x− x0) − vt√

1 − v2

]
.

It is easy to check that this expression indeed satisfies the equation of motion (16.3.8)
and substituting it in (16.3.7), we get

E[φ̄(x, t)] =
Ms√
1 − v2

.

Hence we recover the Einstein relationship that links the mass and the energy of a
particle. The solitons are then particle excitations of the system that, in the classical
description, appear as waves that propagate in the medium without dispersion or
dissipation, always keeping their shape intact.

5The velocity is measured in units of the light velocity, so that its limiting value is v = 1.



The Bullogh–Dodd Model 527

Time-dependent solutions. The Sine–Gordon model admits exact solutions also in
other topological sectors, although they are time-dependent expressions. For instance,
a solution with Qt = 0 is

φ̄ss̄(x, t) =
4
g

arctan

(
sinh(mvt/

√
1 − v2)

v cosh(mx/
√

1 − v2)

)
. (16.3.14)

It has the peculiar property of tending, for t → ±∞ to a configuration made of a
soliton and an antisoliton

φ̄ss̄(x, t) → φ̄s

(
x+ v(t± Δss̄/2)√

1 − v2

)
+ φ̄s̄

(
x− v(t± Δss̄/2)√

1 − v2

)
, t→ ±∞.

When the time varies, this solution describes an elastic scattering process, whose only
effect is a negative time shift Δss̄ ≡ (1−v2)v log v of the propagation of the soliton and
the antisoliton with respect to their free propagation. The elasticity of the scattering
processes is a common characteristic in all other topological sectors. For instance, in
the sector with topological charge Qt = 2, a solution of the equation of motion is
given by

φ̄ss(x, t) =
4
g

arctan

(
v sinh(x/

√
1 − v2)

cosh(vt/
√

1 − v2)

)
. (16.3.15)

At any given time, it interpolates between the vacua −2π/g and 2π/g. It can then
be interpreted as a configuration made of two solitons. Following the time evolution
of this solution, one realizes that it corresponds to the elastic scattering of the two
solitons, since at t→ ±∞ it becomes

φ̄ss(x, t) → φ̄s

(
x+ v(t± Δss/2)√

1 − v2

)
+ φ̄s

(
x− v(t± Δss/2)√

1 − v2

)
, t→ ±∞.

Also in this case, the only effect of the interaction is a time shift Δss, although positive
this time (see Problem 4).

In conclusion, the Sine–Gordon theory is an integrable theory that has multisoli-
tonic solutions that describe purely elastic scattering processes. The elasticity of these
scattering processes is a consequence of the infinite number of conserved charges of the
model. To compute the complete spectrum of the excitations of its quantum version
it is necessary to study the S-matrix of the scattering processes, a subject that will
be addressed in Chapter 18.

16.4 The Bullogh–Dodd Model

The Bullogh-Dodd model is another lagrangian system that is integrable both at the
classical and at the quantum level. Its euclidean theory is defined by

S =
∫
d2x

{
1

16π
(∂μφ)2 +

μ2

6g2

[
2 e

g√
8π

φ + e
−2 g√

8π
φ
]}

. (16.4.1)
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It may be considered as a deformation of the Liouville theory

S0 =
∫
d2x

{
1

16π
(∂μφ)2 +

μ2

3g2 e
g√
8π

φ

}
, (16.4.2)

by means of the exponential e−2 g√
8π

φ. As in the Sinh–Gordon model, the quantization
of this theory requires the introduction of a charge at infinity, in this case expressed by

Q+ =
1
2

(
g√
8π

+
√

8π
g

)
.

This leads to an ultraviolet central charge equal to

Cuv = 1 + 24Q2
+. (16.4.3)

The conformal weight Δ(α) of the exponentials eαφ is given by

Δ(α) = −α2 + 2αQ+. (16.4.4)

In this way, the exponential in (16.4.2) has a conformal weight equal to 1, while the
other exponential has a conformal weight

Δ[e−2 g√
8π

φ] = −2 − 3
4π
g2.

By the analytic continuation g → ig, the central charge (16.4.3) becomes less than
1 and, by an opportune choice of the coupling constant g, we can match the central
charges of the minimal models. In this case, it is easy to show that the operator e−2

√
2gφ

corresponds to the operator Φ1,2 of the conformal minimal models. However, contrary
to what happens in the Sinh–Gordon model, the substitution g → ig makes, this time,
the action (16.4.1) a complex quantity and therefore it is not obvious how it can give
rise, as indeed it does, to a consistent physical theory.

Vice versa, as a starting Liouville theory we can assume

S0 =
∫
d2x

{
1

16π
(∂μφ)2 +

μ2

6g2 e
−2 g√

8π
φ

}
. (16.4.5)

In this case the charge at infinity is

Q− = −1
2

(
g√
2π

+
√

2π
g

)
.

The central charge and the conformal weights have the same expressions as above,
once we make the substitution Q+ → Q−. In this way the exponential present in the
action has a conformal weight equal to 1, while

Δ[e
g√
8π

φ] = −1
2
− 3g2

8π
.

With the analytic continuation g → ig and with the choice of g that matches the central
charge with that of conformal minimal models, the perturbing operator e

√
2gφcan be

identified with the field Φ2,1 of the minimal models.
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Fig. 16.4 Scattering amplitudes of the Bullogh–Dodd theory.

To discuss the perturbative quantization of the theory, based on Minkowski space
and the Feynman graphs, it is convenient to scale the field and the coupling constant
in such a way that the action reads

L =
1
2
(∂μφ)2 − μ2

6g2

(
2egφ + e−2gφ) , (16.4.6)

where μ is a mass parameter and g the coupling constant. Also this model belongs
to the Toda field theories,6 discussed in Section 16.6. The series expansion of the
exponential terms gives rise to the n-leg interaction vertices

V (φ) =
μ2

6g2

(
2egφ + e−2gφ) =

μ2

2 g2 +
∞∑
k=2

gk
k!
φk,

where

gk =
μ2

3
gk−2 [1 + (−1)k2k−1] .

Also in this case the renormalization of the divergences met in the perturbative series
reduces to eliminate the tadpoles. This is equivalent to renormalizing the mass term
μ as

μ2 → μ2
(

Λ
μ

)g2/4π

.

This theory is supported by an infinite number of conserved charges, whose spectrum
of spin s is given by

s = 1, 5, 7, 11, 13, . . . (16.4.7)

i.e. all odd integer numbers apart from multiples of 3.
The perturbative particle content of the theory consists of a particle, denoted by

A, that takes part in scattering processes in which it appears as a bound state of itself.
This is a simple consequence of the φ3 vertex in V (φ), which gives rise to scattering
processes such as those shown in Fig. 16.4. Here we anticipate that this perturbative
scenario will be confirmed by the exact S-matrix of this model discussed in Chapter 18.

6This model can be obtained by the folding with respect to a Z2 symmetry of the affine simply
laced algebra A2. The resulting algebra is denoted by BC1 and its Coxeter number is h = 3.
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16.5 Integrability versus Non-integrability

One may wonder what is so special about the Sinh–Gordon, Sine–Gordon, or Bullogh–
Dodd models with respect to other two-dimensional field theories. The answer to this
question can be given both at the classical and the quantum level. Let’s first discuss
the classical aspects.

The Sine–Gordon model is not the only theory to possess static topological con-
figurations. If we examine further the argument used to find the solitonic solutions,
we realize that it is sufficient that the theory simply possesses two degenerate next
neighbor vacua. From this point of view, even the φ4 theory, in the phase in which the
Z2 is spontaneously broken, should have solitonic excitations. The potential U(φ) of
this theory

L =
1
2
(∂μφ)2 − U(φ), U =

λ

4

(
φ2 − μ2

λ

)
.

has in fact, two degenerate minima at φ± = ±m/
√
λ. This is indeed the case, and

the explicit expression of the solitons of this theory is obtained by inserting U(φ) in
(16.3.10)

φ̄(x) = ± m√
λ

tanh
[
m√
2
(x− x0)

]
. (16.5.1)

The soliton mass is obtained by substituting their energy density

ε(x) =
m4

2λ
1

cosh4(m(x− x0)/
√

2
,

in E[φ] given in (16.3.7)

M =
2
√

2
3

m3

λ
.

Hence, even in the φ4 theory there are solitonic phenomena of non-perturbative nature.
If the configurations of the static solitons of the Sine–Gordon and the φ4 theory

may appear very similar,7 their differences show up when we consider the multisoli-
tonic configurations. In fact, in the Sine–Gordon model these configurations have the
properties of preserving the shape that they have at t → −∞ also at t → +∞. This
is not the case for the φ4 theory. In other words, the scattering processes that take
place in the φ4 theory are inelastic: the initial particles, identified as the multisolitons
present at t→ −∞, lose their identity during the time evolution.

This classical situation has a quantum analog: this permits us to easily appreciate
the significant difference that exists between the Sine–Gordon and φ4 theory or, more
generally, its difference with respect to any other theory invariant under a Z2 symme-
try. As will be discussed in detail in the next chapter, quantum integrable theories have
the same peculiar features already noticed at the classical level, i.e. the elasticity of
the scattering processes. This is indeed a peculiar aspect for relativistic quantum field

7Note that in the φ4 theory there are no topological sectors with topological charge |Qt| > 1,
since there are only two vacua. The multisoliton sequences of this theory consist of only alternate
configurations of solitons and antisolitons.
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theories since, for purely kinematic reasons, the number of particles is not a conserved
quantity: for instance, one can always create 4, 6, 8, . . . particles simply by increasing
the energy in the center of mass of two colliding particles. In light of this remark,
following an argument by P. Dorey, let’s start from the more general two-dimensional
Z2 invariant lagrangian theory

L =
1
2
[
(∂μφ)2 − μ2φ2]− g4

4!
φ4 − g6

6!
φ6 − · · · (16.5.2)

and let’s find out the conditions on the coefficients g4, g6, . . . that prevent the pro-
duction processes. Let’s analyze the simplest case, i.e. a process in which two initial
particles gives rise to four final particles. The Feynman rules are

= i/(p2 − μ2 + iε)

�
�

�
�

�
�

�
�

= −ig4

�
�

�
�

�
�

�
�

= −ig6

etc. Applying these rules, let’s compute the tree level processes in which we have
2 → 4 particles. Suppose, for simplicity, that the initial particles have just the energy to
create the four out-coming particles. Working in the center of mass reference frame, the
momenta (p0, p1) of the initial particles, satisfying the on-shell relation (p0)2− (p1)2 =
μ2, are then (2μ,±

√
3μ). The total energy is Et = 4μ, a value sufficient to create the

four final particles. Since these four particles will all be at rest, their common value of
the momenta is (μ, 0). Using the conservation of the total momentum at each vertex,
for the graphs of Fig. 16.5 we have

(a) → i
g2
4

32μ2

(b) → −i g2
4

96μ2

(c) → −i g6
48μ2 .

The total amplitude is

(a) + (b) + (c) =
i

48μ2 (g2
4 − g6), (16.5.3)

so that, choosing g6 = g2
4 , we can dynamically suppress this production process.
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(a) (b) (c)

Fig. 16.5 Feynman graphs at the tree level for the production process 2 → 4.

Generalizing the analysis to the production process 2 → 6 and requiring its dynam-
ical absence, one derives the further condition g6 = g3

4 . Carrying out the same analysis
for the higher particle production processes, one arrives at the following result: the
only lagrangian theories with a Z2 symmetry that dynamically suppress all production
processes are represented by the potentials

U(φ) = μ2
[
1
2
φ2 ± g2

4!
φ4 +

g4

6!
φ6 ± g6

8!
φ8 + · · ·

]
. (16.5.4)

It is easy to recognize that these potentials either correspond to that of the Sinh–
Gordon model (when all the signs are chosen positive) or of the Sine–Gordon model
(with the choice of alternate signs).

Repeating the same analysis with the most general Landau–Ginzburg potential,
which also presents odd powers of the field φ, the one that is selected by the absence
of production processes is given by

U(φ) = μ2
[
1
2
φ2 − g

6
φ3 +

g2

8
φ4 − g3

24
φ5 + · · ·

]

=
μ2

6g2

[
2egφ + 2 e−2gφ − 3

]
, (16.5.5)

namely, the Bullogh–Dodd model!
In conclusion, the only relativistic two-dimensional lagrangian theories which in-

volve only one scalar field and that are integrable both at the classical and at the
quantum level are the Sinh–Gordon and the Sine–Gordon theories (if there is a Z2
symmetry) or the Bullogh–Dodd theory.

16.6 The Toda Field Theories
A generalization of the models encountered so far is provided by the Toda field theories.
These theories can be constructed using the Lie algebras discussed in the appendix
of Chapter 13. In the following we mainly focus our attention on the simply laced
algebras An, Dn and En, i.e. those with simple roots of the same length. The Toda
field theories based on the non-simply laced algebras can be defined, at least at the
classical level, by an identification of the roots using the symmetry properties of the
Dynkin diagram. This is the so-called folding procedure, as shown in Table 16.1a and
Table 16.1b below.
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Table 16.1a: Foldings of the Dynkin diagrams of the simply laced algebras: the principal
series. Near the roots there are the numbers qi.

A
(1)
2r /Z2 A

(2)
2r

� � �

1 1 1
α1 �����

� � �

1 1 1
α2r�����

. . . . . . .
�

1 α2r+1

�� Z2

=⇒ ��

αr+1 α1

� �

1 2 2 . . . . . . . � � �

2 2 2

αr

D
(1)
r+1/σ B

(1)
r

�
��
��

�

�

�

1

1

2 2

α1

αr+2

. . . . . . . �	
σ

�

�
��
��

�

�

�

1

1

22

αr

αr+1

=⇒ �
��
��

�

�

�

1

1

2 2

α1

αr+1

. . . . . . . � � �

2 2 2

αr

D
(1)
r+2/Z2 D

(2)
r+1 ≡ B̃r

�
��
��

�

�

�

1

1

2 2

α1

αr+3

. . . . . . . Z2- - - - - - - -- - - - - - �
��
��

�

�

�

1

1

22

αr+1

αr+2

=⇒ �

αr+1 α1

� �

1 1 1 . . . . . . . � � �

1 1 1

αr

A
(1)
2r−1/Z2 C

(1)
r

� � �

1 1 1
α1 �����

� � �

1 1 1
α2r−1�����

. . . . . . .
�

1 α2r

�� Z2

=⇒ �

αr+1 α1

� �

1 2 2 . . . . . . . � � �

2 2 1

αr

D
(1)
2r /Z2 A

(2)
2r−1 ≡ C̃r

�
��
��

�

�

�

1

1

2 2

α1

α2r+1

. . . . . . .

�� Z2

�
��
��

�

�

�

1

1

22

α2r−1

α2r

=⇒ �
��
��

�

�

�

1

1

2 2

α1

αr+1

. . . . . . . � � �

2 2 1

αr

Square length � = 1 � = 2 �� = 4
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Table 16.1b: Foldings of the Dynkin diagrams of the simply laced algebras: the exceptional
series. Near the roots there are the numbers qi.

D
(1)
4 /σ G

(1)
2

�

�

��

�
��

����
��

1 1

1 1

2

��	σ


����

α5

α1

α3

α2

=⇒ � � �

1 2 3

α3 α2 α1

E
(1)
6 /Z3 D

(3)
4 ≡ G̃2

� � � � �

�

�

α7

1 12 23

2

1

���
������

���

Z3

����
����

=⇒ � � �

1 2 1

α3 α2 α1

E
(1)
6 /Z2 F

(1)
4

� � � � �

�

�α7

1 12 23

2

1
Z2

=⇒ � � � � �

1 2 3 4 2

α5 α1 α2 α3 α4

E
(1)
7 /Z2 E

(2)
6 ≡ F̃4

� � � � � � �α8

�

1 12 23 34

2

Z2

=⇒ � � �� �

1 2 3 1 2

α1 α2 α3 α4 α5

Square length � = 1 or 2/3 � = 2

The Toda field theory associated to a Lie algebra G of rank r is a lagrangian model
of r bosonic fields, collected in a vector φ = (φ1, . . . , φr), given by

S =
∫

d2x

{
1
8π

(∂μφ) · (∂μφ) +
μ2

16β2

r+1∑
i=1

qi[exp(βαi · φ) − 1]

}
, (16.6.1)

where μ2 and β are real parameters. The set {αi}ri=1 is given the simple roots of G,
with their norm equal to 2. The set of the integer numbers {qi} is different for each
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algebra and it is related to the definition of the maximal root of the algebra, given by8

αr+1 = −
r∑

i=1

qi αi. (16.6.2)

The extended set of roots, obtained by adding the maximal root, form the Dynkin
diagram of the affine Lie algebras. For these systems, imposing qr+1 = 1, we have

r+1∑
i=1

qiαi = 0,
r+1∑
i=1

qi = h (16.6.3)

where, for the simply laced algebras, h coincides with ψ, the Coxeter number of G.
The exponential with the maximal root is responsible for the massive nature of

these field theories. Also for the Toda field theories we can adopt two different ways
of looking at the action (16.6.1), depending on the choice of S0. So, taking for S0 the
action that excludes the maximal root, one has a generalized Liouville theory

S0 =
∫

d2x

[
1
8π

(∂μφ) · (∂μφ) +
μ2

16β2

r∑
i=1

qi[exp(βαi · φ) − 1]

]
. (16.6.4)

Analogously to the cases previously analyzed, these actions describe conformal models.
Their quantization requires a set of charges at infinity, encoded in the vector

�Q = (β + 1/β) �ρ, �ρ =
1
2

∑
α>0

α. (16.6.5)

The analytic component of the stress–energy tensor, given by

T (z) = −1
2
(∂zφ)2 +Q · ∂2

zφ,

gives rise to the central charge

C = r
[
1 + h(h+ 1)(β + 1/β)2

]
. (16.6.6)

The second way to approach the Toda field theories consists of using the Feynman
perturbation theory. As in previous cases, all the perturbative divergences of these
theories come from the tadpole diagrams, which can be eliminated by defining the

8For a non-simply laced algebra there is also the possibility to extend the Dynkin diagram of
the original theory by adding the shorter maximal root. These are the so-called twisted algebras and
denoted by G̃. In all the non-twisted models h is equal to the Coxeter number ψ, while for the twisted
ones h is equal either to the dual Coxeter number ψ̃ of the same algebra or of another non-simply
laced algebra.
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normal order of the exponential operators. This induces a renormalization of the mass
parameter μ2.

μ2 → μ2
(

Λ2

μ2

) β2

4π
h̃
h

(16.6.7)

where

h̃ =
1
2

r∑
a=1

r+1∑
i=1

qiα
a
i α

a
i . (16.6.8)

In the simply laced algebras h̃ = h and these two numbers get simplified in (16.6.7).
In the Feynman perturbative approach it is necessary to determine the classical

values of the masses of the various particles Aa, as coming from the quadratic terms
of the lagrangian

M2
ab = μ2

r+1∑
i=1

qiα
a
i α

b
i . (16.6.9)

Mass spectrum. The classical mass spectrum is determined by the zeros of the
characteristic equation

‖M2 − x · 1‖ = 0. (16.6.10)

The left-hand side of (16.6.10) is a polynomial of order r, whose general form is

P(x) = xr − p1x
r−1 − p2x

r−2 − . . .− pr.

The first coefficient p1 is simply the trace of M2 and, for the simply laced algebra,
this is simply twice their Coxeter number. The other coefficients pi can be expressed
in terms of the trace of higher powers of M2. To simplify the notation, let’s impose
M = M2. Their expression is then

k pk = ak − p1 ak−1 − · · · pk−1 a1, (16.6.11)

where
a1 = TrM =

∑
im

2
i

a2 = TrM2 =
∑

im
4
i

.. . . .
an = TrMn =

∑
im

2n
i .

(16.6.12)

It is convenient to introduce a matrix N directly linked to the Dynkin diagrams. Its
matrix elements are given by

Nij = (qiαi, αj) =
n∑

k=1

qiα
k
i α

k
j .

It is easy to prove that

TrMs = TrN s, s = 1, 2, · · ·n.

Hence, the characteristic equation of M coincides with that of N . However, N is a
(n+ 1)× (n+ 1) matrix while M is an n×n matrix. Since α0 is expressed by a linear
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combination of the other roots, N is then a singular matrix: one of its eigenvalues
vanishes, whereas the others coincide with the eigenvalues of M.

In the basis of its eigenvectors, M2
ij = μ2

i δ
ij . The mass spectrum is degenerate if the

group of automorphisms of the Dynkin diagram is non-trivial. In this case it may be
convenient to organize the particles pairwise, associated to complex conjugate fields.
In the simply laced algebra, a remarkable result is that the masses can be organized
in a vector

m = (m1,m2, · · ·mr),

which are the eigenvectors of the incidence matrix I of the algebra G. It is defined
by I = 2 − C, where C is the Cartan matrix. In fact, m is the Perron–Frobenius
eigenvector of I and its components can thus be associated directly to the dots of the
Dynkin diagram itself. On the other hand, since the dots of the Dynkin diagram are
also associated to the fundamental representation of the simply laced algebra, we arrive
at the interesting conclusion that there is a correspondence between the particles of
mass mi and the relative representations of G. This will be a useful observation in the
future discussion of the scattering processes of these theories.

Let’s now discuss in detail the mass spectrum of the various Toda field theories,
with the final result of this analysis summarized in Tables 16.2 and 16.3 below.

16.6.1 A
(1)
n Series

For this series, the matrix N reduces to the Cartan matrix of the affine Lie algebras.
The characteristic equation associated to N is given by

Qn+1(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

2 − x −1 0 · · · 0 0 −1
−1 2 − x −1 · · · 0 0 0
0 −1 2 − x −1 · · · 0 0
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 0 0 · · · −1 2 − x −1
−1 0 0 · · · 0 −1 2 − x

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Imposing 2y = 2 − x, it is possible to show that

Qn+1 = 2 (Tn+1(y) − 1), (16.6.13)

where Tn+1(y) is the Chebyshev polynomial of the first type

Tn+1(cos θ) = cos(n+ 1)θ.

The mass spectrum of the series A(1)
n is given by the n non-vanishing roots of the

equation Tn+1(y) = 1, namely

m2
k = 4 sin2 kπ

n+ 1
k = 1, 2, · · ·n. (16.6.14)
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16.6.2 D
(1)
n Series

For this series, we have

N =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

4 −2 0 · · · 0 0 −2 −2
−2 4 2 · · · 0 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · ·

0 −1 0 · · · 0 0 2 0
−1 0 0 · · · 0 0 0 2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

The characteristic equation has the form

‖N − x · 1‖ = 2n+2(y − 1)(2y − 1)2 Un−2(y) = 0, (16.6.15)

where x = 4(1−y) and Um is the Chebyshev polynomial of the second kind. The roots
of (16.6.15) are given by

yn+1 = 1 → xn+1 = 0
yn = 1

2 → xn = 2
yn−1 = 1

2 → xn−1 = 2
(16.6.16)

and by Un−2(y) = 0, i.e.

yk = cos
kπ

n− 1
→ xk = 8 sin2 kπ

2(n− 1)
, k = 1, 2, · · ·n− 2. (16.6.17)

The first root in (16.6.16) is irrelevant for the spectrum. The spectrum is reported in
Table 16.2.

16.6.3 En Series

The analysis of these exceptional algebras has to be done separately for each of them.
1. The characteristic equation for the E6 algebra is

‖M− x · 1‖ = x6 − 24x5 + 216x4 − 936x3 + 2052x2 − 2160x+ 864
= [x2 − 12x+ 24] [x2 − 6x+ 6]2. (16.6.18)

There are two doublets of degenerate particles, plus two other particles of different
masses. The spectrum is given in Table 16.2.

2. The characteristic equation of the Toda field theory based on E7 is

‖M− x · 1‖ = x7 − 36x6 + 504x5 − 3552x4

+13536x3 − 27648x2 + 27648x− 10368
= [x− 6] [x3 − 18x2 + 72x− 72] (16.6.19)

×[x3 − 12x2 + 36x− 24].

The mass spectrum can be found in Table 16.2. Thanks to the Z2 automorphism
of the Dynkin diagram of the affine E7 algebra, the particles can be classified into
even and odd particles with respect this Z2 symmetry.
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Table 16.2: Masses of the Toda field theories related by the folding procedure.

A
(1)
2r A

(2)
2r

2M sin( πi
2r+1 ), 1 ≤ i ≤ 2r 4M sin( πi

2r+1 ), 1 ≤ i ≤ r

D
(1)
r+1 B

(1)
r

M,M, 2M sin(πi2r ), 1 ≤ i ≤ r − 1 M, 2M sin(πi2r ), 1 ≤ i ≤ r − 1
D

(1)
r+2 D

(2)
r+1 ≡ B̃r

M,M, 2M sin( πi
2r+2 ), 1 ≤ i ≤ r

√
2M sin( πi

2r+2 ), 1 ≤ i ≤ r

A
(1)
2r−1 C

(1)
r

2M sin(πi2r ), 1 ≤ i ≤ 2r − 1 2M sin
(
πi
2r

)
, 1 ≤ i ≤ r

D
(1)
2r A

(2)
2r−1 ≡ C̃r

M,M, 2M sin( πi
2(2r−1) ), 1 ≤ i ≤ 2r − 2 M√

2
,
√

2M sin( πi
(2r−1) ), 1 ≤ i ≤ r − 1

D
(1)
4 G

(1)
2

M,M,M,
√

3M M,
√

3M
E

(1)
6 D

(3)
4 ≡ G̃2

m1 = m1 = M m3, m4

m2 = m2 = 2M cos( π
12 )

m3 = 2M cos(π4 ) F
(1)
4

m4 = 4M cos( π
12 ) cos(π4 ) m1, m2, m3, m4

E
(1)
7 E

(2)
6 ≡ F̃4

m1 = M
m2 = 2M cos( 5π

18 )
m3 = 2M cos(π9 )
m4 = 2M cos( π

18 )
m5 = 4M cos( 5π

18 ) cos( π
18 )

m6 = 4M cos(π9 ) cos( 2π
9 )

m7 = 4M cos( π
18 ) cos(π9 )

m2, m4, m5, m6

3. For the Toda field theory on E8 we have

‖M− x 1‖ = x8 − 60x7 + 1440x6 − 18000x5 + 1257440x4

−518400x3 + 1166400x2 − 1296000x+ 518400
= [x4 − 30x3 + 240x2 − 720x+ 720] (16.6.20)

×[x4 − 30x3 + 300x2 − 1080x+ 720]

The masses of this theory are reported in Table 16.3.
These cases cover all the simply laced Toda field theories. A similar analysis can

also be done for those defined by the non-simply laced algebra by using the foldings,
and the final results are collected in Table 16.2.
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Table 16.3: Mass spectrum of the Toda field theory E
(1)
8 .

E
(1)
8

m1 = M
m2 = 2M cos(π5 )
m3 = 2M cos( π

30 )
m4 = 2m2 cos( 7π

30 )
m5 = 2m2 cos( 2π

15 )
m6 = 2m2 cos( π

30 )
m7 = 4m2 cos 2(π5 ) cos( 7π

30 )
m8 = 4m2 cos(π5 ) cos( 2π

15 )

Coupling constants. After the mass term, the next perturbation consists of the
three-particle coupling constants

fabc = μ2β
∑
i

qiα
a
i α

b
iα

c
i . (16.6.21)

These expressions enjoy a series of interesting geometrical properties. First of all, it is
possible to prove that they vanish if it is impossible to draw a triangle with sides of
ma, mb, and mc whose internal angles are rational fractions of π. This can be seen as
a natural consequence of the algebraic nature of the values of the masses. Moreover,
the quantities fabc vanish if they do not respect a discrete symmetry of the affine
Dynkin diagram. Consider, for instance, the symmetry Z2 of E(1)

7 : if two of the indices
of fabc refer to two even particles and the third one to an odd particle, this coupling
constant clearly vanishes. Finally, when they are different from zero, the quantities
fabc are proportional to the area Aabc of the aforementioned mass triangle. For the
simply laced algebra we have

∣∣fabc∣∣ = 4μ2 β√
h

Aabc. (16.6.22)

Obviously the non-vanishing values of fabc indicate the possible scattering processes
in which the particles and their bound states enter. In fact, with fabc �= 0 we can have
the process in Fig. 16.6: in the collision, the initial particles Aa and Ab form a bound
state Ac that decays into the same particles as the final state. From the symmetry of
the indices of fabc we immediately infer that the same scenario occurs for the processes
of the crossed channels, namely the particle Aa can be regarded as bound state of the
particle Ab and Ac, and the particle Ab may be regarded as bound state of the particles
Aa and Ac.

There are other n-particle vertices of the pertubation theory coming from the series
expansions of the exponential terms. Interestingly enough, they admit a geometrical
interpretations in terms of the moments of a distribuition of a set of positive electric
charges {qi}, placed at the points indicated by the vectors αi. Adopting this interpre-
tation, the total charge of the system is h. The condition (16.6.3) is then nothing else
but the definition of the center reference frame of the charges while the diagonalization
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f abc

f abc

A A

AA

a b

ab

A
c

Fig. 16.6 Scattering process of the particles Aa and Ab that gives rise to the bound state
given by the particle Ac.

+ + + ...+=

Aa

Ac dA

Ab

Fig. 16.7 Scattering process of the particles Aa and Ab with final state given by the particles
Ac and Ad. If Ac Ad �= Aa Ab, the four-particle vertex fabcd of the first graph cancels the sum
of the other Feynman graphs whose internal propagators are made of all the particles allowed
by the three-particle vertices f ijk �= 0.

of (16.6.9) is equivalent to the choice of the coordinates along the principal axes of the
ellipsoid defined by the quadrupole moments.

The Toda field theories possess an infinite set of conserved currents, both at the
classical and quantum level. For our scope, rather than their explicit expressions, it is
sufficient to know the spectrum of their spins s. This is given by the Coxeter exponents
of the Lie algebra under investigation, modulo the Coxeter number. The sets of these
values is given in Table 16.4. The quantum integrability of the Toda field theories
has an extremely important consequence for the scattering processes in which are
involved the particles Ai of these theories, namely their elasticity. This property is
already manifest at the tree level of the scattering processes of two initial particles
AaAb going into two final particles AcAd: indeed, the only non-vanishing amplitudes
are those in which the final particles coincide with the initial ones. At the lowest order
in the coupling constant β, this amplitude is ruled by the sum of the Feynman graphs
shown in Fig. 16.7 and this sum vanishes unless the final particles AcAd are equal to
the initial ones (in the propagators of the last three diagrams it enters all particles
that are compatible with f ijk �= 0).
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Table 16.4: Coxeter numbers and Coxeter exponents of the affine Dynkin diagrams.

Algebra ψ Exponents
A

(1)
r r + 1 1, 2, · · · , r

A
(2)
2r ≡ A2r/Z2 4r + 2 1, 3, 5, · · · , 2r − 1, 2r + 3, · · · , 4r + 1

B
(1)
r 2r 1, 3, 5, · · · , 2r − 1

B̃r ≡ D
(2)
r+1 2r + 2 1, 3, 5, · · · , 2r + 1

C
(1)
r 2r 1, 3, 5, · · · , 2r − 1

C̃r ≡ A
(2)
2r−1 4r − 2 1, 3, 5, · · · , 4r − 3

D
(1)
r 2r − 2 1, 3, 5, · · · , 2r − 3, r − 1

E
(1)
6 12 1, 4, 5, 7, 8, 11

E
(1)
7 18 1, 5, 7, 9, 11, 13, 17

E
(1)
8 30 1, 7, 11, 13, 17, 19, 23, 29

G
(1)
2 6 1, 5

G̃2 ≡ D
(3)
4 12 1, 5, 7, 11

F
(1)
4 12 1, 5, 7, 11

F̃4 ≡ E
(2)
6 18 1, 5, 7, 11, 13, 17

16.7 Toda Field Theories with Imaginary Coupling Constant

If we make the analytic continuation β → iβ in the previous action of the Toda field
theories, we arrive, in general, at a complex action (the only real case is for the algebra
SU(2) that gives rise to the Sine–Gordon model). Even though the interpretation of
these theories having a complex action is problematic from the point of view of a
standard quantum field theory quantization, it can nevertheless be shown that, for
particular values of β, an opportune restriction of their Hilbert space leads to the
definition of consistent models. Note that, with this transformation, the Liouville part
of these theories is associated to a conformal field theory with a value of the central
charge less than the rank r of the algebra. Choosing the discrete values

β2 =
p

p+ 1
p = k + h, k + h+ 1, . . .

for the central charge we have

c = r

[
1 − h(h+ 1)

p(p+ 1)

]
. (16.7.1)

This value corresponds to the conformal theory constructed on the coset9

Gk ×G1

Gk+1
.

9To compare with the formulas of Chapter 13 one should recall that the dimension |G| of the
algebra is related to its rank r and the Coxeter number ψ by the relation |G| = r(ψ + 1).
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In these theories, the vertex operator associated to the maximal root

Vαmax = eiβαr+1·φ,

i.e. the perturbing operator of the conformal theory, has conformal weight

Δαmax
= 1 − h

k + h+ 1
. (16.7.2)

Let’s discuss some significant examples.

• Taking the algebra E8 and k = 1, we have

c =
1
2
, Δmax =

1
16
. (16.7.3)

Hence the Toda field theory associated to this value of the imaginary coupling
constant corresponds to the magnetic deformation of the Ising model.

• Taking the algebra E7 and k = 1, we have

c =
7
10
, Δmax =

1
10
. (16.7.4)

Hence, in this case, the relative Toda field theory with imaginary coupling constant
corresponds to the thermal deformation of the tricritical Ising model.

• With the algebra E6 and k = 1, we have

c =
6
7
, Δmax =

1
7
. (16.7.5)

This theory corresponds to the thermal deformation of the tricritical three-state
Potts model.

16.8 Deformation of Conformal Conservation Laws

In this section we set a criterion to establish whether a deformation of a conformal
theory gives rise to an integrable model or not, away from criticality. To first order
in the coupling constant, this criterion is based on the operator product expansion
and on the formula of the conformal characters. When the integrals of motion belong
to the conformal family of the identity operator, the corresponding analysis can be
carried out in a purely algebraic way.

16.8.1 Operator Product Expansion

Consider a conformal minimal model Mp,q that is deformed by a relevant primary
scalar field Φlk(z, z̄) = φlk(z)φ̄lk(z̄), with anomalous dimension x = 2Δ < 2. The
perturbed action is

S = S0 + λ

∫
Φlk(z, z̄) d2z.
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Let Cs+1(z) be a conserved current of the conformal model Mp,q (∂z̄ Cs(z) = 0) of
spin s+ 1 (which we assume to be either an integer or fractional number), local with
respect to Φlk:

Cs+1(z)Φlk(w, w̄) =
m∑
n=2

d
(n)
lk

(z − w)n
Φ(n)
lk (w, w̄) +

1
z − w

Blk(w, w̄) + · · · (16.8.1)

where n is an integer, Φ(n)
lk and Blk are the descendent fields of Φlk, while d(n)

lk denote
here the structure constants of this operator product expansion. The Ward identity
for the current Cs(z, z̄) can be expressed in terms of the conformal Ward identity

〈Cs+1(z, z̄) · · · 〉 = 〈Cs+1(z) · · · 〉0 (16.8.2)

+λ

∫
dw dw̄ 〈Cs+1(z)Φlk(w, w̄) · · · 〉0 + O(λ2).

To first order in λ, eqns (16.8.1) and (16.8.2), together with the identity

∂z̄
1

z − w + iε
= δ(z − w)δ(z̄ − w̄),

give rise to

∂z̄ Cs+1(z, z̄) = λ
(
Blk(z, z̄) − d

(2)
lk ∂zΦ

(2)
lk

)
. (16.8.3)

The existence of a conservation law away from the critical point only depends on
whether Blk is a total derivative with respect to z. The simplest example is provided
by the stress–energy tensor: if C2 = T , then

Blk − d
(2)
lk ∂zΦ

(2)
lk = (1 − Δ) ∂zΦlk(z, z̄)

and, in this case, we have

∂z̄ T (z, z̄) = −1
4
∂z Θ, Θ = −4λ (1 − Δ)Φlk(z, z̄).

The corresponding conserved charge is expressed by

Q1 =
∫

(T dz +
1
4
Θ dz̄).

Let’s see some other significant examples.

1. The minimal model M4,5 corresponds to the universality class of the tricritical
Ising model. On the other hand, this model is also the first of the superconformal
series. Let’s choose then as Cs the supercurrent G3/2 of spin s = 3

2 and as de-
formation the vacancy density, i.e. the operator Φ13 = Φ 3

5 ,
3
5
. In the following we
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will use the notation ΦΔ,Δ̄ for the conformal fields. The supersymmetric operator
product expansion

G(z1)Φ 3
5 ,

3
5
(z2, z̄2) =

(
1

5z2
12

+
1
z12

∂2

)
Φ 1

10 ,
3
5
(z2, z̄2) + · · ·

(z12 ≡ z1 − z2) leads to the conservation law

∂z̄G(z, z̄) = ∂zΨ̄(z, z̄), Ψ̄(z, z̄) =
4
5
λ Φ 1

10 ,
3
5
(z, z̄).

The corresponding charge has spin s = 1
2

Q 1
2
≡ Q =

∫
(G dz + Ψ̄ dz̄).

Using the operator product expansion

G(z1)G(z2) =
2
z12

T (z2) + · · ·

G(z1) Φ 1
10 ,

1
10

(z2, z̄2) =
1
z12

Φ 3
5 ,

1
10

(z2, z̄2) + · · ·

it is easy to show that

Q2 =
∫
dz1dz2 G(z1)G(z2) +

4
5
λ

∫
dz̄1dz̄2

{
G(z1z̄1),Φ 1

10 ,
3
5
(z2, z̄2)

}
=
∫

(2 T dz +
4
5
λ Φ 3

5 ,
3
5
dz̄) = 2P.

In addition to Q, one can similarly prove the conservation of Q̄, which is con-
structed starting with the anti-analytic component Ḡ3/2 of the supercurrent. In
this case we have Q̄2 = 2P̄, where P̄ = E − P . Finally

Q Q̄+ Q̄ Q =
4
5
λ

∫ [(
∂z Φ 1

10 ,
1
10

)
dz +

(
∂z̄ Φ 1

10 ,
1
10

)
dz̄
]

= T . (16.8.4)

The right-hand side of this equation is the topological charge T . In fact, the
tricritical Ising model perturbed by the vacancy density operator is driven, for

0 +1−1

Fig. 16.8 Effective potential of the tricritical Ising model perturbed by Φ 3
5 , 3

5
with λ < 0. The

off-critical model has solitonic excitations that interpolate between two nearest vacua.
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λ < 0, in a phase where there are three degenerate vacua, as shown in Fig. 16.8.
The system has therefore solitonic excitations that interpolate between two near-
est vacua and that are characterized by their topological charge. The integrability
of this theory implies the elasticity of the scattering processes in which are in-
volved the solitons. The charges {Q, Q̄, P, P̄} generate a global supersymmetry of
this model away from criticality.

2. The universality class of the tricritical three-state Potts model corresponds to
a subalgebra of the minimal mode M6,7, as the universality class of the three-
state Potts model corresponds to a subalgebra of M5,6. Let’s choose as Cs the
chiral field W of spin s = 5 and as deformation Φ12(z, z̄) = Φ 1

7 ,
1
7
. The operator

expansion

W(z1) Φ 1
7 ,

1
7
(z2) =

(
w0

z2
12

+
1
z12

∂2

)
Φ 22

7 , 17
(z2, z̄2) + · · ·

(where w0 is a constant) gives rise to a conserved charge of spin 4

Q4 =
∫

( W dz + Λ dz̄), Λ = (w0 −
2
7
) Φ 22

7 , 17
.

In this case, Φ12 is the scaling operator corresponding to the energy density of the
lattice model. Hence its insertion into the action moves the temperature of the
system away from its critical value. This perturbation preserves the permutation
symmetry S3 = Z2 ⊗ Z3 of the model, generated by C (the charge conjugate
operator) and ϑ, with

C2 = ϑ3 = 1.

Q4 is an odd operator under C, i.e. CQ4 C = −Q4, while the first conserved
charge given by the total momentum P is an even operator, C P C = P.

16.8.2 Integrals of Motion of the Identity Family

It is possible to set up an efficient algebraic method to identify the integrals of motion
coming from the conformal family of the identity operator. We need first to recall that
in the conformal space the Virasoro operator L−1 acts as a derivative with respect to
the analytic coordinate, i.e. L−1 → ∂z. Let’s define Λ̂s+1 = Λs+1/L−1Λs as the space
of quasi-primary operators at the level s+1 of the conformal family [I] of the identity.
Let T (k)

s+1 be the vector basis of this space: their expressions consists of appropriate
polynomials in L−n:

T
(k)
s+1 = Ln1 L−n2 · · · L−nk

I ,
∑
i

ni = s+ 1 (16.8.5)

with the first representatives given in Table 16.5.

The eventual conserved current will be constructed in terms of linear combinations of
these vectors of the basis. Note that the operator ∂z̄ can be interpreted as a mapping
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Table 16.5: Dimensionality and vectors of the basis of Λn for n ≤ 6.

s 0 1 2 3 4 5 6
dim Λ̂n 1 0 1 0 1 0 2

Vectors I – L−2 I – T4 = L2
−2 I –

T
(1)
6 = L3

−2 I
T

(2)
6 = L2

−3 I

from the space Λ̂s+1 to the space of the operators at the level s of the perturbing
field10

∂z̄T
(k)
s+1(z, z̄) = λR(k)

s (z, z̄), ∂z̄ : Λ̂s+1 → Φs, (16.8.6)

with the operator R(k)
s explicitly expressed by

R(k)
s (z, z̄) =

∮
z

dξ

2πi
T

(k)
s+1(z) Φlk(ξ, z̄).

Since the contour integral of two operators corresponds to computing their commutator
(see Chapter 10), we also have

R(k)
s (z, z̄) =

[
T

(k)
s+1(z),

∫
dξΦlk(ξ, z̄)

]
.

In addition to ∂z̄ we can also introduce an infinite family of operators Dn that map
the family Λ of the identity operator into the space of the perturbing field

Dn Λ(z, z̄) ≡
∮
z

dξ

2πi
Λ(z) (ξ − z)n Φlk(ξ, z̄), (16.8.7)

with D0 = ∂z̄. Since the primary field Φlk satisfies

[Ln,Φlk(ξ, ξ̄)] =
[
(ξ − z)n+1 ∂ξ + Δ(n+ 1) (ξ − z)n

]
Φlk(ξ, ξ̄),

we have the relations

[Ln, Dm] = − (m+ (1 − Δ)(n+ 1)) Dn+m, (16.8.8)

D−mI =
1

(m+ 1)!
Lm+1

−1 Φlk(z, z̄).

These equations allow us to easily compute R(k)
s . For instance, choosing T2 = T =

L−2I, we have

∂z̄T = λD0 L−2 I = λ(Δ − 1)D−2 I = λ (Δ − 1)L−1 Φlk(z, z̄),

and, since L−1 [. . .] = ∂z [. . .], we recover the conservation law of the stress–energy
tensor.

10We recall that the spin s measures the difference between the analytic and anti-analytic indices
of the densities.
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Consider now the quasi-primary field of spin 4 of the identity family T4 = (T 2) =
L2

−2 I. Let’s compute ∂z̄T4 with the rules given above:

∂z̄T4 = λD0 L−2 L−2 I = λ(Δ − 1) (D−2L−2 + L−2D−2) I

= λ(Δ − 1)
(

2L−2L−1 +
Δ − 3

6
L3

−1

)
Φlk

= λ(Δ − 1)
(
−2L−3 + 2L−1L−2 +

Δ − 3
6

L3
−1

)
Φlk

For a generic operator Φlk, the right-hand side is not a total derivative for the presence
of the operator L−3 and, consequently, there is no conservation law. However, if the
perturbing field coincides with the operator Φ1,3, the null-vector equation of this field
at level 3(

L−3 −
2

Δ + 2
L−1 L−2 +

1
(Δ + 1)(Δ + 2)

L3
−1

)
Φ1,3 = 0, (16.8.9)

allows us to re-express L−3, arriving then at the conservation law

∂z̄T4 = ∂z Θ2,

with

Θ2 = λ
Δ − 1
Δ + 2

{
2ΔL−2 +

(Δ − 2)(Δ − 1)(Δ + 3)
6(Δ + 1)

L2
−1

}
Φ1,3.

The conserved charge Q3 commutes with Q1, as can be shown using the commutation
relations of the Ln’s. Using eqn (16.8.9) and the other null-vector equations satisfied
by Φ1,3, it is possible to prove that there are infinite conserved currents for all odd
integer values of the spin s. Their expressions coincide with the analogous expressions
of the Sine–Gordon model, eqn (16.3.4), a fact that should not be surprising in the
light of the relationship between the Sine–Gordon model and the Φ1,3 deformation of
the minimal models.

If the perturbing field is either Φ1,2 or Φ2,1, the first non-trivial conservation law
is obtained by the following linear combination of the quasi-primary fields of spin 6:

T6 = T
(1)
6 + aT

(2)
6 , a =

18
2Δ + 1

+ Δ − 2. (16.8.10)

For the null-vector equation of these fields(
L−2 −

3
2(2Δ + 1)

)
Φ = 0

we have in fact
∂z̄T6 = ∂Θ4.

The explicit expression Θ4 is proposed as an exercise in Problem 5. For these operators,
it can be shown that other conserved currents are obtained for the values of the spin

s = 1, 5 (mod 6). (16.8.11)
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16.8.3 Counting Argument

All the examples discussed above have illustrated the importance of the operator prod-
uct expansion for defining the conserved currents with lower values of the spin. An ex-
tremely powerful method to establish a sufficient condition of their existence, without
bothering to explicitly compute them, has been introduced by A.B. Zamolodchikov. It
goes under the name of a counting argument. The following discussion focuses on the
conserved currents coming from the identity operator although analogous results can
be easily established by considering other conserved currents coming from conformal
families of other generators that are local with respect to the perturbing field Φ.

Let Λ̂s+1 be the space of quasi-primary descendant fields of the identity operator
and Φ̂s the quotient space at level s of the perturbing field

Φ̂s = Φs/L−1 Φs−1.

The linear map
∂z̄ : T̂s+1 → λ Φ̂s

clearly has a non-zero kernel when

dim T̂s+1 > dim Φ̂s. (16.8.12)

If this condition is fulfilled, then there are necessarily some fields Ts+1(z, z̄) ∈ T̂s+1
and Φs−1(z, z̄) ∈ Φ̂s−1 such that

∂z Ts+1(z, z̄) = λ ∂z̄ Φs−1(z, z̄),

i.e. there is a conserved current of spin s. It is easy to check the condition (16.8.12) by
computing the dimension of the involved spaces by means of the conformal characters

∞∑
s=0

qs dim T̂n = (1 − q) χ̃1,1(q) + q,

∞∑
s=0

qs+Δkl dim(Φ̂k,l)s = (1 − q) χ̃k,l(q),

where
χ̃r,s(q) = q

(c−1)
24 −Δr,s χr,s(q),

with χr,s(q) the character of the field Φr,s, whose explicit expression was presented in
Chapter 11.

The counting argument provides useful information on the structure of the con-
served currents only for values of low enough spin.11 Using the counting argument it
is easy to prove the existence of non-trivial integrals of motion for the deformations
of the minimal models induced by the operators Φ1,3, Φ1,2, and Φ2,1. Hence, these
deformations always define integrable models away from criticality.

11The reason is that the dimension of the higher level spaces of Φr,s asymptotically grows faster
than the dimension of the same spaces coming from the identity operator.
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16.8.4 Examples

Let’s present some examples of the application of the counting argument.
• The first example comes from a model analyzed in the previous section, i.e. the

thermal deformation of the tricritical three-state Potts model. In this case, there
are two classes of conserved charges. The first class has its origin in the family
of the identity operator, while the second class comes from the descendants of
W. These two classes are also distinguished by their quantum number under the
charge conjugate operator C. The result is

dim T̂s+1 > dim (Φ̂ 1
7 ,

1
7
)s for s = 1, 5, 7, 11 (Ceven)

dim Ŵs+1 > dim (Φ̂ 22
7 , 17

)s for s = 4, 8 (Codd).

In light of these results, it is natural to conjecture that the spectrum of the spin
of the conserved charges is given by

s = 1, 4, 5, 7, 8, 11 (mod 12). (16.8.13)

These values of the spin coincide with the Coxeter exponents of E6, modulo
the Coxeter number of this algebra. The presence of this algebra should not be
surprising for the additional symmetry of this model, which can also be defined
in terms of the coset (E6)1 ⊗ (E6)1/(E6)2.

• An analogous computation for the tricritical Ising model (M4,5) perturbed by the
energy operator Φ1,2 = Φ 1

10 ,
1
10

gives

dim T̂s+1 > dim (Φ̂ 1
10 ,

1
10

)s for s = 1, 5, 7, 9, 11, 13 .

These values of s coincide with the first Coxeter exponents of E7. It is natural to
conjecture that the full spectrum of the spins of the conserved charges is given in
this case by

s = 1, 5, 7, 9, 11, 13, 17 (mod 18) (16.8.14)

where 18 is the Coxeter number of E7. This structure of the spins is obviously
related to the coset realization (E7)1⊗(E7)1

(E7)2
of the model.

• For the Ising model (M3,4) perturbed by the magnetization operator Φ1,2 =
Φ 1

16 ,
1
16

, we have

dim T̂s+1 > dim (Φ̂ 1
16

1
16

)s for s = 1, 7, 11, 13, 17, 19,

namely, the first representatives of the infinite series of the Coxeter exponents of
E8, modulo the Coxeter number h = 30 of this algebra.

s = 1, 7, 11, 13, 17, 19, 23, 29 (mod 30). (16.8.15)

This is not a coincidence, since the Ising model can also be defined in terms of
the coset (E8)1⊗(E8)1

(E8)2
.
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16.9 Multiple Deformations of Conformal Field Theories

Till now we have analyzed the conformal models deformed by only one relevant oper-
ator. One may wonder if the analysis above can be generalized to deformations made
of several fields. For instance, in the Ising model, there are two deformations – the
thermal and the magnetization deformations – that separately give rise to two differ-
ent integrable models. Are there, in this model, other lines12 that are integrable in the
plane (h, T − Tc)? The same question can be formulated for other models too, as for
instance, for the tricritical Ising model where the two deformations Φ1,3 and Φ1,2 are
individually integrable deformations.

Although presently there is no final answer to this question, an explicit compu-
tation to identify possible conserved currents with low values of the spin s gives a
negative answer. The essential reason lies in the different null-vector structures that
support the single deformations. This negative result leads us to be pessimistic about
the possibility that there exists conserved currents of higher spin. To present this com-
putation, let’s first recall the derivation of a conservation law Cs ∈ T̂s when there is
a single deformation, restricting attention to the unitary theory. Considering higher
order perturbation terms, we have in general

∂z̄ Cs(z, z̄) = λ B
(1)
lk (z, z̄) + · · ·λn B(n)

lk (z, z̄) + . . . (16.9.1)

Taking into account the dimensionality of the coupling constant, a dimensional analysis
fixes the scaling dimensions of the operators B(n)

lk (z, z̄), given by

[s− n(1 − Δ), 1 − n(1 − Δ)].

Since Δ < 1, there exists an integer nc such that, for all n > nc the conformal
weight of B(n)

lk (z, z̄) becomes negative. However, the absence of operators with negative
conformal weights in the unitary minimal models forces the series (16.9.1) necessarily
to stop (as a matter of fact, in most cases only the first term survives ). If we now
consider the deformations made by two operators with conformal weights Δ1 and Δ2
(and with corresponding couplings λ1 and λ2), the generalization of eqn (16.9.1) is

∂z̄ Cs(z, z̄) =
∑

n,m=1

λn1λ
m
2 B

(n,m)
lk (z, z̄). (16.9.2)

The conformal weights of the quantities B(n,m)
lk are

[s− n(1 − Δ1) −m(1 − Δ2), 1 − n(1 − Δ1) −m(1 − Δ2)].

This series must truncate, for the same reason given above. Moreover, at least in the
two explicit examples considered here, the Ising and the tricritical Ising model, the
series splits into two independent expressions, one that is only a function of λ1, with
the other of λ2. The reason is simple: in fact, the analytic conformal weight must

12If there exists an integrable point, this necessarily belongs to a renormalization group flow and
therefore the Ising model would be integrable also along this line, see Fig. 16.9.
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h

T − T
c

Fig. 16.9 Space of the coupling constants of the Ising model near the critical point, here
placed at the origin. The thermal and magnetic axes define two separate integrable models.
Another potential integrable point in the plane will belong to a renormalization group flow
(dashed line), so that the model would be integrable all along this curve.

coincide with one of the conformal weights present in the Kac tables of the model. For
the Ising model perturbed both by the energy and magnetization fields, we must have

1 − n
1
2
−m

15
16

= Δr, (16.9.3)

for some Δr of this model. However, possible values of Δr are only Δr = {0, 1
2 ,

1
16}

and it is therefore impossible to have both n and m different from zero at the same
time. The same situation occurs for the tricritical Ising model perturbed by the energy
and vacancy densities, Φ 1

10
1
10

and Φ 3
5

3
5
.

Therefore for these models, eqn (16.9.2) is expressed by the direct sum of the
contribution of both terms. If there exists a conserved current, this should appear at
the common level of the conserved currents of both deformations. Concerning the field
Φ 1

2
1
2

of the Ising model and the field Φ 3
5

3
5

of the tricritical Ising model, both are Φ1,3
operators and therefore their associated conserved currents exist for

s = 1, 3, 5, 7, . . .

For the magnetic deformation of the Ising model the spectrum of the conserved currents
is given by the Coxeter exponents of E8

s = 1, 7, 11, 13, 19, 23, 29 (mod 30).

For the tricritical Ising model, the spectrum of the conserved currents associated to
the second operator Φ 1

10 ,
1
10

coincides with the Coxeter exponents of E7

s = 1, 5, 7, 9, 11, 13, 17 (mod 18).

Hence, in both models, the common values of the spins of their double deformation
coincide with the Coxeter exponents of the corresponding En algebra.

In the following we explicitly show that there are no conserved currents of a double
deformation of these models for the lowest values of s. As mentioned above, this
result underlines the absence of the integrability of these statistical models under
their multiple deformations.
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16.9.1 The Tricritical Ising Model

We start the analysis from this model because there may exist a conserved current at
level s = 5, whereas for the Ising model we shall consider at least s = 7.

The explicit expression of the conserved current C(1)
6 of the Φ13 deformation of

the minimal model Mp,p+1 coincides with the corresponding expression of the Sine–
Gordon model

T
(1)
6 = (T (T 2)) +

9
40

(T∂2 T ), (16.9.4)

where we have substituted c = 7/10. Applying ∂z̄ to (16.9.4) and using the algebraic
formalism of the operators Dn we have

∂z̄ C6 = λ1 (1 + Δ13)[5 L−5 − 4 L−2L−3]Φ13

+L−1[· · · ].

The first term on the right-hand side is indeed zero for the Φ13 deformation, as a
consequence of the null-vector equation of this operator at level 3. Hence C

(1)
6 is

the conserved quantity under the Φ1,3 deformation. We need to check then if T (1)
6 is

still a conserved quantity if we perturb the model by means of the second operator
Φ1,2 = Φ 1

10
1
10

. Repeating the previous steps, we get

∂z̄C6 = λ2 (1 + Δ12) [9 L−5 − 6 L−2L−3] Φ12 (16.9.5)
+L−1[· · · ].

In this case, however, the null-vector equation satisfied by the operator Φ12[
L−2 −

5
42

L2
−1

]
Φ12 = 0

does not lead to the vanishing of the right-hand side of eqn (16.9.5)! As a matter of
fact, the explicit expression of the conserved current under the Φ12 deformation is
given by eqn (16.8.10)

T
(2)
6 = (T (T 2)) +

131
10

(T∂2 T ), (16.9.6)

which does not coincide with (16.9.4). Hence, the final conclusion of this computation
is the absence of a conserved current of spin s = 5 for a multiple deformation of the
tricritical Ising model. A similar analysis can be done also for the level s = 7, with a
negative result as well.

16.9.2 The Ising Model

For the Ising model in an external magnetic field and at T �= Tc the first common value
of the spin for both deformations is s = 7. The explicit expression of the conserved
current under the Φ1,3 deformation is

C8 = (T (T (T 2))) +
c+ 8

6
(T (T∂2

zT )) +
1

180
(c2 + 4c− 101)(T∂4

zT ) (16.9.7)
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with c = 1
2 . Repeating the same steps of the computation shown for the example above,

one can explicitly show that this current is not conserved under the Φ1,2 deformation
associated to the magnetization operator.

Both examples clearly show the reason of the absence of common conserved cur-
rents, related to the different structures of the null-vectors of the different deforma-
tions. It would be a major discovery in statistical mechanics if in the future one could
show the possibility of a conservation law for the multiple deformations of the Ising
model.
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Problems

1. Bäcklund transformations
a Write down the Bäcklund transformations for the Sine–Gordon model.
b Taking as initial solution of the equation of motion φ = 0, determine the new

solution φ̂(z, z̄) and show that it coincides with the solitonic solution of the model.
c Iterate the procedure to determine the other classical solutions of the Sine–Gordon

model.

2. Scattering processes of the solitons
Analyze the solution (16.3.15) with topological charge Qt = 2 of the Sine–Gordon
model in the limits t → ±∞. Determine the time delay Δss. Based on the positive
sign of this quantity and the negative sign of the analogous quantity Δss̄ for the
scattering of the soliton and antisoliton, argue about the nature of the interactions
between soliton–soliton and soliton–antisoliton.

3. Lax pair
Consider the pair of first-order differential operators (called a Lax pair)

L(x, t | θ) =
d

dx
+ i

(
β

4
∂tφσ3 +m sinh θ, cos

βφ

2
σ1 +m cosh θ sin

βφ

2
σ2

)

M(x, t | θ) =
d

dt
+ i

(
β

4
∂xφσ3 +m cosh θ cos

βφ

2
σ1 +m sinh θ sin

βφ

2
σ2

)

where σi are the Pauli matrices and θ the rapidity variable. If [L,M ] = 0:

a Show that the field φ satisfies the equation of motion of the Sine–Gordon model

�φ+
m2

β
sinβφ = 0.
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b Take a rectangular domain −L ≤ x ≤ L; 0 ≤ t ≤ T and assume a periodic boundary
condition φ(−L) = φ(L). With the notation

TL(θ, t) =
→

exp

(∫ L

−L

U(x, t | θ) dx
)
, SL(θ) =

→
exp

(∫ T

0
V (x, t | θ) dt

)

for the ordered integrals, show that

TL(θ, T ) = S−1
L (θ) TL(θ, 0)SL(θ)

so that Tr TL(θ, t) is independent of t; conclude that, θ being arbitrary, there is
an infinite number of conserved quantities.

4. Derrick theorem
The aim of this exercise is to show that the static solitonic solution of finite energy can
only exist for 1 + 1 dimensional theories. Consider, in (d+ 1)-dimensional Minkowski
space, the lagrangian

L =
1
2
∂μφ∂

μφ− U(φ),

where U(φ) is a non-negative function that vanishes at the vacua of the theory. The
static energy E can be written as E = W1 +W2, where

W1 =
1
2

∫
ddx (∇φ)2 , W2 =

∫
ddxU(φ).

Let φ(x) be a static solution of the equation of motion of the theory.
a Determine the variation of W1 and W2 under the transformation φ(x) → φ(λx).
b Using the condition that φ(x) is a solution of the equation of motion, show that the

energy E[λ] is stationary for λ = 1.
c Since W1 ≥ 0 and W2 ≥ 0, show that one can have non-vanishing solutions only for

d ≤ 2.

5. Liouville theory and minimal models
a In the quantization scheme of the Sine–Gordon model in terms of the Liouville

theory, determine the quantized values of the coupling constant g that reproduce
the central charges of the minimal models. Prove that the conformal weight of
the vertex operator that perturbes the Liouville action is equal to Δ1,3.

b Repeat the same exercise for the two Liouville theories, with complex exponentials,
associated to the Bullogh–Dodd model. Show that the perturbations correspond
to the operators Φ1,2 and Φ2,1 of the minimal models respectively.

6. Conserved currents
Using the algebra of the operators Dn and the null-vector equation at the level 2
satisfied by Φ1,2 and Φ2,1, find the linear combination T6 of the basis vectors T (1)

6 and
T

(2)
6 that satisfies

∂z̄T6 = ∂z Θ4.

Determine the density Θ4.
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S-Matrix Theory

All men are equal, just that some are more equal than others.
George Orwell

In this chapter we present the S-matrix theory of two-dimensional integrable models.
This leads, in particular, to the exact spectrum of the massive excitations away from
the critical point. From a mathematical point of view, the two-dimensional nature
of the systems and their integrability are the crucial features that lead to important
simplifications of the formalism and its successful application. It is worth mentioning
that, initially developed to overcome the obstacles encountered by quantum field the-
ory in dealing with the strong interactions of the hadronic particles1 (such as protons,
neutrons, or pions), the S-matrix has achieved its most beautiful intellectual triumph
in the analysis of the two-dimensional statistical models away from criticality, partic-
ularly when they are described by integrable theories. These significant developments
have been pioneered by A.B. Zamolodochikov.

The key point of this formalism is the self-consistent dynamical method for com-
puting the exact expressions of all scattering amplitudes and the mass of the particles.
This is the so-called boostrap approach,2 where all particles are democratically on the
same footing: there is no distinction between the particles of the asymptotic states
and the bound states, and any massive excitation of the theory can equivalently be
regarded as an asymptotic state or a bound state of a pair of particles of the same
theory. From this point of view, all particles are composite states and no one is more
elementary than another. The only difference between them (apart some internal quan-
tum number) consists of the value of their masses, which may provide a hint about
the number of interactions they are involved with. Quoting Orwell, we can then say
that the lightest particle of the theory is the one more equal than the others.

In this chapter we firstly address the general principles of S-matrix theory and
secondly we discuss their application to the two-dimensional cases. In the next chapter
we present some significant examples of this remarkable formalism, in particular the
exact solution of the Ising model in an external magnetic field at T = Tc.

1We refer the reader interested in these developments to the appendix of this chapter.
2In addition to the conformal bootstrap, this is another example of a theory whose solution is

based on its own mathematical and physical self-consistency.
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17.1 Analytic Scattering Theory
In a relativistic context, S-matrix theory is a generalization of the scattering process
theory of quantum mechanics, briefly discussed in Appendix B of this chapter. Its
aim is to derive general conditions on the transition amplitudes of the scattering
processes involving the multiparticle asymptotic states, with the aim of arriving at
their computation without relying on an underlying lagrangian formalism.

17.1.1 General Properties

The main properties at the root of S-matrix theory are the following:
1. the short range of the interactions;
2. the superposition principle of quantum mechanics;
3. the conservation of probability;
4. the invariance under the Lorentz transformations of special relativity;
5. the causality principle;
6. the analyticity principle.

Let’s discuss in more detail each point and work out their consequences for a generic
scattering theory in d ≥ 2. The two-dimensional case will be analyzed separately later
on.

To adopt the S-matrix formalism to describe the scattering processes it is necessary
to assume that the interactions are short range, so that the initial and final states,
in which the particles are well separated one from another, consist of free particle
states. These multiparticle states can be specified assigning the momenta3 and other
possible quantum numbers. For simplicity we focus our attention only on the scattering
processes of the scalar particles. Since the scattering processes involve the physical
particle states instead of virtual ones, the components of their momenta satisfy the
d-dimensional on-shell condition

pμ p
μ = m2,

where m is the mass of the particle. This equation gives rise to the dispersion relation

E2− | �p |2 = m2 (17.1.1)

that links together the energy E = p0 and the space component �p of the momentum.
The spectrum of the eigenvalues of the spatial momentum is obviously a continuum
but, to simplify the discussion below, it is useful to use momentarily the compact
notation | n〉 to denote the states of the system. They are made of free particles, and
they form a basis of the Hilbert space that satisfy the orthogonal and completeness
relations

〈m | n〉 = δnm,
∑
n

| n〉〈n |= 1.

We will specialize later the Lorentz invariant normalization condition of the states.

3In the following by momentum we mean the d-dimensional relativistic momentum of the particles,
alias the set of all its components (p0, �p). However, using the on-shell condition (17.1.1), it is obvious
that the multiparticle states are identified just by the space components of their momenta.
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S

|n >

|m >

Fig. 17.1 Quantum transition from an initial n-particle state to a final m-particle state.

At t = −∞, let | i〉 be the initial state of the system, given by a certain number
of free particles. At t = +∞, i.e. after they have interacted, the final state | f̃〉 of
the system also consists of free particles, although not in the same number or with
the same momenta as the initial state, as shown in Fig. 17.1. For the superposition
principle of quantum mechanics, the final state can be written as | f̃〉 = S | i〉, where S
is a linear operator.4 Hence, the probability that a measure on the final state produces
as a result the state | f〉 is expressed by the modulus squared of the matrix element

Sfi = 〈f | S | i〉. (17.1.2)

Consider now an initial normalizable state | ψ〉, given by a linear superposition of the
basis vectors

| ψ〉 =
∑
n

an | n〉 ,
∑
n

| an |2 = 1.

The total probability that this state evolves as a final state in any basis vectors is
obviously equal to 1 and we have therefore

1 =
∑
m

| 〈m | S | ψ〉 |2 =
∑
m

〈ψ | S† | m〉〈m | S | ψ〉

= 〈ψ | S† S | ψ〉 =
∑
n,m

a�n am 〈n | S† S | m〉.

Since this identity should hold for arbitrary values of the coefficients an, necessarily

〈n | S† S | m〉 = δnm,

4S is the time evolution operator from t = −∞ to t = +∞. If the system admits a quantum field
theory formulation, it is expressed as S = T exp[−i

∫ +∞
−∞ ddxHi(x)], where HI is the hamiltonian

density and T denotes the time-ordering of the expressions obtained by the series expansion of the
exponential term.
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or, in operator form,
S† S = 1. (17.1.3)

Similarly, imposing equal to 1 the total probability that an arbitrary final state comes
from some initial state is, one obtains the condition

S S† = 1. (17.1.4)

In conclusion, probability conservation requires S to be a unitary operator.
Let’s now analyze the Lorentz invariance of the scattering theory. Let L be an

arbitrary proper Lorentz transformation and L | m〉 =| m′〉. The relativistic invariance
of the theory, which ensures the independence of the physical observables from the
reference frames, is expressed by the identity

| 〈m′ | S | n′〉 |2 = | 〈m | S | n〉 |2 .

This relation cannot fix the relative phase between the two matrix elements but, given
the intrinsic arbitrariness of the overall phase of the S-matrix, we can impose the more
stringent condition

〈m′ | S | n′〉 = 〈m | S | n〉. (17.1.5)

As we will see later, this equation implies that the S-matrix, once we factorize a delta-
function for the conservation of the total momenta, depends on the momenta of the
particles only through their Lorentz invariant combinations of their scalar products.

Without interactions, the state of a system does not change and in this case the
S-matrix is simply the identity operator. It is a common procedure to separate the
free time evolution, given by the identity operator, and write the S-matrix as

Sfi = δfi + i(2π)dδd(Pf − Pi)Tfi. (17.1.6)

The matrix elements Tfi define the scattering amplitudes. In the second term of this
expression we have also explicitly written the factor δd(Pf − Pi) that expresses the
conservation law of the total momentum, where Pi and Pf are the sum of the momenta
of the initial and final particles, respectively. For the non-diagonal matrix elements
i→ f the matrix elements of the identity operator vanish and we have

Sfi = i(2π)dδd(Pf − Pi)Tfi. (17.1.7)

The relative probability is obtained by the modulus squared of this amplitude. In
computing such a modulus squared there is however a problem, whose origin is the
interpretation to assign to the square of the delta function. This problem can be solved
by using initially the following representation of δ(x)

δd(Pf − Pi) =
1

(2π)d

∫
ei(Pf −Pi)x ddx.

Computing now another integral of this kind at Pf = Pi (just for the presence of
the delta-function) and taking the integral over a finite time interval t and on a
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(d − 1)-dimensional volume V , sufficiently large but finite, the result is V t/(2π)d.
For the modulus squared of the matrix element we have then

| Sfi |2 = (2π)d δd(Pf − Pi) | Tfi |2 V t.

Dividing now for the factor V t, we get the transition probability per unit volume and
unit time

Pi→f = (2π)d δd(Pf − Pi) | Tfi |2 .

The most important cases, both from a theoretical and experimental point of view, are
those in which the initial state is made either of one particle or two particles. The first
case concerns the decay processes, i.e. when a heavy particle decays in a set of lightest
ones, whereas the second case is relative to the scattering of two particles, which can
result in an elastic diffusion or in a production process.

It is now useful to specify more precisely the normalization of the states. The more
convenient choice is related to the covariant normalization of the one-particle state

〈p′ | p〉 = 2E (2π)d−1 δd−1(�p′ − �p). (17.1.8)

This is a Lorentz invariant normalization and it is equivalent to integrating over the
mass-shell state of a particle as

∫
dd−1p

(2π)d−12E
| p〉 〈p | p′〉 =

∫
ddp

(2π)d−1 δ(p2 −m2) | p〉 〈p | p′〉 = | p′〉,

with E > 0. Hence, the density of states associated to a on–shell particle with
momentum in the interval (p, p+ dp) is given by

dd−1p

(2π)d−12E
.

Decay process. Taking into account the proper normalization of the states, the prob-
ability of a decay of a particle of energy E into an n-particle state is expressed by

dΓ = (2π)d δd(P − p1 − · · · − pn) | Tfi |2
1

2E

n∏
i=1

dd−1pi
(2π)d−12Ei

. (17.1.9)

Scattering process 2 → n. The probability that a collision of two particles of mo-
menta p1 = (E1, �p1) and p2 = (E2, �p2) produces their transformation in an arbitary
number of other particles with momenta pi is given by

dP = (2π)d δd(P − p1 − · · · − pn) | Tfi |2
1

4E1E2

n∏
i=1

dd−1pi
(2π)d−12Ei

. (17.1.10)
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In the last case, rather than the probability, it is often more interesting to compute
the Lorentz invariant cross-section dσ of the collision. This is obtained by dividing the
probability dP by

j =
I

E1E2
,

where I is the scalar quantity

I =
√

(p1 · p2)2 − (m1m2)2.

It is easy to see that j is the flux density of the colliding particles. In fact, in the
reference frame of the center of mass of the system (�p1 = −�p2 = �p), one has I =| �p |
(E1 + E2) and then

j = | �p |
(

1
E1

+
1
E2

)
= v1 + v2,

where v1 and v2 are the velocities of the two colliding particles. Hence the cross-section
is the transition probability per unit of the flux of the scattering particles.

Note that in the probability of both decay or scattering processes there is the
quantity

dΦn =
dd−1p1

(2π)d−12E1
· · · dd−1p1

(2π)d−12E1
(2π)d δd(P − p1 − p2 − · · · − pn). (17.1.11)

This is the differential n-particle phase space. It expresses the density of states for an n-
particle system with total momentum P . This quantity also enters the spectral density
of the correlation functions, which will be discussed in Chapter 20. Given its relevance
in many aspects of the theory, its detailed study is carried on in Appendix 17C.

Let’s now investigate the consequences of the unitarity condition of the S-matrix.
Substituting eqn (17.1.6), in (17.1.4) we get

Tfi − T �
if = i (2π)d

∑
n

δd(Pf − Pi)Tfn T �
in, (17.1.12)

where the sum over the index n here denotes, in compact notation, both a sum and an
integral over all intermediate states allowed by the conservation of the total momentum
of the process. Note that the left-hand side of this equation is linear with respect to
the matrix elements of T , whereas the right-hand side is quadratic. If the theory
under investigation has a coupling constant g that can be regarded as a perturbative
parameter, the first consequence of eqn (17.1.12) is the hermiticity of the matrix T at
the first perturbative order

Tfi 	 T �
if . (17.1.13)

In fact, the left-hand side of (17.1.12) is of first order in g, whereas the right-hand side
is of second order.
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Optical theorem. Another important consequence of eqn (17.1.12) is the optical
theorem relative to the scattering process of two particles. To prove it, let’s initially
sandwich eqn (17.1.12) with the states | p1, p2〉 and | p3, p4〉

2 Im 〈p3, p4 | T | p1, p2〉 = (2π)d
∑
n

δd(Pf − Pi) 〈p3, p4 | T | n〉〈p1, p2 | T � | n〉.

(17.1.14)
If the scattering process is purely elastic, the final state coincides with the initial state
and in this case we have

2 ImTii = (2π)d
∑
n

δd(Pf − Pi) | Tin |2 .

Note that the right-hand side of this expression differs only for a multiplicative factor
from the total cross-section σt of all possible scattering processes obtained by a given
initial state i

σt =
(

(2π)d

j

) ∑
n

| Tin |2 δd(Pi − Pn).

Therefore we have the optical theorem, stated by the relation

σt =
2
j

ImTii.

This theorem allows us to compute the total cross-section of the theory (which also
includes all the inelastic processes) in terms of the imaginary part of the purely elastic
scattering amplitude of two particles.

Finally, let’s comment on the final principles on which S-matrix theory is based,
namely the causality and the analyticity principles. One expects that these two aspects
should be deeply related to each other, on the basis of the well-known example of the
dispersion relations satisfied by the Green functions of an ordinary quantum system
(see Problem 1). However, in the context of relativistic quantum mechanics, it is in
general a difficult problem to pin down the precise analytic structure of the S-matrix
in terms of the causality principle. Quite often, in fact, the analytic properties of the
S-matrix elements are conjectured on the basis of those derived in the non-relativistic
scattering processes or encountered in the perturbative diagrams of the associated
quantum field theory, when this is known. In short, the basic assumption on which
we rely is encoded in the following statement: the transition amplitudes coincide with
the real boundary values of analytic functions of several complex variables having a
minimum number of singularities dictated by specific physical processes. The study of
the two-particle scattering process will help us in clarifying some important aspects of
this topic.

17.1.2 Two-body Scattering Process

Let’s consider in more detail the diffusive scattering process of two initial scalar parti-
cles (with momenta p1 and p2) going into two scalar particles (with momenta p3 and
p4), as shown in Fig. 17.2,

A1 +A2 → A3 +A4. (17.1.15)
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Fig. 17.2 Two-particle scattering process.

Once we factorize the delta-function of the conservation of the total momentum

〈p3, p4 | T | p1, p2〉 = i(2π)d δd(p1 + p2 − p3 − p4) T , (17.1.16)

the remaining quantity T is an analytic function of the relativistic invariants of this
process. They can be expressed in terms of the Mandelstam variables s, t, and u,
given by

s = (p1 + p2)2, t = (p1 − p3)2, u = (p1 − p4)2. (17.1.17)

These quantities are not all independent, since from the conservation law

p1 + p2 = p3 + p4, p2
i = m2

i (i = 1, 2, 3, 4)

one has

s+ t+ u =
4∑

i=1

m2
i . (17.1.18)

It is easy to understand the meaning of s, going in the reference frame of the center
of mass of the process (17.1.15), defined by �p1 + �p2 = 0. In this frame s = E2, where
E = E1 +E2 is the total energy in the center-of-mass frame. The variable t is instead
the square of the energy in the center of mass of the crossed channel

A1 + A3 → A2 + A4, (17.1.19)

and the same is true for the variable u, with respect to the crossed channel

A1 + A4 → A2 + A3. (17.1.20)

In the equations above, Ai denotes the antiparticle: going in a cross-channel, one has
to reverse the arrow of the out-going particle that becomes then the antiparticle.
Production thresholds and branch cuts. In view of eqn (17.1.18), the amplitude
T is a function of only two of the Mandelstam variables, say s and t. Let’s study its
analytic structure as a function of s at fixed t, assuming for simplicity that each of the
four particles involved in this scattering process has the same mass m. The physical
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values of s are given by s ≥ s2 = (2m)2: this is the set of values for which there exists
the physical state of the two asymptotic particles. In the interval

(2m)2 ≤ s ≤ (3m)2,

corresponding to values of the total energy in the center of mass less than the threshold
of inelastic production, the two-particle states are the only intermediate states that
can appear in the right-hand side of eqn (17.1.14). Therefore

2 Im 〈p3, p4 | T | p1, p2〉 = (2π)d
∫

dd−1k1

(2π)d−12E1

dd−1k2

(2π)d−12E2
δd(p1 + p2 − k1 − k2)

×〈p3, p4 | T | k1, k2〉〈p1, p2 | T � | k1, k2〉. (17.1.21)

But once the threshold value is overcome, in the next interval

(3m)2 < s < (4m)2,

it is necessary to add other terms in the right-hand side of the equation above: these
terms are those relative to the intermediate states made of three particles, compatible
with the conservation law of energy. In the same way, there are other additional terms
due to the N -particle intermediate states each time that s overcomes their threshold
of production, sN = (N m)2.

The discontinuity in the imaginary part of the amplitude of the elastic scattering by
varying s implies that it has certain singularities in correspondence with the threshold
values of the inelastic processes. They are branch points of the amplitude T , as it is
easy to show using the Feynman diagrams of the perturbative series. In the complex
plane of the variable S it is thus convenient to draw a series of cuts starting from
the various thresholds to infinity, all along the real axis, as in Fig. 17.3. In this way
the scattering amplitude becomes a one-value function on the corresponding Riemann
surface. The physical sheet is obtained without crossing any cuts of Fig. 17.3 whereas
the other sheets, called non-physical sheets, are defined specifying the crossing of one
or more cuts of the amplitude T (s, t).

s

m m
b b

s
2

s
3

s
4

1 2

2 2

I

Fig. 17.3 Analytic structure of the elastic scattering amplitude of two particles. On the
right-hand side there are the branch cuts relative to the threshold values in the s-channel,
while on the left-hand side there are the branch cuts relative to the threshold values of the
t-channel. The circle represents the poles of the amplitude, relative to the bound states.
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Fig. 17.4 Feynman diagram relative to (a) the s-channel amplitude and (b) the t-channel
amplitude, for the scattering process of two particles in a φ3 theory.

Bound states and poles. The lowest threshold, at s2 = 4m2, is associated to the
physical state of two particles. As an analytic function of s, T (s, t) can also be evaluated
for non-physical values of s, such as those less than s2. The possibility to create an
arbitrary number of particles starting from the two-particle state can also be considered
for s < s2. However, in this case, these are only the one-particle states, with mass
mbi

< 2m. These are obviously virtual processes since they are precluded by the
conservation of energy that holds for the physical process. However they determine
the bound states of the asymptotic particles and, as for the non-relativistic scattering
amplitudes (see Appendix 17B), correspond to simple poles in the amplitude T (s, t).
This analytic structure is confirmed by the perturbative theory based on the Feynman
graphs. Consider, for instance, a theory in which there is a φ3 interaction: in the
scattering process of two particles there are the graphs shown in Fig. 17.4. The first
diagram, apart from some constants, is given by

(a) −→ 1
(p1 + p2)2 −m2 + iε

, (17.1.22)

and gives rise to a pole in the s-channel, while the second diagram

(b) −→ 1
(p1 − p2)2 −m2 + iε

, (17.1.23)

gives rise to a pole in the t-channel.
Physical regions and crossing invariance. The region in which T (s, t) coincides
with the amplitude relative to the physical scattering process (17.1.15) is that in which
there are positive values of the energies of all particles and real values of their momenta.
For particles of equal mass, this region is identified by the conditions5

s ≥ 4m2, t ≤ 0, u ≤ 0, (17.1.24)

5If the masses are different, the conditions are slightly more complicated.
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as can be seen by expressing s, t and u in terms of the momentum �q and the scattering
angle θ in the center-of-mass frame:

s = 4(m2 + q2),
t = −2q2(1 − cos θ),
t = −2q2(1 + cos θ).

Since T (s, t) is an analytic function of both variables, it can be analytically continued
from the original domain (17.1.24) to the regions

t ≥ 4m2, s ≤ 0, u ≤ 0, (17.1.25)

and
u ≥ 4m2, s ≤ 0, t ≤ 0. (17.1.26)

The first region corresponds to the physical domain relative to the channel (17.1.19)
while the second region to the physical domain of the channel (17.1.20). This implies
that the same analytic function can be used to describe the three different physi-
cal processes given in (17.1.15) (the s-channel), in (17.1.19) (the t-channel), and in
(17.1.20) (the u-channel). This fundamental property of the ampitude T (s, t) expresses
the crossing invariance of the scattering processes.
t-channel. As we have identified the threshold singularities of T (s, t) by varying s at
fixed t, we can similarly identify the singularities of this amplitude by varying t and u,
using the crossing invariance. In the t-channel the threshold singularities are placed at

t = 4m2, 9m2, 16m2, . . . (17.1.27)

and analogously in the u-channel

u = 4m2, 9m2, 16m2, . . . (17.1.28)

From the relation (17.1.18), fixing the value u0 of the variable u, the branch points
(17.1.27) then appear in the complex plane of the variable s at the points

s = −u0, −u0 − 5m2, −u0 − 12m2, . . . (17.1.29)

whereas the pole at t = m2
bi

appears in the position

s = −u0 + 3m2
bi
. (17.1.30)

The analytic structure (at u = u0, fixed) is shown in Fig. 17.3.
Physical amplitude. Since we are in the presence of branch cuts along the real axis of
the s-plane, it is necessary to establish the limit of the function T (s, t) associated to the
physical amplitude in the s-channel. The physical region of this process is identified by
u0 < 0 and by the real values of s, with s > 4m2 −u0. Perturbative theory shows that
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the physical amplitude is recovered by taking the limit from the upper half complex
plane on the first cut of the function T (s, t), namely

Tphys = lim
ε→0+

T (s+ iε, u0). (17.1.31)

Note that this result is equivalent to the Feynman prescription iε in the propagators
of the particles

1
p2 −m2 + iε

.

In fact, adopting this prescription, any integral on the momenta of the intermediate
particles can be computed with real external momenta, i.e. corresponding to a real
value of the variable s. Moreover, eqn (17.1.31), together with hermitian analyticity,
implies that the amplitude T is a real function in the real interval I between the two
branch cuts (Fig. 17.3), as can also be proved directly from the Schwartz reflection
principle in complex analysis.

17.2 General Properties of Purely Elastic Scattering Matrices

Let’s now specialize the general conditions discussed in the previous section to the case
of (1 + 1) scattering theories when there is an infinite number of conserved charges
Qs in involution. These two circumstances give rise to a drastic simplification of the
analytic structure of the S-matrix and will lead to an exact expression of the scattering
amplitudes in many interesting cases.

17.2.1 Rapidity Variable and Asymptotic States

The momenta of the particles involved in scattering processes are on-shell. In (1 + 1)
dimensions there exists an efficient parameterization of the dispersion relation E2 −
p2 = m2 in terms of the rapidity variable θ. For a particle of mass mi we have in fact

p
(0)
i = mi cosh θi, p

(1)
i = mi sinh θi. (17.2.1)

Note that the Lorentz transformations can be regarded as a rotation of a hyperbolic
angle α and therefore implemented as θ → θ + α. Furthermore, both components of
the momentum can be changed by sign with the transformation θi → iπ − θi. In this
way, the momentum of the original particle becomes that of its own antiparticle. Later
it will also be useful to consider the light-cone components, defined by

p = p(0) + p(1) = mi e
θ,

p = p(0) − p(1) = mi e
−θ.

(17.2.2)

They satisfy p p = m2
i .
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Fig. 17.5 Geometrical interpretation of the rapidity variable θ.

The rapidity variable has an interesting geometric intepretation, due to the Italian
mathematician Riccati. In a plane with axes given by E and p, the dispersion
relation E2 = p2 +m2 represents a hyperbola, as shown in Fig. 17.5a. The rapidity
is proportional to the area A that is encompassed between the hyperbola and the
straight line that joins the origin to the point of the hyperbola identified by the
variable θ. The relation is A = m2θ/2. An analogous result is obtained for the
angle α that parameterizes the points of a circle x2 +y2 = m2, shown in Fig. 17.5b.
Imposing x = m cosα and y = m sinα, the area A between the horizontal axis and
the segment that identifies the point on the circles is in fact A = m2α/2. The two
geometrical situations are related by the analytic continuation α→ iθ.

The n-particle states of this theory can be written as

| Aa1(θ1)Aa2(θ2) . . . Aan
(θn)〉, (17.2.3)

where by the symbol Aai
(θi) we denote the particle of type ai that is moving with

rapidity θi. By means of a linear superposition of these states, we can construct wave
packets that are localized both in momentum and coordinate space. In this way, we can
imagine assigning a well-defined position to the particles above. In the massive theories,
the interactions are short range and consequently a state like (17.2.3) represents a
collection of free particles except in the time instants in which the wavepackets overlap.
Let’s discuss in more detail how to represent the initial and final states.

An initial asymptotic state is given by a set of free particles at t → −∞. Since in
the (1+1) dimensional theories the actual motion takes place on a line, this means that
the fastest particle must be on the farthest left-hand side of all the others, while the
slowest must be on the right-hand side of all the others, with the remaining particles
are ordered according to the value of their rapidities between those two. To express
this situation in a formal way, it is appropriate to consider the symbols Aai

(θi) as non-
commuting variables, whose order is associated to the space ordering of the particles
that they represent. In this way, an initial asymptotic state can be written as

| Aa1(θ1)Aa2(θ2) . . . Aan
(θn)〉, (17.2.4)
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where the rapidities are ordered in a decreasing way

θ1 ≥ θ2 ≥ θ3 · · · ≥ θn. (17.2.5)

Similarly, a final asymptotic state is made of free particles at t → +∞. Hence each
particle must be on the left-hand side of all the others that move faster than it. The
final asymptotic states can then be represented by

| Aa1(θ1)Aa2(θ2) . . . Aan
(θn)〉, (17.2.6)

but this time with an increasing order of the rapidities, i.e.

θ1 ≤ θ2 ≤ θ3 · · · ≤ θn. (17.2.7)

Obviously each product (17.2.3) can always be ordered in the way we like by means of
a certain number of commutations of the symbols Ai(θi) between neighbor particles.
As we will see below, each commutation can be interpreted as a scattering process of
two particles. It is custom any to normalize the states as

〈Ai(θ1) | Aj(θ2)〉 = 2πδij δ(θ1 − θ2). (17.2.8)

Consequently, the density of states with rapidities (θ, θ + dθ) is given by dθ/2π.

17.2.2 Conserved Charges

The existence of an infinite number of conserved charges Q±s in involution has a series
of significant consequences on the scattering processes. As discussed in the previous
chapter, the charges can be identified by their spin index s and the local ones6 can be
expressed by the integral of their current densities

Qs =
∫

[Ts+1(z, z̄) dz + Θs−1(z, z̄) dz̄ ] , s ≥ 1,

where Ts+1(z, z̄) and Θ(z, z̄) are local fields that satisfy the conservation law

∂z̄ Ts+1 = ∂z Θs−1.

Analogously, for the charges with negative spins, hereafter denoted also by Q̄s, we
have

Q̄s =
∫ [

T̄s+1(z, z̄) dz + Θ̄s−1(z, z̄) dz̄
]
,

with
∂z T̄s+1 = ∂z̄ Θ̄s−1.

Note that Q±1 coincide with the light-cone components of the momentum

Q1 = P = P (0) + P (1),
Q−1 = P̄ = P (0) − P (1).

(17.2.9)

6In some integrable theories, such as the Sine–Gordon model or the nonlinear O(3) sigma model,
there are also non-local conserved charges, often associated to operators with fractional spin.
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Since, by hypothesis, these charges commute among themselves

[Qs,Qs′ ] = 0,

they can be diagonalized simultaneously. The spectrum of the values s of the conserved
charges varies by varying the theory and, as we shall see, it is deeply related to the
structure of the bound states. Their action of the one-particle states leads to

Qs | Aa(θ)〉 = ω(a)
s (θ) | Aa(θ)〉, (17.2.10)

where the functional dependence of the functions ω(a)
s (θ) is determined by the tensor

properties of Qs: under the Lorentz group, Q|s| trasforms as s copies of P while Q−s

as s copies of P̄ , and it is then natural to regard Q±s as tensors of rank s. Hence we
can impose

ω(a)
s (θ) = χ(a)

s es θ, (17.2.11)

where χ(a)
s is called the eigenvalue of the charge Qs on the particle a. The spectrum of

these eigenvalues is a problem interesting in itself that will be faced in some examples
discussed in Section 17.5.1.

Further restrictions may come from the discrete symmetries of the model. For in-
stance, if the theory is invariant under charge conjugation C, the conserved charges
can be classified as even or odd operators Q(±)

s with respect to C. Furthermore, as-
suming that the parity P is also a symmetry of the system, one can show the validity
of the commutation relations

CQ(+)
s C = Q(+)

s = (−1)s+1 Q(+)
s

CQ(−)
s C = −Q(−)

s = (−1)s+1 Q(−)
s .

(17.2.12)

They imply that the values of s for the C-even charges are only odd numbers, while
those of the C-odd charges are even integers.

Let’s now analyze how the infinite conserved charges constrain the scattering pro-
cesses. S. Coleman and J. Mandula, in their famous paper, have shown that in (3+1)-
dimensional theories the existence of only one conserved charge of tensor rank larger
than 2 implies a trivial S-matrix, i.e. S = 1. This result does not apply to the (1 + 1)-
dimensional theories but, in this case, there is a series of severe constraints that are
listed below.

1. The number of particles with mass ma remains the same before and after the
collision has taken place.

2. The set of the final momenta of the particles is the same of the initial momenta,
namely the scattering processes are purely elastic.

3. The scattering amplitude for the process in which n particles are involved can
be completely factorized in terms of the n(n− 1)/2 elastic scattering two-particle
amplitudes.

Let’s now prove these properties.
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17.2.3 Elasticity in the Scattering Processes

In order to prove the elasticity of the scattering processes note that the conserved
charges act on the multiparticle states as

Qs | Aa1(θ1) . . . Aan
(θn)〉 =

n∑
i=1

χ(ai)
s esθi | Aa1(θ1) . . . Aan

(θn)〉.

Since
dQs

dt
= 0,

there is an infinite sequence of constraints that involve the sum of the higher powers
of the momenta of the initial and final particles∑

i∈ in

χ(ai)
s esθi =

∑
j∈ fin

χ(aj)
s esθj . (17.2.13)

The only solution to these infinite numbers of equations (apart from the permutations
of particles with the same quantum numbers) corresponds to the case in which the
final and the initial sets of rapidity are equal. Hence, in theories having an infinite
number of conserved charges, the annihilation and production processes are absent:
all scattering processes are therefore elastic.

17.2.4 Factorization of the Scattering Processes

In addition to being elastic, the scattering processes in these theories are also factor-
ized. For a heuristic explanation of this feature, it is necessary to understand the action
of the conserved charges Qs on a localized wavepacket. If Qs is the space component
of the two charges Q±s, assuming for simplicity that χ(a)

s = 1 we have

eicQs | Aa(p)〉 = eicp
s | Aa(p)〉.

Now, let

ψ(x) =
∫ +∞

−∞
dp e−a(p−p0)2 eip(x−x0),

be the wavefunction of a state that is well localized both in momentum space (around
p = p0) and in coordinate space (around x = x0). Acting by eicQs on this state we
have

ψ̃(x) =
∫ +∞

−∞
dp e−a(p−p0)2 eip(x−x0) eicp

s

.

This new function is now localized at x = x0 − scps−1
0 , as can be seen by a saddle

point computation. Hence, for s > 1, the center of the wavepacket is translated by a
quantity that depends on the (s−1)th power of its momentum (for s = 1, Qs coincides
with the ordinary momentum operator that shifts equally all wavepackets by the same
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Fig. 17.6 A simultaneous collision of three particles.
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Fig. 17.7 A three-particle collision realized by a sequence of two-particle collisions. These
two cases and the one drawn in the previous figure are related by a symmetry transformation
and therefore have the same amplitude.

amount). The above result shows that wavepackets with different momenta can be
shifted differently acting on them with the conserved charges eicQs of higher spin.7

Consider now the collision of three particles of momenta p1 < p2 < p3, associated
to wavepackets well-localized both in momentum and coordinate space. Depending
on the initial positions of the three packets, we can have three types of collisions, as
shown in Figs 17.6 and 17.7, respectively. The first type consists of the simultaneous
collision of the three particles. The other two types are drawn in Fig. 17.7, in which
the scattering process is made of three distinct two-particle collisions, well separated
in space and time. Obviously the chronological sequence of these collisions is different
in the two graphs of Fig. 17.7.

In a generic scattering theory, the processes relative to Figs 17.6 and 17.7 have
different amplitudes. However, for integrable theories, the three different situations
can be obtained one from the other by an appropriate action of the operators eicQs .
Since these operators commute with the hamiltonian of the system (associated to
Q±1), their action must lead to equivalent physical situations. Therefore, in integrable
theories, there is equality of the three scattering amplitudes! We have thus achieved
two extremely important results:

• Since in an integrable theory the S-matrix of a three-particle process can be
factorized in two different but equivalent ways (corresponding to the different

7This result clarifies the Coleman–Mandula theorem. In fact, in (d + 1)-dimensional theories,
with d > 1, the possibility to translate differently particles of different momenta means that their
trajectories can never cross: theirs is a free motion without collision and therefore S = 1.
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sequences of two-particle collisions shown in Fig. 17.7), the two-particle scattering
amplitudes S2(pa, pb) must satisfy the so-called Yang–Baxter equation8

S2(p2, p3)S2(p3, p1)S2(p1, p2) = S2(p1, p2)S2(p1, p3)S2(p2, p3). (17.2.14)

• The previous result can be easily generalized to n-particle processes. In fact, it
is easy to show that the fulfilment of the Yang–Baxter equations (17.2.14) are
sufficient and necessary conditions for the factorization of this amplitude in terms
of the n(n− 1)/2 two-particle elastic amplitudes. As before, in these collisions a
possible exchange of the momenta can occur only between particles with the same
mass and the same quantum numbers.

For the properties of elasticity and factorization, the S-matrix theory of a two-
dimensional system is drastically simplified and the explicit expression for S can be
found for many important physical models. It is in fact sufficient to find the two-particle
scattering amplitudes to have full control over any other scattering processes. In turn,
the two-particle scattering amplitudes can be found as solutions of the Yang–Baxter
equation, together with the general requirements of unitarity and crossing symmetry.

17.3 Unitarity and Crossing Invariance Equations

In this section we discuss the unitary and crossing symmetry equations that hold for
the two-particle elastic scattering amplitudes of a (1+1)-dimensional integrable theory.

Let p1 and p2 be the initial and final momenta of the incoming particles Ai and
Aj and the outgoing ones Al and Ak, as shown in Fig. 17.8. In addition to the delta
function δ(2)(p1 +p2−p3−p4) of the conservation of the total energy and momentum,
the Lorentz invariance equires that the scattering amplitude depends on the particle
momenta only by their invariant combinations, given by the Mandelstam variables s,
t, and u defined in eqn (17.1.17). Note that for the (1 + 1)-dimensional systems and
for the elasticity of the scattering process u vanishes identically, u = 0, while s and t
can both be expressed in terms of the difference of the rapidites of the particles.9 In
fact, using the parameterization (17.2.1), the Mandelstam variable s of the process

AiAj → Ak Al,

is given by
s(θij) = (p1 + p2)2 = m2

i +m2
j + 2mimj cosh θij ,

θij = θi − θj .
(17.3.1)

For the physical processes θij assumes real values and consequently also s is real and
takes values s ≥ (mi +mj)2. The Mandelstam variable t is instead given by

t(θij) = (p1 − p2)2 = m2
i +m2

j − 2mimj cosh θij . (17.3.2)

8The detailed matrix structure of this equation will be specified later.
9For the elastic processes in the (1 + 1)-dimensional system there is only one independent Man-

delstam variable for the equalities p3 = p2 and p1 = p4 of the momenta.
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Fig. 17.8 Elastic scattering process of two particles.

Consequently, we can switch between the s and the t-channels by the analytic contin-
uation

t(θ) = s(iπ − θ), (17.3.3)

which admits the natural geometrical interpretation shown in Fig. 17.8, if we regard
θ as the (imaginary) angle between the lines of the incoming particles.

In (1+1)-dimensional systems, the two-particle S-matrix elements are defined by10

| Ai(θ1)Aj(θ2) 〉 = Sklij (θ) | Ak(θ2)Al(θ1) 〉, (17.3.4)

with θ = θ12 and θ1 > θ2, consistently with the definition of the initial and final
asymptotic states previously discussed. In this equation a sum over the indices k and l
is implicit; this occurs if the particles with k �= i and l �= j are not distinguished by any
eigenvalues of the conserved charges. Note that the dependence of the S-matrix on the
difference of the rapidities is a consequence of the relativistic invariance of the theory,
since a Lorentz transformation changes the value of the rapidity of each particle by a
constant. There is a relation between the S-matrix given above and the one written in
terms of the original Mandelstam variable s, here denoted by S: this relation is given
by the jacobian of the transformation s(θ)

Skl
ij (s) = 4mimj sinh θ Sklij (θ). (17.3.5)

Constraints from discrete symmetries. In an elastic scattering theory with r types
of particles, the set of r4 functions Sklij (θ) completely determines the full S-matrix of
the problem. However these functions are not all independent. First of all, the matrix
elements Sklij (θ) are non-zero only when the particles Ai and Ak (as well as Aj and Al)
have the same quantum numbers with respect to the conserved charges. This implies,
in particular, the equality of their masses mi = mk and mj = ml. Moreover, assuming

10In these theories it is customary to define S as the unitary operator that maps the initial states
onto the final states, i.e. | in〉 = S | fin〉. This is the definition that we will use hereafter. Strictly
speaking, this definition corresponds to the operator S−1 previously introduced.
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the invariance of the theory under the charge conjugation C, the parity P and the
time reversal T , there are the further relations

Sk li j (θ) = Sl kj i (θ), P

Sk li j (θ) = Sk̄ l̄
ī j̄

(θ), C

Sk li j (θ) = Sj il k(θ), T

(17.3.6)

where ā = Ca denotes the antiparticle state.
Yang–Baxter equations. The Yang–Baxter equations impose additional equations
on these amplitudes: the explicit form of these equations is (there is a sum over all the
repeated indices)

Sabij (θ12)Sclbk(θ13)S
nm
ac (θ23) = Sabjk(θ23)Sncia (θ13)Sml

cb (θ12). (17.3.7)

These correspond to r6 equations, in correspondence with the values of the six external
indices i, j, k, l,m, n. This is an overdetermined set of equations because their number
is larger that the r4 amplitudes to be determined. Hence, solutions of these equations
can only be found for special functional forms of the functions Sklij (θ). Note that, from
their homogeneity, the Yang–Baxter equations (17.3.7) can only fix the ratios of the
scattering amplitudes. Some explicit examples of solutions will be considered in later
sections.

Let’s now focus our attention on the analytic properties of the scattering ampli-
tudes. They can be derived by specializing the general considerations presented in
the first section of this chapter. We will initially consider the analytic properties with
respect to the Mandelstam variable s, to translate them later in terms of the rapidity
θ. We have the following properties:

• S(s) is a one-value analytic function in the complex plane of s with two elastic
branch cuts, the first for s ≤ (mi −mj)2 and the second for s ≥ (mi +mj)2. The
physical domains of this function are for values just above the branch cut on the
right, i.e. s+ = s+ i0 and s > (mi +mj)2. The first sheet of the Riemann surface
of this function is called the physical sheet.

• S is a real analytic function, namely it assumes complex conjugate values at
complex conjugate points

Sklij (s∗) =
[
Sklij (s)

]∗
.

In particular this implies that S(s) assumes real values when s is itself real, with
(mi −mj)2 ≤ s ≤ (mi +mj)2.

The unitarity equation is expressed by S(s+)S†(s+) = 1. This is a matrix relation,
with a sum over all intermediate states between S and S†. When s+ increases, it
is energetically possible that states with a higher number of particles enter this sum,
giving rise to production processes and consequently to additional branch cuts of S(s).
However this circumstance does not occur in integrable theories and, in this case, the
unitarity conditions involve only the two-particle states

Sklij (s+)
[
Snmkl (s+)

]∗ = δni δ
m
j .
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Using the real analyticity of these functions, this equation can be written as

Sklij (s+)Snmkl (s−) = δni δ
m
j ,

with s− = s − i0. This equation shows the necessity to introduce a branch cut at
s = (mi +mj)2 and, furthermore, that this branch cut is of the square root type. To
prove this, let Sγ(s) be the function obtained by the analytic continuation of S(s) after
an anticlockwise path around that point. The unitarity condition imposes the validity
of S(s+)Sγ(s+) = 1 for all physical values of s+. This relation can be analytically
continued for all values of s, with the result

Sγ(s) = S−1(s).

In particular, if s− is a point below the cut, we have

Sγ(s−) = S−1(s−) = S(s+),

where the second equality follows from applying the unitarity equation twice. Since
Sγ(s−) is just the analytic continuation of S(s+) obtained with a double twist around
the point s = (mi+mj)2, it follows that at this point there is a square-root singularity.

Concerning the second cut, the one that goes from s = (mi −mj)2 to s = −∞, it
can be discussed using the fundamental invariance of the relativistic scattering theories
under the crossing transformations. In fact, if one of the incoming particles, say the
one with index j, inverts its motion so that it becomes an outgoing particle and the
same operation is done with the outgoing particle of index l to transform it into an
incoming particle, the original amplitude becomes the amplitude of another scattering
channel. For this new amplitude we have then i and l̄ as incoming particles, and k
and j̄ as outgoing particles, where the symbols ā denotes the antiparticles. This ends
up looking at Fig. 17.8 from left to right, instead of from bottom to top, so that now
the direct channel is described by the Mandelstam variable t instead of the original
variable s. Since in this new process p2 = p3, the relation between s and t is simply

t = (p1 − p2)2 = 2p2
1 + 2p2

2 − (p1 + p2)2 = 2m2
i + 2m2

j − s.

The crossing invariance permits us to recover the amplitude relative to this scattering
process by means of the analytic continuation of the original amplitude in the region
of the s plane where the variable t assumes physical values, i.e. t ∈ � e t ≥ (mi+mj)2.
The physical amplitudes are then related by

Sklij (s+) = Skj̄
il̄

(2m2
i + 2m2

j − s+). (17.3.8)

Also here it is easy to prove that the point s = (mi −mj)2 has a square-root branch
singularity. This does not imply though that the Riemann surface associated to the
function S(s) is only made of two sheets. In fact, by an analytic continuation of this
function along a path that crosses the branch cut on the left we may reach a different
sheet than the one obtained by an analytic continuation through the cut on the right.
Hence, moving up or down these sheets and crossing the left and right cuts, we can
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Fig. 17.9 Map between the s-plane and the θ-plane, together with the unitarity and crossing
symmetry conditions.

span the Riemann surface of the S-matrix, made in general of several sheets, possibly
infinite.

Let’s now translate the considerations above in terms of the rapidity variable. Note
that the inverse transformation of (17.3.1)

θij = log

[
s−m2

i −m2
j +
√

[(s− (mi +mj)2)(s− (mi −mj)2]
2mimj

]
,

maps the physical sheet of the s-plane in the strip 0 ≤ Im θij ≤ π. The second sheet is
instead mapped in the strip −π ≤ Im θij ≤ 0. This structure repeats with period 2πi,
as shown in Fig. 17.9. Moreover, as shown in eqn (17.3.2), the Mandelstam variable
t is obtained by substituting θij → iπ − θij in eqn (17.3.1). Hence, the map (17.3.1)
realizes a uniformization of the original analytic structure, since in the plane of the
variable θ there are no longer branch cuts. This implies that the S-matrix, considered
as a function of θ, is an analytic function at the image points of the original cuts, i.e. at
0 and iπ, as well as at all other points inπ of the other sheets. Since the integrability of
the theory guarantees that these are the only branch points of the original amplitude,
we arrive to the important result that S(θ) is a meromorphic function of θ. Since S(s)
is a real analytic function, S(θ) assumes real values on the imaginary axis of θ.

Expressed in terms of θ, the unitarity condition becomes∑
n,m

Snmij (θ)Sklnm(−θ) = δki δ
l
j , (17.3.9)

with the crossing invariance condition

Sk li j (θ) = Sk j̄
i l̄

(iπ − θ). (17.3.10)

It is interesting to stress some important aspects of the formulation of the S-matrix
theory in terms of the rapidity variable. The first aspect is that the unitarity and
crossing symmetry equations can be analytically continued for arbitrary values of θ
and therefore they hold in all the complex plane of this variable. The second aspect
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concerns the definition itself of the S-matrix that, as a function of θ, can be written
in an operator form as

Ai(θ1)Aj(θ2) = Sklij (θ)Ak(θ2)Al(θ1). (17.3.11)

This equation defines an algebra for the symbols Aa(θ), the so-called Faddev–
Zamolodchikov algebra. Therefore the scattering processes can be equivalently inter-
preted as commutation relations among the operators that create the particles. In this
respect, the unitarity equation (17.3.9) can be seen as a simple consequence of this
algebra. Analogously, the Yang–Baxter equations simply derive by the associativity
condition of the Faddev–Zamolodchikov algebra, as shown in Problem 4.

17.4 Analytic Structure and Bootstrap Equations

The elastic S-matrices are meromorphic analytic functions in the complex plane of θ.
The bound states, originally associated to the simple poles of these amplitudes in the
interval of s between (mi−mj)2 and (mi+mj)2, correspond now to simple poles with
positive residue11 along the imaginary segment (0, iπ) of the θ variable. Consider an
S-matrix with incoming particles Ai and Aj that has a simple pole in the s-channel
at θ = i unij . Corresponding to of this pole, the amplitude can be expressed as

Sklij 	 i
R(n)

θ − iunij
, (17.4.1)

with the residue R(n) related to the on-shell vertex functions of the incoming particles
and the bound state An, as shown in Fig. 17.10

R(n) = fnij f
n
kl. (17.4.2)

A non-zero value of fnij obviously implies a pole singularity in the other two am-
plitudes Sin and Sjn as well, where the poles are now due to the bound states Aj and
Ai. Since in the bootstrap approach the bound states are on the same footing as the
asymptotic states, there is an important relation among the masses of the system: if
θ = iunij is the position of the pole in the scattering of the particles Ai and Aj , the
mass of the bound state is given by

m2
n = m2

i +m2
j + 2mimj cosunij . (17.4.3)

This relation is simply obtained by substituting in the Mandelstam variable s given
in eqn (17.3.1) the resonance condition θ = iunij . Notice that this formula expresses
a well-known geometrical relation, known as Carnot’s theorem, among the sides of a
triangle (here equal to the values of the masses), where unij is one of the external angles
as shown in Fig. 17.11). This figure clearly highlights the symmetric role played by
the three particles.

11In the next chapter we will see that this concept can be generalized both to the cases of poles
with negative residues and higher order poles.
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Fig. 17.10 Residue of the pole and its expression in terms of the on-shell coupling constants.
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Fig. 17.12 Relation among the positions of the poles.

From the deep geometrical nature of the quantities involved in this formulation
and as a consequence of (17.4.3), it is easy to show that the positions of the poles in
the three channels satisfy

unij + ujin + uijn = 2π. (17.4.4)

This relation, shown in Fig. 17.12, expresses a well-known properties of the external
angles of a triangle.

As we are going to see later, the elastic S-matrix of (1+1)-dimensional systems may
also have higher order poles, whose interpretation stays in the singularities coming from
multiple scattering processes. Instead of an abstract discussion, we prefer to illustrate
their features later by means of some explicit examples.



Analytic Structure and Bootstrap Equations 581

Diagonal S-matrices. To proceed further in the discussion of the analytic struc-
ture of the elastic S-matrices, it is convenient to make an additional simplification in
the theory so far presented. This simplification occurs in two cases: (i) when the sys-
tem has a non-degenerate mass spectrum and (ii) when the system has a degenerate
spectrum but with all particles uniquely identified thanks to the different eigenvalues
with respect to the conserved charges. In both cases, the elasticity of the scattering
processes enforces the vanishing of the reflection amplitude (see Problem 5): the cor-
responding S-matrix is then completely diagonal and the Yang–Baxter equations are
then identically satisfied. The unitarity and crossing symmetry conditions simplify as
follows

Sab(θ)Sab(−θ) = 1, Sab(θ) = Sab̄(iπ − θ), (17.4.5)

where b̄ is the antiparticle of b. These two equations imply that the amplitudes Sab(θ)
are periodic functions of θ with period 2πi: in this case the Riemann surface of the
S-matrix consists of a double covering of the complex plane s. Remarkably enough,
there is a general solution of eqn (17.4.5) that can be expressed in terms of products
of the meromorphic functions

sx(θ) =
sinh 1

2 (θ + iπx)
sinh 1

2 (θ − iπx)
. (17.4.6)

From their periodicity, the parameter x can always be chosen as −1 ≤ x ≤ 1. In
the double covering of the original variable s, i.e. in the strip −π ≤ Im θ < π, these
functions have a simple pole at θ = iπx and a simple zero at θ = −iπx. Moreover,
they have the properties

sx(θ) sx(−θ) = sx(θ)s−x(θ) = 1,
sx(θ) = sx+2(θ) = s−x(−θ),
s0(θ) = −s1(θ) = 1,
sx(iπ − θ) = −s1−x(θ).

(17.4.7)

A suggestive interpretation of these functions is proposed in Problem 8.
When the particles involved in the scattering are instead neutral, i.e. when the

particles coincide with their antiparticles, the solution of eqns (17.4.5) can be expressed
in terms of the functions

fx(θ) = sx(θ) sx(iπ − θ) =
tanh 1

2 (θ + iπx)
tanh 1

2 (θ − iπx)
. (17.4.8)

The simple poles of these functions are at θ = iπx and θ = iπ(1 − x) and they
are related by the crossing transformation. They also have simple zeros at −iπx and
−iπ(1 − x). Important properties of these functions are

fx(θ) = fx(iπ − θ) = f1−x(θ), fx(−θ) = f−x(θ) = 1/fx(θ). (17.4.9)
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In summary, as a consequence of the unitarity and crossing symmetry equations,
any amplitude Sab(θ) of a diagonal S-matrix can be expressed as

Sab(θ) =
∏

x∈Aab

sx(θ), (17.4.10)

if there are charged particles, or by

Sab(θ) =
∏

x∈Aab

fx(θ), (17.4.11)

if the particles are neutral.
Bootstrap principle. The unitarity and crossing symmetry equations alone are not,
however, able to fix the position of the poles of these amplitudes, namely to determine
the sets Aab. To achieve this aim it is necessary to make use of a dynamical condition.
This is provided by the bootstrap principle that posits that the bound states are on the
same footing as the asymptotic states. As a consequence, the amplitudes that involve
the bound states can be obtained in terms of the amplitudes of the external particles
and vice versa. This translates into an additional equation satisfied by the scattering
amplitudes

Sil̄(θ) = Sij(θ + iūkjl)Sik(θ − iūjlk), (17.4.12)

where
ūcab ≡ π − ucab. (17.4.13)

This equation comes from the commutativity of the two processes shown in Fig. 17.13,
obtained one from the other by the translation of the world-line of the asymptotic
particle Ai (see Problem 6).
Rules of the game. To summarize, in order to determine the S-matrix by the boot-
strap approach one has to find a set of poles relative to all amplitudes Sab that are
compatible with the bootstrap equation (17.4.12) and that can be interpreted in terms
of bound states or multiparticle scattering processes of the asymptotic particles them-
selves. The masses of the particles are determined by the relation (17.4.3). In practice
this means starting from the amplitude that involves the lighest particle, therefore
with the simplest pole structure, and then iteratively applying the bootstrap equa-
tions (17.4.12) in order to get the scattering amplitudes involving the bound states of
higher mass.

j j

kk

=

ii

l l
_ _

Fig. 17.13 Bootstrap equation that links the S-matrix amplitudes, where Al̄ is the bound
state in the scattering process of the particles Aj and Ak.
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It should be stressed, though, that not all the choices of the initial amplitude give
rise to consistent bootstrap systems. Presently, the theoretical problem of classifying
in their full generality the integrable models in the bootstrap interaction is still open.
Valuable information is gained by the spectrum of the conserved charges, as discussed
in the next section. Important examples of consistent S-matrices will be given in the
next chapter and they are extremely helpful to clarify several aspects of the iterative
bootstrap procedure.

To simplify the repeated applications of the bootstrap equations (17.4.12), it is
useful to define the operator Ry, whose application to a function G(θ) is given by

Ry(G(θ)) = G(θ + iπy)G(θ − iπy).

Applying Ry to the functions sx(θ) and fx(θ) and using their properties, one has

Ry(sx(θ)) = sx+y(θ) sx−y(θ),
Ry(fx(θ)) = fx+y(θ) fx−y(θ).

They also have the commutative and distributive properties

Ry(Rz(G)) = Rz(Ry(G)), Ry(G1)Ry(G2) = Ry(G1G2).

Finally, if a function G(θ) satisfies the equation

G(θ) = G(iπ − θ) = 1/G(−θ), (17.4.14)

the same holds for the function transformed by Ry.

17.5 Conserved Charges and Consistency Equations
In this section we study the relation between the spins of the conserved charges and the
bound states of a scattering theory. The integrals of motion Qs are a set of dynamical
data relative to each scattering theory. If the lagrangian of the model was known,
it would be possible in principle to determine them explicitly. Knowledge of the S-
matrix alone leads only to some constraints on the values of the spins s. It also leads
to the determination of the ratios of the eigenvalues of Qs. As shown below, these
results derive from the bootstrap principle and the locality properties of the conserved
charges.

Let Qs be the set of all conserved charges. Since they commute with each other, they
can be simultaneously diagonalized together with the hamiltonian, and the asymptotic
states Aa(θ) are also eigenvectors of Qs

Qs | Aa(θ)〉 = χ(a)
s esθ | Aa(θ)〉. (17.5.1)

For a conserved charge of spin s, there exists at least an eigenvalue χ(a)
s different from

zero. Note that χ(a)
1 is simply the mass of the particle a, χ(a)

1 = ma. The locality of
the conserved charges implies that their action on the multiparticle states is given by

Qs | Aa1(θ1) · · · Aan(θn)〉 = (ω(a1)
s (θ1) + · · ·ω(an)

s (θn)) | Aa1(θ1) · · · Aan(θn)〉.
(17.5.2)
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Suppose that the amplitude Sab presents a pole at θ = iucab corresponding to the
bound state Ac̄. Correspondingly, this can be defined as

lim
ε→0

ε | Aa(θ + iūbac + ε)Ab(θ − iūabc)〉 = | Ac̄(θ)〉.

Now applying Qs to both terms of this equation and using eqns (17.5.1) and (17.5.2),
one obtains an infinite-dimensional homogeneous system of linear equations for the
eigenvalues χ(a)

s :
χ(a)
s eisū

b
ac + χ(b)

s e−isūa
bc = χ(c̄)

s . (17.5.3)

A solution of this system is obviously χ(i)
s = 0 (∀s, i). However, this is not an interesting

solution because it implies the absence of all conserved charges. Non-trivial solutions
can be found only for particular values of the resonance angles ucab of the S-matrix,
corresponding to the vanishing of the determinant of the homogeneous linear system
(17.5.3).

Consider, for instance, the case in which a = b, with χ
(a)
s �= 0. Equation (17.5.3)

can be written in this case as

2 cos(s ūaac) =
χ

(c)
s

χ
(a)
s

. (17.5.4)

If the bound state c corresponds to the same initial particle a, this equation admits
the solutions

ūaaa =
π

3
, s = 1, 5 (mod 6). (17.5.5)

Note that the exact value of the resonance angle ūaaa = π
3 comes directly from the

geometry of the mass triangle, in this case an equilateral triangle. The S-matrix of this
example presents the so-called Φ3 property, since the particle Aa is simultaneously a
bound state of itself. Read in reverse, this result hints that each time that the spectrum
of the conserved spins consists of integer numbers that are not divisible by both 2 and
3, the particle mass spectrum may present the Φ3 property.

To proceed in our analysis, it is useful to introduce the notion of bootstrap fusion
rules. Let Aa be the operator that creates a particle a in the bootstrap interaction.
The bound state structure can be encoded in this relation

Ai × Aj =
∑
k

nkij Ak. (17.5.6)

where nkij are boolean variables, with values 0 and 1, different from zero only when Ak

is the bound state of the scattering process of the particles Ai and Aj . Even though
there is a strong analogy of this relation with the Verlinde algebra of the conformal field
theory, it should be stressed that the bootstrap fusion rules do not form an associative
algebra.

As mentioned above, the full classification of all bootstrap systems is still an open
problem, even though there are strong indications that the only consistent systems are
those related to Toda field theories or reductions thereof. Below we present only some
simple but instructive examples of consistent bootstrap systems.
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17.5.1 Non-degenerate Bootstrap Systems

Let’s assume the existence of a non-trivial solution of the set of equations (17.5.3).
From their homogeneous form, we can always choose to normalize to 1 all the non-
zero eigenvalues of the lightest particle. For a neutral particle, it is easy to show by
induction that all remaining eigenvalues are real. Equations (17.5.3) then split into
two different sets

(χ(c)
s )2 = (χ(a)

s )2 + (χ(b)
s )2 + 2χ(a)

s χ(b)
s cos(s ucab),

χ(a)
s sin(sūbac) = χ(b)

s sin(sūabc).

The first provides a generalization of the mass triangle equation (17.4.3), while the
second generalizes a simple geometrical property of this triangle. It should be stressed
that the second equation is particularly useful from a computational point of view:
to have non-zero values of χ(a)

s and χ
(b)
s , the ratio of the two trigonometric functions

sin(sūbac)/ sin(sūabc) must in fact be independent of any bound state Ac in the channel
| AaAb〉. Hence, knowing the resonance angle of any of the bound states in this chan-
nel, one can use this equation either to correctly identify the value of the others or,
alternatively, to prove that it is impossible to have conserved charges of higher spins
compatible with the structure of the bootstrap fusions.

Let’s consider some significant examples of bootstrap systems that involve N par-
ticles, starting from the simplest case N = 1.

• N=1. In this case, assuming the existence of only one bound state, the only fusion
process is the one that sees the particle as a bound state of itself:

A × A→ A. (17.5.7)

The resonance angle is uaaa = π
3 and the only possible values of the spins of the

conserved charges are
s = 1, 5 (mod 6). (17.5.8)

A physical realization of this system is provided by the off-critical Yang–Lee model
or by the Bullogh–Dodd lagrangian, as we will see in the next chapter.

• N=2. In addition to the reducible fusion rules Aa × Aa → Aa, Ab × Ab → Ab,
consider the examples

(i) Aa ×Aa → Ab , Ab ×Ab → Aa

(ii) Aa ×Aa → Aa +Ab , Ab ×Ab → Aa.

The consistency equations of the processes (i) are

2χ(a)
s cos(sūaab) = χ(b)

s , 2χ(b)
s cos(sūbab) = χ(a)

s .

For χ(a,b)
s �= 0 they become

4 cos(sūaab) cos(sūbab) = 1.
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This equation admits two types of solutions

ūaab =
π

12
, ūbab =

5π
12
, s = 1, 4, 5, 7, 8, 11 (mod 12) (17.5.9)

ūaab =
π

5
, ūbab =

2π
5
, s = 1, 3, 7, 9, (mod 10). (17.5.10)

Note that the spectrum of s of the first solution coincides with the Coxeter expo-
nents of the Toda field theory on E

(1)
6 .

If we restrict our attention to neutral particles, there are no conserved spins with
s = 2k. In this case the spectrum of the conserved spins of the first solution
becomes

s = 1, 5, 7, 11 (mod 12). (17.5.11)

It coincides with the Coxeter exponents of the Toda field theory based on F̃4 =
E

(2)
6 , obtained by folding the original E6 Dynkin diagram with respect to its Z2

automorphism.
For the process (ii), as possible values of the spins it is necessary to take those com-
patible with the one-particle subprocess. For instance, for the solution (17.5.10),
we have

s = 1, 7, 11, 13, 17, 19, 23, 29 (mod 30). (17.5.12)

This spectrum coincides with the Coxeter exponents of the Toda field theory
based on E

(1)
8 .

• Bootstrap chains. For a generic bootstrap system of N neutral particles it is
easy to analyze the case in which there is a bootstrap chain of bound states

Ak ×Ak → Ak+1 k = 1, 2, . . . N, AN+1 = A1.

The consistency equation is

N∏
k=1

2 cos(s ūkk,k+1) = 1,

whose solution is given by

ūkk,k+1 =
kπ

2N + 1
(17.5.13)

s = 1, 3, . . . , 2N − 1, 2N + 3, . . . , 4N + 1 (mod 4N + 2).

In this case the spectrum of conserved spins coincides with the Coxeter exponents
of the Toda field theories based on A

(2)
2N .
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Appendix 17A. Historical Development of S-Matrix
Theory

S-matrix theory is an interesting chapter in elementary particle physics and it is worth
mentioning its basic developments. The reader can also consult the references at the
end of the chapter for a broader perspective on the subject.

Proposed originally by W. Heisenberg to overcome the difficulties of quantum field
theory in dealing with the divergences of the perturbative series, S-matrix theory
received considerable attention during the 1950s and the 1960s, in particular in the
study of strong interactions of hadronic particles, such as protons, neutrons, and pions.
The enormous number of particles and hadronic resonances discovered during those
decades made clear the difficulty of calling all of them elementary particles. Further-
more, it was discovered that the hadronic resonances present high values of their spin
J , related to the square of their mass by a linear relation, J = α′m2, where the con-
stant α′ ∼ 1 (Gev)2 is the Regge slope. The first attempts to use quantum field theory
to describe the hadronic phenomena were very disastrous. There was in fact the dif-
ficulty of incorporating both the unstable particles (the resonances) and the particles
with spin higher than 1: the only known consistent quantum field theories, i.e. renor-
malizable, are those limited to stable particles with spin 0, 1/2, and 1. The large values
of the effective coupling constants coming from experiments also led to doubt about
the efficiency and validity of the possible perturbativie theories for such processes.

From all these drawbacks, it was necessary to look for an alternative theory of the
hadronic processes, to eventually extend to other interactions too. The new approach,
based on a set of principles and on the analytic properties of the quantum amplitudes,
was boosted under the name of The analytic theory of the S-matrix. Proposed and
studied in great detail by the group of physicists in Berkeley, in particular by Chew
and Mandelstam, the theory developed further with the important contributions by
Weisskopf, Frautschi, Regge, and many others. Since the analysis of the scattering
processes is the common and closest point between theory and experiment, the expec-
tations were that the results derived by S-matrix theory should not depend on the
existence or the absence of an underlying quantum field theory of the interactions.
A fundamental theory based on the S-matrix should be able to answer a series of
questions, such as the following:

1. What is the difference between stable and unstable particles? Does where exist
a theoretical framework for both? As is well known, the lagrangian formulation
of quantum field theory only makes use of the stable asymptotic particles and
therefore it does not allow an equal footing for both cases.

2. Is it possible to determine the mass spectrum and the coupling constants of the
theory? One should recall that, in a lagrangian theory, on the contrary, both
masses and coupling constants are free parameters of the model.

The initial studies of the S-matrix as a function of the energy, momentum, angular
momentum, etc., showed the suggestive circumstance that the analytic structure of the
S-matrix appeared to be the simplest possible. This was assumed then as a principle
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s + + +

Fig. 17.14 Amplitudes that determine the high-energy behavior of the scattering process.

and formalized under the heading of the principle of maximum analyticity of the S-
matrix. If this hypothesis were correct, the physics of the strong interactions should
not have arbitrary constants, except for the fundamental constants of nature, such as
the speed of light c, the Planck constant h, and one parameter scale. Consequently, all
the strong interaction particles would be composite particles and could be considered
on the same footing. This was the basis of the bootstrap principle.

All these theoretical developments were deeply influenced by the formalism pro-
posed by Regge to analyze the scattering amplitudes as functions in the complex plane
of the angular momentum. In particular, using Regge’s theory, it was possible to study
elegantly the asymptotic behavior of the amplitudes for large values of s and to give
an estimate of the high-energy limit of the cross-sections. Among the results obtained
thanks to Regge’s theory it is worth mentioning:

1. The prediction of the high-energy asymptotic behavior of the scattering processes
dominated by the exchange of particles (with the relative associated poles) in the
t-channel, as shown in Fig. 17.14

σtot 	 sα0−1.

2. The prediction of the relation between the total cross-section of a process with
incoming particles A+B and the cross-sections relative to the incoming particles
A+A and B +B:

σ
(A+B)
tot =

[
σ

(A+A)
tot σ

(B+B)
tot

]1/2
.

This prediction was based on the close relation between the Regge poles and the
resonances, with the factorized expression of the amplitude near a Regge pole

fnm(l, s) 	 γn γm
l − α(s)

.

However, the most important result obtained by analytic S-matrix theory was the
scattering amplitude discovered by Gabriele Veneziano, which exactly implements the
duality between the s- and t-channels. Let’s discuss this in more detail. In the presence
of particles exchanged in the t-channel, having an increasing values of mass and spin,
the amplitude in this channel assumes the form

A(s, t) = −
∑
J

g2
J (−s)J
t−m2

j

. (17.A.1)

If there is only a finite number of these terms, their sum defines an amplitude that
does not have poles in the s-channel, since at any fixed value of t, A(s, t) is manifestly
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an integer function12 of s. However, one arrives at a different conclusion if the series
is infinite, for it could diverge at different values of s, giving rise then to poles also
in the s-channel. In this case, it would not be obvious that to implement the crossing
symmetry one shoud also include the corresponding terms of the s-channel, for they
could already be present in the series (17.A.1).

Obviously the same conclusion could be reached starting with the s-channel, ar-
riving in this case to an analogous formula

Ã(s, t) = −
∑
J

g2
J (−t)J
s−m2

J

. (17.A.2)

It is now possible to imagine that, with an appropriate choice of the coupling constants
gJ and the masses mJ , the two amplitudes A(s, t) and Ã(s, t) define the same function:
if this is the case, the scattering amplitude could be equivalently written as a series on
the infinite poles of the t-channel or the s-channel, with an explicit duality between
the two pictures. This was explicitly shown by Veneziano with the amplitude

A(s, t) =
Γ[−α(s)] Γ[−α(t)]
Γ[−α(s) − α(t)]

, α(x) = α0 + α′ x. (17.A.3)

From the linear behavior of α(x), it is easy to show that the singularities of the
amplitude (17.A.3) are simple poles, corresponding to the exchange of particles of mass
m2 = (n− α0)/α′, n = 0, 1, 2, . . . both in the s- and t-channels. Moreover, the residue
at the pole α(t) = n is a polynomial of order n in s, corresponding to a particle of spin
n. The same happens for the poles of the s-channel. Using the asymptotic behavior
of the function Γ(z), it is easy to see that the Veneziano amplitude presents a Regge
behavior in both variables

A(s, t) 	 sα(t), s→ ∞, t fixed
A(s, t) 	 tα(s), t→ ∞, s fixed.

The discovery of the Veneziano amplitude has had an enormous influence on the
development of strong interaction studies. Moreover, it has been the starting point
for string theory.

The Regge theory and analytic S-matrix theory have dominated theoretical studies
for a long time, becoming an extremely sophisticated field, with many subtleties and
adjustments, introduced to incorporate in the formalism new phenomena in the strong
interaction domain discovered over the years. It was also in fierce competition and
often in open opposition with the formulation given of the fundamental interactions
by quantum field theory. There were violent polemics among the supporters of the two
different formulations, as it was in the past among those who supported the wave or
the corpuscular theory of light. The scientific atmosphere of those years is condensed
in this humorous story.

12We recall that, in Feynman perturbation theory, in order to implement the crossing symmetry
one has to include both the diagrams of the s- and t-channels.
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A student was curious to know whether the Mandelstam dispersion relation of the
scattering amplitude could be derived by quantum field theory. He addressed the ques-
tion to Weisskopf who answered: “Field theory? What is a field theory?”. He went on
then to ask the same question to Wigner, who said: “Mandelstam? Who is Mandel-
stam?”. Finally, quite discouraged, the student thought to address the question directly
to Chew who, having heard the question, pronounced: “Proof? What is a proof?”

However, despite the initial triumphs, S-matrix theory sank into oblivion, not
because it was proved wrong but simply because it was too complicated to handle and
many years of study have produced only modest advances. Finally it was supplanted
by quantum field theory, which came back into vogue because of the suggestive hints
of deep inelastic scattering processes. The new quantum chromodynamics theory, a
quantum field theory based on a non-abelian gauge group, had the important feature
of asymptotic freedom that, in addition to being compatible with all the experimental
data, also permits us to make new quantitative predictions.

In light of these historical developments, it is fair to say that the vindication of the
basic principles of S-matrix theory comes from the study of two-dimensional statistical
models, with the solution of important systems, such as the Ising model in an external
magnetic field, which resisted theoretical attempts for many years.

Appendix 17B. Scattering Processes in Quantum
Mechanics

In this appendix we recall the main formulas of scattering theory in quantum me-
chanics. We examine, in particular, one-dimensional systems, i.e. those closer to the
S-matrix theory of the (1+1)-dimensional systems studied in the text. In the following
we impose � = 1. Consider initially a particle of mass m and momentum p that moves
freely along the real axis, with hamiltonian

H0 =
p2

2m
,

Since p commutes with H0, we can simultaneously diagonalize both operators. The
common eigenfunctions are the plane waves

ψk(x) = eikx

pψk(x) = kψk(x)
H0 ψk(x) = k2

2m ψk(x).

The time evolution of these eigenfunctions is

ψk(x, t) = e−iEkt ψk(x) = e−it k2/2m ψk(x). (17.B.1)

The energy spectrum is continuous and doubly degenerate, since it depends on the
square of the momentum. Hence any linear combination of ψk and ψ−k is also an
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Fig. 17.15 Potential of the scattering process. In regions I and III the particle moves freely.

eigenfunction of H0. H0 also commutes with the parity operator P and therefore we
can choose a basis with functions of a given parity

ψk0(x) = cos kx, P ψk0(x) = ψk0(x)
ψk1(x) = sin kx, P ψk1(x) = −ψk1(x).

(17.B.2)

Let’s imagine now adding to the hamiltonian a potential V (x), finite and different
from zero, only inside a region | x |< x0, as in Fig. 17.15. For simplicity, let’s assume
that V is an even function, V (x) = V (−x):

H = p2

2m + V (x)
V (x) = 0 for | x |> x0.

(17.B.3)

The spectrum of the eigenvalues with E ≥ 0 remains invariant, as well as the eigen-
functions in the external regions I and III

ψ(x) =
{
Aeikx +Be−ikx, x < −x0
Ceikx +De−ikx, x > x0.

(17.B.4)

The linear relation that links A and B to the coefficients C and D depends on the
shape of the potential V (x).

Consider now the scattering solutions ψ+(x) of the Schrödinger problem, i.e. those
with D = 0

ψ+(x) =
{
Aeikx +Be−ikx, x < −x0
Ceikx, x > x0.

(17.B.5)

In this case, A is the coefficient of the incoming wave, B is the amplitude of the
reflected wave, while C is the amplitude of the transmitted wave. The reflection and
transmission coefficients are given by

R =
B

A
, (17.B.6)

T =
C

A
.
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Since the sum of the densities of the reflected and transmitted waves must be equal
to the density of the incoming wave, we have

|R|2 + |T |2 = 1. (17.B.7)

The reflection and transmission coefficients can be expressed in terms of the phase
shifts δ0 and δ1, defined by the stationary eigenfunctions of the hamiltonian

ψ0 = cos(kx+ δ0) (x > x0) ; ψ0 = cos(kx− δ0) (x < −x0)
ψ1 = sin(kx+ δ1) (x > x0) ; ψ1 = sin(kx− δ1) (x < −x0).

(17.B.8)

The S-matrix in the channels of a given parity is given by

Sa = e2iδa , a = 0, 1. (17.B.9)

The linear combination of eigenstates of given parity (17.B.8) that gives rise to the
scattering eigenfunction ψ+ is

ψ+ =
{
eiδ0 ψ0 + i eiδ1 ψ1 = 1

2 (e2iδ0 + e2iδ1) eikx (x > x0)
eikx + 1

2 (e2iδ0 − e2iδ1) e−ikx (x < −x0)
. (17.B.10)

Hence
R = 1

2 (e2iδ0 − e2iδ1) = 1
2 [(e2iδ0 − 1) − (e2iδ1) − 1)]

=
∑1

l=0 i(−1)l eiδl sin δl

T = 1
2 (e2iδ0 + e2iδ1) = 1

2 [(e2iδ0 − 1) + (e2iδ1) − 1)] + 1
= 1 +

∑1
l=0 ie

iδl sin δl

(17.B.11)

and the reflection and transmission coefficients are completely determined by the phase
shifts of the even and odd eigenfunctions.

Consider now the case in which the potential is given by

V (x) = −2 g δ(x). (17.B.12)

Let’s start from the even eigenfunctions. Imposing the continuity of the wavefunction
at the origin and the discontinuity of its derivative, ruled by the δ(x) function

ψ0(0+) = ψ(0−)
dψ0(0+)
dx

− dψ0(0−)
dx

= −2 k sin δ0 = −2 g ψ0(0) = −g cos δ0

we can determine the even phase shift

tan δ0 =
g

k
. (17.B.13)

The S-matrix in this channel is then

e2iδ0 =
1 + i tan δ0
1 − i tan δ0

=
k + ig

k − ig
. (17.B.14)

The variation of the phase is then

δ0(+∞) − δ0(−∞) = −2πg/|g|,
and depends on the sign of g.
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The odd solution vanishes at the origin, hence the odd phase shift is identically
zero. The corresponding S-matrix is then equal to 1:

δ1 = 0
e2iδ1 = 1 (17.B.15)

The expressions δ0 and δ1 permit us to obtain the ratios (17.B.7) and to define a
solution of the Schrödinger equation for all values of k.

It is interesting to analyze the nature of this solution for complex values of the
momentum k = k1 + ik2. The real part can always be considered positive or zero since
it corresponds to the physical momentum of the incoming particle. Substituting k in
(17.B.5) one sees that the imaginary part k2 enters the real part of the exponentials.
Choosing now k as the value of the pole of the S-matrix, i.e. k = ig, one can have a
normalizable eigenfunction by imposing A = 0. This solution corresponds to a bound
state of the system, whose energy is Eb = −g2/(2m). Obviously in this case we should
have g > 0.

More generally, one can show the following properties of the non-relativistic S-
matrix:

1. The poles of the S-matrix with positive imaginary values of the momentum, kn =
ian (an > 0) correspond to the energies En = −a2

n/(2m) of the bound states of
the system.

2. There are no poles in the complex plane of the variable k = k1 + ik2 with a
non-vanishing real part k1 in the half-plane k2 > 0.

3. The poles in the complex plane with negative imaginary part, k2 < 0, correspond
instead to the resonances.

The proof of property (1) follows that given for the potential δ(x). For point (2), let’s
suppose that the S-matrix has a pole at k = k1 + ik2, with k2 > 0. Substituting in
(17.B.5) and putting to zero the coefficient A, we have also in this case a normalizable
eigenfunction. The problem, though, is in the time evolution of this eigenfunction:
using eqn (17.B.1) one gets

ψ+(x, t) = e−it(k2
1−k2

2)/2m etk1 k2/m ψ+(x) (17.B.16)

and, if k1 > 0, the eigenfunction grows exponentially when t → +∞, leading to a
violation of the conservation of probability.

A pole in the complex plane but with negative imaginary part is however perfectly
plausible. It corresponds to a solution whose probability decreases in a given channel.
This means that it will grow in another channel so that there is a global conservation
of the probability. Poles with negative imaginary part correspond to resonances. The
situation in the plane of the complex variables k and E is shown in Fig. 17.16.

Since the S-matrix in any channel of a given parity is a unitary operator, in the
vicinity of a pole k̄ it can be parameterized as

S = e2iδ =
k − k̄∗

k − k̄
, (17.B.17)
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Fig. 17.16 Analytic structure of the S-matrix in the planes of the complex variables k and E.
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Fig. 17.17 Cross-section relative to an S-matrix with a resonance pole.

where k̄∗ is the complex conjugate of k̄. Changing to the energy E = Er − iΓ/2 (with
Γ > 0, since there could be no poles in the upper half-plane), we have

S =
E − Er − iΓ/2
E − Er + iΓ/2

. (17.B.18)

Note that, close to the energy of the resonance, the phase δ(E) of the S-matrix has
an abrupt jump of 2π. We can now compute the diffusion amplitude T , defined by
S = 1 + iT

T = − Γ
E − Er + iΓ/2

. (17.B.19)

and the cross-section

σ ∼ |T |2 =
Γ2

(E − Er)2 + Γ2/4
. (17.B.20)

As shown in Fig. 17.17, the cross-section has the typical bell shape of a resonance
phenomenon, with the width determined by the parameter Γ. It is easy to see that
this is related to the life-time τ of the resonance state given by τ = 1/Γ.

bound states
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Appendix 17C. n-particle Phase Space

An important quantity that enters the probability computation of the scattering and
decay processes is the differential n-particle phase space

dΦn =
dd−1p1

(2π)d−12E1
· · · dd−1p1

(2π)d−12E1
(2π)d δd(P − p1 − p2 − · · · − pn). (17.C.1)

The integral of this expression is a relativistic invariant quantity that depends only on
the modulus of the total momentum, i.e. P 2:

Φn(P 2) =
∫

dd−1p1

(2π)d−12E1
· · ·
∫

dd−1pn
(2π)d−12En

(2π)d δd(P−p1−p2−· · ·−pn). (17.C.2)

This quantity has an analog in statistical mechanics. In fact, its definition recalls the
partition function of a statistical model in the microcanonical ensemble, the role of the
total energy being played here by P 2. For the delta function that involves all momenta,
its exact computation can be done only in a few cases or for particular values of P 2.
Two-particle phase space. Let’s study in more detail the properties of Φn(P 2),
starting with the computation of the two-particle phase space when the momentum
P is time-like (which is the more relavant case). This is the only case in which the
phase case can be computed exactly. Since Φ2 is a relativistic invariant quantity, we
can choose a reference frame where P = (E, 0) and

Φ2(E) =
∫

dd−1p1

(2π)d−12E1

∫
dd−1p2

(2π)d−12E2
(2π)d δd−1(�p1 − �p2) δ(E − E1 − E2)

=
Ω(d− 1)
4(2π)d−2

∫ ∞

0
dp

pd−2√
(p2 +m2

1)(p2 +m2
2)
δ(E −

√
p2 +m2

1 −
√
p2 +m2

2)

=
1

2d−1 π
d−3
2 Γ(d−1

2 )

| pcm |d−3

Ecm
Θ(E − (m1 +m2)), (17.C.3)

where

Θ(x) =
{

1 , if x > 0
0 , if x < 0

and | pcm | is the modulus of the space component of the momentum in the reference
frame of the center of mass, corresponding to the energy E

| pcm |= 1
2Ecm

√
[E2 − (m1 +m2)2][E2 − (m1 −m2)2]. (17.C.4)

To arrive at (17.C.3), we used the expression (2.6.3) of the solid angle in (d − 1)
dimensions.
Recursive equation. The explicit computation of the phase space with a higher
number of particles cannot be done exactly. However, its numerical determination can
be reached by means of the recursive equation

Φn(P 2) =
∫

dd−1pn
(2π)d−12En

Φn−1(P − pn). (17.C.5)
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Fig. 17.18 Iteration of the recursive equation for n-particle phase space.

By iteration, this formula leads to integrals that involve the two-particle phase space,
as shown in Fig. 17.18. The proof of (17.C.5) is immediate. From its definition we have

Φn(P 2) = (2π)d
∫ n∏

i=1

dd−1pi
(2π)d−12Ei

δ(P − p1 − · · · − pn)

=
∫

dd−1pn
(2π)d−12En

[
(2π)d

∫ n−1∏
i=1

dd−1pi
(2π)d−12Ei

δ((P − pn) − p1 · · · − pn−1)

]

=
∫

dd−1pn
(2π)d−12En

Φn−1(P − pn), (17.C.6)

where Φn(P ) is a function of P 2 ≡M2
n. Analogously Φn−1(P − pn) is function of

(P − pn)2 = (p1 + · · · pn−1)2 ≡ K2
n−1 ≡M2

n−1,

where M2
n−1 is the square of the invariant mass of the system of particles 1, 2, . . . ,

(n − 1). Since Φn−1 is a function only of this last variable, it is convenient to write
eqn (17.C.5) using the identity

1 =
∫
dM2

n−1δ(M
2
n−1 −K2

n−1),

1 =
∫
ddKn−1δ

d(P − pn −Kn−1).

Hence

Φn(M2
n) =

∫
dM2

n−1δ(K
2
n−1 −M2

n−1)
∫
ddKn−1δ

d(P − pn −Kn−1)

×
∫

ddpn
(2π)d−1 δ(p

2
n −m2

n) Φn−1(M2
n−1) (17.C.7)

=
1
2π

∫ (Mn−mn)2

μ2
n−1

dM2
n−1 Φ2(M2

n;Kn−1, pn) Φn−1(M2
n−1),

where
μi ≡ m1 +m2 + · · ·mi.

Φ2(M2
n;Kn−1, pn) is the two-particle phase space of total momentum P 2 = M2

n, rela-
tive to the masses of the momenta Kn−1 and pn given by (17.C.3).
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Laplace transform. It is useful to make use of the Laplace transform to solve the
constraint on the momenta given by the delta function. Define

Φn(α) =
∫
ddP e−α·P Φn(P 2), (17.C.8)

where α is a Lorentz time-like vector α = (α0, �α), with αμα
μ > 0. Thanks to this

transformation we have

Φn(α) = (2π)d
∫
ddP

n∏
i=1

dd−1pi
(2π)d−12Ei

δd(P − p1 − · · · − pn) e−α·P

= (2π)d
n∏
i=1

∫
dd−1pi

(2π)d−12Ei
e−α·pi = (2π)d

n∏
i=1

φi(α). (17.C.9)

The functions φi(α) can be easily computed choosing the reference frame where α =
(β, 0) and computing the integral using spherical coordinates. In fact we have

φi(α) =
∫

dd−1pi
(2π)d−12Ei

e−α·pi =
Ω(d− 1)
(2π)d−1

∫ ∞

0
dp

pd−2

2E
e−βE

=
Ω(d− 1)
(2π)d−1

∫ ∞

m2
i

dE (E2 −m2
i )

d−3
2 e−βE ,

where Ω(d − 1) is the solid angle in (d − 1) dimensions, given by eqn (2.6.3). The
last integral can be expressed in terms of the Bessel function Kν(z), whose integral
representation is

Kν(z) =

(
z
2

)ν Γ
( 1

2

)
Γ
(
ν + 1

2

) ∫ ∞

1
e−zt (t2 − 1)ν− 1

2 dt. (17.C.10)

So, we have

φ1(β) =
2

(2π)
d
2

(
m

β

) d−2
2

K d−2
2

(βm). (17.C.11)

On the other hand, in the reference frame where α = (β, 0), eqn (17.C.8) can also be
expressed as

Φn(β) =
∫
ddp e−βE Φn(p2)

=
∫
ds

∫
ddp δ(p2 − s) e−βE Φn(s)

=
∫
ds

∫
dd−1p

2E
e−βE Φn(s) (17.C.12)

= Ω(d− 1)
∫
ds

∫ ∞

√
s

dE (E2 − s)
d−3
2 e−βE Φn(s).
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Using also in this case the integral representation (17.C.10) and the (d−1)-dimensional
solid angle, the last expression can be written as

Φn(β) =
(2π)

d
2

π

1

β
d−2
2

∫ ∞

0
ds s

d−2
4 K d−2

2
(β

√
s) Φn(s). (17.C.13)

Hence we have the identity

(2π)
d
2

π

1

β
d−2
2

∫ ∞

0
ds s

d−2
4 K d−2

2
(β

√
s) Φn(s) = (2π)d

n∏
i=1

2

(2π)
d
2

(
mi

β

) d−2
2

K d−2
2

(βmi).

(17.C.14)
Phase space at the threshold. Let’s use eqn (17.C.14) in the limit β → ∞ to
estimate the behavior of Φn(s) near the threshold energy

√
s =

∑n
i mi. Using the

asymptotic behavior of the Bessel function

Kν(z) 	
( π

2z

) 1
2
e−z z → ∞

substituting this expression in (17.C.14) and simplifying, we have

1

(2π)
d+1
2

1

β
d−1
2

∫ ∞

0
ds s

d−3
4 e−β

√
s Φn(s) =

n∏
i=1

1

(2π)
d−1
2

m
d−3
2

i

β
d−2
2

e−βmi . (17.C.15)

With the change of variable E =
√
s, eqn (17.C.15) becomes∫ ∞

0
dE E

d−1
2 e−βE Φn(E) = An β

1−n
2 (d−1) e−β

∑
i mi ,

with

An =
1
2
(2π)

1
2 [d+1−n(d−1)]

(
n∏
i=1

mi

) d−3
2

.

Using the general properties of the Laplace transform L

L[F (s− a)] = e−aβF(β), L[xν ] =
Γ(ν + 1)
βν+1 ,

where F denotes the Laplace transform L of the function F (s), it is easy to see that
for E →∑imi, the n-particle phase space goes to zero as

Φn(E) 	 An

(
∑

imi)
d+1
2

1
Γ
( 1

2 (d− 1)(n− 1)
) (E −

∑
i

mi)
(n−1)(d−1)−2)

2 . (17.C.16)

Phase space at high energy. Let’s use now the formula (17.C.14) to study the
behavior of the n-particle phase space for mi → 0, i.e. in the massless limit or equiv-
alently at high energy. In this case it is necessary to distinguish two cases: (a) d �= 2
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and (b) d = 2. Let’s consider the first case. Using the series expansion of the Bessel
function Kν(x) for ν �= 0

Kν(x) 	
1
xν
, x→ 0

the mass terms in the right-hand side of eqn (17.C.14) simplify and we have

(2π)
d
2

π

1

β
d−2
2

∫ ∞

0
ds s

d−2
4 K d−2

2
(β

√
s) Φn(s) = (2π)d

2n

(2π)
nd
2

1
βn(d−2) . (17.C.17)

With the change of variable E =
√
s in the integral on the left and collecting terms

we have

∫ ∞

0
dE E

d
2 K d−2

2
(β E) Φn(E) = π

2n−1

(2π)
(n−1)d

2

(
1
β

)(2n−1)( d−2
2 )

. (17.C.18)

Since ∫ ∞

0
xμKν(ax) dx = 2μ−1 a−μ−1 Γ

(
1 + μ+ ν

2

)
Γ
(

1 + μ− ν

2

)
,

the n-particle phase space behaves for E → ∞ and d �= 2 as

Φn(E) 	 BnE
n(d−2)−d, (17.C.19)

where

Bn = π
2n(3−d)+ d

2 −1

(2π)(n−1) d
2

1

Γ
(
n(d−2)

2

)
Γ
(

(n−1)(d−2)
2

) .
Let’s now consider the behavior of the n-particle phase space for large values of the
energy when d = 2. For dimensional reasons we expect that it scales as

Φn(s) 	 1
s
, s→ ∞

but there could be logarithmic corrections. On the basis of the cases n = 2 and n = 3,
let’s impose the ansatz

Φn(s) 	 αn
1
s

(
ln

s

m2

)n−2
, (17.C.20)

where m is a mass scale whereas αn is a constant to be determined. The presence of
the logarithms does not allow us to follow the previous computation, where we set to
zero all the masses. Consider now the recursive equation (17.C.7) in the limit M2

n → ∞

Φn(M2
n) 	 1

2π

∫ M2
n

ε

Φ2(M2
n;Kn−1, pn) Φn−1(M2

n−1),
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where ε is a small but non-zero quantity. Substituting in this formula the expression
of the two-particle phase space and the ansatz (17.C.20), we have

Φn(M2
n) 	 1

2π
αn−1

∫ M2
n

ε

1
(M2

n −M2
n−1)

1
M2

n−1

(
ln
M2

n−1

m2

)n−3

=
1

2πM2
n

αn−1

∫ M2
n

ε

dM2
n−1

[
1

M2
n−1

− 1
M2

n −M2
n−1

] (
ln
M2

n−1

m2

)n−3

.

The first term of this equation is responsible for the most singular part and keeping
only this, one has

Φn(M2
n) 	 αn−1

2π
1

n− 2
1
M2

n

(
ln
M2

n

m2

)n−2

. (17.C.21)

Comparing this expression with the ansatz (17.C.20), we obtain the recursive equation
for the constants αn

αn =
1

2π(n− 2)
αn−1,

whose solution is
αn =

1
(2π)n−2

1
(n− 2)!

.

Hence, in d = 2, the asymptotic expression of the n–particle phase space for s→ ∞ is

Φn(s) 	 1
(2π)n−2

1
(n− 2)!

1
s

(
ln

s

m2

)n−2
. (17.C.22)
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Problems

1. Causality and analyticity
Consider a linear system in which the output b(t) depends on the input a(t) as

b(t) =
∫ t

−∞
G(t− t′) a(t′) dt′.
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If the system is causal, the Green function G(t− t′) vanishes when t < t′. Let

Ĝ(ω) =
∫ ∞

−∞
eiωτ G(τ) dτ =

∫ ∞

0
eiωτ G(τ) dτ

be its Fourier transform. If a(t) and b(t) are both real, also G(τ) is a real function and

Ĝ∗(ω) = Ĝ(−ω∗).

a Show that, if G(τ) is a square integrable function, then Ĝ(ω) is an analytic function
in the upper half-plane Imω > 0. This implies that Ĝ(ω), for real ω, is a function
obtained as a boundary value of an analytic function.

b Letting Ĝ(ω) = Ĝ1(ω) + iĜ2(ω), use the Cauchy theorem to prove that these func-
tions are related one to the other by the dispersion relations

Ĝ1(ω) =
1
π
P
∫ +∞

−∞

1
ν − ω

Ĝ2(ν) dν

Ĝ2(ω) = − 1
π
P
∫ +∞

−∞

1
ν − ω

Ĝ1(ν) dν

where P denotes the principal part of the integral.

2. Decay process
A particle of mass M and four-dimensional momentum P decays into two particles of
masses m1 and m2.
a Use the conservation of energy and momentum to prove that the total energy of the

first particle in the center-of-mass reference frame is

E1 =
M2 +m2

1 −m2
2

2M

and that E2 is obtained from the previous expression exchanging m1 with m2.
b Show that the kinetic energy Ti of the particle i, in the same reference frame, is

given by

Ti = ΔM
(

1 − mi

M
− ΔM

2M

)
where ΔM = M −m1 −m2.

3. Physical region of the amplitudes
Determine the physical region of the s-channel process when the masses of the particles
are different.

4. Yang–Baxter equations
Prove that the Yang–Baxter equations given in eqn (17.3.7) of the text can be obtained
as a consequence of the associativity condition of the Faddev–Zamolodchikov algebra.
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5. Reflection amplitude
Consider the following scattering amplitudes of a particle A and its antiparticle A:

| A(θ1)A(θ2)〉 = S(θ) | A(θ2)A(θ1)〉,
| A(θ1)A(θ2)〉 = t(θ) | A(θ2)A(θ1)〉 + r(θ) | A(θ2)A(θ1)〉.

a Prove that

S(θ)S(−θ) = t(θ) t(−θ) + r(θ) r(−θ) = 1
t(θ) r(−θ) + r(θ) t(−θ) = 0
t(θ) = S(iπ − θ), r(θ) = r(iπ − θ).

b Prove that if the particles A and A are uniquely distinguishable by their different
eigenvalues of the conserved charges, then the reflection amplitude vanishes, i.e.
r(θ) = 0.

6. Bootstrap equations
Derive the bootstrap equations (17.4.12) imposing the commutativity of the processes
shown in Fig. 17.13.
Hint. Note that the line of the particle Ai in the second graph is parallel to the same
line of the first graph. Identify the angles in the two figures and use the resonance
condition.

7. Scattering in a potential with two delta functions
Consider a one-dimensional system of quantum mechanics with hamiltonian given by

H =
p2

2m
+ V (x)

with
V (x) = −g1 δ(x+ a) − g2 δ(x+ a)

(g1 and g2 positive).

a Compute the phase shifts δ0 and δ1 and the corresponding S-matrix elements.
b Analyze the analytic structure of the S-matrix by varying the momentum k.
c Determine the wavefunction of the bound states.

8. Interpretation of the two-dimensional S-matrix
The non-relativistic S-matrix of a particle of mass m = 1 relative to the potential
V (x) = −2aπδ(x) is given by

S̃(k) =
k + iπa

k − iπa
.
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If we would like to generalize this result to the relativistic case, we must use the
rapidity variable θ. Note that for small values of the momentum, θ 	 k. Substituting
in the expression of S, we have

S̃(θ) =
θ + iπa

θ − iπa
.

This expression, however, does not fulfill the important property S(θ) = S(θ± 2πi) of
the relativistic S-matrix.
a Discuss how the periodicity of the relativistic S-matrix can be iteratively imple-

mented starting from S̃(θ).
b Use the infinite product representation of the hyperbolic function sinhx

sinhx = x
∞∏
k=1

[
1 +
( x
kπ

)2
]
,

to show that the final result can be expressed as

S(θ) =
sinh 1

2 (θ + iπa)
sinh 1

2 (θ − iπa)
= sa(θ).
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Exact S-Matrices

The particles are nothing else than lumps of energy, they come and go, their own
identity is all in this dance of creation and annihilation processes.

Kenneth Ford

In this chapter we present the exact S-matrix associated to several two-dimensional
statistical models away from their critical point. Closing the bootstrap procedure, one
is able to find at the same time the set of all amplitudes and the mass spectrum of
the theory. A crucial step in the determination of the scattering amplitudes is the
knowledge of the spectrum of the spins relative to the conserved currents. In the first
sections we address the minimal S-matrix of several off-critical statistical systems.
Many of these examples are related to the Toda field theories previously discussed.
Later we use the minimal S-matrices of the statistical models to determine the exact
S-matrices of the lagrangian Toda field theories. The scattering amplitudes of the Toda
field theories shows an important symmetry of these models under the weak–strong
duality transformation g → 8π/g of their coupling constant. At the end of the chapter
we discuss the exact S-matrix of the Sine–Gordon model, with a series of comments on
its interesting features, and the quantum group reductions which lead to the general
S-matrices of integrable deformations of conformal field theories.

18.1 Yang–Lee and Bullogh–Dodd Models

The conformal field theory associated to the Yang–Lee edge singularity is non-unitary,
with central charge c = −22/5 and only one relevant field φ with conformal weight
Δ = −1/5. As discussed in Section 14.5, this theory describes the critical behavior
of an Ising model in a purely imaginary magnetic field ih. The Landau–Ginzburg
lagrangian is given by

L =
∫ [

1
2
(∂φ)2 − i(h− hc)φ− igφ3

]
d2x (18.1.1)

and the scaling region near the critical point is a one-dimensional space, spanned by the
(purely imaginary) coupling constant of the relevant field φ. We can use the characters
of the identity family and of the field φ to count the dimensions of the quasi-primary
fields at level n, as shown for the first representatives in Table 18.1. We can then apply
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Table 18.1: Dimensions of the spaces Λ̂n+1 and φ̂n. For each value of n for which the former
is larger than the latter there must exist a conserved current.

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Λ̂n+1 1 0 0 0 1 0 1 0 1 0 2 0 2 1 2 1 3

φ̂n 0 0 0 1 0 1 0 1 1 1 1 2 1 2 2 3 2

the counting method (see Section 16.8.3) to establish that the off-critical system has
conserved charges with spin

s = 1, 5, 7, 11, 13, 17, 19, 23. (18.1.2)

The sequence of these spins is made of odd numbers not divisible by 3 and is therefore
compatible with the existence of a massive excitation associated to a particle A that
is the bound state of itself. Hence, its exact S-matrix must have a pole at θ = 2iπ/3.
The crossing symmetry helps in fixing the position of the pole in the t-channel at θ =
iπ/3. Assuming that there are no additional poles, the only solution of the bootstrap
equation

SAA(θ) = SAA

(
θ − iπ

3

)
SAA

(
θ +

iπ

3

)
(18.1.3)

is given by

SAA =
tanh 1

2 (θ + i 2π3 )
tanh 1

2 (θ − i 2π3 )
= f 2

3
. (18.1.4)

One can extract the value of the on-shell renormalized coupling constant1 comparing
with the Feynman diagrams coming from the lagrangian (18.1.1), as shown in Fig. 18.1

−ig2 = 3m4 sinh(2iπ/3) = i
3
√

3
2

m4. (18.1.5)

Unitarity paradox and its solution. Notice that the residue has opposite sign with
respect to what is expected in a unitary theory. On the other hand, the S-matrix
(18.1.4) satisfies by construction the unitarity equation S(θ)S(−θ) = 1. Hence, it
seems we are in the presence of an apparent contradiction. The solution of this paradox
and, consequently, the compatibility of the two definitions of the unitarity condition
is the following. For this theory, it is possible to define a charge conjugate operator C
(C2 = 1) through the position

C φC = −φ.
The hamiltonian associated to the lagrangian (18.1.1) is not hermitian but satisfies
H† = CHC. The multiparticle states of the Fock space are created by the iterate
action of the field φ on the vacuum state. They are eigenvectors of C with eigenvalues
(−1)N , where N is the number of particles. Since H is not a hermitian operator, its left

1This is defined as i times the residue at the pole of the S-matrix. The factor m4 is introduced
for dimensional reason.
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A A

AA

A

g

g

Fig. 18.1 Residue at the pole expressed in terms of the on-shell coupling constant.

eigenvectors 〈nl| do not coincide with the adjoint right eigenvectors, but are related
to them by the relation 〈nl| = 〈nr|C. The completeness relation of this theory is then∑

n

| nr〉〈nl |=
∑
n

| nr〉〈nr | C.

The unitarity condition of the S-matrix

SS† = 1 (18.1.6)

simply expresses that the initial and final states form a basis of the Hilbert space and
it is not sensitive to whether the hamiltonian is hermitian or not. However, if we insert
the completeness relation in (18.1.6), each of the intermediate states is weighted by
(−1)N . This is the reason for the negative sign of the residue, for it comes from the one-
particle intermediate state. In conclusion, the S-matrix is unitary since it conserves
the probability but it has a negative sign of the residue for the negative eigenvalue
of C on the one-particle state. Because of its simplicity, the Yang–Lee model has
proved to be the ideal theoretical playground for the analysis of integrable deformations
of conformal models. A successful check of this S-matrix can be performed by the
thermodynamic Bethe ansatz, as discussed in the next chapter.
Bullogh–Dodd model. The S-matrix of the Yang–Lee model is the so-calledminimal
part of the S-matrix of the Bullogh–Dodd model, defined by the lagrangian

L =
1
2
(∂μφ)2 − μ2

6λ2

(
2eλφ + e−2λφ) . (18.1.7)

To determine the S of this theory, notice that both models share the same spectrum of
the spins of the conserved charges and have only one particle exitation. The S-matrix
of the lagrangian model can then be obtained by multiplying the minimal S-matrix
of the Yang–Lee model with some additional terms, called the Z factors, satisfying
the following requirements: (i) they must be solutions of the bootstrap equation; (ii)
they must not introduce additional poles; and, finally, (iii) they must depend on the
coupling constant.

As discussed in Problem 1, another solution of the bootstrap equation (18.1.3) is
given by

S(θ) = f 2
3
(θ) f− B

3
(θ) fB−2

3
(θ), (18.1.8)



608 Exact S-Matrices

and the quantity B can be determined by comparing the perturbative expansion of
the S-matrix with the Feynman diagrams coming from the Bullogh–Dodd lagrangian.
Notice that the two additional Z-factors introduce a set of zeros in the physical sheet
of the scattering amplitude and no additional poles. From the perturbative comparison
at lowest orders, one can conjecture that the exact result is expressed by the relation

B(λ) =
λ2

2π
1

1 + λ2

4π

. (18.1.9)

Note that, assuming the validity of (18.1.9), the exact S-matrix of the Bullogh–Dodd
model is invariant under the transformation B(λ) → 2 − B(λ), namely, under the
weak–strong duality transformation of the coupling constant

λ → 4π
λ
. (18.1.10)

For all values of λ, except λ = 0,∞ and the self-dual point λ =
√

4π, the S-matrix
presents a simple pole at θ = 2πi/3, which corresponds to the bound state given by
the particle itself. The residue allows us to find the on-shell three-particle vertex of
this theory

Γ2(B) = 2
√

3
tan
(
πB
6

)
tan
(
πB
6 − 2π

3

) tan
(
π
3 − πB

6

)
tan
(
πB
6 + π

3

) . (18.1.11)

Notice that Γ(B) vanishes at B = 0 and B = 2 (both points correspond to the free
lagrangian model) but it also vanishes at the self-dual point B = 1, where the S-matrix
becomes

S(θ, 1) = f− 2
3
(θ). (18.1.12)

The vanishing of Γ at the self-dual point is essentially due to the non-simply laced
nature of this Toda field theory.2

18.2 Φ1,3 Integrable Deformation of the Conformal Minimal
Models M2,2n+3

The Yang–Lee model belongs to the series of non-unitary minimal models M2,2n+3,
whose Kac table consists of only one column. In these theories, in addition to the
identity operator, there are n conformal fields with negative conformal weights

Δ1,r = Δ1,2n+3−r = − (r − 1)(2n+ 2 − r)
2(2n+ 3)

, r = 0, 1, . . . n. (18.2.1)

The central charge c and the effective central charge ceff are given by

c = −2n(6n+ 5)
2n+ 3

, c̃ =
2n

2n+ 3
.

2This does not happen for all the other Toda field theories based on simply laced algebras.
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The scattering theory defined by the Φ1,3 integrable deformation is supported by the
spectrum of the spins of the conserved charges given by

s = 1, 3, . . . , 2n− 1, 2n+ 3, . . . 4n+ 1 (mod 4n+ 2).

This spectrum is compatible with a set of n massive particles with the bootstrap
fusions

A1 ×A1 → A2
A2 ×A2 → A3

. . .
An ×An → A1.

(18.2.2)

Using the results of the previous chapter, a solution of the consistency equations for
the resonance angles is

ukk,k+1 =
kπ

2n+ 1
, k = 1, 2, . . . n,

and, consequently, the exact mass spectrum is

ma = sin
(

aπ

2n+ 1

)
, a = 1, 2, . . . n. (18.2.3)

The minimal scattering amplitude of the lowest mass particle A1 is

S11(θ) = f 2
2n+1

(θ), (18.2.4)

whereas all other amplitudes can be obtained by applying recursively the bootstrap
equations

Sab(θ) = f |a−b|
2n+1

f a+b
2n+1

min(a,b)−1∏
k=1

(
f |a−b|+2k

2n+1

)2
. (18.2.5)

The simple pole of the first term (for a �= b)

θ = i u
|a−b|
ab = i

(
1 − | a− b |

2n+ 1

)
π (18.2.6)

corresponds to the particle A|a−b| which appears as a bound state in this scattering
process. The simple pole of the second factor

θ = i u
n(a,b)
ab = i (a+ b)

π

2n+ 1
(18.2.7)

is due to the particle of type n(a, b) = min (a+ b, 2n+ 1− a− b). The double poles of
the remaining functions derive from the bootstrap procedure and are associated to the
multiple intermediate scattering processes, such as those shown in Fig. 18.2. In these
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ϕ

Fig. 18.2 Multiscattering process that gives rise to a double pole in the S-matrix SAB(θ) at
θ = i(ua

Ac + ub
Bc − π).

processes, two initial particles A and B “break” in the intermediate particles a, b, and
c, with the relative angles dictated by scattering theory

ϕ = uaAc + ubBc − π
η = π − uaac − uBbc.

(18.2.8)

In order to actually draw these graphs and to have correspondingly a double pole, it
is necessary that the resonance angles satisfy the geometrical condition

uAac + uBbc ≤ π (18.2.9)

This condition puts a dynamical constraint on the set of resonance angles by having
a double pole in the scattering amplitudes.

As we will see at the end of the chapter, these S-matrices can be obtained as
RSOS reduction of the Sine–Gordon model, when the solitons disappear from the
spectrum and only breathers remain. The amplitudes above are also the minimal S-
matrices of the Toda field theories based on A2

2n. In order to obtain the full S-matrix
of these lagrangian models it is necessary to multiply the minimal S-matrix for the Z-
factors that do not contain additional poles, a solution of the bootstrap equations, and
functions of the coupling constant. For these theories this scheme can be implemented
starting from the scattering amplitude involving the particle with the lowest mass

S11(θ) = f 2
2n+1

(θ) f−B(θ) f− 2
2n+1+B(θ), (18.2.10)

where the function B(λ) is given by

B(λ) =
1

4π(2n+ 1)
λ2

1 + λ2

4π

. (18.2.11)

All other scattering amplitudes of the Toda field theories are obtained by applying the
bootstrap equations.
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18.3 Multiple Poles

The S-matrix discussed in the previous section shows the presence of double poles. In
the S-matrices that we will meet in the following sections there are also higher order
poles. This analytic structure is a necessary consequence of the bootstrap equations.
However, a consistent interpretation of scattering theory requires an explanation of
these higher order poles in terms of the elementary processes that take place in the
system. Let’s then briefly discuss the origin of these singularities in order to better
understand the scattering theory of two-dimensional systems.

The simple poles of an S-matrix are associated to the bound states. This identi-
fication holds in any dimension and it is one of the key points of the analytic theory
of the S-matrix. The higher order poles, on the other hand, only occur in the two-
dimensional S-matrices. In four-dimensional theories, for instance, the same diagrams
that produce the multiple poles of the two-dimensional theories give rise instead to
branch cut singularities in the Mandelstam variable s. It is only for the dimensionality
of the space-time that these singularities become double, triple, and higher order poles
instead of branch cuts. In this respect, it is important to notice that two-dimensional
scattering processes have the peculiar feature of being in one-to-one correspondence
with the geometrical figures that one can draw on a page, i.e. the angles between
the world-lines of the particles Ai, Aj , and Ak are precisely those associated to the
resonance angles ukij .

Assuming that the scattering theory corresponds to a set of Feynman rules (which
for simplicity we assume to be of the gφ3), it is possible to prove that there is a
very simple rule to determine the order of the pole: an S-matrix has a higher pole of
order p

Sab(θ) 	 g2pRp

(θ − θ0)p
, (18.3.1)

if one can actually draw the Feynman diagrams associated to this scattering process,
starting from the resonance angles ukij , in which there are P internal propagators and
L loops, with the condition

p = P − 2L. (18.3.2)

Applying this rule for instance to the diagram in Fig. 18.2, we see that there are six
internal propagators and two loops, and therefore this diagram corresponds to a double
order pole. However, as stressed in the previous section, it should actually be possible
to draw such a diagram, i.e. the resonance angles ukij should be those that permit
the existence of such a geometrical figure. Analogously, if in the scattering theory
there are resonance angles that allow us to draw a diagram such as the one shown in
Fig. 18.3a, then there is a third-order pole in the amplitude, whereas the possibility
of drawing a diagram as in Fig. 18.3b provides the explanation of a fourth-order pole
in the scattering process of the asymptotic particles A and B.

Another general rule concerning the higher order poles is the following: those of
odd orders can be generally associated to bound states, such as shown by the diagram
in Fig. 18.3a, in which there is in the middle the propagator of a one-particle state,
whereas those with even order generally describe multiscattering processes which do
not lead to creation of a bound state, as is the case for instance of the diagram of
Fig. 18.3b.
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Fig. 18.3 (a) Multiple scattering process responsible for a third order pole in SAB(θ);
(b) multiple scattering process that gives rise to a fourth order pole in SAB.

18.4 S-Matrices of the Ising Model
The Ising model has two integrable deformations. The first is the thermal deformation
that moves the system away from its critical temperature at zero magnetic field. The
second is the magnetic deformation, obtained by coupling the system to an external
magnetic field but keeping the temperature of the system at its critical value. The
S-matrices of the two deformations have a completely different structure: the first is
the simplest possible S-matrix, while the second is the richest one! Moreover, the first
is the minimal S-matrix of the lagrangian Sinh–Gordon model, whereas the second is
the minimal S-matrix of the Toda field theory based on the exceptional algebra E8.
Let’s discuss each of them in more detail.

18.4.1 Thermal Deformation of the Ising Model

At zero magnetic field, the Ising model away from the critical temperature is a theory
of free Majorana fermions, with a lagrangian given by

L = ψ
∂

∂z̄
ψ + ψ̄

∂

∂z
ψ̄ + im ψ̄ ψ. (18.4.1)

The mass parameter measures the displacement of the temperature from the critical
value

m = T − Tc.

The low-temperature phase is related to the high-temperature phase by duality. At low
temperature there are two degenerate vacua: the Z2 symmetry of the model is spon-
taneously broken and the massive excitations consist of the soliton and the antisoliton
that interpolate between the two vacua. These are neutral particles, here denoted by
A(θ), associated to the fermionic field. Since the S-matrix can be regarded as the op-
erator that implements the commutation relation between the operators that create
the particles, by the fermionic nature of the problem we have

A(θ1)A(θ2) = −A(θ2)A(θ1),

namely
S = −1. (18.4.2)
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In the high-temperature phase the system has a unique vacuum. The massive excitation
A(θ) of this phase is odd under the Z2 spin symmetry and can be regarded as a bosonic
particle created by the operator σ(x), since we have

〈0|σ(0)|A(θ)〉 �= 0.

From the self-duality of the model, the S-matrix is, as before, S = −1. Notice, however,
that in this phase the particle A appears as an interacting particle, otherwise its S-
matrix should be that of a free theory given, for a bosonic theory, by S = 1. In both
phases the model does not have additional bound states.

As in the models analyzed in the previous section, the S-matrix of the thermal
deformation of the Ising model can be regarded as the minimal S-matrix of a lagrangian
system, in this case the Sinh–Godon model with lagrangian

L =
1
2
(∂φ)2 − m2

g2 (cosh gφ− 1). (18.4.3)

To determine the exact S-matrix of this integrable model, we have to identify the
appropriate Z-factor as a function of the coupling constant. The simplest choice leads
to the following expression for the exact S of the Sinh–Gordon model

S(β) = f−B(θ), (18.4.4)

where B(g) is a function of the coupling constant which can be determined by compar-
ing the perturbative expansion of (18.4.4) with the Feynman diagrams coming from
the lagrangian (18.4.3). The final result is

B(g) =
g2

8π
1

1 + g2

8π

. (18.4.5)

As we will see in Section 18.8, this expression can be obtained as the analytic con-
tinuation of an analogous formula established for the Sine–Gordon model. Notice the
invariance of the S-matrix of the Sinh–Gordon model under the weak–strong duality

g → 8π
g
. (18.4.6)

This symmetry is not evident in the lagrangian of the model and it is only shown
up in its exact S-matrix. Presently it is still an open problem to find the proper
lagrangian formulation (if any) that explicitly shows this dynamical invariance of the
Sinh–Gordon model.

Coming back to the Ising model, it is interesting to observe that its S-matrix can
be obtained as a limiting case of the exact S-matrix of a generic Zn model, when
T > Tc, obtained by Koberle and Swieca. In this theory there are n− 1 particles, with
mass spectrum given by

ma = sin
(πa
n

)
, a = 1, 2, . . . n− 1. (18.4.7)
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The S-matrix of the fundamental particle is

S11 =
tanh 1

2 (θ + i 2πn )
tanh 1

2 (θ − i 2π3 )
= f 2

n
, (18.4.8)

and, substituting n = 2 in this formula, we get the S-matrix (18.4.2).

18.4.2 Magnetic Deformation of the Ising Model

The counting argument shows that the magnetic deformation of the Ising model has
a spectrum of the first spins of the conserved charges given by

s = 1, 7, 11, 13, 17, 19. (18.4.9)

Notice the lack of spins that have 3 or 5 as divisors. The absence of multiples of
3 can be easily explained by postulating the existence of a fundamental particle A1
(with mass m1) that possesses the “Φ3” property, i.e. to be a bound state of itself. In
the S-matrix of this particle there should then be a pole at θ = u1

11 = 2πi/3. This
feature is compatible with the explicit breaking of the Z2 of the model. Concerning the
absence of spin s divisible by 5, it can be explained by conjecturing the existence of a
second particle A2 (with mass m2) that, together with A1, gives rise to a subsystem
of bootstrap fusions

A1 ×A1 → A1 +A2
A2 ×A2 → A1.

(18.4.10)

Let u2
11 be the resonance angle corresponding to the bound state A2 that appears

in the amplitude S11(θ), and let u1
22 be the resonance angle associated to A1 in the

amplitude S22(θ). Using the variables

y1 = exp
(
i

2
u2

11

)
, y2 = exp

(
i

2
u1

22

)
,

the consistency equations involving the spins of conserved charges and the resonance
angles become

ys1 + y−s
1 =

(
m2
m1

)s
χ2

s

χ1
s
,

ys2 + y−s
2 =

(
m1
m2

)s
χ1

s

χ2
s
.

(18.4.11)

For the values of s given in (18.4.9), a non-trival solution is given by

y1 = exp
(
iπ

5

)
, y2 = exp

(
2iπ
5

)
.
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with the mass ratio
m2

m1
= 2 cos

π

5
.

In light of these results, one can conclude that in the amplitude S11(θ) of the funda-
mental particle there are poles with positive residue at the resonance angles

θ = iu1
11 =

2πi
3
, θ = iu2

11 =
2πi
5
, (18.4.12)

and poles with negative residue in the crossing channel at

θ = iu1
11 =

iπ

3
, θ = iu2

11 =
3πi
5
. (18.4.13)

However, as we have seen in Section 18.1, it is impossible to solve the bootstrap
equations

S11(θ) = S11

(
θ − iπ

3

)
S11

(
θ +

iπ

3

)
(18.4.14)

in terms of a function that has only the sets of poles (18.4.12) and (18.4.13). In fact,
it is necessary to include at least another set of poles, without breaking the conserved
currents with spins given in (18.4.9). The minimal way to do so is to introduce an
additional pole at θ = iπ/15 (with positive residue) and its companion of the crossed
channel at θ = i14/15 (with negative residue). In such a way, the exact S-matrix of
the fundamental particle is expressed by

S11(θ) = f 2
3
(θ)f 2

5
(θ)f 1

15
(θ). (18.4.15)

Using this expression as the initial seed of the bootstrap equation, we can complete
the bootstrap procedure. The final theory has eight particles, whose mass spectrum
coincides with that of the Toda field theory based on the exceptional algebra E8:

m1 = m

m2 = 2m1 cos
π

5
= (1.6180339887..)m1

m3 = 2m1 cos
π

30
= (1.9890437907..)m1

m4 = 2m2 cos
7π
30

= (2.4048671724..)m1

m5 = 2m2 cos
2π
15

= (2.9562952015..)m1

m6 = 2m2 cos
π

30
= (3.2183404585..)m1

m7 = 4m2 cos
π

5
cos

7π
30

= (3.8911568233..)m1

m8 = 4m2 cos
π

5
cos

2π
15

= (4.7833861168..)m1.

As observed in Chapter 16, the masses can be put in correspondence with the Perron–
Frobenius eigenvector of the incidence matrix of the corresponding Dynkin diagram, as
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Table 18.2: Dynkin diagram of E8, with the association of the masses to the dots of the
diagram.

� � � � � � �

�

m2 m6 m8 m7 m5 m3 m1

m4

shown in Table 18.2. Notice that in this bootstrap system only the first three particles
have a mass less than the lowest threshold 2m1. The stability of the particles with
mass higher than the lowest decay threshold 2m1 is entirely due to the integrability
of the theory.

The complete set of scattering amplitudes is given in Tables 8.3 and 8.4, where we
use the notation

(γ) ≡ f γ
30

(θ).

Several amplitudes have higher order poles that can be explained in terms of the
multiscattering processes constructed in terms of the resonance angles of the theory.

E8 Toda theory. The underlying E8 structure of this scattering theory can be traced
back to the coset realization (E8)1 ⊗ (E8)1/(E8)2 of the critical Ising model and its
Liouville quantization based on the same set of simple roots (see Section 16.7). This
suggests that to obtain the exact S-matrix of the lagrangian Toda field theory based
on E8 it is sufficient to multiply the minimal S-matrix elements provided by the Ising
model in a magnetic field by the appropriate Z-factors that carry the coupling constant
dependence from λ, without introducing addional poles in the physical sheet. For the
amplitude of the fundamental particle, the Z-factor is given by

Z11(θ) = f−B(θ) f− 1
15+B(θ) f− 2

3 −B(θ) f− 2
5+B(θ), (18.4.16)

where

B(λ) =
2
h

λ2

8π
1

1 + λ2

8π

, (18.4.17)

with h = 30, the Coxeter number of this algebra. Also in this case, the S-matrix of
the lagrangian model presents remarkable symmetry under weak–strong duality:

λ→ 8π
λ
.
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Table 18.3: S-matrix of the Ising model in a magnetic field at T = Tc. The factors(
fγ/30(θ)

)pγ in Sab(θ) correspond to (γ)pγ (pγ = 1 is omitted). The upper index c in (γ)
denotes the particle Ac which appears as a bound state of AaAb at θ = iπγ/30 in the ampli-
tudes Sab(θ).

a b Sab

1 1
1

(20)
2

(12)
3

(2)

1 2
1

(24)
2

(18)
3

(14)
4

(8)

1 3
1

(29)
2

(21)
4

(13)
5

(3) (11)2

1 4
2

(25)
3

(21)
4

(17)
5

(11)
6

(7) (15)

1 5
3

(28)
4

(22)
6

(14)
7

(4) (10)2 (12)2

1 6
4

(25)
5

(19)
7

(9) (7)2 (13)2 (15)

1 7
5

(27)
6

(23)
8

(5) (9)2 (11)2 (13)2 (15)

1 8
7

(26)
8

(16)3 (6)2 (8)2 (10)2 (12)2

2 2
1

(24)
2

(20)
4

(14)
5

(8)
6

(2) (12)2

2 3
1

(25)
3

(19)
6

(9) (7)2 (13)2 (15)

2 4
1

(27)
2

(23)
7

(5) (9)2 (11)2 (13)2 (15)

2 5
2

(26)
6

(16)3 (6)2(8)2(10)2(12)2

2 6
2

(29)
3

(25)
5

(19)3
7

(13)3
8

(3) (7)2(9)2(15)

2 7
4

(27)
6

(21)3
7

(17)3
8

(11)3 (5)2(7)2(15)2

2 8
6

(28)
7

(22)3 (4)2(6)2(10)4(12)4(16)4

3 3
2

(22)
3

(20)3
5

(14)
6

(12)3
7

(4) (2)2

3 4
1

(26)
5

(16)3 (6)2(8)2(10)2(12)2

3 5
1

(29)
3

(23)
4

(21)3
7

(13)3
8

(5) (3)2(11)4(15)

3 6
2

(26)
3

(24)3
6

(18)3
8

(8)3 (10)2(16)4

3 7
3

(28)
5

(22)3 (4)2(6)2(10)4(12)4(16)4

3 8
5

(27)
6

(25)3
8

(17)5 (7)4(9)4(11)2(15)3

4 4
1

(26)
4

(20)3
6

(16)3
7

(12)3
8

(2) (6)2(8)2

4 5
1

(27)
3

(23)3
5

(19)3
8

(9)3 (5)2(13)4(15)2

4 6
1

(28)
4

(22)3 (4)2(6)2(10)4(12)4(16)4
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Table 18.3: continued.

4 7
2

(28)
4

(24)3
7

(18)5
8

(14)5 (4)2(8)4(10)4

4 8
4

(29)
5

(25)3
7

(21)5 (3)2(7)4(11)6(13)6(15)3

5 5
4

(22)3
5

(20)5
8

(12)5 (2)2(4)2(6)2(16)4

5 6
1

(27)
2

(25)3
7

(17)5 (7)4(9)4(11)4(15)3

5 7
1

(29)
3

(25)3
6

(21)5 (3)2(7)4(11)6(13)6(15)3

5 8
3

(28)
4

(26)3
5

(24)5
8

(18)7 (8)6(10)6(16)8

6 6
3

(24)3
6

(20)5
8

(14)5 (2)2(4)2(8)4(12)6

6 7
1

(28)
2

(26)3
5

(22)5
8

(16)7 (6)4(10)6(12)6

6 8
2

(29)
3

(27)3
6

(23)5
7

(21)7 (5)4(11)8(13)8(15)4

7 7
2

(26)3
4

(24)5
7

(20)7 (2)2(8)6(12)8(16)8

7 8
1

(29)
2

(27)3
4

(25)5
6

(23)7
8

(19)9 (9)8(13)10(15)5

8 8
1

(28)3
3

(26)5
5

(24)7
7

(22)9
8

(20)11 (12)12(16)12

Table 18.4: Mass spectrum of the thermal tricritical Ising model, together with their
numerical values and the Z2 quantum numbers.

m1 = M 1 odd
m2 = 2M cos( 5π

18 ) 1.28557 even
m3 = 2M cos(π9 ) 1.87938 odd
m4 = 2M cos( π

18 ) 1.96961 even
m5 = 4M cos( 5π

18 ) cos( π
18 ) 2.53208 even

m6 = 4M cos(π9 ) cos( 2π
9 ) 2.87938 odd

m7 = 4M cos( π
18 ) cos(π9 ) 3.70166 even

Bootstrap fusion rules. The bootstrap fusion rules of both models (Ising and Toda)
can be written in a general form once a proper notation is introduced. Notice that the
squares of the masses {m1,m6,m5,m7} are the roots of the fourth-order polynomial

P1 = x4 − 30x3 + 300x2 − 1080x+ 720

and for these quantities, let’s introduce the notation

(m1,m6,m5,m7) → (C1, C2, C3, C4).

The squares of the masses {m2,m3,m8,m4} are instead the roots of the fourth-order
polynomial

P1 = x4 − 30x3 + 240x2 − 720x+ 720
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and to denote them, let’s introduce the notation

(m2,m3,m8,m4) → (B1, B2, B3, B4).

In this way, the bootstrap fusion rules of the bootstrap fusions of the bound states
related to the E8 algebra can be written as (with cyclic notation, i.e. Bi+4 ≡ Bi and
Ci+4 ≡ Ci)

Ci × Ci = Ci +Bi +Bi+1
Ci × Ci+1 = Ci+2 + Ci+3 +Bi+3
Ci × Ci+2 = Ci+1 + Ci+3 +Bi+1 +Bi+3
Ci × Ci+3 = Ci+1 + Ci+2 +Bi+2
Bi ×Bi = Ci +Ai+1 + Ci+2 +Bi +Bi+3
Bi ×Bi+1 = Ci + Ci+1 +Bi+1
Bi ×Bi+2 = Ci+1 + Ci+3
Bi ×Bi+3 = Ci +Bi + Ci+3
Ci ×Bi = Ci +Bi +Bi+1 +Bi+3
Ci ×Bi+1 = Ci + Ci+2 +Bi +Bi+3
Ci ×Bi+2 = Bi+2 + Ci+3
Ci ×Bi+3 = Ci+1 + Ci+2 +Bi +Bi+1 +Bi+3.

(18.4.18)

An explicit check of the S-matrix of the Ising model in a magnetic field is provided by
the thermodynamics Bethe ansatz, as discussed in more detail in Chapter 19.

18.5 The Tricritical Ising Model at T �= Tc

The tricritical Ising model away from its critical temperature is described by the
integrable deformation ε = Φ1,2 with conformal weight Δ = 1/10. This corresponds
to the massive deformation of the Liouville action based on the E7 algebra. Therefore
we expect that the corresponding scattering theory involves seven particles. Let’s see
how this theory can be derived. The perturbed action is

S = SCFT + λ

∫
d2z ε(z, z̄). (18.5.1)

For λ > 0 the system is in its Z2 symmetric phase. Its low-temperature phase, λ < 0,
is related by duality to the high-temperature one. Therefore, in the following we focus
our attention only on the massive theory (18.5.1) with λ > 0.

The spins of the conserved charges coincide with the Coxeter exponents of the
Toda field theory based on the E7 algebra, whose Coxeter number is h = 18

s = 1, 5, 7, 9, 11, 13, 17 (mod 18).

In computing the mass spectrum and the scattering amplitudes, it is important to
notice that the fundamental particle cannot be a bound state of itself for the Z2
symmetry of the model which can be used to label the particles. We expect that the
fundamental particle is odd under this symmetry and therefore cannot fulfill the Φ3

property. However, the existence of a Z2 even particle with the Φ3 property is not
in contradiction with the spins of the conserved charges, as long as the charge Q9
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annihilates this state. In the light of this observation, let’s assume that the lightest
Z2 even particle, here denoted by A2, appears as a bound state in the scattering
amplitude of the fundamental Z2 odd particle A1. Since for the eigenvalues of the
conserved charges we have χ(1)

9 �= 0 but χ(2)
9 = 0, using the consistency equation one

obtains the resonance angle u2
11 by the condition

cos
(

9u2
11

2

)
= 0. (18.5.2)

The solution that gives rise to a consistent system is identified as u2
11 = 5π/9. This

fixes the mass ratio of these two particles

m2 = 2 cos
(

5π
18

)
m1.

The pole in S11 at θ = i5π/9 with positive residue implies a pole in S12 at θ = i5π/9
with negative residue, corresponding to the particle A1 in the crossed channel. With
these data, the bootstrap equations that involve S11 and S12 become

S12(θ) = S11

(
θ + i

5π
18

)
S11

(
θ − i

5π
18

)
, (18.5.3)

S11(θ) = S11

(
θ + i

4π
9

)
S12

(
θ − i

5π
18

)
. (18.5.4)

One cannot satisfy these equations only with a pole in S11 and S12. The minimal way
to satisfy them is to introduce an additional pole at θ = iπ/9 (with positive residue)
in S11 and a pole at θ = i 7π/18 (with positive residue) in S12. The new pole at
θ = i π/9 in S11 corresponds to a new bound state A4, a particle that is even under
the Z2 symmetry, with mass

m4 = 2 cos
( π

18

)
m1.

The pole at θ = i7π/18 in S12 represents another bound state A3, odd under the Z2
symmetry, with mass

m3 = 2 cos
(π

9

)
m1.

So,
S11(θ) = −f 1

9
(θ) f 5

9
(θ), S12(θ) = f 7

18
(θ) f 13

18
(θ). (18.5.5)

All other amplitudes can be iteratively computed by employing the bootstrap equa-
tions (17.4.12). The bootstrap process closes with seven particles, whose masses and
Z2 quantum numbers are given in Table 18.4. Also in this case, as in the Ising model
in a magnetic field, the masses can be associated to the dots of the Dynkin diagram of
the E7 algebra. They enter in fact the component of the Perron–Frobenius eigenvector
of the incidence matrix of this Dynkin diagram, see Table 18.5. The complete set of
scattering amplitudes is shown in Table 18.6.
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Table 18.5: Dynkin diagram of the E7 algebra and correspondence between the masses of
the particles and the dots of the diagram.

� � � � � �

�

m2 m5 m7 m6 m4 m1

m3

Bootstrap fusion rules. According to the roots of the algebraic equations that
determine the masses of the corresponding Toda field theory (see Section 16.6), the
seven particles can be organized into two triplets and one singlet:

(Q1, Q2, Q3) ≡ (m6,m3,m1)
(K1,K2,K3) ≡ (m2,m4,m7)

(N) ≡ (m5).

The first triplet consists of the odd particles under the Z2 symmetry. The second triplet
and the singlet are made of Z2 even particles. The bootstrap fusions that involve [N ]
and [N,Ki] form a closed subsystem of these fusions:

N ·N = N , N ·KA = K1 +K2 +K3
KA ·KA+1 = KA +N , KA ·KA = KA +KA+1 +N.

(18.5.6)

The other particles couple only to the previous ones

KA ·QA = QA+1 , KA ·QA+1 = Q1 +Q2 +Q3
KA ·QA−1 = QA−1 +QA+1 , QA ·QA = KA−1 +KA+1
QA ·QA+1 = KA +KA−1 +N , N ·QA = QA−1 +QA+1.

(18.5.7)

A check that confirms the validity of this S-matrix description of the thermal de-
formation of the tricritical Ising model will be given by the thermodynamics Bethe
ansatz.

E7 Toda theory. As for the other S-matrices previously discussed, also the S-matrix
of the thermal deformation of the tricritical Ising model can be used as a minimal
S-matrix of the corresponding lagrangian model, given by the Toda field theory based
on the exceptional E7 algebra. In this case the Z-factor that enters the amplitude of
the fundamental particle is

Z11(θ) = −f−B(θ) f− 1
9+B(θ) f− 4

9 −B(θ), (18.5.8)
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Table 18.6: S-matrix of the thermal deformation of the tricritical Ising model. The factors(
tγ/18(θ)

)pγ in Sab(θ) correspond to (γ)pγ (pγ = 1 is omitted). The upper index c in (γ)
denotes the bound state Ac in the amplitude Sab(θ), whose pole is at θ = iπγ/18.

a b Sab

1 1 −
2

(10)
4

(1)

1 2
1

(13)
3

(7)

1 3 −
2

(14)
4

(10)
5

(6)

1 4
1

(17)
3

(11)
6

(3) (9)

1 5
3

(14)
6

(8) (6)3

1 6 −
4

(16)
5

(12)
7

(4) (10)2

1 7
6

(15) (9) (5)2 (7)2

2 2
2

(12)
4

(8)
5

(2)

2 3
1

(15)
3

(11)
6

(5) (9)

2 4
2

(14)
5

(8) (6)2

2 5
2

(17)
4

(13)3
7

(3) (9) (7)2

2 6
3

(15) (9) (5)2(7)2

2 7
5

(16)
7

(10)3 (4)2(6)2

3 3 −
2

(14)
7

(2) (12)2 (8)2

3 4
1

(15) (9)(5)2(7)2

3 5
1

(16)
6

(10)3 (4)2(6)2

3 6
2

(16)
7

(8)3
5

(12)3 (4)2

3 7
3

(17)
6

(13)3 (9)2(3)2(7)4

4 4
4

(12)
7

(4)
5

(10)3 (2)2

4 5
2

(15)
4

(13)3
7

(7)3 (9)

4 6
1

(17)
6

(11)3 (9)2(3)2(5)2

4 7
4

(16)
5

(14)3 (8)4(12)4

5 5
5

(12)3 (4)2(2)2(8)4

5 6
1

(16)
3

(14)3 (6)4(8)4

5 7
2

(17)
4

(15)3
7

(11)5 (9)3(5)4

6 6 −
4

(14)3
7

(10)5 (16)2(12)4

6 7
1

(17)
3

(15)3
6

(13)5 (9)3(5)6

7 7
2

(16)3
5

(14)5
7

(12)7 (8)8
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with

B(g) =
2
h

g2

8π
1

1 + g2

8π

, (18.5.9)

where h = 18 is the Coxeter number of the E7 algebra. All the other amplitudes can
be obtained by applying the bootstrap equations.

18.6 Thermal Deformation of the Three-state Potts Model
The universality class of this model is described by a subset of operators of the minimal
model M5,6 with central charge c = 4/5. The Landau–Ginzburg theory of the critical
model is

L = (∂μΦ)(∂μΦ∗) +
[
(Φ)3 + (Φ∗)3

]
, (18.6.1)

where Φ is a complex scalar field. The two most relevant magnetization operators can
be identified with Φ and Φ∗, whereas the other two sub-leading magnetic operators
correspond to (Φ∗)2Φ and Φ∗Φ2. The energy operator is associated to Φ∗Φ.

Away from the critical temperature, the action of the model can be written as

A = ACFT + λ

∫
ε(x) d2x. (18.6.2)

and it corresponds to an integrable theory. In the Landau–Ginzburg formalism, the
thermal deformation is equivalent to adding a mass term m2Φ∗Φ in the lagrangian
(18.6.1). The perturbed theory is still invariant under the permutation group S3
present at the critical point and therefore the particles can be labeled by the corre-
sponding quantum numbers. An irreducible representation of this discrete symmetry
group is given by a particle–antiparticle doublet (A,A) of mass m. Under the action
of the generators of the group, these states transform as

ϑA = ωA; ϑA = ωA; C A = A,

where ω = exp(2πi/3). In this case, the most general S-matrix is given by

| A(θ1)A(θ2)〉in = u(θ12) | A(θ1)A(θ2)〉out;
| A(θ1)A(θ2)〉in = t(θ12) | A(θ1)A(θ2)〉out + r(θ12) | A(θ1)A(θ2)〉out.

However, as a direct consequence of the infinite conserved charges of this theory,
it is easy to show that the reflection amplitude vanishes. Therefore the S-matrix is
completely diagonal. Furthermore, the crossing invariance implies

t(θ) = u(iπ − θ),

while the unitarity condition leads to

t(θ) t(−θ) = 1; u(θ)u(−θ) = 1.

The minimal solution of these equations is

u(θ) =
sinh (θ/2 + iπ/3)
sinh (θ/2 − iπ/3)

, t(θ) =
sinh (θ/2 + iπ/6)
sinh (θ/2 − iπ/6)

. (18.6.3)

Notice that the antiparticle A appears as a bound state of the particle A and vice
versa.



624 Exact S-Matrices

Table 18.7: Dynkin diagram of E6, with the relative association between the masses and
the dots of the diagram.

� � � � �

�

ma mb md mb ma

mc

18.6.1 Thermal Deformation of the Three-state Tricritical Potts Model

The tricritical version of the three-state Potts model can be identified with a subset of
the fields of the minimal conformal model M6,7. As in the ordinary Potts model, its
tricritical version is invariant under the permutation group S3. Its thermal deforma-
tion is implemented by adding to the conformal action the energy operator Φ1,2 with
conformal weights (Δ, Δ̄) =

( 1
7 ,

1
7

)
. This is the most relevant field of the Kac table

that is invariant under the S3 symmetry.
The off-critical model is integrable. To compute the S-matrix, let’s assume the

existence of two douplets (Aa, Aa) and (Ab, Ab) with the bootstrap fusions

Aa ×Aa → Aa +Ab, Ab ×Ab → Aa +Ab,

and masses ma, mb (ma < mb). From the analysis of the consistency equations done
in the previous chapter, one arrives at the resonance angles

U
a

ab =
π

12
, U

b

ab =
5π
12
, U

a

aa =
π

3
. (18.6.4)

Also in this case all reflection amplitudes vanish. The scattering amplitudes relative
to the doublet with lower mass (Aa, Aa) are given by

| Aa(θ1)Aa(θ2)〉 = Saa(θ12) | Aa(θ2)Aa(θ1)〉;
| Aa(θ1)Aa(θ2)〉 = STa,a(θ12) | Aa(θ2)Aa(θ1)〉.

The bootstrap fusion a× a→ a implies

STaa(θ) = Saa(θ − iπ3 )Saa(θ + iπ3 )
Saa(θ) = STaa(θ − iπ3 )STaa(θ + iπ3 ).

Equivalently

Saa(θ)Saa

(
θ − i

2π
3

)
Saa

(
θ + i

2π
3

)
= 1.
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The minimal solution of these equations, which satisfies the unitarity condition, is

Saa(θ) =
sinh( θ2 + iπ3 ) sinh( θ2 + i π12 ) sinh( θ2 + iπ4 )
sinh( θ2 − iπ3 ) sinh( θ2 − i π12 ) sinh( θ2 − iπ3 )

≡ s 2
3
(θ)s 1

6
(θ)s 1

2
(θ). (18.6.5)

Saa has two simple poles with positive residue: the first, θ = i2π/3, corresponds to the
particle Aa while the other, at θ = iπ/6, corresponds to the particle Ab. Their mass
ratio is

mb = mb = 2ma cos
( π

12

)
.

The additional pole at θ = iπ/2 has negative residue and corresponds to a bound state
in the crossed channel. In fact,

STaa(θ) = Saa(iπ − θ) = −s 1
3
(θ)s 1

2
(θ)s 5

6
(θ)

which has a simple pole with positive residue at θ = iπ/2. This pole is associated to
a new neutral particle Ac, with mass

mc = 2ma cos
(π

4

)
.

The scattering amplitute Sab is recovered by the equation

Sab(θ) = Saa

(
θ − i

π

12

)
Sab

(
θ + i

π

12

)
with the result

Sab(θ) = s 3
4
(θ) s 1

4
(θ) s 1

12
(θ) s 5

12
(θ) s27

12
(θ). (18.6.6)

The pole analysis of Sab shows an additional neutral particle Ad that enters the boot-
strap fusion

Aa ×Ab → Ac +Ad

with mass
md = 4ma cos

( π
12

)
cos
(π

4

)
.

It is easy to show that the set of these six particles {Aa, Aa, Ab, Ab, Ac, Ad} closes the
bootstrap procedure. The masses can be put in correspondence with the dots of the
Dynkin diagram of E6, as shown in Table 18.8. The complete set of the scattering
amplitudes is

Saa = ( 1
6 )( 2

3 )( 1
2 ), Saa = Saa

STaa = −(1
3 )( 5

6 )( 1
2 ) Sab = Sab = ( 1

4 )( 3
4 )( 7

12 )( 11
12 )( 5

12 )2

Sab = Sab = ( 1
12 )( 1

4 )( 3
4 )( 5

12 )( 7
12 )2, Sac = Sac = ( 1

4 )( 3
4 )( 5

12 )( 7
12 )

Sad = Sad = ( 1
6 )( 5

6 )( 1
3 )2( 2

3 )2( 1
2 )2, Sbb = ( 5

6 )( 1
6 )2( 1

3 )2( 1
6 )2( 2

3 )3( 1
2 )3

ST
bb

= −(1
6 )( 5

6 )2( 2
3 )2( 1

3 )3( 1
2 )3, Sbc = Sbc = ( 1

6 )( 5
6 )( 1

2 )2( 2
3 )2( 1

3 )2

Sbd = Sbd = ( 1
12 )( 11

12 )( 1
4 )3( 1

4 )3( 5
12 )4( 7

12 )4, Scc = −(1
6 )( 5

6 )( 1
3 )( 2

3 )( 1
2 )2

Scd = ( 1
12 )( 11

12 )( 1
4 )2( 3

4 )2( 5
12 )3( 7

12 )3, Sdd = −(1
6 )3( 5

6 )3( 1
3 )5( 2

3 )5( 1
2 )6,

where we use the notation
(x) ≡ sx(θ).
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E6 Toda theory. The amplitudes above are the minimal S-matrices of the Toda field
theory based on the exceptional algebra E6. This is not surprising, because of the
relation between this statistical model and the Toda field theory discussed in Chapter
16. To obtain the exact S-matrix of the Toda field theory with real coupling constant
g it is sufficient to multiply the minimal amplitude Saa(θ) for the Z-factor

Z(θ) = (−B)
(
−1

6
+B

) (
−1

2
−B

) (
−2

3
+B

)
, (18.6.7)

where

B(g) =
2
h

g2

8π
1

1 + g2

8π

(18.6.8)

and h = 12 is the Coxeter number of E6.

18.7 Models with Internal O(n) Invariance
The O(n) statistical models are characterized by an isotropic ferromagnetic interaction
among the n components of the spin variables �Si. For the elastic S-matrix of these
theories it is necessary to distinguish three cases: (i) n > 2; (ii) n < 2; and (iii) n = 2.
In this section we discuss the first two cases, whereas the discussion of the n = 2 case
can be found in the next section.

18.7.1 n > 2

From the symmetry of the system, let’s assume that the spectrum of the theory consists
of a multiplet of n particles of equal mass, denoted by the symbols Ai (i = 1, 2, . . . , n).
Enforcing the O(n) invariance of the scattering theory, we can decompose the S-matrix
elements as

Ai(θ1)Aj(θ2) = δij S1(θ)
n∑

k=1

Ak(θ2)Ak(θ1) (18.7.1)

+S2(θ)Aj(θ2)Ai(θ1) + S3(θ)Ai(θ2)Ai(θ1).

The functions S2(θ) and S3(θ) are the transmission and reflection amplitudes respec-
tively, while S1(θ) describes the annihilation–creation process Ai + Ai → Aj + Aj ,
with i �= j. This decomposition is represented in Fig. 18.4. These functions satisfy the
unitarity equation

S2(θ)S2(−θ) + S3(θ)S3(−θ) = 1
S2(θ)S3(−θ) + S3(θ)S2(−θ) = 0 (18.7.2)
nS1(θ)S1(−θ) + S1(θ)S2(−θ) + S1(θ)S3(−θ)
+S2(θ)S1(−θ) + S3(θ)S1(−θ) = 0.

Moreover, they are related by the crossing symmetry relationships

S2(θ) = S2(iπ − θ) (18.7.3)
S1(θ) = S3(iπ − θ) (18.7.4)

as can be seen by looking at the diagrams of Fig. 18.4 from left to right rather than
from bottom to top.
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S = + +

i ii j j j

k l
jiijkk

i j

1S S 2 S 3

Fig. 18.4 Decomposition of the S-matrix into invariant amplitudes under the O(n) group.

In addition to these basic conditions, the amplitudes satisfy a non-trivial set of
Yang–Baxter equations:

S2 S1 S3 + S2 S3 S3 + S3 S3 S2 = S3 S2 S3 + S1 S2 S2 + S1 S1 S2S3 S1 S3 + S3 S2 S3

= S3 S3 S1 + S3 S3 S2 + S3 S3 S1 + S2 S2 S3 + 2S1 S3 S1

+S1 S3 S2 + S1 S3 S3 + S1 S2 S2 + S1 S1 S1

where the arguments in each generic term SaSbSc of these equations are θ for the first
factor Sa, θ + θ′ for the second factor Sb, and θ′ for the third one Sc. The general
solution of these equations has the functional form

S3(θ) = − iλ
θ
S2(θ), (18.7.5)

S1(θ) = − iλ

i[(n− 2)/2]λ− θ
S2(θ).

Substituting these expressions into the crossing equations, one can determine the pa-
rameter λ

λ =
2π
n− 2

. (18.7.6)

Substituting in the unitarity equations, one arrives at the condition

S2(θ)S2(−θ) =
θ2

θ2 + λ2 . (18.7.7)

In order to solve this equation, together with (18.7.3) coming from the crossing sym-
metry, one can follow an iterative strategy. Notice that a solution of (18.7.7) is given by

Q(θ) =
θ

θ + iλ
.

However this spoils the crossing symmetry equation (18.7.3), which can however be
re-established by writing

Q(θ) =
θ

θ + iλ

iπ − θ

iπ − θ + iλ
.
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In turn, this new expression spoils the unitarity condition (18.7.7), which can be saved
by rewriting Q(θ) as

Q(θ) =
θ

θ + iλ

iπ − θ

iπ − θ + iλ

iπ + θ + iλ

iπ + θ
.

Iterating these two operations to satisfy simultaneously the unitarity and crossing
symmetry equations, one ends up in an infinite product. Using the identity

Γ(α)Γ(β)
Γ(α+ γ)Γ(β − γ)

=
∞∏
k=0

[(
1 +

γ

α+ k

) (
1 − γ

β + k

)]

the final result can be concisely expressed in terms of the Γ functions as

S2(θ) = U (+)(θ)U (+)(iπ − θ); (18.7.8)

U (+)(θ) =
Γ
(
λ
2π − i θ

2π

)
Γ
( 1

2 − i θ
2π

)
Γ
( 1

2 + λ
2π − i θ

2π

)
Γ
(
−i θ

2π

) .
With the determination of this amplitude, one can use eqn (18.7.5) to determine the
remaining two amplitudes. The S-matrix so obtained does not have a pole in the
physical sheet. Hence the theory does not present additional bound states and the
only excitations are given by the original particle Ai. It is possible to show that this
scattering theory is in agreement with the perturbative computations done using the
bosonic lagrangian

L =
1
2
∂μ�S · ∂μ�S, |�S| = 1 (18.7.9)

This is a nonlinear σ-model: although the lagrangian looks like that of a free massless
theory, the constraint on the components of the field induces, ipso facto, a mass term
and a series of interactions. The nonlinear σ-model is renormalizable, asymptotically
free and explicitly O(n) symmetric. The simplest way of showing the mass generation
in this theory is to study the large n limit: introducing a coupling constant g and
enforcing the constraint using the Fourier representation of the δ function, we can
write the lagrangian of the model as

L =
n

2g

[
(∂μ�S)2 + iλ(x) (�S2 − 1)

]
.

In this expression λ(x) is the lagrangian multiplier field associated to the constraint
and furthermore we have parameterized the coupling constant in such a way as to have
a factor n in front of the lagrangian. In the path integral of this theory we can now
integrate out �S, which is no longer constrained, obtaining an effective action for the
field λ(x):

Seff (λ) =
n

2

[
−
∫
d2x

(
i
λ(x)
g

+ tr log(−∂2 + iλ)
)]

. (18.7.10)

Because of the presence of a factor n in front of Seff , in the large n-limit we can
ignore the fluctuations of λ(x) and evaluate it at the action saddle point. This can be



Models with Internal O(n) Invariance 629

done by deforming the functional integration contour of λ into the complex plane: a
saddle point is found at a constant, imaginary value of λ = iλ0. Imposing λ0 = m2,
the saddle point equation is expressed by

1
g

=
∫

d2k

(2π)2
1

k2 +m2 =
1
2π

log
Λ
m

where Λ is an ultraviolet cut-off. This equation determines the mass parameter m of
the theory, in terms of the cut-off and the bare coupling g:

m = Λ e−2π/g.

At lowest order in 1/n, the theory consists of just n free boson particles of mass m.
This results is consistent with the S-matrix formulation given above.

18.7.2 n < 2

As seen in Section 14.6, for −2 < n < 2 the O(n) model has a critical point. The
conformal theory has central charge

c = 1 − 6
p(p+ 1)

,

where p is a function of the index n

n = 2 cos
(
π

p

)
. (18.7.11)

In the continuum limit, the energy operator corresponds to the primary field Φ1,3.
Correspondingly, the off-critical theory

S = SCFT + τ

∫
Φ1,3(x) d2x.

defines an integrable theory. Let’s compute the S-matrix based on the following as-
sumptions. As in the previous case, the particles Ai are associated to a vector repre-
sentation of O(n), even though n can now take continuous values. Their S-matrix can
still be decomposed into the invariant amplitudes, as done in eqn (18.7.1). However,
in this range of values of n, there is also n = 0 which corresponds to self-avoiding
random walks. Associating the world-lines of the particles Ai to the lines that enter
the high-temperature expansion of the lattice model, it seems natural to conjecture
that for all n in the interval −2 < n < 2 we have the condition

S2(θ) = 0. (18.7.12)

Notice that this equation is consistent with the crossing symmetry of the problem,
while for the other amplitudes we have

S1(θ) = S3(iπ − θ). (18.7.13)
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The general solution of the Yang–Baxter equation is given in this case by

S1(θ) = i sinh
(
θ
p

)
R(θ);

S3(θ) = i sinh
(
iπ−θ
p

)
R(θ),

(18.7.14)

where R(θ) is a function that satisfies

R(θ) = R(iπ − θ). (18.7.15)

It can be determined by imposing the unitarity equations

S3(θ)S3(−θ) = 1
S3(θ)S1(−θ) + S1(θ)S3(−θ) + nS1(θ)S1(−θ) = 0. (18.7.16)

Notice that the second equation of this system is authomatically satisfied by virtue of
(18.7.11). The first equation implies instead

R(θ)R(−θ) = −
[
sinh
(
iπ − θ

p

)
sinh
(
iπ + θ

p

)]−1

. (18.7.17)

The minimal solution of both eqns (18.7.15) and (18.7.17) is given by

R(θ) =
1

sinh
(
iπ−θ
p

) Γ
(
1 − θ

iπp

)
Γ
(
1 + θ

iπp

) (18.7.18)

×
∞∏
k=1

Γ
(

2k
p − θ

iπp

)
Γ
(
1 + 2k

p − θ
iπp

)
Γ
(

2k−1
p + θ

iπp

)
Γ
(
1 + 2k−1

p + θ
iπp

)
Γ
(

2k
p + θ

iπp

)
Γ
(
1 + 2k

p + θ
iπp

)
Γ
(

2k−1
p − θ

iπp

)
Γ
(
1 + 2k−1

p − θ
iπp

) .
As shown in Problem 6, the infinite product admits an integral representation, so that
R(θ) can also be expressed as

R(θ) =
1

sinh
(
iπ−θ
p

) exp

[
i

∫ ∞

0

dt

t

sinh π(p−1)t
2

sinh πpt
2 cosh πt

2

sin θt

]
. (18.7.19)

Fig. 18.5 Configurations of self-avoiding polymers associated to the world-lines of the parti-
cles of the O(n) scattering theory for −2 < n < 2.
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Notice that for n = 1
S1(θ) + S3(θ) = −1, (18.7.20)

which coincides with the S-matrix of the thermal Ising model, as it should do. In the
limit n → 0, the two amplitudes can be interpreted as the two possible interactions
among the chains of the polymers, as shown in Fig. 18.5.

18.8 S-Matrix of the Sine–Gordon Model

For n = 2 the scattering theory of the O(n) model coincides with that associated to
the Sine–Gordon model, whose lagrangian is

LSG =
1
2
(∂μφ)2 +

m2

β2 (cosβφ− 1). (18.8.1)

It is useful to define

ξ ≡ β2

8
1

1 − β2

8π

, (18.8.2)

a quantity that plays the role of the renormalized coupling constant. It is worth
mentioning that Sidney Coleman discovered that the quantum Sine–Gordon model
is equivalent to the massive Thirring model for a Dirac field

LMTM = iψ̄γμ∂μψ −m0ψ̄ψ − g

2
(ψ̄γμψ)2, (18.8.3)

with the position
g

π
=

4π
β2 − 1 , for 0 ≤ β2

8π
< 1. (18.8.4)

In this mapping, the Sine–Gordon soliton is identified with the Thirring fermion. Note
that the Thirring interaction becomes

attractive (g > 0) for β2 < 4π i.e. ξ < π
repulsive (g < 0) for β2 > 4π i.e. ξ > π.

(18.8.5)

It is important to keep this in mind for understanding the structure of the bound
states of the Sine–Gordon model that will be discussed below.

The best way to reveal the structure of the scattering theory of this model is to
define its basic excitations by the complex linear combinations

A(θ) = A1(θ) + iA2(θ), Ā(θ) = A1(θ) − iA2(θ)

where A1 and A2 are the degenerate particles of the original O(2) model. In terms of
these new excitations, the scattering amplitudes can be written as

A(θ1)Ā(θ2) = ST (θ)Ā(θ2)A(θ1) + SR(θ)A(θ2)Ā(θ1)
A(θ1)A(θ2) = S(θ)A(θ2)A(θ1) (18.8.6)
Ā(θ1)Ā(θ2) = S(θ)Ā(θ2)Ā(θ1).
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They can be collected into a 4 × 4 matrix with non-zero entries given by

SSG(θ) =

⎛
⎜⎜⎝
S
ST SR
SR ST

S

⎞
⎟⎟⎠ . (18.8.7)

The quantities above can be interpreted as the scattering amplitudes of the soliton
A and the antisoliton Ā. ST and SR are the transmission and reflection amplitudes,
respectively, in the soliton–antisoliton scattering process, while S, by charge conju-
gation symmetry, is the common transmission amplitude in the soliton–soliton and
antisoliton–antisoliton scatterings. Notice the close structure between the S-matrix
(18.8.7) and the R-matrix of the six-vertex model given in eqn (6.4.3).

The amplitudes satisfy the crossing symmetry equations

S(θ) = ST (iπ − θ), SR(θ) = SR(iπ − θ) (18.8.8)

and those coming from the unitarity condition

S(θ)S(−θ) = 1,
ST (θ)ST (−θ) + SR(θ)SR(−θ) = 1, (18.8.9)
ST (θ)SR(−θ) + SR(θ)ST (−θ) = 0.

Using the Yang–Baxter equations satisfied by the amplitudes, they can be expressed as

ST (θ) =
sinh πθ

ξ

sinh π(iπ−θ)
ξ

S(θ), (18.8.10)

SR(θ) = i
sin π2

ξ

sinh π(iπ−θ)
ξ

S(θ).

Substituting them into the unitarity and crossing symmetry equations, we get the
equations satisfied by S(θ):

S(θ)S(−θ) = 1,

S(iπ − θ) =
sinh πθ

ξ

sinh π(iπ−θ)
ξ

S(θ).

Its solution can be written in terms of an infinite product

S(θ) =
∞∏
k=0

Γ
(
1 + (2k + 1)πξ − i θξ

)
Γ
(
1 + 2k πξ + i θξ

)
Γ
(
1 + (2k + 1)πξ + i θξ

)
Γ
(
1 + 2k πξ − i θξ

) (18.8.11)

×
Γ
(
(2k + 1)πξ − i θξ

)
Γ
(
(2k + 2)πξ + i θξ

)
Γ
(
(2k + 1)πξ + i θξ

)
Γ
(
(2k + 2)πξ − i θξ

) .
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This expression admits the integral representation

S(θ) = − exp

[
−i
∫ ∞

0

dt

t

sinh t(π−ξ)
2

sinh ξt
2 cosh πt

2

sin θt

]
. (18.8.12)

Another useful representation of this amplitude is the mixed one

S(θ) = −(−1)n
n∏

k=1

[
θ + ikξ

θ − ikξ

]
(18.8.13)

× exp

⎧⎨
⎩−i

∫ ∞

0

dt

t

[
2 sinh t(π−ξ)

2 e−nξt +
(
e−nξt − 1

) (
e(ξ−π)t/2 + e−(π+ξ)t/2

)]
2 sinh ξt

2 cosh πt
2

sin θt

⎫⎬
⎭ .

The mixed representation is particularly helpful for determining the numerical values
of S(θ): notice that the convergence of the integral increases by increasing the integer
n, with the only price to pay of having more power factors in the first product term.
Note that the integer n can be varied arbitrarily without changing the value of S(θ)
and, in particular, for n = 0 one recovers the previous expression (18.8.12). The proof
of the integral and the mixed representation of S(θ) is suggested in Problem 6.

The pole structure of the S-matrix is determined by the various terms that enter
its expression. It is important to focus attention on the poles that may belong to the
physical sheet 0 < θ < iπ: using the results of Appendix A in Chapter 2 for the Γ
functions or simply looking at the mixed representation (18.8.13), it is easy to see that
S(θ) has a set of poles at

θ = i n ξ, n = 0, 1, . . . (18.8.14)

Other poles of the S-matrix come from the factor sinh (π(iπ − θ)/ξ) in the denominator
of the right-hand side of eqn (18.8.10), placed at

θ = i(π − n ξ), n = 0, 1, . . . (18.8.15)

Both sets of poles fall in the physical sheet if

ξ < π. (18.8.16)

As we show below, if the condition (18.8.16) is satisfied, the poles (18.8.15) lead to
the bound states in the s-channel of the SG model whereas the poles (18.8.14) lead to
the bound states of the crossed t-channel. The number of these bound states is

N̄ =
[
π

ξ

]
, (18.8.17)

where [x] is the integer part of the number x. To support the interpretation of the
poles given above, it is convenient to define the amplitudes

S±(θ) = (SR ± ST )(θ). (18.8.18)
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These quantities correspond to scattering processes with a well-defined quantum num-
ber under the charge conjugation operator: S− has charge conjugation C = −1 while
S+ has C = +1, as can be seen by writing the scattering processes as[

A(θ1)Ā(θ2) + Ā(θ1)A(θ2)
]

= S+(θ)
[
A(θ2)Ā(θ1) + Ā(θ2)A(θ1)

]
,[

A(θ1)Ā(θ2) − Ā(θ1)A(θ2)
]

= S−(θ)
[
A(θ2)Ā(θ1) − Ā(θ2)A(θ1)

]
.

The explicit expressions of these amplitudes are

S±(θ) = − 1

sinh π(θ−iπ)
ξ

[
i sin

π2

ξ
± sinh

πθ

ξ

]
S(θ), (18.8.19)

and their residue at the poles (18.8.15) is

S±(θ) 	 − i

θ − iπ + inξ
(−1)n ξ sin

π2

ξ
[1 ± (−1)n] S(iπ − inξ) (18.8.20)

Hence, S+(θ) has poles only when n is an even number, with S−(θ) only when n is an
odd number. Both sets of poles have a positive residue3 and therefore, as anticipated,
they correspond to the poles of the s-channel associated to the bound states Bn. These
are ordinary scalar particles, called breathers, with eigenvalues C = (−1)n under charge
conjugation. If M is the mass of the solitons, the mass spectrum of the bound states
is given by

mn = 2M sin
kξ

2
, k = 1, 2, . . . , N̄ . (18.8.21)

The S-matrix elements that involve the bound states can be computed by the boot-
strap equations. For their scattering processes with the solitons

A(θ1)Bn(θ2) = S(n)(θ)Bn(θ2)A(θ1), (18.8.22)
Ā(θ1)Bn(θ2) = S(n)(θ)Bn(θ2) Ā(θ1),

we have

S(n)(θ) =
sinh θ + i cos nξ

2

sinh θ − i cos nξ
2

n−1∏
k=1

sin2
(

(n−2k)ξ
4 − π

4 + i θ2

)
sin2
(

(n−2k)ξ
4 − π

4 − i θ2

) . (18.8.23)

For the scattering processes that involve only the particles Bn

Bn(θ1)Bm(θ2) = S(n,m)(θ)Bm(θ2)Bn(θ1), (18.8.24)

3The mixed representation (18.8.13) is particularly useful in the evaluation of these residues.
Attention has to be paid when ξ = π/m, with m an integer, for the simultaneous presence of a pole
in S(iπ − inξ) and a zero in sinπ2/ξ.
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we have the amplitudes

S(n,m)(θ) =
sinh θ + i sin

(
(n+m)ξ

2

)
sinh θ − i sin

(
(n+m)ξ

2

) sinh θ + i sin
(

(n−m)ξ
2

)
sinh θ − i sin

(
(n−m)

ξ 2
) (18.8.25)

×
n−1∏
k=1

sin2
(

(m−n−2k)ξ
4 + i θ2

)
sin2
(

(m−n−2k)ξ
4 − i θ2

) cos2
(

(m+n−2k)ξ
4 + i θ2

)
cos2
(

(m+n−2k)ξ
4 − i θ2

)
with n ≥ m. From the analysis of the poles of these expressions it is easy to see that the
particle Bn can be regarded as a bound state of Bk+Bl, with k+ l = n. Consequently,
iterating this relation, the particle Bn can be seen as the bound state of n elementary
particles B1. The lowest particle B1 can be associated to the excitation created by the
field φ that enters the lagrangian (18.8.1). When n = m = 1, the amplitude of the
fundamental particle is given by

S(1,1)(θ) =
sinh θ + i sin ξ
sinh θ − i sin ξ

. (18.8.26)

With the expression for ξ given in (18.8.2), this amplitude can be expanded in power
series of β2 and successfully compared with the perturbative series coming from the
Lagrangian (18.8.1). Notice that making the analytic continuation β → ig the Sine–
Gordon model becomes the Sinh–Gordon model: the formula (18.8.2) given for ξ be-
comes the expression (18.4.5) previously obtained for the function B(g) of the latter
model, while the amplitude (18.8.26) reduces to the S-matrix (18.4.4) of the Sinh–
Gordon model.

Let’s close this section with a comment that the reader should reflect upon. Notice
that when ξ > π, the pole in the soliton–antisoliton amplitude falls outside the physical
sheet. Correspondingly, there is no longer a bound state B1 associated to the field φ,
despite the fact that the lagrangian is expressed in terms of this field! This observation
shows that the spectrum of a quantum field theory is a question of dynamical nature
and less intuitive than it would appear.

18.9 S-Matrices for Φ1,3, Φ1,2, Φ2,1 Deformation of Minimal Models
As seen previously, the Φ1,3, Φ1,2, and Φ2,1 deformations of the minimal models Mm

of CFT generally lead to integrable massive field theories with kink behavior. This
means that such deformations give rise to an effective potential of the theory with a
finite number of degenerate vacua. The basic massive excitations are the kinks that
interpolate between different vacua. There may also be kink bound states.

There is a general approach for dealing with such massive theories, deeply related
to the Sine–Gordon model (for the Φ1,3 deformation) and to the Bullogh–Dodd model
with model imaginary coupling (for the Φ1,2 and Φ2,1 deformations) (see Chapter 16).
The main idea is based on the well-known relation between the S-matrices and the
R-matrices entering the transfer matrix of lattice integrable models (see Sections 6.4
and 17.2). An important feature of both quantities is their invariance under the quan-
tum group SLq(2). The q-parameter is a function of the coupling constant and when
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q is a root of unity, it is possible to restrict the Hilbert space of the original mod-
els, preserving both the integrability and the locality of an invariant set of operators.
Let’s see how this procedure is implemented for the Sine–Gordon model and for the
Bullogh–Dodd model.

18.9.1 Quantum Group Symmetry of the Sine–Gordon

The quantum group SLq(2) is the deformation of the algebra of functions over SL(2). It
is defined by the universal enveloping algebra Uq[sl(2)] with the commutation relations

[ J+, J− ] =
qH − q−H

q − q−1 , [H, J± ] = ±2J±. (18.9.1)

If the deformation parameter q goes to 1, eqn (18.9.1) reduces to the ordinary SL(2)
commutation relations and the quantum group SLq(2) to the ordinary SL(2) group.
Uq[sl(2)] forms a Hopf algebra with the comultiplication Δq defined by

Δq(H) = 1 ⊗H +H ⊗ 1
Δq(J±) = qH/2 ⊗ J± + J± ⊗ q−H/2.

(18.9.2)

The comultiplication Δq is an algebra homomorphism and is the analog of addition of
angular momentum in SU(2), to which it reduces when q → 1. The irreducible rep-
resentations of SLq(2) are generated by the comultiplication Δq which defines tensor
product representations.

Because of the resemblance between the algebraic structure of SL(2) and Uq[sl(2)],
the representation theory of the quantum group is quite similar to the classical theory.
The irreducible representations of Uq[su(2)] are labelled by j = 0, 1

2 , 1, . . . acting on a
Hilbert space Vj with basis vectors | j,m〉 (−j ≤ m ≤ j) as follows:

J3 | j,m〉 = m | j,m〉, J± | j,m〉 =
√

[j ∓m]q [j ±m+ 1]q | j,m〉

where all the usual numbers have turned into q-numbers, so defined:

[n]q ≡ qn − q−n

q − q−1 and [n]q → n as q → 1. (18.9.3)

All these representations can be obtained by starting with the fundamental represen-
tation j = 1

2 and using eqn (18.9.2), with the relation

| J,M ; j1, j2〉 =
∑

m1,m2

[
j1 j2 J
m1 m2 j

]
q

| j1,m1〉⊗ | j2,m2〉 (18.9.4)

where the quantum analogue of the Clebsh–Gordan (CG) coefficients appears.4 To
cluster together three representations there are two possibilities: one is related to the
configuration (Vj1 ⊗ Vj2)⊗ Vj3 , the other one to Vj1 ⊗ (Vj2 ⊗ Vj3). Both are physically

4For the classical values of the Clesh–Gordan and 6-j coefficients, see L.D. Landau and
E.M. Lifshitz, Quantum Mechanics. Non-relativistic Theory, Pergamon, Oxford, 1991.
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Fig. 18.6 Equivalence between the two Hilbert spaces (Vj1 ⊗ Vj2) ⊗ Vj3 (left-hand side) and
Vj1 ⊗ (Vj2 ⊗ Vj3) (right-hand side) rules by the 6 − j symbols.

equivalent and related each to the other by the quantum analogue of the 6-j symbols:
denoting by ej12,jm (j1, j2 | j3) an orthonormal basis in Vj1 ⊗ Vj2 ⊗ Vj3 associated to the
left-hand side of Fig. 18.6 and by ej23,jm (j1 | j2, j3) an orthonormal basis associated to
the right-hand side of the same figure, we have

ej12,jm (j1, j2 | j3) =
∑
j23

{
j1 j2 j12
j3 j j23

}
q

ej23,jm (j1 | j2, j3).

As long as q is not a root of unity, the irreducible representations have dimension
(2j + 1). However, when q is a root of unity, one can see from eqn (18.9.3) that
some of the q-CG coefficients (and the q-6j symbols) become singular. For this case,
a sensible representation theory of SLq(2) is obtained by restricting the allowed spins
to {0, 1/2, . . . , jmax}, where jmax is determined by the condition

[2jmax + 1]q = 0 → jmax =
N

2
− 1 for qN = ±1. (18.9.5)

This restriction on the allowed representations of SUq(2) with q a root of unity leads to
the truncation of the Hilbert space. It is this property, in particular, that is responsible
for the fusion rules of the minimal models of conformal field theory, discussed in
Section 11.4 of Chapter 11.

From the Sinh–Godon model, the restriction on the spins may lead to the truncation
of the multikink Hilbert space. Let’s see in more detail how this happens. Notice that
the quantum group SLq(2) can be realized by a constant R-matrix defined by

R12(q) (g ⊗ 1) (1 ⊗ g) = (1 ⊗ g) (g ⊗ 1)R12(q) with g ∈ SLq(2). (18.9.6)

Using eqn (18.9.2), this implies [R(q),Δq(g)] = 0 for any g ∈ SLq(2). In the fundamen-
tal representation, g is a 2×2 matrix with q-determinant equal to 1 (g11g22−q g12g21 =
1) and the non-zero entries of the R12-matrix are

R12(q) =

⎛
⎜⎜⎝
q

1 q − q−1

0 1
q

⎞
⎟⎟⎠ . (18.9.7)
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The spectral parameter λ can be introduced in the R-matrix as follows

R̂12(λ, q) = λR̂12(q) − λ−1R̂−1
12 (q) with R̂12 = P R12 (18.9.8)

where the permutation operator P is defined as P(V1 ⊗ V2) = V2 ⊗ V1. The matrix
R̂12(p, q) acts on the vector space C2 ⊗ C2 and is a solution of the Yang–Baxter
equation.

The SLq(2) quantum group symmetry of the Sine–Gordon equation is obtained by
noticing that the soliton S-matrix of this model, given in eqn (18.8.7), can be expressed
in terms of R̂12(p, q) as

SSG(θ) =
S(θ)

2 sinh π(iπ−θ)
ξ

R̂12(λ = eθ, q), q = −e−iπ2/ξ (18.9.9)

where S(θ) is given in eqn (18.8.12). Notice that the deformation parameter q is
related to the coupling constant. From

[
SSG,Δq

]
= 0, the soliton and antisoliton pair

forms the fundamental spin-1/2 representation, whereas the multisoliton states may
be regarded as the irreducible representations with higher spins which are created by
tensor products like in eqn (18.9.4).

18.9.2 Restricted Sine–Gordon model

For arbitrary values of the coupling constant of the Sine–Gordon model, starting from
the spin-1/2 representation of the soliton–antisoliton, we obtain multisoliton states
with j = 1, 3/2, . . . Ordinarily there is no limit to the number of solitons. But, if
ξ assume rational values, q given in eqn (18.9.9) becomes a root of unit and j is
bounded by jmax. This means that the Sine–Gordon model at special rational values
of the coupling constant cannot sustain solitons exceeding a certain number. Let’s
consider the various cases of interest.
Φ13 deformation of minimal unitary models Mm. The scattering theory of these
models is obtained when

β2

8π
=

m

m+ 1
−→ ξ = mπ. (18.9.10)

In this case jmax = m
2 − 1 and there are at most (m − 2) solitons (or antisolitons).

This peculiar aspect of the model can be understood as follows. In the original Hilbert
space of the Sinh–Godon theory, there are many sectors, each containing a certain
number of solitons. Then there is the sector containing up to (m − 2) solitons. That
sector decouples from the rest of the Hilbert space if eqn (18.9.10) holds and it can be
isolated out. Since solitons connect neighboring vacua, for a system having only up to
a certain number of solitons its effective potential is going to have a cut: while there is
an infinite degeneracy of vacua in the original Sinh–Godon theory, at the special values
(18.9.10) there is a truncation. With (m−2) solitons, the truncated potential has only
(m− 1) vacua, as shown in Fig. 18.7, and one can imagine that the effective potential
turns over at the edges. This agrees with the description of the massive Φ1,3 perturbed
unitary minimal models Mm: after perturbation, the original multiple vacua split into
(m− 1) degenerate ones, all having the same energy.
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Fig. 18.7 Effective potential of the Sinh–Godon theory at ξ = π/m (for m = 6). The dashed
line is the original untruncated potential.
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Fig. 18.8 Change of basis from the vertex to IRF form.

To get the S-matrix of the truncated theory it is necessary to change the basis
in the Hilbert space: since a soliton–antisoliton pair forms a spin-1/2 representation
| 1

2 ,± 1
2 〉, we can decompose the multisoliton Hilbert space H into the irreducible

spaces characterized by the higher spin, as shown in Fig. 18.8. In lattice models this is
equivalent to changing the Boltzmann weights from the fluctuating variables expressed
in terms of the vertices to the so-called RSOS (Restricted Solid On Solid) variables

H =
∑

mi=±1/2

| 1
2
,m1〉⊗ | 1

2
,m2〉 ⊗ · · · | 1

2
,mN 〉 =

∑
0 ≤ j1 <∞

|ji − ji+1| = 1/2

| j1, · · · , jN 〉

with appropriate q-CG coefficients. In this new basis, the multisoliton Hilbert space is
spanned by the kink Kab(θ), where a, b act as the RSOS vacua satisfying the condition
|a− b| = 1/2. The kink is therefore a domain wall between two vacua, and a multikink
state | Kab(θ1)Kbc(θ2)Kcd(θ3) . . .〉 should also have the next neighboring indices equal
in order to have no jumps in the field configuration, as shown in Fig. 18.9. The S-matrix
of the two-kink scattering can be derived from a restriction of the original S-matrix.
For the scattering process

| Kda(θ1)Kab(θ2)〉 →| Kdc(θ2)Kcb(θ1)〉
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b
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c

Fig. 18.9 Multikink configuration.

whose graphical representation is

�
�

��
�

�
d b

c

a

= Sabdc (θ)

the explicit form of the RSOS S-matrix is

Sabdc (θ) =
S(θ)

2 sinh π(iπ−θ)
ξ

(
[2a+ 1]]q [2c+ 1]q
[2d+ 1]q [2b+ 1]q

)−θ/2πi

(18.9.11)

×

⎡
⎣δdb sinh

θ

ξ

(
[2a+ 1]]q [2c+ 1]q
[2d+ 1]q [2b+ 1]q

)1/2

+ δac sinh
(
iπ − θ

ξ

)⎤⎦ .
Note that for the values of ξ given in eqn (18.9.10) the original Sinh–Godon S-matrix
and also the S-matrix Sabdc of the kinks do not have bound states. It satisfies the
crossing condition Sabdc (θ) = Sbcad(iπ − θ). Its non-vanishing basic entries are (up to a
common prefactor)

�
�

��
�

�
l l ± 1

l ± 1
2

l ± 1
2

= sinh
(
π(iπ − θ)

ξ

)

�
�

��
�

�
l l

l + 1
2

l + 1
2

=
sinπ2/ξ

sin[(2l + 1)π2/ξ]
sinh
(
π[iπ(2l + 1) + θ]

ξ

)

(18.9.12)

�
�

��
�

�
l l

l − 1
2

l − 1
2

=
sinπ2/ξ

sin[(2l + 1)π2/ξ]
sinh
(
π[iπ(2l + 1) − θ]

ξ

)
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�
�

��
�

�
l l

l ∓ 1
2

l ± 1
2

=

√
sin[2lπ2/ξ] sin[π2(2l + 2)/ξ]

sin[(2l + 1)π2/ξ]
sinh
(
πθ

ξ

)
.

In the formulas above, l labels the different vacuum states and takes the value

l = 0,
1
2
, . . . ,

(m− 2)
2

. (18.9.13)

Φ13 deformation of minimal non-unitary models Mp1p2 . The scattering theory
of these models is obtained for these rational values of the coupling constant:

β2

8π
=

p1

p2
−→ ξ = π

p1

p2 − p1
(18.9.14)

(with p2 > p1). Notice that for these values of the coupling constant, the S-matrix
of the Sinh–Godon model has poles corresponding to the bound states. Since the
breathers are singlets of SUq(2), the restriction does not change the breather sector.
The S-matrices of the breathers of the restricted Sinh–Godon theory are given exactly
by eqns (18.8.25). Furthemore, notice that for these values qp1 = −1, and the maximum
value jmax = (p1 − 2)/2 is determined only by p1. The labels of the vacuum states are

l = 0,
1
2
, . . . ,

(p1 − 2)
2

. (18.9.15)

However, in this case there is an additional constraint coming from the unitarity
condition of the RSOS S-matrix: the RSOS S-matrix (18.9.11) satisfies the equation∑

k

Sabdk(θ)S
kb
dc (−θ) = δac (18.9.16)

and, as long as the condition S†(θ) = S(−θ) is satisfied, the scattering theory is
unitary. The problem is with the last term in eqn (18.9.12) that contains square roots.
The reality of this term selects the series of values

ξ = π
r

rk + 1
,

r = 2, 3, . . .
k = 0, 1, . . . (18.9.17)

and
ξ = π

3
3k + 2

, k = 0, 1, . . . (18.9.18)

These are the only values of ξ for which the RSOS S-matrix description of the per-
turbed conformal models Mp1p2 admit a self-consistent physical interpretation. For
other rational values of ξ one can still use the RSOS S-matrix as monodromy algebra
of the asymptotic particles but should be ready to sacrifice some of the usual properties
of the S-matrix. Notice that in the series ξ = 2π

2n+1 the solitons disapper completely
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and only breathers remain in the spectrum. Their S-matrix was determined in Section
18.2. For the series ξ = 3π

3n+1 , there are instead solitons but they behave as ordinary
particles because there are only two vacua.5

18.9.3 Quantum Group Symmetry of the Bullogh–Dodd Model

As discussed in Section 16.4, the Φ1,2 and Φ2,1 integrable deformations of the minimal
models of conformal field theories

S(12)
± = SCFT ± g

∫
Φ12(x) d2x (18.9.19)

S(21)
± = SCFT ± g

∫
Φ21(x) d2x (18.9.20)

can be associated to the Bullogh–Dodd model with a charge at infinity and an imagi-
nary coupling. Its lagrangian can be formally written as

L =
1
2
(∂μφ)2 +

1
2
eiβφ + e−iβφ/2. (18.9.21)

An important difference with respect to the Sinh–Godon model (regarded as the Sinh–
Gordon model with imaginary coupling) is that the lagrangian (18.9.21) is not a her-
mitian operator, so the definition itself of a lagrangian as (18.9.21) seems to be prob-
lematic. The solution of this problem and the resulting S-matrices for the massive Φ1,2
and Φ2,1 integrable deformations is one of the most beautiful results of the quantum
group approach. It is due to F. Smirnov, who has shown that in this case only the
restricted RSOS theories have a physical meaning. Here we review the main steps of
this analysis, considering first the Φ12 deformation.
Φ1,2 deformation. Since the Bullogh–Dodd model is related to the (non-simply laced)
Lie algebra A(2)

2 , the first step is to consider the R-matrix of this algebra. Similarly to
the case of the Sinh–Godon model, it contains a spectral parameter λ but is constructed
using the spin-1 representation of SLq(2). Its expression is

R̂12(λ, q) = (λ−1 − 1)q3/2R12(q) + (1 − λ)q−3/2R−1
21 (q) + q−5/2(q2 − 1)(q3 + 1)P,

where P is the permutation operator. R̂12(λ, q) is an operator acting on the vector
space C3⊗C3. The matrix R12(q) is the constant solution of the Yang–Baxter equation
for the spin-1 representation of the quantum group SLq(2), given by

R12(q) = exp
(
H ⊗H

4

)[
I + (q2 − 1)E ⊗ F + (q − 1)2(q + 1)E2 ⊗ F 2]

where

H =

⎛
⎝ 2 0 0

0 0 0
0 0 −2

⎞
⎠ , E =

⎛
⎝0 1 0

0 0 q−1/2

0 0 0

⎞
⎠ , F =

⎛
⎝ 0 0 0

1 0 0
0 q1/2 0

⎞
⎠ .

5When there are only two vacua, the kink degrees of freedom are frozen because in the scattering
| Kda(θ1)Kab(θ2)〉 →| Kdc(θ2)Kcb(θ1)〉 the intermediate indices are forced to be equal, b = c.
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The second intermediate step is to identify the hypothetical S-matrix of the three-
component kink of the Bullogh–Dodd with imaginary coupling. To interpret the matrix
R12(λ, q) as an S-matrix, one needs to relate the spectral parameter λ to the rapidity
variable θ and q to the coupling constant β of the model. With the identification

q = e
i 16π2

β2 , λ = e
2π
ξ θ, ξ =

2
3

(
πβ2

16π − β2

)
(18.9.22)

the hypothetical S-matrix of the three-component kink is

Ŝ12(θ) = S0(θ) R̂12

(
e

2π
ξ θ, e

i 16π
β2
)
. (18.9.23)

The prefactor S0(θ) ensures the validity of the “unitarity” equation Ŝ12(θ)Ŝ21(−θ)
and reads

S0(θ) =
[
sinh

π

ξ
(θ − iπ) sinh

π

ξ

(
θ − 2πi

3

)]−1

(18.9.24)

× exp

⎡
⎣−2i

∫ ∞

0

dt

t

sinh
(
πt
3

)
cosh

[(
π
6 − ξ

2

)
t
]

cosh
(
πt
2

)
sinh
(
ξt
2

) sin(θt)

⎤
⎦ .

This prefactor satisfies the crossing relation S0(θ) = S0(iπ−θ). It can also be expressed
in terms of an infinite product of Γ-functions, using the same procedure as the Sinh–
Godon model. For generic value of ξ, the simple poles that lie on the physical sheet
0 ≤ θ ≤ iπ are at the crossing symmetric places

θ =
{
iπ − iξm, iξm, m > 0
2πi
3 − iξm, iπ

3 + iξm, m ≤ 0, (18.9.25)

In both sets, the first poles are the singularities of the s-channel whereas the second
poles are those of the crossing t-channel.

For the first set in (18.9.25), the R-matrix degenerates into a one-dimensional pro-
jector and the corresponding poles correspond then to the breather bound states. Using
the bootstrap equation, the S-matrix of the fundamental breather (corresponding to
the pole at θ = iπ − iξ) is given by

Sb1b1(θ) = f 2
3
(θ) f ξ

π
(θ) f ξ

π − 1
3
(θ), (18.9.26)

where the functions fx(θ) are those defined in (17.4.8).
For the second set of poles (18.9.25) the R-matrix degenerates instead into a three-

dimensional projector and these poles are associated to the higher kinks. But, from
a physical point of view, Ŝ12(θ) has some drawbacks that prevent it being inter-
preted it as the correct scattering amplitude of the perturbed conformal field theories.
For instance, when q is a root of unity, the R̂12-matrix does not satisfy the relation
R̂∗

12(λ) = R̂21(λ−1), which is crucial to correctly implement the unitarity condition
of the scattering amplitudes. Therefore, as it is, the S-matrix (18.9.23) cannot be
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assumed as the scattering amplitude of the Bullogh–Dodd model with imaginary cou-
pling. It is only its RSOS restriction that has a physical interpretation and this happens
when qr = 1. The RSOS kink states that enter the reduced model

| {θ1, j1, a1}, {θ2, j2, a2}, . . . {θn, jn, an}〉
are characterized by their rapidities θi, their SLq(2) spin, and by a string of numbers
ai (that identify the vacua) constrained by

ai ≤
1
2
(r − 2), | ak − 1 | ≤ ak+1 ≤ min(ak + 1, r − 3 − ak). (18.9.27)

These constraints formally correspond to the decomposition of tensor products of
irreducible representations of

SLq(2) for qr = 1:

Vj1 ⊗ Vj2 =
min(j1+j2,r−j1−j2−2)∑

j=|j1−j2|
Vj , j1, j2 ≤ r − 2

2
.

The S-matrix of the RSOS kinks is

S
aka

′
k

ak−1ak+1(θ) =
i

4
S0(θ)

[{
1 ak−1 ak
1 ak+1 a′

k

}
q

(
e− 2π

ξ θ − 1
)
q
(cak+1+cak−1−cak

−ca′
k
+3)/2

(18.9.28)

−
(
e

2π
ξ θ − 1

)
q

−(cak+1+cak−1−cak
−ca′

k
+3)/2 + q−5/2(q3 + 1)(q2 − 1) δaka′

k

]
.

Here, ca ≡ a(a+1) and {. . .}q are the quantum 6-j symbols. As for the RSOS restriction
of the Sinh–Godon model, the above S-matrix is unitary if and only if the 6-j symbols
are real. This happens for the following cases:
(i)

β2

8π
=

m

m+ 1
, (18.9.29)

which corresponds to the Φ1,2 deformation of the minimal unitary models Mm.
(ii)

β2

8π
=

2
2n+ 1

,
β2

8π
=

3π
3n± 1

, (18.9.30)

related to the Φ12 deformation of the minimal models M2,2n+1 and M3,3n±1. For
these values of β2/8π the maximal allowed spins are 0 and 1

2 . Hence the kinks
disappear and the spectrum is only given by the breathers obtained by closing
the bootstrap with the initial S-matrix (18.9.26).

(iii)
β2

8π
=

4π
4n± 1

, (18.9.31)

which correspond to the Φ1,2 deformation of the minimal models M4,4n±1. For
this series the maximal allowed spin is equal to 1 and, according to the RSOS
restriction, the kinks behave as a scalar particle.
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For other rational values of β2/8π = r/s one can still use the RSOS S-matrix as
monodromy algebra of the asymptotic particles but should be ready to sacrifice some
of the usual properties of the S-matrix. Properly interpreted, they can be assumed as
the S-matrix of the Φ12 perturbation of the minimal models Mr,s.

Let’s discuss in more detail the vacuum structure for the values (18.9.29), corre-
sponding to the Φ12 deformation of the unitary minimal models. Since the R-matrix is
based on a spin-1 representation, there are two closed subspaces V +

m and V −
m contain-

ing, respectively, half-integer or integer spins out of the set a = 0, 1/2, 1, . . . ,m/2− 1.
Each of these subspaces is associated to the set of vacua and the RSOS reduction gives
rise to two quantum field theories. In the Landau–Ginzburg picture, the field Φ1,2 is
associated to the composite operator : ϕm−2 :. Hence, when m is odd, the field Φ12
is odd under the Z2 spin symmetry and therefore, changing the sign of g in (18.9.19)
leads to the same theory. On the contrary, when m is even the two theories S(12)

± are
expected to be different.6 It becomes natural to identify V + with the vacuum states
of the theory S(12)

+ and V − with those of S(12)
− . So we have the following situations

• m odd. There are (m− 1)/2 degenerate vacua in both theories S(12)
± labeled as

a =
1
2
,
3
2
, . . . ,

m− 2
2

, g > 0

a = 0, 1, . . . ,
m− 3

2
, g < 0

• m even. The number of vacua of S(12)
+ is equal to (m − 2)/2, while the number

of vacua of S(12)
− is equal to m/2. Their label is

a =
1
2
,
3
2
, . . . ,

m− 3
2

, g > 0

a = 0, 1, . . . ,
m− 2

2
, g < 0.

Finally, some checks of the above formalism. For m = 3, there are only breathers and
the S-matrix of the first breather, eqn (18.9.26), correctly coincides with the amplitude
(18.4.15) of the Ising model perturbed by a magnetic field. The bootstrap closes with
eight breathers. Form = 4, the two theories S(12)

± are related by duality: for g < 0 there
are only two vacua and the kinks behaves as a particle. The RSOS S-matrix of the
lowest kink and of the lowest breather correctly coincides with the amplitudes (18.5.5)
of the tricritical Ising model away from its critical temperature and the bootstrap
closes with seven particles.
Φ21 deformation. The discussion of the RSOS S-matrix of the Φ21 deformation is
similar to the one above, the only difference being in the definition of the q-parameter
and the spectral parameter λ. In this case, the corresponding values are

q = ei
π4β2

4 , λ = e
2π
ξ̃
θ
, ξ̃ =

8
3

(
π2

β2 − 4π

)
(18.9.32)

6It can be proved, however, that the two theories are related by duality.
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and in all previous formulas ξ has to be changed to ξ̃. In this case we shall also ensure
that β2/4π > 1, in such a way that the field Φ21, with conformal weight Δ21 = 1

2 + 6π
β2 ,

is a relevant operator. In the Landau–Ginzburg picture, the field Φ21 is associated to
the composite operator : ϕm−1 :. Therefore, under the Z2 spin symmetry, Φ21 is odd if
m is even and even if m is odd. In this case the structure of the vacua of the theories
S(21)

± is as follows:

• when m is even, for both S(21)
± the number of the vacua is m/2 and

a =
1
2
,
3
2
, . . . ,

m− 1
2

, g > 0

a = 0, 1, . . . ,
m− 2

2
, g < 0;

• when m is odd, the number of the vacua is (m − 1)/2 for g > 0, and (m + 1)/2
for g < 0, with

a =
1
2
,
3
2
, . . . ,

m− 2
2

, g > 0

a = 0, 1, . . . ,
m− 1

2
, g < 0.

A significant example. Sub-leading magnetization of the tricritical Ising
model. An interesting example of the formalism above is provided by the Tricritical
Ising model, i.e. the unitary minimal model M4, perturbed by the sub-leading mag-
netization operator Φ21. This is a field odd under the Z2 spin-reversal transformation:
since this deformation explicitly breaks the Z2 symmetry of the tricritical point, the
corresponding massive theory can exhibit the “Φ3-property”. The counting argument
supports this picture, giving for the spin of the conserved currents the values s = (1, 5,
7, 11, 13). The RSOS picture predicts for such a theory two vacuum states (hereafter
denoted by | 0〉 and | 1〉), which can be associated to the minima of the asymmetric
double-well Landau–Ginzburg potential in Fig. 18.10. The twofold degeneracy of the
vacua permits two fundamental kink configurations | K+〉 and | K−〉 and, possibly,
bound states | B〉 thereof. If the two vacua were related by a symmetry transforma-
tion, i.e. if we were in the situation of a Z2 spontaneously broken symmetry, there
would be a double degeneracy of the breather-like bound state | B〉. But the absence
of a Z2 symmetry makes it possible that in this case only one of the two asymptotic
states | K+K−〉 or | K−K+〉 couples to the bound state | B〉. This is confirmed by the
explicit solution of the model, given by the RSOS S-matrix. In this case, the only pos-
sible values of ai which label the vacuum states in the RSOS S-matrix are 0 and 1. The
one-particle states are thus the vectors | K01〉, | K10〉, and | K11〉. They correspond to
the states that we previously denoted as | K+〉, | K−〉, and | B〉, respectively. All of
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Fig. 18.10 Landau–Ginzburg potential for the sub-leading magnetic deformation of the tri-
critical Ising model.

them have the same mass m. Notice that the state | K00〉 is projected out because of
the reduction. The scattering processes are given by

| K01(θ1)K10(θ2)〉 = S11
00(θ1 − θ2) | K01(θ2)K10(θ1)〉

| K01(θ1)K11(θ2)〉 = S11
01(θ1 − θ2) | K01(θ2)K11(θ1)〉

| K11(θ1)K10(θ2)〉 = S11
10(θ1 − θ2) | K11(θ2)K10(θ1)〉 (18.9.33)

| K11(θ1)K11(θ2)〉 = S11
11(θ1 − θ2) | K11(θ2)K11(θ1)〉 + S10

11(θ1 − θ2) | K10(θ2)K01(θ1)〉
| K10(θ1)K01(θ2)〉 = S00

11(θ1 − θ2) | K10(θ2)K01(θ1)〉 + S10
11(θ1 − θ2) | K11(θ2)K11(θ1)〉.

Explicitly, the above amplitudes are given by

�
�

��
�

�
0 0

1

1
= S11

00(θ) =
i

2
S0(θ) sinh

(
9
5
θ − i

π

5

)

�
�

��
�

�
0 1

1

1
= S11

01(θ) = − i

2
S0(θ) sinh

(
9
5
θ + i

π

5

)

�
�

��
�

�
1 1

1

1
= S11

11(θ) =
i

2
S0(θ)

sin
(
π
5

)
sin
( 2π

5

) sinh
(

9
5
θ − i

2π
5

)

�
�

��
�

�
1 1

0

1

= S01
11(θ) = − i

2
S0(θ)

(
sin
(
π
5

)
sin
( 2π

5

))
1
2

sinh
(

9
5
θ

)

�
�

��
�

�
1 1

0

0
= S00

11(θ) = − i

2
S0(θ)

sin
(
π
5

)
sin
( 2π

5

) sinh
(

9
5
θ + i

2π
5

)
.
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The function S0(θ) which implements the unitarity condition reads

S0(θ) = −
(

sinh
9
10

(θ − iπ) sinh
9
10

(
θ − 2πi

3

))−1

× w− 1
5

(θ))w 1
10

(θ)w 3
10

(θ) s 2
9

(θ) s− 8
9

(θ) s 7
9

(θ) s− 1
9

(θ) ,

where

wx(θ) =
sinh
( 9

10θ + iπx
)

sinh
( 9

10θ − iπx
) , sx(θ) =

sinh 1
2 (θ + iπx)

sinh 1
2 (θ − iπx)

.

The amplitudes are periodic along the imaginary axis of θ with period 10 πi. The whole
structure of poles and zeros is quite rich. On the physical sheet, 0 ≤ Im θ ≤ iπ, the
poles of the S-matrix are located at θ = 2πi/3 and θ = iπ/3. The first pole corresponds
to a bound state in the direct channel whereas the second one is the singularity due to
the particle exchanged in the crossed process. The residues at θ = 2πi/3 are given by

r1 = Resθ= 2πi
3

S11
00(θ) = 0;

r2 = Resθ= 2πi
3

S11
01(θ) = i

(
s
( 2

5

)
s
( 1

5

))2

ω;

r3 = Resθ= 2πi
3

S11
11(θ) = i ω; (18.9.34)

r4 = Resθ= 2πi
3

S01
11(θ) = i

(
s
( 2

5

)
s
( 1

5

))
1
2

ω;

r5 = Resθ= 2πi
3

S00
11(θ) = i

s
( 2

5

)
s
( 1

5

) ω;

S

S
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Fig. 18.11 Elastic scattering amplitudes of the kinks in an asymmetric well potential and
their intermediate states in the s-channel and in the t-channel.
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where s(x) ≡ sin(πx) and

ω =
5
9
s
( 1

5

)
s
( 1

10

)
s
( 4

9

)
s
( 1

9

)
s2
( 5

18

)
s
( 3

10

)
s
( 1

18

)
s
( 7

18

)
s2
( 2

9

) .

Hence, in the s-channel of the amplitude S11
00 , there is no bound state related to | K00 〉

(a state that does not exist): its only singularity comes from the bound state | K11 〉,
exchanged, however, in the t-channel. In the amplitude S00

11 the situation is reversed
(the two amplitudes are related by crossing): there is the s-channel singularity due
to the bound state | K11 〉 while that of the t-channel is absent. This is easily seen
from Fig. 18.11, where the original amplitudes are streched along the vertical direction
(s-channel) and along the horizontal one (t-channel).
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Problems

1. Bootstrap equations
Prove that the most general solution of the bootstrap equation relative to a particle
bound state of itself

SAA(θ) = SAA

(
θ − iπ

3

)
SAA

(
θ +

iπ

3

)

is given by

SAA(θ) = f 2
3
(θ)
∏
i

f−xi
(θ) f 2

3 −xi
(θ).

Study the motion of the poles of the function SAA(θ) under the shifts induced by the
bootstrap equation.

2. Analytic structure of the S-matrix of the Bullogh–Dodd model
a Study the structure of the poles and zeros of the S-matrix of the Bullogh–Dodd

model
S(θ) = f 2

3
(θ) f− B

3
(θ) fB−2

3
(θ)

with

B(λ) =
λ2

2π
1

1 + λ2

4π

by varying the coupling constant λ.
b Make the analytic continuation

B → 1 +
3
iπ
β0

with β0 real and show that in the limit β0 → ∞ the S-matrix of the Bullogh–Dodd
model reduces to the S-matrix of the Yang–Lee model.

3. Multiple poles
Prove that the amplitude S11 of the fundamental particle cannot have higher order
poles by noticing that the resonance angle of two heavier masses is larger than 2π/3.
This makes it impossible to draw a diagram such as the one in Fig. 18.2.

4. Double poles
Use the values of the resonance angles of the S-matrix of the thermal tricritical Ising
model to explain the double poles that enter the amplitude S1,6 in terms of multi-
scattering processes.
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5. S-matrix of the Gross–Neveu model
The Gross–Neveu model is a model of the n-component neutral Fermi field ψk(x)
k = 1, 2, . . . , n (n ≥ 3), with four-fermion interaction

L =
i

2

n∑
k=1

ψ̄kγ
μ∂μψk +

g

8

[
n∑

k=1

ψ̄kψk

]2

where ψ̄k = ψkγ
0 and the 2 × 2 γμ matrices satisfy the anticommutation relation

{γμ, γν} = 2gμν . Like the bosonic O(n) σ model, the Gross–Neveu model is mas-
sive, renormalizable, asymptotically free, and explicitly O(n) symmetric. It is also
integrable.

With the notation of Section 18.7, the exact S-matrix of the Gross–Neveu model
can be obtained by solving the unitarity and crossing equations for S2(θ)

S2(θ)S2(−θ) =
θ2

θ2 + λ2 , S2(θ) = S2(iπ − θ)

with the initial seed Q(θ) = θ
θ−iλ where λ = 2π/(n− 2).

a With the notation of eqn (18.7.8), show that in this case one ends up with

U (−)(θ) =
Γ
(
− λ

2π − i θ
2π

)
Γ
( 1

2 − i θ
2π

)
Γ
( 1

2 − λ
2π − i θ

2π

)
Γ
(
−i θ

2π

) .
b Prove that the amplitudes U (±) are related as

U (−)(θ) =
sinh θ + i sinλ
sinh θ − i sinλ

U (+)(θ).

c Consider the amplitudes with definite isospin channel

Sisoscalar = NS1 + S2 + S3

Santisym = S2 − S3

Ssym = S2 + S3.

Bound states exist only in isoscalar and antisymmetric isospin channels. Denote
these new particles by B and Bij and show that their masses are

mB = mBij = m
sin
(

2π
n−2

)
sin
(

π
n−2

) .
where m is the mass of the elementary fermion.
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6. Integral representation
Use the expansions

1
coshx

= 2
∞∑
k=0

(−1)k e−(2k+1)x ,
1

sinhx
= 2

∞∑
k=0

e−(2k+1)x,

the infinite-product

Γ(α)Γ(β)
Γ(α+ γ)Γ(β − γ)

=
∞∏
k=0

[(
1 +

γ

α+ k

) (
1 − γ

β + k

)]
,

and the integral ∫ ∞

0

dt

t
e−βt sin(αt) =

1
2i

log
[
1 + iα/β

1 − iα/β

]
to prove the integral representation of eqns (18.7.19) and (18.8.12). Isolate a finite
number of poles and also recover the mixed representation given in eqn (18.8.13).

7. Sine–Gordon
a Study the analytic structure of the S-matrix of the solitons of the Sine–Gordon

model, identifying all the sequences of the poles in the amplitudes.
b Using the following definition of the breathers Bn

Bn

(
θ1 + θ2

2

)
= lim

θ1−θ2→inξ

[
A(θ2)Ā(θ1) + (−1)nĀ(θ2)A(θ1)

]
compute the S-matrix of these particles by means of the residue of the S-matrix
of the solitons.

8. Reflectionless points
At ξ = π/n (n = 1, 2, . . .), the amplitude SR of the Sine–Gordon model vanishes and
soliton–antisoliton scattering reduces to a pure transmission. Use the properties of the
Γ function to prove that for these values of the coupling constant the transmission
amplitude becomes

ST (θ) = einπ
n−1∏
k=1

eθ−i(πk/n) + 1
eθ + e−i(πk/n) .

9. Bound states and semiclassical limit
It can be proved that the renormalized coupling constant

ξ =
β2

8
1

1 − β2

8π

of the Sine-Gordon model comes from the quantum correction of the classical ac-
tion. By the same token, it is possible to prove that the exact mass of the soliton–
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antisoliton is
M =

m

ξ
,

where m is the parameter in the lagrangian. Keeping m fixed, the semiclassical limit
β2 → 0 of the Sine–Gordon model gives rise to a non-trivial theory.
a Use the expression above of the mass of the soliton to express differently the mass

of the breathers Bn of the Sine–Gordon model, given in eqn (18.8.21).
b Expand mn in powers of β2 and show, that to lowest order, mn 	 nm1. So, all these

states can be considered as loosely bound states of n “elementary” bosons B1.
c Compute to order β4 the binding energy ΔEn ≡ nm1 −mn of these states.

10. Sine–Gordon and non-unitary models
a Find the value of ξ for which the S-matrix element S(1,1)(θ) of the Sine–Gordon

model coincides with the S-matrix of the Yang–Lee model. Explain why the
restriction of the Sine–Gordon model produces a negative residue at the pole
θ = 2πi/3.

b Generalize the result above, finding the value of ξ that leads to the equality of
the S-matrices S(n,m)(θ) of the Sine–Gordon model with those of the integrable
deformation of the minimal non-unitary models M2,2n+1.
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Thermodynamical Bethe Ansatz

In quantum mechanics there are principles that are certain and these are much more
important for the world and for us than the uncertainty principle.

Hans A. Bethe

19.1 Introduction

The thermodynamics of a quantum field theory in an infinite volume can be deter-
mined by its S-matrix. This idea, originally proposed by R. Dashen, S.K. Ma, and
H.J. Berstein, has been widely used to study the thermal properties of the integrable
field theories in (1 + 1) dimensions. The reason consists of the particularly simple
properties of these scattering matrices, as discussed in the previous two chapters, and
the possibility to generalize to the relativistic case the thermodynamics Bethe ansatz
(TBA) techniques successfully applied to non-relativistic problems by C.N. Yang and
C.P. Yang. In the TBA approach, the derivation of the thermodynamics of a purely
elastic scattering theory reduces to finding the solution of a set of nonlinear inte-
gral equations that rule the energies of the particle excitations and their statistical
distribution.

The TBA equations for the relativistic models with a diagonal S-matrix have been
derived by A.B. Zamolodchikov. Several applications have been made by Zamolod-
chikov himself and many other authors. In addition to the generalization of the TBA
to the non-diagonal S-matrices, further advances have been accomplished in the com-
putation of the energies of the excited states, in the analysis of systems with generic
integrable boundary conditions, and also in the discovery of interesting relations with
the Schröedinger equation in quantum mechanics. In this chapter we discuss the main
ideas of this approach; for all the advanced topics of the subject we refer the reader
to the articles listed at the end of the chapter.

19.2 Casimir Energy

Consider a (1 + 1)-dimensional euclidean quantum field theory defined on a cylinder,
with periodic boundary conditions in both the R and L directions. There are two
equivalent ways to quantize the theory on such a geometry: from the symmetry of the
two directions, one can equivalently choose as the time direction one of the two axes
and consider the other as the space direction1 Hence, the partition function can be

1In the context of conformal field theory this is the basis of modular invariance, see Section 11.7.
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L

L

R

R

L-channel R-channel

Fig. 19.1 Cylinder geometry with periodic boundary conditions on both directions, with the
two different channels of quantization.

written either as
Z(R,L) = Tr e−LHR , (19.2.1)

or as
Z(R,L) = Tr e−RHL , (19.2.2)

where HR and HL are the hamiltonians of the system quantized along the R and
L axes, and the trace is a sum done over their eigenstates (See Fig. 19.1). The two
hamiltonians can be expressed in terms of the stress–energy tensor Tμν , where x and
y denote the coordinates along the R and L axes, respectively. In fact we have

HR =
1
2π

∫
Tyy dx,

while
HL =

1
2π

∫
Txx dy.

The quantization scheme in which the role of the time direction is played by the L
axis will be denoted as the L-channel, while the other one is the R-channel.

When L → ∞, the expression in (19.2.1) clearly reduces only to the lowest term,
given by the ground state energy E0(R) of HR:

Z(R,L) 	 e−LE0(R). (19.2.3)

But, taking the limit L → ∞ in the second expression (19.2.2) is equivalent to the
thermodynamic limit of a one-dimensional quantum system defined along the L axis
at temperature T ≡ 1/R. In this case, the limiting form of the partition function can
be written as

Z(R,L) 	 e−LRf(R), (19.2.4)

where f(R) is the free energy per unit length of the system at temperature 1/R.
Comparing the two limiting expressions (19.2.3) and (19.2.4) of the partition function,
we find

E0(R) = Rf(R). (19.2.5)
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This equation states the important relation between the Casimir energy E0(R) of
the ground state on a finite volume and the free energy f(R) of the one-dimensional
quantum system at infinite volume but at temperature T = 1/R.

From the translation invariance of the cylinder geometry along the two axes, the
one-point correlation functions are independent of the coordinates. In particular, we
have

〈Tyy〉 = 2π
E0(R)
R

, 〈Txx〉 = 2π
dE0(R)
dR

,

and, for the one-point correlation function of the trace of the stress–energy tensor
Θ = (Txx + Tyy), we have

〈Θ〉 =
2π
R

d

dR
[RE0(R)]. (19.2.6)

Furthermore, for theories that are invariant under parity and with a unique ground
state, we have

〈Txy〉 = 〈Tyx〉 = 0.

It is convenient to parameterize the ground state energy as

E0(R) = − πc̃(r)
6R

, (19.2.7)

where r = m1R is a purely dimensionless variable, with m1 the lowest mass gap of
the theory. As we will show later, the scaling function c̃(r) can be determined for any
value of r by the TBA equations based on the scattering data. There is, however, a
simple limit of this expression: in the ultraviolet limit r → 0, the behavior of the
ground state energy is controlled by the underlying conformal field theory

E0(R) =
2π
R

(
Δmin + Δmin − c

12

)
, (19.2.8)

and, for a theory in which Δmin = Δmin, the function c̃(r) goes to the effective central
charge

lim
r→0

c̃(r) = c− 24Δmin. (19.2.9)

Notice that this limit establishes an important relation between the scattering theory of
a massive quantum field theory and the conformal theory that rules its short-distance
behavior. The confirmation and the validity of many scattering theories proposed to
describe the deformations of conformal field theories can be accomplished thanks to
the relation above.

In the sections to come, we will derive the TBA equations following the original
proposals by Yang and Yang and by Zamolodchikov, discussing all their important
consequences. In the last two sections, using the simple example of a free massive
theory, we will show how to derive the ground state energy E0(R) at a finite volume
by directly quantizing the theory in its L-channel.
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19.3 Bethe Relativistic Wave Function

Consider a (1 + 1)-dimensional integrable theory defined on a circumference of length
L. Let’s assume that the spectrum consists of a set of particles Aa (a = 1, 2, . . . , n) with
masses ma, and that their scattering amplitudes are purely diagonal and characterized
by their phase shifts δab(θ), where Sab(θ) = eiδab(θ). The lowest mass determines the
correlation length of the system through ξ = 1/m1. The particles can be either bosons
or fermions.

The Hilbert space of such a theory is rather simple. In fact, given any N -particle
state, the integrability of the theory ensures that the time evolution of this state pre-
serves both the identity of the particles and their momenta. In this case, it makes sense
to associate to any state of such a relativistic system a wavefunction Ψ(x1, . . . , xN ).
In the configurational space of the N -particle state, we can select N ! regions where
the particles are well separated from each other, i.e. | xi − xi+1 |
 ξ, so that we can
neglect all relativistic effects induced by virtual processes. Each of these domains is
identified by the ordering xi1 � xi2 � xi3 � · · · � xiN of the coordinates of the
particles. In this region, the expression for the wavefunction is particularly simple,
since it is given by plane waves

Ψ(xi1 , xi2 , · · ·xiN ) =
N∏
k=1

ei pik
xik . (19.3.1)

Notice that the exchange of two particles maps one domain into another, and each of
these transitions is equivalent to multiplying the wavefunction by the corresponding
scattering amplitude. Imposing the periodic (antiperiodic) boundary condition for the
wavefunction of the bosonic (fermionic) particles, we have the quantization condition2

for the momenta pi:

ei piL
N∏
j =i

S(θi − θj) = ±1, i = 1, 2, . . . , N. (19.3.2)

Using the rapidity variable to express the momenta and considering the terms in the
exponents of this equation, we can write it as

mi L sinh θi +
N∑
j =i

δij(θi − θj) = 2πni, (19.3.3)

where

δij(θ) = −i ln Sij(θ).

2Notice that, in the absence of interactions, this leads to the usual quantization condition of the
momenta in a finite volume, pi = 2πni/L.
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The numbers {ni} assume integer values for the bosons and half-integers for the
fermions. Together with the rapidity values that solve eqn (19.3.3), they identify the
states of the Bethe ansatz

| n1, θ1; n2, θ2; . . . ;nN , θN 〉.
The energy and the momentum of these states are

E =
N∑
i=1

mi cosh θi, p =
N∑
i=1

mi sinh θi. (19.3.4)

Both these quantities have the same expression as in the case of N free particles.
The difference, though, is that in the free case, the rapidities of the particles can
take arbitrary values, whereas in the interacting case, their values are determined by
the quantization relation (19.3.3), in which the phase shifts δab(θ) of the scattering
processes enter.

19.3.1 Selection Rules

The Bethe wavefunction must be symmetric (antisymmetric) under the exchange of
two identical bosons (fermions) with the same value of their rapidities. It is then
necessary to consider the selection rules coming from the identity of the particles.
Since for the diagonal S-matrices the unitarity condition implies S2

aa(0) = 1, there
could be two different cases:

1. In the first case,
Saa(0) = −1,

and this leads to a wave-function that is antisymmetric under the exchange of two
particles with the same rapidity. If the two particles are bosons, this is clearly in
conflict with their Bose statistics. This implies that two bosons Aa cannot have
the same value of the rapidity, namely each value of θ can be assigned at most to
one particle only. Hence all integers n(a)

i of the species a in eqn (19.3.3) must be
different. Vice versa, if the identical particles are fermions, the antisymmetry of
the wavefunction perfectly matches their Fermi–Dirac statistics and there is no
restriction on the integers n(a)

i . In the context of the Bethe ansatz, the condition
S = −1 is called fermionic type, independently of the bosonic or the fermionic
nature of the particles Aa.

2. In the second case,
Saa(0) = 1, (19.3.5)

the situation is opposite to the previous one: this condition gives rise to a sym-
metric wavefunction under the exchange of two particles of the same species with
the same rapidity. Hence, if the two particles are bosons, this is compatible with
their Bose statistics and there is no restriction on the integers n(a)

i . Vice versa,
if the two particles are fermions, each value of the rapidity can be taken only by
one particle, i.e. all integers n(a)

i of the species a must necessarily be different.
In the context of the Bethe ansatz, the condition S = +1 is called bosonic type,
independently of the bosonic or the fermionic nature of the particles Aa.
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19.4 Derivation of Thermodynamics

The quantization conditions (19.3.3) for the rapidities of the particles form a com-
plicated set of transcendental equations. They simplify in the thermodynamic limit,
on which both L → ∞ and the total number of particles Na → ∞ but keeping
their ratio fixed. In such a limit, the spectrum of the rapidities, the solutions of
eqn (19.3.3), becomes dense and the distance between two adjacent levels is of or-
der (θi − θi+1) ∼ 1/mL. It is convenient to introduce the continuous densities ρ(r)

a (θ)
relative to the distribution of the rapidities of the particles, defined as the number of
particles Aa with rapidity between θ and θ + Δθ divided by LΔθ. In terms of these
densities, the energy per unit length of the system can be written as

E[ρ(r)] =
n∑

a=1

∫ +∞

−∞
ma cosh θ ρ(r)

a (θ) dθ. (19.4.1)

For m1L = L/ξ 
 1, the quantization equation (19.3.3) becomes

ma

2π
sinh θ(a)i +

n∑
b=1

(δab ∗ ρ(r)
b )(θ) =

n
(a)
i

L
, (19.4.2)

where ∗ denotes the convolution of the functions

(f ∗ g)(θ) =
∫ +∞

−∞

dθ′

2π
f(θ − θ′) g(θ′).

Each time that n(a)
i is a set of admissible quantum numbers, the corresponding solution

θ
(a)
i of (19.4.2) is said to be a root of the species a and the density of these solutions

around the value θ is denoted by the function ρ(r)
a (θ) introduced above. However, these

equations admit solutions in θ(a)
i also for integer values of ñ(a)

i that are necessarily in
relation to the occupied states. Such solutions, associated to the integers ñ(a)

i that do
not correspond to the admissible quantum numbers, are called holes of the species a
and their density around the value θ is denoted by ρ

(h)
a (θ). The possibility of having

these two types of solution is due, in definitive, to two circumstances. The first is that

Ja(θ) =
ma

2π
sinh θ(a)i +

n∑
b=1

(δab ∗ ρ(r)
b )(θ) (19.4.3)

are monotonically increasing functions (see Fig. 19.2), as we will show later. The second
is the absence of certain integers in the sequence of the quantum numbers n(a)

i of the
physical states. This derives from the previous discussion on the selection rules: for
instance, in the case of bosonic particles but with S(0) = −1, choosing an ordering for
the variables θ(a)

i , the integers n(a)
i of the physical states must necessarily be a strictly

increasing sequence and some integers may be missed in this sequence.
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θ

n
i+1

n
i

J
a

Fig. 19.2 Plot of the function Ja(θ) and graphical solution of eqn (19.4.2) for three different
integers, where two of them, ni and ni+1, are admissible quantum numbers. The roots are
given by • while the holes are ◦.

Therefore, in the thermodynamic limit there are densities of both roots and holes.
The total density ρa of the occupied and empty levels of the particle Aa is equal to
the derivative of the functions Ja(θ)

ρa(θ) = ρ(r)
a + ρ(h)

a =
d

dθ
Ja(θ) =

1
2π

ma cosh θ +
n∑

b=1

(ϕab ∗ ρ(r)
a )(θ), (19.4.4)

where

ϕab(θ) =
d

dθ
δab(θ). (19.4.5)

Properties of the functions ϕab(θ). The functions ϕab(θ) satisfy

ϕab(−θ) = ϕab(θ),

as can be seen using the unitarity of the amplitudes Sab. For an S-matrix

Sab(θ) =
∏

α∈Aab

sα(θ)

expressed in terms of the functions sα(θ)

sα(θ) =
sinh θ + i sinαπ
sinh θ − i sinαπ

we have
ϕab(θ) =

∑
α∈Aab

ϕα(θ), (19.4.6)
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where we have defined

ϕα(θ) = −i d
dθ

log sα(θ) = − sinαπ
cosh θ − cosαπ

. (19.4.7)

It is easy to see that ϕab(θ) are periodic functions with period 2πi. For θ �= 0, they
can be written as

ϕab(θ) = −
∞∑
s=1

ϕ
(k)
ab e

−k|θ|, (19.4.8)

ϕ
(k)
ab = 2

∑
α∈Aab

sin(kπα).

Notice that, inserting this expansion into the logarithm derivative of the bootstrap
equation (17.4.12), we have

ϕ
(k)
il = ϕ

(k)
ij e−ikuk

jl + ϕ
(k)
ik eiku

j
lk . (19.4.9)

Comparing now with the consistency equations of the conserved charges, eqn
(17.5.3), one sees that the linearly independent columns and rows of the matrix
ϕ(k) = (ϕ(k)

ab ) are solutions (although sometimes trivial) of these equations. The
connection between ϕ(k)

ab and the eigenvalues χ(a)
s of the conserved charges is estab-

lished by
ϕsab = ϕ

(s)
11 χ

(a)
s χ(b)

s . (19.4.10)

The index 1 of this formula refers to the particle of the theory with the lowest
mass, with the normalization of the conserved charges set by χ

(1)
s = 1. Note that

for s = 1, eqn (19.4.10) reduces to (m̂a = ma/m1)

ϕ1
ab = ϕ

(1)
11 m̂a m̂b. (19.4.11)

In the thermodynamic limit, there is a large number Na ∼ Lρa(θ) Δθ of lev-
els in each interval Δθ of the rapidities and there are about na ∼ Lρ

(r)
a Δθ parti-

cles distributed among them. Since these densities are not strongly influenced by the
local redistributions of the particles, the number of different ways of distributing the
particles among these levels is given by

Ωa =
[Lρa(θ) Δθ]!

[Lρ(r)
a (θ)Δθ]! [Lρ(h)

a (θ)Δθ]!
,

in the fermionic case and by

Ωa =
[L(ρa(θ) + ρ

(r)
a (θ) − 1) Δθ]!

[Lρ(r)
a (θ)Δθ]! [L(ρa(θ) − 1)Δθ]!

,
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in the bosonic case. Correspondingly, the entropy per unit length S = ln(
∏

a Ωa) is
expressed by

Sfermi[ρ, ρ
(r)] =

n∑
a=1

∫ +∞

−∞
dθ[ρa ln ρa − ρ(r)

a ln ρ(r)
a − (ρa − ρ(r)

a ) ln(ρa − ρ(r)
a )],

Sbose[ρ, ρ
(r)] =

n∑
a=1

∫ +∞

−∞
dθ[(ρa + ρ(r)

a ) ln(ρa + ρ(r)
a ) − ρa ln ρa − ρ(r)

a ln(ρ(r)
a )].

In terms of the densities ρa and ρ
(r)
a , the free energy per unit length is given by the

functional
f [ρ, ρ(r)] = E[ρ(r)] − T S[ρ, ρ(r)]. (19.4.12)

To derive the thermodynamics of the system at its thermal equilibrium with tem-
perature T = 1/R, it is necessary to minimize the free energy with respect the two
densitites ρa and ρ

(r)
a , subjected to the constraint (19.4.4). This minimization prob-

lem can be solved by using a Lagrange multiplier and can be elegantly expressed by
introducing the pseudo-energies εa(θ), defined in the two cases by the formulas

ρ
(r)
a

ρa
=

e−εa

1 + e−εa
, e−εa =

ρ
(r)
a

ρa − ρ
(r)
a

fermionic case (19.4.13)

ρ
(r)
a

ρa
=

e−εa

1 − e−εa
, e−εa =

ρ
(r)
a

ρa + ρ
(r)
a

bosonic case. (19.4.14)

Using these quantities, the extremum condition reduces to the integral equation

maR cosh θ = εa(θ) ±
n∑

b=1

∫
ϕab(θ − θ′) log(1 ± e−εb(θ′))

dθ′

2π
, (19.4.15)

where the upper sign refers to the fermionic case and the lower one to the bosonic
case. The free energy at equilibrium is then given by

f(R) = ∓ 1
R

n∑
a=1

∫ +∞

−∞
ma cosh θ log

(
1 ± e−εa(θ)

) dθ

2π
, (19.4.16)

where εa(θ) is solution of the integral equation (19.4.15). Therefore the partition func-
tion is expressed by

Z(L,R) = exp

[
±L

n∑
a=1

∫ +∞

−∞
ma cosh θ log(1 ± e−εa(θ))

dθ

2π

]
. (19.4.17)

We have thus achieved the complete determination of the thermodynamics of the
integrable models with diagonal S-matrix. In the following sections we will analyze the
behavior of the free energy in different regimes of r and we will study some significant
examples.
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It is useful to accompany the derivation of thermodynamics given above with a
series of comments. The first comment concerns the conceptual difference that exists
between the energy levels of free theories and interacting integrable theories. For free
theories the levels are simply determined by the quantization of the states of one
particle and they can be either empty or occupied by one or more of the N particles
of the system, while in integrable models the levels are instead determined in a self-
consistent way with the statistical distribution of the particles themselves. This is the
reason behind the nonlinear integral equations (19.4.15) for the pseudo-energies εa.
Notice that these quantities determine the distribution of the particles but, in turn,
they are also determined by them, as can be seen from their definition, eqns (19.4.13)
and (19.4.14).

The second comment concerns some mathematical properties of the pseudo-energies.
It is interesting to note that, even though εa(θ) satisfy a nonlinear integral equation,
their derivatives ∂Rεa and ∂θεa are instead solutions of linear integral equations. Dif-
ferentiating eqn (19.4.15) with respect to R, we have in fact

∂Rεa = ma cosh θ +
n∑

b=1

∫ +∞

−∞
ϕab(θ − θ′)

e−εb(θ′)

1 ± e−εb(θ′) ∂Rεb(θ
′)
dθ′

2π
, (19.4.18)

and, analogously

∂θεa = maR sinh θ +
n∑

b=1

∫ +∞

−∞
ϕab(θ − θ′)

e−εb(θ′)

1 ± e−εb(θ′) ∂θεb(θ
′)
dθ′

2π
. (19.4.19)

These equations can be written in compact form by defining the integral operators
K̂±

a , whose kernel is

K̂±
a (θ, θ′) =

n∑
b=1

ϕab(θ − θ′)
e−εb(θ′)

1 ± e−εb(θ′) . (19.4.20)

Hence
(1 − K̂±

a ) ∂Rεa = ea,

(1 − K̂a)±) 1
R∂Rεa = ka,

(19.4.21)

where

(K̂ ∂Rε) =
∫
K̂(θ, θ′) ∂Rε(θ′)

dθ′

2π

(analogously for (K̂∂θε)), with the notation ea = ma cosh θ, ka = ma sinh θ. Equations
(19.4.21) are linear integral equations for the quantities ∂Rεa and ∂θεa since the func-
tions εb(θ) entering the definition of the kernel K̂±

a are regarded as assigned functions,
known once the original integral equation (19.4.15) is solved. It is possible to invert
eqn (19.4.21) by introducing the resolvents L̂±

a that satisfy

(1 − K̂±
a )(1 − L̂±

a ) = 1.
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In this way

∂Rεa = (1 + L̂±
a ) ea,

1
R
∂θεa = (1 + L̂±

a ) ka. (19.4.22)

Since 1 + L̂a =
∑∞

n=0 K̂
n, ∂Rεa are then expressed by the Fredholm series

∂Rεa = ea +
n∑

b=1

ϕab ∗
(

e−εb

1 + e−εb
ea

)
+ · · · ,

with an analogous result for 1
R∂θεa.

The third comment refers to the nature of the system of TBA equations for the
S-matrices of fermionic and bosonic type. Till now we have presented on the same
footing the two cases but there is strong reason to believe that the only consistent
interacting theories are those of fermionic type, with Saa(0) = −1. In other words,
the only diagonal bosonic type S-matrix that gives rise to a consistent set of TBA
equations is given by the free theory, for which we have identically S = 1. From the
mathematical point of view, the problem with the bosonic type TBA equations comes
from the term log(1 − e−εa), present in the integral of eqn (19.4.15) that determined
the pseudo-energies. If it happens that, varying r, one of the εa becomes negative in
an interval of θ, the TBA equations give rise to complex solutions that do not have a
natural physical interpretation.

In light of these remarks, hereafter we focus our attention on TBA systems of
fermionic type. In this case, it is easy to prove the statement previously made on the
monotonic nature of the functions Ja(θ). In the TBA of fermionic type, eqn (19.4.15)
satisfied by εa(θ) implies that these are real functions of θ for any value of r. This also
implies the positivity of the densities ρ(r)

a and ρa(θ). But these functions are just the
derivatives of the functions Ja(θ), so that d

dθJa(θ) > 0 and Ja(θ) are strictly increasing
functions.

19.5 The Meaning of the Pseudo-energy
The pseudo-energies εa(θ) admit an interesting physical interpretation. It is necessary
to initially note that the final expression of the partition function given by the TBA,
eqn (19.4.17), is formally identical to the partition function of a gas of free quasi-
particles,3 the only difference being that the energy of each of these particles is given by
εa(θ)/R rather than ma cosh θ. This observation suggests that, in integrable theories,
the only effect of the temperature consists of modifying the excitation energies of
the particles, which are now measured with respect to the thermal ground state of
the system. To better clarify this observation and to understand the nature of the
pseudo-energies, it is convenient to analyze the simplest case of a system with only
one species of particles. In the following we are going to show that there exists a
one-to-one correspondence between the partition function as obtained by the TBA

Z(L,R) = exp
[
±mL

∫
dθ

2π
ma cosh θ log(1 ± e−ε(θ))

]
. (19.5.1)

3The dispersion relations of the free quasi-particle differ from those of the usual particle and they
are given in eqn (19.5.7) below.
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and the partition function as given by the usual sum over the states

Z(L,R) =
∞∑
n=0

1
n!

∫
dθ1
2π

· · · dθn
2π

〈θn · · · θ1|θ1 · · · θn〉
n∏
i=1

e−ε(θi), (19.5.2)

where the scalar product is computed using the standard rules relative to the free
fermionic or bosonic cases (depending on the type of TBA equations), while the energy
of the particles is given by the pseudo-energy ε(θ)/R. Let’s study the fermionic case,
leaving the derivation of the bosonic case as an exercise to the reader. Let’s start by
defining

F (R) =
∫

dθ

2π
cosh θ log(1 + e−ε(θ)). (19.5.3)

This functions can be expanded in series as

F (R) =
∞∑
n=0

(−1)n+1

n
In(R), (19.5.4)

where
In(R) ≡

∫
dθ

2π
cosh θ e−nε(θ).

The TBA partition function has a power series expansion in powers of (mL):

Z(L,R) = 1 + (mL)F (R) +
(mL)2

2!
(F (R))2 + · · · (mL)n

n!
(F (R))n + · · · (19.5.5)

Let’s now compute the partition function using its alternative definition, given in eqn
(19.5.2). We need to employ a regularization of the square of the δ function (which
enters the scalar product 〈θn · · · θ1|θ1 · · · θn〉) provided by the free fermionic theory
defined on a sufficiently large volume L

[δ(θ − θ′)]2 ≡ mL

2π
cosh(θ) δ(θ − θ′). (19.5.6)

We then have
Z(L,R) = 1 + Z1 + Z2 + · · ·Zn + · · ·

where the first terms are given by

Z1 =
∫

dθ

2π
〈θ|θ〉e−ε(θ) =

∫
dθ

2π
dθ′δ(θ − θ′)〈θ′|θ〉e−ε(θ)

= mL

∫
dθ

2π
cosh θ e−ε(θ) = (mL) I1;

Z2 =
1
2

∫
dθ1
2π

dθ2
2π

〈θ2θ1|θ1θ2〉e−ε(θ1)−ε(θ2)

=
1
2

∫
dθ1
2π

dθ2
2π
[
(2π)2(δ(θ1 − θ1)δ(θ2 − θ2) − δ(θ1 − θ2)δ(θ2 − θ1))

]
e−ε(θ1)−ε(θ2)

=
1
2
(mL)2I2

1 − 1
2
(mL)I2.
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Similarly,

Z3 =
(mL)3

3!
I4
1 − (mL)2

2
I1I2 +

(mL)
3

I3,

Z4 =
(mL)4

4!
I4
1 − (mL)3I2

1I2 +
(ML)2

2

[
2
3
I1I3 +

(
I2
2

)2
]
− (mL)

4
I4.

It is not difficult to extend the computation to a higher order and show that the
series (19.5.2) precisely coincides with that given in eqn (19.5.5), the only difference
being the different arrangement of their terms. In fact, summing all those proportional
to (mL) present in each Zn, one recovers the function F (R), while the sum of all the
terms proportional to (mL)k present in each Zn precisely reproduces the higher powers
(F (R))k.

This important result implies that all physical properties of the system depend
on the quasi-particle excitations with respect to the ground state of the TBA. These
excitations have an effective energy ẽ = ε(θ)/R and an effective momentum k̃(θ)
given by

ẽ(θ) = ε(θ)/R,
k̃(θ) = k(θ) + 2π(δ ∗ ρ1)(θ).

(19.5.7)

Hence, in the presence of the temperature, one may regard the rapidity θ as the
parameter that expresses the dispersion relations of the quasi-particle excitations.
This result, derived in the non-relativistic case by C.N. Yang and C.P. Yang, can be
easily generalized to the relativistic case, as shown in the box below.

Dressed energy and momentum Let (nj , θj) and (n′
j , θ

′
j) be two Bethe

states satisfying eqn (19.3.3), where n′
j = nj except for j = α. Subtracting the two

equations, we have

mL (sinh θ′
j − sinh θj) =

∑
i

[δ(θj − θi) − δ(θ′
j − θ′

i)] (19.5.8)

(j �= α). Since θ′
j ≈ θj , we can introduce a function χ(θ) and write

L (sinh θ′
j − sinh θj) ≈ χ(θj) cosh θj . (19.5.9)

In the thermodynamic limit, eqn (19.5.8) can be written as

2π(1 − K̂) (ρχ) = δ(θ − θα) − δ(θ − θ′
α), (19.5.10)
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where ρ is the density of the levels and K̂ is the integral operator defined in eqn
(19.4.20), here restricted to the case in which there is only one species of particles.
We also have

σ(θ − θα) − σ(θ − θ′
α) =

∫ θ′
α

θα

dθ′ K̂(θ, θ′) (1 + eε(θ
′)). (19.5.11)

Using the resolvent L̂ of K̂, we can invert (19.5.10):

ρχ(θ) =
∫ θ′

α

θα

dθ′

2π
L̂(θ, θ′) (1 + eε(θ

′)). (19.5.12)

Consider now the difference in energy ΔE between the two Bethe states

ΔE =
∑
j

m [cosh θ′
j − cosh θj ] (19.5.13)

= m cosh θ′
α −m cosh θα +m

∫
dθ sinh θ

χ(θ)ρ(θ)
1 + eε(θ)

.

Substituting (19.5.12) and using the property L̂(θ, θ′)(1+eε(θ
′)) = (1+eε(θ))L̂(θ′, θ),

together with (19.4.22), we have

ΔE =
1
R

(ε(θ′
α) − ε(θα)). (19.5.14)

The dressed momentum is obtained in a similar way

ΔP =
∑
j

m [sinh θ′
j − sinh θj ] (19.5.15)

= m sinh θ′
α −m sinh θα +m

∫
dθ cosh θ

χ(θ)ρ(θ)
1 + eε(θ)

.

Substituting again (19.5.12) and using eqn (19.4.22), one finds

ΔP = k̃(θ′
α) − k̃(θα) (19.5.16)

where k̃ is defined in eqn (19.5.7).

The interpretation given above of the pseudo-energy finds interesting application in the
computation of the correlation functions of the integrable models at finite temperature.

19.6 Infrared and Ultraviolet Limits

In this section we study in more detail the scaling function c̃(r) for the TBA systems
of fermionic type. Using eqns (19.2.5) and (19.2.7), this function is given by
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c̃(r) =
3
π2 r

n∑
a=1

m̂a

∫ +∞

−∞
La(θ) cosh θ dθ, (19.6.1)

where we have defined m̂a = ma/m1 and

La(θ) = log
(
1 + e−εa(θ)

)
.

It is easy to find the behavior of this function for large values of r (the infrared limit):
we have in fact

εa(θ) 	 m̂ar cosh θ, La(θ) 	 e−m̂a r cosh θ, (19.6.2)

so that c̃(r), for r → ∞, behaves as

c̃(r) 	 6
π2 r

n∑
a=1

m̂a

∫ +∞

0
dθ cosh θ e−rm̂a cosh θ =

6
π2 r

n∑
a=1

m̂aK1(m̂ar), (19.6.3)

where K1(z) is the modified Bessel function. For r → ∞ the Bessel function decreases
exponentially and the behavior of the system is that of a free theory made of n particles
of masses ma (see Section 19.11).

The opposite limit, r → 0, corresponds to the ultraviolet or conformal limit4 of
the massive theory. To compute the value of the scaling function c̃(r) of this limit, we
need to study some properties of the integral equation (19.4.15).

The solutions εa(θ) are even functions of θ. For r → 0, they flatten and become
constant in the region − ln 2

r � θ � ln 2
r , whereas they tend to the free values (19.6.2)

outside this interval.5 The constant values εa can be found by solving the transcen-
dental equation

εa =
n∑

b=1

Nab ln
(
1 + e−εb

)
, (19.6.4)

where Nab is the positive symmetric matrix given by

Nab = −
∫ +∞

−∞

dθ

2π
ϕab(θ) = − 1

2π
[δab(+∞) − δab(−∞)] . (19.6.5)

For r → 0, the plateau of the curve enlarges and the situation appears as in Fig. 19.3.
In this limit, the curve rapidly decreasing outside the plateau assumes a universal
shape. This can be determined noting that, for large values of θ, the right-hand side
of eqn (19.4.15) can be written as

m̂a r cosh θ ∼ 1
2
m̂a r e

θ = m̂a e
(θ−ln 2

r ),

4Since r is a scaling variable, given by r = m1R = R/ξ, the limit r → 0 can be equivalently
regarded as the limit in which the correlation length ξ diverges, ξ → ∞.

5This is actually the situation for the TBA equations relative to the minimal S-matrices, while
for the S-matrices associated to lagrangian models, as for instance the S-matrix of the Sinh–Gordon
or Toda models, the functions εa(θ) diverge as log(mar) in the limit r → 0.
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Fig. 19.3 Behavior of the function La(θ) when r → 0.

and the dependence on r of the functions εa(θ) reduces then to a simple shift6

θ → θ − 2
r
.

Hence, for r → 0, their behavior at the edges of the interval is universal and dictated
by the equation

m̂a e
θ = ε̃a(θ) +

n∑
b=1

(ϕab ∗ L̃b)(θ), (19.6.6)

where the functions ε̃a(θ) assume the constant values εa for θ � 2
r and increase

exponentially to infinity when θ → ∞. The corresponding functions L̃a(θ) interpolate
bewteen 0 and their limiting value given in eqn (19.6.4). For this reason, the universal
functions ε̃a are called the kink solutions of the TBA equations. Expressed in terms of
these functions, the value of the scaling function c̃(r) at r = 0 assumes the form

c̃(0) =
6
π2

n∑
a=1

∫ ∞

0
dθ L̃a(θ) m̂a e

θ. (19.6.7)

Substituting for m̂ae
θ the derivative of the left-hand side of eqn (19.6.6)

m̂a e
θ =

dε̃a(θ)
dθ

−
n∑

b=1

(
ϕab ∗

e−ε̃b

1 + e−ε̃b

dε̃b
dθ

)
(θ), (19.6.8)

we have

c̃(0) =
6
π2

n∑
a=1

∫ ∞

0
dθ L̃a(θ)

[
dε̃a(θ)
dθ

−
n∑

b=1

(
ϕab ∗

e−ε̃b

1 + eε̃b

dε̃b
dθ

)
(θ)

]
. (19.6.9)

Since ε̃a are monotonically increasing functions, the first term on the right-hand side
simply becomes ∫ ∞

0
dθ L̃(θ)

dε̃a(θ)
dθ

=
∫ ∞

εa

dε L̃(ε). (19.6.10)

6We discuss the behavior of εa(θ) for positive values of θ, since the behavior for negative values
can be recovered by parity.
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The convolution term in (19.6.9) can be analogously substituted using the same equa-
tion (19.6.6). After an integration by parts, the final result is given by

c̃(0) =
n∑

a=1

c̃a(εa), (19.6.11)

where

c̃a(εa) =
6
π2

[∫ ∞

εa

dx ln(1 + e−x) +
1
2
εa ln(1 + e−εa)

]
=

6
π2L

(
1

1 + eεa

)
,

and L(x) is the dilogarithm function

L(x) = −1
2

∫ x

0
dt

[
ln t

1 − t
+

ln(1 − t)
t

]
.

In conclusion, the effective central charge of the conformal limit of the massive theory
with purely elastic S-matrix is obtained through the following steps:

1. solve the transcendental equation (19.6.4);
2. substitute their constant solutions εa in eqn (19.6.11).

In the next sections we will see some significant examples of this result.

19.7 The Coefficient of the Bulk Energy

In a theory with a mass scale, the additivity of the energy requires a linear growth of
the energy of the ground state with the dimension R of the system

E0 ∼ E0R.

E0, the bulk term, can be interpreted as the singular part of the infinite volume energy
due to the fluctuations present in the system. Usually this is not a universal quan-
tity, since it depends on the regularization scheme adopted. However, in a perturbed
conformal field theory, the regularization scheme is fixed by the requirement that the
off-critical quantities adiabatically go to their conformal values. Hence, in this case,
it is possible to extract a universal term E0 that only depends on the scattering data.
Since E0 is directly related to the scaling function c̃(r), the bulk term E0 is given by

E0 = − π

12
m2

1
1
r

dc̃

dr

∣∣∣∣
r=0

. (19.7.1)

For the computation of this limit, let’s introduce the functions

ψa(θ) =
(
∂r +

1
r
∂θ

)
εa(θ).
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As discussed at the end of Section 19.4, the functions ψa satisfy the linear integral
equations

ψa(θ) = m̂ae
θ +

n∑
b=1

(
ϕab ∗

ψb
eεb + 1

)
(θ).

Using eqn (19.6.1), one has

1
r

dc̃(r)
dr

= − 3
π2

n∑
a=1

∫ +∞

−∞
dθ m̂a e

−θ ψa(θ)
eε(θ) + 1

.

When r → 0, the integrand is localized near the edge of the flat region and its behavior
is determined by the kink solutions L̃a(θ). Hence, we get

1
r

dc̃(r)
dr

∣∣∣∣
r=0

=
3
π2

n∑
a=1

m̂a

∫ ∞

−∞
dθ e−θ ∂θL̃a(θ) ≡ − 3

π2

n∑
a=1

m̂aTa. (19.7.2)

To compute the right-hand side of this equation, let’s proceed as follows. Considering
initially the asymptotic expansion for θ → −∞ of the convolution term, we have

n∑
b=1

(ϕab ∗ L̃b)(θ) = −εa +
eθ

2π

n∑
b=1

ϕ
(1)
ab Tb + · · ·

where ϕ(1)
ab is the first term of the expansion of these functions, as given in eqn (19.4.8).

Comparing with the exponential term in eqn (19.6.8), we arrive at

n∑
b=1

ϕ
(1)
ab Tb = 2π.

Using now eqn (19.4.11), we obtain

n∑
b=1

ϕ
(1)
ab Tb = ϕ

(1)
11 m̂a

n∑
b=1

m̂bTb,

where ϕ(1)
11 is the corresponding quantity relative to the lightest particle. Hence the

bulk energy term is determined by the S-matrix of the lightest particle as

E0 =
m2

1

2ϕ(1)
11

. (19.7.3)

A direct measurement of this quantity can be achieved by a numerical diagonalization
of the transfer matrix of the theory.

19.8 The General Form of the TBA Equations

From the diagonal scattering theories related to the simply laced Lie algebras, there
is an extremely elegant formulation of the TBA equations. Besides the great level
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of generality, this formulation also has the advantage of highlighting the common
structure of all these theories. As shown in Chapter 14, the number of particles of
these theories is equal to the rank r of the algebra A. Another important quantity to
keep in mind is the Coxeter number h of these algebras.

In order to give such a formulation, let’s introduce the notation

νa(θ) = maR cosh θ, (19.8.1)

and note that the original TBA equations of these theories, expressed by

−νa + εa +
r∑

b=1

ϕab � log[1 + exp(−εb)] = 0, (19.8.2)

can be rewritten in the universal form

−νa + εa + 2
r∑

b=1

Iabϕh � {νb − log[1 + exp(εb)]}, (19.8.3)

where Iab is the incidence matrix of the Dynkin diagram of the corresponding algebra
A and ϕh(θ) is the universal kernel

ϕh(θ) =
h

2 cosh hθ
2

, (19.8.4)

with h the Coxeter number of the relative algebra. The equivalence between the sets
of equations (19.8.2) and (19.8.3) is based on the important identity(

δab −
1
2π
ϕab(k)

)−1

= δab −
1

2 cosh(k/h)
Iab (19.8.5)

which holds for the Fourier transforms

ϕab(k) =
∫ +∞

−∞
ϕab(θ) exp(ikθ) dθ

of the original kernels. Another important relation in the derivation of eqn (19.8.3) is
provided by

r∑
b=1

Iabmb = 2ma cos
π

h
. (19.8.6)

As a by-product of eqn (19.8.5), one of its remarkable consequences is the universal
expression of the matrix Nab for the scattering theories associated to the Lie algebras

N = I (2 − I)−1. (19.8.7)

To derive this expression it is sufficient to substitute k = 0 in (19.8.5), taking into
account that Nab = −1

2ϕab(0).
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Equation (19.8.3) can now be analytically continued to the values θ± iπ/h. Using
the relation

νa

(
θ + i

π

h

)
+ νa

(
θ − i

π

h

)
=

r∑
b=1

Iabνb(θ), (19.8.8)

they can be written in terms of a set of functional equations for the quantities Ya(θ) =
exp[εa(θ)]

Ya

(
θ + i

π

h

)
Ya

(
θ + i

π

h

)
=

r∏
b=1

[1 + Yb(θ)]Iab . (19.8.9)

These equations are completely independent of the energy terms νa(θ) of the particles
and involve only the basic information of the algebras encoded in the incidence matrix
Iab. Furthermore, they present the periodic properties

Ya
(
θ + iπ h+2

h

)
= Yn−a+1(θ), An series

Ya
(
θ + iπ h+2

h

)
= Ya(θ), Dn and En series.

(19.8.10)

For the series An, one should keep in mind that the symmetry of these algebras imposes
Ya(θ) = Yn−a+1(θ), so that the periodicity condition is also satisfied for this series.

The periodic properties of Ya(θ) have important consequences. First of all, they
imply that the solutions of the original equations (19.8.2), with νa(θ) given in (19.8.1),
are entire functions of θ and, consequently, they can be expanded in Laurent series

Ya(θ) =
∞∑

n=−∞
Y (n)
a tn, (19.8.11)

where t = exp([(2h/(h + 2)]θ). These series are convergent on all the complex plane
of θ, except at t = 0 and t = ∞. In particular, for the solutions of eqn (19.8.2), the
symmetry θ → −θ requires that Y (n)

a = Y
(−n)
a . In the t-plane, the functional equation

(19.8.9) becomes

Ya(Ω t)Ya(Ω−1 t) =
r∏

b=1

[1 + Yb(t)]Iab . (19.8.12)

where Ω = exp[2iπ/(h + 2)]. These are the most general form of the TBA equations
and they may have several classes of solutions. Obviously, among the solutions of
eqns (19.8.12), there are also those that are entire functions in t. The kink solution,
for instance, corresponding to an energy term given by νa(θ) = maR exp(θ) instead
of (19.8.1), is an example of this set of solutions. Notice that imposing t = 0 in
(19.8.12), one obtains the algebraic transcendental equations (19.6.4) for the quantities
za = exp[εa(0)], that are crucial quantities to obtain the effective central charge.

The second consequence of the periodicity of the functions Ya(θ) concerns the
behavior of the solutions of eqn (19.8.2) when R → 0. In this limit we saw that the
functions log[1 + exp[−ε(θ)]] acquire a plateau of height log[1 + 1/za] in the central
interval − log(1/m1R) � θ � log(1/m1R) and rapidly tend to zero outside this
interval. For R → 0 this plateau enlarges and this implies that the integral equations
(19.8.2) or (19.8.3) are somehow local in the central interval in the rapidity space
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while, for large R, the two edges of the plateau influence each other only through the
wavelength terms fixed by the periodicity. Hence, the function f(R) = RE0(R)/2π
admits a regular series expansion with respect the variable G2 = (m1R)4h/(h+2),
except for a bulk term energy proportional to R2

f(R) = −ceff
12

− E0

2π
R2 +

∞∑
n=1

f2nG
2n. (19.8.13)

This analytic structure of f(R) is in full agreement with conformal perturbation theory,
set in this case by a perturbing operator of conformal weight Δ = 1 − h/(h + 2) (for
the scattering theory based on the Lie algebras, the corresponding perturbative terms
are given by even powers of the coupling constants).

The analysis of the TBA done for the Lie algebras can be extended to the most
general case. In particular, one can show that, besides the bulk term, the expansion of
the free energy dictated by the TBA is a regular function with respect to the variable
G = (m1R)2−2Δ, where Δ is the conformal weight of the perturbing field

f(R) = −ceff
12

− E0

2π
R2 +

∞∑
n=1

fnG
n. (19.8.14)

Comparing with the perturbative expression of this quantity one can derive an impor-
tant relationship between the coupling constant and the lowest mass of the theory.

19.9 The Exact Relation λ(m)

The TBA permits us to determine the exact relation that holds between the coupling
constant of a perturbed conformal field theory and its lowest mass. In this section we
present the basic idea that leads to this formula, listing afterward the formulas of the
various integrable theories.

Consider the action of a perturbed conformal field theory, with the perturbation
given by a relevant field of conformal weight Δ

S = S0 + λ

∫
d2xφ(x). (19.9.1)

Let’s assume that such a deformation defines a massive integrable field theory, charac-
terized by its S-matrix. The coupling constant λ is a dimensional quantity, expressed
in terms of the lowest mass m1 by the relation

λ = Dm2−2Δ
1 . (19.9.2)

Once the normalization of the operator φ(x) is fixed, the coefficient D is a pure number
that can be extracted by the comparison between the TBA and the perturbative series.
For the normalization of the operator we take the conformal one, given by

〈φ(x1)φ(x2)〉 	 1
|x12|4Δ

, x12 → 0.

As seen in the previous sections, the free energy of an integrable theory can be com-
puted in terms of the Bethe ansatz equations and this leads to the general expression
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(19.8.14). On the other hand, this quantity can be computed in conformal perturbation
theory, using eqn (19.9.1). The corresponding series is

fpert(R) = −ceff − R2

2π

∞∑
n=1

(−λ)n

n!

∫
〈φ(X1) . . . φ(xn)〉c d2X1 . . . d

2Xn, (19.9.3)

where Xi = (xi, yi) are the coordinates on the cylinder and the connected correla-
tion functions are those of the conformal theory on the cylinder. Using the mapping
z = exp(−2πiζ/R) where ζ = x + iy is the complex coordinate of the cylinder, the
perturbative terms can be written as integrals of the connected correlation functions
on the euclidean plane

fpert(R) = −ceff − R2

2π

∞∑
n=1

(−λ)n

n!

(
2π
R

)2(Δ−1)n+2

(19.9.4)

×
∫

〈V (0)φ(z1, z̄1) . . . φ(zn, z̄n)V (∞)〉c
n∏
i=1

(zi z̄i)Δ−1 d2z1 . . . d
2zn.

In this expression, V (z, z̄) is the operator that creates the lowest energy state on the
cylinder, i.e. the field associated to Δmin (for the unitary theories, V = 1). If the field
φ is odd under a Z2 symmetry of the original conformal model – an hypothesis that
we will make in the following for simplicity – we have an even series in λ.

All the integrals of the perturbative series are ultraviolet convergent if Δ < 1/2
and, on the cylinder because of its finite size, they are also convergent in the infrared.
Using a dimensional argument, it is not difficult to see that the perturbative series is
an expansion in the parameter g2 ≡ λ2R2(2−2Δ)

fpert(R) = −ceff + F2 g
2 + F4g

4 + · · ·

Let’s assume that this series converges in a finite domain around the origin where it
defines a function F(g). On the other hand, for thermodynamics reasons, we know
that in the limit R → ∞ we have

fpert(R) ∼ E0

2π
R2.

This behavior is related to the analytic continuation of F(g) outside the domain of
convergence of the original series. Since in quantum field theory the normalization
of the free energy is chosen in such a way as to vanish at infinity, it is necessary to
subtract the quantity above from the perturbative series, so that the final expression is

f(R) = −ceff − E0

2π
R2 +

∑
n=1

F2ng
2n. (19.9.5)

The relation between the coupling constant and the lowest mass is obtained by com-
paring this series with the original series of the TBA, eqn (19.8.14). Taking the first
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term of both and simplifying the common factor R2(2−2Δ) we have

F2λ
2 = f2m

2(2−2Δ)
1 . (19.9.6)

The proportional coefficient D between the coupling constant λ and the mass m1 is
then

D2 = f2/F2. (19.9.7)

This coefficient has been determined exactly for many integrable models. For all the
theories related to the simply laced Toda models this has been achieved by Fateev.
Let’s present the relevant formula. From Section 16.7 we know that the Toda field
theories for particular imaginary values of the coupling constant given by

β2 =
p

p+ 1
p = k + h, k + h+ 1, . . .

describe the integrable deformation of the field of conformal weight

Δ = 1 − h

k + h+ 1

of the coset model
Gk ×G1

Gk+1
.

Let’s denote generically the perturbed action of these models as

S = SCFT + λ

∫
d2xΦΔ(x).

For these theories the relation that links λ to the lowest mass of the system is given by

λ =

[
πm1 k(G) Γ

(
k+h+1

h

)
Γ
( 1
h

)
Γ
(
k+h
h

)
]4hu

(19.9.8)

×
(1 − hu)−2(1 − (h+ 1)u)2 γ(qu) γ

(
h−2q+2

2 u
)

π2 γ(u) γ
(
h+2q−2

2 u
)
γ((h− q)u)) γ((h+ 1)u)

where h is the Coxeter number of the algebra G, γ(x) is given by γ(x) = Γ(x)/Γ(1−x),
and

k(G) =

(
r∏

i=1

qqi

i

)1/2h

, u =
1

k + h+ 1
.

The quantities qi are the integer numbers that enter the definition of the maximal root
of the simply laced algebra, see eqn (16.6.2), whereas q = max qi. For the ADE one
has q(A) = 1, q(D) = 2, q(E6) = 3, q(E7) = 4, q(E8) = 6.

19.10 Examples
In this section we use the TBA associated to several integrable models to compute the
effective central charge that emerges in the ultraviolet limit. As we will see, this gives
strong support to the S-matrix description of the off-critical deformations.
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19.10.1 Yang–Lee

Besides the free theories, which will be discussed in Section 19.11, the simplest TBA
system is provided by the Yang–Lee S-matrix presented in Chapter 18. In this case
the kernel is given by

ϕ(θ) = −
√

3
(

1
2 cosh θ + 1

+
1

2 cosh θ − 1

)
. (19.10.1)

The bulk energy term is then

E0 =
m2

2 sin 2π
3

.

To discuss the conformal limit of this scattering theory we need first to find the plateau
value of the pseudo-energy, the solution of the transcendental equation

ε0 = log
(
1 + e−ε0

)
. (19.10.2)

Taking the exponential of both terms and imposing x = eε0 , it reduces to the algebraic
equation

x2 − x− 1 = 0 ε0 = log

(√
5 + 1
2

)

and, because

L

(
2

3 +
√

5

)
=

π2

15

for the effective central charge we get the value

c̃(0) =
2
5
. (19.10.3)

Notice that for the Yang–Lee conformal model, c = −22/5 while Δmin = −1/5. The
effective central charge is then ceff = c− 24Δmin = 2/5, in agreement with the value
above. The exact relation between the coupling constant λ of the field that perturbs
the conformal theory is given by iλ = Dm12/5 with

D = − 25
12

( π
12

)1/5
(

Γ
( 5

6

)
Γ
( 1

3

))12/5 (
Γ
( 2

5

)
Γ
( 6

5

)
Γ
(
− 1

5

)
Γ
( 3

5

))1/2

= 0.09704845 . . . i.

(19.10.4)
Note the explicit presence of the imaginary number i by the non-unitarity of the model.

19.10.2 The Ising Model in a Magnetic Field

The S-matrix proposed for the Ising model in an external magnetic field involves eight
particles of different masses, and the S-matrix amplitude of the lowest particle is (with
the notation of Chapter 17)

S11(θ) = f2/3(θ) f2/5(θ) f1/15(θ).
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This amplitude determines the bulk energy term

E0 =
m2

1

2(sin 2π
3 + sin 2π

5 + sin π
15 )

.

From the exact expressions of all other amplitudes, given in Chapter 18, we can
determine the N matrix

Nab =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

3 4 6 6 8 8 10 12
4 7 7 10 12 14 16 20
6 8 11 12 16 16 20 24
6 10 12 15 18 20 24 30
8 12 16 18 23 24 30 36
8 14 16 20 24 27 32 40
10 16 20 24 30 32 39 48
12 20 24 30 36 40 48 59

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

This permits us to derive the plateu values of the pseudo-energy solving eqn (19.6.4):

eε1 = 2 + 2
√

2 eε2 = 5 + 4
√

2 eε3 = 11 + 8
√

2
eε4 = 16 + 12

√
2 eε5 = 42 + 30

√
2 eε6 = 56 + 40

√
2

eε7 = 152 + 108
√

2 eε8 = 543 + 384
√

2.
(19.10.5)

Computing the dilogarithmic functions associated to these values, we have

c̃1 = 0.2100096.. c̃2 = 0.120269.. c̃3 = 0.068324..
c̃4 = 0.0500483.. c̃5 = 0.023056.. c̃6 = 0.018087..
c̃7 = 0.0076889.. c̃8 = 0.002515..

(19.10.6)

whose sum is c̃(0) = 1
2 . This is a highly non-trivial check of the validity of the S-

matrix proposed for the magnetic deformation of the Ising model. The exact relation
that links the lowest mass m1 of this model to the coupling constant, given in this
case by the magnetic field, is m1 = C h 8

15 where

C =
4 sin π

5 Γ
( 1

5

)
Γ
( 2

3

)
Γ
( 8

15

) (4π2Γ
( 3

4

)
Γ2
( 13

16

)
Γ
( 1

4

)
Γ2
( 3

16

) )
4
5

= 4.40490858 . . . (19.10.7)

19.10.3 The Tricritical Ising Model

The thermal deformation of the tricritical Ising model is described by an exact S-
matrix based on seven particles, where the amplitude of the fundamental particle is

S11 = −f1/9(θ) f4/9(θ).

Hence, the bulk energy term is

E0 =
m2

1

2(sin π
9 sin 4π

9 )
.
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From the other scattering amplitudes we can obtain the N matrix of this model:

Nab =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 2 3 4 4 5 6
2 3 4 4 6 6 8
3 4 6 6 8 9 12
4 4 6 7 8 10 12
4 6 8 8 11 12 16
5 6 9 10 12 14 18
6 8 12 12 16 18 23

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The solutions of the plateau equations of the pseudo-energies are

eε1 = 2 +
√

5 eε2 = (5 + 3
√

5)/2 eε3 = 6 + 3
√

5
eε4 = 8 + 4

√
5 eε5 = (33 + 15

√
15)/2 eε6 = 27 + 12

√
5

eε7 = 80 + 36
√

5.
(19.10.8)

Computing the dilogarithmic functions at these values, we get

c̃1 = 0.228828.. c̃2 = 0.184429.. c̃3 = 0.1054611..
c̃4 = 0.084686.. c̃5 = 0.049684.. c̃6 = 0.0335404..
c̃7 = 0.013369..

(19.10.9)

whose sum gives c̃(0) = 7/10, which is the central charge of the tricritical Ising model.
This provides explicit confirmation of the validity of the S-matrix for the thermal
deformation of this model. The exact relation between the lowest mass m1 and the
coupling constant τ = T − Tc is m1 = C τ 5

9 where

C =

(
2Γ
( 2

9

)
Γ
( 2

3

)
Γ
( 5

9

)) (4π2 Γ
( 2

5

)
Γ3
( 4

5

)
Γ3
( 1

5

)
Γ
( 3

5

) )5/18

= 3.745378362 . . . (19.10.10)

19.11 Thermodynamics of the Free Field Theories

A particularly simple case of the TBA equations is associated to the theories where
there is only one massive excitation with a constant S-matrix, that is S = ±1. In these
theories it is obviously not necessary to solve the integral equations (19.4.15) to derive
the thermodynamics since we have identically

ε(θ) = r cosh θ, (19.11.1)

and, for the central charge,

c±(r) = ∓ 6
π2

∫ ∞

0
dθ r cosh θ log(1 ∓ e−r cosh θ). (19.11.2)

Apart from the prefactor −π/6R2, these expressions are precisely the free energies of a
relativistic gas with Bose/Fermi statistics at temperature T = 1/R (see Appendix B of
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Chapter 1). Let’s discuss their analytic structure. Expanding the logarithm in powers
of exp[−r cosh θ] and integrating term by term, we get

c±(r) =
6r
π2

∞∑
n=1

(±1)n−1

k
K1(nr), (19.11.3)

where K1(z) is the modified Bessel function. Taking now the limit r → 0, we have

c±(0) =
6
π2

∞∑
n=1

(±1)n−1

n2 =
{

1
1
2 .

(19.11.4)

Moreover, using
d

dx
[xK1(x)] = −xK0(x),

we obtain
1
r

d

dr
c±(r) = − 6

π2

∞∑
n=1

(±1)n−1K0(nr). (19.11.5)

Using the identity∑
n=1

K0(nx) cosnxt =
1
2

(
γE + log

x

4π

)
+

π

2x
√

1 + t2

+
π

2

∞∑
l=1

{
1√

x2 + (2lπ − tx)2
− 1

2lπ

}

+
π

2

∞∑
l=1

{
1√

x2 + (2lπ + tx)2
− 1

2lπ

}

and integrating eqn (19.11.5), we arrive at the expressions:
for the bosonic case S = 1

c+(r) = 1 − 3r
π

+
3r2

2π2

[
log

1
r

+
1
2

+ log 4π − γE

]
(19.11.6)

− 6
π

∞∑
n=1

(√
(2nπ)2 + r2 − 2nπ − r2

4nπ

)

while, for the fermionic case S = −1

c−(r) =
1
2
− 3r2

2π2

[
log

1
r

+
1
2

+ log π − γE

]
(19.11.7)

+
6
π

∞∑
n=1

(√
(2n− 1)2π2 + r2 − (2n− 1)π − r2

2(2n− 1)π

)
.

The plots of these functions are given in Fig. 19.4.
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Fig. 19.4 Plot of the functions c+(r) (continuous line) and c−(r) (dashed line).

19.12 L-channel Quantization

The formulas obtained by the TBA for the finite volume vacuum energy of free theories
can be directly derived by quantizing them in the L-channel. In this section we present
explicit formulas for the bosonic case, since similar expressions can be easily reproduced
for the fermionic case. Let φ(x, t) = φ†(x, t) be the real bosonic field defined in the
interval (−R

2 ,
R
2 ), with periodic boundary conditions

φ(x+R, t) = φ(x, t) (19.12.1)

at any time. The action is

A =
∫
dt

∫ R
2

− R
2

dx
1
2
[
(∂μφ)2 −m2φ2] .

Defining the conjugate momentum of the field

Π(x, t) =
∂φ

∂t
(x, t),

for the hamiltonian of the system we have

H =
1
2

∫ R
2

− R
2

dx[Π2 + (∇φ)2 +m2φ2]. (19.12.2)

Let’s assume the commutation relations

[φ(x, t),Π(y, t)] = i δp(x− y),
[φ(x, t), φ(y, t)] = [Π(x, t),Π(y, t)] = 0, (19.12.3)

where δp(x − y) is the periodic version of the usual Dirac delta function: in addition
to the usual properties, in this case it also satisfies

δp(x+R) = δp(x).
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Its explicit representation is given by

δp(x) =
1
L

∞∑
−∞

exp
[
2πin
R

x

]
. (19.12.4)

It is now necessary to solve the equation of motion of the field φ(x, t)[
∂2

∂t2
−∇2 +m2

]
φ(x, t) = 0, (19.12.5)

together with the boundary conditions (19.12.1). There is a standard procedure to do
so: because the field is periodic along the space direction, it admits a Fourier expansion

φ(x, t) =
∞∑

−∞
cn(t) exp

[
2ni
R
x

]
. (19.12.6)

It is convenient to introduce the notation

pn =
2πn
R

, ωn =
√
p2
n +m2, n = 0,±1,±2 . . .

Substituting the expansion (19.12.6) in the equation of motion (19.12.5), we obtain[
d2

dt2
+ ω2

n

]
cn(t) = 0,

whose solution is
cn(t) = an e

−iωnt + a†
n e

iωnt.

Hence, the field and its conjugate momentum are expressed by

φ(x, t) =
+∞∑
−∞

Nn

[
an e

i(pnx−ωnt) + a†
n e

−i(pnx−ωnt)
]
, (19.12.7)

Π(x, t) =
+∞∑
−∞

Nn (−iωn)
[
an e

i(pnx−ωnt) − a†
n e

−i(pnx−ωnt)
]
,

where Nn is a normalization that can be fixed by imposing the quantization conditions
(19.12.3). Choosing

Nn =
1√

2ωnL
,

eqn (19.12.3) becomes the commutation relation among the an modes[
an, a

†
m

]
= δn,m,

[an, am] =
[
a†
n, a

†
m

]
= 0. (19.12.8)
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Substituting the expressions of φ(x, t) and Π(x, t) in the hamiltonian (19.12.2), we
have

H =
1
2

+∞∑
−∞

ωn(ana†
n + a†

nan) =
1
2

+∞∑
−∞

ωn

[
a†
nan +

1
2

]
, (19.12.9)

where we used ∫ R
2

− R
2

ei(pn−pm)x dx = Rδn,m.

The ground state energy of the theory is then

E0(R) =
1
2

+∞∑
−∞

ωn =
1
2

+∞∑
−∞

√(
2nπ
R

)2

+m2. (19.12.10)

This expression needs, however, to be regularized by subtracting the term coming
from the continuous limit of the infinite volume in order to implement the correct
normalization

lim
R→∞

Evac
0 (R) = 0.

Hence, for the finite volume ground state energy we have

Evac
0 (R) =

1
2

∞∑
n=−∞

√(
2πn
R

)2

+m2 − 1
2

∞∫
−∞

dn

√(
2πn
R

)2

+m2. (19.12.11)

Selecting out the zero mode, this expression can be written as

Evac
0 (R) =

m

2
+

2π
R

∞∑
n=1

√
n2 +

( r
2π

)2
− 2π

R

∞∫
0

dn

√
n2 +

( r
2π

)2
, (19.12.12)

where r ≡ mR. Since the divergence of the series is due to the large n behavior of the
first two terms of the expansion√

n2 +
( r

2π

)2
	 n+

1
2

( r
2π

)2 1
n

+ O
(

1
n2

)
,

let’s start by subtracting and adding these divergent terms

S(r) ≡
∞∑
n=1

√
n2 +

( r
2π

)2
=

∞∑
n=1

{√
n2 +

( r
2π

)2
− n− 1

2

( r
2π

)2 1
n

}

+
∞∑
n=1

n +
1
2

( r
2π

)2 ∞∑
n=1

1
n
. (19.12.13)

The first series on the right is now convergent, while the last two terms must be paired
with analogous terms coming from the integral, whose divergence has to be treated
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in a similar way to the series. Hence, subtracting and adding these divergent terms in
the integral

I(r) ≡
∞∫
0

dn

√
n2 +

( r
2π

)2
=

=

∞∫
0

dn

{√
n2 +

( r
2π

)2
− n

}
+

∞∫
0

dnn, (19.12.14)

we can pair the last term of this expression with the one in (19.12.13) and implement
the well-known regularization

∞∑
n=0

n−
∫ ∞

0
ndn = lim

α→0

[ ∞∑
n=0

n e−αn −
∫ ∞

0
n e−αn dn

]
= − 1

12
. (19.12.15)

However, the first term in (19.12.14) still contains a logarithmic divergence, as can be
seen by explicitly computing the integral by means of a cut-off Λ, in the limit Λ → ∞

Λ∫
0

dn

{√
n2 +

( r
2π

)2
− n

}
=

1
2

( r
2π

)2
ln 2Λ +

1
4

( r
2π

)2
− 1

2

( r
2π

)2
ln

r

2π
.

(19.12.16)
This divergence can be cured by subtracting and adding the term 1

2

(
r
2π

)2 ln Λ. Com-
bining this last term with the analogous one coming from the series, we obtain

lim
Λ→∞

(
Λ∑

n=1

1
n

− ln Λ

)
= γE ,

where γE is the Euler–Mascheroni constant, whereas the remaining part of (19.12.16),
with the subtraction done above, is now finite.

Gathering together all the terms, the finite expression of the finite volume ground
state energy is

Evac
0 (R) =

1
R

[
−π

6
+
r

2
+
r2

4π

(
ln

r

4π
+ γE − 1

2

)
+

∞∑
n=1

(√
(2πn)2 + r2 − 2πn− r2

4πn

)]
.

(19.12.17)
It is easy to see that eqn (19.12.17) satisfies modular invariance, which imposes its
equality with the expression obtained by the TBA

Evac
0 (R) = −πc(r)

6R
,

where
c(r) = − 6r

π2

∫ ∞

0
dθ cosh θ ln

(
1 − e−r cosh θ) .

Moreover, it is easy to verify that the regularization adopted above ensures perfect
agreement between the expressions for the one-point correlation functions 〈φ2k〉, done
either in the R- or the L-channels.
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It is useful to notice that the result (19.12.17) can be obtained in the simplest
way by using a prescription that automatically ensures the subtraction of the various
divergent terms. This consists of ignoring completely the divergent part of the integral,
though keeping its finite part, and regularizing the divergent series according to the
formulas ∞∑

n=1

n

∣∣∣∣∣
reg

= − 1
12
, (19.12.18)

∞∑
n=1

1
n

∣∣∣∣∣
reg

= γE + ln
r

2π
. (19.12.19)

Equation (19.12.18) is the standard regularization provided by the Riemann zeta func-
tion ζ(−1), where ζ(s) =

∑∞
n=1

1
ns . This regularization corresponds to the normal or-

der of the operators in the infinite volume. However, from the logarithmic divergence,
the regularization of the second series is intrinsically ambiguous, and its finite value
can be determined according to the earlier discussion.
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Problems

1. Non-relativistic gas
Consider a one-dimensional gas of N non-relativistic bosons on an interval of length
L, with two-body repulsive interaction given by a delta function. The hamiltonian of
such a system is

H = −
N∑
i=1

∂2

∂x2
i

+ 2c
∑
i>j

δ(xi − xj) c > 0.

a Find the phase shift of the two-body scattering process and write the Bethe ansatz
equations.

b Analyze the solutions in the thermodynamic limit N → ∞, L → ∞, N/L = ρ, ρ
finite.

2. Simple TBA system
Consider the TBA equations for a relativistic system made of one massive particle,
with kernel

ϕ(θ) =
1
2π
δ(θ).

a Solve explicitly the equation for the pseudo-energy ε(θ) and show that it is given by

ε(θ) = log
[
emR cosh θ − 1

]
.

b Plot the scaling function

c(R) =
6
π2mR

∫ ∞

0
cosh θ log(1 + e−ε(θ)) dθ

and compute its limit at R = 0

3. L-channel for Majorana fermions
Consider the Dirac action of a Majorana massive fermion on a finite volume

S =
∫
dt

∫ R
2

− R
2

dx ψ̄ (i γμ ∂μ −m) ψ.

Quantize this system in the canonical way and show that the finite volume ground
state energy E0(R) can be written as

E0(R) = −π c−(r)
6R

,

where the scaling function c−(r) coincides with the expression given by the TBA.



20
Form Factors and Correlation
Functions

Elementary, my dear Watson.

Arthur Conan Doyle

One of the fundamental problems of statistical mechanics and its quantum field theory
formulation is the characterization of the order parameters and the computation of
their correlation functions. Besides the intrinsic interest of this problem, the correlation
functions are the key quantities in the determination of the universal ratios of the
renormalization group and therefore they can have direct experimental confirmation
(see Chapter 8). In general, the computation of correlation functions is a difficult task,
usually achieved with partial success through perturbative methods.

As we saw in the previous chapters devoted to conformal field theories, an exact de-
termination of the operator content and the correlation functions of a two-dimensional
theory can be obtained only when the model is at its critical point. In this case, in
fact, one has a classification of the order parameters in terms of the irreducible rep-
resentation of the Virasoro algebra and, moreover, one can get an exact expression of
the correlators by solving the linear differential equations that they satisfy.

Unfortunately, the simple theoretical scheme of the critical points cannot be gen-
eralized once we move away from criticality. In this case, the problem has to be faced
with different techniques. As shown in this chapter, significant progress can be made
when we deal with integrable theories, characterized by their elastic S-matrix and the
spectrum of the asymptotic states. The central quantities are in this case the matrix
elements of the various operators on the asymptotic states of the theory, called the
form factors. The precise definition of these quantities is given below. The general
properties related to the unitarity and crossing symmetry lead to a set of functional
equations for the form factors that can be explicitly solved in many interesting cases.
Once the matrix elements of the operators are known, their correlation functions can
be recovered in terms of spectral representation series. It is worth mentioning that
these series present remarkable convergence properties.

Hence, the success of the form factor method relies on two points: (a) the possibility
of determining exactly the matrix elements of the order parameters on the asymptotic
states of the theory, identified by scattering theory; (b) the fast convergence properties
of the spectral series. These two steps lead to the determination of the correlation
functions away from criticality with a precision that cannot be obtained by other
methods.
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20.1 General Properties of the Form Factors

An essential quantity for the computation of the matrix elements is the S-matrix of the
problem. As shown in the previous chapters, the S-matrix of many two-dimensional
systems is particularly simple and can be explicitly found. For an infinite number of
conservation laws, the scattering processes of integrable systems are purely elastic and
the n-particle S-matrix can be factorized in terms of the n(n−1)/2 two-body scattering
amplitudes. In the following, for simplicity, we mainly focus our attention on diagonal
scattering theories with a non-degenerate spectrum. To characterize the kinematic
state of the particles we use the rapidities θi that enter the dispersion relations

p0
i = mi cosh θi, p1

i = mi sinh θi. (20.1.1)

The two-body S-matrix amplitudes depend on the difference of the rapidities θij =
θi − θj and satisfy the unitary and crossing symmetry equations

Sij(θij) = Sji(θij) = S−1
ij (−θij), (20.1.2)

Sij̄(θij) = Sij(iπ − θij).

Possible bound states correspond to simple poles (or higher order odd poles) of these
amplitudes, placed at imaginary values of θij in the physical strip 0 < Imθ < π.

Let’s see how the S-matrix allows us to compute the matrix elements of the (semi)-
local operators on the asymptotic states. To this end, it is useful to introduce an
algebraic formalism.

20.1.1 Faddeev–Zamolodchikov Algebra

A key assumption of the form factor theory is that there exist some operators, both
of creation and annihilation type, V †

αi
(θi), Vαi(θi), that implement a generalization of

the usual bosonic and fermionic algebraic relations. Let’s call them vertex operators.
Denoting by αi the quantum number that distinguishes the different types of parti-
cles of the theory, these operators satisfy the associative algebra in which enters the
S-matrix

Vαi
(θi)Vαj (θj) = Sij(θij)Vαj (θj)Vαi(θi) (20.1.3)

V †
αi

(θi)V †
αj

(θj) = Sij(θij)V †
αj

(θj)V †
αi

(θi) (20.1.4)

Vαi(θi)V
†
αj

(θj) = Sij(θji)V †
αj

(θj)Vαi(θi) + 2πδαiαjδ(θij). (20.1.5)

Any commutation of these operators can be interpreted as a scattering process. The
Poincaré group, generated by the Lorentz transformations L(ε) and the translations
Ty, acts on the operators as

ULVα(θ)U−1
L = Vα(θ + ε) (20.1.6)

UTyVα(θ)U−1
Ty

= eipμ(θ)yμ

Vα(θ). (20.1.7)

Obviously the explicit form of the creation and annihilation operators depends cru-
cially on the theory in question and their construction is an open problem for most
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models. This difficulty does not stop us, however, from deriving the fundamental equa-
tions for the matrix elements starting from the algebraic equations given above.

The vertex operators define the space of physical states. The vacuum |0〉 is the
state annihilated by Vα(θ),

Vα(θ)|0〉 = 0 = 〈0|V †
α (θ),

while the Hilbert space is constructed by applying the various vertex operators V †
α (θ)

on |0〉:
|Vα1(θ1) . . . Vαn(θn)〉 ≡ V †

α1
(θ1) . . . V †

αn
(θn)|0〉. (20.1.8)

From eqn (20.1.5), the one-particle states have the normalization

〈Vαi
(θi)|Vαj

(θj)〉 = 2π δαiαj
δ(θij).

The algebra of the vertex operators implies that the vectors (20.1.8) are not all linearly
independent. To select a basis of linearly independent vectors we need an additional
requirement: for the initial states, the rapidites must be ordered in a decreasing way:

θ1 > θ2 > · · · > θn

while, for the final states in an increasing way:

θ1 < θ2 < · · · < θn.

These orderings select a set of linearly independent vectors that form a basis in the
Hilbert space.

20.1.2 Form Factors

In this section we describe the principles of the theory. Unless explicitly stated, in the
following we consider the matrix elements between the in and out states of the particle
with the lowest mass of local, scalar, and hermitian operators O(x)

out〈V (θm+1) . . . V (θn)|O(x)|V (θ1) . . . V (θm)〉in. (20.1.9)

We can always place the operator at the origin by using the translation operator,
UTy

O(x)U−1
Ty

= O(x+ y), and using eqn (20.1.7), the matrix elements above are given
by

exp

[
i

(
n∑

i=m+1

pμ(θi) −
m∑
i=1

pμ(θi)

)
xμ

]
(20.1.10)

× out〈V (θm+1) . . . V (θn)|O(0)|V (θ1) . . . V (θm)〉in.
It is convenient to define the functions

FO
n (θ1, θ2, . . . , θn) = 〈0 | O(0) | θ1, θ2, . . . , θn〉in (20.1.11)

called the Form Factors (FF), whose graphical representation is shown in Fig. 20.1:
they are the matrix elements of an operator placed at the origin between the n-particle
state and the vacuum.1

1From now on we use the simplified notation | . . . V (θn) . . . 〉 ≡ | . . . θn . . . 〉 to denote the physical
states of the particle with the lowest mass.
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Fig. 20.1 Form factor of the operator O.

For local and scalar operators, the relativistic invariance of the theory implies that
the FF are functions of the differences of the rapidities θij

FO
n (θ1, θ2, . . . , θn) = FO

n (θ12, θ13, . . . , θij , . . .), i < j. (20.1.12)

The invariance under crossing symmetry permits us to recover the most general matrix
elements by an analytic continuation of the functions (20.1.11)

FO
n+m(θ1, θ2, . . . , θm, θm+1 − iπ, . . . , θn − iπ) = FO

n+m(θij , iπ − θsr, θkl) (20.1.13)

where 1 ≤ i < j ≤ m, 1 ≤ r ≤ m < s ≤ n, and m < k < l ≤ n.
Apart from the poles corresponding to the bound states present in all possible

channels of this amplitude, the form factors FO
n are expected to be analytic functions

in the strips 0 < Imθij < 2π.

20.2 Watson’s Equations

The FF of a scalar and hermitian operator O satisfy a set of equations, known as
Watson’s equations, that assume a particularly simple form for the integrable systems

FO
n (θ1, . . . , θi, θi+1, . . . , θn) = FO

n (θ1, . . . , θi+1, θi, . . . , θn)S(θi − θi+1), (20.2.1)

FO
n (θ1 + 2πi, . . . , θn−1, θn) = e2πiγ FO

n (θ2, . . . , θn, θ1) =
n∏
i=2

S(θi − θ1)FO
n (θ1, . . . , θn),

where γ is the semilocal index of the operator O with respect to the operator that
creates the particles. The first equation is a simple consequence of eqn (20.1.3), because
a commutation of two operators is equivalent to a scattering process. Concerning the
second equation, it states the nature of the discontinuity of these functions at the cuts
θ1i = 2πi. The graphical representation of these equations is shown in Fig. 20.2. When
n = 2, eqns (20.2.1) reduce to

FO
2 (θ) = FO

2 (−θ)S2(θ),
FO

2 (iπ − θ) = FO
2 (iπ + θ). (20.2.2)
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Fig. 20.2 Graphical form of the Watson equations.

The most general solution of the Watson equations (20.2.1) is given by

FO
n (θ1, . . . , θn) = KO

n (θ1, . . . , θn)
∏
i<j

Fmin(θij). (20.2.3)

Let’s discuss the various terms entering this expression.

Minimal two-particle form factor. Fmin(θ) is an analytic function in the region
0 ≤ Im θ ≤ π, the solution of the two equations (20.2.2), with neither zeros nor
poles in the strip 0 < Imθ < π, and with the mildest behavior at |θ| → ∞. These
requirements determine uniquely this function, up to a normalization factor N . Its
explicit expression can be found by writing the S-matrix as

S(θ) = exp
[∫ ∞

0

dt

t
f(t) sinh

tθ

iπ

]
.

In fact, it is easy to see that Fmin(θ) is given by

Fmin(θ) = N exp

[∫ ∞

0

dt

t

f(t)
sinh t

sin2

(
tπθ̂

2π

)]
, θ̂ = iπ − θ. (20.2.4)

Note that for interacting theories, S(0) = −1, and therefore the first equation in
(20.2.2) forces Fmin(θ) to have a zero at the two-particle threshold

F (θ) 	 θ, θ → 0. (20.2.5)

KO
n factors. The remaining factors KO

n in (20.2.3) satisfy the Watson equation but
with S2 = 1: this implies that they are completely symmetric functions in the variables
θij , periodic with period 2πi. Therefore they can be considered as functions of the
variables cosh θij . Let’s investigate other properties of the functions KO

n . They must
have all physical poles expected for the form factors. We recall that, in general, there
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Fig. 20.3 Kinematic configuration of a k-particle responsable for a pole in the form factors.

is a simple pole in the form factors when a cluster made of k particles can reach a
kinematical configuration that is equivalent to that of a single particle, as shown in
Fig. 20.3, with the pole given just by the propagator of the latter particle. If this
is the general situation, for the integrable theories there is however an important
simplification. In fact, by the factorization property of the S-matrix, it is sufficient to
consider only the cases in which the clusters are made of k = 2 or k = 3: the poles
coming from the two-particle clusters are dictated uniquely by the bound states of the
S-matrix, while those coming from the three-particle clusters are determined by the
crossing processes, although they are also related to the S-matrix (see the discussion
in the next section). In conclusion, all the poles of the form factors are determined by
the underlying scattering theory and they do not depend on the operator! In the light
of this analysis, the functions KO

n can be parameterized as follows

KO
n (θ1, . . . , θn) =

QO
n (θ1, . . . , θn)

Dn(θ1, . . . , θn)
, (20.2.6)

where the denominator Dn is a polynomial in cosh θij that is fixed only by the pole
structure of the S-matrix while the information on the operator O is enclosed in the
polynomial QO

n of the variables cosh θij placed at the numerator. We will come back
to this important point in later sections.

Symmetric polynomials. As shown above, the functions KO
n are symmetric under

the permutation of the rapidities of the various particles. In many case it is convenient
to change variables, introducing the parameters xi ≡ eθi , so that both numerator
and denominator become symmetric polynomials in the xi variables. A basis in the
functional space of the symmetric polynomials in n variables is given by the elementary
symmetric polynomials σ(n)

k (x1, . . . , xn), whose generating function is

n∏
i=1

(x+ xi) =
n∑

k=0

xn−k σ
(n)
k (x1, x2, . . . , xn). (20.2.7)
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Conventionally all σ(n)
k with k > n and with n < 0 are zero. The explicit expressions

for the other cases are

σ0 = 1,
σ1 = x1 + x2 + . . .+ xn,
σ2 = x1x2 + x1x3 + . . . xn−1xn,
...

...
σn = x1x2 . . . xn.

(20.2.8)

The σ
(n)
k are homogeneous polynomials in xi, of total degree k but linear in each

variable.
Total and partial degrees of the polynomials. The polynomialsQO

n (x1, . . . , xn) in
the numerator of the factor KO

n satisfy additional conditions coming from the asymp-
totic behavior of the form factors. The first condition simply comes from relativistic
invariance: in fact, for a simultaneous translation of all the rapidities, the form factors
of a scalar operator2 satisfy

FO
n (θ1 + Λ, θ2 + Λ, . . . , θn + Λ) = FO

n (θ1, θ2, . . . , θn). (20.2.9)

This implies the equality of the total degrees of the polynomials QO
n (x1, . . . , xn) and

Dn(x1, . . . , xn). Concerning the partial degree with respect to each variable, it is worth
anticipating a result discussed in Section 20.8: in order to have a power law behavior of
the two-point correlation function of the operator O(x), its form factors must behave
for θi → ∞ at most as exp(kθi), where k is a constant (independent of i), related to
the conformal weight of the operator O.

20.3 Recursive Equations
The poles in the FF induce a set of recursive equations that are crucial for the explicit
determination of these functions. As a function of the difference of the rapidities θij ,
the FF have two kinds of simple pole.3

Kinematical poles. The first kind of singularity does not depend on whether the
model has bound states. It is in fact associated to the kinematical poles at θij = iπ that
come from the one-particle state realized by the three-particle clusters. In turn, these
processes correspond to the crossing channels of the S-matrix, as shown in Fig. 20.4.
The residues at these poles give rise to a recursive equation that links the n-particle
and the (n− 2)-particle form factors

−i lim
θ̃→θ

(θ̃−θ)FO
n+2(θ̃+iπ, θ, θ1, θ2, . . . , θn) =

(
1 − e2πiγ

n∏
i=1

S(θ − θi)

)
FO
n (θ1, . . . , θn).

(20.3.1)

2For the form factors of an operator O(x) of spin s, the equation generalizes to F O
n (θ1 + Λ, θ2 +

Λ, . . . , θn + Λ) = esΛ F O
n (θ1, θ2, . . . , θn).

3There could also be higher order poles, corresponding to the higher order poles of the S-matrix.
Their discussion is however beyond the scope of this book.
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Fig. 20.5 Recursive equation of the bound state poles.

Let’s denote concisely by C the map between FO
n+2 and FO

n established by the recursive
equation

FO
n+2 = C FO

n . (20.3.2)

Bound state poles. There is another family of poles in Fn if the S-matrix has simple
poles related to the bound states. These poles are at the values of θij corresponding
to the resonance angles. Let θij = iukij be one of these poles, associated to the bound
state Ak present in the channel Ai ×Aj . For the S-matrix we have

−i lim
θ→iuk

ij

(θ − iukij)Sij(θ) =
(
Γk
ij

)2
(20.3.3)

where Γk
ij is the on-shell three-particle vertex and for the residue of the form factor

Fn+1 involving the particles Ai and Aj we have

−i lim
ε→0

ε FO
n+1(θ+iu

j
ik−ε, θ−iuijk+ε, θ1, . . . , θn−1) = Γk

ij F
O
n (θ, θ1, . . . , θn−1), (20.3.4)

where ucab ≡ (π−ucab). This equation sets up a recursive structure between the (n+1)-
and the n-particle form factors, as shown in Fig. 20.5. Let’s denote by B the map
between F ′

n+1 and FO
n set by this recursive equation

FO
n+1 = B FO

n . (20.3.5)

When the theory presents bound states, it is possible to show that the two kinds of
recursive equation are compatible, so that it is possible to reach the (n + 2)-particle
FF by the n-particle FF either using directly the recursive equation shown in Fig. 20.4
or applying the recursive equation of Fig. 20.5 twice. In terms of the mappings B and
C we have C = B2.
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20.4 The Operator Space

At the critical point, one can identify the operator space of a quantum field theory in
terms of the irreducible representations of the Virasoro algebra. An extremely inter-
esting point is the characterization of the operator content also away from criticality.
As argued below, this can be achieved by means of the form factor theory: although
this identification is based on different principles than conformal theories, nevertheless
it allows us to shed light on the classification problem of the operators.

Let’s start our discussion with some general considerations. In the form factor ap-
proach, an operator O is defined once all its matrix elements FO

n are known. Notice
the particular nature of all the functional equations – the recursive and Watson’s equa-
tions – satisfied by the form factors: (i) they are all linear; (ii) they do not refer to any
particular operator! This implies that, given a fixed number n of asymptotic particles,
the solutions of the form factor equations form a linear space. The classification of
the operator content is then obtained by putting the vectors of this linear space in
correspondence with the operators.

Kernel solutions. Among the functions of these linear spaces, there are those be-
longing to the kernel of the operators B and C: these are the functions F̂ (i)

n and F̂
(j)
n

that satisfy

B F̂ (i)
n = 0

C F̂ (j)
n = 0.

(20.4.1)

Their general expression is given in eqn (20.2.3) but, in this case, the function Kn does
not contain poles that give rise to the recursive equations. Hence each of the functions
F̂

(i)
n and F̂

(j)
n is simply a symmetric polynomial in the xi variables. The vector space

of the form factors that belong to the kernels can be further specified by assigning the
total and partial degrees of these polynomials.

A non-vanishing kernel of the operators B and C has the important consequence
that at each level n, if F̃n is a reference solution of the recursive equation and F̂n a
function of any of the two kernels, the most general form factor can be written as

Fn = F̃n +
∑
i

αi F̂n. (20.4.2)

Therefore the identification of each operator is obtained by specifying at each level n
the constants αi. If we graphically represent by dots the linearly independent solutions
at the level n of the form factor equations, we have the situation of Fig. 20.6. In this
graphical representation, each operator is associated to a well-defined path on this
lattice, with each step (n+1) → n (or (n+2) → n) ruled by the operator B (or C). We
will see explicit examples of this operator structure when we discuss the form factors
of the Ising and the Sinh–Gordon models.

20.5 Correlation Functions

Once we have determined the form factors of a given operator, its correlation functions
can be written in terms of the spectral representation series using the completeness
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Fig. 20.6 Vector spaces of the solutions of the form factor equations (the number of dots
at each level is purely indicative). An operator is associated to the sequence of its matrix
elements Fn.

relation of the multiparticle states

1 =
∞∑
n=0

∫
dθ1 . . . dθn
n!(2π)n

|θ1, . . . , θn〉 〈θ1, . . . , θn|. (20.5.1)

For instance, for the two-point correlation function of the operator O(x) in euclidean
space, we have

〈O(x)O(0)〉 =
∞∑
n=0

∫
dθ1 . . . dθn
n!(2π)n

〈0|O(x)|θ1, . . . , θn〉inin〈θ1, . . . , θn|O(0)|0〉

=
∞∑
n=0

∫
dθ1 . . . dθn
n!(2π)n

| Fn(θ1 . . . θn) |2 exp

(
−mr

n∑
i=1

cosh θi

)
(20.5.2)

where r is the radial distance r =
√
x2

0 + x2
1 (Fig. 20.7). Similar expressions, although

more complicated, hold for the n-point correlation functions. It is worth making some
comments to clarify the nature of these expressions and their advantage.

• The integrals that enter the spectral series are all convergent. This is in sharp con-
trast with the formalism based on the Feynman diagrams, in which one
encounters the divergences of the various perturbative terms. In a nutshell, the
deep reason of this difference between the two formalisms can be expressed as
follows. The Feynman formalism is based on the quantization of a free theory and
on the bare unphysical parameters of the lagrangian. What the renormalization
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Fig. 20.7 Spectral representation of the two-point correlation functions.

procedure does is to implement the change from the bare to the physical parame-
ters (such as the physical value of the mass of the particle). But the form factors
employ ab initio all the physical parameters of the theory and for this reason the
divergences of the perturbative series are absent.

• If the S-matrix depends on a coupling constant, as it happens in the Sinh–Gordon
model or in other Toda field theories, each matrix element provides the exact
resummation of all terms of perturbation theory.

• If the correlation functions do not have particularly violent ultraviolet singularities
(this is the case, for instance, of the correlation functions of the relevant fields),
the corresponding spectral series has an extremely fast convergent behavior for all
values of mr. In the infrared region, that is for large values of mr, this is pretty
evident from the nature of the series, because its natural parameter of expansion
is e−mr. The reason of the fast convergent behavior also in the ultraviolet region
mr → 0 is twofold: the peculiar behavior of the n-particle phase space in two-
dimensional theories (see Appendix C of Chapter 17) and a further enhancement
of the convergence provided by the form factors. To better understand this aspect,
consider the Fourier transform of the correlator

G(x) = 〈O(x)O(0)〉 =
∫

d2p

(2π)2
eip·x Ĝ(p). (20.5.3)

The function Ĝ(p) can be written as

Ĝ(p) =
∫ ∞

0
dμ2 ρ(μ2)

1
p2 + μ2 , (20.5.4)

where ρ(k2) is a relativistically invariant function called the spectral density

ρ(k2) = 2π
∞∑
n=0

∫
dΩ1 . . . dΩn δ

2(k − Pn) |〈0 |O(0) |θ1, . . . , θn〉|2

dΩ =
dp

2πE
=

dθ

2π
, P (0)

n =
n∑

k=0

cosh θk, P (1)
n =

n∑
k=0

sinh θk.

Since 1/(p2 +μ2) is the two-point correlation function of the euclidean free theory
with mass μ, i.e. the propagator, eqn (20.5.4) shows that the two-point correlation
function can be regarded as a linear superposition of the free propagators weighted
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with the spectral density ρ(μ2). Notice that the contribution given by the single-
particle state of mass m in the spectral density is given by

ρ1part(k2) =
1
2π
δ(k2 −m2). (20.5.5)

To analyze the behavior of ρ(k2) by varying k2, let’s make the initial approxi-
mation to take equal to 1 all the matrix elements. In this way, each term of the
spectral series coincides with the n-particle phase space

Φn(k2) ≡
∫ n∏

k=1

dΩk δ
2(k − Pn). (20.5.6)

As shown in Appendix C of Chapter 17, in two dimensions the space goes to zero
when k2 → ∞ as

Φn(k2) 	 1
(2π)n−2

1
(n− 2)!

1
k2

(
log

k2

m2

)n−2

, (20.5.7)

whereas for d > 2 it diverges as

Φn(k2) ∼ k
n(d−2)−d

2 . (20.5.8)

On the other hand, Φn(k2) = 0 if k2 < (nm)2 and near the threshold values we
have

Φ(k2) 	 An

(√
k2 − nm

)n−3
2
. (20.5.9)

Hence, we see that for pure reasons related to the phase space we have two dif-
ferent scenarios for the quantum field theories in two dimensions and in higher
dimensions: while in d > 2 surpassing the various thresholds the spectral den-
sity receives contributions that are more divergent, in d = 2 they are all of the
same order and all go to zero at large values of the energy. Hence, for d > 2 it
is practically impossible to approximate the spectral density for large values of
k2 by using the first terms of the series, relative to the states with few particles,
whereas in d = 2 this is perfectly plausible. If we now include in the discussion
also the form factors, one realizes that the situation is even better in d = 2! In
fact, from the general expression (20.2.3) and for the vanishing of Fmin(θij) at the
origin (eqn 20.2.5), the form factors vanish at the n-particle thresholds as

|〈0 |O(0) |θ1, . . . , θn〉|2 	
(√

k2 − nm
)n(n−1)

, θ1 	 . . . 	 θn 	 0 (20.5.10)

while, for large values of their rapidities, they typically tend to a constant.4 This
scenario implies that the spectral density of the correlation functions of the two-
dimensional integrable models usually flatten more at the thresholds and therefore
becomes a very smooth function varying as k2 (see Fig. 20.8). For all these reasons,
the spectral density can be approximated with great accuracy just by taking the
first terms of the series, even for large values of k2, therefore leading to fast
convergent behavior also in the ultraviolet region.

4This is what usually happens for the form factors of the strongly relevant operators.
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Fig. 20.8 Plot of the spectral series in a model in d = 4 (a) and in d = 2 (b). The contribution
of the two-particle state is given by the dashed line. In d = 4 this does not provide a good
approximation of ρ(k2) for large values of k2 while in d = 2 it very often gives an excellent
approximation of this quantity.

20.6 Form Factors of the Stress–Energy Tensor

The stress–energy tensor is an operator that plays an important role in quantum
field theory and its form factors have special properties. From its conservation law
∂μT

μν(x) = 0, this operator can be written in terms of an auxiliary scalar field
A(x) as

Tμν(x) = (∂μ∂ν − gμν�) A(x). (20.6.1)

In light-cone coordinates, x± = x0 ± x1, its components are

T++ = ∂2
+A, T−− = ∂2

−A,

Θ = Tμ
μ = −�A = − 4 ∂+∂−A.

Introducing the variables xj = eθj and the elementary symmetric polynomials σ(n)
i ,

it is easy to see that

FT++
n (θ1, . . . , θn) = − 1

4
m2

(
σ

(n)
n−1

σ
(n)
n

)2

FA
n (θ1, . . . , θn),

FT−−
n (θ1, . . . , θn) = − 1

4
m2
(
σ

(n)
1

)2
FA
n (θ1, . . . , θn), (20.6.2)

FΘ
n (θ1, . . . , θn) = m2 σ

(n)
1 σ

(n)
n−1

σk
FA
n (θ1, . . . , θn).
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Solving for FA
n , we have

FT++
n (θ1, . . . , θn) = − 1

4
σ

(n)
n−1

σ
(n)
1 σ

(n)
n

FΘ
n (θ1, . . . , θn),

FT−−
n (θ1, . . . , θn) = − 1

4
σ

(n)
1 σ

(n)
n

σ
(n)
n−1

FΘ
n (θ1, . . . , θn). (20.6.3)

Hence, the whole set of form factors of Tμν can be recovered by the form factors of
the trace Θ. This is a scalar operator and therefore its form factors depend on the
differences of the rapidities θij = θi − θj . Moreover, since the form factors of T−−
and T++ must have the same singularities as those of Θ, FΘ

n (θ1, . . . , θn) (for n > 2)
has to be proportional to the combination σ

(n)
1 σ

(n)
n−1 of the elementary symmetric

polynomials. This combination corresponds to the relativistic invariant given by the
total energy and momentum of the system.

For the normalization of these matrix elements, the recursive structure reduces
the problem of finding the normalization of the form factors of Θ(x) on the one and
two-particle states, i.e. FΘ

1 (θ) and FΘ
2 (θ12). The normalization of FΘ

2 (θ12) can be
determined by using the total energy of the system

E =
1
2π

∫ +∞

−∞
dx1 T 00(x). (20.6.4)

Computing the matrix element of both terms of this equation on the asymptotic states
〈θ′| and |θ〉, for the left-hand side we have

〈θ′|E |θ〉 = 2πm cosh θ δ(θ′ − θ).

On the other hand, taking into account that T 00 = ∂2
1A and using the relation

〈θ′| O(x)|θ〉 = ei(p
μ(θ′) − pμ(θ)) xμ FO

2 (θ, θ′ − iπ)

which holds for any hermitian operator O, we obtain

F
∂2
1A

2 (θ1, θ2) = −m2 (sinh θ1 + sinh θ2)2 FA
2 (θ12).

From eqns (20.6.2) and (20.6.4) it follows that the normalization of FΘ
2 is given by

FΘ
2 (iπ) = 2πm2. (20.6.5)

However, there is no particular constraint on the one-particle form factor of Θ(x)
coming from general considerations

FΘ
1 = 〈0 | Θ(0) | θ〉. (20.6.6)

This is a free parameter of the theory, related to the intrinsic ambiguity of Tμν(x),
since this tensor can always be modified by adding a total divergence (see Problem 1).
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20.7 Vacuum Expectation Values

The recursive equations enable us to determine the form factors FO
n in terms of the

previous FO
n−1 or FO

n−2. At the bottom of this iterative structure there are, as its initial
seeds, the lowest quantities FO

0 , i.e. the vacuum expectation value of the operator O
and F1, i.e. its matrix elements on one-particle states. Presently it is not known how
to determine in general all the one-particle matrix elements. However, the situation
is much better for the vacuum expectation values: they can be computed exactly
for several operators both of the Sine–Gordon and Bullogh–Dodd models, as well
as of RSOS restrictions thereof. The theoretical steps that lead to these results are
quite technical but well described in the series of papers quoted at the end of the
chapter and will not be reviewed here. In this section we will simply present the most
relevant formulas, in particular, the exact vacuum expectation values of primary fields
in integrable perturbed conformal field theories, with respect to the deformations Φ1,3,
Φ1,2, and Φ2,1. In the following to denote such theories we use the notation

S(k,l)±
m = S(CFT )

m ± λ

∫
d2xΦk,l(x), (20.7.1)

where Sm is the action of the m-th conformal minimal model, Φr,s is the relevant
primary field that leads to an integrable model, and λ > 0 is its dimensional coupling
constant setting the scale of the quantum field theory (the sign of the coupling only
makes sense after fixing the normalization of the fields Φr,s). Hereafter

x ≡ (m+ 1)k −ml.

Integrable theory S(1,3)−
m . For λ > 0, Φ1,3 induces a massless flow between the

minimal models Mm → Mm−1 (see Section 15.6). For λ < 0, Φ1,3 drives instead the
conformal model into a massive phase where there are kinks interpolating the (m− 1)
RSOS degenerate vacua labeled as

a = 0,
1
2
, . . . ,

(m− 2)
2

.

For the vacuum expectation values of the primary fields on the various vacua we have

〈a|Φk,l|a〉(1,3)− =
sin
(
π(2a+1)

m ((m+ 1)k −ml)
)

sin π(2a+1)
m

Fm
k,l(x) (20.7.2)

where

Fm
k,l(x) =

(
M

√
πΓ
(
m+3

2

)
2Γ
(
m
2

) )2Δk,l

Q1,3(x)

and

Q1,3(η) = exp
{∫ ∞

0

dt

t

[
cosh(2t) sinh((η − 1)t) sinh((η + 1)t)

2 cosh(t) sinh(mt) sinh((1 +m)t)
− η2 − 1

2m(m+ 1)
e−4t
]}

.
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In the formula above

M =
2Γ
(
m
2

)
√
πΓ
(
m+1

2

)
⎡
⎢⎣πλ(1 −m)(2m− 1)

(1 +m)2

√√√√√Γ
(

1
m+1

)
Γ
(

1−2m
m+1

)
Γ
(

m
m+1

)
Γ
(

3m
m+1

)
⎤
⎥⎦

1+m
4

is the common mass of the kinks expressed in term of the coupling constant λ.

Integrable theory S(1,2)
m . For the integrable model S(1,2)

m , the vacuum structure of
the theory depends on whether m is odd or even.

• m even. When m is even, the field Φ1,2 is even under the Z2 spin symmetry and
the two theories S(1,2)±

m are different although related by duality. The number of
RSOS vacua of S(1,2)+

m is equal to (m−2)/2, while the number of vacua of S(1,2)−
m

is equal to m/2. Their label is

a =
1
2
,
3
2
, . . . ,

m− 3
2

, λ > 0

a = 0, 1, . . . ,
m− 2

2
, λ < 0.

• m odd. In this case the field Φ1,2 is odd under the Z2 symmetry and the two
theories S(1,2)±

m are equal. There are (m− 1)/2 degenerate vacua in both theories
that we label as

a =
1
2
,
3
2
, . . . ,

m− 2
2

, λ > 0

a = 0, 1, . . . ,
m− 3

2
, λ < 0.

The vacuum expectation values of the primary fields on the various vacua are:

〈a|Φk,l|a〉(1,2) =
sin
(
π(2a+1)

m ((m+ 1)k −ml)
)

sin π(2a+1)
m

Gm
k,l(x) (20.7.3)

where

Gm
k,l(x) =

⎛
⎝M π(m+ 1)Γ

(
2m+2
3m+6

)
2

2
3
√

3Γ
( 1

3

)
Γ
(

m
3m+6

)
⎞
⎠

2Δk,l

Q1,2(x)

and

Q1,2(η) = exp

{∫ ∞

0

dt

t

[ sinh((m+ 2)t) sinh((η − 1)t) sinh((η + 1)t)
sinh(3(m+ 2)t) sinh(2(m+ 1)t) sinh(mt)

× (cosh(3(m+ 2)t) + cosh((m+ 4)t) − cosh((3m+ 4)t) + cosh(mt) + 1)

− η2 − 1
2m(m+ 1)

e−4t
]}
.
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In the formula above

M =
2

m+5
3m+6

√
3Γ
( 1

3

)
Γ
(

m
3m+6

)
πΓ
(

2m+2
3m+6

)
⎡
⎣π2λ2Γ

(
3m+4
4m+4

)
Γ
(

1
2 + 1

m+1

)
Γ
(

m
4m+4

)
Γ
(

1
2 − 1

m+1

)
⎤
⎦

m+1
3m+6

is the mass of the kinks expressed in terms of the coupling constant λ.

Integrable theory S(2,1)
m . For this theory the situation is reversed with respect to the

previous one: Φ2,1 is odd under the Z2 symmetry when m is even (and the theory is
independent of the sign of its coupling), while it is a Z2 even field when m is odd (and
the theories with λ > 0 and λ < 0 are related by duality). For the RSOS degenerate
vacua, in this case we have the following labels:

• when m is even, both for λ > 0 and λ < 0, their number is m/2 and

a =
1
2
,
3
2
, . . . ,

m− 1
2

, λ > 0

a = 0, 1, . . . ,
m− 2

2
, λ < 0;

• when m is odd, their number is (m − 1)/2 for λ > 0, and (m + 1)/2 for λ < 0,
with

a =
1
2
,
3
2
, . . . ,

m− 2
2

, λ > 0

a = 0, 1, . . . ,
m− 1

2
, λ < 0.

The vacuum expectation values of the primary fields on the various vacua are the
expectation values

〈a|Φk,l|a〉(2,1) =
sin
(
π(2a+1)
m+1 ((m+ 1)k −ml)

)
sin π(2a+1)

m+1

Hm
k,l(x) (20.7.4)

where

Hm
k,l(x) =

⎛
⎝M πmΓ

(
2m

3m−3

)
2

2
3
√

3Γ
( 1

3

)
Γ
(

m+1
3m−3

)
⎞
⎠

2Δk,l

Q2,1(x)

and

Q2,1(η) = exp

{∫ ∞

0

dt

t

[ sinh((m− 1)t) sinh((η − 1)t) sinh((η + 1)t)
sinh(3(m− 1)t) sinh(2mt) sinh((m+ 1)t)

× (cosh(3(m− 1)t) + cosh((m− 3)t) − cosh((3m− 1)t)

+ cosh((m+ 1)t) + 1) − η2 − 1
2m(m+ 1)

e−4t
]}
. (20.7.5)
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The mass of the kinks, as a function of the coupling constant λ, is expressed by

M =
2

m−4
3m−3

√
3Γ
( 1

3

)
Γ
(

m+1
3m−3

)
πΓ
(

2m
3m−3

) [
π2λ2Γ

( 3m−1
4m

)
Γ
( 1

2 − 1
m

)
Γ
(
m+1
4m

)
Γ
( 1

2 + 1
m

) ] m
3m−3

.

20.8 Ultraviolet Limit

In the ultraviolet limit, the correlation functions of the scaling operators has a power
law behavior, dictated by the conformal weight of the operator

G(r) = 〈O(r)O(0)〉 	 1
r4Δ

, r → 0. (20.8.1)

One may wonder how the spectral series (20.5.2), which is based on the exponential
terms e−kmr, is able to reproduce a power law in the limit r → 0. The answer to this
question comes from an interesting analogy.
Feynman gas. Note that the formula (20.5.2) is formally similar to the expression of
the grand-canonical partition function of a fictitious one-dimensional gas

Z(mr) =
∞∑
n=0

zn Zn. (20.8.2)

To set up the vocabulary of this analogy, let’s identify the coordinates of the gas
particles with the rapidities θi, with the Boltzmann weight relative to the interactive
potential of the gas with the modulus squared of the form factors

e−V (θ1,...,θn) ≡ |〈0 |O(0)|θ1, . . . , θn〉|2. (20.8.3)

Finally, let’s identify the fugacity of the gas with

z(θ) =
1
2π

e−mr cosh θ. (20.8.4)

We have defined in this way the Feynman gas that was analyzed at the end of
Chapter 2. The only difference with respect to the standard case is the coordinate
dependence of the fugacity of this gas. Although the coordinates of the particles of
this gas span the infinite real axis, the effective volume of the system is however deter-
mined by the region in which the fugacity (20.8.4) is significantly different from zero,
as shown in Fig. 20.9. Note that z(θ) is a function that rapidly goes to zero outside a
finite interval and, in the limit mr → 0, presents a plateau of height zc = 1/(2π) and
width

L 	 2 log
1
mr

.
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2 log 1 / m r

(b)(a)

Fig. 20.9 Plot of the fugacity as a function of θ: (a) for finite values of (mr); (b) in the
limit (mr) → 0.

The equation of state of a one-dimensional gas is given by

Z = ep(z)L,

where p(z) is the pressure as a function of the fugacity. Following this analogy, for the
two-point correlation function in the limit (mr) → 0, we have

G(r) = Z = ep(zc)L 	 e2p(zc) log 1/(mr) =
(

1
mr

)2p(zc)

, (20.8.5)

i.e. a power law behavior! Moreover, comparing with the short-distance behavior of the
correlator given in eqn (20.8.1), there is an interesting result: the conformal weight can
be expressed in terms of the pressure of this fictitious one-dimensional gas, evaluated
at the plateau value of the fugacity

2 Δ = p(1/2π). (20.8.6)

Besides the thermodynamics of the Feynman gas, the conformal weight of the oper-
ators can also be extracted by applying the sum rule given by the Δ-theorem (see
Chapter 15)

Δ = − 1
2〈O〉

∫ ∞

0
dr r 〈Θ(r)O(0)〉. (20.8.7)

To compute this quantity, it is necessary to know the form factors of the operator
O(x) and the trace of the stress–energy tensor Θ(x).
c-theorem sum rule. Additional control of the ultraviolet limit of the theory is
provided by the sum-rule of the c-theorem: it gives the central charge of conformal field
theory associated to the ultraviolet limit of the massive theory through the integral

c =
3
2

∫ ∞

0
dr r3 〈Θ(r)Θ(0) 〉c.
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Using the spectral representation of this correlator we have

c =
∞∑
n=1

cn, (20.8.8)

where the n-particle contribution is

cn =
12
n!

∫ ∞

0

dμ

μ3

∫ ∞

−∞

dθ1
2π

. . .
dθn
2π

(20.8.9)

×δ
(

n∑
i=1

sinh θi

)
δ

(
n∑
i=1

cosh θi − μ

)
|〈0|Θ(0)|θ1, . . . , θn〉|2.

Usually this series presents very fast behavior. This permits us to obtain rather accu-
rate estimations of the central charge c, with an explicit check of the entire formalism
of the S-matrix and form factors. It is easy to understand the reason for this fast
convergence by studying the integrand, shown in Fig. 20.10: the term r3 kills the sin-
gularity of the correlator at short distance (therefore the integrand vanishes at the
origin), while it weights the correlator more at large distances. But this is just the
region where a few terms of the spectral series are very efficient in approximating the
correlation function with high accuracy.
Asymptotic behavior. Finally, let’s discuss the upper bound on the asymptotic
behavior of the form factors dictated by the ultraviolet behavior of the correlator
(20.8.1). To establish this bound, let’s start by noting that in a massive theory we
have

Mp ≡
∫
d2x |x|p 〈O(x)O(0) 〉c < +∞ if p > 4ΔO − 2. (20.8.10)

Employing now the spectral representation of the correlator (20.5.3) and integrating
over p, μ, and x, we get

Mp ∼
∞∑
n=1

∫
θ1>...>θn

dθ1 . . . dθn
|FO

n (θ1, . . . , θn)|2

(
∑n

k=1mk cosh θk)
p+1 δ

(
n∑

k=1

mk sinh θk

)
.

(20.8.11)

m r

Fig. 20.10 Plot of the integrand r3〈Θ(r)Θ(0)〉 in the C-theorem sum rule.
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Equation (20.8.10) can now be used to find an upper limit on the real quantity yΦ,
defined by

lim
|θi|→∞

FO
n (θ1, . . . , θn) ∼ eyΦ|θi|. (20.8.12)

In fact, taking the limit θi → +∞ in the integrand of (20.8.11), the delta-function
forces some other rapidities to move at −∞ as −θi. Because the matrix element
FO
n (θ1, . . . , θn) depends on the differences of the rapidities, it contributes to the inte-

grand with the factor e2yΦ|θi| in the limit |θi| → ∞. Hence, eqn (20.8.10) leads to the
condition

yO ≤ ΔO. (20.8.13)

This equation provides information on the partial degree of the polynomial QO
n . Note,

however, that this conclusion may not apply for non-unitary theories because not all
terms of the expansion on the intermediate states are necessarily positive in this case.

20.9 The Ising Model at T �= Tc

In this section we present the form factors and the correlation functions of the relevant
operators ε(x), σ(x), and μ(x) of the two-dimensional Ising model when the temper-
ature T is away from its critical value. From the duality of the model, we can discuss
equivalently the case T > Tc or T < Tc. Suppose the system is in the high-temperature
phase where the scattering theory of the off-critical model involves only one particle
with an S-matrix S = −1. There are no bound states. The particle A can be consid-
ered as being created by the magnetization operator σ(x), so that it is odd under the
Z2 symmetry of the Ising model, with its mass given by m = |T − Tc|.

Let’s now employ the form factor equations to find the matrix elements of the
various operators on the multiparticle states. The first step is the determination of the
function Fmin(θ) which satisfies

Fmin(θ) = −Fmin(−θ)
Fmin(iπ − θ) = Fmin(iπ + θ). (20.9.1)

The minimal solution is
Fmin(θ) = sinh

θ

2
. (20.9.2)

20.9.1 The Energy Operator

Let’s initially discuss the form factors of the energy operator ε(x) or, equivalently,
those of the trace of the stress–energy tensor, since the two operators are related by

Θ(x) = 2πmε(x). (20.9.3)

This is an even operator under the Z2 symmetry and therefore it has matrix elements
only on states with an even number of particles, FΘ

2n. The recursive equations of the
kinematical poles are particularly simple

−i lim
θ̃→θ

(θ̃ − θ)FΘ
2n+2(θ̃ + iπ, θ, θ1, θ2, . . . , θ2n) =

(
1 − (−1)2n

)
FΘ

2n(θ1, . . . , θ2n) = 0.

(20.9.4)
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Taking into account the normalization of the trace operator FΘ
2 (iπ) = 2πm2, the

simplest solution of all these equations is

FΘ
2n(θ1, . . . , θ2n) =

{
−2πim2 sinh θ1−θ2

2 , n = 2
0 , otherwise.

(20.9.5)

In the light of the discussion in Section 20.4, note that the identification of the operator
Θ with this specific sequence of form factors is equivalent to putting equal to zero all
coefficients of the kernel solutions F (i)

2n at all the higher levels.
We have an explicit check that (20.9.5) is the correct sequence of the form factors

of the trace operator which comes from its two-point correlation function and from
the c-theorem. For the correlator we get

GΘ(r) = 〈Θ(r)Θ(0)〉 =
1
2

∫
dθ1
2π

dθ2
2π

|FΘ
2 (θ12)|2 e−mr(cosh θ1+cosh θ1)

=
m4

2

∫
dθ1 dθ2 sinh2 θ1 − θ2

2
e−mr(cosh θ1+cosh θ2)

=
m4

4

∫
dθ1 dθ2 [cosh(θ1 − θ2) − 1] e−mr(cosh θ1−cosh θ2) (20.9.6)

= m4

([∫
dθ cosh θ e−mr cosh θ

]2
−
[∫

dθ e−mr cosh θ
]2)

= m4 (K2
1 (mr) −K2

0 (mr)
)

where, in the last line, we used the integral representation of the modified Bessel
functions

Kν(z) =
∫ ∞

0
dt cosh νt e−z cosh t.

Hence, we have

GΘ(r) = 〈Θ(r)Θ(0)〉 = m4 [K2
1 (mr) −K2

0 (mr)
]
. (20.9.7)

whose plot is in Fig. 20.11. This function has the correct ultraviolet behavior associated
to the energy operator

GΘ(r) → m2

|x|2 , |x| → 0. (20.9.8)

Substituting the expression above in the c-theorem, we get the correct value of the
central charge of the Ising model

c =
3
2

∫ ∞

0
dr r3〈Θ(r)Θ(0)〉 =

1
2
. (20.9.9)

20.9.2 Magnetization Operators

In the high-temperature phase, the order parameter σ(x) is odd under the Z2 symmetry
while the disorder operator μ(x) is even. Hence, σ(x) has matrix elements on states
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m r

G
Θ
/m

4

Fig. 20.11 Plot of the two-point correlation function of the trace of the stress–energy tensor
for the thermal Ising model.

with an odd number of particles, Fσ
2n+1, whereas μ(x) is on an even number, Fμ

2n. In
writing down the residue equations relative to the kinematical poles, we have to take
into account that the operator μ has a semilocal index equal to 1/2 with respect to
the operator σ(x) that creates the asymptotic states. Denoting by Fn the form factors
of these operators (for n even they refer to μ(x) while for n odd to σ(x)), we have the
recursive equation

−i lim
θ̃→θ

(θ̃ − θ)Fn+2(θ̃ + iπ, θ, θ1, θ2, . . . , θ2n) = 2Fn(θ1, . . . , θ2n). (20.9.10)

As for any form factor equation, these equations admit an infinite number of solutions
that can be obtained by adding all possible kernel solutions at each level. The mini-
mal solution is the one chosen to identify the form factors of the order and disorder
operators

Fn(θ1, . . . , θn) = Hn

n∏
i<j

tanh
θi − θj

2
. (20.9.11)

The normalization coefficients satisfy the recursive equation

Hn+2 = iHn.

The solutions with n even are therefore fixed by choosing F0 = H0, namely with a
non-zero value of the vacuum expectation of the disorder operator

F0 = 〈0|μ(0)|0〉 = 〈μ〉, (20.9.12)

while those with n odd are determined by the real constant F1 relative to the one-
particle matrix element of σ(x)

F1 = 〈0|σ(0)|A〉. (20.9.13)

Adopting the conformal normalization of both operators

〈σ(x)σ(0)〉 = 〈μ(x)μ(0)〉 	 1
|x|1/4 , |x| → 0 (20.9.14)
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it is possible to show that F0 = F1 and the vacuum expectation value F0 can be
computed using eqn (20.7.2)

F0 = F1 = 21/3 e−1/4A3m1/4, (20.9.15)

where A = 1.282427 . . . is called the Glasher constant. Vice versa, if we choose F0 =
F1 = 1 (as we do hereafter), for the ultraviolet behavior of the correlation functions
we have

〈σ(x)σ(0)〉 = 〈μ(x)μ(0)〉 	 2−1/3e1/4A−3

|x|1/4 =
0.5423804 . . .

|x|1/4 , |x| → 0. (20.9.16)

There are several ways to check the correct identification of the form factors of the
order/disorder operators. A direct way is to employ the Δ-theorem. In fact, using the
matrix elements of μ(x) and Θ(x), we can compute their correlator, following the same
procedure as in eqn (20.9.6)

〈Θ(r)μ(0)〉 =
1
2

∫
dθ1
2π

dθ2
2π

FΘ(θ12) F̄μ(θ12) e−mr(cosh θ1+cosh θ2)

= −m2 〈μ〉
[
e−2mr

2mr
+ Ei(−2mr)

]
(20.9.17)

where
Ei(−x) = −

∫ ∞

x

dt

t
e−t.

Substituting this correlator in the formula of the Δ-theorem, one obtains the correct
value of the conformal weight of the disorder operator

Δ = − 1
2〈μ〉

∫ ∞

0
dr r〈Θ(r)μ(0)〉 =

1
4π

∫ ∞

0
dθ

sinh2 θ

cosh3 θ
=

1
16
. (20.9.18)

Another way to determine the conformal weight of the magnetization operators con-
sists of solving the thermodynamics of the Feynman gas associated to the form factors.
Using the nearest-neighbor approximation discussed in Chapter 2, the pressure of this
gas satisfies the integral equation (Problem 2)

z−1
c = 2π =

∫ ∞

0
dx tanh2 x

2
e−px, (20.9.19)

whose numerical solution is
p 	 0.12529 . . . (20.9.20)

Comparing with the exact value

p = 2Δ =
1
8

= 0.125, (20.9.21)

we see that the relative precision is less than one part in a thousand! This result
confirms the validity of the form factor solution for the magnetization operators and,
furthemore, it explicitly shows the convergence property of the spectral series.
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20.9.3 The Painlevé Equation

The two-point correlation functions of the magnetization operators are given by

〈μ(r)μ(0)〉 =
∑∞

n=0 g2n(r)
〈σ(r)σ(0)〉 =

∑∞
n=0 g2n+1(r)

where

gn(r) =
1
n!

∫ [ n∏
k=1

dθk
2π

e−mr cosh θk

] ∏
i<j

tanh2 θij
2
.

These expressions can be further elaborated: imposing ui = eθi and using

tanh2 θi − θj
2

=
(
ui − uj
ui + uj

)2

,

we get ∏
i<j

tanh2 θij
2

=
∏
i<j

(
ui − uj
ui + uj

)2

= detW, (20.9.22)

where the matrix elements of the operator W are

Wij =
2√ui uj
ui + uj

.

Combining the two correlators

G(±)(r) = 〈μ(r)μ(0)〉 ± 〈σ(r)σ(0)〉 =
∞∑
n=0

λn gn(r) (20.9.23)

(with λ = ±1) and using (20.9.22) we obtain

G(±)(r) =
∞∑
n=0

λn

n!

∫ [ n∏
k=1

dθk
2π

e−mr cosh θk

]
detW. (20.9.24)

The last expression is nothing else but the Fredholm determinant of an integral oper-
ator V , whose kernel is

V (θi, θj , r) =
E(θi, r)E(θj , r)

ui + uj

E(θi, r) = (2ui e−mr cosh θi)1/2.

Hence
G(±)(r) = Det (1 + λV ). (20.9.25)

The remarkable circumstance that the correlation functions are expressed in terms of
the Fredholm determinant of an integral operator is crucial for studying their prop-
erties. The detailed discussion is beyond the scope of this book and here we simply
present the main conclusions.
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First of all, the expression given in eqn (20.9.25) permits us to solve exactly the
thermodynamics of the Feynman gas associated to the form factors of the correlation
function G(+)(r). The exact expression of the pressure of the Feynman gas is given by

p(z) =
1
4

∫
dp

2π
log

[
1 +
(

2πz
sinhπp

)2
]

=
1
4π

arcsin(2πz) − 1
4π2 arcsin2(2πz).

Substituting in this formula the plateau value of the fugacity, z = zc = 1/(2π), one
obtains the exact value of the conformal weight of the magnetization operators, p =
2Δ = 1/8.

Secondly, using the Fredholm determinant (20.9.25), it is possible to show that the
correlators can be concisely written as

(
〈μ(r)μ(0)〉
〈σ(r)σ(0)〉

)
=

(
cosh Ψ(s)

2
sinh Ψ(s)

2

)
exp

[
−1

4

∫ ∞

s

dt t

[(
dΨ
dt

)2

− sinh2 Ψ

]]
(20.9.26)

(s = mr), where Ψ(s) is a function solution of the differential equation

d2Ψ
ds2

+
1
s

dΨ
ds

= 2 sinh(2Ψ), (20.9.27)

with boundary conditions

Ψ(s) 	 − log s+ costant, s→ 0
Ψ(2) 	 2/πK0(2s), s→ ∞.

(20.9.28)

With the substitution η = e−Ψ, the differential equation becomes the celebrated
Painlevé differential equation of the third kind

η
′′

η
=

(
η

′

η

)2

− 1
s

(
η

′

η

)
+ η2 − 1

η2 . (20.9.29)

This equation was originally obtained by T.T. Wu, B. McCoy, C. Tracy and E. Barouch
by studying the scaling limit of the lattice Ising model. It has also been derived by M.
Jimbo, T. Miwa, and K. Ueno by using the monodromy theory of differential equations.

20.10 Form Factors of the Sinh–Gordon Model

In this section we study the form factors of an integrable lagrangian theory, the one
defined by the Sinh–Gordon model. The action is

S =
∫
d2x

[
1
2
(∂μφ)2 − m2

g2 cosh gφ(x)
]
, (20.10.1)
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and it possesses the Z2 symmetry φ→ −φ. The exact S-matrix relative to the particle
created by the field φ(x) is given by

S(θ,B) =
tanh 1

2 (θ − iπB2 )
tanh 1

2 (θ + iπB2 )
, (20.10.2)

where B is a function of the coupling constant g:

B(g) =
2g2

8π + g2 . (20.10.3)

The theory does not have bound states, therefore the form factors satisfy the recursive
equations coming from the kinematic poles only. As we already discussed in Chapter
18, the S-matrix is invariant under the transformation

B → 2 −B (20.10.4)

namely, under the weak–strong duality

g → 8π
g
. (20.10.5)

The Z2 symmetry implies that the even (odd) operators have form factors different
from zero only on asymptotic states with an even (odd) number of particles. The
simplest odd field is just φ(x), with the normalization given by

Fφ
1 (θ) = 〈0 | φ(0) | θ〉in =

1√
2
. (20.10.6)

One of the most important fields is the stress–energy tensor

Tμν(x) = 2π (: ∂μφ∂νφ− gμνL(x) :) (20.10.7)

where : : denotes the normal order of the composite operators. Its trace T μ
μ (x) = Θ(x)

is normalized as

FΘ
2 (θ12 = iπ) = out〈θ1 | Θ(0) | θ2〉in = 2πm2, (20.10.8)

while FΘ
1 is a free parameter. In the following we will only discuss the case FΘ

1 = 0: this
is equivalent to regarding the Sinh–Gordon model as a deformation of the conformal
field theory with central charge c = 1 (see Chapter 16 and Problem 1 at the end of
the chapter).

20.10.1 Minimal Form Factor

The first step to the solution of the form factor equation consists of finding the minimal
two-particle form factor. Expressing the S-matrix as

S(θ) = exp
[
8
∫ ∞

0

dx

x
sinh
(
xB

4

)
sinh
(
x

2
(1 − B

2
)
)

sinh
x

2
sinh
(
xθ

iπ

)]
.
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we have

Fmin(θ,B) = N exp

[
8
∫ ∞

0

dx

x

sinh
(
xB
4

)
sinh
(
x
2 (1 − B

2 )
)

sinh x
2

sinhx
sin2

(
xθ̂

2π

)]
(20.10.9)

(θ̂ ≡ iπ − θ), with the normalization given by

N = exp

[
−4
∫ ∞

0

dx

x

sinh
(
xB
4

)
sinh
(
x
2 (1 − B

2 )
)

sinh x
2

sinh2 x

]
.

The analytic structure of this function can be studied using its representation in terms
of an infinite product of Γ functions (see Problem 3)

Fmin(θ,B) =
∞∏
k=0

∣∣∣∣∣∣
Γ
(
k + 3

2 + iθ̂
2π

)
Γ
(
k + 1

2 + B
4 + iθ̂

2π

)
Γ
(
k + 1 − B

4 + iθ̂
2π

)
Γ
(
k + 1

2 + iθ̂
2π

)
Γ
(
k + 3

2 − B
4 + iθ̂

2π

)
Γ
(
k + 1 + B

4 + iθ̂
2π

)
∣∣∣∣∣∣
2

.

(20.10.10)
Fmin(θ,B) has a simple zero at θ = 0 since S(0) = −1 and its asymptotic behavior is

lim
θ→∞

Fmin(θ,B) = 1.

It satisfies the functional equation

Fmin(iπ + θ,B)Fmin(θ,B) =
sinh θ

sinh θ + sinh iπB
2

(20.10.11)

which can be proved by employing its representation (20.10.10). For the numerical
evaluation of this function it is useful to use the mixed representation given by

Fmin(θ,B) = N
N−1∏
k=0

⎡
⎢⎢⎣
(

1 +
(
θ̂/2π
k+ 1

2

)2
)(

1 +
(

θ̂/2π
k+ 3

2 − B
4

)2
)(

1 +
(

θ̂/2π
k+1+ B

4

)2
)

(
1 +
(
θ̂/2π
k+ 3

2

)2
)(

1 +
(

θ̂/2π
k+ 1

2+ B
4

)2
)(

1 +
(

θ̂/2π
k+1− B

4

)2
)
⎤
⎥⎥⎦
k+1

× exp

[
8
∫ ∞

0

dx

x

sinh
(
xB
4

)
sinh
(
x
2 (1 − B

2 )
)

sinh x
2

sinh2 x
(N + 1 −N e−2x) e−2Nx sin2

(
xθ̂

2π

)]
.

The convergence of the integral in this formula can be improved by increasing the
value of N .

20.10.2 Recursive Equations

The Sinh–Gordon model does not have bound states. Hence the only recursive equa-
tions come from the kinematical poles relative to the three-particle clusters. Using the
identity

(p1 + p2 + p3)2 −m2 = 8m2 cosh
1
2
θ12 cosh

1
2
θ13 cosh

1
2
θ23,
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all possible poles in these channels are taken into account using the parameterization

Fn(θ1, . . . , θn) = HnQn(x1, . . . , xn)
∏
i<j

Fmin(θij)
xi + xj

(20.10.12)

where xi = eθi and Hn are normalization factors. The expression above has sim-
ple poles each time the difference of two rapidities θij is equal to iπ. The functions
Qn(x1, . . . , xn) are symmetric polynomials in xi. For the form factors of the scalar
operators, the total degree of these polynomials must be equal to that of the denomi-
nator, given by n(n−1)/2. The partial degree of Qn depends instead on the asymptotic
behavior of the operator O. With the parameterization above, the recursive equations
can be expressed as recursive equations for the polynomials Qn

(−)nQn+2(−x, x, x1, . . . , xn) = xCn(x, x1, x2, . . . , xn)Qn(x1, x2, . . . , xn) (20.10.13)

where we have introduced the function

Cn =
−i

4 sin(πB/2)

(
n∏
i=1

[
(x+ ωxi)(x− ω−1xi)

]
−

n∏
i=1

[
(x− ωxi)(x+ ω−1xi)

])

with ω = exp(iπB/2). The normalization constants Hn in (20.10.12) satisfy the recur-
sive equations

H2n+1 = H1μ
2n, H2n = H2μ

2n−2,

with

μ ≡
(

4 sin(πB/2)
Fmin(iπ,B)

) 1
2

where H1 and H2 are the initial conditions, fixed by the operator. Using the generating
function of the elementary symmetric polynomials, the function Cn can be written as

Cn(x, x1, . . . , xn) =
n∑

k=1

k∑
m=1,odd

[m]x2(n−k)+mσ
(n)
k σ

(n)
k−m(−1)k+1

. (20.10.14)

where we have introduced the symbol [n] defined by

[n] ≡ sin(nB
2 )

sin B
2

.

Note that the elementary symmetric polynomials satsify the recursive equation

σ
(n+2)
k (−x, x, x1, . . . , xn) = σ

(n)
k (x1, x2, . . . , xn)− x2σ

(n)
k−2(x1, x2, . . . , xn). (20.10.15)
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20.10.3 General Properties of the Qn Solutions

The form factors of the derivative operators present a factorized form: for instance,
for the operator ∂∂̄φ we have Qn = σn−1σ1Q̃n. For this reason, it is convenient to
focus attention on the so-called irreducible operators, whose form factors cannot be
factorized, and use them as building blocks for the form factors of all other operators.
The polynomials Qn of the irreducible operators satisfy a series of interesting results
coming from the recursive equations (20.10.13). Let’s initially show that the partial
degree of Qn satisfies the inequality

deg (Qn) ≤ n− 1. (20.10.16)

It is easy to see that this result holds for Q1 and Q2. To show that it also holds for
the higher polynomials, let us consider the two cases (a) Qn �= 0 and (b) Qn = 0
separately.

• In case (a) the proof is by induction. Assume deg (Qn) ≤ n − 1. Since Cn is
bilinear in σ(n) (see eqn 20.10.14), the partial degree of Qn+2(−x, x, x1, . . . xn)
in the variables x1, . . . xn is less than or equal to n + 1. But the partial degree
of Qn+2(x1, x2, . . . xn+2) is equal to the partial degree of Qn+2(−x, x, x1 . . . , xn),
hence the partial degree of Qn+2 must be less than or equal to n+ 1.

• In case (b), the space of the solutions is given by the kernel of the operator C,
namely

Qn+2(−x, x, . . . , xn+2) = 0.

In the space of the polynomials P of total degree (n+ 2)(n+ 1)/2, there is only
one solution of this equation, given by

Qn+2 =
n+2∏
i<j

(xi + xj). (20.10.17)

This polynomial has partial degree n + 1 and coincides with the polynomial of
the denominator of eqn (20.10.12).

We have thus shown that the partial degree of Qn must be less than or equal to
(n − 1) for any irreducible scalar operator. The first consequence is that the form
factors of these operators cannot diverge when θi → ∞. The second consequence is
the presence of an additional parameter at each step of the iterative procedure. This
comes from a simple argument: the dimension of the space of the polynomials Qn

is given by the dimension of the space of the polynomials Qn−2 plus the dimension
of the kernel. Since the kernel is one dimensional, the dimension of the space of the
solutions increases exactly by one at each iterative step. With the initial conditions
dim (Q1) = dim (Q2) = 1, we finally get

dim (Q2n−1) = dim (Q2n) = n. (20.10.18)
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Hence the most general form factor of an irreducible scalar operator belongs to a linear
space that can be spanned by a basis Qk

n:

Q2n(A(2n)
1 , . . . , A(2n)

n ) =
n∑

p=1

A(2n)
p Qp

2n (20.10.19)

Q2n−1(A
(2n−1)
1 , . . . , A(2n−1)

n ) =
n∑

p=1

A(2n−1)
p Qp

2n−1.

Each polynomial above defines a matrix element of an operator of the Sinh–Gordon
model. Note that the dimension of this linear space grows exactly as the number of
powers φk (k < n) of the elementary field. This means that the matrix elements of the
composite operators φk can be obtained as linear combinations of the above functions.

20.10.4 The Elementary Solutions

A remarkable class of solutions of the recursive equations (20.10.13) is given by5

Qn(k) = ||Mij(k)||, (20.10.20)

where Mij(k) is the (n− 1) × (n− 1) matrix

Mij(k) = σ2i−j [i− j + k]. (20.10.21)

and ||M || denotes the determinant of the matrix M . These polynomials are called
elementary solutions: they depend on an arbitrary integer k and satisfy

Qn(k) = (−1)n+1Qn(−k). (20.10.22)

Although all Qn(k) are solutions of (20.10.13), not all of them are linearly independent.
The simplest reason is that the dimension of the space of the solutions at the level
N = 2n (or N = 2n− 1) is at most n. Among the first representatives we have

Q3(k) =
∣∣∣∣
∣∣∣∣ [k]σ1 [k + 1]σ3
[k-1] [k]σ2

∣∣∣∣
∣∣∣∣ .

Using the trigonometric identity [n]2 − [n − 1][n + 1] = 1, it is easy to see that this
expression satisfies eqn (20.10.13) (with A1

0 = 1) for any integer k. These solutions
allow us to express at once all the form factors of the elementary field φ(x) and the
trace Θ(x) of the stress–energy tensor. In fact, it is possible to prove that the matrix
elements of φ(x) are given by Qn(0). Note that the form factors relative to an even
number of particles are automatically zero, in agreement with the Z2 symmetry of
the model. Those with an odd number of asymptotic particles vanish when θi → ∞,
in agreement with the perturbative evaluation of these matrix elements given by the
Feynman diagrams. The form factors of Θ(x) are instead given by the even polynomials
Q2n(1), which go to a finite limit when θi → ∞, once again in agreement with their

5For simplicity we have suppressed the dependence of Qn(k) on the variables xi.



720 Form Factors and Correlation Functions

Table 20.1: Approximate values of the central charge of the Sinh–Gordon model obtained
by using only the two-particle form factor of Θ(x) in the c-theorem.

B g2

4π Δ c(2)

1
10

2
19 0.9989538

3
10

6
17 0.9931954

2
5

1
2 0.9897087

1
2

2
3 0.9863354

2
3 1 0.9815944
7
10

14
13 0.9808312

4
5

4
3 0.9789824

1 2 0.9774634

perturbative computation. A further confirmation of the validity of this identification
can be obtained by using the c-theorem. Employing just the two-particle form factor,
we have the following approximated value of the ultraviolet central charge

c(2) =
3

2F 2
min(iπ)

∫ ∞

0

dθ

cosh4 θ
|Fmin(2θ)|2. (20.10.23)

The numerical values for different values of the coupling constant g2/4π are collected
in Table 20.1. From this table one can see that the sum rule is saturared by the two-
particle form factor even for large values of the coupling constant: this proves once
again the fast convergent behavior of the spectral series.

It is interesting to understand which are the operators Ψk(x) associated to the
elementary solutions Qn(k) (k �= 0). For the sequence of form factors related to Qn(k),
let’s choose the normalization as follows

Hk
1 = μ[k], Hk

2 = μ2 [k]. (20.10.24)

The present conjecture is that the operators Ψk correspond to the vertex operators
ekgφ. A non-trivial check of this conjecture is provided by the computation of the
conformal weights Δk(g) that emerge in their ultraviolet limits. These quantities can
be computed by analyzing the limit x→ 0 of the correlation function

Gk,m(x) = 〈Ψk(x) Ψm(0)〉

=
∞∑
n=0

∫
dβ1 . . . dβn
n!(2π)n

FΨk
n (β1 . . . βn)FΨm

n (βn . . . β1) exp

(
−mr

n∑
i=1

coshβi

)
.

At first order in g, we have Δk(g) = −k2g2/8π which coincides with the conformal
weight of the vertex operators ek g φ(x), computed using the gaussian conformal theory.

20.11 The Ising Model in a Magnetic Field
The Ising model in a magnetic field has quite a rich S-matrix: it has eight massive
exitations and 36 elastic scattering amplitudes, some of them with higher order poles.
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In addition to the functional and recursive equations, the form factors of this theory
also satisfy other recursive equations related to the higher poles of the S-matrix. The
relative formulas can be found in the papers by G. Delfino, G. Mussardo, and P.
Simonetti listed at the end of the chapter. Here we only report the main results about
the form factors of the energy operator ε(x) and of the magnetization operator σ(x).
In this theory, the latter operator is proportional to the trace

Θ(x) = 2πh(2 − 2Δσ)σ(x). (20.11.1)

Relying on the fast convergence of the spectral series, for the correlation functions of
these operators we can focus our attention on the one and two-particle form factors.
To begin with, let’s fix some notation. For the S-matrix of the particles Aa and Ab we
have

Sab(θ) =
∏

α∈Aab

(fα(θ))pα (20.11.2)

where

fα(θ) ≡ tanh 1
2 (θ + iπα)

tanh 1
2 (θ − iπα)

. (20.11.3)

The set of the numbers Aab and their multiplicity pα can be found in Table 18.3
of Chapter 18. It is convenient to parameterize the two-particle form factors of this
theory as

FO
ab(θ) =

QΦ
ab(θ)

Dab(θ)
Fmin
ab (θ), (20.11.4)

where Dab(θ) and QO
ab(θ) are polynomials in cosh θ: the latter is fixed by the singu-

larities of the S-matrix, the former depends on the operator O(x). The minimal form
factors can be written as

Fmin
ab (θ) =

(
−i sinh

θ

2

)δab ∏
α∈Aab

(Gα(θ))pα , (20.11.5)

where

Gα(θ) = exp

{
2
∫ ∞

0

dt

t

cosh
(
α− 1

2

)
t

cosh t
2 sinh t

sin2 (iπ − θ)t
2π

}
. (20.11.6)

For large values of the rapidity, we have

Gα(θ) ∼ exp(|θ|/2), |θ| → ∞, (20.11.7)

independently of the index α.
From the analysis of the singularities of the form factors, one can arrive at the

following expression for the denominator

Dab(θ) =
∏

α∈Aab

(Pα(θ))iα (P1−α(θ))jα , (20.11.8)
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where
iα = n+ 1, jα = n, se pα = 2n+ 1;
iα = n, jα = n, se pα = 2n, (20.11.9)

having introduced the notation

Pα(θ) ≡ cosπα− cosh θ
2 cos2 πα

2
. (20.11.10)

Both quantities Fmin
ab (θ) and Dab(θ) are normalized to be equal to 1 when θ = iπ.

The polynomials of the numerator can be expressed as

QO
ab(θ) =

NO
ab∑

k=0

c
(k)
ab,O coshk θ. (20.11.11)

The condition
[
FO
ab(θ)

]∗ = FO
ab(−θ) follows from the monodromy condition satisfied

by the form factors and from the property S∗
ab(θ) = Sab(−θ). This means that the

coefficients c(k)
ab,O are real numbers and their values identify the different operators.

The degrees of the polynomials are fixed by the conformal weight of the operators
and, for both σ(x) and ε(x), we have in particular NΦ

11 ≤ 1. Therefore the initial
conditions of the recursive equation for the form factors of the two relevant operators
consists of two free parameters, i.e. the coefficients c(0)11,O and c

(1)
11,O. Furthemore, it

can be checked that the number of free parameters does not increase implementation
the bootstrap equations. Consider, for instance the condition NO

12 ≤ 2, which seems
to imply three new coefficients c(k)

12,O (k = 1, 2, 3) for FO
12(θ). However, the amplitudes

S11(θ) and S12(θ) have three common bound states. This circumstance gives rise to
three equations

1
Γc

11
Resθ=iuc

11
FΦ

11(θ) =
1

Γc
12

Resθ=iuc
12
FΦ

12(θ), c = 1, 2, 3

that permit us to fix the three coefficients c(k)
12,O in terms of the two coefficients c(k)

11,O.

Table 20.2: Central charge given by the partial sum of the form factors entering the
c-theorem. cab.. denotes the contribution of the state AaAb.. . The exact result is c = 1/2.

c1 0.472038282
c2 0.019231268
c3 0.002557246
c11 0.003919717
c4 0.000700348
c12 0.000974265
c5 0.000054754
c13 0.000154186
cpartial 0.499630066
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Table 20.3: Conformal weights ΔO given by the partial sum of the form factors of the
correlation functions entering the Δ-theorem. Δab.. denotes the contribution of the state
AaAb.. . The exact values are Δσ = 1/16 = 0.0625 and Δε = 1/2.

σ ε

Δ1 0.0507107 0.2932796
Δ2 0.0054088 0.0546562
Δ3 0.0010868 0.0138858
Δ11 0.0025274 0.0425125
Δ4 0.0004351 0.0069134
Δ12 0.0010446 0.0245129
Δ5 0.0000514 0.0010340
Δ13 0.0002283 0.0065067

Δpartial 0.0614934 0.4433015
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Fig. 20.12 Plot of the correlation function 〈σ(r)σ(0)〉 for the Ising model in a magnetic field.
The continuous line is the determination obtained with the first eight form factors, while the
dots are the numerical determination of the correlators obtained by a Monte Carlo simulation.

There is additional information about the numerator Qab of the operator Θ(x). In
fact, from the conservation law ∂μT

μν = 0 it follows that the polynomials QΘ
ab contain

the factor (
cosh θ +

m2
a +m2

b

2mamb

)1−δab

. (20.11.12)

The determination of the coefficients c(k)
ab and the one-particle form factors of the two

operators σ ∼ Θ and ε has been done in the papers cited at the end of the chapter
and their values can be found there.
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Employing these lowest form factors one can compute the correlation functions
and perform some non-trivial checks by applying the sum rules of the c-theorem and
Δ-theorem. The relative results are given in Tables 20.2 and 20.3. A successful check
of the correlation function 〈σ(r)σ(0)〉 has also been done versus the numerical deter-
mination of this function, as shown in Fig. 20.12.
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oretical Physics”, World Scientific, Singapore, 2005.

Problems

1. Form factors of a free theory
Consider the theory of a free bosonic field φ(x) associated to a particle A of mass m.

a Compute the form factors of φ(x) and prove that 〈0|φ(0)|A〉 = 1/
√

2. Show that the
euclidean correlation function is given by

〈φ(x)φ(0)〉 =
1
π
K0(mr).
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b Show that the arbitrariness of the one-particle form factor of the trace of the stress–
energy tensor

FΘ
1 = 〈0|Θ(0)|A〉 ≡ −

√
2πm2Q

corresponds to the possibility of redefining the stress–energy tensor by adding a
total divergence

Θ(x) = 2π
(
m2φ2 +

Q√
π

�φ

)
.

c Use the c-theorem and the form factors of Θ(x) to show that the central charge in
the ultraviolet region is given by

c = 1 + 12Q2.

2. Feynman gas
a Derive the equation of state of the Feynman gas associated to the form factors of

the magnetization operators in the nearest neighbor approximation. Prove that
the pressure p(z) satisfies the integral equation (20.9.19).

b Justify the accuracy of the approximation of the conformal weights computing the
average number of particles per unit length by means of the formula

〈N〉
L

= z
∂p

∂z

and checking the very dilute nature of the gas.

3. Infinite products
Using the integral ∫

dt

t
e−βt sin2 αt

2
=

1
4

log
α2 + β2

β2 ,

and the identity satisfied by the Γ functions

Γ(α)Γ(β)
Γ(α+ γ)Γ(β − γ)

=
∞∏
k=0

[(
1 +

γ

α+ k

) (
1 − γ

β + k

)]
,

to derive the expression for Fmin(θ) of the Sinh–Gordon model.

4. Cluster properties
Consider the form factors of a scattering theory based on the functions

fx(θ) =
tanh 1

2 (θ + iπx)
tanh 1

2 (θ − iπx)

that have the property limθ→∞ fx(θ) = 1.
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a Using the Watson equation satisfied by the form factors FOa
n (θ1, . . . , θn) of an

operator Oa, prove that taking the limit

lim
Λ→∞

FOa
n (β1 +Δ, . . . , βm +Δ, βm+1, . . . , βn) = FOb

m (β1, . . . , βm)FOc
n−m(βm+1, . . . , βn)

the form factor factorizes in terms of two functions both satisfying the Watson
equations. Hence they can be considered the form factors of the operators Ob and
Oc. This expresses the cluster property of the form factors.

b Prove that the form factors of the elementary solutions of the Sinh–Gordon model
are self-clustering quantities.

5. Correlation functions of the Ising model
Use the fermionic representation of the energy operator of the Ising model, ε = iψ̄ ψ,
and the mode expansion of the fermionic field in terms of the creation and annihila-
tion operators, to compute the matrix elements of ε(x) and its two-point correlation
function.

6. Form factors of the Yang–Lee model
Using the form factors of the Sinh–Gordon model, obtain the form factors of the
Yang–Lee model by using the analytic continuation B → − 2

3 .



21
Non-Integrable Aspects

Nobody is perfect!

Billy Wilder

The integrable quantum field theories analyzed in the previous chapters provide the
exact solution of many statistical models away from the critical point. Despite the
elegance and the undeniable success of these methods, the generic situation that occurs
in statistical physics is that of non-integrable dynamics: many interesting statistical
models fall within this class and therefore it would be highly desirable to develop an
appropriate formalism to deal with the lack of integrability. This task is notoriously
difficult for the rich phenomenology that arises when the dynamics are not integrable:
there are decays and production scattering processes, confinement phenomena and
nucleation of false vacua, resonance peaks in the cross-sections, etc. All these physical
aspects are usually accompanied by great mathematical complexity. To see this, it is
sufficient to consider the analytic structure of the S-matrix of such theories: once one
has given up the integrability condition, the infinite number of thresholds of the pro-
duction processes gives rise to nested patterns of branch cut singularities, in addition
to the pole structure associated to the bound states or the resonances (see Fig. 21.1).

Although the detailed analysis of all physical aspects of non-integrable models
goes beyond the scope of this book, in this chapter we will discuss a series of results
particularly helpful to understand the class of universality of some important models.
Our study takes advantage of a perturbative approach based on the exact form factors
of the integrable models discussed in the previous chapter.

21.1 Multiple Deformations of the Conformal Field Theories

We focus our attention on a particular class of non-integrable models. They can be
defined in terms of a conformal action deformed by two relevant operators, each of
them giving rise individually to an integrable model

S = SCFT + λ1

∫
d2xϕ1(x) + λ2

∫
d2xϕ2(x). (21.1.1)

There are many interesting physical systems that belong to this class of non-integrable
model. Let’s briefly discuss two of them.
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s

Fig. 21.1 Analytic structure of the S-matrix of non-integrable models. At the production
thresholds, the scattering amplitudes develop new branch cuts.

• The first is the Ising model at temperature T different from the critical value Tc
and in an external magnetic field h. Its action is given by

S = SCFT + τ

∫
d2xε(x) + h

∫
d2xσ(x), (21.1.2)

with τ = T − Tc. When h = 0, the above action corresponds to the integrable
theory of the thermal deformation, which has only one particle excitation and an
elastic S-matrix equal to S = −1. On the contrary, when T = Tc one recovers the
integrable theory of the Ising in a magnetic field: its spectrum consists of eight
massive particles, whose S-matrix amplitudes were discussed in Chapter 18.

• The second example is provided by the multifrequency Sine–Gordon model. The
action is given by

S =
∫
d2x

[
1
2
(∂μϕ)2 + λ1 cosβϕ+ λ2 cosαϕ

]
. (21.1.3)

When λ1 = 0, this action gives rise to the integrable theory of the Sine–Gordon
model with frequency α. In addition to the soliton states, such a theory has a
number of neutral bound states given by1 N2 =

[
π
ξα

]
, where ξα = α2

8 /(1−α2/8π).
Viceversa, if λ2 = 0, we again have a Sine–Gordon model but of frequency β and
a different number of neutral bound states, N1 =

[
π
ξβ

]
. When the ratio of α and β

is a rational number, the potential of the theory has an infinite number of periodic
and degenerate vacua. On the contrary, when the ratio of the frequencies is an
irrational number, the potential has only one vacuum that can always be placed
at the origin (see Fig. 21.2).

To study the field theories associated to an action such as (21.1.1), it is convenient to
regard it as a deformation of an integrable action rather than as a multiple deformation

1[x] denotes the integer part of the real number x.
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Fig. 21.2 Potential of the multiple-frequency Sine–Gordon model: rational (a) and irrational
(b) ratio of the frequencies.

of a conformal theory. By taking this point of view and grouping the terms differently,
the action (21.1.1) can be written as

S = Si
int + λj

∫
d2xϕj(x). (21.1.4)

(i = 1, 2, j �= i). There are several advantages in doing so.
1. The first convenience becomes evident by going to Minkoswki space. In fact,

the non-integrable theory can be analyzed starting from the basis of the Hilbert
space provided by the particle excitations associated to the integrable model Si

int.
Although the spectra of S and Si

int may be different, the basis provided by the
particles of the integrable model will certainly be more appropriate than the
conformal one, as far as the infrared properties of the non-integrable model are
concerned.

2. The second advantage consists of the exact solvability of the integrable models, in
particular, the possibility of computing exactly all the matrix elements (form fac-
tors) of local and non-local operators of such theories. Hence, in complete analogy
with ordinary quantum mechanics, one can set up a perturbative approach based
on the form factors of the integrable models. As we will see in the following, this
perturbative approach will enable us to reach a remarkable series of predictions
about the mass correction, the decay processes, or the correction to the scattering
amplitudes.

3. When each deformation is individually integrable, there is the obvious freedom of
using any of them as a starting point. By this choice we select a particular basis
of the particles and bound states thereof. However, since the actual dynamics
of the model should be insensitive to such a choice, there should be a series of
mathematical identities that links one perturbative series to the other.

21.2 Form Factor Perturbation Theory
Let us consider a quantum field theory in Minkowski space, defined by the action

S = S0 + SI = S0 − λ

∫
d2xΨ(x), (21.2.1)
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where S0 denotes here the minkowskian action of the unperturbed theory and Ψ one of
its operators. We suppose that the QFT associated to the action S0 is exactly solvable
(although not necessarily free), so that the spectrum of its particles, their scattering
amplitudes, and the matrix elements of the its operators (in particular those of Ψ) are
assumed to be all known. For the sake of simplicity, in this section we consider the case
of an isospectral perturbation of a solvable theory. By this we mean that the spectrum
of the total action S is made of the same number of particles of the unperturbed one
S0: the new interaction SI is going to change the values of the masses of the physical
particles but not their stability properties.2

Let us now describe the properties of the theory (21.2.1). Under the hypothesis that
the interaction term is turned off at t→ ±∞, it is possible to adopt the formalism of
the asymptotic “in” and “out” states. We are interested in computing the scattering
amplitude

S{q1, . . . , qn → q′
1, . . . , q

′
m} = out〈q′

1, . . . , q
′
m|q1, . . . , qn〉in (21.2.2)

= in〈q′
1, . . . , q

′
m|S|q1, . . . , qn〉in,

where qi and q′
j label the momenta of the in-going and out-going set of particles. Since

in the remote past t→ −∞ the interaction is not present yet, the asymptotic in states
coincide with the unperturbed ones:

|q1, . . . , qn〉in = |q1, . . . , qn〉in0 . (21.2.3)

As usual, the scattering operator S in eqn (21.2.2) can be obtained as the limit

S = lim
t→+∞U(t,−t) (21.2.4)

of the time evolution operator U(t, t0), the solution of the equation

i
d

dt
U(t, t0) = HU(t, t0), U(t0, t0) = 1, (21.2.5)

where H = H0 +HI denotes the Hamiltonian of the theory (21.2.1).
Interactive representation. Following the standard quantum mechanical proce-
dure,3 the operator U can be factorized as U = U0UI , where U0 and UI are the
solutions of eqn (21.2.5) with H replaced by H0 and H̃I(t) = U−1

0 HIU0, respectively.
Then, we can write the scattering operator of the theory (21.2.1) as S = S0SI , where
S0 = limt→+∞ U0(t,−t) is the unperturbed and exactly known scattering matrix

S0{q1, . . . , qn → q′
1, . . . , q

′
m} = out

0 〈q′
1, . . . , q

′
m|q1, . . . , qn〉0 (21.2.6)

= in
0 〈q′

1, . . . , q
′
m|S0|q1, . . . , qn〉in0 ,

2We will comment later on the more general case.
3See, for instance, C. Cohen Tannoudji, B. Liu, F. Laloe, Quantum Mechanics, John Wiley,

New York, 1977.
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while SI has the usual formal representation

SI = lim
t→+∞UI(t,−t) = T exp (iAI [Ψ]) . (21.2.7)

The scattering amplitude is therefore given by

out〈q′
1, . . . , q

′
m|q1, . . . , qn〉in = in

0 〈q′
1, . . . , q

′
m|T exp

(
−iλ
∫
d2xΨ(x)

)
|q1, . . . , qn〉in0

=
+∞∑
k=0

(−iλ)k

k!

∫
d2x1 . . . d

2xk
in
0

×〈q′
1, . . . , q

′
m|T (Ψ(x1) . . .Ψ(xk)) |q1, . . . qn〉in0 ,

(21.2.8)

where (21.2.6) has been used in order to absorb the factor S0.
In the ordinary lagrangian perturbation scheme based on free theories, the com-

putation of scattering amplitudes would now proceed through the use of creation/
annihilation operators and their employment in Wick’s theorem, finally leading to the
diagrammatic expansion that is characteristic of the Feynman covariant perturbation
theory. This approach, however, cannot be generally followed here because we might
not know, in general, a local lagrangian formulation of the theory associated to S0.
However, the exact solution of its dynamics, in the form specified at the beginning of
this section, naturally suggests computing the scattering amplitudes (21.2.8) within
the same framework used to deal with ordinary time-dependent perturbation theory in
quantum mechanics. In other words, let’s initially insert between the operators Ψ(xl)
and Ψ(xl+1) (l = 1, . . . , k− 1) in the second line of (21.2.8) a sum over a complete set
of asymptotic states of the unperturbed theory∑

n

|n〉outout〈n| = 1 =
∑
n

|n〉inin〈n|, (21.2.9)

with |n〉 denoting an asymptotic state containing n on–shell particles. The integrations
over the space coordinates in (21.2.8) can be immediately performed: they lead to
delta functions that constraint the total momentum of the intermediate states to
coincide with that of the initial and final states. In doing the integrations over the
time variables, the time ordering prescription gives rise in this case to the appearence
of energy denominators. The final expression is

out〈q′
1, . . . , q

′
m|q1, . . . , qn〉in = in

0 〈q′
1, . . . , q

′
m|q1, . . . , qn〉in0

+(2π)2δ(2)

⎛
⎝ m∑

j=1

q′
j −

n∑
j=1

qj

⎞
⎠

×
{
−iλin

0 〈q′
1, . . . , q

′
m|Ψ(0)|q1, . . . , qn〉in0

+
1

2πi

+∞∑
k=2

(2πλ)k
∑
n1

. . . (21.2.10)
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∑
nk−1

[
δ(Q− P1) . . . δ(Q− Pk−1)

(E − E1 + iε) . . . (E − Ek−1 + iε)

× in
0 〈q′

1, . . . , q
′
m|Ψ(0)|n1〉0 . . . 0〈nk−1|Ψ(0)|q1, . . . , qn〉in0

]}
,

where E and Ei (Q and Pi) denote the total energy (momentum) of the initial state and
of the i-th intermediate state, respectively. Each intermediate sum can equivalently
be taken either on the basis of the in states or on that of out states. Since the matrix
elements between asymptotic states of the perturbing operator Ψ(x) are supposed to
be known, the scattering amplitudes (21.2.10) are in principle computable quantities,
order by order in the coupling constant λ. The above expansion over intermediate
states must be contrasted with the usual formalism of covariant perturbation theory
in which both energy and momentum are conserved in the internal lines of Feynman
diagrams but the corresponding particles are off-shell.
Refinements: normalization conditions. The above formula (21.2.10), however, is
not completely correct because the new interaction changes both the vacuum energy
density and the mass of the particles. We have to refine the action SI with the intro-
duction of some counterterms to take properly into account the correct normalization
of the states. We impose the validity of the following conditions for any value of the
coupling constant: the normalization of the vacuum state

〈0|0〉 = 0〈0|0〉0 = 1, (21.2.11)

and the normalization of the one-particle states

out〈q′|q〉in = out
0 〈q′|q〉in0 = 2πEδ(q′1 − q1). (21.2.12)

The two conditions given above should be enforced order by order in perturbation
theory when one uses eqn (21.2.10) to compute the vacuum-to-vacuum transition and
the one-particle amplitudes.

The condition (21.2.11) leads to a subtraction of a constant term δEvac(λ) from the
interaction density. This extra term obviously measures the variation of the vacuum
energy density under the effect of the perturbation. This effect is usually ignored in
lagrangian perturbation theory with the prescription of disregarding the disconnected
vacuum bubble diagrams. We keep track of this term here because, for the class of
models we are considering, it is a measurable quantity.

To enforce the correct one-particle normalization we need to introduce a “mass”
term operator in the interaction density. This operator, denoted here by O(2)(x), can
be defined in terms of its (unperturbed) form factors given by

FO(2)

n = 0〈0|O(2)(0)|q1, . . . , qn〉 = δn,2. (21.2.13)

With this definition, the coefficient in front of the operator O(2)(x) in the interaction
density plays the role of a mass counterterm δm2(λ) and has to be determined by
imposing eqn (21.2.12) order by order in the coupling λ.



734 Non-Integrable Aspects

In summary, the correct formula for the scattering amplitude is given by

out〈q′
1, . . . , q

′
m|q1, . . . , qn〉in

= in
0 〈q′

1, . . . , q
′
m|q1, . . . , qn〉in0

−i(2π)2δ(2)

⎛
⎝ m∑

j=1

q′
j −

n∑
j=1

qj

⎞
⎠

×
{

in
0 〈q′

1, . . . , q
′
m|
(
λΨ(0) − 1

2
δm2O(2)(0) − δEvac

)
|q1, . . . , qn〉in0 (21.2.14)

+
∑
n1

2πδ(Q− P1)
(E − E1 + iε)

in
0 〈q′

1, . . . , q
′
m|
(
λΨ(0) − 1

2
δm2O(2)(0) − δEvac

)
|n1〉0

0〈n1|
(
λΨ(0) − 1

2
δm2O(2)(0) − δEvac

)
|q1, . . . , qn〉in0 + · · ·

}
.

Let us remark that the above expansion appears as the most physical one since
it deals with the true physical degrees of freedom of the problem. But, as in any
quantum field theory, divergent contributions are expected to pop up when the above
formula is applied beyond the first perturbative order. A general discussion of such
divergences and of the renormalization procedure which must be adopted to deal with
the infinities, seems to be an interesting open problem in the unconventional setting we
are considering: notice that the perturbing operator Ψ(x) has in general non-vanishing
matrix elements on all the asymptotic states and therefore a sum of an infinite number
of terms is required at any perturbative order beyond the first. However the general
aspects of this problem are beyond the scope of this book and will not be investigated
further here. We rather concentrate our attention only on the first-order approximation
because this is enough to catch the leading effects induced by a small perturbation
which breaks the integrability.

21.3 First-order Perturbation Theory
Let us now apply the results of the previous section to study the action (21.1.1),
where the integrable theory is defined by the action (21.1.1) with λ2 = 0, whereas its
perturbation is given by the relevant scalar operator ϕ2(x). Let x1 and x2 be the scaling
dimensions of the two operators ϕ1 and ϕ2. The theory depends in this case on the
two dimensionful coupling constants4 λ1 and λ2. Since λ1 ∼M2−x1 and λ2 ∼M2−x2

(where M is a mass scale), we can decide to use λ1 as the dimensionful parameter of
the theory and the dimensionless combination

χ ≡ λ2λ
− 2−x2

2−x1
1 (21.3.1)

as a label of the different renormalization group trajectories which originate from the
fixed point at λ1 = λ2 = 0. For example, if N(χ) denotes the number of stable particles

4For the sake of simplicity of notation, we assume that no other terms are generated by renormal-
ization effects, as it happens for the models that we will discuss later. The first-order corrections do
not depend on this assumption.
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in the spectrum of the theory, their masses can be expressed as

ma(λ1, χ),= Ca(χ)λ
1

2−x1
1 , a = 1, 2, . . . , N(χ), (21.3.2)

where Ca(χ) is an amplitude which characterizes the whole trajectory. Similarly, the
vacuum energy density can be written as

Evac(λ1, χ) = E(χ)λ
2

2−x1
1 . (21.3.3)

Dimensionless quantities, as for instance mass ratios, only depend on χ and therefore
they do not vary along the trajectories of the renormalization group.

Once the new interaction λ2
∫
d2xϕ2(x) is switched on in the action, the integra-

bility of the unperturbed theory is generally lost and the S-matrix amplitudes become
complicated quantities. Inelastic processes of particle production are no longer for-
bidden and, as a consequence, the analytic structure of the scattering amplitudes
present additional cuts due to the higher thresholds. In particular, their expression is
no longer factorized into the sequence of two-body scattering amplitudes and, even
in elastic channels, the only surviving restriction on the final momenta comes from
energy–momentum conservation.

Knowledge of the matrix elements of the perturbing field ϕ2(x) ensures the possi-
bility of computing perturbatively both the amplitudes of the inelastic processes and
the corrections to the elastic ones. To first order in λ2, with an obvious extension of
the notation, eqn (21.2.14) reads

out〈b1(q11) . . . bm(q1m)|a1(p1
1) . . . an(p1

n)〉in

	 δmn
out
0 〈b1(q11) . . . bn(q1n)|a1(p1

1) . . . an(p1
n)〉in0 − iδ2

(
n∑

k=1

pμk −
m∑
k=1

qμk

)

× out
0 〈b1(q11) . . . bn(q1m)|

⎛
⎝λ2ϕ2(0) − 1

2

N∑
a,b=1

δM2
abO

(2)
ab (0) − δEvac

⎞
⎠

|a1(p1
1) . . . an(p1

n)〉in0 . (21.3.4)

The “mass operator” O(2)
ab (x) is defined by assigning its form factors. With an obvious

generalization of eqn (21.2.13), they are given by

F
O

(2)
ab

a1...an(θ1, . . . , θn) = δn2δaa1δba2 .

The first-order corrections to the masses of the particles and to the vacuum energy
density are obtained by imposing the conditions (21.2.12) and (21.2.11). The result is

δM2
b̄a 	 2λ2F

ϕ2

b̄a
(iπ, 0)δmamb

, (21.3.5)

δEvac 	 λ2 [0〈0|ϕ2|0〉0] . (21.3.6)

Role of the rapidity. However, one must be careful in using the rapidity parameteri-
zation in eqn (21.3.4). To illustrate this point let’s consider the first-order correction to
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some elastic process ab→ cd. In the unperturbed theory, this process is characterized
by the scattering amplitude Scdab(θ), where θ = θ1−θ2 denotes the rapidity difference of
the colliding particles. In two dimensions, the momenta of the particles in a two-body
elastic collision are individually conserved even in the absence of integrability, so that
the general elastic amplitude Scdab(θ, χ) can be introduced through the relation

out〈c(θ1)d(θ2)|a(θ3)b(θ4)〉in = (2π)2δ(θ1 − θ3)δ(θ2 − θ4)Scdab(θ1 − θ2, χ). (21.3.7)

However, note that away from the integrable direction (i.e. χ = 0), the scattering
amplitude Scdab(θ, χ) is no longer a meromorphic function of θ for the opening of inelastic
channels. In computing the correction to Scdab(θ, χ) around χ = 0, we must take into
account that the total energy of the colliding system is fixed and therefore the variation
in the masses given by eqn (21.3.5) induces a corresponding change in the rapidity
difference, expressed by

δθ 	 −maδma +mbδmb + (mbδma +maδmb) cosh θ
mamb sinh θ

. (21.3.8)

Then the correction to the amplitude can be decomposed as

δScdab(θ, χ) =
∂Scdab(θ)
∂θ

δθ +
∂Scdab(θ, χ)

∂χ

∣∣∣∣
χ=0

δχ. (21.3.9)

The first-order result for this quantity is obtained by using formula (21.3.4). Taking
into account the cancellation occurring between the disconnected parts of the form
factors and the contributions of the counterterms, one finally obtains

δScdab(θ, χ) 	 −iλ2
Fϕ2

c̄d̄ab
(θ)

mamb sinh θ
, (21.3.10)

where
Fϕ2

c̄d̄ab
(θ1 − θ2) ≡ Fϕ2

c̄d̄ab
(θ1 + iπ, θ2 + iπ, θ1, θ2). (21.3.11)

Cancellation of iπ singularities. The right-hand side of (21.3.10) employs the
expression of the form factor at very special values of the rapidity variables. Accord-
ing to eqn (21.3.5), the form factors present pole singularities whenever the rapidities
of a particle–antiparticle pair differ by iπ and these kinematical poles are often exp-
licitly inserted into the denominator of their parameterization. Apart from a term
encoding the monodromy properties, in Chapter 20 we have showed that this param-
eterization may be written as Q/D where both Q and D are polynomials in the vari-
ables cosh θij : the denominator is uniquely fixed by the pole structure of the S-matrix
whereas the numerator is determined by means of the residue equations, as for ins-
tance those of eqn (21.3.5). From the finiteness of the left-hand side of eqn (21.3.10),
we expect therefore that the “iπ singularities” of the denominator of the form factors
Fϕ2

āb̄ab
(θ1, θ2, θ3, θ4) should be cancelled by the polynomial Q, once evaluated at the

specific rapidity configuration of eqn (21.3.11). This should hold in general whenever
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the perturbing operator is local with respect to the fields that create the particles in
the unperturbed theory.5

Universal ratios. Equations (21.3.5), (21.3.6), and (21.3.10) are the main results of
this section. The best use of these formulas is to get rid of the explicit dependence on
the normalization of the perturbing operator by defining universal quantities, as for
instance ratios of the mass shifts. Hence, under the validity of the linear approximation,
all the universal quantities of non-integrable field theories can be entirely expressed in
terms of form factors of the integrable ones. A comparison of the theoretical predictions
with their numerical determinations will be presented in the sequel.

Trivial deformation and its consequences. It is particularly instructive to focus
the above discussion on the “trivial” case in which the perturbing operator ϕ2(x) co-
incides with the operator ϕ1(x) that defines the initial integrable theory. In this case,
of course, the physics should be invariant, since the result of the additional perturba-
tion simply corresponds to a shift of the coupling constant of the original integrable
model by an amount δλ1 = λ2. The variations of the masses of the particles and the
vacuum energy density corresponding to such a shift can be directly computed from
eqns (21.3.2), and (21.3.3), respectively. But we can also apply our general formulas
(21.3.5) and (21.3.6) to estimate the first order corrections. The two different routes
coincide as long as the following identities are valid

FΘ
āa(iπ, 0) = 2πm2

a,
Evac = 1

4π 〈0|Θ|0〉, (21.3.12)

where Θ(x) = 2πλ1(2 − x1)ϕ1(x) is the trace of the energy–momentum tensor for
the trajectory χ = 0. The two relationships above are indeed true and can be easily
derived by other means, as we know from Chapter 20: it is interesting to notice that,
in this context, their validity emerges as consistency equations. By the same token,
considering higher multiparticle scattering processes, we can generate an infinite num-
ber of identities involving the form factors of the original integrable field theory. For
instance, next to (21.3.12), a new identity is obtained by comparing eqn (21.3.9) with
eqn (21.3.10): since χ is constant in the case we are considering, we have

∂Scdab(θ)
∂θ

= − 1
2πi

FΘ
c̄d̄ab

(θ)
sab(θ)

. (21.3.13)

This identity provides a simple and unique way to normalize the four-particle form
factors of the stress–energy tensor. It may then be particularly useful in the study of
massless field theories where the first relationship in eqn (21.3.12) cannot be used for
this purpose.

It is also obvious that the first-order inelastic amplitudes computable by formula
(21.3.4) must vanish identically when we choose ϕ2(x) = ϕ1(x). This is ensured by
the fact that the form factors of the stress–energy tensor FΘ

a1...an
(θ1, . . . , θn) factorize

the term PμP
μ, with Pμ =

∑n
i=1 p

μ
i denoting the total energy–momentum of the set

5We refer to the section devoted to the Ising model for the discussion of the case in which this
condition is not fulfilled.
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of particles. Since pμi → −pμi when the i-th particle is crossed from the initial to the
final state, Pμ is zero for a set of particles entering a physical scattering process. Only
in the case of elastic scattering, the zeros coming from the factor PμPμ cancel the
kinematical poles and relations analogous to eqn (21.3.13) are obtained.

21.4 Non-locality and Confinement
Let us consider in more detail the mass correction, given by

δm2
a 	 2λFϕ2

aā (iπ), (21.4.1)

where the form factor of the operator ϕ2(x) is defined by the matrix element

Fϕ2
aā (θ) ≡ 〈0|ϕ2(0)|a(θ1)ā(θ2)〉. (21.4.2)

Let us recall that the two-particle form factor of an integrable theory satisfies the
equations

FO
aā(θ) = Sbb̄aā(θ)F

Ō
bb (−θ), (21.4.3)

FO
aā(θ + 2iπ) = e−2iπγO,aFO

āa(−θ). (21.4.4)

In the second equation the explicit phase factor e−2iπγO,a is inserted to take into
account a possible semilocality of the operator which interpolates the particles and
the operator O(x). If γ �= 0, the two-particle form factor presents a pole at θ = ±iπ,
with the residue given by

−iResθ=±iπF
O
aā(θ) = (1 − e∓2iπγO,a)〈0|O|0〉. (21.4.5)

According to whether the perturbing field is local or non-local with respect to the
asymptotic particles, there are two different scenarios. If the field that breaks integra-
bility is a local operator, the mass correction of the particles is finite. Vice versa, if the
perturbing field is non-local, the mass correction of the particles is divergent. The last
case implies the confinement of the particles that occurs as soon as the non-integrable
perturbation is turned on.

There are several ways to show the confinement phenomena. One consists of com-
puting the propagator 〈A(p)A(−p)〉 of the particle A in the perturbed theory. At the
tree level approximation, shown in Fig. 21.3, this consists of a geometric series that
can be explicitly summed and for the propagator of the perturbed theory we have

〈A(p)A(−p)〉 	 1
p2 −m2 − δm2 . (21.4.6)

If δm2 = ∞, the propagator obviously vanishes, i.e. the particle disappears from the
spectrum. A more intuitive explanation of the confinement phenomenon comes from
the analysis of the Ising model.

+ + +=

δ m 2

+ ...

Fig. 21.3 Perturbative series of the propagator.
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21.5 The Scaling Region of the Ising Model

In this section we study the evolution of the mass spectrum of the Ising model by
moving its couplings along the path C shown in Fig. 21.4 in the plane (τ, h): this curve
starts from the low-temperature phase of the model and ends at its high-temperature
phase, here represented by the points (a) and (f), respectively.

The action of the model is given by

A = ACFT + τ

∫
d2xε(x) + h

∫
d2xσ(x). (21.5.1)

As shown in the previous chapters, this theory gives rise to a massive integrable model
when one of the two coupling constants is switched off. The action (21.5.1) defines a
family of field theories identified by χ ≡ τ |h|−8/15 ∈ (−∞,+∞), a dimensionless RG
invariant quantity. The spectrum of the theory changes in a significant way moving χ.

In the low-temperature phase (corresponding to χ = −∞ and to the point (a) of
the curve C), the model has two degenerate vacua and therefore its excitations consist
of the topological kink and antikink that are interpolated between the two ground
states. Along the magnetic axes (χ = 0, corresponding to the point (d) of the curve
C), the spectrum of the model consists instead of eight particles, with different masses.
Finally, in the high-temperature phase (i.e. χ = +∞), the system has a unique vacuum
and only a massive excitation above it. Let’s see how this scenario can be recovered
by form factor perturbation theory.

Let’s start our analysis from the point (a), where the massive excitations are the
kink/antikinks that interpolate between the two degenerate vacua. By switching on
the magnetic field, the model moves to the point (b) of the curve C. The form factor
of the perturbing field σ on the two-particle kink/antikink state is given by

F σ(θ1 − θ2) = 〈0|σ(0)|A(θ1)A(θ2)〉 = tanh
θ1 − θ2

2
.

Therefore eqn (21.3.5) leads to an infinite correction to the mass of the kinks, i.e. the
kinks get confined as soon as the magnetic field is switched on. Looking at the effective
potential of the theory, it is not difficult to see that this is the correct conclusion: no

T−Tc

h

a

b

c
d e

f

Γ

C

Fig. 21.4 Interpolation curve in the (τ, h) plane between the low- and high-temperature
phases of the Ising model. Γ is a renormalization group trajectory, identified by the dimen-
sionless parameter χ.
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2 h

(a) (b)

Fig. 21.5 Effective potential in the low-temperature phase (a) and in the presence of an
infinitesimal magnetic field (b). In the last case, the two minima are no longer degenerate
and the kink/antikink disappears from the spectrum of the asymptotic states.

matter how small the magnetic field may be, it lifts the degeneracy of the two vacua,
as shown in Fig. 21.5, and consequently there is no longer the possibility of having
topological configurations.

Consider now the effect of the magnetic field on a state made of a kink and an
antikink separated by a distance R. When the magnetic field is absent, the energy of
this state is essentially equal to 2M , i.e. the sum of the masses of the kink and the
antikink. The energy of this state depends very weakly on the distance R because this
field configuration takes values on the zeros of the effective potential and, no matter
how large the distance R could be, there is no change in the energy of this state. This
situation changes by switching on the magnetic field since, in this case, at every point
of the space there is an energy gap equal to 2h and the energy U of this state becomes
a linear function of R, U(R) = 2M + 2hR. This attractive interaction between the
kink and the antikink gives rise to a discrete spectrum of bound states. Regarding the
kinks as very massive and quasi-static, the energy of the bound states can be obtained
by solving the quantum mechanical problem of the bound states for a linear potential,
well-known in quantum mechanics. The result is simply

Ek ≡ mk = (2 + h2/3γ
2/3
k )M, (21.5.2)

where γk are the positive roots of the equation

J (γk) = J 1
3

(
1
3
γk

)
+ J− 1

3

(
1
3
γk

)
= 0

(Jν(x) is the Bessel function of order ν) (Fig. 21.6). The structure of the bound states is
shown in Fig. 21.7. Obviously not all these states are stable: the stable ones are identi-
fied by the condition mn < 2m1, while all particles with a mass higher than the thresh-
old 2m1 decay into particles of lower masses. When χ increases, i.e. when the system
moves clockwise along the curve C of Fig. 21.4, the number of bound states monotoni-
cally decreases. At the point (d), there are the eight stable particles of Zamolodchikov’s
solution of the Ising model in a magnetic field, and the value of their mass can be found
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1

Fig. 21.6 Plot of the function J (x). The zeros of this function determine the energies of the
bound states of the Ising model coming from the original kink–antikink state.

R

−1

+1

R

(b)(a)

E
T

Fig. 21.7 (a) Kink–antikink state separated by a distance R; (b) Kink–antikink potential in
the presence of a magnetic field h and its bound states. The stable bound states are identified
by the condition En < ET .

in Section 18.4.2. It is worth stressing that in this case the five particles with mass
higher than the threshold are stable just for the integrability of the model. Moving
away from the magnetic axes by means of the operator ε(x), the first three particles
change the value of their masses, while the remaining five particles decay into the
low-energy channels. To estimate both effects, we need the form factors of the energy
operator but in the integrable theory of the Ising model in a magnetic field. Here we
simply report their expressions

〈0|ε(0)|0〉 = m1,

F ε
11(iπ) = 〈0|ε(0)|A1(θ + iπ)A1(θ)〉 = −17.8933 . . .m1,

F ε
22(iπ) = 〈0|ε(0)|A2(θ + iπ)A2(θ)〉 = −24.9467 . . .m1,

F ε
33(iπ) = 〈0|ε(0)|A3(θ + iπ)A3(θ)〉 = −53.6799 . . .m1,

F ε
44(iπ) = 〈0|ε(0)|A4(θ + iπ)A4(θ)〉 = −49.3169 . . .m1.
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The first equation may be regarded as the normalization condition of the energy
operator ε(x). The corrections of the universal ratios are given by

δEvac
δm1

=
〈0|ε|0〉
F ε

11(iπ)
m0

1 = −0.0558 . . .m0
1,

δm2

δm1
=
F ε

22(iπ)
F ε

11(iπ)
m0

1

m0
2

= 0.8616 . . . , (21.5.3)

δm3

δm1
=
F ε

33(iπ)
F ε

11(iπ)
m0

1

m0
3

= 1.5082 . . . .

In turn, these quantities can be independently determined by a numerical solution of
the model and the values determined in this way are

δEvac
δm1

	 −0.05m0
1,

δm2

δm1
	 0.87, (21.5.4)

δm3

δm1
	 1.50.

As can be seen from the expressions above, there is satisfactory agreement between
the theoretical and numerical estimates.

Breaking the integrability of the Ising model in a magnetic field has a more dramatic
effect on the five particles with a mass above threshold. Their stability is only due to
integrability and, in its absence, they decay. In the perturbative approach, the decay
process is associated to the presence of a negative imaginary part in the mass that is
a second-order perturbative effect in τ , as shown in Fig. 21.8.

Imm2
c = −

∑
a≤b,ma+mb≤mc

mcΓc→ab 	 −τ2
∑

a≤b,ma+mb≤mc

21−δab
|fcab|2

mcma

∣∣∣sinh θ(cab)
a

∣∣∣ ,

ε ε

f abc fabc

cc

b

a
Fig. 21.8 Perturbative diagram at second order in τ relative to the imaginary part of the mass
of the particle c. The intermediate particles a and b satisfy the on-shell conditions p2

a = m2
a

e p2
b = m2

b . When c > 5, there are additional diagrams with more intermediate particles.
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where Γc→ab is the decay amplitude of the particle Ac into the two particles AaAb,
whereas

fcab = F ε
cab(iπ, θ

(cab)
a , θ

(cab)
b )

∣∣∣
τ=0

.

The rapidities θ(cab)a and θ(cab)
b are fixed by the conservation of energy and momentum

in the decay process Ac → AaAb in the rest frame of the particle Ac. In the above
equations all masses are the unperturbed values at τ = 0. When c > 5 the sum
must be completed including the contribution of the decay channels with more than
two particles in the final state. Once the decay amplitudes Γc→ab are known, one can
determine the lifetime tc of the unstable particle Ac given by

tc =
1
Γc
, Γc =

∑
a≤b

Γc→ab. (21.5.5)

For the Ising model, the relevant matrix elements are

|f411| = (36.73044 . . .) |〈ε〉|τ=0

|f511| = (19.16275 . . .) |〈ε〉|τ=0

|f512| = (11.2183 . . .) |〈ε〉|τ=0

where the normalization of the operator ε is fixed by its vacuum expectation value

〈ε〉τ=0 = (2.00314 . . .)|h|8/15.

The imaginary part of the mass of the first two particles, which are over threshold, is
given by

Imm2
4 	 (−840.172 . . .)

(
τ〈ε〉τ=0

m1

)2

= (−173.747 . . .)τ2

Imm2
5 	 (−240.918 . . .)

(
τ〈ε〉τ=0

m1

)2

= (−49.8217 . . .)τ2.

The ratio of their lifetime is universal

lim
τ→0

t4
t5

= lim
τ→0

m4Im m2
5

m5Im m2
4

= 0.23326 . . . (21.5.6)

While the particle A4 can only decay into A1A1, the particle A5 can also decay into
the channel A1A2. The ratios of the amplitudes of these decays

bc→ab =
mc|τ=0Γc→ab

|Imm2
c |

are given by

lim
τ→0

b5→11 = 0.47364 . . . , lim
τ→0

b5→12 = 0.52635 . . . .

Notice that eqn (21.5.6) predicts that the lifetime of the particle A5 is almost four times
longer than the lifetime of the particle A4. This paradoxical result, in contradiction
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with the intuitive idea that a heavy particle should decay faster than a light one,
finds its explanation once again in the peculiar behavior of the phase space in two
dimensions. For the decay process Ac → AaAb the phase space in d dimensions is
given by

∫
dd−1�pa
p0
a

dd−1�pb
p0
b

δd(pa − pb) ∼
pd−3

mc
, (21.5.7)

where p = |�pa| = |�pb| is the value in the rest frame. For fixed decay products, p grows
with mc: in d = 2, this term joins the factor mc in the denominator and leads to
a suppression of the phase space. In the Ising model, eqn (21.5.6) shows that this
suppression is further enhanced by the dynamics (i.e. by the vaues of the matrix
elements) in a way that is not compensated by the additional decay channels.

If we keep moving along the curve C, one first meets a value χ1 at which the mass of
the particle A3 becomes larger than 2m1 and, later on, a second value χ2 at which also
the mass of the particle A2 becomes larger than 2m1. When χ > χ2 the spectrum of
the stable particles of the theory consists of only one excitation. In the limit χ→ +∞,
this is nothing but the particle of the integrable theory of the high-temperature phase
of the model.
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Problems

1. Two-frequency Sine–Gordon model
Consider the Sine–Gordon model for the bosonic scalar field ϕ(x) with two frequencies.
The most general lagrangian is given by

L =
1
2
(∂μϕ)2 + μ cosβϕ+ λ cos(αϕ+ δ).

When λ = 0 the theory is integrable and it is possible to determine the semilocal index
γ of the vertex operator eiαϕ with respect to the solitons of the unperturbed theory.
It is given by

γ =
α

β
.

a Prove that the form factor of the operator Ψ(x) = cos(αϕ + δ) on the soliton–
antisoliton state has a pole at θ = ±iπ with residue equal to

−iResθ=±iπF
Ψ
ss̄(θ) = [cos δ − cos(δ ∓ 2πα/β)] 〈0|eiαϕ|0〉.

b Use the above result to prove that in the perturbed theory (λ �= 0) with generic
values of α, β, and δ, the soliton and the antisoliton of the original integrable
theory are all confined.
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c Consider now the case α/β = m/n, with m,n two integer numbers. If

| δ |= π

n

and if there exists an integer number k such that

| kn−m |= 1

prove that in the perturbed theory either the soliton or the antisoliton is confined
but not both.
(Hint. To solve the exercise it is useful to plot the potential of the theory for these
particular vales of α, β and δ.)
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Painlevé equation, 713
perturbation expansion, 231, 233, 492
propagator, 225, 226
scale dimension, 226

scattering processes, 252, 253
series expansion, 180
spectral density, 700
spectral series, 689, 697
three-point, 286, 319, 344, 497
time-ordered, 247, 256
two-point, 9, 10, 46, 49, 69, 76, 279, 329,

330, 403, 409, 411, 490, 493, 498,
699, 707

vertex functions, 236
correlation length, 3, 6, 9, 11, 17, 47, 55, 57,

70, 72, 217, 219, 266, 270, 275,
281, 313

divergence of, 10, 12, 15, 61, 181, 240, 264,
271, 272, 310, 448, 485, 490, 669

functional equation, 275
relation with mass gap, 228, 658
scaling law, 281

Corrigan, E., 649
coset construction, 448, 450, 452, 461, 471,

477, 542, 550, 616, 677
Coulomb gas, 169, 358, 361, 370, 397, 403,

486
modified, 371, 373–375, 393, 430, 467, 469,

475, 483, 486, 518, 520
screening operators, 373, 374, 381

counting argument, 549, 606, 614, 646
Coxeter
dual number, 442, 456, 460, 471, 477, 529,

535
exponents, 541, 550, 552, 586, 619
number, 550, 616, 619, 626, 673, 677

Coxeter, H.S.M., 394
critical opalescence, 9
critical temperature, 17, 101
Bose–Einstein condensation, 36
gaussian model, 113
Ising model, 18, 19, 109, 276, 482, 612
hexagonal lattice, 160
square lattice, 149, 160, 178
triangular lattice, 160, 168

mean field theory, 101, 104, 109, 141, 225
Potts model, 436, 623
spherical model, 123
square lattice, 109
tricritical Ising model, 619

cross-section, 562
Curie temperature, 4, 10, 14
cyclic matrix, 112, 120, 121, 186
cylinder, theory defined on, 335, 336, 344,

345, 358, 385, 398, 402, 414, 472,
655, 657, 676

Das Sarma, S., 395
Dashen, R., 555, 655, 686



750 Index

de Cloizeaux, J., 93
de Gennes, P.G., 93
De Morgan, A., 87
decay process, 561, 595, 602, 728, 741, 743,

744
Deguchi, T., 211
Delfino, G., 19, 37, 285, 513, 515, 721, 725,

744
density matrix, 27, 28
Derrick theorem, 556
Di Francesco, P., 354
dilogarithm function, 671
dimensional analysis, 240, 243, 357, 494, 551
dimensional regularization, 261
dimer formulation of the Ising model, 187,

189, 190
dimers, 172, 182–184, 187, 190, 191
Dirac
action, 688
delta function, 110, 682
equation, 147, 290, 305, 306, 308
fermion, 397, 408, 419, 469, 631
matrices, 408
operator, 408
sea, 424

Dirac, P.A.M., 310
disorder operator
bosonic, 413
Ising model, 290, 295–297, 299, 307, 411,

466, 468, 470, 711, 712
parafermionic model, 432, 435
tricritical Ising model, 476, 710

Dodd, R.K., 554
domain, magnetic, 4, 9, 148, 149, 153
Dorey, P., 531, 555, 649, 687
Dotsenko, V., 370, 393, 486
Dowrick, N.J., 260
Drazin, P.G., 554
Drouffe, J.M., 139, 170
Dynkin diagrams, 393, 456

Eden, R.J., 600
Efetov, K., 460
Eguchi, T., 554
Eilbeck, J.C., 554
ensemble
canonical, 24
grand canonical, 25
microcanonical, 23, 595
quantum canonical, 28
quantum grand canonical, 28
quantum microcanonical, 27

Essler, F., 725
exceptional algebras, 457, 471, 477, 534, 538,

612, 621, 626

Faddev, L., 211
Fateev, V., 370, 393, 431, 437, 461, 649, 650,

677, 687, 725
Fendley, P., 190, 687
Feynman, R.P., 36, 259
Fisher, A.J., 260
fluctuation-dissipation theorem, 15, 48
Fokas, A., 354
Fonseca, P., 20, 37, 745
form factors, 692–694
cluster properties, 726
asymptotic behavior, 695, 708
kernel solutions, 697
minimal two-particle, 693
of Ising model in a magnetic field, 721, 722
of Sinh–Gordon model, 714, 716, 718, 719
elementary solutions, 719, 720

of stress-energy tensor, 701
perturbation theory, 730, 737
recursive equations, 695, 696
thermal Ising model, 709, 711, 714

Forrester, P.J., 211, 464, 485
four-color problem, 67, 86, 88, 89, 92–94
Fradkin, E., 307
Freedman, M., 395
Friedan, D., 363, 393, 461, 485
Fring, A., 725
fusion rules
bootstrap, 584, 585
Ising model in a magnetic field, 618
thermal tricritical Ising model, 621

conformal three-state Potts model, 479
conformal Ising model, 465
conformal tricritical Ising model, 476
conformal Yang–Lee model, 483
minimal conformal models, 368, 369, 384,

394, 395, 426, 431, 637

Gamma function, 79
Gaudin, M., 211
gaussian
fixed point, 278
free field theory, 277, 404, 406, 431, 462,

519, 720
integral, 68, 112, 223, 229
model, 109, 110, 112, 118
one-dimensional, 113, 139

Giamarchi, T., 422
Gibbons, J.D., 554
Ginsparg, P., 354, 422
Goddard, P., 461
Goebel, C.J., 650
Gogolin, A., 422
Goldenfeld, N., 288



Index 751

Goldstone, J., 555
Gomez, C., 394
Green function, 228, 370, 563, 602
Green, B, 601
Green, M., 601
Grinza, P., 744
Gross–Neveu model, 652

Haken, W., 92, 93
Hardy–Ramanujan formula, 340
Hasslacher, B., 555
Hibbs, A.R., 259
high-temperature
expansion, 65, 168, 170, 187, 629
fixed point, 276
phase, 17, 59, 161, 275, 300, 612, 613, 619,

709, 710, 739, 744
Huang, K., 36
Hulet, R., 34
Huse, D., 485

incidence matrix, 537, 615, 620, 673
Ising model, 3, 17–20, 37, 89, 110, 276, 358,

364, 430, 464–466
Bethe–Peierls approximation, 105
critical exponents, 102, 125, 179, 181, 239,

283
fermion formulation, 290, 300, 305–307,

466
field theory, 223, 239
mean field theory, 97, 101, 289
one-dimensional, 48, 50, 273, 275
critical exponents, 61
purely imaginary magnetic field, 95
recursive approach, 45
series expansion, 59
transfer matrix, 51, 52

three-dimensional, 19, 37, 169, 170, 287,
289, 308

two-dimensional, 148
E8 coset construction, 471, 550
away from criticality, 510, 552, 729, 739,

744
combinatorial solution, 172, 178, 190
correlation functions, 469, 470, 486, 711,

721, 724, 727
dimer solution, 187, 190
duality, 147, 149, 154, 306, 308
hexagonal lattice, 155, 159
magnetic deformation, 543, 550, 552,

553, 590, 612, 614, 645, 649, 678
thermal deformation, 612, 709
transfer matrix, 192, 193
triangular lattice, 155, 159, 168

Yang–Lee zeros, 481, 482

Ising, E., 18, 20, 37
Itzykson, C., 139, 170, 308, 391, 394, 422

Jackiw, R., 555
Jacobi identity, 438
Jannick, G., 93
Jimbo, M., 19, 37, 714, 724
Johnson, R.S., 554

Kac, M., 118, 139, 172, 190
Kadanoff, L.P., 139, 169, 307
Kainen, P.C., 94
Karowski, M., 723
Kasteleyn, P.W., 190
Kaufman, B., 19, 37
Kent, A., 461
Ketterle, W., 34
Khare, A., 460
Klassen, T., 686
Knizhnik, V.G., 461
Kogut, J., 288
Konik, R., 725
Koubek, A., 725
Kramers, H.A., 3, 18, 149, 169
Kramers–Wannier duality, 149, 297, 430, 466
Kubo, R., 36

Landau, L.D., 36, 600, 636
Landshoff, P.V., 600
Lawrie, I., 485
LeClair, A., 601, 650, 687
Lee, T.D., 482
Lenz, W., 18
Lepori, L., 745
Lieb, E.H., 307, 419, 422
Lifshitz, E.M., 36, 600, 636
Liptkin, H., 600
logistic map, 288
Lorentz
invariance, 261, 526, 560–562, 574
transformation, 256, 558, 568, 690

low-temperature
expansion, 153
fixed point, 276
phase, 161, 170, 275, 300, 612, 619, 739

Ludwig, A.W.W., 514
Lukyanov, S., 687, 725
Luther, A., 419, 422

Ma, S.K., 655, 686
Majid, S., 650
Manakov, S., 554
Mandula, J., 571, 600
Markov processes, 142, 176
Mathieu, P., 354



752 Index

Mattis, D.C., 36, 307, 419, 422
McCoy, B., 19, 37, 714, 724, 744
McLaughlin, D., 554
Meltzer, E., 686
Miwa, T., 19, 37, 714, 724
modular
group, 347, 387, 390, 394, 396, 406, 407
invariance, 385–387, 389, 394, 407, 431,

461, 655, 685
Moebius transformations, 323, 325, 326, 332,

347, 356, 376, 387
Moessner, R., 190
Montroll, E.W., 140
Morris, H.C., 554
Mussardo, G., 19, 37, 461, 485, 554, 649, 687,

721, 724, 744

Nayak, C., 395
Nersesyan, A., 422
Neveu, A., 555
Newman, M.E.J., 260
Nienhuis, B., 485, 486
Niss, M., 38
Noether’s theorem, 258, 318, 330, 372, 518
non-integrable models, 530, 728, 737, 744
non-local fields, 426, 431, 432, 435, 730, 738
Novikov, S., 554
null-vector, 358–361, 365, 366, 370, 375, 395,

443, 548, 551, 553, 554, 556

Olive, D., 461, 600
Onsager, L., 3, 19, 37
Operator Product Expansion (OPE), 311,

329, 333, 364, 366, 367, 372, 373,
375, 379, 427, 433, 513, 514

anticommutator, 410
commutator, 335
conserved currents, 543
fermion, 410
normal order, 523
of Φ13 field, 507
of currents, 448
of superconformal theories, 545
of tricritical Ising model, 476
off-critical, 493
order and disorder operators, 434, 470
vertex operator, 401

optical theorem, 563
order parameter, 8, 10, 11, 13, 15, 17, 40,

106, 219, 220, 222, 228, 239, 240,
278, 310, 311, 431, 432, 464, 475,
476, 481, 689, 710

p-state model, 163
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