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Preface

As a young professor in 1997 I taught my graduate course in Stochastic Image Pro-
cessing for the first time. Looking back on my rough notes from that time, the course
must have been a near impenetrable disaster for the graduate students enrolled, with
a long list of errors, confusions, and bad notation.

With every repetition the course improved, with significant changes to notation, con-
tent, and flow. However, at the same time that a cohesive, large-scale form of the
course took shape, the absence of any textbook covering this material became in-
creasingly apparent. There are countless texts on the subjects of image processing,
Kalman filtering, and signal processing, however precious little for random fields or
spatial statistics. The few texts that do cover Gibbs models or Markov random fields
tend to be highly mathematical research monographs, not well suited as a textbook
for a graduate course.

More than just a graduate course textbook, this text was developed with the goal of
being a useful reference for graduate students working in the areas of image pro-
cessing, spatial statistics, and random fields. In particular, there are many concepts
which are known and documented in the research literature, which are useful for stu-
dents to understand, but which do not appear in many textbooks. This perception is
driven by my own experience as a PhD student, which would have been considerably
simplified if I had had a text accessible to me addressing some of the following gaps:

• FFT-based estimation (Section 8.3)

• A nice, simple, clear description of multigrid (Section 9.2.5)

• The inference of dynamic models from cross-statistics (Chapter 10)

• A clear distinction and relationship between squared and unsquared kernels
(Chapter 5)
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• A graphical summary relating Gibbs and Markov models (Figure 6.11)

To facilitate the use of this textbook and the methods described within it, I am making
available online (see page XV) much of the code which I developed for this text. This
code, some colour figures, and (hopefully few) errata can be found from this book’s
home page:

http://ocho.uwaterloo.ca/book

This text has benefited from the work, support, and ideas of a great many people.
I owe a debt of gratitude to the countless researchers upon whose work this book
is built, and who are listed in the bibliography. Please accept my apologies for any
omissions.

The contents of this book are closely aligned with my research interests over the
past ten years. Consequently the work of a number of my former graduate students
appears in some form in this book, and I would like to recognize the contributions of
Simon Alexander, Wesley Campaigne, Gabriel Carballo, Michale Jamieson, Fu Jin,
Fakhry Khellah, Ying Liu, and Azadeh Mohebi.

I would like to thank my Springer editor, John Kimmel, who was an enthusiastic
supporter of this text, and highly tolerant of my slow pace in writing. Thanks also
to copy editor Valerie Greco for her careful examination of grammar and punctua-
tion (and where any remaining e rrors are mine, not hers). I would like to thank the
anonymous reviewers, who read the text thoroughly and who provided exceptionally
helpful constructive criticism. I would also like to thank the non-anonymous review-
ers, friends and students who gave the text another look: Werner Fieguth, Betty Pries,
Akshaya Mishra, Alexander Wong, Li Liu, and Gerald Mwangi.

I would like to thank Christoph Garbe and Michael Winckler, the two people who
coordinated my stay at the University of Heidelberg, where this text was completed.
My thanks to the Deutscher Akademischer Austausch Dienst, the Heidelberg Gradu-
ate School, and to the Heidelberg Collaboratory for Image Processing for supporting
my visit.

Many thanks and appreciation to Betty for encouraging this project, and to the kids
in Appendix C for just being who they are.

Waterloo, Ontario Paul Fieguth
July, 2010

http://ocho.uwaterloo.ca/book
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Nomenclature

The following tables of nomenclature are designed to assist the reader in understand-
ing the mathematical language used throughout this text. In the author’s opinion this
is of considerable value particularly for readers who seek to use the book as a ref-
erence and need to be able to understand individual equations or sections without
reading an entire chapter for context. Four sets of definitions follow:

1. Basic syntax

2. Mathematical functions

3. Definitions of commonly-used variables

4. Notation for spatial models

Page references are given to provide a few examples of use and some context to the
notation, but are in no way intended to be exhaustive.

We limit ourselves here to just defining the notation. For an explanation of algebraic
concepts (matrix transpose, eigendecomposition, inverse, etc.) the reader is referred
to Appendix A. For an explanation of related statistical concepts (expectation, co-
variance, etc.), see Appendix B. A brief overview of image processing can be found
in Appendix C. Most of the spatial models are explained in Chapters 5 and 6.
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XVIII Nomenclature

Syntax Definition Page References

a scalar, random variable 16 411
a column vector, random vector 13 414
ai ith element of vector a 16 414
ai ith vector in a sequence 15 294
aij i, jth element of matrix A 299 385

A matrix 13 383
AT matrix transpose 31 385
AH matrix Hermitian (complex transpose) 392
A−1 matrix inverse 20 386
|A| matrix determinant 63 386 418
A kernel corresponding to stationary matrix A 142 143 151
A−1 kernel corresponding to A−1, but A−1 �= (A)−1 146
AT kernel corresponding to AT , but AT �= (A)T 146 152 166

R
n real vector of length n 19 253 384

R
k×n real k × n array 143 383

[A]: [A]n×1 reordering of matrix to column vector 133 141 166
[a]n×m reordering of column vector to n×m matrix 133 146
[a]

n
reordering to n1 × n2 × . . . multidimensional array 265

â, â, Â estimate of a, a,A 22 58
ã estimation error in â 64 108

ā, ā, Ā transformation of a, a,A 41 241
ǎ given sample data of a 201 412
P̃ estimation error covariance 68 72 294

Pr(Q) probability of some event Q 119 181 411
p(x) probability density of x 42 65 411
p(x|y) conditional probability density 45 179 413

{. . .} a set 15 415
|S| number of elements in set S 15 121 203

‖x‖ , ‖A‖ vector norm for x, matrix norm for A 22 59
‖x‖P = x

T
P x vector squared-norm for x with respect to covariance P 31 63 73

a convolution kernel origin 145 152 268

∼ is distributed as . . . 49 355
x ∼ P x has covariance P ; the mean is zero or not of interest 28 141 241

x ∼ (μ, P ) x has mean μ and covariance P , distribution unknown 37 69 74
x ∼ N (μ, P ) x is Gaussian with mean μ and covariance P 28 63 417

Tab. Notation.1. Basic vector, matrix, and statistical syntax
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Function Definition Page References

sign(a) the sign of scalar a, sign(a) =

8
<

:

−1 a < 0
0 a = 0
1 a > 0

144 400

a mod b division modulus (remainder) 155 262 392

min(·) the minimum value in a set 198 385 385
minx∈X(·) the minimum value of a function over range X 401
argx min(·) the value of x which minimizes the function 30 63 409

Ra(A) the range space of A 19 53 385
Nu(A) the null space of A 19 53 384

rank(A) the rank of A 53 385
dim(·) the dimension of a space 384

tr(A) the trace, the sum of the diagonal elements of A 247 387 395
det(A) the determinant of A 24 386 387
κ(A) matrix condition number of A 26 104 246

diag(A) a vector containing the diagonal elements of A 54 140 266
Diag(x) a diagonal matrix with x along the diagonal 165 264 294

I the identity matrix 37 277 357

FFTd the d-dimensional fast Fourier transform 267 361 428
FFT−1

d the d-dimensional inverse fast Fourier transform 265 361
WT the wavelet transform 273 347 428

WT−1 the inverse wavelet transform 275 290

� element-by-element matrix multiplication 146 165 266
� element-by-element matrix division 146 254 265

∗ convolution 142 146 424
∗ circular convolution 427 428

var(·) variance 164 389
cov(·) covariance 42 67 87
E[·] expectation 42 64 412
Ea[·] expectation over variable a, if otherwise ambiguous 232 363

≡ is equivalent to, identical to 31 61
� is defined as 15 58

< > ≥ ≤ inequalities, in positive-definite sense for matrices 81 100 388

Tab. Notation.2. Mathematical functions and operations (see Appendix A)
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Symbol Definition Page References

b linear system target 245 293 403
b estimator bias 65 66
c random field clique 193 368
d spatial dimensionality 262 267
e error 54 58 298
ei the ith unit vector: all zeros with a one in the ith position 384
f forward problem 13 15 30
g Markov random field model coefficient 186 202
i, j general indices 17 37
k, n, q matrix and vector dimensions 19 140 148
m measurement 13 40 58
p probability density 42 65 411
r linear system residual 298 306 314
s, t time 42 86
v measurement noise 13 40 58
v eigenvector 249 304 396
w dynamic process noise 42 86 325
x, y spatial location or indices 35 150 221
z system state 13 40 58

A linear system, normal equations 245 293 403
A dynamic model predictor 86 143 325
B dynamic model stochastic weight 42 86 325
C measurement model 13 40 58
E expectation 42 64 412
F Fourier transform 257 263
F change of basis (forwards) 241 247 314
G Markov random field model 186 201
H energy function 192 222 371
I identity matrix 37 277 357
J optimization criterion 198 249
K estimator gain 97 108 330
L constraints matrix 150 157 293
M measurements field (multidimensional) 170 215 267
N image or patch size 134 214 329
P state covariance 40 143 160
Q squared system constraints 152 152
R measurement noise covariance 40 63 87
S change of basis (backwards) 246 247 314
T annealing temperature 192 368
U, V orthogonal matrices 245 250 400
W wavelet transform 277 348
Z random field (multidimensional) 133 141 327

Tab. Notation.3. Symbol definitions
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Symbol Definition Page References

α, β, γ constants 41 98 164
β Gibbs inverse temperature 192 228 355
δ Dirac delta 87 197 200
δ small offset or perturbation 26 160 184
ε small amount 21 305
κ matrix condition number 26 104 246
θ model parameters 50 170
λ regularization parameter 31 35 63
λ eigenvalue 304 396 420
μ mean 37 67 412
ν estimator innovations 95 96 110
ρ correlation coefficient 390 413
ρ spectral radius 300 398
σ standard deviation 69 102 412
σ singular value 27 256 400
τ time offset or period 44 111
ξ correlation length 28 124
ζ threshold 198 300 432

Γ covariance square root 104 166 401
Λ,Σ covariance 66 93 389
Ψ state space or alphabet 119 122 181
Ω problem space (multidimensional lattice) 184 193 415
Ξ region subset operator 167 342

B matrix banding structure 144 146 167
C clique set 193 194
N neighbourhood 184 189 226

N (μ, P ) Gaussian distribution with mean μ, covariance P 28 63 417
O(·) complexity order 143 326

R real 374
R

n real vector of length n 19 253 384
R

k×n real k × n array 143 383

Z Gibbs partition function 192 355

0, 1 scalar constant zero, one 24 59
0, 1 vector constants of all zeros, all ones 19 45 72
000, 111 matrix constants of all zeros, all ones 66 76

Tab. Notation.3. Symbol definitions (cont’d)



Nonstationary Stationary
Model Model Model Type Page References

(Dense) (Kernel)

A,B A,B Square root model (dynamic) 86 143 325
Γ Γ Square root model (static) 104 166 401
P P Squared model (covariance) 40 143 160

V V Square root inverse model (Gibbs field) 193
G G Squared inverse model (Markov field) 186 201

L L Square root deterministic model (constraints) 150 157 293
Q Q Squared deterministic model 152 152

C,R C,R Measurement model 13 40 58

Tab. Notation.4. Spatial model definitions

NomenclatureXXII
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Introduction

Images are all around us! Inexpensive digital cameras, video cameras, computer web-
cams, satellite imagery, and images off the Internet give us access to spatial imagery
of all sorts. The vast majority of these images will be of scenes at human scales —
pictures of animals / houses / people / faces and so on — relatively complex images
which are not well described statistically or mathematically. Many algorithms have
been developed to process / denoise / compress / segment such images, described
in innumerable textbooks on image processing [36, 54, 143, 174, 210], and briefly
reviewed in Appendix C.

Somewhat less common, but of great research interest, are images which do allow
some sort of mathematical characterization, and to which standard image-processing
algorithms may not apply. In most cases we do not necessarily have images here, per
se, but rather spatial datasets, with one or more measurements taken over a two- or
higher-dimensional space.

There are many important problems falling into this latter group of scientific im-
ages, and where this text seeks to make a contribution. Examples abound throughout
remote sensing (satellite data mapping, data assimilation, sea-ice / climate-change
studies, land use), medical imaging (denoising, organ segmentation, anomaly detec-
tion), computer vision (textures, image classification, segmentation), and other 2D /
3D problems (groundwater, biological imaging, porous media, etc.).

Although a great deal of research has been applied to scientific images, in most
cases the resulting methods are not well documented in common textbooks, such
that many experienced researchers will be unfamiliar with the use of the FFT method
(Section 8.3) or of posterior sampling (Chapter 11), for example.

The goal, then, of this text is to address methods for solving multidimensional in-
verse problems. In particular, the text seeks to avoid the pitfall of being entirely
mathematical / theoretical at one extreme, or primarily applied / algorithmic on the
other, by deliberately developing the basic theory (Part I), the mathematical mod-

1
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elling (Part II), and the algorithmic / numerical methods (Part III) of solving a given
problem.

Inverse Problems

So, to begin, why would we want to solve an inverse problem?

There are a great many spatial phenomena that a person might want to study ...

• The salinity of the ocean surface as a function of position;

• The temperature of the atmosphere as a function of position;

• The height of the grass growing in your back yard, as a function of location;

• The proportions of oil and water in an oil reservoir.

In each of these situations, you aren’t just handed a map of the spatial process you
wish to study, rather you have to infer such a map from given measurements. These
measurements might be a simple function of the spatial process (such as measuring
the height of the grass using a ruler) or might be complicated nonlinear functions
(such as microwave spectra for inferring temperature).

The process by which measurements are generated from the spatial process is nor-
mally relatively straightforward, and is referred to as a forward problem. More diffi-
cult, then, is the inverse problem, discussed in detail in Chapter 2, which represents
the mathematical inverting of the forward problem, allowing you to infer the process
of interest from the measurements. A simple illustration is shown in Figure 1.1.

Large Multidimensional Problems

So why is it that we wish to study large multidimensional problems?

The solution to linear inverse problems (see Chapter 3) is easily formulated analyt-
ically, and even a nonlinear inverse problem can be reformulated as an optimization
problem and solved. The challenge, then, is not the solving of inverse problems in
principle, but rather actually solving them in practice.

For example, the solution to a linear inverse problem involves a matrix inversion. As
the problem is made larger and larger, eventually the matrix becomes computation-
ally or numerically impossible to invert. However, this is not just an abstract limit
— even a modest two-dimensional problem at a resolution of 1000 × 1000 pixels
contains one million unknowns, which would require the inversion of a one-million
by one-million matrix: completely unfeasible.
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Process of Interest Measurements

Forward
=⇒

⇐=
Inverse

Fig. 1.1. An inverse problem: You want a nice clear photo of a face, however your camera
yields blurry measurements. To solve this inverse problem requires us to mathematically invert
the forward process of blurring.

Therefore even rather modestly sized two- and higher-dimensional problems become
impossible to solve using straightforward techniques, yet these problems are very
common. Problems having one million or more unknowns are littered throughout the
fields of remote sensing, oceanography, medical imaging, and seismology, to name
a few.

To be clear, a problem is considered to be multidimensional if it is a function of
two or more independent variables. These variables could be spatial (as in a two-
dimensional image or a three-dimensional volume), spatio-temporal (such as a video,
a sequence of two-dimensional images over time), or a function of other variables
under our control.

Multidimensional Methods versus Image Processing

What is it that the great diversity of algorithms in the image processing literature
cannot solve?

The majority of images which are examined and processed in image processing are
“real” images, pictures and scenes at human scales, where the images are not well
described mathematically. Therefore the focus of image processing is on making
relatively few explicit, mathematical assumptions about the image, and instead fo-
cusing on the development of algorithms that perform image-related tasks (such as
compression, segmentation, edge detection, etc.).
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Face Grass Clouds

Fig. 1.2. Which of these might be best characterized mathematically? Many natural phenom-
ena, when viewed at an appropriate scale, have a behaviour which is sufficiently varied or
irregular that it can be modelled via relatively simple equations, as opposed to a human face,
which would need a rather complex model to be represented accurately.

In contrast, of great research interest are images taken at microscopic scales (cells
in a Petri dish, the crystal structure of stone or metal) or at macroscopic scales (the
temperature distribution of the ocean or of the atmosphere, satellite imagery of the
earth) which do, in general, allow some sort of mathematical characterization, as
explored in Figure 1.2. That is, the focus of this text is on the assumption or inference
of rather explicit mathematical models of the unknown process.

Next, in order to be able to say something about a problem, we need measurements
of it. These measurements normally suffer from one of three issues, any one of which
would preclude the use of standard image-processing techniques:

1. For measurements produced by a scientific instrument, acquiring a measurement
normally requires time and/or money, therefore the number of measurements is
constrained. Frequently this implies that the multidimensional problem of interest
is only sparsely sampled, as illustrated in Figure 1.3.

There exist many standard methods to interpolate gaps in a sequence of data, how-
ever standard interpolation knows nothing about the underlying phenomenon be-
ing studied. That is, surely a grass-like texture should be interpolated differently
from a map of ocean-surface temperature.

2. Most measurements are not exact, but suffer from some degree of noise. Ideally
we would like to remove this noise, to infer a more precise version of the under-
lying multidimensional phenomenon.

There exist many algorithms for noise reduction in images, however these are
necessarily heuristic, because they are designed to work on photographic images,
which might contain images of faces / cars / trees and the like. Given a scientific
dataset, surely we would wish to undertake denoising in a more systematic (ide-
ally optimal) manner, somehow dependent on the behaviour of the underlying
phenomenon.
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Fig. 1.3. Multidimensional measurements: Three examples of two- or three-dimensional mea-
surements which could not be processed by conventional means of image processing. The
altimetric measurements are sparse, following the orbital path of a satellite; the ship-based
measurements are irregular and highly sparse, based on the paths that a ship followed in tow-
ing an instrument array; the MRI measurements are dense, but at poor resolution and with
substantial noise.

3. In many cases of scientific imaging, the raw measurement produced by an in-
strument is not a direct measurement of the multidimensional field, but rather
some function of it. For example, in Application 3 we wish to study atmospheric
temperature based on radiometric measurements of microwave intensities: the air
temperature and microwave intensity are indeed related, but are very different
quantities.

Standard methods in image processing normally assume that the measurements
(possibly noisy, possibly blurred) form an image. However, having measurements
being some complicated function of the field of interest (an inverse problem) is
more subtle and requires a careful formulation.
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Statistics and Random Fields

What is it that makes a problem statistical, and why do we choose to focus on statis-
tical methods?

An interest in spatial statistics goes considerably beyond the modelling of phenom-
ena which are inherently random. In particular, multidimensional random fields offer
the following advantages:

1. Even if an underlying process is not random, in most cases measurements of the
process are corrupted by noise, and therefore a statistical representation may be
appropriate.

2. Many processes exhibit a degree of irregularity or complexity that would be
extremely difficult to model deterministically. Two examples are shown in Fig-
ure 1.4; although there are physics which govern the behaviour of both of these
examples (e.g., the Navier–Stokes differential equation for water flow) the models
are typically highly complex, containing a great number of unknown parameters,
and are computationally difficult to simulate.

A random-fields approach, on the other hand, would implicitly approximate these
complex models on the basis of observed statistics.

A random field1 X is nothing but a large collection of random variables arranged on
some set of points (possibly a two- or three-dimensional grid, perhaps on a sphere,
or perhaps irregularly distributed in a high-dimensional space). The random field is
characterized by the statistical interrelationships between its random variables.

The main problem associated with a statistical formulation is the computational com-
plexity of the resulting solution. However, as we shall see, there exists a compre-
hensive set of methods and algorithms for the manipulation and efficient solving of
problems involving random fields. The development of this theory and of associated
algorithms is the fundamental goal of this text.

Specifically, the key problem explored in this text is representational and computa-
tional efficiency in the solving of large problems. The question of efficiency is easily
motivated: even a very modestly sized 256 × 256 image has 65 536 elements, and
the glass beads image in Figure 1.4 contains in excess of 100 million elements! It
comes as no surprise that a great part of the research into random fields involves the
discovery or definition of implicit statistical forms which lead to effective or faith-
ful representations of the true statistics, while admitting computationally efficient
algorithms.

Broadly speaking there are four typical problems associated with random fields
[112]:
1 Random variables, random vectors, and random fields are reviewed in Appendix B.1.
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Fig. 1.4. Two examples of phenomena which may be modelled via random fields: packed
glass beads (top), and the ocean surface temperature (bottom). Alternatives to random fields
do exist to model these phenomena, such as ballistics methods for the glass beads, and coupled
differential equations for the ocean, however such approaches would be greatly more complex
than approximating the observed phenomena on the basis of inferred spatial statistics.

1. Representation: how is the random field represented and parametrized?

2. Synthesis: how can we generate “typical” realizations of the random field?

3. Parameter estimation: given a parametrized statistical model and sample image,
how can we estimate the unknown parameters in the model?
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4. Random fields estimation: given noisy observations of the random field, how can
the unknown random field be estimated?

All four of these issues are of interest to us, and are developed throughout the text.

For each of these there are separate questions of formulation,
How do I write down the equations that need to be solved?

as opposed to those of solution,
How do I actually find a solution to these equations?

Part I of this text focuses mostly on the former question, establishing the mathemat-
ical fundamentals that are needed to express a solution, in principle. This gives us a
solution which we might call

1. Brute Force: The direct implementation of the solution equations, irrespective
of computational storage, complexity, and numerical robustness issues.

Parts II and III then examine the latter question, seeking practical, elegant, or indirect
solutions to the problems of interest. However, practical should not be interpreted to
mean that the material is only of dry interest to the specialist sitting at a computer,
about to develop a computer program. Many of the most fundamental ideas expressed
in this text are particularly in Part II, where deep insights into the nature of spatial
random fields are explored.

A few kinds of efficient solutions, alternatives to the direct implementations from
Part I, are summarized as follows:

2. Dimensionality Reduction: Transforming a problem into one or more lower-
dimensional problems.

3. Change of Basis: A mathematical transformation of the problem which simpli-
fies its computational or numerical complexity.

4. Approximate Solution: An approximation to the exact analytical solution.

5. Approximated Problem: Rather than solving the given problem, identifying a
similar problem which can be solved exactly.

6. Special Cases: Circumstances in which the statistics or symmetry of the problem
gives rise to special, efficient solutions.

These six points give a broad sense of what this text is about.
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Interpolation as a Multidimensional Statistical Problem

We conclude the Introduction by developing a simple canonical example, to which
we frequently refer throughout the text. We have chosen this problem because it
is intuitive and simple to understand, yet possesses most of the features of a large,
challenging, estimation problem.

Suppose you had sparse, three-dimensional measurements of some scalar quantity,
such as the temperature throughout some part of an ocean. You wish to produce a
dense map (really, a volume) of the temperature, based on the observed measure-
ments.

Essentially this is an interpolation problem, in that we wish to take sparse mea-
surements of temperature, and infer from them a dense grid of temperature values.
However by interpolation we do not mean standard deterministic approaches such
as linear, bilinear, or B-spline interpolation, in which a given set of points is deter-
ministically projected onto a finer grid. Rather, we mean the statistical problem, in
which we have a three-dimensional random field Z with associated measurements
M , where the measurements are subject to noise V , such that

mi = zji + vi, (1.1)

where ji is an index, describing the location of the ith measurement. Thus (1.1) gives
the forward model, which we wish to invert (Chapter 2).

Given the definition of the inverse problem, we can formulate the analytical solution,
depending on whether this is a static problem, a single snapshot in time (Chapter 3),
or a more complicated time-dynamic problem, in which the temperature evolves and
is estimated over time (Chapter 4).

However, so far we haven’t said anything about the mathematics or statistics gov-
erning Z . What distinguishes statistical interpolation from deterministic methods,
such as linear or bilinear interpolation, is the ability to take into account specific
properties of Z (Chapter 5). Thus is Z smooth, on what length scales does it exhibit
variability, and what happens at its boundaries? Furthermore, are the statistics of Z
spatially stationary (not varying from one location to another) or not, and are the
statistics best characterized by looking at correlations of Z or at the inverse correla-
tions (Chapter 6)? Finally are there hidden underlying aspects to the problem, such
that the model in one location may be different from that in another (Chapter 7)?

If the problem is particularly large, would it be possible to collapse it along one
dimension, or possibly to solve the problem in pieces, rather than as a whole? One
could also imagine transforming the problem, for example using a Fourier or wavelet
transform (Chapter 8).

At this point we have determined what sort of problem we have, whether reduced in
dimensionality, whether transformed, whether stationary. We are left with two basic
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approaches for solving the inverse problem: we can convert the inverse problem to
a linear system, and use one of a number of linear systems solvers (mostly iterative)
to find the desired map (Chapter 9), or we could use a domain-decomposition ap-
proach that tackles the problem row-by-row, column-by-column, block-by-block, or
scale-by-scale (Chapter 10). We may also wish to understand the model better by
generating random samples from it (Chapter 11).

How to Read This Text

The preceding interpolation example has been very short and many details are omit-
ted, but it is hoped that it gives the reader a sense of the scope of the ideas developed
in this text. The reader wishing to follow up on interpolation in more detail is encour-
aged to move directly to the three interpolation examples developed in Chapter 2 on
pages 20, 32, and 36.

Those readers unfamiliar with the contents of this text may wish to survey the book
by glancing through the worked applications at the end of every chapter, which cover
a variety of topics in remote sensing and scientific imaging. These applications, and
also the various examples throughout the text, are all listed beginning on page XIII.

Any reader who wishes to explore multidimensional random fields and processes
in some depth should focus on the chapters on inverse problems and modelling,
Chapters 2, 5, 6, and 8, which form the core of this text.

Readers who are interested in numerical implementations of the methods in this text
should consult the list of MATLAB2 code samples on page XV. The code samples
are cross-referenced to figures and examples throughout the text, and all of the listed
samples are available online at

http://ocho.uwaterloo.ca/book

2 MATLAB
R© is a registered trademark of The MarhWorks Inc.

http://ocho.uwaterloo.ca/book
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Inverse Problems and Estimation
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Inverse Problems

An understanding of forward and inverse problems [12, 301] lies at the heart of any
large estimation problem.

Abstractly, most physical systems can be defined or parametrized in terms of a set
of attributes, or unknowns, from which other attributes, or measurements, can be
inferred. In other words, the quantities m which we measure are some mathematical
function

m = f(z) (2.1)

of other, more basic, underlying quantities z, where f may be deterministic or
stochastic. In the special case when f is linear, a case of considerable interest to
us, then (2.1) may be expressed as

m = Cz or m = Cz + v (2.2)

for the deterministic or stochastic cases, respectively. Normally z is an ideal, com-
plete representation of the system: detailed, noise-free, and regularly structured (e.g.,
pixellated), whereas the measurements m are incomplete and approximate: possibly
noise-corrupted, irregularly structured, limited in number, or somehow limited by
the physics of the measuring device.

The task of inferring or computing the measurements m from the detailed funda-
mental quantities z is known as the forward problem. This is, by definition, an easy
problem, since the relationship between the fundamental and measured quantities
is given by some model f(). For example knowing z — the exact shape, size, and
arrangement of all blood vessels, organs, bones, etc. in the body — makes it fairly
easy to predict the appearance of m, a measured X-ray [183]. A variety of further
examples is shown in Table 2.1.

For deterministic systems, the algorithmic task of the forward problem is referred to
as “simulation;” for the stochastic counterparts the task is known as “sample-path
generation” or “sampling.”

P. Fieguth, Statistical Image Processing and Multidimensional Modeling, Information Science
and Statistics, DOI 10.1007/978-1-4419-7294-1_2, © Springer Science+Business Media, LLC 2011
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Knowing . . . It is easy to determine . . .

The arrangement and sizes of all
organs, bones, blood vessels etc.

−→ The appearance of a measured
X-ray, MRI, CAT scan etc.

The known masses and positions
of stars in a cluster

−→ The shape of the cluster’s gravi-
tational field

The 3D density of rock, magma,
and minerals below the ocean
floor

−→ The gravitationally induced
shape of the surface of the ocean

The underground distribution
and layering of rock, clay, sand

−→ Groundwater and other pollutant
flows

A sharp image, in focus −→ A blurry image, out of focus

Table 2.1. Examples of forward problems: Generally, knowing some regular, well-structured,
fundamental set of quantities (left) allows derived quantities (right) to be inferred relatively
easily.

Fundamental
Regularly Structured
Complete, Accurate

Forward Problem:
Easy

−−−−−−−−→

←−−−−−−−−
Inverse Problem:

Hard

Derived
Typically Irregular

Incomplete, Approximate

Table 2.2. An inverse problem is, by definition, the difficult inversion of a comparatively-
straightforward forward problem. Inverse problems are common because the available mea-
surements in any given problem normally have the attributes on the right, whereas what we
want are those are those on the left.
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The task of inferring the reverse, that is, inferring the fundamental quantities z from
the derived or measured ones m, is known as an inverse problem. Since inferring
unknowns from measurements is a universal objective in experimental science, the
solution of inverse problems is of vast interest and well-discussed in the literature
[24, 27, 129, 140, 154, 189, 298, 304, 308–310]. It is also a hard problem, for two
reasons:

1. The inverse function
z = f−1(m) (2.3)

is normally not known, explicitly, from the mathematics or physics of the prob-
lem. The relationship from measurements to fundamental quantities is known
only implicitly, indirectly, through the forward problem. Continuing the previ-
ous example, it takes considerable practice and skill to reconstruct z, the three-
dimensional anatomy of a patient, fromm, a sequence of observed X-ray images.

If the forward problem is, indeed, invertible, then the inverse can be characterized
as

z = f−1(m) � {z|f(z) = m}, (2.4)

that is, to try all possible values of z to find the one which produced the observed
measurements m. Keep in mind that for an n × n eight-bit greyscale image, the
number of possible configurations for z is enormous:

|{z}| = (28
)(n2)

. (2.5)

It is important to note, however, that some inverse problems can be solved by
the repeated application of a forward problem, such as the patch-based methods
in Section 11.4, or in simple cases where a sequence zi can be found such that
f(zi)→ m, such as in Example 2.1.

2. Normally the quantity or quality of the measurements is inadequate to allow a
reconstruction of z, implying that the inverse function f−1 does not even exist.

For example, a single X-ray image, as sketched in Figure 2.1, cannot tell a physi-
cian whether a bone lies towards the front or the back of a body — both scenarios
result in the same measurement.

Given the basic structure of an inverse problem, as outlined above, there are four
questions to discuss:

1. Can we generalize this idea of forward and inverse problems to more heteroge-
neous problems?

2. When is the inverse problem “well-posed”? That is, does a solution exist?

3. When is the inverse problem “well-conditioned”? That is, will we find a mean-
ingful solution, given a limited numerical accuracy in our computations?
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Example 2.1: Root Finding is an Inverse Problem

Given a nonlinear function
m = f(z),

finding the roots of f() is just an inverse problem:

z = f−1(0) or Find z such that f(z) = m ≡ 0. (2.6)

For this type of problem it is very common, in fact, for the inverse problem to be
solved by repeated application of the forward problem.

For example, the bisection method of numerical root finding examines the sign of
f(z) for various z, starting with two points z1, z2 such that f(z1) · f(z2) < 0:

m = f(z)

0
z

m

z1

z3 z2

z′1

For this inverse problem uniqueness fails — there are multiple solutions — there-
fore the numerical solution will be a function of initialization: starting at (z1, z2)
will yield a different solution from starting at (z′1, z2).

4. Given a poorly-posed or poorly-conditioned inverse problem, how do we regu-
larize it to allow a solution to be found?

The following four sections discuss each of these, in sequence.

2.1 Data Fusion

Data fusion means many different things to different people and research disciplines.
Invariably it implies some sort of fusion, or combining, of different pieces of infor-
mation to infer some related quantity.

In many contexts data fusion is associated with theories of evidence and belief, espe-
cially Dempster–Shafer theory [283, 344], which seeks to separate notions of prob-
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Z1 Z2

Hidden
Structures

?
y

?
y

Vertical
Projections

?
y

?
y

Available
Measurements

Projection m1 Projection m2

Fig. 2.1. The ambiguity of an inverse problem: One-dimensional projections (essentially line
integrals)m1,m2 are observed for two different two-dimensional structures Z1, Z2. Although
the two-dimensional structures are clearly very different, they result in identical projections
(although clearly a sideways projection would reveal the differences!).

ability (which indicates a degree of likelihood) and belief (indicating the degree to
which we are confident in the truth of some statement).

In this book we do not use Dempster–Shafer theory or notions of belief; rather, we
use data fusion to mean the use of multiple, different measurement sets, such as
shown in Figure 2.2, in solving an inverse problem. Such problems occur widely in
multisensor scenarios:

• Remote sensing based on data from multiple satellite platforms

• Multispectral data processing

• Visual and infrared computer vision

• Vision, acoustic, and tactile sensors in robotics

The mathematical formulation of such a problem is no different from before: the
multiple measurements

mi = fi(z) (2.7)

are equivalent to a single stacked set of measurements
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Fig. 2.2. Data fusion means the combining of multiple datasets, a problem encountered very
frequently in medical imaging, remote sensing, and scientific image processing. Here a sin-
gle soil sample is viewed in different polarizations, such that each image reveals different
structures or attributes.

m =

⎡

⎢
⎣

m1
...
mk

⎤

⎥
⎦ =

⎡

⎢
⎣

f1(z)
...

fk(z)

⎤

⎥
⎦ = f(z) (2.8)

as in (2.1).

The reason that studying data fusion is of practical interest is that the algorithmic
approach to the stacked problem (2.8) may be considerably more difficult than the
individual problems of (2.7). Specifically, the tractability of the individual problems
of (2.7) may rely on specific properties of fi, such as locality, sparsity, or stationarity,
properties which may be lost in the combined setting.

To illustrate this point, consider the following examples from image processing:

Forward Operation Given Measurements Problem Solution (Inversion)

Blurring ⇒ Blurry Image ⇒ Deconvolution

Added Noise ⇒ Noisy Image ⇒ Denoising

Both ⇒
{

Some blurred images
Some noisy images

}
⇒ ???

That is, standard methods in image processing (Appendix C), such as deconvolution
or denoising, do not extrapolate to mixed, nonstationary, heterogeneous settings. Al-
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though it is not possible to formulate a single computationally efficient generalized
approach to heterogeneous inverse problems, we are nevertheless motivated to find
approaches to such data fusion problems.

In the following sections we do not rely on specific properties of the forward problem
f ; we will keep the data fusion approach in mind, and will think of f as referring to
the heterogeneous case of (2.8).

2.2 Posedness

The question of posedness is one of invertibility. That is, does (2.1) admit a definition
of the inverse function f−1? In the early 1900s, Hadamard [154] formulated the
following three criteria to be satisfied in order for a problem to be well-posed:

EXISTENCE: Every observationm has at least one corresponding value of z.
UNIQUENESS: For every observationm, the solution for z is unique.
CONTINUITY: The dependence of the solution z on m is continuous.

We can interpret the above in the context of our linear forward problem m = Cz
from (2.2). Suppose that C is k × n (the reader is pointed to Appendix A.1 if the
matrix terminology used here is unfamiliar):

i. If C does not have full row rank (always true if k > n)
→ The rows of C are linearly dependent
→ Thus Ra(C) ⊂ R

k

→ Therefore there exists m ∈ R
k such that m /∈ Ra(C)

→ Existence fails.

ii. If C has full row rank (requires k ≤ n)
→ Ra(C) = R

k

→ Existence is satisfied.

iii. If C does not have full column rank (always true if k < n)
→ The columns of C are linearly dependent
→ Thus Nu(C) 	= {0}
→ There exists x ∈ Nu(C) such that x 	= 0
→ It follows that Cz = C(z + x)
→ Uniqueness fails.

iv. If C has full column rank (requires k ≥ n)
→ Nu(C) = {0}
→ Uniqueness is satisfied.
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Example 2.2: Interpolation and Posedness

Consider an inverse problem, characterized by the following forward model:

z1
z2 z3

z4
z5

x

Forward−−−−−→
m=Cz

m1

m2

x

Standard linear interpolation would produce a straight-line sequence . . .

x

But there is actually nothing inherent in the forward model to allow us to claim
this kind of straight-line behaviour. Algebraically, we would write the forward
model as

m = Cz or

[
m1

m2

]
=
[
1 0 0 0 0
0 0 0 0 1

]

⎡

⎢
⎢
⎢
⎢
⎣

z1
z2
z3
z4
z5

⎤

⎥
⎥
⎥
⎥
⎦

(2.9)

Clearly Nu(C) 	= {0} since, for example, z2 is not measured:

C

⎡

⎢
⎢⎢
⎢
⎣

0
z2
0
0
0

⎤

⎥
⎥⎥
⎥
⎦

= 0. (2.10)

Therefore uniqueness fails, and the problem of interpolation is ill-posed.

v. If C has full row and column rank (requires k = n)
→ Then C is invertible
→ z = C−1m offers a single solution for z (uniqueness),

for every value of m (existence),
and is a continuous function of m (continuity)

→ Therefore the problem is well-posed.
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The overwhelming majority of image-analysis1 problems are ill-posed; three simple
examples are illustrated in Figure 2.3:

IMAGE BLURRING: Although the blurred image may seem highly distorted from the
original, if the exact nature of the blurring operation is known then it can, under
certain circumstances,2 be inverted perfectly. This problem may be well-posed.

IMAGE SUBSAMPLING: Here the problem is to interpolate the missing portions of
the image. However, with pieces of the image z not observed, uniqueness fails and
the problem is ill-posed.

IMAGE NOISE: Although the original image is clearly discernible through the noise,
the original z is unknown and uniqueness fails.

Two further examples illustrate failed continuity and existence:

EDGE DETECTION: Suppose we wish to estimate the edge process z(x) underlying
an observed signal m(x) [27]. We propose the inverse function

z(x) =
∂m

∂x
. (2.11)

If we consider two sets of observations

m = g(z) and m′ = g(z) + ε sin(Ωz), (2.12)

then m and m′ can be arbitrarily close for small ε, however the resulting edge
maps z, z′ can be made arbitrarily far apart for large Ω, thus continuity fails.

REDUNDANT MEASUREMENTS: Suppose that we take multiple (redundant) mea-
surements, for example, to reduce measurement uncertainty or noise. The nominal
forward model ⎡

⎢
⎣

m1

...
mn

⎤

⎥
⎦ =

⎡

⎢
⎣

1
...
1

⎤

⎥
⎦ z (2.13)

is ill-posed, because unless all of the measurements m1, . . . ,mn are identical,
existence fails for z.

Ill-posedness is not necessarily a terrible difficulty. Indeed, there are very simple,
common problems, such as the linear regression illustrated in Example 2.3, which
are ill-posed but for which solutions can be proposed. In general:

1 Appendix C provides a review of image processing.
2 Actually, the inversion is possible only for certain types of blur, and then only on an infinite

domain, a finite domain with known boundary conditions, or on a periodic domain with a
blur based on circular convolution.
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f1−−−−−−−→
BLUR

f−1
1−−−−−−−→

DEBLUR ?

f2−−−−−−−→
SUBSAMP

f−1
2−−−−−−−→

INPAINT ?

f3−−−−−−−→
NOISE

f−1
3−−−−−−−→

DENOISE ?

Fig. 2.3. Three simple forward operators from image processing: Blurring f1, subsampling f2,
and additive noise f3 (also see Appendix C). All three forward operations lead to differently-
degraded images (centre column). Methods of deblurring, in-painting, and denoising are com-
mon in the image processing literature, however formally f2 is ill-posed and f1, f3 may or may
not be well-posed, depending on the type of image blur and noise, respectively. The question
of image deblurring is further examined in the context of problem conditioning, in Figure 2.4,
and the question of image denoising in the context of regularization, in Figure 2.5.

IF EXISTENCE FAILS: There is no z corresponding to the given m: the problem is
overdetermined. We view m to have been perturbed by noise from its ideal value,
so we choose that z which comes closest:

Select an estimate ẑ by minimizing ‖m− Cẑ‖ for some norm ‖ · ‖.

IF UNIQUENESS FAILS: For the given observationm there are infinitely many possi-
ble solutions for z: the problem is underdetermined. We somehow need additional
information on z, such as the regularization constraints and prior models discussed
later in this chapter. A simple assertion is to select a small value for z:

Select an estimate ẑ by minimizing ‖ẑ‖ over those z satisfying m = Cz.
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Example 2.3: Regression and Posedness

In doing linear regression, we assert a model

y = ax+ b.

Thus we have unknowns

z =
[
a
b

]
.

In a typical linear regression we are given many
n � 2 data points, but have only two un-
knowns a, b. This is essentially an example of
repeated measurements as in (2.13), therefore
existence fails and the problem is ill-posed.

This is easily seen in the second plot: no
straight line exists which passes through all of
the given points.

However, we never expected the given data
points to lie in a perfect line; instead, we seek
an estimate

ẑ =
[
â

b̂

]

which passes as closely as possible to the given
points, minimizing

n∑

i=1

(
yi − (âxi + b̂)

)2

.

y = ax + b

0
x

y

0
x

y

â

ŷ = âx + b̂

0
x

y

b̂

2.3 Conditioning

A problem f() is said to be well-posed if existence, uniqueness, and continuity are
satisfied. Well-posedness is a sufficient condition for the mathematical inverse f−1()
to exist.

However, for the mathematical inverse to exist theoretically does not imply that it
can be reliably found, in practice, using a computer with finite numerical accuracy.
That is, the principal limitation in the definition of posedness is that a well-posed
problem is not necessarily robust with respect to noise or numerical rounding errors.

The key question in conditioning [27,313] is the numerical precision required to pro-
duce a meaningful result, which is essentially dependent on the relative magnitudes
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Blurred Image Deblur – Nonperiodic Deblur – Periodic

Fig. 2.4. The image deblurring problem, following up on Figure 2.3. The deblurring problem is
very ill-conditioned, since blurring removes high-frequency details, and deblurring takes dif-
ferences and multiplies them by a large number in order to reconstruct those details. Inasmuch
as the image is not known outside of its boundaries, reconstruction errors appear first at the
boundaries (middle). In the less realistic periodic case, right, both the blurring and deblurring
assume the image to be periodic.

of values which need to be added or subtracted from one another. For example, the
expression [(

1020 + 10−20
)− 1020

] · 1020 (2.14)

which obviously equals 100, is extremely difficult to compute numerically,3 unless it
is first simplified, yet operations such as this are very typical in working with poorly-
conditioned matrices.

In the context of our canonical system m = Cz, well-posedness is determined as

Well Posed ⇐⇒ C is invertible ⇐⇒ det(C) 	= 0. (2.17)

However the numerical computation of det(C) is susceptible to rounding errors:

3 MATLAB returns an answer of 0.
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Example 2.4: Measurement Models and Conditioning

The degree to which measurements are blurred is a rough measure of condition
number κ. In the following example five measurement structures are shown, rang-
ing from separate measurements of each individual state element (easy) to highly
overlapping, nearly redundant measurements (hard).

z

Delta Exp. Wide Exp. Gauss. Wide Gaus.

C

m

κ(C) 1 4 23 5 745

ẑ ± σ

Each panel in the second row shows seven curves, with each curve corresponding
to one row of C. We have noisy measurements

m = Cz + v (2.15)

which need to be inverted to form estimates:

ẑ = C−1m. (2.16)

Because the measurements are subject to noise, the experiment is repeated 100
times, with the results plotted as a range (the mean plus/minus one standard devi-
ation).

The sensitivity and variability in the estimates ẑ to the choice of measurement
model (and consequent condition number) is very clear: the larger the condition
number the greater the variability (i.e., sensitivity to noise). The Gaussian blur
function, in particular, is exceptionally sensitive and poorly conditioned.
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Calculated
det(C)

Naı̈ve
Conclusion

Possible Scenario . . .

0 System ill-posed
Rounding error in computation of det(C).
System is actually well-posed, det(C) 	= 0.

0.00043 System well-posed
Rounding error in computation of det(C).
System is actually ill-posed, det(C) = 0.

That is, it is actually very difficult to state, categorically, whether a matrix is singular,
unless the determinant is computed analytically / algebraically.

We can quantify the degree to which such numerical errors may occur. Suppose we
have a well-posed problem and perturb the observation to m + δm. Thus we have
the modified solution

z + δz = C−1(m+ δm) −→ δz = C−1δm (2.18)

from which we can find bounds

m = Cz −→ ‖m‖ ≤ ‖C‖ · ‖z‖
δz = C−1δm −→ ‖δz‖ ≤ ∥∥C−1

∥
∥ · ‖δm‖ . (2.19)

We can therefore express the relative sensitivity in the estimates to perturbations in
the measurements as ‖δz‖

‖z‖ ≤ κ
‖δm‖
‖m‖ (2.20)

where, from (2.19), we find
κ � ‖C‖ · ‖C−1‖ (2.21)

where κ is known as the condition number of matrix C.

Alternatively, suppose that the system matrix C itself is perturbed to C + δC, which
induces a perturbation δz in the solution to the linear system. Thus

m = (C + δC)(z + δz) = Cz + δCz + Cδz + δCδz. (2.22)

Because Cz = m, and ignoring the second-order term, to first order we have

δCz = −Cδz −→ δz = −C−1δCz. (2.23)

Thus the solution sensitivity is given by

‖δz‖
‖z‖ =

‖ − C−1δCz‖
‖z‖ ≤ ‖ − C

−1‖‖δC‖‖z‖
‖z‖ = ‖ − C−1‖‖δC‖. (2.24)

Expressing the relative sensitivity as before,

‖δz‖
‖z‖ ≤ κ

‖δC‖
‖C‖ (2.25)
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then

κ
‖δC‖
‖C‖ = ‖ − C−1‖‖δC‖ ⇒ κ � ‖C−1‖‖C‖, (2.26)

which is the same notion of matrix sensitivity as before, in (2.21).

Clearly there can be various possible definitions of matrix condition number, since
the expression

κ(C) = ‖C‖ · ‖C−1‖ (2.27)

is a function of the chosen matrix norm, such as the large family of induced norms

‖C‖ = max
x �=0

‖Ax‖
‖x‖ (2.28)

derived from any vector norm ‖x‖. If the common Frobenius norm [140] is chosen,
then (2.27) reduces to the most widely used definition of condition number:

κ � σmax(C−1)
σmin(C−1)

=
σmax(C)
σmin(C)

, (2.29)

the ratio of largest to smallest singular values (see Appendix A.7.2) of matrix C.

Intuitively, we interpret conditioning as a generalization of posedness. For our lin-
ear system m = Cz, the problem being ill-posed implies that C is rectangular or
singular, further implying that σmin(C) = 0, thus κ =∞.

In other words, we can interpret ill-posed problems as lying on one end of the spec-
trum of conditioning, possessing a condition number of ∞, and not materially dif-
ferent from a well-posed problem having a huge condition number.

Example 2.5: Matrix Conditioning

So what does the condition number κ of a matrix really mean?

Essentially, the condition number measures the degree to which a matrix is sensi-
tive to the exact values of the matrix entries, entries which might be perturbed due
to floating-point representation errors, numerical rounding errors, or numerical
approximations. For example, given the two matrices

M1 =

⎡

⎣
1 0 x
0 1 0
x 0 1

⎤

⎦ M2 =

⎡

⎣
1 0.99 y

0.99 1 0.99
y 0.99 1

⎤

⎦ (2.30)

Example continues . . .
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Example 2.5: Matrix Conditioning (cont’d)

In M1, any value
− 1 < x < 1 (2.31)

is valid for x, therefore M1 has a low condition number, since none of the matrix
entries are terribly constrained by the others. On the other hand, in M2, the value
of y is forced to be in a relatively narrow range

0.96 < y < 1, (2.32)

therefore the conditioning of M2 is somewhat poor. (The reader may wish to
examine (A.55) and Figure A.1 in Appendix A.4.)

One can study condition number more systematically by simulation. Sup-
pose we have a one-dimensional random process z with Gaussian correlation,
parametrized by correlation length ξ:

z(ξ) ∼ P (ξ) 0 < ξ. (2.33)

Suppose we randomly distort the elements of P with a symmetric perturbation:

P̄ (ξ) = P (ξ) + (W +WT ) wij ∼ N (0, σ2). (2.34)

By doing this operation 500 times, we can examine how often P̄ stays positive-
definite:
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We see very clearly that larger condition numbers permit only smaller and smaller
perturbations, if the matrix P̄ is to stay positive-definite. That is, increasing the
condition number pushes the covariance eigenvalues ever closer to zero, making
it possible for ever smaller perturbations to push the eigenvalues of P̄ across zero
to be negative, in which case P̄ fails to be positive-definite.



2.4 Regularization and Prior Models 29

Original Image Noisy Image

Linear Filtering

Nonlinear Median Filter

Fig. 2.5. The image denoising problem, following up on Figure 2.3. By making very modest
assumptions about image smoothness, it is possible to regularize the inverse problem. A simple
linear filter assumes the image to be smooth, such that the estimates are slightly blurred to
attenuate the noise; a median filter, on the other hand, is a nonlinear estimator assuming the
image to be piecewise planar, such that isolated noise pixels are more completely removed,
and the image edges remain sharp. Further discussion can be found in Appendix C around
Figure C.5.

2.4 Regularization and Prior Models

The questions of posedness and, to some extent, of conditioning are mostly theo-
retical ones: in our context, nearly all practical inverse problems are ill-posed. The
question, then, of greatest practical interest is how to find some sort of meaningful
solution to a given ill-posed inverse problem.

For example, although the image subsampling and additive noise examples of Fig-
ure 2.3 are ill-posed, both problems are routinely solved using interpolation, as is
illustrated for the denoising problem in Figure 2.5. However the act of interpola-
tion presupposes some degree of continuity or smoothness in z, assumptions which
were not explicitly stated in the model m = Cz; these additional assumptions or
constraints are the key to a well-posed problem.

The general approach is to take a given inverse problem and to improve the posed-
ness or conditioning by applying additional constraints. In principle, asserting con-
straints to make a problem well-posed is very easy; however the key to meaningful
regularization is to assert just enough constraints to adequately condition without
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Ill-Posedness due to Existence Failure

Basic Circumstance More measurements than unknowns
Common Example Linear Regression
Needed Constraints? Need to make assertion regarding the Measurement model;

No knowledge needed about z.

Ill-Posedness due to Uniqueness Failure

Basic Circumstance More unknowns than measurements
Common Example Image Interpolation
Needed Constraints? Need to make assertion regarding the Prior model;

Knowledge is required about z.

Table 2.3. A Comparison of Ill-Posedness due to Uniqueness and Existence Failures

excessively modifying the original inverse problem. The approach taken depends on
the nature of the ill-posedness or ill-conditioning.

First, if existence fails but uniqueness is satisfied, we typically select z to be most
consistent with the measurements; that is, we estimate

ẑ = argz min ‖m− f(z)‖. (2.35)

Since uniqueness is satisfied, the most consistent z is expected4 to be unique; there-
fore no prior information or additional constraints are required regarding z. The prob-
lem is made solvable by asserting that the measurement model is not exact, that the
measurements are subject to error. If we choose a typical squared norm ‖ · ‖ = | · |2,
then (2.35) is referred to as a least-squares problem.

If uniqueness fails, there are multiple choices of z which perfectly satisfy the for-
ward problem. Since there are multiple choices for z satisfying the measurement
model perfectly, we require constraints or prior information on z itself. A very sim-
ple constraint is to select the smallest z:

ẑ = argz min
{‖z‖ | m = f(z)

}
. (2.36)

In practice this approach is not very useful (see Example 2.6), so Sections 2.4.1
and 5.5 develop other constraints. At a minimum, together the constraints and mea-
surements must satisfy uniqueness.

It is important to clearly recognize the fundamental differences between problems of
existence and problems of uniqueness, as outlined in Table 2.3. The natures of the
problems and corresponding solutions are quite different.

4 Whether there are one or more most consistent z will depend on the details of f() and the
choice of norm. The most consistent z will be unique for linear f and quadratic norm.
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Questions of continuity or conditioning are a bit more subtle, addressed by reg-
ularization. The idea behind regularization stems from a proposal of Tikhonov
[308–310], which was to design a family of estimators ẑ(m,λ) which continuously
approximate some ideal (ill-conditioned or discontinuous) estimator ẑ(m), such that

lim
λ→0

ẑ(m,λ) = ẑ(m). (2.37)

In the context of this book, our specific interest is in linear least-square inverse prob-
lems, in which case the regularized estimator, combining (2.35) and (2.36), becomes

ẑ(m,λ) = argz min
{
(Meas. Constraints) + λ (Estimate Constraints)

}
(2.38)

= argz min
{‖m− Cz‖R−1 + λ ‖Lz‖}, (2.39)

where each row of L asserts a constraint, separate from the measurements, and where

‖m− Cz‖R−1 � (m− Cz)TR−1(m− Cz) (2.40)

‖Lz‖ ≡ ‖Lz‖I−1 � (Lz)T I−1(Lz) = zT (LTL)z, (2.41)

where R represents the measurement uncertainty.

The idea is that λ controls the degree of approximation:

Tiny λ: Weak constraints, faithful to the original, but poorly conditioned;
Large λ: Strong constraints, a poor approximation, but well conditioned.

This leaves us with two questions: how do we find appropriate constraints L, and
how is an appropriate value of λ to be selected?

How we interpret and answer these questions depends on our basic understanding of
the problem, leading to one of the most significant philosophical divides in statistics:

DETERMINISTIC: The vector z is just a set of unknowns, a set of numbers which we
need to estimate.

BAYESIAN: The vector z is a set of random variables, which obey certain statistics
given by a prior model.

In many ways this division is nothing more than philosophical, in that mathematically
the two approaches can result in the same algebraic formulation, as discussed in
Section 3.2.4. However, the choice of approach may influence how we set up and
understand an estimation problem, outlined in the following two sections.
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Example 2.6: Interpolation and Regularization

Given the inverse problem from Example 2.2,

z1
z2 z3

z4
z5

x

Forward−−−−−→
m=Cz

m1

m2

x

with forward model

m = Cz or

[
m1

m2

]
=
[
1 0 0 0 0
0 0 0 0 1

]

⎡

⎢⎢
⎢
⎢
⎣

z1
z2
z3
z4
z5

⎤

⎥⎥
⎥
⎥
⎦

(2.42)

there is a wide variety of approaches which we could now try to follow, in order
to generate a solution:

(i) We could try to solve for ẑ as

ẑ = argẑ min ‖m− Cẑ‖ ⇒ Problem: Uniqueness fails
(as we saw in Example 2.2)

(ii) We could modify the criterion based on (2.36) and regularize:

ẑ = argẑ min
{
‖m− Cẑ‖ + λ ‖ẑ‖

}
⇒ Well posed!

The solution for ẑ then looks like

x

What went wrong? The regularization constraint penalized the deviation of
individual elements of ẑ from zero, therefore the unmeasured points were
just set to zero.

We need constraints which inter-relate the elements of z.

Example continues . . .
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Example 2.6: Interpolation and Regularization (cont’d)

(iii) To have constraints which inter-relate state elements, we can penalize the
difference between adjacent elements, essentially a penalty on slope:

ẑ = argẑ min
{
‖m− Cẑ‖ + λ ‖Lẑ‖

}
(2.43)

where

L =

⎡

⎢
⎢
⎣

1 -1 0 0 0
0 1 -1 0 0
0 0 1 -1 0
0 0 0 1 -1

⎤

⎥
⎥
⎦

If we select λ = 1, then the solution (2.43) is found to be

ẑ =

⎡

⎢⎢
⎢
⎢
⎣

5/6 1/6
4/6 2/6
3/6 3/6
2/6 4/6
1/6 5/6

⎤

⎥⎥
⎥
⎥
⎦

[
m1

m2

]
=

m1

m2

x

Now we’re interpolating!

Observe, however, that ẑ1 	= m1, ẑ2 	= m2 because of the compromise in
(2.43) between satisfying the measurement constraint

(ẑ1 −m1)2 + (ẑ2 −m2)2

and the slope constraint ∑

i

(ẑi − ẑi+1)2.

We can observe the effects of this tradeoff by varying λ:

x x x

Small λ Medium λ Large λ
Meas. Dominate Balanced Slope Dominates

At this point it is not, however, possible to talk about the correct or optimum value
of λ. In principle, all possible tradeoffs between measurement and prior yield a
valid estimate. Inferring the optimum λ on the basis on the measurements is the
subject of validation, discussed in Example 2.8.

Example continues . . .
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Example 2.6: Interpolation and Regularization (cont’d)

The power of this approach, in comparison to standard interpolation, is in its flex-
ibility:

(iv) Suppose we believe that z is smooth, but should decay to zero away from
measurements:

ẑ = argẑ min
{
‖m− Cẑ‖ + λα ‖Lẑ‖ + λ(1− α) ‖ẑ‖

}
. (2.44)

This is no longer linear interpolation:

x x

In both cases we see intermediate points pulled towards zero.

(v) We could, in principle, have a space-varying slope penalty:

L =

⎡

⎢
⎢
⎣

1 -1 0 0 0
0 2 -2 0 0
0 0 3 -3 0
0 0 0 4 -4

⎤

⎥
⎥
⎦

which would lead to the following estimates:

x

having a high penalty (low slope) to the right, and a comparatively low
penalty (permitting high slope) to the left.

2.4.1 Deterministic Regularization

The vector z is just a set of unknowns, a set of numbers which we need to estimate.
If the unknowns are small in number and existence is satisfied, then the usual formu-
lation of (2.35) may be adequate. However when uniqueness fails and for the large
spatial problems of interest to us, some additional regularization / conditioning will
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be required by specifying constraints L, leading to

ẑ = argz min
{‖m− Cz‖R−1 + λ ‖Lz‖}, (2.45)

where uniqueness is satisfied if and only if the combined measurements and regular-
ization constraints [

C
L

]
(2.46)

have full column rank. By far the most common regularizer is a smoothness con-
straint. If we imagine, for notational convenience, that z(x) is an unknown signal, a
function of continuous spatial index x, then we can interpret a smoothness constraint
as penalizing the derivatives of z(x), integrated over space:

‖Lz‖ �
∑

i

∫
γi|z(i)|2 dx, (2.47)

where z(i) is the ith order derivative. Considering a two-dimensional image z(x, y),
the most common definitions of smoothness are the first-order membrane constraint

‖L1z‖ �
∫∫ {∣∣

∣∣
∂z

∂x

∣
∣
∣∣

2

+
∣
∣
∣∣
∂z

∂y

∣
∣
∣∣

2
}

dx dy, (2.48)

which corresponds to the energy of a thin membrane or rubber sheet, and the second-
order thin-plate constraint

‖L2z‖ �
∫∫ {∣∣

∣
∣
∂2z

∂x2

∣∣
∣
∣

2

+ 2
∣∣
∣
∣
∂2z

∂x∂y

∣∣
∣
∣

2

+
∣∣
∣
∣
∂2z

∂y2

∣∣
∣
∣

2
}

dx dy (2.49)

which corresponds to the energy of a thin steel plate. Obviously the above easily
generalize to other orders and to other numbers of dimensions, as we show in Sec-
tion 5.5. In practice, of course, for a vector z the above derivatives are approximated
as differences.

With a smoothness constraint chosen, the remaining objective is the selection of
parameter λ. The key problem is that, by definition, there is no optimum or correct
approach for selecting λ, because there is no objective criterion for it. Instead, we
are required to select some heuristic, which has led to a large literature on parameter
selection, validation, cross-validation, etc. [139, 140, 172, 173,322,323].

Since the focus of this text is on Bayesian regularization, the choice of λ does not
greatly concern us, so we limit our attention to a few basic approaches [27].

VALIDATION: We select λ to relax the estimation problem to a certain degree of
“badness.” There are two basic alternatives:

1. In (2.39), of all of the solutions ẑ which satisfy the constraints to some degree,
select the estimate which best satisfies the measurements; that is,
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Example 2.7: Interpolation and Smoothness Models

We continue with Example 2.6: we have a one-dimensional problem, with a few
measurements, which we would like to interpolate.

For illustration purposes, we consider two smoothness models:

First-order example: Second-order example:
Penalize ∂z

∂x Penalize ∂2z
∂x2

λ Small

λ Large

λ Small

λ Large

In each case there are four measurements, indicated by dots.

The first-order case penalizes slope (but not mean) and the solution is clearly
piecewise-linear. As λ increases it tends towards a horizontal (zero-slope) line,
equal to the mean of the data points.

The second-order case penalizes curvature (but not slope or mean) and is piece-
wise parabolic. As λ increases the solution tends towards a straight line, corre-
sponding to the least-squares linear regression through the data points.

ẑ = argz min
{‖m− Cz‖R−1

}
such that ‖Lz‖ ≤ ε (2.50)

where ε is a specified relaxation parameter. It can be shown [172] that this is
equivalent to selecting λ such that

‖Lẑ(m,λ)‖ = ε. (2.51)

2. In (2.39), of all of the solutions ẑ which satisfy the measurements to some
degree, select the estimate which best satisfies the constraints; that is,

ẑ = argz min
{‖Lz‖} such that ‖m− Cz‖R−1 ≤ ε (2.52)

where ε is a specified relaxation parameter. It can be shown [173] that this is
equivalent to selecting λ such that

‖m− Cẑ(m,λ)‖R−1 = ε. (2.53)
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CROSS-VALIDATION: In both of the above cases we still require the selection of
parameter ε, which is a limited improvement over having to specify λ. In response,
a variety of considerably more powerful techniques, known as cross-validation
or generalized cross-validation, has been developed [322, 323], which allows the
measurements to specify the most natural or fitting value of λ.

For example, suppose that we have n measurementsm0, . . . ,mn−1, such that

mi = Ciz + vi. (2.54)

Then define the partial estimator ẑi(λ) as our usual estimator (2.39), parametrized
by λ, but omitting data point mi:

ẑi(λ) = argz min

⎧
⎨

⎩

∑

j �=i

∥
∥mj − Cjz

∥
∥ + λ ‖Lz‖

⎫
⎬

⎭
. (2.55)

Then, because ẑi(λ) did not use mi, we can meaningfully ask how close mi is to
Ciẑi(λ). Ideally, if the estimator is generalizing or extrapolating sensibly from the
given measurements (that is, as opposed to being corrupted by numerical errors
for λ too small, or being distorted by excessive constraints for λ too large), this
difference should be small, thus we can estimate λ as

λ̂ = argλ min

{
∑

i

‖mi − Ciẑi(λ)‖
}

. (2.56)

This particular form of cross-validation used a leave-one-out or “jackknife” ap-
proach, which is one of the simplest approaches from the large field of bootstrap-
ping, bagging, and resampling theory [91, 93].

2.4.2 Bayesian Regularization

In the Bayesian setting, the vector z is a set of random variables. That is, the values
in z are not just unknown, rather they obey certain statistics, specified by a prior
model.

Although a wide range of prior models is possible, in the context of this book we
are most interested in the second-order characterization of the unknowns: that is,
specifying the prior mean μ and covariance5 P ,

z ∼ (μ, P ), (2.57)

where, to be a valid covariance, P must be symmetric and positive-definite. If we
compute the matrix square root P = Γ TΓ (see Appendix A.8), then

5 See Appendix B.4 for a brief review of covariance matrices.
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Example 2.8: Interpolation and Cross Validation

Referring back to Example 2.7, we can clearly see that the nature of the estimates
is a function of the chosen penalty and associated regularization parameter. Here
we use the method of cross-validation, from (2.56), to infer the best value of λ.
Suppose we have a straight-line function, of which we have noisy measurements:
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We could imagine specifying either a first-order or second-order constraint to reg-
ularize the problem:

A first-order constraint penalizes slope
=⇒ Our function has slope — a misfit to the constraint

A second-order constraint penalizes curvature
=⇒ Our function has no curvature — perfectly consistent

Since the true function has non-zero slope, there is a tradeoff between believing
the measurements and the first-order constraint; whereas the absence of curvature
in the function means that there is no conflict or tradeoff between the measure-
ments and the second-order case. We can plot (2.56) as a function of λ:
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Example continues . . .



2.4 Regularization and Prior Models 39

Example 2.8: Interpolation and Cross Validation (cont’d)

In the first-order case we can clearly see a unique optimum λ ≈ 100, repre-
senting the best tradeoff between measurements and constraints. In contrast, the
second-order case seeks an arbitrarily large λ: the more strongly the constraints
are asserted, the better are the results. Below are plotted the estimates for three
values of λ:

First-order Second-order
(λ = 100, 102, 104) (λ = 102, 104, 106)
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In the first-order case, the transition from measurement overfit (thin line, λ too
small), to well fit, to overconstrained (thick line, λ too large) is clearly visible. In
the second-order case, the larger values of λ progressively lead to a better fit.

z ∼ P −→ z ∼ Γ TΓ −→ Γ−T z ∼ I −→ Γ−T (z − μ) = w, (2.58)

where w is a unit-variance, white-noise vector. That is, the covariance P implicitly
specifies a set of independent constraints Γ−T on z; similarly, a set of constraints L
implicitly specifies a sort of prior model6 P = (LTL)−1.

In other words, there is a certain duality, or equivalence, between specifying a statis-
tical prior covarianceP for z and a set of constraintsL = Γ−T on z. The differences,
then, between a Bayesian prior model and a set of constraints are as follows:

1. In the Bayesian case, the statistics are an inherent part of the problem, they are
not just a constraint to condition the numerics. Of course, the degree to which we
believe the statistics may live on a continuum:

• High belief: the statistics are known to be correct, and can be proved from
physics or derived mathematically;

6 In many cases (LTL) will be singular, however this does not necessarily prevent us from
computing estimates.
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• Medium belief: the problem obeys a prior, however the prior is complicated
or unknown, so we approximate it, possibly learned from measurements;

• Low belief: the problem doesn’t really obey a prior; the statistics are asserted
essentially for regularization purposes.

2. In the Bayesian case, there is a unique solution to the constraint parameter λ. In
order to minimize the mean-squared error

E
[
(z − ẑ)(z − ẑ)T

]
(2.59)

we will see (Chapter 3) that λ = 1. That is, the tradeoff between measurements
and prior is not under user control, but is inherent in the relative uncertainties in
the measurements and in the prior model.

2.5 Statistical Operations

The discussion thus far has been somewhat abstract, focusing on establishing an
understanding of inverse problems and related issues of posedness, conditioning,
regularization, and prior models.

The remainder of this chapter seeks to make the discussion considerably more spe-
cific, focusing on the three canonical problems which are of greatest interest to us,
and a discussion of the types of statistical questions which we may wish to answer.

2.5.1 Canonical Problems

We are interested in large static and time-varying linear stochastic systems. The
reader should observe how these problems are interconnected: the static problem is
a special case of data fusion, and the static and data fusion problems are both special
cases of the dynamic one.

I. THE STATIC PROBLEM: Given a single random field z obeying some prior model,

z ∼ N (0, P ), (2.60)

we are given a single set of measurements

m = Cz + v v ∼ N (0, R). (2.61)

Examples of this category of problem include image enhancement, image restora-
tion, and many applications of medical imaging.
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The reader may wonder whether the above formulation is sufficiently general,
since z and v may not be guaranteed to be zero mean. In fact, because our problem
is linear, superposition applies, in which case the deterministic (mean) and random
parts of the problem are fully decoupled. In other words, given

z̄ ∼ N (μ, P ), (2.62)

we can formulate the mean-removed field

z = z̄ − μ ∼ N (0, P ). (2.63)

After computing the estimates ẑ for the mean-removed field, it follows that

ˆ̄z = ẑ + μ. (2.64)

Similarly, because any deterministic mean portion of the measurements is known
ahead of time, the mean does not affect the estimates. That is, given

m̄ = Cz + α+ v v ∼ N (β,R), (2.65)

for constants α, β it follows that

ẑ(m̄) = ẑ(m̄− α− β). (2.66)

Thus, without loss of generality, we normally assume all mean terms to equal
zero. From time to time, if it assists in clarity or intuition, the mean term may be
included.

II. THE DATA FUSION PROBLEM: We are given one or more random fields zi obey-
ing some prior model,

z =

⎡

⎢
⎣

z1
...
zf

⎤

⎥
⎦ ∼ N (0, P ), (2.67)

where the prior model may couple the fields (dense P ) or leave them uncoupled
(block-diagonal P ).

We are given two or more sets of measurements

mi = Ciz + vi vi ∼ N (0, Ri). (2.68)

The relationshipCi between measurements and unknowns may be highly problem-
dependent.

Such data fusion problems are particularly common in remote sensing, where mea-
surements may be available from multiple instruments on a single satellite plat-
form, or where data from multiple satellites are to be used in studying a particular
area.
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III. THE DYNAMIC PROBLEM: We are given an initial prior model

z(0) ∼ N (0, P0) (2.69)

and a time-recursive dynamic model

z(t+ 1) = A(t)z(t) +B(t)w(t) w(t) ∼ N (0, I) (2.70)

where the process noise or driving term w(t) is white and uncorrelated with z:

E
[
w(t)w(s)T

]
= δs,tI E

[
w(t)z(s)T

]
= 0 if t ≥ s. (2.71)

Measurements of the process arrive over time:

m(t) = C(t)z(t) + v(t) v(t) ∼ N (0, R(t)
)
. (2.72)

The most obvious examples of multidimensional dynamic problems are in video
data processing.

2.5.2 Prior Sampling

Given a random variable z obeying some prior probability density function (PDF)
p(z), sampling from the prior distribution means generating independent random
samples z1, . . . , zq from p(z). For a set {zi} to represent independent random sam-
ples of a distribution, it implies that any statistical question posed of random variable
z and of the samples {zi} converge to the same value as the size of the sample set
grows. In other words

lim
q→∞

1
q

∑

i

f(zi) −→ E
[
f(z)

]
(2.73)

for any function f .

In the context of the canonical static problem (2.60), given a random vector z obeying
a prior model

z ∼ (μ, P ), (2.74)

we may be interested in generating independent random samples z1, . . . , zq such that

1
q

q∑

i

zi −→ μ
1
q

q∑

i

(zi − μ)(zi − μ)T −→ P. (2.75)

Such samples may be generated by finding Γ , the matrix square root (see Ap-
pendix A.8) of P :

Given w ∼ I ⇒ cov(Γ Tw) = E
[
Γ TwwTΓ

]
= Γ T IΓ = P. (2.76)
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Fig. 2.6. Three samples from the prior model corresponding to a “Tree-Bark” random field.
Being random samples, all three images are different, yet obey the same statistics.

Thus μ+ Γ Tw is a random prior sample from model (μ, P ). Three samples from a
single random field model are shown in Figure 2.6.

In the context of the canonical dynamic problem (2.70), the process of prior sam-
pling is normally known as simulation, in that we are simulating the evolution of the
dynamic process over time. The process initialization

z(0) ∼ N (0, P0) (2.77)

requires sampling z(0) from the prior model P0, as discussed above. With this step
completed, the remainder of the simulation is the straightforward recursion

z(t+ 1) = A(t)z(t) +B(t)w(t). (2.78)

Because w(t) obeys a simple prior N (0, I), generating a random sample of w(t)
just amounts to generating a vector of zero-mean, unit-variance Gaussian random
variables.

The generation of samples from a prior model is of interest for two main reasons:

1. The samples z or z(t) depend purely on the prior model, with no dependence
on any measurements. Thus the prior samples reflect the assumptions implicit
in the prior model, possibly leading to insights regarding model strengths and
weaknesses, based on whether the observed sample behaviour is as expected or
runs counter to the desired physics or mathematics.

2. The samples z or z(t) may be of interest in and of themselves. Two common
examples include image rendering (e.g., sampling of random textures from a prior
texture model) and further analysis (e.g., sampling of random three-dimensional
porous media for further porosity or groundwater-flow analysis).



44 2 Inverse Problems

Time

PredictionFilteringSmoothing

Available Measurements

0

Fig. 2.7. Dynamic estimation can be broken into three inter-related problems: smoothing,
filtering, and prediction, depending on whether the value to be estimated lies within, at the
end, or after the end of the available measurements, respectively.

2.5.3 Estimation

Estimation is the solving of an inverse problem, the production of estimates of the
state z underlying a system based on the measurementsm.

In the case of the Static Problem we seek estimates ẑ which are simultaneously
consistent, according to some criterion, with the prior model (2.60) and with the
measurement model (2.61).

In the analogous case of the Dynamic Problem we seek estimates ẑ(t) which are si-
multaneously consistent with the initial prior P0, the dynamics (2.70), and the mea-
surements (2.72). Dynamic estimation is frequently divided into the three related
problems, illustrated in Figure 2.7:

1. Filtering: estimate ẑ(t) based on measurements m(s), 0 ≤ s ≤ t.
2. Smoothing: estimate ẑ(t) based on measurementsm(s), 0 ≤ s ≤ t+ τ .

3. Prediction: estimate ẑ(t) based on measurements m(s), 0 ≤ s ≤ t− τ .

That is, the problem depends on the distribution of available measurements relative
to the quantity being estimated. The solution to the above three is very similar, so we
normally do not concern ourselves with the distinction between them and generally
just refer to estimation.

A large number of different estimators have been proposed, for which a brief sum-
mary follows. A more detailed derivation and development of those estimators used
throughout this book may be found in Chapter 3 and in [248, 284].
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Bayesian Estimators

The unknown z is random for which prior information (possibly mean and covari-
ance, higher-order statistics, or the full PDF) is available.

BAYESIAN ESTIMATOR (BE): the most general estimator,

ẑB � argẑ min
{
E
[
C(z, ẑ)|m]

}
, (2.79)

finds estimates to minimize a specified cost function C().

BAYESIAN LEAST-SQUARES ESTIMATOR (BLSE): a widely-used special case of
the above, and normally much more tractable, is to choose a quadratic form for
C():

ẑBLSE � argẑ min
{
E
[
(z − ẑ)T (z − ẑ)|m]

}
. (2.80)

LINEAR LEAST-SQUARES ESTIMATOR (LLSE): also known as the Best Linear Un-
biased Estimator (BLUE), uses the same quadratic criterion as for the BLSE, ex-
cept that the estimator is required to be a linear function

ẑLLSE = Am+ b (2.81)

of the measurements. That is, the effective LLSE criterion is

ẑLLSE = Am+ b [A, b] = arg
[A,b]

min
{
E
[
(z −Am− b)T (z −Am− b)]

}
.

(2.82)

MAXIMUM A POSTERIORI (MAP): the estimate is chosen to maximize the poste-
rior probability density

ẑMAP � argz max p(z|m) = argz max p(m|z)p(z), (2.83)

where the latter form, derived via Bayes’ rule ((B.21)), is normally the more con-
venient, because it expresses the estimator in terms of known quantities: the prior
model p(z) and the measurement model p(m|z).

KRIGING: a long-established technique of spatial estimation [75, 227, 291], the
method is similar to the LLSE and BLUE, in that an estimator is sought, linear
in the measurements

ẑ = Am+ b (2.84)

such that
E[ẑ − z] = 0 var(ẑ − z) is minimized, (2.85)

where the prior spatial model for z is specified through its variogram

γ(δ) = 1
2var(z1 − z2), (2.86)
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Example 2.9: State Estimation and Sampling

Building on Example 2.3, let’s consider the infinity of all possible lines (a first-
order problem, left) or parabolae (second-order, right):

0
x

y

0
x

y

The above are essentially prior samples: random samples unconstrained by mea-
surements. A measurement is just a constraint, asserting a preference for certain
curves over others:

0
x

y

One
Measurement

⇐ Both ⇒
Ill-Posed

(Uniqueness Fails)
0

x

y

A single measurement is unable to constrain a line or a parabola, so uniqueness
fails, and the dashed line plots the minimum-norm solution of (2.36). With two
measurements the first-order problem is well-posed, however because the mea-
surements are not exact the posterior samples still show some variability. For the
second-order problem uniqueness still fails:

0
x

y

Two
Measurements

0
x

y

At three measurements the first-order problem is overconstrained (existence fails),
still allowing a least-squares estimate to be computed from (2.35), whereas the
second-order problem is now well-posed:

Example continues . . .
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Example 2.9: State Estimation and Sampling (cont’d)

Ill-Posed – Existence
(ẑLeastSq.)

0
x

y

Three
Measurements

Well-Posed
(ẑ)

0
x

y

We clearly see measurements as constraining the statistics of the problem, such
that more measurements increasingly concentrate the posterior samples near the
estimates.

The elegance of the Bayesian formulation is that the preceding distinctions be-
tween minimum-norm or least-squares solutions are unimportant, and the esti-
mates ẑ (dashed curve in each panel) are calculated the same way in each case.

To better understand the calculations in this example the reader may wish to fol-
low up with Example 3.1. Two parallel examples, showing ensembles of possible
curves as a way of visualizing statistics, are shown in Example 3.4 on page 75 for
the static problem, and Example 4.1 on page 92 for the dynamic problems.

where z1 and z2 are separated, spatially, by an amount δ.

It is significant to note that the kriging variogram encodes only a knowledge of
the statistics of differences. That is, there is absolutely no notion of prior mean or
variance.

It is significant to note that for Gaussian problems (that is, those in which z andm are
jointly Gaussian), the MAP and BLSE estimators are linear, and in fact are identical
to the LLSE.

Since the LLSE is the only estimator requiring no information other than the second-
order statistics of the estimation problem, it is a common choice if the known statis-
tics are limited. Even if the statistics are known in detail, and are non-Gaussian,
the LLSE may still be chosen, at least as a first step, given the alternative of highly
complex, normally nonlinear estimators BE, BLSE, and MAP.
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Non-Bayesian Estimators

The unknown z is not random, and no statistics of z are used.

LEAST SQUARES (LS): the measurements are modelled to be a noisy function of
the unknowns

m = f(z) + v, (2.87)

thus the unknowns are chosen to minimize the squared error in the measurements:

ẑLS � argz min
(
m− f(z)

)T (
m− f(z)

)
. (2.88)

LINEAR LEAST SQUARES (LLS): given the linear measurements

m = Cz + v, (2.89)

the unknowns are chosen to minimize the squared error

ẑLLS � argz min(m− Cz)T (m− Cz), (2.90)

leading to an estimator ẑLLS a linear function of m.

WEIGHTED LINEAR LEAST SQUARES (WLS): as before, however the measure-
ment errors are not all treated equally, instead, a weighting matrix W controls
the relative degree to which measurement errors are tolerated:

ẑWLS � argz min(m− Cz)TW (m− Cz). (2.91)

TOTAL LEAST SQUARES (TLS): the error is modelled both in the measurements
m, but also in the measurement model C [141]. That is, the measurements are
modelled as

m = (C + E)z + v, (2.92)

where E is the unknown perturbation in the measurement model. Total least
squares then seeks to minimize the norm of the concatenated error ‖ [v E] ‖2,
which is found as the singular value decomposition of matrix

[
m -C

]
.

MAXIMUM LIKELIHOOD (ML): the non-Bayesian analogue of MAP, the estimates
are chosen to make the observed measurements most probable:

ẑML � argz max p(m|z). (2.93)

Although we are primarily concerned with Bayesian methods of estimation, we shall
see (Section 3.2.4) that there is a certain duality between the Bayesian and non-
Bayesian methods. As with the Bayesian methods, in the case where the measure-
ment model is linear and the measurement noise statistics are Gaussian, then the ML
estimator is linear and equivalent to the LLS, WLS estimators (for certain choices of
weighting matrix and measurement error statistics).
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z ẑ (z|m)

Fig. 2.8. An illustration of posterior sampling: only a sparse subset (middle columns) of a
texture are measured (left), leading to estimates (middle) which lack the statistical variability
of the original texture. A posterior sample (right) is consistent with the measurements, but
where not constrained by the measurements follows the statistical pattern of the prior model.

2.5.4 Posterior Sampling

In Section 2.5.2 we discussed the sampling of a random vector

z ∼ p(z) (2.94)

such that the independent random samples z1, . . . , zq represent “typical” samples of
the prior, without any measurement constraints.

For estimation, we seek the unique, optimum estimate ẑ which balances the con-
straints of a prior model p(z) and measurementsm, for example

ẑMAP = argz max p(m|z)p(z). (2.95)

It is important to realize that the estimate ẑ does not necessarily look like a typical or
natural sample of the random field, especially if the measurements are sparse. That is,
although the estimate is optimum under some criterion, it may not represent a typical
or representative sample of the system being studied. This is precisely because the
most likely (MAP) sample is not typical: for a Gaussian random variable z of mean
μ, the most likely value of z is μ, however we do not expect a typical sample of z to
precisely equal μ!

Instead, to find a typical random field, subject to the constraints of both the prior and
measurements, requires that we draw a random sample from the posterior distribu-
tion, a much more subtle and difficult problem than estimation. That is, we want to
draw a sample from the conditional distribution

(z|m) ∼ p(z|m), (2.96)
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as is illustrated in Figure 2.8 and Example 2.9.

As in the case of prior sampling, samples drawn from the posterior may be desired
for purposes of visualization, further analysis, or Monte Carlo studies.

2.5.5 Parameter Estimation

In some contexts the prior model may not be completely specified. Its form (e.g.,
Gaussian) may be known, but certain details (such as the variances or correlations
between random variables, etc.) are not, and need to be estimated. That is, we have
vectors of unknowns θP , θM in the prior and measurement models, respectively:

z ∼ p(z|θP ) m ∼ p(m|z, θM ). (2.97)

In virtually all cases, the parameters are treated as unknowns (rather than random),
and so a non-Bayesian approach, typically Maximum Likelihood, is used. That is,
we select those model parameters which are most consistent with (maximize the
likelihood of) the measurements:

θ̂P , θM = argθP ,θM
max p(m|θP , θM ). (2.98)

A full treatment of model parameter estimation is really the domain of system iden-
tification [212], which is well beyond the scope of this book. We are, however, inter-
ested in model identification in certain contexts where we propose a specific spatial
model, such as a Markov random fields in Chapter 6 or the marching and multiscale
models in Chapter 10.

Application 2: Ocean Acoustic Tomography

There are many circumstances in which we measure integrals through absorbing
media, such as in medical imaging (as was illustrated in Figure 2.1 for X-rays); the
process of inverting such measurements is known as tomography.

One recent and very novel tomographic problem is the acoustic “imaging” of the
ocean [238]. Amazingly, low-frequency sound waves can propagate for thousands of
kilometers. The key reason for the effective sound propagation is that the ocean acts
as an acoustic waveguide: as shown in Figure 2.9, at a depth of approximately 1 km
the sound speed is at a minimum, meaning that propagating wavefronts will bend
towards 1 km depth, rather than hitting the surface or being absorbed at the ocean
bottom.

Figure 2.9 sketches three different acoustic waves, all leaving from the same source
and being observed at a common receiver. Observe what is happening: the different
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Fig. 2.9. Because the speed of sound in water has a minimum at an intermediate depth, left,
the ocean acts as an acoustic waveguide, right.

waves “observe” different parts of the ocean, such that the high-amplitude wave mea-
sures a wide range of depths, whereas the low-amplitude wave is mostly sensitive to
the ocean at a depth of 1 km.

What can these different sound waves tell us? Each sound wave has a different arrival
time, where the arrival time is a function of the average (or integrated) sound speed
over the path of the wave. The sound speed is primarily a function of depth (thus
A arrives first, then B, then C), but also salinity, temperature, and ocean currents.
The effect of salinity is slight, and the effect of depth can be accounted for via a
sufficiently accurate ray-tracing along the lines of Figure 2.9, leaving the effects of
temperature and currents to be inferred.

We now have two different inverse problems to solve, as illustrated in Figure 2.10:

1. Acquire the tomographic line-integral measurements:
The measured arrival times depend on the average sound speed along the highly
complex wavefront trajectories. To convert into a simpler, standard tomographic
problem involving straight-line integrals, we wish to divide the ocean into layers,
as shown in Figure 2.10, and to solve an inverse problem to find the average sound
speed over each layer.

That is, if ray j has an observed average sound speed of mj , and by simulating
the ray paths we know that ray j spends a fraction aj,i in depth layer i, then we
wish to solve ⎡

⎢
⎣

m1

m2

...

⎤

⎥
⎦ = A

⎡

⎢
⎣

z1
z2
...

⎤

⎥
⎦ (2.99)

In practice, we would probably have a number of acoustic receivers spaced at
different depths.
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Fig. 2.10. Two inverse problems need to be solved. A 2D space–depth problem, left, inverts
the acoustic arrival measurements to average sound speed by layer. A second 3D space–space–
depth problem, right, solves for the three-dimensional pattern of sound speed based on many
source–receiver pairs, in order to infer ocean temperature and currents.

2. Invert the 3D tomographic problem:
As shown in Figure 2.10, we may have a number of source–receiver pairs, each of
which leads to a 2D inverse problem in (2.99). We now have a three-dimensional
inverse problem, with sources and receivers distributed spatially, and with layers
over depth. Although such problems are widely studied in the medical imaging
literature, the ocean acoustic problem is far more sparse and irregular, making
many medical approaches inapplicable.

Summary

An inverse problem exists any time we wish to infer one or more unknowns from
a set of measurements. The forward problem proceeds from the unknowns to the
measurements; the inverse problem is the inference from the measurements to the
unknowns. The inverse problem is said to be well-posed if the following three criteria
are satisfied:

EXISTENCE: Every observationm has at least one corresponding value of z.

UNIQUENESS: For every observationm, the solution for z is unique.

CONTINUITY: The dependence of the solution z on m is continuous.

However, even problems which are well-posed may fail to be solvable numerically
because of poor conditioning, in which case we regularize the problem:

ẑ(m,λ) = argz min
{
‖m− Cz‖R−1 + λ ‖Lz‖

}
, (2.100)
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where λ is the regularization constant, which may be learned by validation, and
where L is a set of assumptions or constraints on z.

For Further Study

To look further into inverse problems, the papers by Bertero et al [27] and by Geman
[129] are highly recommended, as they combine questions of inverse problems and
low-level computer vision in the former paper, and random fields in the latter.

To read further in the area of regularization, three papers are recommended [27,189,
304], in addition to the classic text [308] by Tikhonov and Arsenin.

The references, sorted by category starting on page 433, give additional text and
paper citations.

Sample Problems

Problem 2.1: Uniqueness and Ill-Posed Problems

(a) Define “Uniqueness”
(b) Given matrix C =

[
1 2
]
:

• Compute Rank(C)
• Compute or describe Ra(C),Nu(C)
• Does the inverse problemm = Cz satisfy uniqueness?

(c) In general, for C a k × n matrix, prove that uniqueness fails for k < n.

Problem 2.2: Existence and Ill-Posed Problems

(a) Define “Existence”
(b) Given the matrix

C =

⎡

⎣
1 1
2 1
1 1

⎤

⎦

• Compute Rank(C)
• Compute or describe Ra(C),Nu(C)
• Does the inverse problemm = Cz satisfy existence?

(c) In general, for C an k × n matrix, prove that uniqueness fails for k > n.
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Problem 2.3: Number of Solutions

For a linear inverse problem, prove that the number of solutions must either be
zero, one, or infinitely many.

Problem 2.4: Numerical Conditioning

We want to look at matrix conditioning, as a function of statistics and matrix
size. We imagine that we have a vector x having n elements, such that x has an
associated n× n covariance P .

We can study the numerical behaviour of P in a variety of ways; here we consider
two:

1. The condition number κ(P ), evaluated in MATLAB using function cond

2. The degree of error in matrix inversion. Let

e = max
(

diag
(
P · P−1

))−min
(

diag
(
P · P−1

))
.

In the ideal case, P ·P−1 = I , in which case e = 0. Larger values of e imply
greater difficulties in computing accurate inverses, a surrogate for condition-
ing.

In a numerical mathematical package, such as MATLAB, prepare the follow-
ing:

(a) Test conditioning as a function of the degree of correlation:
Create matrices A1, . . . , A50 where

An is 20× 20, (An)i,j = exp(−|i− j| · 0.3n).

(b) Test conditioning as a function of matrix size:
Create exponentially-correlated matrices B1, . . . , B50 where

Bn is n× n, (Bn)i,j = exp

(
−|i− j|

3

)
.

(c) As in (b), with the same correlation length (of 3), but with different statistics:
Create Gaussian-correlated matrices C1, . . . , C50 where

Cn is n× n, (Cn)i,j = exp

(

− 1
2

(
i− j

3

)2
)

.

Plot the condition numberκ and inversion inconsistency e for each ofAn, Bn, Cn

as a function of n. Study the behaviour of the plots.
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Problem 2.5: Open-Ended Real-Data Problem — Image Processing

Most numerical mathematics programs offer a variety of regularization methods
and inverse problems. Both MATLAB and OCTAVE, a free open-source alterna-
tive, offer most of the following routines:

medfilt2 Two-dimensional median filtering
filter2 Two-dimensional image filtering
wiener2 The two-dimensional Wiener filter for denoising
iradon The inverse Radon transform, for medical tomography
deconvwnr The two-dimensional Wiener filter for deblurring
deconvreg Image deblurring using a regularized filter
ipexregularized Image deblurring example

Acquire some number of images, of your own or from the Internet, and experi-
ment with one or more of the above functions:

(a) For denoising, report your results as a function of the added noise variance,
and the type of noise (Gaussian, uniform, salt-and-pepper).

(b) For deblurring, report your results as a function of the degree of blur.
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Static Estimation and Sampling

This chapter derives the two fundamental linear estimators:

Section 3.1: The non-Bayesian linear least-squares estimator
Section 3.2: The Bayesian linear least-squares estimator

Throughout this chapter we concern ourselves with the derivation of algebraic es-
timators ẑ for some random vector z, but ignoring the issues of what z represents,
or any concerns regarding its size, both of which are extremely important and are
examined closely beginning with Chapter 5.

The question of how to actually represent a multidimensional field in a vector is the
topic of Chapter 5, and questions of computational tractability and simplification are
addressed starting in Chapter 9.

In this chapter we consider z to be static; that is, where z is a single unknown vector
which has no time dependence or evolution over time. Issues of time dependence are
considered in Chapter 4.

Even within this static framework there are a number of variations, depending on
what we assume or know about the measurement errors (and their statistics), and
similarly whether z is just unknown, or subject to the constraints and assumption of
some prior statistical model.

P. Fieguth, Statistical Image Processing and Multidimensional Modeling, Information Science 57
and Statistics, DOI 10.1007/978-1-4419-7294-1_3, © Springer Science+Business Media, LLC 2011
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3.1 Non-Bayesian Estimation

Linear Least Squares

We’ll start with the simplest possible linear inverse problem, where we wish to infer
unknowns z from measurements m:

m = Cz. (3.1)

In many cases this problem will be ill-posed:

If m ∈ Ra(C) then existence is satisfied, but uniqueness may not be.
If m /∈ Ra(C) then existence fails.
If Nu(C) 	= 0 then uniqueness fails.

Only if C is square and invertible is the problem well-posed.

The above pessimistic summary, that only problems in which C is invertible may be
solved, is due to limitations in our problem formulation (3.1). We rarely expect C
to be invertible; indeed, normally we have more measurements than unknowns, in
which case C is a tall rectangular matrix. Furthermore we don’t actually believe that
m = Cz; rather, measurements are invariably corrupted by some inaccuracy or noise
v,

m = Cz + v, (3.2)

in which case we are interested in finding ẑ such that Cẑ is close to m, but not
necessarily equal. We often choose a least-squares criterion (2.90): if we define the
estimation error e as

e � m− Cẑ, (3.3)

then the least-squares goal is to find ẑ by minimizing eT e. There are many ways of
deriving the solution to this problem; we consider two.

ALGEBRAIC DERIVATION: The squared error to minimize is

eT e = (m− Cẑ)T (m− Cẑ), (3.4)

thus the vector derivative (Appendix A.6) is

∂eT e

∂ẑ
=

∂

∂ẑ

[
mTm− 2mTCẑ + ẑTCTCẑ

]
(3.5)

= 0T − 2mTC + 2ẑTCTC (3.6)
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Ra(C) = {Cz}

Fig. 3.1. The orthogonality principle: Existence fails here, since m lies outside of Ra(C).
To solve this ill-posed problem, least-squares seeks that point in Ra(C) which is closest tom.
This closest point must bemo, the point where the errorm−mo is at right angles (orthogonal)
to Ra(C).

So eT e is minimized when ẑTCTC = mTC or, taking the transpose, when
CTCẑ = CTm. In the event that CTC is invertible, meaning that C has full
column rank, we obtain the well-known least-squares estimator1

ẑ =
(
CTC

)−1
CTm. (3.7)

GEOMETRIC DERIVATION — THE ORTHOGONALITY PRINCIPLE: We can reinter-
pret the problem in a more geometric sense. Since Cẑ can explore all of Ra(C),
finding ẑ to minimize ‖m− Cẑ‖ is equivalent to finding the element in Ra(C)
closest to m. That is, which vector m̄ = Cẑ ∈ Ra(C) minimizes

‖m− Cẑ‖ = ‖m− m̄‖ = (m− m̄)T (m− m̄)? (3.8)

Let mo be the unique element of Ra(C) such that the errorm−mo is orthogonal
to Ra(C); that is, that

(m−mo) ⊥ Ra(C) ↔ (m−mo)
T q = 0 ∀q ∈ Ra(C) (3.9)

This construction decomposes the error

(m− Cẑ) = (m−mo) + (mo − Cẑ)
e = e1 + e2

(3.10)

1 It should be mentioned that the estimator in (3.7), although correct, should not actually
be solved using an explicit matrix inverse, especially for large problems. This is discussed
much later, in Section 9.1.
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into two orthogonal components e1 ⊥ e2, such that by Pythagoras

‖m− Cẑ‖
︸ ︷︷ ︸

Error to Minimize

= ‖m−mo‖︸ ︷︷ ︸
Fixed

+ ‖mo − Cẑ‖︸ ︷︷ ︸
Set to Zero

. (3.11)

Of the two terms on the right-hand side, the first is not under our control, so the
best we can do is to set the second term to zero, which is accomplished by setting
Cẑ = mo.

Finally, how do we find mo? The projectionmo must satisfy two criteria:

1. mo must be in the subspace Ra(C)

2. The difference m−mo must be orthogonal to Ra(C).

We claim that
mo = C (CTC)−1CTm (3.12)

is the projection of m onto the range space Ra(C), which can be verified:

1. mo = C (CTC)−1CTm = C[· · · ] ∈ Ra(C) ,

2. CT (m−mo) = CTm− (CTC)(CTC)−1CTm = 0 .

So we have identified mo = C (CTC)−1CTm as the optimum element in the
subspace of C, minimizing the error with respect to m; thus we identify

Cẑ = mo = C (CTC)−1CTm → ẑ = (CTC)−1CTm (3.13)

as the selected estimator.

The computation of ẑ = (CTC)−1CTm requires the invertibility of (CTC), which
is true if and only if C has full-column rank. This assumption may fail under the
following circumstances:

• Suppose C is k × n, k < n:
We have fewer equations than unknowns and (CTC) is singular. The solution for
ẑ is not unique, and additional constraints (prior model, regularization constraints)
are required.

• Suppose C is k × n, k ≥ n:
We have at least as many equations as unknowns; (CTC) will be singular if the
columns of C are linearly dependent, meaning that some portion of z is unob-
served (C has a nullspace).

Much of the above mathematics is represented elegantly in the theory of pseudoin-
verse matrices [4], which is summarized in Appendix A.9. In particular if C is non-
singular then the pseudoinverse C+ of C is the matrix inverse C+ = C−1, general-
izing to the projection operator C+ = (CTC)−1CT in the special case that C has
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full column rank. However unlike the projector, C+ exists for all real C, whether
rank deficient or not.

Indeed, given observation C, the estimator

ẑ = C+m (3.14)

based on the Moore–Penrose pseudoinverse C+ [4], produces the minimum-norm
least-squares solution for z. That is, of all of the (possibly many) z minimizing

(m− Cz)T (m− Cz), (3.15)

C+m chooses that unique vector which minimizes zT z.

Weighted Least Squares

Our previous derivations considered all of the measurement errors as equivalent,
equally penalizing the error in each dimension. In practice we may prefer a weighted
criterion, minimizing the least-squares weighted error (Fe):

(Fe)T (Fe) = eTWe ≡ ‖m− Cẑ‖W (3.22)

for some appropriate choice of W = FTF . However, if we transform the error by
weight matrix F ,

e = m− Cẑ =⇒ Fe = Fm− FCẑ
=⇒ ē = m̄− C̄ẑ (3.23)

As a consequence, the error criterion (3.22) can be similarly transformed as

eTWe = (Fe)T (Fe) = ēT ē. (3.24)

That is, we have converted the problem to regular least squares, to which we have
already derived the answer in (3.7),(3.13):

ẑ = (C̄T C̄)−1C̄T m̄ (3.25)

=
(
CTFT · FC)−1

(CTFT ) · Fm = (CTWC)−1CTWm, (3.26)

where if W is nonsingular, the conditions for the invertibility of (CTWC) are the
same as those for (CTC).

Constrained or Regularized Least-Squares

The reader may wonder regarding the relevance of the discussions of least-squares
solutions to m = Cz + v, given that much of Chapter 2 was devoted to demon-
strating the ill-posedness of most such problems and, in Section 2.4, the discussion
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Example 3.1: Linear Regression is Least Squares

Suppose we are given points
{
xi, yi

}
:

0
x

y

xi

yi

We wish to do linear regression, meaning that we assert a model

yi = axi + b+ vi, (3.16)

where vi is some error. Thus we have unknowns z and measurements m:

z =
[
a
b

]
m =

⎡

⎢
⎣

y1
...
yk

⎤

⎥
⎦ (3.17)

leading to the usual formulation

m =

⎡

⎢
⎣

y1
...
yk

⎤

⎥
⎦ =

⎡

⎢
⎣

x1 1
x2 1
...

...

⎤

⎥
⎦
[
a
b

]
+ v ≡ Cz + v. (3.18)

We know the usual least-squares solution to this canonical problem to be

ẑ =
(
CTC

)−1
CTm. (3.19)

Substituting (3.18) into (3.19) gives

ẑ =
[
â

b̂

]
=
[∑

x2
i

∑
xi∑

xi

∑
1

]−1 [∑
xiyi∑
yi

]
(3.20)

which is the familiar solution to linear regression.

Once we recognize and understand the above development, linear regression is
easily generalized to other cases, such as

yi = ax2
i +bxi+vi yi = aexi +vi yi = a sinxi+b cos2xi+vi (3.21)

yi does not need to be linear in xi, however it does need to be linear in the un-
knowns a, b. For example, the generalized regression yi = sin(axi)+vi is a much
more difficult problem.
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of constraints and regularization schemes to permit a solution. In particular, (2.39)
formulated the following constrained least-squares criterion:

min
{‖m− Cẑ‖R−1 + λ ‖Lẑ‖}. (3.27)

This criterion is, however, just a variant of weighted least-squares:

‖m− Cẑ‖R−1 + λ ‖Lẑ‖
= (m− Cẑ)TR−1(m− Cẑ) + λ(Lẑ)T (Lẑ)

=
[
m− Cẑ√
λLẑ

]T [
R−1

I

] [
m− Cẑ√
λLẑ

]

=
([
m
0

]
−
[

C

−√λL
]
ẑ

)T [
R−1

I

]([
m
0

]
−
[

C

−√λL
]
ẑ

)

=
(
m̄− C̄ẑ)T R̄−1

(
m̄− C̄ẑ)

=
∥
∥m̄− C̄ẑ∥∥

R̄−1

(3.28)

That is, the regularization constraints λ ‖Lẑ‖ are algebraically equivalent to the in-
clusion of an additional “measurement”

Lz = 0. (3.29)

Associating the above criterion
∥
∥m̄− C̄ẑ∥∥

R̄−1 = eT R̄−1e with the criterion eTWe
from weighted least squares allows us to find the solution directly from the weighted
least-squares solution (3.26), with W = R̄−1:

ẑ = (C̄T R̄−1C̄)−1C̄T R̄−1m̄ (3.30)

=

([
C

−√λL
]T [

R−1

I

] [
C

−√λL
])−1 [

C

−√λL
]T [

R−1

I

] [
m
0

]
(3.31)

=
(
CTR−1C + λLTL

)−1
CTR−1m (3.32)

This result, the estimator for regularized least-squares, is of key importance through-
out the following chapters.

Maximum Likelihood

A related approach is that of maximum likelihood, still treating z as unknown (i.e.,
non-Bayesian), but where we formulate the problem more explicitly using statistics.
Given measurements m with known Gaussian noise statistics

m = Cz + v v ∼ N (0, R). (3.33)

we seek the maximum likelihood estimate (2.93)
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ẑML � argz max p(m|z) (3.34)

= argz max
1

(2π)n/2|R| exp
(
−1

2
(m− Cz)TR−1(m− Cz)

)
(3.35)

= argz min (m− Cz)TR−1(m− Cz) (3.36)

= argz min (e)TR−1(e) (3.37)

which we immediately recognize as the weighted least-squares criterion (3.22),
where we identify W = R−1. The solution follows from (3.26)

ẑ = (CTR−1C)−1CTR−1m. (3.38)

AssociatingW withR−1 is intuitive. A small valueRii implies a small measurement
noise variance vi, meaning that we expect to find an estimate ẑ which makes ei small.
Therefore we wish to assert an intolerance for large ei, implying a large Wii.

Thus we have derived the LLS, WLS, and ML estimators, and have seen the great
deal which they have in common. It is important to keep in mind that the parallels
with ML do assume Gaussianity, and do not hold for other statistics.

3.2 Bayesian Estimation

We move now to Bayesian estimation, in which our unknowns z are random —
statistical quantities subject to a prior model.

The Bayesian formulation leads to a few subtle changes, compared to the non-
Bayesian case. The error e is now the estimation error

e = z̃ = ẑ − z, (3.39)

and the stochastic nature of z implies that e too is stochastic, so the least-squares
criterion is formulated as an expectation:

ẑ = argẑ minE
[
(ẑ − z)T (ẑ − z)|m] . (3.40)

The orthogonality principle still applies, but now in a statistical form, rather than
strictly geometrical. That is, orthogonality states that the optimum estimator must
make the error uncorrelated (orthogonal) to any function of the measurements:

E
[
(ẑ − z)f(m)T

]
= 0 for any function f. (3.41)

This makes sense: if there were any residual correlation remaining between the mea-
surements and the estimation error, then we should be able to formulate a better
estimator by taking advantage of this correlation.
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Bayesian Least Squares

The general Bayes least-squares estimator (2.79) is easily derived. For simplicity and
clarity, we derive the estimator for the scalar case:

ẑ � argẑ min
{
E[(ẑ − z)2|m]

}
(3.42)

= argẑ min
∫

(ẑ − z)2p(z|m)dz. (3.43)

To minimize this expression we set the derivative to zero:

∂

∂ẑ

∫
(ẑ − z)2p(z|m)dz =

∫
2(ẑ − z)p(z|m)dz = 0 (3.44)

∫
ẑp(z|m)dz

︸ ︷︷ ︸
ẑ

=
∫
zp(z|m)dz

︸ ︷︷ ︸
E[z|m]

(3.45)

That is, the optimal estimator is just the conditional mean of z, given the measure-
ments m. The result for the vector case is identical:

ẑ = E[z|m] (3.46)

This simple result is the consequence of the quadratic (least-squares) criterion, which
simplifies when differentiated. However, the simplicity of this estimator (3.46) is
deceiving: the conditional mean of z may be an extremely complicated, nonlinear
function of m, motivating the development of the simpler Bayesian linear least-
squares estimator, below.

We conclude with three properties of the Bayesian estimator.

• Bias: The Bayesian estimator is always unbiased:

b = E[e|m] = E[ẑ − z|m] = ẑ − E[z|m] = 0. (3.47)

• Orthogonality: The estimation error is orthogonal to (uncorrelated with) any
function f() of the measurements:

E
[
e · f(m)T

]
= E

[
(ẑ − z) · f(m)T

]
= 0. (3.48)

• Linearity: If the measurementsm and the unknowns z are jointly Gaussian, then
the estimator ẑ is a linear function of m.
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Bayesian Linear Least Squares

Because of the complexity in evaluating the expectation (3.46) in the general Bayesian
estimator for very large estimation problems we are motivated to find a simpler ap-
proach. In particular, we would like a linear estimator which can be expressed in
explicit, closed form.

The Bayesian linear least-squares estimator (LLSE) is that linear estimator which, of
all possible linear estimators, minimizes the squared error. Given that the estimator
is linear, it must be of the general form

ẑ = Am+ α. (3.49)

We derive A,α by asserting the following two criteria:

1. Unbiasedness — the estimator ẑ is unbiased:

E [ẑ − z] = 0. (3.50)

2. Orthogonality — the error in ẑ must be uncorrelated (orthogonal) with any linear
function of the data:

E
[
(ẑ − z)(Fm+ g)T

]
= E [(ẑ − z)]E [(Fm+ g)T

] ∀F, g. (3.51)

Asserting these two criteria, we derive the constraints on F and g:

1. Unbiasedness:

E [ẑ − z] = E [Am+ α− z] = Aμm + α− μz = 0 (3.52)

therefore

=⇒ α = μz −Aμm. (3.53)

2. Orthogonality: from the unbiasedness condition of (3.50)

E
[
(ẑ − z)]E[(Fm+ g)T

]
= 0. (3.54)

We can therefore simplify the left-hand side of the orthogonality condition (3.51)
as

0 = E
[
(ẑ − z)(Fm+ g)T

]

= E
[
(Am+ μz −Aμm − z)(Fm+ g)T

]

= AE
[
(m− μm)mT

]
FT +AE

[
(m− μm)

]
gT

− E[(z − μz)m
T
]
FT − E[(z − μz)

]
gT

= AΛmF
T +A · 0 · gT − ΛzmF

T − 0 · gT ,

(3.55)
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where Λ denotes a covariance or cross-covariance

Λm = cov(m) Λzm = E
[
(z − μz)(m− μm)T

]
. (3.56)

Thus it is required that

(AΛm − Λzm)FT = 0 ∀F. (3.57)

For this expression to be valid for all possible F , it follows that

AΛm − Λzm = 0 =⇒ A = ΛzmΛ
−1
m . (3.58)

The derived LLSE estimator is then the well known formula

ẑ = Am+ α = μz + ΛzmΛ
−1
m (m− μm). (3.59)

This estimator is actually quite intuitive: our estimate for ẑ is given by the mean μz

plus an offset due to the “surprise” in the measurements: the difference (m − μm)
between what was observed and what was expected, normalized by the expected
random (noisy) variationsΛm in the measurements, and unit-converted by Λzm from
units of m to those of z.

We can also derive the error statistics for the estimator:

cov(ẑ − z)
= cov

(
ΛzmΛ

−1
m (m− μm)− (z − μz)

)
(3.60)

= (ΛzmΛ
−1
m )Λm(ΛzmΛ

−1
m )T − (ΛzmΛ

−1
m )Λmz − Λzm(ΛzmΛ

−1
m )T + Λz

(3.61)

Thus the error covariance cov(z̃) is given by the prior covarianceΛz , minus a reduc-
tion controlled by the quality and degree of relevance of the measurements:

cov(z̃) = Λz − ΛzmΛ
−1
m ΛT

zm. (3.62)

The estimator offers no or limited improvement,

cov(z̃) � Λz, (3.63)

if the measurements are very noisy (Λm large) or if the measurements are irrelevant
by being uncorrelated with the unknowns (Λzm � 0).

3.2.1 Bayesian Static Problem

The previous section derived the LLSE, but in terms of second-order statistics and
not in terms of the parameters of the static problem.

Given the static problem from Section 2.5.1:

z ∼ N (μ, P ) m = Cz + v v ∼ N (0, R), (3.64)

we can easily derive the relevant second-order statistics:
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μz = μ
μm = E

[
Cz + v

]
= Cμz + 0 = Cμ

Λz = P
Λzm = E

[
(z − μz)(m− μm)T

]
= E

[
(z − μ)(Cz + v − Cμ)T

]
= PCT

Λm = cov(m− μm) = cov
(
C(z − μ) + v

)
= CΛzC

T + R

Inserting these statistics into the LLSE (3.59), (3.62) we find Form I of the static
estimator:

ẑ(m) = μ+ PCT (CPCT +R)−1(m− Cμ) (3.65)

P̃ = cov(z̃) = P − PCT (CPCT +R)−1CP (3.66)

By manipulating the above equations (using the ABCD lemma, (A.39)), there exists
a second algebraically equivalent variant, Form II:

ẑ(m) = μ+
(
CTR−1C + P−1

)−1
CTR−1(m− Cμ) (3.67)

P̃ = cov(z̃) =
(
CTR−1C + P−1

)−1
(3.68)

The equivalence of these two forms is by no means obvious or intuitive, and the proof
of the ABCD lemma, connecting these two forms, requires some effort. However, a
number of comments on these two forms are appropriate, as the suitability of one
form or the other will vary with context:

FORM AND DERIVATION

The structure of Form I is clearly linked to, and directly derived from, the LLSE,
whereas Form II is structurally quite similar to regularized least-squares (3.32).

MODEL ASSUMPTIONS

Form I is explicitly expressed in terms of P and R, and the invertibility of P
and R is not assumed, thus this estimator may be appropriate for certain singular
estimation problems.

On the other hand, Form II is expressed in terms of P−1 and R−1. We show in
Chapters 5 and 6 that in many cases a statistical model may directly specify sparse
P−1, rather than P .

COMPUTATIONAL COMPLEXITY

In Form I, the matrix inversion has the dimensions of m, the measurements,
whereas the inversion in Form II has the dimensions of z, the state. In those cases
where the number of measurements and unknowns is significantly different, the
choice of form may be a significant factor in determining complexity.

3.2.2 Bayesian Estimation and Prior Means

One final comment is in order before we complete our discussion of static estimation.
All of the derived Bayesian estimators exhibit a separation between the deterministic
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Example 3.2: Simple Scalar Estimation

A reader, unfamiliar with Bayesian estimation, may find it useful to consider a
simple scalar problem. Suppose we have the following prior and measurement
models:

z ∼ (μz , σ
2
z) m = cz + v v ∼ (0, σ2

v). (3.69)

The forward model then projects the unknown value z to measurementm:

z

Slope =
 c

z

σv

σv

μz0

m

μm

M
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re

m
en

t
Pr

ob
ab

le

From (3.67) we know the solution to the inverse problem to be

ẑ = μz +
p̃c

σ2
v

(m− cμz) = μz + k(m− μm) (3.70)

where, from (3.68), the estimator gain k can be evaluated as

k =
p̃c

σ2
v

=
(
1/σ2

z + c2/σ2
v

)−1
c/σ2

v. (3.71)

The estimated value ẑ will therefore be a function of the degree to which the prior
is asserted:

Weak Prior (σz large)−→ p̃ � σ2
v/c

2 k � 1/c ẑ � m/c
Strong Prior (σz small) −→ p̃� σ2

v/c
2 k � 1/c ẑ → μz

as drawn below:
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and stochastic aspects of an estimation problem, where the deterministic portions are
those aspects known a priori (such as the mean).

We can define a mean-removed estimation problem

z′ � z − μ m′ = m− Cμ (3.72)

which leads to the simplified (zero-mean) version of (3.67)

ẑ′(m) =
(
CTR−1C + P−1

)−1
CTR−1m′. (3.73)

By inspection, it is clear that we can recover the original, mean-included estimates
just by adding back the mean:

ẑ = ẑ′ + μ. (3.74)

Since the original estimator (3.67) wasn’t actually that complicated, why is this mean
removal of interest?

1. It highlights and clarifies the important distinction between the deterministic and
stochastic portions of an estimation problem, and that these two parts can really
be processed separately.

2. In the dynamic estimation context of Chapter 4 the deterministic–stochastic sep-
aration still holds, however the equations become more complicated than in the
static case, and so the simplification offered by a zero-mean assumption may be
significant.

3. In many problems of practical interest, the definition of “the mean” may be very
ambiguous. In computing estimates of ocean temperature, per Example 3.3, is
“the mean” an average over one day, over one year, over one century? In principle
the ocean temperature is ever-changing, and probably obeys no mean. In practice,
however, we are normally interested in producing estimates over a certain time-
scale, so by removing the behaviours which vary over much longer time-scales
we relieve ourselves of the burden of modelling those behaviours, leaving us with
a simpler problem.

We therefore adopt a relaxed policy with regard to knowing or specifying the mean
in derivations and examples, with the understanding that a mean term can always be
added to the estimates as a separate step.

3.2.3 Approximate Bayesian Estimators

As we are interested, throughout this book, in computationally efficient, approximate
estimators, it is worth considering the effects of an approximation.
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Example 3.3: Prior Mean Removal

Suppose we wish to produce a map of ocean surface temperature.

We start, for example, with the three
days of ATSR data shown here. The tem-
perature is difficult to model, because the
observed temperature is based on the su-
perposition of at least two effects:

1. Short-term patterns, such as storms
and cold fronts.

2. Long-term patterns, for example that
the tropics tend to be warm, with the
oceans cooling towards the poles.
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If we wish to study short-term tempera-
ture fluctuations, then the long-term vari-
ations are a nuisance: they are an ad-
ditional phenomenon to model, and fur-
thermore the large temperature range be-
tween poles and tropics means that sub-
tle variations may be masked.

Based on an entire year of temperature
data, we can produce an approximate
sea-surface temperature mean, as shown
here. The image represents phenomena
unchanging over the period of a year: the
warm Gulf of Mexico, the cool water of
the South Equatorial Current etc.
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Returning to the three days of ATSR data
from the top figure, if we subtract out
the estimated mean, then we arrive at a
very different dataset, as shown. The dy-
namic range of the data is much smaller
(4 degrees here, 25 degrees above), and
subtle warming and cooling variations
can be seen, both in the tropics and else-
where. The statistical behaviour of these
mean-removed data (3.72) is much sim-
pler than before; at this point we learn a
model for (z − μ) and proceed.
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Suppose that we have a zero-mean random vector z; then from (3.65)–(3.68) we
know the forms of the optimum linear least-squares estimator.

For any of a number of reasons, the matrices P,R may be difficult to invert or store
in memory, and so we may wish to consider solving a very similar problem which
yields similar (i.e., approximated) results:

P̄ � P, R̄ � R =⇒ ˆ̄z � ẑ, ˜̄P � P̃ . (3.75)

Whether the approximation is good or not is a difficult question, to be discussed in
later chapters. However, in assessing an approximation it is important that we clearly
distinguish three different error covariances:

P̃ = cov(ẑ − z) The error covariance of the optimum estimator.

˜̄P � cov(ẑ − z) The error covariance computed by the approximate estimator.

P̃z̄ = cov(ˆ̄z − z) The actual error covariance of the approximate estimator.

The optimality of the original estimator clearly requires that

P̃ ≤ P̃z̄ , (3.76)

however the relationship between ˜̄P and P̃ , P̃z̄ is much less clear. For example, the
particular choices of P̄ , R̄ might lead to a naı̈vely optimistic estimator, ˜̄P < P̃ , or
an unnecessarily pessimistic one, ˜̄P > P̃z̄ .

That is, in assessing the approximate estimator it is crucial to distinguish between
what it thinks its covariance is ( ˜̄P ), and its actual covariance (P̃z̄).

Suppose we are given the standard static estimation problem

z ∼ N (0, P ) m = Cz + v v ∼ N (0, R) (3.77)

and we select an approximate estimator

ˆ̄z = K̄m � Km. (3.78)

Then the actual error covariance of this estimator is

P̃z̄ = cov(ˆ̄z − z) = cov(K̄m− z) (3.79)

= cov(K̄Cz + K̄v − z) (3.80)

= cov
(
(K̄C − I)z + K̄v

)
(3.81)

= (K̄C − I)P (K̄C − I)T + K̄RK̄T . (3.82)

Although it looks a bit cumbersome, this latter expression (3.82) is an important
result, allowing us to find the actual error covariance for any linear estimator.
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3.2.4 Bayesian / NonBayesian Duality

Philosophically, the Bayesian and non-Bayesian perspectives lie at opposite ends of
a spectrum, and there has been vigorous debate as to whether prior knowledge is of
utmost importance, on the one hand, or statistically irrelevant, on the other.

It is rather surprising, then, that a comparison of the Bayesian estimator (3.67) and
the non-Bayesian least-squares estimators (3.26),(3.32) reveals an astonishing degree
of similarity, despite very different formulations and optimization objectives:

Weighted Least-Squares:
Minimize ‖m− Cẑ‖W
=⇒ ẑ(m) =

(
CTWC

)−1
CTWm

Regularized Least-Squares:
Minimize ‖m− Cẑ‖R−1 + λ ‖Lẑ‖
=⇒ ẑ(m) =

(
λLTL+ CTR−1C

)−1
CTR−1m

Bayesian Linear Least-Squares:
Minimize E

[
(ẑ − z)T (ẑ − z)]

=⇒ ẑ(m) = μ+
(
P−1 + CTR−1C

)−1
CTR−1(m− Cμ)

The algebraic connections among these estimators can be made more explicit by
rewriting the latter Bayesian estimator as

ẑ(m) =
{
P−1 + CTR−1C

}−1
CTR−1(m− Cμ)

=
{
P−1 + CTR−1C

}−1(
CTR−1m+ P−1μ

)
(3.83)

= μ+
{[
CT I

] [R−1 0
0 P−1

] [
C
I

]}−1 [
CT I

] [R−1 0
0 P−1

] [
m
μ

]
, (3.84)

in which case, viewed through the context of weighted least-squares (3.26), the
Bayesian estimator of (3.84) is equivalent to

[
m
μ

]
=
[
C
I

]
z + v, minimize eT

[
R−1 0

0 P−1

]
e. (3.85)

That is, from an algebraic point of view, prior knowledge is equivalent to a measure-
ment: both are pieces of statistical information which guide the estimator. A prior
z ∼ N (μ, P ) may thus be interpreted as saying that we have a “measurement” μ of
z, with the uncertainty in the measurement determined by P .

This duality also leads to a revised, dual criterion for the Bayesian estimator. Our
original Bayesian criterion from (3.40),
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Minimize E
[
(ẑ − z)T (ẑ − z)], (3.86)

is reinterpreted in the context of weighted least-squares, using the dual formulation
(3.84), as the minimization of

{[
m
μ

]
−
[
C
I

]
ẑ

}T [
R−1 0
0 P−1

]{[
m
μ

]
−
[
C
I

]
ẑ

}
(3.87)

= (m− Cẑ)TR−1(m− Cẑ) + (μ− ẑ)TP−1(μ− ẑ) (3.88)

= ‖m− Cẑ‖R−1 + ‖μ− ẑ‖P−1 . (3.89)

That is, the Bayesian estimator really is analogous to a standard least-squares ap-
proach, except that it simultaneously tries to minimize both the measurement and
prior inconsistencies, weighted by their respective confidences R−1, P−1.

3.3 Static Sampling

The notion of sampling was introduced in Sections 2.5.2 and 2.5.4, such that we wish
to generate random samples of a random vector.

If the prior statistics of a vector are known, we wish to generate prior samples from

z ∼ (μ, P ). (3.90)

Similarly, if additional constraints beyond the prior model (such as from measure-
ments) are asserted, then random samples may be generated from the constrained
vector

z|m ∼ (ẑ, P̃ ), (3.91)

where ẑ, P̃ are calculated via the Bayesian estimator (3.65)–(3.68).

As we saw in (2.76), given the mean and covariance of a random vector, random
samples can be found by computing a matrix square root (Appendix A.8):

Given w ∼ I ⇒ cov(Γ Tw) = E
[
Γ TwwTΓ

]
= Γ T IΓ = P. (3.92)

Thus

μ+ P 1/2w ∼ (μ, P ) (3.93)

ẑ + P̃ 1/2w ∼ (ẑ, P̃ ) (3.94)

are random prior and posterior samples, respectively. However, compared to com-
puting estimates ẑ, finding prior or posterior samples is much more difficult, due to
theO(n3) calculation of the matrix square root, in addition to theO(n3) calculation
of the posterior covariance P̃ in the case of posterior sampling.
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Example 3.4: Static Estimation and Sampling

Following up on Example 2.9, suppose we consider an ensemble of random prior
samples for a first-order problem (left) or second-order problem (right):

0 x

ẑ

0 x

ẑ

A first-order problem corresponds to an exponential spatial autocorrelation, and
the second-order problem very nearly to a Gaussian. Given two measurements,
we can clearly observe the posterior samples to be constrained at the measured
point, but have greater freedom away from measurements:

0 x

ẑ

0 x

ẑ

Each panel shows the estimate (solid) and one standard-deviation envelope
(dashed). It is clear that there is a relationship between the spread of posterior
samples and the estimation error variance at any point. Clearly additional mea-
surements more tightly constrain the problem:

0 x

ẑ

0 x

ẑ

Note how the second-order correlation leads to a very smooth interpolation (but
also poorly conditioned), whereas the exponential (first-order) case leads to piece-
wise linear estimates.



76 3 Static Estimation and Sampling

An estimation problem which is densely sampled with low-variance measurements
leads to P̃ close to zero, in which case the random posterior samples are nearly iden-
tical to the estimates ẑ. Conversely, if there are no measurements, then the prior and
posterior samples both come from the same distribution, since without measurements

ẑ = μ P̃ = P. (3.95)

If a non-Bayesian static estimation problem is given, as in Section 3.1, then a prior
model may not exist if the estimation problem is ill-posed in the absence of mea-
surements. In such cases a formal statistical prior sample does not exist, although in
Section 11.2 we show that typical samples can still be generated.

3.4 Data Fusion

From the discussion in Section 2.1 on data fusion, we wanted to allow the possibility
of multiple measurement sets, rather than just a single measurement vector. Such
problems occur frequently in remote sensing, for example, as shown in Figure 3.2,
where the same scene is imaged by multiple instruments, possibly at different spatial
or temporal resolutions; similar examples occur in computer vision, such as a stereo
pair of cameras, and throughout medical imaging, for example combining data from
two or more of ultrasound, PET, MRI, and CT images.

In many cases a data fusion problem can be rewritten as a more complicated regular
static problem. That is, data fusion problems are not inherently distinct from other
estimation or sampling problems; therefore, with the exception of this section, we do
not discuss data fusion separately.

Recall from (2.8) in Section 2.1 the basic premise: we are given multiple measure-
ments

m1 = C1z + v1 v1 ∼ N (0, R1) (3.96)

m2 = C2z + v2 v2 ∼ N (0, R2) (3.97)

...
...

It is possible to stack these multiple measurement models into a single one:

m =

⎡

⎢
⎣

m1

m2
...

⎤

⎥
⎦ =

⎡

⎢
⎣

C1

C2

...

⎤

⎥
⎦ z +

⎡

⎢
⎣

v1

v2
...

⎤

⎥
⎦ v =

⎡

⎢
⎣

v1

v2
...

⎤

⎥
⎦ ∼ N

⎛

⎜
⎝0,

⎡

⎢
⎣

R1 0 · · ·
0 R2 0
... 0

. . .

⎤

⎥
⎦

⎞

⎟
⎠ (3.98)

which is a basic static problem, where the block-diagonal nature of the measure-
ment noise follows from the assumption that the various measurement noise terms
v1, v2, . . . are uncorrelated. It is important to note, however, that the conversion back
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Fig. 3.2. An example of Bayesian estimation and data fusion [109]: A static Bayesian estimator
(based on Section 10.3) produced these estimates of sea-surface height in the Mediterranean
Sea. The estimates are based on fusing the altimetric (height) data from two complementary
satellites: Topex–Poseidon [120], which samples more sparsely in space but more frequently
in time, and ERS-1 [203], which samples more densely in space but less frequently in time.

to the static form is not dependent on noise decorrelation, or even on the linearity of
the measurement model. Given nonlinear measurements having correlated noise,

m1 = C1(z) + v1 v1 ∼ N (0, R11) (3.99)

m2 = C2(z) + v2 v2 ∼ N (0, R22) (3.100)

...
...

the problem transforms as in (3.98):

m =

⎡

⎢
⎣

m1

m2
...

⎤

⎥
⎦ =

⎡

⎢
⎣

C1(z)
C2(z)

...

⎤

⎥
⎦+

⎡

⎢
⎣

v1

v2
...

⎤

⎥
⎦ v =

⎡

⎢
⎣

v1

v2
...

⎤

⎥
⎦ ∼ N

⎛

⎜
⎝0,

⎡

⎢
⎣

R11 R12 · · ·
R21 R22 · · ·

...
...

. . .

⎤

⎥
⎦

⎞

⎟
⎠ .

(3.101)

A more interesting case is one in which the measurements arrive separately. Suppose
we first receive a set of measurements, from which we compute estimates:

Initial prior z ∼ (0, P )

First measurement m1 = C1z + v1

}

z|m1 ∼
(
ẑ1, P̃1

)
. (3.102)

Then, suppose that afterward a second set of measurements becomes available. We
know that we could combine the first and second set together, as in (3.98), however
that requires that we hold on to the previous measurementsm1 indefinitely, and also
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it throws away the work that we did in (3.102) to compute the estimates. Really, we
want to fuse the new measurements into the existing estimates. Actually this is not
so hard, because we can view the posterior (ẑ1, P̃1) from the first stage as the prior
to the second:

Current “prior” z|m1 ∼ (ẑ1, P̃1)

Second measurement m2 = C2z + v2

}

z|m1,m2 ∼
(
ẑ12, P̃12

)
. (3.103)

This latter step is just another, regular static problem, where we can see that the
calculation of the error statistics P̃1 in the former step was essential to fuse the later
measurements.

The above, sequential process in (3.102), (3.103) is something like a dynamic prob-
lem, in that measurements are arriving one after another, however the underlying
state z is not changing, so there are actually no dynamics present. Nevertheless, this
example has much in common with dynamic estimation, and the above idea leads
particularly nicely into the dynamic Kalman filter, derived in Chapter 4.

Application 3: Atmospheric Temperature Inversion [282]

There are a number of scientific challenges which follow the generic inverse problem
very closely:

Underlying State
Forward−−−−−→ Measurements

Inverse−−−−→ Estimated State

One such example is the temperature inverse-problem of the atmosphere [282]. Al-
though temperatures can be measured directly at one location using a weather bal-
loon, to produce a map of temperature with large-scale coverage it would be prefer-
able to use a satellite or high-flying aircraft to infer the temperature remotely.

UNDERLYING STATE:
We wish to estimate the atmospheric temperature t(a) as a function of altitude2 a.

FORWARD PROBLEM:
It is well known that every molecule (such as oxygen O2) is associated with a
line (emission / absorption) spectrum. The spectral line is not infinitesimally thin,
however, rather it is a smeared line whose width is a function of pressure (the Stark
effect), as sketched in Figure 3.3(a). Furthermore, the strength with which Oxygen
radiates energy is a function of its temperature. Therefore a satellite, far above
the atmosphere, observing the microwave energy at 116 GHz will be able to infer

2 Technically the temperature is normally expressed as a function of pressure, however ig-
noring spatial variations in atmospheric pressure, there is a one-to-one relationship between
pressure and altitude.
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Fig. 3.3. The forward problem for atmospheric temperature inversion. The width of the oxygen
118 GHz spectral line, left, varies with pressure (or, equivalently, altitude). By solving the
process by which microwave radiation moves through the atmosphere, right, we obtain a set
of curves, each describing how much a given frequency is influenced by temperature at a given
altitude.

ground-level temperature, since at all altitudes above the ground the atmosphere
is transparent to 116 GHz.

The problem is a bit more complicated, however. The spectral power around
118 GHz, closer to the spectral line, is not just the average of atmospheric temper-
ature from 0 km to 15 km. Instead, a microwave photon emitted near the ground
may be absorbed, and re-emitted, by another molecule higher in the atmosphere
(the so-called radiative transfer problem). If this process is simulated, we can find
the weighting functions w(a, f) at altitude a and frequency f , such that the spec-
tral strength observed from space is

s(f) =
∫
t(a) · w(a, f) da. (3.104)

Normally our satellite would observe the spectrum at only a discrete number of
frequencies, as suggested by the sketch in Figure 3.3(b).

INVERSE PROBLEM:
We suppose that we wish to estimate temperatures at discrete altitudes a1, . . . , an.
Furthermore we suppose that the satellite observes the spectrum at frequencies
f1, . . . , fq. Our state and measurement are therefore defined,

z =

⎡

⎢
⎣

t(a1)
...

t(an)

⎤

⎥
⎦ m =

⎡

⎢
⎣

s(f1)
...

s(fq)

⎤

⎥
⎦ (3.105)

leading to a forward problem
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m = Wz + v. (3.106)

W follows from the weights in Figure 3.3(b) and v is a noise term which will
be a function of the instrument design. Normally this problem will be undercon-
strained, so we want to regularize z, most likely by asserting smoothness.

Because this inverse problem is one-dimensional (a single look down through the
atmosphere), the number of unknowns is modest and the problem can be solved
directly by matrix inversion. Analytical methods and neural networks have also
been used.

Summary

Given a least-squares problem m = Cz, our objective is to minimize the weighted
squared error

ẑ = argz min
{
(m− Cz)TW (m− Cz)} (3.107)

for which the optimum solution is given by

ẑ =
(
CTWC

)−1
CTWm. (3.108)

Given a constrained, regularized problem our objective is to minimize the weighted
squared error

min
{‖m− Cẑ‖R−1 + λ ‖Lẑ‖} (3.109)

for which the optimum solution is given by

ẑ =
(
CTR−1C + λLTL

)−1
CTR−1m. (3.110)

Given a static Bayesian estimation problem

z ∼ (μ, P ) m = Cz + v v ∼ (0, R), (3.111)

the optimum estimator can be formulated in the following two algebraically-equivalent
ways:

Form I:

ẑ(m) = μ+ (PCT )(CPCT +R)−1(m− Cμ) (3.112)

P̃ = cov(z̃) = P − (PCT )(CPCT +R)−1CP (3.113)

Form II:

ẑ(m) = μ+
(
P−1 + CTR−1C

)−1
CTR−1(m− Cμ) (3.114)

P̃ = cov(z̃) =
(
P−1 + CTR−1C

)−1
(3.115)
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For Further Study

There are a great many textbooks that cover estimation theory; as an accessible intro-
duction, the reader is referred to [248,284]. For a comprehensive coverage of spatial
statistics, the book by Cressie [75] is an excellent reference.

Sample Problems

Problem 3.1: Static Estimation Forms

Use the ABCD identity from Appendix A to prove the equivalence of the two
static estimator forms (3.112)–(3.113) and (3.114)–(3.115).

Problem 3.2: Linear Regression

In Example 3.1 on page 62, the answer to the estimate ẑ is written down, but
without derivation. Complete the example by deriving (3.20), the solution to â, b̂.

Problem 3.3: Static Sampling

Suppose you are given a vector μ and a covariance P . Prove that
(
μ+ P 1/2w

)
is distributed as (μ, P ),

where w ∼ I .

Problem 3.4: Covariance Reduction

A measurement should never increase our uncertainty in an estimate. At worst a
measurement is useless and should have no effect, in all other cases the estimation
error covariance should decrease from the prior. Prove that this is so.

That is, for Bayesian least squares prove that P̃ ≤ P , where the matrix inequality
is understood in positive-semidefinite terms; in other words, that P − P̃ must be
positive-semidefinite. The proof is easiest beginning with Form I (3.113).

Problem 3.5: First-Order Interpolation

Let z be a vector having 100 elements. We wish to do regularized, constrained
estimation as in (3.109), (3.110).
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We assert a first-order (gradient) constraint in L, penalizing the differences be-
tween adjacent state elements. Thus L is a 99× 100 matrix such that

li,j =

⎧
⎨

⎩

-1 if j = i
1 if j = i+ 1
0 otherwise

meaning that each row of L looks like
[
0 . . . 0 -1 1 0 0 . . .

]
.

(a) How many measurements are required for the constrained problem to satisfy
uniqueness? Why?

(b) Suppose we observe elements z25 and z75, thus

m = Cz + v =
[
z25
z75

]
+ v where m =

[
10
50

]
v ∼ I.

Compute and plot ẑ for λ = 1, 5, 25.

Problem 3.6: Second-Order Interpolation

Let z be a vector having 100 elements. We wish to do regularized, constrained
estimation as in (3.109), (3.110).

Following on Problem 3.5, we assert a second-order (curvature) constraint in L,
penalizing the curvature (rate of change of gradient) across three successive state
elements. Thus L is a 98× 100 matrix such that

li,j =

⎧
⎨

⎩

-1 if j = i, i+ 2
2 if j = i+ 1
0 otherwise

so that each row of L looks like
[
0 . . . 0 -1 2 -1 0 0 . . .

]
.

(a) How many measurements are required for the constrained problem to satisfy
uniqueness? Why?

(b) Suppose we observe elements z1, z50, and z100 with

mT =
[
0 50 25

]
v ∼ I.

Compute and plot ẑ for λ = 250, 2000, 10000.
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(c) Comment on the differences in the estimates produced by first- and second-
order constraints.

Problem 3.7: Cross-Validation

We wish to use the method of cross-validation (2.56) on Page 37 from Chapter 2
to infer the optimal regularization constraint λ in Problems 3.5 and 3.6. A part
of this problem was solved in Example 2.8; the reader may wish to refer back to
this example.

Suppose we have three measurement sets:

m
(1)
i = 5 + v

(1)
i

m
(2)
i = i

10 + v
(2)
i

m
(3)
i =

(
i−50
20

)2 + v
(3)
i

where 1 ≤ i ≤ 100 and where v(j)
i is a white noise process of variance 2.0.

For each of the measurement sets, and for each of the first- and second-order
constraints, perform cross-validation.

Plot the measurement–estimate inconsistency e2(λ) from (2.56), find the optimal
value of λ, and plot the estimates corresponding to λ/100, λ, and 100λ.

Comment on the behaviour of the e2(λ) and estimation plots.

Problem 3.8: Data Fusion

Let’s investigate doing data fusion. Suppose z is a vector of 100 unknowns, where
we observe elements z10, z30, z50, z70, and z90 with

mT =
[
0 0 20 30 0

]
v ∼ I.

The data fusion problem needs a prior; we use the second-order constraint of
Problem 3.6, such that the prior P−1 = λLTL, where λ = 2000. We’ll compute
estimates in one of two ways:

(a) Using usual constrained least squares, compute the estimates ẑ(m) and esti-
mation error covariance P̃ . Plot the five measurements, superimposed on the
estimates, plus–minus one standard deviation

ẑ ±
√

diag
(
P̃
)
.

(b) Now we want to do data fusion, whereby we will incorporate only one mea-
surement at a time, using the method outlined in (3.102), (3.103):

1. Compute ẑ2, P̃2 from measurements m1,m2, using prior P as before.
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2. Compute ẑ3, P̃3 by fusing measurement m3 into ẑ2, P̃2.
3. Compute ẑ4, P̃4 by fusing m4 into ẑ3, P̃3.
4. Compute ẑ5, P̃5 by fusing m5 into ẑ4, P̃4.

Plot

ẑi ±
√

diag
(
P̃i

)
,

superimposed on the relevant measurement, for each iteration i = 2, . . . , 5.

State your observations, comparing the results from (a) and (b).
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Dynamic Estimation and Sampling

Chapter 3 developed estimators for static problems — those in which z has no time
dependence. Given measurements, we compute a corresponding set of estimates, and
the solution is complete.

Clearly the problem is much more interesting if z is permitted to evolve and be mea-
sured over time. Indeed, this is a classic problem in the control literature, in which
we wish to control some aspects (such as temperature, velocity, pressure, height, vol-
ume, etc.) of a time-evolving system z. A common step in developing a controller is
to develop an “observer,” to estimate ẑ, the unknown current state of the system. The
Kalman filter [182] is a dynamic, recursive estimator which was first developed as
an observer for system control, but which has found fantastically broad application
in a wide variety of fields, including statistical image processing.

Although temporal image processing is certainly an area of interest, particularly for
video sequences, it is important to realize that the “time” t may be interpreted much
more abstractly: any signal which varies as a function of a discrete variable is a candi-
date for Kalman filtering. Thus, in the context of multidimensional signal processing,
we may choose t to index over time, over video frames, over the rows or columns of
an image, over the planes in a 3D volume, over the resolutions in a multiresolution
tree, or the raster scan of a 2D image, to name only a few possibilities. Three real,
practical examples are illustrated in Figure 4.1.

To be sure, derivations of the Kalman filter may be found in many texts [8, 97, 151,
156, 231, 284]. We repeat one here, partly for reasons of continuity in development,
but also because many other derivations are unnecessarily complicated, and may
include continuous-time derivations, which are important in control, but have little
to contribute to the inherently discrete world of pixellated images.

Our discussion begins with a consideration of first-order Gauss–Markov models, and
of the relationship between static and dynamic estimation problems, followed by a
derivation of the discrete-time Kalman filter.

P. Fieguth, Statistical Image Processing and Multidimensional Modeling, Information Science
and Statistics, DOI 10.1007/978-1-4419-7294-1_4, © Springer Science+Business Media, LLC 2011
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(Microscopic Data from M. Ioannidis, Dept. Chemical Engineering, University of Waterloo)

Fig. 4.1. There are many circumstances in which we have image sequences. Whether the
sequence is indexed over time (top), over space (middle), or over resolution (bottom), all of
these can be modelled as dynamic processes.

4.1 The Dynamic Problem

We encountered a basic, canonical dynamic problem in Section 2.5.1. Our starting
point here is the most famous of all linear systems, the first-order Gauss–Markov
dynamic model [8, 248]

z(t+ 1) = A(t)z(t) +B(t)w(t) w(t) ∼ N (0, I), (4.1)



4.1 The Dynamic Problem 87

in which the random processw is white and uncorrelated with the past of the system:

E
[
w(t)w(s)T

]
= δt,sI, E

[
w(t)z(s)T

]
= 0 if s ≤ t. (4.2)

The interpretation or purpose of the process noise w can be context dependent:

• In some cases our dynamic system z(t) is actually stochastic, and really is driven
by a white noise process, such that w is adding energy into the system. This is
true for a variety of physical phenomena, the most famous of which is the random
walk of Brownian motion.

• Our mathematical model for z(t) may be deterministic, however we may still
choose to include a noise term w(t). A deterministic estimator will become in-
creasingly confident over time, to the point where it will refuse to adjust the es-
timates to changing measurements. A small amount of modelled noise limits the
estimator confidence and preserves adaptability.

• The mathematical model A(t), B(t) may, in many cases, be only an approxima-
tion of the real world. For example, in developing a model for the motion of a car,
details such as variations in tire pressure, small bumps on the road, wind, and tur-
bulence may not be modelled. Although more formal methods exist for analyzing
and dealing with model errors, a noise term in the dynamics gives the estimator a
bit of flexibility in accommodating model approximation.

Next, a boundary condition is required to initiate the recursion:

E[z(0)] = zo cov(zo) = Po. (4.3)

Finally, measurements are available over time:

m(t) = C(t)z(t) + v(t) v(t) ∼ N (0, R(t)
)
. (4.4)

Taken together, the dynamic equation, boundary condition, and measurements form
a complete description of the canonical dynamic problem from Section 2.5.1. Let

ẑ(t|s) be the least-squares estimate of z(t) given m(0), . . . ,m(s), and
P (t|s) be the estimation error covariance corresponding to ẑ(t|s).

Then, given m(0), . . . ,m(τ) we have two fundamental problems:

Filtering: find ẑ(t|t) for 0 ≤ t ≤ τ
Smoothing: find ẑ(t|τ) for 0 ≤ t ≤ τ
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4.1.1 First-Order Gauss–Markov Processes

The proposed model (4.1) is a first-order, Gauss–Markov, discrete-time random pro-
cess. At first glance it is unclear to what extent this model has a sufficiently general
form. For example, two simple, common, alternative models which do not immedi-
ately fit into the form of (4.1) are an nth-order autoregressive model [37]

z(t+ 1) =
n−1∑

i=0

Ai(t)z(t− i) +B(t)w(t) (4.5)

or an nth-order correlated-noise (moving-average) model

z(t+ 1) =
n−1∑

i=0

Bi(t)w(t− i). (4.6)

In fact, both of these forms can be rewritten into the form of (4.1), thus any estimator
compatible with (4.1) does in fact generalize to a much broader range of models. We
illustrate this generalization for two examples. Given an autoregressive model of the
form (4.5)

z(t+ 1) =
2∑

i=0

Ai(t)z(t− i) +B(t)w(t), (4.7)

then under the following definition of variables

z̄(t) �

⎡

⎣
z(t)

z(t− 1)
z(t− 2)

⎤

⎦ Ā(t) �

⎡

⎣
A0(t) A1(t) A2(t)
I 0 0
0 I 0

⎤

⎦ B̄(t) �

⎡

⎣
B(t)
0
0

⎤

⎦

(4.8)

we obtain a first-order dynamic recursion, having the canonical form of (4.1):

z̄(t+ 1) = Ā(t)z̄(t) + B̄(t)w(t). (4.9)

A second example illustrates the same idea for the moving-average process of (4.6).
Given the process

z(t+ 1) =
3∑

i=0

Bi(t)w(t− i), (4.10)

we can formulate a change of variables

z̄(t) �

⎡

⎢
⎢
⎣

z(t)
w(t− 1)
w(t− 2)
w(t− 3)

⎤

⎥
⎥
⎦ Ā(t) �

⎡

⎢
⎢
⎣

0 B1(t) B2(t) B3(t)
0 0 0 0
0 I 0 0
0 0 I 0

⎤

⎥
⎥
⎦ B̄(t) �

⎡

⎢
⎢
⎣

B0(t)
I
0
0

⎤

⎥
⎥
⎦

(4.11)
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such that the following Gauss–Markov model implements the moving average of
(4.10):

z̄(t+ 1) = Ā(t)z̄(t) + B̄(t)w(t). (4.12)

Thus we claim that, indeed, the proposed first-order Gauss–Markov model (4.1) can
encompass a wide variety of models, both first- and higher-order.

Next, it should be clarified that the entire prior model over all time t ≥ 0 is specified,
implicitly, by the boundary condition at time t = 0. Given

E
[
z(0)

]
= zo cov(zo) = Po, (4.13)

we can find a recursive form for the mean E
[
z(t)
]
,

E
[
z(t+ 1)

]
= E

[
A(t)z(t) +B(t)w(t)

]
(4.14)

= A(t)E
[
z(t)
]

(4.15)

= A(t)A(t− 1) . . . A(0)zo (4.16)

and similarly for the covariance P (t),

P (t+ 1) = cov
(
A(t)z(t) +B(t)w(t)

)
(4.17)

= A(t)P (t)AT(t) +B(t)BT(t). (4.18)

If the system dynamics are time-invariant,A(t) = A, and stable, meaning that all of
the eigenvalues of A have a magnitude less than one, then the process converges to
a statistical steady-state. That is, z(t) continues to change and evolve, but all of the
statistics of z(t) converge. In particular, the mean converges to zero,

lim
t→∞E

[
z(t)
]

= lim
t→∞Atzo = 0, (4.19)

and the process covariance converges to the solution of the Algebraic Lyapunov
Equation:

lim
t→∞P (t) = P∞ where P∞ = AP∞AT +BBT . (4.20)

The steady-state case is of some interest in Kalman filtering and will be revisited in
Section 4.3.2.

4.1.2 Static — Dynamic Duality

There is nothing inherently difficult in estimating a dynamic quantity. In fact, it is
possible to convert the dynamic problem into a static one, and then to use the methods
of Chapter 3 which we have derived for static estimation.

Consider the problem of estimating ẑ(t|t). Suppose we create augmented state and
measurement vectors
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z̄(t) =

⎡

⎢
⎣

z(0)
...

z(t)

⎤

⎥
⎦ m̄(t) =

⎡

⎢
⎣

m(0)
...

m(t)

⎤

⎥
⎦ (4.21)

Then solving the estimation problem produces estimates

ˆ̄z(t) =

⎡

⎢
⎣

ẑ(0|t)
...

ẑ(t|t)

⎤

⎥
⎦ (4.22)

of each element of z̄ given all of the measurements in m̄, where the estimates include
the desired ẑ(t|t).
If we concatenate the dynamic measurement model as

v̄(t) =

⎡

⎢
⎣

v(0)
...

v(t)

⎤

⎥
⎦ C̄(t) =

⎡

⎢
⎣

C(0)
. . .

C(t)

⎤

⎥
⎦ R̄(t) =

⎡

⎢
⎣

R(0)
. . .

R(t)

⎤

⎥
⎦

(4.23)

where C̄(t), R̄(t) are block-diagonal, then we have recovered the measurement
model corresponding to the following static problem:

m̄ = C̄z̄ + v̄ z̄ ∼ (μ̄, P̄ ) v̄ ∼ (0, R̄). (4.24)

What remains is the more difficult rearrangement of the dynamic model for z(t) to
infer the prior covariance P̄ of the above static problem. We begin with the straight-
forward computation of the prior mean; from (4.16) it follows that

μ̄(t) = E
[
z̄(t)
]

= E

⎡

⎢
⎢⎢
⎣

z(0)
z(1)

...
z(t)

⎤

⎥
⎥⎥
⎦

=

⎡

⎢
⎢⎢
⎣

zo

A(0)zo
...

A(t− 1) · . . . ·A(0)zo

⎤

⎥
⎥⎥
⎦

(4.25)

Next, to compute the prior covariance P̄ , observe that

E
[(
z(t+ 1)− μ(t+ 1)

)(
z(t)− μ(t)

)T ]

= E
[(
A(t)z(t) +B(t)w(t)−A(t)μ(t)

)(
z(t)− μ(t)

)T ]

= A(t)E
[(
z(t)− μ(t)

)(
z(t)− μ(t)

)T ]+B(t)E
[
w(t)

(
z(t)− μ(t)

)T ]

= A(t)P (t) + 0.
(4.26)

Iterating (4.26), we can find all needed cross-correlations
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E
[(
z(t+ s)− μ(t+ s)

)(
z(t)− μ(t)

)T ] = A(t+ s− 1) · . . . · A(t)P (t)

E
[(
z(t)− μ(t)

)(
z(t+ s)− μ(t+ s)

)T ] = P (t)AT(t) · . . . ·AT(t+ s− 1)
(4.27)

for s > 0, from which follows the massive covariance P̄ (t) = cov
(
z̄(t)
)
:

P̄ (t) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

P (0) P (0)AT(0) P (0)AT(0)AT(1) · · ·
A(0)P (0) P (1) P (1)AT(1) · · ·

A(1)A(0)P (0) A(1)P (1) P (2)
...

...
...

. . .
P (t)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.28)

With the definition of the static problem complete, we can use the results of Sec-
tion 3.2.1 to find the estimates:

ˆ̄z =

⎡

⎢
⎣

ẑ(0|t)
...

ẑ(t|t)

⎤

⎥
⎦ = μ̄+

(
C̄T R̄−1C̄ + P̄−1

)−1
C̄T R̄−1(m̄− C̄μ̄), (4.29)

from which the desired estimate, ẑ(t|t), can be extracted as the last element of ˆ̄z.

The problem with this dual approach, which becomes obvious when looking at
(4.28), is that the size of the vectors and matrices grows with increasing t. That
is, the problem becomes increasingly difficult over time. For example, if the system
state is n-dimensional, z(t) ∈ R

n, then the computation of ẑ(t|t) involves vectors of
length (t+ 1)n and a matrix-inversion complexity of O((tn)3

)
.

There is also something dissatisfying about this dual approach, in that there is a great
deal of duplicated effort in computing ẑ(t|t) and ẑ(t+1|t+1). In particular, observe
that the problem formulation at time t + 1 shares a great deal in common with that
at time t:

C̄(t+ 1) =
[
C̄(t) 0
0 C(t+ 1)

]
R̄(t+ 1) =

[
R̄(t) 0
0 R(t+ 1)

]
(4.30)

P̄ (t+ 1) =
[
P̄ (t) D
DT P (t+ 1)

]
(4.31)

The key to finding a more efficient estimator is to look again at the original recursive
dynamics in (4.1). In particular, note that the state of the system at time t+1 depends
only on the state at time t; that is, the state z(t) somehow captures or summarizes
the entire past history of the process1 that is relevant to z(t + 1). The derivation in
Section 4.2 shows that such a recursive form also exists for the estimator ẑ(t).

1 Which is essentially a statement of Markovianity, a subject which is discussed further in
Chapter 6.
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Example 4.1: Dynamic Estimation and Sampling

Following up on Examples 2.9 and 3.4, suppose we have two random processes,
where B in (4.1) controls the amount of process noise:

Small B

0
t

ẑ(t|t)
Large B

0
t

ẑ(t|t)

Both processes are scalar, first-order, with A ≈ 0.99. The solid line plots the esti-
mates, and the dashed lines the one standard-deviation envelope. Clearly the rate
at which the uncertainty grows is a function of B. Now suppose a measurement
is introduced:

0
t

ẑ(t|t)

0
t

ẑ(t|t)

Because the estimates are causal, ẑ(t|t) is unaware of any measurement until the
measurement occurs. Each measurement constrains the posterior samples of the
random process, with multiple measurements introducing multiple constraints:

0
t

ẑ(t|t)

0
t

ẑ(t|t)

Solving for these dynamic estimates is not hard, and follows from (4.29). What
is unique about the Kalman filter, derived in Section 4.2, is an efficient, recursive
approach to producing dynamic estimates such as these.



4.2 Kalman Filter Derivation 93

4.2 Kalman Filter Derivation

We seek to discover a recursive form for the estimator z(t|t). It is common to en-
counter Kalman filter derivations in textbooks which assert the recursive form,

ẑ(t+ 1|t+ 1) = H(t)ẑ(t|t) +K(t)m(t) + α(t), (4.32)

and then derive the optimum settings for H(t),K(t), α(t). However, such an ap-
proach does two disservices to the reader:

1. By asserting the recursive form ab initio, one finds only the best recursive form,
without necessarily showing that the recursive form is, in fact, the best overall
estimator.

2. By asserting the recursive form, the opportunity is lost to illustrate to the reader
why a recursive form is optimal. That is, what is it in the structure of the problem
which allows a recursive form to emerge?

The remainder of this section, which borrows from the ideas and structure of [333],
is divided into three parts:

1. Indirect estimation,

2. Uncorrelated measurements, and

3. Recursive estimation.

Although there are insights to be gained by understanding the derivation in detail,
the reader may choose to skip the following on first reading.

I. Indirect Estimation

Suppose we are given the following problem:

m = Cz + v v ∼ N (0, R)
q = Dz + w w ∼ N (0, S) z ∼ N (0, P ). (4.33)

That is,m is a known measurement of z and q is unknown, where the noise processes
v, w are uncorrelated with each other and with z. We know the forms of the static
estimators:

ẑ(m) = ΛzmΛ
−1
m m q̂(m) = ΛqmΛ

−1
m m. (4.34)

The required cross-statistics are easily derived:
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Λzm = E
[
z mT

]
= E

[
z(Cz + v)T

]
= PCT (4.35)

Λqm = E
[
q mT

]
= E

[
(Dz + w)(Cz + v)T

]
= DPCT (4.36)

Λq = E
[
q qT ] = E

[
(Dz + w)(Dz + w)T

]
= DPDT + S. (4.37)

Thus the indirect estimator may be expressed as

q̂(m) = DPCTΛ−1
m m = Dẑ(m). (4.38)

Similarly, the indirect estimation error covariance obeys

P̃q = Λq − ΛqmΛ
−1
m ΛT

qm (4.39)

= DPDT + S −DPCTΛ−1
m CPDT (4.40)

= D
(
P − PCTΛ−1

m CP
)
DT + S = DP̃zD

T + S. (4.41)

Thus we have the elegant conclusion that if we have an estimator ẑ for z, then the
estimator for any linear function of z is just that linear function of ẑ:

q = Dz + w
w ∼ (0, S) =⇒ q̂(m) = Dẑ(m)

P̃q = DP̃zD
T + S.

(4.42)

This relationship will be required in order to relate estimates at time t + 1 in terms
of estimates at time t.

II. Uncorrelated Measurements

Next, we wish to produce estimates based on two groups of measurements.

Suppose we wish to estimate zero-mean z based on measurements divided into two
uncorrelated groups ma,mb. Note that we are making the rather unusual insistence
that the measurements be uncorrelated, not just the measurement errors. That is, the
statistics of the measurements obey

Λm = cov(m) =
[
Λa 0
0 Λb

]
where m =

[
ma

mb

]
. (4.43)

Next, define the cross-statistics between the measurements and unknowns as

Λzm = E
[
z mT

]
= E

[
z
[
mT

a mT
b

]]
=
[
ΛzaΛzb

]
. (4.44)

Then, using the standard LLSE form, we can derive the estimator for z:

ẑ(m) = ΛzmΛ
−1
m m =

[
Λza Λzb

]
[
Λa 0
0 Λb

]−1 [
ma

mb

]
(4.45)

=
[
Λza Λzb

]
[
Λ−1

a 0
0 Λ−1

b

] [
ma

mb

]
(4.46)

= ΛzaΛ
−1
a ma + ΛzbΛ

−1
b mb (4.47)

= ẑ(ma) + ẑ(mb). (4.48)
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That is, if two measurement sets are uncorrelated, then the optimum estimator is just
the sum of the estimates produced by each measurement set.

This result is important, in that we set ma to be the entire past history of measure-
ments, and mb to be the current measurements at time t, which will thus lead to a
recursive estimator

ẑ(t|t) = ẑ(all past measurements) + ẑ(measurements at time t). (4.49)

The measurements are normally not uncorrelated over time, therefore the key is to
determine how to decorrelate them.

III. Recursive Estimation

Because (4.1) has the form of (4.33), it follows that

ẑ(t|t− 1) = A(t− 1)ẑ(t− 1|t− 1) (4.50)

P (t|t− 1) = A(t− 1)P (t− 1|t− 1)AT(t− 1) +B(t− 1)BT(t− 1). (4.51)

This is known as the prediction step — the prediction over time of the estimates and
related statistics.

In addition to predicting estimates over time, we also need to incorporate new mea-
surements as they arrive, known as the update step. The key is the creation of an
innovations process ν(t):

ν(t) = m(t)− m̂(t|t− 1). (4.52)

Although it may seem odd to construct estimates of measurements,m(t) is a random
vector which obeys certain statistics and can be estimated, just like any other. From
its definition (4.52), ν(t) contains the information present in m(t) which cannot be
inferred from past measurements m(0), . . . ,m(t − 1). That is, m̂(t|t − 1) is the
predictable part of m(t), and ν(t) contains only the new information in m(t).

Because ν(t) is the estimation error in m̂(t|t− 1), by the orthogonality principle

E
[
ν(t)mT(s)

]
= 0, 0 ≤ s < t. (4.53)

That is, we have two decorrelated measurement sets: ν(t) and m(0), . . . ,m(t− 1).

Next, because (4.4) also has the form of (4.33), again it follows that

m̂(t|t− 1) = C(t)ẑ(t|t− 1) (4.54)

thus the innovations can be written as
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ν(t) = m(t)− m̂(t|t− 1) = C(t)
[
z(t)− ẑ(t|t− 1)

]
+ v(t) (4.55)

Pν(t) = C(t)P (t|t − 1)CT(t) +R(t). (4.56)

Finally, let e(t) represent the predicted estimation error

z(t) = ẑ(t|t− 1) + e(t). (4.57)

By orthogonality, e(t) must also be uncorrelated with m(s), 0 ≤ s < t. Therefore

ẑ(t|t) = ẑ(t|t− 1) + ê(t|t) (4.58)

= ẑ(t|t− 1) + ê
(
t|m(0), . . . ,m(t− 1), ν(t)

)
(4.59)

= ẑ(t|t− 1) + ê
(
t|m(0), . . . ,m(t− 1)

)
+ ê
(
t|ν(t)) (4.60)

= ẑ(t|t− 1) + 0 + ê
(
t|ν(t)) (4.61)

= ẑ(t|t− 1) + PeνP
−1
ν ν(t), (4.62)

where (4.58) follows from I, (4.60) follows from II, (4.61) from orthogonality, and
(4.62) from static estimation.

All that remains to complete the derivation is to find the innovation statistics:

Pν(t) = C(t)P (t|t − 1)CT(t) +R(t) (4.63)

Peν(t) = E
[
e(t)
(
m(t)− m̂(t|t− 1)

)T ]
(4.64)

= E
[
e(t)
(
C(t)e(t) + v(t)

)T ]
(4.65)

= P (t|t− 1)CT(t), (4.66)

where the last relationship follows because the prediction error e(t) is uncorrelated
with the measurement error v(t).

Thus we have completed the derivation of the update step:

ẑ(t|t)= Predicted Estimate + Measurement Relevance · New Information

= ẑ(t|t− 1) + K(t) · (m(t)− C(t)ẑ(t|t− 1)
)

(4.67)
where, from (4.63) and (4.66),

K(t) = PeνP
−1
ν = P (t|t− 1)CT(t)

(
C(t)P (t|t− 1)CT(t) +R(t)

)−1
. (4.68)

The corresponding estimation error covariance is

P (t|t)= Predicted Uncertainty − Uncertainty Reduction due to Measurements

= P (t|t− 1) − PeνP
−1
ν PT

eν

= P (t|t− 1) − K(t)C(t)P (t|t − 1).
(4.69)

The resulting discrete-time Kalman filter is summarized in Algorithm 1.
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Algorithm 1 The Kalman Filter
Goals: Iteratively find estimates ẑ over 1 ≤ t ≤ τ , given initialization (zo, Po)
Function [ẑ(1|1), P (1|1), . . . , ẑ(τ |τ ), P (τ |τ )] = KF(A,B,m,C,R, Po, zo, τ )

ẑ(0|0)← zo Initialize at Time t = 0
P (0|0)← Po

for i← 1 : τ do
ẑ(i|i− 1)← Aẑ(i− 1|i− 1) State Prediction
P (i|i− 1)← AP (i− 1|i− 1)AT +BBT Covariance Prediction

K ← P (i|i− 1)CT inv
`
CP (i|i− 1)CT +R

´
Gain

ẑ(i|i)← ẑ(i|i− 1) +K
`
m(i)− Cẑ(i|i− 1)

´
State Update

P (i|i)← P (i|i− 1)−KCP (i|i− 1) Covariance Update
end for

IV. Discussion

The preceding derivation shows that the optimum linear least-squares estimator for a
dynamic model of the form (4.1),(4.4) can be written in an efficient, recursive form,
known as the Kalman filter. The three key steps are

I. Indirect estimation — how to generate estimates of linear functions of z, allowing
estimates to be projected or predicted over time;

II. Multiple measurements — how to generate estimates based on multiple groups
of decorrelated measurements;

III. Measurement decorrelation — how to actually decorrelate the measurements in
order to separate “past” and “current”, the key to the recursion.

The structure of the resulting equations can be seen much more clearly in the time-
invariant case:

A(t) = A B(t) = B C(t) = C R(t) = R, (4.72)

in which the Kalman filter may be written as

Prediction: ẑ(t|t− 1) = Aẑ(t− 1|t− 1) (4.73)

P (t|t− 1) = AP (t− 1|t− 1)AT +BBT (4.74)

Update: ẑ(t|t) = ẑ(t|t− 1) +K(t)
(
m(t)− Cẑ(t|t− 1)

)
(4.75)

P (t|t) = P (t|t− 1)−K(t) · C · P (t|t− 1) (4.76)

K(t) = P (t|t− 1) · CT · (CP (t|t− 1)CT +R
)−1

(4.77)

As should be expected, the dynamicsA,B affect only the prediction step; the update
step is essentially a static estimator, taking place at a fixed point in time, and knowing
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Example 4.2: Kalman Filtering and Interpolation

Suppose that we have a dynamic interpolation problem

z(t) = α z(t− 1) +β w(t)
m(t) = z(t) + v(t) where w ∼ N (0, 1), v ∼ N (0, σ2) (4.70)

Then the Kalman filter follows easily from (4.73)–(4.77):

Predict: ẑ(t|t− 1) = αẑ(t− 1|t− 1)
P (t|t− 1) = α2P (t− 1|t− 1) + β2

Update: K(t) = P (t|t− 1)/
(
P (t|t− 1) + σ2

)

ẑ(t|t) = ẑ(t|t− 1) +K(t)
(
m(t)− ẑ(t|t− 1)

)

P (t|t) = P (t|t− 1)
(
1−K(t)

)

(4.71)

where it is important to observe that parameters α, β from the dynamic model
appear only in the predict step, whereas the measurement parameter σ appears
only in the update.

Suppose we have three measurements, plotted as circles, at times t1, t2, t3. Let’s
consider the effects of varying α, β, and σ.

If α < 1 then, over time, ẑ → 0 and the rate of increase in P is mostly controlled
by β. At each discrete measurement, ẑ is updated as P is reduced:

α = 0.1
β = 1
σ small

t

ẑ(t|t)

0 t1 t2 t3
t

P (t|t)

0 t1 t2 t3

α = 0.9
β = 1

2
σ large

t

ẑ(t|t)

0 t1 t2 t3
t

P (t|t)

0 t1 t2 t3

The more rapidly P grows over time, the more rapidly a past measurement is
“forgotten.” At any point in time where a measurement appears, the influence of
the measurement on the estimate depends on the relative values of P (T |t−1) and
σ2.

Example continues . . .
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Example 4.2: Kalman Filtering and Interpolation (cont’d)

If α = 1 then ẑ is constant over time. The degree to which past measurements
influence the current estimate depends on β:

α = 1
β = 0
σ small

t

ẑ(t|t)

0 t1 t2 t3
t

P (t|t)

0 t1 t2 t3

α = 1
β = 1
σ small

t

ẑ(t|t)

0 t1 t2 t3
t

P (t|t)

0 t1 t2 t3

Clear patterns emerge:

Phenomenon Controlled By

Rate of decay of ẑ α
Converged value of P α, β
Rate of growth of P Mostly β
Closeness of ẑ to m σ2 and P (t|t− 1)

nothing about dynamics. Similarly the measurements m and related model parame-
ters C,R appear only in the update step. Note that if there are no measurements at
some time t, then the update step is skipped completely:

ẑ(t|t) = ẑ(t|t− 1) P (t|t) = P (t|t− 1) (4.78)

Understanding the connection to static estimation, we see that the update step is
essentially written as Form I (3.65). Through the ABCD lemma in Appendix A.2,
Form II (3.67) gives us an alternate version of the Kalman update

K(t) = P (t|t)CT(t)R−1(t) (4.79)

P (t|t) =
(
P (t|t− 1)−1 + CT(t)R−1(t)C(t)

)−1
. (4.80)
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Finally, observe that the uncertainty P can never increase in the update step; that
is,2 P (t|t) ≤ P (t|t − 1). The measurements can only improve our understanding;
at worst the measurements are irrelevant, in which case the gain K(t) = 0 and the
uncertainty P (t|t) = P (t|t−1) is unchanged. On the other hand, the time-dynamics
normally include an unpredictable stochastic term w(t), so the uncertainty P does
increase by an amountBBT in the prediction step.

Because the Kalman filter involves matrix–matrix multiplication and matrix inver-
sion, the computational complexity of the filter isO(n3) per iteration, where n is the
dimensionality of z. In cases where z represents some dynamic system with a few
degrees of freedom, the Kalman filter is easily implemented in real-time. However, if
z represents an image sequence, such as in video processing, where each image con-
tains one million pixels, then O(n3) may be prohibitive and other approaches need
to be considered, which are the focus of the large-scale Kalman filtering methods in
Chapter 10.

4.3 Kalman Filter Variations

A great many variations and forms of the Kalman filter have been developed to ad-
dress different concerns or criticisms of the basic algorithm derived in Section 4.2.
The most obvious concerns are the causality of the computed estimates, the numer-
ical robustness or stability of the algorithm, the computational complexity, and the
assumptions of Gaussianity and linearity. Each of these is dealt with in turn:

ESTIMATE CAUSALITY: The estimate ẑ(t|t) is an estimate of z at time t, based on
measurements up to time t. The causal nature of the estimates can clearly be seen
in Example 4.2. Because most dynamic processes are strongly correlated over
time, measurements at times t+ 1, t+ 2, . . . would be useful in estimating z(t):

=⇒ Section 4.3.3: Kalman Filter Smoothing
=⇒ Section 4.3.3: Fixed-lag Smoothing

NUMERICAL STABILITY: The numerical stability of the Kalman filter primarily in-
volves the robustness in the calculation of the estimation error covariances, in
particular whether the covariances remain positive-definite.3 In particular, the co-
variance update (4.76)

P (t|t) = P (t|t− 1)−K(t) · C · P (t|t− 1) (4.81)

2 Matrix inequalities are always interpreted in a positive-definite sense. Thus the inequality
P (t|t) ≤ P (t|t− 1) really means P (t|t− 1) − P (t|t) ≥ 0, that is, that the difference is
positive-semidefinite (see Appendix A.3).

3 In estimation, if a prior covariance is used which fails to be positive-definite, even to only
a tiny degree, it can lead to invalid estimates and negative estimation error variances.
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looks suspicious, because P (t|t) must be symmetric, yet the right-hand side of
(4.81) looks asymmetric:

=⇒ Section 4.3.1: Joseph Stabilized Form

In cases where the conditioning of the dynamic problem is poor, it may be neces-
sary to develop a different algorithm with improved conditioning:

=⇒ Section 4.3.1: Square Root Kalman Filter

COMPUTATIONAL AND STORAGE COMPLEXITY: The regular Kalman filter has a
complexity of O(n3) per iteration, for a state of n elements. For large prob-
lems this complexity is prohibitive; for example, a 1000 × 1000 dynamic im-
age corresponds to n = 106. If a problem is stationary over time, then matrices
K(t), P (t|t), P (t|t − 1) do not change over time and need to be computed only
once:

=⇒ Section 4.3.2: Steady-State Kalman Filtering

In the event that the problem is too large to allow representation via large covari-
ances, then the problem needs to be transformed or represented differently:

=⇒ Chapter 5: Modeling of Large Problems
=⇒ Chapter 8: Changes and Reductions of Bases
=⇒ Chapter 10: Kalman Filters for Large Problems

MODEL LINEARITY AND GAUSSIANITY: Many dynamic problems may be subject
to nonlinear dynamics, or may be observed in the presence of non-Gaussian noise.
If the dynamics are smooth, then repeated linearization may be appropriate:

=⇒ Section 4.3.4: Extended Kalman Filter

Where a linearization may be inadequate, the statistics may be better preserved by
running a set of Kalman filters in parallel:

=⇒ Section 4.3.4: Unscented Kalman Filter
=⇒ Section 4.3.4: Ensemble Kalman Filter

Where the nonlinearities are severe, where the noise is highly non-Gaussian, or
where it is undesirable to calculate the problem statistics, we may want an entirely
implicit, nonparametric filter:

=⇒ Section 4.3.4: Particle Filter
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4.3.1 Kalman Filter Algorithms

This section summarizes five of the most common implementation alternatives to the
basic Kalman filter. However, like the classic Kalman filter, none of these are partic-
ularly well suited for huge estimation problems; specific Kalman filter variations for
the multidimensional case are discussed in Chapter 10.

Update–Update Form

Some people consider it confusing, or unnecessarily complicated, to think of sep-
arate prediction and update steps. It is straightforward to substitute the prediction
equations into the update ones in order to write ẑu(t) = ẑ(t|t) directly in terms of
ẑu(t− 1) = ẑ(t− 1|t− 1):

ẑu(t) =
(
I −K(t)C(t)

)
A(t− 1)ẑu(t− 1) +K(t)m(t) (4.82)

Pu(t) =
(
I −K(t)C(t)

)(
A(t− 1)Pu(t− 1)AT(t− 1) +B(t− 1)BT(t− 1)

)
.

(4.83)

A similar predict–predict form can also be derived.

Information Form

The standard discrete-time Kalman filter is written in terms of estimation error co-
variancesP (t|t), P (t+1|t). It is possible, however, to formulate [8,151] the Kalman
recursion in terms of matrix inverses P−1(t|t), P−1(t+1|t). There are three reasons
why a matrix-inverse representation might be desirable:

1. Matrix Sparsity:

As we show in Chapters 5 and 6, there is a wide variety of prior models and
constraints in which P is dense, but P−1 is sparse, implying that the inverse
covariance, or matrix information, may in many cases be a more natural and
efficient representation. Sparse methods in Kalman filtering are developed further
in Chapter 10.

2. Matrix Approximation:

Related to the preceding point on sparsity, for a given computational and storage
complexity we can usually approximate P−1 more accurately than P .

3. Representation of Complete Uncertainty:

Given a variance σ2:
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Perfect certainty σ2 = 0
Complete uncertainty σ2 =∞

Whereas representing in terms of an inverse variance:

Perfect certainty σ−2 =∞
Complete uncertainty σ−2 = 0

The degrees of certainty anticipated in a given problem context may motivate one
form over the other, as numerical computation with∞ may be inconvenient.

Suppose we let a state variable be defined as

ẑi(t|s) � P−1(t|s)ẑ(t|s). (4.84)

In the inverse-covariance case, the update step becomes straightforward:

From (3.67) P−1(t|t) = P−1(t|t− 1) + CT(t)R−1(t)C(t) (4.85)

From (4.78) ẑi(t|t) = ẑi(t|t− 1) + CT(t)R−1(t)m̂(t), (4.86)

whereas the simple prediction stem becomes much more complicated in the inverted
context. Applying the ABCD lemma (A.39) to (4.74) yields

P−1(t|t− 1) = A−TP−1(t− 1|t− 1)A−1 −A−TP−1(t− 1|t− 1)A−1B·
[
BTA−TP−1(t− 1|t− 1)A−1B + I

]−1
BTA−TP−1(t− 1|t− 1)A−1. (4.87)

Finally, applying this result to (4.73) results in the state prediction

ẑi(t|t− 1) =
{
I −A−TP−1(t− 1|t− 1)A−1B·

[
BTA−TP−1(t− 1|t− 1)A−1B + I

]−1
BT
}
AT ẑi(t− 1|t− 1). (4.88)

In practice, we may choose to avoid the complexity of this latter step by performing
the prediction step in the usual way:

ẑi(t|t− 1) = P−1(t|t− 1)ẑ(t|t− 1)

= P−1(t|t− 1)A(t− 1)ẑ(t− 1|t− 1) (4.89)

= P−1(t|t− 1)A(t− 1)P (t− 1|t− 1)ẑi(t|t− 1).

Square Root Form

The information form, just discussed, develops a Kalman filter based on covariance
inverses which may be of some interest in sparse contexts, but of limited significance
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otherwise. Of much greater practical interest is the square root form [8, 151, 231],
which offers numerical robustness, making the Kalman filter applicable in poorly-
conditioned circumstances. As poor conditioning is common in large-state problems,
which we expect to encounter in image and multidimensional processing, the square
root form is particularly relevant to us.

The strength of the square root Kalman filter stems from the two following properties
of matrix square roots (Appendix A.8):

1. If a large covariance matrix P is approximated in any way, P̄ ≈ P , then it is
extremely likely that the approximate matrix P̄ fails to be positive-definite,

P > 0 but P̄ � 0, (4.90)

whereas given Γ , a square root of P , and an approximate square root Γ̄ , then

ΓΓ T > 0 and Γ̄ Γ̄ T ≥ 0. (4.91)

That is, an approximated square root guarantees positive-semidefiniteness.

2. Given Γ , a square root of P , then

P = ΓΓ T =⇒ κ(Γ ) =
√
κ(P ). (4.92)

The number of floating-point digits required is roughly log10(κ), therefore the
square root form requires only half the precision of the standard Kalman filter,
leading to significant savings in storage and computational complexity (also see
Appendix A.8).

Thus the square root Kalman filter offers substantial benefits of numerical robustness.

One possible square root filter [333] follows from applying QR decompositions (Ap-
pendix A.7.3). Suppose we begin with ẑ(t|t− 1), Γ (t|t− 1) where

P (t|t− 1) = Γ (t|t− 1)Γ T(t|t− 1), (4.93)

such that Γ is the numerically robust representation of covariance P . Then we can
formulate square root update and prediction steps, as follows.

Square Root Update Step:

We begin with a QR decomposition
[
C(t)Γ (t|t− 1) R1/2(t)
Γ (t|t− 1) 0

]

︸ ︷︷ ︸
Given . . .

−→
[
Q(t) 0
K̄(t) Γ (t|t)

]

︸ ︷︷ ︸
Computed via QR

(4.94)

which computes the updated uncertainty Γ (t|t); the updated estimates are found as

ẑ(t|t) = ẑ(t|t− 1) + K̄(t)Q−1(t)
(
m(t)− C(t)ẑ(t|t− 1)

)
. (4.95)
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Square Root Predict Step:

The estimates are predicted as usual,

ẑ(t+ 1|t) = A(t)ẑ(t|t). (4.96)

A second QR decomposition computes the predicted uncertainty:
[
A(t)Γ (t|t) B(t)

]

︸ ︷︷ ︸
Given . . .

−→ [
Γ (t+ 1|t) 0

]

︸ ︷︷ ︸
Computed via QR

(4.97)

Why Does this Work?

The QR decomposition (Appendix A.7.3) orthogonally transforms a given matrix to
make it triangular. By squaring both sides the orthogonal matrix disappears

AU = H =⇒ AAT = HHT . (4.98)

Therefore each of (4.94) and (4.97) can be squared, and like terms equated, to vali-
date the result. We begin with the simpler predict step: squaring (4.97) yields

A(t)Γ (t|t)Γ T(t|t)AT(t) +B(t)BT(t) = Γ (t+ 1|t)Γ T(t+ 1|t) + 0, (4.99)

thus
A(t)P (t|t)AT(t) +B(t)BT(t) = P (t+ 1|t), (4.100)

which we recognize from the usual Kalman filter prediction step (4.74).

Next, squaring the more difficult (4.97) yields

[
CΓ (t|t− 1)Γ T(t|t− 1)CT CΓ (t|t− 1)Γ T(t|t− 1)
Γ (t|t− 1)Γ T(t|t− 1)CT Γ (t|t− 1)Γ T(t|t− 1)

]

=
[
QQT QK̄T

K̄QT K̄K̄T + Γ (t|t)Γ T(t|t)
]
. (4.101)

Equating the top-left terms yields

QQT = CP (t|t− 1)CT +R. (4.102)

Then, selecting either of the off-diagonal terms yields

K̄ = P (t|t− 1)CTQ−1. (4.103)

Finally, equating the lower-right terms then yields the desired result:
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P (t|t− 1) = P (t|t) + K̄K̄T (4.104)

= P (t|t) + P (t|t− 1)CTQ−1Q−TCP (t|t− 1) (4.105)

= P (t|t) + P (t|t− 1)CT
(
CP (t|t− 1)CT +R

)−1
CP (t|t− 1),

(4.106)

which is the Kalman filter covariance update (4.76).

A great many variations on the square root filter are available [151], depending on
exactly what sort of matrix factorization is undertaken, and whether the square root
filter is in regular, predict–predict, update–update, or information form.

Joseph Stabilized

The most common form for the updated error covariance (4.69), (4.76) is

P (t|t) =
(
I −K(t)C(t)

)
P (t|t− 1). (4.107)

Given that P (t|t) is a covariance matrix, by definition it must be symmetric and
positive-semidefinite. However, numerical rounding errors in the computation of
K(t), or of the products in (4.107), can lead to the computed P (t|t) being asym-
metric or containing negative eigenvalues.

An alternative, but algebraically equivalent, form of (4.107) is the Joseph stabilized
form [47]:

P (t|t) =
(
I −K(t)C(t)

)
P (t|t− 1)

(
I −K(t)C(t)

)T +K(t)R(t)KT(t). (4.108)

In general, because
P ≥ 0 =⇒ APAT ≥ 0 ∀A, (4.109)

then if P (t|t−1) andR(t) are symmetric, positive-semidefinite, then the Joseph form
(4.108) guarantees that P (t|t) remains symmetric, positive-semidefinite, regardless
of rounding errors in K .

The improvement in numerical stability and conditioning comes at a cost of addi-
tional matrix products in (4.108) relative to (4.107).

Singular Filtering

There may be some circumstances under which one or more measurements may be
known exactly, such that R(t) is singular, meaning that

(
CP (t|t− 1)CT +R

)
may

not be invertible, as required in the update step.

The general approach [8], then, is to divide the problem into two parts:
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1. The part which is measured exactly, and therefore does not need to be estimated.

2. The part which is measured, as usual, in the presence of additive noise, which is
estimated using the regular Kalman filter.

In particular, suppose that the measurement model can be written as

m(t) =
[
m1(t)
m2(t)

]
=
[
C1(t)
C2(t)

]
z +
[

0
v2(t)

]
v2 ∼ R2(t). (4.110)

Without loss of generality, we assume C1 to have full row rank,4 so that we can
similarly transform the state z into two corresponding parts,

[
z1(t)
z2(t)

]
= Dz =

[
C1(t)
D2

]
z. (4.111)

D2 is any matrix which makes D invertible, guaranteeing that z2 spans the entire
portion of the state not exactly measured by m1. The first part of the state is known
exactly,

ẑ1(t) = m1(t) (4.112)

and for the second part an estimation problem can be defined:

m2(t) = C2(t)z(t) + v2(t) = C2(t)
[
C1(t)
D2

]−1 [
m1(t)
z2(t)

]
+ v2(t) (4.113)

cov
(
z2(t)

)
= D2P (t|t− 1)DT

2 , (4.114)

from which we estimate ẑ2(t) with estimation error covariance P̃2(t). The estimates
for the partitioned state allow us to reconstruct the original:

ẑ(t) =
[
C1(t)
D2

]−1 [
ẑ1(t)
ẑ2(t)

]
P (t|t) =

[
C1(t)
D2

]−1 [0 0
0 P̃2(t)

] [
C1(t)
D2

]−T

.

(4.115)

4.3.2 Steady-State Kalman Filtering

The case of linear time-invariant (LTI) systems is of special interest. Although such
systems may occur infrequently in practice, their time-stationarity leads to attractive
simplifying properties.

Suppose we are given the usual first-order Gauss–Markov model, as in (4.1), but now
time-invariant:
4 If there are redundant exact measurements, the redundant ones can be removed until full

rank is achieved.



108 4 Dynamic Estimation and Sampling

z(t+ 1) = Az(t) +Bw(t) m(t) = Cz(t) + v(t) v ∼ R, (4.116)

where time-invariance implies that model parametersA,B,C,R are fixed over time.

If the dynamic system is stable, meaning that the eigenvaluesλi ofA satisfy |λi| < 1,
then the statistics of z will reach steady-state (that is, will be invariant over time). In
steady-state the covariance P (t) of z will converge to the solution of the algebraic
Lyapunov equation [200]

P∞ = AP∞AT +BBT . (4.117)

The Kalman filter itself can also reach steady-state, meaning that the Kalman gain
K(t) and the estimation error covariancesP (t|t−1), P (t|t) converge to fixed values
as t → ∞. In particular, under fairly general conditions (system reachability and
observability5), the predicted error covariance will converge to the unique, positive-
definite solution to the algebraic Riccati equation [200]

Pp = APpA
T +BBT −APpC

T
(
CPpC

T +R
)−1

CPpA
T , (4.118)

from which the constant Kalman gain follows as

K = PpC
T
(
CPpC

T +R
)−1

. (4.119)

Finally, it is instructive to see how the predicted estimation error evolves; given

z(t+ 1) = Az(t) +Bw(t) (4.120)

ẑ(t+ 1|t) = Aẑ(t|t) = A
(
K
(
m(t)− Cẑ(t|t− 1)

)
+ ẑ(t|t− 1)

)
, (4.121)

then the predicted estimation error is

z̃(t+ 1|t) = ẑ(t+ 1|t)− z(t+ 1) (4.122)

= A
(
K
(
m(t)− Cẑ(t|t− 1)

)
+ ẑ(t|t− 1)

)
−
(
Az(t) +Bw(t)

)

(4.123)

= A
(
I −KC)z̃(t|t− 1) +AKv(t)−Bw(t). (4.124)

That is, the predicted estimation error itself obeys a dynamic relationship which is
stable when A(I −KC) is stable, a stability not dependent on the stability ofA. Be-
cause the Kalman gain matrix K is essentially the regularized solution to the inverse
problem m = Cz, we expect that KC ≈ I , and so (I −KC) ≈ 0.

Given the steady-state gain matrix K , the Kalman filter reduces to

5 Meaning that, over time, each element in z is affected by the driving process w, and that the
measurements feel the influence of each element of z to some degree; in other words, that
no portion of the state be completely decoupled from w and m. Specifically, it is required
that [B AB AAB . . .] and [CT ATCT ATATC . . .] be full rank.
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ẑ(t|t− 1) = Aẑ(t− 1|t− 1) (4.125)

ẑ(t|t) = ẑ(t|t− 1) +K
(
m(t)− Cẑ(t|t− 1)

)
, (4.126)

involving only fast matrix–vector operations, no matrix multiplications or inverses,
a huge reduction in complexity to O(n2) per iteration from O(n3) per iteration for
the full filter. Keep in mind the following limitations:

1. Steady-state filtering applies only to cases in which the underlying dynamics are
stationary, and in which the measurement model is stationary (constant model
C and quality R). In particular, cases of irregular measurements (e.g., sparse
measurements of an image) do not satisfy stationarity.

2. The steady-state statistics and gain matrix can be difficult to compute; in par-
ticular, the Riccati equation (4.118) can be very challenging computationally. In
practice, it is often much simpler to run the regular Kalman filter for t steps,
where t is chosen “large enough” such that K(t) � K,P (t|t− 1) � Pp.

4.3.3 Kalman Filter Smoother

The Kalman filter is strictly causal, in the sense that an estimate ẑ(t) is affected by
measurements only at time t and earlier. However, even for causal dynamic pro-
cesses, measurements from the future can be extremely useful in estimating the
present.

For example, consider the simple first-order causal dynamic model

z(t+ 1) = αz(t) + w(t). (4.127)

The autocorrelation of z is easily computed as

E
[
z(t+ s)z(t)

]
= E

[(
αz(t+ s− 1) + w(t)

)
z(t)
]

= αsE
[
z(t)z(t)

]
(4.128)

E
[
z(t− s)z(t)] = E

[
z(t− s)(αz(t− 1) + w(t)

)]
= αsE

[
z(t− s)z(t− s)],

(4.129)

where s > 0. If z is in statistical steady-state, meaning that E[z(t)z(t)] = ξ is con-
stant over time, then the autocorrelation of causal process z(t) is perfectly symmetric
over time,

E
[
z(t1)z(t2)

]
= α|t1−t2|ξ, (4.130)

implying that measurements of z(t − 1), z(t + 1) are both equally useful in esti-
mating z(t). Although this example examined a simple, scalar, stationary case, the
conclusion applies generally: a noncausal estimator is likely to yield more accurate
results than a causal one. Indeed, as the process noise gets smaller (smaller B) and
as the measurements become more infrequent, the greater is the possible benefit of
future measurements in reducing the estimation error in the present.
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Fig. 4.2. The Kalman smoother is a two-pass algorithm: first the regular Kalman filter for-
wards over time, and then a backwards iteration. All of the estimated states and error covari-
ances from the forward pass must be saved for the backward pass, meaning that the storage
requirements are greatly increased over those of the standard Kalman filter alone.

The idea is sketched in Figure 4.2: given the results ẑ(t|t), P (t|t), 0 ≤ t ≤ τ of
the Kalman filter, is it possible to find an algorithm, ideally iterative, which works
backwards, finding ẑ(t|τ), P (t|τ)?
Indeed, such an algorithm, the Kalman smoother, was developed by Rauch, Tung,
and Striebel [266]. Recall the innovations process ν(t) from (4.52),

ν(t) = m(t)− m̂(t|t− 1). (4.131)

This process is white, but contains all of the information present in the measure-
ments. Then the smoothed estimate can be written [333] as the sum of the predicted
estimate, ẑ(t|t−1), and the estimate of the prediction error z̃(t|t−1) based on future
measurements:

ẑ(t|τ) =
τ∑

s=0

K(t, s)ν(s) = ẑ(t|t− 1) +
τ∑

s=t

K(t, s)ν(s) (4.132)

= ẑ(t|t− 1) +
τ∑

s=t

E
[
z̃(t|t− 1)νT(s)

]
E
[
ν(s)νT(s)

]−1
ν(s) (4.133)

= ẑ(t|t− 1) +
τ∑

s=t

E
[
z̃(t|t− 1)z̃T(s|s− 1)

]
CT(s)·

(
C(s)P (s|s− 1)CT(s) +R(s)

)−1
ν(s)

(4.134)

= ẑ(t|t− 1) + P (t|t− 1)
τ∑

s=t

FT(t) . . . FT(s− 1)CT(s)·
(
C(s)P (s|s− 1)CT(s) +R(s)

)−1
ν(s),

(4.135)

where
F (t) = A(t)

{
I −K(t)C(t)

}
(4.136)

is the dynamic matrix, as in (4.124), governing the evolution of the prediction errors.
By inspection, the summation term in (4.135) admits a recursive form, leading to the
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backwards recursion for the Kalman smoother:

ẑ(t|τ) = ẑ(t|t− 1) + P (t|t− 1)û(t|τ) (4.137)

where

û(t− 1|τ) = FT(t− 1)û(t|τ) + CT(t− 1)·
(
C(t− 1)P (t− 1|t− 2)CT(t− 1) +R(t− 1)

)−1
ν(t− 1) (4.138)

with the recursion initialized as û(τ + 1|τ) = 0.

Although this recursion was relatively straightforward to derive, there are simpler
and more elegant alternatives [151]:

ẑ(t|τ) = ẑ(t|t) +Q(t)
(
ẑ(t+ 1|τ)− ẑ(t+ 1|t)) (4.139)

P (t|τ) = P (t|t) +Q(t)
(
P (t+ 1|τ)− P (t+ 1|t))QT(t), (4.140)

where
Q(t) = P (t|t)AT(t)P−1(t+ 1|t). (4.141)

The application of these latter smoother equations to one-dimensional first- and
second-order systems is illustrated in Example 4.3.

Although it is clear that the smoother can provide improvements in estimation accu-
racy by using future measurements, it is important to understand its limitations:

• The Kalman filter is recursive, requiring no past history to be stored. However,
because the smoother requires the entire forward sequence ẑ(t|t− 1), P (t|t− 1)
to be stored, the storage complexity of the smoother is τ times greater than that
of the Kalman filter.

In those cases where z is a long vector, such as in image estimation, this storage
burden may be significant. This issue will be examined further in Chapter 10, and
the reader may be interested in looking at Example 10.1 on page 332, where the
Kalman smoother is applied to an image.

• The delay between receiving measurementm(0) and producing the smoothed es-
timate ẑ(0|τ) clearly grows with τ . However (see Problem 4.3), although P (0|τ)
is a decreasing function of τ , in most circumstances the benefit is limited to small
values of τ , where larger τ increases delay and storage requirements but with
almost no additional benefit in accuracy.

In those cases where a very modest smoothing window is adequate, it is straight-
forward to implement a recursive fixed-lag smoother directly in the Kalman filter.
Indeed, we just define an augmented state, as in (4.8):



112 4 Dynamic Estimation and Sampling

Example 4.3: Recursive Smoothing and Interpolation

Example 4.2 on page 98 looked at the application of the Kalman filter to interpo-
lation. Recall that the estimates ẑ(t|t) were conspicuously causal:

Measurement m(s) influences ẑ(t|t) only for t ≥ s.

However, the causality of the Kalman filter does not imply a causality in the un-
derlying statistics: m(s) does tell us a great deal about z(t) for t < s. That is,
we expect quite different results between ẑ(t|t) from the Kalman filter and ẑ(t|τ)
from the Kalman smoother.

We will consider two models:

I. First Order: z(t) = z(t− 1) + w(t− 1) z is a random walk

II. Second Order: z(t) = z(t− 1) +Δ(t− 1) In this case the slope
Δ(t) = Δ(t− 1) + w(t− 1) of z is a random walk

where we can rewrite the second-order model in a single state as

z(t) =
[
1 1
0 1

]
z(t− 1) +

[
0
1

]
w(t− 1). (4.142)

The following two results are for the first-order case, where the difference be-
tween the causal estimates of the Kalman filter (dashed) and the Kalman smoother
(solid) can be clearly seen:

α = 0.1
β = 1
σ small

t

ẑ

0 t1 t2 t3
t

P

0 t1 t2 t3

α = 0.9
β = 1

2
σ large

t

ẑ

0 t1 t2 t3
t

P

0 t1 t2 t3

Example continues . . .
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Example 4.3: Recursive Smoothing and Interpolation (cont’d)

Two further results for the second-order case:

α = 0.9
β = 0.1
σ small

t

ẑ(t|t)

0 t1 t2 t3

t

P (t|t)

0 t1 t2 t3

α = 0.3
β = 0.9
σ small

t

ẑ(t|t)

0 t1 t2 t3
t

P (t|t)

0 t1 t2 t3

Observations:

• Although the dynamic model for z(t) is written causally, the smoothed esti-
mates ẑ(t|τ) are acausally dependent on the measurements.

• In all cases, the smoother can only improve our certainty,

P (t|τ) ≤ P (t|t)

since the measurements available to the smoother include all of those available
to the filter, plus some more.

• The smoothed estimates are, in most cases, more appealing, aesthetic, and
desirable than the causal ones. The difference is particularly striking in the
second-order case.

z̄(t) �

⎡

⎢
⎢
⎢
⎣

z(t)
z(t− 1)

...
z(t− τ)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

A(t− 1) 0
I

. . .
...

0 I 0

⎤

⎥
⎥
⎥
⎦
z̄(t− 1) +

⎡

⎢
⎢
⎢
⎣

B(t− 1)
0
...
0

⎤

⎥
⎥
⎥
⎦
w(t− 1)

(4.143)

such that the resulting estimates
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ˆ̄z(t|t) =

⎡

⎢
⎣

ẑ(t|t)
...

ẑ(t− τ |t)

⎤

⎥
⎦ (4.144)

include the desired, fixed-lag smoothed estimate ẑ(t − τ |t). Although the aug-
mented dynamic matrix in (4.143) is sparse, the computed error covariances
P (t|t), P (t|t − 1) will be dense. Therefore with a storage complexity of O(τ2)
and a computational complexity of O(τ3) the fixed-lag approach is feasible for
only relatively modest τ .

Further details on the smoother, including square root and information forms, can
be found in [8, 28, 125, 151]. Multidimensional Kalman smoothers are discussed in
Chapter 10.

4.3.4 Nonlinear Kalman Filtering

In this text we focus on linear estimation problems, so the following discussion on
nonlinear filters represents a bit of a digression, included because the methods are
fairly intuitive and nicely complement the Kalman filter discussion of the rest of this
chapter.

Extended Kalman Filter

The extended Kalman filter [151,156] allows for the system dynamics and measure-
ment functions to be nonlinear functions of the current state. However, because non-
linear transformations of random vectors (Appendix B.2) are very complicated, the
dynamics and measurement functions are linearized at each time step in computing
the predicted and updated error covariances.

So, given possibly nonlinear dynamic and observation models

z(t+ 1) = A(z(t))+Bw(t) m(t) = C(z(t))+ v(t) (4.145)

the Kalman filter equations of (4.73)–(4.77) may be rewritten as

Prediction: ẑ(t|t− 1) = A(ẑ(t− 1|t− 1)
)

(4.146)

P (t|t− 1) = At−1P (t− 1|t− 1)AT
t−1 +BBT (4.147)

Update: ẑ(t|t) = ẑ(t|t− 1) +K(t)
(
m(t)− C(ẑ(t|t− 1)

))
(4.148)

P (t|t) = P (t|t− 1)−K(t) · Ct · P (t|t− 1) (4.149)

K(t) = P (t|t− 1) · CT
t ·
(
CtP (t|t− 1)CT

t +R
)−1

, (4.150)
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where At, Ct are the linearizations

At =
∂A
∂z

∣∣
∣
∣
ẑ(t|t)

Ct =
∂C
∂z

∣∣
∣
∣
ẑ(t|t−1)

(4.151)

The implementation is thus a straightforward extension of the standard Kalman filter.
As only the estimates themselves, and not the associated statistics, are propagated via
the nonlinear dynamic and measurement functions, the performance of the extended
Kalman filter can be quite poor, especially for rapidly-varying or discontinuous non-
linearities.

Ensemble Kalman Filter

The one limitation of the extended Kalman filter is the inability to propagate the
statistics through the model nonlinearities. Although such nonlinear propagation is
difficult to do analytically (see Section B.2), it is easy to do so numerically by com-
puting sample statistics. Even for a linear problem, inferring the statistics from sam-
ples frees us from having to predict and update the estimation error covariances,
convenient for dynamic problems having a large state.

Such a covariance propagation by sampling is the essence of the ensemble Kalman
filter [100, 101, 164]. An ensemble of estimates is predicted at each time step, and
then updated on the basis of measurements with added random noise.

We begin by initializing random samples from the prior distribution

ẑi(0| − 1) ∼ N (z(0), P (0)
)
. (4.152)

Each of the random samples is essentially iterated as a Kalman filter, all in parallel.
Each sample is passed through the (possibly) nonlinear prediction

ẑi(t|t− 1) = A(ẑi(t− 1|t− 1)
)

(4.153)

from which the estimate and error covariance can be computed as sample statistics:

ẑ(t|t− 1) = Sample Mean
({
ẑi

})
, (4.154)

P (t|t− 1) = Sample Covariance
({
ẑi

})
. (4.155)

For the update step, random noise vi(t) is added to the measurements in order to
prevent the ensemble members from converging:

ẑi(t|t) = ẑi(t|t− 1) +K(t)
((
m(t) + vi(t)

)− Cẑ(t|t− 1)
)

(4.156)

K(t) = P (t|t− 1) · CT · (CP (t|t− 1)CT +R
)−1

, (4.157)
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Fig. 4.3. The ensemble (left) and unscented (right) Kalman filters take very different ap-
proaches in the use of ensembles to handle nonlinearities. The ensemble KF has a fixed set of
filters, run in parallel, whereas the unscented KF computes an explicit estimate ẑ at every step
and resamples after every predict and update step.

where we observe the absence of the equation to compute P (t|t), as this is no longer
needed.

The drawback of the ensemble Kalman filter is that the number of ensemble members
may need to be relatively large in order to obtain reasonable sample statistics of the
estimation mean and covariance. As with the regular Kalman filter, a number of
variations exist, such as a square root ensemble Kalman filter [311].

Unscented Kalman Filter

The unscented Kalman filter [181,325,326] is closely related to the ensemble Kalman
filter, above, with two key differences:

1. In the ensemble Kalman filter we essentially had N individual Kalman filters,
running in parallel, and not interacting with each other except in the computation
of sample means and covariances.

In contrast, the unscented Kalman filter is essentially a single filter, with a single
predicted and estimated value per time step, which resamples every predict and
update step, as illustrated in Figure 4.3.

2. Whereas the ensemble filter is a Monte Carlo method, requiring a substantial
number of ensemble members to properly reproduce the underlying statistics,
the unscented filter uses a small number of deterministic samples. Second, rather
than the usual sample mean and sample covariance of (4.154), (4.155), a weighted
version of these equations is used.
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The propagation of statistics through nonlinearities is considerably improved by this
method over the extended Kalman filter, and with many fewer ensemble members
than the ensemble Kalman filter. However, we still have a second-order representa-
tion (mean and covariance) at each time step, a representation which may be poor in
the case of highly asymmetric distributions stemming from sharp nonlinearities.

Particle Filters

Particle filters [170, 256] are a natural continuation of the ensemble and unscented
approaches, however the topic is a large field, with entire textbooks [88, 272] dedi-
cated to the topic, so we can provide only a superficial treatment here.

The extended, ensemble, and unscented filters all suffer from the explicit compu-
tation of and reliance on error covariances, essentially implicitly assuming a Gaus-
sian distribution. Since most nonlinear problems will have asymmetric non-Gaussian
statistics, the covariance representation is known to be poor.

The key to the particle filter is that the distribution of the estimated state is repre-
sented implicitly, rather than explicitly; we do not explicitly calculate an estimate
mean or covariance.

Given a set of estimates {ẑi(t− 1|t− 1)} at time t− 1, each estimate is imagined as
a particle (or hypothesis) in n-dimensional space. One iteration of the particle filter
proceeds as follows:

• Prediction: Apply the temporal dynamics, which could be linear or nonlinear, and
deterministic or stochastic. Each particle is predicted separately, giving us the
predicted set

ẑi(t|t− 1) = Predict
(
ẑi(t− 1|t− 1)

)
. (4.158)

• Update: We assert some metric which measures the quality of each particle, as
assessed by the measurements. Essentially, we want to infer the likelihood (or
some equivalent metric) of each state particle

pt,i = Pr
(
ẑi(t|t− 1)|m(t)

)
. (4.159)

• Resampling: We need to steer the ensemble set in favour of likely candidates; that
is, we wish to probabilistically favour those states which are consistent with the
measurements, however with some probability also preserving less likely states.
The biasing towards the measurements ensures accurate estimation, with most
states highly consistent with the observations, whereas the preservation of less
likely states adds robustness, for example in the case where the measurement is a
spurious outlier, or in cases of occlusion (where part of the state is hidden).
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In principle, we could nonparametrically estimate the distribution p
(
ẑ(t)|m(t)

)

from the likelihoods {pt,i}, and then randomly resample particles from this dis-
tribution.

At every stage of the filter, the ensemble of particles implicitly, nonparametrically
describes the probability density p(z), clearly not relying on a single mean and co-
variance.

4.4 Dynamic Sampling

Section 3.3 examined random prior or posterior sampling in the static context. Now
suppose that we have a dynamic process z(t), for which we would like to generate
random samples.

We continue to assume that the dynamic process z(t) obeys the first-order Gauss–
Markov model of (4.1):

z(t+ 1) = A(t)z(t) +B(t)w(t), z(0) ∼ N (zo, Po), (4.160)

where wi is a white Gaussian noise process with identity covariance. The first-order
Gauss–Markovianity is crucial, because it allows the statistics of the next time step
to be expressed in terms of the current state:

z(t+ 1)|z(t) ∼ (A(t)z(t), B(t)BT(t)
)
. (4.161)

Furthermore, the matrixB(t) is already the square root ofB(t)BT(t), the covariance
of the added noise. Therefore prior sampling proceeds recursively, such that

z(t+ 1) = A(t)z(t) +B(t)w(t) (4.162)

and only the initial covariance matrix Po = ΓoΓ
T
o needs to be decomposed per

(2.76), where we initialize the recursion with

z(0) = zo + Γow. (4.163)

However, it should be noted that in a derived dynamic model the parameters Bi are
not, in fact, normally known; rather the inferred dynamic process takes the form

z(t+ 1) = A(t)z(t) + q(t), zo ∼ N (zo, Po), w̄(t) ∼ N (0,W (t)
)

(4.164)

where w̄(t) is a noise process with covarianceW (t). In this case we must decompose
Po = ΓoΓ

T
o as before, but also W (t) = ΓtΓ

T
t for each time step, a great deal more

work than before. In this case the key to efficiency is somehow to keep the size of
matrix W (t), and thus the state dimension of z(t), as small as possible.

The problem of dynamic posterior sampling is discussed in Section 11.1 in the chap-
ter on sampling.
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4.5 Dynamic Estimation for Discrete-State Systems

Most of this text is concerned with the estimation of continuous-state systems, how-
ever there are contexts (particularly in Chapter 7) where the dynamic state is discrete.
We begin by characterizing the discrete-state problem, followed by the Viterbi algo-
rithm, recursive like the Kalman filter, but for discrete-state systems.

4.5.1 Markov Chains

We have extensively looked at the first-order Gauss–Markov dynamic model of (4.1).
The first-order discrete-state analogue of (4.1) is known as a Markov chain [42,137].
Given the discrete state z(t) ∈ Ψz , where Ψz = {ψi} is the set of possible state
values, we have a discrete set of state-to-state transition probabilities

aij = Pr
(
z(t+ 1) = ψi|z(t) = ψj

)
. (4.165)

Thus the dynamic matrix A completely characterizes the transition statistics from t
to t+ 1, and indeed for all time if the process is time-stationary.

It is possible to have higher-order processes, such as

Pr
(
z(t+ 1) = ψi|z(t) = ψj , z(t− 1) = ψk

)
, (4.166)

or nonscalar processes, such as

Pr
([

z1(t+ 1) = v
z2(t+ 1) = w

]
|
[
z1(t) = x
z2(t) = y

])
. (4.167)

Both of these cases can, in principle, be converted into the first-order scalar form
using a state augmentation process very similar to that in Section 4.1.1, so our focus
is on the first-order scalar case.

If we let p(t) represent the state probability distribution at time t,

p(t) �

⎡

⎢
⎣

Pr(z(t) = ψ0)
Pr(z(t) = ψ1)

...

⎤

⎥
⎦ , (4.168)

then the stochastic evolution of the process is elegantly written as

p(t+ 1) = Ap(t). (4.169)

What is attractive about this formulation is that a wide variety of statistical proper-
ties of the Markov chain, such as connectedness, periodic cycles, and steady-state
behaviour, can be inferred from an analysis of A.
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Fig. 4.4. A discrete-state first-order dynamic model. The dynamic model, left, is described
in terms of state-transition probabilities. The measurement model, right, describes the state-
dependent probabilities of two observations — mood and head-covering. Clearly the model is
simplistic: people probably would be happy if it were to rain after a few weeks of sun, however
such a model requires memory and is not first order.

Analogously to the continuous-state observation equation, here the discrete state z(t)
of the Markov chain influences some observationm(t), such that the forward model
is expressed as a conditional likelihood

c(m,ψ) = p
(
m(t)|z(t) = ψ

)
(4.170)

if the measurements are continuous, or as

cij = Pr
(
m(t) = mi ∈ Ψm|z(t) = ψj

)
(4.171)

if the measurement at each time is a discrete scalar.

An example of a discrete-state dynamic model and a corresponding measurement
model are shown in Figure 4.4.

4.5.2 The Viterbi Algorithm

We are given a scalar Markov chain, characterized by A, together with observations
m(t), 1 ≤ t ≤ τ . A state sequence

z(τ) =

⎡

⎢
⎣

z1
...
zτ

⎤

⎥
⎦ ∈ Ψ τ (4.172)
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is composed of states over time, such that there are |Ψ τ | = |Ψ |τ possible sequences.
We wish to estimate such a state sequence, in particular the MAP estimate

ẑMAP � argz∈Ψτ maxPr
(
z|m(1), . . . ,m(τ)

)
. (4.173)

Although the total number |Ψ |τ of possible state sequences is impossibly large, be-
cause z is first-order Markov it is possible to use methods of induction or dynamic
programming to find a recursive solution, the Viterbi algorithm [320], to (4.173).

Let
pi(t|s) = Pr

(
z(t) = ψi|m(1), . . . ,m(s)

)
(4.174)

and suppose that p(1|0) is given, analogous to the Kalman filter initialization zo, Po

at time t = 0. Then the prediction step is given by the Markov chain statistics (4.169):

p(t|t− 1) = Ap(t− 1|t− 1) (4.175)

and the update step follows from Bayes’ rule:

pi(t|t) = pi(t|t− 1) · Pr
(
m(t)|z(t) = ψi

)

Pr
(
m(t)

) . (4.176)

The resulting vector p(t|t) is the probability of the possible values of z(t), summing
over all possible state sequences before time t.

Suppose we are given a state sequence and its associated probability:

z(t− 1) =

⎡

⎢
⎣

z(1)
...

z(t− 1)

⎤

⎥
⎦ Pr

(
z(t− 1)|t− 1

)
. (4.177)

Then the predicted probability of the next state transition is

Pr
([
z(t− 1), z(t)

] | t− 1
)

= az(t),z(t−1) Pr
(
z(t− 1)|t− 1

)
(4.178)

therefore, as in (4.176), the updated probability is

Pr
([
z(t− 1), z(t)

] | t) = az(t),z(t−1) Pr
(
z(t− 1)|t− 1

)Pr
(
m(t)|z(t))

Pr
(
m(t)

) ,

(4.179)

where the calculation of Pr
(
m(t)

)
may be difficult, and has no effect on the relative

state-sequence probabilities, so that the normalization factor in the denominator can
be ignored.

Not all state sequences are very likely, however. It is the MAP estimate ẑMAP for
which we would like to derive a forward-recursion. Of all possible state sequences
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which end up in state ψi at time t− 1, let ẑi
MAP(t − 1|t− 1) be the most likely one.

Then, using (4.179), the MAP estimate at the next time step is just the most likely of
all possible sequences:

ẑj
MAP(t|t) =

[
ẑi

MAP(t− 1|t− 1), ψj

]

where i = argk maxPr
([
ẑk

MAP(t− 1|t− 1), ψj

] | t
)
. (4.180)

At the final time step, the MAP estimate is given by that sequence with the highest
probability:

ẑMAP(τ |τ) = max
i

{
ẑi

MAP(τ |τ)
}
. (4.181)

Figure 4.5 provides a visualization of the Viterbi estimation process for the model
of Figure 4.4. Although the three optimal paths ẑi

MAP(t|t) happen to be coincident,
this is not a requirement; it is perfectly possible to have the |Ψ | state-sequences with
different state histories.

4.5.3 Comparison to Kalman Filter

The Viterbi and Kalman filters both solve a discrete-time estimation problem and are
both based on a prediction-update framework, however there are significant differ-
ences.

First, the Kalman filter is optimum in a least-squares sense, whereas the Viterbi
method finds the globally optimum MAP solution. For a discrete-state problem, the
estimate is either correct or incorrect, so a least-squares notion of “closeness” is in-
appropriate.

Second, it is important to realize that the Viterbi method is essentially smoothing,
estimating the optimum state sequence given all of the measurements, in contrast
to the Kalman filter. The distinction arises because the discrete-state system allows
the enumeration of all |Ψ | possible state values at some point in time, and the first-
order nature of z(t) implies that it is possible to find a recursive estimator, dependent
only on the |Ψ | optimal solutions up to time t. The number of solutions to preserve
increases rapidly with model order, since an nth-order estimator is conditioned on
the value of n successive states, requiring |Ψ |n state sequences.

Finally, the Viterbi method maintains |Ψ | different state sequences, qualitatively sim-
ilar to the multiple-hypothesis approaches of the ensemble, unscented, and particle
Kalman filters of Section 4.3.4. However for the discrete-state case, the |Ψ | state se-
quences enumerate all possible optimal paths for a first-order system, whereas the
multiple Kalman-like filters in Section 4.3.4 cannot possibly enumerate all paths,
but increase the probability of a good estimate by improving robustness and better
characterizing the estimator statistics in the presence of nonlinearities.
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Fig. 4.6. Satellite observations of the ocean surface temperature for the month of October
1992: the measurements are accurate, in the sense of low-noise, however they are spatially
located in narrow, sparse strips.
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Application 4: Temporal Interpolation of Ocean
Temperature [191]

Consider the data shown in Figure 4.6: the ATSR satellite offers accurate observa-
tions of the ocean surface, however the orbital pattern of the satellite, the narrow
view, and the interference by clouds end up giving us measurements in sparse strips,
certainly nothing like a map.

What we want to do is to produce estimates over time, so that as measurements
arrive we slowly fill in a dense map. Of course, the ocean surface is dynamic, so we
would like something akin to a Kalman filter that takes the dynamics into account
and produces dense estimates. A direct implementation of the Kalman filter is not
possible, because the 512×512 size of the image is far too large, as it leads to a state
vector with 262 144 elements, and correspondingly huge covariance matrices.

In principle the prediction step can be implemented along the lines of the extended
Kalman filter: have some sort of dynamic model which includes ocean-surface cur-
rents etc, and use these dynamics to predict the estimates.

It is the update step which causes us problems. If the prior model P (t|t − 1) at
some time step t is spatially stationary, then there are some tricks that we can use
to implement the update step efficiently; here the multiscale method of Section 10.3
was used to solve the update step. However, as illustrated in Figure 4.7, if we have
sparse measurements then the posterior P (t|t) becomes nonstationary, thus giving
us a nonstationary prior for which effective approximate modelling is much more
difficult, at time t+ 1.

To solve this problem [191], the nonstationary spatial prior was approximated as a
weighted mix of stationary models, as described in Section 5.6.2. The results, shown
in Figure 4.8 show the estimates filling in the dense map over time, as more and more
measurements arrive.

Summary

Given a dynamic Bayesian estimation problem

z(t+ 1) = Az(t) +Bw(t) w(t) ∼ N (0, I) (4.182)

m(t) = Cz(t) + v(t) v(t) ∼ N (0, R) (4.183)

the optimum least-squares recursive estimator, the Kalman filter, can be formulated
as
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Fig. 4.8. Anomaly estimates and error standard deviations for the proposed estimator, applied
to five months of ATSR sea-surface temperature data, starting in June, 1992.
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Prediction: ẑ(t|t− 1) = Aẑ(t− 1|t− 1) (4.184)

P (t|t− 1) = AP (t− 1|t− 1)AT +BBT (4.185)

Update: ẑ(t|t) = ẑ(t|t− 1) +K(t)
(
m(t)− Cẑ(t|t− 1)

)
(4.186)

P (t|t) = P (t|t− 1)−K(t) · C · P (t|t− 1) (4.187)

K(t) = P (t|t− 1) · CT · (CP (t|t− 1)CT +R
)−1

. (4.188)

If matrices A,B,C,R are not a function of time, then we have the steady-state
Kalman filter, in which only (4.184) and (4.186) are iterated.

The smoothed estimates ẑ(t|τ), P (t|τ) can be computed recursively using the Kalman
smoother.

For Further Study

A great many books have been written on Kalman filtering, of which the textbooks
by Anderson and Moore [8], Grewal and Andrews [151], Hayes [156], and Mendel
[231] are a representative sample.

There is a Kalman filter toolbox available for MATLAB, and many open-source im-
plementations can be found.

Sample Problems

Problem 4.1: No Measurements

In the regular Kalman filter, if at some time t we have no measurements, then
presumably the update step should have no effect. Prove that this is so. That is, if
there are no measurements, show that the regular Kalman update step reduces to

ẑ(t|t) = ẑ(t|t− 1) P (t|t) = P (t|t− 1), (4.189)

meaning that we can skip the update step entirely at those iterations in which we
have no measurements.

Problem 4.2: Update–Update Form

In the regular Kalman filter, substitute the prediction equations into the update
equations in order to derive the update–update form of (4.82), (4.83).
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Problem 4.3: Noncausal Filtering

It is straightforward to implement a noncausal Kalman filter by augmenting the
state, as in (4.143), such that z(t) is estimated based on measurements up to time
t+ τ , where τ is the degree of state augmentation in (4.143), (4.144).

The reason for doing such estimation is, of course, because it is likely that future
measurements are relevant to estimating the present state. That is, the estimation
error covariance P (t|t+ τ) should decrease with increasing τ .

(a) Prove that P (t|t+ τ) cannot increase with τ . That is, prove that

P (t|t+ τ + 1) ≤ P (t|t+ τ) for all τ ≥ 0. (4.190)

(b) Under what conditions of the dynamic modelA(t), B(t) is (4.190) met with
equality, such that the error covariance does not decrease with τ?

(c) Under what conditions of the measurement model C(t), R(t) is (4.190) met
with equality, such that the error covariance does not decrease with τ?

Problem 4.4: Filter Implementation

Suppose we have the dynamic system

z(0) ∼ N (0, 4) z(t) = αz(t− 1) + w(t) w(t) ∼ N (0, 1) (4.191)

and measurements

m(t) = z(t) + v(t) v(t) ∼ N (0, 4) (4.192)

We can use the dynamics (4.191) to synthesize a process z(t) and then create
measurements via (4.192), which can then be used by the Kalman filter to gener-
ate estimates ẑ(t|t). Iterate over twenty time steps 0 ≤ t ≤ 20:

(a) Set α = 0.9. Plot z(t),m(t), ẑ(t|t),√P (t|t).
(b) Set α = 2.0. Plot z(t),m(t), ẑ(t|t),√P (t|t).
Note that for α = 2 the dynamic system is unstable, however does the Kalman
filter still do a good job in estimating z(t)?

Our dynamic system is time-invariant, therefore the steady-state Kalman filter
can be used. We assume that the Kalman filter is essentially in steady-state after
twenty iterations, that is, that

P (20|20) � P (∞|∞). (4.193)

(c) Plot P (20|20) as a function of α for −3 ≤ α ≤ 3.
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There is a great deal to observe and explain in this plot. For each of the follow-
ing, give a short mathematical (equation-based) argument, but also a descriptive,
insightful explanation.

(d) Why is the plot symmetric about α = 0?
(e) Explain the value of P (20|20) at α = 0.
(f) Why do we see asymptotic behaviour in P for large |α|?
(g) Explain the value of P (20|20) at α =∞.





Part II

Modelling of Random Fields





5

Multidimensional Modelling

In principle, the extension to multidimensional z of the concepts of regularization
from Chapter 2 and the static and dynamic estimators of Chapters 3 and 4 is perfectly
straightforward. The only inherent limitation in the developed estimators is that the
unknowns z and measurements m are required to be column vectors. Attempting to
substitute matrices (e.g., a measured image) for m will yield meaningless results.

It is easy, however, to reorder the image Z on a two-dimensional gridΩ into a vector
via lexicographic reordering:

Z = [z]3×3 �
z11 z12 z13
z21 z22 z23
z31 z32 z33

Lexicograph.
=⇒⇐=

Unlexicograph.
z = Z: �

⎡

⎢
⎢
⎢
⎣

z11
z21

...
z33

⎤

⎥
⎥
⎥
⎦

(5.1)

There is flexibility, of course, in the specifics of how the image Z should be scanned
into the vector; that is, whether by columns, as in (5.1), by rows, or in some other
fashion. Unless specified otherwise, by default we will choose to stack by columns.

Clearly the above approach extends trivially to higher dimensions, first stacking a
three-dimensional cube by planes, and next the stacked plane by columns, however
a certain degree of nervousness regarding the size of the resulting vectors is appro-
priate.

All of the previously-developed ideas of conditioning, regularization etc. apply, ex-
cept that the matrices involved (e.g., covariance P or constraints L) possess more
complicated structures due to the rearranged nature of the lexicographical stacking.
Nevertheless, working with two- and higher-dimensional spaces introduces difficul-
ties which we did not consider in previous chapters. This chapter begins with a dis-
cussion of the challenges posed by higher-dimensional problems, followed by a dis-
cussion of multidimensional deterministic and statistical models.

P. Fieguth, Statistical Image Processing and Multidimensional Modeling, Information Science 133
and Statistics, DOI 10.1007/978-1-4419-7294-1_5, © Springer Science+Business Media, LLC 2011
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5.1 Challenges

Ultimately, all of the challenges related to multidimensional data processing reduce
to a problem of size. In particular, for an N × N image Z , the associated vector
z = Z: is of lengthN2, thus the associated covariance matrix Pz is of size N2×N2.
Even for a very modestly-sized image of 256 × 256 pixels, this corresponds to a
covariance containing 216 · 216 = four billion elements.

Given a large multidimensional problem, there are three operations which we need
to be able to undertake, forming the primary challenges we need to consider:

STORAGE: We need to store matrices (on disk or in memory).

COMPUTATION: We need to compute matrix inverses, matrix–matrix products, and
matrix–vector products.

MODELLING: We need to infer / specify certain model matrices (e.g.,A,C,L, P,R).

To the extent that the above three steps are practical, corresponding to problems
having up to roughly ten-thousand elements (that is, a 100 × 100 pixel image), the
methods of Chapters 3 and 4 are immediately applicable. For much larger prob-
lems, such as the global sixth-degree 2160 × 1080 pixel oceanographic problem of
Application 2, obviously much more care must be taken. In particular, the direct ap-
plication of Chapter 3 to such a problem is computationally inconceivable, thus the
problem either needs to be reformulated or made smaller, consequently leading to
the following four challenges:

1. Dimensionality reduction: How to reduce the size of the problem, or to decom-
pose it into multiple smaller pieces.

2. Efficient matrix storage: Methods for sparse matrix representation, to reduce stor-
age requirements.

3. Efficient computation: Associated methods for efficient computation with sparse
matrices.

4. Statistical modelling: How to model transformed problems, whether of reduced
size, decomposed, sparse, or some other simplified or efficient representation.

The remainder of this chapter surveys methods to address these challenges, with
specific approaches developed in greater detail in the following chapters.
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Decoupled Sequential or Tree or Cyclic Multilayer
Causal Coupling Acyclic Coupling Coupling Coupled

Fig. 5.1. The way in which state elements interact or are coupled strongly influences the diffi-
culty of the problem. Five examples are shown here, in increasing order of difficulty.

5.2 Coupling and Dimensionality Reduction

The presence or absence of coupling between state variables plays a major role in the
algorithmic complexity — the difficulty in formulating a solution — and associated
computational complexity and numerical conditioning.

Figure 5.1 shows five examples, in increasing order of difficulty:

• In a decoupled problem the state elements do not interact, therefore there is no
coupling to encode (reduced representation complexity) and each element can be
modelled and processed independently.

• In a sequential problem, the elements do interact, however the interaction is
causal, meaning that the elements can be ordered from start to end. Some re-
cursive approach, such as a variant of a Kalman filter, may be applied to such
problems.

• In trees or acyclic graphs (relationships having no loops) the behaviour is com-
plicated by the less regular structure, and by the fact that multiple elements (the
leaves of the tree) can influence one state (the root). Nevertheless the absence of
loops allows generalizations of the Kalman filter to be applied to such problems,
usually at very low computational complexity.

• In cyclically coupled (loopy) problems, the bidirectionality of influence makes
the problem much harder than the decoupled and causal cases. Many algorithmic
solutions to such problems are iterative, updating first one state, then the other,
then back to the first and so on.

• Coupled multilayer problems are like coupled ones, but their heterogeneous form
makes it more difficult to transform them into something simpler, whereas it may
be possible to convert a regularly-structured coupled problem.

With the exception of problems with unusually convenient structures (see, in partic-
ular, Section 8.3), in approaching a multidimensional problem of any significant size
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(a) (b) (c) (d) (e) (f) (g)
Direct Change Basis Local Hierarchical Marching Decoupling

of Basis Reduction Processing Decomposition

Fig. 5.2. A wide variety of approaches exists for addressing large multidimensional prob-
lems. Above are sketched a quick survey of seven of the broadest approaches to 3D (top)
and 2D (bottom) problems: direct, change of basis, reduction of basis, local processing, hi-
erarchical processing, marching, and decoupling. Grey regions show changed or transformed
coefficients; solid lines within dashed regions show a reduction in the number of coefficients.

our goal is frequently one of simplifying the coupling attributes, specifically break-
ing loops via some sort of decomposition or transformation, so that a looped graph
becomes acyclic, whether tree-based, sequential, or decoupled.

Although the details are left for other chapters to develop further, Figure 5.2 gives a
quick overview of the most promising categories:

(a) Direct (Chapter 3): The problem is set up in dense form, and solved directly
per the usual equations. This approach is infeasible for all but the most trivially
sized problems.

(b) Change of Basis (Section 8.1): Although the size of the problem is not reduced,
by reducing the correlation among state elements the overall conditioning of the
problem is improved.

(c) Reduction of Basis (Section 8.2): An extension of change of basis, in many con-
texts the redundancy among the state elements implies that the original problem
can be very accurately represented using a reduced state, essentially no different
from the principle of image compression.

(d) Local Methods (Section 8.2.3): A special case of reduction of basis, here each
estimate is based only on a local pruned version of the original problem. Except
for those problems with localized correlations, this approach is normally rather
poor.
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Figure 5.2(b,f) Figure 5.2(e,f) Figure 5.2(c,e,g)
Basis Change + Hierarchical Basis + Basis Reduction +

Marching Marching Decoupling + Hierarchy

Fig. 5.3. Three examples of hybrid approaches to three-dimensional modelling, based on com-
bining two or more methods from Figure 5.2: (b,f) applying a global change of basis and pro-
cessing plane by plane using a marching approach, (e,f) applying a hierarchical approach to
each of the planes in a marching approach; (c,e,g) decomposing the problem into indepen-
dent planes, reducing the basis by eliminating most of the insignificant planes, and applying a
hierarchical approach to each plane independently.

(e) Hierarchical or Scale Recursion (Figure 5.5): A specialized change of basis,
such that the elements can be organized into a hierarchy of scales.

(f) Marching (Section 10.1): Applying a Kalman filter to one axis of a multidimen-
sional problem, solving the problem iteratively over columns or planes.

(g) Decoupling (Section 8.2.1): Apply an optimal change of basis, decoupling the
problem into independent pieces. Although the optimal change of basis is too
difficult to apply to a whole d-dimensional problem, if the problem is spatially
stationary then the optimal one-dimensional decoupling may be found along
some dimension, leaving an ensemble of simpler (d−1) dimensional problems.

Clearly more than one approach may be used in a given context; three illustrations
of such hybrid schemes are shown in Figure 5.3.

The topic of hierarchical methods deserves some additional comment. There are,
typically, two classes of motivations for a hierarchical method:

PRAGMATICS: Hierarchical methods, particularly hierarchical changes of basis (such
as wavelets) are often found to be very effective at improving problem condition-
ing, and are thus chosen for their numerical properties.

PHILOSOPHY: For most large-scale multidimensional problems, there is some recog-
nition [110, 148, 273] that the fine-scale details in one part of the problem are
unnecessary in modelling some distant part of the problem, as illustrated in Fig-
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* *

(a) (b)

Fig. 5.4. (a) Knowing the details of individual, distant points is probably not necessary in esti-
mating the value of a random field at point *. Instead, (b) a hierarchical approach is motivated
whereby the details are aggregated into a much simpler form [148, 273].

COARSE

SCALE

⇑ ⇓ ⇑ ⇓ ⇑

⇑ ⇓ ⇑ ⇓ ⇑

FINE

SCALE

Domain Multigrid or Nested
Decomposition Multiresolution Aggregation

Fig. 5.5. Three basic approaches to hierarchical modelling. Domain decomposition partitions
the domain into small pieces, multiresolution methods represent a domain at coarse scales
using relatively few coefficients, and nested aggregation groups small regions to produce fewer
but larger ones.
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ure 5.4. Instead, it may be preferable to aggregate these details (and then to repeat-
edly aggregate the aggregations, leading to a hierarchy).

Very generally, three classes of hierarchical methods exist, illustrated in Figure 5.5,
all of which will be developed in further detail as appropriate:

1. Domain decomposition: Also known as “divide-and-conquer,” a large problem
is repeatedly divided into some number of smaller decoupled subproblems. At
each scale, only the boundaries of the decoupled subproblems are of interest, the
interior of each subproblem having been solved at a finer scale. Nested dissec-
tion (Section 9.1.3) and statistical multiscale (Section 10.3) are examples of this
approach.

2. Multiresolution: The problem is represented at a variety of resolutions, such that
the coarse scales have only few state values representing low-resolution aspects
of the random field, with progressively finer details at finer scales. Although su-
perficially similar to domain decomposition, there are two significant differences:

(a) A multiresolution approach normally does not decouple into multiple prob-
lems at finer scales. There is one problem to solve at each scale.

(b) Methods of domain decomposition normally do not represent a random field
at varying resolutions. Although one talks about “coarse” and “fine” scales,
the representation at the coarsest scale is normally a subset of the finest
scale, not a low-resolution version of the finest scale.

Hierarchical basis change (Sections 8.4.1 and 8.4.2) and the multigrid algorithm
(Section 9.2.5) are examples of this approach.

3. Nested aggregation: In both the decomposition and multiresolution approaches
the geometry of the coarsest scale — that is, the extent of the coarse scale ele-
ments on the finest scale — is predetermined. However, if a random field consists
of irregularly-shaped patches, it may be inappropriate to represent this random
field using large, square pixels at a coarse scale. In region aggregation, the coarser
scales are constructed by the repeated iterative aggregation of finer scales, leading
to arbitrarily-shaped regions whose shapes are driven by the finest-scale observa-
tions.

5.3 Sparse Storage and Computation

5.3.1 Sparse Matrices

In the event that the covarianceP for anN×N image Z is completely nonstationary
without any structure or regularity, there is not really any alternative to specifying the
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complete, denseN2×N2 matrix P . On the other hand, there is something that feels
very wrong about needing to specify and store N4/2 parameters1 for an image of
N2 pixels.

Indeed, the solution in all cases is to assert, assume, or derive a model which leads
to sparse matrices. In some cases this sparsity is obvious, such as with diagonal
matrices. For example, very frequently it is reasonable to assume that measurements
have uncorrelated errors, in which case R is diagonal, and so only the vector

rT
d =

[
r11 . . . rnn

]
= diag(R) (5.2)

needs to be stored. As a limiting case, if the measurement noise is uncorrelated and
also stationary, thenR = σ2I and the entire matrix is represented by the single scalar
variance σ2.

Although there is a large literature of sparse matrix techniques [141], many of which
apply to arbitrary patterns of matrix sparsity, in general the regular pixellated nature
of images and volumes leads to fairly regular structures. Figure 5.6 shows two such
examples for 10 × 10 pixel images Z . Suppose that any pixel zi,j is correlated only
with some subset of its immediate neighbours; then the corresponding covariance2 P
is a diagonally banded matrix, where the bands are the consequence of the column-
wise lexicographic reordering of Z . In these examples, the thickness of the main
diagonal band (3 and 5, respectively) is determined by the number of vertically-
related elements, whereas the number of band sets (also 3 and 5) is determined by
the number of horizontally-related elements.

Thus in Figure 5.6(a), rather than using some complicated sparse representation for
the covariance, it is much simpler and more efficient to recognize the banded struc-
ture of P , representing the b diagonal bands of P as a dense b× n matrix.

Although sparse banded matrices sound very straightforward, the challenge to sparse
modelling stems from the following:

• The product of sparse matrices is normally more dense than the original, and

• The inverse of a sparse matrix is normally dense.

That is, the sparse structure of a given model tends to disappear very quickly. Much
of the essence of the methods described in this book is the preservation, whether
implicitly or explicitly, of model sparseness.

1 The symmetry of a covariance matrix means that there are actually q(q + 1)/2 parameters
to specify for a q × q matrix.

2 This example is for illustration purposes only. Most banded matrices are not positive-
definite, and would therefore not be a valid covariance. In practice, it is covariance inverses
which are banded, not the covariances themselves.
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z−1,0

z0,−1 z0,0 z0,+1

z+1,0

z−2,0

z−1,0

z0,−2 z0,−1 z0,0 z0,+1 z0,+2

z+1,0

z+2,0

(a) 5-Banded (b) 9-Banded

Fig. 5.6. Two illustrations of sparsity, both corresponding to a 10 × 10 two-dimensional do-
main. The lower arrays show a lexicographic wrapping of one row of the top matrices, showing
the (a) five or (b) nine elements whose interactions are being modelled. The explanation of the
patterned thick middle bands is complex, to be discussed in Section 5.5, and is due to the
choice of boundary conditions at the image boundary.

5.3.2 Matrix Kernels

In seeking to model large multidimensional domains, an extremely important special
case is that of spatial stationarity, where the spatial statistics or the form of a dynamic
model do not vary from one state element to the next. In such a case, defining the
nature of the matrix at some location implicitly defines the matrix at all other loca-
tions; such an implicit representation is referred to as a matrix kernel, and is far more
sparse than any banded representation.

Consider two-dimensional random field Z = {zi,j}, where the lexicographically
reordered field has a given covariance

z = [Z]: ∼ P. (5.3)

If Z is spatially stationary then, ignoring the boundaries of the domain for now, the
statistics are shift invariant:

E[za,bzi,j] = E[za+x,b+yzi+x,j+y] = E[z0,0zi−a,j−b] (5.4)

from which it is clear that all of the field correlations can be inferred from the corre-
lation of one element z0,0 with the rest of the random field Z . That is, the covariance
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kernel P is
P � E[z0,0Z]. (5.5)

If z0,0 is the first element of [Z]: and p1 the first column of covariance P , then

p1 ≡ E
[
z0,0 [Z]:

]
(5.6)

and the kernel may be succinctly represented as

[P ]: = p1 (5.7)

and we see that the kernel is nothing more than the reordering of the first column
of the covariance. In the unusual case that the correlations are zero beyond some
spatial offset q, then the kernel can be shrunk to represent only the local, nonzero
correlations:

P = E

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

z0,0 ·

⎡

⎢⎢
⎢
⎢
⎢
⎢
⎣

z−q,−q · · · z0,−q · · · zq,−q

...
. . .

...
. . .

...
z−q,0 · · · z0,0 · · · zq,0

...
. . .

...
. . .

...
z−q,q · · · z0,q · · · zq,q

⎤

⎥⎥
⎥
⎥
⎥
⎥
⎦

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(5.8)

The kernel P contains everything needed to reconstruct any entry of covariance P :

E [za,bzi,j ] =
{

0 if |a− i| > q or |b− j| > q
Pi−a,j−b if |a− i| ≤ q and |b− j| ≤ q. (5.9)

A second important class of matrix kernels corresponds to linear dynamic matrices.
Suppose we consider dynamics of the form

z(t+ 1) = Az(t). (5.10)

If the dynamics are spatially stationary,3 then how A acts to determine za,b(t+ 1) is
just a space-shifted version of how A acts to determine za+1,b−2(t+ 1). That is, we
can define a set of weights αi,j such that

za,b(t+ 1) =
∑

i

∑

j

αi,jza+i,b+j(t). (5.11)

We recognize this as a convolution; collecting the weights αi,j into a kernel A, we
have a succinct version of (5.11) as

Az(t) ≡ [A ∗ Z(t)]: . (5.12)

3 As written, the dynamics in (5.10) are also temporally stationary, however this is not re-
quired. It is perfectly reasonable to have a spatially stationary time-varying kernel A(t).
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The compactness and elegance of this kernel approach make it particularly useful
in the development of deterministic (Section 5.5) and stochastic (Section 5.6) mod-
els, particularly because, in contrast to the dynamics matrix A or covariance P , the
kernelsA,P have the same numbers of dimensions as Z and allow a fairly intuitive
understanding of the implied dynamics or statistics. Ideally, we work entirely in the
kernel domain, without lexicographical reordering at all, such as

Z(t+ 1) = A ∗ Z(t) P = E
[
z
0
Z
]
. (5.13)

The shorthand A ∗ Z should not quite be taken literally; indeed, the convolution
(Appendix C.1)A∗Z produces a result on a larger domain than that ofZ . Instead, the
convolution is understood to apply over most of the domain, with certain exceptions
at the boundaries.

To elaborate further on this point, it is important to realize that matrix kernels can
be applicable in problems which are spatially nonstationary (as shown, for exam-
ple, with boundary conditions in Section 5.5.1). Although arbitrary nonstationarities
would require preserving the entire dynamics A or covariance P , if most of the field
is stationary, characterized by a single kernel, with only rare exceptions (such as
at the edges of the domain, or at region boundaries within the domain), then it is
possible to characterize the nonstationary behaviour by a relatively small number of
stationary kernels.

Strictly speaking, matrix kernels do not need to be rectangular in shape and only
need to store nonzero elements. When we sketch a kernel it is often convenient to
show only these nonzero elements, however in implementation it is usually most
convenient, computationally, to store the kernel as a small, dense, rectangular array.

5.3.3 Computation

The dominant component of computational complexity invariably revolves around
matrix multiplication, matrix inversion, and (rarely) matrix eigendecomposition or
positive-definiteness testing. We summarize below the computational issues associ-
ated with dense, banded, and kernel matrix representations.

Dense Matrices

Given dense matrices A ∈ R
n×k, B ∈ R

n×k, C ∈ R
k×p, D ∈ R

k×k, then the
following complexities are well known:

• Computing A+B has complexityO(nk),

• Computing A�B has complexityO(nk),
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• Computing A · C has complexityO(nkp),

• Computing D−1 has complexityO(k3).

It should be mentioned, in passing, that faster algorithms are known for both multi-
plication and inversion. The oft-cited Strassen’s method [294] which computes a ma-
trix inverse inO(klog2 7) � O(k2.807), and faster methods to approximatelyO(k2.4)
have been developed, all based on fast methods for matrix multiplication [247]. In
general, however, the implementation complexity of these methods limits their use.

The computation of a matrix determinant is a more subtle question than matrix ad-
dition or multiplication. In particular, because the matrix determinant may be used
to address questions of matrix singularity or positive-definiteness, it is important to
establish whether a determinant is zero, positive, or negative. Therefore numerical
rounding errors in determinant computation may be unacceptable, so there exists
literature [1] on exact determinant computation for matrices having integer entries,
with a complexity of approximatelyO(n4 lnn). In practice, the MATLAB evaluation
of a matrix determinant for a nonsingular n× n matrix is approximatelyO(n3).

Given an n × n matrix, testing its positive-definiteness involves the application of
Sylvester’s test (Appendix A.3), requiring the computation of determinants of 1× 1,
2× 2, . . . n× n matrices, for a total complexity of O(n4).

Banded Matrices

If matrices are sparse, then the computational issues are somewhat different. For a
banded, sparse n× n matrix A, let

BA(i) �
{

0 if, for all j, aj+i,j = 0
1 if, for at least one j, aj+i,j 	= 0 |i| < n. (5.14)

That is, BA(i) indicates whether diagonal band i is present in matrix A.

Then bands from either matrix contribute to the sum in matrix addition:

BA+B = sign(BA + BB), (5.15)

and matrix multiplication corresponds to a convolution in band space:

BAB = sign(BA ∗ BB), (5.16)

a result that is easily proved:

Given C = A ·B ⇒ cik =
∑

j

aijbjk (5.17)

from which it follows that
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Fig. 5.7. The convolutional nature of sparse banded-matrix multiplication. Each matrix rep-
resents a lexicographically ordered two-dimensional problem; thick bands indicate inter-
actions between vertically-adjacent elements, spaced bands indicate interactions between
horizontally-adjacent elements. The circled elements indicate the kernel origin.

BC(i− k) = 1 if
∑

j

BA(i− j)BB(j − k) > 0 (5.18)

BC(i) = sign
{∑

j

BA(i− j)BB(j)
}

(5.19)

= sign
{BA(i) ∗ BB(i)

}
. (5.20)

Four illustrations of this convolutional behaviour are shown in Figure 5.7. As each
band in a banded matrix is associated with a single entry in its associated kernel (with
the main diagonal corresponding to the kernel origin), that a convolution appears here
is directly related to the multiplication of matrix kernels, discussed below.

Banded matrix inversion is somewhat more problematic. Whereas the product of
two banded matrices yields another, slightly denser, banded matrix, the inverse of a
banded matrix is typically full. It is possible, however, to formulate sparse, banded
approximations to the matrix inverse [278]. A simple approach is to write a matrix
P = D+N in terms of its diagonal bandD and nondiagonal bandsN . If P is diag-
onally dominant, meaning that D−1N is stable, then there is a series approximation
to P−1,

P−1 = D−1 −D−1ND−1 +D−1ND−1ND−1 − . . . , (5.21)

where the number of series terms depends on the degree of diagonal dominance. That
this series is valid is easily seen by computing the product

P · P−1 =
(
D +N

) · ( D−1 −D−1ND−1 +D−1ND−1ND−1 − . . .)
= I −ND−1 +ND−1ND−1 − . . .

+ND−1 −ND−1ND−1 + . . .
(5.22)
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If N is b-banded, then the series builds up the dense matrix inverse by summing
smaller and smaller terms having more and more bands:

P−1 � D−1
︸ ︷︷ ︸
1 band

−D−1ND−1
︸ ︷︷ ︸

b2 bands

+D−1ND−1ND−1
︸ ︷︷ ︸

b4 bands

− . . . (5.23)

Matrix Kernels

Basic matrix operations can be undertaken directly in the kernel domain (Sec-
tion 5.3.2). As much as possible, all spatially stationary parts of a spatial statistical
problem should be kernel-represented.

If we take the sum of two matrices then

(A+B)x = Ax+Bx = [A ∗X ]: + [B ∗X ]: = [(A+ B) ∗X ]: (5.24)

thus the kernel of (A+B) is (A+ B).

The kernel corresponding to matrix multiplication is derived as

(A ·B)x = A · [B ∗X ]: =
[
A ∗ [ [B ∗X ]:

]
n×n

]

:
= [A ∗ B ∗X ]: (5.25)

thus the kernel of (A ·B) is (A ∗ B).

Because a scalar is unchanged when transposed, we can derive the kernel for LT as
follows:

xTLy = (xTLy)T = yTLTx

xT [L ∗ Y ]: = yT [LT ∗X]:∑
i x(i)

∑
j y(j)L(i− j) =

∑
j y(j)

∑
i x(i)LT(j − i)

(5.26)

from which it follows that a matrix transpose corresponds to a mirror image in the
kernel domain:

L(i) = LT(−i). (5.27)

If a matrix is circulant (stationary, with periodic boundary conditions) then the kernel
corresponding to the inverse matrix can be found using the FFT, as described in
Section 8.3:

A−1 = FFT−1
n

(
1� FFTn(A)

)
. (5.28)

Since the FFT diagonalizes A, from the eigenvalues Λ = FFTn(A) the positive-
definiteness of the associated matrix A can be tested as

A > 0 iff Λi,j > 0 ∀i, j . (5.29)
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Matrix Inversion

We need to develop a skepticism any time large matrix inverses are called for. It is
rare that an explicit inverse is needed and in most cases the problem can be reformu-
lated.

However given a prior P , if the inverse P−1 is needed then direct inversion may
be unavoidable. Most attractive is state decoupling (Chapter 8), leading to a block-
diagonal matrix, in which case the matrix inverse P−1 is found by inverting each of
the diagonal blocks individually:

P =

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

=⇒ P−1 =

⎡

⎢
⎢
⎢
⎢
⎣

−1

−1

−1

⎤

⎥
⎥
⎥
⎥
⎦

Other solutions include state reduction (Chapter 8), series approximation (5.21),
approximating the field as stationary and using kernel methods, or based on some
sort of restricting assumption, such as a banded inverse [10] or a block-banded in-
verse [11]. The latter methods are assumption-dependentand have a sufficiently com-
plex implementation to put them outside the scope of this text.

If the matrix is part of solving estimates, such as in

ẑ(m) =
(
LTL+ CTR−1C

)−1
CTR−1m, (5.30)

then the inversion of
(
LTL+ CTR−1C

)−1
is avoidable. Instead, we should rewrite

the problem as a linear system
(
LTL+ CTR−1C

)
ẑ(m) = CTR−1m (5.31)

and solve this using Gaussian elimination, a Cholesky decomposition, or iterative
methods, all of which are discussed in Chapter 9. The advantages of these latter
approaches are in terms of computational complexity, storage complexity, and nu-
merical robustness.

Complexity Comparison

Table 5.1 summarizes the computational complexity for the dense, banded, and ker-
nel matrix types just discussed. The challenge in solving large multidimensional
problems is not to find faster ways to invert huge covariance matrices, rather how
to design or discover effective models which lead to attractive properties, such as
sparsity, bandedness, block-diagonal matrices, diagonal dominance, or kernels.
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Operation Matrix Type

Dense Banded Kernel

Matrix Storage O(n2) O(bn) O(q)
Matrix–Matrix Sum O(n2) O(bn) O(q)

Matrix–Matrix Multiply O(n3) O(b2n) O(q)
Matrix–Vector Multiply O(n2) O(bn) O(qn)

Matrix Inversion O(n3) O(n3) O(nlogn)
Positive-Definiteness Test O(n4) O(n4) O(nlogn)

Table 5.1. A comparison of computational complexity for dense, banded, and kernel matrix
operations. In all cases the underlying problem z has n elements, banded matrices have b
bands, and kernels have q nonzero elements.

5.4 Modelling

The previous section discussed mostly pragmatic matters — how to store and mathe-
matically manipulate large matrices. However, this discussion is largely abstract and
artificial, playing games with matrices, unless it can be connected, in a meaningful
fashion, to the solution of large inverse problems of interest.

The challenge of modelling is not just one of specifying relationships, such as theN6

interrelationships among the elements of an N × N × N cube; it is fairly straight-
forward, after all, to invent or guess functions which assert a statistical relationship,
such as an autocorrelation for a stationary model —

f(i, j, k) = E
[
z(0, 0, 0)z(i, j, k)

]
. (5.32)

But not all choices of f make sense, or are even valid. Rather, problem modelling
simultaneously needs to satisfy four criteria:

1. The model must be legal or valid, meaning that derived or implied covariances
P,R or covariance inverses P−1 must be positive-definite.

2. The model should not be overfitting training data.

3. Ideally, the structure of the model should be compatible with an efficient mathe-
matical solution, aspects of which were discussed in Section 5.3.

4. The model must be faithful to the problem. To the extent that the model is an
approximation, the errors which appear should be negligible or tolerable.

The above criteria are individually straightforward, but challenging as a whole: the
most obvious models tend to be invalid, the efficient and elegant models tend to be
inaccurate, and the accurate models tend to be computationally infeasible.
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By far the most serious problem in model specification and development is that of
positive-definiteness:

• If a prior covariance P is negative-definite, even to only a tiny degree, the esti-
mation results can become completely meaningless, and may not necessarily bear
any resemblance to an approximate solution.

• Given a hypothesized prior covariance P , verifying that it is positive-definite is
extremely difficult, requiring the application of Sylvester’s test (Appendix A.3)
or computing all of the eigenvalues of P .

In other words, it is crucial that P be positive definite, and it is essentially impossible
to check the positive-definiteness of P !

There do exist methods [48], known as covariance extension, which can form a
positive-definite covariance given a few correlations. Unfortunately this problem re-
mains unsolved in higher than one dimension, and is computationally inconceivable,
in any event, for problems of significant size.

Additional challenges to the modelling process are the extra complications added
by the lexicographic reordering of the pixel elements. Furthermore the choice of a
suitable model can depend subtly on the problem context, thus the actual process by
which a model is selected is highly creative and therefore difficult to describe in a
structured, step-by-step fashion.

We focus on the construction of models which are known to be positive-definite, so
that eigendecompositions are not required for validation, and then to choose among
these available models for suitable choices in a given problem context.

The next two sections examine “deterministic” and “statistical” models, respectively.
The former, following on Section 3.1, seeks to specify a set of constraints L or LTL,
as required by (3.32). The latter, following on Section 3.2, seeks to specify prior
models, possibly P in the case of (3.65) or P−1 for (3.67).

From Section 3.2.4 we know, of course, that there are both conceptual and algebraic
overlaps between these two classes of models — that is, to some degree we can asso-
ciate LTL with P−1. In particular, as will become clear later, there are relationships
between the local deterministic models of Section 5.5 and the Markov statistical
models of Section 5.6.4.

5.5 Deterministic Models

By deterministic modelling, we mean the assertion of a set of constraints which are
compatible with the types of behaviour that are expected in z, but we do not neces-
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sarily believe that these constraints represent a complete description of the statistics
of z. That is, the constraints serve to regularize and condition the problem, not so
much to model it.

We assert a set of constraints {lTi z}, equivalently penalizing

‖Lz‖ = zTLTL z, where L =

⎡

⎢
⎣

lT1
...
lTq

⎤

⎥
⎦ . (5.33)

Thus L is a rectangular matrix, where the number of columns equals n, the dimen-
sionality of z, and where the number of rows q equals the number of constraints.
Indeed, the ordering of constraints (rows) in L is completely arbitrary, which is both
intuitive and easily verified by seeing that LTL is unaffected by row-reordering in L.

The key to this approach is its guaranteed positive-semidefiniteness. Recalling the
definition of a positive-semidefinite matrix Q:

Q ≥ 0 ⇐⇒ xTQx ≥ 0 ∀x, (5.34)

thus
xTLTLx = (Lx)T (Lx) = yTy ≥ 0 ∀y. (5.35)

That is, any real matrix product LTL is, by definition, positive-semidefinite.

The most common choices for L involve local constraints; that is, each constraint is
a function of only a few spatially proximate elements of z. Although locality is intu-
itively appealing it is not of great significance computationally; indeed, any locality
in two- and higher-dimensional problems is quickly destroyed by the lexicographic
reordering. Rather, the key is that each constraint be sparse, involving only a small
number of elements of z, whether spatially local nor not.

The starting point for L is normally the discretization of simple variational con-
straints, which were introduced in Section 2.4.1:

Membrane: ‖Lz‖ =
∫∫ ∣∣

∣∣
∂z

∂x

∣
∣
∣∣

2

+
∣
∣
∣∣
∂z

∂y

∣
∣
∣∣

2

dx dy (5.36)

� ‖Lxz‖ + ‖Lyz‖ , (5.37)

Thin Plate: ‖Lz‖ =
∫∫ ∣∣

∣
∣
∂2z

∂x2

∣∣
∣
∣

2

+ 2
∣∣
∣
∣
∂2z

∂x∂y

∣∣
∣
∣

2

+
∣∣
∣
∣
∂2z

∂y2

∣∣
∣
∣

2

dx dy (5.38)

� ‖Lxxz‖ + 2 ‖Lxyz‖ + ‖Lyyz‖ , (5.39)

where Lx, Ly, Lxx, Lxy, Lyy represent first- and second-order difference constraints
approximating the desired partial derivatives. For example, returning to the 3 × 3
example of (5.1),
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z11 z12 z13
z21 z22 z23
z31 z32 z33

there are a total of six first-order horizontal and six first-order vertical constraints:
⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

-1 1
-1 1

-1 1
-1 1

-1 1
-1 1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Lx

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎣

-1 1
-1 1

-1 1
-1 1

-1 1
-1 1

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎦

︸ ︷︷ ︸
Ly

(5.40)
The band spacing in Lx and the staggered bands in Ly are due to the lexicographic
structure of the one-dimensional vector z. The constraints are much more easily in-
terpreted if the rows of L are lexicographically unwound:

(lx)T
1 =

[
-1 0 0 1 0 0 0 0 0

]
=⇒ [(lx)T

1

]
3×3

=

⎡

⎣
-1 1 0
0 0 0
0 0 0

⎤

⎦ , (5.41)

a difference constraint on two horizontally adjacent elements, and

(ly)T
2 =

[
0 -1 1 0 0 0 0 0 0

]
=⇒ [(ly)T

2

]
3×3

=

⎡

⎣
0 0 0

-1 0 0
1 0 0

⎤

⎦ , (5.42)

a difference constraint on two vertically separated ones. Note that if a given con-
straint set, such as Lx, is stationary, then it is much simpler and more intuitive to
think in terms of its generator or kernel:

Lxz = (Lx ∗ Z): (5.43)

a two-dimensional convolution, in which case Lx, Ly, Lxx, Lyy, Lxy are represented
more compactly and elegantly via their corresponding kernels:

Lx =
[
-1 1

] Ly =
[

-1
1

]
(5.44)

Lxx =
[
-1 2 -1

] Lyy =

⎡

⎣
-1
2
-1

⎤

⎦ Lxy =
[

-1 1
1 -1

]
(5.45)

Rather than expressing the terms Lx, Ly, . . . separately, we can consider the com-
plete set of constraints

L =
[
Lx

Ly

]
or L =

⎡

⎣
Lxx√
2Lxy

Lyy

⎤

⎦ (5.46)
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QMixed =
QMembrane = QPlate = LT

x ∗ Lx + LT
y ∗ Ly+

LT
x ∗ Lx + LT

y ∗ Ly LT
xx ∗ Lxx + LT

yy ∗ Lyy+ LT
xx ∗ Lxx + LT

yy ∗ Lyy+
2LT

xy ∗ Lxy 2LT
xy ∗ Lxy

-1
-1 4 -1

-1

1
2 -8 2

1 -8 20 -8 1
2 -8 2

1

1
2 -9 2

1 -9 24 -9 1
2 -9 2

1

First-Order Second-Order First/Second-Order
Membrane Thin-Plate Mixed

Fig. 5.8. Three typical constraint kernels Q, derived from the given first- and second-order
pixel constraints. The manner of the derivation is shown in (5.49).

for the first and second-order cases, respectively, although obviously other choices
of L are possible. In solving the estimation problem (3.32) we need to represent
Q = LTL. In some cases, particularly for stationary problems of modest size, it
may be more convenient to store Q and not L itself. Given a number of constraints
L1, L2, . . ., we may find Q as

L =

⎡

⎢
⎣

L1

L2

...

⎤

⎥
⎦ =⇒ Q = LTL =

∑

i

LT
i Li. (5.47)

Analogously to before, if the constraints are stationary then we can consider the more
intuitive convolutional kernel representationQ for Q, such that

Q =
∑

i

LT
i Li =⇒ Qz = (Q ∗ Z): =

(
(∑

i

LT
i ∗ Li

) ∗ Z
)

:

(5.48)

As a simple, two-dimensional example,

QMembrane = LT
x ∗ Lx + LT

y ∗ Ly =
[
1 -1
] ∗ [-1 1

]
+
[
1
-1

]
∗
[

-1
1

]

=
[
-1 2 -1

]
+

⎡

⎣
-1
2
-1

⎤

⎦ =

⎡

⎣
-1

-1 4 -1
-1

⎤

⎦ .
(5.49)

Two further kernels, computed in the same way, are shown in Figure 5.8.

As discussed in Chapter 9 (see also Problem 5.5), it is important to realize that for
very large, nonstationary problems it may be preferable to store L and to leave Q
implicit, such that the product Qz is evaluated as
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Fig. 5.9. Boundary conditions are implicitly specified by the presence or absence of constraints
for pixels at or near the domain boundary. Four typical examples are shown here of a 4 ×
4 pixel domain with constraints shown as lines. Specific examples of kernels are shown in
Figures 5.10 and 5.11.

Qz = LTLz =
(
LT
(
Lz
))
. (5.50)

The reason for preferringL is that it is typically sparser thanQ, and so more efficient
to represent. Furthermore, once L has been specified, there is no compelling reason
to explicitly calculate the matrix–matrix product Q = LTL. Finally, if in trying to
avoid the matrix–matrix product we try to specify Q directly, there are challenges in
guaranteeing its positive-definiteness.

5.5.1 Boundary Effects

For any field of finite extent, it is required to specify the behaviour of the field at
its boundaries. The details of these boundary conditions will be highly problem-
dependent, but will normally fall into one of the categories shown in Figure 5.9:

FREE BOUNDARY: All constraints which would refer to pixels outside of the lat-
tice are removed from L, therefore the boundary asserts no constraint (the state
element is “free”). With these constraints removed the resulting kernel becomes
nonstationary and varies in a predictable fashion, as illustrated in Figure 5.10.

ZERO BOUNDARY: In contrast to the free boundary, above, if all constraints which
would refer to pixels outside of the lattice are truncated, as illustrated in Fig-
ure 5.11, then the truncated portions of the constraints implicitly set the state val-
ues outside of the boundary to zero.

SPECIFIED BOUNDARY: In some cases we may wish to assert boundary values other
than zero, for example to specify the gradient at the boundary, as illustrated in
Figure 5.12. Let B be a specified set of boundary values around random field Z .
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Fig. 5.10. The free boundary kernel: the squared constraints (Q) relating to pixels outside of
the domain have been removed, resulting in a nonstationary kernel. In all cases the circled
element denotes the kernel origin. Compare with the boundaries in Figure 5.11.
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Fig. 5.11. Kernels at boundaries: if the kernel Q is truncated (left), then there is an implicit
reference to zero-valued pixels, imposing a boundary condition. If the kernel Q is wrapped
(right), then the surface is constrained to be periodic.

Then a given constraint l, which spills from the random field into the boundary, is
asserted as ∥

∥∥
∥ l

T

[
z
b

]∥∥∥
∥ . (5.51)

By separating the portions of the constraint applied to Z andB we can rewrite the
penalty (5.51) as

∥
∥
∥∥
[
lTz lTb

]
[
z
b

]∥∥
∥∥ =

∥
∥∥lTz z + lTb b

∥
∥∥ =

∥
∥∥lTz z + β

∥
∥∥ . (5.52)

Collecting all of the constraints into matrix form, we have the net penalty



5.5 Deterministic Models 155

Longitude

L
at

it
ud

e

0 50 100 150 200 250 300 350

−80

−60

−40

−20

0

20

40

60

80

Land Boundary

Global Gravitational Equipotential: Fluid Flow at a Coastline:
Periodic East/West Boundaries Zero Flow Normal to Boundary

(Data Source NGA Office of GEOINT Sciences)

Fig. 5.12. Boundaries appear very frequently in remote sensing. The Geoid, left, has east
and west sides adjacent (periodic), whereas the top (north) and bottom (south) edges are not
periodic. Fluid flow near a coastline, right, is constrained to have a zero flow component at
right angles to the coast.

∥
∥LT

z z + β
∥
∥ , (5.53)

so we see that the imposition of specified boundary conditions appears similarly
to that of a prior mean; the solution of (5.53) is discussed in parallel with the
discussion of prior means in Section 5.5.3.

PERIODIC OR WRAPPED BOUNDARY: State elements at opposing edges (top / bot-
tom, left / right, etc.) are treated as adjacent, illustrated in Figure 5.11. Thus a
reference to a pixel outside of the lattice is wrapped back inside, so for a K ×N
lattice,

z(i, j) ≡ z(i mod K, j mod N). (5.54)

Although such models are rarely perfectly realistic, they are popular because of
the simplicity and computational efficiency of stationary models. Having left–right
periodic boundaries is very common when estimating on a sphere, such as global
remote sensing of the Earth, as shown in Figure 5.12.

Clearly the above boundary types can be combined, in that part of the boundary may
be free, another part may be zero, two sides may be periodic, etc.

5.5.2 Discontinuity Features

With the exception of the boundaries we have, thus far, implicitly assumed stationary
constraints. Although the inference of a nonstationary model can be quite difficult,
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and beyond the scope of this discussion, the assertion of known nonstationarities in
a model is straightforward.

Indeed, the constraints at each state element should reflect our understanding of
smoothness (or not) at each location. As long as they can be encoded in terms of
linear constraints, there are no restrictions on the types of nonstationarities to be as-
serted. A few examples follow, in which a single one-dimensional constraint L is
illustrated, although the concepts are equally applicable to 2D and 3D. In each case
the stated property occurs at the point marked by an arrow:

First-order smoothness (no abrupt change in value) between
the marked elements.

-1
⇑

1

Second-order smoothness (no abrupt change in slope) at the
marked state element.

-1 2
⇑

-1

State elements to the left and right are smooth, however a fold
(abrupt change in slope) may occur at the marked state element.
That is, the value of the marked element is constrained to be
consistent with those of its neighbours, however there are no
constraints on its slope.

-1 2 -1

-1 2 -1
⇑

The two state elements to the left and to the right are con-
strained to be similar, however between the marked elements
a jump discontinuity (an abrupt change in value) may occur,
since there are no constraints relating the corresponding state
values.

-1 1

-1 1
⇑

The use of the preceding elements is illustrated in Figure 5.13.

5.5.3 Prior-Mean Constraints

The standard membrane (first-order) and thin-plate (second-order) models consist
strictly of terms constraining the relative values of proximal pixels, but no constraint
of any kind on the value of any single pixel. Thus from the perspective of the regu-
larizing constraints L, the overall image mean is irrelevant:

‖Lz‖ ≡ ‖L(μ1 + z)‖ (5.55)

for any constant, scalar mean μ. In other words, the overall image mean lies in the
nullspace of L, thus clearly LTL is singular.

To remove the singularity of LTL, or in those cases where we wish to assert a prior
mean, we need to introduce a constraint on an individual state element or, more
commonly, to introduce a constraint on each element. Given a prior mean μ for each
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z1 z2 z3 z4 z5 z6 z7 z8 z9 z10 z11 z12

2 -1
-1 2 -1
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-1 2 -1

L = -1 2 -1
-1 2 -1

-1 1
-1 1

︸ ︷︷ ︸
Zero-boundary Height Slope First-order Free

condition discontinuity discontinuity constraint boundary
on left (jump) (fold) z10 to z12 at right
edge between at z8 edge

z4 and z5

t

Meas. m

ẑ(t)

Fig. 5.13. A detailed example of boundary conditions and first- / second-order constraints.
For simplicity, the constraints L are illustrated for a one-dimensional example, so there are
no lexicographic effects. Clearly L describes the constraints for a twelve-element state z, so
the sketch in the lower panel is essentially a cartoon, a continuous one-dimensional estimated
signal, consistent with the constraints and the nine measurements (open circles).

element in z and possible specified boundary conditions β from (5.53), we wish to
penalize ∥

∥
∥∥

[
L
αI

]
z −
[
β
μ

]∥∥
∥∥ , (5.56)

leading to a weighted least-squares formulation

ẑ =
(
CTWC + LTL+ α2I

)−1 (
CTWm+ LTβ + μ

)
. (5.57)

The addition of diagonal constraints corresponds to increasing the value of the central
element in the kernel domain, as shown in Figure 5.14. As α increases the variance
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Fig. 5.14. To constrain the value of a pixel, either to limit its variance or to assert a prior mean,
we can choose to introduce a zeroth-order constraint, increasing the central element of the
kernel by some amount α2.
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Fig. 5.15. The effect of asserting a prior mean: for the two common smoothness models under
consideration, as α2 in Figure 5.14 increases the process correlation length is decreasing.

of each state element decreases, as does the spatial correlation length. Figure 5.15
plots this correlation length for the membrane and thin-plate priors in one, two, and
three dimensions.

5.6 Statistical Models

The previous discussion focused on deterministic models for regularization. Be-
cause these models are mostly heuristically chosen, and guaranteed to be positive-
semidefinite, the discussion was straightforward and mostly intuitive.
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Example 5.1: Multidimensional Interpolation

We consider a two-dimensional estimation problem. We are given four measure-
ments, and choose to assert second-order (thin-plate) smoothness by asserting the
kernels Lxx,Lxy,Lyy of (5.45) at each pixel. Only the boundaries remain to be
specified; the following figures show the estimation results for the cases of free
and periodic boundaries:

Free Boundaries Periodic Boundaries

The surfaces show the resulting estimates, with the underlying images plotting the
estimation error variances, clearly identifying the four measurement locations by
their low variances (dark). Note the response in the error variances on the right-
hand side of the periodic surface to the measurements on the opposite (left) side
of the domain, compared to the absence of such a response for the free boundary.

A much richer example is constructed below, consisting of two periodic bound-
aries, one free boundary, one zero boundary, a cut (zeroth-order discontinuity) and
a fold (first-order discontinuity):

Periodic

Periodic

Zero Boundary

Free Boundary

Cut Fold

Domain Structure Estimation Results

One can observe how the reduction or elimination of constraints by the the cut
and fold leads to a corresponding increase (white) in the error variances. Because
the zero-boundary condition is a strong constraint, it greatly limits the variability
of the surface and thus leads to a low error variance (dark, back-right), in contrast
to the opposing free boundary with high error variance (light, front-left).
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For the remainder of the chapter our focus shifts considerably to specifying statistical
prior models. We realize that the constraintsL implicitly specify the statistics of z, by
identifying LTL with P−1. However, in the implicitness of the specification lies the
problem: given a random field Z , with known or sample statistics, it is not clear how
to practically formulate the associated L. Algebraically the formulation is simple:

P ⇔ P−1 = V DV T ⇔ L = D1/2V T . (5.58)

That is, we solve for the matrix square root L, computationally impossible for all
but the most trivially-sized problems. Furthermore, an arbitrarily chosen P and the
derived L may not permit compact or efficient representation and storage.

Even the direct specification of P carries with it the burden of guaranteeing positive-
definiteness, so there remains an interest in implicit statistical methods which specify
the model through the covariance-inverse square root L, particularly so for nonsta-
tionary problems (see Problem 5.5, for example).

The following four sections summarize methods for prior model specification, with
ideas developed in greater detail in later chapters as appropriate. The first two models
are explicit, specifying P ; the latter two are implicit, specifying L or P−1.

• Section 5.6.1: Dense P — Analytical positive-definite forms

• Section 5.6.2: Dense P — Positive-definite forms for nonstationary fields

• Section 5.6.3: Sparse Γ,A — Square root / dynamic models

• Section 5.6.4: Sparse P−1 — Banded inverse-covariance models

5.6.1 Analytical Forms

Consider setting up an estimation problem in d dimensions, characterized by a sta-
tionary correlation function

E
[
z(x)z(x+ δ)

]− E[z(x)]E[z(x+ δ)
]

= σ2f (r) , r2 =
d∑

i=1

δ2i . (5.59)

That is, x and δ are a point and offset, respectively, in d-dimensional space, and r
measures the Euclidean length of offset δ. So in two dimensions, the statistics are
characterized by a stationary correlation matrix

E
[
z(0, 0)z(x, y)

]− E[z(0, 0]E[z(x, y)] = P(x, y). (5.60)

There are only a few analytic forms for f which are guaranteed to be positive-definite
[76, 162, 163, 248], plotted in Figure 5.16. Each is controlled by a single parameter
θ, which determines the range or correlation-length of the function.
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Logistic Spherical Bessel
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Fig. 5.16. Six common positive-definite forms, shown for two or three values of width param-
eter θ. The smoothness, numerical conditioning, and spatial extent of these are very different
from one to the next, as summarized in Table 5.2.

EXPONENTIAL:

fExp(r, θ) � exp
(
−|r|
θ

)
(5.61)

Very well conditioned numerically, even for highly-correlated (large θ) domains,
however the sharpness of the peak at the origin causes the locations of sparse
measurements to induce corresponding peaks in the resulting estimates, normally
an undesirable artifact.

SPHERICAL:

fSph(r, θ) �
{

1− 3
2

(
r
θ

)
+ 1

2

(
r
θ

)3
r ≤ θ

0 r > θ
(5.62)

Similar conditioning and peak-sharpness properties to the exponential case, how-
ever the spatial extent of the correlation is strictly limited to a finite range r ≤ θ.

GAUSSIAN:

fGau(r, θ) � exp
(
− r

2

2θ

)
(5.63)

Extremely smooth, but also leading to highly ill-conditioned covariance matrices.

LOGISTIC:
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fLog(r, θ) � 1− θr2

2 + θr2
(5.64)

Similar to the Gaussian case — smooth and ill-conditioned — but faster to com-
pute.

BESSEL:

fBes(r, θ) � (2r/2θ)ν

Γ (ν)
Kν(r/θ)rK1(r/θ) (5.65)

A whole family of correlation functions, corresponding to the statistics of vari-
ous orders of Laplacians, the Bessel correlations are smooth and very well con-
ditioned, but of much greater computational complexity. The first-order case is
comparatively simple and worth noting:

fBes(r, θ) � r

θ
K1

( r
θ

)
. (5.66)

Separate from the preceding five functions there are two special cases, corresponding
to the limiting behaviour of the above functions as θ → 0 and θ →∞:

INDEPENDENT:

fInd(r) �
{

1 r = 0
0 r > 0

(5.67)

As θ → 0 each element becomes uncorrelated with every other. Normally not a
useful model on its own, however see the discussion below regarding the nugget
effect.

CONSTANT:
fConst(r) � 1 (5.68)

As θ →∞, all of the state elements become perfectly correlated; that is, the entire
random field is constant. The model is positive-semidefinite and not useful on its
own, however see the kriging discussion, below.

A summary of the properties of the positive-definite forms is shown in Table 5.2,
with a short example in Figure 5.17.

Finally, because the positive linear combination of positive-definite matrices is itself
positive-definite:

A,B > 0 =⇒ αA + βB > 0 for α, β > 0 (5.69)

therefore any linear combination of the above correlation functions remains positive-
definite. Of particular interest is the common form

fNugget(r) = αfInd(r) + βf∗(r) (5.70)
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Method Smoothness Extent Conditioning Complexity

Independent Bad Zero Excellent Trivial
Constant Good Infinite Singular Trivial

Exponential Poor Infinite Good OK
Spherical Poor Finite Good Easy
Bessel Good Infinite Good Hard
Logistic Good Infinite Poor Easy
Gaussian Good Infinite Bad OK

Table 5.2. A summary comparison of qualitative properties of the analytical positive-definite
forms. None of these can be said to be objectively superior to the others.

Measurement Locations on True Field

Exponential fExp Gaussian fGau Spherical fSph

Fig. 5.17. Three illustrations of spatial estimation based on analytical forms, based on the
scanning pattern of satellite measurements (as in Figure 1.3 on page 5). The Gaussian results
are numerically unstable due to ill-conditioning; the spherical results suffer from a local cor-
relation; the exponential results are reasonably credible, however in general the exponential is
like a first-order (membrane) prior and provides insufficient smoothing.
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for any valid correlation f∗, which models the so-called “nugget” effect of the krig-
ing literature [75,76] (see Section 2.5.3), in which there is a certain degree of instan-
taneous decorrelation (controlled by α) between a random element and any other,
regardless of how close. That is, the random field contains a white component.

Of interest is also the other extreme, in which a constant is added to the correlation

fWeak Prior(r) = αfConst(r) + βf∗(r) (5.71)

for any valid correlation f∗. It is clear that the prior variance

var
(
z(x)

)
= σ2fWeak Prior(0) = σ2(α+ β) (5.72)

increases as α increases, meaning that the prior mean is asserted ever more weakly.
On the other hand, the statistics of pixel differences

var
(
z(a)− z(b)) = σ2

[
2fWeak Prior(0)− 2fWeak Prior(|a− b|)

]

= 2βσ2
[
f∗(0)− f∗(|a− b|)

] (5.73)

are independent of α. Thus our spatial statistics are left untouched; only the prior
mean is increasingly ignored. As α → ∞, the solution to the estimation problem
becomes equivalent to kriging, however the poor numerical conditioning associated
with large α makes such an approach impractical.

The key problem in directly modelling the covariance of random fields is that the
above correlation functions do not generalize to the nonstationary case. That is, using
any of the above correlations with a space-varying θ normally leads to covariances
which fail to be positive-semidefinite.

5.6.2 Analytical Forms and Nonstationary Fields

Arbitrary spatial variations in θ are not possible, since the resulting covariances fail to
be positive-definite; however there are certain spatial variations which are permitted.

Independent Blocks

If the spatial nonstationarities occur in disjoint, independent regions, each of which
is stationary, then the overall covariance is positive-definite. Specifically, if field Z
on lattice Ω is divided into regions {R1, . . . , Rq} such that

Ri ∩Rj = ∅ i 	= j ∪i Ri = Ω (5.74)

then if we lexicographically order by region, the resulting field covariance is block-
diagonal:
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z =

⎡

⎢
⎣

[Z(R1)]:
...

[Z(Rq)]:

⎤

⎥
⎦ ∼

⎡

⎢
⎢
⎢
⎣

⎤

⎥
⎥
⎥
⎦

(5.75)

If each of the blocks is positive-definite, then so is the block-diagonal matrix. This
approach is, however, of very limited interest, since most images and random fields
are not piecewise-independent.

Spatially Varying Variance

If the nonstationarities are confined to spatial variations in the random field vari-
ances, and if we select a positive-definite, stationary correlation-coefficient structure
f(), then the model remains positive-definite. That is, if we define a stationary field

z(s) ∼ P > 0 where Pij = f(|i− j|) (5.76)

and then define a nonstationary field z(ns), where each element of z(ns) is a rescaled
version of z(s):

z(ns) = Diag(σ)z(s) = Dz(s) ∼ DPDT > 0. (5.77)

The resulting covariance is thus made up of nonstationary (variance) and stationary
(correlation) components:

E
[
z(x)z(x+ δ)

]− E[z(x)]E[z(x+ δ)
]

= σxσx+δ︸ ︷︷ ︸
Nonstationary

· f (|δ|)
︸ ︷︷ ︸

Stationary

. (5.78)

Alternately, we can explicitly write the covariance of the field as

P =
(
σ σT )� Po, (5.79)

where we see P expressed as a stationary structure Po, modulated by nonstationary
standard deviations.

Nonstationary Mixtures of Stationary Fields

In many situations the correlation structure f is itself nonstationary, in which case
modelling is somewhat more difficult. Such situations commonly occur in recursive
dynamic estimation in which measurements are assimilated in multiple steps over
time.

Given a correlation structure f(r, θ), if θ varies with spatial location, the resulting
covariance is almost certainly not positive-definite. However, it is possible to use
a nonstationary mixture of stationary models [191], an approach most effective if
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the modelled correlation structure has a single form (e.g., exponential), but with a
space-varying correlation length θ. That is, for each unknown element zj , suppose
we have an associated idealized parameter setting θj . The idea is to generate q sets
of estimates

{
ẑ(m|Θi)

}
and possibly error covariances P (m|Θi), each based on a

stationary positive-definite model f characterized by one of Θ1, . . . , Θq .

The desired nonstationary estimates and error variances are then found as a nonsta-
tionary linear combination of the stationary ones; that is,

ẑj =
∑

i

αi(θj)ẑj(m|Θi) (5.80)

Pjj =
∑

i

βi(θj)Pjj(m|Θi). (5.81)

The interpolating weights αi, βi satisfy

∑

i

αi(θ) = 1
∑

i

βi(θ) = 1 ∀θ (5.82)

to prevent biasing the estimates, and

αi(Θk) =

{
1 i = k

0 i 	= k
βi(Θk) =

{
1 i = k

0 i 	= k
(5.83)

to require the exact solution to emerge when the desired θ equals one of the {Θi}.
The weights themselves can be solved by least squares to minimize the estimation er-
ror [191]. A brief illustration of this method can be seen in Application 4 on page 122.

5.6.3 Recursive / Dynamic Models

The previous two sections examined the explicit construction of a covariance P ,
which has the advantage of specifying an unambiguous statistical model, but the
disadvantage of being a dense matrix for which positive-definiteness must be guar-
anteed.

However, in the same way that the constraint matrix L, the matrix square root of
the system matrix Q, has no positivity requirements, the same is true of the matrix
square root for the field covariance P or correlation structure P . In particular, we
could specify a random field z as

z = [Γ ∗W ]: ⇒ P = Γ ∗ ΓT (5.84)

z = Γw ⇒ P = ΓΓ T , (5.85)

where w and W are white unit-variance random fields.
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Such a representation indeed frees us from positive-definiteness requirements, how-
ever Γ remains large and dense and, in contrast to P , is difficult to interpret or to
specify. Computing Γ directly from P may be impractical for large problems, de-
pending on the sparsity of P (see Section 9.1.2), because of the computational com-
plexity associated with finding matrix square roots.

A more efficient alternative is a recursive-dynamic model for the square root. Given
a dynamic model

z(t+ 1) = Az(t) +Bw(t), (5.86)

or possibly its space-stationary variant,

Z(t+ 1) = A ∗ Z(t) + B ∗W (t), (5.87)

plus an initial condition cov
(
z(0)

)
= Po, then the process covariance is implicitly

specified and guaranteed to be positive-definite.

LikeL,A andB are typically sparse and subject to no other conditions.4 Furthermore
the Kalman smoother can be used to generate estimates ẑ(t|T ) based on all of the
measurements scattered throughout the dynamic process.

The challenge, clearly, is how to determine a partitioning of the problem such that
the partitions obey a dynamic relationship. That is, given a multidimensional random
field Z , how can we define partitions z(t) = ΞtZ: such that the resulting dynamics
on z(t) capture the statistics of Z?

The clear benefit of such a scheme, of course, is that the individual states z(t) are
much smaller than the entire process Z:, thus the size of dynamic A is much, much
smaller than the single constraint matrix L which it replaces.

The answer to the partitioning question can depend subtly on the statistics of Z ,
and can most definitively be answered for the broad class of Markov random fields,
discussed in Chapter 6.

A number of partitioning schemes are examined in this book, in particular a parti-
tioning into adjacent groups (e.g., the partitioning of an image into rows or columns)
in the marching methods of Section 10.1, and the hierarchical partitioning into nested
subsets in the multiscale methods of Section 10.3.

5.6.4 Banded Inverse-Covariances

Motivated by the sparse-matrix methods described in Section 5.3, it is tempting to
consider representing covariance matrices by a sparse, banded representation. How-
ever, a b-banded covariance P implies that any state element is correlated with only

4 The reader may wonder about stability requirements for A; however for a domain of finite
size stability is not an issue.
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(a) 5-Banded Matrix (b) 5-Banded Matrix Inverse

Fig. 5.18. The inverse of a sparse matrix is normally dense, with enormously complicated
structure.

b − 1 other elements, and completely decorrelated with the entire remainder of the
field. For example, a standard five-banded covariance for a two-dimensional ran-
dom field would imply that any pixel is correlated only with its immediate four
neighbours. Thus for any reasonably sized b, the spatial extent of correlation will
be very modest, much shorter than would arise in realistic contexts. For those rare
locally-correlated problems it is much simpler to use a local estimator, so banded-
covariances are of little interest.

Furthermore, to take a given covariance and to force it to be banded, by setting all
values outside of the bands to zero, almost certainly results in a matrix which fails to
be positive-definite.

Banded inverse covariances are a completely different matter, however. In particular,
because the inverse of a sparse matrix is normally dense, a sparse P−1 can imply
a dense P — that is, with all elements correlated with one another, as is illustrated
in Figure 5.18. Indeed, even a five-banded P−1 can model arbitrarily strong correla-
tions between arbitrarily distant state elements. Additional bands do not necessarily
lead to stronger correlations, rather to more interesting variations, patterns, and tex-
tures.

However, the benefits of sparse banded inverses go far beyond the convenience of
simplified covariance storage.

Indeed, the singular key benefit of most5 sparse inverses is that they imply a certain
decoupling of the random process, meaning that the original field can, relatively
easily, be divided into smaller pieces, a key desirable property when considering
domain decomposition methods. This large, important class of statistical models is
known as Markov random fields, the topic of Chapter 6.

5 Not all sparse inverses have simple or useful decoupling properties. Normally the process
is reversed: we specify the nature or degree of decoupling, which determines the class of
sparse inverses to be considered.
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Even outside of an explicit consideration of sparse inverse-covariances this class
of models is significant. The recursive-dynamic models of Section 5.6.3 possess a
Markov decomposition property, by construction, and therefore also have sparse in-
verses, although this inverse is normally not computed and stored explicitly. Simi-
larly the deterministic models of Section 5.5 are characterized by sparse L or LTL,
which we understand to correspond with P−1, and are therefore also Markov.

5.7 Model Determination

The problem of inferring a model is known as system identification [212], a complex
task whose details and subtleties are outside the scope of this text.

In many cases, if the multidimensional measured system is a real, physical one, then
the behaviour of the system will be described by a specific mathematical or physical
formulation, whether an elliptical partial differential equation with boundary condi-
tions, or a regular differential equation over time, which may then be discretized.

However, even for physical systems with a known mathematical model, there are
circumstances in which the mathematical model fails to lead to a meaningful prior:

• The mathematical description may live at a scale far finer than the intended dis-
cretization of the problem.

• The dimensionality of the mathematics may be different from the intended estima-
tion problem. For example, the three-dimensional behaviour of water in the ocean
is governed by the Navier–Stokes equation, which is of limited use in forming a
prior of the two-dimensional ocean surface.

In these and many other cases we will have training data, but not a physical basis for
knowing a model, although our understanding of the problem may allow us to assert
whether the model is stationary, periodic at the boundaries, or isotropic, for example.

Under modelling we normally understand the inference of a model with relatively
few parameters for representation. A very large model is much more likely to lead to
overfitting, although methods of cross-validation (Section 2.4.1) can be used to test
for that. In practice, for large multidimensional problems we would prefer to learn
a parametrized model, meaning a statistical model

(
P (θ), C(θ), R(θ)

)
with some

number of unknown parameters θ.

There are variations in terms of what is known:

• Ground truth data Ž for the state Z , or

• Some number of measurements sets M ,
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and what is not known:

• The prior model P or regularization constraint L, and/or

• The forward problem C, and/or

• The statistics of the measurementsR.

It is quite common for the physics of the problem to dictateC andR, leaving the prior
model to be inferred. In many cases a Markov model is chosen, as just discussed in
Section 5.6.4, and for which specialized methods of model inference are discussed
in greater detail in Chapter 6, in Section 6.6.

Outside of the Markov case, we need to estimate from the given data the parameters
θ, parameterizing a prior model

Z ∼ N (0, P (θ)
)

Z ∼ N (0,P(θ)
)

or Z ∼ L(θ) (5.88)

and so on, as appropriate. For example, all of the analytical positive-definite forms
in Section 5.6.1 are a function of a single scalar parameter θ. We rarely have a prior
model for θ itself, so the unknown parameters θ are estimated using maximum like-
lihood (2.93):

θ̂ = argθ max p(Ž|θ) or θ̂ = argθ max p(M |θ) (5.89)

depending on whether ground truth Ž or measurements M are given [248].

In many cases, especially when measurements are given, it is exceptionally difficult
to even write down p(M |θ), essentially because the relationship between θ and M
goes via (unknown) Z . In such cases the expectation-maximization algorithm [25,
85, 275], also discussed in Section 7.5, is widely used for parameter estimation.

Example 5.2: Model Inference

We are given a sample Ž of a random field Z and its associated correlation:
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Example continues . . .
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Example 5.2: Model Inference (cont’d)

In principle we could attempt to infer a model directly from the correlation, how-
ever the way in which the model parameters θ relate to the correlation may not
be obvious. Suppose we know the form of the model, here the exponential corre-
lation fExp(r, θ) of (5.61); then we can compute the likelihood p(Z|θ)|Z=Ž as a
function of θ and select θ̂ to maximize:
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Because the three samples Ži are different, the log-likelihood curves and their re-
spective maxima will vary somewhat from sample to sample, left. If, furthermore,
the sampleM = Z+V is noisy, right, then the accuracy of the estimate decreases
at greater noise levels.

It is more likely that our model uncertainties would include correlation, variance,
and measurement noise variance. These parameters can, in this simple case, be
inferred from an autocorrelation:
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By extrapolating a process variance of ≈ 5.1, the measurement noise variance
appears as the increased height of ≈1.1 at zero-lag.

Instead, we could have estimated all three parameters in θ using maximum like-
lihood, an optimization over a three-dimensional space, for which an iterative
method such as EM would typically be used.
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Fig. 5.19. We have seen eight forms of representation, left, where the forms differ based on
the choice of three underlying aspects: representing a model or its square root, determinis-
tic constraints versus statistical modelling, and a full/dense matrix versus a sparse matrix or
convolutional kernel.

5.8 Choice of Representation

This chapter has developed a total of eight forms of representation: whether con-
straints or statistics, square root or squared, and whether a sparse matrix form or a
stationary kernel, as illustrated in Figure 5.19.

The last of these three questions is perhaps of lesser significance, to the extent that
kernels are just an implicit, highly sparse representation of a matrix. If the problem is
highly nonstationary, then a regular sparse matrix approach is simpler. Alternatively,
if the problem is mostly stationary, then it may be easier to store a kernel and to keep
track of nonstationary exceptions (such as at boundaries and discontinuities).

The former question is more significant. First, whereas all L,L, A, Γ are valid,
the direct specification of LTL,Q, P must guarantee positive-semidefiniteness. Al-
though this requirement is easily satisfied for stationary problems, for nonstationary
problems definiteness may be much more subtle.

In general a covariance P will be dense, and the detailed discussion of sparse statis-
tical models is deferred to Chapter 6. For a constraints-based model, if the number
of diagonal bands in L, or equivalently the number of nonzero entries in L, is b, then
Q = LTL may have up to b2 bands. Therefore for z ∈ R

n, the product x = Qz has
complexityO(b2n), whereas separately computing

y = Lz, x = LTy (5.90)

has considerably reduced complexity O(2bn), but at double the storage complexity,
since y needs to be stored in memory.

In those cases where the computational complexity is not prohibitive, the reduced
storage demands and the simpler, more homogeneous structure of Q versus the
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Fig. 5.20. A domain-decomposition approach to phase unwrapping [53]: Given an interfero-
gram (left) we can divide it into regions and unwrap each region individually (center), where
then the regions can be unwrapped against each other (right) to form the final image.

stacked sets of constraints in L (as in (5.47)) may lead to a preference for Q,Q
over L,L.

Application 5: Synthetic Aperture Radar Interferometry [53]

A fascinating problem in image processing and remote sensing is that of radar inter-
ferometry [134, 138].

The complex radar return at a pixel has a phase proportional to the target distance
at that pixel. It is possible to take two radar images, either from one satellite (e.g.,
Radarsat) from two precisely-defined orbital positions or, preferably, from a pair of
satellites (e.g., ERS-1/2) having a precise orbital offset. It is possible to design the
orbital positions of the imaging satellites such that the complex phase difference be-
tween the two images is proportional to height, allowing detailed topographic maps
to be made from space. An example of a resulting phase-difference image, known as
an interferogram, is shown in Figure 5.20.

We would like to recover the absolute phase difference φ, however the measured
phase difference m = c(φ) is wrapped, meaning that −π ≤ c(φ) < π. The solution
to the unwrapping problem is therefore some integer multiple of 2π:

φ = c(φ) + 2πz. (5.91)

It is possible to estimate z by counting the interferometric fringes, which are quite
obvious in Figure 5.20, however real data are subject to noise and poor radar co-
herence, in which case the fringes are far less well defined. Integer (network-flow)
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Mount Etna Interferogram Division Into 80 Regions

Region-Based Reconstruction Reconstruction Plus Interpolation

Fig. 5.21. The domain-decomposition phase unwrapping from Figure 5.20 applied to ERS-1/2
interferometric data from Mt. Etna [53]. The phase data are ignored in areas with low radar
coherence, leading to the gaps in the regions and reconstruction images, and only those gaps
are interpolated in the final image.

optimization methods have been used with considerable success [72], however there
are issues of computational complexity in solving problems on a very large domain.

Motivated by the domain-decomposition ideas illustrated in Figures 5.2 and 5.5, Fig-
ure 5.20 shows the original interferogram being divided [53] into modestly-sized re-
gions, with each region unwrapped individually, followed by unwrapping the regions
against each other.

The approach has been applied to large problems and real data, one example of which
is illustrated in Figure 5.21 for ERS data.
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For Further Study

There is relatively little material on the subject of multidimensional modelling; in-
deed, it is precisely this gap which motivated the writing of this text.

Two classic papers by Terzopoulos [303, 304] examine methods for solving inverse
problems given stationary kernels, with exceptions for folds and discontinuities, very
much along the lines of aspects of this chapter. A related paper is that by Szeliski
[299], although that paper is more easily read after Chapter 8.

Sample Problems

Problem 5.1: Membrane Kernel

Consider a 5 × 5 random field Z . Create the first-order, free-boundary 20 × 25
constraint matrices Lx, Ly, leading to the overall first-order constraint

L1 =
[
Lx

Ly

]

Compute the squared constraints matrix Q = LT
1 L1, and lexicographically un-

wrap the middle row of Q to see the membrane kernel; that is, compute

[Q13,1...25]5×5

Try unwrapping other rows of Q, such as the first and the last, and comment on
what you observe.

Problem 5.2: Membrane Kernel

Repeat Problem 5.1 for the second-order thin-plate case. That is, create a con-
straints matrix

L2 =

⎡

⎣
Lxx

Lyy

2Lxy

⎤

⎦

and compute Q = LT
2 L2. Unwrap the middle row of Q, along with a few other

rows, and state your observations.

Problem 5.3: Matrix Truncation

In most circumstances, taking a covariance P and keeping only a certain number
of diagonal bands leaves you with a matrix which is not positive-definite, and
which is therefore invalid as an approximate prior model for estimation. Let
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P b = bands(P, b)

be a matrix which copies the b bands on either side of the principal diagonal, and
sets the remaining entries in P b to zero.

The positive-definiteness of P b can be determined from its eigendecomposition;
investigate the positive-definiteness of P b(σ) as a function of b and σ for two
different covariances:

(a) Gaussian: Let P be a 20 × 20 covariance matrix, corresponding to a one-
dimensional process of length twenty, such that

Pi,j(σ) = exp
(
− (i− j)2

2σ2

)
P b

i,j(σ) =

{
exp
(
− (i−j)2

2σ2

)
|i− j| ≤ b

0 |i− j| > b

(b) Exponential: Let P be a 20 × 20 covariance matrix, corresponding to a
one-dimensional process of length twenty, such that

Pi,j(σ) = exp
(
−|i− j|

σ

)
P b

i,j(σ) =

{
exp
(
− |i−j|

σ

)
|i− j| ≤ b

0 |i− j| > b

A look at Problem 2.4 may help to explain what is happening here.

Problem 5.4: Two-Dimensional Interpolation

Suppose we have a 20× 20 two-dimensional grid Z . Suppose also that we have
seven measurements of individual points zi,j :

i 5 15 5 15 3 10 17
j 2 2 10 10 18 17 18
m 15 0 10 5 20 10 20

Thus in the measurement model m = Cz + v, matrix C is a 7 × 400 array. The
measurement errors are independent and have a variance of 9, thus

cov(v) = R = 9 · I.

We define four cases of regularizing constraints:

1. First-order constraints along i and j, free boundaries

2. Second-order constraints along i and j, periodic boundaries

3. First-order along i, second-order along j, a discontinuity (cut) from (10.5,1)
to (10.5,10), periodic boundaries at i = 1, 20, free boundaries at j = 1, 20

4. Second-order along i and j, a fold from (10,10) to (10,20), periodic bound-
aries at j = 1, 20, free boundary at i = 1, zero boundary at i = 20
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For each of these four cases, do the following:

(a) Compute the constraints matrix L and then compute Q = LTL. Plot the
structure of Q (using spy(Q) in MATLAB), and interpret.

(b) Choose one or two rows from Q and lexicographically unwrap them to see
the associated kernels; interpret the results.

(c) Select an appropriate value of λ (by trial-and-error or by cross-validation),
compute estimates Ẑ , and state your observations.

Problem 5.5: Open-Ended Problem — Nonstationary Modelling

Suppose we wish to consider a global remote-sensing problem, such as the Geoid
of Figure 5.12, the altimetric problem of Figure 1.3, or the ocean-temperature
problem of Figure 4.1 and Application 8.

The problem is very large-scale, nonstationary, with periodic boundaries. We
wish to construct a prior model subject to the following:

1. We wish to model the Earth on a rectangular lattice, gridded in latitude and
longitude, with lattice points one degree apart, with a latitude range from 60S
to 60N.

2. The smoothness constraint is second order over water, state elements over
land should be removed.

3. The west–east boundaries need to be periodic; the north–south boundaries
should be free.

4. The spatial correlation length will be stationary, however because the lattice
is gridded in lat–long, and lines of latitude converge at the poles, therefore
the lattice model is nonstationary. Specifically, the Lyy terms are stationary
(lines of longitude are parallel), however the Lxx terms need to be scaled.

5. Clearly, the entire model needs to be positive-definite.

Because the model is large and nonstationary, we want to specify the constraints
L, and not the weight matrix Q.

(a) Draw a sketch or explain in simple terms how to go about formulating L.
(b) Implement code to generate the product Lz.
(c) Optional: for those readers who have read or are familiar with the linear-

systems and preconditioning methods of Chapter 9, generate estimates based
on L given real or artificial data.
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Markov Random Fields

Based on the modelling discussions of Chapter 5, the issues of computational and
storage complexity for large problems have motivated an interest in sparse represen-
tations, and also in those models which allow some sort of decoupling, or domain
decomposition, to allow a hierarchical approach. As we shall see, both sparsity and
domain decomposition are at the heart of all Markov processes, thus the topic of
Markovianity is central to the modelling and processing on large domains.

Fundamentally, all things Markov [127, 276] have a conditional independence or
conditional decorrelation property. For example, given three pieces of a random field,

ZA ZB ZC (6.1)

thenB is a Markov separation ofA andC if it contains all of the information needed
by A about C:

p(ZA|ZB, ZC) = p(ZA|ZB) p(ZC |ZB, ZA) = p(ZC |ZB). (6.2)

That is, givenB, knowingC tells us nothing more aboutA, nor knowingA any more
about C. In other words, having determined B (somehow), we are free to consider
A and C separately: the problem has been decoupled!

This Markov property is a common phenomenon in familiar random processes, it
conveniently extends to two- and higher-dimensional fields, and it leads to rather
flexible models and algorithms.

This chapter summarizes the properties of Markov models, first in one dimension and
then in higher-dimensional cases, and discusses methods of Markov model inference.
How to use the Markov decoupling properties and how to compute estimates based
on Markov priors is the subject of Chapters 7 through 10.

P. Fieguth, Statistical Image Processing and Multidimensional Modeling, Information Science
and Statistics, DOI 10.1007/978-1-4419-7294-1_6, © Springer Science+Business Media, LLC 2011
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to

t

PAST FUTURE

PRESENT
t

PAST FUTURE

Continuous-Time Discrete-Time

Fig. 6.1. The past and the future of one-dimensional Markov processes are conditionally sep-
arated by some information of the present. In continuous time, the required information is the
state value, and some number of derivatives, at a single point in time to. In discrete time, the
“present” consists of some number of consecutive samples.

6.1 One-Dimensional Markovianity

A one-dimensional random process z(t) is Markov (Figure 6.1) if the knowledge of
the process at some point zo decouples the “past” zp and the “future” zf :

p(zf |zo, zp) = p(zf |zo), p(zp|zo, zf) = p(zp|zo). (6.3)

The specifics of what these terms really mean are dependent on the order of the pro-
cess, and whether we are working with continuous-time or discrete-time processes.
In continuous time, if a process is decoupled about a given point to

zp =
{
z(t)|t < to

}

zf =
{
z(t)|t > to

}
,

(6.4)

where the information kept at to is the process and its first (n− 1) derivatives,

zo =
{
z(to), z(1)(to), . . . , z(n−1)(to)

}
, (6.5)

then z is said to be nth-order Markov. Similarly, in the discrete-time case, n succes-
sive process samples are needed to separate an nth-order Markov process:

zp =
{
z(t)|t ≤ to − n

}

zf =
{
z(t)|t > to

}

zo =
{
z(to − n+ 1), z(to − n+ 2), . . . , z(to)

}
.

(6.6)

Clearly these two definitions for continuous-time and discrete-time are mutually
compatible as the discretization interval goes to zero, since the first n − 1 synthetic
derivatives of a process can be computed from n successive samples.

One-dimensional Markov processes are generally of limited interest in solving mul-
tidimensional problems, so we focus on the generalization of these ideas to higher
dimensions in Section 6.2. There are, however, two well-known classes of one-
dimensional Markov processes, discussed below.
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6.1.1 Markov Chains

The special case of first-order, one-dimensional, discrete-time, discrete-state Markov
processes is also known by the more familiar name of Markov chains, which were
introduced in Section 4.5.1.

The first-order and discrete-time nature of the process implies that

p
(
z(t+ 1)|z(t), z(t− 1), z(t− 2), . . .

)
= p
(
z(t+ 1)|z(t)) (6.7)

and the discrete-state nature of the process implies that, rather than a continuous
probability density, we have a discrete set of state-to-state transition probabilities

aij = Pr
(
z(t+ 1) = si ∈ Ψ |z(t) = sj ∈ Ψ

)
. (6.8)

Although Markov chains provide a helpful intuitive connection, in practice they con-
tribute relatively little to image modelling and estimation:

• The number of states tends to be impossibly large, in practice. If the Markov chain
represents a set of n eight-bit grey-level pixels, then the number of states is 256n.

• The one-dimensionality and causality of Markov chains is too limiting to apply to
multidimensional contexts.

We do, however, return to Markov chains in looking at hidden Markov models in
Chapter 7.

6.1.2 Gauss–Markov Processes

A random process is nth-order Gauss–Markov if it is nth-order Markov and if the
elements of the process are jointly Gaussian. As an example of key importance, our
canonical dynamic model (4.1) of Section 4.1 is, by construction, jointly Gaussian
(based on its linearity and Gaussian driving noise) and, in fact, is also first-order
Markov. Indeed, Markovianity is explicit in its recursive form:

z(t+ 1) = A(t)z(t) +B(t)w(t) w(t) ∼ N (0, I), (6.9)

which implies that given z(t), the uncertainty remaining in z(t+1) is due entirely to
w(t). The noise term w(t) is uncorrelated with z(t− 1), z(t− 2), . . . therefore none
of z(t− 1), z(t− 2), . . . have any additional information regarding z(t+1) and thus
the conditional probability density decomposes as

p
(
z(t+ 1)|z(t), z(t− 1), . . .

)
= p
(
z(t+ 1)|z(t)). (6.10)

By extension, all such recursive-Gaussian models are Gauss–Markov, examples of
which are listed below and plotted in Figure 6.2:
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White Noise Brownian Motion Autoregressive Autoregressive
(0th Order) (1st Order) (2nd Order) (3rd Order)

Fig. 6.2. The order of a Markov process counts the number of degrees of freedom (process
value plus derivatives) needed at some point, such as the dashed line, to characterize the pro-
cess at that point. The order is normally related to process smoothness and complexity.

White noise x(t) = w(t) 0th-order Gauss–Markov
Brownian motion x(t) = x(t − 1) + w(t) 1st-order Gauss–Markov
Autoregressive x(t) =

∑n
i=1 α(i)x(t− i) + w(t) nth-order Gauss–Markov

(6.11)
With the connection established between Markovianity and linear dynamic models,
the discussion of Section 4.1.1 becomes germane here. In particular, we saw that an
nth-order scalar autoregressive or nth-order scalar moving average process, both of
which are nth-order Markov could, via state augmentation, be rewritten in first-order
n-vector form (6.9). Thus we understand that the notion of Markov order is some-
what fluid, and furthermore that the modelling of higher-order Markov processes is
not necessarily inherently difficult, but may instead just require an increase in state
dimension.

6.2 Multidimensional Markovianity

The generalization of Markov decoupling to two and higher dimensions is known
as a Markov Random Field [62, 207, 335]. The immediate difficulty is that the one-
dimensional concepts of “past” and “future” are lost, inasmuch as there is no natural
ordering of the elements in a multidimensional grid. Instead, a random field z on
a lattice (or grid) Ω is Markov (Figure 6.3) if the knowledge of the process on a
boundary set b decouples the inside and outside of the set:

p(zi|zb, zo) = p(zi|zb), p(zo|zb, zi) = p(zo|zb). (6.12)

This boundary concept, although elegantly intuitive, is lacking in details: how “thick”
does the boundary need to be? Five examples of boundaries, with varying degrees of
ambiguity, are shown in Figure 6.4.
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Boundary

Inside

Outside

Fig. 6.3. The notion of Markovianity extended to higher dimensions: A multidimensional
random process is Markov, with respect to some boundary, if the process within the boundary
(shaded) decouples the process inside and outside.

A

B

A

B

(a) (b)

A

B

A

B

A

B

(c) (d) (e)

Fig. 6.4. The “thickness” of the boundary is clear enough in cases (a) and (b), but how do we
define the thickness of a diagonal boundary (c,d) or in more heterogeneous cases (e)?
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Fig. 6.5. (a) The simplest neighbourhood structure for a two-dimensional Markov process:
Any pixel (black dot) is decoupled from the rest of the domain when conditioned on its four
immediate (shaded) neighbours. (b) The definition of two-dimensional neighbourhood order:
for an nth-order model, the neighbourhood conditionally separating the shaded region from
the rest of the domain contains the labeled pixels from one to n. The neighbourhood in (a) is
therefore first order.

It is often simpler, and more explicit, to talk about decorrelating or decoupling a
single lattice site j from the rest of the lattice Ω\j by conditioning on a local neigh-
borhoodNj [86, 127]:

p
(
zj|{zk, k ∈ Ω\j}

)
= p
(
zj |{zk, k ∈ Nj}

)
, (6.13)

as illustrated in Figure 6.5. For a neighbourhood to be valid it must satisfy two simple
requirements:

1. A site is not its own neighbour: j /∈ Nj .

2. The neighbourhood property must reciprocate:

j ∈ Nk ⇔ k ∈ Nj , (6.14)

from which it is clear that the random field is loopy, in the sense of Figure 5.1,
which will lead to challenges in computation.

In most circumstances the shape of neighbourhoodNj is not a function of location j.
For the neighbourhood structure to be stationary, the reciprocating property demands
that the neighbourhood be symmetric:

j + δ ∈ Nj ⇒ j − δ ∈ Nj (6.15)

for any offset δ, a property which holds true for common neighbourhood structures.
The shape and extent of Nj , measured by the order of the neighbourhood, is one of
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A

B
B

A

Fig. 6.6. From Figure 6.5 it follows that the left and right panels show first- and second-order
boundaries, respectively.

the fundamental properties characterizing a random field; a first-order neighborhood
is shown in Figure 6.5, along with the numbering scheme for higher-order neigh-
borhoods. It is crucial to understand that the size of image structure which can be
realized by a Markov model is not related to model order or neighbourhood size —
a first-order field could exhibit long correlations, and a fourth-order field possibly
short ones — however the complexity of the realized structure increases with order.
Thus the first-order neighbourhood of Figure 6.5(a) can lead to models in which
widely-separated pixels are highly correlated (what we mean by a “large” structure),
but it is limited to only very simple patterns or textures.

The above discussion is entirely formulated in terms of the probability density p(z),
which is impractical for large random fields; the following sections summarize the
two broad alternatives which have been developed:

1. Gauss–Markov Random Fields: z is Gaussian, in which case the field can be
characterized explicitly in terms of expectations rather than probability densities.

2. Gibbs Random Fields: an energy H(z) is associated with each possible field z;
a probability density is then constructed implicitly from H(z) in such a way that
p(z) satisfies (6.12), (6.13).

6.3 Gauss–Markov Random Fields

So far, all notions of domain decomposition have been written in terms of probabil-
ity distributions and conditional independence, which are very inconvenient numeri-
cally. Instead, a related notion is that of conditional decorrelation, which implies the
absence of any linear relationship, as opposed to conditional independence, which
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implies the absence of any relationship. In the Gaussian case [61], meaning that z is
jointly Gaussian, decorrelatedness and independence are equivalent. Because corre-
lations are much simpler than probability densities, we are motivated to consider this
more limited notion of Markovianity.

Given a neighbourhood structure {Nj}, we say that a random process z is Strongly
Markov [86] with respect to {Nj} if z is conditionally independent as

p
(
zj|{zk, k ∈ Ω\j}

)
= p
(
zj |{zk, k ∈ Nj}

)
. (6.16)

This is the definition of Markovianity, copied from (6.13), that we have used up to
this point.

Next, we say that a random process z is Weakly Markov [86] with respect to {Nj} if
z conditionally decorrelates as

E
[
zj |{zk, k ∈ Ω\j}

]
= E

[
zj |{zk, k ∈ Nj}

]
, (6.17)

in contrast to (6.13). We recognize such a conditional expectation as the Bayesian
estimate (3.46) of zj , which is linear in the Gaussian case, but nonlinear in general.

Formulating a nonlinear Bayesian estimate is really not of interest here, rather we
seek a simple alternative to Markov fields based purely on second-order statistics.
Therefore the much simpler, and more widely used, definition is that of a Wide-Sense
Markov random field [86] with respect to {Nj}:

ẑj = ELLSE
[
zj |{zk, k ∈ Ω\j}

]
= ELLSE

[
zj |{zk, k ∈ Nj}

]
, (6.18)

where ELLSE explicitly refers to a linear expectation, the best linear estimate of zj ,
as discussed in Section 3.2. In the Gaussian case Markov, weakly Markov, and wide-
sense Markov are all equivalent.

It is also true that a zero-mean random process z is wide sense Markov with respect
to {Nj} if

zj =
∑

k∈Nj

ḡj,kzk + wj E[zkwj ] = 0 ∀j 	= k. (6.19)

The equivalence of these two forms is easily seen:

(6.18) =⇒ (6.19): ELLSE is a linear estimator for zj . From the left-hand side of
(6.18) this estimator is global and is therefore the optimum linear estimator.
Therefore by orthogonality the estimation errorwj will be uncorrelated with
all coefficients zk. The right-hand side of (6.18) asserts that the estimator
can be written locally, within the neighbourhood, as in (6.19).

(6.19) =⇒ (6.18): The expression (6.19) defines a linear estimator

ẑj =
∑

k∈Nj

ḡj,kzk, (6.20)
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having an estimation error

z̃j = ẑj − zj = −wj (6.21)

meaning that wj obeys orthogonality. By definition this must therefore be
the linear least-squares estimator (LLSE), implying (6.18).

This equivalence is particularly useful, because it relates a conceptual notion of de-
coupling (6.18) with an associated linear estimator in autoregressive form (6.19).

It is particularly illuminating to derive the statistics of w and z from (6.19). First,
rewrite (6.19) as

∑

k

gj,kzk = wj gj,k =

⎧
⎪⎨

⎪⎩

−ḡj,k k ∈ Nj

1 j = k

0 otherwise

(6.22)

If we let the noise variance var(wj) = σ2
j , then for two sites j 	= k,

E[wjwk] = E

[

wj

∑

i

gk,izi

]

(6.23)

= gk,jE[wjzj] = gk,jE[wjwj ] = gk,jσ
2
j (6.24)

from which the reciprocity requirement (6.14) on the neighbourhood follows:

E[wjwk] = E[wkwj ] =⇒ gk,jσ
2
j = gj,kσ

2
k. (6.25)

Thus we see that the noise process w is not, in fact, white: there are off-diagonal
correlations. Indeed, it has a correlation structure given by the linear estimation co-
efficients g, where the sparseness and locality of the correlation structure are exactly
those of the random field neighbourhoods.

If we lexicographically reorder z, w into vectors, as usual, then

(6.22) =⇒ Gz = w
(6.24) =⇒ cov(w) = GΣ ,

where G collects the estimator coefficients {gi,j}, and Σw = Diag(σ2
1 , σ

2
2 , . . .) is a

diagonal matrix with the noise variances σ2
j along the diagonal. Although GΣ gives

the appearance of being asymmetric, the constraints relating g and σ2 in (6.25) do
ensure the required symmetry of cov(w).

Because GΣ is the covariance of a random vector it must (for any valid model) be
invertible, from which it follows that G is invertible, thus

z = G−1w =⇒ cov(z) = G−1GΣG−T = ΣG−T . (6.26)
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A B C
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Fig. 6.7. The symmetry structure required by the LLSE kernel of a stationary Gauss–Markov
random field.

The most profound result, however, follows from the inverse covariance of the ran-
dom field, (

cov(z)
)−1 = GTΣ−1, (6.27)

leading to the following significant conclusions:

1. Whereas the entries in a covariance describe the correlation between two random-
field elements, the entries in a covariance inverse correspond to the associated
linear estimator. That is, the covariance-inverse describes a model.

2. The sparsity and locality of a matrix inverse are directly related to the neighbour-
hood structure of the associated random field.

3. Assuming a covariance inverse to be sparse-banded is equivalent to asserting that
the corresponding random field is wide-sense Markov.

The study of Markov random fields has thus led to a much deeper understanding of
inverse-covariances, in particular the meaning of sparsity.

Finally, we understand that a given Markov model g or G implicitly specifies the
random-field prior P−1 = GTΣ−1, thus random-field estimation proceeds as usual:

ẑ =
(
CTR−1C + P−1

)−1
CTR−1m (6.28)

=
(
CTR−1C +GTΣ−1

)−1
CTR−1m. (6.29)

To take advantage of the sparsity normally encountered in C,R andG, this estimator
would be rewritten to remove the matrix inversion as

(
CTR−1C +GTΣ−1

)
ẑ = CTR−1m. (6.30)

A very important special case of Gauss–Markov random fields is stationarity, in
which case the local estimator g and the driving noise statistics σ are both location
invariant:

gj,k = gk−j σ2
j = σ2 ⇒ Σ = σ2I, (6.31)
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Fig. 6.8. Regions of support for causal (left) and noncausal (right) neighborhoods of the central
element. The half plane illustrated on the left is only one of many possible choices.

so that the random field statistics are

cov(w) = Gσ2 cov(z) G−1σ2 E
[
z wT ] = Iσ2. (6.32)

Combining location invariance with the reciprocity symmetry of (6.25) leads to the
constrained estimation weights

gj−k = gk−j , (6.33)

as sketched in Figure 6.7, a constraint which essentially reflects the fact that co-
variance matrices are symmetric. The random field stationarity then allows the prior
model to be expressed in an efficient convolutional kernel form, in which case the
prior term of (6.30) becomes

P−1ẑ = GTΣ−1ẑ = σ−2G ẑ = σ−2
[
G ∗ Ẑ

]

:
(6.34)

The two key remaining questions, then, are how to infer the model parameters g,
addressed in Section 6.6, and how to efficiently estimate and sample from a given
model, addressed in Chapters 9 and 11.

6.4 Causal Gauss–Markov Random Fields

If a random field z is causal, each neighborhoodNj must limit its support to one half
of the plane, as sketched in Figure 6.8. These are known as nonsymmetric half-plane
(NSHP) models [7], and lead to very simple autoregressive equations for sampling
and estimation.

Specifically, there must exist an ordering of the field elements, a sequential model
in the sense of Figure 5.1, such that each element depends only on the values of
elements lying earlier in the ordering; let
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Example 6.1: Example Markov Kernels

We have seen that there is a relationship between an inverse-covariance P−1 and
MRF coefficients, and also between P−1 and constraints Q. We can therefore
consider the Membrane or Thin-Plate kernels of Figure 5.14 as MRF models.

-1
-1 4.1 -1

-1

Membrane

1
2 -8 2

1 -8 20.1 -8 1
2 -8 2

1

Thin-Plate

-91 517 8
58 1405 -5508 1164 85

-139 -2498 10000 -2498 -139
85 1164 -5508 1405 58

8 517 -91

“Tree-Bark” [195]

Just as the correlation length or feature size of the membrane and thin-plate ker-
nels could be varied (Figure 5.15), similarly the feature size in the MRF samples
is not a function of neighbourhood size, but rather of the parameters in the model.
Instead, as the neighbourhood size increases (from top to bottom) it is the com-
plexity of the structure in the random field which increases, not its scale.

All three sampling examples were generated using the FFT method discussed in
Section 8.3.
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Random Field Assertions Resulting Deduced Statistics

Fig. 6.9. A broad overview comparing the assumptions and statistics of noncausal (top) and
causal (bottom) random fields, assuming the noise variance σ2 = 1. The random field statis-
tics, right, can be deduced or computed from the model assertions, left. In the noncausal case,
we assert the local model G and the decorrelatedness of field and process noise, whereas in
the casual case we assert the local model G and the whiteness of the process noise. In both
cases the inverse-covariance of the random field is sparse.

N < j (6.35)

imply that all of the elements of N appear earlier in the ordering than j, that is, in
the half-plane preceding j. Then, in parallel with the definition (6.18), (6.19) for the
noncausal case, a random process z is causally wide-sense Markov with respect to a
causal neighbourhood system

Nj < j ∀j (6.36)

if
ẑj = ELLSE

[
zj|{zk, k < j}] = ELLSE

[
zj |{zk, k ∈ Nj}

]
, (6.37)

or, equivalently, if

zj =
∑

k∈Nj

gj,kzk + wj , E[zkwj ] = 0 ∀k < j, (6.38)

where the noise wj in the autocorrelation (6.38) can now be chosen to be white. It
is important to note the three differences between the formulation of the causal and
noncausal cases, illustrated visually in Figure 6.9:

1. The neighbourhood structure is causal, Nj < j, therefore reciprocity no longer
applies.
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2. The Markov decoupling in (6.37) is with respect to elements in the half plane,
not with the entire domain.

3. The estimation error w in (6.38) is orthogonal to elements in the half plane, not
to the entire process.

The appeal of causal models is the sequential (autoregressive) coupling of (6.38),
allowing very fast estimation using the Kalman filter. However, in practice these
models have limited applicability, since most random fields are not well represented
causally.

6.5 Gibbs Random Fields

Gibbs random fields (GRFs) are random fields characterized by neighbouring-site
interactions. These were originally used in statistical physics [55, 332] to study the
thermodynamic properties of interacting particle systems, such as lattice gases, and
their use in image processing was popularized by the papers of Besag [25,26] and Ge-
man and Geman [127]. The neighbouring interactions in GRFs lead to effective and
intuitive image models, and GRFs are frequently used as prior models in Bayesian
formulations.

Mathematically, a Gibbs distribution for a random field z is

p(z) =
1
Z
e−βH(z), (6.39)

where β > 0 is a constant, a “temperature” parameter,1 and

Z =
∑

z′
e−βH(z′) (6.40)

is a normalization constant, known as the partition function. The enormity of the sum
prevents Z from being evaluated for all but the tiniest problems. Algorithms which
work with GRFs avoid the evaluation of Z by focusing entirely on likelihood ratios
or energy differences:

p(z1)
p(z2)

=
e−βH(z1)/Z

e−βH(z2)/Z
= exp

(
−β(H(z1)−H(z2)

))
. (6.41)

The well-known Metropolis and Gibbs Sampler algorithms both use this approach,
and are discussed in Section 11.3.
1 See Simulated Annealing in Section 11.3.1 to understand the role of temperature parameter
β = 1/T in Gibbs distributions.
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Although it would appear that we are focusing once again on probability densities,
p(z) is, in fact, never evaluated. All inferences of z take place implicitly, strictly
through evaluations of the energy function H(z). The energy function is normally
written as a sum of local interaction terms, called clique potentials:

H(z) =
∑

c∈C
V
({zi, i ∈ c}

)
, (6.42)

where c ⊂ Ω is a clique, either a single site or a set of interacting sites, V (·) is a
clique potential, and C is the set of all possible cliques. Any random field z satisfying
(6.39),(6.42) is known as a Gibbs random field.

GRFs have been broadly used in statistical image processing, due to their attractive
properties:

1. There is a mathematical equivalence between Gibbs and Markov random fields,
unifying these two concepts.

2. In the linear-Gaussian case, Gibbs random fields are easily understood in the
context of constraint-matrix L, as discussed throughout Chapter 5.

3. A simple, intuitive energy function H can describe enormously complicated
probability functions p.

4. Most significantly, there exist algorithms for Gibbs random fields which extend
easily to solving nonlinear estimation and sampling problems, problems which
become exceptionally complex under classical Bayesian estimation.

In particular, discrete-state problems, which are inherently nonlinear, are widely
solved using Gibbs methods.

We address the above properties in turn. In terms of the relationship between Gibbs
and Markov fields, we first need to establish a connection between cliques and neigh-
bourhoods. Suppose thatNj is a noncausal neighbourhood system on lattice Ω:

Nj ⊂ Ω, j /∈ Nj . (6.43)

A neighbourhood system Nj induces a clique set C, such that any pair of points in
c ∈ C are neighbours:

j, k ∈ c ⇒ j ∈ Nk, k ∈ Nj (6.44)

Examples of the clique sets associated with first- and second-order neighbourhoods
are shown in Figure 6.10.

Then, by the Hammersley–Clifford theorem [25], the GRF and MRF are equivalent:

z is a Markov random field with respect to N if and only if z is a Gibbs
random field with respect to C, where C is the set of cliques with respect to
neighbourhood system N .
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First-order Neighbourhood Second-order Neighbourhood

Associated Cliques: Associated Cliques:

Fig. 6.10. The relationship between Markov neighbourhoods (top) and Gibbs cliques (below).
A clique is a set of one or more pixels such that for each pair of pixels, the two pixels are
neighbours. Whereas a neighbourhood (shaded) separates a center pixel (dot) from the rest of
the domain, cliques have no notion of centre or origin.

In retrospect this should have been obvious. Certainly the connection becomes very
clear in the linear-Gaussian case. Suppose we have a random field z whose prior is
implicitly specified in terms of a set of constraints L:

L =

⎡

⎢
⎣

lT1
...
lTn

⎤

⎥
⎦ Lz = w w ∼ N (0, I), (6.45)

where w is white and Gaussian, as in Chapter 5. Then the prior on the random field
is

p(z) =
1
Z
e−

1
2w

Tw (6.46)

=
1
Z
e−

1
2 (Lz)T (Lz) =

1
Z
e−

1
2 zT LTLz (6.47)

=
1
Z
e

− 1
2

∑

i

(lTi z)
2

︸ ︷︷ ︸
Gibbs

=
1
Z
e−

1
2 zT P−1z

︸ ︷︷ ︸
Markov

(6.48)

That is, a Gauss–Markov random field model directly specifies the inverse-covariance
P−1, whereas the Gibbs model implicitly describes the covariance square root
through a set of constraints {li} on cliques, where each clique is just the set of pixel
locations involved in a given constraint.

Thus the Markov neighbourhoodN is just the union of the convolution of the clique
sets C, in precisely the same way that the kernel Q was found as the convolution of
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Fig. 6.11. The Hammersley–Clifford theorem establishes a connection between the clique-
Gibbs-constraint and the neighbourhood-Markov-squared-constraint contexts.
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0 Error
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Quadratic L1 Capped Tapered

Fig. 6.12. Four possible criteria, relating the degree of penalty to the size of error. The standard
quadratic criterion, left, grows rapidly, appropriate for Gaussian statistics (where large devia-
tions from the mean are rare), but inappropriate for problems involving outliers. An illustration
of robust estimation is shown in Example 6.2.

constraints L in Figure 5.8 on page 152. Indeed, the forms of the first-order mem-
brane constraints and kernel in Figure 5.8 are clearly evident in the corresponding
cliques and neighbourhood in Figure 6.10. The connections between these concepts
are illustrated in Figure 6.11.

So what sorts of local energy functions H are available to implicitly determine
the random-field distribution p(z)? Certainly all of the basic smoothness models
of Chapter 5, such as membrane, thin-plate, and other combinations of nth-order
penalties, are all Gibbs. For example,

H(z) =
∑

i,j

(zi,j − zi−1,j)2 + (zi,j − zi,j−1)2 (6.49)

is a membrane energy function, implicitly describing a membrane prior for p(z). Just
as simply, introducing measurements to (6.49) leads to

H(z|m) =
∑

i,j

(zi,j −mi,j)2 + (zi,j − zi−1,j)2 + (zi,j − zi,j−1)2 (6.50)

which now implicitly describes the posterior p(z|m).

However, the real strength of the Gibbs approach lies not in the representational
power of H , which is not so different from what we have seen before, rather that
there exist methods of sampling and estimation which apply to non-quadratic H . In
particular, there are two broad energy classes of great interest:

NON-QUADRATIC RANDOM FIELDS:
Quadratic, or least-squares, criteria are used throughout most of this text because
of the resulting simplicity: a quadratic criterion has a unique minimum which can
be found linearly.
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However in the Gibbs context it is easy to introduce a non-quadratic criterion
J(a, b). For example, to include a non-quadratic penalty term on measurement
residuals, we could rewrite (6.49) as

H(z) =
∑

i,j

J(zi,j ,mi,j) +
∑

i,j

(zi,j − zi−1,j)2 + (zi,j − zi,j−1)2 (6.51)

where three typical non-quadratic penalty terms are shown in Figure 6.12, and the
use and effect of such a term is illustrated in Example 6.2.

Of course, strongly Markov random fields can also possess nonlinear features, in
principle, however the strength of Gibbs random fields is that relatively efficient
methods of sampling and estimation exist for such nonlinear models, as shown in
Chapter 11.

DISCRETE-STATE RANDOM FIELDS:
The discrete-state case reflects the origins of Gibbs fields in quantum physics
where each field element reflects a discrete quantum state, such as the spin of
an atom. The most famous of all such models is the binary Ising model [335]

H(z) =
∑

i,j

zi,jzi,j−1 +
∑

i,j

zi,jzi−1,j zi,j ∈ {−1,+1}. (6.52)

The simple generalization of the binary Ising form to a q-state element is known
as the Potts model:

H(z) =
∑

i,j

δzi,j ,zi,j−1 +
∑

i,j

δzi,jzi−1,j zi,j ∈ {0, 1, . . . , q − 1}. (6.53)

In the context of image modelling, discrete states are most often used in hidden
models, where the behaviour of each pixel in an image is governed by one of a
finite set of possible states, such as in a mixture model. Two common examples are
image segmentation (Appendix C), the labelling of each image pixel as belonging
to one of a finite set of segments, or image classification, associating each pixel
with one of a set of possible classes. Hidden state models are discussed further in
Chapter 7.

The choice between Gibbs or Markov random fields normally proceeds fairly obvi-
ously from the given problem. If we seek to learn a linear, second-order model from
given data, then the Markov formulation is straightforward. If we wish to “guess” a
model or develop it heuristically, or if our model contains nonlinearities or discrete
random variables, then the Gibbs formulation is to be preferred.
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Example 6.2: Robust Estimation

We present here a very simple example, illustrating the use of non-quadratic cri-
teria in estimation. Suppose we have a simple non-Bayesian parameter estimation
problem, a linear regression problem given ten data points (see Example 3.1).

If the measurement error is Gaussian with constant variance (left), then the least-
squares criterion is appropriate and gives an accurate result. If the measurements
have the occasional bad data point (right), inconsistent with a Gaussian distribu-
tion, then the regression result (solid) is poor in comparison with truth (dashed).
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Instead, to limit the effect of the bad data point, we can compare a measurement
m and its predicted location m̂ = Cẑ using a non-quadratic criterion, such as the
capped penalty from Figure 6.12

J(m, m̂) = min{ζ2, (m− m̂)2}

for some threshold ζ. The resulting estimates, below, are generated with a thresh-
old ζ = 4,
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and are clearly superior to the previous results. This estimator is nonlinear, and
although easily implemented for linear regression, would generally be difficult
for large spatial problems. That the Gibbs sampler can handle such non-quadratic
criteria is a strong asset.
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6.6 Model Determination

In many problems we assert a constraints matrix L, such as the membrane and thin-
plate priors from Chapter 5. In most cases the constraints asserted in L are local,
involving the interactions between nearby state elements, in which case the resulting
LTL is a sparse banded matrix and we have implicitly specified a Markov prior for
the random field. Indeed, in any problem in which we have local constraints, or in
which the covariance inverse is modelled as sparse-banded, we should immediately
understand the implied prior to be Markov.

However, we are not necessarily given a banded inverse matrix or a set of constraints;
rather in many cases we are presented with a sample random field, from which we
would like to infer a Markov model. We can, of course, compute a sample covariance
from the given random field, however we run into two difficulties:

1. The matrix inverse of the sample covariance will normally not be a nice, banded
matrix. In most cases, the given random field is not exactly Markov, but we wish
to approximate it as such. Moreover, even if the given random field is precisely
Markov, the sample statistics may not be.

2. Any sample covariance is guaranteed to be positive-semidefinite. If the sample
covariance is furthermore positive-definite then we can compute its matrix in-
verse, which will also be positive-definite, however truncating the matrix inverse
to make it banded may not leave it positive-definite (see Problem 5.3).

So our task is one of model approximation. Given sample statistics P , find a matrix
G such that

1. Markovianity:G is sparse-banded

2. Validity: G is positive-definite

3. Fit to Model: G−1 ≈ P .

A Markov random field is essentially a noncausal, multidimensional version of an au-
toregressive process, thus we begin by discussing model learning for autoregressive
processes, before tackling the related, but more complicated, problem of learning for
Markov processes.

6.6.1 Autoregressive Model Learning

Autoregressive models are a classic, long-established form of time-series modelling
[6, 37], in which we wish to approximate a given stationary time series z(t) in terms
of an nth-order autoregressive process
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z(t) =
n∑

i=1

αiz(t− i) + w(t), (6.54)

where the zero mean, white noise process w is uncorrelated with the past of z:

E
[
w(t)

]
= 0 E

[
w(t)w(s)

]
= σ2δs,t E

[
w(t)z(s)

]
= 0 if s < t. (6.55)

The process z in (6.54) is assumed to be zero-mean; generalization to the nonzero-
mean case is straightforward.

Because the coefficients αi affect the relationship between z(t) and z(t− i), it seems
plausible to suppose that the coefficients can be estimated by examining the corre-
lation of z with shifted versions of itself. Since z is stationary, its statistics can be
captured by a correlation kernel

Pj = E
[
z(t)z(t− j)] ≡ E[z(t− j)z(t)] = P−j (6.56)

so by substituting (6.54) into (6.56) we get

Pj = E
[
z(t)z(t− j)] = E

[(
n∑

i=1

αiz(t− i) + w(t)

)

z(t− j)
]

(6.57)

=
n∑

i=1

αiE
[
z(t− i)z(t− j)]+ E

[
w(t)z(t− j)] (6.58)

=
n∑

i=1

αiPi−j + E
[
w(t)z(t− j)], (6.59)

where the correlation E
[
w(t)z(t− j)] between z and w follows from (6.55):

j > 0 =⇒ E
[
w(t)z(t− j)] = 0

j = 0 =⇒ E
[
w(t)z(t− j)]

∣
∣∣
j=0

= E
[
w(t)

(∑n
i=1 αiz(t− i) + w(t)

)]

= 0 + E
[
w(t)w(t)

]
= σ2.

(6.60)

Therefore we arrive at a set of linear equations, known as the Yule–Walker equations
[37, 252], which interrelate the lag-correlations and the autoregressive coefficients:

Pj =
n∑

i=1

αiPi−j + δjσ
2. (6.61)

For this system of equations to be invertible we need n+ 1 lag correlations, to infer
the n AR coefficients plus the noise variance σ2.

We can vectorize (6.61) by stacking the correlations and the AR coefficients for
i, j = 1, . . . , n:
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⎡

⎢
⎣

P1

...
Pn

⎤

⎥
⎦ ≡ p = Pα ≡

⎡

⎢
⎢
⎢
⎣

P0 P−1 · · · P−(n−1)

P1 P0 · · · P−(n−2)

...
...

...
Pn−1 Pn−2 · · · P0

⎤

⎥
⎥
⎥
⎦

⎡

⎢
⎣

α1

...
αn

⎤

⎥
⎦ (6.62)

Given a sample process ž(t) we can find estimates of the lag correlations

P̂j =
1
N

N∑

t=1

ž(t)ž(t− j) (6.63)

from which we can solve for the AR coefficients α in (6.62) as

p = Pα =⇒ α̂ = P̂−1p̂ (6.64)

and where the noise variance is estimated from autocorrelation lag j = 0:

σ̂2 = P̂0 − α̂T p̂. (6.65)

The choice of n, the model order, cannot be estimated and must be asserted. In the
same way that a higher-order polynomial can always improve the goodness of fit to
a given number of points, similarly the variance of the autoregressive residuals

var

(

z(t)−
n∑

i=1

αiz(t− i)
)

(6.66)

is monotonically decreasing as n increases, therefore other criteria must be used to
limit n.

6.6.2 Noncausal Markov Model Learning

The derivation of the Markov model is very similar to that, above, for the autore-
gression coefficients. The reasons for this similarity should be made clear by an
examination of Table 6.1.

Our goal is as in the autoregressive case: we wish to find a stationary Markov model
of specified neighbourhood which fits the given data [59–61, 199]. The noncausal
Markov random field is specified by coefficients ḡ as

zj =
∑

i∈Nj

ḡi−jzi + wj , (6.67)

where the driving noise w is zero mean, not white, and uncorrelated with the entire
random process zi, i 	= j.
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Autoregressive Model Noncausal MRF Model
M

od
el

z(t) =
Pn

i=1 αiz(t− i) + w(t) (6.54) zj =
P

i∈Nj
ḡi−jzi + wj (6.19)

M
od

el
to

N
oi

se

E
ˆ
w(t)z(s)

˜
= 0 if s < t (6.55) E[ziwj ] = 0 ∀j �= i (6.19)

N
oi

se

E
ˆ
w(t)w(s)

˜
= δs,tσ

2 (6.55) E[wjwi] = ḡi−jσ
2 (6.24)

Table 6.1. A comparison of the formulation and assumptions for stationary autoregressive
models, left, and stationary Markov random fields, right. The two models are similar, however
there are subtle differences in the noise assumptions, in that the MRF noise is correlated,
not white, and uncorrelated with the whole of the random field, rather than the one-sided
uncorrelation in the autoregressive case.

Because the Markov coefficients ḡi−j affect the relationship between zi and zj , it
again seems plausible to suppose that the coefficients can be estimated by examining
the correlation of z with shifted versions of itself. Since z is stationary, its statistics
can be captured by a correlation kernel

Pk−j = E
[
zjzk

] ≡ E[zkzj

]
= Pj−k (6.68)

so by substituting (6.67) into (6.68) we get

Pj = E [z0zj ] = E

[(
∑

i∈N0

ḡizi + w0

)

zj

]

(6.69)

=
∑

i∈N0

ḡiE
[
zizj

]
+ E

[
w0zj

]
(6.70)

=
∑

i∈N0

ḡiPj−i + δ0,jσ
2. (6.71)

Once again we arrive at a set of linear equations, the analogue of the Yule–Walker
equations for the noncausal multidimensional case:

Pj =
∑

i∈N0

ḡiPj−i + δ0,jσ
2. (6.72)
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Let n = |N0| be the number of neighbours, and (N0)i the relative index of the ith
neighbour; then (6.72) can be vectorized, as before:
⎡

⎢
⎣

P(N0)1
...

P(N0)n

⎤

⎥
⎦ ≡ p = Pḡ ≡

⎡

⎢
⎣

P(N0)1−(N0)1 · · · P(N0)1−(N0)n

...
...

P(N0)n−(N0)1 · · · P(N0)n−(N0)n

⎤

⎥
⎦

⎡

⎢
⎣

ḡ(N0)1
...

ḡ(N0)n

⎤

⎥
⎦ (6.73)

Given sample data ž we can compute estimates of the offset correlations

P̂j =
1
N

N∑

i=1

žiži+j (6.74)

from which we can solve for the MRF coefficients from (6.73) as

p = Pḡ =⇒ ˆ̄g = P̂−1p̂ (6.75)

and where the noise variance is estimated from autocorrelation offset j = 0:

σ̂2 = P̂0 − ˆ̄gT p̂. (6.76)

As in the autoregressive case, where the model order n could not be inferred, simi-
larly for Markov random fields it is not possible to infer the neighbourhoodN . The
choice ofN must either be asserted, or we can try to look at the model error

var

⎛

⎝zj −
∑

i∈Nj

ḡi−jzi

⎞

⎠ (6.77)

as a function of neighbourhood size, and choose the smallest neighbourhood which
gives an acceptable level of error. Example 6.3 illustrates the process of Markov
model estimation.
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Example 6.3: Markov Model Inference and Model Order

The images below illustrate the learning of MRF models for three different prior
models.

Given each of the three textures from Example 6.1, a MRF prior model is learned
for each of four different neighbourhood orders. The following image panels show
the sample texture synthesized from each of the learned models:
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By definition, the zero-order models have no spatial relations, and therefore are
all white noise.

The true membrane prior is first order, and is therefore learned adequately well
with a first-order model, with no substantial changes at higher orders.

The true thin-plate prior is third order, and the inadequacy of the first- and second-
order reconstructions can clearly be seen.

Finally the true “Tree-Bark” model is fourth order and poorly conditioned, and so
is not properly learned above, although the third-order model is able to represent
the vertical banding.

Example continues . . .
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Example 6.3: Markov Model Inference and Model Order (cont’d)

The following two figures plot the model error variance (6.77) as a function of
model order and the size of the sample image from which to learn the model:

Thin-Plate Tree Bark

0 1 2 3 4 5 6 7 8 9
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

MRF Model Order

D
ev

ia
ti

on
 fr

om
 O

pt
im

al
 M

SE

16 x 16
128 x 128
2048 x 2048

0 1 2 3 4 5 6 7 8 9
10

−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

MRF Model Order

D
ev

ia
ti

on
 fr

om
 O

pt
im

al
 M

SE

16 x 16
128 x 128
2048 x 2048

We can see how misleading the model error variance (6.77) can be as an indicator
of model accuracy. Going from a zeroth- to first-order model, the thin-plate MSE
dropped from 1.0 to 0.01, and the “Tree-Bark” MSE from 1.0 to 0.001, however
in both cases the first-order reconstructions are quite poor.

Instead, we could consider looking at the covariance of the learned model, and
compare that to the covariance of the underlying true model. The following figures
plot the difference in the learned and underlying covariance kernels, based on a
weighted sum of absolute kernel differences:
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We can now clearly see the failure of the first-order models to learn the correct
field statistics, most strikingly in the thin-plate case, and also how a relatively
large sample image is required before we can reliably say to have learned the true
model.
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Example 6.4: Model Inference and Conditioning

We saw in Example 6.3 how the assumed model order affected the quality of
the inferred result. However, presumably the ability to learn a model might also
depend on the conditioning of the true model, in that a prior with high condition
number κ requires the Markov model G to be learned just right, a hair’s-breadth
away from singularity, whereas a model with low condition number would be
more tolerant of parameter variations.

Consider the following, in which three thin-plate models are learned having differ-
ent correlation lengths (and condition number) based on the value of their center
element. All of the sample images are 128× 128 in size:

Centre Coefficient Value
20.1 20.01 20.001

T
ru

th
L

ea
rn

ed

Short Correlation Medium Correlation Long Correlation
(Low κ) (Modest κ) (Large κ)

We can clearly see the reduction in performance as we move from well condi-
tioned (short correlation length, left) to poorly conditioned (right).

The plots on the facing page summarize this, plotting the probability of finding
a positive-definite model as a function of prior model correlation length and the
given size of the sample image:

Example continues . . .
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Example 6.4: Model Inference and Conditioning (cont’d)
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It is important to recognize that a set of model parameters g which fails to be
positive-definite is not inherently useless. These model parameters could still be
used as a feature for texture discrimination in pattern recognition, or texture seg-
mentation in image processing, for example. However, as a statistical prior such
a model would have no validity.

6.7 Choices of Representation

The parallels between Gibbs and Gauss–Markov fields, and the related parallels with
the models introduced in Chapter 5, motivate a renewed examination of the question
of representation, following the discussion of Section 5.8.

As is illustrated in Figure 6.13, we have a total of twelve options, laid out along three
independent axes:

1. Specifying constraints directly or in squared form;

2. Specifying a convolutional kernel versus a full form;

3. Selecting a deterministic model versus a regular or inverse statistical one.

The comparative tradeoffs and issues are mostly the same as in Section 5.8, and
do not need repeating here. What is new is the set of Gibbs–Markov models
(G, G,V , V ), which neatly straddle deterministic models (Q, Q,L, L) and the sta-
tistical dynamic models (P , P,A, A):
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Fig. 6.13. Building on Figure 5.19, we now have twelve forms of representation, left, where
the forms differ based on the choice of three underlying aspects: representing a model or its
square root, full or convolutional-kernel, and deterministic or statistical modelling. The middle
set of inverse models (G,V, G, V ) are those contributed by random field modelling.

1. Interpreted as inverse-covariances, the Gibbs–Markov models have a straightfor-
ward interpretation as representing the inverse-statistics of a covariance or dy-
namic model.

2. Viewed as equivalent, by analogy, with the deterministic constraint models, the
Gibbs–Markov models give a clear, statistical interpretation to local/sparse mod-
els which were previously much less explicit.

3. The Gibbs model extends the previous dynamic (A, A) and constraint (L, L) for-
mulations by allowing more general classes of models, including discrete-valued
states and non-quadratic error criteria.

Application 6: Texture Classification

The problem of texture classification is exceptionally well studied, and enjoys a lit-
erature spanning more than two decades [60, 225, 226, 241,242,258–260].

Suppose that we have a number of textures, for example the five samples from the
widely-studied Brodatz set [45] shown in Figure 6.14.

We assume these textures to be known, making this a supervised classification prob-
lem [91]. We can learn a Markov random field model for each of these textures,
as was done in Example 6.3. Then, given an image to segment into its constituent
textures, we can attempt to relate the unknown image to the learned models.

There are many ways in which such a classification can be undertaken, however let’s
consider a very basic approach. From each texture image It we extract a number
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Raffia Cloth Cork Cotton Grass

Fig. 6.14. Given five sample Brodatz textures [45], top, we wish to use a random field model
to segment a given composite image, below.

of samples {St,i} of size N × N , and a Markov model g(S) of order q is learned
from each sample. Then, given an unknown sample S̄, we learn its model g(S̄), and
classify the texture

t̂(S̄) = argt min
∥
∥g(S̄),

{
g(St,i)

}∥∥ (6.78)

where the norm ‖ · ‖ needs to assess the closeness of the unknown model g to the
learned sets. The simplest norm is a Euclidean nearest-neighbour [91] approach,
treating the Markov model as a vector of GMRF coefficients:

t̂(S̄) = argt min
{

min
i

∣∣g(S̄),
{
g(St,i)

}∣∣2
}
. (6.79)

Figure 6.15 plots the probability of a correct texture match, as a function of the tex-
ture patch size N , and as a function of the size of the Markov model neighbourhood.
Clearly the probability of a correct match increases with N , since a larger sample
more distinctly characterizes a given texture, however the lower performance with
higher model order may be surprising: although a higher model order does represent
a given texture better, the increased number of parameters in the model leads to much
greater variability in g and a poorer classification.

Selecting a patch size of 30× 30 and a second-order (3× 3 neighbourhood) Markov
model, with the nearest-neighbour classifier of (6.79), leads to the results as shown
in Figure 6.16(a). Because each texture patch is processed independently of the oth-
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Fig. 6.15. The probability of matching a texture sample of size N × N to its correct class,
for four Markov neighbourhood sizes. More local models and larger texture patches lead to
improved matching probability.

(a) Segmented Results (b) Median Filtered

Fig. 6.16. The segmented composite texture of Figure 6.14. When each texture patch is seg-
mented individually, left, there are no spatial constraints and the resulting classification is
somewhat noisy. A median filter can be used to assert smoothness in the classification, right.

ers, there is no spatial constraint and the estimates appear noisy. Essentially what we
would like here is a prior model on the underlying texture label; such an underlying
prior model is a hidden model, the subject of Chapter 7. A very simple spatial con-
straint is asserted by a median filter [54], which generates the imperfect, but credible,
results shown in Figure 6.16(b).
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Summary

Markovianity means a conditional separation, the separation of two parts by some
boundary:

1D : For one-dimensional problems, one or more values of the random process form
the boundary separating past from future;

dD : For multidimensional problems, it is easier to talk about the boundary required
to separate a single pixel (inside) from the entire rest of the domain (outside).

In separating a single pixel from the rest of the domain, the boundary which affects
this separation is the neighbourhoodN . The size of the neighbourhood is the model
order. There are two classes of models:

1. Causal / acyclic models, in which the state elements can be ordered, leading to
efficient algorithms but relatively poor models.

2. Noncausal / loopy models, in which there is no ordering, leading to greater com-
plexity, but also better modelling. Nearly all of the examples in the text are drawn
from the noncausal case.

If a Markov field obeys Gaussian statistics, we have the important class of Gauss–
Markov Random Fields (GMRFs),

zj =
∑

k∈Nj

ḡj,kzk + wj E[zkwj ] = 0 ∀j 	= k, (6.80)

characterized by model parameters ḡ. If the random field is stacked into a vector, and
the model parameters similarly into a matrix, then (6.80) is neatly rewritten as

Gz = w E
[
z wT ] diagonal. (6.81)

The correlation of the noise structure is determined by G,

cov(w)⇐⇒ G (6.82)

and the model G is interpreted as an inverse covariance:

cov(z)⇐⇒ G−1, (6.83)

so that assuming an inverse covariance to be sparse and banded is equivalent to as-
suming that the random field is Markov.

The four essential facts of GMRFs:
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1. The GMRF model parameters are essentially the matrix-inverse of the covariance.
Therefore the matrix-inverse of a Markov covariance will be highly sparse.

2. The driving noise processw is not white. If we assert that the noise is uncorrelated
with the random field,

E
[
z wT ] = σ2I (6.84)

then it is not possible to also assert that the noise is white.

3. The scale of the random field is controlled by the model parameters ḡ.

4. The complexity of the random field is controlled by the model order.

For Further Study

The question of what happens to Markov random fields when cast into a hierarchical
context is looked at in Section 8.5.

Markov fields are often used in pairs, with a hidden or underlying field serving to
condition a second, visible field. The use of and modelling with hidden fields will be
discussed in Chapter 7.

The fastest and easiest ways to get started with random fields is by using fast Fourier
transforms (FFTs). The connection between Markov random fields and FFTs is ex-
plored in Section 8.3. Because Markov random fields imply a sparse P−1 they are
compatible with iterative approaches to estimation, which are developed in Chap-
ter 9.

The texts by Winkler [335], Li and Gray [205], and Won and Gray [336] all compre-
hensively discuss random fields, with Won and Gray focusing on Markov fields, and
Winkler more on Gibbs fields.

Sample Problems

Problem 6.1: Markov Order

(a) For each of the panels in Figure 6.4, what is the maximum order of the cor-
responding Markov field if the field can be separated by the given boundary?

(b) Construct three 2D boundaries, like the ones drawn in Figure 6.4, such that
the maximum order of the corresponding Markov field is second-, third-, and
fourth-order.
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Problem 6.2: Membrane, Thin-Plate, and Markovianity

Below are two figures, reproduced from Example 2.7, back on page 36:

λ Small

λ Large

λ Small

λ Large

where we generated estimation results for one-dimensional processes given first-
or second-order constraints.

(a) Why is the first-order constraint Markov? What order of Markovianity does
it possess?

(b) Why is the second-order constraint Markov? What order of Markovianity
does it possess?

(c) The first-order results look piecewise-linear, leading to two questions:
• Explain convincingly why the piecewise-linearity is due to first-order

Markovianity.
• Does this mean that the estimate at a point depends only on the two closest

measurements, or not?
(d) The figure below shows a two-dimensional first-order estimate, based on the

measurements and plotting arrangement as in Example 5.1:

Clearly these estimates are not piecewise-linear, although the prior is still
first-order Markov. What is it about the difference between one- and two-
dimensional problems that leads to the difference in behaviour?
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Problem 6.3: Markov Model Inference and Conditioning

We know two things:

1. The worse the conditioning of a problem, the more sensitive the resulting
estimates can be to model errors.

2. The smaller a given sample random field, the greater the errors in the inferred
MRF model.

Therefore we might expect there to be an interrelationship between kernel con-
ditioning and the amount of data needed to learn the kernel model.

Consider the thin-plate kernel in Example 6.1, where we set the central element
of the kernel to one of four possible values: 20.1, 20.03, 20.01, 20.003. The
conditioning of the kernel becomes worse as this central element is decreased
(the kernel becomes singular, corresponding to a condition number of∞, when
the central element is set to 20).

You will need to use the FFT method of Section 8.3, or access the sample MAT-
LAB code available online, in order to synthesize the sample random fields.

For each of the four kernels:

(a) Generate a random N × N sample, using the FFT, for some choice of N ,
using the true kernel.

(b) Learn a fourth-order MRF model from the N ×N sample.
(c) Now generate a random 128 × 128 sample, using the FFT with the kernel

just learned.
(d) Repeat the above three steps, experimenting with differences choices of N ,

seeing what N is required to generate reasonable results in (c).

Comment on your observations.

Problem 6.4: Open-Ended Real-Data Problem — Texture Classification

There is an extensive literature [60, 62, 226, 260] on the use of Markov random
fields in texture classification. Select an MRF-based method and apply it to a
standard texture database, such as the Brodatz, CUReT, UIUC, or KTH-TIPS
databases, all of which can be found on the Internet.

Compare the classification accuracy which you obtain using a Markov approach
with the published Markov methods [60, 62, 226, 260], and then also with more
recently-published approaches, for example those based on local binary patterns
[242] and local image patches [315].
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Hidden Markov Models

Working with nonstationary and heterogeneous random fields presents an interesting
challenge. In principle, the modelling methods of Chapter 5 do allow us to construct
a nonstationary model, under the assumption that the model boundaries are known.

For example, given a noisy image M that we wish to segment into its piecewise-
constant parts, we could attempt to learn a nonstationary model L

NS
from edge-

detection on M , and then estimate Ẑ based on model LNS . It is then possible that
the pattern of nonstationarity will be more evident in Ẑ rather than M , leading to an
alternating iterative method:

M
Infer=⇒ L(1)

NS

Estimate=⇒ Ẑ1
Infer=⇒ L(2)

NS

Estimate=⇒ Ẑ2 · · · (7.1)

The approach of (7.1) is actually reasonably close to the method we eventually pro-
pose for such a problem. However, rather than a heuristic guess at L

NS
, we should

prefer a more systematic formulation.

Consider the two panels in Figure 7.1. The left panel shows a multi-texture image,
such that each of the individual textures (thin-plate, wood-grain) are Markov,1 how-
ever the resulting image is not, since a pixel at the boundary between two textures
needs more than just a local neighbourhood to understand its context. Similarly the
right panel shows a two-scale image, which superimposes a fine-scale (thin-plate)
texture on a large-scale binary field.

The key idea behind hidden Markov modelling is that many complex images, scenes,
and phenomena can be modelled as combinations of simpler pieces. Although the
details are yet to be defined, the essence of the approach is illustrated graphically in
Figure 7.2.

1 This chapter assumes an understanding of Markovianity and random fields from Chapter 6.

P. Fieguth, Statistical Image Processing and Multidimensional Modeling, Information Science 215
and Statistics, DOI 10.1007/978-1-4419-7294-1_7, © Springer Science+Business Media, LLC 2011



216 7 Hidden Markov Models

A nonstationary field A two-scale problem

Fig. 7.1. Two examples of complex, nonstationary behaviour. How do we construct models
for such fields? Are these even Markov?

7.1 Hidden Markov Models

Hidden Markov Models (HMMs) [26, 127, 205–207, 265] have a long history in
stochastic signal processing, most significantly in the speech analysis literature. The
attractiveness of HMMs stems from their intuitiveness and tractability in formulating
complex inverse problems.

We start with a single random field Z , as shown in the top panel of Figure 7.3.
For modelling simplicity, we assert that Z is stationary, Markov, and has a local
neighbourhood. The local neighbourhood must therefore be capable of decoupling
a pixel Zi from the rest of the domain, therefore it is not possible for Z to have
structure on more than one scale, since a local neighbourhood cannot simultaneously
discriminate two separate scales.

To induce more complex structure, we therefore need multiple random fields, com-
bined in some way. The combining will be developed through the following four
examples.

7.1.1 Image Denoising

If we have a Markov field z and add noise v to it, the observed sum

m = z + v z ∼ Markov v ∼White (7.2)
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??

Complex: Nonstationary, Non-Markov

versus

Simple: Stationary, Markov

M

M̄

Simple: Stationary, Markov

Fig. 7.2. The essential premise of hidden modelling is to decompose a complex problem, left,
into multiple simple pieces, right. The non-Markovian statistics, left, become Markovian by
conditioning on a hidden or underlying field.

falls directly into the context of linear inverse problems discussed throughout Chap-
ters 2 and 3.

Although we know the analytical solution to (7.2), let us deliberately reformulate the
problem in terms of a conditional density:
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⇐⇒ I M̄ M

I. A single field, left, may be independent, discrete-state Markov, or continuous-state Markov,
respectively.

⇐⇒

I

M

I

M̄

II. Given the hidden field ( ), the observed field ( ) is conditionally independent.

⇐⇒

M

M

M

M̄

III. A generalization of case II, such that the visible, conditional field is Markov, rather than
independent.

Fig. 7.3. A progression in complexity of three modelling structures, from a single field (I), to
a conditionally independent field (II), to a conditionally Markov field (III). The random field
meshes are sketched in two dimensions, but apply equally well to one- or three-dimensional
processes. Since such sketches become cumbersome for large or complex problems, we sum-
marize each structure with a simplified diagram, right, where nodes are conditional on all
connected nodes from below.

p(m, z) = p(m|z) · p(z) (7.3)

=
(∏

i

p(mi|zi)
)

︸ ︷︷ ︸
Independent

· p(z)
︸ ︷︷ ︸
Markov

. (7.4)

That is, we have an underlying hidden Markov field z, which makes the observed
field m conditionally independent, as sketched in the middle of Figure 7.3.
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Texture Denoising
(Section 7.1.1)

I Noisy Texture

M Ideal Texture

Image Segmentation
(Section 7.1.2)

I Image

M̄ Discrete Label Field

Texture Segmentation
(Section 7.1.3)

M Textures

M̄ Texture Labels

Fig. 7.4. Three illustrations of two-layer hidden Markov models. In each case, a more com-
plex scene (top) is simplified by absorbing one component of its structure into a hidden layer
(bottom). Conditioned on the hidden layer, the top image becomes independent (left, centre)
or Markov (right).

7.1.2 Image Segmentation

In image segmentation [35, 36, 54, 205], we wish to take a given, possibly noisy,
image M and partition it into piecewise-constant regions. In practice, segmentation
may involve colour or multispectral images, or the segmentation of multiple textures
(Figure 7.4); however, for the purpose of this example, let us assumeM to be a noisy,
piecewise-constant greyscale image, as illustrated in Figure 7.4.
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The underlying (hidden) label field U is now discrete, such that ui = j ∈ Ψ asserts
that pixel mi belongs to the jth region. The forward model is very similar to (7.2)
for denoising:

m = f(u) + v u ∼ |Ψ |-state Markov v ∼White (7.5)

such that f(j) identifies the grey-shade of region j. The conditional formulation
proceeds as before:

p(m,u) =
(∏

i

p(mi|ui)
)

︸ ︷︷ ︸
Independent

· p(u)

︸ ︷︷ ︸
Markov

. (7.6)

Because U is now a discrete-state field, we need to select an appropriate discrete
prior model, a few of which are discussed in Section 7.4.

The strength of this approach is that we have explicitly separate prior models for the
visible image p(m|u) and for the quite different behaviour of the underlying label
field p(u).

One obvious limitation to (7.6) is that the image model is simplistic, with additive
white noise on piecewise-constant regions. In practice we are interested in segment-
ing more subtle behaviour, such as different texture models, addressed next in Sec-
tion 7.1.3.

A second limitation is that the association f() between region label and image value
is assumed to be known ahead of time. In practice this association is found via a
clustering method, such as K-means [91]. An alternative approach, based on a hidden
edge model, is discussed in Section 7.1.4.

7.1.3 Texture Segmentation

We are now given an image M composed of multiple textures, as shown in Fig-
ure 7.1, which we would like to segment or decompose [225, 226, 260].M consists
ofK Markov models, where the choice of model is determined by theK-state hidden
field U ,

ui ∈ Ψ = {1, . . . ,K} (7.7)

as illustrated in Figure 7.4.

The reader will find the generalization of (7.6) to the texture segmentation context
quite straightforward by now:

p(m,u) = p(m|u)
︸ ︷︷ ︸

Markov

· p(u)
︸ ︷︷ ︸
Markov

. (7.8)
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zx,y zx+1,y

zx,y−1

u
|
x,y

u−
x,y

Edge-Model Structure Model Notation

Rare Infrequent Common Frequent

Fig. 7.5. A possible hidden model for edge detection. A hidden layer consists of binary edge
elements u (rectangles, top), declaring whether or not two adjacent pixels ( ) in z are separated.
The hidden layer u requires a prior model, bottom, where edge terminations and junctions are
rare, relative to continuing segments or no edge at all.

In the case where the observed image is noisy, an additional layer is added, such that
we have hidden layers of label U and denoised texture Z:

p(m, z, u) =
(∏

i

p(mi|zi)
)

︸ ︷︷ ︸
Independent

· p(z|u)

︸ ︷︷ ︸
Markov

· p(u)

︸ ︷︷ ︸
Markov

. (7.9)

Indeed, the attractiveness of the hidden Markov approach is how simple and intuitive
such decompositions can become.

7.1.4 Edge Detection

Suppose we wish to segment an image, as in Section 7.1.2, but without assuming
knowledge of the relationship f() in (7.5) between the image and the hidden labels.

The alternative to a hidden label, identifying what region a pixel belongs to, is a
hidden binary state u|,−x,y, lying between adjacent pixels in z, declaring whether a
region boundary is present [127] as sketched in Figure 7.5:

u
|
x,y = 0 ⇒ No edge is present ⇒ zx,y, zx+1,y constrained to be similar.

u
|
x,y = 1 ⇒ An edge is present ⇒ zx,y, zx+1,y decoupled, no constraint.

(7.10)
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Explicit two-dimensional indices are used here, to simplify the notation relating u
and z.

If the observed image is noisy, then we have the familiar three-layer hidden Markov
model

p(m, z, u) =
(∏

x,y

p(mx,y|zx,y)
)

︸ ︷︷ ︸
Independent

· p(z|u)
︸ ︷︷ ︸
Markov

· p(u)
︸ ︷︷ ︸

2-Markov

. (7.11)

The model requires that we specify a prior p(u) for the binary edge field. In the
absence of other knowledge, this prior is most easily specified via the probabilities
of local edge groups, as shown in Figure 7.5. The resulting model is most easily
written as a Gibbs energy (see Section 6.5):

H(m, z, u) =
∑

x,y

(mx,y − zx,y)2

︸ ︷︷ ︸
Measurement Noise

+
∑

x,y

(
1− u|x,y

)
(zx,y − zx+1,y)2

︸ ︷︷ ︸
Vertical Edges

+
∑

x,y

(
1− u−x,y

)
(zx,y − zx,y+1)2

︸ ︷︷ ︸
Horizontal Edges

+
∑

x,y

H(u|x,y, u
−
x,y, u

−
x+1,y, u

|
x,y+1)

︸ ︷︷ ︸
Edge Prior

.

(7.12)

In practice, (7.12) may be a bit simplistic, and we may instead wish to assert non-
quadratic penalties between pixels, and to weight differently the various parts of the
energy function.

7.2 Classes of Joint Markov Models

A very wide variety of hidden Markov models has been proposed for image mod-
elling and analysis, as summarized in Figure 7.6. The actual labels and categories
are relatively unimportant: when faced with a spatial modelling problem, no attempt
should be made to fit the problem into one of these predefined categories. It is far
preferable to examine the hidden behaviour present in a problem, and to propose a
structure reflecting the behaviour which is actually present.

The quick survey presented here is primarily to expose the reader to the commonly
employed models, with citations to the literature for further reading:

• Markov Models [86, 127] are discussed in detail in Chapter 6. In particular, a
single, stationary Gauss–Markov random field is described by a kernel, and is
able to model textures and patterns having a single characteristic scale.
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Example 7.1: Multiple Hidden Fields

There is no significant distinction between having one or multiple hidden fields:
for each distinct attribute or behaviour appearing in an image, we require a sepa-
rate hidden field to control the attribute’s presence or absence.

For example, the four regions in the relatively complex image below are described
in terms of two attributes: circle size and circle density. We can therefore construct
a hidden system consisting of two discrete-state hidden fields. The top image is
Markov only when conditioned on both of the hidden fields.

Image

M

M̄ M̄

Scale Density

Clearly an additional attribute, such as colour, would just lead to an additional
hidden field.

Similarly if the attributes take on more than two possibilities, such as having cir-
cles of three different sizes, then the scale hidden field becomes ternary, rather
than binary.
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Markov Classic HMM Double Generalized Double
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M
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Factorial Multi Pairwise Triplet

I
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M M

M

M
M

M
M
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Fig. 7.6. A representative sample of the common hidden Markov models proposed for image
analysis and modelling. The difference between the Double and Pairwise models is that the
two fields in the Double model are Markov and conditionally Markov, whereas in the Pairwise
model the fields are jointly Markov, but neither field is Markov on its own.

• Hidden Markov Models [26, 127, 205–207] have an underlying Markov field Z ,
such that the visible fieldM |Z is conditionally independent. This narrow interpre-
tation of a hidden Markov model essentially applies only to noisy Markov fields,
so for most problems of multidimensional modelling more substantial structures
are required.

• The Double Model [230] allows the conditional field to be Markov, allowing for
hidden labels and visible textures, as in Section 7.1.3. The model can clearly be
generalized to allow additional layers.

• The Factorial Model [193] allows for a greater number of conditioning fields, as
in Example 7.1, where a given field depends on multiple factors, each of which
may be independently modelled as a random field.
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⇐⇒

I

M

Fig. 7.7. A hidden Markov tree: The hidden binary state under each wavelet coefficient de-
clares whether the corresponding coefficient is of small or large variance. Although the struc-
ture appears relatively complex, it is actually acyclic (no loops), so inference and estimation
can be done very efficiently.

• The joint models, such as the Pairwise [260] and Triplet [21] models, give in-
creased model flexibility but at a substantial computational cost. A pair of fields
(Z,U) being jointly Markov implies that (Z|U), (U |Z) are both conditionally
Markov, however neither Z nor U is Markov on its own.

Similarly a triple (M,Z,U) being jointly Markov implies that doubly-conditioned
fields (M |Z,U) are conditionally Markov, but singly-conditioned (Z|U), (U |Z)
and unconditioned Z,U are not.

• A great many specialized models have been proposed, including the edge model
[127] of Section 7.1.4, multimodels [22], and wavelet models [77,274]. As multi-
dimensional spatial operators, wavelets (discussed in Chapter 8) are of particular
interest. The hidden Markov tree, illustrated in Figure 7.7, uses a binary hidden
state to model the observation that the variance of child coefficients tends to match
the variance of the parent.

• Spatial hidden Markov models are part of a much larger literature on complex
and distributed Bayesian inference, including graphical models [180], Bayesian
networks [177, 249], and hierarchical hidden Markov models [116].

7.3 Conditional Random Fields

The models we have seen thus far are generative: a joint distribution

p(Z,U) = p(Z|U)p(U) (7.13)

describes all of the statistics of Z , meaning that we can generate or draw samples of
Z .
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Although the explicit goal of this text is the development of multidimensional gener-
ative models, let us briefly consider a different perspective, which is that for certain
problems the generative model says much more than we need. Particularly for la-
belling or segmentation problems, if we are given an image M from which we wish
to infer labels U , we do not need to be able to describe the statistics of M . M is
given; we only need to be able to describe the dependence

p(U |M) (7.14)

of U on M . This is a conditional or discriminative model, able to discriminate be-
tween possible label fields U1, U2, . . . but without any implied model for M .

The generative models of this chapter, such as in (7.6), were simplified by assuming
the conditioned distribution to be Markov or independent. Consider the following:

p(M |U)→
∏

i

p(mi|U)

︸ ︷︷ ︸
Generative

p(U |M)→
∏

i

p(ui|M)

︸ ︷︷ ︸
Discriminative

. (7.15)

We observe:

• The generative model describes a single image pixelmi on the basis of a nonlocal
set of labels,

• The discriminative model describes a single label ui on the basis of a nonlocal
portion of the image.

So in direct contrast to the generative approach, discriminative methods are attractive
because the image M is not modelled, typically leading to models having fewer
parameters and increased robustness, and because the single label ui is conditioned
or described in terms of nonlocal portions of the image. The only aspect which is
missing is some form of interdependence between label values, so we would prefer
a discriminative model along the lines of

p(U |M)→
∏

i

p(ui|uNi ,M) (7.16)

over some neighbourhoodNi.

One approach to discriminative modelling is that of conditional random fields [198,
295], in which the conditional distribution is written as a Gibbs model (Section 6.5)

p(U |M) =
1
Z

exp

(
∑

i

f1(ui,M) + f2(ui, ui−1,M)

)

. (7.17)

The labels {ui} are assumed to be sequentially ordered, and the dependence of U on
M is described by feature functions f1 and f2, the single-site and transition features,
respectively.
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It is, of course, possible to generalize conditional random fields to multidimensional
problems. We have already repeatedly encountered this question, in the context of
coupling and complexity in Section 5.2, and in the context of one-dimensional versus
multidimensional random fields in Chapter 6. The short summary is that sequential
models are efficient but tend to lead to poorer models, so non-sequential iterated
approaches are preferred, based on some sort of neighbourhood, as in

p(U |M) =
1
Z

exp

(
∑

i

f1(ui,M) + f2(ui, uNi ,M)

)

. (7.18)

In addition to not modellingM , the great strength of the conditional random field ap-
proach is the use of a Gibbs framework, which allows great flexibility in modelling,
since nonlinear/discrete-state models are easily accommodated and there are no is-
sues of normalization or positive-definiteness. For example, the image segmentation
method in [157] is based on a conditional random field model

p(U |M) =
1
Z

exp

(
∑

i

f1(ui,M, θ) + f2(ui, uN Local
i

, θ) + f3(ui, uNNon-Local
i

, θ)

)

(7.19)
with unknown model parameters θ to be learned. Conditional random fields have
seen growing application in computer vision, to problems of labelling, segmentation,
and object tracking [157, 196, 327].

7.4 Discrete-State Models

In many cases the hidden field is a discrete label, such as the high/low variance of
a wavelet coefficient, the region in an image, the identity of a texture, or the classi-
fication of a pattern. In any such case, the hidden field will require a discrete-state
model. Although most discrete-state models are fairly simple and intuitive, there are
two key difficulties:

1. There are surprisingly few models to choose from, and of these even fewer that
actually provide anything but the most trivial structure.

2. As soon as a discrete-state model is included, the overall problem becomes, by
definition, a discontinuous function of the state, and therefore nonlinear.

It is because of nonlinearity that the majority of this text has focused on the
continuous-state case, nevertheless the importance of hidden Markov models mo-
tivates at least an overview of discrete-state methods.
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β = 0.1 β = 0.4 β = 0.46

Fig. 7.8. The two-dimensional Ising model: three random samples are shown, for different
values of inverse-temperature parameter β. As β is increased, the coupling between pixels is
more strongly asserted, and the prior states a greater preference for homogeneous regions.

7.4.1 Local Gibbs Models

The Ising model [26,171,335] is the most famous of all discrete-state models. Origi-
nally developed as a model of ferromagnetism in statistical mechanics, its early fame
stemmed from the fact that the two-dimensional problem was solved, analytically, by
Onsager in 1944.

The regular Ising model, with no external field, is a simple, first-order Markov model:

H(U) = −
∑

i,j

(
ui,jui+1,j + ui,jui,j+1

)
ui,j ∈ {−1, 1} = Ψ. (7.20)

Recall from (6.39) in Chapter 6 the relationship between energy and probability den-
sity for Gibbs random fields:

p(u) =
1
Z
e−βH(u). (7.21)

Thus a lower (more negative) energy H is associated with a higher probability den-
sity; that is, the Ising model states a preference for regions of constant state value in
Z .

Three random samples of u, drawn from p(u) in (7.21), are shown in Figure 7.8.
The Ising prior is a function of only a single parameter, the inverse-temperature β in
(7.21). Correspondingly, the Ising model is a very weak prior, capable only of stating
a vague preference for large blob-like objects.

The Potts model [26, 258, 335] is the generalization of the Ising model to the K-ary
case, for states taking on one of K > 2 discrete values:

H(U) = −
∑

i,j

δui,j ,ui,j−1 −
∑

i,j

δui,j ,ui−1,j ui,j ∈ {1, 2, . . . ,K} = Ψ. (7.22)
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Qualitatively, the behaviour of the Potts model is very similar to that of Ising — it is
a single-parameter first-order local prior, preferring large homogeneous regions.

7.4.2 Nonlocal Statistical-Target Models

The strength of the Gibbs approach to statistical modelling lies in the assertion of
intuitive energy functions. That is, unlike covariance matrices (which need to satisfy
subtle positive-definiteness requirements), the energy function has only one require-
ment:

Assign lower values to “better” states, and larger values to “poorer” states.

One of the simplest and most common approaches is to define one or more attributes
Aq(U), with idealized target values learned from training data

Tq = Aq(Ǔ) (7.23)

such that the energy function is then expressed as the degree of inconsistency be-
tween the attributes of a given state Z and the target:

H(U) = ‖T −A(U)‖. (7.24)

In the simplest case, we just penalize the squared difference between attribute and
target:

H(U) =
∑

q

(
Tq −Aq(U)

)2
. (7.25)

Any feature which can be written as a function of a discrete-state field can there-
fore form the basis for a Gibbs energy. Common features include the presence in U
of horizontal, vertical, or diagonal lines of length q, the two-point correlation as a
function of offset q, the fraction of states having a given state value, or many other
morphological features.

The Chordlength model [312] characterizes a random field on the basis of the distri-
bution of black or white chords. Define Ad,v

l (U) to be the number of chords present
in U of length l and state value v in direction d. Then the energy comparing a given
field U to some ground truth Ǔ is

H(U) =
∑

d,v,l

(
Ad,v

l (U)−Ad,v
l (Ǔ)

)2
. (7.26)

Related is the Correlation model [312], which characterizes a random field based
on autocorrelation. Clearly a variety of alternatives is present, such as whether the
correlation is specified separately in the horizontal and vertical directions, or a single
isotropic model, and also the maximum offset to which the correlation is asserted.
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Fig. 7.9. Two possible energy targets for a binary random field: chordlengths (middle) and
correlation (right). Observe how the model reveals the presence of large black pores via a
heightened target on long black chords in the middle panel.

Because the extracted attributesA() are nonlocal in support, both the correlation and
chordlength are global models, distinctly different from the local Markov models
seen throughout Chapter 6. Figure 7.9 illustrates extracted target distributions for a
sample, binary random field of a porous medium.

7.4.3 Local Joint Models

The strength of the chordlength and correlation models is that they are global and
are able to describe large-scale phenomena, such as the large black pores seen in
Figure 7.9. On the other hand, the weakness of these nonlocal models is that they are
poor at capturing and describing local, fine-scale, detailed morphology.

As an alternative, local joint models over a small window of state elements have
been proposed. Although Local Binary Patterns (LBP) [241, 242] have been used
most frequently as features in pattern recognition problems, such as texture classifi-
cation, as image attributes they are equally applicable to being asserted in an energy
function (7.25). In their most basic form, LBP features are based on the eight pixels
surrounding a central one, are rotation invariant, and are based on those nine patterns,
shown in Figure 7.10, empirically deemed to be the most significant.

Very similar is the Local Histogram model [5], which preserves the joint probability
of each of the 29 configurations of binary elements in a 3 × 3 window, leading to
energy

H(U) =
29−1∑

q=0

(
Pq(Ǔ)− Pq(U)

)2

σq + ε
, (7.27)

where σq represents the variability, from sample to sample, of the probability Pq of
configuration q, and small ε > 0 is chosen to avoid a division by zero for impossible
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The nine most significant local binary patterns

The 29 possible 3× 3 binary states.

Fig. 7.10. In contrast to the non-local Gibbs models of Figure 7.9, here two local models are
proposed, based on Local Binary Patterns (top), or an exhaustive set of joint combinations
(bottom). If a prior model with substantial structure and morphology is required, these local
models are best combined with nonlocal ones, or used in a hierarchical setting.

(zero probability) configurations. In practice, the number of configurations may be
reduced from 29 by asserting reflection / rotation invariance.

The flexibility of the Gibbs energy approach allows new energy functions to be pro-
posed at will. For example, because the LBP and histogram models are local, there
may be some merit to combining them with a nonlocal model such as chordlength:

HCombined(U) = HChordlength(U) + αHHistogram(U). (7.28)

7.5 Model Determination

Whereas Section 5.7 examined the question of modelling, in general, and Section 6.6
in the context of Markov fields, here we consider modelling issues for hidden fields.

If there is only a single, fixed prior model for the hidden field, then given a model
and ground-truth data for U we can infer the model parameters θ, as was done in
Figure 7.9.

On the other hand, if the model parameters θ may vary with and be a function of
image Z , then θ needs to be learned in each context. Furthermore, since the hidden
field is, well, hidden, it is not available for parameter learning, and θ must be learned
from the visible field Z or its measurements M .

The difficulty, as discussed in Section 5.7, is that without knowingU , it is exception-
ally difficult to formulate the maximum-likelihood estimation problem

θ̂ = arg
θ
max p(Z|θ) or θ̂ = arg

θ
max p(M |θ) (7.29)
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Algorithm 2 Simplified Expectation Maximization
Goals: Estimate the parameters θ for hidden field U
Function [Û , θ̂] = EM(Z)

Initialize θ̂
while not converged do

E-Step: Given model parameters θ̂, compute the hidden estimates Û ← E[U |Z, θ̂].
M-Step: Given hidden estimates Û , compute ML estimates θ̂ ← arg

θ
max p(Û |θ).

end while

since the influence of θ on Z,M is felt via U , whereas the hidden maximum-
likelihood problem

θ̂ = arg
θ
max p(U |θ) (7.30)

is normally very easy, if U were known. The basic idea, then, is a straightforward
extension of the above insight, which is to alternate between estimating θ and U ,
as shown in Algorithm 2. This is a somewhat simplified description of what is
known as the EM (Expectation–Maximization) algorithm [25,85,275], which is near-
universally used in hidden Markov models.2 Slightly more precise than Algorithm 2,
the EM algorithm consists of two steps:

E-STEP: Compute the expectation E
u

[
p
(
z, u|θ)|z, θi

]

M-STEP: Find θi+1 to maximize the expectation E
u

The EM algorithm is nothing more than the iteration of these two steps; EM does
not tell you how to compute these steps. Indeed, given that the E-Step is essentially
an estimation problem, implementing the EM method for a large, multidimensional
problem will rely on the estimation methods of this text to compute the estimates.
The latter M-Step is normally a comparatively straightforward ML problem.

Although the EM algorithm cannot guarantee convergence of θ̂ to the ML estimate,
the likelihood of θ̂ is guaranteed not to decrease with any iteration, meaning that EM
is guaranteed to reach a local maximum in likelihood space.

For acyclic HMMs, in which the statistical dependencies have no loops (Figure 5.1),
efficient EM implementations exist based on the forward–backward algorithm [265,
275] for sequential problems, and a very similar upward–downward algorithm on
trees [77, 275].
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Fig. 7.11. Two standard test images, “Peppers” and “House”. The images are plotted in
greyscale, however the underlying images are actually in colour.

Application 7: Image Segmentation

Let us continue to explore the image segmentation problem, as sketched in Fig-
ure 7.4:

Given an image I , we wish to partition the image into K segments.

Because each image pixel Ix,y is placed into one of K discrete segments, we clearly
have a hidden label field Ux,y ∈ {1, . . . ,K} = Ψ , describing the partition of each
associated pixel.

The goal of this application is to illustrate how the prior model for U affects the
segmentation result. We will demonstrate segmentation on the two images of Fig-
ure 7.11.

No Prior Model

We begin with no prior model for U , such that nothing is known about the spatial
properties of U , and the segmentation problem is non-Bayesian. To group the ele-
ments of I into one of K groups, on the basis of the colour of each pixel, is known
as a clustering problem:

2 In the context of hidden Markov models the EM algorithm is also known as the Baum–
Welch algorithm.
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K-means segmentation

K-means + Potts prior segmentation

Fig. 7.12. Image segmentation based on a global K-means clustering, with (bottom) and with-
out (top) a spatial prior model on the hidden label field.

[ĉ, Û ] = argc,U min
∑

x,y

‖Ix,y − cUx,y‖. (7.31)

A very standard solution to clustering is the K-means algorithm [91], for which the
segmentation is shown in Figure 7.12. Because each cluster center ci is a global
parameter, all parts of the image are segmented consistently. However, the absence
of any spatial prior means that adjacent pixels are in no way constrained, and so we
see the creation of large numbers of single-pixel regions at the interface between two
segments.
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K-Means with Potts Prior

Given the K-means constraint of (7.31), it is straightforward to modify the criterion
to include a spatial constraint, such as a Potts prior, on the hidden label field L:

Û = argU min
∑

x,y

‖Ix,y − cUx,y‖+ Potts(U) (7.32)

= argU min
∑

x,y

‖Ix,y − cUx,y‖+
∑

x,y

δUx,y,Ux,y−1 + δUx,y,Ux−1,y (7.33)

where the Potts prior is taken from (7.22).

Adding such a prior asserts a preference for spatially homogeneous regions, with the
consequence that single-pixel regions are eliminated and leading to a clean, robust
segmentation, as seen in Figure 7.12.

Potts Prior

The K-means approaches of Figure 7.12 have a global criterion, in that a single set
of target colours {ci} applies to the entire image. This requires, however, that the
image be well described in terms of a fixed set of colours and that K be known.
Counterexamples would be an image having regions of smoothly varying colour,
or an image with multiple regions of very similar colour which are meant to be
separately segmented.

As an alternative we can consider a local model, such that the criterion is written
entirely in terms of the local behaviour of both image and hidden layer. For example,
we can assert a Potts prior, and penalizing the difference in adjacent image pixels if
they belong to the same region:

Û = argU min
∑

x,y

δUx,y,Ux,y−1

(‖Ix,y − Ix,y−1‖ − γ
)
+

δUx,y,Ux−1,y

(‖Ix,y − Ix−1,y‖ − γ
)

Ux,y ∈ Ψ,
(7.34)

where constant γ controls the degree to which the Potts prior is asserted.

AlthoughK must still be specified, because of the locality of the model,K no longer
limits the total number of distinct segments, as in (7.33). Rather, K now asserts how
many different regions may touch; a largerK gives more flexibility to the model, but
also (typically) increases complexity.

As discussed further in Chapter 8, because the model is local it is difficult to form
large regions: the number of iterations needed is quadratic in region size or extent.
That is, for an N ×N image, with regions a fixed fraction of the height or width of
the image, the total complexity is
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Potts Prior

Potts Prior, Repeatedly Aggregated

Fig. 7.13. Image segmentation using only local models, in contrast to the global constraints
imposed in Figure 7.12. Because single pixels are flipped, one at a time, it is exceptionally
difficult to converge to large homogeneous regions, top. By flipping regions, rather than pixels,
much larger regions can readily be formed.

Complexity per Iteration ·Number of Iterations = O(N2K
) · O(N2

)
= O(KN4

)
.

(7.35)
The top panel in Figure 7.13 makes this clear: after more than 100 iterations, there are
a great many small regions present. The formation of large regions is exceptionally
slow, even in very simple, smooth regions such as the sky of the “House” image.

It is possible to take these large numbers of small regions and create metrics [217]
for grouping regions. Similarly we can treat each region as a single hidden element,
such that our energy function is written in terms of regions [329], rather than pixels,
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such that (7.34) becomes

Û = argU min
∑

i

∑

j∈Ni

δUi,Uj

(‖Ii − Ij‖ − γ
)

Ui ∈ Ψ, (7.36)

whereNj represents the set of regions adjacent to region j.

By doing such grouping repeatedly, as discussed in Section 8.6, the overall con-
vergence is accelerated greatly, leading to the segmentation in the bottom panel of
Figure 7.13. Because of the absence of a global criterion, we do see many more local
regions here, relative to the global segmentation in Figure 7.12.

For Further Study

The Viterbi method of Section 4.5.1 generates the estimated state sequence for hid-
den Markov chains; generalizations to hidden random fields are discussed in Chap-
ter 11.

The paper by Geman & Geman [127] is strongly recommended, as understanding
their edge model, discussed in Section 7.1.4, will leave the reader with a good un-
derstanding of the use of hidden models with random fields.

The text by Li and Gray [205] is recommended for readers wishing to understand
hidden models more deeply.

The Baum–Welch algorithm [19] is widely used to learn the parameters in HMMs.
For discrete-state HMMs, the Forward–Backward algorithm [52, 96, 205] is a stan-
dard, iterative approach for state estimation.

To experiment in MATLAB, readers may be interested in the Image Processing tool-
box, the Hidden Markov Model toolbox, or the Conditional Random Fields toolbox.

Sample Problems

Problem 7.1: Hidden Models for Simple Binary Fields

For the two-phase random field in Figure 7.14, qualitatively sketch the associated
hidden model along the lines of what is shown in Example 7.1:

(a) What sort of visual behaviour does the hidden state describe?
(b) Is the hidden state discrete or continuous? If discrete, what order is it (binary,

ternary etc.)?
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(See Problem 7.1) (See Problem 7.2)

Fig. 7.14. Two sample binary random fields. A two-phase example, left, and a more complex
structure, right.

(c) Is the hidden state Markov? Why / why not?
(d) Is the visible state conditionally Markov or conditionally independent?

Problem 7.2: Hidden Models for Complex Binary Fields

The binary random field shown in the right panel of Figure 7.14 shows multiple
sorts of structures: pores, regions of high density, and a background region of
lower density. Repeat Problem 7.1 for this image.

Problem 7.3: Pairwise Random Fields

Suppose that X,Y are jointly Markov, two-dimensional, and Gaussian.

(a) Write the explicit statement of Markovianity for the joint pair (X,Y ), along
the lines of (6.13).

(b) Prove that (X |Y ) and (Y |X) are Markov.

Problem 7.4: Triplet Random Fields

Suppose that X,Y, Z are jointly Markov, two-dimensional, and Gaussian.

(a) Write the explicit statement of Markovianity for the joint triplet (X,Y, Z),
along the lines of (6.13).

(b) Prove that (X |Y, Z) is Markov.
(c) Argue why or in what circumstances (X |Y ) is not Markov
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Problem 7.5: Three-Dimensional Random Fields

(a) Describe briefly the similarities and differences between
(i) A 3D Markov random field, and

(ii) A hidden chain of equally-sized 2D Markov random fields, linked via
conditioning, like a long version of the Generalized Double model in
Figure 7.6.

(b) Prove that a chain of equally-sized 2D Markov random fields satisfies the
conditions of 3D Markovianity.

(c) Suggest a problem that might be more easily represented as multiple 2D
fields rather than a single 3D field.

(d) Under what circumstances might a single 3D field be more convenient than
a hidden chain of 2D fields?

Problem 7.6: Open-Ended Real-Data Problem — Segmentation

There is a very large literature on image segmentation [36,54,258], with a subset
specialized to the use of random fields in segmentation [35,226], and finally more
specifically to the use of hidden/pairwise/triplet random fields [21,205,230,260].
Select one or more hidden-Markov segmentation methods, and apply the selected
methods to standard segmentation test images.

Compare your approach with those of non-Markov methods, such as based on
watershed or region-growing.





8

Changes of Basis

The previous chapters have focused on the definition of a model, and corresponding
estimator or sampler, for some random vector z. Explicit throughout the preceding
chapters has been the assumption that z contains a set of spatial elements or image
pixels; that is, that z represents the raw, underlying random field of interest.

However, a given model for z clearly implies a model for any linear function of z:

z ∼ P z̄ = Fz−−−−−−→ z̄ ∼ FPFT (8.1)

where, if F 	= I , the elements of z̄ are no longer image pixels, rather some linear
function, possibly local or nonlocal, of the original random field. Furthermore, if
F 	= I is square and invertible, then the transformation from z to z̄ is referred to as
a change of basis.

Clearly what is lost in such a change is the simple, intuitive understanding of the
state elements as image pixels. It is also possible that certain desirable properties
of the model may be lost; in particular, most models increase in density (become
less sparse) through a change of basis, and models which are stationary or Markov
normally become nonstationary or non-Markov [197, 199, 254]. Nevertheless there
is much to be gained in terms of numerical robustness and computational efficiency.

In particular, the poor conditioning of many estimation problems, especially in our
context of random fields, stems from the locality of most Markov and deterministic
constraint models (e.g., Figures 5.10 and 5.11 for deterministic kernels Q, and Ex-
ample 6.1 on page 190 for Markov kernels G). Figure 8.1 illustrates the problem: for
a local operator to assert a statistical relationship between distantly-separated pixels
requires information to be passed indirectly through many state elements. If z1 and
z6 in Figure 8.1 are uncorrelated then there is no statistical relationship to assert,
and the problem may be well conditioned; however if z1 and z6 are very tightly con-
strained then we have a very strict assertion, but which needs to be inferred implicitly
from the repeated application of a model. Such a tight correlation would be the case
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Measurement

z1 z2 z3 z4 z5 z6

. . .

. . . Influence . . .

Fig. 8.1. Local models lead to ill-conditioning because of indirection: given a measurement of
element z1 and a first-order prior model, we need to infer z2 from z1, then z3 from z2 and so
on. The greater the number of levels of indirection, the more poorly conditioned is the system
matrix and the more slowly a corresponding iterative solver converges.

with a smooth spatial correlation, such as a Gaussian, which explains much of the
conditioning behaviour in Table 5.2 (page 163).

The indirection of statistical assertions and information flow can be clearly seen in
Figure 8.2, which plots the iterative solution (discussed in Chapter 9) to a linear
system. At the measured locations the state elements respond strongly to the mea-
surement, however state elements some distance away from the measurements have
only barely responded, and it will require a great many iterations before converging.
The key idea in this chapter is that a change of basis, coupling non-neighbouring
state elements, might accelerate this convergence.

The fundamental mathematical approach to improving conditioning is to affect the
distribution of eigenvalues in the system, however in most cases the details of the
eigendistribution are unknown for a given inverse problem. Instead, in practice the
desire to improve conditioning amounts to reducing the degree of indirect statistical
assertions between the elements of z, for which there are three basic approaches, all
of which are explored in this chapter:

1. Reduce the Strength of Statistical Assertions:

That is, find a change of basis to accomplish some degree of state decorrelation.
The method of principal components is based on this idea.

2. Make the Problem Smaller:

That is, find a reduction of basis, whether by subsampling or by local methods,
working on subsets of the random field, that the number of state elements is
reduced.

3. Make the Model Nonlocal, Reducing Indirection:

That is, introduce a change of basis in which the basis elements are nonlocal,
allowing spatially separated state elements to be coupled, reducing the number of
steps of interaction.
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Fig. 8.2. We can see the indirect nature of the local system, discussed in Figure 8.1, by ex-
amining an iterative solution to a simple, first-order interpolation problem after 10, 100, and
1000 iterations. Near the measurements the state elements are strongly pulled towards the
measurement, however the information provided by the measurement decays exponentially as
we move away from the measured locations.

Because of their computational benefits, changes of basis take place implicitly in
many efficient algorithms, as will be seen in Chapter 9. However the focus of this
chapter continues to be modelling: how can we use basis changes to change a prob-
lem, possibly to reduce it in size, to decouple it, or to restructure it in some fashion?

The chapter begins with an overview of the mathematics of basis changes, followed
by three approaches for basis reduction, and finally ending with three approaches to
computationally efficient basis changes.

8.1 Change of Basis

A large number of approaches to basis change are possible, however they can be
divided into two general approaches:

1. Explicit changes, in which the entire problem, including the measurements, is
transformed into a new domain. All aspects of statistical processing — modelling,
estimation, prior / posterior sampling — can be undertaken in the transformed
domain.
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2. Implicit changes, in which an estimation problem is restructured such that the
solution is found in the transformed domain, and then projected back into the
original. Although somewhat simpler than an explicit change, implicit changes
of basis apply only to estimation.

Explicit Basis Change

Consider a change of basis, as in (8.1). We transform a problem, solve it in the
transformed domain, from which the solution is projected back to the original setting:

Original Domain Transformed Domain

z ∼ P
m = Cz + v

F−−−−−−−−→ z̄ ∼ P̄
m̄ = C̄z̄ + v̄

⏐
⏐
⏐
: Estimation

ẑ ∼ P̃ F−1

←−−−−−−−− ˆ̄z ∼ ˜̄P

(8.2)

where the transformed problem is given by

z̄ = Fz ∼ P̄ = FPFT (8.3)

m̄ = Fm = FCF−1z̄ + Fv = C̄z̄ + v̄. (8.4)

That (8.2) is written as solving an estimation problem is for illustrative purposes
only; really there is a wholly new model (C̄, P̄ ), from which prior / posterior samples
could be generated, model parameters estimated, or likelihood tests performed, in
addition to estimation. Three further comments are in order:

1. The purpose behind such a basis change is to make the problem easier in the
transformed domain. For example, the transformed statistics FPFT should be
well conditioned and/or sparse.

2. We explicitly need both a forward F and inverse F−1 transform. If F alone is
specified, finding the inverse transform may be extremely difficult.

3. The transformation of the measurements implicitly assumes the measurements to
be dense, meaning that the number of measurements and unknowns is equal.

An important special case, which occurs in many image processing contexts (such
as denoising1) is where every pixel is observed, in which case C̄ = C = I .

1 See Figure C.5 in Appendix C.3.
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The key to making this change of basis practical is to select an orthogonal transfor-
mation for F , in which case

⇒ The inverse transformation is easily found: F−1 = FT .
⇒ If the measurement noise v is white, then v̄ is also white.

These properties make orthogonal transformations one of the key tools in sig-
nal/image modelling and analysis. Indeed, later this chapter we show several ex-
tremely well-known orthogonal transformations: the Fourier transform (Section 8.3),
the Wavelet transform (Section 8.4.2), and the Karhunen–Loeve transform (Sec-
tion 8.2.1).

There is, in fact, a well-known orthogonal transformation which greatly simplifies
statistical sampling and estimation. Consider the eigendecomposition P = V TΛV
of covariance P :

z ∼ P F = V−−−−−−−−−→ z̄ ∼ P̄ = V PV T = Λ
(Λ Diagonal)

⏐
⏐
⏐: Trivial

ẑ ∼ P̃ F−1 = V T

←−−−−−−−−− ˆ̄z ∼ ˜̄P

(8.5)

That is, by transforming a given model to a very simple (uncorrelated) counterpart,
the complex task of estimation is greatly simplified.

The problem, of course, is that solving the eigendecomposition to determine this
ideal change of basis is extremely difficult, normally much more difficult than solving
for the estimates ẑ themselves.

The idea, rather, is to select a suboptimal change of basis, without solving an eigen-
decomposition, examples of which are discussed in later parts of this chapter.

Implicit Basis Change:

In those cases where a suitable orthogonal transformation cannot be found, or where
the measurement model is sparse or otherwise irregular, the explicit transformation
of (8.2) may not be appropriate. It is possible, however, to implicitly reformulate an
estimation problem in a transformed domain without the availability of an invertible
transformation. Consider, for example, a standard estimation problem, recast as a
linear system:

ẑ =
(
P−1 + CTR−1C

)−1
CTR−1m ⇒ (

P−1 + CTR−1C
)
ẑ = CTR−1m

⇒ Aẑ = b (8.6)
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The ease with which this linear system can be solved2 is a function of the distribution
of the eigenvalues of A, known as its spectrum. One quantification of eigenvalue
spread is via the condition number κ(A) , which follows from our earlier discussion
of such inverse problems in Section 2.3.

If we now suppose a change of basis z = Sz̄, then we obtain a modified linear
system, analogous to (8.2):

Az = b −→ STASz̄ = ST b −→ Āz̄ = b̄

⏐
⏐
⏐: Easy ?

ẑ
S←−−−−−−−−−−−−−−−−− ˆ̄z

(8.7)

The key question, then, is how the condition number κ(Ā) of the modified system
compares with κ(A) of the original. To be sure, an interest in solving linear systems
goes far beyond statistical image processing; indeed, this process of basis change
for the purpose of improving conditioning has a significant history in the algebra
literature and is known as preconditioning [39, 79, 98, 347].

There are several important aspects to observe regarding this preconditioning ap-
proach, in contrast to the explicit change of (8.2):

1. The change of basis occurs only in the space of the unknowns z, not in the mea-
surement space m. Thus no assumptions are made regarding the spatial distribu-
tion or sparsity of the measurements.

2. The preconditioned approach (8.7) never requires the evaluation of the forward
transform S−1. All that is required is a transformation S and its transpose ST ,
normally expressed implicitly as an algorithm rather than as a matrix, .

3. It is not required that S be invertible; indeed, S does not even have to be square.
However, for Ā = STAS to be well conditioned Ā must be invertible, in which
case S must have full column rank. Therefore S is either square-invertible, for a
change of basis, or rectangular-full column rank, for a reduction of basis.

4. The implicit formulation of (8.7) applies only to estimation, and does not extend
to other aspects of statistical inference and sampling.

2 Methods discussed in Chapter 9.
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8.2 Reduction of Basis

It is not obvious that the number of unknowns in the transformed space should equal
the number in the original space. In particular, if z is known to be very smooth, then
arguably relatively few coefficients might be sufficient to represent z very well, in
contrast to a case involving a highly irregular or rough field.

In the implicit case (8.7) no assumption was made regarding the squareness or in-
vertibility of S, and the use of a reduced basis is straightforward. Of greater interest
in reduced-order modelling is the explicit case.

We start by considering the degree of approximation introduced by a reduction of
basis. Suppose we propose transformations

z̄ = Fz z = Sz̄, (8.8)

where F, S are rectangular matrices applied to the random field z ∼ P , such that the
size of z̄ is deliberately reduced. Then the mean-square error in reduced representa-
tion is

MSE(z − SFz) = E
[
(z − SFz)T (z − SFz)] (8.9)

= E
[
tr
(
(I − SF )T zT z(I − SF )

)]
(8.10)

= tr
(
(I − SF )T (I − SF )P

)
. (8.11)

Thus under a regular change of basis (8.2), where S = F−1, then (I − SF ) = 0
and the error in representation is zero, as expected. With a reduction of basis, F−1

does not exist, in which case (I − SF ) 	= 0, normally3 implying that the reduction
of basis introduces some degree of approximation.

Next, it is desired that the original space be able to represent perfectly any signal
from the reduced space. That is, repeated projections of the form

reduced ⇒ original ⇒ reduced

should not incur additional error:

0 = MSE(z̄ − FSz̄) = E
[
(z̄ − FSz̄)T (z̄ − FSz̄)] (8.12)

= E
[
tr
(
(I − FS)T zT z(I − FS)

)]
(8.13)

= tr
(
(I − FS)T (I − FS)P̄

)
(8.14)

from which it follows that FS = I , for which a sufficient condition is that F and S
form what is known as a pseudoinverse pair.4

3 If the covariance P is singular then it is possible to design a basis reduction that is exact,
with no approximation.

4 More specifically, in this case F is referred to as a left-inverse of S; the pseudoinverse
condition, discussed in Appendix A.9, is slightly more general.
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Next, we have seen (8.5) the convenience associated with orthogonal transforma-
tions. Suppose that F and S are rectangular portions of orthogonal matrices F̄ , S̄:

F̄ =
[
F
Fo

]
S̄ =

[
S So

]
, (8.15)

such that
F̄ = S̄−1 = S̄T
︸ ︷︷ ︸

Orthogonality

and FS = I︸ ︷︷ ︸
Pseudoinverse

. (8.16)

Then the mean-square error in the reduced representation is

MSE(z − SFz) = MSE(S̄F̄ z − SFz) = MSE(SoFoz) (8.17)

= E
[
zTFT

o S
T
o SoFoz

]
(8.18)

= tr
(
SoFoPF

T
o S

T
o

)
(8.19)

= tr
(
ST

o SoFoPF
T
o

)
(8.20)

= tr
(
FoPF

T
o

)
(8.21)

= MSE(Foz) (8.22)

which is essentially a restatement of Parseval’s theorem [243]: because of the or-
thogonality of the transformation, the degree of error in approximating z equals the
mean-square error of the omitted basis elements Foz. Thus a “good” basis reduction
is one in which the variance of Foz is minimized.

The following sections begin with the optimum reduction of basis, based on an eigen-
decomposition, which is useful in dimensionality reduction, but inapplicable more
generally for reasons of computational complexity. The two remaining sections will
discuss suboptimal approaches to basis reduction.

Section Method Basic Assumption

8.2.1 Principal Components Problem stationarity along some dimension
8.2.2 Fast Pseudoinverses Spatial smoothness
8.2.3 Local Processing Local correlations or dense measurements

8.2.1 Principal Components

The method of Principal Components [91,165,166,179,250] is one of the most fun-
damental in statistical analysis, variously known as the Karhunen–Loève transform,
the Hotelling transform, or empirical orthogonal functions.

Given a random vector z ∼ P , we seek an efficient reduced-order representation
z̄ = Fz, essentially a compression of z. There are two basic perspectives on the
formulation of a criterion for F :
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1. Find the linear transformation which captures the most statistical variability. For
a single linear function z̄ = fTz, the first principal component of z is the choice
of f which maximizes the variance of z̄:

Find f to maximize J(f) = var(z̄) = fTPf such that fTf = 1 (8.23)

This generalizes to finding the first n principal components as the choice of trans-
formation F which maximizes the overall variability of z̄, measured as the deter-
minant of its covariance:

Find F to maximize J(F ) = det
(
cov(z̄)

)
= |FPFT | such that |FFT | = 1

(8.24)

2. Find the linear transformation which minimizes the mean-squared error in the
reduced-order representation of z.

Given the reducing transformation z̄ = Fz, the estimator ẑ which minimizes the
mean-squared error in (ẑ − z) is

ẑ = FT (FFT )−1z̄, (8.25)

clearly a function of F . The optimal choice of F is the one minimizing this MSE:

Find F to minimize J(F ) = MSE(ẑ − z). (8.26)

Both of the above criteria lead to the same conclusion:

The principal components are given by the eigenvectors of P . That is, the
optimum linear reducing transformation is found by letting the rows of F
equal the eigenvectors corresponding to the q largest eigenvalues of P .

Given the eigendecomposition

Pvi = λivi λ1 ≥ λ2 ≥ . . . ≥ λn ≥ 0 (8.27)

where we define the reduction matrix

Vq = [v1 . . . vq], (8.28)

then the principal-component representation of z is

z̄ = V T
q z, (8.29)

where the mean-square representation error in keeping these first q principal compo-
nents is given by the sum of the omitted eigenvalues

MSE(z − SFz) = MSE(z − VqV
T
q z) =

n∑

j=q+1

λj . (8.30)
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Fig. 8.4. Dimensionality restoration of an estimated reduced-order model: after estimates have
been computed for the q decoupled problems in Z̄ the estimates in the original domain Z are
easily found, inverting the procedure of Figure 8.3.

If we consider z to be a lexicographically-stacked two- or higher-dimensional ran-
dom field, then the size of z precludes applying an eigendecomposition, which
has complexity O(n3), directly. However principal components can be applied
to a single dimension in a multidimensional problem. In particular, suppose that
Z =

[
z1 z2 . . . zn

]
is a two-dimensional n×n random field, as shown in Figure 8.3.

For dimensionality reduction to be applicable, Z and its associated inverse problem
must satisfy two assumptions:

1. The columns of Z must be statistically stationary, such that P = cov(zi) is not a
function of i, meaning that the principal components will not vary from column
to column.

2. A given column of Z must be either densely measured, or not at all, to allow an
explicit change of basis.

Let Vq be the qth-order reduction matrix, the q most significant eigenvectors of P ,
then

Z̄ = V T
q Z (8.31)

is the reduced n × q two-dimensional random field, with the key property that the
rows are decorrelated and can be processed separately. Because of the orthogonality
of the eigendecomposition the inversion of the reduction step is very easy:

Ẑ = Vq
ˆ̄Z, (8.32)
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Fig. 8.5. Dimensionality reduction in 3D: If the columns of a volume Z are statistically sta-
tionary, we can use principal components to divide the volume into q decoupled 2D slices,
each of which is solved separately, and then recombined to form the estimated volume Ẑ.

shown in Figure 8.4. Obviously the above development generalizes to reducing a
d-dimensional problem to a set of q separate (d − 1)-dimensional problems, as is
illustrated for three dimensions in Figure 8.5.



252 8 Changes of Basis

Example 8.1: Principal Components for Remote Sensing

We consider an example in three-dimensional remote sensing [232]. Suppose we
have measurements of ocean temperature, sparsely sampled in location, but uni-
formly sampled in depth:
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The ocean statistics are highly variable in depth, but approximately stationary in
space, so we can consider taking principal components along the depth axis. To
determine the number of components needed we examine the summed eigenval-
ues:
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Four to ten components are enough to keep 95% to 98% of the signal energy; we’ll
keep five, which leaves us with five sparse, decoupled two-dimensional problems
to solve:
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We will see methods for solving this estimation problem in Chapters 9 and 10,
with the resulting estimates plotted in Figure 10.10 on page 346.
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The application of principal components is made tractable here in that it is applied
to only a single column of state elements, not over the entire domain. The size and
complexity of the problem is reduced as follows:

Original Space Reduced Space

# Problems Size Complexity # Problems Size Complexity
2D 1 n× n O(n6) q 1× n O(qn3)
3D 1 n× n× n O(n9) q n× n O(qn6)

Although each of the q decoupled problems is still a spatial statistical problem, the
relationship of the (d − 1)-dimensional spatial models in Z̄ to the d-dimensional
model in Z is generally unclear. Even if Z were stationary in all dimensions, the q
transformed problems would not be governed by a single model: a separate model
needs to be derived for each of the q new decoupled problems. In general, rather
than attempting to transform a model from Z to Z̄ , it is normally simpler to learn the
statistical models in Z̄ directly, for example from simulated or measured data.

8.2.2 Multidimensional Basis Reduction

The previous section outlined the use of principal components in cases where a mul-
tidimensional problem is stationary, allowing it to be decoupled into a number of
uncorrelated, smaller pieces.

In those cases where the model is spatially nonstationary, or where a decoupling into
separate problems is inconvenient or undesirable, one alternative is not to divide the
problem into multiple pieces, rather to formulate a reduced-order version of the full
problem. That is, we wish to consider basis reduction: representing a large problem
z ∈ R

n in a much smaller, reduced domain z̄ ∈ R
q.

As before, we consider a transformation between an original random field z and its
reduced counterpart z̄,

z̄ = Fz z = Sz̄, (8.33)

where F, S are subsampling/reduction and interpolating transforms, respectively. In
principle, F and S may be space-variant, irregular operators. In practice such gener-
ality is unneeded and overcomplicated for large random fields; instead, it is simpler
to think of z̄ as representing a low- or coarse-resolution version of z, such that z̄ lives
on a regular grid or lattice, organized in the same way as the lattice for z, but down-
sampled by a factor γ in each dimension. For large random fields we are unlikely
to specify F or S directly; instead, it is simpler to suppose that the operations are
generated by space-invariant kernels F ,S, such that each element in z̄ essentially
introduces a weighted copy of S in the corresponding parts of z. We can write this
as

Z̄ = ↓(F ∗ Z) Z = S ∗ (↑ Z̄) , (8.34)
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⇒ ⇒

Z̄ ↑ Z̄ S ∗ ↑ Z̄
Fig. 8.6. The transformation from a coarse representation, left, via zero-padding, middle, and
convolution, right, with a Gaussian kernel S .

where ↓ and ↑ represent subsampling and zero-padding, respectively. The interpo-
lating kernel S, illustrated in Figure 8.6, is the more intuitive of the two. Figure 8.7
illustrates a two-dimensional example, in which a smooth random field is represented
by a low-resolution “image”, a γ = 6 reduction to a 5 × 5 grid of extracted coeffi-
cients.

A few considerations for the boundaries of the domain of Z:

1. Although many mathematical functions have infinitely long tails, such as Gaus-
sians, in practice the support of S must be of finite size, so long kernels must be
truncated.

2. It is often efficient to use the FFT (the fast Fourier transform) to compute convo-
lutions, such as in (8.34). As the FFT actually implements a circular convolution,
additional zero-padding may be needed to prevent a wrapping around the ends of
the lattice, where the extent of zero-padding is proportional to the size of support
of S.

3. In most cases, the interpolating kernel needs to be different near boundaries than
inside the domain. That is, the interpolator is not, in fact, stationary. However,
rather than abandoning the kernel concept and specifying S explicitly, it is sim-
pler to specify a nonstationary modification of the stationary convolution:

Z =
(S ∗ (↑ Z̄))� (S ∗ (↑1)

)
. (8.35)

Specifically, this ensures that a reduced field of all ones interpolates to a fine-scale
field of all ones. Many other normalizations are possible.

So what sort of kernel F ,S or associated induced transformation F, S makes an
effective change of basis?

Clearly an appropriate choice of basis will have to be a function of the statistics of
the random field; although specialized approaches can be developed for particular
statistics, here we limit our attention to the reduction of smooth random fields. Thus
the interpolating basis elements, the kernel S or the columns of S, should be spatially
smooth. There are three criteria to consider:
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F−−−−−−−−→

←−−−−−−−−
S

Fig. 8.7. We can represent a large random field, left, using a reduced set of coarse-scale coef-
ficients, right. A Gaussian shape was used here as the interpolating kernel S .

1. PSEUDOINVERSE: Choosing F and S to be a pseudoinverse pair (Appendix A.9)
provides two benefits:

• Choosing F = S+ minimizes the representation mean-squared-error,

• The pseudoinverse criterion guarantees that FS = I , meaning that there is no
error induced by repeated coarse–fine–coarse projections.

The complexity of pseudoinversion makes the relationship between F and S
nearly impossible to specify. The analytic form of the Moore–Penrose pseudoin-
verse [4] is well known, but computationally intractable for large problems:

S = F+ = FT (FFT )−1 F = S+ = (STS)−1ST . (8.36)

Instead, the pseudoinverse should be represented implicitly. Either F or S may be
specified, and the other inferred. For example, if we assume the interpolator S to
be a given huge, sparse matrix, then we compute

Q = STS, (8.37)

where the matrix multiplicationSTS is straightforward because of the spatial spar-
sity of S, and where the size of Q is the size of the reduced state. Then the pseu-
doinverse is computed as

z̄ = Fz = S+z = Q−1(ST z) = Q−1zs (8.38)

such that the matrix productQ−1ST is never explicitly calculated.

In the event that Q is too large to invert, or Q−1 too large to store, z̄ can be solved
iteratively [111] from the linear system

Qz̄ = zs. (8.39)
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2. NOISE INSENSITIVITY: A second desired property is that the transformations be
stable with respect to errors. Consider, for example, the degree to which a pertur-
bation δ at the fine scale affects the coarse-scale coefficients:

z̄
S−→ (z + δ) F−→ z̄δ (8.40)

If S has a tiny singular value, then its pseudoinverseF must have a corresponding
large singular value, implying that a small disturbance δ could be amplified by F
to give rise to arbitrarily large differences in (z̄ − z̄δ), leading to a normalized
noise sensitivity criterion

|z̄ − z̄δ|
|δ|

|z|
|z̄| ≡

|Fδ|
|δ|
|Sz̄|
|z̄| . (8.41)

The upper bound for this sensitivity is given by the product of the largest singular
values σmax of F and S,

σmax(F ) ∗ σmax(S) = cond(F ) = cond(S). (8.42)

That is, the noise sensitivity is bounded by the condition number of the subsampler
F , equivalently that of the interpolator S, implying that the noise sensitivity can
be evaluated from either of F , S without computing a pseudoinverse.

In general, an interpolating kernel S that passes through zero may not at all (or
just barely) sample certain fine-scale elements, making the problem nearly sin-
gular. A kernel robust to noise sensitivity should therefore be strictly positive, or
must be used in a subsampling geometry which guarantees that kernel zeros of
neighbouring coarse-scale elements do not coincide.

3. SHIFT INVARIANCE: A third desired attribute is that the basis-reduction operation
be shift-invariant, meaning that the particular choice of origin for the coarse scale
(that is, how the coarse lattice is arranged relative to the fine, as in Figure 8.7)
should not lead to spatial variations in the quality or type of representation. In other
words, if I can represent a fine-scale field Z(x), I should equally well be able to
represent its shifted version Z(x− δ), meaning that translation and representation
commute:

T SFz ≈ SF Tz, (8.43)

where T is a spatial translation on the fine scale. There are two motivations for
this assertion:

1. It is undesirable for the coarse grid to manifest itself in any explicit way in the
inversion Sz̄.

2. In many cases the random field is actually time-dynamic z(t), but where
the dynamics may be slow, involving shifts and motions much smaller than
the coarse discretization interval γ. The sampling-interpolation operation SF
should therefore be insensitive to spatial shifts to ensure that a slow, advective
flow is not progressively corrupted by repeated sampling and interpolation.
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Shift insensitivity, (8.43), implies that for any coarse field z̄ and fine-scale shift
operation T , there exists a new coarse field z̄T corresponding to the shifted field:

TSz̄ = Sz̄T (8.44)

and thus, ignoring boundary effects,

T
(S ∗ (↑ z̄)) =

(S ∗ (↑ z̄T )
)
. (8.45)

As convolution simplifies to multiplication in the frequency domain, taking the
Fourier transform of (8.45) leads to

F (S)F (↑ z̄)F (T ) = F (S)F (↑ z̄T ). (8.46)

For this to be satisfiable for all z̄, F (S) must be mostly zero: essentially, the inter-
polating kernel S must be bandlimited, or smooth.

It is important to note that, in general, these latter two criteria are in opposition. That
is, a highly band-limited kernel is typically poorly conditioned, and thus sensitive to
noise, whereas a kernel corresponding to a low condition number is typically poorly
bandlimited, and thus exhibits shift sensitivities.

There is one significant exception to this opposition: if the domain has periodic
boundary conditions and is stationary, then the Fourier transform offers a perfect
pseudoinverse pair

z̄ = FFT−1
(

trunc
(
FFT(z)

))
(8.47)

z = FFT−1
(

zeropad
(
FFT(z̄)

))
, (8.48)

where truncation and zero-padding are frequency domain operations implementing
an ideal low-pass filter. In general the rigid assumptions (stationarity and boundary
periodicity) limit the usefulness of this approach, although we encounter the FFT
again in Section 8.3.

We conclude this section with a brief survey of possible interpolating kernels with
respect to the condition-number and bandlimit criteria. At first glance the kernels of
Figure 8.8 may appear to be superficially similar to the analytical statistical kernels
of Figure 5.16 on page 161; it is crucial to understand a fundamental difference: the
kernels P of Figure 5.16 represent a covariance, and therefore must satisfy positive-
definiteness, whereas the kernels S of Figure 8.8 represent a transformation, which
we would like to have well-conditioned and bandlimited, but in fact any transforma-
tion is permissible. That is, one can arbitrarily experiment with different choices of
S, whereas most choices of P will fail to be positive definite.

As a qualitative evaluation, Table 8.1 plots the shift sensitivity and condition num-
ber for the eight kernels of Figure 8.8. It must be understood that these numbers
are illustrative only, as they can vary greatly with problem size and geometry. Two
observations:
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Fig. 8.8. Eight plausible interpolation kernels S ; in all cases r =
p
x2 + y2 measures the

distance to the origin and ξ is a scale parameter that controls the spatial size of the interpolator.

1. The kernel of a perfect low-pass filter is the separable-sinc function, so it is in-
teresting to see the significant difference in behaviour between it and the FFT.
The differences stem from the boundary periodicity of the FFT and the very slow
decay of the sinc kernels: the finite domain tested in Table 8.1 has non-periodic
boundaries, and for computational reasons the kernels are truncated to a finite
size, particularly problematic for slow-decay kernels.

2. The Gaussian kernel is unique, maximally bandlimited simultaneously in space
and frequency, thus well-approximated as a truncated kernel (space bandlimit)
and giving excellent shift-sensitivity (frequency bandlimit).

A remote-sensing application of multidimensional basis reduction is shown at the
end of this chapter on page 285.
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Kernel S log Shift Sensitivity log Condition Number

Gaussian 0− 2 2− 4
Smooth 3 1− 2
Thin-Plate 3.3 1
Nonseparable Exponential 3.5 1
Negative lobe 3.5 1− 2.5
Separable Sinc 3.5 1
Nonseparable Sinc 3.8 1− 2
Cone-shaped 3.8 1

FFT (periodic separable sinc) −∞ 0

Table 8.1. Shift sensitivity and condition number, evaluated numerically for the eight kernels
of Figure 8.8 on a 10× 10 two-dimensional domain.

8.2.3 Local Processing

A final choice of basis reduction is the relatively simple approach of local processing,
in which only a small portion of the overall problem is solved at a time, and the
results stitched together. Clearly the computational savings can be substantial; for
an algorithm with cubic complexity, dividing a problem into q equally sized pieces,
each of size 1/q and complexity 1/q3, results in a computational complexity 1/q2 as
great as solving the full problem directly.

Obviously this sort of approach admits many variations, a few of which are illustrated
in Figure 8.9. These approaches are, in general, most applicable to estimation, and
less so to sampling, because measurements will tend to cause the estimates in adja-
cent blocks to be similar, whereas there is nothing to force any consistency between
blocks in the stochastic (random) variations in sampling.

The overlapped approach [169] is a significant special case: because the estimate
of a single state element zi is best estimated based on measurements around i, and
not just at i, it is preferable to divide the problem into overlapping blocks, allowing
adjacent blocks to be interpolated, limiting inter-block artifacts and discontinuities.

The overlapped approach is, itself, essentially a projection onto a new basis, this time
a projection into a redundant domain, as some state elements will belong to multiple
overlapped blocks:

F−−−−−−→
←−−−−−−

S

(8.49)

such that, as usual, SF = I . The size, number, and degree of overlap of the blocks
uniquely define F :
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Consider solving an estimation problem by processing local regions separately. We illustrate
the process graphically using the following notation:

Measurements Used Estimates Computed Estimates Used

First we can divide the problem into disjoint pieces, stitching together the individual estimates
to obtain the overall result:

The stitched results will tend to be blocky, because there is nothing to force continuity at
the region boundaries. Because a pixel on the edge of a region would benefit from nearby
measurements outside of the region, we can extend the range of measurements used:

In some cases it is inconvenient to use measurements at locations which are not estimated. We
could, instead, estimate over a larger region, but only keep the more local estimates:

Having generated estimates in overlapping regions, why not take advantage of them? We can
synthesize the final result as a tapered interpolation from one region to the next:

Fig. 8.9. Basis reduction by local processing: We can solve a larger problem by dividing it
into separated subproblems. The overlapped approach, bottom, performs no spatial blurring;
any interpolation is between multiple estimates at a single location.
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Fi,j =

{
1 if z̄i corresponds to element zj

0 otherwise
(8.50)

S is not uniquely defined, as there are many possible ways to interpolate the redun-
dant state elements. A spatial linear interpolation from one block to the next [169] is
a simple, intuitive choice. The resulting estimates are computed as

z
F−−−−−−→ z̄

Divide−−−−−−→ {z̄i} Local−−−−−−−−→
Estimation

{ˆ̄zi} Combine−−−−−−→ ˆ̄z S−−−−−−→ ẑ.

(8.51)
It is important to understand that operators F and S do not blur or smooth; they are
pointwise operators. The overlapped results in Example 8.2 give the appearance of
having been blurred, however the smoothness is due to the spatial constraints on z̄ in
the overlapped domain; there is no spatial averaging.

Example 8.2: Overlapped Local Processing

We wish to consider local estimation, as in Figure 8.9. Suppose we have sparse
satellite temperature measurements of the eastern equatorial Pacific ocean. We
will propose a very simple local estimator: we set the estimate of all pixels in a
block equal to the mean of the measurements which lie within it.

Sparse Data Points Disjoint-Block Estimates

As was discussed in Section 8.2.3, and is very clear here, local estimation based on
disjoint blocks suffers from inter-block artifacts (discontinuities). To address this
we can define overlapped blocks, such that each block is processed independently,
but the resulting estimated image is found as a tapered interpolation. The block
size and inter-block overlap must satisfy

Image Size = # Blocks · Block Size− (# Blocks− 1) · Overlap. (8.52)

Example continues . . .
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Example 8.2: Overlapped Local Processing (cont’d)

As all of these quantities are integer only certain values are permitted, most easily
found by testing (8.52) numerically for a wide range of integer possibilities. For
the 512× 512 image being processed here we select two cases:

Image Size # Blocks Block Size Overlap (pix) Overlap (%)
512 25 32 8 37%
512 41 32 20 63%

leading to the following results:

37% Overlap 63% Overlap

8.3 FFT Methods

A very special change of basis is the Fourier basis for stationary, periodic random
fields [83, 276]. In particular, the Fourier basis elements are the eigenvectors, and
thus the perfect change of basis, for every stationary, periodic field. Although such
stationary, periodic fields may be rare in practice, the methods available to solve
them are so efficient and elegant that some discussion is merited.

A finite, one-dimensional stationary random process with periodic boundary condi-
tions is known as circulant, meaning that the points of the process can be visualized
as lying on a circle: no beginning, no end. Similarly in two dimensions, a stationary
random field on a rectangular lattice with periodic boundary conditions is known as
toroidal,5 as implied in Figure 8.10.

The correlation structure of a d-dimensional stationary, periodicn1×· · ·×nd random
field therefore takes the form

E
[
z

i
z
(i+δ) mod n

]
= E

[
z0,0zδ mod n

]
= P

δ
, (8.53)

where
5 That is, topologically, the wrapping of a rectangular sheet onto a torus or doughnut.
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Fig. 8.10. Illustration of periodic, stationary random processes in one and two dimensions. In
one dimension the problem maps to a circle, and in two dimensions to a torus, such that the
point pairs (a ā), (b b̄), (c c̄) all have the same joint statistics.

i mod n =
[
(i1 mod n1), . . . , (id mod nd)

]T
. (8.54)

If the process is lexicographically ordered, the covariance of the resulting random
vector will have a special circulant or block-circulant structure [83], as illustrated
in Figure 8.11. The special significance of any such process is that its covariance is
diagonalized by the d-dimensional FFT.

8.3.1 FFT Diagonalization

Define the Fourier basis element of length N as

fT
N =

[
e−j2π0/N · · · e−j2π(N−1)/N

]
. (8.55)

We first consider the diagonalization of a one-dimensional random process z with
circulant covariance

z ∼ P =
[
p0 . . . pN−1

]
. (8.56)

The Fourier transform, or FFT, applied to p0 is

FFT(p0) = Fp0 ≡

⎡

⎢
⎢
⎢
⎣

(
fT

N

)0

...
(
fT

N

)N−1

⎤

⎥
⎥
⎥
⎦
p0 ≡ p̄0. (8.57)
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Fig. 8.11. Examples of circulant and toroidal covariance matrices [83]. In one dimension,
each row or column is equal to the previous row or column, rotated by one position. In two
dimensions, the lexicographical reordering of the 2D process to a one-dimensional vector im-
plies that the covariance has a block-circulant structure (from the stationarity/periodicity of
the 2D-process rows), where each block A,B,C,D is itself circulant (from the stationar-
ity/periodicity of the 2D-process columns).

Because P is circulant, pi is just p0 rotated downwards (Figure 8.11) by i positions,
therefore the standard circular-shift property [244] of the Fourier transform applies

Fpi = p̄0 �
([
e−j2π0/N · · · e−j2π(N−1)/N

]T)i

= p̄0 �
(
fT

N

)i

. (8.58)

Therefore the Fourier transform applied to the whole covariance can be factored as

FP =
[

p̄0 �
(
fT

N

)0

· · · p̄0 �
(
fT

N

)(N−1)
]

(8.59)

=
(
p̄0 ·
[
1 . . . 1

]

︸ ︷︷ ︸
N times

)� [f0
N . . . fN−1

N

]

︸ ︷︷ ︸
F T =F

. (8.60)

Therefore the covariance of the transformed random field is

z ∼ P =⇒ Fz ∼ P̄ = FPFH =
((
p̄0 ·
[
1 . . . 1

])� F
)
FH

= Diag(p̄0).
(8.61)

That is, the FFT diagonalizes the covariance associated with any stationary, periodic
random vector. Stated another way, the eigenvectors for all circulant matrices are the
Fourier basis elements, and the FFT of the circulant matrix returns the eigenvalues.
Thus

z ∼ P Circulant =⇒ FFT(z) ∼ Diagonal. (8.62)

Given a two-dimensional toroidal random field Z , each row or column of Z is circu-
lant, so an FFT applied to the columns of Z

Z̄ = FFT(Z) =
[
FFT(z0) · · · FFT(zN−1)

]
(8.63)

has uncorrelated rows. As the FFT is a stationary, periodic operator, each row of Z̄
is still circulant, so a second FFT applied to the rows
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¯̄Z =
(
FFT(Z̄T )

)T
(8.64)

decorrelates the elements within rows. Therefore all elements in ¯̄Z are decorrelated
from all others, meaning that the associated covariance is diagonalized. As taking
an FFT by columns and then by rows is equivalent to the two-dimensional FFT, we
conclude that

[Z]: ∼ P Toroidal =⇒ [FFT2(Z)]: ∼ Diagonal. (8.65)

Finally, by induction we generalize to the d-dimensional case. If Z is a random field
of dimensions n1 × · · · × nd, then

Z d-Dimensional, Stationary, Periodic =⇒ [FFTd(Z)]: ∼ Diagonal. (8.66)

8.3.2 FFT and Spatial Models

It is clear that a covariance P is an inefficient representation of large, multidimen-
sional random fields. The inefficiency is particularly striking with stationary, periodic
fields, as the entire covariance P =

[
p0 p1 . . .

]
can be reconstructed from the first

column p0 alone, since
[P ]: = p0 (8.67)

as was discussed in Section 5.3.2. We start with the covariance P̄ in the transformed
domain, from (8.61):

P̄ = Diag(p̄0) = Diag
(
Fdp0

)
= Diag

(
[FFTd(P)]:

)
. (8.68)

Now, consider finding the inverse covariance P−1:

P̄ = FdPF
H
d =⇒ P−1 = FH

d P̄−1Fd. (8.69)

The matrix inversion is easy, as P̄ is diagonal. However, because circulant/toroidal
nonsingular matrices have circulant/toroidal inverses, the explicit construction of
P−1 makes no sense, rather we really want P−1, the kernel corresponding to P−1:

p0 = FH
d p̄0 =⇒ P = FFT−1

d

(
[p̄0]n

)
= FFT−1

d

(P̄) (8.70)

=⇒ P−1 = FFT−1
d

(
1� P̄) = FFT−1

d

(
1� FFTd(P)

)
, (8.71)

where

1. Vector nT = [n1 n2 . . . nd] represents the size of the d-dimensional domain being
considered,

2. Matrix inversion has been simplified to reciprocals in the transformed domain,

3. All operations are directly performed on kernels.
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Thus we have

P−1 = FFT−1
d

(
1� FFTd(P)

) P = FFT−1
d

(
1� FFTd(P−1)

)
. (8.72)

If, from Chapter 5, we recognizeP−1 to be a constraint or GMRF model kernel, then
we have derived a significant result: for periodic random fields we have an efficient
means of converting between a model and its associated correlation structure. For
example, this FFT approach was used to compute the correlation length (related to
P) as a function of thin-plate model (P−1) in Figure 5.15 on page 158.

To complete the discussion, note that

det(P ) =
∏

i

λi(P ) =
∏

diag(P̄ ) =
∏

FFTd(P). (8.73)

If we are calculating log-likelihoods, for example for parameter estimation, then the
log-determinant can be calculated very efficiently as

log
(
det(P )

)
=
∑

log
(
FFTd(P)

)
. (8.74)

8.3.3 FFT Sampling and Estimation

Given a prior model P or P−1 (the distinction is unimportant, as (8.72) allows an
easy conversion) we wish to generate random samples from the prior model:

z = P 1/2w w ∼ N (0, I) (8.75)

= FHP̄ 1/2Fw (8.76)

= FHDiag(p̄0)
1/2Fw. (8.77)

Removing the lexicographic ordering on both sides of (8.77) leaves us with a simple,
fast sampler:

Z = FFT−1
d

(√
FFTd(P)� FFTd(W )

)
, (8.78)

where W is a white random field of unit-variance random values, and where W and
P are the same size as Z .

We hope the pattern has become clear: because all circulant matrices are diagonalized
in the transformed domain, operations of matrix multiplication and inversion become
corresponding scalar operations on the transformed kernels. Thus the equations for
least-squares estimation and posterior sampling follow by inspection. Suppose we
are given a fully stationary estimation problem, meaning that the priorP , observation
matrix C, and observation noise covarianceR are all circulant/toroidal. Let

P̄ = FFTd(P) C̄ = FFTd(C) R̄ = FFTd(R) (8.79)
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Algorithm 3 FFT Estimation and Sampling
Goals: Compute estimates, given measurements M and model C,R,P
Function Z = FFT Estimate(P ,C,R,M)
d← ndims(P) Get number of dimensions
Pf ← FFTd(P) Diagonalize model
Cf ← FFTd(C)
Rf ← FFTd(R)

Z ← real

»

FFT−1
d

„“
Pf .∗ CT

f ./
`Cf .∗ Pf .∗ CT

f +Rf

´”
.∗ FFTd(M)

«–

Goals: Compute a random sample, size n, from a stationary, periodic prior kernel
Function Z = FFT Sample(P , n)
W ← randn(n) Generate white random field
d← ndims(P) Get number of dimensions
if d �= length(n) then
Error(’Inconsistent kernel and sample dimensions’)

end if

Z ← real

»

FFT−1
d

„

sqrt
“
real

`
FFTd(P)

”
.∗ FFTd(W )

´
«–

Goals: Find the matrix inverse of a stationary, periodic kernel
Function A−1 = FFT Inverse(A)
d← ndims(A) Get number of dimensions

A−1 ← real

»

FFT−1
d

“
1./real

`
FFTd(A)

´”–

then from (3.112), and ignoring prior means, we have

Ẑ = FFT−1
d

{(P̄ � C̄T � (C̄ � P̄ � C̄T + R̄))� FFTd(M)
}

(8.80)

P̃ = FFT−1
d

{P̄ − P̄ � C̄T � (C̄ � P̄ � C̄T + R̄)� C̄ � P̄} . (8.81)

The posterior sampler follows from P̃ in the same manner as (8.78):

(Z|M) = Ẑ + FFT−1
d

(√
FFTd(P̃)� FFTd(W )

)
. (8.82)
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Example 8.3: FFT and Spatial Statistics

We use the FFT method to examine the thin-plate prior model of Figure 5.8:

1
2 -8 2

1 -8 20.001 -8 1
2 -8 2

1

To use this kernel as the prior to an N × N image we need to embed the above
values in an N ×N periodic kernelQ = P−1, with the kernel origin in the upper
left corner, from which the correlation kernel is easily found via (8.72):

Thin-plate model kernel P−1 Thin-plate correlation kernel P
With the correlation kernel in place, it is trivial to use (8.78) to generate random
prior samples. Because of the efficiency of the FFT, generating very large random
fields (right) is easy. The left sample shows particularly clearly the periodicity
(top/bottom and left/right) of the field.

Low-resolution prior sample High-resolution prior sample
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8.4 Hierarchical Bases and Preconditioners

The previous sections have examined basis reduction, to reduce problem size, and
the highly specialized approach of using the FFT for problem diagonalization.

We now return to the question of whether a general-purpose change of basis can be
found, appropriate for spatial estimation. We recall from Section 8.1 that for sparsely
measured domains an explicit change of basis may not be appropriate, rather an
implicit reformulation of the estimation problem is found by transforming the linear
system

ẑ =
(
P−1 + CTR−1C

)−1
CTR−1m ⇒ (

P−1 + CTR−1C
)
ẑ = CTR−1m

⇒ Aẑ = b (8.83)

by a change of basis z = Sz̄:

Az = b −→ STASz̄ = ST b −→ Āz̄ = b̄

⏐
⏐
⏐
: Easy ?

ẑ
S←−−−−−−−−−−−−−−−−− ˆ̄z

(8.84)

Recall from Figures 8.1 (page 242) and 8.2 that the poor conditioning ofA, especially
in our context of random fields, stems from interaction locality.

In principal components, a change of basis was inferred from the problem covari-
ance, but made no assumptions regarding the arrangement of state elements in z.
Now, in contrast, we wish to explicitly recognize that z represents a spatial problem
with the assumption that nearby pixels interact strongly. Can we introduce a change
of basis S in which the basis elements z̄ are nonlocal, allowing spatially-separated
state elements to be coupled?

Even in the spatial case, the perfect change of basis remains the eigendecomposi-
tion which will, in general, have highly nonlocal basis vectors. However, we do not
want to precondition with a set of highly nonlocal vectors, because it is unlikely that
we will happen to select something that resembles eigenvectors, and indeed highly
possible that we may create a set of coefficients even more correlated than before.

That a nonlocal basis z̄ is not, on its own, enough to necessarily improve the condi-
tioning of Ā over A can be seen in Figure 8.12, which illustrates the effect of five
preconditioners on the conditioning of a first- and a second-order system. The local
averaging operator, in which each element in the transformed space is a smeared or
locally-averaged version of the original space, is a nonlocal operator, however the
conditioning was made worse for the first-order test case.
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A1 =
`
CTR−1C + λLTL

´
for First-OrderL A2 =

`
CTR−1C + λLTL

´
for Second-Order L

Ideal Preconditioner for A1 Ideal Preconditioner for A2

The columns (eigenvectors) in the ideal preconditioners are weighted by the eigenvalues to
show significance. For a given change of basis matrix S, we can compute the problem condi-
tioning as κi = κ(STAiS):

No Preconditioning Local Average Weighted Average Hier. – Wavelet Hier. – Triangular
κ1 = 39 κ1 = 154 κ1 = 26 κ1 = 8 κ1 = 5
κ2 = 1485 κ2 = 939 κ2 = 3 κ2 = 284 κ2 = 66

Fig. 8.12. Illustration of preconditioning: Each panel plots the sparsity structure of the corre-
sponding matrix, with circle size related to magnitude, and the filled/unfilled state related to
sign. It is clear that problem conditioning can change greatly as a function of preconditioning,
although the best choice of preconditioner will vary with the problem.
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Let us briefly consider the most obvious forms of nonlocal behaviour. As is very
familiar from signal analysis [244], there are two extremes of local / nonlocal be-
haviour:

Impulse:

time

⇐⇒
freq

Sinusoid:

time

⇐⇒
freq

Because we are trying to find basis vectors which are not purely local, but at the same
time not highly nonlocal, we are motivated to consider vectors at a more intermediate
scale, localized in both the time and frequency domains:

Sinc:

time

⇐⇒
freq

Gaussian:

time

⇐⇒
freq

The latter Gaussian function is particularly interesting for being local in both the
spatial and frequency domains.

It is possible to create bases using shifted versions of all of the above functions, how-
ever empirically it has been found that effective preconditioners need to introduce a
range of nonlocality, such that both local and nonlocal effects can be effectively rep-
resented in the transformed space. Unfortunately, it is not obvious how to take shifted
versions of the above functions at various scales to make a multiresolution basis.

Hierarchical systems offer precisely such a range of nonlocality, and two such hier-
archical bases are discussed in the following sections.
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= · ·

Net Interpolant S S2 S1 S0

Fig. 8.13. A hierarchical interpolant S can be built up as the product of local interpolations
Sj over scales. Here S0 interpolates the midpoint from the two endpoints, with progressively
local interpolants in S1 and S2.

8.4.1 Interpolated Hierarchical Bases

The simplest approach to creating a basis having a range of scales is to develop a
hierarchical interpolator. Precisely such a method comes out of the preconditioning
literature [347,348] and has been used for multidimensional surface estimation [298,
299].

If we are wishing to specify a hierarchical interpolator, it is cleaner, more intuitive,
and possibly much simpler to construct S hierarchically, rather than as a single trans-
formation. Therefore our goal is to write the transformation as

z = Sz̄ = SJSJ−1 · · ·S1S0z̄ (8.85)

over J scales, as illustrated in Figure 8.13, such that Sj represents the interpolation
at the jth scale. At each scale, the new nodes introduced at a scale are interpolated
from nodes at the coarser scale, a simple operation which leads to very sparse and
simply-structured Sj .

The resulting change of basis for a three-scale representation of a one-dimensional
process gives a total of nine basis elements, implied by the columns of S in Fig-
ure 8.13, and plotted graphically in Figure 8.14.

We do not, however, wish to specify S explicitly: for a N × N domain, the matrix
S will be N2 × N2, a very large matrix to store, even if sparse. As in the lengthy
discussion of sparse kernels in Section 5.3.2, a similar conclusion applies: we should
specify S implicitly, via an interpolation algorithm

q = Sj q̄ ≡ Interp(q̄, j) (8.86)

so that the net transformation is computed as

z = Interp
(

Interp
(
. . . Interp(z̄, 0) . . . , J − 1

)
, J
)
. (8.87)
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Fig. 8.14. The hierarchical interpolator S in Figure 8.13 is composed of nine interpolants
(the columns of S) at different scales. If local interpolation is used in Sj , then the resulting
interpolants in S are triangular, as shown.

The implicit, algorithmic formulation of (8.87) facilitates the generalization of this
approach to methods other than one-dimensional triangular. In particular, the interpo-
lation may be chosen to be linear or nonlinear (cubic etc.); similarly if z is understood
to be a multidimensional field, organized lexicographically, then the interpolation can
just as easily be bilinear or bicubic.

The only disadvantage of this interpolative method is the need to specify and imple-
ment it in the first place. Given the widespread availability of implemented wavelet
transforms, we are highly motivated to consider wavelets, discussed in the following
section.

8.4.2 Wavelet Hierarchical Bases

A multiresolution decomposition [221, 293] is one in which an interpolator

Aj : V∞ → Vj (8.88)

maps from infinite spatial resolution V∞ to a vector space Vj at resolution j. Under
the conditions that

1. A coarse resolution signal is representable at finer resolutions:

Vj ⊂ Vj+1 ⊂ · · · (8.89)

2. The subspaces are stretched by a factor of two:

f(t) ∈ Vj ⇐⇒ f(2t) ∈ Vj+1. (8.90)

3. Shift invariance
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Haar Wavelet ψ(t) Haar Basis, {ψ(2jt− n)}
Fig. 8.15. The Haar wavelet basis: The single Haar wavelet function, left, forms a basis when
shifted and dilated, right.

then6 there exists a unique function φ such that
{
2jφ(2jt− n)

}
(8.91)

is a basis for Vj . However this still leaves us with a basis in which all elements are
at one scale, like a set of shifted sinc or Gaussian functions. Furthermore, we cannot
just combine basis elements from different scales j, since that may not leave us with
a basis.

Instead, the key idea with wavelets is the following:

Suppose we have a basis for a coarse resolution. What new information do
we need in order to represent a finer scale?

Let us seek to define a vector space Wj such that

Vj+1 = Vj ⊕Wj Vj ⊥Wj (8.92)

meaning that

Basis for coarse scale Vj

Basis for missing details Wj

}
Basis for finer scale Vj+1. (8.93)

Under the conditions [221] for the multiresolution decomposition, there exists a
unique function ψ such that shifted and dilated versions of ψ

{
2jψ(2jt− n)

}
(8.94)

form a basis for Wj , as is illustrated in Figure 8.15 for the simple case of the Haar
wavelet. By extending the decomposition of (8.92),

Vj+1 = Vj ⊕Wj (8.95)

=
(
Vj−1 ⊕Wj−1

)⊕Wj (8.96)

= Vj−q︸ ︷︷ ︸
Very Coarse

⊕ Wj−q︸ ︷︷ ︸
Coarse

⊕ · · · ⊕ Wj︸ ︷︷ ︸
Very Fine

, (8.97)

6 There are technical conditions that ∪jVj is dense and ∩jVj = {0}.
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Fig. 8.16. The space (or time) and frequency domains can be carved up in various ways. The
figure shows five possible representations of eight coefficients. The wavelet approaches are
unique, offering high-resolution coefficients in both the temporal and the frequency domains.

we observe that we have met our goal of expressing a basis for Vj+1 in terms of basis
elements at all scales. The resulting wavelet basis essentially represents a tradeoff
between the time and frequency representations, as illustrated in Figure 8.16.

The generalization of wavelets to multiple dimensions is straightforward, both for
computational and implementation reasons. The O(n) complexity of the wavelet
transform is fast, as opposed to the O(n log n) complexity of the fast Fourier trans-
form, and is therefore applicable to exceptionally large problems. Furthermore, for
orthogonal wavelets, the multidimensional transform can be computed by taking
one-dimensional transforms along each dimension, as with the Fourier transform.

The basis change for a multidimensional, lexicographically ordered z is thus easily
accomplished by using the corresponding multidimensional wavelet transform [345]

z = WT(z̄). (8.98)

The orthogonality of the wavelet transform, like the Fourier transform, means that
the inverse and adjoint (transpose) operators are equivalent, such that the product Āz̄
from (8.7) is easily computed as

Āz̄ = STASz̄ (8.99)

= WT−1
(
A · WT

(
z̄
))
. (8.100)

8.4.3 Wavelets and Statistics

The great many choices of wavelets and the computational efficiency and hierarchical
representation of the wavelet transform have led to extensive study, including some
work on wavelet statistical properties [237, 317].



276 8 Changes of Basis

Example 8.4: Hierarchical Bases

Suppose we consider a one-dimensional, second-order interpolation. We will ap-
ply a simple, iterative approach (Gauss–Seidel, of Section 9.2) solution to the re-
sulting linear system. The second-order (thin plate) problem is badly conditioned,
such that after one thousand iterations, almost no progress has been made towards
the desired solution:
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In contrast, the hierarchical preconditioned problems converge much faster. Be-
cause thin plate implies a rather smooth prior, the smoother bases (triangular,
DB4) converge more rapidly, with DB4 mostly converged in only ten iterations:

Hierarchical Triangular Haar Wavelet (DB1)
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Given a random field or process z ∼ P , the transformation of this process by a
wavelet transform leads to the modified statistics

z̄ = WT(z) = Wz ⇒ z̄ ∼ P̄ = WPWT . (8.101)

In many cases, certainly for many smooth z but also for fractal fields [117], P̄ is
assumed to be nearly diagonal, meaning that z has been decorrelated. Indeed, that
the wavelet transform nearly whitens many signals is precisely the rationale for its
use in preconditioning and changes of basis.

Because images are usually densely measured, the near-whitening property of the
wavelet transform has made it popular as an explicit change of basis in image pro-
cessing. If a process is densely measured with white additive noise,

m = Iz + v v ∼ σI (8.102)

then the whole problem can be transformed, using an orthogonal waveletW , into the
wavelet domain:

m̄ = Wm, z̄ = Wz, v̄ = Wv ⇒ m̄ = Iz̄ + v̄ v̄ ∼ σI (8.103)

such that the transformed problem has two particularly convenient properties:

1. The noise v̄ remains white, because of the orthogonality of W .

2. The prior model for z̄ may be chosen to be diagonal.

Therefore the resulting estimation problem is pointwise, without spatial interactions,
which has led to a wide variety of wavelet methods for image estimation [114, 115].

The whitening behaviour of most wavelets implies that the wavelet transform of real
images is sparse, meaning that most of the coefficients are near zero. This observation
has led to a variety of image-compression methods [302]. Similarly, the sparsity of
the coefficients has allowed the statistical behaviour of the nonzero coefficients to be
studied, particularly for basic fundamental image shapes (steps, edges, etc.), which
has led to methods for wavelet-based image resolution enhancement [262].

The marginal statistics for z′ are not, however, Gaussian. For two-dimensional pic-
tures, the marginal statistics of z′ are more strongly concentrated at zero than a Gaus-
sian, and the wavelet coefficients have been modelled as Rician, generalized Gaus-
sian [57], and Gaussian scale mixtures [263] among others. Because the marginal
statistics are no longer Gaussian, the optimal Bayesian estimator is nonlinear, which
has led to a wide variety of nonlinear and thresholding approaches to image denois-
ing [56, 87], a simple version of which is explored in Problem 8.5.

The wavelet transform is not, of course, a perfect whitener. The spatial correlations
have been studied [13, 306], although more success has been had by studying the
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parent–child relationship of coefficients [77,149,262,274], which led to models such
as the Hidden Markov Tree, which was illustrated in Figure 7.7.

The hierarchical nature of wavelets also makes them a natural choice for the analysis
and representation of power-law or 1/f processes [339, 340], and which has been
used as the basis for estimating power-law fields [105].

8.5 Basis Changes and Markov Random Fields

Given the interest throughout this text in Markov random fields and sparse models,
it is worthwhile asking how such models are affected by a change of basis, and
particularly by a hierarchical change.

In general, given a sparse random field Z , such that

[Z]: = z ∼ P P−1 sparse (8.104)

then if this field is operated upon by some change-of-basis operator F , the trans-
formed field

z̄ = Fz ∼ P̄ P̄−1 =
(
FPFT

)−1 = F−TP−1F−1, (8.105)

where we assume that F is square and invertible. Since it is F which would normally
be specified in a change of basis, and not F−1, it is exceptionally unlikely that F−1

would in any way be sparse, therefore almost certainly the sparsity of P−1 has been
lost in P̄−1.

This loss of sparsity is not necessarily tragic, however, since the transformed system
may not need to be written down explicitly or, in the case of a reduction of basis,
the transformed system may be sufficiently small that a sparse representation is not
needed. Recalling the implicit change of basis from (8.84), we had the transformation
of a linear system

Az = b, (8.106)

where A is sparse, to the transformed system

STASz̄ = ST b ⇐⇒ Āz̄ = b̄, (8.107)

where Ā is now dense, as argued in the previous paragraph. However, we do not
necessarily need to store Ā; instead, the matrix–vector product Āz̄ is calculated as

Āz̄ ≡ ST
(
A
(
Sz̄
))
. (8.108)

That is, we require only the ability to compute the three matrix–vector products
STx, Ay, Sz to preserve the benefits of the sparsity of A.

The above discussion dealt with changes and reductions of basis in general. However,
there is a much more interesting, specific question:
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Given a Markov random fieldZ , if I subsample the random field or represent
it at a reduced resolution, is the resulting field still Markov?

Let us start with a few special cases. If our random field Z is zeroth-order Markov
(white noise), then any orthogonal resolution reduction will result in a zeroth-order
Markov field, since

z ∼ I =⇒ z̄ = Fz ∼ FIFT = FFT = I. (8.109)

However the absence of any spatial interactions in the zeroth-order case makes it
of limited interest. Certainly if Z is first-order Markov, such that the columns of Z
satisfy

ELLSE
[
zi−1|zi, zi+1, zi+2, . . .

]
= ELLSE

[
zi−1|zi

]
(8.110)

then it follows that

ELLSE
[
zi−2|zi, zi+2, zi+4, . . .

]
= ELLSE

[
zi−2|zi

]
, (8.111)

meaning that if we subsample the columns of Z , the resulting random field is still
column-wise Markov, although row-wise the Markovianity will (most likely) have
been lost.

The loss of Markovianity in downsampling stems from the fact that the exact, fine-
scale state values are lost, and replaced with functions (e.g., averages) of those state
values. Consider, for example, a Markov process with four state elements

zT = z1 z2 z3 z4 (8.112)

Suppose the process is first-order Markov, meaning that either z2 or z3 can condi-
tionally decouple z1 and z4. The process prior inverse could look something like

P−1 = G =

⎡

⎢
⎢
⎢⎢
⎢
⎣

1.2 -1 0 0

-1 2.2 -1 0

0 -1 2.2 -1

0 0 -1 1.2

⎤

⎥
⎥
⎥⎥
⎥
⎦

(8.113)

Those entries with the grey background highlight those parts of G which must be
zero in order for the prior to be first-order Markov.

Now suppose we modify the process by averaging the middle two elements:

(Fz)T = z̄T = z1 z2+z3
2

z4 (8.114)

where F is a 3×4 array. The new middle element contains the information from both
neighbouring values in the middle of the original process; we might näively suppose
that
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Fig. 8.17. The panels show two examples of downsampling two-dimensional MRFs. Random
fields corresponding to both kernels are created in a 2D domain, which is subsampled by
2 × 2 block averaging. Although the subsampled field is no longer Markov, it is clear that
the subsampled field is very nearly Markov, based on the sparsity of the subsampled kernel.
It should come as no surprise that the kernel values have changed, since subsampling affects
the random field variance and correlation structure. Both priors illustrated here are isotropic,
therefore only one quadrant of the kernel is shown, with the kernel origin in the upper-left
corner.

z2 + z3
2

represents a boundary of thickness two, and therefore easily conditionally separating
z1 and z4. However, if we examine the prior inverse of z̄,

P̄−1 =
(
FG−1FT

)−1 =

⎡

⎢
⎢
⎣

1 -1 0.16

-1 2.4 -1

0.16 -1 1

⎤

⎥
⎥
⎦ (8.115)

we find that this process is, indeed, no longer first-order Markov, by the presence of
nonzero values in the greyed entries. We do notice, however, that the greyed entries
are small. Indeed, Figure 8.17 shows the kernels which arise from downsampling
two-dimensional MRFs; the downsampled fields, although not precisely Markov, are
very nearly so. In many cases it may be very reasonable to approximate a downsam-
pled MRF as Markov.

It is possible to consider the question of constructing exact Gibbs/Markov process at
multiple resolutions [136], however the results are very complicated, in part because
the downsampled field is not Markov and therefore gives rise to nonlocal cliques
and neighbourhoods. The question of downsampling and subsampling MRFs has
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(a) 1D Ising Process (b) Markov Chain for the Random Walk in k

Fig. 8.18. In a one-dimensional Ising process (left) the boundary, dashed, between two state
values will move as a random walk (right), until the optimum is reached when k = 0. The
details of the transition probabilities in the corresponding Markov chain will depend on the
details of the sampling algorithm.

been examined in detail in [199], and also in [146, 197, 199, 254]. There has also
been considerable work in performing image operations, such as segmentation or
denoising, using hierarchies of Markov random fields [35,58,146,186,234,334,341].

8.6 Basis Changes and Discrete-State Fields

Most discrete-state models, such as those discussed in Section 7.4, are local Markov /
Gibbs, and therefore are subject to the same issues of indirection as local continuous-
state models, as was discussed at the start of this chapter and illustrated in Figure 8.1
on page 242.

Although the same notion of ill-conditioning does not apply to discrete-state random
fields, the slowness of convergence seen in Figure 8.2 applies equally to the discrete-
state case, as was discussed in the image segmentation illustration of Application 7
on page 232.

Figure 8.18(a) illustrates the locality principle for the discrete-state Ising model (Sec-
tion 7.4.1). Given a one-dimensional binary process, with k elements of value −1
followed by an indefinite sequence of +1, the probability of the Ising prior is clearly
maximized when all of the states have the same value, meaning that the k elements
point up. Under certain assumptions7 the only state elements that can change are
those on either side of the dashed boundary, leading the value of k to undergo a ran-
dom walk over time, as illustrated in Figure 8.18(b), a well-known Markov chain (the
“Gambler’s Ruin” problem [248]). The optimum, at k = 0, is eventually reached, but
the number of iterations is quadratic in k.

7 The sampling of such processes will be discussed in Section 11.3; we are assuming a Gibbs
sampler with a random site-visiting scheme at temperature T = 0.
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Fig. 8.19. The downsampling of Ising models: strongly coupled fields become more strongly
coupled, top, and weakly coupled fields more weak, bottom.

Consequently, for local random field models it is exceptionally difficult to synthesize
structures large in size relative to the local neighbourhood.

In response to this observation, we are motivated to consider changes of basis for
discrete-valued random fields. The key difficulty is that discrete state fields do not
allow a tapered basis. That is, essentially all of the continuous state bases — spatial
functions in Figure 8.8, overlapped methods in Figure 8.9, hierarchical triangles in
Section 8.4.1, wavelets in Section 8.4.2 — rely on a large-scale basis element being
spatially tapered. In the continuous-state case, a large-scale element can be a smooth,
low-resolution representation, which is then incrementally nudged and refined to-
wards finer scales. However, a discrete hierarchy does not allow for a smoothly-
varying representation or for small refinements in state value from scale to scale.

Fundamentally, the issue is that discrete fields are not closed under addition or mul-
tiplication, meaning that one cannot even write z̄ = Fz, as in (8.1), for discrete z.
That is, a literal change of basis will not be possible.

It is, however, possible to construct discrete-state hierarchies based on downsam-
pling. For example, given an energy function H(z), we can seek to find the energy
Hk(↓k z) corresponding to the field after k scales of downsampling. It is possible to
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Fig. 8.20. Downsampling a 2D Ising model exaggerates the difference between the coupling
β and the critical value of 0.4407, as was illustrated for two cases in Figure 8.19.

derive Hk analytically, per the seminal work by Gidas [136], however in practice it
is common to assume the form of the energy function,

Hk(↓k z) ≡ H(↓k z, θk) (8.116)

with the scale dependence only in model parameter θ. The famous example of such
downsampling is the Ising model (Section 7.4.1) [26, 171, 335] which, after down-
sampling, remains an Ising model but with a different degree of coupling:

• A weakly coupled field possesses only small structures. When downsampled, the
structures become even smaller, thus closer to random

=⇒ Even more weakly coupled

• A strongly coupled field has most pixels with the same state value, with occasional
outliers. When downsampled, outliers tend to be removed

=⇒ Even more strongly coupled

as illustrated for two examples in Figure 8.19, and plotted as a function of β in
Figure 8.20.

The intent of the Ising examples is to illustrate that a hierarchical representation,
even if not a change of basis, is plausible for discrete-state fields. There are two
hierarchies to consider:

1. Top-down, in which the hierarchy begins at a coarse scale, with the coarse-scale
elements repeatedly refined at finer scales.
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Swendsen–Wang Repeated Random Grouping [297]
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Fig. 8.21. Two approaches to discrete-state grouping. Groups may be repeatedly created and
destroyed, top, or groups may persist, bottom, and be grouped further. The hierarchical group-
ing leads to much larger groups and better computational efficiency, but may suffer from the
persistence of a poor grouping.

2. Bottom-up, in which the hierarchy begins at the finest, pixellated scale, and
where some sort of grouping or aggregation leads to coarser representations.

For discrete-state problems, the bottom-up approach is considerably more common,
precisely because of the ambiguity in representing a discrete field at a coarse scale.
Because the field is discrete, however, it will be common to have adjacent elements
with precisely the same value, leading to a natural notion of grouping, as illustrated
in Figure 8.21. The Swendsen–Wang method [184, 297] was proposed for the ac-
celeration of Ising–Potts models, whereby groups of state elements are changed si-
multaneously, rather than one pixel at a time. Because the domain is periodically
ungrouped and regrouped, no grouping assignment is ever fixed, meaning that a poor
grouping at some iteration does not compromise the final result.

In contrast, methods of region grouping [217, 314, 329] lead to much more rapid
convergence by growing much larger groups, but with the cost that grouping cannot
be undone, meaning that grouping errors persist in future iterations.

Top-down approaches, which dominate in continuous-state problems, can also be
applied in the discrete-state case, as shown in Figure 8.22. In a regular coarse-to-
fine hierarchy [5], the result from a coarser scale becomes the initialization at a finer
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Coarse Fine

Coarse-to-Fine Binary Hierarchy [5]

Coarse Fine

Coarse-to-Fine Ternary Hierarchy, Sampling Only Grey Elements [50]

Fig. 8.22. Two approaches to discrete-state top-down hierarchies. The result at each scale may
only serve as the initialization of the next, top, or each scale may constrain the behaviour of
the next, bottom.

scale, leading to the obvious problem that the fine scales are not prevented from
diverging from the coarse-scale initialization.

Although not literally a change of basis, the ternary approach [50] illustrated in the
bottom panel of Figure 8.22 is close in spirit to an orthogonal representation. The
binary state is augmented to ternary by adding an undecided condition; all decided
elements (black or white) are fixed, such that at any scale the large-scale structure
inherited from coarser scales is unchangeable, and only the undecided elements are
sampled. The small fraction of undecided pixels at fine scales leads to computational
benefits similar to those of basis reduction.

Application 8: Global Data Assimilation [111]

Let us consider an example, building on the state-reduction methods described in
Section 8.2.2.

Suppose we wish to simulate a General Circulation Model, a model of the world’s
oceans which is driven by observed data, such as sea-surface temperature. A good
representation of the partial differential equations governing water circulation re-
quire a very fine resolution, however running a Kalman-like filter and producing
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Fig. 8.23. Mapping test for global-scale problem, from [111]. The coarse grid is 71 × 62,
superimposed on a 2160 × 960 fine grid. The centred locations of the 3551 interpolants are
shown as white dots.

error statistics can be done only at a relatively coarse scale, hence we have a state-
reduction or two-scale problem.

Specifically, suppose we have the global problem illustrated in Figure 8.23. The pre-
diction step is performed by some numerical differential equation

z(t+ 1|t) = A(z(t|t)). (8.117)

The error statistics are updated using a reduced-order Kalman filter (Section 10.2.6),
which operates on a much smaller state z̄,

z̄(t|t) = K(z(t|t− 1)
)
, (8.118)

where the number and locations of the reduced states are indicated by the white dots
in Figure 8.23.

The key challenge is therefore the transformation between the fine z and coarse z̄
scales, as in (8.8):

z̄ = Fz z = Sz̄, (8.119)

in particular, such that the transformation does not distort the coarse–fine–coarse
cycle, meaning that we wish the pseudoinverse criterion

F
(
S(z̄)

) ≡ z̄ (8.120)

to be satisfied, exactly as discussed in Section 8.2. Figure 8.24 shows one fine–
coarse–fine mapping, using a Gaussian kernel from Figure 8.8.
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Fig. 8.24. A fine–coarse–fine mapping from Figure 8.23 [111], meaning that this fine-scale
image was reconstructed from only 3551 coarse-scale values, a compression from the fine
scale by a factor of over 400. Observe the absence of distortions, even along boundaries.

Summary

The following table gives a quick overview of the methods developed in this chapter
and the contexts to which they apply.

Reductions of Basis:

Section Method Basic Assumptions

8.2.1 Principal Components Problem stationarity along some dimension
8.2.2 Fast Pseudoinverses Spatial smoothness
8.2.3 Local Processing Limited correlation, dense measurements

Changes of Basis:

Section Method Basic Assumptions

8.3 FFT Full stationarity and periodicity
8.4.1 Hierarchical Triangles None
8.4.2 Hierarchical Wavelets None
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For Further Study

For aspects of principal components, the text by Jolliffe [179] is recommended.
For interested readers, the generalization of principal components to independent
components analysis is discussed in the elegant text by Hyvärinen, Karhunen, and
Oja [166].

The papers by Szeliski [299] and Yaou and Chang [345] look at the solving of two-
dimensional inverse problems using triangular and wavelet bases, respectively.

This chapter has given only the most basic introduction to simple, orthogonal
wavelets, whereas there are a great number of orthogonal, bi-orthogonal, non-
orthogonal, complex, complete, and overcomplete wavelet variations from which to
choose. The text by Strang and Nguyen [293] is an excellent place to start.

Sample Problems

Problem 8.1: FFT Sampling

(a) Use the FFT method to generate a random sample of each of the three kernels
in Example 6.1.

Consider the thin-plate kernel in Example 6.1. Set the central element to one of
20.1, 20.01, 20.001, 20.0001; for each of these four values do the following:

(b) Use the FFT method to generate a random sample.
(c) Use the FFT method to find the eigenvalues of the kernel, and from those

infer the condition number.

Problem 8.2: FFT Estimation

Consider the thin-plate kernel in Example 6.1. Set the central element to one of
20.1, 20.01, 20.001, 20.0001; for each of these four values do the following:

(a) Use the FFT method to generate a random sample.
(b) Add unit variance Gaussian noise to each state element.
(c) Use the FFT method to compute state estimates and estimation error vari-

ances.
(d) Comment on how and why the estimation error variance varies with the se-

lected prior kernel.
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Problem 8.3: Basis Reduction

Suppose we construct an estimation problem similar to the one in Figure 8.2:
z is one-dimensional, with 200 elements, having a first-order (membrane) prior.
Because the first-order prior is singular, we will add an additional constraint

lT =
[
1 1 · · · 1 1

]
(8.121)

which penalizes the deviations of z from zero.

(a) Calculate the prior covariance P .
(b) Find the eigenvector associated with the largest eigenvalue of P .
(c) Find the eigenvector associated with the eigenvalue of P closest to zero.
(d) Describe briefly the behaviour of a reduced-order system, on the basis of the

eigenvectors preserved (large eigenvalue) and rejected (small eigenvalue).

Problem 8.4: Basis Reduction

Construct a one-dimensional estimation problem, as in Problem 8.3, but for both
first-order and second-order priors, with two measurements:

m1 = z50 + v1 ∼ N (1, 1) m2 = z150 + v2 ∼ N (1, 1). (8.122)

Calculate the covariancesP1, P2 for the first- and second-order problems, respec-
tively, and find the sorted singular values σj,i of Pj :

(a) Plot the singular values σ1,i and σ2,i.
(b) Interpret the singular value plot in terms of the degree to which the basis can

be reduced.
(c) Interpret the singular value plot in terms of the condition number of the orig-

inal problem.

Problem 8.5: Open-Ended Real-Data Problem — Wavelet-Based Estimation

Let us apply the wavelet change of basis from (8.103) to image denoising, a
process known as wavelet shrinkage [56, 87]. Find an image Z (from the Inter-
net):

(a) Add Gaussian noise V to form measurements M = Z + V .
(b) Take the wavelet transform M̄ = WT(M), for example using wavedec in

MATLAB with wavelet ’db4’.
(c) Our “estimator” will be a simple, nonlinear threshold:

ˆ̄zi =

{
0 |m̄i| < ζ

m̄i |m̄i| ≥ ζ
(8.123)
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(d) Take the inverse wavelet transform Ẑ = WT−1( ˆ̄Z).
(e) Experiment with different choices for the settings under your control:

(i) The type of noise: Gaussian, salt-and-pepper
(ii) The type of wavelet: DB1, DB2, DB4, . . .

(iii) The type of estimator: hard thresholding, soft thresholding etc.
(iv) The choice of threshold ζ



Part III

Methods and Algorithms
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Linear Systems Estimation

One of the most fundamental equations in this book is the solution to the Bayesian
linear least-squares estimator of (3.114):

ẑ(m) = μ+
(
P−1 + CTR−1C

)−1
CTR−1(m− Cμ) (9.1)

P̃ = cov(z̃) =
(
P−1 + CTR−1C

)−1
. (9.2)

The presence of matrix inversions clearly limits the size of the problem (the number
of elements in z) to which these equations can be applied directly. The enormous sig-
nificance of these equations, however, is that in every least-squares problem, whether
static or dynamic, possibly in some reduced dimensional space or transformed basis
(as in Chapter 8), (9.2) needs to be solved.

Although (9.2) makes explicit reference to Bayesian prior P , we could equally well
be solving a non-Bayesian least-squares estimation problem

ẑ(m) =
(
LTL+ CTR−1C

)−1
CTR−1m. (9.3)

As the two forms are algebraically equivalent (Section 3.2.4), and as the focus of
this chapter is the algorithmic solution of an algebraic problem the Bayesian / non-
Bayesian differences are not relevant here, so without loss of generality we consider
the estimator

ẑ =
(
Q+ CTR−1C

)−1
CTR−1m (9.4)

from which follows the linear system
(
Q+ CTR−1C

)

︸ ︷︷ ︸
A

ẑ =
(
CTR−1

)
m

︸ ︷︷ ︸
b

, (9.5)

a system known as the normal equations. We are thus left to solve a regular linear
system or its preconditioned equivalent (8.7)

Aẑ = b or STAS ˆ̄z = ST b. (9.6)

P. Fieguth, Statistical Image Processing and Multidimensional Modeling, Information Science 293
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As A has the same size as P , it is infeasible to consider a dense storage of A for
large problems, so a sparse (Section 5.3) or implicit representation of A is needed;
in particular, we need efficient ways of computing the matrix–vector product

Aẑ = Qẑ + CTR−1Cẑ. (9.7)

For example, given a stationary problem with uncorrelated point measurements, then
C = I,R = Diag(r), and Q has a kernelQ, thus

Aẑ = Qẑ + IT
(
Diag(r)

)−1
Iẑ =

[
Q ∗ Ẑ

]

:
+ ẑ � r, (9.8)

much faster and requiring vastly less storage than the explicit calculation with full
matrix A. Even with a more complex problem, say a nonstationary Markov prior
with correlated point measurements, then A is still sparse, with b bands, where b
is a function of the Markov order of the prior and the correlation structure in R.
In this case the product Aẑ is still efficient, although the storage requirements for
A are b times the storage size of ẑ. In many such nonstationary cases, for example
the interpolation of Example 5.1, matrix A (or its components Q,C,R) may not be
stored at all, but rather be represented implicitly by being generated dynamically by
a computer algorithm:

Aẑ ≡ a(ẑ). (9.9)

This is particularly useful for problems in which most state elements are stationary,
represented by a kernel, with a limited number of exceptions (e.g., boundary condi-
tions) to be computed separately. Under the assumption that the exceptions are not
computationally difficult to detect, the computational complexity of computing a(ẑ)
should be the same as that for the sparse matrix–vector product Aẑ.

For Bayesian estimation problems it is also possible [298] to solve P̃ using linear
systems techniques:

P̃ =
(
P−1 + CTR−1C

)−1
=⇒ (

P−1 + CTR−1C
)
P̃ = I. (9.10)

Thus the columns of P̃ =
[
p̃0 p̃1 . . .

]
can each be solved as

(
P−1 + CTR−1C

)
p̃i = ei, (9.11)

where ei is the ith unit vector. However, for an n-element random field z there will
be n separate linear systems to solve, thus for all but the very smallest problems
(9.11) is, at best, an exploratory approach, whereby a few individual columns of P̃
could be computed to acquire some understanding of the behaviour of P̃ .

With linear systems solving firmly connected to estimation, the remainder of this
chapter surveys seven approaches to solving them, divided into direct and iterative
methods. In general, direct methods have the advantage of being exact (excepting nu-
merical errors) and having a fairly predictable computational complexity. The great
attraction of iterative methods is their much simpler implementation and their com-
patibility with sparse A or implicit a() of (9.9). However since the iterative methods
gradually approach the solution, questions of accuracy and computational complex-
ity may be problem-dependent.
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9.1 Direct Solution

Our canonical problem, appearing both in static and dynamic estimators, shown in
(9.4), involves a matrix inverse:

ẑ(m) =
(
LTL+ CTR−1C

)−1
CTR−1m (9.12)

= A−1b. (9.13)

It may be tempting, given such a problem, to compute the explicit matrix inverse
A−1, however this is inadvisable on grounds of numerical accuracy. A number of
iterative approaches to solving (9.13) are discussed in Section 9.2, however there do
exist non-iterative methods, superior to explicit matrix inversion, for solving such
systems. These are discussed in the remainder of this section.

9.1.1 Gaussian Elimination

Gaussian Elimination, discussed in Appendix A.7.3, is a direct non-iterative ap-
proach to solving linear systems. We apply repeated row operations to the system
to convert

Aẑ = b
Row operations−−−−−−−−−−−−→ Iẑ = b′. (9.14)

Gaussian elimination is impractical for all but the smallest linear systems for the
key reason that in order to be able to apply row operations to A, we need a full,
dense, explicit version ofA. Furthermore, as Gaussian elimination proceeds, the row
operations make A increasingly dense, even if initially sparse. Therefore Gaussian
elimination is either inapplicable, or extremely undesirable, given sparse, kernel, or
implicit representations of A.

It is common to use the LU decomposition (Appendix A.7.3), which yields triangular
matrices L and U , allowing the linear system to be solved by backsubstitution.

9.1.2 Cholesky Decomposition

Because the normal equations in A are known to be symmetric, positive-definite,
the Cholesky decomposition is preferred over the LU decomposition for reasons
of implementation simplicity, numerical robustness, and computational complexity.
The Cholesky decomposition, discussed in Appendix A.7.3, takes a given positive-
definite matrix A and computes its matrix square root

A = GGT , (9.15)

whereG is lower triangular. The method, shown in Algorithm 4, is attractive because
of its implementation simplicity (the reader may observe the absence of pivoting
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Algorithm 4 The Cholesky Decomposition(many variations exist, see [132, 264])
Goals: Find the matrix square root G of symmetric, positive definite n× n matrix A
Function G = Chol(A)
G← A
for i← 1 : n do

for j ← 1 : (i− 1) do
for k ← i : n do
gki ← gki − gkj · gij

end for
end for
gii =

√
gii

for j ← (i+ 1) : n do
gji ← gji/gii

end for
end for

issues common in Gaussian elimination), numerical robustness, and a computational
complexity of one half of that of the LU decomposition.

It is the triangularity of G (in both the Cholesky and LU decompositions) which is
key to the method’s efficiency. Given

GGT ẑ = b, (9.16)

using backsubstitution we can easily solve for x in

Gx = b, (9.17)

and then again using backsubstitution to solve for ẑ in

GT ẑ = x. (9.18)

For problems of modest size, solving a linear system using a Cholesky decomposi-
tion followed by backsubstitution is a very credible and numerically robust alterna-
tive to direct matrix inversion.

9.1.3 Nested Dissection

For problems of large size the Cholesky approach may remain tractable, however
subtleties appear. The decomposition algorithm of Algorithm 4 is written in dense
form, however for most sparse A the decomposed triangular square root G may or
may not be sparse. The degree to which G is denser than A is referred to as fill-in,
and may be a function of the ordering of rows and columns in A [132], for example
whether the state elements in Z should be lexicographically stacked in columns, in
rows, or in some other ordering.
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Fig. 9.1. Dividing a domain into decoupled parts, with the boundary elements placed at the
end of Z, leads to a reordered A and block-sparse square root G, as shown.

For example, given a small linear system consisting of four elements, the Cholesky
factor G ends up dense, even though the linear system possessed sparsity:

⎡

⎢
⎢
⎢
⎢⎢
⎣

0 0

0 0

0 0

⎤

⎥
⎥
⎥
⎥⎥
⎦

⎡

⎢
⎢
⎣

z1
z2
z3
z4

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

b1
b2
b3
b4

⎤

⎥
⎥
⎦ =⇒ G =

⎡

⎢
⎢
⎢
⎢⎢
⎣

0 0 0

0 0

0

⎤

⎥
⎥
⎥
⎥⎥
⎦

(9.19)

In this particular case, if the equations are written in reverse order, the recursive,
sequential dependence of the Cholesky method preserves sparsity:

⎡

⎢
⎢
⎢⎢
⎢
⎣

0 0

0 0

0 0

⎤

⎥
⎥
⎥⎥
⎥
⎦

⎡

⎢
⎢
⎣

z4
z3
z2
z1

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

b4
b3
b2
b1

⎤

⎥
⎥
⎦ =⇒ G =

⎡

⎢
⎢
⎢⎢
⎢
⎣

0 0 0

0 0 0

0 0 0

⎤

⎥
⎥
⎥⎥
⎥
⎦

(9.20)

For arbitrary nonregular grids or nonstationary MRF kernels, the choice of opti-
mum element ordering to maximize Choleksy sparsity is very difficult and beyond
the scope of this text [132, 133, 211]. However, for regular multidimensional grids,
Nested Dissection [130, 131] is a method of reordering the elements in a linear sys-
tem to preserve, as much as possible, the sparsity of the original.

The method relies very much on the Markov principles of conditional decorrelation
from Chapter 6. Suppose we can find a boundary which separates the domain into
decoupled parts. If z is reordered, placing the boundary elements at the end, then
G preserves the block-sparsity of the decoupled parts, as illustrated in Figure 9.1.
The width of the boundary follows immediately from the order of the Markov prior
present in the estimation problem leading to A.

Clearly, having inserted one boundary to divide the domain, there is no reason why
the domain cannot be further subdivided, leading to the recursive sequence illustrated
in Figure 9.2, with obvious generalizations to higher dimensions.
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−→ −→ · · ·

Fig. 9.2. For a two-dimensional problem, further sparsity is realized by repeatedly subdividing
along middle columns and rows. The thickness of each boundary portion is a function of the
size of the kernel in A, equivalently the order of the Markov prior.

The multiscale approach, discussed in Section 10.3, takes an approach philosoph-
ically similar to nested dissection, running a Kalman filter along the sequence of
dissection boundaries.

9.2 Iterative Solution

The previous sections considered direct methods to solve a given linear system. How-
ever, most direct methods suffer from two difficulties:

1. Implementation complexity, and

2. Computational and storage complexity.

The remainder of this chapter examines iterative methods [153, 278, 346]. We will
denote by ẑ(k) the solution of the linear system solver after k iterations, and by
e(k) = ẑ(k)−z the error in ẑ(k), relative to the exact solution z. If the linear system
is well-posed, then the exact solution is guaranteed to exist and to be unique.

Related to the error is the residual r(k) = b− Aẑ(k), which measures the degree of
inconsistency of some estimate ẑ with respect to the linear system. We note that

r = b−Aẑ = b −A(e+ z̄) = b−Ae− b = −Ae, (9.21)

thus the residual r is a transformed version of the error: e measures the error in the
space of z; r measures the error in the space of b.

Where appropriate, δ(k) represents the direction in which we move ẑ to try to find a
better solution. That is, in general,

ẑ(k + 1) = ẑ(k) + αkδ(k). (9.22)

All of the remaining methods in this chapter are iterative and do not require a dense
matrix A. What all of the following iterative methods have in common is that the
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only thing they require of A is the ability to compute certain matrix–vector products
involving A. In particular, the great attraction of the Conjugate Gradient method in
Section 9.2.3 is that it only ever requires the productAz.

9.2.1 Gauss–Jacobi / Gauss–Seidel

The Gauss–Jacobi and Gauss–Seidel iterations [78,153,278] are among the simplest
linear system solvers, iteratively updating the scalar elements in ẑ one at a time. It
is useful to understand both the scalar and vector forms of the linear system and
associated iterations: the scalar form is more closely connected to the algorithmic
implementation, whereas the vector form is more convenient for analysis.

If we let
A = AD +AN (9.23)

represent the decomposition of matrixA into diagonal and off-diagonal components,
respectively, then we can rearrange the linear system

Aẑ = b
∑

j ai,j ẑj = bi

ADẑ +AN ẑ = b
(
ai,iẑi +

∑
j �=i ai,j ẑj

)
= bi

(9.24)

to arrive at the Gauss–Jacobi iteration

ẑ(k + 1) = A−1
D

(
b−AN ẑ(k)

)
ẑi(k + 1) =

bi −
∑

j �=i ai,j ẑj(k)
ai,i

︸ ︷︷ ︸
Matrix–Vector Form

︸ ︷︷ ︸
Scalar–Algorithm Form

(9.25)

Similarly, if
A = AL +AD +AU (9.26)

represents a decomposition into lower-triangular, diagonal, and upper-triangular
pieces, then we can derive the Gauss–Seidel matrix–vector form

Aẑ = b
ALẑ +AD ẑ +AU ẑ = b

ẑ(k + 1) = (AL +AD)−1 (
b−AU ẑ(k)

) (9.27)

and the scalar–algorithm form:

∑
j ai,j ẑj = bi(∑

j<i ai,j ẑj + ai,iẑi +
∑

j>i ai,j ẑj

)
= bi

ẑi(k + 1) =
bi −

∑
j<i ai,j ẑj(k + 1)−∑j>i ai,j ẑj(k)

ai,i

(9.28)
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Algorithm 5 Gauss–Seidel
Goals: Iteratively solve the linear system Ax = b, x ∈ R

n such that ‖Ax̂− b‖ < ζ
Function x̂ = GS(A, b, x̂(0), ζ)
k← 1
repeat

for i← 1 : n do
x̂i(k)←

“
bi −P

j<i ai,jx̂j(k)−P
j>i ai,jx̂i(k − 1)

”
/ai,i

end for
rk ← 0
for i← 1 : n do
rk ← rk +

`
bi −P

j ai,jx̂j(k)
´2

Compute Residual
end for

until rk < ζ

The main difference between the Gauss–Jacobi and Gauss–Seidel iterations is that
the Gauss–Seidel iteration is in place, meaning that only one copy of ẑ is needed,
whereas Gauss–Jacobi needs to preserve all of ẑ(k) while computing ẑ(k + 1), ne-
cessitating two copies.

The simplicity of these two methods allows a straightforward analysis of their con-
vergence properties:

e(k + 1) = ẑ(k + 1)− z = A−1
D

(
b−AN ẑ(k)

)− z
= A−1

D

(
AD +AN

)
z −A−1

D AN ẑ(k)− z
= z +A−1

D ANz −A−1
D AN ẑ(k)− z

= −A−1
D AN

(
ẑ(k)− z).

(9.29)

That is, the Gauss–Jacobi errors obey a dynamic relationship

eJ (k + 1) = −A−1
D ANeJ(k) = −A−1

D

(
AL +AU

)
eJ (k). (9.30)

Comparing the Gauss–Jacobi and Gauss–Seidel forms in (9.25), (9.27), the corre-
sponding error dynamics for Gauss–Seidel follow by inspection:

eS(k + 1) = −(AD +AL

)−1
AUeS(k). (9.31)

Thus the iterations converge if and only if the eigenvalues of A−1
D (AL + AU ) or of

(AD + AL)−1AU , respectively, have a magnitude less than one (meaning that the
spectral radius ρ is less than one). Because the spectral radius describes the speed of
convergence of the slowest error mode

lim
k→∞

(∥∥ek+1

∥∥

‖ek‖

)

= ρ, (9.32)

we frequently define a convergence rate
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Fig. 9.3. Gauss–Jacobi and Gauss–Seidel residuals, as a function of iteration, for the complex
two-dimensional problem of Example 5.1 on page 159.

τ = − ln(ρ), (9.33)

where τ measures the number of iterations for the error to be reduced by a factor of
1/e, about 60%.

It can be shown [78,278] that the Gauss–Jacobi and Gauss–Seidel convergence con-
dition is guaranteed if A is strictly diagonally dominant:

|ai,i| >
∑

j �=i

|ai,j |. (9.34)

The corresponding condition on the kernelA is thatA is strictly diagonally dominant
if

|A0,0| >
∑

i,j �=0,0

|Ai,j |. (9.35)

Thus the membrane kernel of Figure 5.14 on page 158 is strictly diagonally dominant
for all α > 0, whereas the thin-plate kernel satisfies dominance only if the central
element is made rather large, α >

√
24.

In practice the Gauss–Seidel method is typically more robust, converging for a wider
variety of problems, and roughly twice as fast as Gauss–Jacobi.

An example of the application of Gauss–Jacobi and Gauss–Seidel to a complex two-
dimensional problem is shown in Figure 9.3. Gauss–Jacobi fails to converge, and
indeed diverges rapidly. Gauss–Seidel converges, however it is clear from the plotted
surface that the estimates respond locally to the measurements with an exponentially-
decaying response away from the measurements, precisely along the lines of Fig-
ures 8.1 and 8.2.

Both Gauss–Jacobi and Gauss–Seidel are very primitive methods and are, on their
own, an unrealistic choice for any linear system of significant size, so good perfor-
mance is in no way expected in Figure 9.3. Modest improvements in computational
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Example 9.1: Iterative Solutions to Interpolation

We can consider solving an estimation problem using Gauss–Jacobi or Gauss–
Seidel. Suppose we have an n-element one-dimensional random process with
first-order regularization constraints, where we measure the 10th, 50th, and 90th
elements with unit-variance noise. Thus

A = CTR−1C + λLT
xLx, C ∈ R

3×n R = I3 Lx ∈ R
n−1×n (9.36)

with each row of Lx a first-order penalty term
[
0 . . . 0 -1 1 0 . . . 0

]
, as

in Section 5.5. Applying Gauss–Jacobi (9.25) (dotted) and Gauss–Seidel (9.27)
(dashed) to this linear system yields
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with solutions plotted after 1, 10, 100, 1000 iterations, clearly showing a conver-
gence to the exact solution, plotted as a solid line. The more rapid convergence of
the Gauss–Seidel method is clear. It is also clear that convergence is more rapid
near measurements. For a given set of measurements the convergence rate τ (9.33)
decreases as the process length increases:
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Here τ was computed from the exact eigendecomposition of the error dynamics
as a function of problem size n.
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complexity can be realized by the SOR method (Section 9.2.2). However, for prob-
lems of any significant size, to be effective GJ/GS require some sort of problem trans-
formation to break the indirection problem of Figure 8.1, seen vividly in Figure 9.3.
A variety of such transformations was discussed in Chapter 8 and preconditioning,
specifically of iterative algorithms, is covered in Section 9.2.4.

9.2.2 Successive Overrelaxation (SOR)

The principle of overrelaxation [78,153,278,289] is to take an iterative method, most
commonly Gauss–Seidel, and to adjust the change

(
ẑ(k + 1) − ẑ(k)) to accelerate

convergence.

Specifically, a given iterative scheme is modified as follows:

Given Iteration: ẑ(k + 1) = ẑ(k) + δ(k)
Overrelaxed Form: ẑ(k + 1) = ẑ(k) + ωδ(k) 0 < ω < 2, (9.37)

multiplying the intended adjustment δ(k) by some constant ω.

Computing δ(k) =
(
ẑ(k + 1) − ẑ(k)

)
as the iteration-to-iteration difference, the

overrelaxed forms of the Gauss–Jacobi and Gauss–Seidel iterations can be derived
from (9.25), (9.27) as

GJ: ẑ(k + 1) = ẑ(k) + ω
[
A−1

D

(
b−AN ẑ(k)

)− ẑ(k)]
︸ ︷︷ ︸

δ(k)

GS: ẑ(k + 1) = ẑ(k) + ω
[
(AL +AD)−1 (

b−AU ẑ(k)
)− ẑ(k)

]

︸ ︷︷ ︸
δ(k)

.
(9.38)

The idea is to select ω to reduce the spectral radius of the iteration, thereby acceler-
ating convergence.

Given iterative error dynamics

e(k + 1) = Qe(k), (9.39)

the effect of ω on the overrelaxed iteration is easily derived:

Basic Iteration Overrelaxed

ẑ(k + 1) = ẑ(k) + δ(k)
e(k + 1) = e(k)− δ(k)

δ(k) = (I −Q)e(k)
⇒

ẑ
SOR

(k + 1) = ẑ
SOR

(k) + ωδ(k)

e
SOR

(k + 1) = e
SOR

(k)− ωδ(k)
=
(
I − ω(I −Q)

)
e

SOR

(k)

(9.40)

That is, the overrelaxed error dynamics are given by
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Fig. 9.4. The principle of overrelaxation: Parameter ω controls the degree to which the eigen-
values of the iteration error dynamics are pulled towards 1.0 (left) or pushed away from 1.0
(right). The goal is to choose ω to maximize the distance from ±1 to the closest eigenvalues.

Q
SOR

(ω) =
(
I − ω(I −Q)

)
. (9.41)

The key question, then, is how the spectral radii ρ(Q), ρ
(
Q

SOR
(ω)
)

compare. Given
the eigendecomposition of Q,

Qvi = λivi, (9.42)

it is possible to analytically derive the eigendecomposition of Q
SOR

(ω):

Q
SOR

(ω)vi =
(
I − ω(I −Q)

)
vi =

(
1− ω + ωλi

)
vi. (9.43)

That is, the eigenvectors of the overrelaxed iteration are unchanged, and the eigen-
values of the error dynamics are modified as

λi
SOR(ω)−−−−→ λ

SOR

i (ω) = 1− ω + ωλi, (9.44)

So values 0 < ω < 1 pull eigenvalues towards 1.0, whereas values 1 < ω < 2
push eigenvalues away from 1.0, as illustrated in Figure 9.4. This is actually quite
intuitive:

• An eigenvalue less than zero implies an error which oscillates in sign. Therefore
we conclude that the iterative step went too far, and a smaller step (ω < 1) should
push the error eigenvalue closer to zero.

• An eigenvalue close to one implies an error which is decaying only very slowly.
Therefore we conclude that the iterative step was too small, and a larger step
(ω > 1) should help to accelerate the method by pushing the eigenvalue towards
zero.

The optimum choice of ω then corresponds to minimizing the spectral radius:

ωOptimum = argω min ρ
(
Q

SOR

(ω)
)
. (9.45)

There are two primary limitations to the use of SOR in solving estimation problems:
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Example 9.2: Eigendistributions of Iterative Interpolators

Consider the one-dimensional estimation problem of Example 9.1 with a process
length of n = 100. We consider both first-order (Lx) and second-order constraints
(Lxx) in (9.36). Four sets of eigenvalues are shown below, plotted in the complex
plane:
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The instability of Gauss–Jacobi applied to second-order constraints can be seen
from the presence of eigenvalues outside of the dashed unit circle.

The eigenvalues of first-order Gauss–Jacobi are symmetric about zero, so SOR
has nothing to offer here. However, the Gauss–Seidel eigenvalues are concentrated
to one side, so a limited benefit can be gained by overrelaxing Gauss–Seidel with
ω > 1, pushing the eigenvalues away from 1.0.

1. A, and therefore Q, are typically huge matrices whose eigendecomposition is
unknown. There are special cases for which the optimum ω is known exactly,
however, in general finding suitable ω may be a matter of trial and error.

2. If the error dynamics have eigenvalues near one (see Example 9.2) then SOR can,
at best, only double the convergence rate τ :
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λ = 1− ε SOR(ω=2)−−−−−−→ λ
SOR

= 1− 2 + 2λ = 1− 2ε
⇓ ⇓

τ = − ln(1− ε) � ε τ
SOR � 2ε

(9.46)

If there are eigenvalues present with values less than zero, then to prevent insta-
bility ω must be chosen somewhat less than two, with a corresponding reduction
in convergence rate.

In the limiting case where multiple eigenvalues are distributed symmetrically
about zero, then ωOptimum = 1, implying that SOR offers no benefit.

9.2.3 Conjugate Gradient and Krylov Methods

Conjugate Gradient (CG) is probably the most popular general-purpose method for
iterative linear systems solving, finding a nice balance between the trivial implemen-
tation and moderate performance of Gauss–Jacobi and Gauss–Seidel, and far more
complex methods such as multigrid (Section 9.2.5).

CG is discussed in an enormous number of books and papers [34, 43, 141, 142, 153,
268], however the tutorial in [285] is highly recommended for anyone seeking to
understand CG at a deeper, intuitive level.

CG is essentially a method of steepest or gradient descent — sliding down the gradi-
ent of some objective function, seeking a minimum. Given the linear systemAz = b,
where A is symmetric and positive-definite, we define the objective function

f(z) =
1
2
zTAz − bTz (9.47)

from which it follows that

f ′(z) =
∂f

∂z
= Az − b f ′′(z) =

∂2f

∂z2
= A > 0. (9.48)

We see that the first derivative contains our linear system of interest, so our goal is to
find ẑ such that f ′(ẑ) = 0, meaning that we have found a minimum of f .

The method of steepest descent seeks to move down the gradient of f to find a
minimum. This gradient is found particularly easily:

f ′(ẑ(k)
)

= Aẑ(k)− b = −r(k). (9.49)

That is, the residual points in the direction of steepest gradient descent, and the solu-
tion is iterated as

ẑ(k + 1) = ẑ(k) + αr(k). (9.50)
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Fig. 9.5. An example of steepest descent. The contours show the values of f(z), with twenty
iterations of steepest descent superimposed. We observe how successive steps move at right
angles to each other; it is also clear that many, many steps are taken in the same direction until
the desired minimum is reached.

The distance α that we move along r(k) is selected to minimize f
(
ẑ(k) + αr(k)

)
,

thus setting the partial derivative to zero:

∂f
(
ẑ(k + 1)

)

∂α
= 0 ⇒ f ′(ẑ(k + 1)

)T ∂ẑ(k + 1)
∂α

= 0

⇒ f ′(ẑ(k + 1)
)T
r(k) = 0 (9.51)

⇒ −r(k + 1)T r(k) = 0.

Substituting r(k + 1) = b−A(ẑ(k) + αr(k)
)

allows us to solve for α:

α =
r(k)T r(k)
r(k)TAr(k)

. (9.52)

The problem with steepest descent, especially if A is poorly conditioned, is that
we may end up converging very slowly, requiring many, many iterations to reach a
reasonable answer.

The problem, as is made clear in Figure 9.5, is that steepest descent may end up
moving in the same direction many times. Ideally we would go the “right” distance
along some direction r(k), not such that we end up at a minimum of f (what we did
before), which led to the orthogonality

r(k + 1)T r(k) = 0, (9.53)
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but rather that we move as far in the current direction as we need to, implying that
the remaining error be orthogonal to the current direction:

e(k + 1)T r(k) = 0. (9.54)

Unfortunately we can’t do this, since we would need to know the exact solution z in
order to know e.

The beauty of conjugate gradient is that it cleverly selects a special set of directions
in which to move, which allows steepest descent to move the “right” distance along
each direction, eliminating the error along that direction in one iteration. Specifically,
if we can find a set of A-orthogonal directions {δ(k)}, meaning that

δ(k)TAδ(j) = 0, j 	= k (9.55)

then steepest descent will ensure, after each step, that the error is A-orthogonal to
the chosen direction:

e(k + 1)TAδ(k) = 0. (9.56)

Having eliminated the error in some direction, it remains eliminated in future itera-
tions. That is, let us suppose that

e(k)TAδ(m) = 0 m = 1, . . . , n− 1. (9.57)

Then the form of the iteration allows us to see how the error evolves:

ẑ(k + 1) = ẑ(k) + α(k)δ(k) ⇒ e(k + 1) = e(k) + α(k)δ(k) (9.58)

from which the A-orthogonality of e(k + 1) follows:

e(k + 1)TAδ(j) =
{

0 j = k by (9.56)
e(k)TAδ(j)
︸ ︷︷ ︸
= 0 by (9.57)

+α(k)δ(k)TAδ(j)
︸ ︷︷ ︸

= 0 by (9.55)

j < k

Therefore each iteration k permanently eliminates the error along direction δ(k).
However, if the linear system is well-posed thenAmust have full rank, in which case
theA-orthogonal directions {δ(1), . . . , δ(n)}must span R

n. Therefore the error will
equal zero in n iterations! Our enthusiasm for this conclusion should be tempered by
two facts:

1. This number of iterations n is determined by the number of unknowns. For a large
1000 × 1000 2D spatial problem, the number of iterations would be n = 106,
possibly computationally infeasible.

2. Because of numerical rounding, after n iterations the error is, in fact, not likely
to equal zero.
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Algorithm 6 Conjugate Gradient
Goals: Iteratively solve the linear system Ax = b with tolerance ‖Ax̂− b‖ < ζ
Function x̂ = CG(A, b, x̂o, ζ)
do ← ro ← b
k← 0
while ‖rk‖ > ζ do

αk ← ‖rk‖2

d
T

k Adk

Steepest Descent

x̂k+1 ← x̂k + αkdk

rk+1 ← rk − αkAdk Update Residual

bk ← ‖rk+1‖2

‖rk‖2
Gram–Schmidt for Next Direction

dk+1 ← rk+1 + bkdk

k ← k + 1
end while

The key question is how to find the A-orthogonal directions {δ(k)}. Given a set of
linearly independent vectors {u(k)}, the conjugate Gram–Schmidt procedure (Ap-
pendix A.7.3) can compute an A-orthogonal set. Because the residuals {r(k)} can
be shown to be orthogonal, and therefore linearly independent, they are a straightfor-
ward choice: u(k) = r(k). If we let Dk represent the space explored after the first k
iterations, then by definition

Dn = span {δ(1), δ(2), . . . , δ(k)} (9.59)

= span {r(1), r(2), . . . , r(k)} . (9.60)

However, because the residuals obey the recursion

r(k) = r(k − 1)− α(k − 1)Aδ(k − 1), (9.61)

it follows that the spaceDk equals the spaceDk−1 extended with directionAδ(k−1).
However, as δ(k − 1) ∈ Dk−1, it follows that

Dk = Dk−1 ⊕ADk−1 (9.62)

from which it follows that

Dk = span
{
δ(1), Aδ(1), . . . , Ak−1δ(1)

}
(9.63)

= span
{
r(1), Ar(1), . . . , Ak−1r(1)

}
. (9.64)

This sort of space construction is known as a Krylov space — the repeated applica-
tion of a linear operator A to some initial vector.

The form of this Krylov space is particularly convenient because the residual r(k) is
already A-orthogonal to all of δ(1), . . . , δ(k − 2), leaving only one step of Gram–
Schmidt to remove the relationship with δ(k − 1).

We are thus left with the elegant conjugate-gradient procedure of Algorithm 6, con-
sisting of three iterated steps:
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Fig. 9.6. Continuing from Figure 9.3, looking at a complex two-dimensional system, compar-
ing Gauss–Jacobi, Gauss–Seidel, and Conjugate Gradient.

1. Do one step of steepest descent, eliminating the error in the current direction.

2. Update the residual based on the changed value of the estimate.

3. Based on this residual perform one step of conjugate Gram–Schmidt to find the
next direction.

A variety of criteria may be proposed by which the algorithm is stopped, whether
one iteration per state element (for the nominally exact answer, excepting numeri-
cal errors), a fixed predetermined number of iterations, or based on the size of the
residual.

Figure 9.6 shows a two-dimensional estimation problem, comparing the convergence
of Gauss–Seidel and conjugate gradient. Although the difference in convergence is
not, in this particular example, terribly striking, conjugate gradient has a major ad-
vantage: whereas Gauss–Jacobi and Gauss–Seidel require computing certain diago-
nal or off-diagonal elements of A, the only thing which conjugate gradient requires
is an ability to compute the matrix–vector product Az. This advantage is significant
when A is algorithmically generated, as in (9.9), and particularly in the context of
preconditioning, discussed in Section 9.2.4.

Conjugate gradient is only one of many Krylov algorithms [168,321]. Other widely-
used forms include GMRES [277, 278] and biconjugate gradient [278].

9.2.4 Iterative Preconditioning

Preconditioners [39, 63, 79, 98, 348] were discussed in the context of conditioning
inverse problems in Section 2.3, and many of the methods discussed in Chapter 8
are essentially preconditioners — changes or reductions of basis in order to make a
given problem numerically or computationally simpler.
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Fig. 9.7. This figure shows the preconditioned version of Figure 9.6. Clearly the precondi-
tioned approaches require fewer iterations to converge; however in the case of GS, precondi-
tioning significantly increases the computational complexity per iteration because the system
matrix A is made less sparse. GS was preconditioned using a DB4 wavelet and CG using the
hierarchical triangles of Section 8.4.1.

Assume, then, that after whatever problem reduction / decoupling of Chapter 8 has
been applied, that we are left with a linear system to solve. For linear system prob-
lems of any significant size, unless the problem is very well conditioned (e.g., an
exponential prior model with a short correlation length), it is almost certainly inap-
propriate to be considering a plain Gauss–Seidel or conjugate-gradient implementa-
tion.

All preconditioners follow the basic approach seen in (8.84) in Chapter 8:

Az = b −→ STASz̄ = ST b −→ Āz̄ = b̄

⏐⏐
⏐
: Easy ?

ẑ
S←−−−−−−−−−−−−−−−−− ˆ̄z

(9.65)

The two fundamental questions, then, are the possible choices of preconditioner S,
and the associated computational issues.

The Gauss–Seidel algorithm considers each state element individually, in turn, so
some sort of preconditioner providing state mixing is needed, such as the DB4 or-
thogonal wavelet preconditioner in Figure 9.7. Because the Gauss–Seidel algorithm
makes explicit reference to the elements of A, the preconditioned system matrix
Ā = STAS needs to be calculated and stored explicitly. In the 2D problem of
Figure 9.7, although preconditioned GS required fewer iterations to converge, the
computational complexity per iteration was increased by a factor of 58:

2 · 104 Nonzero Values in A 1 · 106 Nonzero Values in Ā = STAS
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Fig. 9.8. Conjugate gradient can be applied to large-scale problems, here the cut–fold problem
of Example 5.1 and Figure 9.6, but sixteen times larger on a 257× 257 domain.

The preconditioning of conjugate gradient is a bit more subtle [285], and the follow-
ing discussion can only be considered an introduction. Conjugate gradient iterates
over directions δ(k), rather than over coordinates as does Gauss–Seidel, therefore
rotating the entire problem domain has no effect on CG. Because an orthogonal ma-
trix is essentially a multidimensional rotation, orthogonal preconditioners (such as
the Daubechies wavelets) therefore have no effect on CG.

The beauty of CG is that requiring only the matrix–vector product Az allows the
preconditioning to be implemented implicitly — never does Ā need to be stored.
That is, under a preconditioner S, the product Āz is easily computed as

Āz = STASz = ST
(
A
(
Sz
))
. (9.66)

Indeed, not even the preconditioner S and the system matrix A need to be stored
explicitly. Given our usual constraints matrix L, implying

A = CTR−1C + λLTL, (9.67)

then the product Āz should be found implicitly as

z̄ = FunctionS(z) (9.68)

Āz = FunctionST
(
CTR−1(Cz̄) + λLT (Lz̄)

)
, (9.69)

where FunctionS(x) and FunctionST(x) are algorithms, returning the matrix–
vector products Sx, STx, respectively. With such an approach, although Ā may have
a higher density, these elements are never explicitly computed or stored, so the pre-
conditioner adds very little computational overhead.
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This latter, implicit approach allows preconditioned CG to be applied to much larger
linear systems than GS. Figure 9.8 shows conjugate gradient applied to a problem of
size 257× 257, having 2572 = 66 049 unknowns, which was solved using (9.69) in
MATLAB on a regular computer.

9.2.5 Multigrid

The previous sections have looked at very common, general-purpose methods of
solving linear systems, methods that appear in countless textbooks and come as stan-
dard subroutines in numerical packages such as MATLAB. In this section we want to
look at multigrid, a method which focuses explicitly on the solving of large, multidi-
mensional linear estimation problems.

The multigrid method seeks a hierarchical approach to solving a linear system, repre-
senting a multidimensional problem at a number of resolutions. We have seen similar
hierarchical approaches before:

• Nested dissection (Section 9.1.3) sought to divide a given spatial problem into
decoupled pieces, an approach that was particularly useful for random fields gov-
erned by a low-order Markov prior.

However, although nested dissection is hierarchical, it is not multiresolution. That
is, the elements being manipulated and rearranged are all individual state elements
from the finest scale.

• Hierarchical changes of basis (Section 8.4) converted a linear system on a single
scale into a new, changed linear system on a hierarchy of scales, which could then
be solved via methods such as GS or CG.

The hierarchical basis with an iterative solver has a great deal in common with
multigrid, however whereas a hierarchical basis leaves us with a single problem,
distributed across resolutions, the multigrid method proposes an ensemble of cou-
pled problems, one problem at each resolution, a somewhat simpler mental pic-
ture.

The multigrid method [40, 43, 152, 153, 228, 229, 289, 330] is widely used and doc-
umented; this section emphasizes the intuition behind the method, but does not give
a detailed and comprehensive derivation of the method, and the reader is directed
towards the many references.

For precisely the same reasons that a multiresolution change-of-basis was proposed
in Section 8.4 — the locality of operatorA, the slow spread of information from one
state element to another — we now consider the multigrid algorithm, a multiresolu-
tion approach to multidimensional linear systems problems. The effect of locality is
made clear in Figure 9.9; after very few iterations the portions of the error at high
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Fig. 9.9. The power spectrum of the estimation error as a function of Gauss–Seidel iterations:
After only five iterations the high-frequency error has disappeared, however hundreds or thou-
sands of iterations would be required to reduce the large-scale error.

spatial frequencies have been eliminated, but hundreds or thousands of iterations
would be required to significantly reduce long-range errors.

The key idea of multigrid is this:

1. If only a few iterations of a simple linear system method can eliminate high-
frequency errors, then the error quickly becomes smooth.

2. However, a smooth (slowly varying) problem can be subsampled, making the re-
maining long-range errors more local.

3. These local errors will then once again reduce relatively rapidly when a linear
system method is applied to the subsampled problem.

Thus, given an initial estimate ẑo, after k Gauss–Seidel iterations the new estimate
ẑ(k) has a corresponding residual

r(k) = b−Aẑ(k) (9.70)

such that r(k) is spatially smooth. Recall from Section 8.2 that pseudoinverse inter-
polation S and subsamplingF operators will satisfy FS = I , but SF 	= I . However,
the smoothness of r means that it can be losslessly subsampled,

SFr(k) � r(k). (9.71)
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Algorithm 7 Multigrid
Goals: Iteratively solve the linear system Ax = b with tolerance ‖Ax̂− b‖ < ζ
Function x̂ = Multigrid(scales,A, b, x̂o, ζ)
x̂← x̂o

repeat
Call x̂← MG(scales,A, b, x̂)

until ‖Ax̂− b‖ < ζ

Goals: Perform one complete multigrid cycle, recursively from finest to coarsest scale
Function x̂ = MG(scale,A, b, x̂o)

From x̂o, perform k iterations of Gauss–Seidel, giving x̂k

if scale > 0 then
Ā← STAS
b̄← ST (b−Ax̂k)
x̄0 ← 0
for i← 1 to p do
x̄i ← MG(scale− 1, Ā, b̄, x̄i−1)

end for
x̂p ← x̂k + Sx̄p

From x̂p, perform k iterations of Gauss–Seidel, giving x̂
else

We are at coarsest scale, solve exactly for x̂.
end if

The subsampled problem Fr(k) will converge rapidly at first: it is smaller in size
than the original problem, thus each iteration is of reduced complexity, and Fr(k)
will be rougher (less smooth) than r(k) and therefore more quickly smoothed by
Gauss–Seidel. This concept is illustrated in Figure 9.10 for a one-dimensional prob-
lem, repeatedly subsampled three times.

Recall from (9.21) that e(k) represents the error in solution ẑ(k) after k iterations,
where

r(k) = −Ae(k). (9.72)

For most priors A is a spatial smoothing operator, so we need to oversmooth r to
ensure that e is smooth, allowing it to be estimated

ê(k) = Sẑc (9.73)

by coarse-scale approximation ẑc. The idea, then, is that ẑ provides the local details,
and Sẑc the nonlocal, large-scale parts. ẑc must satisfy

Az = b (9.74)

A(ẑ + Sẑc) = b (9.75)

STASẑc = ST
(
b−Aẑ) (9.76)

from which we can derive the subsampled linear-system
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Fig. 9.10. The multigrid principle: A simple, local iterative method, such as Gauss–Seidel,
very quickly eliminates high-frequency (local) errors, but only very slowly eliminates low-
frequency (distant) ones. Each panel plots the log power spectrum of the error, as in Fig-
ure 9.9. In each row five additional GS steps have been performed relative to the previous
row; additional columns are introduced as the system is subsampled (F ) to coarser scales. The
leftmost column compares GS and multigrid: it is clear that repeated subsampling leads to a
much faster reduction in error, as opposed to finest-scale GS with no subsampling. The bolded
panels show the sequence followed by the multigrid algorithm.
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Cell-Centred Vertex-Centred

Fig. 9.11. A subsampling operator must be chosen to define the coarser scale. A cell-centred
approach, left, is very simple, however the coarse-scale pixels (×) are in a different loca-
tion from the fine-scale ones (◦), making the assertion of boundary conditions possibly more
difficult. In many circumstances the vertex-centred approach, right, is preferred.

STAS
︸ ︷︷ ︸
Ā

ẑc = ST r
︸ ︷︷ ︸

¯b

. (9.77)

This transformation we have seen before, in (8.7) or (8.84), and is nothing more than
an implicit basis reduction over scale.

This new linear system can then, itself, be subsampled after a few iterations of
Gauss–Seidel, and the whole smoothing–subsampling process repeats recursively
until the original problem has been subsampled to such a degree that it can be solved
exactly (e.g., by matrix inversion). The recursive procedure is illustrated in Algo-
rithm 7.

Although the multigrid algorithm may feel rather complex, in fact the actual im-
plementation of the multigrid method is fairly straightforward, as illustrated by the
author’s MATLAB implementation in Algorithm 8, very nearly line-by-line mirror-
ing the pseudocode in Algorithm 7. The implementation in Algorithm 7 is based
on the explicit evaluation and storage of matrix A at each scale, however because
multigrid only ever requires the matrix–vector product Az it is possible, and indeed
highly desirable for very large problems, to represent matrix A implicitly via a ker-
nel, sparse matrix, or function. A fairly elegant approach for computing a functional,
implicit form ofA at every scale is shown in Algorithm 9. Because the Gauss–Seidel
iterations used in Algorithm 8 require access to a regular, non-functionalA, in Algo-
rithm 9 the Gauss–Seidel iterations at each scale have been replaced with conjugate
gradient.

There are a number of choices within the multigrid algorithm, the most fundamental
of which is the choice of scale-to-scale subsampling operator. The subsampler may
be cell-centred or vertex-centred [190], as illustrated in Figure 9.11, the subsampler
may be pointwise (frequently leading to an unstable iteration), more commonly a
bilinear interpolation, or based on wavelets [44, 316].
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Algorithm 8 MATLAB Multigrid implementation I, mirroring Algorithm 7

% For convenience, mg is written in terms of subsampler F rather than interpolator S
function x = mg( scale, a, b, x, p, numgs )
if (scale > 0)

% Do GS iterations
x = gs(a,b,x,numgs);

% Make simple 2x2 subsampler F
f = subsampler(scale);

% Create coarser problem AC * XC = BC
ac = sparse(f*a*f’);
bc = f*(b-a*x);
xc = 0*bc;

% Repeatedly call coarser scale
for i=1:p,

xc = mg( scale-1, ac, bc, xc, cyc, numgs );
end

% Add coarse solution back in to current scale and GS iterations to smooth
x = x + f’*xc;
x = gs(a,b,x,numgs);

else
% We are at coarsest scale, solve outright
x = a \ b;

end

A second choice is that of variable p in Algorithm 7, addressing the question of cycle
— how the algorithm switches between scales. Most common are the “V”-cycle
(p = 1) the “W” cycle (p = 2). As p is increased, a higher proportion of time is
spent at the coarser scales; whether this helps will be a function of the problem and
needs to be determined empirically.

Other choices include whether to do GS, as in Algorithm 8, or possibly conjugate
gradient, as in Algorithm 9, and then whether before, after, or both before and after
the coarser scale call. There are also practical considerations, whether the system
matrix A and the subsampler S are dense or implicit, and whether the matrix repre-
sentation may be a function of scale (e.g., implicit at large, fine scales and dense at
small, coarse scales).

Figure 9.12 plots the convergence results, comparing multigrid and preconditioned
conjugate gradient. The multigrid results were computed using the code in Algo-
rithm 9.
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Algorithm 9 MATLAB Multigrid implementation II, using implicit, computed sys-
tem and scale-transfer matrices

% afn is a function handle, such that afn(x) evaluates A*x
% subfn and subfnt are function handles to the subsampler and its transpose
function x = mg( scale, siz, afn, b, subfn, subfnt, x, p, numcg )
if (scale > 0)

% Do CG iterations
x = pcg(afn,b,[ ],numcg,[ ],[ ],x);

% Create a handle to implicit coarser-scale problem
ac = @(x) subfn(afn(subfnt(x)));
bc = f*(b-afn(x));
xc = 0*bc;

% Repeatedly call coarser scale
for i=1:p,

xc = mg( scale-1, ac, bc, subfn, subfnt, xc, cyc, numgs );
end

% Add coarse solution back in to current scale and CG iterations to smooth
x = x + subfnt(xc);
x = pcg(afn,b,[ ],numcg,[ ],[ ],x);

else
% We are at coarsest scale, solve well
x = pcg(afn,b,[ ],100,[ ],[ ],x);

end
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Fig. 9.12. A comparison of the convergence of Conjugate Gradient and Multigrid. The multi-
grid estimates were taken after one iteration of multigrid, corresponding to twenty iterations of
GS or CG (compare with Figure 9.6). The convergence results, left, are based on the 257×257
problem of Figure 9.8, clearly showing the bilinear vertex-centred multigrid outperforming the
cell-centred case.
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Application 9: Surface Reconstruction

The problem of surface reconstruction [27, 160, 161, 304] is a topic of interest in the
field of computer vision, involving the estimation of an unknown surface based on a
set of noisy measurements of some function of the surface, possibly of its derivatives,
and based on a prior model to regularize the problem.

We have seen repeated examples of surface reconstruction, in the context of mem-
brane and thin-plate models in Chapter 5, and in particular the two-dimensional re-
constructions throughout this chapter.

The surface S of interest is a two-dimensional function s(x, y), twice differentiable,
with gradients

p(x, y) = sx(x, y) =
∂s(x, y)
∂x

q(x, y) = sy(x, y) =
∂s(x, y)
∂y

. (9.78)

In terms of choosing a state to represent the surface, we have three alternatives:

1. Estimate the gradients only,

z(x, y) =
[
p(x, y)
q(x, y)

]
, (9.79)

in which case the estimated surface ŝ must be found by integrating p̂, q̂. For the
integral to be unique (path-independent), p, q must be gradients of a surface, im-
plying a consistency constraint [118, 159]

∮
(pdx+ qdy) = 0 (9.80)

must hold over all closed paths in the plane. Because the surface is not com-
puted until after estimation, this formulation does not allow measurements of
the surface, and has limited use. There are important exceptions however, such
as shape-from-shading [118, 161, 167, 201, 251, 349], which have only gradient
measurements.

2. Jointly estimate the surface and its gradients,

z(x, y) =

⎡

⎣
s(x, y)
p(x, y)
q(x, y)

⎤

⎦ , (9.81)

in which case it is straightforward to have measurements of either gradients or
surface, or to assert prior constraints on the gradients. However, there is the bur-
den of constraining the relationship between s and p, q:

∫ ∫
(sx − p)2 + (sy − q)2 dx dy. (9.82)
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3. Estimate the surface directly,

z(x, y) =
[
s(x, y)

]
, (9.83)

in which prior constraints on or measurements of the gradients need to be related
to differences of surface values. Although straightforward, this approach may not
be preferred in cases where we wish to calculate gradient error statistics, or where
only measurements of gradients are available.

In all cases, given linear measurements and prior constraints, the resulting problem
reduces to the familiar linear system

(
LTL+ CTR−1C

)
ẑ(m) = CTR−1m. (9.84)

The linear systems methods in this chapter are well represented in the surface recon-
struction literature:

• Conjugate gradient, for surface reconstruction using hierarchical interpolants
[299],

• Conjugate gradient, for surface reconstruction using wavelet preconditioning
[345],

• Multigrid, for surface reconstruction with cuts and folds [303, 304],

• Multiscale, related to nested dissection, for surface estimation with error statistics
[108].

For Further Study

There are a great many numerical methods texts, most of which cover the solving of
linear systems; one such text is the classic by Dahlquist and Bjorck [78]. The text by
Hackbusch [153] parallels the sequence of methods of this chapter, but in far greater
detail, and is strongly recommended.

For a more advanced look at sparse methods and solvers, the book by George and
Liu [131] is widely cited.

For iterative methods more specifically, the survey paper by Shewchuck [285] is
well worth reading to better understand conjugate gradient. The recent text by Saad
[278] is comprehensive and up-to-date, giving extensive coverage to GMRES and
Krylov methods. Saad’s book does not, however, look at multigrid; for accessible
treatments of the multigrid method the texts of Briggs [43], Hackbusch [152], Mc-
Cormick [228], and Wesseling [330] are recommended.
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Although the conjugate-gradient method and the Cholesky decomposition are stan-
dard components of most numerical packages, such as MATLAB, Numerical Recipes
[264] remains a valuable resource for readers seeking to do their own implementa-
tions, or to develop variations on standard methods.

Sample Problems

Problem 9.1: Numerics of Linear Systems

The solution to a linear system Az = b can be written algebraically as

ẑ = A−1b (9.85)

under the assumption that A is square and invertible.

Numerically, however, it was claimed in Section 9.1 that explicitly inverting A
is inferior to Gauss / Cholesky methods. In MATLAB, the two alternative imple-
mentations to (9.85) would be written as

Z = inv(A) ∗ b; Z = A \ b; (9.86)

Construct a linear system, for example the one-dimensional interpolation of
Problem 9.2, and compare the computational time and accuracy of the two com-
puted estimates in (9.86).

Problem 9.2: Iterative Solutions and Interpolation

We wish to reproduce and extend some of the results of Example 9.2. We have a
process of length n = 100, of which we measure first and last elements:

[
10
50

]
= m = Cz + v =

[
z1 + v1
zn + v2

]

We propose two possible linear systems to solve:

1. First Order: A1 = CTC + 5 · LT
1 L1 −→ A1z = CTm

2. Second Order: A2 = CTC + 2000 · LT
2 L2 −→ A2z = CTm .

If the iteration is stable, as determined by its eigenvalues, then its time constant
is determined by the eigenvalue which is largest in magnitude:

τ =
−1

ln
(
maxi(|λi|)

)
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(a) Are GJ and GS stable for both the first- and second-order interpolation prob-
lems?

(b) For n = 3, 4, . . . , 100 plot the time constant τ for both GJ and GS for the
first-order problem. What do you observe?

(c) For n = 100, plot all of the eigenvalues in the complex plane. Generate two
plots, one for each of GJ and GS, for the first-order problem. What do you
observe?

(d) An eigenvalue describes how rapidly an error decays, where the shape of the
error is described by the associated eigenvector. Plot two eigenvectors for the
first-order GS problem, one corresponding to an eigenvalue near 1.0, another
corresponding to an eigenvalue near 0.0. What do you observe?

(e) For n = 100, apply GS to the first- and second-order problems, initializing
with z0 = 0. What do you observe?

Problem 9.3: Two-Dimensional Interpolation

We wish to solve a two-dimensional estimation problem. Let Z be a 100 × 100
random field, characterized by constraints

L2 =
[
Lxx

Lyy

]

with free boundary conditions. Use a regularization constant λ = 5000.

We have four measurements, assumed to have unit-variance noise:

m =

⎡

⎢
⎢
⎣

-10
10
10

-10

⎤

⎥
⎥
⎦ =

⎡

⎢
⎢
⎣

z25,25 + v1
z25,75 + v2
z75,25 + v3
z75,75 + v4

⎤

⎥
⎥
⎦

(a) The system matrix A is a large, sparse 10000× 10000 array. Do not create
matrices L2 or A, not even sparse forms.
Rather, develop a method, an algorithm (e.g., in MATLAB) for computing
the two parts of the matrix–vector product

Az = (CTC + λLT
2 L2)z = CTCz + λLT

2 L2z

The term CTCz is easily implemented; you will probably want to use a
convolution to calculate LT

2 L2z.
(b) Given the matrix–vector product in part (a), you can now implement an it-

erative solver. Implement CG and plot the results after 10, 100, and 1000
iterations.

(c) Run CG for many iterations, until you feel the method has converged, to ac-
quire ẑopt. We can calculate the mean-square error at any iteration by com-
paring the iterative estimate ẑi to the optimum:
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MSEi = ‖ẑi − ẑtextopt‖.

Plot MSEi, 1 ≤ i ≤ 1000 for CG. Comment.
(d) Modify your algorithm from (a) to yield the needed nonzero elements of A

in order to implement GS. Plot MSEi, comparing GS and CG.

Problem 9.4: Multigrid

Problem 9.3 set up a two-dimensional estimation problem. Solve the estimation
problem for Ẑ using multigrid. It may be more convenient to choose a 128×128
or 129× 129 domain to allow repeated subsampling.

Problem 9.5: Open-Ended Real-Data Problem — Multigrid

The strength of multigrid lies in its ability to solve poorly conditioned, nonlo-
cal problems. Let’s generate a set of estimates, such as those in Figure 5.17 on
page 163, now using multigrid.

In particular, create a truth random field

Zx,y =
x2 + y2

100
− 50 ≤ x, y ≤ 50

from which we create noisy measurements

M = Z + V V ∼ σ2I

with a noise variance of σ2 = 1.

The analytical forms which preceded Figure 5.17 were expressions forP , whereas
multigrid requires system matrix A, which is expressed in terms of P−1. To
avoid inverting a large matrix, we can choose P−1 directly by selecting a
sparse/Markov prior, such as membrane or thin-plate, with an appropriately cho-
sen correlation length, for example based on Figure 5.15.

Create a “satellite track” measurement pattern, such as that shown in Figure 5.17.
Plot the estimates and discuss the number of multigrid iterations required for
convergence, as a function of the choice of prior and the correlation length.
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Kalman Filtering and Domain Decomposition

In this chapter we examine the solution of large dynamic estimation problems, prob-
lems which may stem from one of two sources:

1. Problems which are inherently spatio-temporal, such as the processing of video
(spatial two-dimensional images over time) or remote sensing (the earth’s surface
or an atmospheric/oceanic volume sampled over time);

2. Multidimensional static problems, which have been converted to dynamic form,
as discussed below.

In particular, rather than solving an inverse problem as one huge linear system of
equations, as was undertaken in Chapter 9, here we want to benefit from the dynamic
aspects of the problem to break it into smaller pieces.

Recall from Section 4.1.2 that we were able to show the algebraic equivalence or
duality between a given dynamic problem

z(t+ 1) = A(t)z(t) +B(t)w(t) w(t) ∼ N (0, I) (10.1)

m(t) = C(t)z(t) + v(t) v(t) ∼ N (0, R(t)
)

(10.2)

and an associated static problem (from (4.24))

m̄ = C̄z̄ + v̄ z̄ ∼ (μ̄, P̄ ) v̄ ∼ (0, R̄) . (10.3)

In that case the pieces of the dynamic problem, spread over time, were concatenated
to construct a single static problem. Given that it was possible to construct such an
equivalence, the obvious question is whether the process can be turned around: can
we convert a static problem into a dynamic one?

There are two reasons why such a conversion to a dynamic problem offers an attrac-
tive alternative to the linear systems methods of Chapter 9:

P. Fieguth, Statistical Image Processing and Multidimensional Modeling, Information Science 325
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1. The Kalman filter produces both estimates and estimation error statistics. In some
cases these error statistics are badly needed, for example to interpret the statistical
significance of the estimation results, or possibly to further incorporate measure-
ments via data fusion (as in Section 3.4). Although it is possible to acquire estima-
tion error statistics from linear systems methods, in most cases computing these
statistics is computationally prohibitive (except for the fully stationary/periodic
case of the FFT).

2. If it is possible to break a large problem into relatively small pieces, there may be
great computational advantages over solving the linear system as a whole. In par-
ticular, given anN×N random field, if it is possible to express theN columns of
the random field as a dynamic process, each of lengthN , then (ignoring sparsity)
we have the complexities

Static ComplexityO(N6) Dynamic ComplexityO(N ·N3). (10.4)

Thus the dynamic approach possibly offers a reduction in complexity of O(N2)
relative to direct static solvers.

The crux of the matter, then, is the following key question:

Do the portions of a given static problem obey a dynamic relationship?

Suppose we have a zero-mean random field z ∼ P , which we break into two pieces
with known statistics

z =
[
z1

z2

]
∼
[
P11 P12

P21 P22

]
(10.5)

We can assert a linear dynamic relationship between z1 and z2:

z2 = Az1 +Bw E
[
z1w

T ] = 0 w ∼ I . (10.6)

However, the relationship in (10.6) implies the cross-statistics between z1 and z2,
therefore we should be able to learn A,B in (10.6) from the given, static cross-
statistics in (10.5):

P12 ≡ E
[
z1z

T
2

]
= E

[
z1(Az1 +Bw)T

]
(10.7)

= P11A
T + 0 (10.8)

therefore

A = PT
12P

−1
11 = P21P

−1
11 . (10.9)

Similarly, from the covariance of z2:
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P22 ≡ E
[
z2z

T
2

]
(10.10)

= E
[
(Az1 +Bw)(Az1 +Bw)T

]
(10.11)

= AP11A
T + BBT (10.12)

therefore

BBT = P22 −AP11A
T . (10.13)

We see, therefore, that the static–dynamic conversion is possible. Barring computa-
tional limitations, the Kalman filter can then immediately be applied to the problem.
This chapter surveys some of the more common ways in which dynamic methods are
applied to large-scale estimation problems, with Section 10.2 in particular looking at
sparse / reduced-order forms of the Kalman filter.

10.1 Marching Methods

Suppose we wish to solve a d-dimensional spatial problem, for which a spatial prior
is given, using a Kalman filter to proceed dynamically along a sequence of (d− 1)-
dimensional slices; that is, row-by-row or column-by-column for a 2D problem, and
plane-by-plane in 3D.

We are given a two-dimensional random field

Z =
[
z1 z2 . . . zN

]
. (10.14)

To model this sequence of columns dynamically, we seek a linear model of the form

zi+1 = f
(
zi, zi−1, . . . , z1

)
+ wi. (10.15)

Ideally zi+1 would, for example, be a function of zi only. From Chapter 6 we rec-
ognize this as a statement of Markovianity. Indeed, if Z is first- or second-order
Markov,1 then

ELLSE
[
zi+1|zi, zi−1, . . . , z1

]
= ELLSE

[
zi+1|zi

]
. (10.16)

Similarly, if Z is third- through fifth-order Markov, then

ELLSE
[
zi+1|zi, zi−1, . . . , z1

]
= ELLSE

[
zi+1|zi, zi−1

]
. (10.17)

Since we are seeking linear dynamic models, leading to linear estimators, we assert
a Gauss–Markov autoregressive form,

zi+1 = A
(1)
i zi +Biwi, (10.18)

1 See Figure 6.5 for the definition of Markov random field order.
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z1 z2 z3 z4

z1 Exact Exact Implicit Implicit

z2 Exact Exact Exact Implicit

z3
Implicit Exact Exact Exact

z4
Implicit Implicit Exact Exact

Covariance of First-Order Marching

z1 z2 z3 z4

Exact Exact Exact Implicit z1

Exact Exact Exact Exact z2

Exact Exact Exact Exact z3

Implicit Exact Exact Exact z4

Covariance of Second-Order Marching

Fig. 10.1. The above panels show how the original static prior covariance is represented by the
marching method. For each increment in marching order, one additional band on each side of
the diagonal is modelled exactly. The success of the marching method depends on how well
more distant bands can be approximated by the modelled statistics of the near-diagonal bands.

a first-order marching model corresponding to (10.16), or

zi+1 = A
(1)
i zi +A

(2)
i zi−1 +Biwi, (10.19)

a second-order2 marching model corresponding to (10.17). Clearly these generalize
to the jth order case

zi+1 = A
(1)
i zi +A

(2)
i zi−1 + · · ·+A

(j)
i zi−j+1 +Biwi. (10.20)

We have already seen (Section 4.1.1) that such higher-order models can be cast into
first-order Gauss–Markov form by state augmentation. That is, under the following
change of variables

z̄i =

⎡

⎢
⎢
⎢
⎣

zi

zi−1
...

zi−j+1

⎤

⎥
⎥
⎥
⎦

Āi =

⎡

⎢
⎢
⎢
⎣

A
(1)
i A

(2)
i · · · A(j)

i

I
I

. . .

⎤

⎥
⎥
⎥
⎦

B̄(t) =

⎡

⎢
⎢
⎢
⎣

Bi

0
...
0

⎤

⎥
⎥
⎥
⎦

(10.21)

then we obtain the standard first-order dynamic recursion

z̄(t+ 1) = Ā(t)z̄(t) + B̄(t)w(t). (10.22)

2 One-dimensional and multidimensional Markov orders have differing definitions, so it is
indeed correct that a second-order 1D marching process {zi} corresponds to a third- or
fourth-order 2D random fieldZ. This fluidity or convertibility of order we have seen before,
in the autoregressive state augmentation of Section 4.1.1.
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zi zi+1
z }| { z }| {

z1,i−1 z1,i z1,i+1 z1,i+2

z2,i−1 z2,i z2,i+1 z2,i+2

...
...

...
...

· · · zi,i−1 zi,i zi,i+1 zi,i+2 · · ·
...

...
...

...
zN,i−1 zN,i zN,i+1 zN,i+2

Fig. 10.2. Is the marching model modelling too much? Consider the first-order model of
(10.18), as sketched here, which represents column zi+1 in terms of the previous column
zi. This means, however, that we represent all of the joint statistics of the columns, includ-
ing those of pixels z1,i and zN,i+1, spatially separated by N pixels, whereas the relationship
between z1,i−1 and z1,i+1, spatially separated by only two pixels, is not explicitly modelled.

That is, the Kalman filter can, with no modifications, solve first- and higher-order
multidimensional marching problems.

For the N × N two-dimensional case, the computational complexity of computing
estimates has been reduced from O(N6) for direct solvers, to O(N · (Nj)3) for
the jth order marching approach, from which we can clearly see the motivation for
making j as small as possible. In the N × · · · × N case in d dimensions, the direct
approach has complexity O(N3d), whereas the marching approach has complexity
O(N ·N3(d−1)j3

)
.

There remain two questions:

1. What, exactly, do we lose in going to the dynamic/marching approach? The re-
duction in computational complexity must bring with it some limitations or ap-
proximations in the problem solution.

2. Is the marching method computationally feasible, and is it possible to reduce the
state size further for additional computational benefits?

In terms of the former question, indeed, some approximations are made. The jth
order dynamic model precisely represents the joint statistics of j + 1 consecutive
columns, however the joint statistics of columns more than j steps apart are modelled
implicitly. Figure 10.1 illustrates this behaviour: each increment in j extends the
exact representation of the prior covariance by one additional band. Whether the
implicit statistics are correct depends on the Markov order of the random field.

In terms of the latter questions, consider Figure 10.2. The first-order marching model
represents all of the joint statistics of the two columns, including those of distantly-
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separated state elements z1,i and zN,i+1, whereas the statistics of pixels only two
columns apart, such as between z1,i−1 and z1,i+1, are only implicitly modelled. It
would seem that representing the joint statistics of each column is excessive, and that
only a portion of the column should somehow be needed: this is the goal of the strip-
based, reduced-update, and reduced-order Kalman filters discussed in Section 10.2.

10.2 Efficient, Large-State Kalman Filters

At this point we assume that we have been given a large, dynamic estimation prob-
lem, whether inherently dynamic (a spatio-temporal problem) or not (a spatial prob-
lem, converted to a dynamic one via marching).

In any event, we have been given a dynamic process model and associated dynamic
measurements and measurement model:

z(t+ 1) = A(t)z(t) +B(t)w(t) w(t) ∼ N (0, I) (10.23)

m(t) = C(t)z(t) + v(t) v(t) ∼ N (0, R(t)
)
, (10.24)

where, by definition, the model of (10.23) is first-order Gauss–Markov (although
possibly representing a higher-order spatial Markov process by state-augmentation
(10.21)).

There are two basic reasons why it is much harder to find efficient dynamic algo-
rithms compared to static ones:

1. In very many cases (e.g., membrane, thin-plate, and Markov priors) the static
problem is characterized by very sparse matrices L,Q, however in the Kalman
filter sparsity tends to disappear:

• In the prediction step

P (t+ 1|t) = A(t)P (t|t)AT(t) +B(t)BT(t) (10.25)

unless A is diagonal, generally P (t+ 1|t) is less sparse than P (t|t).
• In the update step,

K(t) = P (t|t− 1)CT
{
CP (t|t− 1)CT +R

}−1
, (10.26)

the gain K will generally be a dense matrix, since the inverse of a sparse
(CPCT +R) is normally dense.

2. In many cases the prior model for the static case is simple, stationary, sparse, or at
least regularly structured; we have taken advantage of such attributes to develop



10.2 Efficient, Large-State Kalman Filters 331

a variety of efficient approaches. For example, even the complex, nonstationary
prior of Example 5.1 on page 159 admits an implicit, algorithmic implementation
of the prior.

In the Kalman filter, on the other hand, even if the dynamic process starts with a
simple, stationary, well-structured covariancePo, over time the covarianceP (t|t)
becomes complex, nonstationary, and unstructured, as was seen in Application 4,
because the behaviour of P (t|t) depends on the interaction of the problem dy-
namics with the location C and quality R of the measurements.

If the number of elements in z is modest, then a direct implementation of the KF is
possible, treating all of the system matrices A,B and estimation error covariances
P (t|t− 1), P (t|t) as dense.

There are two limitations to the straightforward application of the dense Kalman
filter to large-scale problems:

1. Computational complexity, specifically due to matrix–matrix multiplication and
matrix inversion;

2. Storage complexity, due to the storage of dense covariances.

A great many approaches have been developed for implementing Kalman filter–like
solutions to large-scale dynamic estimation problems, in many cases customized to
the specific attributes of a multidimensional estimation problem. Some of the most
common approaches are summarized in the following sections:

• Section 10.2.2 — Steady-State KF: do not update or predict covariances

• Section 10.2.3 — Strip KF: break the problem into pieces

• Section 10.2.4 — Reduced-Update KF: limit the extent of the model

• Section 10.2.5 — Sparse KF: implicit representation of covariances

• Section 10.2.6 — Reduced-Order KF: use basis reduction to reduce state size

10.2.1 Large-State Kalman Smoother

In many cases z(t) is not a causal process, particularly when Z is marching spatially
in solving a multidimensional static problem. In such cases we may wish the esti-
mates ẑ(t) to be computed acausally. In principle we have already discussed acausal
filtering of dynamic processes using the RTS smoother in Section 4.3.3, however to
compute smoothed estimates over t ∈ [0, τ ] the RTS smoother must store P (t|t) for
every time t in the interval. In those cases where z is a large problem, the storage
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Example 10.1: Interpolation by Marching

Suppose we have a stationary, periodic random field

We have sparse measurements of the random field, therefore the FFT method
cannot be used for estimation, so we use the Kalman filter and march, column by
column. The column dynamics can be learned from the prior spatial statistics

Matrix A Matrix BBT

where the sparse structure of A is consistent with the random field being Markov.
With the model in place, we can use the Kalman filter to generate causal (left-to-
right) or anticausal (right-to-left) estimates:

Sparsely Measured Densely Measured

L
ef

t-
to

-R
ig

ht
R

ig
ht

-t
o-

L
ef

t

Ẑ diag
(
P̃
)

Ẑ diag
(
P̃
)

Example continues . . .
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Example 10.1: Interpolation by Marching (cont’d)

We can clearly see how the measurements and error variances respond unidirec-
tionally to the measurements, especially in the sparsely-measured cases (left).

It is possible to consider merging the two separate (causal and anticausal) Kalman
filter results, based on (10.28):

Sparsely Measured Densely Measured

There are a number of artifacts present, which stem from merging the results on
the basis of error variances only, rather than the full covariance (which would
be too large to store in multidimensional problems of interest). Nevertheless the
merged estimates are considerably more appealing, and probably more useful,
than the unidirectional ones on the previous page.

of τ covariances P (1|1), . . . , P (τ |τ) is almost certainly prohibitive, leaving us with
three alternatives:

1. Don’t smooth, solve the estimates causally only. For many true temporal esti-
mation problems this is likely to be appropriate, but less so for spatial-marching
ones.

2. Perform suboptimal smoothing, whereby the covariances P (t|t) are stored in
banded / kernel / sparse inverse or some other compact form. Running an in-
formation Kalman filter (Section 4.3.1) in a sparse-matrix form, as discussed in
Section 10.2.5, may indeed be practical.

3. Perform suboptimal smoothing by running the Kalman filter twice, once causally
and once anticausally, and merging the two sets of results, as illustrated in Exam-
ple 10.1. Thus we compute

ẑ(t|0, . . . , t), P (t|0, . . . , t) and ẑ(t|t, . . . , τ), P (t|t, . . . , τ) (10.27)

which are merged as
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ẑi(t|0, . . . , τ) =
ẑi(t|0, . . . , t)/Pi,i(t|0, . . . , t) + ẑi(t|t, . . . , τ)/Pi,i(t|t, . . . , τ)

−1/Pi,i(t) + 1/Pi,i(t|0, . . . , t) + 1/Pi,i(t|t, . . . , τ)
(10.28)

for example, where the −1/Pi,i(t) term in the denominator is to subtract out the
prior, which would otherwise be double-counted in the statistics. Computing the
merged results still requires saving ẑ and diag(P ) at each point in time, for both
directions, requiring a storage of 4τ times greater than z alone, although only
four times greater than the storage of Z , the underlying static random field.

Practical solutions to the Kalman smoother therefore rely on efficient methods for
Kalman filtering, discussed in the following sections.

10.2.2 Steady-State KF

If the dynamic system is temporally stationary, then the steady-state Kalman filter
(Section 4.3.2) may be applied. Although large, matrices P (t|t), P (t|t−1),K(t) are
not a function of t and need to be calculated only once, leaving the relatively simple
vector equations to recursively calculate ẑ(t|t), ẑ(t|t − 1). Since the vector equa-
tions explicitly depend only on K , and not on P (t|t), P (t|t − 1), it is actually only
K which needs to be stored. Finally, because K does not need to satisfy positive-
definiteness it may readily be approximated, for example using a sparse/banded ap-
proach (Section 5.3) to address storage complexity.

It should be pointed out that the fully stationary case, stationary in all dimensions
with periodic boundaries, should be solved using FFT methods (Section 8.3). How-
ever, the steady-state Kalman filter requires only temporal stationarity, and not spatial
stationarity or periodicity.

10.2.3 Strip KF

As was made clear in Figure 10.2, the regular Kalman filter will consider all of the
interrelationships of elements in z. If z contains a set of pixels, distributed spatially,
such as the column or row of an image, then almost certainly the interrelationships
of distantly-separated state elements are not of great value. Therefore it is logical to
consider breaking the state into a number of pieces, which is the essence of the Strip
Kalman Filter [337].

The state vector z(t)T =
[
z1(t) z2(t) · · · zn(t)

]
is divided into a number of pieces
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back to Original Domain

Fig. 10.3. The Strip Kalman Filter: The Kalman filter state vector, here the row of an image, is
partitioned into strips, such that a separate Kalman filter is run on each strip, with the estimated
strips then recombined.

z1(t)
T =

[
z1(t) · · · zw(t)

]

z2(t)
T =

[
zw−Δ(t) · · · z2w−Δ(t)

]

...

zq(t)
T =

[
z(q−1)(w−Δ)(t) · · · zn(t)

]

(10.29)

for some appropriate strip width w and strip overlapΔ, where

w � n

q
+Δ. (10.30)

The resulting strips are processed separately, and the resulting estimates from the in-
dividual strips concatenated to form an estimate of the original problem, as illustrated
in Figure 10.3.

This process of dividing into pieces, independent processing, and recombining is
exactly the same as what was described under local processing in Section 8.2.3. In
particular, compare Figure 10.3 with the overlapped transformation of (8.49) and
(8.51) on page 259.

Because the computational complexity of the Kalman Filter goes as the cube of the
state size, whereas the original filter had a complexity of O(n3) per row, the strip
filter has a complexity of

q ·
(
n

q
+Δ

)3

(10.31)

per row, where q represents the number of strips, and Δ the overlap between the
strips. Differentiating (10.31), we can find the optimum number of strips, minimizing
computational complexity, as

qopt =
2n
Δ

(10.32)
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Row to Estimate Extent of Model Augmented State
(a) (b) (c)

Fig. 10.4. The Reduced Update principle: Suppose we wish to produce estimates for a given
row (a), based on some local half-plane model (b). However, under a marching scheme, even to
estimate just that single scalar would require augmenting the row-state with multiple previous
rows (c) to preserve the necessary history, a significant computational complexity. The RUKF
performs the state update only within the model support in (b).

although there may be other factors — density of measurements, appearance of esti-
mation artifacts, spatial correlation length — which constrain the appropriate range
of w and Δ.

10.2.4 Reduced-Update KF

The one disadvantage of the strip-based Kalman filter is that by processing the strips
independently, if the measurements are sufficiently sparse the boundaries of the strips
will necessarily appear as artifacts in the estimates. Instead, the Reduced Update
Kalman filter [188, 337, 338] produces state estimates by scanning along the state
vector, one scalar element at a time.

The principle of the RUKF is illustrated in Figure 10.4. Suppose that each image row
contains N state elements, and that the 2D auto-regressive model in Figure 10.4(b)
has a size of q× q pixels. In terms of implementing a scalar, raster-scanning Kalman
filter:

• The prediction step is based only on the size of the model in Figure 10.4(b),
involvingO(q2) state elements;

• The update step, on the other hand, needs to update all of the elements in the
augmented state in Figure 10.4(c), involvingO(qN) state elements.

Since we expect that N is somewhat larger than q, and because computational com-
plexity in the Kalman filter goes as the cube of the number of state elements, it is
clear from the above two points that the prediction step is relatively straightforward,
and that efforts towards simplification should be concentrated on the update step.
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The goal of the RUKF is to perform the update step, but involving only thoseO(q2)
state elements in the model. Because these q2 elements are those most likely to be
meaningfully related to the measurement being processed, the degree of approxima-
tion is modest.

Adapting the notation from [188], we can summarize the RUKF in standard Kalman
filter form as follows. Suppose we are given a stationary, causal Markov model as in
(6.38):

zt =
∑

s∈N
gszt−s + wt, (10.33)

where N is a symmetric half-plane neighbourhood, t is a state index (here two-
dimensional), and w is a driving process noise with stationary variance σ2. Then the
RUKF becomes

Prediction: ẑ(t|t− 1) =
∑

s∈N
gsẑ(t− s|t− 1) (10.34)

P̄ (t, i|t− 1) =
∑

s

gsP (t− s, i|t− 1) i < t (10.35)

P̄ (t, t|t− 1) =
∑

s

gsP (t, t− s|t− 1) (10.36)

Update: ẑ(i|t) = ẑ(i|t− 1) + k(t− i|t)(m(t)− ẑ(t|t)) (10.37)

P (i, j|t) = P̄ (i, j|t− 1)− k(t− i|t)P̄ (t, j|t− 1) (10.38)

k(i|t) = P̄ (t, i|t− 1) · (P̄ (t, t|t− 1) + r(t)
)−1

. (10.39)

The structural similarity of the above RUKF to that of the standard Kalman filter in
Chapter 4 is clear.

Although a causal model is used, it is important to understand that the produced
estimates are not causal: a given measurementm(t) is updated anti-causally into the
neighbourhoodN preceding t, and will be predicted causally into the state elements
following t. Of course the degree of acausality is limited by the size ofN .

10.2.5 Sparse KF

Rather than breaking the problem into pieces (strip KF) or localizing the state
(RUKF), one alternative is to take advantage of problem sparsity (Section 5.3):

• Reduced storage complexity

• Reduced matrix–matrix multiplication complexity

• Possibly, reduced matrix inversion complexity
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Of the matrices which appear in the Kalman filter, it is common for C,B,R to be
sparse. Our focus is therefore on the dynamics matrix A and the error covariances
P (t|t), P (t|t− 1):

Dynamics: If the time-discretization is chosen sufficiently fine, then for most physi-
cal systems A(t) will be sparse and nearly diagonal since a given state element zi

is, in a brief instant of time, likely to influence only those few other elements in its
immediate vicinity.

Covariances: Unless the dynamics A are diagonal, over time all of the elements of
z become correlated and P (t|t), P (t|t − 1) become full. Sparsity is therefore a
matter of assertion or approximation.

The estimation errors do tend to be locally correlated, however the correlation
decays slowly with offset, and the covariances P (t|t), P (t|t− 1) are not naturally
sparse. In many cases it may be possible to assume a Markov model for the errors,
however, meaning that it is P−1(t|t) for which a sparse form may be a reasonable
approximation.

A variety of sparse Kalman filters has been proposed [10, 65, 66, 307], most of
them [65, 66, 307] based on sparsifying the inverse covariance, therefore actually
implementing a sparse version of the Information Kalman filter (Section 4.3.1). We
need to specify two things:

1. A sparsification operation, normally banded-Markov,

2. A sparse-matrix inversion operation.

Under the assumption that the covariances satisfy diagonal dominance, the series
approximation to matrix inversion (5.21) can be used to efficiently implement the
latter matrix inversion.

The former sparsification operator seems straightforward in principle: for informa-
tion (inverse) covariances, set to zero all elements outside of some set of bands. In
practice, the need to preserve positive-definiteness makes the operation more subtle.

10.2.6 Reduced-Order KF

Because much of remote sensing is inherently global and time-dynamic in nature,
such as the discussion in Application 4 on page 122, there has been a particularly
large number of Kalman filters implemented for large-scale time-dynamic data as-
similation, such as in [103, 121, 191] and in citations [2–12] within [111].

The Reduced-Order Kalman filter [7, 103, 239, 287] seeks a reduction of basis, as
discussed in Section 8.2.2 and as illustrated in Application 8 on page 285, in order
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to reduce the dimensionality of the state to an extent that a direct implementation of
the Kalman filter for the reduced state is feasible.

From (8.117), suppose that some operator A characterizes the discrete-time dynam-
ics of a random process z′:

z′(t+ 1|t) = A(z′(t|t)). (10.40)

In many cases, the dynamic problem involves fluctuations about a mean (Exam-
ple 3.3); for example, the ocean sea-surface temperature exhibits modest variations
about a relatively complex mean. If we subtract out the possibly time-varying mean
z′o(t),

z(t) = z′(t)− z′o(t) (10.41)

then z is our process of interest. We can define a reduced state

z̄(t) = Fz(t), (10.42)

where F is not obligated to preserve any (possibly sharp and complex) details of z′o,
only the typically smoother deviations z about the mean. The degree of reduction,
the number of rows in F , is chosen such that a regular, dense Kalman filter can be
applied to z̄.

Given updated estimates, the estimates of z′ are found by inverting (10.41),(10.42):

ẑ′(t|t) = z′o + S ˆ̄z(t|t), (10.43)

where S is the pseudoinverse of F , as in Section 8.2.2.

The high resolution estimates are passed through dynamicsA, meaning that the pre-
diction step takes place in the unreduced domain:

ˆ̄z(t+ 1|t) = F
[
A(z′o(t) + S ˆ̄z(t|t))− z′o(t+ 1)

]
. (10.44)

In the event that A is linear, then the deterministic and stochastic portions of the
problem decouple (the Wold decomposition [248]), implying that the Kalman filter
can operate mean-removed, as usual, and allowing the predict step to take place in
the reduced domain:

ˆ̄z(t+ 1|t) = FAS︸ ︷︷ ︸
Ā

ˆ̄z(t|t). (10.45)

10.3 Multiscale

All of the other approaches in this chapter have synthesized a dynamic problem by
cutting a static problem into spatial pieces, such that the “time” variable t of the
Kalman filter essentially indexes the rows, columns, or planes of a spatial problem.
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x0
x0

x11 x12
x1

x21 x22 x23 x24
x2

xJ

=

z

Fig. 10.5. A dyadic representation of a one-dimensional process z: the coarse representation
x0 is split, such that x1 is broken into two decoupled parts x11, x12. The repeated splitting
continues for J scales; the goal is to find a tree model such that the finest scale xJ possesses
the statistics of the represented process; that is, such that cov(xJ ) = cov(z).

There are, to be sure, other ways of cutting up a spatial problem (see Problem 10.1,
for example) than just rows or columns. As a significant departure from the rest of
this chapter, we here consider allowing the Kalman filter “time” to index scale, rather
than space. The basic idea, then, is to design a Kalman filter and RTS smoother to
solve a static problem by iterating back and forth in scale. Intuitively this is vaguely
analogous to the multigrid method of Section 9.2.5, except that multigrid is an iter-
ative method, taking repeated passes at an estimation problem, whereas the Kalman
filter / RTS smoother involve a single forwards and single backwards pass.

We know from Section 8.5 that subsampling or a change of resolution destroys the
Markovianity of a random field, so the reader may wonder what a multiscale Kalman
filter has to offer. It is pertinent, at this point, to clarify a distinction between mul-
tiresolution and multiscale:

A MULTIRESOLUTION model involves representing a random field with state ele-
ments that have varying spatial extent, such that coarse-scale pixels have a larger
region of support than fine-scale ones.

A MULTISCALE model represents a random field on a hierarchy, but the nature of
the representation at coarse scales does not necessarily involve low-resolution el-
ements.

Therefore certain phenomena in remote sensing, such as 1/f power-laws [281]
which involve structures at multiple scales, may be better served with a multireso-
lution approach, whereas textures and single-scale random fields which are spatially



10.3 Multiscale 341

Markov may be more appropriately represented via a multiscale model. The mul-
tiscale statistical model [69, 105, 169, 214] described in this section includes both
Markov/multiscale and multiresolution models, although we focus on the GMRF
case.

Suppose we are given the usual static problem

zstatic ∼ Pstatic m = Czstatic + v v ∼ R. (10.46)

To construct an efficient multiscale model for z, we seek to define a dynamic model

xt+1 = Atxt +Btwt x0 ∼ P0 wt ∼ I (10.47)

such that the dynamic multiscale state x evolves to z after a finite number of steps J .
That is, we need to find At, Bt such that the finest scale of the multiscale problem
equals or approximates the given static problem, such that

Pstatic � PJ = AJPJ−1A
T
J +BJB

T
J (10.48)

= AJ

[
AJ−1PJ−2A

T
J−1 +BJ−1B

T
J−1

]
AT

J +BJB
T
J (10.49)

= · · ·

and that, ideally, At and Bt have some particular form which makes estimation par-
ticularly easy and efficient.

Since the original static problem is equivalent to the finest scale, this is the only
time-step at which the dynamic problem has measurements:

mstatic ≡ mJ = CxJ + v v ∼ R. (10.50)

Figure 10.5 illustrates the key idea to making this model efficient. The state is re-
peatedly divided into decorrelated pieces, such that x22 can depend on x11, but not
on x12. This decoupling or decorrelation places a restriction on the dynamic model,
such that A,B take the form

x1 =
[
x11
x12

]
= A1x0 + B1w1 =

[
A11

A12

]

x0 +

[
B11

B12

]
[
w11
w12

]
(10.51)

x2 =

⎡

⎣
x21
x22
x23
x24

⎤

⎦ = A2x1 +B2w2 =

⎡

⎢
⎢
⎢
⎣

A21

A22

A23

A24

⎤

⎥
⎥
⎥
⎦

[
x11
x12

]
+

⎡

⎢
⎢
⎢
⎣

B21

B22

B23

B24

⎤

⎥
⎥
⎥
⎦

⎡

⎣
w21
w22
w23
w24

⎤

⎦

(10.52)

Since the process noise w terms are white, the above large dynamic equations can be
broken down into smaller pieces; for example,
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Fig. 10.6. Multiscale estimates and error variances [105]. The estimates are computed from
the satellite altimetry data of Figure 1.3, where the higher accuracy of the estimates near the
measured paths can be seen very clearly in the pattern of the error variances.

x11 = A11x0 +B11w11

x21 = A21x11 +B21w21 (10.53)

x24 = A24x12 +B24w24.

Rather than the cluttered indices present in (10.53), we can generalize (10.53) in
terms of a single index s,

x(s) = A(s)x
(↑s)+B(s)w(s), (10.54)

where ↑ s is the index of the parent of s. This generalized structure applies to one-
dimensional dyadic trees, two-dimensional quad-trees, and indeed to any tree struc-
ture in any number of dimensions.

If we define each state to be some linear function of the underlying random field:

x(s) = Ξ(s)z (10.55)

then the statistics at the finest scale allow us to infer the multiscale statistics,

z ∼ Pstatic =⇒ P (s) = cov
(
x(s)

)
= Ξ(s)PstaticΞ(s)T (10.56)

and from those the model parameters in (10.54):

A(s) =
{
Ξ(s)PstaticΞ

(↑s)T} · {Ξ(↑s)PstaticΞ
(↑s)T}−1

(10.57)

B(s)BT(s) = P (s)−A(s)P
(↑s)AT(s). (10.58)

It is not a coincidence that these equations appear very similar to the marching dy-
namics of (10.9), (10.13). The multiscale estimator is essentially a distributed march-
ing algorithm, marching over the scales of a tree, rather than across space.
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First / Second-order Markov Third / Fourth-order Markov

Fig. 10.7. If the underlying prior model is Markov, then keeping the pixellated values is suffi-
cient to conditionally decorrelate the process into four quadrants. If each of those quadrants is
further broken down into quadrants, we get a quad-tree whose finest scale statistics precisely
equal the original Markov model. The number of rows or columns to keep in the state is a
function of the Markov order of the underlying prior.

The multiscale estimation algorithm [69,105,169,214] is essentially like the Kalman
smoother on the tree structure, with two exceptions:

1. In order for any measurement at any tree index to be able to influence the estimate
at any other tree index, it is necessary to run the Kalman smoother in reverse, first
filtering from fine-to-coarse, and then smoothing from coarse-to-fine.

2. In the tree a given node can have multiple child nodes, thus some sort of merge
step is required to combine the information from multiple children in computing
the estimate at the parent.

The resulting estimator performs an upwards pass, from fine to coarse, producing
estimates x̂u(s) with uncertainty P̃u(s), followed by a downwards pass (the RTS
smoother), producing estimates x̂(s) with covariance P̃ (s). An example of multi-
scale estimates and estimation error variances is shown in Figure 10.6.

If x(s) ∈ R
n(s), then the complexities of the multiscale approach are

O
(
∑

s

n2(s)

)

Storage O
(
∑

s

n3(s)

)

Computation. (10.59)

The remaining question is how to effectively select the state x(s) = Ξ(s)z in order
to satisfy the two multiscale objectives:

1. n(s) is small at each tree index, for computational efficiency;

2. The finest-scale multiscale statistics PJ equal the given statistics Pstatic.
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Fig. 10.8. Three levels of a multiscale hierarchy, with states chosen appropriate for a first-
order Markov field, as in Figure 10.7. The purpose of each state is to hold that information
which allows its four quadrants to be conditionally decorrelated.

Suppose we are given a two-dimensional static problem with a first-order Markov
prior. Then if Ξ(0) selects all of the pixels in the middle row and column, as illus-
trated in Figure 10.7, then conditioned on the root state x(0) the four quadrants are
conditionally decorrelated, precisely the decoupling required in (10.51), and philo-
sophically clearly related to the nested dissection of Section 9.1.3.

There is, however, no reason to content ourselves with limiting the decomposition of
the field into four quadrants. We can proceed further, creating boundaries similar to
those in Figure 10.7 within each of the quadrants, thus we can continue the successive
subdivision of the field into smaller pieces, as illustrated in Figure 10.8.

The computational complexity is dominated by the large state at the tree root, with
the complexity geometrically decreasing with scale. The computational complexity
is shown as a function of dimension in Table 10.1.

A variety of generalizations may be considered:

• The point measurements of the original static problem are normally associated
with the individual pixels at the finest level of the tree, however with the appro-
priate definition of x(s) at coarser levels of the tree, nonlocal measurements can
also be accommodated.
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Dimensions Problem Size # Pixels Multiscale Complexity

1D n N = n O(n) = O(N)
2D n× n N = n2 O(n3) = O(N1.5)
3D n× n× n N = n3 O(n6) = O(N2)

Table 10.1. Computational complexity of the multiscale method, as compared to a direct
solver, as a function of dimensionality.

Fig. 10.9. The boundaries of Figure 10.7 may be much more densely sampled than needed. It
may be a very reasonable approximation to subsample (left) or average (right) along the quad-
rant boundaries. The four quadrants will no longer be perfectly decorrelated, although very
nearly so. Sample results, based on a subsampled state, are shown in Figures 10.10 and 10.11.

• It is possible to benefit from further computational efficiency via approximations.
In particular, if the random field has a long correlation length, then it may be
highly redundant (and poorly conditioned) to preserve every pixel along the quad-
rant boundaries. Instead, it may be very reasonable to select the state by subsam-
pling or averaging [213, 232], as illustrated in Figure 10.9.

• The overlapped approach of Section 8.2.3 lends itself particularly well to the mul-
tiscale environment [169], especially when the states are approximated, rather
than exact. With approximate states the quadrant decorrelation is imperfect, re-
sulting in estimation inconsistencies and artifacts along the quadrant boundaries;
by overlapping these artifacts can be reduced, as illustrated in Figure 10.11.

• Because the update step of the Kalman filter is essentially a static estimate, it is
possible to use the multiscale estimator to solve the update step of large Kalman
filters [191]. Indeed, the update step in the dynamic estimator in Application 4
was based on the multiscale method of this section.

It is possible to calculate both prior and posterior samples from the multiscale model,
which is discussed in Section 11.2.3.
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Fig. 10.10. A comprehensive, multidimensional estimation example [232]. Ship-based ocean
temperature measurements are taken, as was illustrated in Figure 1.3 on page 5. The mea-
surements are densely sampled in depth and the problem is essentially statistically stationary
in latitude and longitude, therefore the problem was decoupled into multiple depth slices, as
discussed in Example 8.1 on page 252. For each depth slice, a first-order tree can be created,
as sketched in Figure 10.8. To reduce computational complexity and improve conditioning, a
subsampled state is used, as in Figure 10.9.

Highly reduced-order model, Even further reduced order,
with apparent texture artifacts but overlapped

Fig. 10.11. Multiscale estimation of random-field textures with reduced-order models, with
states as in Figure 10.9. The effectiveness of an overlapped approach, as discussed in Sec-
tion 8.2.3, in reducing quadrant-boundary artifacts is clear.
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Application 10: Video Denoising [178]

We wish to denoise video. Since successive images in a video are highly related a
temporal filter seems reasonable, so we wish to implement something like a Kalman
filter. However, the images are large and we want real-time filtering, so a standard
Kalman filter in the spatial domain is not practical.

Video denoising approaches in the spatial domain [9, 41, 192] can be divided into
three classes:

TEMPORAL-ONLY: An approach utilizing only the temporal correlations, neglecting
spatial information.

SPATIAL-ONLY: Apply 2D spatial denoising to each video frame, taking advantage
of the vast image denoising literature, but ignoring the temporal correlations.

SPATIO-TEMPORAL: More sophisticated methods exploiting both spatial and tem-
poral correlations, such as simple adaptive weighted local averaging, 3D Kalman
filtering, and 3D Markov models.

As an alternative to spatial-domain processing, we consider wavelet-based approaches,
which have led to impressive results in 2D denoising. It would seem natural to select
3D wavelets for video denoising, however there are a number of drawbacks:

1. There is a clear asymmetry between space and time; for effective denoising we
need to treat the space and time axes distinctly, not as a large 3D cube of data.

2. All of the image frames need to be in place in order to apply the 3D wavelet,
therefore there is a long latency time between acquiring and denoising an image.

3. 3D wavelets cannot be sensitive to all of the possible object motions.

We can address these drawbacks by applying the 2D wavelet transform to each 2D
image frame, and then performing spatio-temporal video filtering in the wavelet do-
main. That is, essentially we want to develop a large Kalman filter in the wavelet
domain.

Next, we wish the temporal dynamics to correspond to motion. For most wavelets
image motion does not imply a motion of coefficients in the wavelet domain, so we
need to choose a shift-invariant, overcomplete wavelet transform [222]. The benefits
of such an approach are clear:

1. The recursive, frame-by-frame approach implies low latency;

2. The wavelet decorrelative property allows very simple, fast, scalar temporal fil-
tering;
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Fig. 10.12. A frame from the Paris video, showing the inferred motion which is used as the
time-prediction step in the wavelet domain.

3. Where motion estimates are unreliable, spatial (non-temporal) methods can pro-
vide denoising.

Given a noisy image sequence

m(t) = z(t) + v(t), (10.60)

we transform it into the wavelet domain

m̄(t) = Wm(t) = Wz(t) +Wv(t) = z̄(t) + v̄(t), (10.61)

where the explicit transformation of the problem is possible because each image is
densely sampled. We assert an autoregressive form for the signal model to fit the
Kalman filter Gauss–Markov dynamics:

z̄(t+ 1) = A(t)z̄(t) +B(t)w̄(t) (10.62)

for some white, stochastic driving process w̄. The inference of A and B is simpli-
fied here by assuming that each frame is related to its predecessor, subject to some
displacement fieldD(t). Since the selected wavelet is shift-invariant, the wavelet co-
efficients are subject to the same motion as the image itself, such as those illustrated
in Figure 10.12, thus the dynamic model simplifies as

Z̄
i
(t) = Z̄

i+D
i
(t− 1) + 0 · w̄(t). (10.63)

This model captures only translations, and not occlusion or zooming. One can choose
to test model (10.63) by hypothesis testing, and where the model is invalid (that is,
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Original Video Frame Image Frame with Added Noise

Wavelet–Kalman Denoised Difference between Original and Denoised

Fig. 10.13. Applying the spatio-temporal wavelet denoising method of [178]: Wavelet artifacts
are not apparent in the reconstruction and the error image is small, with great noise reduction
in those parts of the images, away from edges, which can be reliably predicted over time.

where Z(t− 1) and Z(t) cannot be matched by translation), then the null model can
be asserted:

Z̄
i
(t) = 0 · Z̄

i
(t− 1) + B(t) · w̄(t). (10.64)

This model has no dynamics, and is thus a purely spatial problem, to which standard
image denoising methods (Appendix C) can be applied.

The above approach was developed, implemented, and applied to video [178], with
results as shown in Figure 10.13. For a relatively simple idea — using a Kalman
filter in the wavelet domain with the prediction step based on motion estimation —
the results are quite compelling.
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Pointwise Local Causal MRF Noncausal MRF

Marching Second-Order Marching Sparse Marching
Marching Smoothing

RUKF Strip Multiscale Dense

Fig. 10.14. An overview and visual comparison of estimation methods. The state (black dots)
is written in terms of a model over some portion of the domain (shaded), however the estimated
state may be influenced by measurements within some larger domain (hatched).

Summary

Figure 10.14 visually compares twelve methods of estimation. The models differ
primarily on the basis of locality, causality, and order / complexity.

Clearly this list is not exhaustive, and should be understood to be complementary to
other methods and alternatives already explored in this text:

• The Kalman filter algorithmic alternatives in Section 4.3,

• The methods of transformation and dimensionality reduction in Figure 5.2 at the
start of Chapter 5,

• The methods of representation in Figure 6.13 at the end of Chapter 6.
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For Further Study

The reader may find it interesting to follow the evolution of the Kalman filter, for
spatial processing purposes, from the development of the original filter in 1960 [182],
the Kalman smoother in 1965 [266], the two-dimensional strip filter in 1977 [337],
the reduced update Kalman filter in the early 1980s [188, 338], the reduced order
Kalman filter in 1989 [7,287], and more recent work in three-dimensional and video
filtering [192].

Sample Problems

Problem 10.1: Other Approaches to Marching

The marching method of Section 10.1 describes the solution of a two-dimensional
problem by marching column-by-column. However, there is nothing special
about breaking an image into columns.

Describe how you could perform 2D static estimation by dynamically marching
diagonal by diagonal.

Problem 10.2: Marching Limitations

There are a number of limitations to the first-order, causal marching method. For
each of the following limitations, briefly discuss or suggest an alternative:

(a) The computed estimates are causal, depending only on measurements in the
current and previous columns.

(b) The first-order dynamic model is a poor approximation of the underlying
prior statistics.

(c) The computational complexity is too high when each column has very many
elements.

(d) The marching method assumes Markovianity; what do I do for a stationary
non-Markov problem?

Problem 10.3: 2D Marching

LetZ = [z1 . . . z64] be a 64×64 two-dimensional zero-mean stationary process
with periodic boundary conditions.

Let G be the “Tree-Bark” kernel from Example 6.1 on page 190. We consider
two possible prior models for Z:
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G1 = G and G2 = (G)T ,

where (G)T is just the transpose of the kernel itself. Using the FFT method we
can invert the model kernel G1 to find the covariances

Pself = cov(zi) Pcross = E
[
zi z

T
i+1

]

Note that because of the stationarity of Z , Pself and Pcross are not a function of i.

We will be marching column by column. FromPself andPcross determineA,BBT ,
the matrices in the first-order dynamic model. Initialize the Kalman filter with

ẑ(1|0) = 0 P (1|0) = Pself.

Use this Kalman filter to answer the following:

(a) Suppose we observe only a single pixel

10.0 = m = Z(20, 20) + v v ∼ σ2 = Pself(1, 1).

Use the Kalman filter to compute estimates and error variances; plot and
interpret the results.

(b) Could the FFT method have been used to compute the estimates and error
variances in part (a)?

(c) Now suppose we observe every pixel. Use the FFT method, based on prior
G1, to create a random sample image M , which we will use as our observa-
tions:

M = Z + V [V ]: ∼ R, Ri,j = δi,jPself(1, 1).

Use the Kalman filter to compute estimates and error variances; plot and
interpret the results.

(d) Could the FFT method have been used to compute the estimates and error
variances in part (c)?

(e) Now repeat the entire problem, through part (d), but using prior kernel G2

rather than G1. Plot the two sets of estimates and error variances.
(f) How are the results from G1 different from those of G2? Pay close attention

to the error variance plots.
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Problem 10.4: Marching Variations

The implementation in Problem 10.3 used the standard Kalman filter. For a suf-
ficiently large 2D or 3D domain, the regular Kalman filter might have computa-
tional limitations, and very likely issues with numerical stability. Repeat Prob-
lem 10.3(a), but instead using

(a) The square root KF of Section 4.3.1
(b) The Strip KF of Section 10.2.3
(c) The RUKF of Section 10.2.4

Problem 10.5: Acausal Marching

The implementation in Problem 10.3 used only the Kalman filter in computing
estimates, which are therefore causal, whereas we know that an acausal approach,
Kalman smoothing, can yield superior results. Repeat Problem 10.3(a), but using
the RTS Kalman smoother, as described in Section 4.3.3.

Discuss the differences you see between the causal and acausal estimates and
error variances.

Problem 10.6: Open-Ended Real-Data Problem — Large-Scale Kalman Filtering

Implement a Kalman filter for a large-scale, dynamic dataset. Many remote sens-
ing satellites (ATSR, Topex, ERS) have data freely available online.

Avoid datasets having a complex forward problem, such as the radiometric one
discussed in Application 3. Instead, we seek direct measurements, such as of
ocean height (Topex) or sea-surface temperature (ATSR).

The two key challenges, as were discussed in Application 4, are that we have
sparse measurements of a changing field:

• If the measurements were dense, then we would only need some sort of de-
noising or interpolation.

• If the underlying field were not changing, we would just have a spatial static
problem with many measurements.

Develop an iterative, Kalman-filter like approach to producing dynamic estimates
of the underlying random field, based on the satellite data.
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Sampling and Monte Carlo Methods

The matter of statistical sampling was discussed in Chapter 2: Prior Sampling in
Section 2.5.2, and Posterior Sampling in Section 2.5.4.

Given a random variable z obeying some prior probability density function p(z),
sampling from the prior distribution means generating independent random samples
z1, z2, . . . from p(z):

zi ∼ p(z), (11.1)

and similarly posterior sampling from a distribution conditioned on measurements:

(zi|m) ∼ p(z|m). (11.2)

The key is to decompose (zi|m) into deterministic and stochastic components, es-
sentially the Wold decomposition [248]:

(z|m) = (ẑ|m) + (z̃|m). (11.3)

That is, the posterior z equals the estimate plus a random sample obeying the esti-
mation error statistics, as illustrated in Figure 11.1. Much of this text has looked at
methods for generating estimates ẑ; the key to posterior sampling, then, is a means
of sampling the error process z̃.

The first part of this chapter develops algorithms for continuous-state prior and pos-
terior sampling, based on the Kalman filter, marching methods, and multiscale meth-
ods, paralleling the sequence of methods presented in Chapter 10.

The substantial last part of this chapter, in Section 11.3, develops Monte Carlo and
discrete-state methods. These are of key importance for discrete-state fields, in par-
ticular those as part of a hidden Markov model in Chapter 7.

The goal of Monte Carlo samplers is to find a sequence of states, dependent only on
a Gibbs energyH , such that the state sequence converges to a random sample of the
probability density implied by H :

P. Fieguth, Statistical Image Processing and Multidimensional Modeling, Information Science 355
and Statistics, DOI 10.1007/978-1-4419-7294-1_11, © Springer Science+Business Media, LLC 2011
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z ẑ|m
Truth Estimates

z̃|m z|m
Sampled Error Posterior Sample

Fig. 11.1. The process of posterior sampling. The top two panels show a sample from an
anisotropic prior model and estimates based on the central measured columns. The bottom-left
panel shows the sampled estimation error, where a low-variance zero-mean band can be seen
around the measurements, where the estimation uncertainties are small. The final panel shows
the sampled posterior, consistent with both the measurements and the prior statistics. The
estimates and sampled error were generated using the multiscale approach of Sections 10.3
and 11.2.3.

H −→ z1, z2, . . . such that lim
i→∞

zi ∼
exp(−βH)

Z
. (11.4)

As we saw with Gibbs fields in Chapter 6 and in the context of hidden models in
Chapter 7, the Gibbs model makes no particular distinction between prior and pos-
terior models. The distinction is, in fact, only a matter of whether the measurements
appear (posterior) or not (prior) in the energy function H .
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11.1 Dynamic Sampling

In the context of a linear, Gauss–Markov dynamic process (4.1), the task of prior
sampling is straightforward, just a simulation of the evolution of the dynamic process
over time. The process initialization

z(0) ∼ N (0, P0) (11.5)

requires sampling z(0) from the prior model P0, based on the matrix square root of
P0, as discussed in Section 2.5.2 and Appendix A.8. With the recursion initialized,
dynamic prior sampling proceeds as

z(t+ 1) = A(t)z(t) +B(t)w(t), (11.6)

where w(t) is a zero-mean, unit-variance Gaussian random vector.

Next, in order to do posterior sampling of a dynamic process, from (11.3) it is the
statistics of the estimation error which we need to identify, therefore for recursive
posterior sampling it is really a dynamic relationship for the estimation errors which
we require:

z̃(t+ 1) = Ã(t)z̃(t) + q̃(t), z̃(0) ∼ N (z̃o, P̃o), q̃(t) ∼ N (0, Q̃(t)
)
. (11.7)

Although it is not obvious that such a form is obeyed, the error process of the Kalman
filter does in fact obey such a dynamic process. The statistics for the predicted es-
timation error z̃(t + 1|t) were derived in (4.124) on page 108. Rewriting for the
updated estimation error z̃(t|t) yields

z̃(t|t) = ẑ(t|t)− z(t) (11.8)

=
(
I −K(t)C

)
Az̃(t|t− 1) +K(t)v(t)− (I −K(t)C

)
Bw(t) ; (11.9)

consequently we can identify the dynamic parameters

Ã(t) =
(
I −K(t)C(t)

)
A (11.10)

Q̃(t) = K(t)R(t)KT(t) +
(
I −K(t)C(t)

)
BBT

(
I −K(t)C(t)

)T
(11.11)

with initialization

z̃o = 0 (11.12)

P̃o = Po. (11.13)

Therefore for posterior dynamic sampling we must first run the Kalman filter to
compute the gain K(t) for each t, then draw a random sample

z̃(0) ∼ N (0, Po) (11.14)

to initialize, then recursively compute a sample error
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z̃(t+ 1) = Ãz̃(t) + q̃(t) q̃(t) ∼ N (0, Q̃(t)
)
, (11.15)

and finally the posterior sample is computed as the sampled error added to the esti-
mates:

z|m(t) = ẑ(t) + z̃(t). (11.16)

The error process of the Kalman smoother, of Section 4.3.3, also obeys a dynamic
process [20]. The derivation is considerably more complicated, however the recursive
form of the smoothing-error process z̃s is straightforward:

z̃s(t) = ẑ(t|T )− z(t) (11.17)

= A−1(t)
(
I −BBTP−1(t+ 1|t)) z̃s(t+ 1)−A−1(t)qs(t), (11.18)

where P (t + 1|t) is the regular, predicted error covariance from the Kalman filter,
and where the noise process qs has covariance

qs(t) ∼ B
(
I −BTP−1(t+ 1|t)B)BT . (11.19)

Observe that the smoothing error recursion is going backwards, from t+ 1 to t, just
like the RTS smoother, which explains the presence of inverse dynamicsA−1.

11.2 Static Sampling

There are only few ways in which a static estimation problem may be characterized:

• Given a covariance P or inverse P−1, whether prior or posterior;

• Given a set of constraints L in a regularized, non-Bayesian problem.

Let us investigate each of these two contexts in turn.

1. GIVEN COVARIANCE: Given a covariance matrix P , whether P describes a prior
or posterior

Prior: z ∼ (μ, P ) or Posterior: z|m ∼ (ẑ, P ) (11.20)

is immaterial, because in both cases the sampling process is identical:

Let x ∼ P be a random sample ⇒
{

Prior Sampling: z = μ+ x

Posterior Sampling: z|m = ẑ + x.

(11.21)
Next, whether we are given a covarianceP or its inverse P−1, such as in a Markov
setting, is also immaterial, since in both cases we find a matrix square root via the
Cholesky decomposition (Appendix A.7.3):
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Estimate ẑ Posterior Error Sample z̃|m
Storage: 1.3% Storage: 12%

Computation: 6% Computation: 50%

Fig. 11.2. An estimate and posterior sample, generated from a sparse prior, using a Cholesky
decomposition. Storage and computational complexity are reported relative to a non-sparse,
matrix-inversion approach. The higher storage complexity associated with the posterior sam-
ple is due to fill-in in the Cholesky step from P−1 to L in (11.24).

P
Chol.−→ P = Γ TΓ −→ z = Γ Tw

P−1 Chol.−→ P−1 = LTL −→ Lz = w
w ∼ I (11.22)

Although the latter case appears more difficult, because L is a triangular matrix
the latter Lz = w step is very simply solved by backsubstitution.

In the case where P represents the posterior covariance from an estimation

P =
(
CTR−1C + P−1

o

)−1
(11.23)

it should be very clear that we do not want to explicitly calculate P as part of
posterior sampling. Indeed, C and R are normally sparse or even diagonal, and
in any Markov setting P−1

o will be sparse-banded, therefore P−1 will be sparse.
In (11.22), the Cholesky decomposition L will retain the sparsity of P−1, making
the entire sequence

C,R, P−1
o −→ P−1 Chol.−→ Lz = w (11.24)

exceptionally computationally and storage efficient, as quantified in the example
in Figure 11.2.

2. GIVEN CONSTRAINTS: The constrained sampling problem is superficially straight-
forward, since the constraints L assert

Lz = w w ∼ I (11.25)
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Type of Problem Constraint Rank Random Sample

Membrane, 1D L = Lx Full-Row z = LT (LLT )−1w

Thin-Plate, 1D L = Lxx Full-Row z = LT (LLT )−1w

Membrane, 2D L =

»
Lx

Ly

–

Rank-Deficient z = L+w

Thin-Plate, 2D L =

»
Lxx

Lyy

–

Rank-Deficient z = L+w

nD Membrane + Weak Mean L =

»
Lmem

αI

–

Full-Column z = (LTL)−1LTw

nD Thin-Plate + Weak Mean L =

»
Ltp

αI

–

Full-Column z = (LTL)−1LTw

Table 11.1. Six examples of constraints, rank properties, and associated method of sam-
pling. Whereas Bayesian approaches will always be positive-definite, and can be solved by
a Cholesky decomposition, many constrained problems, such as here, will be rank-deficient
and necessitate a somewhat more complex pseudoinverse.

meaning that the matrix square root in (11.22) is already available in L, and all
that remains is to choose a random w and to solve the linear system in (11.25).

However, whereas a given covariance P or P−1 is guaranteed to be positive-
definite, simplifying the preceding discussion, throughout Chapter 5 we saw that
the constraints matrix L is normally rectangular and may be rank-deficient.

As discussed in Appendix A.9, the matrix pseudoinverseL+ finds a solution to any
linear system Lz = w, returning either the unique answer if L is invertible, the
least-squares answer if the problem is overconstrained, and the least-norm solution
for z if the problem is underconstrained. A number of possible constraints and
associated solutions are illustrated in Table 11.1, and two samples are plotted in
Figure 11.3.

We need to be clear that although z = L+w generates a random sample, consistent
with the asserted constraints Lz = w, because the regularized problem is non-
Bayesian and has no prior, the generated samples, such as those in Figure 11.3
cannot really be considered prior samples.

Finally, it should also be pointed out that in cases of full rank the pseudoinverse
is easily calculated as (LTL)−1LT or LT (LLT )−1, for full-column and full-row
rank, respectively. As before, sinceLLT andLTL are symmetric, positive-definite,
the Cholesky decomposition should be used in calculating the matrix inverse.
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2D Membrane, No Boundary 2D Thin-Plate, No Boundary, Centre Cut

Fig. 11.3. Two random samples generated from rank-deficient constraints L by finding the
pseudoinverse L+. Although neither image can be considered a true prior sample, since the
problems are non-Bayesian, nevertheless the samples clearly illustrate the behaviour of their
respective constraints, with the cut and the nonperiodic boundaries particularly clear in the
second-order example, right.

For larger problems, a nested-dissection reordering (Section 9.1.3) can be applied to
improve the computational and storage efficiency of the Cholesky steps. However, to
tackle sampling for very large problems we need some sort of problem transforma-
tion or domain decomposition, discussed in the following sections.

11.2.1 FFT

The FFT method of sampling was already discussed in Section 8.3, and a large frac-
tion of the random-field images plotted in this text were generated using the FFT
approach.

For fully stationary problems with periodic boundary conditions, the FFT diagonal-
izes the problem, allowing problems of nearly arbitrary size to be tackled. The prior
sample

Z = FFT−1
d

(√
FFTd(P)� FFTd(W )

)
(11.26)

and posterior sample

(Z|M) = Ẑ + FFT−1
d

(√
FFTd(P̃)� FFTd(W )

)
(11.27)

were developed in (8.78),(8.82).

Even if a problem is not fully stationary, the FFT approach may still have merit in
generating samples of stationary portions of a problem, or in generating stationary
samples ignoring the nonstationary aspects of a boundary, for example.
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sign(Zf ) sign(Zc − 2) + sign(Zc + 2) sign(Zc)� sign(Zf )
Binary Sampling Ternary Sampling Two-Scale Sampling

Fig. 11.4. Given one or more continuous-state FFT samples, discretizing them gives an ad
hoc, but very fast, approach to discrete-state sampling. By combining multiple fields, right,
samples with relatively complex, multiscale morphology can be synthesized. Here, Zf and Zc

are continuous-state thin-plate samples at fine and coarse scales, respectively.

Although most discrete-state sampling methods are based on the MCMC methods in
Section 11.3, a FFT sample can be discretized [208] as a very fast, albeit heuristic,
approach. Three examples are shown in Figure 11.4; clearly quite creative things can
be done by combining multiple random fields, and the efficiency of the FFT allows
this approach to be generalized to three-dimensional domains.

11.2.2 Marching

In Section 10.1 we took advantage of the static-dynamic duality, originally discussed
in Section 4.1.2, to allow a static problem to be partitioned and estimated recursively
using a Kalman filter. Clearly precisely the same concept can be extended from esti-
mation to sampling.

That is, given the statistics of the static problem and a proposed partitioning, we can
identify the cross-statistics to form a dynamic model, as described in Section 10.1.

For prior sampling, we apply the identified dynamic model to the dynamic sampler
of Section 11.1. In the case of posterior sampling we run the Kalman filter, possibly
large (as in Section 10.2), build the dynamic model (11.7) for the estimation errors,
and compute the posterior samples from (11.15).

The difficulty in sampling from a marching approach is that the marching approach
is causal, whereas most static problems are noncausal, as was illustrated in Exam-
ple 10.1. Consequently we would normally prefer smoothing, as discussed in Sec-
tion 10.2.1.
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The simple, ad hoc approach to smoothing illustrated in Example 10.1, where causal
and anticausal estimates are combined, cannot apply to random prior or posterior
sampling, however. The reason is that multiple suboptimal estimates ẑi are all at-
tempting to estimate the same quantity ẑ, therefore the {ẑi} are correlated and can
be averaged:

ẑi ∼ (ẑ, P̃i) =⇒ Ei

[
ẑi

] ≈ ẑ. (11.28)

On the other hand, random samples z̃i are driven by independent noise processes,
and do not average meaningfully:

z̃i ∼ (0, P̃i) =⇒ Ei

[
z̃i

] ≈ 0. (11.29)

It is for precisely the same reason that the overlapped approach of Section 8.2.3,
which performs pointwise averaging simlar to (11.28)–(11.29), is much more effec-
tive for estimation than for sampling.

In contrast, if a sparse Kalman filter is implemented such that it is possible to save
the covariance information in order to implement the regular Kalman smoother, then
the recursive form of the smoothing-error process (11.18) can be used to generate
posterior samples.

11.2.3 Multiscale Sampling

The multiscale method of Section 10.3 obeys a scale-to-scale dynamic model (10.54),

x(s) = A(s)x
(↑s)+B(s)w(s), (11.30)

so prior sampling in the multiscale environment follows trivially from Section 11.1.
The linearity of the multiscale model allows the prior mean to be separated from the
remainder of the problem, so we can, without loss of generality, assume zero mean.

We begin at the root node

P (0) Chol.−→ P (0) = Γ TΓ ⇒ x(0) = Γ T q q ∼ I. (11.31)

After this one Cholesky decomposition, the remaining nodes follow per the dynam-
ics:

x(s) = A(s)x
(↑s)+ B(s)w(s) w(s) ∼ I (11.32)

Next, since the multiscale estimator was derived from the RTS smoother, and that a
smoothing-error process (11.18) has been derived [20] for the RTS smoother, it turns
out to be true that the error in the estimates of the multiscale method itself obeys a
multiscale model [215]:

x̃(s) = Ã(s)x̃
(↑s)+ w̃(s), w̃(s) ∼ N (0, Q̃(s)

)
, x̃(0) ∼ N (x̂(0), P̃0), (11.33)
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Fig. 11.5. A random sampling approach to estimating the value of π. In the left panel, the area
of the square is 4, and the area of the dashed circle is π · 12. Therefore, placing uniformly-
distributed random samples and multiplying the fraction inside the circle by four gives us an
estimate of the value of π, right.

where Ã(s), Q̃(s) are expressed [215] in terms of the model parametersA(s), B(s),
prior covariances P (s), and estimation error covariances P̃u(s) computed in the up-
wards pass of the multiscale estimator:

Ã(s) = P̃u(s)FT(s)P̃−1
u (↑s) (11.34)

Q̃(s) = P̃u(s)− P̃u(s)FT(s)P̃−1
u (↑s)F (s)P̃u(s) (11.35)

F (s) = P (↑s)AT(s)P−1(s). (11.36)

The availability of a multiscale smoothing error model leads to an approach to hier-
archical posterior sampling, following the dynamic approach of Section 11.1:

1. The multiscale estimator computes x̂(s), P̃ (s) at each node on the tree.

2. Infer the smoothing error model Ã(s), Q̃(s) from (11.34)–(11.36).

3. Using the Cholesky decomposition compute the matrix square roots

Γ̃ (0) =
(
P̃ (0)

)1/2

Γ̃ (s) =
(
Q̃(s)

)1/2

, s 	= 0. (11.37)

4. Sample the smoothing error process, coarse to fine:

(x̃|m)(0) = Γ̃ T(0)w̃(0), w̃(0) ∼ N (0, I) (11.38)

(x̃|m)(s) = Ã(x̃|m)
(↑s)+ Γ̃ T(s)w̃(s), w̃(s) ∼ N (0, I). (11.39)

5. Finally, add the mean (the estimates) to produce the posterior sample:

(x|m)(s) = x̂(s) + (x̃|m)(s). (11.40)
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x

f(x)

x

f(x)

Gradient Descent Stochastic Gradient Descent

Fig. 11.6. Regular gradient descent, left, will converge to and stay in a local minimum.
Stochastic gradient descent, right, attempts to escape local minima by accepting inferior val-
ues of x with some probability, essentially perturbing or agitating the current position in order
to overcome barriers of limited height.

If the state z(s) has dimension n(s), then each of the estimation, smoothing, and
square root steps has complexityO(n(s)3) per node.

The posterior sampling images in Figure 11.1 were calculated via posterior sampling
on a multiscale model.

11.3 MCMC

The great increase in computer processing power over the last twenty years has cre-
ated opportunities for a class of algorithms, exceptionally simple in concept, but with
very large computational complexity. The methods, known collectively as Markov
Chain Monte Carlo (MCMC) methods [42, 64, 88, 137, 155, 194, 335], are based on
using randomness to solve mathematical goals.

A simple, classic example is shown in Figure 11.5, whereby random samples can be
used to estimate the value of π. Although the same approach could be used with a
non-random dense, regular grid, such a grid requires the number of sample points to
be decided upon ahead of time, and a valid answer is reached only when the grid is
complete.

The MCMC approach is impractical for the specific problem of estimating π, since
there exist much faster specialized methods. Nevertheless the random sampling ap-
proach is an exceptionally elegant and simple idea, capable of sampling from any
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Algorithm 10 Single Gibbs Sample
Goals: Perform Gibbs sampling at site i in z based on H()
Function ẑ = SingleGibbs(H(), T, z, i, Ψ)
ẑ ← z
for j ∈ Ψ do
h(j)← exp

`
H(z, zi = j)/T

´
Test all possible state values.

end for
s← sum(h) Compute marginal partition function
r ← UniformRandom()
p← 0
for j ∈ Ψ do
p← p+ h(j)/s
if r ≤ p then
ẑi ← j Sample state j from marginal distribution.
Return

end if
end for

distribution, with further generalizations to sampling state spaces of variable dimen-
sions [147].

Consider stochastic gradient descent, as illustrated in Figure 11.6. Regular gradient
descent seeks to minimize an objective function f(x) by moving against the gradient,

xk+1 − xk − αf ′(xk), (11.41)

but may converge to, and stay in, a local minimum, where f ′(x) = 0. Stochastic
gradient descent adds a degree of random variability, such that the current point has
a nonzero probability of accepting an inferior solution by moving “uphill,” increasing
the likelihood of escaping local minima. If we let Tk be the “temperature” parameter
(the degree of agitation) at iteration k, then Tk needs to decrease to zero to allow the
system to finally converge:

Rapid decrease in Tk → Fast convergence, more likely stuck in local minimum
Slow decrease in Tk → Slower convergence, more likely at global minimum.

(11.42)
This concept and resulting tradeoff is the essence of annealing, discussed in the
following section.

11.3.1 Stochastic Sampling

Rather than random perturbations of a ball on a hill, we are interested in considering
random state transitions Z ⇒ Z̄ with transition probability P (Z ⇒ Z̄). Indeed,
consider a sequence of perturbations

Z1 → Z2 → · · · (11.43)
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Algorithm 11 Single Metropolis Sample
Goals: Consider a state change z → z̄ on the basis of the probability density implied by H()
Function ẑ = SingleMetropolis(H(), T, z, z̄)
h← H(z)/T
h̄← H(z̄)/T
r ← UniformRandom()
if r < exp(h− h̄) then
ẑ ← z̄

else
ẑ ← z

end if

Remarkably, this sequence will converge [144, 335] to a random sample of distribu-
tion p(Z) if two conditions hold:

IRREDUCIBILITY: Every state must be reachable,

P (k)(Z ⇒ Z̄) > 0 ∀ Z, Z̄ (11.44)

for some k > 0, where P (k) is the k-step transition probability.

DETAILED BALANCE: There is a balanced equilibrium,

p(Z)P (Z ⇒ Z̄) ≡ p(Z̄)P (Z̄ ⇒ Z). (11.45)

The two most common choices of state perturbation or transition are the Gibbs [335]
and Metropolis samplers:

GIBBS: (Algorithm 10)
Randomly sample a single state element Zi from its marginal distribution:

P (Zi → α|Z) =
p(Z\Zi = α)

∑
β∈Ψ p(Z\Zi = β)

(11.46)

METROPOLIS: (Algorithm 11)
The transition Z ⇒ Z̄ depends on the relative likelihoods:

p(Z̄) > p(Z) Accept transition with probability 1.

p(Z̄) ≤ p(Z) Accept transition with probability p(Z̄)
p(Z)

(11.47)

That the Metropolis transition satisfies detailed balance (11.45) is obvious. Sup-
posing, without loss of generality, that p(Z) > p(Z̄); then

p(Z)P (Z ⇒ Z̄)
︸ ︷︷ ︸

p(Z̄)
p(Z)

︸ ︷︷ ︸

?≡ p(Z̄)P (Z̄ ⇒ Z)
︸ ︷︷ ︸

1

︸ ︷︷ ︸

p(Z̄) �= p(Z̄)

(11.48)



368 11 Sampling and Monte Carlo Methods

Tlow

State Value

P
ro

ba
bi

li
ty

T
high

Tmed

Fig. 11.7. As temperature T is decreased, the probability density exp(−H/T )/Z(T ) is
weighted more and more heavily towards peaks in the distribution.

Recalling the definition of a Gibbs distribution1 from (6.39),

p(z) =
1
Z
e−H(z)/T . (11.49)

what is significant is that neither sampler requires the calculation of the difficult
partition function Z, since the Gibbs sampler needs only marginal distributions, and
Metropolis needs only ratios of distributions in which Z cancels:

p(Z̄)
p(Z)

=
1
Z
e−H(Z̄)/T

1
Z
e−H(Z)/T

= exp
(
H(Z)−H(Z̄)

T

)
. (11.50)

Furthermore, recalling from (6.42) that H is a sum of potential functions over
cliques,

H(Z) =
∑

c∈C
V
({zi, i ∈ c}

)
, (11.51)

and letting
C̄ = {c |Zc 	= Z̄c} (11.52)

be the clique set over which Z, Z̄ are not identical, then the probability ratio from
(11.50) becomes

p(Z̄)
p(Z)

= exp
(∑

c∈C̄ Vc(Zc)− Vc(Z̄c)
T

)
, (11.53)

which is a straightforward sum over a modest number of potential functions, with no
partition function or probability density!

1 Strictly speaking, in (6.39) Gibbs parameter β = 1/kT , where k is Boltzmann’s constant.
Since we are not working with actual physics-based Hamiltonians H , constant k is unim-
portant and we drop it for clarity.
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Algorithm 12 Basic, Single-Scale Annealing
Goals: Solve the optimization problem ẑ = argz minH(z) with annealing schedule Tk

Function ẑ = Anneal(H(), {Tk}, z0)
k← 0
while not converged do
zk+1 ← MetropolisSampler(zk,H(), Tk)
k ← k + 1

end while
ẑ ← ẑk

Next, following up on the illustration in Figure 11.6, what role does “temperature” T
play in (11.53)? For a fixed value of T , we are performing random sampling, either
posterior or prior — depending on whether H includes measurement terms. If T is
decreased with iteration, we are slowly “cooling” the random perturbations, a process
known as simulated annealing [126, 127, 335], shown in Algorithm 12. As T → 0
we are sampling from the global minimum (or possibly multiple global minima) of
H , as illustrated in Figure 11.7:

lim
T→0

p(Z) = lim
T→0

exp
(−H(Z)/T

)

Z(T )
=

1
|Zmin|

∑

i

δ(Z − Z(i)
min), (11.54)

where

Z
(i)
min ∈ Zmin =

{
argZ minH(Z)

} ≡ {argZ max p(Z)
}
. (11.55)

If H contains measurement terms, then p() is a posterior probability, in which case
the annealed sample is taken from the set of points maximizing the posterior distri-
bution, meaning that we have found an MAP estimate:

Z
∣
∣
∣
T→0

= ẐMAP (M). (11.56)

As already discussed in (11.42), whether the sampler actually converges to this global
optimum is a function of the temperature schedule Tk. Theoretically [127], to con-
verge globally requires an exceptionally slow logarithmic schedule Tk ∝ 1/ log(k).
In practice, most approaches choose to cool much more quickly, known as quench-
ing, commonly using an exponential schedule Tk ∝ exp(−kr) for some cooling rate
r.

11.3.2 Continuous-State Sampling

The previous section was deliberately ambiguous as to whether the state Z was a
discrete- or continuous-state process. Although uncommon, it is possible to sample
and anneal continuous-state fields.
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Two different A checkerboard pattern of
first-order neighbourhoods non-interacting state sets

Fig. 11.8. A first-order model, left, on a two-dimensional regular grid consists of two non-
interacting sets (light and dark) of state elements, arranged as a checkerboard pattern. Because
of the non-interaction, all of the elements in each set can be sampled in parallel.

Because the Gibbs sampler (Algorithm 10) samples from the marginal distribution, in
the continuous-state case this would require the difficult numerical characterization
of a continuous-state PDF [176]. In contrast, the Metropolis sampler (Algorithm 11)
requires only the evaluation of the relative energies at the currentH(Z) and proposed
H(Z̄) states, however there remains a challenge of generating meaningful proposals,
since in the infinity of possible continuous-state values, only an infinitesimal fraction
represent meaningful alternatives.

As we have seen throughout this text, there are many methods for solving regularly-
gridded continuous-state problems, and sampling / annealing methods have little to
offer. However there are unstructured parametric problems, known as marked point
processes [246, 292], where continuous-state annealing has provided promising re-
sults. In these problems, a relatively small number of continuous values parametrize
the behaviour of an image, such as the locations of roads [292] or the orientations
and sizes of buildings [245].

11.3.3 Large-Scale Discrete-State Sampling

The primary application of MCMC methods in the context of this text is to large-
scale discrete-state fields, found particularly in the hidden fields of Chapter 7, even
more specifically as the estimator in the E-Step of the EM algorithm used with hidden
fields, as described in Section 7.5.

In the somewhat rare event that our discrete-state field is acyclic (having no loops;
see Figure 5.1 on page 135), whether sequential or tree-based, then there are very
efficient approaches for producing state estimates based on the Viterbi algorithm of
Section 4.5.1: the forward–backward algorithm [265, 275] for sequential problems,
and a very similar upward–downward algorithm on trees [77, 275].
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Fig. 11.9. The energy map for the simple, two-state problem of (11.58) is shown. The only
likely states are zT = [0 0] and zT = [1 1]. If the current state is zT = [0 0], then it is not
possible to reach [1 1] in a single-state flip, however the intermediate states [0 1], [1 0] are
very improbable, so there is a significant barrier in place to the [0 0]→ [1 1] transition unless
both states change simultaneously.

It is much more common, however, for the discrete states to live on a multidimen-
sional regular grid. As with the marching methods of Chapter 10, we can choose
to impose a sequential ordering of the grid elements (using a Peano or space-filling
curve), in which case the efficient forward–backward algorithm applies, however
such an ordering brings the same modelling drawbacks as we saw with the causal
random fields and symmetric half-plane models of Chapter 6.

In general, given a multidimensional discrete-state problem the most immediate ac-
celeration is vectorization, processing non-interacting state elements simultaneously.
Specifically, given a set S of non-interacting sites

S =
{
s1, s2, . . .

}
such that si /∈ Nsj ∀ i, j (11.57)

then, if the neighbourhood N is relatively small in extent, |S| will be fairly large.
Best known is the checkerboard vectorization, for first-order models such as Ising,
whereby the entire grid can be divided into only two sets Sblack and Swhite, as illus-
trated in Figure 11.8.

Methods of acceleration beyond vectorization must somehow address the problem
of state coupling, the problem of indirection, and the random walk phenomenon of
Figure 8.18 in Section 8.6, whereby the number of iterations for convergence is a
quadratic function of structure size or correlation length.

A related problem is the concept of an energy barrier. Suppose we have a simple,
two-state Ising model for which the energy map is plotted in Figure 11.9:

H(z) = −βδz1,z2 − αz1 z1, z2 ∈ {0, 1} β � α� 0 (11.58)
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Example 11.1: Annealing and Energy Barriers

Suppose we have a large two-dimensional field consisting of small and large discs:

An energy function corresponding to such a field will wish to encourage small
and large discs, but to penalize discs of other radii,

0 Disc Size

Energy

creating an energy barrier. If an annealer were initialized with a random set of
pixel values, it would quickly reduce the energy (increase the probability) by
clumping the random values into small discs, however the energy function will
make it very difficult to anneal small discs gradually into larger ones, because of
the strong penalty placed on intermediate sizes.

We can try to avoid this energy barrier by formulating the problem at coarser
scales, where incremental changes correspond to the simultaneous changing of
many state elements at the finest scale:

Down 2 Scales Down 4 Scales Down 5 Scales

At the coarsest scale, only two to four “black” elements are required in order to
produce a large, finest-scale “black” disc of approximately 7000 pixels.
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Algorithm 13 Multilevel Annealing, Initializing from Coarser Scale
Goals: Solve ẑ = argz minH(z) by annealing, each scale initialized by the preceding

Function ẑ = HierAnneal(Scales, {Hj()}, {T j
k})

ẑScales ← Anneal(HScales, {TScales
k }) Regularly anneal coarsest scale

for j ← Scales− 1 to 0 do
zj
0 ← Project(ẑj+1) Project to finer scale
ẑj ← Anneal(Hj(·), {T j

k}, zj
0) Anneal at scale j

end for

Starting in state [0 0], to get to the optimum state [1 1] with single-site state changes
we need to pass through highly unlikely intermediate states [0 1] or [1 0], an energy
barrier. Some sort of simultaneous or multiple-state flipping is required.

In general, there are two possibilities for reducing computational complexity:

1. Reduce the structure size or correlation length by downsampling; that is, by cre-
ating a tree or hierarchy. Examples include multigrid Monte Carlo [144], and
discrete-state hierarchies [5,50,186,197,234]. Two illustrations of such a hierar-
chy were shown in Chapter 8 in Figure 8.22 (page 285).

2. Reduce the structure size or correlation length by making state elements larger;
that is, by grouping. Examples include Swendsen–Wang [184, 297] and region
grouping [217, 314, 329]; both examples were illustrated Figure 8.21 (page 284).

The latter approach fits naturally with the Metropolis sampler, since in a proposed
change Z → Z̄ there is no implication that only one state element changes, rather
it is perfectly reasonable to have a whole group or clump of state elements change.
In particular, in (11.58) and Figure 11.9, the Metropolis state change [0 0] → [1 1]
would immediately be accepted. However, exactly analogous to the Metropolis sam-
pling in the continuous-state case in Section 11.3.2, there again remains a challenge
of generating meaningful proposed transitions Z̄ → Z , since only an infinitesimal
fraction of flipped state groupings actually represent likely alternatives.

The former approach, constructing the problem on multiple scales, involves learning
energy functions Hj as a function of scale j, but is ultimately more straightforward
than grouped Metropolis since a regular Gibbs sampler can be used. Two general
approaches to hierarchical annealing may be developed, where the distinction lies in
how the coarser scale affects the finer one:

• As the initialization to the finer scale, as outlined in Algorithm 13, and sketched
in the top sequence in Figure 8.22;

• As a constraint on the energy function of the finer scale, corresponding to Algo-
rithm 14, and shown in the bottom sequence in Figure 8.22.
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Algorithm 14 Multilevel Annealing, Constrained by Coarser Scale
Goals: Solve ẑ = argz minH(z) by annealing, each scale constrained by the preceding

Function ẑ = HierAnneal(Scales, {Hj()}, {T j
k})

ẑScales ← Anneal(HScales, {TScales
k }) Regularly anneal coarsest scale

for j ← Scales− 1 to 0 do
Randomly initialize zj

0

ẑj ← Anneal(Hj(·|ẑj+1), {T j
k}, zj

0) Anneal at scale j
end for

11.4 Nonparametric Sampling

Most of this text has focused on model-based methods, where an explicit model is
learned.2 However, where the behaviour of a random field is difficult to parametrize,
it may be possible to model the field implicitly in terms of the given training data.

Recall from (2.4) (page 15) that an inverse problem could be solved, in principle, as

z = f−1(m) � {z|f(z) = m}, (11.59)

however the number of possible configurations {z} is huge and computationally in-
feasible to enumerate. Given a number of training samples ži, we can try to solve the
inverse problem with an implicit prior model by limiting to the training samples,

ẑ = ži such that f(ži) = m, (11.60)

however it is inconceivable that the correct solution to the inverse problem would
appear, perfectly, in a finite training sample.

We have two difficulties: the number of possible configurations {z}, and the problem
of existence, whether a z even exists such that f(z) = m. We can address both of
these problems by dividing z into small patches, similar to the local reduction of
basis in Section 8.2.3, and by using a least-squares (or other) norm in assessing the
fit between a local patch and its corresponding measurements.

Indeed, a wide variety of patch-based sampling methods has recently been developed
[94, 119, 209].

Let us begin with the simpler problem of prior sampling, most commonly applied
to texture synthesis [94, 209]. Suppose we wish to synthesize a sample, one by one
constructing the pixels of Z from Ž,

Ži ∈ R Zi ∈ {R,NaN}, (11.61)

where “NaN” (not a number) allows us to distinguish between asserted and undeter-
mined elements in Z . We wish to examine Z and Ž patchwise, so let

2 With the notable exception of conditional random fields in Section 7.3.
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Given texture Synthesis Synthesis
fragment Patch Size 3× 3 Patch Size 9× 9

Fig. 11.10. Nonparametric prior sampling: Given a ground-truth image, left, random samples
can be generated by matching patches between ground-truth and sample. Aspects of pattern
“memorization” or copying can be seen in the bottom-right synthesis.

Ni, i ∈ Ni (11.62)

be the region or neighbourhood surrounding location i. We can therefore test the
goodness-of-fit between some partial patch Z and any part of Ž:

∥
∥∥ŽNj , ZNi

∥
∥∥. (11.63)

With a norm in place, we wish to randomly sample a pixel Zi on the basis of the
patches in Ž which match the region in Z surrounding i:

Zi ∼
{
Žj |
∥
∥ŽNj , ZNi

∥
∥ = 0

}
. (11.64)

Because Ž is of finite size we cannot expect a perfect match, so the norm criterion
needs to be moderated:

Zi ∼
{
Žj |
∥
∥ŽNj , ZNi

∥
∥ ≤ ε

}
. (11.65)

Z is initialized with a tiny patch of pixels from Ž , after which (11.65) is repeatedly
applied until the entire domain is sampled. The elegance of the approach is that only
ε and the patch size |N | need to be specified; all other aspects of the model are
nonparametric.
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True Sample Low-Resolution Non-Parametric
Measurements Patch-Based

Fig. 11.11. Patch-based Superresolution: It is possible to infer a high-resolution image Z,
right, from low-resolution measurements, middle, given high-resolution data Ž which con-
strain the permissible patches in Z.

Two illustrations are shown in Figure 11.10. The synthesized patterns are quite cred-
ible, however there is a clear dependence on patch size. Sizes which are too small
(local) fail to adequately sense the spatial texture, whereas sizes which are too large
will tend to “memorize” Ž , such that only a single patch matches in (11.65), and the
synthesized pattern grows nearly deterministically.

Generalizing the above patch-based method to solving inverse problems and poste-
rior sampling may be difficult:

1. We cannot assume a dense, regular grid for the measurementsm.

2. The forward model f() may be nonlocal, a poor fit to the local, nonparametric
model of the patch methods.

There is, however, an important class of problems involving resolution-enhancement
or superresolution [14,104], in which we wish to find a high-resolution image based
on a ground-truth image and low-resolution measurements (for example see Applica-
tion 11, following this section). Because the low-resolution measurements are dense
and downsampling is a local operator, the above two difficulties do not apply, and
nonparametric patch methods have been developed [90, 119] for this case.

Although the implementation details are somewhat complicated, essentially we now
seek a pixel from those patches simultaneously satisfying the forward problem and
the already-sampled parts of Z:

Zi ∼
{
Žj|
∥
∥ŽNj , ZNi

∥
∥ ≤ ε, ∥∥mi, f(ŽNj )

∥
∥ ≤ δ

}
, (11.66)
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where mi is the subset of the measurements which apply to regionNi around pixel
location i. An example illustrating example-based superresolution is shown in Fig-
ure 11.11.

Application 11: Multi-Instrument Fusion of Porous Media [236]

We wish to reconstruct high-resolution samples of scientific images. Shown below
are two microscopic images of physical samples:

(Microscopic Data from M. Ioannidis, Dept. Chemical Engineering, University of Waterloo)

Producing such samples is difficult and expensive, since a physical sample needs to
be cut open and carefully polished. Even more troubling is that cutting and polishing
may somehow affect the physical sample, leading to distorted images. It would be
far preferable to image a physical sample directly in 3D, for example using a MRI. In
such a case there is no distortion or cutting of the sample, however the measurements
are at a far lower resolution:

Magnetic resonance imagers can be configured in a great variety of ways and it is
possible, for example, to measure the diffusivity of water, meaning how tightly the
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water molecule is constrained, whether in a small pore (tightly bound, dark) or in a
much larger one (weakly bound, light):

This is essentially a measure of surface-to-volume ratio (or perimeter-to-area in 2D).

The scientists studying such porous materials want a fine-scale image, consistent
with the given measurements. We therefore wish to do posterior sampling, given
a prior model generated from a high-resolution field, coupled with low-resolution
measurements from one or more instruments. The following posterior samples were
sampled, using a Gibbs sampler with annealing [236]:

The resulting images are visually a significant improvement over the low-resolution
measurements.

Clearly the low-resolution measurements in no way allow us to actually perfectly
reconstruct the high-resolution images, however the use of a posterior sampler strikes
a fine balance:

• Force the resulting image to be consistent with the measurements, where actually
constrained by the measurements;

• Where not constrained by the measurements, generate random samples consistent
with the prior model.

That is, much of the very fine-scale detail cannot be inferred from the measurements,
but is statistically correct, in the sense that it is consistent with the prior model.
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For Further Study

A great deal has been written on Markov Chain Monte Carlo methods, as applied to
statistical problems in image processing. The books by Li [207] and by Winkler [335]
are both recommended.

Sample Problems

Problem 11.1: Vectorization

Suppose we have a higher-order model, such as thin-plate, on a regular 2D grid.
Sketch the pattern of non-interacting state sets, along the lines of Figure 11.8.

Problem 11.2: MRF Sampling

Suppose we are given the “Tree-Bark” kernel from Example 6.1 on page 190,
from which we want to generate prior samples. There are four, relatively straight-
forward approaches for computing a prior sample:

1. By taking the eigendecomposition of P or P−1,

2. Using a Cholesky decomposition, as in Section 11.2,

3. Using the FFT, as in Section 11.2.1,

4. Using a marching method and sampling dynamically, as in Section 11.2.2.

ComputeN×N prior samples using each of the above four methods, and discuss
the computational complexity as a function of 4 ≤ N ≤ 256. Report results only
for practical values ofN ; the eigendecomposition, in particular, will quite rapidly
become infeasible.

Problem 11.3: MCMC Sampling

The Ising model is one of the simplest discrete-state models:

1. Implement a basic Gibbs sampler.

2. Implement a vectorized Gibbs sampler, based on a checkerboard approach.

For both methods we initialize with a random binary field, and then iterate the
Gibbs sampler. With these basic tools in place, do the following:
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(a) Quantify the speed difference, per complete iteration (one sampling of every
pixel in the lattice), between the basic and vectorized approaches. Whether
there is a difference, and the magnitude of the difference, will likely be
highly dependent upon the environment (C, MATLAB, OCTAVE, etc.).

(b) Run the Gibbs sampler for a few different values of coupling 0 ≤ β ≤ 1.
(c) For highly coupled fields (β ≈ 1), the correct sample is obvious: a constant

field (either all +1 or all -1). Not only is this obvious to us, but the energy
function H also strongly favours the constant field. How rapidly does the
Gibbs sampler approach all constant values?

(d) Explain in some detail why the convergence is so slow in (c), despite the fact
that the energy function strongly desires a constant field.

(e) Suggest approaches for accelerating the convergence in (c).

Problem 11.4: Open-Ended Real-Data Problem — Annealing

Typed text on a page does not obey any simple statistical model, since letters
have rather complex shapes. However, one prior we do have is that each image
pixel is binary: black or white.

Let Z be a binary bitmap of text (either captured from the screen, or scanned
from a page), and let Mi be the ith measured image, downsampled from Z . The
problem is parametrized by

• The degree of downsampling from Z to Mi,

• The number q of measured images Mi, 1 ≤ i ≤ q,

• The variance σ2 of the added measurement noise.

Use Simulated Annealing to solve for estimates Ẑ . Your solution will need to
consider the following:

• The annealing schedule Tk,

• The choice of prior model (for example from Section 7.4),

• The relative weight, in the Gibbs energy, between prior and measurement.

Begin with a modest degree of downsampling (2× 2) and a simple prior (Ising).



Part IV

Appendices





A

Algebra

This appendix contains a brief summary of matrix notation, definitions, identities,
and common transformations. The following notation will be used throughout:

A matrix
aij the i, jth element of matrix A
|A| matrix determinant
AT matrix transpose
AH matrix conjugate transpose
A−1 matrix inverse
A+ matrix pseudoinverse
tr(A) matrix trace
A: [A]n×1 reordering of matrix to column vector
‖A‖ matrix norm

A more comprehensive summary of notation may be found in the Nomenclature
section on page XVII.

A.1 Linear Algebra

Our focus in this appendix is on the properties and manipulation of matrices [73,133,
141,162,233,313]. We can interpret a matrix as a linear operator, transforming from
one space to another:

y = Cx C ∈ R
k×n ⇒ C : x ∈ R

n −→ y ∈ R
k, (A.1)

thus an understanding of matrices requires an understanding of spaces.

A LINEAR INDEPENDENT set of vectors {xi}, xi 	= 0 is one in which none of the
vectors can be written as a linear function of the others. If it is possible to express
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such a relationship, such as
xj =

∑

i�=j

αixi, (A.2)

then the set is said to be linearly dependent. If the set is linearly independent, then
from (A.2) it follows that

∑

i

βixi = 0 ⇒ βi = 0 ∀i. (A.3)

A SUBSPACE is a subset V of a vector space such that two properties hold:

1. Origin: 0 ∈ V ,

2. Convexity: ∀x1, x2 ∈ V, αx1 + βx2 ∈ V ∀α, β ∈ R.

We will concern ourselves only with subspaces of multidimensional real vector
spaces R

n.

A SPAN is the set of weighted sums induced by a set of vectors:

Span
({xi}

)
=
∑

i

αixi (A.4)

Any span is a subspace.

A BASIS for a subspace is a linearly-independent set of vectors which span the sub-
space. The simplest basis elements for the multidimensional real spaces R

n are
the unit vectors

e1 = [1 0 0 . . . 0 0] · · · en = [0 0 0 . . . 0 1]. (A.5)

THE DIMENSION dim(V ) of a subspace V is the number of vectors in a basis for V .
Thus dim

(
R

n
)

= n.

THE NULL SPACE of a matrix C is the set of elements which C maps to zero:

Nu(C) = {x|Cx = 0}. (A.6)

Every nullspace is a subspace, since

x1, x2 ∈ Nu(C) −→ C(αx1 + βx2) = αCx1 + βCx2 = 0. (A.7)

The null space is a measure of the degeneracy of C, in the sense of the size of the
subspace which is mapped to a single value:

Cx̄ = 1 ⇒ C (x̄+ αx) = 1 ∀ x ∈ Nu(C). (A.8)
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THE RANGE or column-space of a matrix C is the subspace spanned by its column
vectors. That is, given

C =
[
c1 . . . cn

]
, (A.9)

then Ra(C), the range of C, is

Ra(C) = Span({ci}) = {Cx |x ∈ R
n}. (A.10)

THE RANK of a matrix C equals the number of linearly independent columns of C,
or equivalently the number of linearly independent rows. For a matrix C ∈ R

k×n,

• C has full rank if Rank(C) = min(k, n),

• If k < n, we say that C has full row rank if Rank(C) = k,

• If k > n, we say that C has full column rank if Rank(C) = n.

Because the rank counts the number of linearly independent columns, it is a mea-
sure of the dimension of the space into which C projects:

Rank(C) = dim
(
Ra(C)

)
. (A.11)

Similarly, the rank also counts the number of linearly independent rows. Further-
more x ∈ Nu(C) only if x is orthogonal to all of the rows of C, leading to the
rank-nullity theorem

Rank(C) + dim
(
Nu(C)

)
= n. (A.12)

Therefore if Nu(C) = 0 then C must have full column rank.

Rank can never be increased by matrix multiplication, therefore

Rank(AB) ≤ min
{

Rank(A),Rank(B)
}
. (A.13)

Finally, if C ∈ R
k×n, k > n, has full column rank, then

• Rank(CTC) = n and CTC is a smaller n× n square, invertible matrix;

• Rank(CCT ) = n and CCT is a larger k × k square, singular matrix.

A.2 Matrix Operations

Matrices may be manipulated in many of the same ways as real scalars, but with
certain exceptions. The transpose of a matrix is the reflection of the matrix across its
diagonal:
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B = AT ⇒ bi,j = aj,i. (A.14)

Thus the transpose of a column vector is a row vector. The sum of two matricesA,B
is an element-by-element sum:

C = A+B ⇒ ci,j = ai,j + bi,j (A.15)

where A and B must be of the same size. The product of two matrices is more
complicated,

C = A · B ⇒ ci,k =
∑

j

ai,jbj,k (A.16)

where there is an implied condition on the matrix sizes that the number of columns
in A must equal the number of rows in B. In general, matrix multiplication does not
commute, meaning thatA ·B 	= B ·A. We will also have use for element-by-element
operations

C = A�B
D = A�B ⇒ cij = aij · bij

dij = aij/bij
(A.17)

The inverse of square matrix A can be defined, such that

B = A−1 ⇒ A · B = B · A = I =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 · · · 0

0 1
...

...
. . . 0

0 · · · 0 1

⎤

⎥
⎥
⎥
⎥
⎦

(A.18)

All non-square and many square matrices do not have an inverse, although more
general notions of matrix inverses can be defined, as discussed in Section A.9.

For an n×n square matrixA, the condition of invertibility is the matrix determinant

det(A) = |A| =
∏

i

λi, (A.19)

where the λi are the eigenvalues of matrix A, as discussed in Section A.7.1. Then

A singular ⇔ A−1 does not exist A nonsingular ⇔ A−1 exists (A.20)

⇔ |A| = 0 ⇔ |A| 	= 0 (A.21)

⇔ ∃i ' λi = 0 ⇔ λi 	= 0 ∀i (A.22)

⇔ Nu(A) 	= {0} ⇔ Nu(A) = {0} (A.23)

⇔ Rank(A) < n ⇔ Rank(A) = n (A.24)

Various algorithms are known [141, 162] for computing matrix determinants. It is
important to realize, however, that the numerical determination of matrix singularity
is very difficult because an infinitesimal perturbation of a singular matrix will make
it nonsingular. That is, numerical rounding errors make the precise computation of
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a determinant difficult, and it is therefore similarly difficult to determine singularity
based on a comparison of the computed determinant with zero.

Related to the determinant is the matrix trace. For an n×n square matrixA, the trace

tr(A) =
n∑

i=1

aii =
∑

i

λi. (A.25)

Because trace and expectation (Appendix B.1.1) are both linear they commute, al-
lowing a trace to simplify certain expectation expressions.

Matrix Addition / Multiplication Identities:

A+B = B +A (A.26)

(A+B)T = AT +BT (AB)T = BTAT (A.27)

Matrix Trace Identities:

tr(A+B) = tr(A) + tr(B) tr(kA) = k tr(A) (A.28)

tr(AB) = tr(BA) tr(ABC) = tr(BCA) = tr(CAB) (A.29)

Matrix Determinant Identities:

|AB| = |A| · |B| |A−1| = 1
|A| |kA| = kn|A| (A.30)

det(I −AB) = det(I −BA) (A.31)

Block-Matrix Determinants:

det
[
a b
c d

]
= ad− bc det

[
A B
0 D

]
= |A| · |D| (A.32)

det
[
A B
C D

]
= |D| · |A−BD−1C| = |A| · |D − CA−1B| (A.33)

Matrix Inversion Identities:

(AB)−1 = B−1A−1 (A−1)T = (AT )−1 (A.34)

(I −AB)−1A = A(I −BA)−1 (A.35)
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Block-Matrix Inversions:
[
a b
c d

]−1

=
1

ad− bc
[
d −b
−c a

]
(A.36)

[
A B
0 D

]−1

=
[
A−1 −A−1BD−1

0 D−1

]
(A.37)

[
A B
C D

]−1

=
[
A−1 +A−1BS−1

A CA−1 −A−1BS−1
A

−S−1
A CA−1 S−1

A

]

=
[

S−1
D −S−1

D BD−1

−D−1CS−1
D D−1 +D−1CS−1

D BD−1

]
(A.38)

where SA = (D − CA−1B), SD = (A−BD−1C). Comparing the last two equiv-
alent forms for block-matrix inversion leads to the ABCD lemma

(A+BCD)−1 = A−1 −A−1B(C−1 +DA−1B)−1DA−1. (A.39)

A.3 Matrix Positivity

For scalar values, notions of positivity, negativity, and relative size are unambiguous.
For example,

− 1 < 0 3.5 > 0 2.14 < 4.8. (A.40)

However, for matrices notions of inequality and positivity are much less clear; matrix
element-by-element comparisons are, in most cases, not very useful. Instead, we say
that a matrix A is

Positive definite A > 0 If xTAx > 0 ∀x 	= 0
Positive semidefinite A ≥ 0 If xTAx ≥ 0 ∀x
Negative semidefinite A ≤ 0 If xTAx ≤ 0 ∀x
Negative definite A < 0 If xTAx < 0 ∀x 	= 0

Given the eigendecomposition (Appendix A.7.1) for A

Avi = viλi or AV = V Λ (A.41)

then

xTAx = xTVΛV Tx = (V Tx)TΛ (V Tx) = zTΛz =
∑

i

λiz
2
i . (A.42)

Therefore the positivity of A is directly related to the signs of the eigenvalues of A:

A > 0 iff λi > 0 ∀i A ≥ 0 iff λi ≥ 0 ∀i. (A.43)
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Matrix inequalities can then be interpreted as the positive definiteness of a matrix
difference:

A > B ⇒ (A− B) > 0 C ≤ D ⇒ (C −D) ≤ 0. (A.44)

Positive definiteness identities:

A > 0⇒ −A < 0 A ≥ 0⇒ −A ≤ 0 (A.45)

A > 0, B > 0⇒ A+B > 0 A ≥ 0, B ≥ 0⇒ A+B ≥ 0 (A.46)

A > 0⇒ A−1 > 0 A < 0⇒ A−1 < 0 (A.47)

A ≥ 0⇒ BTAB ≥ 0 ∀B A > 0⇒ BTAB > 0 ∀ invertible B
(A.48)

Computing all of the eigenvalues of A is one (computationally demanding) way to
test its positive-definiteness. One other method is Sylvester’s test [162, 233]:

Given n× n matrix A, define

di = det(Ai) where Ai =

⎡

⎢
⎣

a11 · · · a1i

...
...

ai1 · · · aii

⎤

⎥
⎦ . (A.49)

Then A is positive-definite if and only if di > 0 for all i = 1, . . . , n.

A.4 Matrix Positivity of Covariances

All covariance matrices (Section B.4) must satisfy Λ ≥ 0. The reason for this con-
straint, and a parallel interpretation of the meaning of matrix positivity and inequal-
ities, is most easily seen in the context of random vectors (Appendix B.1.3). First,
given a random vector z with covariance Λ, we can calculate the variance of any
scalar linear function of z:

var(wTz) = wTΛw. (A.50)

A variance must, by definition, be non-negative, therefore we have

wTΛw ≥ 0 ∀w ⇒ Λ ≥ 0. (A.51)

That is, all covariances must, by definition, be positive-semidefinite.

Next, let us consider a matrix inequality, in which one matrix is “larger” than the
other. Suppose we have two random vectors with corresponding covariances:

x ∼ Λx y ∼ Λy where Λx > Λy. (A.52)
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Fig. A.1. The shaded area shows the range of valid correlation coefficients between random
variables a, c, given the strength of the relationship with intermediate variable b. If a, b and
b, c are uncorrelated (ρab = ρbc = 0), then the relationship between a, c is completely un-
constrained. As a, b and b, c become more strongly correlated (|ρab| = |ρbc| → 1), the range
of valid correlation between a, c becomes increasingly constrained.

The matrix inequality in the covariances implies that

wTΛx w > wTΛy w ⇒ var(wTx) > var(wT y). (A.53)

That is, a “larger” covariance implies a larger variance in any linear function of the
corresponding random vector.

Finally, the positive-definiteness requirement for a covariance can also be interpreted
intuitively. Suppose I have three random variables a, b, c, where the ab and bc corre-
lations are known; what does this imply about the ac correlation?

a
correl.←→ b b

correl.←→ c =⇒ a
???←→ c (A.54)

We can ask how ρa,c, the correlation coefficient between a and c, is constrained by
the given correlation coefficients ρa,b, ρb,c. If a, b, c have unit variance, then

⎡

⎣
a
b
c

⎤

⎦ ∼
1 ρa,b ?
ρa,b 1 ρb,c

? ρb,c 1
(A.55)

As the a ⇔ b and b ⇔ c relationships become stronger (i.e., as |ρ| → 1), the
relationship between a and c becomes increasingly constrained. Figure A.1 plots the
permitted range of values for ρa,c as a function of ρa,b = ρb,c. The range of valid
values for ρa,c are precisely those which preserve the positive-definiteness of the
3 × 3 covariance in (A.55), and the filling in of such unknown values is called the
covariance extension problem [48].
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A.5 Matrix Types

There exists a wide variety of terms associated with matrices and their proper-
ties [141, 162, 163]; the most commonly used are summarized in Table A.1. Except
where stated otherwise, the terms all relate to square matrices of size n × n. Those
definitions which admit a particularly simple visual interpretation are also sketched
in Figure A.2.

A.6 Matrix / Vector Derivatives

It is possible to define derivatives of a scalar function f(), vector function f(), or
matrix function F () with respect to a scalar x, vector x, or matrix X . In particular,
there are five cases of interest:

Vector derivative of a scalar function or vice-versa:

I.
∂f

∂x
=

⎡

⎢
⎣

∂f
∂x1

...
∂f
∂xn

⎤

⎥
⎦ II.

∂f

∂x
=

⎡

⎢
⎣

∂f1
∂x
...

∂fk

∂x

⎤

⎥
⎦

Derivatives of or by a matrix:

III.
∂f

∂X
=

⎡

⎢
⎣

∂f
∂x11

. . . ∂f
∂x1n

...
...

∂f
∂xk1

. . . ∂f
∂xkn

⎤

⎥
⎦ IV.

∂F

∂x
=

⎡

⎢
⎣

∂f11
∂x . . . ∂f1n

∂x
...

...
∂fk1
∂x . . . ∂fkn

∂x

⎤

⎥
⎦

Vector Derivative of a vector function:

V.
∂f

∂x
=

⎡

⎢
⎣

∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fk

∂x1
. . . ∂fk

∂xn

⎤

⎥
⎦

(A.56)

where we have assumed vectors f, x to be column vectors.

All of these definitions are straightforward, with the exception of case V where it is
ambiguous whether the elements of f index the columns or the rows. In particular,
the transpose operation commutes with differentiation

∂f

∂xT
=
(
∂f

∂x

)T
∂fT

∂x
=
(
∂f

∂x

)T
∂f

∂XT
=
(
∂f

∂X

)T
∂FT

∂x
=
(
∂F

∂x

)T

(A.57)
in all cases except case V. As a further complication, there is no universal agreement
on row–column conventions for cases I and V, and unfortunately different authors
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Term Definition / Comments

* Diagonal aij = 0, i �= j
* Upper Triangular aij = 0, i < j (Strictly Upper for i ≤ j)
* Lower Triangular aij = 0, i > j (Strictly Lower for i ≥ j)
* Symmetric aij = aji or A = AT

* Skew-Symmetric aij = −aji or A = −AT

* Hermitian aij = a∗ji or A = AH

Singular |A| = 0
Special |A| = 1
Normal AAH = AHA

Orthogonal AAT = ATA = I
Unitary AAH = AHA = I

* Circulant aij = a(i+k) mod n,(j+k) mod n ∀k

Diagonalizable BAB−1 is diagonal for some B
Similar A similar to C if C = BAB−1 for some B
Unitarily Similar A unitarily similar to C if C = BAB−1, unitary B

Positive-Definite x
H
Ax > 0 for all x �= 0

Positive-Semidefinite xH
Ax ≥ 0 for all x

Idempotent AA = A

Nilpotent Ak = 0 for some positive integer k
Involutary AA = I

* Stochastic
P

j aij = 1

* Selection Each row has one 1.0, the rest zeros
* Permutation Each row and column has one 1.0, the rest zeros

* Toeplitz A matrix with constant diagonals
* Hankel A matrix with constant anti-diagonals
* Hadamard A binary matrix aij = ±1, where AAT = ATA = nI
* Hilbert aij = 1/(i+ j − 1)
* Pascal An integer matrix with integer inverse
* Vandermonde Each row is a geometric sequence: aij = αn−j

i

Metzler ai,j ≥ 0 for i �= j

Householder Any n× n matrix (I − 2v v
T
/

`
v

T
v)

´
, v nonzero

* Jordan A block diagonal matrix with Jordan blocks
Jordan Block ai,j = 0 except ai,i = α, ai,i+1 = 1

* Wronskian The zeroth to (n− 1) derivatives of a vector function
* Jacobian The vector derivative of a vector function
* Hessian The second vector derivative of a scalar function

Table A.1. Common named matrix types (starred entries sketched in Figure A.2)
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x
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x
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7
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a b c d
b e f g
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Fig. A.2. Examples of commonly used matrix types from Table A.1. A blank area in a matrix
implies zeros. The figure lists only illustrative examples.
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Case Derivatives of Linear Functions

V
∂

∂x
x = I

I
∂

∂x
(a

T
x) = a

V
∂

∂x
Ax = A

V
∂

∂x
Ay = A

∂

∂x
y

III
∂

∂X
(a

T
X b) = a b

T

IV
∂

∂x
(Y Z) = Y

∂Z

∂x
+
∂Y

∂x
Z

Case Derivatives of Quadratic Functions

I
∂

∂x
(x

T
x) = 2x

T

I
∂

∂x
(x

T
Ax) = x

T
(A+AT )

I
∂

∂x
(Ax+ b)TQ(Ax+ b) = 2AT (Ax+ b)

III
∂

∂X
(a

T
XTXb) = X(a b

T
+ b a

T
)

III
∂

∂X
(a

T
XTXa) = 2Xa a

T

III
∂

∂X
(a

T
XTCXb) = CTXab

T
+ CXb a

T

Table A.2. Vector and matrix derivatives of linear and quadratic functions [46, 257]

may use opposing conventions, thus the derivatives presented here may, in some
cases, need to be transposed to fit with other conventions. A summary of useful
derivatives is shown in Tables A.2 and A.3.

There are three matrices commonly connected with derivatives: the Jacobian, the
Wronskian, and the Hessian, all of which are illustrated in Figure A.2:

Jacobian: If y is a vector function of x, then the derivative dyT /dx is the Jacobian
matrix of y with respect to x. The determinant |dyT /dx| is also referred to as the
Jacobian, essentially a normalizing constant in the change of variables from x to
y.
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Case Derivatives of Matrix Inverses

IV
∂

∂x
Y −1 = −Y −1 ∂Y

∂x
Y −1

III
∂

∂X
(a

T
X−1 b) = −X−Ta b

T
X−T

Case Derivatives of Matrix Determinants

III
∂

∂X
|X| = |X| ·X−T

III
∂

∂X
|AXB| = |AXB| ·X−T

III
∂

∂X
ln(|AXB|) = AT (AXB)−TBT = X−T

Case Derivatives of Matrix Traces

III
∂

∂X
tr(X) =

∂

∂X
tr(XT ) = I

III
∂

∂X
tr(XA) =

∂

∂X
tr(AX) = AT

III
∂

∂X
tr(AXB) = ATBT

III
∂

∂X
tr(XAXT ) = X(A+AT )

III
∂

∂X
tr(X−1) = −X−TX−T

Table A.3. Vector and matrix derivatives of matrix inverses, determinants, and traces [46,257]

Wronskian: If y is a vector function of scalar t, then the matrix built by assembling
the rows y(0)(t) . . . y(n−1)(t) is known as a Wronskian of y.

Hessian: If f is a scalar function of vector x, then the second-derivative matrix
d/dxH(df/dx) is known as the Hessian matrix of f(x). The positive-definiteness
of the Hessian relates to the extremal properties (minimum, maximum, or saddle
point) of the function.

A.7 Matrix Transformations

A wide variety of matrix transformations exist [141], many of which are used in
solving linear systems, normal equations, or least-squares problems, all of which
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Page Transformation Matrix Assumptions Purpose of Transformation

396 Eigendecomp. Square Matrix diagonalization

400 SVD None Matrix orthogonalization

401 Cholesky Positive-Definite Square roots, Linear systems,

Least squares

402 Gauss Any Matrix element zeroing

402 Gauss Elimin. Nonsingular Linear systems, Matrix inversion

403 LU Square Linear systems, Matrix inversion,

Matrix representation

404 Gram–Schmidt Any Vector orthogonalization

405 Householder Any Matrix element zeroing

406 Givens Any Matrix element zeroing

406 QR Full-column rank Representation, Least squares

407 Schur Square Representation

Table A.4. An overview of the matrix transformations discussed in Section A.7

are of interest in this book, particularly in Chapters 8 and 9. The transformations
discussed in this section are listed in Table A.4.

A.7.1 Eigendecompositions

The eigendecomposition is one of the most fundamental and powerful matrix tools
in all of linear algebra.

For any square matrix A, an eigenvector v and corresponding eigenvalue λ must
satisfy

Av = vλ. (A.58)

That is, the eigenvectors point in those special directions which are invariant to the
repeated application of linear operator A, greatly simplifying analysis:

A · . . . · A︸ ︷︷ ︸
q times

v = Aqv = Aq−1(vλ) = vλq. (A.59)

Since the eigenvalues determine many of the properties of a matrix, the distribution
of eigenvalues {λi} is known as the spectrum of a matrix.
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For an n× n matrix A there are n eigenvalues and eigenvectors, however for certain
matrices there can be redundancy (multiplicity) among them. However, if A is real
and symmetric (such as a covariance), then the n eigenvalues are real and the n
eigenvectors are linearly independent and orthogonal. That is, the eigenvectors form
a basis for R

n, allowing any n-dimensional vector x to be expressed in terms of the
eigenvectors:

x =
n∑

i=1

αivi, (A.60)

where the orthogonality of the eigenvectors allows the weights to be easily calcu-
lated:

αi =
vT

i x

vT
i vi

. (A.61)

The transformation (A.60) simplifies the analysis for linear operations on any vector:

A · . . . · A︸ ︷︷ ︸
q times

x = Aq
n∑

i=1

αivi =
n∑

i=1

αiλ
q
i vi. (A.62)

Normalizing the eigenvectors to unit length, we can write the n eigenvectors and
eigenvalues in matrix form

V =
[
v1 · · · vn

]
Λ =

⎡

⎢
⎢
⎢
⎢
⎣

λ1 0 · · · 0

0 λ2
. . .

...
...

. . .
. . . 0

0 · · · 0 λn

⎤

⎥
⎥
⎥
⎥
⎦

(A.63)

such that Λ is a diagonal matrix and V is an orthogonal matrix

V TV = V V T = I. (A.64)

With this notation the eigendecomposition (A.58) can be rewritten as

Avi = viλi ⇒ AV = V Λ, (A.65)

from which it is particularly easy to derive the similarity transformation for matrix
diagonalization and related expressions:

V TAV = Λ A = V ΛV T A−1 = V Λ−1V T Aq = V ΛqV T . (A.66)

Fundamentally, eigendecompositions are about taking a coupled linear system and
decoupling it into individual modes (the eigenvectors) which evolve independently,
and where the associated eigenvalue describes the behaviour of the associated mode.
For example, suppose we have a mechanical system of n masses connected by
springs:

ẍ(t) = Kx(t). (A.67)
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This is just a rewriting of Newton’s F = ma, where the acceleration (ẍ) is written
in terms of force/mass (Kx). By finding the eigendecomposition of K ,

K = VKΛKV
T
K , (A.68)

the coupled problem of (A.67) can be transformed

y(t) = V T
K x(t) ⇒ ÿi(t) = λiyi(t), (A.69)

a set of n single-spring/mass systems whose solution is simple:

yi(t) = yi(0) cos
(
t
√
−λi

)
. (A.70)

Further illustrations are given below for dynamic and covariance matrices.

The significance and power of the eigendecomposition should make it no sur-
prise that there are many related concepts and extensions. Related concepts include
the Cholesky and QR decompositions (Appendix A.7.3), positive definiteness (Ap-
pendix A.3), and matrix square roots (Appendix A.8).

Extensions include the Jordan form for non-diagonalizable matrices (not discussed
here), the Schur decomposition for complex matrices (Appendix A.7.3), the singu-
lar value decomposition for rectangular matrices (Appendix A.7.2), and generalized
eigendecompositions, in which we seek solutions for v, λ to

Av = Bvλ, (A.71)

where normally B is not invertible, a context which can arise in singular estimation
problems, but which does not arise in this book.

Eigendecomposition and Dynamic Matrices

If n× n matrix A is a dynamic matrix, describing the evolution of x as

x(t+ 1) = Ax(t), (A.72)

then the stability of the iteration is determined by the eigenvalues of A. Specifically,
the spectral radius, the largest eigenvalue magnitude

ρ(A) = max
i
|λi|, (A.73)

satisfies ρ(A) < 1 for stable systems and ρ(A) > 1 for unstable ones.

Given an initial condition x(0), then x(t) = Atx(0) is an iterative calculation, with
a complexity increasing with t. Instead, the eigendecomposition A = VAΛAV

T
A

allows the coupled dynamics of (A.72) to be decoupled into individual modes, based
on the eigenvectors, which evolve independently, thus
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x(0)
V T

A−−−−→ y(0) = V T
A x(0)⏐

⏐⏐
⏐
:

x(t) VA←−−− y(t) = Λt
Ay(0)

(A.74)

leads to a closed-form solution x(t) = VΛtV Tx(0), where the complexity of com-
puting Λt is fixed, since Λ is diagonal.

If the dynamics matrix describes the evolution of an error,

e(t+ 1) = Qe(t) (A.75)

such as in the iterative linear-system solvers of Chapter 9, then we are interested in
the rate at which the error decays to zero. Because

e(t) = Qte(0) (A.76)

from (A.62) we know that

e(t) = Qte(0) =
n∑

i=1

(
vT

i e(0)
)
λt

ivi. (A.77)

That is, each eigenvector vi describes the shape or form of the error which decays at
a rate controlled by λi.

Eigendecomposition and Covariance Matrices

In the context of this book we are frequently concerned with the interrelationship of
variables in a random vector, a set of relationships described by a covariance matrix
(Appendix B.1.3). Given a set of n coupled random variables, the eigentransforma-
tion decouples them:

x ∼ P ⇒ y = V T
P x ∼ ΛP . (A.78)

If the joint distribution p(x) is Gaussian (Appendix B.3), then the eigenvectors of P
point along the principal axes of the ellipsoid characterizing the multivariate distri-
bution, and the eigenvalues represent the variances along those directions.

The spectrum, or distribution of eigenvalues, is useful in at least two ways:

• Even for non-Gaussian distributions, the relative sizes of the eigenvalues of a
covariance give an indication of the degree to which a multivariate distribution is
constrained in various directions.

• The conditioning of matrix P , which strongly affects numerical stability and rates
of iterative convergence, is a function of the largest and smallest eigenvalues. As
the smallest eigenvalue approaches zero, ever-smaller numeric perturbations lead
to matrix corruption and a failure of positive-definiteness.
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A.7.2 Singular Value Decomposition

Given any real matrix A, the Singular Value Decomposition (SVD) expressesA as

A = USV T , (A.79)

where U, V are orthogonal matrices and where S is a diagonal matrix, the same
dimensions as A, containing the singular values along the diagonal:

S =

σ1 0
σ2

0
. . .

0

or S =

σ1 0
σ2 0

0
. . .

(A.80)

where, by convention, the singular values are ordered σ1 ≥ σ2 ≥ · · · ≥ 0.

For real symmetric matrices the SVD and eigendecomposition are nearly equivalent.
Representing a covarianceA in both ways,

A = USV T
︸ ︷︷ ︸

SVD

and A = QΛQT

︸ ︷︷ ︸
Eig.

(A.81)

by equating the SVD and eigendecomposition expressions we find that

ui = qi σi = |λi| vi = sign(λi)qi. (A.82)

That is, requiring the singular values to be positive causes the sign of the eigenvalue
to be absorbed into one of the orthogonal matrices U, V .

For real nonsymmetric matrices the SVD and eigendecompositions are quite differ-
ent. Whereas many matrices may not diagonalize or may have complex eigenvalues,
every matrix has a SVD with real, positive singular values.

The behaviour of the SVD is most easily explained in the relationship between two
zero-mean random vectors x, y. First, the eigendecomposition of a covariance matrix

x ∼ E[xxT ] = V ΛV T ⇒ E
[
(V Tx)(V Tx)T

]
= Λ (A.83)

identifies the principal components (Section 8.2.1) of x: the set of mutually decorre-
lated random variables y = V Tx from x such that

vT
i x is uncorrelated with vT

j x ∀ j 	= i

vT
i x has a variance of λi.

(A.84)

In contrast, the singular value decomposition of a cross-covariance
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E
[
x yT ] = USV T ⇒ E

[
(UTx)(V Ty)T

]
= S (A.85)

identifies the principal components of the relationship between x and y. In particular,
given x ∈ R

n, y ∈ R
k, k < n, it follows that

uT
i x, i ≤ k is uncorrelated with vT

j y ∀ j 	= i

uT
i x, i > k is uncorrelated with qT y ∀ q
uT

j x, i ≤ k is correlated with vT
j y with strength or significance σi.

(A.86)

For a square matrixA, the SVD can be used to calculate κ(A), the condition number
of A, which measures the closeness of A to singularity:

κ(A) =
σmax(A)
σmin(A)

(A.87)

Thus for covariance matrices, which are symmetric, the equivalence (A.82) between
the SVD and the eigendecomposition allows the condition number also to be evalu-
ated via eigenvalues:

κ(A) =
maxi |λi(A)|
minj |λj(A)| (A.88)

This latter form may be useful in stationary cases where the FFT can be used to cal-
culate eigenvalues, or for specific priors for which the eigendecomposition is known
analytically.

A.7.3 Cholesky, Gauss, LU, Gram–Schmidt, QR, Schur

The following ten matrix transformations are widely used and referred to. They are
summarized here only very briefly; for a much more extensive discussion the reader
is referred to the comprehensive text by Golub and Van Loan [141].

Cholesky Decomposition

Given an n× n positive-definite symmetric matrix A,

The Cholesky decomposition finds a lower-triangular1 matrix Γ with posi-
tive diagonal elements, such that

A = ΓΓ T . (A.89)

1 Note: the default matrix returned by chol(A) in MATLAB is upper-triangular. To obtain
the lower-triangular form, as in (A.89), use chol(A,’lower’).
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Clearly Γ is the matrix square root (Appendix A.8) of A; also the triangularity of Γ
implies that Γ is easy to invert, leading to an efficient solution for the matrix inverse
A−1.

The most attractive aspect of the Cholesky decomposition is that fast, numerically-
stable algorithms exist to compute it (see Algorithm 4 in Chapter 10). As all matrix
covariances are symmetric positive-definite, the Cholesky decomposition is widely
used in statistical processing (particularly for covariance inversion and square roots,
as in Appendix A.8).

Gauss Transformation

The Gauss transformation sets to zero all elements in a vector beyond some index i:

An n× n lower-triangular matrix Gi is a Gauss transform if

Gix = Gi

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

x1

...
xi

xi+1

...
xn

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢⎢
⎢
⎢
⎢
⎢
⎣

x1

...
xi

0
...
0

⎤

⎥
⎥
⎥⎥
⎥
⎥
⎥
⎥
⎦

(A.90)

The effect ofGi is to subtract multiples of row i from all following rows, specifically
to subtract the multiple xk/xi times row i from row k. The Gauss transformation is
the elemental step in Gaussian elimination.

Gaussian Elimination

A direct, non-iterative approach to the solving of linear systems and matrix inversions
can be realized by the repeated application of Gauss transformations:

Given a linear system Ax = b, by applying Gauss transformations we zero
the elements in A, such that in the resulting system Ux = b̄ the matrix U is
upper triangular.

For example, given the linear system, written in equation or matrix form,

x1 + 2x2 = 3
x1 + x2 = 5 ←→

[
1 2
1 1

] [
x1

x2

]
=
[
3
5

]
(A.91)
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then by subtracting row one from row two we have

x1 + 2x2 = 3
−x2 = 2 ←→

[
1 2
0 −1

] [
x1

x2

]
=
[
3
2

]
(A.92)

To perform matrix inversion we apply Gaussian elimination to the linear system
AB = I where, given A, we seek the solution to B = A−1:

A B = I
Gauss. Elimination−−−−−−−−−−−−−→ B =

Backsubsitution−−−−−−−−−−−→
0

0
B =

Normalization−−−−−−−−−−→ I B = A−1

(A.93)
The above presents only the basic, conceptual algorithm. There is a wide variety
of practical considerations, such as row reordering (pivoting) for numerical stability
and specialized algorithms for symmetric matrices.

LU Decomposition

LU factors a matrix into a product of lower and upper-triangular matrices:

The LU decomposition of a matrix A is

A = LU, (A.94)

where L is lower-triangular and U is upper-triangular.

By definition, after applying Gaussian elimination to A we have an upper triangular
product

· · ·G3

(
G2

(
G1A

))
= U, (A.95)

therefore
A =

(
G−1

1 G−1
2 G−1

3 · · ·
)
U = LU, (A.96)

where the productG−1
1 G−1

2 G−1
3 · · · is lower-triangular because each of the Gaussian

transformationsGi is lower-triangular.

It is important to realize that not every matrix admits an LU decomposition. However,
for matrices which admit such a decomposition, the solving of linear systems is
extremely efficient:

Ax = b ⇒ L
(
Ux
)

= b ⇒ Ly = b, Ux = y (A.97)

where the triangular form of L,U allows the final equations to be solved easily by
backsubstitution.
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Gram–Schmidt Orthogonalization

Gram–Schmidt is the orthogonalization of a set of linearly independent vectors:

Given linearly independent a1, . . . , an, find vectors b1, . . . , bn such that

Span(a1, . . . , an) = Span(b1, . . . , bn) bTi bj = 0 ∀ i 	= j. (A.98)

Alternatively, stated in matrix form, given A with full column rank, find ma-
trix B such that

Ra(A) = Ra(B) BTB is diagonal. (A.99)

The algorithm proceeds recursively, orthogonalizing a vector by removing compo-
nents aligned with any previous vector:

b1 = a1

b2 = a2 −
aT
2 b1

bT1 b1
b1 (A.100)

b3 = a3 −
aT
3 b2

bT2 b2
b2 −

aT
3 b1

bT1 b1
b1

...

Alternative, numerically-robust forms of this method exist [141].

Conjugate Gram-Schmidt Orthogonalization

A modification of the preceding Gram–Schmidt procedure to conjugate-orthogon-
alize a set of linearly independent vectors:

Given matrix M and linearly independent a1, . . . , an, find b1, . . . , bn such
that

Span(a1, . . . , an) = Span(b1, . . . , bn) bTiAbj = 0 ∀ i 	= j. (A.101)

The conjugate algorithm proceeds similarly to usual Gram–Schmidt, with vector
conjugacy assessed in a reshaped space, modified by M :
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b1 = a1 (A.102)

b2 = a2 −
aT
2 Mb1

bT1 Mb1
b1 (A.103)

b3 = a3 −
aT
3 Mb2

bT2 Mb2
b2 −

aT
3Mb1

bT1 Mb1
b1 (A.104)

...

Such matrix-conjugate vectors are of key interest in conjugate gradient and related
Krylov methods (discussed in Section 9.2.3).

Householder Transformation

The Householder transformation reflects a vector (or matrix column) across a hyper-
plane to set to zero all but one element of the vector:

An n× n matrix

H = I − 2
v vT

vTv
v 	= 0 (A.105)

is called a Householder matrix or reflection, such that Hx reflects x across
Span(v)⊥, that is, across the hyperplane with normal vector v.

Suppose that we wish to set to zero all except the first element of a vector x (normally
the column of a matrix). That is, we wish to find a transformation

Hx =

(

I − 2
v vT

vTv

)

x = βe1 (A.106)

such that Hx is a multiple of the first unit vector. This is accomplished by setting

v = x±
(
xTx
)
e1. (A.107)

The appeal of the Householder reflection lies in the simple form of v.

Note that in applying this transformation to all of the columns of a matrix, the House-
holder matrixH is never explicitly computed, rather the transformation is calculated
directly from v [141].
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Givens Rotation

A Givens rotation sets a single vector (or matrix column) element to zero:

An n×n Givens matrix G(i, j, θ) rotates the (i, j) vector elements by angle
θ, where θ is normally selected such that

y = G(i, j, θ)x ⇒ yj = 0. (A.108)

A Givens matrixG(i, j, θ) is equal to the identity I , except for a 2×2 rotation matrix
in the four elements indexed by i, j:

cos(θ) sin(θ) Row i
- sin(θ) cos(θ) Row j

Column i Column j

(A.109)

Clearly only elements i, j of a vector are affected in the product

y = G(i, j, θ)x ⇒ yk =

⎧
⎨

⎩

xk k 	= i, j
xi cos(θ)− xj sin(θ) k = i
xi sin(θ) + xj cos(θ) k = j

(A.110)

We can set the jth element to zero by selecting

cos(θ) =
xi√

x2
i + x2

j

sin(θ) = − xj√
x2

i + x2
j

(A.111)

QR Decomposition

The QR decomposition expresses a matrix as the product of orthogonal and upper-
triangular matrices:

The QR factorization of a k × n matrix A is given by

A = QR, (A.112)

where Q is orthogonal and R is upper triangular.

The QR decomposition, a relatively complicated algorithm, can be accomplished us-
ing the Householder, Givens, or Gram–Schmidt transformations, and plays a central
role in computing Schur decompositions.
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Schur Decomposition

The Schur decomposition or factorization of a matrix is an alternative to the eigen-
decomposition:

Given a real, square matrix A, the Schur factorization of A is

A = QUQT , (A.113)

where Q is orthogonal and U is an upper-triangular matrix (possibly with
diagonal blocks) with the eigenvalues of A appearing along the diagonal of
U .

Given a complex, square matrix A, the Schur factorization of A is

A = ZUZH , (A.114)

where Z is unitary and U is as before.

Clearly if U is a diagonal matrix, then the Schur form is equivalent to the regular
eigendecomposition.

A.8 Matrix Square Roots

In general, if a matrix P can be expressed as

P = Γ TΓ (A.115)

then Γ is defined as a matrix square root of P . This expression is possible for all
positive-semidefinite P (that is, for all covariance matrices), however the choice of
Γ is not unique. Indeed, any orthogonal transformation of Γ remains a square root:

Γ̄ = UΓ ⇒ Γ̄ T Γ̄ = Γ TUTUΓ = Γ TΓ = P (A.116)

where U is any orthogonal matrix, UTU = I .

The matrix square root is most easily expressed in terms of its eigendecomposition:

P = VΛV T =
(
VΛ

1/2
)(

VΛ
1/2
)T

⇒ Γ =
(
V Λ

1/2
)T

, (A.117)

where Λ is a diagonal matrix of eigenvalues and Λ1/2 is then the diagonal matrix,
taking the square root of each diagonal entry.

If P is symmetric, positive-definite, then the matrix square root can be computed
much more efficiently using the Cholesky decomposition (Appendix A.7.3).

Square root matrices find three important uses:
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1. As the implicit representation of a positive-semidefinite matrix:
It can be numerically difficult to determine whether a given matrix is positive-
semidefinite, and similarly difficult to guarantee that a numerical computation
results in a positive-semidefinite matrix, although the consequences of inadver-
tently losing positive-semidefiniteness can be striking (divergent algorithms, neg-
ative error variances).

Instead, if a matrix P (usually a covariance, either a prior model or an estimation
error posterior) is represented by its square root

P = Γ TΓ, (A.118)

then any manipulation of Γ ⇒ Γ̄ , possibly including numerical rounding, yields
a valid square root matrix Γ̄ where

P̄ = Γ̄ T Γ̄ ≥ 0 (A.119)

is guaranteed to be positive-semidefinite.

2. As a numerically-robust representation:
The condition number κ(P ) of a matrix P is a measure of conditioning, or nu-
merical sensitivity. Given the eigendecomposition

Pvi = λivi or PV = V Λ, (A.120)

if P is symmetric, positive-definite2 then

κ(P ) =
maxi{λi}
mini{λi} κ(

√
P ) = κ(Γ ) = κ(V Λ1/2) =

maxi{
√
λi}

mini{
√
λi}

,

(A.121)

therefore

κ(
√
P ) =

√
κ(P ), (A.122)

log10 κ(
√
P ) = 1

2 log10

√
κ(P ) (A.123)

implying that the square root form requires only half the number of floating-point
digits for an adequate, implicit representation of P .

3. In random sampling:
If a random vector x ∼ (μ, P ) has covarianceP , then given the covariance square
root

P̄ = Γ̄ T Γ̄ (A.124)

we can find a random sample of x as

x = μ+ Γ Tw w ∼ I. (A.125)

2 Implying that eigenvalues and singular values are equal, allowing the discussion to be sim-
plified.
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A.9 Pseudoinverses

Rectangular matrices do not, by definition, possess an inverse. However, it is possible
to define pairs of rectangular matrices which satisfy certain aspects of inversion.

In general, given a matrix A we might refer to its pseudoinverse as that matrix A+

such that the product is as close as possible to the identity [141]:

A+ = argX min ‖AX − I‖F = argX min
∑

i,j

(AX − I)2i,j , (A.126)

a definition which is too vague and impractical, in general.

The most common definition of a pseudoinverse asserts the Moore–Penrose condi-
tions [4, 141]:

A+A = (A+A)T , AA+ = (AA+)T , AA+A = A, A+AA+ = A+

(A.127)
implying that the repeated application of a pseudoinverse pair (AA+) or (A+A)
leaves a product unchanged.

If A has full rank, often encountered in inverse problems, then the pseudoinverse is
computable in closed form:

Full Row Rank ⇒ Nu(AT ) = {0} ⇒ A+ = AT (AAT )−1 ⇒ AA+ = I
Full Column Rank⇒ Nu(A) = {0} ⇒ A+ = (ATA)−1AT ⇒ A+A = I.

(A.128)
The above definitions do lead to the sensible conclusion that the pseudoinverse ma-
trix for an invertible matrix is, in fact, just the regular matrix inverse:

A invertible ⇒ (ATA)−1AT = AT (AAT )−1 = A−1. (A.129)

Pseudoinverses are used in reductions of dimensionality, such as in Section 8.2.2, and
also in the solution to the least-squares problems of Chapter 3. In particular, suppose
that

m = Cz + v E[v] = 0, cov(v) = I (A.130)

where C is any real matrix. Then the least-squares minimum-norm solution for z is
given by [4]

ẑ = C+m, (A.131)

valid whetherC has full-row or full-column rank. That is, for a full-rank k×nmatrix
C:

k = n ⇒ Nonsingular ⇒ ẑ = C+m = C−1m Unique
k < n ⇒ Underdetermined ⇒ ẑ = C+m = CT (CCT )−1m Min. Norm
k > n ⇒ Overdetermined ⇒ ẑ = C+m = (CTC)−1CTm Least Squares

(A.132)
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Statistics

This appendix provides a brief summary of univariate and multivariate statistics,
covariances, and simple transformations of random variables. For a more detailed
review the reader is referred to [37, 76, 99, 248,284].

B.1 Random Variables, Random Vectors, and Random Fields

This section provides an overview of the quantities fundamental to this text, starting
from random scalars, to random vectors, and then to random multidimensional fields.

B.1.1 Random Variables

A random variable is a single scalar which is random. Random variables are typically
either discrete (a random integer, for example) or continuous (a random real number).

The nature of a random variable is characterized by its associated cumulative distri-
bution function

Fx(τ) = Pr(x < τ). (B.1)

Typically more convenient for continuous random variables is the probability density
function (PDF) px(), which satisfies

Fx(τ) = Pr(x < τ) =
∫ τ

−∞
px(s) ds. (B.2)

Only on occasion, when it is necessary to distinguish between a random variable and
its particular instance, do we explicitly specify the PDF subscript; normally it will
be understood from the context.

P. Fieguth, Statistical Image Processing and Multidimensional Modeling, Information Science
and Statistics, DOI 10.1007/978-1-4419-7294-1_13, © Springer Science+Business Media, LLC 2011
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The expectation operation is defined as

E
[
f(x)

]
=
∫ ∞

−∞
f(x)p(x) dx, (B.3)

where f is some mathematical function. Two very important choices of f lead to the
definitions of mean and variance:

Mean: μx = E
[
x
]

Variance: σ2
x = E

[
x2
]− E[x]2 = E

[
(x − E[x])2

]
.

The square root of the variance, σx, is referred to as the standard deviation of x.

Given independent samples x̌i of random variable x, we can estimate the sample
statistics

Sample Mean: μ̂x = 1
N

∑N
i=1 x̌i

Sample Variance: σ̂2
x = 1

N−1

∑N
i=1

(
x̌i − μ̂x

)2
.

By far the most important and common PDF is the Normal or Gaussian distribution:

p(x) =
1√

2πσx

e−
1
2 ( x−μx

σx
)2

. (B.4)

B.1.2 Joint Statistics

A joint probability distribution p(x, y) characterizes the relationship of two random
variables x and y:

Pr(x < α, y < β) =
∫ α

−∞

∫ β

−∞
p(x, y) dx dy. (B.5)

A marginal distribution is derived from a joint one by integrating out one or more
variables; for example

p(x) =
∫ ∞

−∞
p(x, y) dy. (B.6)

Expectations for multiple variables are defined similarly to (B.3):

E
[
f(x, y)

]
=
∫ ∫ ∞

−∞
f(x, y)p(x, y) dx dy. (B.7)

We say that x and y are independent if



B.1 Random Variables, Random Vectors, and Random Fields 413

p(x, y) = p(x)p(y), (B.8)

in which case knowing x tells us nothing about y. We say that x and y are uncorre-
lated if

E[xy] = E[x]E[y]. (B.9)

If x and y are uncorrelated then they are not linearly related in any way, but may
still be related in some nonlinear fashion. Independence implies uncorrelatedness,
but not the other way around.

The correlation between x and y is defined as

E
[
(x− μx)(y − μy)

]
, (B.10)

which reduces to the simple E[xy] if x and y have a mean of zero. Frequently more
useful is a normalized version of the correlation, the correlation coefficient between
x and y:

ρx,y =
E
[
(x− μx)(y − μy)

]

σxσy
. (B.11)

The correlation coefficient measures the ability to predict y as a linear function of x;
ρx,y = 0 implies no predictability (x and y uncorrelated), and ρx,y = ±1 implies
perfect predictability (x and y deterministically linearly related). It is always true
that |ρ(x, y)| ≤ 1.

We can generalize the above by introducing conditional statistics:

p(x|y) is the PDF for x conditioned on another random variable y,
p(x|A) is the PDF for x given that the event A took place.

Joint, marginal, and conditional densities are related by Bayes’ rule:

p(x|y) =
p(x, y)
p(y)

=
p(y|x) p(x)

p(y)
, (B.12)

which applies to continuous and/or discrete random variables, thus

Pr(x|y)p(y) = p(y|x) Pr(x) (B.13)

for discrete x and continuous y.

Finally we can also define conditional expectations, consistent with our previous
definition:

E
[
f(x)|y] =

∫
f(x)p(x|y) dx. (B.14)

Note that we’re integrating only over x, not over y; in (B.14) y is just a given piece of
information, not a random variable. The variable of integration may be emphasized
by writing the expectation as

Ex

[
f(x)|y]. (B.15)
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B.1.3 Random Vectors

The extension of random variables to random vectors is straightforward: a random
vector x of dimension n is a column-vector of n random variables:

x =

⎡

⎢
⎣

x1

...
xn

⎤

⎥
⎦ (B.16)

The PDF of x is the joint density function of its components:

Pr(x1 < τ1, . . . , xn < τn) =
∫ τ1

−∞
. . .

∫ τn

−∞
p(x) dx. (B.17)

Note, however, that although x is now a vector, p(x) is still a scalar!

Computing the joint density of a subset of the components of x is accomplished by
computing the appropriate marginal distribution; for example

p(x1, . . . , xl−1, xl+1, . . . , xn) =
∫ ∞

−∞
p(x) dxl. (B.18)

Expectations of functions of random vectors are computed as before:

E
[
f(x)

]
=
∫
. . .

∫
f(x)p(x) dx (B.19)

which leads to the vectorized definitions

Mean: μx = E
[
x
]

Covariance: Σx= E
[
(x− μ)(x− μ)T

]

and the corresponding definitions for the sample statistics

Sample Mean: μ̂x = 1
N

∑N
i=1 x̌i

Sample Covariance: Σ̂x = 1
N−1

∑N
i=1

(
x̌i − μ̂x

)(
x̌i − μ̂x

)T
.

The covariance (also see Appendix B.4) is an n by n matrix, with an important
structure: the (i, j)th entry in the matrix

(Σx)i,j = E
[
(xi − μi)(xj − μj)

]
(B.20)

is the correlation between xi and xj . Thus zero entries in Σx imply a decorrelation
of the corresponding two variables.

We can also talk about the relationship between random vectors:
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Cross-Covariance: Σxy = E
[
(x− μx)(y − μy)T

]

Uncorrelated: E[x yT ] = E[x]E[yT ] ⇒ Σxy = 0
Independent: p(x, y) = p(x)p(y)

As before, independence implies uncorrelatedness, but not conversely.

Finally, Bayes’ rule applies:

p(x|y) =
p(x, y)
p(y)

=
p(y|x)p(x)

p(y)
. (B.21)

B.1.4 Random Fields

A random field [2, 62, 112, 335] x is a collection of random variables arranged on a
lattice Ω:

X =
{
x

i
∈ Ψ | i ∈ Ω

}
. (B.22)

In principle the lattice can be any (possibly irregular) collection of discrete points in
any number of dimensions; however it is most convenient and intuitive to visualize
the lattice as a rectangular, regular array of sites:

Ω =
{
(i, j) | 1 ≤ i ≤ n1, 1 ≤ j ≤ n2

}
(B.23)

in which case a random field is just a set of random pixels

X = {xi,j | (i, j) ∈ Ω} . (B.24)

A random field is (spatially) stationary if its statistics are only a function of offset,
and not of position, for example that

E
[
xi,jxi+δ,j+κ

] ≡ E[x0,0xδ,κ

] ∀i, j. (B.25)

Similarly, a time-dynamic random field

X(t) = {x(t)i,j | (i, j) ∈ Ω} (B.26)

is temporally stationary if the statistics are only a function of temporal offset, and
not of absolute time:

E
[
x(t)i,jx(s)a,b

] ≡ E[x(0)i,jx(s− t)a,b

]
. (B.27)

We therefore have the separate, distinct concepts of time stationarity and spatial sta-
tionarity. It is possible for X(t) to have neither, one, or both forms of stationarity. It
is similarly possible for a multidimensional field X to be stationary in one direction
(e.g., along the columns) but not in another (the rows).
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As with random variables or random vectors, any random field can, in principle, be
completely characterized by its associated probability measure pX(X). The detailed
form of p(·) depends on whether the alphabet Ψ of the elements xi,j ∈ Ψ is discrete,
in which case pX(X) denotes a probability distribution, or continuous, in which case
pX(X) denotes a probability density function.

Because any random fieldX can be lexicographically reordered into a column vector
x = [X ]:, all of the properties of random vectors and their associated covariances
extend to random fields.

In most cases, the distinct feature of random fields is their size. Consider, for ex-
ample, a modestly sized image, in which n1 = n2 = 256. In this case, X contains
65 536 random elements, and the joint distribution p(·) or the covariance cov([X ]:)
must explicitly characterize the joint statistics of 65 536 elements.

Because the function p(·) is a cumbersome and computationally inefficient means of
defining the statistics of a random field, a great part of the research into random fields
involves the discovery or definition of implicit statistical forms which lead to effec-
tive or faithful representations of the true statistics, while admitting computationally
efficient algorithms. Chapter 5 examines this question of representation at length.

B.2 Transformation of Random Vectors

It is common to operate on a random vector with some function

y = f(x), (B.28)

or, written in component form,

yi = fi(x1, . . . , xn). (B.29)

If f() is a linear function then

y = f(x) = Ax+ b (B.30)

for some constant matrixA and vector b; in this linear case the statistics of the trans-
formation can be calculated in closed form:

μy = E[y]

= E[Ax+ b] = AE[x] + b = Aμx + b
(B.31)

Λy = E
[
(y − μy)(y − μy)T

]

= E
[
(Ax+ b−Aμx − b)(Ax + b−Aμx − b)T

]

= E
[
A(x− μx)(x− μx)TAT

]

= AE
[
(x− μx)(x− μx)T

]
AT

= AΛxA
T .

(B.32)
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The shape of the PDF is generally distorted, even by linear transformations, except
in one special case: linear transformations map normal distributions to normal distri-
butions:

x ∼ N (μ,Σ)
y=Ax+b−−−−−−→ y ∼ N (Aμ + b, AΣAT ). (B.33)

In the case where the transformation is nonlinear the computation of the probability
density is more difficult. Suppose we have random variables x, y, related as

y = f(x) (B.34)

where f is continuous. The PDF of y is

py(Y ) = lim
δ→0

Pr
(
(Y − δ) ≤ y ≤ (Y + δ)

)

2δ
. (B.35)

That is, we’re interested in determining the probability of finding y in some small
window about Y . But y will be near Y only if x is near a root f(Xi) − Y = 0.
Because f is continuous,

lim
δ→0

f(Xi + δ) = Y + δf ′(Xi), (B.36)

then given the q rootsX1, . . . , Xq,

Pr(|Y − y| ≤ δ) =
q∑

i=1

Pr
(|Xi − x| ≤ δ/f ′(Xi)

)
. (B.37)

where the number q of roots will generally be a function of Y . Finally, taking the
limit as δ → 0, we find

py(Y ) =
px(X1)
|f ′(X1)| + · · ·+

px(Xq)
|f ′(Xq)| (B.38)

as the nonlinear transformation from x to y.

B.3 Multivariate Gaussian Distribution

The common assumption of the Gaussian distribution is motivated on a variety of
counts:

Common in the physical world due to the Central Limit Theorem,
Distribution preservation under linear transformations,
The equivalence of independence and uncorrelatedness,
The equivalence of the MAP and Bayesian least-squares estimators,
The linearity of the optimum Bayesian least-squares estimator.
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The definition of the multivariate Gaussian is straightforward:

p(x) =
1

(2π)
n
2 |Σ|1/2

exp

[
− (x− μ)TΣ−1(x− μ)

2

]
. (B.39)

We briefly consider two special cases.

CASE 1: The dimension n = 1:

Setting n = 1 causes (B.39) to reduce to

p(x) =
1

(2π)
1
2 |Σ|1/2

exp

[
− (x− μ)2Σ−1

2

]
(B.40)

=
1

(2π)
1
2σ

exp

[

−1
2

(
x− μ
σ

)2
]

(B.41)

where Σ = σ2. That is, the multivariate Gaussian (B.39) properly reduces to the
usual univariate Gaussian (B.4).

CASE 2: The covariance is diagonal:

Therefore the covariance matrix has the form

Σ =

⎡

⎢
⎣

σ2
11 0

. . .
0 σ2

nn

⎤

⎥
⎦ (B.42)

The diagonality ofΣ implies a simple form for the matrix inverse and determinant,
thus

p(x) =
1

(2π)
n
2 (
∏n

1 σ
2
ii)

1
2

exp

[

−1
2

n∑

i=1

(
xi − μi

σii

)2
]

(B.43)

=
n∏

i=1

1
(2π)

1
2σii

exp

[

−1
2

(
xi − μi

σii

)2
]

(B.44)

=
n∏

i=1

p(xi). (B.45)

That is, if x is a multivariate Gaussian, and if the elements of x are uncorrelated,
then the elements of x are also independent.
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Fig. B.1. A two-dimensional normal distribution is characterized by its two-by-two covariance
matrix, left. By slicing through the distribution, middle, the contour of constant probability is
seen to be an ellipse. The constant-probability contours are most easily seen in a contour plot,
right, where the thick line shows the unit standard deviation contour.

B.4 Covariance Matrices

A covariance matrix
Σx = E

[
(x− μ)(x− μ)T

]
(B.46)

describes the second-order interrelationships of the elements of a random vector x.
A single element of the covariance

(Σx)i,j = E
[
(xi − μi)(xj − μj)

]
(B.47)

is the correlation between xi and xj . Thus zero entries in Σx imply a decorrelation
of the corresponding two variables, and a diagonal covariance implies that all of the
variables are mutually decorrelated.

All covariances must satisfy four properties:

Σ = ΣT Symmetry,
Σi,i ≥ 0 Non-negativity of diagonal elements,
Σ ≥ 0 Positive-semidefiniteness (Appendix A.4), and
λj ≥ 0 Non-negativity of eigenvalues (Appendix A.7.1).

The cross-covariance

Σxy = E
[
(x− μx)(y − μy)T

]
(B.48)

also allows us to describe the relationship between random vectors, however cross-
covariances do not obey any of the symmetry, non-negativity, or positive-definiteness
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√
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√
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Fig. B.2. A covariance describes an n-dimensional ellipsoid, with the eigenvectors pointing in
the direction of the principal axes, and the eigenvalues describing the axis lengths.

properties of covariances. However, it is true that Σxy = ΣT
yx and that a zero entry

in ith column and jth row of Σxy implies a decorrelation between yi and xj .

Returning to the multivariate normal distribution of (B.39), the equiprobability con-
tour (the collection of points in space, all of which are equally likely) is defined by

p(x) =
1

(2π)
n
2 |Σ|1/2

e−
1
2 (x−μ)T Σ−1(x−μ) = constant, (B.49)

that is, that
(x− μ)TΣ−1(x− μ) = constant. (B.50)

The set of points described by (B.50) forms an ellipse, as seen in Figure B.1. In gen-
eral the behaviour of a covariance is sketched by drawing the unit standard deviation
contour, where

(x− μ)TΣ−1(x− μ) = 1. (B.51)

This unit-ellipse is centred on the mean μ, has axes pointing in the directions of the
eigenvectors ofΣ, and has semi-axis lengths equal to the square roots of the eigenval-
ues of Σ. The relationships between a covariance and its associated eigendecompo-
sition are summarized in Figure B.2. The matrix properties of covariances are further
discussed in the context of eigendecompositions in Appendix A.7.1, specifically on
page 399. Certain properties of cross-covariances are discussed in the context of the
singular value decomposition in Appendix A.7.2.

In general, for the bivariate case a covariance is written as

Σ =
[
a b
b c

]
a, c ≥ 0 |b| ≤ √ac, (B.52)
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Fig. B.3. Four examples of two-dimensional Normal distributions. In each case, the darkly
banded contour shows the unit standard deviation distance, and the dashed rectangle plots the
bounding box.

where the inequality constraint on b ensures that the covariance remains positive-
definite. The unit standard deviation ellipse associated with Σ is perfectly inscribed
in a rectangle, centred on the mean, of width 2

√
a and height 2

√
c, where the angle

and eccentricity of the ellipse are controlled by the sign and magnitude of b. Four
examples are plotted in Figure B.3.





C

Image Processing

Although this text is not about image processing per se, some familiarity with com-
mon concepts in image processing, such as convolution or denoising, is very helpful.
This appendix is only a brief list of concepts, and is in no way a comprehensive tu-
torial on image processing, for which the interested reader is referred to any one of
many excellent textbooks [36, 54, 143, 174, 210].

An image I is a set of values arranged on a rectangular grid. An image may be
considered a two-dimensional function

I(x, y)

or as a matrix
Ii,j

with the frustrating disadvantage that the spatial indexing of the two notational
schemes are quite different from each other, as illustrated in Figure C.1.

Any image stored in a computer is an approximate representation of a real-world
phenomenon:

Real-World Image: x, y, I(x, y) are all continuous-valued
Computer-Stored Image: x, y, I(x, y) are all discretized.

As this text concerns the computer processing of multidimensional data, we focus on
the latter definition.

For most images, I(x, y) is either a scalar, in which case the image is referred to as
“greyscale,” or I(x, y) is a vector, in which case we have a colour image in some
colour space. By far the most common colour space is RGB,

I(x, y) =

⎡

⎣
R(x, y)
G(x, y)
B(x, y)

⎤

⎦ (C.1)

P. Fieguth, Statistical Image Processing and Multidimensional Modeling, Information Science
and Statistics, DOI 10.1007/978-1-4419-7294-1_14, © Springer Science+Business Media, LLC 2011
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0
x

y 0 j

i

Usual Cartesian Coordinate System I(x, y) Usual Matrix Indexing System Iij

Fig. C.1. Two coordinate systems are commonly used in image processing.

such that each image pixel consists of red, green, and blue values. Many other colour
spaces have been defined (HSV, YIQ, . . . ), but are not relevant to this text. Instead,
in this text the value of an image I(x, y) can be any unknown or measured quantity,
such as the temperature of the ocean, the strength of a radar return, or the rate of
signal decay in an MRI.

C.1 Convolution

In signal processing, any linear operation on a signal can be written in terms of what
is known as a convolution [244]

s(t) ∗h(t) =
∫ ∞

−∞
s(τ)h(t− τ) dτ s(n) ∗h(n) =

∞∑

τ=−∞
s(τ)h(n− τ), (C.2)

where both the continuous-time and discrete-time versions are given, respectively. h
is known as the impulse response, and characterizes the linear operation.

Precisely the same is true in two (and higher) dimensions, such that

Ī(x, y) = I(x, y) ∗H(x, y) =
∞∑

m=−∞

∞∑

n=−∞
I(m,n)H(x−m, y − n)

=
∞∑

m=−∞

∞∑

n=−∞
I(x−m, y − n)H(m,n),

(C.3)

whereH , typically known as a convolution kernel, describes a pattern or a mask such
that a single element in the result Ī is formed as a weighted sum of elements in I ,
where the kernel H consists of a matrix of weights.
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Consider three illustrations:

IMAGE BLURRING:
In an optical system H, say consisting of one or more lenses, the point-spread-
function H is the image that results from a point (impulsive) light source

H = H(δ(x, y)).

If the system is linear, such that superposition applies,

H(αI1 + βI2
) ≡ αH(I1

)
+ βH(I2

)
, (C.4)

and stationary, meaning that a shift in the input leads to a corresponding shift in
the output,

Ī(x, y) = H(I(x, y)) =⇒ Ī(x−Δx, y −Δy) = H(I(x−Δx, y −Δy)
)
,

(C.5)
then the system can be written as a convolution, with the point-spread-function
(the “impulse response”) as the convolution kernel:

Ī = H(I) = H ∗ I. (C.6)

Two examples of blurring are shown in Figure C.2. There is no particular need for
H to be isotropic, as is illustrated by the anisotropic example in the figure.

EDGE DETECTION:
If an edge is defined as an abrupt change in image brightness, then a differencing
operator can be used to reveal edges.

Among the many edge detectors which have been proposed, two of the simplest are
the Sobel operators Sx, Sy shown in the bottom panel of Figure C.2. Many other
variations are possible, including diagonal differences (rather than just horizontal
and vertical), and spatially-adaptive thresholds on the gradient.

IMAGE FILTERING:
In general, a convolution is just the filtering of an image. The blur and edge il-
lustrations in Figure C.2 are examples of low-pass and high-pass filtering, respec-
tively.

Methods of filter design have been developed (see any of the image processing
textbooks cited at the beginning of this appendix) which allow standard one-
dimensional filters, such as notch-pass or band-pass filters, to be generalized to
two dimensions.

The convolution equations in (C.2) are very elegant in theory, but become consider-
ably more complicated in practice because images are finite: they have boundaries.
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Impulse Kernel Blur Kernel Anisotropic Kernel

0 0 0
0 1 0
0 0 0

-1 0 1
-2 0 2
-1 0 1

-1 -2 -1
0 0 0
1 2 1

Impulse Kernel Horizontal Kernel Sx Vertical Kernel Sy

Original Image I |I ∗ Sx| |I ∗ Sy|
Fig. C.2. Convolution is a powerful concept in image processing. An impulsive kernel is the
identity operator, left, causing no change to the image. Other convolution kernels may cause
blurring, top, or detect edges, bottom.

We have a few different options, illustrated in Figure C.3:

1. Compute the convolution only within the image, away from the boundary. This
approach corresponds to the “Valid Region” in Figure C.3.

2. Just truncate the convolution sum outside of the image, which implicitly assumes
the image to be zero outside of its boundaries. This approach corresponds to
keeping the dark boundary of I ∗H in Figure C.3.
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Valid

In−Image
Out−Image

Valid Region

Original Image Size

Original Image I Convolved Image I ∗H

Valid

Wrapped Wrapped

Periodic Image I Circular Convolved Image I ∗H

Valid

Mirrored Mirrored

Mirrored Image I Convolved Mirrored Image

Fig. C.3. The behaviour of convolution is somewhat subtle at image boundaries. For regular
convolution over a finite image, top, the image is implicitly treated as zero outside of its
domain, leading to the boundary effect seen in I ∗ H . The convolution is unaffected by the
boundary only within the “Valid” region. Under circular convolution, middle, the image is
implicitly treated as periodic, which can lead to boundary effects if the periodic assumption
is a poor one (observe the darkening near the top of the circular convolution, due to wrap-
around from the dark bottom). Mirroring the image at its boundaries frequently leads to better
boundary behaviour.
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3. Assume the image to be periodic, and therefore nonzero outside of its boundary,
leading to what is known as circular convolution. If the image is not, in fact,
periodic then spill-over effects may be visible, as can be seen in the top and
bottom of I ∗H in Figure C.3.

4. Mirror the image at its boundaries, rather than assume it to be periodic. This
approach turns out to have a higher computational complexity than the simpler
periodic assumption, but tends to lead to better results for real images.

C.2 Image Transforms

Images can be large, highly complex, with foregrounds and backgrounds and struc-
tures on a variety of scales. In order to be able to analyze the information content of
an image more simply, many transformations have been proposed for one purpose or
another. The transformations may be colour or greyscale, linear or nonlinear, local
or global, flat or hierarchical, a change of basis or a dimensionality reduction.

Three particularly common transforms are shown in Figure C.4:

THE FOURIER TRANSFORM [244] represents an image as a weighted sum of si-
nusoids, analogous to the one-dimensional Fourier transform. The transform is
global and assumes the image to be periodic, limiting the usefulness and appli-
cability of this transformation when processing real images. However, the exis-
tence of a very fast algorithm, the Fast Fourier Transform, makes the transform of
great interest for certain problems in statistical image processing (see Sections 8.3
and 11.2.1).

The Fourier transform has a very close connection to circular convolution and
linear systems. For any image I and impulse response H ,

FFT(I ∗H) = FFT(I)� FFT(H) (C.7)

That is, circular convolution corresponds to element-by-element multiplication in
the Fourier domain.

THE WAVELET TRANSFORM [293] is a local, hierarchical transform, far more ef-
fective than the Fourier transform in processing real images. The image is rep-
resented as a weighted sum of shifted and rescaled versions of a single function
(the wavelet). In many cases the wavelet transform is very sparse (most coeffi-
cients are near zero), making the approach very successful in image compression
and denoising. The wavelet transform can be used as a preconditioner for spatial
problems, as discussed in Section 8.4.2.

THE HOUGH TRANSFORM [54] searches an image for lines. Whereas the Fourier
and wavelet transforms are invertible, meaning that the image can be recovered
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Fig. C.4. A great many image transformations have been proposed. Observe particularly the
sparsity of the wavelet transform, and the diagonal band in the Fourier transform stemming
from the camera motion tracking the bicyclist in the original image. The Hough transform was
applied to the Vertical-Scale 1 image from the wavelet transform.

from the transform coefficients, the Hough transform is a method of image analy-
sis, not one of representation. For every straight line, parametrized by its slope and
intercept, the Hough transform sums the image along that line, leading to peaks in
the transform corresponding to detected lines in the image.

Clearly the Hough transform can be generalized to other parametrized shapes,
such as circles or parabolae.

Other important transformations, described in image processing texts, include Gabor
filters, Laplacian pyramids, difference of Gaussians, and the Cosine transform.
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C.3 Image Operations

Many algorithms and methods have been developed for image processing. A very
short, incomplete list follows:

DENOISING: Given an image corrupted by noise, estimate a noise-reduced image.
The noise may be possibly additive or multiplicative, possibly Gaussian or non-
Gaussian, possibly white or correlated (Figure C.5 and Figure 2.3).

IN-PAINTING: A generalization of the denoising problem, given an image with miss-
ing pieces, develop a way to extrapolate the observed behaviour of the image into
the missing parts (Figure 2.3).

DEBLURRING OR DECONVOLUTION: Given an image corrupted by some point-
spread-function, invert the point-spread convolution to obtain the original image.
The point-spread-function may be known or, if unknown, the problem is referred
to as blind deconvolution (Figure 2.3).

RESOLUTION ENHANCEMENT OR SUPERRESOLUTION: Given one or more images
at some resolution, estimate the image at a higher resolution (Application 11 and
Section 8.4.3).

EDGE DETECTION: Find the edges / lines in an image, often an initial operation
to simplify image analysis for further image segmentation, feature detection, or
object recognition (Figure C.6).

CLASSIFICATION: Classify each image pixel into one of k possible predetermined
behaviours. A great many satellite remote-sensing problems fall into this cate-
gory, distinguishing urban and rural, ice and water, forest and agricultural etc.
(Section 7.1.3 and Application 6).

SEGMENTATION: Essentially the blind version of image classification, dividing an
image into non-overlapping regions of homogeneous behaviour, but where the
number of regions and their meaning are unknown ahead of time (Figure C.7 and
Application 7).

COMPRESSION: Find a transformation whereby an image can be represented, and
subsequently reconstructed, from as few coefficients as possible (Section 8.2.1).

FEATURE DETECTION: Extract significant points of interest from an image, often
corners. Preferably the features are robust, invariant to rotation, scale, or changes
in illumination.

OBJECT RECOGNITION: Similar to classification, produce a map which identifies
objects of interest in an image (car, person, . . . ) as distinct from the background.
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Fig. C.5. A small sampling of the many denoising methods which have been developed. A
regular convolution leads to excessive smoothing, however the Wiener filter is least-squares
optimal for Gaussian noise, and the nonlinear median filter performs very well for the non-
Gaussian salt-and-pepper noise.

WATERMARKING: Via subtle changes in certain image features, place into the im-
age a digital signature or watermark, in a way that is robust to image rotation,
rescaling, cropping etc.

TRACKING AND REGISTRATION: Associate the objects / features in one image with
those in one or more other images.

Of these operations, three have a somewhat greater relevance to this text:

1. Image denoising is an inverse problem, as discussed in Chapter 2. Almost all
noise-reduction methods proceed on the basis of assuming that neighbouring pix-
els in an image are closely related and can be averaged, such as using a simple
convolutional blur, as shown in Figure C.5.

Convolution is indiscriminate, however, blurring all parts of an image equally.
More refined approaches are adaptive, blurring more broadly in smooth regions,
and more locally in regions having greater detail. Nonlinear methods, such as a
median filter, attempt to preserve edge structure by not averaging across an edge.

Some of the more powerful denoising approaches (see Problem 8.5) involve non-
linear processing in the sparse wavelet domain.
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Original Image Sobel Edges Canny Edges

Fig. C.6. The Sobel edge detector is based on the simple convolutions in Figure C.2. The more
sophisticated Canny detector is among the most widely-used approaches.

2. The simple Sobel convolutional operators demonstrated in Figure C.2 are really
a very primitive approach to edge detection. A well-established, more reliable
approach to edge detection is the Canny detector, shown in Figure C.6. An alter-
native approach is the Zero-Cross method, based on finding zero-crossings in the
second derivative of an image.

3. Image segmentation seeks to divide an image into homogeneous regions. Essen-
tially, image segmentation is a dual to edge detection, in the sense that the outlines
of the segmented regions offer one possible edge map for an image. The resulting
segmentation is a hidden label map (per Chapter 7).

The simplest approach to segmentation is a global, single threshold ζ, such that
the image is divided as shown in Figure C.7. Clearly non-global variations can be
proposed, such that threshold ζ(x, y) varies with location. There are exception-
ally many approaches to segmentation, including clustering methods based on K-
means [91], region growing / region merging methods, active contours (snakes),
level-set methods, graph-based methods, scale-space methods, and watershed.

Original Image Otsu Global Thresholding Watershed Segmentation

Fig. C.7. An image can be segmented into pieces by binarization with a single global thresh-
old, such as using Otsu’s method. Most complex images do not threshold well with a single
threshold, so local methods, such as watershed, are commonly used.
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Long bibliographic lists can be difficult to use, therefore this section attempts to
provide some thematic structure to assist the reader in finding meaningful references
and further reading.

Because textbooks and journal papers fulfill rather different purposes in terms of
depth, breadth, accessibility, and on-line availability, the textbook and paper refer-
ences are listed separately.

Classic Papers:

3, 19, 25, 27, 85, 86, 127, 136, 171,175, 182,221, 223, 250, 265, 266,303, 308,320,
332, 337

Exceptionally Cited Papers:

More than 5000 Citations:
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296, 297, 302, 313, 319,320,324

433



434 Reference Summary

Inverse Problems:

Texts 12, 24, 49, 154, 298, 301, 310, 313
Papers 27, 129, 139, 140, 172, 173, 189, 304, 308, 309,322

Statistical Methods:

Kalman Filtering:
Texts 7, 8, 17, 28, 32, 47,97, 101, 125, 151, 156,231,272,287,326
Papers 10,11,16,20,41,65–69,74,100,103,121,123,164,181,182,188,191,

192, 239, 266, 269, 307,311,325,333,337,338

Estimation:
Texts 8, 17, 125, 298
Papers 18, 70, 75, 81, 82, 102,105, 106, 108–110, 114, 123, 135, 145, 155,169,

178, 191, 194, 213, 214,219,227,232,237,299,333, 334, 345, 349

General Statistics:
Texts 2, 6, 23, 37, 55, 64, 76, 99, 101, 137, 150, 151, 166, 248, 252, 261, 270,

271, 281, 284, 290, 324
Papers 3, 5, 25, 27, 48, 57,71,75, 85,93,100,114,115,117,136,139, 140, 164,

171,175,179,182,184,220,223,227,242,250,256,262,263,266,276,
283, 297, 311, 312, 319,323,344

Hierarchical Methods:

Wavelets:
Texts 293, 317
Papers 13,56,57,87,114,115,117,149,178,221,222,237,262,263,274,286,

306, 339, 340, 345

Hierarchical Statistics:
Texts 317
Papers 13,18,35,58,70,81,82,102,105,106,108–110,112,144,146,149,169,
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Image/Spatial Statistics:
Texts 55, 76, 101, 270,271,290,291,328
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Banded matrices see Sparsity
Basis

Change see Change of basis
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Reduction see Dimensionality reduction

Bayesian problems
Approximate 70
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Dynamic 42, 86
Estimation 64
Least squares 45, 65
Linear least squares 45, 66
MAP 45
Regularization 37
Static 40, 67

Boundary conditions 153

Canonical problems
Data fusion 41
Dynamic 42
Static 40

Change of basis 241
Explicit 244
Hierarchical 269, 276
Implicit 245
Kernels 254
Orthogonal 245

Cholesky decomposition 295, 401, 407
Circulance 262, 392

Circular convolution 427
Condition number 27, 401
Conditional random fields 225

Conditioning 23, 25, 27, 206, 241, 310
Conjugate gradient 306
Convolution 145, 424, 427

Circular 427
Coupling 135, 242, 281
Covariance matrices 37, 70, 389, 419, 420

Approximated 167
Definition 414
Diagonal 418
Eigendecomposition 399
Inverse and Markovianity 188
Positive-definite 389, 390

Cross validation 37, 38, 83

Data fusion 16, 41, 76, 83, 377
Deterministic problems see Non-Bayesian

problems
Dimensionality reduction 135, 247, 250,

253
Duality

Bayesian–non-Bayesian 39, 73
Prior–measurement 73
Static–dynamic 89, 326

Dynamic problems
Canonical 42, 86
Estimation 85, 97, 100
Sampling 118, 357

Eigendecompositions 248, 262, 304, 305,
396, 420

Estimation 46, 69
Approximate 70
Bayesian 40, 45, 64
Definition 44
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Discrete state 119
Dynamic 42, 85, 97, 100
Non-Bayesian 48, 58
Static 40, 57
Using Fourier transform 266

Expectation 64, 186, 411
Expectation-Maximization (EM) 232

Forward problems 14, 78
Fourier transform 262, 361, 428

Gauss–Markov processes 88, 181
Gauss–Markov random fields 185, 189
Gaussian 419

Multivariate distribution 417
Univariate distribution 412

Gaussian elimination 295, 402
Gaussian transformation 402
Gibbs random fields 192

Comparison to Markov 194
Ising 228, 283
Sampling 366

Gram–Schmidt 309, 404
Graphical coupling 135, 242, 281

Hidden Markov models 215
Modelling 231

Hierarchical methods
Change of basis 269, 276
Discrete state fields 281, 373
Interpolated bases 272
Markov random fields 278
MCMC 370
Multigrid 313
Multiscale 339, 363
Nested dissection 296
Overview 137
Wavelets 273

Ill-Conditioned problems see Conditioning
Ill-Posed problems see Posedness, Inverse

problems
Image processing 22, 423

Blurring 21, 24, 425
Convolution 424, 427
Denoising 29, 216, 347, 431
Edge detection 221, 425, 431
Fourier transform 428
Segmentation 219, 233, 432

Wavelet transform 273, 428
Interpolation 9

Cross validation 38
Dynamic 98, 112
Iterative 302
Multidimensional 159
Posedness 20
Regularization 32

Inverse problems 2, 13
Bayesian see Bayesian problems
Canonical see Canonical problems
Conditioning 23, 25
Dynamic 42
Non-Bayesian see Non-Bayesian

problems
Posedness 19, 30
Regularization 29
Static 40

Iterative solvers see Linear systems
methods

Kalman filter 97, 98, 100, 325, 330
Derivation 93
Information form 102
Marching 327, 332
Nonlinear 114
Reduced order 338
Reduced update 336
Smoother 109, 112, 331
Square root 103
Steady state 107, 334
Stripped 334

Kernels see Sparsity
Kriging 45, 164

Least squares 30, 48, 62, 409
Bayesian 45, 65
Linear 58
Pseudoinverse 61
Regularized 61
Weighted 48, 61

Lexicographic ordering 133
Linear dependence 19, 384
Linear regression 23, 62
Linear systems 245, 293

Overdetermined 22, 409
Underdetermined 22, 409

Linear systems methods 293
Cholesky decomposition 295, 401
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Conjugate gradient 306
Gauss–Jacobi 299
Gauss–Seidel 299, 302
Gaussian elimination 295, 402
LU decomposition 403
Multigrid 313
Nested dissection 296
Preconditioning 310
Successive overrelaxation (SOR) 303

LU decomposition 403

Marching methods 327, 362
Markov chains 119, 181
Markovianity 179, 222, 297, 327

Gauss–Markov process 88, 181
Gauss–Markov random field 185
Hidden 215, 223
Markov random field 182
One-dimensional 180
Sparsity 188

Matlab XV, 10
Matrix

Block-matrix identities 387
Circulance see Circulance
Condition number 27, 401
Conditioning 23, 27, 310
Covariance see Covariance
Derivatives 394, 395
Identities 387
Inequality 389
Jacobian 394
Kernels see Sparsity
List of types 392, 393
Null space 19, 384
Positivity see Positive-definiteness
Pseudoinverse 409
Range space 19, 385
Rank 19, 385
Sparse see Sparsity
Square root 166, 401, 407

Matrix transformations 395
Cholesky decomposition 295, 401
Eigendecomposition 396
Gaussian 402
Gaussian elimination 295, 402
Gram–Schmidt 404
LU decomposition 403
QR 104, 406
Square root 407

Maximum a Posteriori (MAP) 45
Maximum likelihood (ML) 48, 63
MCMC see Monte Carlo
Membrane prior 35, 150
Model inference 169, 170, 199, 206

Parameter estimation 50
Modelling 148

Bayesian 158
Boundary conditions 153
Dynamic 166, 325
Hidden fields 231
Markov random field 199, 204
Multidimensional 134
Non-Bayesian 149
Nonstationary 164
Representation 172, 207

Monte Carlo 355, 365
Multigrid 313
Multiscale 339, 363
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Definition 31
Estimation 58
Maximum likelihood 63
Modelling 149
Regularization 34, 61

Normal distribution see Gaussian
Null space 19, 384

Orthogonality 59, 65

Parameter estimation see Model inference
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Positive-definiteness 388

Analytical forms 160
Definition 392
Intuition 27, 390

Posterior sampling see Sampling
Preconditioning 310
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Prior
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Model, Bayesian 37, 158
Model, non-Bayesian 34, 150
Sampling see Sampling
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Zero mean 40, 68, 71

Prior-Free problems see Non-Bayesian
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QR decomposition 104, 406

Random fields 6
Causal 189
Conditional 225
Definition 415
Discrete state 227
Gibbs 192
Markov 182
Markov vs. Gibbs 194
Modelling 199
Noncausal 185
Stationary 415

Random variables 411
Correlation 413
Independence 412

Random vectors 414
Covariance 414
Transformation 416

Range space 19, 385
Rank

Full column 19, 385, 409
Full row 19, 385

Regularization 29
Bayesian 37
Non-Bayesian 34
Tikhonov 30
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Discrete state 366, 370
Dynamic 118, 357
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Prior 42, 74, 374
Static 74, 358
Using Fourier transform 266

Simulated annealing 366, 369, 370, 372
Singular value decomposition 400
Singular value decompositions 27
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Banded matrices 139, 144
Computational complexity 144
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Matrix kernels 141, 146, 151
Sparse matrices 139
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Bayesian 67
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Estimation 57
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Sampling 74, 358
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SVD see Singular value decomposition
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Tikhonov regularization 30
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Wavelet transform 273, 347, 428
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