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Preface

Biostatistics is one of the scientific fields for which the developments during
the last decades of the 20th century have been the most important. Bio-
statistics is a pluri-disciplinary area combining statistics and biology, but
also agronomics, medicine or health sciences. It needs a good knowledge of
the mathematical background inherent in statistical methodology, in order
to understand the various fields of applications. The idea of this book is to
present a variety of research papers on the state of art in modern biostatistics.

Biostatistics is interacting with many scientific fields. To highlight this wide
diversity, we deliberately put these interactions at the center of our project.
Our book is therefore divided into two parts. Part I is presenting several
statistical models and methods for different biologic applications, while Part
II will be concerned with problems and statistical methods coming from other
related scientific fields.

This book intends to provide a basis for many people interested in biostatis-
tics and related sciences. Students, teachers and academic researchers will
find an overview on modelling and statistical analysis of biological data. Also,
the book is meant for practicioners involved in research organisations (phar-
macologic industry, medicine, food industry,..) for which statistics is an in-
dispensable tool.

Biology is a science which has always been in permanent interaction with
many other fields such as medicine, physics, environmetrics, chemistry, math-
ematics, probability, statistics . . .. On the other hand, statistics is interacting
with many other fields of mathematics as with almost all other scientific dis-
ciplines, including biology. For all these reasons, biostatistics is strongly
dependent on other scientific fields, and in order to provide a wide angle
overview we present here a rich diversity of applied problems.

Each contribution of this book presents one (or more) real problem. The
variation ranges from biological problems (see Chapter 1 and 10), medical
contributions (see Chapters 2, 4, 5, 8, 9 or 11) and genomics contributions (see
Chapters 3 and 7), to applications coming from other scientific areas, such as
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environmetrics (see Chapters 12), chemometrics (see Chapter 13), geophysics
(see Chapters 17 and 18) or image analysis (see Chapter 18). Because all these
disciplines are continuously taking benefits one from each other, this choice
highlights as well how each biostatistical method and modelling is helpful in
other areas and vice versa.

A good illustration of such a duality is provided by hazard analysis, which is
originally a medical survival problem (see Chapters 4, 9 or 11) but which leads
to substancial interest in many other fields (see e.g. the microearthquakes
analysis presented in Chapter 17). Another example is furnished by spatial
statistics (see Chapters 15 or 18) or food industry problems (see Chapter 13),
which are apparently far from medical purposes but whose developments
have obvious (and strong) consequences in medical image analysis and in
biochemical studies.

Due to the variety of applied biostatistical problems, the scope of meth-
ods is also very large. We adress therefore the diversity of these statistical
approaches by presenting recent developments in descriptive statistics (see
Chapters 7, 9, 14 and 19), parametric modelling (see Chapters 1, 2, 6 and
18) nonparametric estimation (see Chapters 3, 4, 11, 15 and 17) and semi-
parametrics (see Chapters 5, 8 and 10). An important place is devoted to
methods for analyzing functional data (see Chapters 12, 13, 16), which is
currently an active field of modern statistics.

An important feature of biostatistics is to have to deal with rather large
statistical sample sizes. This is particular true for genomics applications (see
Chapters 3 and 7) and for functional data modelling (see Chapters 12, 13
and 16). The computational issues linked with the methodologies presented in
this book are carried out thanks to the capacities of the XploRe environment.
Most of the methodological contributions are accompanied with automatic
and/or interactive XploRe quantlets.

We would like to express our gratitude to all the contributors. We are confi-
dent that the scope of papers will insure a large impact of this book on future
research lines and/or on applications in biostatistics and related fields. We
would also like to express our sincere gratitude to all the researchers that
we had the opportunity to meet in the past years. It would be tedious (and
hardly exhaustive) to name all of them expressely here but specific thanks
have to be adressed to our respective teams, will special mention to Anton
Andriyashin in Berlin and to the participants of the STAPH working group
in Toulouse.

July 2006 Wolfgang Ha
..

rdle, Yuichi Mori
Berlin, Okoyama, Toulouse and Philippe Vieu
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Part I

Biostatistics



1 Discriminant Analysis Based on
Continuous and Discrete
Variables

Avner Bar-Hen and Jean-Jacques Daudin

1.1 Introduction

In discrimination, as in many multivariate techniques, computation of a dis-
tance between two populations is often useful. For example in taxonomy, one
can be interested not only in discriminating between two populations but in
having an idea of how far apart the populations are. Mahalanobis’ ∆2 has
become the standard measure of distance when the observations are quan-
titative and Hotelling derived its distribution for normal populations. The
aim of this chapter is to adapt these results to the case where the observed
characteristics are a mixture of quantitative and qualitative variables.

A problem frequently encountered by the practitioner in Discriminant Analy-
sis is how to select the best variables. In mixed discriminant analysis (MDA),
i.e., discriminant analysis with both continuous and discrete variables, the
problem is more difficult because of the different nature of the variables.
Various methods have been proposed in recent years for selecting variables
in MDA. Here we use two versions of a generalized Mahalanobis distance
between populations based on the Kullback-Leibler divergence for the first
and on the Hellinger-Matusita distance for the second. Stopping rules are
established from distributional results.
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1.2 Generalisation of the Mahalanobis Distance

1.2.1 Introduction

Following Krzanowski (1983) the various distances proposed in the literature
can be broadly classified in two categories:

1. Measures based on ideas from information theory (like Kullback-Leibler
measures of information for example)

2. Measures related to Bhattacharya’s measure of affinity (like Matusita’s
distance for example)

A review of theses distance measures can be found, for example, in Adhikari
and Joshi (1956).

Mixture of continuous and discrete variables is frequently encountered in dis-
criminant analysis. The location model (Olkin and Tate, 1961; Krzanowski,
1990) is one possible way to deal with these data. Gower (1966) proposed
a formula for converting similarity to distance. Since this transformation
corresponds to the transformation of Bhattacharya’s measure of affinity to
Matusita’s distance, Krzanowski (1983) studied the properties of Matusita’s
distance in the framework of the location model. Since no distributional
properties were obtained, Krzanowski (1984), proposed to use Monte Carlo
procedures to obtain percentage points. This distance was also proposed as
a tool of selection of variables (Krzanowski, 1983). Distributional results
for Matusita will be presented in Section 1.2.3. At first we present another
generalization of the Mahalanobis distance, J , based on the Kullback-Leibler
divergence.

One of the aims of discriminant analysis is the allocation of unknown entities
to populations that are known a priori. A preliminary matter for considera-
tion before an outright or probabilistic allocation is made for an unclassified
entity X is to test the assumption that X belongs to one of the predefined
groups πi (i = 1, 2, . . . , n). One way of approaching this question is to test
if the smallest distance between X and πi is null or not. Most of the results
were obtained in the case of linear discriminant analysis where the probabil-
ity distribution function of the populations is assumed to be normal and with
a commom variance–covariance matrix Σ (McLachlan, 1992). Generally, the
squared Mahalanobis distance is computed between X and each population
πi. X will be assessed as atypical if the smallest distance is bigger than a
given threshold. Formally a preliminary test is of the form:

H0 : min
i

d(X, πi) = 0 versus H1 : min
i

d(X, πi) > 0
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In practical case, the assumption of normality can be unrealistic. For example
in taxonomy or in medicine, discrete and continuous measurements are taken.
We propose a preliminary test to the general parametric case

1.2.2 Kullback–Leibler Divergence

The idea of using distance to discriminate between population using both con-
tinuous and categorical variables was studied by various authors, see Cuadras
(1989), Morales, Pardo and Zografos (1998), Nakanishi (1996), Núñez, Vil-
larroya and Oller (2003). We generalise the Mahalanobis distance using the
divergence defined by Kullback-Leibler (Kullback, 1959) between two gener-
alised probability densities f1(X) and f2(X):

J = J {f1(X) ; f2(X)}

=
∫

{f1(X) − f2(X)} log
f1(X)
f2(X)

dλ

where λ , µ1 and µ2 are three probability measures absolutely continuous
with respect to each other and fi is the Radon–Nikodym derivative of µi

with respect to λ.

Except the triangular inequality, the Kullback-Leibler distance has the prop-
erties of a distance. Moreover, if f1 and f2 are multivariate normal distribu-
tions with common variance-covariance matrix then J(f1; f2) is equal to the
Mahalanobis distance.

Application to the Location Model

Suppose that q continuous variables X = (X1 , . . . , Xq)� and d discrete
variables Y = (Y1, . . . , Yd)� are measured on each unit and that the units
are drawn from the population π1 or the population π2.

Moreover suppose that the condition of the location model (Krzanowski,
1990) holds. This means that:

• The d discrete variables define a multinomial vector Z containing c
possible states. The probability of observing state m in the population
πi is:

pim > 0 (m = 1, . . . , c) and
c∑

m=1

pim = 1 , (i = 1, 2)



6 1 Discriminant Analysis Based on Continuous and Discrete Variables

• Conditionally on Z = m and πi, the q continuous variables X follow a
multivariate normal distribution with mean µ

(m)
i , variance–covariance

matrix Σ(m)
i and density:

fi,m(X) = f(X |Z = m,πi)

• For the sake of simplicity, we assume Σ(m)
1 = Σ(m)

2 = Σ.

Since the aim is to compute the distance between π1 and π2 on the basis of
the measurement made on X and Z, the joint density of X and Z given πi

is needed:

fi(x, z) =
c∑

m=1

fi,m(x)p(Z = m|πi)I(z = m)

=
c∑

m=1

fi,m(x)pimI(z = m)

This model was extended by some authors. Liu and Rubin (1998) relaxed
the normality assumption. Bedrick,, Lapidus and Powell (2000) considered
the inverse conditioning and end up with a probit model and de Leon and
Carrière (2004) generalize the Krzanowski and Bedrick approach.

PROPOSITION 1.1 By applying the Kullback–Leibler measure of dis-
tance to the location model, we obtain:

J = J1 + J2 (1.1)

with
J1 =

∑
m

(p1m − p2m) log
p1m

p2m

and
J2 =

1
2

∑
m

(p1m + p2m)(µ(m)
1 − µ

(m)
2 )�Σ−1(µ(m)

1 − µ
(m)
2 )

The proof is straightforward.

Remark: This expression is meaningless if pim = 0.
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COROLLARY 1.1 If the continuous variables are independent of the dis-
crete variables then:

µ
(m)
1 = µ1 and µ

(m)
2 = µ2 for all m

and
J =

∑
m

(p1m − p2m) log
p1m

p2m
+ (µ1 − µ2)�Σ−1(µ1 − µ2)

which means that the Kullback-Leibler distance is equal to the sum of the
contribution of the continuous and the discrete variables. This result is logical
since J1 represents the information based on Z, and J2 the information based
on X knowing Z.

Asymptotic Distribution of the Kullback-Leibler Distance in the Location
Model

Generally the pim, µim and Σ are unknown and have to be estimated from
a sample using a model. Consider that we have two samples of size n1

and n2 respectively available from the population π1 and π2 and let nim

be the number of individuals, in the sample drawn from πi, occupying the
state m of the multinomial variable Z. In the model, there are two kinds of
parameters: those which depend on the populations, and noisy parameters
which are independent from the populations. They can be considered as noisy
parameters since this category of parameters is not involved in the distance
J . For example, if the mean is modelled with an analysis of variance model:

µim = µ + αi + βm

where α is the population effect and β the discrete state effect. The expression
of the distance is:

µ1m − µ2m = α1 − α2

So the βm can be considered to be noisy parameters since they are not in-
volved in the distance.

Let p be the vector of probability associated to the multinomial state of Z
then

p̂ = p(η̂) (1.2)

where η = (ηa, ηib); ηa is the set of noisy parameters and ηib is the set of
parameters used to discriminate between two populations.

Let r be the cardinal of ηib. In the case of the location model, the pim are
generally estimated through a log-linear model.
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Let µ be the vector of the mean of the continuous variables for the different
states of Z then:

µ̂ = µ(ξ̂) (1.3)

where ξ = (ξa, ξib); ξa is the set of noisy parameters and ξib is the set of
parameters used to discriminate between two populations.

Let s be the cardinal of ξib. In the case of the location model, the µim are
generally estimated through an analysis of variance model. Asparoukhov
and Krzanowski (2000) also studied the smoothing of the location model
parameters.

The aim of this section is to study the distributional property of both parts
of the distance to obtain a test and a confidence interval for the classical
hypothesis. Formally the following hypothesis are tested:

H01 : J1 = 0 versus H11 : J1 > 0
H02 : J2 = 0 versus H12 : J2 > 0
H0 : J = 0 (H01 ∩ H02) versus H1 : J > 0 (H11 ∪ H12)

Asymptotic Results

Let θi = (ηa, ξa, ηib, ξib) = (θa, θib) for i = 1, 2 where ηa, ξa, ηib, ξib are defined
in (1.2) and (1.3). The following regularity conditions are assumed:

• θi is a point of the parameter space Θ, which is assumed to be an open
convex set in a (r + s)-dimensional Euclidean space.

• f(x, θi) has continuous second–order partial derivatives with respect to
the θi’s in Θ,

• θ̂i is the maximum likelihood estimator of θ̂i

• For all θi ∈ Θ,∫
∂f(x, θi)

∂θi
dλ(x) =

∫
∂2f(x, θi)

∂2θi
dλ(x) = 0 i = 1, 2

• The integrals

c(θi) =
∫ {

∂ log f(x, θi)
∂θi

}2

f(x, θi)dλ(x) i = 1, 2

are positive and finite for all θi ∈ Θ.
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It is obvious that the location model satisfies these conditions. Let Ĵ = J(θ̂)
be an estimator of J .

PROPOSITION 1.2 Under H0: θ1 = θ2 = θ0 , when n1 → ∞, n2 → ∞
and n1

n2
→ u :

n1n2

n1 + n2
Ĵ ∼ χ2(r + s) (1.4)

where r are s are the dimension of the space generated by ηib and ξib

Proof:

Ĵ =
∫ {

f(x, θ̂1) − f(x, θ̂2)
}

log

{
f(x, θ̂1)

f(x, θ̂2)

}
dλ(x) (1.5)

Since pim > 0, the regularity conditions are satisfied. Therefore,Under H0:
θ1 = θ2 = θ0 a Taylor expansion of first order of f(x, θ̂1) and f(x, θ̂2) at the
neighbourhood of θ0 can be used:

Ĵ = J + (θ̂1 − θ1)�
∂J

∂θ1
+ (θ̂2 − θ2)�

∂J

∂θ2

+
1
2
(θ̂1 − θ1)�

∂2J

∂θ2
1

(θ̂1 − θ1) +
1
2
(θ̂2 − θ2)�

∂2J

∂θ2
2

(θ̂2 − θ2)

+(θ̂2 − θ2)�
∂2J

∂θ1∂θ2
(θ̂1 − θ1) + σ(θ̂1 − θ1) + σ(θ̂2 − θ2)

Under H0:

∂J

∂θ1
=
∫ [

∂f(x, θ1)
∂θ1

log
{

f(x, θ1)
f(x, θ2)

}
− ∂f(x, θ1)

∂θ1

f(x, θ2)
f(x, θ1)

]
dλ(x) = 0

since θ1 = θ2 = θ0 and
∫ ∂f(x,θ1)

∂θ1
= 0. For the same reason ∂J

∂θ2
= 0

For all i, j = 1, 2:

∂2J

∂θi∂θj
= (θ̂i − θi)�

∫
f ′2(x, θ0)
f(x, θ0)

dλ(x)(θ̂j − θj)

= (θ̂i − θi)�I(θ0)(θ̂j − θj)

where I(θ0) represents the information matrix of Fisher.
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Asymptotically, under H0, (1.5) becomes:

Ĵ =
1
2
(θ̂1 − θ0)�I(θ0)(θ̂1 − θ0) +

1
2
(θ̂2 − θ0)�I(θ0)(θ̂2 − θ0)

+(θ̂1 − θ0)�I(θ0)(θ̂2 − θ0)

= (θ̂1 − θ̂2)�I(θ0)(θ̂1 − θ̂2)

Since θ̂i is the maximum likelihood estimator of θ0 (Rao, 1973):√
ni(θ̂i − θ0) ∼ Np

{
0, I−1(θ0)

}
(i = 1, 2) Then:√

n1n2

n1 + n2
(θ̂1 − θ0) ∼ Np

{
0,

1
1 + u

I−1(θ0)
}

√
n1n2

n1 + n2
(θ̂2 − θ0) ∼ Np

{
0,

u

1 + u
I−1(θ0)

}
Then √

n1n2

n1 + n2
I(θ0)

1
2

(
θ̂1 − θ̂2

)
∼ Np(0, 1)

Finally,
n1n2

n1 + n2

(
θ̂1 − θ̂2

)�
I(θ0)

(
θ̂1 − θ̂2

)
∼ χ2(r + s)

COROLLARY 1.2 Under H01:
n1n2

n1 + n2
Ĵ1 ∼ χ2(r) when n1 → ∞ , n2 → ∞ and

n1

n2
→ u

Proof: It is enough to apply the proposition 1.2 with q = 0, which means
the absence of continuous variables.

PROPOSITION 1.3 Under H02:
n1n2

n1 + n2
Ĵ2 ∼ χ2(s) when n1 → ∞ , n2 → ∞ and

n1

n2
→ u

Proof: The proof is very similar to the proof of the proposition 1.2.

1.2.3 Asymptotic Distribution of Matusita Distance

Krzanowski (1983) used Bhattacharya’s affinity measure:

ρ =
∫

f
1
2 (x, θ1)f

1
2 (x, θ2)dλ(x)
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to define the distance:

∆ =
∫ {

f
1
2 (x, θ1) − f

1
2 (x, θ2)

}2

dλ(x)

= 2 − 2ρ

This distance is also known as the Hellinger distance. In the location model
context Krzanowski has obtained:

K = 2 − 2
∑
m

(p1mp2m)
1
2 exp{−1

8
(µ1,m − µ2,m)�Σ−1(µ1,m − µ2,m)}

Let θi = (ηa, ξa, ηbi, ξbi) = (θa, θbi) for i = 1, 2. Under H0 = (θ1 = θ2), we
have ξbi = 0 and ηbi = 0 for i = 1, 2.

Under the usual regularity conditions, we prove the following result:

PROPOSITION 1.4 Let u ∈]0, 1[, K̂ = K(θ̂1, θ̂2) with

K̂ = 2 − 2
∑
m

(p̂1mp̂2m)
1
2 exp{−1

8
(µ̂1,m − µ̂2,m)�Σ̂−1(µ̂1,m − µ̂2,m)}

Assume that H0: θ1 = θ2 = θ0 is true and that θ̂1 and θ̂2 are indepen-
dent asymptotically efficient estimates of θ0. Then for n1 → ∞, n2 → ∞,
n1/n2 → u

4n1n2

(n1 + n2)
K(θ̂1, θ̂2) ∼ χ2(r + s)

Proof

Under H0: θ1 = θ2 = θ0, we obtain:

K(θ0) = 0

∂K

∂θ1
=

∂K

∂θ2
= 0

and
∂2K

∂θ2
1

=
∂2K

∂θ2
2

= − ∂2K

∂θ1∂θ2
=

1
2

∫
f ′2(x, θ0)
f(x, θ0)

dλ(x) =
1
2
I(θ0)

where I(θ0) is the information matrix of Fisher. Under usual regularity
conditions (Bar-Hen and Daudin, 1995), the Taylor expansion of the affinity
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at the neighborhood of θ0 can be derived and using the previous result we
have, under H0:

K(θ̂1, θ̂2) ≈
1
4
(θ̂1 − θ̂2)�I(θ0)(θ̂1 − θ̂2)

Since θ̂i are independent asymptotically efficient estimator of θ0,
n

1
2
i (θ̂i − θ0) ∼ Np

(
0, I−1(θ0)

)
(i = 1, 2). Then:

(
n1n2

n1 + n2

) 1
2

(θ̂1 − θ0) ∼ Np

{
0,

1
1 + u

I−1(θ0)
}

(
n1n2

n1 + n2

) 1
2

(θ̂2 − θ0) ∼ Np

{
0,

u

1 + u
I−1(θ0)

}
Then (

n1n2

n1 + n2

) 1
2

I(θ0)
1
2

(
θ̂1 − θ̂2

)
∼ Np(0, 1)

Additional results can be found in Bar-Hen and Daudin (1998).

1.2.4 Simulations

The level and the power of the test described in the previous section were
evaluated through simulations. One continuous variable and two binary vari-
ables are considered. Hence the multinomial vector Z has 4 levels. The
estimates of the means, the proportions and the variance are the maximum
likelihood estimates. These estimates corresponds to saturated model and
therefore the test of the distance has 7 degrees of freedom. It has to be noted
that no correction factor for the case pim = 0 and therefore empty cells are
taken into account for the computation of the distance.

Four cases were studied:

1. no population effect for the discrete variables and no population effect
for the continuous variables (K = 0);

2. no population effect for the discrete variables but a population effect
for the continuous variables;

3. a population effect for the discrete variables but no population effect
for the continuous variables;
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4. a population effect for the discrete and the continuous variables.

For the continuous variables, the population effect is equal to the standard
error:

µ1,m − µ2,m

σ
=
{

0 if population effect is present
1 if population effect is not present

For the discrete variables:

log
(

p1m

p2m

)
=
{

0 if population effect is present
1 if population effect is not present

Since the aim of these simulations is to estimate the rate of convergence of
the asymptotic distributions, populations of size 20 and 100 were considered.
This gives three new cases:

1. population π1 of size 10 and population π2 of size 10

2. population π1 of size 30 and population π2 of size 30

3. population π1 of size 100 and population π2 of size 100

There are 12 combinations of hypotheses and populations sizes. 1000 simula-
tions were done for each combination. The table below presents the number
of non–significant tests at the 5% level.

By using the property of the binomial distribution, one may expect to obtain
50± 1.96× (1000× 0.5× 0.95)

1
2 = 50± 14 tests to be non–significant if the

null hypothesis is true.

From Table 1.1, we deduce that the level of the test is respected as soon as
n ≥ 30. This means 30/4 observations per cell. The power of the test tends
to 1 but the convergence is slower for the discrete variables. This result is
not surprising.

It has to be noted that these simulations are limited. The use of non-saturated
model for the estimation of the parameters and the use of a correction factor
for empty cell can probably alter the results.

1.3 Methods and Stopping Rules for Selecting
Variables

As in the usual discriminant analysis with continuous variables, selection of
variables is a problem of practical importance. In fact, in the location model
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Table 1.1: Number of significant test at the 5% level for the various hypothe-
ses

population effect for size of population Hypothesis tested
discrete var. continuous var. π1 π2 K = 0

no no 10 10 68
no no 30 30 60
no no 100 100 60
no yes 10 10 251
no yes 30 30 798
no yes 100 100 1000
yes no 10 10 144
yes no 30 30 255
yes no 100 100 711
yes yes 10 10 344
yes yes 30 30 872
yes yes 100 100 1000

context, the question is more precisely ”which terms and which continuous
variables must be included in the model?” where the models concerned are
log-linear and MANOVA. Interest in this topic has been shown regularly
since the paper published by Vlachnonikolis and Marriot (1982). Krzanowski
(1983) used a Matusita-Hellinger distance between the populations, Daudin
(1986) used a modified AIC method and Krusinska (1989), Krusinska (1990)
used several methods based on the percentage of misclassification, Hotelling’s
T 2 and graphical models.

Based on Hellinger distance, Krzanowski (1983) proposed the use of a dis-
tance K to determine the most discriminative variables.

Our asymptotic results allow us to propose stopping rules based on the P -
value of the test of J = 0 or K = 0. These two methods were then com-
pared with a third, based on the Akaike Information Criterion (AIC) de-
scribed by Daudin (1986): classically, AIC penalize the likelihood by the
number of parameters. A direct use of AIC on MANOVA models (described
in Section 1.2.2) will lead to noncomparable log-likelihood. Daudin (1986)
proposed to eliminate the noisy parameters (noted βm) and to penalize the
log-likelihood by the number of parameters related to the population effect.
It permits to judge whether the log-likelihood and the increase of AIC is only
due to population factor terms in the ANOVA model and is not coming from
noisy parameters.
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Krzanowski (1983) used the distance K to select variables. It should be
noted that K̂ increases when the location model contains more variables
without guaranteeing that this increase is effective: it is therefore necessary
to discount any slight increase that may be caused by chance. We propose to
include a new discriminant variable or a new term in the location model if it
increases the evidence that H0 (K = 0) is false as measured by the P -value
of the test of the null hypothesis, using the asymptotic distribution of K̂.

It would be interesting to test whether the increase of K due to a new term
in the model is positive. Unfortunately when K is positive (H0 false) the
asymptotic distribution of the increase in K̂ due to a new term is not easily
tractable under the hypothesis that the new parameter is null.

An alternative criterion is an Akaike-like one: K−AIC = 4 n1n2
n1+n2

K̂−2(r+s).
According to this method, the best model is that which maximizes K−AIC.

It is also possible to use Ĵ with the same methods: we can use the P -value
of the chi-square test of J = 0 or alternatively J −AIC = n1n2

n1+n2
Ĵ − 2(r + s)

Based on simulations, Daudin and Bar-Hen (1999) showed that all three
competing methods (two distances and Daudin-AIC ) gave good overall per-
formances (nearly 85% correct selection). The K-method has weak power
with discrete variables when sample sizes are small but is a good choice
when a simple model is requested. The J-method possesses an interesting
decomposition property of J = J1 + J2 between the discrete and continuous
variables. The K-AIC and J-AIC methods select models that have more
parameters than the P -value methods. For distance, the K-AIC method
may be used with small samples, but the J-AIC method is not interesting
for it increases the overparametrization of the J − P method. The Daudin-
AIC method gives good overall performance with a known tendency toward
overparametrization.

1.4 Reject Option

1.4.1 Distributional Result

Since the aim is to test the atypicality of X, we have to derive the distribution
of the estimate of the divergence J between X and πi under the hypothesis
J(X, πi) > 0. We don’t make assumptions about the distribution of the
populations but the same regularity conditions as before are assumed. Bar-
Hen and Daudin (1997) and Bar-Hen (2001) considered the reject option for
the case of normal populations.
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PROPOSITION 1.5 Under H1 : J > 0, n1 → ∞, n2 → ∞, n1
n2

→ u > 0:

√
n1 + n2(Ĵ − J) L−→ N(0, V )

with

V = (1 + u−1)
(

∂J

∂θ1

)�
I−1(θ1)

(
∂J

∂θ1

)
+ (u + 1)

(
∂J

∂θ2

)�
I−1(θ2)

(
∂J

∂θ2

)
(1.6)

where I(θi) represents the Fisher information matrix based on θi.

The proof can be found in Bar-Hen (1996).

Remark : From this proposition one may construct confidence intervals for
Ĵ .

COROLLARY 1.3 Let Ji be the divergence between X and πi (i = 1, . . . , n).
Let assume that the parameters of each population are estimated with inde-
pendent samples. Let ni be the sample size of the sample coming from πi and
nx the sample size of the sample coming from X.
If X is not coming from any πi, then , asymptotically, the joint probability
distribution function of

√
ni + nx(Ĵi−Ji) is a multivariate normal probability

distribution function.

Proof: Every
√

ni + nx(Ĵi−Ji) is distributed as a normal probability distri-
bution function. Therefore it has to be proved that every linear combination
of the

√
ni + nx(Ĵi − Ji) is also distributed as a normal probability distribu-

tion function.∑
i

ai

√
ni + nx(Ĵi − Ji) (1.7)

≈
∑

i

ai

√
ni + nx

{
(θ̂i − θi)�

∂Ji

∂θi
+ (θ̂x − θx)�

∂Ji

∂θx

}
=

∑
i

ai

√
ni + nx(θ̂x − θx)�

∂Ji

∂θx

+
∑

i

ai

√
ni + nx(θ̂i − θi)�

∂Ji

∂θi
(1.8)

Since the samples used to estimate the parameter of the populations are
independent, asymptotically, (1.8) corresponds to a weighted sum of inde-
pendent normal probability distribution functions. Then (1.8) is distributed
as a normal probability distribution function (Rao, 1973).
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The asymptotic mean and variance of
√

ni + nx(Ĵi−Ji) had been obtained in
the proposition 1.5. To characterize the joint probability distribution function
Ĵi, we have to compute the covariance between the divergence.

COROLLARY 1.4 Let π1, . . . , πm be m distinct populations. Let assume
that the distribution of the populations has the previous regularity conditions.
Assume that θ̂1, . . . , θ̂m are estimated with independent samples of size
n1, . . . , nm respectively. Let Ĵij be the estimator of the divergence between
the population πi and πj (i, j = 1, . . . ,m) then if

nk → ∞, nj → ∞, ni → ∞,
nj

ni
→ u > 0 ,

nk

ni
→ v > 0 :

Cov
(√

nj + ni(Ĵij − Jij),
√

ni + nk(Ĵik − Jjk)
)

=
√

(1 + u)(1 + v)
(

∂Jij

∂θi

)�
I−1(θi)

(
∂Jik

∂θi

)
where I(θi) represent the Fisher information matrix based on θi

and

Cov
(√

nj + ni(Ĵij − Jij),
√

nl + nk(Ĵlk − Jlk)
)

= 0

∀i �= k, i �= l, j �= k, j �= l

Proof:

Cov
{√

nj + ni(Ĵij − Jij),
√

ni + nk(Ĵik − Jik)
}
≈

Cov

[√
nj + ni

{
(θ̂i − θi)�

∂Jij

∂θi
+ (θ̂j − θj)�

∂Jij

∂θj

}�

√
ni + nk

{
(θ̂i − θi)�

∂Jik

∂θi
+ (θ̂k − θk)�

∂Jij

∂θk

}]
=

√
ni + nk

√
nj + ni

(
∂Jij

∂θi

)�
Var(θ̂i − θi)

(
∂Jik

∂θi

)
=

√
(ni + nk)(nj + ni)

n2
i

(
∂Jij

∂θi

)�
I−1(θi)

(
∂Jik

∂θi

)
Moreover

Cov
{√

nj + ni(Ĵij − Jij),
√

nl + nk(Ĵlk − Jlk)
}

= 0

∀i �= k, i �= l, j �= k, j �= l
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because the estimates of Jij and Jlk are independent.

1.4.2 Derivation of the Preliminary Test

Suppose that X iscoming from any of the predefined population πi. In this
case, the estimator of the divergence between X and πi is asymptotically
distributed as a normal probability distribution function. If there are n pre-
defined populations, we obtain n estimates of the divergence and each of them
is distributed as a normal probability distribution function. Since the obser-
vations coming from X are used in the computation of the estimate of each
of the divergences, the resulting normal probability distribution functions are
not independent.

For a given level of confidence, X will be considered as atypical if the hy-
pothesis that the smallest divergence between X and πi is greater than zero
is not rejected.

To test this hypothesis we have to obtain the probability distribution function
of the minimum of correlated normal probability distribution functions.

The following proposition is an extension of the result of Dunnett and Sobel
(1955)

PROPOSITION 1.6 Let Z1, . . . , Zn be N(µi, σ
2
i ) random variable such

that Cov(Zi, Zj) = bibj ∀i �= j (i, j = 1, . . . , n) and σ2
i − b2

i > 0 ∀i = 1, . . . , n.
Then:

P(min
i≥1

Zi < ū) = 1 −
∫ n∏

i=1

P(Xi ≥ ū − bix)ϕ(x)dx

when
Xi ∼ N(µi, σ

2
i − b2

i ) independent ∀i = 1, . . . , n

Proof: Let X0, X1, . . . , Xn be n + 1 independent normal probability distri-
bution functions such that

X0 ∼ N(0, 1) and Xi ∼ N(µi, σ
2
i − b2

i )

Let
Zi = biX0 + Xi i = 1, . . . , n

It is easy to see that:

Cov(Zi, Zj) = bibj

Var(Zi) = σ2
i

E(Zi) = µi
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Thus:

P(min
i≥1

Zi < ū) = 1 − P(min
i≥1

Zi ≥ ū)

= 1 − P(
n⋂

i=1

(Zi ≥ ū))

= 1 − P

{
n⋂

i=1

(biX0 + Xi ≥ ū)

}

= 1 − P(
n⋂

i=1

Xi ≥ ū − biX0)

= 1 −
∫

P(
n⋂

i=1

Xi ≥ ū − bix|X0 = x) ×

× ϕ(x)dx

= 1 −
∫

P(
n⋂

i=1

Xi ≥ ū − bix)ϕ(x)dx

since X0 is independent of Xi

P(min
i≥1

Zi < ū) = 1 −
∫ n∏

i=1

P(Xi ≥ ū − bix)ϕ(x)dx(1.9)

For the derivation of the preliminary test, we will also need the following
proposition.

PROPOSITION 1.7 H(ū) =
∫ ∏n

i=1 P(Xi ≥ ū − bix)ϕ(x)dx is a mono-
tone function of ū

Proof:

H(ū) =
∫ n∏

i=1

P(Xi ≥ ū − bix)ϕ(x)dx

=
∫ n∏

i=1

Φ

(
bix + µ0i − ū√

σ2
i − b2

i

)
ϕ(x)dx
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∂H(ū)
∂ū

=
n∑

j=1

1√
σ2

j − b2
j

∫ n∏
i = 1
j �= i

Φ

(
bix + µ0i − ū√

σ2
i − b2

i

)
×

×ϕ

⎛⎝bjx + µ0j − ū√
σ2

j − b2
j

⎞⎠ϕ(x)dx

Therefore ∂H(ū)
∂ū > 0. So H(ū) is a monotone function of ū.

Various approximations of the integral (1.9) had been proposed but many
mathematical packages allow this kind of computation in reasonable time.

Decision Rule for the Preliminary Test

Let π1, . . . , πm be m populations and let X be an unclassified observation.
The regularity conditions are assumed. The parameters θi (i = 1, . . . ,m) are
estimated with independent samples of size ni respectively. The parameter
θx of X is estimated with a sample of size nx. Let Ĵi be the estimator of Ji,
the divergence between X and πi.

Under the hypothesis that X is coming from any of the predefined population
πi, all the Ji are positive and, asymptotically, the joint probability distribu-
tion function of

√
ni + nx(Ĵi − Ji) is a multidimensional centered normal

probability distribution function with a variance covariance matrix V = (vij)
(V is defined in equation (1.6) and in the corollary 1.4).

A decision rule should permit to choose between:

H0 : ∃i such that Ji ≤ Ji0

H1 : ∀i , Ji > Ji0

This decision rule will be like:

min
i

Ĵi < α then H0

The α > 0 of this decision rule has to be such that, if Ji = Ji0 with Ji0 known
and different from zero then:

P(wrong decision of H0)=β β given



1.4 Reject Option 21

It means that in this decision rule, the type III error is controlled. Therefore
the test controls the risk of not detecting that X is not coming from one of
the predefined population.

Since zero is a boundary of the parameter space Ji0 cannot be null but for
many practical purposes this limitation is not so strong. For example, in
taxonomy, a variety will be considered as a new variety if this new variety is
enough far from the known ones. Therefore the value of Ji0 has to be fixed
by the user.

The joint probability distribution function of Ĵi is asymptotically a normal
probability distribution function. Let consider that the sample sizes are large
enough to allow this approximation. In this case:

Ĵ = (Ĵ1, . . . , Ĵn) ∼ Nn(J,Σ)

with Σ = (σij) and

σii = ni

(
∂Ji

∂θi

)�
I−1(θi)

(
∂Ji

∂θi

)
+ nx

(
∂Ji

∂θx

)�
I−1(θx)

(
∂Ji

∂θx

)
σij = nx

(
∂Ji

∂θx

)�
I−1(θx)

(
∂Jj

∂θx

)
Then ū will be determined by:

1 −
∫ n∏

i=1

P(Xi ≥ ū − bix)ϕ(x)dx = β β given

where f(x) is the density of a reduced and centered normal probability dis-
tribution function,

Xi ∼ N

{
Ji0, ni

(
∂Ji

∂θi

)�
I−1(θi)

(
∂Ji

∂θi

)}
independent ∀i = 1, . . . , n

and

bi =
√

nx
∂Ji

∂θx

�
I−

1
2 (θx)

when the value of JIi0 have been fixed, it is possible to determine α such that
the probability of a wrong choice of H0 is equal to β. The proposition 1.7
ensures the uniqueness of α. The decision rule is based on the comparison
between α and the minimum of Ĵi.
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1.5 Example

We have used the kangaroos data set from Andrews et al. (Andrews and
Hertzberg, 1985). The data are available at
http://lib.stat.cmu.edu/datasets/Andrews/. Three populations of kan-
garoos must be classified using one discrete variable (sex) and eighteen con-
tinuous skull measurements. 148 observations have known labels, and three
are unknown. The sample is well balanced as it can be seen from Table 1.2.
Therefore, the sex cannot be useful for classification by its own. However, it

Table 1.2: Contingency table of sex and populations

population males females
1 25 25
2 23 25
3 25 25

may help to discriminate if it is combined with the skull measurements.

1.5.1 Location Model

The multinomial vector Z contains 2 states (male, female), and the contin-
uous variables are analyzed using an ANOVA model with two factors (sex
and population) with interaction. The selection procedure has been made
using DAIC. The results are given in Table 1.3. After step 6 no variable can
be suppressed. At each step, the possibility of elimination of the interaction
between sex and population in the MANOVA model is tested and rejected.
For example, if we suppress at the last step the interaction sex*population,
the DAIC decreases from 253.7 to 245.34. This indicates that the sex is useful
for discriminating between the populations.
The posterior probabilities have been computed using the selected model

and the classification performance obtained by crossvalidation is given in Ta-
ble 1.4. The overall estimated rate of missclassification is equal to 16.9%.
The posterior probabilities computed for the unlabelled kangaroos are given
in Table 1.5 and the generalized squared Mahalanobis distances in Table 1.6.
It is interesting to check if the third unlabelled kangaroo really pertains to

one of the three group. Actually it seems to be far from the nearest popula-
tion. It is possible to test this hypothesis using the asymptotic distribution
of the Kullback-Liebler distance.
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Table 1.3: Result of the selection procedure

step model DAIC
1 complete model (all continuous variables 229.89

and interaction sex*population)
2 variable 4 suppressed 235.66
3 variable 16 suppressed 240.83
4 variable 7 suppressed 245.49
5 variable 11 suppressed 249.97
6 variable 14 suppressed 253.17

XCSBackwardDAICSelection.xpl

Table 1.4: Classification performance of the location model

true population classified in 1 classified in 2 classified in 3 total
1 41 8 1 50
2 11 35 2 48
3 1 2 47 50

total 53 45 50 148

XCSCrossValidation.xpl

Under the hypothesis H0 that the third unlabelled kangaroo pertains to pop-
ulation i, ni

ni+1
̂J(x, πi) (where x stands for one observation and πi for pop-

ulation i) is distributed as a chisquare with 26 degrees of freedom. The
number of degrees of freedom is the number of parameters useful for discrim-
inating purpose, with 13 continuous variables, the factor population and the
interaction sex*population. Using the distances of Table 1.6, the p−value as-
sociated with this test for each population are respectively 0.00025 0.000063
and 0.0010. Therefore there is a strong suspicion that the third unlabelled
kangaroo does not pertain to any of the three populations. Note that no
correction for multiple testing is necessary for an observation cannot pertain
simultaneously to two populations. Therefore the null hypothesis is true at
most only one time.

The reject option analysis give a similar conclusion (result not shown).
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Table 1.5: Posterior probabilities for the unlabelled kangaroos

kangaroo population 1 population 2 population 3
149 0.929 0.070 0.001
150 0.000 0.000 1
151 0.086 0.009 0.905

XCSPosteriorProbabilities.xpl

Table 1.6: Generalized Mahalanobis Distances for the unlabelled kangaroos

kangaroo population 1 population 2 population 3
149 28.7 33.8 42.0
150 33.0 29.7 10.9
151 58.7 63.1 54.0

XCSDistances.xpl

1.5.2 Comparison with the Linear Discriminant Analysis

The extended Linear Discriminant Analysis of Vlachonikolis and Marriot
(Vlachnonikolis and Marriot, 1982) has been applied on this data set. How-
ever, as a result of the selection procedure, no interaction between sex and
any continuous variable has been introduced, so that the method resolves
to a simple Linear Discriminant Analysis without the sex contribution. The
descendant selection procedure eliminated the following variables : 1, 4, 7,
14 and 17. The performance of the classification rule,estimated by cross-
validation, is given in Table 1.7. The overall misclassification rate is 19,7%,
which is 2.8 points more than the location model. The posterior probabilities
of the unlabelled kangaroos are similar to the results given by the location
model. However the strength of evidence that kangaroo 151 pertains to the
population 3 is greater from LDA than from the location model results.

1.5.3 Conclusion

In summary, the location model takes into account the importance of the
discrete variable to discriminate between the populations. On the opposite,
the Extended Linear Discriminant Analysis cannot catch its discriminating
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Table 1.7: Classification performance of the Linear Discriminant Analysis

true population classified in 1 classified in 2 classified in 3 total
1 38 11 1 50
2 11 35 2 48
3 1 3 46 50

total 50 49 49 148

Table 1.8: Posterior probabilities for the unlabelled kangaroos using LDA

kangaroo population 1 population 2 population 3
149 0.882 0.117 0.001
150 0.001 0.001 0.998
151 0.000 0.000 1

power, which in turn lead to a lower performance. This example indicates
that the location model is a better choice, but this point should be well
assessed by other similar studies. The possibility (given by the reject option)
of testing that an observation does not pertain to any population is often very
useful. The Xplore routine given in the annexes should help the researchers
to use it. It contains a routine for computing the parameters of the model,
the posterior probabilities and the distances between the populations, one for
the classification of training or tests samples and a routine for the selection of
variables. These routines are suited to the kangaroo’s example but it is not
difficult to extend them to any data set. The only difficult task is to include
the loglinear model in the actual routines.
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Krusińska, E. (1989). New procedure for selection of variables in location
model for mixed variable discrimination. Biom. J., 31(5):511–523.
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2 Longitudinal Data Analysis with
Linear Regression

Jörg Breitung, Rémy Slama and Axel Werwatz

2.1 Introduction

It has become common in economics and in epidemiology to make studies in
which subjects are followed over time (longitudinal data) or the observations
are structured into groups sharing common unmeasured characteristics (hi-
erarchical data). These studies may be more informative than simple cross-
sectional data, but they need an appropriate statistical modeling, since the
’classical’ regression models of the GLM family Fahrmeir and Tutz (1994)
assume statistical independence between the data, which is not the case when
the data are grouped or when some subjects contribute for two or more ob-
servations.

Hierarchical regression models allow to analyze such surveys. Their main
difference with classical regression models consist in the introduction of a
group specific variable that is constant within each group, but differs be-
tween groups. This variable can be either a fixed-effect (classical) variable, or
a random effect variable. From a practical point of view, the fixed or random-
effect variable may be regarded as allowing to a certain extent to take into
account unobserved characteristics (genetic, behavioral, . . . ) shared by the
observations belonging to a given group. From a statistical point a view, the
introduction of the group-level variable ’absorbs’ the correlation between the
different observations of a given group, and allow the residuals of the model
to remain uncorrelated.

We will present here the fixed- and random-effect models in the case of linear
regression. A particular attention will be given to the case of unbalanced
longitudinal data, that is studies in which the number of observations per
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group is not the same for all groups. This is an important issue in that
the implementation of models adapted to such data needs some adaptation
compared to the balanced case and since the elimination of the groups with
only one observation could yield selection biases. The models will be applied
to an epidemiological study about reproductive health, where women were
asked to describe the birth of weight of all their children born in a given
calendar period.

EXAMPLE 2.1 We want to describe the influence of tobacco consumption
by the woman during her pregnancy on the birth weight of her baby. We con-
ducted a study among a cross-sectional sample of N = 1, 037 women living
in 2 French areas and asked them to describe retrospectively all their preg-
nancies leading to a livebirth during the 15 years before interview, and, for
each baby, to indicate the number of cigarettes smoked during the first term
of pregnancy (exposure, noted x).

The influence of cigarette exposure could be studied by linear regression on
birth weight (dependent variable, noted y). Given the amount of information
lying in the other pregnancies and the cost of data collection, it is tempting
to try to make use of all the available information. Using all the pregnancies
(NT̄ , where T̄ is the mean number of pregnancies per woman) in a linear
regression model may not be appropriate, since the estimation of the linear
regression model

yj = µ + x�
j β + uj , j = 1, . . . , NT̄ (2.1)

by the ordinary least squares (OLS) method makes the assumption that the
residuals uj are independent random variables. Indeed, there may be corre-
lation between the birth weights of the children of a given woman, since the
corresponding pregnancies may have been influenced by the genetic character-
istics of the woman and some occupational or behavioral exposures remaining
constant over the woman’s reproductive life.

A possible way to cope with this correlation is to use hierarchical modelling.
The 2-level structure of the data (woman or group level, and pregnancy or
observation level) must be made explicit in the model. If we index by i the
woman and t the pregnancies of a given woman, then a hierarchical linear
regression model for our data can be written:

yit = µ + x�
itβ + αi + uit, i = 1, . . . , N t = 1, . . . , Ti (2.2)
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where yit is the birth weight of the pregnancy number t of woman i. The
number of pregnancies described by the woman i is a value Ti between 1 and
say 12 and can vary between women. Of course, xit, the mean number of
cigarettes smoked daily, can vary between women and between the various
pregnancies of a woman. The main difference with (2.1) is that the model
now contains the αi variables (i = 1, . . . , N) defined at the group (or woman)
level.

This technique allows to obtain the output shown in Table 2.1

Table 2.1: Tobacco consumption by the woman during the first term of
pregnancy

Parameters Estimate SE t-value p-value

Tobacco -9.8389 2.988 -3.292 0.001
Sex(Girl=1) -157.22 18.18 -8.650 0.000
(...)Constant 3258.1 83.48 39.027 0.000

St.dev of a(i): 330.16 St.dev of e(i,t): 314.72
R2(without): 0.2426

panrand.xpl

The model was adjusted for other variables, like duration of pregnancy,
mother’s alcohol consumption, sex of the baby, which are not shown in this
output. The random-effect model estimates that, on average, tobacco con-
sumption by the woman during the first term of pregnancy is associated with
a decrease by 9.8 grams (95% confidence interval: [−15.7;−4.0]) of the birth
weight of the baby per cigarette smoked daily.

Definitions and Notations

The cross-section unit (e.g. individual, household, hospital, cluster etc.) will
be denoted group and be indexed by i, whereas t indexes the different obser-
vations of the group i. The t index can correspond to time, if a subject is
followed and observed at several occasions like in a cohort study, but it may
also be a mere identifying variable, for instance in the case of therapeutical
trial about a new drug, realized in several hospitals. In this case, it may be
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appropriate to use a hierarchical model, with i standing for the hospital, and
t indexing each subject within the hospital.

We will use indifferently the terms of panel or preferably longitudinal data to
design data sets with a hierarchical structure, whatever the sampling method
(cross-sectional or cohort surveys) although the term of panel study is some-
times used exclusively in the case of cohort studies. The data set is said un-
balanced when the number of observations Ti is not the same for all groups,
i = 1, 2, . . . , N , and balanced when Ti = T for all i. The explained quan-
titative variable will be denoted yi, which is a vector of dimension Ti. The
average number of observations is denoted as T̄ = N−1

∑N
i=1 Ti.

In the first section of this chapter, we will present the theoretical bases of the
fixed and random effect models, and give explicit formulas for the parameters.
We turn to the practical implementation amd in the last section discuss the
tobacco consumption application in more detail.

2.2 Theoretical Aspects

2.2.1 The Fixed-effect Model

The Model

For individual (or groups) i at time t we have

yit = αi + x�
itβ + uit, i = 1, . . . , N, t = 1, . . . , T (2.3)

This model is also called the analysis of covariance model. It is a fixed effects
model in the sense that the individual specific intercepts αi are assumed
to be non-stochastic. The vector of explanatory variables xit is assumed
independent of the errors uit for all i and t. The choice of the fixed-effect
model (as opposed to a random effect model) implies that statistical inference
is conditional on the individual effects αi.
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Writing (2.3) for each observation gives

⎡⎢⎢⎢⎣
y1

y2
...
yN

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

NT×1

=

⎡⎢⎢⎢⎣
1T1 0 · · · 0
0 1T2 · · · 0
...

... · · ·
...

0 0 · · · 1TN

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

NT×N

⎡⎢⎢⎢⎣
α1

α2

...
αN

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

N×1

+

⎡⎢⎢⎢⎣
x�

1

x�
2

...
x�

N

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

NT×k

β +

⎡⎢⎢⎢⎣
u1

u2

...
uN

⎤⎥⎥⎥⎦
︸ ︷︷ ︸

NT×1

(2.4)
or, in matrix notation,

y = DNα + Xβ + u. (2.5)

Parameter Estimation

The matrix DN can be seen as a matrix of N dummy variables. Therefore,
the least-squares estimation of (2.3) is often called ”least-squares dummy-
variables estimator” Hsiao (1986). The coefficient estimates results as:

β̂WG =
(
X�W nX

)−1

X�W ny (2.6)

α̂ = (D�
NDN )−1D�

N (y − Xβ̂WG) (2.7)

=

⎡⎢⎢⎢⎢⎢⎣
T−1

1

T∑
t=1

(y1t − x�
1tβ̂WG)

...

T−1
N

T∑
t=1

(yNt − x�
Ntβ̂WG)

⎤⎥⎥⎥⎥⎥⎦ (2.8)

where
W n = INT − DN (D�

NDN )−1D�
N

transforms the regressors to the deviation-from-the-sample-means form. Ac-
cordingly, β̂WG can be written as the “Within-Group” (WG) estimator:

β̂WG =

{
N∑

i=1

T∑
t=1

(xit − x̄i)(xit − x̄i)
�
}−1{ N∑

i=1

T∑
t=1

(xit − x̄i)(yit − ȳi)

}
,

(2.9)
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where the individual means are defined as

ȳi =
1
Ti

Ti∑
t=1

yit , x̄i =
1
Ti

Ti∑
t=1

xit.

To estimate the average of the individual effects ᾱ = N−1
∑N

i=1 αi, the indi-
vidual means can be corrected by the sample means
ȳ = (NT̄ )−1

∑N
i=1

∑Ti

t=1 yit and x̄ is defined accordingly. The least-squares
estimates of β and ᾱ is obtained from the equation

yit − ȳi + ȳ = ᾱ + (xit − x̄i + x̄i)�β + ũit . (2.10)

It is important to notice, from (2.9), that cross section units with only one
observation do not contribute to the estimation β̂ of the parameters associ-
ated to the explaining variables x; that is, the same estimate results if these
cross section units would be excluded from the data set. The groups with
Ti = 1 only play a role in the estimation of the mean intercept.

Adequation of the Model to the Data

In complement to the parameter estimation, the degree of explanation of the
model and the variance of the error terms can be estimated. It is also possible
to test if the introduction of a group-specific variable makes sense with the
data used, by means of a F-statistic test presented below.

There are two different possibilities to compute the degree of explanation R2.
First, one may be interested in the fraction of the variance that is explained
by the explanatory variables comprised in xit. In this case R2 is computed
as the squared correlation between yit and x�

itβ̂WG. On the other hand, one
may be interested to assess the goodness of fit when the set of regressors is
enhanced by the set of individual specific dummy variables. Accordingly, the
R2 is computed as the squared correlation between yit and x�

itβ̂WG + α̂i.

In practical applications the individual specific constants may have similar
size so that it is preferable to specify the model with the same constant for all
groups. This assumption can be tested with an F statistic for the hypothesis
α1 = α2 = · · · = αN .

In order to assess the importance of the individual specific effects, their “vari-
ances” are estimated. Literally, it does not make much sense to compute a
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variance of αi if we assume that these constants are deterministic. Never-
theless, the variance of αi is a measure of the variability of the individual
effect and can be compared to the variance of the error uit. The formula for
estimating the variance of the fixed effects is similar to the computation of
variances in the random-effects model. However, the residuals are computed
using the within-group estimator β̂WG Amemiya (1981).

Options for the Fixed-effects Model

a) Robust standard errors
Arelano and Bond (1987) suggests an estimator of the standard errors for
β̂WG that is robust to heteroskedastic and autocorrelated errors uit:

Ṽar(β̂WG) =

(
N∑

i=1

X̃
�
i X̃i

)−1( N∑
i=1

X̃
�
i ûiû

�
i X̃i

)(
N∑

i=1

X̃
�
i X̃i

)−1

,

where

X̃i =

⎡⎢⎢⎢⎣
x�

i1 − x̄�
i

x�
i2 − x̄�

i
...

x�
iT − x̄�

i

⎤⎥⎥⎥⎦ and ũi =

⎡⎢⎢⎢⎢⎣
yi1 − ȳi − (xi1 − x̄i)�β̂WG

yi2 − ȳi − (xi2 − x̄i)�β̂WG
...

yiT − ȳi − (xiT − x̄i)�β̂WG

⎤⎥⎥⎥⎥⎦ .

It should be noted that the estimation of this covariance matrix requires two
steps. In the first step the within-group estimator is used to estimate β. In
the second step, the covariance matrix is computed by using the residuals of
the fixed-effects model. Therefore, the computation time is roughly doubled.

b) Test for autocorrelation
The test for autocorrelation tests the null hypothesis: H0 : E(uitui,t−1) = 0.
Since the residuals of the estimated fixed-effect model are correlated, a test
for autocorrelation has to adjust for a correlation that is due to the estimated
individual effect. Define

ũi,t−1 = yi,t−1 − x�
i,t−1β̂WG − (T − 1)−1

T−1∑
s=1

yis − x�
isβ̂WG.

It is not difficult to verify that under the null hypothesis

E
{

(yit − x�
itβ̂WG)ũi,t−1

}
= −σ2

u/(T − 1),
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where σ2
u = E(u2

it). The test statistic is therefore constructed as

ρ̃ =

N∑
i=1

T∑
t=2

{
(yit − x�

itβ̂WG)ũi,t−1/σ̂2
u + 1/(T − 1)

}
√

N∑
i=1

T∑
t=2

ũ2
i,t−1

.

Under the null hypothesis, the limiting distribution has a standard normal
limiting distribution.

c) Estimates of the individual effects
The mean intercept is estimated by:

µ̂ = ȳ − β̂
�

x̄. (2.11)

It is also possible to estimate the group variables αi:

α̂i = ȳi − µ̂ − β̂
�

x̄i. (2.12)

2.2.2 The Random Effects Model

The Model

For the random effects model it is assumed that the individual specific inter-
cept αi in the model

yit = x�
itβ + αi + uit, i = 1, . . . , N, t = 1, . . . , T (2.13)

is a random variable with E(αi) = 0 and E(α2
i ) = σ2

α. Furthermore we
assume that

E(αiuit) = 0 for all i, t,
E(αixit) = 0 for all i, t.

In general the vector xit includes a constant term.

The composed error term is written as vit = αi + uit and the model assump-
tions imply that the vector vi = (vi1, . . . , viT )� has the covariance matrix

E(viv
�
i ) = Ψ .

The model (2.13) can be efficiently estimated by using the GLS estimator

β̂GLS =

(
N∑

i=1

X�
i Ψ−1Xi

)−1( N∑
i=1

X�
i Ψ−1yi

)
, (2.14)
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where Xi = (xi1, . . . ,xiT )� and yi = (yi1, . . . , yiT )�. This estimator is
equivalent to a least-squares estimator of the transformed model

yit − ψȳi = (xit − ψx̄i)�β + eit , (2.15)

where

ψ =

√
σ2

u

σ2
u + Tσ2

α

(2.16)

and eit = vit − ψv̄i.

In general, the variances σ2
u and σ2

α are unknown and must be replaced by
estimates. To this end several different estimators were suggested Baltagi
(1995). The panrand quantlet employs the estimator suggested by Swamy
and Arora (1972), which is based on two different regressions. First, the
model is estimated by using the within-group estimator. The estimated error
variance (corrected by the degrees of freedom) is an unbiased estimator for
σ2

u. The second regression is based on the individual means of the data

ȳi = x̄�
i β + v̄i . (2.17)

Since E(v̄2
i ) = σ2

α +σ2
u/T , an estimator for σ2

α is obtained from the estimated
residual variance of (2.17). Let σ̂2

1 denote the estimated residual variance of
the between-group regression (2.17), which results from dividing the residual
sum of squares by (N − K − 1). The estimated variance of the individual
effect results as σ̂2

α = (σ̂1 − σ̂2
u)/T . A serious practical problem is that the

resulting estimator of σ̂2
α may become negative. In this case σ̂2

α is set to zero.

2.3 Computing Fixed and Random-effect Models

2.3.1 Data Preparation

Suppose we want to regress a quantitative variable y over explanatory vari-
ables noted x. The variable indexing the group will be noted id. Table 2.3.1
shows how the data set should look like in the case of two x variables:

If you have a balanced data set (same number of observations per group)
sorted by group, then the id variable is not necessary. You will have to give
the number of observations per subject instead of the id vector, that XploRe
will then build for you.
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Table 2.2: Raw data structure for longitudinal data analysis

id y x1 x2

1 3409 38 0
1 3755 41 1
2 1900 32 1
3 4200 41 1
3 4050 40 0
3 4300 41 1
... ... ... ...

100 3000 39 0
100 2850 39 1

2.3.2 Fixed and Random-effect Linear Regression

The fixed-effect linear regression model can be estimated using the panfix

quantlet. panfix.xpl

The random-effect linear regression model can be estimated using the panrand

quantlet. panrand.xpl

2.3.3 Options for panfix

The options must be defined by the panopt quantlet according to the syntax:

opt=panopt(optname,optvalue)

where optname is the name of the option, and optvalue the value associated
to the option. The name of the option has to be given as a string. You may
define several options at the same time according to the following syntax:

opt=panopt(optname1,optvalue1,
optname2,optvalue2,optname3,optvalue3)

The following options can be defined:
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alpha: If equal to 1, asks for the individual effect parameter to be estimated
and stored. The estimation is done assuming that the sum of all alpha
parameters is zero.

autoco: If equal to 1, an autocorrelation test is performed (only if the
number of observations is at least 2 for each group). Default is no test
performed.

ci: If this parameter is set to the value pval, then the confidence intervals
will be given at the level (100-pval)%. By default, no ci are given.

notab: If this parameter is set to 1, then no table of results is displayed.

robust: The robust estimates of variance given in Arelano and Bond
(1987) are used. These should be more valid than the classical variance
estimates in the case of heteroscedasticity. Default is the standard
variance estimates.

xlabel: Label of the explanatory variables, to make the output table more
explicit. This option must be given as a vertical array of the k strings
corresponding to the labels (constant term excluded). Maximum label
length is 11 characters. (k × 1) vector.

For example, if x is a vector of 2 columns containing the independent variables
tobacco and alcohol consumption, you may type:

lab="tobacco"|"alcohol"
opt=panopt("xlabel",lab)
p=panfix(id,y,x,opt)

In the output table, the parameters associated to the first and second vari-
ables will be labelled by the indicated names. Unspecified options will be set
at their default value, and the order in which the options are given is not
important.

2.3.4 Options for panrand

The options must be defined by the panopt quantlet according to the syntax:

opt=panopt(optname,optvalue)



40 2 Longitudinal Data Analysis with Linear Regression

where optname is the name of the option, and optvalue the value associated
to the option.

The following options can be defined:

opt.shf: Allows you to see the various steps of the estimation procedure.

opt.xlabel: Label of the explanatory variables, to make the output table
more explicit. This option must be given as a vertical array of the k
strings corresponding to the labels (constant term excluded). Maximum
label length is 11 characters and (k × 1) vector.

2.4 Application

In this section, we illustrate estimations based on real data.The data come
from an epidemiologic study about human reproductive life events. Briefly,
a cross-sectional sample of 1089 women from Bretagne and Normandie were
questioned during spring 2000 about the birth weight of all their children
born between 1985 and 2000. We present here the association between the
birth weight (dependent variable), the gestational length, the age, and the
parity (previous history of livebirth, no/yes) of the mother (independent
variables). There was a total of 1963 births in the study period (1.8 pregnancy
per woman) and the data can be considered as longitudinal data with a
hierarchical structure, the woman being the first level, and the pregnancy
the second level.

The use of fixed or random effect models allows to take into account all the
pregnancies who took place in the study period described by the woman.
In such epidemiological studies about human reproduction, the exclusion of
couples with only one pregnancy may give rise to selection bias, since the
couples with only one pregnancy are more likely than those with two or more
pregnancies to have difficulties in conceiving. Here is a brief description of
the data set:
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Table 2.3: Summary statistics of the tobacco/birth weight data set

Variable Mean Std Dev 5 − 95th percentiles

Birth weight (g) 3409 510 2610-4250
Gestational length (days) 283 11.8 261-294
Mother’s age (years) 27.2 4.4 20.1-35.1
Proportion of parous women 0.60
Sex of the offspring
(proportion of boys) 0.50

2.4.1 Results

First, we will describe briefly our data XCSpanfix01.xpl

The first column of z contains the identified variable, whereas the next
columns contain the dependent variables, and then the independent vari-
ables. If the panel is balanced and sorted by group, the first argument id
can be replaced by a scalar indicating the number of observations per group.
We obtain the following output:

Table 2.4: Statistics of panel data

Minimum Maximum Mean Within Var.% Std.Error

Variable 1 750 5300 3409 23.8 509.6
Variable 2 -98 21 -5.715 27.56 11.76
Variable 3 14.37 45.71 27.18 26.77 4.366
Variable 4 0 1 0.595 66.82 0.491
Variable 5 0 1 0.5028 45.7 0.5001

XCSpanfix01.xpl

The column Within Var.% gives the value of the variance of the residuals of
the withing-group estimator, divided by the overall variance.

We can then estimate a fixed-effect regression model.
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Table 2.5: Estimated fixed-effects model for tobacco/birthweight data

Parameters Estimate SE t-value p-value

beta[ 1 ] 18.548 1.17 15.8908 0.0000
beta[ 2 ] 7.964 4.61 1.7263 0.0843
beta[ 3 ] 75.239 25.97 2.8970 0.0038
beta[ 4 ] -144.51 21.27 -6.7931 0.0000
Constant 3326.1 115.3 28.8350 0.0000

St.dev of a(i): 321.47 St.dev of e(i,t):318.47
Log-Likelihood: 22627.617 R2(without) : 0.2203
F(no eff.) p-val: 0.0000 R2(with eff) : 0.8272

XCSpanfix02.xpl

Thus, on average, an increase in 1 day of the duration of pregnancy was
associated with a gain of weight of 18.4 grams (beta[1]), and girls are 145
g lighter than boys at birth (beta[4]), with a 95% confidence interval of
[-186;-103] g. Moreover, women who already had a child have a tendency
to give birth to heavier babies (77 g on average). There is a non-significant
tendency to an increase in birth weight with mother’s age.

The R2 value of 0.22 indicates that only a small fraction of the variability
of the data is explained by the model, and that other variables should be
included (for instance height and weight of the mother before pregnancy, in-
formation on health,. . . ).

In this case, there are some groups with only one observation (cf. output
above); we cannot therefore perform an autocorrelation-test, nor obtain ro-
bust confidence-intervals estimates. In the case of a data set with all groups
having at least 2 observations, this can be obtained by

XCSpanfix03.xpl

For the data, the a-priori choice between the fixed-effect and the random-
effect model would be the random-effect model, because the included women
were randomly selected from two French rural areas, and we wish to infer the
model estimates on the women who conceived between 1985 and 2000 in the
whole area.

We obtain the random-effect model estimates in Table 2.6.
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Table 2.6: Estimated random-effects model for tobacco/birthweight data

Parameters Estimate SE t-value p-value 95% CI

beta[ 1 ] 18.927 0.8286 22.844 0.000 17.3 20.55
beta[ 2 ] 4.5912 2.638 1.740 0.082 -0.58 9.76
beta[ 3 ] 88.389 18.89 4.678 0.000 51.36 125.4
beta[ 4 ] -152.53 17.46 -8.735 0.000 -186.8 -118.3
Constant 3413.3 68.94 49.509 0.000 3278.0 3548.0

St.dev of a(i): 337.9 St.dev of e(i,t): 312.19
R2(without): 0.2206

XCSpanrand04.xpl

On the whole, these estimates are consistent with those of the fixed-effect
model. You can notice that for variable [2] (mother’s age), the estimates
from the two models differ (7.8 with a standard error of 4.6 for the fixed-effect
model, and 4.6 with a standard error of 2.6 for the random effect model). In
such a case, where the number of observations is small for many units, it is
not rare that both models yield different parameter estimates.
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3 A Kernel Method Used for the
Analysis of Replicated
Micro-array Experiments

Ali Gannoun, Beno Liquet̂ıt, Jérôme Saracco and Wolfgang Urfer

.

Microarrays are part of a new class of biotechnologies which allow the moni-
toring of expression levels of thousands of genes simultaneously. In microar-
ray data analysis, the comparison of gene expression profiles with respect
to different conditions and the selection of biologically interesting genes are
crucial tasks. Multivariate statistical methods have been applied to analyze
these large data sets. To identify genes with altered expression under two
experimental conditions, we describe in this chapter a new nonparametric
statistical approach. Specifically, we propose estimating the distributions of
a t-type statistic and its null statistic, using kernel methods. A comparison of
these two distributions by means of a likelihood ratio test can identify genes
with significantly changed expressions. A method for the calculation of the
cut-off point and the acceptance region is also derived. This methodology is
applied to a leukemia data set containing expression levels of 7129 genes. The
corresponding results are compared to the traditional t-test and the normal
mixture model.

3.1 Introduction

Gene expression regulates the production of protein, the ultimate expression
of the genetic information, which in turn governs many cellular processes
in biological systems. The knowledge of gene expression has applications
ranging from basic research on the mechanism of protein production diag-
nosing, staging, treating and preventing of diseases. Microarray technologies
provide a way of analysing the RNA expression levels of thousands of genes
simultaneously; see for example Brown and Botstein (1999), Lander (1999),
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Quackenbush (2001). A common objective in such analyses is to determine
which genes are differentially expressed under two experimental conditions,
which may refer to samples drawn from two types of tissues, tumors or cell
lines, or at two points of time during important biological processes. Also, It
has been noted that data based on a single array are highly noisy and may
not be reliable and efficient, see for instance Chen, Dougherty and Bittner
(1997). One reason is that the statistical variability of the expression levels
for each gene is not taken into account. Moreover, the need for independent
replicates has been recognized, see for example Lee, Kuo, Whitmore and Sklar
(2000), and several methods combining information from several arrays have
been proposed. These methods assign a test score to each of the genes and
then select those that are ‘significant’. In addition, an emerging novel idea,
is that with replicates of microarrays, one can estimate the distribution of
random errors using nonparametric methods. This idea was first suggested
in an empirical Bayesian approch by Efron, Tibshirani, Goss and Chu (2000)
and Efron, Storey and Tibshirani (2001). In one development here, we use
the mixture model method developed by Pan (2002) and Pan, Lin and Le
(2004). However, we replace the mixture of normal distributions by kernel
method to get more flexible and powerful estimates of the two distributions
of the test and null statistics. We then use a likelihood ratio test to determine
genes with differential expression.

This chapter is organized as follows. In Section 3.2, we describe the statistical
model and two existing testing methods, the t-test and the normal mixture
approach. In Section 3.3, we propose a kernel estimation procedure, and we
give a new method to determine the cut-off point and the acceptance region.
This nonparametric approach is illustrated in Section 3.4 using the leukemia
data of Golub, Slonim, Tamayo, Huard, Gaasenbeek, Mesirov, Coller, Loh,
Downing, Caligiuri, Bloomfield and Lander (1999). The performance of this
method is compared to the normal mixture model approach of Pan, Lin and
Le (2004). Section 3.5 is devoted to the conclusion, some remarks and an
outlook for further activities.

3.2 Statistical Model and Some Existing
Methods

In this section, we present the general statistical model from which we make
the comparative studies. Then, we recall the construction of the t-test
method and the mixture modeling approach.
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3.2.1 The Basic Model

Various models are proposed to summarize multiple measurements of gene
expression. For example, general surveys are given by Thomas, Olson, Tap-
scott and Zhao (2001).

We can consider a generic situation that, for each gene i, i = 1, ..., n, we
have expression levels Yi1, Yi2, ..., YiJ1 from J1 microarrays under condition 1,
possibly treatment, and YiJ1+1, YiJ1+2, ..., YiJ1+J2 from J2 microarrays under
condition 2, possibly control. We suppose that J = J1 + J2, and J1 and J2

are even. The expression level can refer to summary measure of relative red
to green channel intensities in a fluorescence-labeled complementary DNA
or cDNA array, a radioactive intensity of a radiolabeled cDNA array, or
summary difference of the perfect match (PM) and mis-match (MM) scores
from an oligonucleotide array, see Li and Wong (2001). We focus on the
following general statistical model:

Yij = βi + µixj + εij (3.1)

where xj = 1 for 1 ≤ j ≤ J1 and xj = 0 for J1 + 1 ≤ j ≤ J1 + J2, and εij are
independent random errors with mean 0. Hence βi + µi and βi are the mean
expression levels of gene i under the two conditions respectively.

Determining whether a gene has differential expression is equivalent to testing
the null hypothesis:

H0 : µi = 0 against H1 : µi �= 0.

To focus on the main issue, we use α = 0.01 as the genome-wide significance
level, and Bonferroni adjustment to deal with multiple comparisons. Other
possibly better adjustment methods for multiple comparisons can be found
in the statistical literature, see for example Dudoit, Yang, Speed and Callow
(2002) and Thomas, Olson, Tapscott and Zhao (2001). Hence the gene-
specific significance level (for a two-sided test) is α∗ = α/(2n).

In the following, we review briefly two existing methods along this line.

3.2.2 The T-test

Because usually both J1 and J2 are small, and there is no evidence to support
equal variances as it is mentioned in Thomas, Olson, Tapscott and Zhao
(2001), we only give an overview on the t-test with two independant small
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normal samples with unequal variances. Let Y i(1), s2
i(1), Y i(2) and s2

i(2) denote
the sample mean and variance sample of expression levels of gene i under the
two conditions. We use a t-type score as test statistic:

Zi =
Y i(1)−Y i(2)√

s2
i(1)

J1
+

s2
i(2)

J2

,

It is approximately t-distributed with degree of freedom

di =
(s2

i(1)/J1 + s2
i(2)/J2)2

(s2
i(1)/J1)2/(J1 − 1) + (s2

i(2)/J2)2/(J2 − 1)
.

Large absolute t-statistics suggest that the corresponding genes have differ-
ent expression levels. However, the strong normality assumptions may be
violated in practice.

3.2.3 The Mixture Model Approach

The mixture model. Instead of imposing a strong parametric assumptions
on the null distribution of the statistic Z, the idea is to estimate it directly
by a so-called null statistic z such the distribution of z is the same as the
null distribution of Z. The problem with the above t-test is its restrictive
assumptions. Following Pan (2002) and Pan, Lin and Le (2004) the null
statistics is constructed as:

zi =
Yi(1)ui/J1 − Yi(2)vi/J2√

s2
i(1)

J1
+

s2
i(2)

J2

where Yi(1) = (Yi1, Yi2, ..., YiJ1), Yi(2) = (YiJ1+1, YiJ1+2, ..., YiJ1+J2), ui is a
random permutation of a column vector containing J1/2 1’s and −1’s respec-
tively, and vi is a random permutation of a column vector containing J2/2
1’s and −1’s respectively.

We suppose that Zi and zi are distibuted with density f and f0. If we assume
that the random errors εij in (3.1) are independent and their distribution is
symmetric about zero, then under H0, f = f0.

In the absence of strong parametric assumptions, the functions f and f0

are not identifiable, see Efron, Storey and Tibshirani (2001). Lee, Kuo,
Whitmore and Sklar (2000) and Newton, Kendziorski, Richmond, Blattner
and Tsui (2001) considered parametric approaches by assuming Normal or
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Gamma distributions for f and f0 respectively. Efron, Tibshirani, Goss and
Chu (2000) avoided such parametric assumptions and considered a nonpara-
metric empirical Bayesian approach.

Pan, Lin and Le (2004) used a finite normal mixture model to estimate
f0 (or f): f0(z, Ωg0) =

∑g0
r=1 πrϕ(z, µr, Vr), where ϕ(., µr, Vr) denotes the

normal density function with mean µr and variance Vr, and the πr’s are
mixing proportions. The set Ωg0 represents all unknown parameters in a
g0-component mixture model: {(πr, µr, Vr) : r = 1, . . . , g0} . They used the
EMMIX, a stand-alone Fortran program, described in McLachlan and Peel
(1999), to fit such a normal mixture model using the well-known expectation-
maximization (EM) algorithm of Dempster, Laird and Rubin (1977) to obtain
maximum likelihood estimates. The Akaike Information Criterion (AIC) or
the Bayesian Information Criterion (BIC), see for instance Schwarz (1978),
can be used as model selection criterion to determine the number of compo-
nents g0.

The test procedure. As discussed in Efron, Storey and Tibshirani (2001),
for a given Z, if we want to test for the null hypothesis H0, we can construct
a likelihood ratio test based on the following statistic:

LR(Z) = f0(Z)/f(Z). (3.2)

A large value of LR(Z) gives no evidence against H0, whereas a too small
value of LR(Z) leads to rejecting H0. For any given genome wide significance
level α, we solve the following equation:

α

n
=

∫
LR(z)<c

f0(z)dz (3.3)

to obtain a cut-off point c and to construct the corresponding rejection region
for H0:

{Z : LR(Z) < c} .

REMARK 3.1 With the normal mixture model in Pan, Lin and Le (2004),
it is possible to numerically solve the equation (3.3) using the bisection method,
see Press, Teukolsky, Vetterling and Flannery (1992).

3.3 A Fully Nonparametric Approach

Using zi’s and Zi’s, we will nonparametrically estimate f0 and f by a kernel
method and develop a procedure to determine the rejection region from an
approximation of (3.3).
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3.3.1 Kernel Estimation of f0 and f

The construction of a kernel estimator of the density functions f and f0 re-
quires a choice of a real (density) function K (called kernel), and bandwidths
hn and h0n which are sequences of positive numbers tending to 0 as n tends
to infinity.
From {Zi, i = 1, ..., n} and {zi, i = 1, ..., n}, f and f0 can be estimated
nonparametrically by:

fn(z) =
1

nhn

n∑
i=1

K

(
z − Zi

hn

)
and f0n(z) =

1
nh0n

n∑
i=1

K

(
z − zi

h0n

)
.

(3.4)

Well-known theoretical results show that the choice of a reasonable K does
not seriously affect the quality of the estimators (3.4). In order to get
smoother estimation, one can use a kernel K which is bounded, symmet-
ric and satisfying |z|K(z) → 0 as |z| → ∞ and

∫
z2K(z)dz < ∞. On the

contrary the choice of the bandwidths hn and h0n turns to be crucial for
the accuracy of the estimators (3.4). Some indications about this choice are
given in Bosq and Lecoutre (1987). For example, one can use

hn = σ̂nn−1/5 and h0n = σ̂0nn−1/5, (3.5)

where σ̂n and σ̂0n denote the empirical standard deviation of the Zi’s and the
zi’s. From a theoretical point of view, this choice minimizes some asymptotic
mean square error, see Deheuvels (1977). In practice, this choice gives an
idea of the amount of smoothing needed for the estimator. For the graphical
aspect of the corresponding estimated density function curve, the user can
choose to increase or decrease the value of the bandwidth in order to obtain
the desired smoothing of the density estimators.

Note that it is well-known that the kernel density estimator does not perform
well on the support edges of the distribution. In the following, we suggest a
method for overcoming edge effect problems, and in doing so, make it possible
to achieve a more efficient estimator of the LR function.

3.3.2 The Reflection Approach in Kernel Estimation

Reflection principles in density estimation have been described and studied
by Schuster (1985), Silverman (1986) and Cline and Hart (1991). Here we
present a slighty different version of the geometric approach for removing the
edge effects proposed by Hall and Wehrly (1991).
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Let x(1), . . . , x(n) be the initial ordered data from which we will determine the
estimator of the density function, say g. We add β% artificial observations
in the two tails of the distribution using the following principle.

• In the left tail, the “new” observations are x̃(i+1) = x(1)−
(
x(i+1) − x(1)

)
for i = 1, . . . , [βn/2], where [m] is the integer part of m.

• In the right tail, the “new” observations are
x̂(i+1) = x(n) +

(
x(n) − x(n−i)

)
for i = 1, . . . , [βn/2].

Finally we estimate g from the overall data set (i.e. from the union of the
original data xi and the pseudo-data x̃i and x̂i).

REMARK 3.2 When the number n of observations is large, the adjusted
estimator is very sensitive to the percentage β of artificial observations. Gen-
erally, it suffices to take a minute percentage (around 0.5%) to obtain a rea-
sonable estimator.

REMARK 3.3 If there are not enough observations close to the extreme
values x(1) and x(n), we can adapt the same outline described previously, by
replacing x(1) and x(n) by some extreme empirical quantiles, such as the 1st
and 99th centiles of the data.

3.3.3 Implementation of the Nonparametric Method

Here we propose an empirical method to solve (3.3). This method works,
even in Pan’s approach and with any estimator of f and f0.

For the purpose of this paper, the densities f and f0 are replaced by their
kernel estimators fn and f0n given in (3.4). We solve the modified equation:

α

n
=

∫
dLR(z)<c

f0n(z)dz, (3.6)

where L̂R(z) = f0n(z)/fn(z).

For a fixed value c > 0, let Ac = {z : T < c} where T = LR(z). We generate
an ordered grid of N points {z̃k, k = 1, . . . , N} covering the support of the
Zi’s. Let T̂k = L̂R(z̃k), k = 1, . . . , N ; Âc =

{
z̃k : T̂k < c, k = 1, . . . , N

}
;

and Âc =
{

z̃k : T̂k ≥ c, k = 1, . . . , N
}

, the complement of Âc. We assume



52 3 A Kernel Method Used for Replicated Micro-array Experiments

now that Âc is a convex set (that is an interval). Let z̃c,(1), z̃c,(2), . . . , z̃c,(q)

be the q ordered values of Âc. Then∫
Ac

f0(z)dz ≈
∫
bAc

f0n(z)dz ≈
∫ z̃c,(1)

−∞
f0n(z)dz +

∫ +∞

z̃c,(q)

f0n(z)dz

≈
∫ z̃c,(1)

z̃1

f0n(z)dz +
∫ z̃N

z̃c,(q)

f0n(z)dz.

The left hand side integral can be evaluated by classical numerical integration
method (trapezoidal quadrature). Now, the approximate cut-off point is the
value c∗ of the set { l

N , l = 0, 1, . . . ,N} where N is chosen as large as possible,
such that:

α

n
≈
∫

bAc∗

f0n(z)dz.

From this cut-off point c∗, we can easily deduce the rejection region which is
given by:

{Z : Z < z̃c∗,(1) or Z > z̃c∗,(q)}.

3.4 Data Analysis

This section is devoted to the application of our proposed method. We de-
scribe the data and present the results on expression level study of genes. We
take α = 1% as the genome-wide significance level. Then, using simulation
study, we check the efficiency of the kernel method against the “true” Normal
Mixture model.

We apply the methods to the leukemia data of Golub, Slonim, Tamayo,
Huard, Gaasenbeek, Mesirov, Coller, Loh, Downing, Caligiuri, Bloomfield
and Lander (1999). Data have been generated for leukemic myeloid (AML)
and lymphoblastic (ALL) cells taken from different individuals. There are 27
ALL samples and 11 AML samples. In each sample, there are n = 7129 genes
to study. Here our goal is to find genes with differential expression between
ALL and AML.
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3.4.1 Results Obtained with the Normal Mixture Model

Using the normal mixture approach, Pan (2002) proposed the following esti-
mators for the density function f0 and f :

f0m(z) = 0.479ϕ(z,−0.746, 0.697) + 0.521ϕ(z, 0.739, 0.641) (3.7)

and

fm(z) = 0.518ϕ(z,−0.318, 1.803) + 0.482ϕ(z, 0.7781, 4.501), (3.8)

The cut-off point obtained by Pan (2002) is c = 0.0003437. The correspond-
ing rejection region for H0 is {Z : Z < −4.8877 or Z > 4.4019}, which gives
187 genes with significant expression changes.

3.4.2 Results Obtained with the Nonparametric Approach

To estimate nonparametrically f and f0, we used the Gaussian density as
kernel K. For the bandwidths hn and h0n, we first used the formulas given
in (3.5). We obtained the following values: hn = 0.313 and h0n = 0.187. The
estimated densities fn and f0n defined respectively in (3.4) are evaluated.
With this choice of bandwidths, the curves seem to be under-smoothed. The
deviations from the smooth curves are due to background noises which are
not informative. Smoothest curves can be obtained by broadening the band-
widths. This is done by multiplying them by a factor of 1.8 which seems to be
the “optimal value” with regard to visual introspection. The corresponding
bandwidths are h∗

n = 0.563 and h∗
0n = 0.337. Figure 3.1 and 3.2 present the

histograms of the zi’s and the Zi’s, and the estimated densities f0n and fn.
For comparison, the density functions f0m and fm given in (3.7) and (3.8))
are also plotted in Figure 3.1 and 3.2. The corresponding LR function is
shown in Figure 3.3.

To solve the equation (3.3), we use the approximation presented in (3.6) and
the implementation procedure described in Section 3.3.3. We get the cut-
off point c = 0.00070, yielding a rejection region of {Z : Z < −4.248 or
Z > 4.327} for H0. It gives 220 genes with significant expression changes
compared to the 187 obtained with the normal mixture model of Pan (2002).
Note that the common rejection region between kernel and normal mixture
approaches is {Z : Z < −4.887 or Z > 4.402}, and therefore the common
number of genes with significant expression changes is 187. With the non-
parametric approach, we obtain 33 differentially expressed genes not detected
by Pan’s approach.
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(a) Estimation of the zi’s density
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Figure 3.1: Estimation of the zi’s and Zi’s densities (blue dashed line: Pan
estimators, red solid line: kernel estimators).
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(b) Estimation of the Zi’s density
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Figure 3.2: Estimation of the zi’s and Zi’s densities (blue dashed line: Pan
estimators, red solid line: kernel estimators).
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(c) Estimation of the LR function
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Figure 3.3: Estimation of the LR function.
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As we pointed out in Section 3.3, the kernel estimation method may be not
very efficient in edges of the distribution. It may be one of the reasons why
greater numbers of differentially expressed genes were detected by this non-
parametric method compared to the normal mixture model. To improve the
kernel estimator, we used the reflection method described in Section 3.3.2.
The percentage β varies between 0% and 0.25%. Results are summarized
in Table 3.1. For instance, with β = 0.05%, our kernel approach find 178
genes with significant expression changes. The number of differentially ex-
pressed genes in common with the normal mixture model of Pan is 157. Then
21 differentially expressed genes have not been detected by Pan’s approach;
similarly 30 differentially expressed genes have been detected by the normal
mixture model, but not with the nonparametric method.

The rejection region and the corresponding number of differentially expressed
genes decrease as β increases. This phenomenom can be easily explained by
the fact that the rejection techniques may artificially inflate the tail of the
distribution if β is too large. In all cases, we observed that there were some
differentially expressed genes detected by the proposed kernel approach which
were not found by the normal mixture model of Pan (2002), and vice versa.
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Table 3.1: Results obtained with the kernel method. (In the third column,
the number in paranthesis is the number of differentially expressed
genes in common with the normal mixture model of Pan.)

β Rejection region of H0 Number of differentially
expressed genes

0% {Z : Z < −4.248 or Z > 4.327} 220 (187)
0.05% {Z : Z < −4.327 or Z > 4.645} 178 (157)
0.10% {Z : Z < −4.327 or Z > 4.724} 164 (143)
0.15% {Z : Z < −4.407 or Z > 4.883} 131 (115)
0.20% {Z : Z < −4.486 or Z > 4.962} 112 (102)
0.25% {Z : Z < −4.560 or Z > 4.962} 111 (102)

3.4.3 A Simulation Study

The aim of the simulation study is to validate the nonparametric computa-
tional approach to find the rejection region by solving the equation (3.3).

We consider the normal mixture model defined in (3.7) and (3.8) as the “true”
model for f0 and f . First, using our knowledge of f and f0, we evaluate the
“true” cut-off point and the corresponding “true” rejection region for H0 by
numerically solving (3.3) with n = 7129 (the sample size of our real data). We
obtain c = 0.000352 and the rejection region {Z : Z < −4.804 or Z > 4.327},
which are very close to those obtained by Pan (2002) with the bisection
method.

Then, we generate N = 200 samples of size n = 7129 from this “true” normal
mixture model. For each simulated sample, we estimate the cut-off point and
the corresponding rejection region for H0 by the kernel method described in
Section 3.3, using the Gaussian kernel and the choice of the bandwidths
described in Section 3.4.2. For each simulated sample, the lower and upper
bounds of the rejection region are close to the “true” boundaries. Figure 3.4
shows the boxplots of these lower and upper bounds. The variations in the
estimated bounds are due to the sampling fluctuations of the simulations, in
particular those of the edge distributions.

Let nk be the number of differentially expressed genes detected by the kernel
approach, let nt be the “true” number of differentially expressed genes, and
let nc be the number of differentially expressed genes in common. Let us
now introduce the following efficiency measure: nc

nk+nt−nc
. The closer this

measure is to one, the better is the efficiency of the nonparametric approach.
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Figure 3.4: Boxplots of the lower and upper bounds of the rejection region

for H0, for 200 simulated samples.

Figure 3.5 shows the boxplots of this measure over the 200 simulated samples.
One can observe that the efficiency measure is greater than 0.75 for most of
simulated samples.
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Figure 3.5: Boxplots of the efficiency measure, for 200 simulated samples.
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3.5 Discussion and Concluding Remarks

We have reviewed and extended methods for the analysis of microarray exper-
iments. Following the principle of “letting the data speak about themselves”,
we have introduced a nonparametric kernel method to estimate the density of
the null distribution of the test null statistics. This method has four principal
advantages.

1) An assumption of normality is not required.

2) The estimation of the degrees of freedom in the conventionally used t-test
is avoided.

3) The proposed numerical method to estimate the cut-off point and the
corresponding rejection region does not require a bootstrap approach.

4) A reflection method can be found to overcome the edge effect of the kernel
estimators.

For microarray data, small sample sizes are very common. Thus the asymp-
totic justification for the t-test is not applicable, and its validity depends
on normality assumptions. Alternatives have been proposed in the litera-
ture. For example Baldi and Long (2001), Dudoit, Yang, Speed and Callow
(2002), Kerr, Martin and Churchill (2000) and Thomas, Olson, Tapscott and
Zhao (2001) proposed parametric or partially nonparametric methods.

Here, we have considered an alternative that is totally nonparametric. Fur-
thermore, the simulation studies show that, if the true state of nature is
the normal mixture, our methods yield the expected results. However, as
in most kernel estimation methods, the proposed approach is sensitive to
distributional edge effects. We adapted the reflection method to study this
problem and found a practical optimal solution to minimize the edge effects.
Nevertheless, more investigations are necessary for controlling the additional
data. It will be genious to develop a method which associates β to the initial
number of data.

For further studies, we will use the so-called local polynomial method to es-
timate the densities, see Hyndman and Yao (1991). The log-spline based
method may be also used. New insights about the tails of distribution can
be gained by considering these nonparametric estimation approaches. Com-
parisons can also be made with kernel and normal mixture approaches.
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4 Kernel Estimates of Hazard
Functions for Biomedical Data
Sets

Ivana Horová and Jǐŕı Zelinka

4.1 Introduction

The purpose of this chapter is to present a method of kernel estimates in
modelling survival data. Within the framework of kernel estimates we draw
our attention to the choice of the bandwidth and propose a special iterative
method for estimation of it. The chapter also provides a bibliographical
recent survey. As regards the applications we focus on applications in cancer
research.

In recent years considerable attention has been paid to methods for analyzing
data on events observed over time and to the study of factors associated with
occurence rates for these events. In summarizing survival data, there are two
functions of central interest, namely, the survival and the hazard functions.
The well-know product-limit estimation of the survival function was proposed
by Kaplan and Meier (1958). A single sample of survival data may also be
summarized through the hazard function, which shows the dependence of the
instantaneous risk of death on time. We will use the model of random cen-
sorship where the data are censored from the right. This type of censorship
is often met in many applications, especially in clinical research or in the
life testing of complex technical systems (see e.g. Collet (1997), Hougaard
(2001), Thernau and Grambsch (2001) and the references therein).

We focus on nonparametric estimates of the hazard function and their deriva-
tives. Among nonparametric methods kernel estimates represent one of the
most effective methods (see e.g. Härdle (1991), Wand and Jones (1995),
Härdle, Müller, Sperlich and Werwatz (2004)).
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These methods are simple enough which makes the numerical calculation
easy and fast and the possibilities for mathematical analysis of properties of
obtained estimates are very good, too.

Kernel estimates depend on a bandwidth and on a kernel. Since the choice
of the bandwidth is a crucial problem in kernel estimates, we draw our at-
tention to this problem and propose a special iterative procedure for finding
an estimate of the optimal bandwidth.

As far as the biomedical application is concerned the attention will be paid
not only to the estimates of hazard functions but also to the estimation of
the second derivatives of these functions since the dynamics of the underlying
curve is often of the great interest. For this reason the points where the most
rapid changes of the hazard function occur will be detected.

4.2 Kernel Estimate of the Hazard Function and
Its Derivatives

Let T1, T2, . . . , Tn be independent and identically distributed lifetimes with
distribution function F . Let C1, C2, . . . , Cn be independent and identically
distributed censoring times with distribution function G which are usually
assumed to be independent from the lifetimes. In the random censorship
model we observe pairs (Xi, δi), i = 1, 2, . . . , n, where Xi = min (Ti, Ci)
and δi = I{Xi = Ti} indicates whether the observation is censored or not.
It follows that the {Xi} are independent and identically distributed with
distribution function L satisfying L̄(x) = F̄ (x)Ḡ(x) where Ē = 1 − E is the
survival function for any distribution function E.

The survival function F̄ is the probability that an individual survives for a
time greater or equal to x. Kaplan and Meier (1958) proposed the product-
limit estimate of F̄ :

ˆ̄F (x) =
∏

{j:X(j)<x}

(
n − j

n − j + 1

)δ(j)

(4.1)

where X(j) denotes the j-th order statistics of X1, X2, . . . , Xn and δ(j) the
corresponding indicator of the censoring status.

The hazard function λ is the probability that an individual dies at time x,
conditional on he or she having survived to that time. If the life distribution
F has a density f , for F̄ (x) > 0 the hazard function is defined by

λ(x) =
f(x)
F̄ (x)

(4.2)
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and the cumulative hazard function as

H(x) = − log F̄ (x). (4.3)

Nelson (1972) proposed to estimate the cumulative hazard function H by

Hn(x) =
∑

X(i)≤x

δ(i)

n − i + 1
(4.4)

Parametric methods of the estimate of the hazard function are investigated
e.g. in Hurt (1992), Collet (1997), Hougaard (2001), Thernau and Grambsch
(2001) and many others.

We will focus on nonparametric estimates, namely, on kernel estimates. These
estimates were proposed and studied by many authors, see e.g. Watson and
Leadbetter (1964), Ramlau-Hansen (1983), Tanner and Wong (1983), Tan-
ner and Wong (1984), Yandell (1983), Mielniczuk (1986), Müller and Wang
(1990a), Müller and Wang (1990b), Müller and Wang (1994), Uzunogullari
and Wang (1992), Patil (1993a), Patil (1993b), Patil, Wells and Marron
(1994), Nielsen and Linton (1995), Youndjé, Sarda and Vieu (1996), Jiang
and Marron (2003).

Our approach is based on the model introduced by Tanner and Wong (1983),
Müller and Wang (1990a) and Jiang and Marron (2003).

Let [0, T ], T > 0, be such an interval for which L(T ) < 1. First, let us make
some assumptions:

1o λ ∈ Ck0 [0, T ], k0 ≥ 2

2o Let ν, k be nonnegative integers satisfying 0 ≤ ν ≤ k − 2, 2 ≤ k ≤ k0

3o Let K be a real valued function on R satisfying conditions

(i) support (K) = [−1, 1],K(−1) = K(1) = 0

(ii) K ∈ Lip[−1, 1]

(iii)
1∫

−1

xjK(x)dx

⎧⎪⎪⎨⎪⎪⎩
0, 0 ≤ j < k, j �= ν

(−1)νν!, j = ν

βk �= 0, j = k.
Such a function is called a kernel of order k and the class of these kernels
is denoted by Sνk

4o Let {h(n)} be a non-random sequence of positive numbers satisfying
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lim
n→∞h(n) = 0, lim

n→∞h(n)2ν+1n = ∞·

These numbers are called bandwidths or smoothing parameters. To keep the
notation less cumbersome the dependence of h on n will be suppressed in our
calculations.

The definition of the kernel given above is very suitable for our next consid-
erations and moreover it will be very reasonable to assume that ν and k have
the same parity. This fact enables us to choose an optimal kernel.

The kernel estimate of the νth derivative of the hazard function λ is the
following convolution of the kernel K with the Nelson estimator Hn:

λ̂
(ν)
h,K(x) =

1
hν+1

∫
K

(
x − u

h

)
dHn(u) = (4.5)

=
1

hν+1

n∑
i=1

K

(
x − X(i)

h

)
δ(i)

n − i + 1
,K ∈ Sνk·

In the paper by Müller and Wang (1990a) the properties of these estimate
have been investigated under additional assumptions:

nhk+1 (log n)−1 → ∞, nh (log n)−2 → ∞ as n → ∞.

Let us denote

V (K) =
∫ 1

−1

K2(x)dx, βk =
∫ 1

−1

xkK(x)dx

and

Dk =
∫ T

0

{
λ(k)(x)

k!

}2

dx, Λ =
∫ T

0

λ(x)
L̄(x)

dx·

Then, the bias and the variance can be expressed as (Müller and Wang,
1990a):

Bias λ̂
(ν)
h,K(x) = hk−νλ(k)(x)

{
(−1)kβk

k!
+ O(1)

}
, 0 < x ≤ T (4.6)

Var λ̂
(ν)
h,K(x) =

1
nh2ν+1

{
λ(x)V (K)

L̄(x)
+ O(1)

}
, 0 ≤ x ≤ T. (4.7)

The use of (4.6) and (4.7) provides the form of the Mean Squared Error.
The global quality of this estimate can be described by means of the Mean
Integrated Squared Error (MISE λ̂

(ν)
h,K).
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Now we focus on the leading term MISE (λ̂(ν)
h,K) of MISE (λ̂(ν)

h,K). Evidently,

MISE (λ̂(ν)
h,K) takes the form

MISE (λ̂(ν)
h,K) = h2(k−ν)β2

kDk +
V (K)Λ
nh2ν+1

. (4.8)

Consider a special parameter

γ2k+1
ν,k =

V (K)
β2

k

,K ∈ Sν,k. (4.9)

This parameter is called a canonical factor and was introduced by Marron
and Nolan (1989), see also Härdle, Müller, Sperlich and Werwatz (2004).

Then, the asymptotically optimal bandwidth hopt,ν,k minimizing MISE(λ̂(ν)
h,K)

with respect to h is given by

h2k+1
opt,ν,k =

Λ(2ν + 1)
2n(k − ν)Dk

γ2k+1
ν,k . (4.10)

Further, getting along in a similar way as in the paper by Horová, Vieu and
Zelinka (2002) we arrive at the formula

MISE
(
λ̂

(ν)
hopt,ν,kK

)
= Λ T (K)

2
2k+1

(2k + 1)γ2ν+1
ν,K

2n(k − ν)h2ν+1
opt,ν,k

, (4.11)

where

T (K) =
∣∣∣∣∫ 1

−1

xkK(x)dx

∣∣∣∣2ν+1(∫ 1

−1

K2(x)dx

)k−ν

,K ∈ Sν,k. (4.12)

This formula shows the effects of the kernel as well as the bandwidth on the
estimate.

The formula (4.10) offers a very useful tool for calculation of the optimal
bandwidth for derivatives of λ̂.

Let ν, k be even integers. Then

hopt,ν,k =
{

(2ν + 1)k
k − ν

} 1
2k+1 γν,k

γ0,k
hopt,0,k. (4.13)

Further, for ν and k being odd integers this formula provides

hopt,ν,k =
{

(2ν + 1)k
3(k − ν)

} 1
2k+1 γν,k

γ1,k
hopt,1,k. (4.14)

Such a procedure is called a factor method (see e.g. Müller, Stadmüller and
Schmitt (1987), Härdle, Müller, Sperlich and Werwatz (2004), Horová, Vieu
and Zelinka (2002).
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4.3 Choosing the Shape of the Kernel

The formula (4.11) suggests naturally to look for a kernel that minimizing
the functional (4.12). This problem has been investigated in most of the ex-
isting literature (see e.g. Mammitzsch (1988), Granovsky and Müller (1991),
Granovsky and Müller (1995), Horová, Vieu and Zelinka (2002).

Let us briefly describe this problem. Let Nk−2 = {g ∈ L2, g has exactly k−2
changes of sign on R}. Kernels K ∈ Nk−2 ∩ Sνk minimizing the functional
T (K) are called optimal kernels. These kernels are polynomials of degree k
having k − 2 different roots inside the interval [−1, 1]. In order to emphasize
the dependence on ν and k we denote these kernels by Kopt,ν,k. Table 4.1, 4.2,
4.3 bring some of these optimal kernels as well as the corresponding factors
γν,k. Below each table are the XploRe quantlets that allow for computing
and viewing these optimal kernels.

Table 4.1: Optimal kernel of order (0, k)

k γ0,k Kopt,0,k

2 1.7188 − 3
4 (x2 − 1)I(|x| ≤ 1)

4 2.0165 15
32 (x2 − 1)(7x2 − 3)I(|x| ≤ 1)

6 2.0834 − 105
256 (x2 − 1)(33x4 − 30x2 + 5)I(|x| ≤ 1)

XCSoptker02.xpl

XCSoptker04.xpl

XCSoptker06.xpl
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Table 4.2: Optimal kernel of order (1, k)

k γ1,k Kopt,1,k

3 1.4204 15
4 x(x2 − 1)I(|x| ≤ 1)

5 1.7656 − 105
32 x(x2 − 1)(9x2 − 5)I(|x| ≤ 1)

7 1.8931 315
32 x(x2 − 1)(143x4 − 154x2 + 35)I(|x| ≤ 1)

XCSoptker13.xpl

XCSoptker15.xpl

XCSoptker17.xpl

Table 4.3: Optimal kernel of order (2, k)

k γ2,k Kopt,2,k

4 1.3925 − 105
16 (x2 − 1)(5x2 − 1)I(|x| ≤ 1)

6 1.6964 315
64 (x2 − 1)(77x4 − 58x2 + 5)I(|x| ≤ 1)

8 1.8269 − 3465
2048 (x2 − 1)(1755x6 − 2249x4 + 721x2 − 35)I(|x| ≤ 1)

XCSoptker24.xpl

XCSoptker26.xpl

XCSoptker28.xpl

4.4 Choosing the Bandwidth

The problem of finding the optimal bandwidth belongs to the crucial problem
of kernel estimates. This problem arises in the kernel estimates of regression
functions, densities and as well as in kernel estimates of hazard functions.

Due to censoring modified cross-validation methods can be applied for the es-
timate the optimal bandwidth (see e.g. Marron and Padgett (1987),
Uzunogullari and Wang (1992), Nielsen and Linton (1995)). In the paper
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by Tanner and Wong (1984) the modified likelihood method was proposed.
Other methods for an estimate of the bandwidth can be also found e.g. in
papers by Sarda and Vieu (1991), Patil (1993a), Patil (1993b), Patil, Wells
and Marron (1994), Gonzales-Mantiega, Cao and Marron (1996).

Let ĥopt,0,k be an estimate of hopt,0,k. In view of the fact that we will only
focus on the estimate λ̂(0) and λ̂(2) it is sufficient to estimate the optimal
bandwidth ĥopt,0,k since the formula (4.13) can be rewritten with ĥopt,0,k and
ĥopt,2,k instead of hopt,0,k and hopt,2,k. Here, we propose a special method for
estimating ĥopt,0,k. Our approach is based on two facts.

Firstly, let us notice that the use of hopt,0,k given in (4.10) means that the
leading term of variance Var(λ̂hopt,0,k,K

) and the leading term of the bias
Bias(λ̂hopt,0,k,K

) satisfy

Var
(
λ̂hopt,0,k,K

)
= 2k

{
Bias(λ̂hopt,0,k,K

)
}2

. (4.15)

In the second place, we start from the suitable representation of MISE given
in the papers by Müller and Wang (1990b), Müller and Wang (1994).

The aforementioned estimate of MISE is defined as

M̂ISE
(
λ̂h,K

)
=
∫ T

0

{
v̂(x, h) + b̂2(x, h)

}
dx, (4.16)

where v̂(x, h) = V̂ar
(
λ̂h,K(x)

)
and b̂(x, h) = B̂ias

(
λ̂h,K(x)

)
are the esti-

mates of variance and bias, respectively, and⎧⎪⎨⎪⎩
v̂(x, h) = 1

nh

∫
K2(y) λ̂h,K(x−hy)

L̄n(x−hy)
dy

b̂(x, h) =
∫

λ̂h,K(x − hy)K(y)dy − λ̂h,K(x)

(4.17)

where k ∈ S0 k and

L̄n(x) = 1 − 1
n + 1

n∑
i=1

I{Xi ≤ x} (4.18)

is the modified empirical survival function.

The global bandwidth estimate

ĥopt,0,k = arg min
h∈Hn

M̂ISE
(
λ̂h,K

)
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satisfies ĥopt,0,k/hopt,0,k → 1 in probability,Hn denotes the set of acceptable
bandwidths. This set will be dealing with below.

Taking the relations (4.15) and (4.17) into account we arrive at the formula
for ĥopt,0,k:

h =
1

2kn

∫ T

0

∫
K2(y) λ̂h,K(x−hy)

L̄n(x−hy)
dydx∫ T

0

{∫
λ̂h,K(x − hy)K(y)dy − λ̂h,K(x)

}2

dx
(4.19)

for sufficiently large n. Denoting the right hand side of this equation by ψ,
the last equation can be rewritten as

h = ψ(h).

It means that asymptotically in terms of MISE we are looking for the fixed
point ĥopt,0,k of the function ψ. Consider one step iterative method. Starting
with the initial approximation ĥ

(0)
opt,0,k the sequence {ĥ(j)

opt,0,k}∞j=0 is generated
by

ĥ
(j+1)
opt,0,k = ψ

(
ĥ

(j)
opt,0,k

)
, j = 0, 1, 2 . . .

Since it would be very difficult to verify whether the conditions for the conver-
gence of this process are satisfied we propose to use the Steffensen’s method.
This method consists in the following steps:

t(j) = ψ(ĥ(j)
opt,0,k)

z(j) = ψ(t(j))

ĥ
(j+1)
opt,0,k = ĥ

(j)
opt,0,k−

−
(
t(j) − ĥ

(j)
opt,0,k

)2

/
(
z(j) − 2t(j) + ĥ

(j)
opt,0,k

)
, j = 0, 1, 2, . . . .

(4.20)

In terms of one step iterative methods the Steffensen’s method can be de-
scribed by the iterative function

Ψ(h) =
hψ{ψ(h)} − ψ2(h)

ψ{ψ(h)} − 2ψ(h) + h

i.e.,
ĥ

(j+1)
opt,0,k = Ψ

(
ĥ

(j)
opt,0,k

)
, j = 0, 1, 2, . . .

The Steffensen’s method (Steffensen, 1933) is based on application �2

Aitken’s methods for accelerating the convergence to a linearly convergent
sequence obtained from fixed-point iteration (see Isaacson and Keller (1966),
Stoer and Bulirsch (1980) in greater details).
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It is clear that ĥopt,0,k is the simple fixed point, i.e., ψ
′
(ĥopt,0,k) �= 1. Then

both iterative functions ψ and Ψ have the same fixed point and Ψ yields at
least a second - order method for this point, i.e. a locally quadratically con-
vergent method. The relative error can be taken as a criterion for obtaining
the suitable approximation ĥopt,0,k:∣∣∣∣∣ ĥ

(j+1)
opt,0,k − ĥ

(j)
opt,0,k

ĥ
(j)
opt,0,k

∣∣∣∣∣ ≤ ε,

where ε > 0 is a given tolerance, and we put ĥopt,0,k = ĥ
(j+1)
opt,0,k.

The evaluation of the right hand side in the equation (4.19) looks rather com-
plicated, but these integrals can be easily evaluated by suitable discretization;
here the composite trapeziodal rule is recommended.

Let us come back to the set Hn of acceptable bandwidths. The good choice
of the initial approximation ĥ

(0)
opt,0,k ∈ Hn is very important for the iterative

process above.

We are going to show how a kernel density estimate could be useful for this
aim.

Let us describe the motivation for our procedure. First, the Koziol-Green
model is reminded (Koziol and Green, 1976). There is a natural question
about the distribution of the time censor C. There are both theoretical
and practical reasons to adopt the Koziol-Green model of random censorship
under which it is assumed that there is a nonnegative constant ρ such that

F̄ (x)ρ = Ḡ(x),

ρ = 0 corresponds to the case without censoring.

Let l, f and g be densities of L, F and G, respectively. Then (Hurt, 1992):

l(x) =
1
p
F̄ (x)ρf(x), (4.21)

p =
1

1 + ρ

Let

l̂h,K(x) =
1

nh

n∑
i=1

K

(
x − Xi

h

)
(4.22)
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be the kernel estimate of the density l and keep now F̄ (x) as a known quantity.
Then, with respect to (4.21)

f̃h,K(x) =
pl̂h,K(x)
F̄ ρ(x)

and f̃h,K(x) is an estimate of f .

Consider now an alternative estimate λ̃h,K of λ:

λ̃h,K(x) =
f̃h,K(x)
F̄ (x)

. (4.23)

Hence

λ̃h,K(x) =
pl̂h,K(x)
F̄ 1/p(x)

. (4.24)

Now it is easy to verify that the optimal bandwidth for l̂h,K is also the optimal
bandwidth for λ̃h,K . The properties of the estimate λ̃h,K can be investigated
in a similar way as those in the paper by Uzunogullari and Wang (1992). Let
ĥ∗

opt,0,k be an optimal bandwidth for l̂h,K . Due to the aforementioned facts
it is reasonable to take this value as a suitable initial approximation for the
process (4.20).

The idea of the bandwidth choice for the kernel density estimate l̂h,K is very
similar to that presented for the hazard function but with the difference that
here an upper bound for the set of acceptable bandwidth is known (see e.g.
Terrell and Scott (1985), Terrell (1990), Horová and Zelinka (2004)). Getting
along in a similar way as earlier we obtain the equation

h =
1

2nk

∫ ∫
K2(y)l̂h,K(x − hy)dydx∫

{
∫

l̂h,K(x − hy)K(y)dy − l̂h,K(x)}2dx
,K ∈ S0,k

where h = ĥ∗
opt,0,k is a fixed point.

We can take ĥ
∗(0)
opt,0,k = hu where hu is the upper bound defined as

hu = σ̂bkn−1/2k+1 (4.25)

where σ̂2 is an estimate of an unknown variance σ2 of the data and

bk = 2
√

2k + 5
{

(2k + 1)(2k + 5)(k + 1)2Γ4(k + 1)V (K)
kΓ(2k + 4)Γ(2k + 3)β2

k

} 1
2k+1

, (4.26)

Γ is the gamma function.
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The estimate of σ2 can be done, e.g. by

σ̂2 =
1

n − 1

n∑
i=1

(
Xi − X̄

)2
. (4.27)

Now the Steffensen’s method is used in the same way as above. It seems
that this process looks very complicated but our experience shows that this
procedure is faster and more reliable than the cross - validation method.

The construction of the confidence intervals is described in the paper by
Müller and Wang (1990a). The asymptotic (1 − α) confidence interval for
λ

(ν)
h,K(x) is given by

λ̂
(ν)
h,K(x) ±

{
λ̂h,K(x)V (K)

(1 − Ln(x))nĥ2ν+1

}1/2

Φ−1(1 − α/2) (4.28)

where Φ is the normal cumulative distribution function and Ln is the modified
empirical distribution function of L

Ln(x) =
1

n + 1

n∑
i=1

1{Xi≤x}.

Remark. When we estimate near 0 or T then boundary effects can occur
because the “effective support” [x−h, x+h] of the kernel K is not contained in
[0, T ]. This can lead to negative estimates of hazard functions near endpoints.
The same can happen if kernels of higher order are used in the interior.
In such cases it may be reasonable to truncate λ̂h,K below at 0, i.e. to
consider λ̂h,K(x) = max(λ̂h,K(x), 0). The similar considerations can be made
for the confidence intervals. The boundary effects can be avoided by using
kernels with asymmetric supports (Müller and Wang, 1990a), (Müller and
Wang, 1994).

4.5 Description of the Procedure

In the biomedical application the points θ of the most rapid change, i.e.,
points of the extreme of the first derivative of λ, are also of a great interest.
These points can be detected as zeros of the estimated second derivatives.
Thus, we will only concentrate on the estimate of λ(0) and λ(2). We focus
on such points θ̂, λ̂

(2)
h,K(θ̂) = 0, where λ

(2)
h,K changes its sign from - to + since

only the local minima of λ̂
(1)
h,K are important. It can be shown that θ̂ → θ in

probability (Müller and Wang, 1990a).



4.6 Application 75

According to our experience the kernel K ∈ S04

Kopt,0,4(x) =
15
32

(x2 − 1)(7x2 − 3)I(|x| ≤ 1), γ04 = 2.0165 (4.29)

is very convenient for the estimate of the hazard function. In this case the
value of b4 defined in (4.26) is equal to b4 = 3.3175.

In connection with theoretical results the following kernel should be chosen
for the estimate of λ(2):

Kopt,2,4(x) =
105
16

(1 − x2)(5x2 − 1)I(|x| ≤ 1), γ24 = 1.3925 (4.30)

Now, our procedure is briefly described. It consists in the following steps:

Step 1: Estimate the density l with (4.29) and find the estimated
optimal bandwidth ĥ∗

opt,0,4 by Steffensen’s method.
Step 2: Put ĥ∗

opt,0,4 = ĥ
(0)
opt,0,4 and use this value as the initial

approximation for iterative method (4.20) which yields
the suitable estimate ĥopt,0,4.

Step 3: Construct the estimate λ̂
(0)
h,K with the kernel (4.29) and

the bandwidth obtained in the step 2.
Step 4: Compute the optimal bandwidth for the estimate λ̂

(2)
h,K

using the formula (4.13):
ĥopt,2,4 = (10)1/9 γ24

γ04
ĥopt,0,4 = 1.87031ĥopt,0,4

Step 5: Get the kernel estimate of λ(2) with the kernel (4.30) and
bandwidth selected in the step 4.

Step 6: Detect the zeros of λ
(2)
h,K and construct the confidence in-

tervals.

4.6 Application

Note that all our procedures have been programmed with XploRe and are ac-
cessible in the library hazker. The quantlet XCSdensestim is computing ker-
nel density estimation while XCSdensiterband is computing the Steffensen’s
optimal bandwidth.

XCSdensestim.xpl

XCSdensiterband.xpl
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The quantlet XCSHFestim computes the kernel estimate of the hazard func-
tion and its derivatives, while the quantlet XCSHFestimci gives in addition
confidence bands.

XCSHFestim.xpl

XCSHFestimci.xpl

Finally, the Steffensen’s optimal bandwidth for hazard estimation is com-
puted with the quantlet XCSHFiterband.

XCSHFiterband.xpl

Now, we are going to apply the procedure described in the Section 4.5 to the
data which were kindly provided by the Masaryk Memorial Cancer Institute
in Brno (Soumarová et al., 2002), (Horová et al., 2004).

The first set of data (data file HFdata1) involves 236 patients with breast
carcinoma. The study was carried out based on the records of women who
had received the breast conservative surgical treatment and radiotherapy as
well in the period 1983-1994. The patients with the breast carcinoma of the
I. and II. clinical stage and with T1 and T2 tumors where only included to
this study. Of 236 patients 47 died by the end of the study and 189 were
thus censored. The study was finished in the year 2000.

The period of time from the time origin to the death of a patient is the survival
time; the time of the remaining individuals is right censored – i.e. those who
have been alive in the end of study in 2000.

In this study patients were not recruited at exactly the same time, but accrued
over a period of months. The period of time that a patient spent in the
study, measured from the date of surgery (month/year), is often referred to
as patient’s time (Collet, 1997). Figure 4.1 shows the individual patients’
time for the complete data set of 236 patients.

First patients entered the study in 1983, the last patients in 1995 and the
study was finished in 2000. Each of 236 vertical segments shows the time
which individual patients spent in the study.

In Figure 4.2 the Kaplan-Meier estimate of the survival function F̄ is pre-
sented. Figure 4.3 shows the estimate of the density l. In Figure 4.4 the
shape of the function defined in (4.19) is presented. Figure 4.5 brings the es-
timate λ̂

(0)
h,K constructed by the proposed procedure including the confidence
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Figure 4.1: The patients’ time for the complete data set of 236 patients

intervals and Figure 4.6 shows the estimate λ
(2)
h,K . Estimated points of the

most rapid change θ̂1, θ̂2 are defined as zero of the estimated second deriva-
tives with sign changes from − to +. The main change obviously occurs for
θ̂1

.= 51.39 months whereas the second change at θ̂2
.= 128.87 months. These

figures indicated that patients run a high risk about 50 months after surgical
treatment. Then it is followed by a low risk and higher risk occurs again in
the 100th month approximately.
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Figure 4.2: The Kaplan-Meier estimate of the survival function F̄
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Figure 4.3: The estimate of the density l

0 10 20 30 40 50 60 70 80 90
0

20

40

60

80

100

120

140

h

ϕ(h)

Figure 4.4: Iterative function and the fixed point

The influence of the bandwidth h to the shape of the estimate λ̂
(0)
h,K of the

hazard function λ can be seen on Figure 4.7 where the family of estimates in-
dexed by the bandwidth is presented. The estimate for ĥopt,0,4 is highlighted
in the figure.

Table 4.6 brings the sequence of iterations generated by the method (4.20)
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Figure 4.6: The estimate λ̂
(2)
h,K

for tolerance ε = 1.0 × 10−6.

The second study is concerning the retrospective study of 222 patients with
uterine carcinoma (data file HFdata1). These patients were treated in the pe-



80 4 Kernel Estimates of Hazard Functions for Biomedical Data Sets

0 20 40 60 80 100 120 140 160 180 200

0

20

40

60

80

100

0

1

2

3

4

5

6

x 10
−3

months

h

λ

Figure 4.7: 3D view of the family of estimates

Table 4.4: Sequence of iterations generated by the iterative function in
Figure 4.4

j 0 1 2 3

ĥ
(j)
opt,0,k 22.526490 51.517280 47.411171 45.548046

j 4 5 6 7

ĥ
(j)
opt,0,k 45.222855 45.205395 45.205249 45.205249

riod 1980 – 1998 at the Masaryk Memorial Cancer Institute in Brno (Horová
et al., 2004). All patients had a surgical treatment. Of the complete set of
222 patients 27 died of cancer causes. The patients of the first clinical stage
were included to this study.

Figures 4.8, 4.9 and 4.10 present the Kaplan-Meier estimate of the survival
function F̄ , the estimate λ̂

(0)
h,K of the hazard function including the confidence

intervals and the estimate of λ
(2)
h,K with points of the most rapid change θ̂1, θ̂2.

Iterations generated by the method (4.20) for this data set and tolerance
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Figure 4.8: The Kaplan-Meier estimate of the survival function F̄
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ε = 1.0 × 10−6 are presented by Table 4.6.
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Table 4.5: Sequence of iterations generated by method 4.20 for the set of
222 patients

j 0 1 2 3 4

ĥ
(j)
opt,0,k 44.467283 69.586408 69.335494 69.330511 69.330523
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5 Partially Linear Models

Wolfgang Härdle and Hua Liang

5.1 Introduction

Partially linear models (PLM) are regression models in which the response
depends on some covariates linearly but on other covariates nonparametri-
cally. PLMs generalize standard linear regression techniques and are special
cases of additive models. This chapter covers the basic results and explains
how PLMs are applied in the biometric practice. More specifically, we are
mainly concerned with least squares estimators of the linear parameter while
the nonparametric part is estimated by e.g. kernel regression, spline ap-
proximation, piecewise polynomial and local polynomial techniques. When
the model is heteroscedastic, the variance functions are approximated by
weighted least squares estimators. Numerous examples illustrate the imple-
mentation in practice.

PLMs are defined by

Y = X�β + g(T ) + ε, (5.1)

where X and T are d-dimensional and scalar regressors, β is a vector of
unknown parameters, g(·) an unknown smooth function and ε an error term
with mean zero conditional on X and T.

The PLM is a special form of the additive regression models Hastie and
Tibshrani (1990); Stone (1985), which allows easier interpretation of the
effect of each variables and may be preferable to a completely nonparametric
regression since the well-known reason “curse of dimensionality”. On the
other hand, PLMs are more flexible than the standard linear models since
they combine both parametric and nonparametric components.

Several methods have been proposed to estimate PLMs. Suppose there are n
observations {Xi, Ti, Yi}n

i=1. Engle, Granger, Rice and Weiss (1986), Heck-
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man (1986) and Rice (1986) used spline smoothing and defined estimators
of β and g as the solution of

arg min
β,g

1
n

n∑
i=1

{Yi − Xi
�β − g(Ti)}2 + λ

∫
{g′′(u)}2du. (5.2)

Speckman (1988) estimated the nonparametric component by Wγ, where W
is a (n × q)−matrix of full rank and γ is an additional parameter. A PLM
may be rewritten in a matrix form

Y = Xβ + Wγ + ε. (5.3)

The estimator of β based on (5.3) is

β̂S = {X�(I − PW)X}−1{X�(I − PW)Y }, (5.4)

where PW = W(W�W)−1W� is a projection matrix and I is a d−order
identity matrix. Green, Jennison and Seheult (1985) proposed another class
of estimates

β̂GJS = {X�(I −Wh)X)}−1{X�(I −Wh)Y )}

by replacing W in (5.4) by another smoother operator Wh. Chen (1988)
proposed a piecewise polynomial to approximate nonparametric function and
then derived the least squares estimator which is the same form as (5.4).
Recently Härdle, Liang and Gao (2000) have systematically summarized the
different approaches to PLM estimation.

No matter which regression method is used for the nonparametric part, the
forms of the estimators of β may always be written as

{X�(I − W )X}−1{X�(I − W )Y },

where W is a projection operation. The estimators are asymptotically normal
under appropriate assumptions.

The next section will be concerned with several nonparametric fit methods
for g(t) because of their popularity, beauty and importance in nonparametric
statistics. In Section 5.4, the Framingham heart study data are investigated
for illustrating the theory and the proposed statistical techniques.
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5.2 Estimation and Nonparametric Fits

As stated in the previous section, different ways to approximate the non-
parametric part yield the corresponding estimators of β. The popular non-
parametric methods includes kernel regression, local polynomial, piecewise
polynomial and smoothing spline. Related works are referred to Wand and
Jones (1995), Eubank (1988), and Fan and Gijbels (1996). Härdle (1990)
gives an extensive discussion of various nonparametric statistical methods
based on the kernel estimator. This section mainly mentions the estimation
procedure for β when one adapts these nonparametric methods and explains
how to use XploRe quantlets to calculate the estimates.

5.2.1 Kernel Regression

Let K(·) be a kernel function satisfying certain conditions and hn be a band-
width parameter. The weight function is defined as:

ωni(t) = K
( t − Ti

hn

)/ n∑
j=1

K
( t − Tj

hn

)
.

Let gn(t, β) =
∑n

i=1 ωni(t)(Yi−X�
i β) for a given β. Substitute gn(Ti, β) into

(5.1) and use least square criterion. Then the least squares estimator of β is
obtained as

β̂KR = (X̃�X̃)−1X̃�Ỹ,

where X̃� = (X̃1, . . . , X̃n) with X̃j = Xj −
∑n

i=1 ωni(Tj)Xi and Ỹ� =
(Ỹ1, . . . , Ỹn) with Ỹj = Yj −

∑n
i=1 ωni(Tj)Yi. The nonparametric part g(t) is

estimated by:

ĝn(t) =
n∑

i=1

ωni(t)(Yi − X�
i β̂KR).

When ε1, . . . , εn are identically distributed, their common variance σ2 may
be estimated by σ̂2

n = (Ỹ − X̃β̂KR)�(Ỹ − X̃β̂KR).
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For detailed discussion on asymptotic theories of these estimators we refer to
Härdle, Liang and Gao (2000) and Speckman (1988). A main result on the
estimator β̂KR is:

THEOREM 5.1 Suppose (i) sup0≤t≤1 E(‖X‖3|t) < ∞ and Σ = Cov{X −
E(X|T )} is a positive definite matrix. (ii) g(t) and E(xij |t) are Lipschitz
continuous; and (iii) the bandwidth h ≈ λn−1/5 for some 0 < λ < ∞. Then

√
n(β̂KR − β) L−→N(0, σ2Σ−1).

In XploRe the quantlet plmk calculates the estimates β̂KR, σ̂2
n and ĝn(t). Its

syntax is the following:

plmest=plmk(x,t,y,h)

plmk.xpl

Input parameters:
x: the linear regressors
t: represents the non-linear regressors
y: the response
h: determines the bandwidth

Output parameters:
plmest.hbeat: estimate the parameter of X
plmest.hsigma: estimate the variance of the error
plmest.hg: estimate the nonparametric part

5.2.2 Local Polynomial

The kernel regression (or local constant) can be improved by using local
linear, more generally, local polynomial smoothers since they have appealing
asymptotic bias and variance terms that are not adversely affected at the
boundary, Fan and Gijbels (1996).

Suppose that the (p + 1)-th derivative of g(t) at the point t0 exists. We then
approximate the unknown regression function g(t) locally by a polynomial of
order p. A Taylor expansion gives, for t in a neighborhood of t0,
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Figure 5.1: The simulation results for nonparametric function via quantlet
plmk. Real data (thin) and the fitting (thick)
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g(t) ≈ g(t0) + g′(t0)(t − t0) +
g(2)(t0)

2!
(t − t0)2 + · · · + g(p)(t0)

p!
(t − t0)p

def=
p∑

j=0

αj(t − t0)j . (5.5)

To estimate β and g(t), we first estimate αj as the functions of β, denoted
as αj(β), by minimizing

n∑
i=1

⎧⎨⎩Yi − X�
i β −

p∑
j=0

αj(Ti − t0)j

⎫⎬⎭
2

Kh(Ti − t0), (5.6)

where h is a bandwidth controlling the size of the local neighborhood, and
Kh(·) = K(·/h)/h with K a kernel function. Minimize
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n∑
i=1

⎧⎨⎩Yi − X�
i β −

p∑
j=0

αj(β)(Ti − t0)j

⎫⎬⎭
2

. (5.7)

Denote the solution of (5.7) by βn. Let αj(βn) be the estimate of αj , and
denote by α̂jn j = 0, . . . , p. It is clear from the Taylor expansion in (5.5)
that ν!α̂jn is an estimator of g(j)(t0) for j = 0, . . . , p. To estimate the entire
function g(j)(·) we solve the above weighted least squares problem for all
points t0 in the domain of interest.

It is more convenient to work with matrix notation. Denote by Z the design
matrix of T in problem (5.6). That is,

Z =

⎛⎜⎝ 1 (T1 − t0) . . . (T1 − t0)p

...
...

...
...

1 (Tn − t0) . . . (Tn − t0)p

⎞⎟⎠ .

Set Y = (Y1, · · · , Yn)� and α(β) = (α0(β), · · · , αp(β))�. Let W be the
n × n diagonal matrix of weights: W = diag{Kh(Ti − t0)}. The weighted
least squares problems (5.6) and (5.7) can be rewritten as

min
β

(Y − Xβ − Zα)�W(Y − Xβ − Zα),

min
α

{Y − Xβ − Zα(β)}�{Y − Xβ − Zα(β)},

with α(β) = (α0(β), . . . , αp(β))�. The solution vectors are provided by
weighted least squares and are given by

β̂LP = [X�{I − Z(Z�WZ)−1Z�W}X]−1X�{I − Z(Z�WZ)−1Z�W}Y

α̂ = (Z�WZ)−1Z�W(Y − Xβ̂LP)

Theoretically the asymptotic normality is still valid under the conditions
similarly to those of Theorem 5.1. More detailed theoretical discussions are
referred to Hamilton and Truong (1997).

The quantlet plmp is assigned to handle the calculation of β̂LP and α̂. Its
syntax is similar to that of the quantlet plmk:
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plmest=plmp(x,t,y,h,{p})

where x, t, y, h are the same as in the quantlet plmk. p is the local polynomial
order. The default value is p = 1, meaning the local linear estimator.

As a consequence, the estimate of the parameter equals

(1.2019, 1.2986, 1.3968)

and the estimates of the nonparametric function is shown in Figure 5.2. There
exist obvious differences between these results from the quantlet plmk and
plmp. More specifically, the results for parametric and nonparametric es-
timation from the quantlet plmp are preferable to those from the quantlet
plmk.

Local Polynomial
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Figure 5.2: The simulation results for nonparametric function via quantlet
plmp. Real data (thin) and the fitting (thick).
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5.2.3 Piecewise Polynomial

We assume g is Hölder continuous smooth of order p = (m+ r), that is, let r
and m denote nonnegative real constants 0 < r ≤ 1, m is nonnegative integer
such that
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|g(m)(t′) − g(m)(t)| < M |t′ − t|r, for t, t′ ∈ [0, 1].

Piecewise polynomial approximation for the function g(·) on [0, 1] is defined
as follows. Given a positive Mn, divide [0, 1] in Mn intervals with equal length
1/Mn. The estimator has the form of a piecewise polynomial of degree m
based on the Mn intervals, where the (m + 1)Mn coefficients are chosen by
the method of least squares on the basis of the data. The basic principle is
concisely stated as follows.

Let Inν(t) be the indicator function of the ν-th interval, and dν be the
midpoint of the ν-th interval, so that Inν(t) = 1 or 0 according to t ∈
[(ν − 1)/Mn, ν/Mn) for ν = 1, . . . ,Mn and [1 − 1/Mn, 1] or not. Pnν(t) be
the m-order Taylor expansion of g(t) at the point dν . Denote

Pnν(t) =
m∑

j=0

ajutj for t in the ν-th interval.

Consider the piecewise polynomial approximation of g of degree m given by

g∗n(t) =
Mn∑
ν=1

Iν(t)Pnν(t).

Suppose we have n observed data (X1, T1, Y1), . . . , (Xn, Tn, Yn). Denote

Z =

⎛⎜⎝ In1(T1) . . . In1(T1)Tm
1 . . . InMn(T1) . . . InMn(T1)Tm

1
...

...
...

...
...

...
...

In1(Tn) . . . In1(Tn)Tm
n . . . InMn

(Tn) . . . InMn
(Tn)Tm

n

⎞⎟⎠
and

ηg = (a01, . . . , am1, a02, . . . , am2, . . . , a0Mn
, . . . , amMn

)�.

Then ⎛⎜⎝ g∗n(T1)
...

g∗n(Tn)

⎞⎟⎠ =

⎛⎜⎝
∑Mn

u=1 Inu(T1)Pnν(T1)
...∑Mn

u=1 Inu(Tn)Pnν(Tn)

⎞⎟⎠ = Zηg.
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Hence we need to find β and ηg to minimize

(Y − Xβ − Zηg)�(Y − Xβ − Zηg).

Suppose that the solution of minimization problem exists. The estimators of
β and ηg are

β̂PP = {X�(I − P)X}−1X�(I − P)Y

and ηng = A(Y − Xβ̂PP), where A = (Z�Z)−1Z� and P = ZA. The esti-
mate of g(t) may be described

gn(t) = z(Z�Z)−1Z�(Y − Xβ̂PP)

for a suitable z.

THEOREM 5.2 There exist positive definite matrices Σ00 and Σ01 such
that both Cov(X|t) − Σ00 and Σ01 − Cov(X|t) are nonnegative definite for
all t ∈ [0, 1]. Suppose that limn→∞ n−λMn = 0 for some λ ∈ (0, 1) and
limn→∞

√
nM−p

n = 0. Then
√

n(β̂PP − β) L−→ N(0, σ2Σ−1) .

The quantlet plmp evaluates the estimates β̂PP and gn(t) stated above. Its
syntax is similar to those of the two previous quantlets:

plmest=plmp(x,t,y,m,mn)

where m and mn represent m and Mn, respectively. We now use the quantlet
plmp to investigate the example considered in the quantlet plmk. We assume
m = 2 and Mn = 5 and compute the related estimates via the quantlet plmp.
The implementation works as follows.

XCSplm03.xpl

The result for parameter β is plmest.hbeta= (1.2, 1.2999, 1.3988)�. Alter-
natively the estimates for nonparametric part are also given.
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5.2.4 Least Square Spline

This subsection introduces least squares splines. We only state its algorithm
rather than the theory, which can be found in Eubank (1988) for an overall
discussion.

Suppose that g has m−1 absolutely continuous derivatives and m-th deriva-
tive that is square integrable and satisfies

∫ 1

0
{g(m)(t)}2dt < C for a specified

C > 0. Via a Taylor expansion, the PLM can be rewritten as

Y = X�β +
m∑

j=1

αjT
j−1 + Rem(T ) + ε,

where Rem(s) = (m − 1)!−1 ∫ 1

0
{g(m)(t)(t−s)m−1

+ }2 dt. By using a quadrature
rule, Rem(s) can be approximated by a sum of the form

∑k
j=1 dj(t− tj)m−1

+

for some set of coefficients d1, . . . , dk and points 0 < t1, . . . , < tk < 1. Take
a basis V1(t) = 1, V2(t) = t, . . . , Vm(t) = tm−1, Vm+1(t) = (t − t1)m−1, . . . ,
Vm+k(t) = (t − tk)m−1 and set

η = (α1, . . . , αm, d1, . . . , dk) def= (η1, . . . , ηm+k)�

.

The least squares spline estimator is to minimize

arg min
β,η

1
n

n∑
i=1

⎧⎨⎩Yi − X�
i β −

m+k∑
j=1

ηjVj(Ti)

⎫⎬⎭
2

.

Conveniently with matrix notation, denote Z = (Zij) with Zij = {Vj(Ti)} for
i = 1, . . . , n and j = 1, . . . ,m+ k and X = (X1, . . . , Xn)�. The least squares
spline estimator is equivalent to the solution of the minimizing problem

(Y − Xβ − Zη)�(Y − Xβ − Zη).

If the problem has an unique solution, its form is the same as (β̂PP, ηng) in the
subsection about piecewise polynomial. Otherwise, we may use a ridge esti-
mator idea to modify the estimator. plmls is concerned with implementation
of the above algorithm in XploRe.
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plmest=plmls(x,t,y,m,knots)

XCSplm04.xpl

Input parameters:
x: n × d matrix of the linear design points
t: n × 1 vector of the non-linear design points
y: n × 1 vector of the response variables
m: the order of spline
knots: k × 1 vector of knot sequence knots

Output parameters:
plmest.hbeat: d × 1 vector of the estimate of the parameter
plmest.hg: the estimate of the nonparametric part

5.3 Heteroscedastic Cases

When the variance function given covariates (X, T ) is non-constant, the esti-
mators of β proposed in former section is inefficient. The strategy of overcom-
ing this drawback is to use weighted least squares estimation. Three cases
will be briefly discussed. Let {(Yi, Xi, Ti), i = 1, . . . , n} denote a sequence of
random samples from

Yi = X�
i β + g(Ti) + σiξi, i = 1, . . . , n, (5.8)

where Xi, Ti are the same as those in model (5.1). ξi are i.i.d. with mean
0 and variance 1, and σ2

i are some functions, whose concrete forms will be
discussed later.

In general, the least squares estimator β̂LS is modified to a weighted least
squares estimator

βW =
( n∑

i=1

γiX̃iX̃
�
i

)−1( n∑
i=1

γiX̃iỸi

)
(5.9)

for some weight γi, i = 1, . . . , n. In our model (5.8) we take γi = 1/σ2
i . In

principle the weights γi (or σ2
i ) are unknown and must be estimated. Let
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{γ̂i, i = 1, . . . , n} be a sequence of estimators of γ. One may define an
estimator of β by substituting γi in (5.9) by γ̂i. Let

β̂WLS =

(
n∑

i=1

γ̂iX̃iX̃
�
i

)−1( n∑
i=1

γ̂iX̃iỸi

)

be the estimator of β.

Under suitable conditions, the estimator β̂WLS is asymptotically equivalent to
that supposed the function σ2

i to be known. Therefore β̂WLS is more efficient
than the estimators given in the previous section. The following subsections
present three variance functions and construct their estimators. Three non-
parametric heteroscedastic structures will be studied. In the remainder of
this section, H(·) is always assumed to be unknown Lipschitz continuous.

5.3.1 Variance Is a Function of Exogenous Variables

Suppose σ2
i = H(Wi), where {Wi; i = 1, . . . , n} are design points, which are

assumed to be independent of ξi and (Xi, Ti) and defined on [0, 1] in the case
where {Wi; i = 1, . . . , n} are random design points. Let β̂LS and ĝn(·) be
initial estimators of β and g(·), for example, given by kernel regression in
Section 5.2.1. Define

Ĥn(w) =
n∑

j=1

W̃nj(w){Yj − X�
j β̂LS − ĝn(Ti)}2

as the estimator of H(w), where {W̃nj(t); i = 1, . . . , n} is a sequence of weight
functions satisfying appropriate assumptions. Then let σ̂2

ni = Hn(Wi).

Quantlet plmhetexog performs the weighted least squares estimate of the
parameter. In the procedure of estimating the variance function, the estimate
given by plmk is taken as the primary one.

XCSplm05.xpl
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5.3.2 Variance Is an Unknown Function of T

Suppose that the variance σ2
i is a function of the design points Ti, i.e., σ2

i =
H(Ti), with H(·) an unknown Lipschitz continuous function. Similarly to
subsection 5.3.1, we define the estimator of H(·) as

Ĥn(t) =
n∑

j=1

W̃nj(t){Yj − X�
j β̂LS − ĝn(Ti)}2.

Quantlet plmhett calculates the weighted least squares estimate of the pa-
rameter in this case. In the procedure of estimating the variance function,
the estimate given by plmk is taken as the primary one.

plmest=plmhett(x,t,y,h,h1)

XCSplm06.xpl

5.3.3 Variance Is a Function of the Mean

We consider the model (5.8) with σ2
i = H{X�

i β + g(Ti)}, which means that
the variance is an unknown function of the mean response.

Since H(·) is assumed to be completely unknown, the standard method is
to get information about H(·) by replication, i.e., we consider the following
“improved” partially linear heteroscedastic model

Yij = X�
i β + g(Ti) + σiξij , j = 1, . . . ,mi; i = 1, . . . , n,

where Yij is the response of the j-th replicate at the design point (Xi, Ti),
ξij are i.i.d. with mean 0 and variance 1, β, g(·) and (Xi, Ti) are the same
as before.

We compute the predicted value X�
i β̂LS + ĝn(Ti) by fitting the least squares

estimator β̂LS and nonparametric estimator ĝn(Ti) to the data and the resid-
uals Yij − {X�

i β̂LS + ĝn(Ti)}, and estimate σ2
i by

σ̂2
i =

1
mi

mi∑
j=1

[Yij − {X�
i β̂LS + ĝn(Ti)}]2,
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where each mi is unbounded.

Quantlet plmhetmean executes the above algorithm in XploRe. For calcula-
tion simplicity, we use the same replicate in practice. The estimate given by
plmk is taken as the primary one.

plmest=plmhetmean(mn,x,t,y,h)

XCSplm07.xpl

5.4 Real Data Examples

In this section we analyze the well known Framingham data set and illustrate
the calculation results when using the quantlets introduced in Section 5.2.

EXAMPLE 5.1 We use the data from the Framingham Heart Study which
consists of a series of exams taken two years apart, to illustrate one of the
applications of PLM in biometrics. There are 1615 men, aged between 31 to
65, in this data set. The outcome Y represents systolic blood pressure (SBP).
Covariates employed in this example are patient’s age (T ) and the serum
cholesterol level (X). Empirical study indicates that SBP linearly depends
upon the serum cholesterol level but nonlinearly on age. For this reason, we
apply PLM to investigate the function relationship between Y and (T,X).

Specifically, we estimate β and g(·) in the model

Yi = Xiβ + g(Ti) + εi, i = 1, · · · , 1615.

For nonparametric fitting, we use a Nadaraya-Watson weight function with
quartic kernel

(15/16)(1 − u2)2I(|u| ≤ 1)

and choose the bandwidth using cross-validation.

The estimated value of the linear parameter equals to 10.617, and the es-
timate of g(T ) is given in Figure 5.3. The figure shows that with the age
increasing, SBP increases but looks like a straight line. The older the age,
the higher the SBP is.
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Framingham Data: SBP versus Age

40 50 60

Age
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80
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P

Figure 5.3: Relationship SBP and serum cholesterol level in Framingham
Heart Study.

XCSplm08.xpl

EXAMPLE 5.2 This is an example of using PLM to analyze the NHANES
Cancer data. This data set is a cohort study originally consisting of 8596
women, who were interviewed about their nutrition habits and when later
examined for evidence of cancer. We restrict attention to a sub-cohort of
3145 women aged 25− 50 who have no missing data the variables of interest.
The outcome Y is saturated fat, while the predictors include age, body mass
index (BMI), protein and vitamin A and B intaken. Again it is believable
that Y depends as in (5.2) nonlinearly on age but linear upon other dummy
variables.

In this example we give an illustration of the plmls for the real data. We
select m = 3 and the knots at (35, 46). As a consequence, the estimates of
linear parameters are (−0.162, 0.317,−0.00002,−0.0047), and the nonpara-
metric estimated are shown in Figure 5.4. The curve of the nonparametric
part in this data set is completely different from that of the above example
and looks like arch-shape. The pattern reaches to maximum point at about
age 35.

We also run other quantlets for these two data sets. We found that the es-
timates of nonparametric parts from different quantlets have similar shapes,
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NHANES Data: Saturated Fat vs Age
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Figure 5.4: NHANES regression of saturated fat on age.
XCSnhanes.xpl

although differences in the magnitude of the estimates from different estima-
tion methods are visible.
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6 Analysis of Contingency Tables

Masahiro Kuroda

6.1 Introduction

This chapter presents analysis of log-linear models for contingency tables. In
analysis of contingency tables, we are interested in associations and inter-
actions among the categorical variables or interpretations of the parameters
describing the model structure. Then our goal is to find a best model such
that the model structure is simple and the model has few parameters.

The log-linear models which is used in analysis of contingency tables are a
generalized linear model for counted data and can easily describe the variety
of associations and interactions among the variables. To search a best model,
we assess the effects on interaction terms in log-linear models by goodness of
fit tests. The methodology for analysis of contingency tables is described in
many books, for example, Bishop et al. (1975), Everitt (1977) and Agresti
(2002).

This chapter is organized as follows: Section 11.2 introduces log-linear models
and generalized linear models. Moreover we provide the procedures to find
the best model by using goodness of fit tests for independence and comparing
two log-linear models. Section 11.3 presents the XploRe functions to make
inferences for log-linear models. Contingency table analysis using XploRe are
illustrated in Section 11.4.

6.2 Log-linear Models

Let Y = (Y1, Y2, . . . , YD) be categorical variables. Then a rectangular (N×D)
data matrix consisting of N observations on Y can be rearranged as a D-way
contingency table with cells defined by joint levels of the variables. Let nij...t

denote the frequency for a cell Y = (i, j, . . . , t) and n = {nij...t}. Suppose that



106 6 Analysis of Contingency Tables

Y has a multinomial distribution with an unknown parameter θ = {θij...t},
where θij...t ≥ 0 and

∑
θij...t = 1. The log-linear model is expressed in the

form

log θ = Xλ, (6.1)

where X is a D × r design matrix and λ is an r × 1 parameter vector. When
Y has a Poisson distribution, the log-linear model is re-written by

log m = Xλ, (6.2)

where m = {mij...t = Nθij...t} is the vector of expected frequencies.

6.2.1 Log-linear Models for Two-way Contingency Tables

Consider an I × J contingency table. The log-linear model is represented by

log θij = λ0 + λ1
i + λ2

j + λ12
ij , (6.3)

for all i and j, under the constraints of the λ terms to sum to zero over any
subscript such as

I∑
i=1

λ1
i = 0,

J∑
j=1

λ2
j = 0,

I∑
i=1

λ12
ij =

J∑
j=1

λ12
ij = 0. (6.4)

The log-linear model given by (6.3) is called the saturated model or the full
model for the statistical dependency between Y1 and Y2.

By analogy with analysis of variance models, we define the overall mean by

λ0 =
1

IJ

I∑
i=1

J∑
j=1

log θij ,

the main effects of Y1 and Y2 by

λ1
i =

1
J

J∑
j=1

log θij − λ0,

λ2
j =

1
I

I∑
i=1

log θij − λ0,

and the two-factor effect between Y1 and Y2 by

λ12
ij = log θij − (λ1

i + λ2
j ) − λ0.
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Then the main and two-factor effects are determined by the odds and odds
ratios, and can be written by

λ1
i =

1
IJ

I∑
i′=1

J∑
j=1

log
θij

θi′j
,

λ2
j =

1
IJ

I∑
i=1

J∑
j′=1

log
θij

θij′

and

λ12
ij =

1
IJ

I∑
i′=1

J∑
j′=1

log
θijθi′j′

θi′jθij′
.

For the independence model that Y1 is statistically independent of Y2, the cell
probability θij can be factorized into the product of marginal probabilities
θi+ and θ+j , that is,

θij = θi+θ+j ,

where θi+ =
∑J

j=1 θij and θ+j =
∑I

i=1 θij . Then the two-factor effect is

λ12
ij =

1
IJ

I∑
i′=1

J∑
j′=1

log
θi+θ+jθi′+θ+j′

θi′+θ+jθi+θ+j′
= 0,

so that the log-linear model for the independence model is expressed by

log θij = λ0 + λ1
i + λ2

j ,

for all i and j.

6.2.2 Log-linear Models for Three-way Contingency Tables

For an I × J × K contingency table, the saturated log-linear model for the
contingency table is

log θijk = λ0 + λ1
i + λ2

j + λ3
k + λ12

ij + λ13
ik + λ23

jk + λ123
ijk ,
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for all i, j and k. The λ terms satisfy the constraints:

I∑
i=1

λ1
i =

J∑
j=1

λ2
j =

K∑
k=1

λ3
k = 0,

I∑
i=1

λ12
ij =

J∑
j=1

λ12
ij = · · · =

K∑
k=1

λ23
jk = 0,

I∑
i=1

λ123
ijk =

J∑
j=1

λ123
ijk =

K∑
k=1

λ123
ijk = 0.

We define the λ terms as follows: The overall mean is given by

λ0 =
1

IJK

I∑
i=1

J∑
j=1

K∑
k=1

log θijk.

The main effects of Y1, Y2 and Y3 are

λ1
i =

1
JK

J∑
j=1

K∑
k=1

log θijk − λ0,

λ2
j =

1
IK

I∑
i=1

K∑
k=1

log θijk − λ0,

λ3
k =

1
IJ

I∑
i=1

J∑
j=1

log θijk − λ0.

Each interaction effect is given by

λ12
ij =

1
K

K∑
k=1

log θijk − (λ1
i + λ2

j ) − λ0,

λ13
ik =

1
J

J∑
j=1

log θijk − (λ1
i + λ3

k) − λ0,

λ23
jk =

1
I

I∑
i=1

log θijk − (λ2
j + λ3

k) − λ0

and

λ123
ijk = log θijk − (λ12

ij + λ13
ik + λ23

jk) − (λ1
i + λ2

j + λ3
k) − λ0.
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Like log-linear models for two-ways contingency tables, the λ terms in the
log-linear models for three-way contingency tables directly relate to the odds
and odds ratios.

Here we introduce an important class of independence models that are called
hierarchical log-linear models. In the hierarchical models, if high-order λ
terms with certain variables are contained in the model, all lower-order λ
terms with these same variables are included. For instance, when a log-
linear model contains {λ12

ij }, the log-linear model also contains {λ1
i } and

{λ2
j}. Table 6.1 is the list of the hierarchical log-linear models for three-way

contingency tables. Interpretations of parameters in the log-linear models
refer then to the highest-order terms.

In log-linear models for conditional independence models, the two-factor ef-
fects correspond to partial associations. For instance, the log-linear model
[Y1Y2][Y2Y3] permits two-factor terms for associations between Y1 and Y2,
and Y2 and Y3, but does not contain a two-factor term for an association
between Y1 and Y3. Then the log-linear model [Y1Y2][Y2Y3] specifies condi-
tional independence between Y1 and Y3 given Y2. In the log-linear model
[Y1Y2][Y1Y3][Y2Y3] called the no three-factor interaction model, there exists
conditional dependence for all three pairs. Then the no three-factor interac-
tion model has equal conditional odds ratios between any two variables at
each level of the third variable. For example, the conditional odds ratio of
Y1 to Y2 in the k-th level of Y3 does not depend on k, and is given by

log
mijkmIJk

miJkmIjk
= λ12

ij + λ12
IJ − λ12

iJ − λ12
Ij ,

for i = 1, . . . , I − 1, j = 1, . . . , J − 1 and all k.

With multi-way contingency tables, the independence models are more com-
plicated than the models for three-way contingency tables. The log-linear
models can also describe several models for multi-way contingency tables
easily. The basic principles of log-linear models for three-way contingency
tables can be extended readily to multi-way contingency tables.

6.2.3 Generalized Linear Models

The log-linear model is a special case of generalized linear models (McCullagh
and Nelder, 1989). For cell frequencies in contingency tables, the generalized
linear models assume a Poisson distribution as the link function. Thus the
log-linear models are given by equation (6.2).
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Table 6.1: Independence models for three-way contingency tables

Symbol Log-linear model
Mutual independence
[Y1] [Y2] [Y3] log θijk = λ0 + λ1

i + λ2
j + λ3

k

Joint independence from two-factors
[Y1] [Y2Y3] log θijk = λ0 + λ1

i + λ2
j + λ3

k + λ23
jk

[Y1Y2] [Y3] log θijk = λ0 + λ1
i + λ2

j + λ3
k + λ12

ij

[Y1Y3] [Y2] log θijk = λ0 + λ1
i + λ2

j + λ3
k + λ13

ik

Conditional independence
[Y1Y2] [Y1Y3] log θijk = λ0 + λ1

i + λ2
j + λ3

k + λ12
ij + λ13

ik

[Y1Y3] [Y2Y3] log θijk = λ0 + λ1
i + λ2

j + λ3
k + λ13

ik + λ23
jk

[Y1Y2] [Y2Y3] log θijk = λ0 + λ1
i + λ2

j + λ3
k + λ12

ij + λ23
jk

No three-factor interaction
[Y1Y2] [Y1Y3] [Y2Y3] log θijk = λ0 + λ1

i + λ2
j + λ3

k + λ12
ij + λ13

ik + λ23
jk

Consider a 2 × 3 contingency table. From the constraints

2∑
i=1

λ1
i = 0,

3∑
j=1

λ2
j = 0,

2∑
i=1

λ12
ij =

3∑
j=1

λ12
ij = 0, (6.5)

the parameter vector is identified by

λ =
(
λ0, λ

1
1, λ

2
1, λ

2
2, λ

12
11, λ

12
12

)�
.

Thus the log-linear (6.2) can be written as⎛⎜⎜⎜⎜⎜⎜⎝
log m11

log m12

log m13

log m21

log m22

log m23

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 1 0 1 0
1 1 0 1 0 1
1 1 −1 −1 −1 −1
1 −1 1 0 −1 0
1 −1 0 1 0 −1
1 −1 −1 −1 −1 −1

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
λ0

λ1
1

λ2
1

λ2
2

λ12
11

λ12
12

⎞⎟⎟⎟⎟⎟⎟⎠ .

When the maximum likelihood estimates (MLEs) of λ can not be found
directly, iterative algorithms such as the Newton-Raphson and Fisher-scoring
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algorithms or the iterative proportional fitting procedure are applied. To
compute the MLEs λ̂ in log-linear models, XploRe uses the Newton-Raphson
and Fisher-scoring algorithms.

6.2.4 Fitting to Log-linear Models

Chi-squared Goodness of Fit Tests

To test a log-linear model against the saturated model, we estimate the ex-
pected frequencies of the log-linear model and evaluate the adequacy by the
Pearson chi-squared statistic. When the MLEs λ̂ in a log-linear model are
obtained, the expected frequencies are estimated from

m̂ = exp(Xλ̂).

To assess a log-linear model fitting to the data by comparing n to m̂, the
Pearson chi-squared statistic

χ2 =
∑

i,j,...,t

(nij...t − m̂ij...t)2√
m̂ij...t

is computed. As another measure of goodness of fit, the likelihood ratio test
statistic is used. This test statistic is computed from

G2 = 2
∑

i,j,...,t

nij...t log
nij...t

m̂ij...t
.

If the sample size is sufficiently large, χ2 and G2 have an asymptotic chi-
squared distribution with degrees of freedom (df) equal to the difference of
the number of free parameters in the saturated model and a log-linear model.
Then the chi-squared goodness of fit test can be conducted by the value of
χ2 or G2.

Moreover the likelihood ratio test statistic G2 can be used to compare two
log-linear models M1 and M2. Then M2 is nested in M1, such that every
nonzero λ terms in M2 is contained in M1. For example, the log-linear model
[Y1Y2][Y3] is the nested model in the log-linear model [Y1Y2][Y2Y3] and these
models are expressed by

M1 : log θijk = λ0 + λ1
i + λ2

j + λ3
k + λ12

ij + λ23
jk,

M2 : log θijk = λ0 + λ1
i + λ2

j + λ3
k + λ12

ij .

Thus M2 is simpler than M1 and M1 must hold when M2 holds. Assuming
that M1 holds, we test whether M2 fits the data as well as M1. To compare
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two models, the following test statistic is used:

�G2 = G2
2 − G2

1, (6.6)

where G2
1 and G2

2 are the likelihood ratio test statistics for M1 and M2.
Then �G2 also has an asymptotic chi-squared distribution with df equal to
(df for M1) − (df for M2).

When the value of �G2 is in a critical region, we conclude that M2 provides
a better description of the data. Furthermore �G2 is computed to compare a
nested model in M2 with M2. If the value of �G2 is outside a critical region,
we re-compare another nested model in M1 with M1. Repeating goodness of
fit tests to compare nested models, we find a best model.

Other criteria to compare nested models, the Akaike information criteria
(AIC) and the Bayesian information criteria (BIC) are well known.

Model Residuals

The goodness of fit statistic gives the summary of how well a log-linear model
fits to the data. We examine lack of fit by comparing observed data to the
fitted data individually.

For cell (i, j) in a two-way contingency table, the Pearson standardized resid-
ual is defined by

eij =
nij − m̂ij√

m̂ij

.

The Pearson residual is also related to the Pearson chi-squared test statistics
by

χ2 =
∑
i,j

e2
ij .

When a log-linear model holds, the residuals {eij} have an approximate nor-
mal distribution with mean 0. Then, by checking whether the Pearson resid-
uals are larger than about ±2 that is standard normal percentage points, we
detect the presence of the data that are influential on the fit of a log-linear
model.
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6.3 Inference for Log-linear Models Using
XploRe

To make inferences for log-linear models, we use the functions in the glm
library. The library is available by

library("glm")

6.3.1 Estimation of the Parameter Vector λ

The parameter vector λ can be estimated by using the glmest function

glmest("polog", x, n)

where polog is a Poisson distribution with logarithm link function, x is the
design matrix and n is the cell frequencies for contingency tables. Executing

lambda = glmest("polog", x, n)

the estimates of λ are assigned to the variable lambda. Then lambda contains
the following output:

b : the estimated parameter vector λ

bv : the estimated covariance of b

stat : several statistics

The expected frequencies m are also computed from

m = exp(x*lambda.b)

Moreover the glmest function and other functions in glm library can be
also specified several options by defining opt with glmopt. For the optional
parameters, refer to Härdle et al. (1999) or Help function in XploRe.

6.3.2 Computing Statistics for the Log-linear Models

A number of statistical characteristics can be computed using the glmstat
function. Then statistical characteristics can be obtained from
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stat = glmstat("polog", x, m, lambda.b, lambda.bv)

and are stored in the output stat:

df : degrees of freedom

deviance : the deviance of the estimated model

pearson : the Pearson statistic

loglik : the log-likelihood of the estimated model, using the estimated dis-
persion parameter

aic, bic : Akaike’s AIC and Schwarz’ BIC criterion, respectively

r2, adr2 : the (pseudo) coefficient of determination and its adjusted version,
respectively

it : the number of iterations needed

ret : the return code

nr : the number of replicated observation in x, if they were searched for.

6.3.3 Model Comparison and Selection

The computation of the likelihood ratio test statistic for comparing nested
models can be performed by the glmlrtest function:

{lr, pvalue} = glmlrtest(loglik2, df2, loglik1, df1)

where loglik1 and loglik2 are the log-likelihoods for the log-linear models
M1 and M2. Note that M2 must be the nested model in M1. These values
are obtained from the glmstat function. The augments df1 and df2 are dfs
for each model. Executing the above call, the test statistic lr and the p-value
pvalue are yielded.

Moreover, to select the best model automatically, XploRe has the glmselect,
glmforward and glmbackward functions. The glmselect function performs a
complete search model selection, the glmforward and glmbackward functions
do the forward and backward search model selections, respectively. The
syntax of these functions is the same as glmest. Note that best models
found by these functions are not always hierarchical log-linear models. Then
we repeat to compute the likelihood ratio statistics for comparing the nested
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models and finally find the best model. When the parameters λ0, {λA
i } and

{λB
j } are contained in all models, the optional parameter fix that specifies

them is described as follows:

opt = glmopt("fix", 1|2|3)

To search the best model by using the backward search model selection, we
type

select = glmbackward("polog", x, m, opt)

Then the output list select consists of five components:

best : the five best models

bestcrit : a list containing bestcrit.aic and bestcrit.bic, the Akaike
and Schwarz criteria for the five best models

bestord : the best models of each order

beatordcrit : like bestcrit, but for the best model for each order

bestfit : containing bestfit.b, bestfit.bv and bestfit.stat, the esti-
mation results for the best model

6.4 Numerical Analysis of Contingency Tables

6.4.1 Testing Independence

Chi-squared Test

The data in Table 11.1 are a cross-sectional study of malignant melanoma
taken from Roberts et al. (1981) and treated in Dobson (2001). For the two-
way table, we are interested in whether there exists a association between
Tumor type and Site.

Let m = {mij} be the expected frequencies for the contingency table. The
log-linear model that Tumor type is independent of Site is expressed by

log mij = λ0 + λType
i + λSite

j , (6.7)

for all i and j. From the constraints

λType
H + λType

S + λType
N + λType

I = λSite
HN + λSite

T + λSite
E = 0,
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Table 6.2: Contingency table with tumor type and site

Tumor Type (i) Site (j) Cell frequency
Hutchinson’s melanotic freckle (H) Head & neck (HN) 22

Trunk (T) 2
Extremities (E) 10

Superficial spreading melanoma (S) Head & neck (HN) 16
Trunk (T) 54
Extremities (E) 115

Nodular (N) Head & neck (HN) 19
Trunk (T) 33
Extremities (E) 73

Indeterminate (I) Head & neck (HN) 11
Trunk (T) 17
Extremities (E) 28

Table 6.3: Expected frequencies for the independence model

Tumor Type Site Cell frequency
Hutchinson’s melanotic freckle Head & neck 5.78

Trunk 9.01
Extremities 19.21

Superficial spreading melanoma Head & neck 31.45
Trunk 49.03
Extremities 104.52

Nodular Head & neck 21.25
Trunk 33.13
Extremities 70.62

Indeterminate Head & neck 9.52
Trunk 14.84
Extremities 31.64
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the parameter vector λ for the independence model is identified by

λ = [λ0, λ
Type
H , λType

S , λType
N , λSite

HN , λSite
T ].

To find the expected frequencies, we estimate the MLEs λ̂ using the following
statements:

library("glm")
n=#(22,2,10,16,54,115,19,33,73,11,17,28)
x=read("design.dat")
lambda = glmest("polog", x, n)

where design.dat is specified by

1 -1 -1 -1 -1 -1
1 -1 -1 -1 1 0
1 -1 -1 -1 0 1
1 1 0 0 -1 -1
1 1 0 0 1 0
1 1 0 0 0 1
1 0 1 0 -1 -1
1 0 1 0 1 0
1 0 1 0 0 1
1 0 0 1 -1 -1
1 0 0 1 1 0
1 0 0 1 0 1

The expected frequencies shown in Table 11.2 can be obtained by

m = exp(x*lambda.b)

and are compared to the data in Table 11.1 by using χ2. The value of χ2 is
computed from

lambda.stat

or

stat = glmstat("polog", x, m, lambda.b, lambda.bv)
stat.pearson
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Then χ2 of 65.8 is very significant compared to the chi-square distribution
with 6 df and indicates that the independence model does not fit to the data.
We can conclude that there exists the association between Tumor type and
Site.

Note that the function crosstable provides the chi-squared statistic for test-
ing independence for two-way contingency tables.

Model Residuals

Table 6.4: Pearson residuals for the independence model

Tumor Type Site Residual
Hutchinson’s melanotic freckle Head & neck 6.75

Trunk 2.34
Extremities -2.10

Superficial spreading melanoma Head & neck -2.76
Trunk 0.71
Extremities 1.03

Nodular Head & neck -0.49
Trunk -0.02
Extremities 0.28

Indeterminate Head & neck 0.48
Trunk 0.56
Extremities -0.65

Table 6.4 shows the Pearson standardized residuals for the fit of the indepen-
dence model. The values are easily computed from

e = (n-m)/sqrt(m)

We can see that the residual for Hutchinson’s melanotic freckle and Head &
neck reflects the overall poor fit, because the value of 6.752 = 45.56 is related
to χ2 = 65.8.
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6.4.2 Model Comparison

Chi-squared Test

The data in Table 11.3 summarize to a survey the Wright State University
school of Medicine and the United Health Services in Dayton, Ohio. The
analysis for the contingency table is given in Agresti (2002). For the three-
way table, we search the best model by using the likelihood ratio tests.

Table 6.5: Alcohol, cigarette and marijuana use for high school seniors

Alcohol use Cigarette use Marijuana use Cell frequency
(A) (C) (M)
Yes Yes Yes 911

No 538
No Yes 44

No 456
No Yes Yes 3

No 43
No Yes 2

No 279

Table 6.6 shows the expected frequencies for log-linear models of no three-
factor interaction and conditional independence models. The expected fre-
quencies for each model are computed by using glmest.

The expected frequencies for the log-linear model [AC][AM ][CM ] are found
using the following statements:

library("glm")
n=#(911, 538, 44, 456, 3, 43, 2, 279)
x=read("design.dat")
lambda = glmest("polog", x, n)
m = exp(x*lambda.b)

Then, under the constraints with the λ terms, the parameter vector λ is
identified by

λ = [λ0, λ
A
Y es, λ

C
Y es, λ

M
Y es, λ

AC
Y es,Y es, λ

AM
Y es,Y es, λ

CM
Y es,Y es]

T ,

and the design matrix x is specified by
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Table 6.6: Expected frequencies for log-linear models applied to Table 11.3

Log-linear model
A C M [AC][AM ] [AM ][CM ] [AC][CM ] [AC][AM ][CM ]

Yes Yes Yes 710.00 909.24 885.88 910.38
No 175.64 438.84 133.84 538.62

No Yes 131.05 45.76 123.91 44.62
No 2005.80 555.16 470.55 455.38

No Yes Yes 5.50 4.76 28.12 3.62
No 24.23 142.16 75.22 42.38

No Yes 1.02 0.24 3.93 1.38
No 276.70 179.84 264.45 279.62

1 1 1 1 1 1 1
1 1 1 -1 1 -1 -1
1 1 -1 1 -1 1 -1
1 1 -1 -1 -1 -1 1
1 -1 1 1 -1 -1 1
1 -1 1 -1 -1 1 -1
1 -1 -1 1 1 -1 -1
1 -1 -1 -1 1 1 1

To compute the expected frequencies of the nested models in the log-linear
model [AC][AM ][CM ], we delete the columns of x corresponding to λ setting
to zero in these models and then execute the above statements. For example,
deleting the seventh column of x, we can obtain the expected frequencies of
the log-linear model [AC][AM ]. The command

x[,1|2|3|4|5|6]

produces the design matrix for the log-linear model [AC][AM ].

Table 6.7 shows results of the likelihood ratio and Pearson chi-squared tests
for log-linear models. The statements to compute the values of G2 for the
saturated model M1 and a log-linear model M2 are

stat1 = glmstat("polog", x1, n, lambda1.b, lambda1.bv)
df1 = rows(lambda1.b)
stat2 = glmstat("polog", x2, n, lambda2.b, lambda2.bv)
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df2 = rows(lambda2.b)
{lr,pvalue}=glmlrtest(stat2.loglik, df2, stat1.loglik, df1)
lr
pvalue

where the design matrix x1 for the saturated model is specified by

1 1 1 1 1 1 1 1
1 1 1 -1 1 -1 -1 -1
1 1 -1 1 -1 1 -1 -1
1 1 -1 -1 -1 -1 1 1
1 -1 1 1 -1 -1 1 -1
1 -1 1 -1 -1 1 -1 1
1 -1 -1 1 1 -1 -1 1
1 -1 -1 -1 1 1 1 -1

The value of χ2 is also computed from

lambda = glmest("polog",x,n)
lambda.stat

Then the values of G2 and χ2 or p-value indicate that the model [AC][AM ][CM ]
fits well to the data.

Table 6.7: Goodness of fit tests for log-linear models

Log-linear model G2 χ2 Degrees of freedom p-value
[AC][AM ][CM ] 0.4 0.4 1 0.53

[AC][AM ] 497.4 443.8 2 0.00
[AM ][CM ] 187.8 177.6 2 0.00
[AC][CM ] 92.0 80.8 2 0.00

Model Residuals

To examine lack of fit to the data, we analyze the residuals for each log-linear
model. Table 6.8 shows the Pearson standardized residuals for the log-linear
models. All residuals for the log-linear model [AC][AM ][CM ] are very small
and demonstrate that the model well fits to the data. On the other hand,



122 6 Analysis of Contingency Tables

the residuals for conditional independence models indicate poorly fit to the
data. In particular, the extremely large residuals of -34.604 for the model
[AC][AM ] and of 34.935 for the model [AC][CM ] cause the lack of fit to the
data.

Table 6.8: The Pearson standardized residuals for log-linear models

Log-linear model
A C M [AC][AM ] [AM ][CM ] [AC][CM ] [AC][AM ][CM ]

Yes Yes Yes 7.543 0.058 0.844 0.020
No 27.342 4.734 34.935 -0.027

No Yes -7.604 -0.260 -7.179 -0.092
No -34.604 -4.209 -0.671 0.029

No Yes Yes -1.077 -0.807 -4.737 -0.324
No 3.813 -8.317 -3.715 0.095

No Yes 0.969 3.596 -0.975 0.524
No 0.138 7.394 0.895 -0.037

Test for Partial Associations

Moreover, it is possible to compare nested log-linear models by testing par-
tial associations. We test to compare the model [AC][AM ] with the model
[AC][AM ][CM ]. Then the test examines whether there exists a partial asso-
ciation between Alcohol use and Cigarette use, that is,

λCM
11 = λCM

12 = λCM
21 = λCM

22 = 0.

Each log-linear model is expressed by

M1 : log mijk = λ0 + λA
i + λC

j + λM
k + λAC

ij + λAM
ik + λCM

jk ,

M2 : log mijk = λ0 + λA
i + λC

j + λM
k + λAC

ik + λAM
jk .

From Table 6.7,

�G2 = 497.4 − 0.4 = 497.0

and df = 2 − 1 = 1, so that �G2 provides strong evidence of a partial
association between Cigarette use and Marijuana use. We can also test for
partial associations by comparing the models [AM ][CM ] and [AC][CM ] with
the model [AC][AM ][CM ].
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Search for the Best Model

Next we illustrate the best model search using the glmbackward function.
Using

opt = glmopt("fix", 1|2|3|4)

we specify to contain λ0, {λA
i }, {λC

j } and {λM
k } in the model. To choose a

best model, we execute

select=glmbackward("polog", x, n, opt)
select.best

where x is the design matrix for the saturated model. Then select.best
displays the five best models for the data:

Contents of best
[1,] 1 1 1 1 1
[2,] 2 2 2 2 2
[3,] 3 3 3 3 3
[4,] 4 4 4 4 4
[5,] 5 5 0 5 5
[6,] 6 6 6 6 0
[7,] 7 7 7 0 7
[8,] 0 8 8 8 8

In the above output, each row corresponds to the parameter vector λ in the
saturated log-linear model as follows:

row λ term
1 λ0

2 {λA
Y es}

3 {λC
Y es}

4 {λM
Y es}

5 {λAC
Y es,Y es}

6 {λAM
Y es,Y es}

7 {λCM
Y es,Y es}

8 {λACM
Y es,Y es,Y es}

Those components that are not contained in a log-linear model are indicated
by zero. The first column shows the no three-interaction model, since the
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row 8 is zero. The second column represents the saturated model. The
last three columns are not the hierarchical models. Therefore the model
[AC][AM ][CM ] is also selected as the best model. The output
select.bestfit includes all estimation results with the best model.
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7 Identifying Coexpressed Genes

Qihua Wang

Some gene expression data contain outliers and noise because of experiment
error. In clustering, outliers and noise can result in false positives and false
negatives. This motivates us to develop a weighting method to adjust the
expression data such that the outlier and noise effect decrease, and hence
result in a reduction in false positives and false negatives in clustering.

In this paper, we describe the weighting adjustment method and apply it to
a yeast cell cycle data set. Based on the adjusted yeast cell cycle expression
data, the hierarchical clustering method with a correlation coefficient mea-
sure performs better than that based on standardized expression data. The
clustering method based on the adjusted data can group some functionally
related genes together and yields higher quality clusters.

7.1 Introduction

In order to explore complicated biological systems, microarray expression
experiments have been used to generate large amounts of gene expression
data (Schena et al. (1995), DeRisi et al. (1997), Wen et al. (1998), Cho
et al. (1998)). An important type of those experiments is to monitor each
gene multiple times under some conditions (Spellman et al. (1998), Cho
et al. (1998), Chu et al. (1998)). Those of this type have allowed for the
identification of functionally related genes due to common expression patterns
(Brown et al. (2000), Eisen et al. (1998), Wen et al. (1998), Roberts et
al. (2000)). Because of the large number of genes and the complexity of
biological networks, clustering is a useful exploring technique for analysis of
gene expression data. Different clustering methods including the hierarchical
clustering algorithm (Eisen et al. (1998), Wen et al. (1998)), the CAST
algorithm (Ben-Dor et al., 2000) and self-organizing maps (Tamayo et al.,
1999) have been employed to analyze expression data.

Given the same data set, different clustering algorithms can potentially gen-
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erate very different clusters. A biologist with a gene expression data set is
faced with the problem of choosing an appropriate clustering algorithm or
developing a more appropriate clustering algorithm for his or her data set.
Cho et al. (1998) recently published a 17-point time course data set measur-
ing the expression level of each of 6601 genes for the yeast Saccharomyces
Cerevisiae obtained from using an Affymetrix hybridization array. Cells in
a yeast culture were synchronized, and cultured samples were taken at 10-
minutes intervals until 17 observations were obtained. Heyer, Kruglyak and
Yooseph (1999) presented a systematic analysis procedure to identify, group,
and analyze coexpressed genes based on this 17-point time course data.

An important problem for clustering is to select a suitable pairwise measure of
coexpression. Possible measures include the Euclidean distance, correlation
and rank correlation. Euclidean distances and pattern correlation have a
clear biological meaning: Euclidean distances are used when the interest is in
looking for identical patterns, whereas correlation measures are used in the
case of the trends of the patterns.

In the clustering, most measures scored curves with similar expression pat-
terns well, but often gave high scores to dissimilar curves or low scores to
similar ones. We will refer to a pair that is dissimilar, but receives a high
score from the similarity measure as a false positive (Heyer, Kruglyak and
Yooseph, 1999), and a pair that is similar, but receives a low score as a false
negative. As pointed out by Heyer, Kruglyak and Yooseph (1999) that the
correlation coefficient performed better than the other measures, but resulted
in many false positives. It is noted that the reason for false positive to occur
is outlier effect. Hence, Heyer, Kruglyak and Yooseph (1999) proposed a
new measure called jackknife correlation. For a data set with t observations,
the jackknife correlation Jij is defined as Jij = min{ρ(1)

ij , ρ
(2)
ij , · · · , ρ

(t)
ij , ρij},

where ρij denotes the correlation of the gene pair i, j and ρ
(l)
ij denotes the

correlation of the pair i, j computed with the lth observation deleted. An
advantage of this method is that it results in a reduction in false positives.
However, this method might be radical and lead to false negatives since it
takes the least value of these correlation coefficients as the measure of the
similarity. On the other hand, the method may lose much valuable informa-
tion since it works by deleting data. Also, the jackknife correlation is only
robust to a single outlier. For n outliers, a more general definition of jackknife
correlation is needed. For this case, however, this method is computationally
intensive for even small values of n and can result in the loss of much valuable
information since it deletes n data points.

If the expression level of a gene at each time point is viewed as a coordi-
nate, then the standardized expression level of each gene at all t time points
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describes a point in the t dimensional space, and the Euclidean distance be-
tween any two points in this space can be computed. Euclidean distances
are more affected by small variations in the patterns and produce less inter-
pretable clusters of sequences. As pointed by Heyer, Kruglyak and Yooseph
(1999) the two points for which the distance is minimized are precisely the
points that have the highest correlation. However, the opposite is not true.
That is, a pair of genes that are dissimilar and have large Euclidean distance
may have high correlation because of outlier effect and hence receive a high
score from the similarity measure of correlation coefficient.

This shows that the Euclidean distance measure with standardized data per-
forms better than the correlation coefficient measure in the sense of resulting
in less false positive. However, the Euclidean distance measure still result
in many false negatives due to the effect of outliers. If the expression levels
of two genes are close to each other but one of the time points, and one of
the two genes has a high peak or valley at the remaining time point, then
the Euclidean distance may be large and hence the pair which closes to each
other except for the outlier may be considered as dissimilarity.

It seems difficult to avoid outlier effect by selecting similarity measure. A
possible method to reduce the outlier effect is to adjust the expression data.

Wang (2002) proposes a weighting adjustment method and applies it to the
17 time-point time course data such that a similarity measure assigns higher
score to coexpressed gene pairs and lower scores to gene pairs with unrelated
expression patterns, and hence results in not only a reduction of false positives
but also a reduction of false negatives in clustering. Here, we present the
work.

7.2 Methodology and Implementation

We consider the Saccharomyces cerevisiae data set by Cho et al. (1998).
This data set measures the expression level of each of the 6601 genes of Sac-
charomyces cerevisiae at 17 time points, sampled every ten minutes during
roughly two complete cell cycles. Before giving and applying our method
to the data set, we first filter away the genes that were either expressed at
very low levels or did not vary significantly across the time points (Heyer,
Kruglyak and Yooseph, 1999). The reason to do so is that the fluctuations
were more likely noise than signal if the expression levels were below a de-
tection threshold or that the gene that showed so little variation over time
may be inactive or not involved in regulation. We remove the genes whose
expression values across all the time points are less than 250 and those whose
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maximum expression levels are not larger than 1.1 times of their average
expression levels. After filtering, 3281 genes remained in the data set.

7.2.1 Weighting Adjustment

Many of the false positives and false negatives occurred due to the effect of
outliers by standard clustering methods. A possible method to reduce the
effect of outliers is to adjust the raw data by a certain method. It is noted
that the expression level of a gene at any time point is closely related to the
expression levels of the gene at the time points in the nearest neighbor of
this point. It is likely that the closer the two time points, the higher the
relationship between the two expression levels at the two time points.

This leads us to use a weighting method to adjust the expression values so
that not only the effect of outliers decreases but also data analysis is less
sensitive to small perturbation in the data. The data have been standardized
by subtracting the mean and dividing by the standard deviation. Let xi,j

be the standardized expression level of the ith gene at the j time point
for i = 1, 2, . . . , 3281 and j = 1, 2, . . . , 17. We get the following adjusted
expression level

x′
i,j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1
2xi,j + 1

3xi,j+1 + 1
6xi,j+2, if j = 1

1
5xi,j−1 + 1

2xi,j + 1
5xi,j+1 + 1

10xi,j+2, if j = 2
1
12xi,j−2 + 1

6xi,j−1 + 1
2xi,j + 1

6xi,j+1 + 1
12xi,j+2, if 3 ≤ j ≤ 15

1
10xi,j−2 + 1

5xi,j−1 + 1
2xi,j + 1

5xi,j+1, if j = 16
1
2xi,j + 1

3xi,j−1 + 1
6xi,j−2. if j = 17

It is easily seen that the adjusted expression level of a gene at the jth time
point is the weighting average of the expression levels of the gene at the time
points in the nearest neighbor of the j time point for j = 1, 2, . . . , 17.

Actually, the adjusted expression level of the jth time point is given by
assigning weight 1/2 to jth time point and total weight 1/2 to other points.
The symmetric points about the jth time point such as j + 1 and j − 1 are
assigned the equal weights for j = 3, 2, . . . , 15.

The weights which are assigned to time points k with |k − j| > 2 are zero
and to time point j + 2 or j − 2 is 1/2 time of that for the time point j + 1
or j − 1. One intuitive method for seeing how the weighting method behaves
is to plot the expression data and the adjusted ones for some gene pairs.

From Figure 7.1 to Figure 7.4, it seems that the curves of the functionally
related gene pairs with coexpression become more similar to each other after
adjustment. From Figures 7.5 and 7.6, the unrelated gene pair which is
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Figure 7.1: Standardized expression level curves for YDR224c/HTB1 and
YDR225w/HTA1 i. The gene pair has a correlation coefficient
of 0.8094 based on the standardized data.

XCSclust01.xpl

not coexpressed seems to become further away from each other. Another
more exact method is to compare the correlation coefficients of gene pairs or
Euclidean distances of them based on the expression data with those based
on the adjusted ones. It is interesting to find that the correlation coefficients
of the most of highly correlated gene pairs become larger and those of lowly
correlated gene pairs become smaller after the expression values are adjusted.
This can be seen from Table 7.1 and Figure 7.7.

From Figure 7.7, it is easy to see that the correlation coefficients of the most
gene pairs whose correlation coefficients are larger than 0.6 before adjustment
become larger after adjustment, and those whose correlation coefficients are
less than 0.2 before adjustment become less after adjustment. That is, this
method gives higher score to similar gene pairs and lower score to dissimilar
ones. This may be due to the fact that the weighting adjustment method
can lead to a reduction of effect of outliers and noise in expression data.
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Figure 7.2: Adjusted expression level curves for YDR224c/HTB1 and
YDR225w/HTA1 i. The gene pair has a correlation coefficient
of 0.8805 based on the adjusted data.
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From Figure 7.7 and Table 7.1, we also see that some of the highly correlated
pairs are given lower correlation coefficient score after the expression data
are adjusted. The reason may be that outliers or data noise lead to the high
correlation between these gene pairs, or that, randomly, some of them display
very similar pattern before adjustment.

After weighting adjustment for the expression values, the correlation coef-
ficients for these pairs will decrease since the adjustment method leads to
a reduction of effect of outliers, data noisy and randomization. Also, it is
observed that some lowly correlated gene pairs are given much higher cor-
relation coefficient score after the expression data are adjusted. The reason
may be that only one of a gene pair contains outliers at the same time points
or one of the two genes has high peaks and another gene have high valleys at
the same time points, and these outliers lead to the low correlation between
the gene pair. After adjustment, effect of outliers decreases and hence the
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Figure 7.3: Standardized expression level curves for YDL179w/PCL9 and
YLR079w/SIC1. The gene pair has a correlation coefficient of
0.9106 based on the standardized data.
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correlation coefficient for the gene pair will increase. This, for example, can
be seen from Figures 7.8 and 7.9, which contain plots of the expression level
curves for gene pair YAR002w and YBL102w/SFT2 based on standardized
expression data and adjusted ones, respectively. From Figure 7.8, we see that
YBL102w/SFT2 and YAR002w seem to be overly expressed at two different
time points of 90 minutes and 150 minutes, respectively. At the time point of
90 minutes, only YBL102w/SFT2 has a high peak. At the time point of 150
minutes, YAR002w has a high peak and YBL102w/SFT2 has a low valley.

If one removes the expression values of the two genes at the two time points,
the correlation coefficient of the two genes increase to 0.6036 from 0.3150.
This shows that the two special expression values lead to a low correlation
between the two genes. From Figure 7.9, it is easily seen that the weighting
adjustment method leads to a reduction of effect of the expression values
at the two time points so that the correlation coefficient of the two genes
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Figure 7.4: Standardized expression level curves for YDL179w/PCL9 and
YLR079w/SIC1. The gene pair has a correlation coefficient of
0.9675 based on the adjusted data.
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increase to 0.8113.

By the above important features, we can expect that this adjustment method
will lead to a reduction of both the false positives and false negatives when
Pearson correlation coefficient clustering algorithm is used.

7.2.2 Clustering

We clustered the gene expression time series according to the Pearson cor-
relation coefficient since it not only conforms well to the intuitive biological
notion and performs better than other measures, but also the correlation co-
efficient measure has the important features in Section 7.2.1 for the adjusted
expression data.

The clustering method that we use is the popular hierarchical method. This
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Figure 7.5: Standardized expression level curves for YDL227c/HO and
YDR224c/HTB1. The gene pair has a correlation coefficient of
0.3172 based on the standardized data based on the standardized
expression data.
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method computes a dendrogram that assembles all the genes into a single
tree. Starting with N clusters containing a single gene each, at each step
in the iteration the two closest clusters are merged into a larger cluster by
calculating an upper-diagonal similarity matrix by the metric described above
and scanning the matrix to identify the highest value. Similarity measure
between clusters is defined as that between their average expression pattern.
After N −1 steps, all the genes are merged together into an hierarchical tree.

Once the tree is constructed, the data can be partitioned into any number of
clusters by cutting the tree at the appropriate level. For large data sets, how-
ever, it is not easy to choose an appropriate location for cutting the tree. We
will not address this problem here since our purpose in this paper is to show
how our weighting adjustment method improves the classification results. To
evaluate how ‘good’ our clustering is, let us identify some applications.
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Figure 7.6: Standardized expression level curves for YDL227c/HO and
YDR224c/HTB1. The gene pair has a correlation coefficient of
0.1401 based on the adjusted expression data.
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YDR224c/HTB1 and YDR225w/HTA1 are late G1 and G2 regularly genes
which have the same biological function (DNA replication, (Cho et al.,
1998)). A natural question is: Can the two genes be grouped together based
on the adjusted expression levels? To answer this question, let us find the
clusters including the two genes.

In our hierarchical tree, it can be found the smallest cluster including
YDR224c/HTB1 contains two genes, YDR224c/HTB1 and YDR225w/HTA1.
It is interesting to note that the two genes are just known functionally related
by Cho et al. (1998).

The above result implies that this cluster is also the smallest one which
includes the two genes. This shows that our method can group the two
functionally related genes together.

Another intuitive method to evaluate objectively the quality of the clustering
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Table 7.1: Correlation coefficients for some gene pairs based on the stan-
darized and adjusted expression data

Gene Pairs BA AA

YKL130c/SHEI YNL053w/MSG5 0.8047 0.8474
YDL179w/PCL9 YLR079w/SICI 0.9106 0.9676
YJL157c/FAR1 YKL185w/ASH1 0.9293 0.9535

YJR092w/BUD4 YLR353w/BUD8 0.6904 0.9684
YIL009w/FAA3 YLL040c/VPS13 0.7519 0.8798
YJL196c/EL01 YJR148w/TWT2 0.6815 0.7433

YBL023c/MCM2 YBR202w/CDC47 0.7891 0.8383
YHR005c/GPA1 YJL157c/FAR1 0.8185 0.8320
YOR373w/NUD YJL157c/FAR -0.1256 -0.2090

YOR373w/NVD1 YAL040c/c -0.1133 -0.2222

YDR225w/HTA1̃i YLL022c 0.3493 0.0673
YJR018w YJR068w/RFe2 0.9046 0.8968

YJR068/RFC2 YJR132w/NMD5 0.8700 0.7121

BA: Before Adjustment, AA: After Adjustment

for the particular application is to plot the expression data for the genes in
the clustering and determine whether the plots look similar and how the plots
look similar. Figure 7.1 plots the expression level curves for the two genes.
By Figure 7.1, their expression patterns are indeed similar to each other.

It is known there are 19 late G1 regulatory genes and two of them are just
YDR224c/HTB1 and YDR225w/HTA1 (Cho et al., 1998). In our clustering
tree, the cluster including the two genes whose gene number is the closest
to 19 contains 17 genes, 4 of them are known to be late G1 regulary and
functionally related with DNA replication. It is known that some unrelated
genes also may have similar expression patterns. Hence, the remaining 13
genes are not necessarily functionally related with the 4 genes even though
they are coexpressed. However, the 13 genes provide excellent candidates for
further study.

We also try to find the smallest cluster including the 19 genes in late G1
group. Unfortunately, this cluster contains 2930 genes and hence is not of
high quality since it contains many lowly related genes. This reason may
be that some gene pairs in the late G1 group are lowly related. For ex-
ample, the correlation coefficient of the gene pair, YDR225w/HTA1 and
YPR175w/DPB2, in the late G1 group is 0.0471.
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Figure 7.7: Correlation coefficients of 10,000 gene pairs. ρ and ζ are the corre-
lation coefficients based on the standardized expression data and
the adjusted expression data, respectively. 869 gene pairs have
correlation coefficients which are larger than 0.6. The correlation
coefficients of 556 pairs of them become larger after adjustment.
2303 gene pairs have correlation coefficients which are less than
0.2. The correlation coefficients of 1520 pairs of them become less
after adjustment.
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Another problem we should answer is whether the adjustment method im-
proves the classification result compare to the corresponding hierarchical
method based on standardized expression data. Let us consider the above
example again and see how the clustering method based on standard ex-
pression data behaves. From the hierarchical tree based on the standardized
data without adjustment, the smallest cluster including YDR224c/HTB1 is
{YDR224c/HTB1, YDR134C/ f}. However, YDR134C/ f is not known to
be functionally related with YDR224c/HTB1 though it provides a possible
candidate. Figure 7.10 plots the expression level curves of the two genes.
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Figure 7.8: Standardized expression level curves for YAR002w and
YBL102w/SFT2. The gene pair has a correlation coefficient of
0.3750 based on the standardized expression data.
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In the clustering tree based on the standardized expression data without
adjustment, the cluster including all the 3281 genes is the only one including
both YDR224c/HTB1 and YDR225w/HTA1. This shows that this method
cannot group the two functionally related genes together.

Both YDR224c/HTB1 and YDR225w/HTA1 are also in the late G1 group
mentioned above, which contains 19 genes. Hence, the cluster including the
3281 genes are also the only one including the 19 genes. This shows that
this clustering method with standardized expression data yields much lower
quality clusters and also cannot group the 19 genes together.

Let us consider another example. YJR092W/BUD4 and YLR353W/BUD8
are M regulatory genes which are functionally related to directional growth
(Cho et al., 1998). In our clustering tree, the smallest cluster including
the two genes contains four genes. The other two genes are YNL066W and
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Figure 7.9: Standardized expression level curves for YAR002w and
YBL102w/SFT2. The gene pair has a correlation coefficient of
0.8113 based on the adjusted expression data.
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YOR025W/HST3. Figure 7.11 plots the standardized expression level curves
of the four genes.

From Figure 7.11, all the expression level curves are similar to each other
except YNL066W. It is easy to see that YOR025W/HST3 is coexpressed with
YJR092W/HUD4 and YLR353W/BUD8. Hence, YOR025W/HST3 provides
an excellent candidate for further study whether it is functionally related with
YJR092W/HUD4 and YLR353W/BUD8.

Let us apply the clustering method with standardized data without adjust-
ment to the above example. The smallest cluster including YJR092W/BUD4
and YLR353W/BUD8 contains 11 genes.

YJL157c/FAR1 is an early G1 regulary gene which is functionally related
with mating pathway. In our hierarchical tree, the smallest cluster includ-
ing this gene contains two genes,YJL157c/FAR1 and YGR183C/QCR9 ex1.
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Figure 7.10: Standardized expression level curves for YDR224c/HTB1 and
YDR134c/ f in the clustering tree based on the standardized
expression data.
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From Figure 7.12, we can see that YGR183C/QCR9 ex1 is coexpressed with
YJL157c/FAR1 though it is not known to be early G1 regularly gene which
is functionally related with YJL157c/FAR1. The second smallest cluster con-
tains 5 genes in addition to YJL157c/FAR1. One of them is YKL185w/ASH1,
which is known to be functionally related with YJL157c/FAR1. Actually, this
cluster is also the smallest one including the two functionally related genes.

For the clustering method with standardized expression data, the smallest
cluster including YJL157c/FAR1 contains 6 genes. The second smallest clus-
ter contains 7 genes. No genes in the two clusters are known to be func-
tionally related. The smallest cluster including the two functionally related
genes, YJL157c/FAR1 and YKL185w/ASH1, contains 96 genes.

It is known that YIL140w/SRO4 is the only one which is known to be S reg-
ulatory and to be related with directional growth. Are there any functionally
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Figure 7.11: Standardized expression level curves for the genes in the smallest
cluster including YJR092w/HUD4 and YLR353w/HUD8 in the
clustering tree based on the adjusted data. The remaining two
genes are YNL066w and YOR025w/HST3.
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related genes with it? Which genes are coexpressed with it? In our clustering
tree, the first smallest cluster including this gene is
{YIL140w/SRO4, YPL163c/SVS1}. The second smallest cluster contains an-
other gene, YOR373w/NUD1, in addition to the above two genes. From the
standardized data without adjustment, different clusters are obtained. The
smallest cluster including YIL140w/SRO4 is {YIL140w/SRO4, YLR326w}.
The second smallest cluster contains YNL243w/SLA2 and YPR052c/NHP6A
in addition to the two genes in the smallest cluster. Figures 7.13 and 7.14 plot
the expression level curves for the genes in the two second smallest clusters,
respectively.

From Figures 7.13 and 7.14, we see that the expression level curves for the
genes in the cluster by our method are more closer to each other. This also
can be seen by their correlation coefficients. In our cluster, other genes are
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Figure 7.12: Standardized expression level curves for the genes in the smallest
cluster including YJL157c/FAR1 in the clustering tree based on
the adjusted data.
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more highly related with YIL140w/SRO4. This shows that our clusters have
higher quality for this special example. From Figure 7.14, the cluster based
on the standardized expression data is of much more lowly quality since it
contains some lowly related genes.

From the above examples, we see that the clustering method based on the
adjusted expression data behave better than that based on the standardized
expression data without adjustment. Our method can group coexpression
genes and some functionally related genes together. However, We have not
found that any known functionally related genes can be in the same clusters
with high quality in the clustering tree based on the standard expression data.
Figure 7.13 shows that two functionally related gene pairs, YJR092w/BUD4
and YLR353w/BUD8, are in a cluster with 11 genes. However, this cluster
is clearly not of high quality since it contains some lowly related genes with
YJR092w/BUD4 and YLR353w/BUD8.
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Figure 7.13: Standardized expression level curves for the genes in the second
smallest cluster including YIL140w/SRO4 in the clustering tree
based on adjusted expression data.
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It should be pointed out some functionally related genes cannot also group
together based on the adjusted data. This reason may be that some function-
ally related genes are not coexpressed. Also, genes in the same high quality
cluster are not necessarily functionally related since some functionally unre-
lated genes have similar expression patterns. Because there is a connection
between coexpression and functional relation, the clusters are an exploratory
tool that meant to identify candidate functionally related genes for further
study though they do not reveal the final answer whether these genes in the
same clusters are functionally related.

7.3 Concluding Remarks

Our purpose to use the weighting method to adjust the expression data is
to decrease the the effect of the outliers and noise. It is reasonable to assign
a weight of 1/2 to the point that one hopes to adjust and a total weight of
1/2 to other points which are located in its nearest neighbor. This method
of assigning weights used in this paper can effectively result in a reduction of
effect of outliers and noise and does not change the normal expression levels
too much. Also, the weighting method is robust for the slight change of the
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Figure 7.14: Standardized expression level curves for the genes in the second
smallest cluster including YIL140w/SRO4 in the clustering tree
based on the standardized expression data.
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weights. If one assigns a much larger weight than 1/2 to the point which
is adjusted, effect of outlier or noise may not decrease effectively. If one
assigns a much less weight than 1/2 to the point, the adjusted expression level
may not provide correct information and hence the weighting method may
result in wrong clustering results since such a method changes the expression
levels too much. It should be pointed out that the weighting adjustment
method can be applied to any analysis procedures for any gene expression
data to decrease the effect of outlier and noise though we apply it only to a
hierarchical clustering for the yeast cell cycle data in this paper.

Heyer, Kruglyak and Yooseph (1999) proposed a jackknife correlation mea-
sure to resolve false positive. As pointed out before, this method may
be radical and may lead to false negatives. An improved method which
can avoid the false negatives may be to use another jackknife correlation
ρij,JK = 1

n

∑n
k=1(nρij − (n − 1)ρ(k)

ij ) based on the adjusted data, where ρij
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and ρ
(k)
ij are as defined in Introduction. On the other hand, the clustering

method with the jackknife correlation measure ρij,JK based on the standard-
ized expression data without adjustment may be conservative and cannot
avoid the occurring of false positives very well. Based on the adjusted data,
however, the jackknife correlation measure may avoid the false positives and
false negatives very well. We will investigate the measure in future work.
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8 Bootstrap Methods for Testing
Interactions in GAMs

Javier Roca-Pardiñas, Carmen Cadarso-Suárez
and Wenceslao González-Manteiga

8.1 Introduction

In many biomedical studies, parametric regression models are widely used to
evaluate the effects of continuous exposures on a dependent variable. How-
ever, the relative lack of flexibility of parametric models has, in recent years,
led to the development of nonparametric regression techniques based on the
broad family of generalized additive models (GAMs; Hastie and Tibshirani,
1990). These techniques do not impose a parametric form on the effects of
continuous predictors; instead, they assume only that these effects are rea-
sonably smooth. In this work we focus our attention on logistic GAMs.

Let Y be the binary (0/1) response and X = (X1, . . . , Xp)
� the p-vector

of associated continuous covariates. Denoting by p (X) = p (Y = 1|X), the
logistic GAM expresses p (X) as

log [p(X)/ {1 − p(X)}] = ηX = α + f1 (X1) + . . . + fp (Xp) , (8.1)

where systematic component ηX, is defined by the constant α, and the sets of
unknown partial functions {fj}p

j=1 associated with each continuous covariate
Xj .

Algorithms aspects of additive modeling by backfitting are discussed in Hastie
and Tibshirani (1990). Alternative procedures based on marginal integration
have also been suggested by Tjφstheim and Auestad (1994) and Linton and
Nielsen (1995).

A disadvantage of (8.1) is that this model completely ignores the fact that
the functional form of a covariate effect often varies according to the values
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tacken by one or more of the remaining covariates. A possible generalization
of model (8.1) is the second-order continuous interactions GAM, resulting in
the following curve-by-curve interactions model:

log [p(X)/ {1 − p(X)}] = ηX = α+
p∑

j=1

fj (Xj)+
∑

1≤j<k≤p

fjk (Xj , Xk) , (8.2)

where {fjk} (1 ≤ j < k ≤ p) is now a set of unknown partial bidimensional
functions.

Several methods for estimating (8.2) have already been proposed in the liter-
ature. Hastie and Tibshirani (1990) discussed algorithms for backfitting with
cubic smoothing splines. More recently, Sperlich et al. (2002) used marginal
integration for estimating additive models with interactions. Alternative pro-
cedures were suggested by Ruppert, Wand and Carroll (2003) using penalized
splines.

Another generalization of “pure” GAM in (8.1) is the GAM with factor-by-
curve interactions. In this type of model, the relationship between Y and
each of the continuous covariates Xj can vary among the subsets defined
by the levels of a categorical covariate Z with M levels {1, . . . ,M}. The
possibility of incorporating this type of interaction in GAMs and using the
local scoring algorithm for its estimation was already discussed by Hastie
and Tibshirani (1990). Recently, Coull et al (2001) presented an algorithm
based on penalized splines which would allow these types of interactions to
be incorporated into GAMs.

The factor-by-curve logistic GAM takes the form:

log [p(Z,X)/ {1 − p(Z,X)}] = ηZ,X

= α +
∑p

j=1 {fj (Xj) + fZj (Z,Xj)} ,
(8.3)

where the interaction terms, {fZj}, are given by

fZj (Z,Xj) =
M∑
l=1

I{Z = l}gl
j(Xj), (8.4)

being gl
j (l = 1, . . . ,M) unidimensional functions depending on Xj .

Apart from estimation, it would be most interesting to have statistical tests
available that were capable of detecting which effects depend on another co-
variate. For continuous interactions Hastie and Tibshirani (1990) proposed
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using the likelihood ratio test; Sperlich et al. (2002) presented interactions
tests for additive models; and, insofar as factor-by-curve interactions are
concerned, Coull et al. (2001) presented tests based on penalized spline esti-
mators. Yet, until now, these types of interactions have not been emphasized
in the literature.

The layout of this chapter is as follows. Logistic GAMs with interactions and
the local scoring estimation algorithm based on local linear kernel smoothers
are presented in Section 11.2. The testing problem is introduced in Section
11.3. In this section, different interaction tests are proposed, with bootstrap
approximations being used to implement the tests. To check our test pro-
cedures, a simulation example is provided in Section 11.4 along with power
results. In Section 8.5 we apply our methodology to real data. Section 8.5.1
describes an application to assess the relationship between neuronal activity
data and decision making. In Section 8.5.2 we apply the proposed methodol-
ogy to data drawn from a registry-based prospective cohort study to identify
risk factors for post-operative infections. Finally, we conclude with a discus-
sion section.

8.2 Logistic GAM with Interactions

Continuing with the notation introduced in Section 11.1, let Y be the binary
(0/1) response, X = (X1, . . . , Xp)

� a vector of p continuous covariates and
Z a categorical covariate with M levels {1, . . . ,M}. Denoting by p (Z,X) =
p (Y = 1|Z,X), in this work we consider the model

log [p(Z,X)/ {1 − p(Z,X)}] = ηZ,X = α +
∑p

j=1 {fj (Xj) +
+fZj (Z,Xj)} +

∑
1≤j<k≤p

fjk (Xj , Xk) , (8.5)

where α is a constant, fj represent the main effects of the continuous co-
variates, fZj are the factor-by-curve interactions terms, and fjk are the
continuous-by-continuous interactions terms. Note that (8.5) is a general-
ization of models given in (8.1), (8.2) and (8.3). In order to guarantee the
identification of (8.5) we assume zero mean for the main effect fj , and zero
mean marginal means for the interaction terms fZj and fjk.
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8.2.1 Estimation: the Local Scoring Algorithm

We have adapted the local scoring algorithm (Hastie and Tibshirani, 1990)
with backfitting (Opsomer, 2000) for the purposes of estimating the GAM
with interactions in (8.5). We present a new algorithm which, on the basis of
a random independent sample {(Zi,Xi, Yi)}n

i=1 of (Z,X, Y ), allows for the
fj (Xij), fZj (Zi, Xij) and p (Zi,Xi) estimates to be obtained. The steps of
this algorithm are as follows:

Initialize. Compute the initial estimates, α̂ = log
{
Ȳ /
(
1 − Ȳ

)}
, f̂0

j = 0,
f̂0

Zj = 0(1 ≤ j < p), f̂0
jk = 0 (1 ≤ j < k ≤ p) and p̂0

i = p̂0 (Zi,Xi) = Ȳ

(i = 1, . . . , n) with Ȳ = n−1
∑n

i=1 Yi.

Step 1. Form the adjusted dependent variables Ỹ =
(
Ỹ1, . . . , Ỹn

)
and the

weights Ŵ =
(
Ŵ1, . . . , Ŵn

)
, so that Ỹi = η̂0

i +
(
Yi − p̂0

i

)
/
{
p̂0

i

(
1 − p0

i

)}
and

Ŵ−1
i = p̂0

i

(
1 − p̂0

i

)
, where

η̂0
i = α̂ +

∑p
j=1

{
f̂0

j (Xij) + f̂0
Zj (Zi, Xij)

}
+

∑
1≤j<k≤p

f̂0
jk (Xj , Xk)

Step 2. Fit an additive model (with factor-by-curve interactions) to Ỹ using
backfitting, and compute the updates f̂j and fZj , as follows:

Step 2.1. Cycle j = 1, . . . , p, calculating the partial residuals

Rj
i = Ỹi − n−1

∑n
i=1 Ỹi −

∑
l<j

{
f̂l (Xil) + f̂Zl (Zi, Xil)

}
−

−
∑
l>j

{
f̂0

l (Xil) + f̂0
Zl (Zi, Xil)

}
−

∑
1≤l<m≤p

f̂0
lm (Xil, Xim) ,

and for i = 1, . . . , n, compute the local linear polynomial estimator updates
(see (8.7) for details),

f̂j (Xij) = ψ̂
(
Xij ,

{(
Xsj , R

j
s, Ŵs

)}n

s=1
, hj

)
,

and then f̂Zj (Zi, Xij) =
∑M

k=1 ĝk
j (Xik) I{{Zi = k}}, so that

ĝk
j (x) = ψ̂

(
x,
{(

Xi, R
Zj
i , Ŵ k

i

)}n

s=1
, hk

j

)
,

with RZj
i = Rj

i − f̂j (Xij), Ŵ k
i = ŴiI{Zi=k}, hj being the bandwidths asso-

ciated with estimation of fj , and h1
j , . . . , h

M
j the bandwidths associated with
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estimation of fZj for each of the factors Z = 1, . . . ,M .

Step 2.2. Cycle (j, k)1≤j<k≤p and calculate residuals

Rjk
i = Ỹi − ¯̃Y −

p∑
j=1

{
f̂j (Xij) + f̂Zj (ZiXij)

}
−

−
∑

(l,m)<(j,k)

f̂lm (Xil, Xim)−
∑

(l,m)>(j,k)

f̂0
lm (Xil, Xim),

((l,m) < (j, k) if l < j, or l = j and m < k) and compute compute the
bidimensional local linear polynomial estimator updates (Ruppert and Wand,
1994, see (8.7) for details)

f̂jk (Xij , Xik) = ψ̂2D

(
(Xij , Xik) ,

{(
(Xsj , Xsk) , Rjk

s , Ŵs

)}n

s=1
, hj

)
,

being a bidimensional density function and Hjk a symmetric, positive definite
2 × 2 matrix (the bandwidth or smoothing parameter matrix).

Step 2.3. This process is repeated, with f̂0
j being replaced by f̂j , f̂0

Zj by

f̂Zj , and f̂0
jk by f̂jk, until

∑n
i=1

(
η̂

i
− η̂0

i

)2/∑n
i=1

(
η̂0

i

)2 ≤ εbf , where η̂i =

α̂+
∑p

j=1

{
f̂j (Xij) − f̂Zj (Zi, Xij)

}
+

∑
1≤j<k≤p

f̂jk (Xj , Xk) and εbf is a small

threshold.

Step 3. Repeat Steps 1-2, with p̂0
i being replaced by p̂i = p̂ (Zi,Xi) =(

1 + exp (η̂i)
−1
)−1

for i = 1, . . . , n, until
∣∣D (p̂0,Y

)
− D (p̂,Y)

/
D
(
p̂0,Y

)∣∣ ≤
ε, where ε is a small threshold and

D (p̂,Y) = −2
∑n

i=1
{Yi log (p̂i) + (1 − Yi) log (1 − p̂i)}.

Automatic Selection of the Smoothing Parameters

It is well known that the probability estimates p̂ (Zi,Xi), depend heavily on
the bandwidths hj ; h1

j , . . . , h
M
j (j = 1, . . . , p), used in the estimation of the

unidimensional partial functions fj ; f1
j , . . . , fM

j , and on the 2× 2 matrices of
bandwidths Hjk (1 ≤ j < k ≤ p), used in the estimation of the bidimensional
partial functions fjk. As a practical solution to this problem, we have used
the cross-validation technique to choose (at each iteration of the algorithm)
the windows

{
hj ; h1

j , . . . , h
M
j

}
and {Hjk

}, used in the estimates f̂j , f̂Zj , and
f̂jk. This mechanism is explained in detail in (8.7) below.
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Cross-validation implies a high computational cost, in as much as it is nec-
essary to repeat the estimation operations several times in order to select
the optimal bandwidths. To speed up this process we used one- and two-
dimensional binning-type acceleration techniques (see Wand (1994), Wand
and Jones (1995), Fan and Marron (1994) and Härdle and Scott (1992)).

8.3 Bootstrap-based Testing for Interactions

In this section, bootstrap resampling techniques are used to test for inter-
action terms in the GAM specified in (8.5). We are interested in both the
curve-by-curve and factor-by-curve interaction tests.

In the curve-by-curve tests, for any given fixed pair (j, k) the null hypothesis
is

H0 : log
[{

p (Z,X)−1 − 1
}−1
]

= ηZ,X − fjk (Xj , Xk) , (8.6)

vs the general hypothesis

H : log
[{

p (Z,X)−1 − 1
}−1
]

= ηZ,X.

Therefore the null hypothesis, H0 : fjk = 0, assumes that there is no inter-
action between the effect of the continuous covariates Xj and Xk.

In the factor-by-curve interaction tests, for a given continuous covariate, Xj ,
the interest is to contrast if the effect of this covariate depends on the modal-
ities of the factor Z. In this case, the null hypothesis is given by

H0 : log
[{

p (Z,X)−1 − 1
}−1
]

= ηZ,X − fZj (Z,Xj) . (8.7)

For testing purposes, we propose two test statistics, the first based on the
likelihood ratio test and the second on a direct method based on the estimate
of the interaction terms.
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8.3.1 Likelihood Ratio-based Test

The likelihood ratio test is based on the statistic R̂, defined as

R̂ =
∑n

i=1

[
d
{
p̂0 (Zi,Xi) , Yi

}
− d {p̂ (Zi,Xi) , Yi}

]
, (8.8)

where p̂0 (Zi,Xi) denotes the estimations of p (Zi,Xi) obtained under the
null hypothesis H0, and deviance d (p, y) is defined as

d (p, y) = −2 {y log (p) + (1 − y) log (1 − p)} .

Based on the test statistic R̂, the test rule for checking H0, with asymptotic
significance level 1−α, is that the null hypothesis is rejected if R̂ ≥ R̂α, where
Rp is the percentile 1 − p of the distribution (under the null hypothesis) of
R̂.

8.3.2 Direct Test

The direct test is based on the statistic Ŝ =
∑n

i=1

(
f̂∗

i

)2

with:

f̂∗
i = f̂jk (Xij , Xik)

(respectively f̂∗
i = f̂jk (Zi, Xik)). The test rule based on the Ŝ is exactly

the same as the one used for the R̂ statistic, namely, the null hypothesis is
rejected if Ŝ > Ŝα, where Ŝα is the percentile 1−α of the distribution (under
the null hypothesis) of Ŝ.

8.3.3 Bootstrap Approximation

Since our estimations are based on the local scoring algorithm (with backfit-
ting), the theory for ascertaining the asymptotic distribution of R̂ (and that
of Ŝ) is very difficult, which in turn renders it very difficult to calculate the
critical values R̂α (and Ŝα respectively). Binary bootstrap was thus used to
calculate the critical values. Accordingly, the testing procedure consists of
the following steps:

Step 1. Estimate the regression model (8.5) under the null hypothesis H0,
and obtain the bootstrap pilot estimates p̃0 (Zi,Xi) , i = 1, . . . , n.

For b = 1, . . . , B
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Table 8.1: Percentage of rejection under H0
12

Significance
Sample size Test 1.0 5.0 10.0 15.0 20.0

250 T1 0.2 2.2 6.1 9.6 14.4
T2 0.1 2.8 6.5 10.7 16.2

400 T1 0.2 2.7 5.7 9.3 13.9
T2 1.0 4.7 9.5 16.5 21.6

1000 T1 1.0 5.1 9.6 13.7 18.7
T2 1.0 3.9 8.4 12.7 17.2

Step 2. Generate a sample
{(

Zi,Xi, Y
∗b
i

)}n

i=1
, with Y ∗b

i ∼ B
(
p̃0 (Zi,Xi)

)
.

Step 3. Calculate the bootstrap test statistics R̂∗b and Ŝ∗b using the sample{(
Zi,Xi, Y

∗b
i

)}n

i=1
in the same way as the original R̂ and Ŝ were calculated.

In Step 1, the use of slightly oversmoothing bandwidths is recommended (see
Roca-Pardiñas, 2003; Kauermann and Opsomer, 2003). In particular, for the
studies displayed throughout this work the length of the pilot bandwidhts is
the double of that used in the estimation.

The test rule based on R̂ consists of rejecting the null hypothesis if R̂ >
R̂∗(1−α), where R̂∗(p) is the empirical p-percentile of the values R̂∗b (b =
1, . . . , B), obtained in Step 3. Likewise, if Ŝ is used, the null hypothesis
is rejected if Ŝ > Ŝ∗(1−α), where Ŝ∗(p) is the empirical p-percentile of Ŝ∗b

(b = 1, . . . , B).

Hereafter, the test based on T̂ will be denoted by T1, and the test based on
Ŝ by T2.

8.4 Simulation Study

In this section, we report on a simulation study designed to assess the validity
of the bootstrap-based interaction tests. Given the covariate vector X =
(X1, X2, X3)

t, the binary outcome variable Y was generated on the basis of
Y ∼ B {p (X)} where

p (X) =
exp {f1 (X1) + f2 (X2) + f3 (X3) + f12 (X1, X2)}

1 + exp {f1 (X1) + f2 (X2) + f3 (X3) + f12 (X1, X2)}
. (8.9)
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Here, the covariates X1, X2 and X3 were chosen as independent random
variables uniformly distributed as U [−2, 2]. One thousand independent sam-
ples {(Xi, Yi)}n

i=1 were generated from the model (8.9), under: f1 (u) =
sin (180u), f2 (u) = u2 and f12 (u, v) = auv, where a is a constant. Note that
the value a = 0 corresponds to the hypothesis of no interaction (f12 = 0),
and that the more constant a shifts from zero, the greater the degree of
interaction in the model (8.9).

As regards the issue of testing, we considered the null hypothesis H0
12 : f12 =

0 (or equivalently a = 0), using the two different tests -T1 and T2- explained
in Section 11.3 above. To ascertain the results shown in Table 8.1 and Fig-
ure 8.1 we performed 1000 bootstrap replications of the three test statistics
reviewed. Table 8.1 represents type 1 error for the two tests at different sig-
nificance levels and different sample sizes, with the probability of rejection
being determined by performing 1000 replications.
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Figure 8.1: Power function at 5% and 20% significance levels for sample size
n = 1000

As can be seen from Table 8.1, the two tests registered very satisfactory
results overall, with a type 1 error very close to the nominal in evidence for
a = 0. For small sample sizes (n=250, n=400), while T2 proved to be the test
that registered a type 1 error closest to the nominal, the two tests considered
-T1 and T2- rejected the null hypothesis less often than expected. For large
sample sizes (n = 1000), T1 showed a type 1 error practically equal to the
nominal, whereas test T2 tended to reject H0

12 less often than expected.

Power as a function of a is shown for different levels and sample size n = 1000
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in Figure 8.1. All two tests registered satisfactory power curves, with the
probability of rejection rising in response to any increase in the value of the
constant a.

8.5 Application to Real Data Sets

In this section we apply the proposed methodology to two different real data
sets. The first example comes from the physiological field, and the aim of this
study is to assess the possible association between the temporal evolution of
the neuronal firing rate and decision making. In the second example, the
interest is focused on the potential influence of several continuous covariates
on the risk of post-operative infection.

8.5.1 Neural Basis of Decision Making

A main goal in our case study, is to examine possible differences in single-
neuron firing rate when the monkey decides whether a test bar (test stimulus)
is oriented to the left or to the right of another bar shown previously (reference
stimulus).

The data analyzed here come from studies of the extra-cellular single unit
activity in the prefrontal cortex of behaving monkeys. Monkeys were trained
to discriminate line orientations. A stimulus consisted of a stationary line
segment subtending 3o of visual angle. Test lines, were presented clockwise or
counter-clockwise to the reference. A trial was initiated with the presentation
of the fixation target. Then, two stimuli (called reference and test), each of
500 ms of duration were presented in temporal sequence, with a fixed inter-
stimulus interval (ISI: 1100 ms). At the end of the second stimulus, the
subject released the key and pressed one of the two switches (left or right),
indicating whether the orientation of the second stimulus was clockwise or
counter-clockwise to the first stimulus.

To get enough data and to account for the cell response variability, the
neuron was recorded over a number of N = 80 trials. For each of the
j = 1, . . . , N trials, we have considered the orientation of the test stimuli
(Orienj): Orienj = 0, if test stimulus is to the right of the reference stimu-
lus, and Orienj = 1, if test stimulus is to the left.

In this experiment, the outcome of interest is the neuronal activity. At each
instant t ∈ [tmin, tmax] = [−500, 4500], and trial j = 1, . . . , N , this out-
come may be then represented by a temporal binary sequence, Y j

t , where
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Y j
t = 1 if there is a spike in [t, t + 1 ms.) and 0 otherwise. Accordingly, for

those blocks of N trials, the data set consists of the following information:{
t, Orienj , Y j

t

}
.

We use the GAM modeling to examine the temporal association between
electrical activity of a single neuron and decision making. With this aim we
consider the following logistic GAM:

p (Orien, t) =
(
1 + exp [α + f(t) + g {Orien, t}]−1

)−1

(8.10)

where p (Orien, t) = p (Yt = 1|Orien, t), α is a fixed parameter, f a time
function, and g the orientation-by-time interaction term given by

g (Orien, t) = g0 (t) I {Orien = 0} + g1 (t) I {Orien = 1} ,

being g0 and g1 two one-dimensional functions of time.

To assess the temporal association between firing probability (or equivalently,
the firing rate) and decisions based on the orientation (1=left; 0=right) of
the test stimulus, we propose the use of odds-ratios curve (OR) (Figueiras et
al., 2001). In accordance with model 8.10, we define OR (t) at each instant
t, as

OR(t) =
p(1, t)/ {1 − p(1, t)}
p(0, t)/ {1 − p(0, t)} = exp {g1(t) − g0(t)} , (8.11)

taking the ‘right’ orientation (i.e., Orien = 0) as the reference category. We
then fit logistic GAM (8.10) to analyze the difference in firing rate, and its
temporal evolution, when the monkey decides. The resulting fit is presented
in Figure (8.2) (left column). As can be seen in thisigure, for decisions taken
to the left, the firing rate is higher than that corresponding to decisions taken
to the right. For both decisions, the increase of firing rate begins during
the presentation of the test stimulus, and reaches its maximum close to the
reaction time (RT), just before the beginning of the arm movement towards
the buttons.

To determine the epoch(s) in which the discharge in both situations is dif-
ferent, i.e., when the cell firing rate discriminates between both decisions, we
compute the temporal OR curve given in (8.11), taking the ‘right’ orientation
as the reference. In the right plot of Figure (8.2), we present the resulting
OR curve, along with the corresponding pointwise 95% bootstrap confidence
bands. It is seen that the magnitude of the OR relating orientation to neural
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Figure 8.2: Left plot: Estimated firing rates grouped by orientation (left,
right). Right plot: log OR curve for the association between
firing rate and orientation together with the corresponding point-
wise 95% confidence bands. Reference orientation: “Right”. Grey
boxes indicate the timing of the test stimulus

response becomes significantly greater than one, 77 ms after the beginning
of the presentation of the test stimulus, reaches its maximum around the
reaction time and then decreases, losing significance at 2959 ms, when the
monkey finishes its arm movement. Therefore, a significant strength of asso-
ciation between firing rate and decisions –which might be interpreted as the
discrimination capability of the neuron-, is maintained for 1282 ms. Apply-
ing the interaction tests, T1 and T2 (outlined in Section 11.3 above) yielded
p-values lower than 0.01, thereby rendering the interaction term g (Orien, t)
statistically significant.

For the construction of the confidence intervals, displayed in Figure (8.2),
we have used again the bootstrap technique. Given a point t, the steps for
construction of the confidence interval for the true OR (t) are as follows:

Step 1. Estimate the model (8.10) and obtain the pilot estimates p̃j
t =

p̃
(
Yt = 1|Orienj , t

)
for (t = tmin, . . . , tmax; j = 1, . . . , N)

and then the pilot estimate ÕR (t).

Step 2. For b = 1, . . . , B generate the sample
{

t, Orienj , Y ∗b,j
t

}
with

Y ∗b,j
t ∼ B

(
p̃j

t

)
and obtain bootstrap estimates ÔR

∗b
(t).
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Once this process has been completed, the 95% limits of the confidence in-
terval for the true OR (t) are given by

(
ÔR (t) − ÔR

(0.975)
(t) , ÔR (t) − ÔR

(0.025)
)

,

where ÔR (t) is the estimate obtained with the original sample and ÔR
(p)

(t)

represents the p-percentile of the differences ÔR
∗b

(t)−ÕR (t) (b = 1, . . . , B).

8.5.2 Risk of Post-operative Infection

In this section we apply the proposed methodology to data drawn from
a registry-based prospective cohort study of 2318 patients who underwent
surgery at the University Hospital of Santiago de Compostela (NW Spain).
Patients were characterized as follows: pre-operatively, in respect of a series
of variables, including GLU=plasma glucose concentration (in mg/dl) and
LYM=lymphocytes (expressed as relative counts (%) of the white blood cell
count); and post-operatively, in respect of whether they suffered (POI=1) or
did not suffer post-operative infection (POI=0).

The main goal of this analysis was to investigate the possible (main) effects
of LYM and GLU on risk of POI, and also the potential modifying effect of
GLU on the LYM-POI relationship. We first analyzed the main effects of
LYM and GLU on risk of POI, adjusted for potential confounders, such as
SEX (coded as 1=male; 0=female) and AGE, by fitting a logistic GAM as
follows:

p (POI = 1|LY M,GLU,AGE, SEX) =
{

1 + exp (η•)−1
}−1

, (8.12)

with

η• = α + fLY M (LY M) + fGLU (GLU) + fAGE (AGE) + βSEX × SEX.

According with (8.12) we define the OR curve for GLUC and LYM as

OR95
GLU (x) = exp (fGLU (x) − fGLU (95)) ,

and
OR30%

LY M (x) = exp (fLY M (x) − fLY M (30))
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Figure 8.3: Estimated log OR curves and 95% pointwise confidence bands
for the effect of pre-operative levels of (a) plasma glucose con-
centration and (b) lymphocytes (in percent), on the risk of post-
operative infection

.

As reference values for the purposes of OR calculation, we took the midpoints
of the ranges considered clinically “normal” (95mg/dl for GLU and 30% for
LYM ). Estimated OR curves with corresponding 95% pointwise confidence
bands are depicted in Figure (8.3). Figure (8.3)(a) confirms the plausible
results previously obtained by Figueiras and Cadarso-Suárez (2001), i.e., a
“spoon-shaped” OR95

GLU curve, as well as the existence of significant associ-
ation between plasma glucose levels, both low and high, and increased risk
of POI. As can be seen from Figure (8.3)(b), the estimated OR30%

LY M curve
appears to be non-linear, indicating that POI risk decreases with increasing
LYM up to a value of around 30% and remains almost constant thereafter.

We next investigated the possibility that risk associated with lymphocytes
(%) might vary with plasma glucose concentration levels. We then added
the corresponding interaction term fLY M,GLU , and fitted the “interaction”
logistic GAM given in (8.12) with

η• = α + fLY M (LY M) + fGLU (GLU) + fLY M,GLU (LY M,GLU)
+ fAGE (AGE) + βSEX × SEX,

Applying the interaction tests, T1 and T2 yielded p-values lower than 0.01,
thereby rendering the interaction term fLY M,GLU statistically significant.
According with the new model the bidimensional OR curve for LYM and
GLU is defined as
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Figure 8.4: Estimated log OR30%
LY M,GLU surface showing the nonparametric

effect of percentage of lymphocytes (LYM ) on the risk of post-
operative infection, varying smoothly according to the values
taken by plasma glucose concentration (GLU )

log OR30%
LY M,GLU (x, y) = fLY M (x) + fLY M,GLU (x, y)

−fLY M (30) − fLY M,GLU (30, y) ,

A plot of the resulting estimate for the OR30%
LY M,GLU surface from fitted model

is depicted in Figure (8.4).

Nevertheless, to ascertain more clearly how the functional form of the LYM
effect on POI varied with GLU values, we decided to plot cross-sections of
the estimated surface separately. Two cross-sections for plasma glucose val-
ues (GLU=70, and 200) with their corresponding 95% pointwise confidence
bands, are shown in Figure (8.5).

Examination of these and other sections showed that for plasma glucose val-
ues below a figure of approximately 150mg/dl, the estimated influence of
lymphocytes (%) on risk of POI was qualitatively the same as when no
(LYM,GLU )-interaction was included in the model. For higher plasma glu-
cose values, however, risk of POI increased, not only as lymphocyte percent-
ages fell below, but also as they rose above the reference value (30%); inter-
estingly, the OR30%

LY M curve was by now broadly U-shaped, with significant
increasing risk attaching to both LYM<25% and LYM>35%, corresponding
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Figure 8.5: Cross-sections of the estimated surface of Figure (8.4) at two val-
ues of plasma glucose concentration, with the corresponding 95%
pointwise confidence bands

to LYM values outside the normal clinical range.

8.6 Discussion

In this chapter local scoring (with backfitting) based on local linear kernel
smoothers were used to estimate GAM with interactions. The main goal
was to propose statistical tests for checking the presence of second-order
interactions. As backfitting theory is very difficult, bootstrap procedure was
used in the implementation of such tests.

The results obtained with the tests depend heavily on the smoothing param-
eter used in local scoring. Various proposals for an optimal selection have
been suggested for GAMs, based on the minimization of some error criteria,
such as Generalized Cross-Validation (GCV) or Akaike’s Information Crite-
rion (AIC) (Hastie and Tibshirani, 1990), yet the difficulty of asymptotic
theory in a backfitting context means that nowadays optimal selection tends
to be an opening problem. As a practical solution, we used cross-validation
for the automatic choice of bandwidths in the estimation of the link and the
partial functions.

As is well known, cross-validation implies a high computational cost. In our
particular case, this cost was increased even further, given that the unidi-
mensional uni and bidimensional partial functions had to be estimated in
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each cycle of the estimation algorithm. Moreover, in the use of the bootstrap
procedure, these operations must be repeated a great number of (e.g., 1000)
times. For these computational reasons, one-dimensional and bi-dimensional
binning-type acceleration techniques were used to speed up the estimation
process. Binning acelaration made it possible for the tests to be concluded in
a reduced period of time, even when we have many data. For instance, in the
post-operative infection data, presented in Section 8.5.2, with sample size of
n=2318 the boostrap test based on 1000 bootstrap repetitions, was concluded
in under 1.5 minutes (using a 1000 MHz Pentium III, 128MB RAM).

The performance of the proposed tests was verified in a simulation study,
and by applying them to two biomedical problems: First, we applied our
methods to neural data obtained while monkeys performed in discrimination
tasks. Our testing methods reveal differences in neural firing rates associated
with assessments of outcomes during decision making. Second, application of
the methodology to data on potential risk factors for post-operative infection
showed that for patients with high plasma glucose levels increased risk is
associated not only with low percentages of lymphocytes, as is to be expected,
but also with high percentages.

In this work, we focused on binary response, though all the procedures out-
lined are easily generalizable to the exponential family. Indeed, we conducted
studies for Poisson response (results not reported here) and obtained similar
results to those presented in this work for binary response. Moreover, our
methodology, can be easily generalized to the case where the bivariate inter-
action terms associated with two continuous covariates (two-order continuous
interactions) vary across levels of a categorical covariate.

8.7 Appendix

Unidimensional Weighted Local Linear Kernel Estimators

Given a sample {Xi, Yi}n
i=1 and a set of weights, {Wi}n

i=1, the weighted local
linear kernel estimator ψ̂ (x) = ψ̂ (x, {Xi, Yi,Wi}n

i=1 , h) at a localization x is
defined as:

ψ̂ (x) = (1, 0)
(

s0 (x) s1 (x)
s1 (x) s2 (x)

)−1(
u0 (x)
u1 (x)

)
,

where sr (x) =
∑n

i=1 (Wi · Lr (x, Xi)) and ur (x) =
∑n

i=1 (Wi · Lr (x, Xi) · Yi),
with
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Lr(x, y) = (2π)−1/2 (x − y)r exp
[
−0.5

{
h−1 (x − y)

}2
]
(r = 0, 1, 2).

The smoothing bandwidth, h, was selected automatically by minimizing the
following weighted cross-validation error criterion

CV =
∑n

i=1
Wi

{
ψ̂(−i) (Xi) − Yi

}2

,

where ψ̂(−i) (Xi) indicates the fit at Xi leaving out the i-th data point.

Bidimensional Weighted Local Linear Kernel Estimators

Let the sample be {Xi, Yi}n
i=1, with Xi = (Xi1, Xi2), and a set of weights,

{Wi}n
i=1. The bidimensional weighted local linear kernel estimator ψ̂2D (x) =

ψ̂2D (x, {Xi, Yi,Wi}n
i=1 , h) at a localization x = (x1, x2) is defined as:

ψ̂2D (x1, x2) = (1, 0, 0)

⎛⎝ s00 (x1, x2) s10 (x1, x2) s01 (x1, x2)
s10 (x1, x2) s20 (x1, x2) s11 (x1, x2)
s01 (x1, x2) s11 (x1, x2) s02 (x1, x2)

⎞⎠−1

×

×

⎛⎝ t00 (x1, x2)
t10 (x1, x2)
t01 (x1, x2)

⎞⎠ ,

with

srt (x1, x2) =
∑n

s=1 ŴsL
rt ((x1, x2) , (Xsj , Xsk))

trt (x1, x2) =
∑n

s=1 ŴsL
rt ((x1, x2) , (Xsj , Xsk)) Ys

Lrt ((x, y) , (u, v)) = (x − u)r (y − v)t
K2

(
H−1/2 (x − u, y − v)t

)
,

(r, t ∈ {0, 1, 2}) and K2 (·) being the two-dimensional normal density function
with mean zero and the same covariance matrix as the set {(Xi1, Xi2)}n

i=1 in
the sample data. In this way, the contour curves of K2 are “isobars” in the
sample space, in the sense that sample points on the same contour have the
same weight in the estimations, ψ̂.

In the same way as the unidimensional case, the 2×2 matrix Hjk is selected by

minimizing CV =
∑n

i=1 Ŵi

(
ψ̂(−i) (Xi1, Xi2) − Yi

)2

where ψ̂(−i) (Xi1, Xi2)

indicates the fit at (Xi1, Xi2) leaving out the ith data point. For computa-
tional simplicity we set Hjk = diag (hj1, hj2).
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9 Survival Trees

Carmela Cappelli and Heping Zhang

9.1 Introduction

Survival trees are a useful regression tool to model the relationship between
a survival time and a set of covariates. Survival or censored data are partic-
ularly common in medical research, and they also arise from many different
areas of scientific and clinical research. For example, in the social sciences,
we may be interested in the school drop-out rates and the turnover in a labor
market. Tree based methods, due to their nonparametric nature and flexi-
bility, have become very popular in the last two decades as an alternative to
the traditional proportional hazard model.

The term survival data refers to any data that deal with time to the occur-
rence of an event of interest. Although the methods developed to cope with
survival data are primarily related to medical and biological research, they
have their root in insurance statistics and, in general, they are widely used in
the social and economic sciences, as well as in engineering. In economics we
may study the “survival” of firms or the ”survival” of products. For quality
control purposes it is a common practice to study the “survival” of electronic
components (reliability data analysis, failure time analysis, see Meeker and
Escobar (1998)).

In medical research, the event of interest is usually the time to death of a
patient after the diagnosis but it might be the time to recovery or remission
as well. The main feature of survival data is the presence of incomplete
data, which are referred to as censored observations and often provide the
most relevant information about the phenomenon under study. Censoring
can arise from several reasons: the observation time is limited and the study
ends before the event is observed for all the subjects, some of the subjects
may be lost to follow up the study, subjects are entered at fixed times and
the event occurred before recording. In all these cases, the exact time of the
event is not observed. Depending on the direction of the censoring, censored
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data can be classified into right censored when the survival time exceeds
the observed one, and left censored when the survival time is less than the
observed one. Left censoring is particularly important in studies on infectious
diseases such hepatitis or HIV (human immunodeficiency) but it will not be
discussed here. In the realm of right censored data, a distinction can be made
among three different types of censoring:

• Type I censoring: the subjects enter the study at the same time, at a
given date the study ends and some of them are lost to follow up or the
event is not occurred;

• Type II censoring: the subjects enter the study at the same time, the
end of the study is not initially fixed and it is carried on until the event
occurs for a certain proportion of subjects;

• Type III censoring: the subjects enter the study at different times.

Figure 9.1 depicts these situations.

time

X

X

X

end

(I,II) lost

dead

(I,II) alive

dead

(III) lost

dead

(III) alive

Figure 9.1: The various types of censor data
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Note that Type II is nonrandom censoring, whereas Type I and III are random
censoring.

The circumstance that the survival time cannot be fully observed for all the
subjects under study can be formally expressed as follows. Let Y be the
observed time and T be the survival time. Without censoring, Y = T , i.e.,
the observed time is the true survival time. With censoring, the observed
time is the censoring time denoted by U . A censoring indicator δ takes into
account the time being censored, so that δ = 1 if Y = T and δ = 0 otherwise.
For the latter, Y = min (T,U).

There are several important issues involved in the analysis of survival data.
They include the comparison of the survival distributions among two or more
groups and the identification of predictive variables of survival time. To these
ends, parametric, semiparametric and nonparametric methods have been de-
veloped. Briefly, parametric methods require specifying a distribution for the
survival times (for example Exponential or Weibull). The semi-parametric
methods make no assumptions concerning the distributions of the survival
times but assume a known form for the effects of the covariates on survivor-
ship. Non-parametric methods make no assumptions on distributions of the
survival times. General discussions on various methods can be found in text-
books such as Lee (1992) and Miller (1998).

Among nonparametric methods, tree based methods have become a very pop-
ular tool for survival data analysis thanks to the fact that multiple covariates
may be associated with the survival time and researchers are commonly inter-
ested in identifying subgroups of subjects with similar survival distributions
as determined by the covariates.

The XploRe quantlib hazreg provides a number of quantlets for the analysis
of survival data. We will describe here the quantlet stree, which implements
the tree based regression method for survival data developed by Zhang (1995)
and Zhang and Singer (1999), providing a complete tool to grow, prune and
display survival trees.

This chapter is a tutorial for the XploRe stree quantlet in the XploRe
quantlib hazreg Grund and Yang (2000, Chapter 5), which represent the
XploRe implementation of the methodology decribed by Zhang (1995) and
Zhang and Singer (1999) and a modification of Heping Zhang’s program
called STREE. In Section 1, we describe censored survival data. In Section
2, the survival tree methodology is presented. In Section 3, the syntax of the
quantlets stree is illustrated with some examples.
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9.2 Methodology

Any tree based method involves two main steps:

1. growing the tree, i.e., partitioning the data (internal nodes) according
to a splitting criterion which allows to select the best covariate and cut
point along it to split any node;

2. pruning the tree, i.e, removing retrospectively some of the branches in
order to get a shorter and more accurate tree.

With censored data the survival time is not completely observed for all the
subjects and therefore it involves two response variables: the observed time
and the censoring indicator defined above. As a consequence, the data are
triplets {yi, δi,xi}, i = 1, . . . , n where yi is the observed time for the i-th
subjects, δi indicates whether yi is censored and xi = (xi1, . . . , xip) is the
vector of the p covariates associated with the i-th subject. The events yi = ti
are called event times or failure times. It is noteworthy that in this approach,
the censoring is assumed to be random (Type I and Type III), so that, given
the values of the covariates, the conditional distributions of the survival time
and the censoring time are independent.

9.2.1 Splitting Criteria

The growing phase is led by the objective of forming a number of homoge-
neous subsets with respect to the response variable. In order to achieve this
aim, the quantlet stree allows three splitting criteria as described by Zhang
(1995). Two of them are based on an extension of the impurity measure in-
troduced by Breiman, Friedman, Olshen and Stone (1984) and the other one
is based on the log-rank test statistic.

Impurity based criteria In order to discuss the impurity-based splitting
criteria, it is useful to recall some basic concepts and notation in the clas-
sification of a multi-class response. Consider a candidate split s of a node
t into two offsprings tl and tr and let p(tl) and p(tr) be the proportions of
observations sent by s into node tl and tr, respectively. The impurity at node
t, denoted by i(t), measures the impurities based on the within-class prob-
abilities. Then, a natural way to evaluate the performances of a candidate
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split is the change in impurity given by:

∆i(s, t) = i(t) − {p(tl)i(tl) + p(tr)i(tr)} (9.1)

The quantity ∆i(s, t) is used as a partitioning criterion. This notion of impu-
rity in the case of censored survival data cannot be used as it stands because,
although the outcome we are interested in is the survival time, this involves
two response variables: the observed time yi (continuous) and the censoring
indicator δi (binary). In this respect, a pure node would contain subjects
whose observed times are similar and who are in most part censored or un-
censored. In other words, a suitable impurity measure for censored data must
take account of both observed time and censoring. Therefore the impurity of
a node can be expressed as:

i(t) = w1iy(t) + w2iδ(t), (9.2)

where w1 and w2 are pre-specified weights and iy(t) and iδ(t) denote the
impurity of node t for the observed time and censoring, respectively. In
particular, the impurity for the time is given by

iy(t) =
n(t)∑
i=1

{yi − ȳ(t)}2∑
y2

i

(9.3)

where n(t) is the number of observations in node t and ȳ(t) is the average
of the observed times. The denominator is needed to be normalized with
respect to the other component of the impurity. When the summation in the
denominator is over node t observations the criterion is called adaptive nor-
malization. When it is over the whole sample it is called global normalization.

For the impurity of the censoring indicator, it is measured by the entropy
measure:

iδ(t) = −pt log(pt) − (1 − pt) log(1 − pt), (9.4)

where pt denotes the proportion of censored data in node t. Among all
the candidate splits at a given node, one split is chosen to maximize the
reduction in impurity as measured by (9.1). This simple adaptation of the
impurity criterion provides a straightforward way to combine the continuous
and categorical outcomes that characterize censored data.
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Log-rank statistic criterion The log-rank test statistic is commonly used in
the analysis of censored survival data to compare the survival distributions of
different groups. For a given covariate and a split point, a 2× 2 contingency
table is created of the form

Table 9.1: Contingency table for the log-rank statistic

Event
Yes No

xij ≤ s ai ni

xij > s di Ki

where xij is the value of the j-th covariate for the i-th observation, s is a
split point, and Ki is the risk set at time yi. The log-rank test statistic is
defined as:

LR(s) =
∑

i(ai − Ei)√∑
i Vi

(9.5)

where
Ei =

dini

Ki
(9.6)

and

Vi =
{

di(Ki − ni)ni

Ki(Ki − 1)

}
(1 − di

Ki
). (9.7)

Given that the log-rank statistic testes the significance of the difference be-
tween two survival distributions, it represents, in a way, a natural choice for
splitting the data into two groups with different survivals and it is widely
adopted as the splitting criterion Segal (1998), LeBlanc and Crowley (1993),
Ciampi and Thiffault (1986).

At a given node t, for every covariate and split point, the log-rank test statistic
is computed and the best split s∗ is chosen if

LR(s∗, t) = max LR(s, t). (9.8)
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9.2.2 Pruning

Tree growing, or recursive partitioning, is only one aspect of the tree construc-
tion. Tree pruning generally follows tree growing, because of the following
two concerns:

1. complexity – the long resulting structure tends to be very large; this
is especially the case with binary trees since an attribute may reappear
(although in a restricted form) many times down the tree;

2. overfitting – several branches, especially the terminal ones, reflect
particular features of the data arising from the sampling procedure
rather than modeling the underlying relationship between the response
variable and the covariates.

Therefore, after a large tree Tmax is grown, a pruning step is carried out in
order to simplify the structure and avoid overfitting as discussed in Cappelli,
Mola and Siciliano (2002). The quantlet stree implements a practical bot-
tom up pruning procedure following the proposal suggested by Segal (1998),
which can be described as follows. A statistic St (say the log-rank test statis-
tic) is assigned to each internal node t of Tmax. These statistics are ordered
in an increasing order. A threshold is then selected and any internal node
whose statistic does not reach the threshold is changed into a terminal node.

The threshold can be fixed by simply considering a significance level. Cutting
off the branches stemming from the internal nodes that do not reach the
threshold results in a single final pruned tree. A more effective approach that
allows insights into the pruning process is to generate a sequence of nested
pruned subtrees of Tmax in the spirit of the pruning procedure proposed in
the CART book (see the XploRe CART tutorial). The sequence is created
by iterating the process of locating the minimum value of the statistic and
pruning the offsprings of the node(s) that reaches this minimum value. The
threshold and therefore the final tree, is selected by plotting the minimal
statistics against the size (number of terminal nodes) of the corresponding
subtree.

The inspection of the plot allows to select the final tree, in particular, usu-
ally the plot shows a ”kink” where the pattern changes suggesting that the
corresponding tree could be the final one. An important point in the pruning
process concerns the assignment of the statistic to the internal nodes. This
assignment involves two steps: first, the statistic is computed for all internal
nodes; next, the assigned value is replaced with the maximum over the node
offsprings if the latter is greater. The sequence, therefore, is created consid-
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ering the maximized values. In this way the pruning process tends to retain
branches that contain sub-branches with higher values of the statistic.

9.3 The Quantlet stree

9.3.1 Syntax

The quantlet stree has the following syntax:

streeout = stree (covars, time, censor, covartypes, method)

with input variables:

covars : A n × p matrix containing observations of covariates,

time : A n × 1 vector containing observations of survival time

censor : A n × 1 vector containing the censoring indicator,

covartypes : specifies the type of covariates

method : indicates the splitting criterion.

The arbitrary name streeout has been used to indicate the output which
includes the following output variables:

nodenum : the node number,

cases : the number of observations falling into the node,

dnleft : the left descendant node number,

dnright : the right descendant node number,

median : the median survival time,

splitvar : the splitting variable chosen to split the node

splitval, splitting values or categories; observations having the variable
splitvar larger than the value in splitval are sent to the right daugh-
ter node, otherwise to the left daughter node. For categorical variables
splitval reports the categories for cases sent into the right descendant.

Optional parameters allows to modify the output presentation. Note that
the output of stree is shown both in the form of a table and a graphical
display.
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9.3.2 Example

In order to illustrate the quantlet stree the Early Lung Cancer Detection
data has been considered; this data set is available at the Statlib archive
(http://lib.stat.cmu.edu/datasets/csb).

The following variables were recorded:

Table 9.2: Recorded variables

Variable name Possible values
patient ID integer
institution 0 = Memorial Sloan Kettering, 1 = Mayo Clinic,

2 = John Opkins
group 0 = study, 1 = controls
means of detection 0 = routine cytology, 1 = routine X-ray,

2 = both X-ray and cytology, 3 = interval
cell type 0 = epidermoid, 1 = adenocarcinoma, 2 = large cell,

3 = oat cell, 4 = other
stage involves four covariates: overall stage, tumor,

lymph nodes and distant metastases
overall stage three levels
tumor three levels
lymph nodes three levels
distant metastases two levels
operated 0 = no, 1 = yes
survival days from detection to last date known alive
survival category 0 = alive, 1 = dead of lung cancer,

2 = dead of other causes

The analysis has been restricted to the study group, discarding the controls;
also, in the study group, patients dead for other causes than the lung cancer
has not been considered so that the subset consist of n = 475 patients. The
following XploRe code reads the original data (file lung.dat), deletes the pa-
tient ID, creates the subset and the input variables for the quantlet stree and
runs the quantlet considering as splitting criterion the global normalization.

The results are displayed in Table 9.3 and 9.4, moreover the pruned tree is
displayed in Figure 9.2.

XCSstree01.xpl
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Table 9.3: Global Normalization before Prune

left right median split split
node # cases nodes nodes value var # value

1 475 2 3 805.00 4 3,2
2 183 4 5 1719.00 1 2,1
3 292 6 7 516.50 1 2
4 47 8 9 2282.00 5 2
5 136 10 11 1339.50 8 1
6 78 12 13 1479.50 2 3,2
7 214 14 15 415.50 4 3
8 25 16 17 2772.00 3 4,3
9 22 18 19 1586.00 2 3,2
10 23 20 21 1208.00 5 2
11 113 22 23 1343.00 3 4
12 31 24 25 1336.00 6 2
13 47 26 27 1617.00 6 2
14 28 28 29 490.00 5 2
15 186 30 31 405.00 3 4,1
22 56 32 33 1002.00 2 3,2
23 57 34 35 1720.00 1 2
25 17 36 37 1331.00 3 3
27 36 38 39 1826.50 3 3,2

XCSstree01.xpl



9.3 The Quantlet stree 177

Table 9.4: Global Normalization after Prune

left right median split split
node # cases nodes nodes value var # value

1 475 2 3 805.00 4 3,2
2 183 4 5 1719.00 1 2,1
3 292 6 7 516.50 1 2
4 47 8 9 2282.00 5 2
5 136 10 11 1339.50 8 1
7 214 14 15 415.50 4 3
11 113 22 23 1343.00 3 4
23 57 34 35 1720.00 1 2

XCSstree01.xpl

The first discriminant variable selected by the global normalization splitting
criterion is the overall stage of the lung cancer, followed by the institution
at both nodes 2 and 3. For example, the split of node 2 separates patients
of the Mayo Clinic and of John Hopkins, who are sent to node 5, from pa-
tients of The Memorial Sloan Kittering. By setting in the above code the
input variable method=‘‘adaptnorm’’ and method=‘‘logrank’’ , the other
available criteria are used to grow the survival tree, adaptive normalization
and log-rank statistic, respectively. Since the different splitting criteria affect
the structure of the tree, it is advisable to try them all, selecting the final
tree on the basis of scientific judgement.
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        Global normalization
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Figure 9.2: The survival tree for Early Lung Cancer Detection Data
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10 A Semiparametric Approach to
Estimate Reference Curves for
Biophysical Properties of the
Skin

Saracco Jérôme, Gannoun Ali, Guinot Christiane and Liquet Benôıt

Reference curves which take one covariable into account such as the age,
are often required in medicine, but simple systematic and efficient statisti-
cal methods for constructing them are lacking. Classical methods are based
on parametric fitting (polynomial curves). In this chapter, we describe a
new methodology for the estimation of reference curves for data sets, based
on nonparametric estimation of conditional quantiles. The derived method
should be applicable to all clinical or more generally biological variables that
are measured on a continuous quantitative scale. To avoid the curse of di-
mensionality when the covariate is multidimensional, a new semiparamet-
ric approach is proposed. This procedure combines a dimension-reduction
step (based on sliced inverse regression) and kernel estimation of conditional
quantiles step. The usefulness of this semiparametric estimation procedure
is illustrated on a simulated data set and on a real data set collected in order
to establish reference curves for biophysical properties of the skin of healthy
French women.

10.1 Introduction

The reference intervals are an important tool in clinical and medical prac-
tice. They provide a guideline to clinicians or clinical chemists seeking to
interpret a measurement obtained from a new patient. Many experiments,
in particular in biomedical studies, are conducted to establish the range of
values that a variable of interest, say Y whose values are in R, may normally
take in a target population. Here “normally” refers to values that one can



182 10 A Semiparametric Reference Curves Estimation

expect to see with a given probability under normal conditions or for typical
individuals, and the corresponding ranges are often referred to as norms or
reference values. Hence, a reference interval is the range of values bounded
by a pair of quantiles which are symmetric about the median on the prob-
ability scale, such as the 5th and 95th centiles for a 90%-reference interval.
Values which lie outside the limits of the reference interval are regarded as
unusual or extreme and may indicate the presence of disease or disorder. To
construct reference intervals, data (which are required to be continuous mea-
surements) are collected from a reference population consisting of subjects
who are believed healthy or “normal”. Parametric methods are often used to
calculate reference intervals. For this parametric approach, the data are gen-
erally assumed normally distributed. Nonparametric procedures have been
developed to construct such intervals and do not require such a normality
assumption.

When a covariable (or predictor) X (which can be p-dimensional) is simulta-
neously recorded with the variable of interest Y (assumed to be real at the
moment), the notion of reference intervals is replaced by the one of reference
curves. Conditional quantiles are widely used for building these curves. In
medical or biomedical practice, the vector of covariables can be the mea-
surement of the weight, height or age of the patient, while the dependent
variable can be arterial pressure, cholesterol rate, etc. These reference curves
are then constructed by estimating a set of conditional quantiles (also called
regression quantiles). More details can be obtained from Cole (1988), Healy,
Rasbash and Yang (1988), Goldstein and Pan (1992) or Royston and Altman
(1992).

Mathematically speaking, for α ∈ (0, 1), when X and Y are R-valued, the
αth-conditional quantile of Y given X = x, denoted by qα(x), is naturally
defined as the root of the equation

F (y|x) = α, (10.1)

where F (y|x) = P (Y ≤ y|X = x) denotes the conditional distribution func-
tion of Y given X = x. For α > 0.5, definition (10.1) allows us to define the
100(2α − 1)% reference curves, when x varies, by the following

Iα(x) = [q1−α(x), qα(x)] . (10.2)

So, estimating reference curves is reduced to estimating the conditional quan-
tiles q1−α(x) and qα(x).

Note that there exists an alternative and direct characterization of the con-
ditional quantile which does not use the conditional distribution function. It
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is well known, see for instance Fan, Hu and Truong (1994), that qα(x) can be
characterized as the value θ which minimizes the mathematical conditional
expectation

E [ρα(Y − θ)|X = x] , (10.3)

where ρα is the so-called “check” or “loss” function given by ρα(z) = (α−1)z
if z < 0 and ρα(z) = αz otherwise. Relevant theoretical background and
details can be found for example in Basset and Koenker (1982), Jones and
Hall (1990), Chaudhuri (1991a) and Yu (1997).

When n observations {(Xi, Yi)}n
i=1 of (X, Y ) are available, some basic es-

timation methods can be considered to estimate conditional quantiles. A
typical parametric approach is the following. If F (y|x) is assumed to be
gaussian, an estimate of qα(x) is given by µ̂(x) + σ̂(x)Nα, where µ̂(x) is
the ordinary least square estimated regression of the conditional expecta-
tion µ(x) = E(Y |X = x), σ̂(x) is an estimator of the conditional variance
σ(x) = Var(Y |X = x), and Nα is the αth-quantile of the standard normal
distribution N(0, 1). Parametric assumptions (such as polynomial shape for
µ(x) and σ(x)) are also usually added to reduce the number of parameters
that are needed to be estimated. One simple nonparametric approach is to
group data along the X-axis, estimate the αth-quantile value for each group
and connect the values between groups by the use of a smoothing device. This
method will usually be practical only for simple regressions where the data
can be displayed as a two-dimensional scattergram. A more sophisticated
nonparametric approach consists of estimating qα(x) through a nonparamet-
ric estimator of F (y|x).

In Section 10.2, we describe a kernel estimator of the conditional distribu-
tion which induces an estimator of corresponding quantiles. Theoretically,
the extension of conditional quantiles to higher dimension p of X is obvi-
ous. But its practical success (as is the case for most nonparametric estima-
tors) suffers from the so-called “curse of dimensionality”. Furthermore, note
that in this multivariate context, reference curves are a pair of p-dimensional
hyper-surfaces. Their visual display is therefore rendered difficult, making it
less directly useful for exploratory purposes (than the one-dimensional case).
However, when p ≤ 2, two-dimensional and three-dimensional plots can pro-
vide useful information on such changes. Though, it is now possible to view
three-dimensional plots with most available software, it is very complicated
to detect graphically if an individual is abnormal or not, even if we rotate
the axis in the correct direction. When p > 2, graphical methods are more
difficult, as viewing all the data in single (p + 1)-dimensional plot may no
longer be possible. In Section 10.3, motivated by these practical and visual
aspects, the key is to reduce the dimension of the predictor vector X without
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loss of information on the conditional distribution of Y given X and without
requiring a prespecified parametric model. Sufficient dimension-reduction
leads naturally to the idea of a sufficient summary plot that contains all
information on the regression available from the sample. From a technical
point of view, it would be a very helpful initial step in nonparametric esti-
mation to circumvent the curse of dimensionality. In this chapter, we focus
on linear projection method of reducing the dimensionality of the covariates
in order to construct a more efficient estimator of conditional quantiles and
consequently reference curves. The specific dimension reduction method used
is based on Li’s well known sliced inverse regression (SIR), see Duan and Li
(1991) and Li (1991). A convergent semiparametric estimator of conditional
quantiles based on this dimension-reduction method is then proposed. The
method works in two steps: a dimension-reduction step based on SIR and
a nonparametric estimation (of the conditional quantiles) step using a ker-
nel method. The numerical performance of this estimator is illustrated with
a simulated example. In Section 10.4, we describe a real-data application.
The aim of the study is to establish 90%-reference curves for one biophysical
property of the skin (the conductance of the skin) of healthy French women
of Caucasian origin on the cheek area, using the age of the volunteer, the ex-
perimental conditions and other biophysical properties of the skin performed
on this facial area as the multidimensional covariate X. Finally, we give in
Section 10.5 an extension of this semiparametric approach.

10.2 Kernel Estimation of Reference Curves

The nonparametric conditional quantile estimation approaches presented here
yield consistent estimates of the corresponding conditional quantiles under
general conditions, without requiring to specify the form of the distribution
of Y .

Basic kernel estimation of reference curves. From (10.1), an estimator
of the conditional distribution induces an estimator of corresponding quan-
tiles. For instance, a Nadaraya-Watson estimator, F̂n(y|x), can be affected
to F (y|x). If we write Y � = I{Y ≤ y}, then F (y|x) = E(Y �|X = x), and
then the estimation problem may be viewed as a regression of Y � given X.
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The corresponding kernel estimator is given by

F̂n(y|x) =

n∑
i=1

K{(x − Xi)/hn}Y �
i

n∑
i=1

K{(x − Xi)/hn}
, (10.4)

where hn and K are respectively a bandwidth and a bounded (kernel) func-
tion. The estimator qn,α(x) of qα(x) is naturally deduced from F̂n(y|x) as
the root of the equation

F̂n(y|x) = α. (10.5)

Many authors have studied this estimator, Stute (1986), Samanta (1989),
Gannoun (1990), Berlinet, Cadre and Gannoun (2001), Berlinet, Gannoun
and Matzner-Løber (2001).

Then, the corresponding estimated (2α − 1)% reference curves are given, as
x varies, by the following

In,α(x) = [qn,1−α(x), qn,α(x)]. (10.6)

Two other nonparametric estimation of conditional quantiles. Various
other nonparametric methods are explored in order to estimate qα(x). Among
them we can cite the local polynomial and the double kernel. For moti-
vation, discussion and theoretical results on these estimation methods, the
reader may also refer to Stone (1977), Tsybakov (1986), Lejeune and Sarda
(1988), Bhattacharya and Gangopadhyay (1990), Fan, Hu and Truong (1994),
Jones and Hall (1990), Chaudhuri (1991a), Chaudhuri (1991b), Yu and Jones
(1998), Poiraud (2000), Mint el Mouvid (2000) and Cai (2002). Let us briefly
discuss the first two.

Local constant kernel estimation of conditional quantiles. Using the formula
(10.3), the idea of the local constant approach is to approximate the unknown
qα(x) by a constant function in a neighbourhood of x. Then, the correspond-
ing estimator of qα(x) is defined as the value θ which minimizes the kernel
estimate of the conditional expectation:

En [ρα(Y − θ)|X = x] =

∑n
i=1 ρα(Yi − θ)K

(
x−Xi

hn

)
∑n

i=1 K
(

x−Xi

hn

) . (10.7)

Since the denominator of (10.7) does not depend on θ, the optimization
problem is equivalent to the following minimization one : the local constant
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kernel estimatior of qα(x) is defined as the value θ which minimizes

n∑
i=1

ρα(Yi − θ)K
(

x − Xi

hn

)
. (10.8)

Let us note that this estimator can be seen as a particular case of local linear
or polynomial estimators, where estimating qα(x) is equivalent to estimating
the intercept. These methods have various advantages such as design adap-
tation and good boundary behavior, Chaudhuri (1991a), Chaudhuri (1991b),
Fan, Hu and Truong (1994), Fan and Gijbels (1996), Koenker, Portnoy and
Ng (1992), Mint el Mouvid (2000).

Double kernel estimation of conditional quantiles. A smoother version of the
estimated conditional distribution function defined in (10.4) can be intro-
duced by replacing the indicator function by a kernel density function ω.
The corresponding estimator, called the double kernel estimator, is defined
as follows:

F̃n(y|x) =

∑n
i=1 K

(
x−Xi

h1,n

)
Ω
(

y−Yi

h2,n

)
∑n

i=1 K
(

x−Xi

h1,n

) , (10.9)

where Ω is the distribution function associated to the kernel ω. Mathemati-
cally, this estimator can be seen as the integrale of the kernel estimate of the
conditional density function, Berlinet, Gannoun and Matzner-Løber (2001).
So, the estimator of qα(x), derived from (10.9), is defined as the root:

F̃n(y|x) = α.

This approach is attractive but suffers from the disadvantage of having to
specify a second bandwidth h2,n as well as the bandwidth h1,n which plays
much the same role as bandwidth hn in (10.4).

Global remark on the bandwidths. In order to get a maximum efficiency
of the above nonparametric estimators, a good choice of the bandwidths is
necessary. Unfortunately, there is no single and universal criterion to select
optimal bandwidths.

Interesting proposals which address the crucial problem of bandwidth selec-
tion can be found in Fan and Gijbels (1992). Much literature has been written
on automatic methods that attempt to minimize a lack-of-fit criterion such
as integrated squared error. From a practical viewpoint, this is discarding
much of the power of nonparametric regression. In the following, we only
describe one particular choice of the bandwidth parameter hn for the kernel
estimator qn,α(x) defined in (10.5).
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For this estimator qn,α(x), a data-driven bandwidth is derived by the cross-
validation approach, Yao (1999). In other words, hn minimizes

n∑
i=1

n∑
j=1

{I{Yi ≤ Yj} − F (−i)
n (Yj |x)}2, (10.10)

where F
(−i)
n is an estimator (depending on hn) of F given as in (10.4) from

the sample {(Xk, Yk), 1 ≤ k ≤ n, k �= i}.

For the local constant kernel estimator or the double kernel estimator, note
that one or two bandwiths are necessary. A bandwidth selection process,
based on the usual rule-of-thumb calculations, has been explored recently
by Yu and Jones (1998). Let us precise that, for these two estimators, this
particular choice of bandwidths, relying on normality assumption on the con-
ditional distribution, should be used with care. If this underlying assumption
fails, there is theoretically no guarantee that such selected bandwidths are
valid. The corresponding bandwidths can lead to over-smoothed or under-
smoothed estimates in some cases, see Gannoun, Girard, Guinot and Saracco
(2002a) and Gannoun, Girard, Guinot and Saracco (2002b) for numerical
studies.

10.3 A Semiparametric Approach Via Sliced
Inverse Regression

In this section, let Yi denote the i -th observation on the univariate response
Y and let Xi denote the corresponding p×1 vector of observed covariate val-
ues. The data {(X�

i , Yi)}n
i=1 are assumed to be independent and identically

distributed observations from the (p+1)-dimensional random vector (X�, Y )
with finite moments.

10.3.1 Dimension Reduction Context

A convenient data reduction formulation is to assume there exists a p × r
matrix B such that

F (y|x) = F (y|B�x), (10.11)

where F (.|.) is the conditional distribution function of the response Y given
the second argument. Such matrix always exists because (10.11) is trivially
true when B = Ip the p×p identity matrix. This assumption implies that the
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p×1 predictor vector X can be replaced by the r×1 predictor B�X without
loss of regression information. Most importantly, if r < p, then sufficient
reduction in the dimension of the regression is achieved. The linear subspace
S(B) spanned by the columns of B is a dimension reduction subspace, see
Li (1991), and its dimension denotes the number of linear components of X
needed to model Y . When (10.11) holds, then it also holds with B replaced by
any matrix whose columns form a basis for S(B). Clearly, knowledge of the
smallest dimension reduction subspace would provide the most parsimonious
characterization of Y given X, as it provides the greatest dimension reduction
in the predictor vector. Let SY |X denote the unique smallest dimension
reduction subspace, referred to the central dimension reduction subspace in
Cook (1994), Cook (1996) and Cook (1998). Let d = dim(SY |X), be the
dimension of this subspace, note that d is such that d ≤ r. Let β be the p×d
matrix whose columns form a basis of SY |X, that is S(β) = SY |X. Then,
from (10.11), we have

qα(x) = qα(β�x). (10.12)

In the following, let Σ be the covariance matrix of X, supposed to be positive-
definite.

Characterization of the dimension reduction subspace. A characterization
fo the subspace S(β) has been proposed by Li (1991) and Duan and Li (1991)
via an inverse regression approach. This approach needs to assume that:

the marginal distribution of the predictors X satisfies the following linearity
condition: (LC) For all b ∈ Rp, E(b�X|β�X) is linear in β�X.

REMARK 10.1 This condition (LC) is required to hold only for the basis
β of the central subspace. Since β is unknown, in practice we may require
that it holds for all possible β, which is equivalent to elliptical symmetry of
the distribution of X, Eaton (1986). This condition holds for instance when
X is normally distributed. Li (1991) mentioned that the linearity condition
is not a severe restriction, since most low-dimensional projections of high-
dimensional data clouds are close to being normal, Diaconis and Freedman
(1984), Hall and Li (1993). Experience indicates that linearizing predictor
transformations often result in relatively simple models. In addition, it is
possible to use the reweighting procedure proposed by Cook and Nachtsheim
(1994) after predictor transformations to remove gross nonlinearities.

Under (LC), Li (1991) showed that the centered inverse regression curve fall
in the linear subspace spanned by the columns of Σβ, that is E(X|Y )−E(X) ∈
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S(Σβ). Thus,

SE(X|Y ) ⊆ S(Σβ) = ΣSY |X, (10.13)

where SE(X|Y ) denote the subspace spanned by {E(X|Y )−E(X) : Y ∈ ΩY }
and ΩY ∈ R is the sample space of Y .

In order to simplify the calculus, a standardized version of this result can
be used. Let Z denote the standardized version of the predictor X defined
by Z = Σ−1/2 {X − E(X)} , where Σ−1/2 is the symmetric positive-definite
square root of Σ−1. There is no loss of generality working on the Z-scale,
because any basis for SY |Z can be back-transformed to a basis for SY |X since
SY |X = Σ−1/2SY |Z. Therefore, from (10.13), we have

SE(Z|Y ) ⊆ S(η) = SY |Z, (10.14)

where η = Σ1/2β. This does not guarantee equality between SE(Z|Y ) and
SY |Z and, thus, inference about SE(Z|Y ) possibly covers only part of SY |Z.
Moreover, it is clear that

S{V [E(Z|Y )]} = SE(Z|Y ), (10.15)

except on a set of measure zero, Cook (1998).

Using results (10.14) and (10.15), the estimation of the inverse regression
curve E(Z|Y ) serves to estimate the central dimension-reduction subspace
by estimating the covariance matrix V [E(Z|Y )]. Methods are available for
estimating portions of the central subspace. In the next paragraph, we mainly
focus on the classical Sliced Inverse Regression (SIR) method introduced by
Duan and Li (1991), Li (1991) which is a simple non-smooth nonparametric
estimation method for SY |Z.

Sliced Inverse Regression Approach. The idea is based on partitionning
the range of the one-dimensional response variable Y into a fixed number
H of slices denoted S1, . . . ,SH . Then, the p components of Z are regressed
on Ỹ , the discrete version of Y resulting from slicing its range, giving p
one-dimensional regression problems, instead of the high-dimensional forward
regression of Y on Z. Let M denote the covariance matrix V

[
E(Z|Ỹ )

]
. Note

that, using the slicing S1, . . . ,SH , M is written

M =
H∑

h=1

phmhm�
h , (10.16)
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where ph = P(Y ∈ Sh) and mh = E[Z|Y ∈ Sh]. From (10.14) and (10.15), it
is clear that

S(M) = SE(Z|eY ) ⊆ S
eY |Z ⊆ SY |Z. (10.17)

The last inclusion in (10.17) holds because Ỹ is a function of Y , which im-
plies that SY |Z is a dimension-reduction subspace for the regression of Ỹ on
Z. Let λ1 ≥ · · · ≥ λp denote the eigenvalues of M , and u1, . . . , up denote
the corresponding eigenvectors. Assuming that d = dim {S(M)}, it follows
that S (M) = S(u1, . . . , ud). Transforming back to the X-scale, the vectors
{bk = Σ−1/2uk}d

k=1 form a basis of S(β). Following SIR vocabulary, the di-
mension reduction subspace S(β) is called the effective dimension-reduction
(EDR) space, and the vectors bk are named EDR directions. As we focus our
dimension reduction approach on the SIR method, we will use this terminol-
ogy from now on.

REMARK 10.2 Pathological cases for the SIR approach have been identi-
fied. Li (1991), Li (1992), Cook and Weisberg (1991) mention that SIR can
miss EDR directions even if the (LC) condition is valid. The reason is that
it is “blind” for symmetric dependencies. In this case, the inverse regres-
sion curve does not contain any information about the EDR directions. For
handling such cases, in order to recover the EDR directions, a natural exten-
sion is to consider higher moments of the conditional distribution of X given
Y . Various methods based on second moments for estimating the EDR space
have been developped: for example, SIR-II and SIRα by Li (1991), SAVE by
Cook and Weisberg (1991), the pooled slicing version of these methods and
the choice of α by Saracco (2001), Gannoun and Saracco (2003a) and Gan-
noun and Saracco (2003b), and Principal Hessian directions by Li (1992).
These methods may help, at least for completeness, when SIR fails to capture
all the EDR directions.

REMARK 10.3 More details and comments on the SIR estimation proce-
dure can be found in Li (1991), Chen and Li (1998). SIR has been discussed
in several articles with emphasis on its asymptotic properties, see for exam-
ple, Hsing and Carroll (1992), Kotter (1996), Zhu and Fang (1996), Saracco
(1997) or Saracco (1999) among others. Carroll and Li (1992) used SIR
in a nonlinear regression model with measurement error in the covariates.
The situation of small sample sizes has been studied by Aragon and Saracco
(1997). Bura (1997) used a multivariate linear model for the inverse regres-
sion curve. The case of censored regression data is considered by Li, Wang
and Chen (1999).
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10.3.2 Estimation Procedure

We first describe here the practical implementation of the dimension-reduction
step. Then, in a second step, we present the kernel method for estimating
the conditional quantiles.

SIR estimation step. Let X and Σ̂ be the sample mean and the sample
covariance matrix of the Xi’s. Let Ẑi be the estimated standardized predic-
tor defined by Ẑi = Σ̂−1/2(Xi − X), i = 1, . . . , n. Then the SIR estimate of
M defined in (10.16) is given by M̂ =

∑H
h=1 p̂hm̂hm̂�

h , where H is the fixed
number of slices, p̂h = nh/n with nh being the number of observations in
the hth slice, and m̂h is the p-vector of the average of Ẑ within slice h. Let
λ̂1 ≥ · · · ≥ λ̂p denote the eigenvalues of M̂ , and û1, . . . , ûp denote the cor-
responding eigenvectors. Assuming that the dimension d of S(M) is known,
S(M̂) = S(û1, . . . , ûd) is a consistent estimate of S(M). In practice, the di-
mension d is replaced with an estimate d̂ equal to the number of eigenvalues
that are inferred to be nonzero in the population, see for example, Li (1991),
Schott (1994) or Ferré (1998).

When dim{S(η)} = d, an estimated basis of S(η) is clearly provided by
the eigen-decomposition of M̂ . Transforming back to the original scale, an
estimated basis of S(β) is formed by the vectors {b̂k = Σ̂−1/2ûk}d

k=1 forms.
Similarly to the population version, the vectors b̂k are the estimated EDR
directions and they span the estimated EDR space.

Conditional quantile estimation step. Using the SIR estimates obtained in
the previous subsection, we now give an estimator of the conditional distribu-
tion function from which we derive an estimator of the conditional quantile.
For the sake of convenience, we assume that d = 1. Let us recall that, in the
present dimension-reduction context, we have

F (y|x) = F (y|β�x) = F (y|b�x) and qα(x) = qα(β�x) = qα(b�x).

Using the notation b̂ = b̂1, b̂ is an estimated EDR direction, that is an
estimated basis of S(β). Then, the corresponding estimated index values of
Xi and x are defined as follows: {v̂i = b̂�Xi}n

i=1 and v̂ = b̂�x. Following
(10.4), from the data {(Yi, v̂i)}n

i=1, we define a kernel estimator of F (y|x) by

Fn(y|b̂�x) = Fn(y|v̂) =
∑n

i=1 K{(v̂ − v̂i)/hn}I{Yi ≤ y}∑n
i=1 K{(v̂ − v̂i)/hn}

. (10.18)
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Then, as in (10.5), we derive from (10.18) an estimator of qα(x) by

qn,α(b̂�x) = qn,α(v̂) = F−1
n (α|v̂). (10.19)

As a consequence of the above result, for α > 0.5, the corresponding esti-
mated 100 × (2α − 1)% reference curves are given, as x varies, by

In,α(x) = [qn,1−α(v̂); qn,α(v̂)] = [qn,1−α(b̂�x); qn,α(b̂�x)].

REMARK 10.4 The above definitions have been presented in the context
of single index (d = 1). A natural extension is to consider the general multiple
indices (d > 1) context and to work with {b̂j}d

j=1 and
{v̂i = (b̂T

1 Xi, . . . , b̂
T
d Xi)}n

i=1. Then we follow the multi-kernel estimation
can be used to get qn,α(b̂T

1 x, . . . , b̂T
d x) as in (10.19), the corresponding kernel

K used in (10.18) can be the d-dimensional normal density.

10.3.3 Asymptotic Property

The following theorem gives the weak convergence of the estimator qn,α(b̂T x).
Let us assume the following assumptions:

(A1) The random vectors (Xi, Yi), i ≥ 1, are defined on probability space
(Ω,A, P ) and constitute a strictly stationary process.

(A2) The kernel K : R −→ R is a probability density function such that:
K is bounded; |v|K(v) −→ 0 as |v| −→ ∞;

∫
vK(v)dv = 0 and∫

v2K(v)dv < ∞.

(A3) The sequence of bandwidth hn tends to zero such that nhn/ log n −→
∞.

(A4) The variable X admits a continuous marginal density.

(A5) F (.|b�x) and F (y|.) are both continuous.

(A6) For α ∈ (0, 1) and x ∈ Rp, F (.|b�x) has a unique αth-quantile.

THEOREM 10.1 Under Assumptions (A1)-(A6) and Condition (LC),
for a fixed x in Rp,

sup
y∈R

∣∣∣Fn(y|b̂�x) − F (y|x)
∣∣∣ P−→ 0 as n → ∞,

and
qn,α(b̂�x) P−→ qα(x), as n → ∞.
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Comments on the Assumptions. Asumptions (A2) and (A3) are quite
usual in kernel estimation. As a direct consequence of Assumption (A4), the
variable bT X admits a continuous marginal density. Assumption (A5) is used
to prove the uniform convergence (in probability) of Fn(.|b̂T x) to F (.|bT x).
Assumption (A6) is used in the proof of the convergence of qn,α(b̂T x) to
qα(x). Note that if there is no unicity, we can define qα(x) = inf{y :
F (y|bT x) ≥ α}.

Comments on the Theorem. This weak convergence is enough to make
application. The proof of this theorem can be found in Gannoun, Girard,
Guinot and Saracco (2004). Note that in order to get the uniform conver-
gence, one can also suppose that X is defined on compact set of Rp, and
proceed by the same manner as in Berlinet, Cadre and Gannoun (2001).

10.3.4 A Simulated Example

We illustrate the numerical performance of the proposed semiparametric es-
timation method on simulated data. We consider the following regression
model with p = 10:

Y = 1 + exp(2β�X/3) + ε,

where X follows the standard multinormal distribution Np(0, Ip), the er-
ror term ε is normally distributed from N(0, 1) and is independent of X,
and β = 3−1(1, 1, 1, 1, 1,−1,−1,−1,−1, 0)�. Note that, when X = x, the
true corresponding αth-conditional quantile can be written: qα(x) = 1 +
exp(2β�x/3) + Nα, where Nα is the αth-quantile of the standard normal
distribution.

A sample of size n = 300 has been generated from this model. The con-
ditional quantiles have been estimated for α = 5% and α = 95% on a
grid. For the computational implementation, the kernel used is the nor-
mal density. Each reference curve is evaluated on 50 points equidistributed
on the range of the (true or estimated) index. For each point of the grid,
the bandwidth parameter hn has been obtained with the cross-validation cri-
terion 10.10. Note that the estimated eigenvalue of the SIR matrix M̂ are:
0.436,0.096,0.088,0.050,0.037,0.032,0.019, 0.011,0.009,0.003. Clearly, we only
keep one estimated EDR direction:

b̂ = (0.348, 0.241, 0.272, 0.353, 0.375,−0.353,−0.358,−0.216,−0.386,−0.182)�

which is very close to β (with cos2(β, b̂) � 0.94).
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Figure 10.1: Comparison of the true 90%-reference curves (red dotted lines)
and the corresponding kernel estimated 90%-reference curves
(blue dashed lines for the non smoothed version and blue solid
lines for the smoothed version) using the true index β�x
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An example of graphical representation of the 90%-reference curves is given
on figures 10.1 and 10.2. In the first one, we present the scatterplot of the
“true” reduced data {(β�Xi, Yi), i = 1, . . . , n} and the “true” 90%-reference
curves are plotted (with red dotted lines) as well as the corresponding es-
timated reference curves (which have no practical interest since they are
based on the estimated conditional quantile qn,α(β�x) using the theoreti-
cal dimension-reduction direction β). Let {ṽt, t = 1, . . . , T} be the set of
the “true” index values on which the nonparametric estimates of conditional
quantiles are evaluated. Then, we use the pairs {(ṽt, qn,α(ṽt)), t = 1, . . . , T}
to get reference curves. A common approach to connect different quantiles,
is to use the well-known linear interpolation (this is done with blue dashed
lines). Although this method is practical, the visual aspect is not smooth. To
make up for this imperfection, we can use the Nadaraya-Watson method to
obtain the wanted smoothed curves (see the corresponding blue solid lines).
The superimposition of the theoretical and estimated 90%-reference curves
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shows the accuracy of the nonparametric kernel estimation of the conditional
quantiles. In Figure 10.2, the horizontal axis is now the estimated index,
the scatterplot of the “estimated” reduced data {(b̂T Xi, Yi), i = 1, . . . , n} is
plotted as well as the corresponding estimated 90%-reference curves (based
on the estimated conditional quantile qn,α(b̂�x)). The resulting curves are
visually similar to the theoretical ones.
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Figure 10.2: Semiparametric estimation of the 90%-reference curves using
the SIR estimated index b̂�x (blue dashed lines for the non
smoothed version and blue solid lines for the smoothed version)
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10.4 Case Study on Biophysical Properties of
the Skin

When studying biophysical skin properties of healthy women, knowledge
about the reference curves of certain parameters is lacking. Information
concerning biophysical skin properties is limited to few studies. The aim
of a global study managed by the CE.R.I.E.S. (“CEntre de Recherches et
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d’Investigations Epidermiques et Sensorielles” or Epidermal and Sensory Re-
search and Investigation Centre) is to establish reference curves for biophys-
ical parameters of the skin reflecting human variability among healthy sub-
jects without any skin disease. These variables are measured in conditions
that minimize physiological stress. The reference curves could be used in
dermatology to detect an abnormal condition, even if unlabelled as a spe-
cific disease, which should be examined and corrected. In cosmetology, they
could be used for product development in order to select specific group of
subjects. In a previous study described in Gannoun, Girard, Guinot and
Saracco (2002a), the 90%-reference curves for biophysical properties of the
skin of healthy Caucasian women have been established. The biophysical
properties of the skin of healthy Caucasian women have been performed on
two facial areas and one forearm area. The biophysical skin properties have
been studied one after the other as the variable of interest Y and the only
covariate was the age of the volunteer.

The aim of the current study is to establish 90%-reference curves for one
biophysical property of the skin (the conductance of the skin) of healthy
Caucasian women on the cheek area, using the age and a set of covariates
(experimental conditions and other biophysical properties of the skin per-
formed on this facial area). In the next subsection, we describe more precisely
the corresponding study and we give an brief overview of these biophysical
parameters. Then, we present the methodological procedure used with an
additional step in order to simplify the EDR indices. Finally, we describe the
results and give a brief biophysical interpretation.

10.4.1 Overview of the Variables

The study was conducted from November 1998 to March 1999 on 287 Cau-
casian women between the age of 20 and 80 with apparently healthy skin (i.e.
without any sign of ongoing skin disease or general disease with proven cuta-
neous manifestations), and living in the Ile de France area. Each healthy vol-
unteer was examined at CE.R.I.E.S. (“CEntre de Recherches et d’Investiga-
tions Epidermiques et Sensorielles” or Epidermal and Sensory Research and
Investigation Centre) in a controlled environment (temperature 22.9± 0.3◦C
and a relative humidity of 48.4 ± 2.4%).

As the CERIES (which is the investigator) is located in Paris, the present
study concerns women living in Ile de France (which is an area around Paris).
Moreover, to keep homogeneity, the statistical sample contains only women
having the same skin characteristics (namely Caucasian woman). Similarly,
other studies have been conducted (for instance on Japenese women) but are
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not presented here.

This evaluation included self-administered questionnaires on skin-related habits,
a medical examination and a biophysical evaluation of the skin. The biophys-
ical investigation was performed on two areas of the face (forehead and cheek)
and on the left volar forearm.

Within the framework of the subsection 10.4.3, the variable of interest is
the conductance of the skin performed on the cheek area and denoted by
kcheek. The available covariates included in the study are the following.

• Other biophysical properties of the skin performed on the cheek area:
the skin temperature (denoted by tcheek), the transepidermal water
loss (denoted by cheek1), the skin pH (denoted by pcheek), the skin
hydration given by the capacitance (denoted by c2cheek), the skin
colour which is was expressed using L* a* b* for the standard CIE
1976 colour system (denoted by lcheek, acheek and bcheek), and
the sebum excretion rate (denoted by scheek).

• One components concerns the volunteer: age (age of volunteer).

• Two covariates concern the experimental conditions: hygro (relative
humidity of the controlled environment) and temp (temperature of the
controlled environment).

The goal is to estimate the 90%-reference curves for the variable of interest
kcheek using the corresponding set of the p = 11 covariates.

10.4.2 Methodological Procedure

The following methodology is applied in the practical case study. For conve-
nience, let us denote by X the set of the p covariates (p = 11 in the current
study). Three steps are necessary to describe the estimation procedure.

• Step 1: application of SIR on the set X . We apply the SIR method
using the variable of interest Y and all the covariates of X . From the
eigenvalues scree plot, we determine the number d̂ of EDR directions to
keep, that is the number of eigenvalues significantly different from zero
in theory. From a practical point of view, we look for a visible jump in
the scree plot and d̂ is then the number of the eigenvalues located before
this jump. Note that if no jump is detected, no dimension reduction
is possible. The eigenvalues scree plot approach used here is a useful
explonatory tool in determining d. Of course testing procedure could be
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also used to identify d, see for instance, Schott (1994) or Ferré (1998).
For simplicity of notation, we continue to write d for d̂ in the following.

The corresponding estimated EDR directions are therefore b̂1, . . . , b̂d.
We can visualize the structure of the “reduced” data
{(Yi, b̂

�
1 Xi, . . . , b̂

�
d Xi)}n

i=1.

• Step 2: study and simplification of the EDR indices. The aim
here is to “simplify” the indices b̂�k x in order to obtain an simpler in-
terpretation. To this end, for each index, we make a forward-selected
linear regression model of b̂�k x on the covariates of X (based on the AIC
criterion for instance). We then obtain X1, . . . ,Xd, the corresponding
subsets of selected covariates. The final subset is then X̃ = ∪d

k=1Xk.
Let us remark that the selection of covariates is effective if X̃ is strictly
included in X . We apply SIR again with the covariates of X̃ and we
obtain the corresponding d estimated EDR directions b̃1, . . . , b̃d. Fi-
nally, we graphically check that each plot {(b̂�k Xi, b̃

�
k X̃i)}n

i=1 has a lin-
ear structure. The corresponding Pearson correlation R2 can be also
calculated.

• Step 3: estimation of the conditional quantiles with the sim-
plified indices. We are now able to estimate the reference “curves”
(which are hypersurfaces when d > 1) on the sample
{(Yi, b̃

�
1 X̃i, . . . , b̃

�
d X̃i)}n

i=1, by the kernel method described in subsec-
tion 10.3.2.

10.4.3 Results and Interpretation

We apply the previous methodology in order to construct the 90%-reference
curves for the variable kcheek. Following the step 1, from the eigenvalues
scree plot (see Figure 10.3), we straighforwardly select the dimension d̂ = 1.
We estimate the corresponding EDR direction b̂1 ∈ R11.

Step 2 is summarized in Table 10.1 which gives the selected covariates (first
column), the value of the AIC criterion in the corresponding single term
addition step of the forward selection step (secon column). Finally, only 6
covariates have been selected. The corresponding estimated EDR direction
b̃1 ∈ R6 is provided in the last column.

In Figure 10.4, the indices computed at the first step with all the covariates
(b̂�1 Xi, i = 1, . . . , n) are plotted versus the indices computed at the second
step with the selected covariates (̃b�1 X̃i, i = 1, . . . , n). Since this plot reveals
a linear structure (with R2 = 0.984 close to one), there is no loss of infor-
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Figure 10.3: Eigenvalues scree plot for SIR of step 1

mation working with only the subset of the remaining selected covariates. In
the third step, we construct the 90%-reference curves for kcheek using the
estimated index b̃�1 X̃i, with the kernel method, see Figure 10.5. Regarding
the cheek area, the results of this analysis show that, apart from age, five
covariates enter in the model. The environmental conditions are represented
only by room temperature in the model (which is to be expected). The se-
bum casual level scheek plays a major role on skin hydration. The three
other covariates are directly related with skin hydration: skin pH (pcheek),
capacitance and transepidermal water loss (c2cheek and cheek1 ). This
results lead to a slightly different model than those obtain for the forearm or
the forehead (not given here), which is perfectly consistent with the anatomo-
physiological topographic specificity of the skin area studied. These reference
curves indicatin skin hydration assessed by conductance gives physiological
consistent results.



200 10 A Semiparametric Reference Curves Estimation

Table 10.1: Results of the forward-selection step and final estimated EDR
direction for the cheek area

Covariate AIC final EDR
direction

age 301.85 -0.003
c2cheek 29.56 -0.102
scheek 25.67 0.004
temp 23.51 0.439
cheek1 20.07 -0.036
pcheek 18.48 0.273
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Figure 10.4: Graphical validation of the covariate selection step (step 2)

10.5 Conclusion

We can deal with a more general multivariate case for the variable of interest.
From now on, we assume that the variable of interest Y belongs to Rq and the
covariable X takes its values in Rp. Based on the dimension-reduction moti-
vation described above, we propose to reduce simultaneously the dimension
of Y and X with the Alternating SIR method as a first step, see for instance
Li, Aragon, Shedden and Thomas-Agnan (2003) for a description of Alter-
nating SIR approach which allows to estimate EDR direction in the space
of X and also interesting directions in the space of Y, these directions are
called MP (for most predictable) directions. As previously, a nonparametric
estimation of univariate conditional quantiles (if only one MP direction is
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Figure 10.5: Estimated 90%-reference curves for the variable kcheek

retained) or a nonparametric estimation of spatial conditional quantiles (if
two or more than two MP directions are retained) based on a kernel method
can be used as a second step. This multivariate approach is described in
Gannoun, Guinot and Saracco (2004) and is applied on a biomedical exam-
ple using the data set on the biophysical properties of the skin of healthy
French women.
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Ferré, L. (1998). Determining the Dimension in Sliced Inverse Regression and
Related Methods. J. Amer. Stat. Assoc., 93, 132-140.

Gannoun, A. (1990). Estimation Non Paramétrique de la Médiane Condi-
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11 Survival Analysis

Makoto Tomita

11.1 Introduction

This chapter explains the method of fundamental survival time analysis em-
ploying XploRe. Kaplan-Meier estimator (Kaplan, 1958) is mentioned as the
typical method of non-parametric survival time analysis. The most common
estimate of the survival distribution, the Kaplan-Meier estimate, is a product
of survival proportions. It produces non-parametric estimates of failure prob-
ability distributions for a single sample of data that contains exact time of
failure or right censored data. It calculates surviving proportion and survival
time, and then plots a Kaplan-Meier survival curve.

Some methods are proposed for approval of the difference in survival time
between two groups. Log-rank test (Peto, 1977) is the approval method in
which Kaplan-Meier estimation is applied. This tests the difference of sur-
vival proportions as a whole.

Lastly, Cox’s regression (Cox, 1972) using proportional hazard rate is in-
dispensable in this latest field. It belongs to the group of semi-parametric
survival time analyzing methods. Cox’s proportional hazard model is based
on multiple linear regression analysis considered by survival time which can
be taken to response variable Y and explanatory variable X and hazard rate
is applied to variable Y . Treatment effect is shown with coefficient β on mul-
tiple linear regression analysis. Then, β is evaluated.
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11.2 Data Sets

Two data sets will be studied with survival time analysis in this chapter.
Both were gathered from April 1, 2001 to September 30, 2004 at the Riumachi
Center, Tokyo Women’s University of Medicine. We have analyzed survival
time of the two data sets here. The first is data on the period whose symptoms
are shown again, after prescribing a steroid and CY (Cyclophosphamide)
agent for the rheumatic patient, and on how the disease settles down. It does
not identify the span of time until symptoms occurs again. The second is
data on the period until aseptic necrosis, a side effect that occurs with the
quantity of steroid used as medication. It does not identify the time when
aseptic necrosis occurs. Although we analyzed the data using three popular
techniques, Kaplan-Meier estimation, log-rank test and Cox’s regression, we
have omitted explanations of these techniques and focused on the interesting
results.

11.3 Data on the Period up to Sympton
Recurrence

Tanaka (2003) have studied pulmonary hypertension associated with collagen
tissue disease. They investigated into the difference in the length of time until
symptom recurs, after prescribing a steroid and CY agent. Next, we decided
to analyze survival time. The data is shown in Table 11.1.

11.3.1 Kaplan-Meier Estimate

Easy quantlet called kaplanmeier is prepared to identify the survival rate
of Kaplan-Meier with XploRe. If we want to ask for the survival rate about
CY agent of the above data, for instance, it is necessary to process data as x
of output as shown below, so that the quantlet kaplanmeier may be suited.
It is named “tanakacy.dat” and is saved. Then, the rest should just typed in
the command as follows.

library("stats")
x=read("tanakacy.dat")
x
h = kaplanmeier(x)
h
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Table 11.1: Data on the period up to sympton recurrence (Tanaka, 2003)

Medicine months occurred again
CY 2 occurred
CY 5 occurred
CY 24 not occurred
CY 28 not occurred
CY 33 not occurred
CY 46 not occurred
CY 57 not occurred
CY 84 not occurred

steroid 0.5 occurred
steroid 1 occurred
steroid 1 occurred
steroid 1 not occurred
steroid 5 occurred
steroid 11 occurred
steroid 20 not occurred
steroid 21 occurred
steroid 60 not occurred
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Then, output is produced as follows.

Contents of x

[1,] 1 2
[2,] 1 5
[3,] 0 24
[4,] 0 28
[5,] 0 33
[6,] 0 46
[7,] 0 57
[8,] 0 84

Contents of h

[1,] 2 0.125 0.875
[2,] 5 0.14286 0.75

Therefore, 0.75 is the survival rate.
Next, a Kaplan-Meier survival curve will created for plotting in a graph.

Then, the graphic is obtained as Figure 11.1.

The graph for steroid can also be plotted similarly as Figure 11.2.

11.3.2 log-rank Test

Finally, log-rank test compares these two. The test statistical data is as
follows.

χ2
0 =

(OCY − ECY )2

ECY
+

(Osteroid − Esteroid)2

Esteroid
∼ χ2

1

where, Ox is observation of occurrence, and Ex is expectation of occurrence.
The result was obtained as follows.

chi-square: 2.559262603
p-value: 0.109649747

Although small sample size may have been a factor, the result was unfortu-
nately not significant. However, in the experiment team, it decided to study
continuously, because p-value is about 10%.
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Figure 11.1: Kaplan-Meier survival curve of CY
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11.4 Data for Aseptic Necrosis

Steroid is sometimes often prescribed for a rheumatic patient. However,
if excessive steroid is prescribed, aseptic necrosis occurs at a joint as side
effect. A patient has to perform an operation on this by seemingly being
very painful. A method called pulse treatment is employed in the medication
method of steroid, and medication is given at once and in large quantity.
Table 11.2 is the data which was obtained from the group of patients who
were administered pulse treatment, and the group of the patient who were
performed the non-pulse treatment.
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Table 11.2: Data for Aseptic Necrosis (Fukasawa, 2001)

Steroid months AN* Steroid months AN Steroid months AN

nonpulse 3 0 pulse 6 1 nonpulse 3 0
pulse 2 0 nonpulse 18 0 nonpulse 9 0

nonpulse 3 0 nonpulse 7 0 nonpulse 2 0
nonpulse 5 0 nonpulse 23 0 nonpulse 3 0
nonpulse 3 0 pulse 17 0 pulse 10 1
nonpulse 6 0 nonpulse 7 0 nonpulse 6 0
nonpulse 3 0 nonpulse 7 0 nonpulse 12 0
nonpulse 11 0 pulse 5 0 nonpulse 7 0
nonpulse 6 1 nonpulse 12 0 nonpulse 4 0
nonpulse 3 0 nonpulse 3 0 nonpulse 7 0
nonpulse 2 0 pulse 7 1 nonpulse 6 0

pulse 8 0 nonpulse 7 0 nonpulse 31 0
nonpulse 7 1 nonpulse 15 0 pulse 3 0

pulse 9 0 nonpulse 21 0 pulse 9 0
nonpulse 10 0 pulse 6 0 pulse 7 0
nonpulse 8 0 nonpulse 18 0 nonpulse 6 0
nonpulse 16 0 pulse 6 0 pulse 12 1
nonpulse 10 0 nonpulse 3 0 nonpulse 8 0
nonpulse 22 0 pulse 6 0 nonpulse 4 0
nonpulse 11 0 nonpulse 4 0 pulse 5 1
nonpulse 18 0 pulse 3 0 nonpulse 14 0

pulse 4 1 nonpulse 13 1 nonpulse 10 0
nonpulse 6 0 nonpulse 6 0 nonpulse 9 0
nonpulse 11 1 nonpulse 4 0 nonpulse 13 0
nonpulse 22 0 nonpulse 7 0 nonpulse 21 0

pulse 8 0 nonpulse 4 0 pulse 4 1
pulse 4 0 nonpulse 19 0 nonpulse 9 0
pulse 22 0 nonpulse 5 0 pulse 26 0
pulse 2 1 nonpulse 10 0 nonpulse 7 0

nonpulse 4 0 nonpulse 9 0 nonpulse 4 0
nonpulse 6 0 nonpulse 9 0 pulse 11 1

pulse 8 0 pulse 14 0 pulse 5 1
nonpulse 17 0 nonpulse 10 0 nonpulse 5 0

pulse 3 0 nonpulse 7 0 nonpulse 7 0
nonpulse 9 0 nonpulse 10 0 pulse 6 0
nonpulse 4 0 nonpulse 19 0 nonpulse 7 0

AN: aseptic necrosis
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Steroid months AN Steroid months AN Steroid months AN

pulse 5 0 nonpulse 3 0 nonpulse 16 0
nonpulse 16 1 pulse 5 0 nonpulse 6 0
nonpulse 8 0 nonpulse 6 0 pulse 6 0
nonpulse 12 0 pulse 4 0 nonpulse 13 0
nonpulse 15 0 nonpulse 4 0 nonpulse 7 0
nonpulse 15 0 pulse 4 0 nonpulse 9 1
nonpulse 7 0 nonpulse 12 0 pulse 6 1
nonpulse 17 0 pulse 8 0 nonpulse 17 0
nonpulse 3 0 nonpulse 6 0 pulse 11 0

pulse 10 0 nonpulse 12 0 nonpulse 9 1
nonpulse 10 0 pulse 11 0 pulse 9 0
nonpulse 8 0 nonpulse 2 0 nonpulse 7

pulse 6 0 nonpulse 9 0 pulse 5 0
pulse 4 0 nonpulse 5 0 pulse 9 0
pulse 5 0 nonpulse 8 0 nonpulse 5 0
pulse 7 0 pulse 8 0 pulse 7 0
pulse 9 0 nonpulse 4 0 pulse 6 0

nonpulse 4 0 nonpulse 5 0 nonpulse 7 0
pulse 8 0 nonpulse 10 1 nonpulse 9 0
pulse 6 0 nonpulse 11 0 pulse 11 0
pulse 14 0 nonpulse 8 0 pulse 19 0
pulse 6 1 nonpulse 5 0 pulse 6 1

nonpulse 4 0 nonpulse 10 0 pulse 8 0
pulse 6 0 nonpulse 3 0 nonpulse 6 0
pulse 8 0 pulse 5 0 pulse 4 0

nonpulse 12 0 pulse 4 0 nonpulse 1 0
pulse 6 0 nonpulse 7 0 nonpulse 4 0

nonpulse 9 0 nonpulse 9 1 pulse 10 0
pulse 8 0 pulse 11 0 nonpulse 7 0

nonpulse 9 0 nonpulse 9 0
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Figure 11.2: Kaplan-Meier survival curve of steroid

11.4.1 Kaplan-Meier Estimate

Kaplan-Meier survival curves were plotted for these two groups. Since it is
identical to that described in the foregoing paragraph, the method has been
omitted. (What is necessary is just to use the library hazreg).

If Figure 11.3 and Figure 11.4 are compared, a clear difference is likely.

11.4.2 log-rank Test

We performed log-rank test. The result is as follows.
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Figure 11.3: Kaplan-Meier survival curve of nonpulse treatment for steroid

chi-square: 9.486524263
p-value: 0.002069866

The advanced significant difference was accepted in two treatments.

11.4.3 Cox’s Regression

Although data could not be shown in addition to this, there were sex, age,
and hyperlipemia included in the data. Cox’s regression can be used to
investiage into how much variables other than steroid, and relationship with
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Figure 11.4: Kaplan-Meier survival curve of pulse treatment for steroid

aseptic necrosis.

λ(months; sex, age, hyperlipemia, steroid) = λ0(months) exp
(
β�Z

)
(11.1)

where λ0 is baseline hazard function. In XploRe, it can be analyzed using
library hazreg with functions hazdat and haztest used. Since data could
not be exhibited and commands are puzzling, the result is shown without
describing input for details.

On the result (Table 11.3), sex and age are almost unrelated to aseptic necro-
sis. As expected, steroid (pulse treatment) resulted in significant result, and
hyperlipemia led to suggestive result. By above results, it decided to need
sufficient cautions for pulse treatment, and not to treatment it as much as
possible.
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Table 11.3: Result of Cox’s regression

exp(β) lower .95 upper .95 p-value
sex 0.461 0.151 1.40 0.170
age 1.005 0.968 1.04 0.810
hyperlipemia 2.484 0.896 6.88 0.080
steroid 1.829 1.143 2.93 0.012
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12 Ozone Pollution Forecasting
Using Conditional Mean and
Conditional Quantiles with
Functional Covariates

Hervé Cardot, Christophe Crambes and Pascal Sarda

12.1 Introduction

Prediction of Ozone pollution is currently an important field of research,
mainly in a goal of prevention. Many statistical methods have already been
used to study data dealing with pollution. For example, Ghattas (1999) used
a regression tree approach, while a functional approach has been proposed
by Damon and Guillas (2002) and by Aneiros-Perez, Cardot, Estevez-Perez
and Vieu (2004). Pollution data often consist now in hourly measurements of
pollutants and meteorological data. These variables are then comparable to
curves known in some discretization points, usually called functional data in
the literature, Ramsay and Silverman (1997). Many examples of such data
have already been studied in various fields, Franck and Friedman (1993),
Ramsay and Silverman (2002), Ferraty and Vieu (2002). It seems then natu-
ral to propose some models that take into account the fact that the variables
are functions of time.

The data we study here were provided by the ORAMIP (“Observatoire
Régional de l’Air en Midi-Pyrénées”), which is an air observatory located in
the city of Toulouse (France). We are interested in a pollutant like Ozone. We
consider the prediction of the maximum of pollution for a day (maximum of
Ozone) knowing the Ozone temporal evolution the day before. To do this, we
consider two models. The first one is the functional linear model introduced
by Ramsay and Dalzell (1993). It is based on the prediction of the conditional
mean. The second one is a generalization of the linear model for quantile re-
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gression introduced by Koenker and Bassett (1978) when the covariates are
curves. It consists in forecasting the conditional median. More generally, we
introduce this model for the α-conditional quantile, with α ∈ (0, 1). This
allows us to give prediction intervals. For both models, a spline estimator of
the functional coefficient is introduced, in a way similar to Cardot, Ferraty
and Sarda (2003).

This work is divided into four parts. First, we give a brief statistical descrip-
tion and analysis of the data, in particular by the use of principal components
analysis (PCA), to study the general behaviour of the variables. Secondly,
we present the functional linear model and we propose a spline estimator of
the functional coefficient. Similarly, we propose in the third part a spline
estimator of the functional coefficient for the α-conditional quantile. In both
models, we describe the algorithms that have been implemented to obtain the
spline estimator. We also extend these algorithms to the case where there are
several functional predictors by the use of a backfitting algorithm. Finally,
these approaches are illustrated using the real pollution data provided by the
ORAMIP.

12.2 A Brief Analysis of the Data

12.2.1 Description of the Data

The data provided by ORAMIP consist in hourly measurements during the
period going from the 15th May to the 15th September for the years 1997,
1998, 1999 and 2000, of the following variables:

• Nitrogen Monoxide (noted NO),

• Nitrogen Dioxide (noted N2),

• Ozone (noted O3),

• Wind Direction (noted WD),

• Wind Speed (noted WS).

These variables were observed in six different stations in Toulouse. There
are some missing data, mainly because of breakdowns. There were also other
variables (such as the temperature) for which the missing data were too
numerous and we could not use them, so, in the following, we just consider
the five variables mentioned above. We first noticed that these variables take
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values which are very similar from one station to another. Thus, for each
variable, we consider the mean of the measurements in the different stations.
This approach is one way to deal with missing values.

A descriptive analysis of the variables can show simple links between them.
For example, we can see that the mean daily curves of the first three variables
NO, N2 and O3 (cf. Figure 12.1) have a similar evolution for NO and N2 (at
least in the first part of the day). On the contrary, the curves for NO and
O3 have opposite variations. These observations are also confirmed by the
correlation matrix of the variables NO, N2 and O3.
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Figure 12.1: Daily mean curves for the variables NO (blue curve), N2 (green
curve and O3 (red curve).
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12.2.2 Principal Component Analysis

A first PCA has been done on the matrix whose columns are the different
daily mean variables. As these variables have different units, we also consider
the reduced matrix. The first two components allow to explain more than
80% of the variance. To visualize the results of this PCA, we have represented
the mean hours (Figure 12.2) and the variables (Figure 12.3) in the plane
formed by the two first principal axes. We notice on Figure 12.2 that the
first axis separates the morning and the afternoon evolution while the second
axis separates the day and the night. Concerning Figure 12.3, the first axis
separates Nitrogen Monoxide and Nitrogen Dioxide of Ozone. We can also
remark that, if we put the Graphic 12.2 on the Graphic 12.3, we find that
the maximum of Ozone is in the afternoon and that the quantity of Ozone is
low in the morning. It is the contrary for Nitrogen Monoxide and Nitrogen
Dioxide.
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Figure 12.2: Representation of the mean hours 1, . . . , 24 in the plane gener-
ated by the two first principal components.
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representation of the variables
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Figure 12.3: Representation of the variables NO, N2, O3, WD and WS in the
plane generated by the two first principal components.

12.2.3 Functional Principal Component Analysis

We also performed a functional PCA of the different variables. We come
back here to the functional background where we consider each variable as
a curve discretized in some points. We can look at the variations of each
variable around its mean by representing the functions µ, µ+Cξ and µ−Cξ,
where µ is the mean curve of the variable, C is a constant and ξ is a principal
component. For example, for Ozone, we make this representation for the
first principal component (that represents nearly 80% of the information)
on Figure 12.4. The constant C has been fixed arbitrarily in this example
equal to 10, to obtain a figure easily interpretable. We can see that the first
principal component highlights variations around the mean at 3:00 pm. It is
the time of the maximum of Ozone in the middle of the afternoon.
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variations of O3 around the mean
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Figure 12.4: Variations of O3 around the mean. The blue solid curve repre-
sents the mean curve µ of Ozone, the red dotted curve represents
µ + 10ξ where ξ is the first principal component, and the green
dashed curve represents µ − 10ξ.

12.3 Functional Linear Model

We describe now the functional linear model presented for example by Ram-
say and Silverman (1997). Let us consider a sample {(Xi, Yi)}n

i=1 of pairs
of random variables, independent and identically distributed, with the same
distribution as (X, Y ), with X belonging to the functional space L2(D) of
the integrable square functions defined on a bounded interval D of R, and Y
belonging to R. We center each function Xi by introducing X̃i = Xi−E(Xi).
The functional linear model is then defined by

Yi = µ +
∫

D

α(t)X̃i(t) dt + εi, (12.1)
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with E(εi|Xi) = 0. We have E(Yi) = µ and E(Yi|Xi) = µ +
∫

D

α(t)X̃i(t) dt.

In practice, each function Xi is known in p = 24 equispaced discretization
points t1, . . . , tp ∈ D (with t1 ≤ . . . ≤ tp). So, the integral above is approxi-
mated by

∫
D

α(t)X̃i(t) dt ≈ λ(D)
p

p−1∑
j=1

α(tj)X̃i(tj),

where λ(D) stands for the length of the interval D. More generally, when the
discretization points are not equispaced, the integral can be easily approxi-
mated by

∫
D

α(t)X̃i(t) dt ≈
p−1∑
j=1

(tj+1 − tj)α(tj)X̃i(tj).

12.3.1 Spline Estimation of α

We choose to estimate the functional coefficient of regression α : D −→ R by
a spline function (see de Boor (1978) for details). Let us consider k ∈ N� and
q ∈ N. We split D into k intervals of the same length. A spline function is a
piecewise polynomial function of degree q ∈ N� on each sub-interval, (q − 1)
times differentiable on D. The extremities of the sub-intervals are called
knots. It is known that the space of such splines functions is a vectorial
space of dimension k + q. We consider the basis Bk,q of this space called
B-splines basis and that we write Bk,q = (B1, · · · , Bk+q)�.

We estimate α by a linear combination of the functions Bl, l = 1, . . . , k + q,
that leads us to find µ̂ ∈ R and a vector θ̂ ∈ Rk+q such that

α̂ =
k+q∑
l=1

θ̂lBl = B�
k,qθ̂,

with µ̂ and θ̂ solutions of the following minimization problem

min
µ∈R,θ∈Rk+q

{
1
n

n∑
i=1

(Yi − µ − 〈B�
k,qθ, X̃i〉)2 + ρ ‖ (B�

k,qθ)(m) ‖2

}
, (12.2)
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where (B�
k,qθ)(m) is the mth derivative of B�

k,qθ and ρ is a penalization pa-
rameter that allows to control the smoothness of the estimator, see Cardot,
Ferraty and Sarda (2003). The notation 〈., .〉 refers to the inner product of
L2(D) and ‖.‖ is the norm induced by this inner product.

If we set β =
(

µ
θ

)
∈ Rk+q+1, then, the solution of the minimization prob-

lem (12.2) above is given by

β̂ =
1
n

(
1
n
D�D + ρK)−1D�Y,

with

D =

⎛⎜⎝ 1 〈B1, X1〉 . . . 〈Bk+q, X1〉
...

...
...

1 〈B1, Xn〉 . . . 〈Bk+q, Xn〉

⎞⎟⎠ and K =
(

0 0
0 G

)
,

where G is the (k + q)× (k + q) matrix with elements Gjl =< B
(m)
j , B

(m)
l >.

It also satisfies

θ�Gθ =‖ (B�
k,qθ)(m) ‖2 .

The computation of the matrices D and G is performed with the functions
XCSbspline and XCSbsplineini.

XCSbspline.xpl

XCSbsplineini.xpl

Let us notice that a convergence result for this spline estimator is given by
Cardot, Ferraty and Sarda (2003).

12.3.2 Selection of the Parameters

The estimator defined by (12.2) depends on a large number of parameters:
the number of knots k, the degree q of splines, the order m of derivation in
the penalization term, and the smoothing parameter ρ. It seems that only
the penalization parameter ρ is really important provided that the number of
knots is large enough, see Marx and Eilers (1999), Besse, Cardot and Ferraty
(1997).
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The parameter ρ is chosen by the generalized cross validation criterion, see
Wahba (1990), which is described below.

Consider the “hat matrix” H(ρ) =
1
n
D(

1
n
D�D + ρK)−1D�. It satisfies Ŷ =

H(ρ)Y. The generalized cross validation criterion is then given by

GCV (ρ) =

1
n

n∑
l=1

(Yl − Ŷl)2[
1 − 1

n
tr{H(ρ)}

]2 . (12.3)

We select the optimal parameter ρGCV as the one that minimizes the GCV
criterion (12.3). Let us notice that we do not have to compute the matrix
H(ρ) (whose size is n × n) since we have tr(H(ρ)) = tr( 1

nD�D( 1
nD�D +

ρK)−1).

The XploRe function XCSsflmgcv uses this GCV criterion and gives the es-
timations of µ, θ and α.

XCSsflmgcv.xpl

12.3.3 Multiple Functional Linear Model

We now want to generalize the model (12.1) to the case where there are sev-
eral (centered) functional covariates X̃1, . . . , X̃v. We consider the following
additive model

Yi = µ +
∫

D

α1(t)X̃1
i (t) dt + . . . +

∫
D

αv(t)X̃v
i (t) dt + εi. (12.4)

To get the estimates of µ, α1, . . . , αv, we used the backfitting algorithm, see
Hastie and Tibshirani (1990), which principle is described below. It allows
us to avoid inverting large scale matrices and leads to a faster estimation
procedure. The XploRe function giving the estimates of µ, α1, . . . , αv using
the backfitting algorithm for v covariates is XCSsflmgcvmult.

XCSsflmgcvmult.xpl

• Step 1
We initialize α̂1

(1)
, . . . , α̂v−1

(1) to 0 and µ̂ to 1
n

∑n
i=1 Yi. Then, we
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determine µ̂(1) and α̂v
(1) by using the spline estimation procedure for

the functional linear model with one covariate.

• Step 2
For r = 1, . . . , v, we consider

Y r,2
i = Yi −

r−1∑
l=1

∫
D

α̂l
(2)(t)X̃ l

i(t) dt −
v∑

l=r+1

∫
D

α̂l
(1)(t)X̃ l

i(t) dt,

and we make a simple functional regression

Y r,2
i = µ +

∫
D

α(2)
r (t)X̃r

i (t) dt + εi.

Then, we obtain µ̂(2) and α̂r
(2), for r = 1, . . . , v. The optimal penaliza-

tion parameter is determined for each estimator with generalized cross
validation.

• Step j + 1
While maxr=1,...,v(‖α̂r

(j) − α̂r
(j−1)‖) > ξ (where ξ is an error constant

to be fixed), we consider

Y r,j+1
i = Yi −

r−1∑
l=1

∫
D

α̂l
(j+1)(t)X̃ l

i(t) dt −
v∑

l=r+1

∫
D

α̂l
(j)(t)X̃ l

i(t) dt,

and we make a simple functional regression

Y r,j+1
i = µ +

∫
D

α(j+1)
r (t)X̃r

i (t) dt + εi,

by using the estimator defined for the functional linear model with one
covariate. We then deduce µ̂(j+1) and α̂r

(j+1), for r = 1, . . . , v. The
optimal penalization parameter is determined for each estimator with
generalized cross validation.
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12.4 Functional Linear Regression for
Conditional Quantiles Estimation

Our goal is now to find the Ozone threshold value such that the conditional
probability to exceed this value is equal to a certain given risk α ∈ (0, 1).
More precisely, if Y is a real random value, we define its α-quantile by the
real number qα such that

P (Y ≤ qα) = α.

Koenker and Bassett (1978) use the following property to define quantile
estimators (which can be naturally generalized to conditional quantiles):

qα = arg min
a∈R

E(lα(Y − a)),

with

lα(u) = |u| + (2α − 1)u.

Let us now come back to our functional case. We still consider the sam-
ple {(Xi, Yi)}n

i=1 of pairs of random variables, independent and identically
distributed, with the same distribution as (X, Y ), with X belonging to the
functional space L2(D), and Y belonging to R. Without loss of generality,
we suppose that X is a centered variable, that is to say E(X) = 0. Let α
be a real number in (0, 1) and x a function in L2(D). We suppose that the
conditional α-quantile of Y given [X = x] is the unique scalar gα(x) such
that

P [Y ≤ gα(x)|X = x] = α, (12.5)

where P (.|X = x) is the conditional probability given [X = x].

Let us remark that gα(x) can be defined in an equivalent way as the solution
of the minimization problem

min
a∈R

E[lα(Y − a)|X = x]. (12.6)
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We assume now that there exists a unique function Ψα ∈ L2(D) such that
gα can be written in the following way

gα(X) = c + 〈Ψα, X〉 = c +
∫

D

Ψα(t)X(t) dt. (12.7)

This condition can be seen as a direct generalization of the model introduced
by Koenker and Bassett (1978), the difference being that here, the covariates
are functions.

12.4.1 Spline Estimator of Ψα

Our goal is now to give a nonparametric estimator of the function Ψα. In
the case where the covariate X is real, many nonparametric estimators have
already been proposed, see for example Bhattacharya and Gangopadhyay
(1990), Fan, Hu and Truong (1994), Lejeune and Sarda (1988) or He and Shi
(1994).

As for the spline estimator described in Section 12.3.1, we consider the vec-
torial space of spline functions with k − 1 interior knots and of degree q,
and its B-splines basis Bk,q = (B1, . . . , Bk+q)

�. We estimate Ψα by a linear
combination of the Bl functions for l going from 1 to k + q. This leads us to
find a vector θ̂ = (θ̂1, . . . , θ̂k+q)� in Rk+q such that

Ψ̂α =
k+q∑
l=1

θ̂lBl = B�
k,qθ̂. (12.8)

The vector θ̂ will be solution of the following minimization problem, which
is the penalized empirical version of (12.6),

min
c∈R,θ∈Rk+q

{
1
n

n∑
i=1

lα(Yi − c − 〈B�
k,qθ, Xi〉) + ρ ‖ (B�

k,qθ)(m) ‖2

}
, (12.9)

where (B�
k,qθ)(m) is the m-th derivative of the spline function B�

k,qθ and ρ
is a penalization parameter which role is to control the smoothness of the es-
timator, as for the minimization problem (12.2) considered in Section 12.3.1.
This criterion is similar to (12.2), the quadratic function being here replaced
by the loss function lα. In this case, we have to deal with an optimization
problem that does not have an explicit solution, contrary to the estimation
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of the conditional mean. That is why we adopted the strategy proposed by
Lejeune and Sarda (1988). It is based on an algorithm that consists in per-
forming iterative weighted least squares, see Ruppert and Caroll (1988)). Let
us consider the function δi defined by

δi(α) = 2αI{Yi − c−〈B�
k,qθ, Xi〉 ≥ 0}+ 2(1−α)I{Yi − c−〈B�

k,qθ, Xi〉 < 0}.

The minimization problem (12.9) is then equivalent to

min
c∈R,θ∈Rk+q

{
1
n

n∑
i=1

δi(α) | Yi−c−〈B�
k,qθ, Xi〉 | +ρ ‖ (B�

k,qθ)(m) ‖2

}
. (12.10)

Then, we can approximate this criterion by replacing the absolute value by
a weighted quadratic term, hence we can obtain a sequence of explicit solu-
tions. The principle of this Iterative Reweighted Least Squares algorithm is
described below.

• Initialization

We determine β1 = (c1,θ1)� solution of the minimization problem

min
c∈R,θ∈Rk+q

{
1
n

n∑
i=1

(Yi − c − 〈B�
k,qθ, Xi〉)2 + ρ ‖ (B�

k,qθ)(m) ‖2

}
,

which solution β1 is given by β1 = 1
n ( 1

nD�D + ρK)−1D�Y, with D
and K defined in Section 12.3.1.

• Step j+1

Knowing βj = (cj ,θj)�, we determine βj+1 = (cj+1,θj+1)� solution
of the minimization problem

min
c∈R,θ∈Rk+q

{
1
n

n∑
i=1

δj
i (α)(Yi − c − 〈B�

k,qθ, Xi〉)2

[(Yi − c − 〈B�
k,qθ, Xi〉)2 + η2]1/2

+ ρ ‖ (B�
k,qθ)(m) ‖2

}
,

where δj
i (α) is δi(α) on step j of the algorithm, and η is a strictly

positive constant that allows us to avoid a denominator equal to zero.
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Let us define the n × n diagonal matrix Wj with diagonal elements
given by

[Wj ]ll =
δj
1(α)

n[(Yl − c − 〈B�
k,qθ, Xl〉)2 + η2]1/2

.

Then, βj+1 = (D�WjD + ρK)−1D�WjY.

Remark: Since our algorithm relies on weighted least squares, we can derive
a generalized cross validation criterion to choose the penalization parameter
value ρ at each step of the algorithm. Indeed, the “hat matrix” defined by
H(ρ) = D(D�WD + ρK)−1 tDW satisfies Ŷ = H(ρ)Y, where W is the
weight matrix obtained at the previous step of the algorithm. The generalized
cross validation criterion is then given by

GCV (ρ) =

1
n

(Y − Ŷ)�W(Y − Ŷ)[
1 − 1

n
tr{H(ρ)}

]2 , (12.11)

where tr(H(ρ)) = tr{D�W(D�WD + ρK)}.

We select the optimal parameter ρGCV as the one that minimizes the GCV
criterion (12.11). The XploRe function XCSsquantgcv uses this GCV crite-
rion and gives the estimations of c, θ and Ψα.

XCSsquantgcv.xpl

A convergence result of the estimator Ψ̂α is also available in Cardot, Crambes
and Sarda (2004)

12.4.2 Multiple Conditional Quantiles

Assuming we have now v functional covariates X1, . . . , Xv, this estimation
procedure can be easily extended. We consider the following model

P
[
Yi ≤ g1

α(X1
i ) + . . . + gv

α(Xv
i )|X1

i = x1
i , . . . , X

v
i = xv

i

]
= α. (12.12)

Similarly as before, we assume that g1
α(X1

i ) + . . . + gv
α(Xv

i ) = c + 〈Ψ1
α, X1

i 〉+
. . . + 〈Ψv

α, Xv
i 〉 with Ψ1

α, . . . ,Ψv
α in L2(D). The estimation of each function
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Ψr
α is obtained using the iterative backfitting algorithm combined with the

Iterative Reweighted Least Squares algorithm. The XploRe function giving
the estimates of c,Ψ1

α, . . . ,Ψv
α is:

XCSsquantgcvmult.xpl

12.5 Application to Ozone Prediction

We want to predict the variable maximum of Ozone one day i, noted Yi,
using the functional covariates observed the day before until 5:00 pm. We
consider covariates with length of 24 hours. We can assume that beyond 24
hours, the effects of the covariate are negligible knowing the last 24 hours, so
each curve Xi begins at 6:00 pm the day i − 2.

We ramdomly splitted the initial sample (Xi, Yi)i=1,...,n into two sub-samples:

• a learning sample (Xai
, Yai

)i=1,...,nl
whose size is nl = 332, used to

compute the estimators µ̂ and α̂ for the functional linear model and
the estimators ĉ and Ψ̂α for the model with quantiles,

• a test sample (Xti
, Yti

)i=1,...,nt
whose size is nt = 142, used to evaluate

the quality of the models and to make a comparison between them.

We also have chosen to take k = 8 for the number of knots, q = 3 for the
degree of spline functions and m = 2 for the order of the derivative in the
penalization.

To predict the value of Yi, we use the conditional mean and the conditional
median (i.e. α = 0.5). To judge the quality of the models, we give a predic-
tion of the maximum of Ozone for each element of the test sample,

Ŷti
= µ̂ +

∫
D

α̂(t)Xti
(t) dt

for the prediction of the conditional mean, and

Ŷti
= ĉ +

∫
D

Ψ̂α(t)Xti
(t) dt

for the prediction of the conditional median.
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Then, we consider three criteria given by

C1 =
n−1

t

∑nt

i=1(Yti
− Ŷti

)2

n−1
t

∑nt

i=1(Yti − Y l)2
,

C2 = n−1
t

nt∑
i=1

| Yti − Ŷti |,

C3 =
n−1

t

∑nt

i=1 lα(Yti − Ŷti)
n−1

t

∑nt

i=1 lα(Yti
− qα(Yl))

,

where Y l is the empirical mean of the learning sample (Yai)i=1,...,nl
and

qα(Yl) is the empirical α-quantile of the learning sample (Yai)i=1,...,nl
. This

last criterion C3 is similar to the one proposed by Koenker and Machado
(1999). We remark that, the more these criteria take low values (close to 0),
the better is the prediction. These three criteria are all computed on the test
sample.

12.5.1 Prediction of the Conditional Mean

The values of the criteria C1 and C2 are given in the Table 12.5.1. It appears
that the best model with one covariate to predict the maximum of Ozone
is the one that use the curve of Ozone the day before. We have also built
multiple functional linear models, in order to improve the prediction. The
errors for these models are also given in Table 12.5.1. It appears that the
best model is the one that use the four covariates Ozone, Nitrogen Monox-
ide, Wind Direction and Wind Speed. So, adding other covariates allows to
improve the prediction, even if the gain is low.

12.5.2 Prediction of the Conditional Median

Table 12.5.2 gathers the prediction errors of the different models. As for the
functional linear model, the best prediction using one covariate is the one
obtained by using the Ozone curve the day before. Moreover, the prediction
is slightly improved by adding other covariates. The best prediction for the
criterion C3 is obtained for the model using the covariates Ozone, Nitrogen
Monoxide, Nitrogen Dioxide and Wind Speed. For this model with these
four covariates, we have represented on Figure 12.5 the GCV criterion versus
− log(ρ) for the different values of ρ from 10−5 to 10−10. The minimum value
of the FP criterion is reached for ρ = 10−8, see Härdle, Müller, Sperlich and
Werwatz (2004). Figure 12.6 represents the predicted maximum of Ozone
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Table 12.1: Prediction error criteria C1 and C2 for the different functional
linear models

Models Variables C1 C2

NO 0.828 16.998
models N2 0.761 16.153

with 1 covariate O3 0.416 12.621
WD 0.910 18.414
WS 0.796 16.756

O3, NO 0.409 12.338
models O3, N2 0.410 12.373

with 2 covariates O3, WD 0.405 12.318
O3, WS 0.400 12.267

O3, NO, N2 0.408 12.305
O3, NO, WD 0.394 11.956

models O3, NO, WS 0.397 12.121
with 3 covariates O3, N2, WD 0.397 12.003

O3, N2, WS 0.404 12.156
O3, WD, WS 0.397 12.101

O3, NO, WD, WS 0.391 11.870
models O3, NO, N2, WD 0.395 11.875

with 4 covariates O3, NO, N2, WS 0.398 12.069
O3, N2, WD, WS 0.394 11.962

model with 5 covariates O3, NO, N2, WD, WS 0.392 11.877

(with this model of 4 covariates) versus the measured maximum of Ozone for
the test sample. We see on this graphic that the points are quite close to the
straight line of equation y = x.

Another interest of the conditional quantiles is that we can build some pre-
diction intervals for the maximum of Ozone, which can be quite useful in the
context of prevention of Ozone pollution. Coming back to the initial sample
(that is to say when the days are chronologically ordered), we have plotted
on Figure 12.7 the measures of the maximum of Ozone during the first 40
days of our sample, that is to say from the 17th May of 1997 to the 25th June
of 1997 (blue solid curve). The red dotted curve above represents the values
of the 90% quantile and the green dashed curve below represents the values
of the 10% quantile predicted for these measures. The prediction model used
is again the quantile regression model with the 4 covariates O3, NO, N2 and
WS.
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Table 12.2: Prediction error criteria C1, C2 and C3 for the different func-
tional quantile regression models

Models Variables C1 C2 C3

NO 0.826 16.996 0.911
models N2 0.805 16.800 0.876

with 1 covariate O3 0.425 12.332 0.661
WD 0.798 18.836 0.902
WS 0.885 18.222 0.976

O3, NO 0.412 12.007 0.643
models O3, N2 0.405 11.936 0.640

with 2 covariates O3, WD 0.406 12.109 0.649
O3, WS 0.406 11.823 0.633

O3, NO, N2 0.404 11.935 0.639
O3, NO, WD 0.404 12.024 0.644

models O3, NO, WS 0.407 11.832 0.638
with 3 covariates O3, N2, WD 0.402 11.994 0.642

O3, N2, WS 0.403 12.108 0.641
O3, WD, WS 0.403 12.123 0.640

O3, NO, WD, WS 0.399 11.954 0.641
models O3, NO, N2, WD 0.397 11.921 0.639

with 4 covariates O3, NO, N2, WS 0.397 11.712 0.634
O3, N2, WD, WS 0.398 11.952 0.640

model with 5 covariates O3, NO, N2, WD, WS 0.397 11.864 0.638

12.5.3 Analysis of the Results

Both models, the functional linear model and the model with conditional
quantiles for functional covariates, give satisfying results concerning the max-
imum of Ozone prediction. Concerning Figure 12.6, it seems that few values
are not well predicted. This highlights a common problem for statistical mod-
els, which get into trouble when predicting extreme values (outliers). The
interval of prediction given by the 90% and 10% conditional quantiles can be
an interesting answer to that problem, as seen on Figure 12.7.

In spite of the lack of some important variables in the model, such as temper-
ature for example, we can produce good estimators of maximum of pollution
knowing the data the day before. The most efficient variable to estimate the
maximum of Ozone is the Ozone curve the day before; however, we noticed
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Figure 12.5: Generalized Cross Validation criterion for different values of ρ in
the quantile regression model using the covariates O3, NO, N2,
WS.

that prediction accuracy can be improved by adding other variables in the
model. We can suppose that it will be possible to improve again these results
when other covariates will be available from ORAMIP, such as temperature
curves.
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Figure 12.6: Predicted Ozone versus measured Ozone for the test sample, us-
ing the prediction quantile regression model with the covariates
O3, NO, N2, WS.
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Figure 12.7: Prediction interval of the measures of maximum of Ozone for
the period going from the 17th May of 1997 to the 25th June
of 1997 (blue solid curve). The red dotted curve and the green
dashed curve represent respectively the values of the 90% and
10% quantiles predicted for these measures.
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13 Nonparametric Functional
Methods: New Tools for
Chemometric Analysis

Frédéric Ferraty, Aldo Goia and Philippe Vieu

13.1 Introduction

The aim of this contribution is to look at two recent advances in nonparamet-
ric study of curve data. Firstly we will look at some regression type problem,
for which the objective is to predict a (real) response variable from a (con-
tinuous) curve data. Secondly, we will look at the question of discrimination
inside of a set of curve data. These two problems have been selected among
the numerous statistical problems for curve data that have been attacked by
the recent methodology on functional data. So, even if we will concentrate
our purposes on these two problems, we will give several bibliographical sup-
ports all along the contribution in order to allow the reader to have a larger
view on the state of art in Nonparametric Functional Statistics. A special
attention will be paid to the problem of the dimension, which is known to
play a great role in (high) finite-dimensional setting and therefore expected
to be a key point for our infinite-dimensional purposes, and which is solved
here by means of semi-metric spaces modelization.

The choice of these two problems (regression and discrimination) has been
done because these questions appear quite often in the chemometrical con-
text that we wish to deal with. Indeed, in chemometric analysis curve data
appearing naturally by means of spectrometric curves. This work will be
centered around one spectrometric data set, coming from food industry qual-
ity control. Along the contribution, we will provide two XploRe quantlets
(one for regression and one for discrimination). Even if our applied purpose
here is on chemometrical applications, these quantlets are obviously utilisable
in many other fields of applied statistics for which curve data are involved
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(medicine, econometry, environmetrics, ...).

This chapter is organized as follows. In Section 13.2 we discuss generalities
about functional statistics and spectrometric curve data. Then, in Sections
13.3 and 13.4, we present respectively the nonparametric functional regres-
sion problem and the curves discrimination problem. Note that, to help the
reader, each of these sections can be followed independently of the other. For
both of these sections, we present the statistical backgrounds (model, esti-
mate and XploRe quantlets) in a general way to make possible the utilization
of the procedure in any setting (and not only for chemometrical purpose), and
then we present the results obtained by our approaches on one spectrometric
data set.

13.2 General Considerations

13.2.1 A Short Introduction to Spectrometric Data

Spectrometry is a usual technique for chemometric analysis. Spectrometric
data consist in continuous spectra of some components to be analysed. From
a statistical point of view these data are of functional (continuous) nature.
We will center our purpose around a food industry spectrometric real data
set, which is a set of absorbances spectra observed on several pieces of meat.
These data are presented in Figure 13.1 below.

These data are componed by 215 spectra of absorbance (which is defined to be
− log10 of the light transmittance) for a channel of wavelenghts varying from
λ = 850 up to λ = 1050, and observed on 215 finely chopped pure meat food
samples. These data have been recorded on a Tecator Infratec Food and Feed
Analyzer by the NIR (near infrared) usual transmission principle. Because
of the fineness of the discretisation, and because of the quite smooth aspect
of spectrometric data, they are to be considered and treated as functional
data. From now on, we will denote these curve data by:

Xi = {Xi(λ), λ ∈ (850, 1050)}, i = 1, . . . 215.

Usually going with such kind of spectrometric data, is the measurement of
some chemical characteristic of interest. For instance, in our food quality
problem we have at hand the measurements of the percentages of fatness:

Yi, i = 1, . . . 215.

In such a situation, one is interested in knowing the relation between the curve
X and the scalar response Y , in order to be able to predict the corresponding
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Figure 13.1: The spectrometric data set

percentage of fatness for a future new sample of meat just looking at its
spectrum (this is, of course, considerably less expensive, in time and in costs,
than doing a full chemical analysis of this new sample of meat). This is
indeed a regression type problem for functional (curve) data and with scalar
(real) response variable, which will be investigated later on in Section 13.3.

Another case of interest is when, rather than some quantitative response
variable, we have at hand some categorical variable (let say T ) that may
correspond to different groups of spectra. For instance, in the food industry
example discussed beforewe will deal with the measurements of the dichoto-
mous variable

Ti, i = 1, . . . 215,

which is defined to be Ti = 1 if the sample of meat contains less than 20% of
fatness, and to be Ti = 2 otherwise. The question here is to understand the
link between the continuous spectrum and the categorical response, in order
to be able to assign a new piece of meat in some of the groups just by looking
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at its spectrum (which is, again, less expensive in time and in costs than
doing a new chemical analysis). This is known as a curves discrimination
problem (also called supervised curves classification problem) which will be
investigated later on Section 13.4.

The aim of our contribution is to show how the recent nonparametric method-
ology for functional data may provide interesting results in this setting. Con-
cretely, we will present two functional nonparametric methods, corresponding
to both different statistical problems discussed before. The first one is a Non-
parametric Functional Regression method, which is adapted to the problem
of predicting the percentage of fatness Y corresponding to some given con-
tinuous absorbance spectra X. The second one is a Nonparametric Curves
Discrimination method, which is adapted to the question of assigning a new
spectrum X in one among both groups defined by both values of T . For each
method, an XploRe quantlet will be given.

It is worth being noted that, even if our presentation will be centered around
this spectrometric food industry example, both the methodology and the
programs will be presented in a general way. This will allow for possible
application of the proposed methods in many other fields of applied statistics
in which functional data have to be treated (environmetrics, econometrics,
biometrics, ...). Other cases that can be analysed by our procedures are
climatologic data (Ramsay and Silverman, 1997), speech recognition data
(Ferraty and Vieu, 2003b), pollution data (Aneiros-Pérez et al., 2003) or
(Damon and Guillas, 2002), econometric time series (Ferraty, Goia and Vieu,
2002a), satellite measurements data (Dabo-Niang et al., 2004), medical data
(Gasser, Hall and Presnell, 1998), signal data (Hall, Poskitt and Presnell,
2001).

13.2.2 A Short Introduction to Nonparametric Statistics
for Curve Data

The infatuation for developping statistical procedures has considerably in-
creased in the last decade. At the beginning the literature was concen-
trated on linear statistical procedures. Nice monographies in this direction
include Ramsay and Silverman (1997), Bosq (2000) and Ramsay and
Silverman (2002). Since a few years, nonparametric approaches are avail-
able, most of them being based on adaptation of usual kernel smoothing
ideas to infinite-dimensional settings. These approaches are now covering a
wide scope of statistical problems, including regression from functional ex-
planatory variables (Ferraty and Vieu, 2002), density estimation of functional
variables (Dabo-Niang, 2003a) and its direct applications for diffusion pro-
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cesses (Dabo-Niang, 2003b) and for unsupervised curves classification (Dabo-
Niang et al., 2004), conditional distribution estimation (Ferraty, Laksaci and
Vieu, 2003) and its direct application in nonparametric functional conditional
mode/quantiles estimation, curves discrimination (Ferraty and Vieu, 2003b),
or time series forecasting from continuous past values (Ferraty, Goia and
Vieu, 2002a). Indeed, all these recent developments are part of a large infat-
uation around different aspects of Functional Statistics, Ferraty (2003) and
(Boudou et al., 2003).

In this contribution, we will look specially at the functional regression prob-
lem (see Section 13.3) and at the curves discrimination problem (see Section
13.4). For each of them, we will present the methodology in a general frame-
work, we will provide a corresponding XploRe quantlet and each technique
will be applied to the spectrometric data set presented before.

13.2.3 Notion of Proximity Between Curves

Before starting to develop any nonparametric methodology for curve data
(that is for variables taking values in some infinite-dimensional space), one
should keep in mind what is known in finite-dimensional setting. More specif-
ically, one should remind that most of nonparametric techniques are local and
are therefore very sensitive to the sparseness of data. This is the reason why,
in (high) finite dimensional settings the pure nonparametric approaches have
a bad behaviour (see for instance Stone (1985) for discussion, references and
alternative methods). This is known as the curse of dimensionality, and it
is natural to have (at least at the first attempt) strong interrogations about
the possibility of developping nonparametric methods in infinite-dimensional
setting, since now it can be viewed as a curse of infinite dimension. Anyway,
because this curse of dimensionality is completely linked with the sparseness
of the data, one can hope to get round it by using a “suitable” measure of
proximity between curves, (Ferraty and Vieu, 2003a).

Of course, the relevant measure of proximity between curves has to be driven
by the knowledge on the practical problem. To be more convinced on this
point, let us look at Figure 13.2 below which the derivatives of the spectro-
metric curves are displayed while the curves themselves have already been
presented in Figure 13.1.

Comparing Figures 13.1 and 13.2, it appears clearly that higher order deriva-
tives of the spectrometric curves are more accurate than the curves them-
selves. The second derivatives concentrate the data but are less sensitive to
some vertical shift than the first derivatives or the curves themselves are. On
the other hand, higher order (3 or 4) derivatives exhibit too much variability.
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Figure 13.2: Derivatives of the spectrometric curves

So in our situation, there is real evidence for using a measure of proximity
based on the second derivatives of the curves. The reader can find more
insight, both from statistical and chemometrical points of view, about the
interest of dealing with second order derivatives in Ferraty and Vieu (2002).

That means concretely that in our functional purpose here, we will use the fol-
lowing quantity as a measure of proximity between two spectrometric curves
Xi and Xj :

dder,2(Xi, Xj) =

√∫ 1050

850

{
X ′′

i (λ) − X ′′
j (λ)

}2
dλ.

Note that, such a measure of quality is not a metric but only a semi-metric.
This is the case for most of proximity measures for curve data, and this
explains why most of theoretical developments available for nonparametric
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functional statistics are modelling the functional variable X as an element of
some abstract semi-metric space (E, d(·; ·)) (see Section 13.3.1).

13.2.4 XploRe Quantlets for Proximity Between Curves

Let A = {X1, . . . Xp} and B = {Z1, . . . Zq} be two sets of curves. In practice,
A will be the learning sample (for which the scalar response is known), while
B corresponds to the new curves for which we have to predict the response.
Distances are computed with a semi-metric. A semi-metric on a vector space
E is a function d(·, ·) from E × E to R+ such that:

for all (x, y, z) ∈ E × E × E, d(x, y) = d(y, x) ≤ d(x, z) + d(z, y);
for all x ∈ E, d(x, x) = 0.

The following quantlet XCSSemiMetricDer2 computes the function

XCSSemiMetricDer2(A, nknot, rangegrid, B)

XCSSemiMetricDer2.xpl

which returns the following p × q matrix:

SMij = dder,2(Xi, Zj), Xi ∈ A, Zj ∈ B.

More generally, the quantlet XCSSemiMetricDer computes the function

XCSSemiMetricDer(A, m, nknot, rangegrid, B)

XCSSemiMetricDer.xpl

which returns the following p × q matrix:

SMij = dder,2(Xi, Zj), Xi ∈ A, Zj ∈ B,

where

dder,m(X, Z) =

√∫ (
X(m)(t) − Z(m)(t)

)2
dt.

The parameter nknot is the number of interior knots needed to build the
B-spline approximations of the curves in order to compute their successive
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derivatives. The vector rangegrid of length 2 specifies the range on which the
curves are defined (for the spectrometric curves we have
rangegrid = (850, 1050)). Note that our procedure is based on the quantlet
XSCbspline written by Christophe Crambes and presented in Chapter 12 of
this book.

XCSbspline.xpl

Of course, some other kind of semi-metrics could be used. The quantlet
XCSSemiMetricPCA computes the function

XCSSemiMetricPCA(A,B)

using a functional semi-metric based on PCA ideas, as defined in Section 3.1
of Ferraty and Vieu (2003b).

XCSSemiMetricPCA.xpl

For the reasons explained before, for our spectrometric purpose, we will only
deal here with the semi-metric dder,2, but all the functional methods can be
used with the alternative semi-metrics presented before (as well with any new
semi-metric that the user could wish to program by himself).

13.3 Functional Nonparametric Regression

13.3.1 The Statistical Problem

Let us consider that we have a set of n independent realizations X1, . . . Xn

of some variable valued in a semi-metric space (E, d(·; ·)) of possibly infinite
dimension. In our spectrometric example, the space E could be the space of
twice continuously differentiable functions on (850, 1050) and the associated
semi-metric would be the euclidian metric but for second derivatives, that is:

d(Xi, Xj) = dder,2(Xi, Xj).

Assume that, associated with each Xi, we have at hand also some scalar (real)
response variable Yi. For instance, in the spectrometric example, the response
is the percentage of fatness in the corresponding piece of meat. Finally, one



13.3 Functional Nonparametric Regression 253

is interested in predicting fatness from the absorbance spectrum, and the
statistical model consists in assuming the following regression relation:

Yi = R(Xi) + εi, (13.1)

where the εi are zero-mean real random variables, each εi being uncorrelated
with Xi. The aim is therefore to estimate the functional operator R, without
assuming any linearity (or other parametric form) for it. A nice presentation
of alternative ideas based on linear assumptions can be found in Ramsay
and Silverman (1997) while the most recent advances in this direction are in
Cardot et al. (2003).

The statistical model defined by (13.1) is a Functional Nonparametric Regres-
sion model. It is called Functional because of the infinite dimensional nature
of the data, and it is called Nonparametric because we just wish to state
smoothing restriction on the operator R to be estimated. We will present
below some nonparametric estimate of the functional (non linear) operator
R.

13.3.2 The Nonparametric Functional Estimate

Based on the usual finite-dimensional smoothing ideas, Ferraty and Vieu
(2002) have proposed the following estimate of the functional operator R:

R̂(x) =
n∑

i=1

YiWn,i(x), (13.2)

where Wn,i(x) is a sequence of local weights. From this regression estimate,
given new functional data (i.e. given a new spectrometric curve) xnew the
response (i.e. the % of fatness) will be predicted by

ŷnew = R̂(xnew).

Even if it is not our main purpose here, it is worth giving some ideas about the
asymptotic properties of this estimate. Of course, the asymptotic behaviour
depends on the smoothness of the nonparametric model. For instance, one
may assume a regression model of Lipschitz type:

for all (u, v), |R(u) − R(v)| ≤ C|u − v|β .

As discussed before, the concentration of the distribution of X in a small ball
is a crucial point for insuring a good behaviour of the method, and so the
asymptotic rate will depend on the following function:

φx(ε) = P (d(X, x) ≤ ε).
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By constructing weights from a kernel function K and from a sequence of
bandwidths hn,x in way that

Wn,i(x) =
K
(d(x,Xi)

hn,x

)
∑n

j=1 K
(d(x,Xj)

hn,x

) , (13.3)

the following result can be shown.

THEOREM 13.1 Under suitable conditions on the kernel function K and
on the bandwidth sequence hn,x, we have:

R̂(x) − R(x) = O
(
hβ

n,x

)
+ Op

(√
log n

nφx(hn,x)

)
.

It is out of purpose to give here neither the proof nor the technical assump-
tions. Let us just note that a proof is given by Ferraty and Vieu (2002) in the
very much simpler situation when the function φx(ε) is of fractal form (i.e.
φx(ε) ∼ Cxεα). This proof was extended to dependent samples in Ferraty,
Goia and Vieu (2002a). The general proof of Theorem 13.1 can be found
in Ferraty and Vieu (2004). Note also that some of these above mentionned
papers are also giving uniform (over x) versions of Theorem 13.1. Finally,
it is worth being noted that a recent extension of the methodology has been
propoosed by Dabo-Niang and Rhomari (2003) to the case when the response
variable Yi is functional.

13.3.3 Prediction of Fat Percentage from Continuous
Spectrum

The above described kernel methodology is applied to the fat content predic-
tion problem. To do that, we choose as kernel function the following parabolic
one:

K(u) =
{

1 − u2 if 0 ≤ u ≤ 1
0 otherwise (13.4)

and as explained before the semi-metric is:

d = dder,2.

For this presentation, and in order to be able to highlight the good behaviour
of our method, we have separated the sample of 215 pairs (Xi, Yi) into two
subsamples. A first subsample, denoted by A and of size 165 is the learning
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sample that allows for the computation of R̂(x) for any curve x. A second
one, denoted by B and of size 50 is the sample for which the Yk’s are ignored
and predicted by the Ŷk = R̂(Xk). Of course, in real prediction problems,
we do not have at hand the measurements of the Yk’s corresponding to the
sample B. Here we wish to give to the reader an idea on the behaviour of
the method, and so we constructed this subsample B in such a way that we
know the true corresponding Yk’s.

Using the XploRe quantlet XCSFuncKerReg described in Section 13.3.4, we
computed the 50 predicted values Ŷk corresponding to the Xk of the second
sample. We present in left-hand side of Figure 13.3 the scatter plot of these
predicted values versus the true values Yi. Even if our objective here is not
to compare the method with existing alternative ones, in the right-hand side
of Figure 13.3 we also present the same results but when using a usual L2

metric in our procedure.

Undoubtly, Figure 13.3 shows both the good behaviour of our procedure
and the interest of a semi-metric modelization rather than a simple metric
approach. More insight on these data, including comparisons of this kernel
functional approach with competitive alternative techniques, can be found in
Ferraty and Vieu (2002).

13.3.4 The XploRe Quantlet

Assume that we have at hand one sample A of curves and the corresponding
sample Y of real response values. Assume that we have another sample B of
new curves for which we want to predict the corresponding response values.
The quantlet XCSFuncKerReg computes the function

XCSFuncKerReg(Y, A, B,param, semi)

XCSFuncKerReg.xpl

The argument semi corresponds to the semi-metric that has been used
(semi = “pca” or “der” as described in Section 13.2.3). The argument param
contains all the corresponding arguments needed by the quantlet involved in
the choice of semi (see again Section 13.2.3).

This function returns the predicted values (in the vector PredictedValues)
for the unobserved response variable corresponding to all the new curves in B.
The predictions are obtained by the kernel technique defined by (13.2)-(13.3),
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Figure 13.3: Functional kernel Predictions of Fatness: (a) with the semi-
metric dder,2; (b) with the usual L2 metric.

with the semi-metric d and from the data (Xi, Yi) ∈ A × Y. This function
returns also some other results such as estimated values of the observed scalar
responses for the learning sample A (in the vector EstimatedValues), opti-
mal bandwidth (in the vector Band) for each curve in A and mean squared
error (MSE) for the curves in A.

This function automatically selects the optimal bandwidths according to the
method described in next section.

13.3.5 Comments on Bandwidth Choice

An important point, as always in nonparametric smoothing (either in func-
tional or in finite-dimensional problems), is the choice of the smoothing pa-
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rameter (i.e. the choice of the bandwidths hn,x). Let us now describe how
this bandwidth selection is performed by the quantlet XCSFuncKerReg. For
computing the estimate R̂ our algorithm randomly divides the dataset A×Y
into two subsets. A first sub-subsample, denoted by A1 × Y1 and of size
n = 2Card(A)/3, is the one from which the estimate R̂ is calculated. A
second sub-subsample, denoted by A2 × Y2 and of size Card(A)/3, is used
to select the bandwidths.

The bandwidths hn,x are selected by some cross-validation procedure, to
be the ones leading to the best predictions for the data x belonging to the
testing curves A2. To make the computational aspects easier and faster, the
optimization is performed over a discrete set of bandwidths

hn,Xj
(k), k = 1, . . . , k0

where, for each Xj in A2, hn,Xj (k) is such that there are exactly k data
among all the Xi’s ∈ A1 such that d(x,Xi) ≤ hn,Xj

(k). This is a so-called
k-nearest neighbour approach. At this stage, we have at hand the optimal
bandwidth, denoted by hopt

n,Xj
corresponding to each Xj ∈ A2. What we need

really, is to have a bandwidth hn,x associated with each x ∈ B, and naturally
we state:

∀x ∈ B, hn,x = hopt
n,Xj(x)

,

where Xj(x) is the element of A2 which is the closest to the new curve x:

Xj(x) = arg minXj∈A2d(x,Xj).

13.4 Nonparametric Curves Discrimination

13.4.1 The Statistical Problem

Let us consider again a set of n independent realizations X1, . . . Xn of some
variable valued in a semi-metric space (E, d(·, ·)), and assume that, associ-
ated with each Xi, we have at hand also some categorical response variable
Ti taking a finite number of values t1, . . . tτ . In other words, that means
that our sample of curves X1, . . . Xn is divided into τ (known) groups. For
instance, in our spectrometric data, we have two groups (i.e. τ = 2) and
the categorical variable is defined to be Ti = 1 or 2, according to the fact
that the percentage of fatness is smaller or greater than 20%. In Figure 13.4
below, both groups of spectrometric data set are displayed (we just present
a randomly selected subsample of 20 curves of each group). The question
is: can we assign a new curve xnew in some among the τ different groups?
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Figure 13.4: The two groups of spectrometric curves

In the spectrometric example, we have to decide if a new spetrometric curve
corresponds to a piece of meat having more or less than 20% of fatness. This
is known as a Discrimination problem, also called Supervised Curves Clas-
sification problem. For shortness reasons we only deal here with supervised
curves classification problems. Recent advances on unsupervised curves clas-
sification by functional approaches can be found in Abraham, C. et al. (2003),
Tarpey and Kinateder (2003) and Dabo-Niang et al. (2004).

13.4.2 A Nonparametric Curves Discrimination Method

Given a new curve xnew, the idea is to estimate the following posterior prob-
abilities:

ps(xnew) = P
(
T = ts|X = xnew

)
, ∀s ∈ {1, . . . τ}.
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Once these probabilities are estimated, for instance by means of some esti-
mate p̂s(x), we assign the new curve in the group with highest probability:

T̂new = arg max{s=1,...τ}p̂s(xnew). (13.5)

It remains now to construct an estimate of the ps(·)’s. As in the regression
problem described before, kernel ideas can be used to estimate these proba-
bilities. Concretely, by using the same notations as in Section 13.3, we define:

p̂s(x) =
∑

i, Ti=ts

K
(d(x,Xi)

hn,x

)
∑n

j=1 K
(d(x,Xj)

hn,x

) . (13.6)

These estimates are functional versions of usual finite-dimensional ones. They
were previously introduced (in some more particular version) by Hall, Poskitt
and Presnell (2001). It is important to note, that the underlying model
is purely nonparametric in the sense that only smoothness assumptions on
the true conditional probablities ps(·) are needed. Some of the asymptotic
properties of the estimate (13.6) are studied in Ferraty and Vieu (2004),
under some nonparametric model defined by some Lipschitz type condition
on posterior probabilities:

∃β > 0, ∀s, ∃Cs < ∞, |ps(x) − ps(y)| ≤ Cs d(x, y)β .

To fix the ideas, let us just mention one result issued from Ferraty and Vieu
(2004). Indeed, this paper states a much more general version of this result,
including for instance the case of dependant data, but it is out of the scope
of this book to enter in these theoretical considerations.

THEOREM 13.2 Under suitable conditions on the kernel function K and
on the bandwidth sequence hn,x, we have:

p̂s(x) − ps(x) = O
(
hβ

n,x

)
+ Op

(√
log n

nφx(hn,x)

)
.

As in regression setting (see Theorem 13.1 above), the concentration of the
distribution of the functional variable X plays a determinant role. In other
words, because this concentration is exclusively linked with the semi-metric
d(·, ·), we can say that the choice of the semi-metric will be a crucial point
for practical applications of the method. Of course, this semi-metric has to
be chosen by means of some practical considerations based on the knowledge
on the curves. For the reasons described before in Section 13.2.3, in our
spectrometric context there is a real motivation to use

d = dder,2,
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as given by the quantlet XCSSemiMetricDer2 presented before in Section
13.2.4.

Of course, one could perfectly think about other real curve data applica-
tion for which this semi-metric is not the most appropriate. Ferraty and
Vieu (2003b) proposed another example, based on phonetic data, and for
which the noisy structure of the curves needs obviously another kind of func-
tional semi-metric, that is the one based on PCA as given by the quantlet
XCSSemiMetricPCA presented before in Section 13.2.4.

13.4.3 Discrimination of Spectrometric Curves

The treatment of the spectrometric curves by this curves classification pro-
cedure has been carried out by following the same steps as before in Section
13.3.3. We applied the above described kernel methodology to our fat con-
tent discrimination problem, by choosing again the same kernel as defined in
(13.4) and the semi-metric d = dder,2. We have separated the sample of 215
pairs (Xi, Ti) into two subsamples. A first subsample, denoted by A and of
size 165 is the learning sample which conducts the estimation of the condi-
tional probabilities p̂s(·). A second one, denoted by B and of size 50, for which
the groups Tk are ignored and predicted by T̂k = arg max{s=1,...D}p̂s(Xk).

Of course, in real discrimination problems, we do not have at hand the mea-
surements of the Tk corresponding to the sample B. Here this subsample B
(for which we know the corresponding values of the Tk) is only used to give the
reader an idea on the behaviour of the method. Using the XploRe quantlet
XCSFuncKerDiscrim to be decsribed in the next Section 13.4.4, we computed
the 50 predicted assignment groups T̂k corresponding to this sample B.

More precisely, we randomly did the above mentionned splitting 50 times, and
we present the results of the study in Figure 13.5 by means of the boxplots
(over these 50 replications) of the missclassification rate

1
Card(B)

∑
Xk∈B

1{Tk 
=T̂k}.

Clearly, the method works well with this semi-metric d = dder,2 since we
have a percentage of misclassification which is mainly concentrated between
1% and 3%. To highlight the importance of the semi-metric we also did the
same with other ones (see again Figure 13.5). However, it is not the purpose
here to do extensive comparison of our method with alternative ones. Some
elements in this direction are provided by Ferraty and Vieu (2003b).
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Figure 13.5: Boxplots of the rates of misclassification for spectrometric data

13.4.4 The XploRe Quantlet

Assume that we have at hand one sample A of curves and the corresponding
sample T of categorical responses. Assume that we have another sample B
of new curves for which we want to predict the group membership.

The quantlet XCSFuncKerDiscrim computes the function

XCSFuncKerDiscrim(T,A,B,param,semi)

XCSFuncKerDiscrim.xpl

The argument semi corresponds to the semi-metric that has been used
(semi = “pca” or “der” as described in Section 13.2.3). The argument param
contains all the corresponding arguments needed by the quantlet involved in
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the choice of semi (see again Section 13.2.3).

This function returns the predicted groups (in the vector PredictedValues)
for the unobserved categorical response variable corresponding to all the new
curves in B. The predictions are obtained by the kernel technique defined by
(13.6)-(13.5), with the semi-metric d and from the data (Xi, Ti) ∈ A × T .
This function returns also some other results. The estimated groups for the
curves in the learning sample A are in the vector EstimatedValues. The
misclassification rates for the curves in the learning sample A are in the
output MAE. The matrix EstimatedProb (resp. PredictedProb) stores the
posterior probabilities for the curves in the sample A (resp. B).

Once again, the smoothing parameters hn,x involved in our procedure are
obtained by cross-validation over some training subsample of A as indicated
before in Section 13.3.5.

13.5 Concluding Comments

In this contribution, we have shown how spectrometric data can be succes-
fully analysed by considering them as curve data and by using the recent non-
parametric methodology for curve data. However, note that all the statistical
backgrounds are presented in a general way (and not only for spectrometric
data). Similarly, the XploRe quantlets that we provided can be directly used
in any other applied setting involving curve data. For reason of shortness,
and because it was not the purpose here, we only presented the results given
by the nonparametric functional methodology without discussing any com-
parison with alternative methods (but relevant references on these points are
given all along the contribution).

Also for shortness reasons, we just presented two statistical problems (namely
regression from curve data and curves discrimination) among the several
problems that can be treated by nonparametric functional methods (on this
point also, our contribution contains several references about other problems
that could be attacked similarly). These two problems have been chosen by
us for two reasons: first, these issues are highly relevant to many applied
studies involving curve analysis and second, their theoretical and practical
importance led to emergence of different computer automated procedures.
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nelles: Théorie et Applications. (French) HDR, Université Paul Sabatier
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14 Variable Selection in Principal
Component Analysis

Yuichi Mori, Masaya Iizuka, Tomoyuki Tarumi and Yutaka Tanaka

While there exist several criteria by which to select a reasonable subset of
variables in the context of PCA, we introduce herein variable selection using
criteria in Tanaka and Mori (1997)’s modified PCA (M.PCA) among others.

In order to perform such variable selection via XploRe, the quantlib vaspca,
which reads all the necessary quantlets for selection, is first called, and then
the quantlet mpca is run using a number of selection parameters.

In the first four sections we present brief explanations of variable selection
in PCA, an outline of M.PCA and flows of four selection procedures, based
mainly on Tanaka and Mori (1997), Mori (1997), Mori, Tarumi and Tanaka
(1998) and Iizuka et al. (2002a). In the last two sections, we illustrate the
quantlet mpca and its performance by two numerical examples.

14.1 Introduction

Consider a situation in which we wish to select items or variables so as to
delete the redundant variables or to make a small dimensional rating scale
to measure latent traits. Validity requires that all of the variables are to be
included. On the other hand, practical application requires that the number
of variables to be as small as possible.

There are two types of examples: a clinical test and a plant evaluation. As
for the former case, a clinical test for ordinary persons is sometimes not
suitable for handicapped persons because the number of checkup items is too
large. It is desirable to reduce the number of variables (checkup items) and
obtain global scores which can reproduce the information of the original test.
As for the latter case, there is a large number of sensors (checkpoints) in a
plant that are used to measure some quantity at each point and evaluate the
performance of the entire plant. Exact evaluation requires evaluation based
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on data measured at all points, but the number of points may be too large
to obtain the result within limited time for temporary evaluation. Therefore,
appropriately reducing the number of points to be used in temporary analysis
is helpful. For such cases, we meet the problem of variable selection in the
context of principal component analysis (PCA).

Let us show another example. In Figure 14.1, the left-hand plot is a scatter
plot of the first and second principal components (PCs) obtained based on
all 19 original variables, and the right-hand plot is based on seven selected
variables. There are not so many differences between the two configurations
of PCs. This illustrates the meaningfulness of variable selection in PCA since
selected variables can provide almost the same result as the original variables
if the goal of the analysis is to observe the configuration of the PCs.

Figure 14.1: Scatter plots of principal component scores based on 19 variables
(left) and based on 7 selected variables {3, 7, 13, 15, 16, 17, 18}
(right).

XCSvaspca01.xpl

Furthermore we can perform variable selection in PCA as a prior analysis, for
example, when the number of original variables is too large for the desired
analysis, or as a posterior analysis, for example, when some clusters are
obtained and typical variables must be selected from among those in each
cluster.

Thus, specifying a subset of variables in the context of PCA is useful in many
practical applications.
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14.2 Variable Selection in PCA

The problem of variable selection in PCA has been investigated by Jolliffe
(1972, 1973), Robert and Escoufier (1976), McCabe (1984), Bonifas et al.
(1984), Krzanowski (1987a, 1987b), Falguerolles and Jmel (1993), and Mori,
Tarumi and Tanaka (1994), among others. These studies sought to obtain
ordinary principal components (PCs) based on a subset of variables in such
a way that these PCs retain as much information as possible compared to
PCs based on all the variables: the methods of Jolliffe (1972, 1973) consider
PC loadings, and the methods of McCabe (1984) and Falguerolles and Jmel
(1993) use a partial covariance matrix to select a subset of variables, which
maintains information on all variables to the greatest extent possible. Robert
and Escoufier (1976) and Bonifas et al. (1984) used the RV -coefficient and
Krzanowski (1987a, 1987b) used Procrustes analysis to evaluate the closeness
between the configuration of PCs computed based on selected variables and
that based on all variables. Tanaka and Mori (1997) discuss a method called
the “modified PCA” (M.PCA) to derive PCs which are computed using only
a selected subset of variables but which represent all of the variables, includ-
ing those not selected. Since M.PCA naturally includes variable selection
procedures in the analysis, its criteria can be used directly to detect a rea-
sonable subset of variables (e.g. see Mori (1997, 1998), and Mori, Tarumi
and Tanaka (1998)). Furthermore, other criteria can be considered, such as
criteria based on influence analysis of variables using the concept reported in
Tanaka and Mori (1997) and criteria based on predictive residuals using the
concept reported in Krzanowski (1987b), for details see Mori et al. (1999),
Mori and Iizuka (2000) and Iizuka et al. (2003).

Thus, the existence of several methods and criteria is one of the typical
characteristics of variable selection in multivariate methods without external
variables such as PCA (here the term “external variable” is used as a variable
to be predicted or to be explained using the information derived from other
variables). Moreover, the existing methods and criteria often provide different
results (selected subsets of variables), which is regarded as another typical
characterirstic. This occurs because each criterion or PC procedure has its
own reasonable purpose of selecting variables. Therefore, we can not say
that one is better than the other. These characteristics are not observed in
multivariate methods with external variable(s), such as multiple regression
analysis.

In practical applications of variable selection, it is desirable to provide com-
putation environment where those who want to select variables can apply a
suitable method for their own purposes of selection without difficulties and/or
they can try various methods and choose the best method by comparing the
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results. However, previously, we had no device by which to perform any
method easily. In order to provide useful tools for variable selection in PCA,
we have developed computation environments in which anyone can easily per-
form variable selection in PCA using any existing criteria. A windows package
“VASPCA (VAriable Selection in PCA)” was initially developed (Mori, 1997)
and has been converted to functions for use in general statistical packages,
such as R and XploRe. In addition, we have also constructed web-based soft-
ware using the functions as well as the document pages of variable selection
in PCA, see Mori et al. (2000a), Iizuka et al. (2002a) and also either of
the URLs, http://face.f7.ems.okayama-u.ac.jp/˜masa/vaspca/indexE.html or
http://mo161.soci.ous.ac.jp/vaspca/indexE.html.

14.3 Modified PCA

M.PCA (Tanaka and Mori, 1997) is intended to derive PCs which are com-
puted using only a selected subset but which represent all of the variables,
including those not selected. If we can find such PCs which represent all of
the variables very well, we may say that those PCs provide a multidimen-
sional rating scale which has high validity and is easy to apply practically.
In order to find such PCs we can borrow the concepts of PCA of instrumen-
tal variables introduced in Rao (1964) and RV -coefficient-based approach
presented in Robert and Escoufier (1976).

Suppose we obtain an n × p data matrix Y . If the original data set of
Y consists of categorical variables, the data set should be quantified in an
appropriate manner (Mori, Tanaka and Tarumi, 1997). Let Y be decomposed
into an n × q submatrix Y1 and an n × (p − q) submatrix Y2 (1 ≤ q ≤ p).

We denote the covariance matrix of Y = (Y1, Y2) as S =
(

S11 S12

S21 S22

)
, Y

is represented as accurately as possible by r PCs, where r is the number of
PCs and the PCs are linear combinations of a submatrix Y1, i.e. Z = Y1A
(1 ≤ r ≤ q). In order to derive A = (a1, . . . , ar), the following criteria can be
used:

(Criterion 1) The prediction efficiency for Y is maximized using a linear
predictor in terms of Z.

(Criterion 2) The RV -coefficient between Y and Z is maximized. The RV -
coefficient is computed as

RV (Y,Z) = tr(Ỹ Ỹ �Z̃Z̃�)/{tr(Ỹ Ỹ �)·tr(Z̃Z̃�)}1/2

where Ỹ and Z̃ are centered matrices of Y and Z, respectively.
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The maximization criteria for the above (Criterion 1) and (Criterion 2) are
given by the proportion P

P =
r∑

j=1

λj/ tr(S), (14.1)

and the RV -coefficient

RV =

⎧⎨⎩
r∑

j=1

λ2
j/ tr(S2)

⎫⎬⎭
1/2

, (14.2)

respectively, where λj is the j-th eigenvalue, in order of magnitude, of the
eigenvalue problem (EVP)

[(S2
11 + S12S21) − λS11]a = 0. (14.3)

When the number of variables in Y1 is q, Y1 should be assigned by a subset
of q variables (Y2 by a subset of p − q remaining variables) which provides
the largest value of P in (14.1) for (Criterion 1) or the largest value of RV
in (14.2) for (Criterion 2), and the solution is obtained as a matrix A, the
columns of which consist of the eigenvectors associated with the largest r
eigenvalues of EVP (14.3).

Obviously, these criteria can be used to select a reasonable subset of size q,
that is, “variable selection using criteria in M.PCA” is to find a subset of size
q by searching for that which has the largest value of the above criterion P
or RV among all possible subsets of size q.

14.4 Selection Procedures

Although the best method by which to find a subset of variables of size q
provides the optimum value for a specified criterion among all possible pCq

combinations of variables, this method is usually impractical due to the high
computational cost of computing criterion values for all possible subsets.
Therefore, as practical strategies, Tanaka and Mori (1997) introduced the
two-stage Backward elimination procedure, and later Mori (1997) proposed
three procedures, Forward selection, Backward-forward stepwise selection and
Forward-backward stepwise selection, in which only one variable is removed
or added sequentially. These procedures allow automatic selection of any
number of variables.

Let V be the criterion value P or RV obtained by assigning q variables to
Y1.
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Backward elimination

Stage A. Initial fixed-variable stage

A-1 Assign q variables to subset Y1, usually q := p.

A-2 Solve the EVP (14.3).

A-3 Look carefully at the eigenvalues, determine the number r of PCs
to be used.

A-4 Specify kernel variables which should always be involved in Y1, if
necessary. The number of kernel variables is less than q.

Stage B. Variable selection stage (Backward)

B-1 Remove one variable from among q variables in Y1, make a tem-
porary subset of size q − 1, and compute V based on the subset.
Repeat this for each variable in Y1, then obtain q values of V .
Find the best subset of size q − 1 which provides the largest V
among these q values and remove the corresponding variable from
the present Y1. Put q := q − 1.

B-2 If V or q is larger (or smaller) than the preassigned values, go to
B-1. Otherwise stop.

Forward selection

Stage A. Initial fixed-variable stage

A-1 ∼ 3 Same as A-1 to 3 in Backward elimination.

A-4 Redefine q as the number of kernel variables (here, q ≥ r). If you
have kernel variables, assign them to Y1. If not, put q := r, find
the best subset of q variables which provides the largest V among
all possible subsets of size q and assign it to Y1.

Stage B. Variable selection stage (Forward)

Basically the opposites of Stage B in Backward elimination

Backward-forward stepwise selection

Stage A. Initial fixed-variable stage

A-1 ∼ 4 Same as A-1 to 4 in Backward elimination.

Stage B. Variable selection stage (Backward-forward)
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B-1 Put i := 1.

B-2 Remove one variable from among q variables in Y1, make a tem-
porary subset of size q − 1, and compute V based on the subset.
Repeat this for each variable in Y1, then obtain q values of V . Find
the best subset of size q−1 which provides the largest V (denoted
by Vi) among these q values and remove the corresponding variable
from the present Y1. Set q := q − 1.

B-3 If V or q is larger (or smaller) than preassigned values, go to B-4.
Otherwise stop.

B-4 Remove one variable from among q variables in Y1, make a tem-
porary subset of size q − 1, and compute V based on the subset.
Repeat this for each variable in Y1, then obtain q values of V . Find
the best subset of size q−1 which provides the largest V (denoted
by Vi+1) among these q values and remove the corresponding vari-
able from the present Y1. Set q := q − 1.

B-5 Add one variable from among p − q variables in Y2 to Y1, make a
temporary subset of size q+1 and compute V based on the subset.
Repeat this for each variable, except for the variable removed from
Y1 and moved to Y2 in B-4, then obtain p − q − 1 V s. Find the
best subset of size q + 1 which provides the largest V (denoted by
Vtemp) among p − q − 1 V s.

B-6 If Vi < Vtemp, add the variable found in B-5 to Y1, set Vi := Vtemp,
q := q + 1 and i := i − 1, and go to B-5. Otherwise set i := i + 1
and go to B-3.

Forward-backward stepwise selection

Stage A. Initial fixed-variable stage

A-1 to 4 Same as A-1 to 4 in Forward selection.

Stage B. Variable selection stage (Forward-backward)

Basically the opposites of Stage B in Backward-forward stepwise se-
lection

Mori, Tarumi and Tanaka (1998) showed that criteria based on the sub-
sets of variables selected by the above procedures differ only slightly from
those based on the best subset of variables among all possible combina-
tions in the case of variable selection using criteria in M.PCA. Mori, Tarumi
and Tanaka (1998) also reported that stepwise-type selections (Backward-
forward and Forward-backward) can select better subsets than single-type
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selections (Backward and Forward) and that forward-type selections (For-
ward and Forward-backward) tend to select better subsets than backward-
type selections (Backward and Backward-forward).

14.5 Quantlet

The command

mpca (x{ ,r})

performs variable selection using criteria in M.PCA

Before calling the quantlet mpca, load quantlib metrics by typing:

library("metrics")

in the input line. This quantlib includes main quantlets such as mpca which
select subsets of variables automatically and sub quantlets which are used in
main quantlets: geigensm (solves the generalized EVP), divide (divides a
matrix Y into two submatrices Y1 and Y2), delcol (deletes specified columns
from the original matrix and generates a new matrix) and other necessary
modules for selection.

The quantlet mpca has a required argument, a data set X, and an optional
argument, r – number of PCs. If the number of PCs of the data is unknown,
type the quantlet only using the first argument, e.g. mpca(data). If known,
type the quantlet with both arguments, e.g. mpca(data, 2) and then the
specification of the second parameter (the number of PCs) will be skipped.

When the mpca starts, four parameters are required for selection: a matrix
type (covariance or correlation), the number r of PCs (1 ≤ r < p), a cri-
terion (the proportion P or the RV -coefficient) and a selection procedure
(Backward, Forward, Backward-forward, Forward-backward or All-possible
at q). We optionally implemented the All-possible selection procedure at a
particular number q of variables to obtain the best subset of that size. Note
that computation may take a long time.

After computation based on the specified parameters, two outputs are dis-
played: a list which indicates the criterion values and variable numbers to be
assigned to Y1 and Y2 for every number q of selected variables (r ≤ q ≤ p) and
a graph which illustrates the change of the criterion value. See the practical
actions in the next section.
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Note that this quantlet has no function to specify initial variables and the
number of variables at the first stage. This quantlet simply selects a reason-
able subset of variables automatically as q changes from p to r (or from r
to p). In addition, mpca performs All-possible selection at the first stage of
Forward and Forward-backward procedures to find the initial subset of size
r.

14.6 Examples

14.6.1 Artificial Data

Here, we apply variable selection using M.PCA criteria to an artificial data
set which consists of 87 individuals and 20 variables. Suppose the file name
of the artificial data set is artif and the data set is saved in the folder in
which XploRe is installed. Although this data set was generated artificially,
the data set was modified in a clinical test (87 observations on 25 qualitative
variables) to make the data meaningful.

XCSvaspca01.xpl

Based on the specified parameters variable selection is performed. Here, we
apply variable selection with the following parameters: correlation matrix,
two PCs, the proportion P criterion and Backward procedure. After calcu-
lation, the process of removing variables is displayed in the output window:
the criterion value and variable numbers of Y1 and Y2 separated by “|” for
every number q of selected variables (q = p, p − 1, . . . , r = 20, 19, . . . , 2).
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The graph of criterion values is also displayed (Figure 14.2). You can observe
the change in the criterion visually using this graph.

Figure 14.2: Index plot of the proportion P s as q changes from 20 to 2. (Arti-
ficial data, r=2, correlation matrix, the proportion P and Back-
ward)

These outputs show that the proportion P changes slightly until the number
of variables is six (at step 15). The range of the proportion P ’s is only 0.02416
(= 0.74307 − 0.71891). This means that 14 of the 20 variables are almost
redundant for composing PCs to be used to reproduce the original variables.
Furthermore, if a subset of size 11 or more is selected, the difference between
the proportion based on the selected subset and that based on all of the
variables is less than 0.01.

Looking at the results, a subset of any number of variables displayed as Y1
can be selected in the output list.

Here, we show another result obtained by applying Forward-backward step-
wise selection to the same data set. The index plot of the criterion value is
illustrated in Figure 14.3 and selected variables are
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r : number of principal components, q : number of selected variables Y1:
subset of variables to be selected, Y2: subset of variables to be deleted

Figure 14.3: Index plot of the proportion P s as q changes from 2 to 20.
(Artificial data, r=2, correlation matrix, the proportion P and
Forward-backward)

The outputs are displayed in selected order (in reverse order of backward-
type selection). Although stepwise-type selection takes longer than single-
type selection, stepwise-type selection can provide more reasonable results.
In fact, when the number of variables is six, for example, the selected subset
{3, 5, 10, 11, 15, 20} is the same result as that obtained by All-possible
selection (see the result of All-possible selection described below).

If you choose All-possible at a specified q in the fourth selection box, one
additional box opens to specify the number of variables to be investigated.
Then, the best subset of the specified size q is displayed in the output window:
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If mpca is called using the second argument, for example, mpca(artif, 2),
solving the prior EVP and the second selection to specify the number of PCs
are skipped.

14.6.2 Application Data

As the second numerical example, we analyze a data set of alate adelges
(winged aphids), which was analyzed originally by Jeffers (1967) using ordi-
nary PCA and later by various authors, including Jolliffe (1973) and
Krzanowski (1987a, 1987b), using PCA with variable selection functions. We
applied our variable selection method to the data set given in Krzanowski
(1987a). The data set consists of 40 individuals and 19 variables. Eigen-
values and their cumulative proportions of the data are 13.8379 (72.83%),
2.3635 (85.27%), 0.7480 (89.21%), . . ., therefore we use two PCs as in pre-
vious studies. Since Jeffers (1967) found four clusters by observing the plot
of PCs obtained by ordinary PCA based on the correlation matrix of whole
variables, we choose the RV -coefficient as a selection criterion to detect a
subset providing the close configuration of PCs to the original configuration.
Here, we apply Forward-backward stepwise selection based on the correlation
matrix to the data.

The results of (Y1, Y2) for every q are obtained as the following output and
their RV -coefficients changes as shown in Figure 14.4.
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Figure 14.4: Index plot of the RV -coefficients as q changes from 2 to 19.
(Alate data, r=2, correlation matrix, the RV -coefficient and
Forward-backward)

The results illustrate that the RV -coefficient changes slightly when the num-
ber of variables is over five (at step 4). In particular, the sequential difference
is less than 0.0007 when the number of variables is over 7 (step 6).

Here, we draw a scatter plot of PC scores based on the seven selected variables
{3, 7, 13, 15, 16, 17, 18} and compare this plot with that based on the 19
original variables.

XCSvaspca02.xpl

Using these arguments in the quantlet geigensm to solve the generalized EVP
(14.3), we obtain the sorted eigenvalues mevp.values and the associated
eigenvectors mevp.vectors. Thus, the modified PC scores mpc are obtained
after scale adjustment. The last block draws two scatter plots of the first two
PC scores. These are shown in Figure 14.1 in Section 14.1 (The figures can
be rotated and the first three PCs can be observed as the three-dimensional
display by mouse operation. Note, however, that the modified PCs were
calculated as the number of PCs is two).

As the plots illustrate, little difference exists between the two configurations,
i.e. the use of only seven among 19 variables is sufficient to obtain PCs that
provide almost the same information as the original PCs.
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15 Spatial Statistics

Pavel Č́ıžek, Wolfgang Härdle and Jürgen Symanzik

15.1 Introduction

This chapter deals with the analysis of spatial data. Such data can be the
structure of biological cells, the distribution of plants and animals in a ge-
ographic region, the occurrence of diseases in a county or state, economic
data in different administrative districts, climate data such as temperature
or precipitation over geographic regions, and the distribution of galaxies in
space. Spatial data often are not independent. Temperature and precip-
itation measurements at two locations that are 10 km apart will be more
similar than such measurements at two locations that are 1000 km or even
100 km apart. Infectious diseases often occur in spatial clusters. One re-
gion of a country may encounter hundreds of cases while another region may
encounter only very few cases. Thus, spatial data analysis/spatial statistics
deals with the quantitative study of phenomena that are located in some two-
or higher-dimensional space.

There are three main types of spatial data: spatial point patterns (we speak
of spatial point processes when we refer to the underlying stochastic processes
that result in observable point patterns), geostatistical data (also called spa-
tially continuous data), and lattice data (also called area data). If there is
an additional temporal component, we speak of spatio-temporal data.

Throughout this chapter, we will be dealing with a two-dimensional area of
interest, called D. We assume that we have n sample locations xi that are
usually located in D, but some may occasionally be located outside of D.
We make n observations Z(xi) at these locations and want to describe the
underlying spatial process Z(x).

For spatial point patterns, the point locations in D are random and their
number n is unknown in advance. We are primarily interested in the ob-
served locations xi ∈ D that represent particular point events, such as the
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occurrence of a disease, a species habitat, or the location of trees. A typi-
cal question for spatial point patterns is whether the observed locations are
clustered, randomly distributed, or regularly distributed. In this case, we
simply assume that Z(xi) = 1 for all xi ∈ D, i.e., there is no other data
being recorded than the spatial locations of the n point events. Sometimes,
additional variables such as the time of the occurrence of an event or physical
measurements such as height, diameter, and crown-defoliation of a tree are
measured. Then, Z(xi) represents a random variable (or a random vector) at
location xi ∈ D. Details on spatial point patterns can be found, for example,
in Diggle (2003).

For geostatistical data, D is a fixed subset of the two-dimensional space. We
observe Z(xi) that represents a random variable (or a random vector) at lo-
cation xi ∈ D. We are usually not interested in the locations xi at which the
sample measurements were taken. In fact, we assume the locations have been
randomly chosen or are predetermined by towns or measurement stations. Of
interest are only the univariate or multivariate measurements Z(xi), such as
amount of precipitation or number and concentration of different air pollu-
tants measured at a particular measurement station. Because the number of
locations n where actual measurements were taken is sparse, we usually want
to estimate the values for the variable(s) of interest at locations where no ac-
tual measurements were taken. The term spatially continuous data relates to
the fact that measurements at least theoretically can be taken at any location
xi ∈ D. However, time and cost constraints usually only allow measurements
to be taken at a limited number of locations. Details on geostatistical data
can be found, for example, in Isaaks and Srivastava (1989) and Wackernagel
(1998).

For lattice data, D is a fixed subset of the two-dimensional space that consists
of countably many sub-areas of regular or irregular shape. We observe Z(xi)
that represents a random variable (or a random vector) at sub-area xi ∈ D.
Lattice data represents spatial data that has been aggregated to areal units.
Instead of knowing the exact locations where a disease occurred, or the exact
residence addresses and income of all employees, we may only know the total
number of occurrences (or the incidence rate) of a disease for different health
service areas, or the average annual income of employees in different countries
of the European Community. Statistical variables associated with areas often
do not vary continuously over space. For example, the tax rate on goods
might be 6% in one state and 8% in the next state. Often (but not always),
the given spatial areas are considered to be the only spatial locations at which
the variables of interest can be measured. We typically want to describe and
model the observed spatial pattern and determine possible explanations for
this pattern, for example, which other factors might be associated with higher
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disease rates in many of the urban health service areas.

In addition to the specific references cited above, the reader is referred to
Bailey and Gatrell (1995), Ripley (1981), or Cressie (1993) for comprehen-
sive overviews dealing with all three main types of spatial data and beyond.
This chapter closely follows Chapter 14 in Venables and Ripley (1999) and,
therefore, the notation used in Ripley (1981). The XploRe quantlets used in
this chapter have been adapted from the S-Plus and underlying C code that
accompanies Venables and Ripley (1999), with kind permission from Brian
D. Ripley. The XploRe quantlets support techniques for spatial point pat-
terns and geostatistical data. In the electronic version of this chapter, the

symbol underneath each figure provides a direct link to the XploRe code
that was used to create the figure. At this point, the XploRe quantlib spatial
does not support any techniques for lattice data.

In Section 15.2, we discuss techniques for the analysis of geostatistical data.
In Section 15.3, we discuss techniques for the analysis of spatial point pro-
cesses. We finish with a short discussion in Section 15.4.

15.2 Analysis of Geostatistical Data

In this section, we discuss techniques for the analysis of geostatistical data, in
particular spatial interpolation, smoothing, kriging, correlograms, and var-
iograms. We assume that we have n fixed sampling locations xi ∈ D and
observe Z(xi). Our goal is to predict the spatial process Z(x) for any x ∈ D
or, rather, the mean value E(Z(x)) for this spatial process for any x ∈ D. A
simple, but often unrealistic, assumption is that {Z(x) | x ∈ D} are indepen-
dent and the distributions of Z(x) only differ in the mean but otherwise are
identical. More realistically, we should assume some degree of spatial cor-
relation and therefore incorporate spatial dependence into our model. This
leads to first order effects and second order effects. First order effects relate
to variation in the mean value of a process in space, i.e., a global (or large
scale) trend. Second order effects relate to the spatial correlation structure,
i.e., these are local (or small scale) effects.

Our examples in this section are based on the topo dataset, introduced in
Davis (1973), Table 6.4, and further discussed in Ripley (1981, p. 58–72).
This dataset consists of n = 52 spatial locations with measurements of to-
pographic elevation, measured in feet above sea level. The area D is an
approximate square with side lengths of about 305 feet. The coordinates
have been labelled in 50 feet units, such that the actual spatial locations xi

fall into the area (0.2, 6.3) × (0.1, 6.2), where the first represent East-West
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coordinates and the second represent North-South coordinates. For conve-
nience, the origin (0, 0) is assumed to be located in the Southwest corner of
the area D. In all of our calculations and plots, we assume that the area of
interest actually is the square area (0, 6.5) × (0, 6.5). The examples in this
section show how to do computations and produce graphics similar to those
in Sections 14.1 and 14.2 in Venables and Ripley (1999), using XploRe.

15.2.1 Trend Surfaces

A trend surface analysis is a simple approach to model the global first order
effect in the mean value of a spatially continuous process. First, we assume
that {Z(x) | x ∈ D} are independent. Let us further express the spatial
coordinates as x = (x, y). Often, the expected value E(Z(x)) = f(x) of a
spatial process is expressed as a trend surface, i.e., a polynomial regression
surface of the form

f(x) =
∑

0≤r+s≤p

arsx
rys,

where the parameter p is called the order (or the degree) of the trend surface.
For example, a quadratic trend surface is of the form

f(x) = a00 + a10x + a01y + a20x
2 + a11xy + a02y

2

and has P = 6 coefficients. In general, a least squares (LS) trend surface of
degree p has P = (p + 1)(p + 2)/2 coefficients that are chosen to minimize

n∑
i=1

(Z(xi) − f(xi))2,

where xi ∈ D, i = 1, . . . , n, are the locations at which the n sample measure-
ments were taken.

Figure 15.1 shows trend surfaces of degree 2, 3, 4, and 6 fitted to the topo.dat
dataset. The 52 spatial locations are overlaid as small red crosses on the
trend surfaces. This figure looks similar to Figure 14.1 in Venables and Ripley
(1999). When fitting a trend surface of degree p = 6, P = 28 coefficients have
to be estimated from only 52 spatial locations. As a consequence, problems
with the visual appearance of the trend surface of degree 6 can be noticed
due to extrapolation near the edges.

Another problem with fitting trend surfaces is that often the spatial locations
are not regularly spaced. Instead, the spatial locations are often more dense
where the surface is high (e.g., for air pollution, we want to determine the
spatial locations where the pollution level might be critical for human health
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Figure 15.1: Least squares trend surfaces of degree 2, 3, 4, and 6 for the
topo.dat dataset.

XCSspa01.xpl

and thus we take additional measurements in regions with elevated pollution
levels). It becomes necessary to consider the spatial correlation of the errors
as well. Venables and Ripley (1999) suggested the model

Z(x) = f(x)�β + ε(x),

where f(x) = (f1(x), . . . , fP (x))� is a parametrized trend term as above, β =
(β1, . . . , βP )� is a parameter vector, and ε(x) is a zero-mean spatial stochastic
process of errors. In our previous example of a quadratic trend surface, we
have f(x) = (1, x, y, x2, xy, y2)� and β = (a00, a10, a01, a20, a11, a02)�. It is
further assumed that ε(x) possesses second moments and has the covariance
function

C(x,y) = Cov(ε(x), ε(y)),
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where x,y ∈ D. If we assume that we obtain measurements at n spatial
locations x1, . . . ,xn ∈ D, we can define the model

Z = Fβ + ε,

where

Z =

⎡⎢⎣ Z(x1)
...

Z(xn)

⎤⎥⎦ , F =

⎡⎢⎣ f(x1)�
...

f(xn)�

⎤⎥⎦ , and ε =

⎡⎢⎣ ε(x1)
...

ε(xn)

⎤⎥⎦ .

If we further define K = [C(xi,xj)] and assume that K has full rank, we can
estimate β by generalized least squares (GLS), i.e., by minimizing

(Z − Fβ)�K−1(Z − Fβ).

Additional mathematical details regarding the underlying calculations can
be found in Venables and Ripley (1999, p. 436) and in Ripley (1981, p. 47).
The resulting GLS trend surface of degree 2 is shown in the upper right of
Figure 15.2 and it is contrasted to the ordinary least squares trend surface of
the same degree in the upper left (a replicate from Figure 15.1). This figure
looks similar to Figure 14.5 in Venables and Ripley (1999). The choice of
the covariance function C that is needed for these calculations is discussed
in Section 15.2.3.

15.2.2 Kriging

Kriging is a technique developed in the early 1960s by Matheron and his
school in the mining industry. The term kriging is named after the South
African mining engineer D. G. Krige. When we speak of kriging, we basically
mean an optimal prediction of unobserved values of the spatial process

Z(x) = f(x)�β + ε(x),

as introduced before.

Several forms of kriging exist. In its most general form, called universal
kriging, the process Z(x) is fitted by generalized least squares, predicting the
value of the functional term as well as the value of the error term at location
x ∈ D and taking their sum. In contrast to the generalized least squares
approach discussed in Section 15.2.1, it is no longer assumed that ε(x) is a
zero-mean process of errors.
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Figure 15.2: Least squares trend surface (upper left), generalized least
squares trend surface (upper right), kriging surface (lower left),
and kriging standard errors (lower right) for the topo.dat
dataset.
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A simplification of universal kriging is (ordinary) kriging where the trend
surface is assumed to be of degree 0, i.e., the process Z(x) has constant mean
E(Z(x)) = µ for all x ∈ D, with µ ∈ R unknown. To meet this condition,
the process Z(x) often is first detrended as described in Section 15.2.1 and
the spatial residuals are used for the next analysis steps.

A further simplification of ordinary kriging is simple kriging where it is as-
sumed that µ ∈ R is known in advance and thus does not have to be estimated
from the data. Other forms of kriging, such as robust kriging, disjunctive
kriging, block kriging, and co-kriging have been discussed in the literature.
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Details can be found in Bailey and Gatrell (1995) or Cressie (1993) for ex-
ample.

The computational steps for universal kriging and the calculation of the error
variances have been discussed in Venables and Ripley (1999, p. 439), with
additional mathematical details provided in Ripley (1981, p. 47–50). Uni-
versal kriging predictions (based on a trend surface of degree 2) and kriging
standard errors are displayed in the lower left and lower right of Figure 15.2.
There are considerable differences in the appearances of the kriging surface
and the previously introduced least squares trend surface (upper left) and the
generalized least squares trend surface (upper right). This figure looks similar
to Figure 14.5 in Venables and Ripley (1999). The choice of the covariance
function C that is needed for these calculations is discussed in Section 15.2.3.

15.2.3 Correlogram and Variogram

In the previous sections, we have made the often unrealistic assumption that
the covariance function

C(x,y) = Cov(ε(x), ε(y))

is known. However, if C is unknown, we have to make additional assumptions
for the underlying spatial process that will allow us to estimate C.

One common assumption for second order effects is that the spatial process
{Z(x) | x ∈ D} exhibits stationarity (also called homogeneity). This means
that the statistical properties of Z(x) are independent of the absolute loca-
tions in D, i.e., E(Z(x)) = µ and V ar(Z(x)) = σ2 are constant in D. This
also implies that Cov(Z(x), Z(y)) for x �= y depends only on the relative
locations (i.e., distance and direction) of x and y, but it does not depend on
their absolute locations in D. Thus, for any x,y ∈ D with x+r = y, it holds
that Cov(Z(x), Z(y)) = C(r).

Moreover, we call the spatial process {Z(x) | x ∈ D} isotropic if it is sta-
tionary and Cov(Z(x), Z(y)) depends only on the distance r between x and
y, but it does not depend on the direction in which they are separated. If
mean, variance, or covariance differ over D, the spatial process exhibits non-
stationarity (also called heterogeneity).

A somewhat weaker assumption than stationarity (or even isotropy) is in-
trinsic stationarity where we assume that E(Z(x + r) − Z(x)) = 0 and
V ar(Z(x + r) − Z(x)) = 2γ(r) for any separation vector r. Thus, we have
constant variance in the differences between values at locations that are sep-
arated by a given distance and direction r. The quantity 2γ(r) is called the
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variogram while the quantity γ(r) is called the semi-variogram. Often, the
prefix “semi” is omitted and we speak of a variogram although we mean a
semi-variogram. The factor 2 has the effect that γ(r) = σ2 (and not 2σ2) for
large separation vectors r, i.e., lim

||r||→∞
γ(r) = σ2.

If we assume isotropy, the covariance function

Cov(Z(x), Z(y)) = c(d(x,y)) = c(r)

becomes a function c that entirely depends on the Euclidean distance r =
||r|| = d(x,y) between x and y. Common choices for theoretical covariance
functions c are discussed further below.

Given that c(0) > 0, we define

ρ(r) =
c(r)
c(0)

=
c(r)
σ2

and call this function the correlogram (also known as autocorrelation func-
tion) at distance r. It should be noted that

σ2 = V ar(Z(x)) = Cov(Z(x), Z(x)) = c(d(x,x)) = c(0).

Apparently, it must hold that ρ(0) = 1. However, there is no reason why
lim

r→0+
ρ(r) could not be less than one for very small distances r. If this is the

case, we speak of a nugget effect that represents a microscale variation of the
spatial process. A possible explanation of such an effect are measurement
errors, i.e., if multiple measurements at location x were made, they would
all be slightly different. Extensions of theoretical covariance functions that
include a nugget effect can be found in the previously cited literature. We
will include a nugget effect in some of our examples later in this section,
though, and ask the reader to carefully check what happens for very small
distances r.

One other relationship between semi-variogram γ and covariance function C
(for stationary processes) should be noted. It holds that

γ(r) =
1
2
V ar(Z(x + r) − Z(x))

=
1
2
{V ar(Z(x + r)) + V ar(Z(x)) − 2C(Z(x + r), Z(x))}

= σ2 − C(r).

While this holds for the theoretical relationship, it should be noted that this
does not hold in general for the empirical functions, i.e., commonly we have
γ̂(r) �= Ĉ(0) − Ĉ(r), where γ̂ and Ĉ relate to the estimates of γ and C.
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Before we consider theoretical covariance functions, we take a closer look at
empirical correlograms and empirical variograms for isotropic processes. For
both of these, we first divide the range of the data into m bins [ai, bi) that are
usually equally wide. For an empirical correlogram, for each bin i, we then
determine the covariance ĉ for those pairs of sample locations x,y ∈ D where
d(x,y) ∈ [ai, bi). We finally divide by the overall variance to obtain ρ̂ for
bin i. Similarly, for an empirical variogram, for each bin i, we determine the
average squared difference between Z(x) and Z(y) for those pairs of sample
locations x,y ∈ D where d(x,y) ∈ [ai, bi). More formally,

ĉ(ri) =
1

n(ri)

∑
d(xi,xj)∈[ai,bi)

(Z(xi) − x)(Z(xj) − x),

where x = 1/n

n∑
i=1

Z(xi) is the mean of all observed sample values and n(ri)

is the number of the pairs of locations xi,xj ∈ D that have a separation
distance that falls into the interval [ai, bi). ri for which ĉ is calculated is
usually chosen as the mean of all separation distances that fall into bin i
(although variations in the literature also choose ri = (ai + bi)/2, i.e., the
midpoint of the interval [ai, bi)). Similarly,

2γ̂(ri) =
1

n(ri)

∑
d(xi,xj)∈[ai,bi)

(Z(xi) − Z(xj))2.

A common way to suppress unreliable estimates of ρ̂ and γ̂ is to use the
calculated results only for bins i that contain at least six pairs of sample
locations.

An empirical correlogram and an empirical variogram for the residuals of
the topo.dat dataset, based on a least squares quadratic trend surface as
described in Section 15.2.1, are shown in Figure 15.3. This figure looks similar
to Figure 14.6 in Venables and Ripley (1999).

General requirements for theoretical covariance functions for general spatial
processes are symmetry and non-negative definiteness. For stationary pro-
cesses, or even isotropic processes, exponential, Gaussian, and spherical fam-
ilies of covariance functions meet the general requirements and are frequently
fitted to the data. An exponential covariance function has the form

c(r) = σ2 exp
(
− r

d

)
.

An exponential covariance function has been overlaid on the correlogram
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Figure 15.3: Empirical correlogram (left) and empirical variogram (right) for
the residuals of the topo.dat dataset after fitting a least squares
quadratic trend surface.
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(left) in Figure 15.3. A Gaussian covariance function has the form

c(r) = σ2 exp
(
− r2

d2

)
.

A spherical covariance function in two dimensions has the form

c(r) = σ2

{
1 − 2

π

(
r

d

√
1 − r2

d2
+ sin−1 r

d

)}
I(r∈[0,d])

and a spherical covariance function in three dimensions (but also valid as a
covariance function in two dimensions) has the form

c(r) = σ2

(
1 − 3r

2d
+

r3

2d3

)
I(r∈[0,d]),

where I(r∈[0,d]) is the indicator function that takes value 1 if r ∈ [0, d] and
0 otherwise. Within XploRe, the first version of these spherical covariance
functions is used in case the optional parameter “D” in the XploRe quantlet
call is omitted or takes the value 2, whereas the second version is used for all
other values of “D”.

In the formulas above, the fixed distance d = d(x,y) is called the range
and basically represents the lag distance beyond which Z(x) and Z(y) are
uncorrelated. In this context, σ2 is called the sill and represents the variance
of the process Z(x) as defined above.
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Figure 15.4: Empirical correlograms for the topo.dat dataset, based on
residuals from a quadratic trend surface (left) and the raw data
(right). An exponential covariance function (solid blue line) and
a Gaussian covariance function (dashed cyan line) have been fit-
ted to the empirical correlogram of the residuals (left) while a
Gaussian covariance function has been fitted to the empirical
correlogram of the raw data (right).
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Figure 15.4 shows two empirical correlograms with overlaid covariance func-
tions. In the left plot, we look at an empirical correlogram for the residuals
from a quadratic trend surface. An exponential covariance function [1] (solid
blue line) and a Gaussian covariance function with some nugget effect [2]
(dashed cyan line) have been overlaid. In the right plot, we look at an empir-
ical correlogram for the raw data. A Gaussian covariance function [3] with
a small nugget effect and wide range has been overlaid. This figure looks
similar to Figure 14.7 in Venables and Ripley (1999).

The effect on the kriging surface and kriging standard errors when using
[1] as the covariance function has already been shown in Figure 15.2 in the
bottom row. In Figure 15.5, we see the effect on the kriging surface and
kriging standard errors when using covariance function [2] in the top row and
when using covariance function [3] in the bottom row. While all three kriging
surfaces look similar in the center of our region of interest D, we can notice
considerable differences on the edges of D. However, considerable differences
can be noticed in the structure of the kriging standard errors in the center of
D, depending on which of the three covariance functions has been selected.
Figure 15.5 looks similar to Figure 14.8 in Venables and Ripley (1999).
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Figure 15.5: Kriging predictions (left) and kriging standard errors (right) for
the residuals of the topo.dat dataset using covariance function
[2] (top) and for the raw data without fitting a trend surface
using covariance function [3] (bottom).

XCSspa05.xpl

15.3 Spatial Point Process Analysis

In this section, we discuss techniques for the analysis of spatial point pat-
terns. A spatial point pattern is a set of randomly observed locations xi

that are more or less irregularly distributed in the area of interest D. One of
the questions we are interested in when analyzing a spatial point pattern is
whether the observed locations xi are completely randomly distributed in D
or whether there exists some spatial pattern, e.g., clustering or regularity.

Our examples in this section are based on the pines dataset, introduced
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in Strand (1972) and further discussed in Ripley (1981, p. 172–175). This
dataset consists of n = 71 spatial locations, representing pine saplings in a
10 × 10-meter square. The spatial locations of the pines are shown in the
upper left plot of Figure 15.6. The examples in this section show how to
do computations and produce graphics similar to those in Section 14.3 in
Venables and Ripley (1999), using XploRe.

One way to describe a spatial point process is to describe the number of
events that are occurring in arbitrary sub-areas Di of D, i.e.,

{Z(Di) | Di ⊆ D} ,

where Z(Di) is a random variable that represents the number of events in
sub-area Di. Obviously, this means that E(Z(Di)) and any higher-order
moments depend on the size(s) of the sub-areas that are involved, which is of
little practical use. Instead, we characterize spatial point patterns based on
the limiting behavior of these quantities per unit area. First order properties
are described as intensity λ(x) that represents the mean number of events
per unit area at point x, i.e.,

λ(x) = lim
dx→0

E(Z(dx))
dx

,

where dx is a small area around point x and dx = ||dx|| is the size of area
dx. For a stationary point process, we have λ(x) = λ for all x ∈ D, i.e.,
the intensity is constant over D. An obvious estimate of λ then is λ̂ = n/A,
where n is the number of observed points in D and A = ||D|| is the size of
area D.

A point process that is used to model a completely random appearance of
the point pattern in D is the homogeneous Poisson process. Given such a
process, we speak of complete spatial randomness (CSR). For the process
{Z(Di) | Di ⊆ D}, it holds that Z(Di) and Z(Dj) are independent for any
choices of Di, Dj ∈ D. The probability distribution of Z(Di) is a Poisson
distribution with mean value λAi where Ai = ||Di|| is the size of area Di.
The corresponding probability density function (pdf) of Z(Di) is

fZ(Di)(z) =
(λAi)z

z!
e−λAi ,

where λ represents the constant intensity over D. CSR usually represents the
null hypotheses when we want to assess whether an observed point pattern
shows clustering or regularity instead.

The second moment of a point process can be specified via the K function,
where λK(r) is the expected number of points within distance r of any of the
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Figure 15.6: Observed point pattern for the pines.dat dataset (upper left),
and comparisons with a CSR process (upper middle and upper
right), two Strauss processes (middle row), and a SSI process
(bottom row). In the plots titled “Envelopes”, the dark (blue)
lines represent the lower and upper simulation envelopes and
the light (cyan) line the average of the simulations runs of the
specified point process. The solid black line shows the observed
L̂(r) for the pines.dat dataset.
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points of the observed point pattern. For the homogeneous Poisson process,
it can be shown that K(r) = πr2. If we obtain values that are significantly
greater than this value at a distance r0 or significantly less than this value at a
distance r0, this would be an indicator of clustering or regularity, respectively,
at this distance.
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Instead of working with K(r), one often switches to L(r) =
√

K(r)/π (or
L̃(r) =

√
K(r)/π − r). For the homogeneous Poisson process, L(r) therefore

would be a straight line with slope 1 that goes through the origin (or L̃(r) = 0
for all distances r).

Let us define rij as the Euclidean distance between the ith and jth of the
observed point locations xi and xj and let I(rij∈[0,r]) be the indicator function
that takes value 1 if 0 ≤ rij ≤ r and 0 otherwise. A possible estimator of
K(r) then is

K̂(r) =
A

n2

∑
i,j;i
=j

I(rij∈[0,r]).

This estimator reveals one problem for points that are close to the edge of D.
The summation excludes pairs of points for which the second point is outside
of D and thus is unobservable. Therefore, we need some edge-correction. Let
us consider a circle centered on point xi, passing through point xj . Let wij be
the proportion of the circumference of the circle that lies within D, i.e., this
represents the conditional probability that a point is observed in D, given
that it is within distance rij from the ith point. Therefore, an edge-corrected
estimator of K(r) is

K̂(r) =
A

n2

∑
i,j;i
=j

I(rij∈[0,r])

wij
.

An edge-corrected estimator of L(r) can be obtained as L̂(r) =
√

K̂(r)/π

(or ˆ̃L(r) =
√

K̂(r)/π − r).

A graphical assessment for CSR is to plot L̂(r) (or ˆ̃L(r)) versus r. Any ma-
jor departure from a straight line at distance r0 then indicates clustering (if
above the straight line) or regularity (if below the straight line), respectively.
Apparently, an empirical plot based on observed point locations will rarely
produce a straight line, even if the observed pattern originates from a homo-
geneous Poisson process. Therefore, we work with simulation envelopes of
the assumed process.

To produce simulation envelopes, we simulate the assumed point process s
times, say 100 times, in our examples. At each distance r, the minimum,
average, and maximum, i.e., l(r) = min

i=1,...,s
L̂i(r), a(r) = avg

i=1,...,s
L̂i(r), and

u(r) = max
i=1,...,s

L̂i(r) are calculated, where L̂i(r) is the estimate of L(r) in

the ith simulation run. We call l(r) and u(r) the lower and upper simulation
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envelopes of the simulated process. If we treat L̂(r) as a random variable,
then we can approximate that

P (L̂(r) > u(r)) = P (L̂(r) < l(r)) =
1

s + 1
.

Thus, for s = 100 independent simulation runs, we obtain a two-sided test
at the approximate 2% significance level that rejects the null hypothesis of
CSR if the observed L̂(r) falls above the upper or below the lower simulation
envelope at some distance r.

We first make s = 100 independent simulation runs of a Poisson process with
n = 71 observations that inhibit the same spatial domain as the original
data. We draw the result of the first simulation run in the upper center plot
in Figure 15.6. It is expected that for a Poisson process, we visually get
the impression that points are clustered in some sub-areas of D while other
sub-areas of D only contain few points.

The upper right plot in Figure 15.6 shows the lower and upper simulation
envelopes as well as the average of the s = 100 simulation runs. The observed
L̂(r) for the pines.dat dataset (the solid black line) falls below the lower
simulation envelope for distances r ∈ [0.7, 1.2] approximately. This means,
our observed process is significantly different from a homogeneous Poisson
process. Instead, we have some regularity for distances from around 0.7 to
1.2 meters.

Common departures from CSR towards clustering processes, such as hetero-
geneous Poisson processes, Cox processes, and Poisson cluster processes, can
be found in the previously cited literature on spatial point patterns. Here,
we take a closer look at two processes that are used as models for regularity,
i.e., Strauss processes and sequential spatial inhibition processes.

Many regular point patterns can be described by simple inhibition rules. For
example, the cell centers of animal cells cannot be located closer than the
diameter of the cells, or two plants in close proximity are less likely to survive
and grow to maximum height (although this is not impossible) than plants
that are further apart. A general class of spatial point patterns that describes
such processes are Markov point processes. A subclass of such processes are
pairwise interaction point processes with Strauss processes as special cases.

In a Strauss process, points in D that are less than some distance R > 0
apart are called neighbors. The joint density function for n point locations
x1, . . . ,xn ∈ D which contains m distinct pairs of neighbors is specified as

f(x1, . . . ,xn) = abncm,

where a > 0 is a normalizing constant, b > 0 reflects the intensity of the
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process, and c with 0 ≤ c ≤ 1 describes the interactions between neighbors.
Special cases for c are c = 1 which gives a homogeneous Poisson process
with intensity b and c = 0 which results in a simple inhibition process that
contains no events at a distance less than or equal to R. All other cases with
0 < c < 1 represent some form of regularity. The smaller c and the larger m,
the less likely it becomes that another point occurs in proximity to these n
points.

In the plots in the middle row of Figure 15.6, we consider two Strauss pro-
cesses as possible alternatives to CSR. The middle left plot shows one sim-
ulation run of a Strauss process with R = 0.7 (i.e., the distance at which
regularity starts based on the CSR simulation envelopes) and c = 0.15. In
the middle center plot, we show the lower and upper simulation envelopes as
well as the average of the s = 100 simulation runs of a Strauss process with
these parameters. In the middle right plot, we show the lower and upper
simulation envelopes as well as the average of the s = 100 simulation runs
of another Strauss process with R = 0.7 and c = 0.2. In both plots, the
observed L̂(r) for the pines.dat dataset (the solid black line) falls within
the lower and upper simulation envelopes of these Strauss processes. Thus,
both of these Strauss processes are possible models for the observed point
pattern.

Just for illustrative purposes, we also look at s = 100 simulation runs of
Matern’s sequential spatial inhibition (SSI) process in the bottom row of
Figure 15.6. The bottom left plot shows one simulation run of a SSI process
that prohibits any two points to occur at a distance less than R = 0.7. In
the bottom center plot and bottom right plot, we show the lower and upper
simulation envelopes as well as the average of the s = 100 simulation runs
of an SSI process with this parameter. While the observed L̂(r) for the
pines.dat dataset (the solid black line) falls within the lower and upper
simulation envelopes of this SSI process for larger values of r, say r > 2,
shown in the bottom right plot, the observed L̂(r) falls clearly above the
upper simulation envelope of this SSI process. This means that a process
that requires a minimum distance of R = 0.7 between any two points is not a
valid model for the observed point pattern. Pine saplings are less likely (than
what we would expect under CSR) to occur in proximity of R = 0.7 meters
or less, but it is not impossible for them to occur in such a close proximity.
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15.4 Discussion

In this chapter, we have discussed some basic methods for the analysis of
spatial data, in particular for the analysis of geostatistical data and for spa-
tial point patterns. Each of the figures has been produced in XploRe, using
quantlets from the XploRe quantlib spatial. A quick glance at the literature
introduced in Section 15.1 reveals that the methods discussed here repre-
sent only a small fraction of the methods commonly used for spatial data.
However, many additional methods can be directly implemented in XploRe
as they only require linear algebra and matrix operations. Additional point
processes can be simulated by following simple rules. In fact, Symanzik et
al. (1998) provided examples of additional user-written spatial functions in
XploRe for the analysis of spatial data. Thus, this chapter hopefully has
provided some insights how to conduct an analysis of spatial data within
XploRe.
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16 Functional Data Analysis

Michal Benko

In many different fields of applied statistics the object of interest is depend-
ing on some continuous parameter, i.e. continuous time. Typical examples
in biostatistics are growth curves or temperature measurements. Although
for technical reasons, we are able to measure temperature just in discrete
intervals – it is clear that temperature is a continuous process. Temperature
during one year is a function with argument ”time”. By collecting one-year-
temperature functions for several years or for different weather stations we
obtain bunch (sample) of functions – functional data set. The questions aris-
ing by the statistical analysis of functional data are basically identical to the
standard statistical analysis of univariate or multivariate objects. From the
theoretical point, design of a stochastic model for functional data and statis-
tical analysis of the functional data set can be taken often one-to-one from
the conventional multivariate analysis. In fact the first method how to deal
with the functional data is to discretize them and perform a standard multi-
variate analysis on the resulting random vectors. The aim of this chapter is
to introduce the functional data analysis (FDA), discuss the practical usage
and implementation of the FDA methods.

This chapter is organized as follows: Section 16.1 defines the basic mathemat-
ical and statistical framework for the FDA, Section 16.2 introduces the most
popular implementation of functional data analysis – the functional basis
expansion. In Section 16.4 we present the basic theory of the functional prin-
cipal components, smoothed functional principal components and a practical
application on the temperature data set of the Canadian Weather-stations.

16.1 Introduction

In the traditional multivariate framework the random objects are modeled
through a T -dimensional random vector X. More formally a random vector
is a measurable function X : (Ω,A, P ) → (RT ,BT ), that maps a probability
space (Ω,A, P ) on the real measurable space (RT ,BT ), where BT are the
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Borel sets on RT . Observing N realizations of X we analyze the random
vector X using the data set

XM
def= {xi1, xi2 . . . xiT , i = 1, . . . , N}.

In the functional data framework, objects are typically modeled as realiza-
tions of a stochastic process X(t), t ∈ J , where J is a bounded interval in
R. Thus, the set of functions

Xf
def= {xi(t), i = 1, 2, . . . N, t ∈ J}

represents the data set. More formally, the random function X in the func-
tional data framework is modelled as a measurable function mapping (Ω,A,P)
into (H,BH), where BH is a Borel field on the functional Hilbert space H.

We will mainly work with functional Hilbert space L2(J) with standard L2

scalar product defined by

〈f, g〉 def=
∫
J

f(t)g(t)dt, for ∀f, g ∈ L2(J). (16.1)

The corresponding L2(J) norm is determined by the scalar product (16.1) by
||f || def= 〈f, f〉1/2.

Moreover assume the existence of the mean, variance, covariance and func-
tions of X, and denote these by EX(t), VarX(t), CovX(s, t) and CorrX(s, t)
respectively:

VarX(t) def= E{X(t) − EX(t)}2, t ∈ J,

CovX(s, t) def= E{X(s) − EX(s)}{X(t) − EX(t)}, s, t ∈ J,

CorrX(s, t) def=
CovX(s, t)√

VarX(s)VarX(t)
.

Note that the CorrX(s, t) is defined under the assumption VarX(s),
VarX(t) > 0.

For the functional sample xi(t), i = 1, . . . N we can define the estimators of
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EX(t), VarX(t), CovX(s, t) and CorrX(s, t) in a straightforward way:

x̄(t) = 1
N

N∑
i=1

xi(t),

V̂arX(t) = 1
N−1

N∑
i=1

{xi(t) − x̄(t)}2
,

ĈovX(s, t) = 1
N−1

N∑
i=1

{xi(s) − x̄(s)} {xi(t) − x̄(t)} .

ĈorrX(s, t) =
dCovX(s,t)√

dVarX(s) dVarX(t)
.

Dauxois, Pousse and Romain (1982) show that

||CovX(s, t) − ĈovX(s, t)|| → 0, with probability one.

16.2 Functional Basis Expansion

In the previous section, we have presented the problem of statistical analysis
of random functions. As we will see, from a theoretical point of view, the
multivariate statistical concepts can be often introduced into the functional
data analysis easily. However, in practice we are interested in the imple-
mentation of these techniques in fast computer algorithms, where a certain
finite-dimensional representation of the analyzed functions is needed.

A popular way of FDA-implementation is to use a truncated functional basis
expansion. More precisely, let us denote a functional basis on the interval J
by {θ1, θ2, . . . , } and assume that the functions xi are approximated ”well”
by the first L basis functions θl, l = 1, 2, . . . L

xi(t) =
L∑

l=1

cilθl(t) = c�i θ(t), (16.2)

where θ = (θ1, . . . , θL)� and ci = (ci1, . . . , ciL)�. The first equal sign in
(16.2) is not formally adequate – in practice we are just approximating the xi.
However, in order to keep the notation simple we will neglect this difference
between the real xi(t) and its approximation.

In practice, the analysis of the functional objects will be implemented through
the coefficient matrix

C = {cil, i = 1, . . . , N, l = 1, . . . , L},
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e.g. the mean, variance, covariance and correlation functions can be approx-
imated by:

x̄(t) = c̄�θ(t),

V̂arX(t) = θ(t)� Cov(C)θ(t),

ĈovX(s, t) = θ(s)� Cov(C)θ(t),

ĈorrX(s, t) =
ĈovX(s, t){

V̂arX(t)V̂arX(s)
}1/2

where c̄l
def= 1

N

N∑
i=1

cil, l = 1, . . . , L, Cov(C) def= 1
N−1

N∑
i=1

(ci − c̄)(ci − c̄)�.

The scalar product of two functions corresponds to:

〈xi, xj〉 def=
∫
J

xi(t)xj(t)dt = c�i Wcj ,

where
W def=

∫
J

θ(t)θ(t)�dt. (16.3)

There are three prominent examples of functional bases: Fourier, Polynomial
and B-Spline basis.

16.2.1 Fourier Basis

A well known basis for periodic functions on the interval J is the Fourier
basis, defined on J by

θl(t) =

⎧⎨⎩ 1, l = 0
sin(rωt), l = 2r − 1
cos(rωt), l = 2r

where ω is so called frequency, determines the period and the length of the in-
terval |J | = 2π/ω. The Fourier basis defined above can easily be transformed
to an orthonormal basis, hence the scalar-product matrix in (16.3) is simply
the identity matrix. The popularity of this basis is based partially on the
possibility of fast coefficient calculation by the Fast Fourier Transformation
(FFT) Algorithm. In XploRe one can use the quantlet Fourierevalgd for
general case or the quantlet fft that performs the FFT Algorithm for the
equidistant design.
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16.2.2 Polynomial Basis

The polynomial basis, appropriate for non-periodic functions is defined by

θl(t) = (t − ω)k, k = 0, 1, . . . , L − 1

where ω is a shift parameter. The polynomial (or monomial) functions are
easy to calculate for example by a simple recursion. However, the higher
order polynomials become too fluctuating especially in the boundaries of J .
In XploRe one can use the quantlet polyevalgd.

16.2.3 B-Spline Basis

A very popular functional basis for non-periodic data is the B-Spline basis.
This basis is defined by the sequence of knots on the interval J and is roughly
speaking a basis for piecewise polynomial functions of order K smoothly
connected in the knots. More formally, the basis functions are

θl(t) = Bl,K(t), l = 1, . . . ,m + k − 2 (16.4)

where Bl,K is l-th B-Spline of order K, for the non-decreasing sequence of
knots {τi}m

i=1 defined by following recursion scheme:

Bi,1(t) =
{

1, for t ∈ [τi, τi+1]
0, otherwise

Bi,k(t) =
t − τi

τi+k−1 − τi
Bi,k−1(t) +

τi+k − t

τi+k − τi+1
Bi+1,k−1(t)

for i = 1, . . . ,m + k, k = 0, . . . ,K. The number of the basis function will
uniquely be defined by the B-spline order and the number of knots. The
advantage of the B-spline basis is its flexibility, relatively easy evaluation of
the basis functions and their derivatives. In XploRe one can use the quantlet
Bsplineevalgd.

The detailed discussion of the implementation of the B-spline basis expansion
in XploRe can be found in Ulbricht (2004).

16.2.4 Data Set as Basis

Let us briefly discuss an interesting special case – the use of the functions
xi(t), i = 1, . . . , N themselves as the basis. This directly implies that the
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coefficient matrix C is the identity matrix. Information about the data set
Xf is “stored” in the matrix W.

As we will show in next sections this case has an direct application in practice,
despite its pathological first-sight impression.

16.3 Approximation and Coefficient Estimation

In practice, we observe the function values

X = {xi(ti1), xi(ti2), . . . , xi(tiTi
), i = 1, . . . , N}

only on a discrete grid {ti1, ti2, . . . , tiTi
} ∈ J , where Ti are the numbers of

design points for the i-th observation. In this case we may approximate
the function xi(t) by functions θl(t), l = 1, . . . L by minimizing some loss
function, e.g. sum of squares. This approach is known as the least squares
approximation. In case of using the data set as basis we need to approximate
integrals

∫
xl(t)xk(t)dt by some numerical integration techniques.

A slightly different setup occurs if we assume that the data set is contami-
nated by some additive noise. A standard statistical approach is to assume
that the data set consist of Xε

def= {Yij , j = 1, . . . , Ti, i = 1, . . . , N}, where

Yij = xi(tij) + εij (16.5)

and εij is the realization of a random variable with zero mean and variance
function σ2

i (t), i.e. we are faced with the N regression problems. The es-
timated coefficient matrix C can be obtained by minimizing an appropriate
loss function. The method of regularization by the roughness penalty can be
applied. Defining the roughness penalty as the norm of an operator on the
(Hilbert) space H, R

def= ‖ L ‖2, L ∈ H∗ we will minimize:

Ti∑
j=1

{
Yij − ci

�θ(tij)
}2

+ α ‖ L(ci
�θ) ‖2 (16.6)

where α is a parameter controlling the degree of penalization. Clearly
α = 0 yields the least square regression. A popular example of the roughness
penalty is L = D2 where we penalize nonlinearity of the estimated function
ci

�θ. A more general approach assumes L is a linear differential operator,
i.e. L = a1D1 +a2D2 + . . .+aPDP . The proper choice of the operator should
have background in some additional information about the underlying func-
tion. Assume for example that xi ∈ V, V ⊂ H, then we should try to find
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an operator L so that Ker(L) = V. Doing so we will penalize the coefficients
that yield functions x̂i = ci

�θ /∈ V.

Clearly, we can write L(ci
�θ) = ci

�L(θ), hence for implementation we only
need to be able to calculate the function L(θl).

Note that in the standard FDA setup, one assumes that the functions xi

are observed without additional error. This assumption is often violated in
practice. Again in order to keep notation simple we will neglect the difference
between the estimated and real coefficients. We can do so if we assume that
the additional noise is of smaller order in compare to the variation of the
functions xi. However, from a statistical point of view we should keep this
difference in mind.

One important question of practitioners is how many functions should be used
in the basis expansion. Although, as stated by Ramsay and Silverman (1997),
even a subjective selection of the smoothing parameter leads usually to the
reasonable choice, from a statistical point of view the automated (data driven
selection) is needed. In the simplest case of e.g. Fourier basis without using
additional regularization we need to set just the L. This can be done easily
by Cross-Validation, Generalized Cross Validation or other similar criteria
described in Härdle (1990) among others. Much more complicated is the case
of B-splines – in practice we need to choose the knots sequence in addition
to the number of functions. In some special applications the choice of knot
points is naturally given by the underlying problem. One practical rule of
thumb can be a good starting point: set at least 3 knots in the neighborhood
of the “interesting” point of the function, e.g. around expected extreme-point
or another change in the function.

An alternative approach may be applied in case we have additional informa-
tion about the function of interest transformed into the roughness penalty
‖ L ‖.

The algorithm is as follows:

1. Use a “nested” model for the data set, i.e. use L ≈ number of
observations. Using this basis directly would lead to a highly volatile
estimator with a small (zero) bias.

2. Transform additional information about the function into the kernel of
some appropriate linear differential operator.

3. Use the roughness penalty approach and estimate “smoothed” coeffi-
cients vector ci.

For the cubic B-splines basis, the first step corresponds to setting the knots
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into each design point. If we set L = D2, we in fact penalize nonlinear func-
tions, and obtain a special case of the very popular nonparametric technique
– smoothing splines. In the third step of the algorithm we might easily set
the smoothing parameter by Cross-Validation (CV) or Generalized Cross-
Validation (GCV), for details see Hastie, et al (2002). This method is fully
data driven for a given operator L.

16.3.1 Software Implementation

Software implementation This paragraph gives just brief insight into the phi-
losophy of the FDA-implementation, deeper discussion can be found in Ul-
bricht (2004) and Benko (2004). The implementation presented here is de-
signed for Statistical environment XploRe, similar packages for R and Matlab
can be found in Ramsay (2003).

We implemented in XploRe general functional basis as a list object basisfd
with following elements:

fbname – string, the name of the functional basis, supported are:
Fourier, Polynomial, Bspline, that are mentioned above

range – vector of two elements, range of interval J

param – abstract set of elements, functional basis specific parameters
that uniquely determine the functional basis fbname

W – optional parameter, the scalar product matrix W

penmat – optional parameter, the penalty matrix

A functional object fd is similarly a list containing:

basisfd – object of type functional basis

coef – array of coefficients

These two objects can be created by following two quantlets: createfdbasis
(fbname, range, param) that creates the fdbasis object, on the interval
[range[1],range[2]] using parameters param and data2fd (y, argvals, bas-
isfd, Lfd, W, lambda) that converts an array y of function values, or penalized
regression with Lfd and lambda observed on an array argvals of argument
values into a functional data object. The statistical functions operating on
these objects will be presented in the following text on the simple Tempera-
ture data set. In addition one can use XploRe help system (APSS) for further
reference.
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16.3.2 Temperature Example

In this section we want to analyze a data set containing 35 weather stations
in Canada, listed in the Table 16.3.2.

Table 16.1: Names of the Canadian weather stations

Arvida Bagottvi Calgary Charlott Churchil Dawson
Edmonton Frederic Halifax Inuvik Iqaluit Kamloops
London Montreal Ottawa Princeal Princege Princeru
Quebec Regina Resolute Scheffer Sherbroo Stjohns
Sydney Thepas Thunderb Toronto Uraniumc Vancouvr
Victoria Whitehor Winnipeg Yarmouth Yellowkn

This data set is taken from Ramsay and Silverman (1997), the data with the
description can be found in the online database MD*Base. We choose this
example as a “guinea pig” data set that illustrates the defined concepts and
the use of the implemented quantlets and gives the possibilities of comparison.

Due to the cyclical behavior of the temperature during years it is usual in
comparable studies to assume the temperature functions to be periodic. Thus
we may employ the Fourier basis functions.

Figure 16.1 shows estimated temperature functions using 31 Fourier func-
tions.

For our Temperature data set we obtained the following functions that cor-
respond to the basic statics in multivariate framework:

Looking at the functions in the Figures 16.2 and 16.4 we observe the mean
function with a bump in the summer, which is not surprising – temperatures
are higher in summer than in winter. Another fact may be, however, not so
expected: in the winter we can observe higher variance than in the summer.
This fact can possibly be explained by the higher impact of the geographi-
cal differences on the winter temperature than on the summer temperature.
Looking at the correlation function, plotted in the Figure 16.4 we can see
that the autumn temperatures seems to be higher correlated with the spring
temperatures than winter and summer temperatures.
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Temperature Functions
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Figure 16.1: Example of functional data, temperatures measured by Cana-
dian weather stations listed in the Table 16.3.2.
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Figure 16.2: Mean and variance function (temperature).
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16.4 Functional Principal Components

Principal Components Analysis (PCA) yields dimension reduction in the
multivariate framework. The idea is to find the normalized weight vectors
γm ∈ RT for which the linear transformations of a T -dimensional random



16.4 Functional Principal Components 315
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Figure 16.3: Covariance function (temperature). The plotted surface is the
linear interpolation of grid on [0, 1] and step 1/30.
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vector x:

βm = γ�
m(x − Ex) = 〈γm,x − Ex〉, m = 1, . . . , T, (16.7)

have maximal variance subject to:

γ�
l γm = 〈γl, γm〉 = I(l = m) for l ≤ m.

The problem is solved by the means of the Jordan spectral decomposition of
the covariance matrix, Härdle and Simar (2003), p. 63.

In Functional Principal Components Analysis (FPCA) the dimension reduc-
tion can be achieved via the same route: Find orthonormal weight functions
γ1, γ2, . . ., such that the variance of the linear transformation is maximal.

The weight functions satisfy:

||γm||2 =
∫

γm(t)2dt = 1,

〈γl, γm〉 =
∫

γl(t)γm(t)dt = 0, l �= m.
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Figure 16.4: Correlation function (temperature). The plotted surface is the
linear interpolation of grid on [0, 1] and step 1/30.
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The linear combination is:

βm = 〈γm, X − EX〉 =
∫

γm(t){X(t) − EX(t)}dt, (16.8)

and the desired weight functions solve:

arg max
〈γl,γm〉=I(l=m),l≤m

Var〈γm, X〉, (16.9)

or equivalently:

arg max
〈γl,γm〉=I(l=m),l≤m

∫ ∫
γm(s)Cov(s, t)γm(t)dsdt.

The solution is obtained by solving the Fredholm functional eigenequation∫
Cov(s, t)γ(t)dt = λγ(s). (16.10)

The eigenfunctions γ1, γ2, . . . , sorted with respect to the corresponding eigen-
values λ1 ≥ λ2 ≥ . . . solve the FPCA problem (16.9). The following link
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between eigenvalues and eigenfunctions holds:

λm = Var(βm) = Var
[∫

γm(t){X(t) − EX(t)}dt

]
=

=
∫ ∫

γm(s)Cov(s, t)γm(t)dsdt.

In the sampling problem, the unknown covariance function Cov(s, t) needs
to be replaced by the sample covariance function Ĉov(s, t). Dauxois, Pousse
and Romain (1982) show that the eigenfunctions and eigenvalues are consis-
tent estimators for λm and γm and derive some asymptotic results for these
estimators.

16.4.1 Implementation

In this section we will present three possibilities of implementation of the
functional PCA. We will start with a simple discretization technique. In the
second step we will focus more on the implementation by the basis expansion,
including the application on the temperature data set.

Discretization

One possibility of calculating the functional PCA is simply to perform the
multivariate PCA on a dense grid {t1, . . . , tT }, obtain the eigenvectors
(γ̂j(ti), i = 1, . . . , T )� for j = 1, . . . , r and estimate the coefficients of
eigenvectors b1, . . . , br. The implementation is very simple since the routines
of the multivariate PCA or matrix spectral analysis are needed. However, in
the next section we will present a implementation method that corresponds
more to the functional nature of the underlying problem. Secondly, the esti-
mated eigenfunctions are not necessarily orthonormal in the functional sense,
due to the dependence of the integrals on the length of the interval and of
the vector scalar product of the discretized functions on the number of dis-
cretization points T . Thus an additional correction is needed. A simple
way is to orthonormalize the coefficient with respect to the matrix W using
Gramm-Schmidt procedure.
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Basis Expansion

Suppose that the weight function γ has the expansion

γ =
L∑

l=1

blθl = θ�b.

Using this notation we can rewrite the left hand side of eigenequation (16.10):∫
Cov(s, t)γ(t)dt =

∫
θ(s)� Cov(C)θ(t)θ(t)�bdt

= θ� Cov(C)Wb,

so that:
Cov(C)Wb = λb.

The functional scalar product 〈γl, γk〉 corresponds to b�
l Wbk in the trun-

cated basis framework, in the sense that if two functions γl and γk are or-
thogonal, the corresponding coefficient vectors bl,bk satisfy b�

l Wbk = 0.
Matrix W is symmetric by definition, thus, defining u = W1/2b, one needs
to solve finally a symmetric eigenvalue problem:

W1/2 Cov(C)W1/2u = λu,

and to compute the inverse transformation b = W−1/2u. For the orthonor-
mal functional basis (i.e. also for Fourier basis) W = I, i.e. the problem of
FPCA is reduced to the multivariate PCA performed on the matrix C.

Algorithm

1. calculate C and W

2. using Cholesky decomposition calculate W1/2

3. use symmetric matrix eigenvalue routine and obtain eigenvalues and
eigenvectors (u) of W1/2 Cov(C)W1/2

4. calculate b = W−1/2u

Notice: The estimated coefficient of eigenfunctions are orthonormal with
respect to the scalar product b�

i Wbj , however, numerical errors can cause
small deviances.
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16.4.2 Data Set as Basis

As announced in the previous section, if we use the data set Xf as the basis
we need to estimate the matrix W rather than the coefficient matrix C. We
will show how to use this concept in the functional principal components
analysis.

Estimation procedure is based on the Karhunen-Loèvy decomposition – we
use eigenfunctions as factor functions in the model of following type:

xi = x̄ +
K∑

j=1

βijγj , (16.11)

recall, x̄ is the sample mean, x̄ = 1/N
∑N

i=1 xi. The K is the number of
nonzero eigenvalues of the (empirical) covariance operator.

CN (ξ) =
1
N

N∑
i=1

〈xi − x̄, ξ〉(xi − x̄) (16.12)

This is the sample version of the covariance operator used in (16.10), compare
also with definition of ĈovX . Let us denote the eigenvalues, eigenvectors of
CN by λCN

1 , λCN
2 . . . , γCN

1 , γCN
2 . . . , and the principal scores βCN

ir
def= 〈γCN

r , xi −
x̄〉.

Using this notation model (16.11) is based on the known fact, that the first
L eigenfunctions of the empirical covariance operator, ordered by the corre-
sponding eigenvalues, construct the “best empirical basis” in the integrated
square error sense, i.e. the residual integrated square error:

ρ(m1, . . . ,mL) =
N∑

i=1

‖ xi − x̄ −
L∑

j=1

βijmj(t) ‖2 (16.13)

is minimized with respect to all L orthogonal functions mj ∈ L2, j = 1, . . . , L

by setting mj(t) ≡ γCN
j (t), t ∈ J . In the estimation procedure, we follow the

idea of Kneip and Utikal (2001), introduced for the case where xi(t) is a den-
sity function. Instead of estimating the eigenfunction γCN

j by discretization
or functional basis expansion of xi we focus on the spectral analysis of matrix

Mlk = 〈xl − x̄, xk − x̄〉. (16.14)

This procedure is motivated by the following two facts: firstly all nonzero
eigenvalues of the empirical covariance operator CN and the eigenvalues of
the matrix M denoted by λM

1 , λM
2 , . . . are related as follows: λM

r = N.λCN
r .
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Secondly, for the eigenvectors of M denoted by p1, p2, . . . and principal scores
βCN

jr holds:

βCN
jr =

√
λM

r pjr (16.15)

and

γCN
r =

(√
λM

r

)−1 N∑
i=1

pir (xi − x̄) =
(√

λM
r

)−1 N∑
i=1

pirxi =

N∑
i=1

xiβ
CN
ir

N∑
i=1

(βCN
ir )2

.

(16.16)
The estimation procedure follows now in two steps. First we estimate the
M by an appropriate estimator M̂ and in the second step we use (16.16) to
obtain the estimators β̂ir, γ̂r of principal scores and eigenfunctions βCN

ir , γCN
r .

There are several aspects of this technique that need to be mentioned. First
we need to mention that we virtually separate the spectral analysis and move
it into the (feature) space of scalar products. On the other hand in the gen-
eral case of unequal designs the estimation of the scalar products can be
complicated. The deeper discussion, for the special case of the density func-
tions can be found in above mentioned Kneip and Utikal (2001), discussion
of using this idea in the regression case can be found in Benko and Kneip
(2005).

Temperature Example

For our temperature example we obtained the weight functions (eigenfunc-
tions) displayed in the Figure 16.5, using the same setup as in the previ-
ous section (31 Fourier functions), with the following variance proportions
(eigenvalues):

Table 16.2: Eigenvalues of functional PCA

variance cum. variance
proportions proportions

0.88671 0.88671
0.084837 0.971547
0.019451 0.990998

0.0052221 0.9962201

The first eigenfunction (black curve) explains 89% of variation. The second
eigenfunction (blue curve) explains 8% of variation, the third eigenfunction
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Figure 16.5: Weight functions for temperature data set.
XCSfdaTempPCA.xpl

(green curve) 2% of variation and the fourth function (cyan curve) 0.5% of
variation.

However, the eigenfunctions are rough (non-smooth). This roughness is
caused by sampling variance or by the observation noise and flexibility of
used functional basis. In the Section 16.5 we will discuss the method of
smoothing the eigenfunctions in order to get more stable and better inter-
pretable results.

16.5 Smoothed Principal Components Analysis

As we see in the Figure 16.5, the resulting eigenfunctions are often very
rough. Smoothing them could result in morex stable and better interpretable
results. Here we apply a popular approach known as the roughness penalty.
The downside of this technique is that we loose orthogonality in the L2 sense.

Assume that the underlying eigenfunctions have a continuous and square-
integrable second derivative. Recall that Dγ = γ′(t) is the differential opera-
tor and define the roughness penalty by Ψ(γ) = ||D2γ||2. Moreover, suppose
that γm has square-integrable derivatives up to degree four and that the
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second and the third derivative satisfy one of the following conditions:

1. D2γ, D3γ are zero at the ends of the interval J

2. the periodicity boundary conditions of γ,Dγ, D2γ and D3γ on J .

Then we can rewrite the roughness penalty in the following way:

||D2γ||2 =
∫

D2γ(s)D2γ(s)ds

= Dγ(u)D2γ(u) −

− Dγ(d)D2γ(d) −
∫

Dγ(s)D3γ(s)ds (16.17)

= γ(u)D3γ(u) − γ(d)D3γ(d) −
∫

γ(s)D4γ(s)ds (16.18)

= 〈γ,D4γ〉, (16.19)

where d and u are the boundaries of the interval J and the first two elements
in (16.17) and (16.18) are both zero under both conditions mentioned above.

Given a principal component function γ, with norm ||γ||2 = 1, we can
penalize the sample variance of the principal component by dividing it by
1 + α〈γ,D4γ〉:

PCAPV =
∫ ∫

γ(s)Ĉov(s, t)γ(t)dsdt∫
γ(t)(I + αD4)γ(t)dt

, (16.20)

where I denotes the identity operator. The maximum of the penalized sample
variance of the principal component (PCAPV) is an eigenfunction γ corre-
sponding to the largest eigenvalue of the generalized eigenequation:∫

Ĉov(s, t)γ(t)dt = λ(I + αD4)γ(s). (16.21)

As already mentioned above, the resulting weight functions are no longer
orthonormal in the L2 sense. Since the weight functions are used as smoothed
estimators of principal components functions, we need to rescale them to
satisfy ||γl||2 = 1. The weight functions γl can be interpreted as orthogonal
in modified scalar product of the Sobolev type

(f, g) def= 〈f, g〉 + α〈D2f,D2g〉.

A more extended theoretical discussion can be found in Silverman (1991).
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16.5.1 Implementation Using Basis Expansion

Define K to be a matrix whose elements are 〈D2θj , D
2θk〉. Then the gener-

alized eigenequation (16.21) can be transformed to:

WCov(C)Wu = λ(W + αK)u. (16.22)

Finding matrix L for that holds: LL� = W + αK and defining S = L−1 we
can rewrite (16.22) into:

{SWCov(C)WS�}(L�u) = λL�u.

Algorithm

1. calculate C and W

2. using Cholesky decomposition calculate L and their inverse L−1

3. use symmetrical matrix eigenvalue-eigenvector routine and obtain eigen-
values and eigenvectors (u) of SWCov(C)WS�

4. calculate b = L−1u

5. renormalize b with respect to matrix W, so that b�Wb = 1

If we are looking at the first K eigenfunctions as the best empirical basis for
the functional observations Xf , we may also re-orthonormalize coefficients bj

with respect to matrix W, using Gramm-Schmidt procedure.

In this section we have presented the case with roughness penalty ‖ D2γ ‖
similarly we could consider a more general case with rougness penalty ‖ Lγ ‖.

16.5.2 Temperature Example

Performing the idea of Smoothed Functional PCA (SPCA) on the tempera-
ture data set, we obtained with the same setup as in previous sections (31
Fourier functions and α = 10−6) the weight functions plotted in Figure 16.6.
We can observe that the high frequency variance is smoothed out and the
interpretation of the eigenfunctions is more obvious.

The first eigenfunction (black curve) can be explained as a weighted level of
the temperature over the year with a high weighting of the winter tempera-
tures, this eigenfunction explains 89% of variation. The second eigenfunction
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PC weight functions alpha=1e-6
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Figure 16.6: Weight functions for temperature data set, using α = 10−6 and
L=31

XCSfdaTempSPCA.xpl

Table 16.3: Eigenvalues of penalized functional PCA

variance cum. variance
proportions proportions

0.88986 0.88986
0.08461 0.97447

0.018512 0.992982
0.0048335 0.9978155

(blue curve) has different signs for winter and summer and explains 8% of
variation. The third eigenfunction (green curve) changes the sign in a simi-
lar way for autumn and spring and explains 2% of variation and the fourth
function (cyan curve) could be explained as changes of seasons and explains
0.5% of variation.

Another possibility of interpreting the result is the plot of the estimated
principal scores, sample analogue of βm:
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β̂im
def= 〈γ̂m, xi − x̄〉 = b�

mW(ci − c̄)

The estimated principal scores are plotted in the Figure 16.7, the abbre-
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Figure 16.7: Principal scores for temperature data set
XCSfdaTempPCAsc.xpl

viations of the names, listed in Table 16.5.2 have been used (compare with
Table 16.3.2).

Table 16.4: Abbreviations of the names of the Canadian weather stations

arv bag cal cha chu daw
edm fre hal inu iqa kam
lon mon ott pri prig pru
que reg res sch she stj
syd the thu tor ura van
vict whit win yar yel

A simple observation is that res is a kind of outlier, with high loading of
second component. The res stands for Resolute, using similar arguments as
in Ramsay and Silverman (1997). Resolute is known for having a very cold
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winter relative (PC1) to the other weather stations but only a small difference
between summer and winter temperatures (PC 2). This corresponds to our
interpretation of the first two eigenfunctions.

Conclusions

To summarize, the functional data analysis technique described in this chap-
ter takes the functional nature of the observed variable in to account. This
approach becomes frequently used especially in biostatistics, chemometrics,
enables to use the smoothness of the underlying objects (functions) and ”over-
comes” the problem of dimensions, in functional sense one observation is just
one-dimensional object. The main motivation of this chapter is not to give
a extensive overview of theoretical results, rather to give a practical guide
to basic descriptive methods in FDA we focus on basic statistics and func-
tional principal components analysis. We mainly discuss the implementation
of these techniques functional basis approach. The macros (quantlets) are de-
signed for the statistical computing environment XploRe. A typical example
from the biostatistic is used to illustrate the FDA technique.
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17 Analysis of Failure Time with
Microearthquakes Applications

Graciela Estévez-Pérez and Alejandro Quintela del Rio

17.1 Introduction

The problem of searching for stochastic models to describe the sequence of
occurrence times of earthquakes from some geographic region is of great in-
terest in sysmology sciences. In effect, a detailed analysis of such process
might reveal new aspects of the pattern of occurrence of earthquakes, and
suggest important ideas about the mechanism of earthquakes.

The development of detailed stochastic models to describe the list of origin
times or equivalently that of time intervals between consecutive earthquakes
is quite recent. Vere-Jones (1970) surveys some of the stochastic models
(clustering models and stochastic models for aftershock sequences) proposed
in the literature and describes their behavior in several data sets. Other
more recent models include the Trigger models (Lomnitz and Nava, 1983),
the Epidemic-Type Aftershock Sequence (ETAS) model (Ogata, 1988), or re-
finements of Hawkes (1971) self-exciting point process model, which describes
spatial-temporal patterns in a catalog.

However, standard models applied to seismic data do not always fit the data
well. In part, this is because parametric models are usually only well suited
for a sequence of seismic events that have similar causes. Moreover, para-
metric models can be insensitive to poorly-fitting events, which often are at
least as interesting as well-fitting ones, (Ogata, 1989).

In this work we use nonparametric methods for analyzing seismic data. They
involve several different approaches to nonparametric estimation of the haz-
ard and intensity functions of point processes that evolve with time. This
enables us to split up and analyze the occurrence of temporal processes of
earthquakes within a region without constraining them to having predeter-
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mined properties. We argue that nonparametric methods for the analysis of
earthquake data are valuable supplements to more conventional parametric
approaches, especially as tools for exploratory data analysis.

The objective of our analysis is to show two statistical tools (hazard and
intensity functions) which could help to describe the whole cycle of seismic
activity in a region without imposing predetermined conditions on this ac-
tivity. That is, our analysis is based on the information provided by the
data and on the universally accepted assumption of temporal grouping of
earthquakes. The hazard function is used to confirm this grouping and char-
acterizes the occurrence process of main shocks. On the other hand, the
aftershock sequences (clusters) have been studied by means of the intensity
function.

Obviously, in this chapter we only deal in detail with one of the several
applications of the hazard function on the study of failure times, that is, the
seismology. However, the methodology presented below is available in many
others biological problems that emerge in reliability studies, survival analysis,
ambient studies, etc.

The work is organized as follows: In Section 17.2 we introduce the nonpara-
metric estimator of hazard function. Section 17.3 describes the occurrence
process of earthquakes in terms of its evolution in time, and contains the
analysis of seismic activity of the Galician region (Spain) - during a specially
active time period - using the nonparametric methods mentioned before. Sec-
tion 17.4 concludes the chapter.

This research has been supported by the PGIDT01PXI10504PR (Xunta de
Galicia) and BFM2002-00265 (Ministerio de Ciencia y Teconologia) grants.

17.2 Kernel Estimation of Hazard Function

Let X be a nonnegative real random variable with absolutely continuous
distribution function F (·), and probability density function f (·). The hazard
function is defined by

r(x) =
f(x)

1 − F (x)
=

f(x)
F̄ (x)

,

when F̄ (x) > 0, that is, r (·) is defined in the set {x ∈ R/F̄ (x) > 0}. Non-
parametric estimation of hazard function started with Watson and Leadbet-
ter (1964a) and Watson and Leadbetter (1964b) who introduced the kernel
estimator, and from that time on, a lot of papers on this topic have come
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out in the nonparametric literature. Most of the previous literature on non-
parametric smoothing of hazard function was based on the assumption of
independence on the sample variables. However, in several fields of appli-
cations the independence assumption is far from being realistic. This is for
instance the case of microearthquake studies, see for details Rice and Rosen-
blatt (1976) and Estévez, Lorenzo and Quintela (2002). Previous papers on
dependent hazard estimation involve Sarda and Vieu (1989), Vieu (1991) or
Estévez and Quintela (1999) in which several asymptotic properties for kernel
hazard estimation are proved.

Here we consider a random sample X1, ..., Xn, each Xi having the same dis-
tribution as X, which proceeding from a strictly stationary sequence of strong
mixing variables (Rosenblatt, 1956). This dependence structure, which is
satisfied by a large class of time series (autoregressive processes and autore-
gressive moving average time series models), is one of the least restrictive
among the numerous asymptotic independence conditions usually considered.
One among the conventional nonparametric estimators of r (·) is the kernel
estimator defined by

rh (x) =
fh (x)

1 − Fh (x)
(17.1)

A similar estimator uses the empirical distribution function in the denomi-
nator,

rn (x) =
fh (x)

1 − Fn (x)
(17.2)

In this expression fh(x) =
1

nh

∑n
i=1 K

(
x − Xi

h

)
is the known Parzen-

Rosenblatt estimator of f (·) and Fh (·) is the kernel estimator of F (·) , defined
by

Fh(x) =
1
n

n∑
i=1

H

(
x − Xi

h

)
=
∫ x

−∞
fh(t)dt,

with K (·) a kernel function, H(x) =
∫ x

−∞ K(u)du, and h = h(n) ∈ R+ is the
smoothing parameter, or bandwidth.

In Xplore, we use the following quantlets (hazard library):

rh = XCSkernelhazard(x,h,v)

estimates a hazard function using the ratio of the nonparametric density
estimation and 1 minus the nonparametric kernel distribution estimation;
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rn = XCSkernelempirichazard(x,h,v)

estimates a hazard function using the ratio of the nonparametric density
estimation and 1 minus the empirical distribution estimation;

Fh = XCSkerneldistribution(x,h,v)

nonparametric kernel distribution estimator;

Fn = XCSempiricaldistribution(x,v)

empirical distribution function estimator;

H = XCSepadistribution(x)

integral of the Epanechnikov kernel applied to the estimation points in dis-
tribution function estimation.

XCSkernelhazard.xpl

XCSkernelempirichazard.xpl
XCSkerneldistribution.xpl

XCSempiricaldistribution.xpl
XCSepadistribution.xpl

In a L2 framework, to assess the global performance of rh (·) as estimator of
r (·), we will consider the following quadratic measures of accuracy:

Integrated Squared Error (ISE)

ISE (h) =
∫

(rh (x) − r (x))2 w (x) f (x) dx,

and the Mean Integrated Squared Error (MISE∗)

MISE∗ (h) = E

∫ [
(rh (x) − r (x))

1 − Fh (x)
1 − F (x)

]2
w (x) f (x) dx,

where w (·) is a nonnegative weight function introduced to allow reduction
of boundary effects. It is well-known that such measures are asymptotically
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equivalent (Vieu, 1991) and that their convergence rates are the same as in
density estimation (Estévez, 2002).

The main practical problem associated with applying the estimator rh (·) is
the choice of h. A first method that we can consider, having into account that
we are working in a dependent data framework, is the ”leave-(2ln + 1)-out”
version of the cross-validation procedure. That is, we select the bandwidth
hcv that minimizes

CVln (h) =
∫

r2
h (x) w (x) dx − 2

n

n∑
i=1

f−i
h (Xi)(

1 − F−i
h (Xi)

)
(1 − Fn (Xi))

w (Xi) ,

where

f−i
h (x) = (hnln)−1

∑
|j−i|>ln

K

(
x − Xj

h

)
and

F−i
h (x) = n−1

ln

∑
|j−i|>ln

H

(
x − Xj

h

)
are the kernel estimators of the density and distribution function, respec-
tively, when we use in the estimation all the data except the closest points (in
time) from Xi. Here Fn (x) is the classical empirical distribution function and
ln is a positive integer such that nln satisfies nnln = # {(i, j) / |i − j| > ln}.
With this definition, an attempt is made to classify the data as a function of
their temporal proximity, and ln indicates when two data can be handle as if
they were independent. For ln = 0, we have the classical cross-validation rule
when independence is assumed, which is asymptotically optimal (Youndjé,
Sarda and Vieu, 1996).

Similar criteria, based on cross-validation techniques, have already been dis-
cussed in other settings related with hazard estimation, see e.g. Sarda and
Vieu (1989), Sarda and Vieu (1991) or Patil (1993a), Patil (1993b). In the pa-
per of Estévez and Quintela (1999) it is shown that the ”leave-(2ln + 1)-out”
version of cross-validation bandwidth is asymptotically optimal for strong-
mixing or α-mixing data (Rosenblatt, 1956), in the sense that

MISE∗(hcv)
MISE∗(h0)

→ 1 a.s., (17.3)

or
hcv

h0
→ 1 a.s., (17.4)
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where h0 is the minimizer of MISE∗(h). Note that by the Theorem 4.1
of Vieu (1991), the previous expressions also remain valid when changing
MISE∗ in ISE, that is, if ĥ0 is the minimizer of ISE(h) then

ISE(hcv)

ISE(ĥ0)
→ 1 a.s., (17.5)

and
hcv

ĥ0

→ 1 a.s.. (17.6)

While asymptotic optimality is very encouraging, an important question is
to know the convergence rates in (17.3) and (17.4) ((17.5) and (17.6), re-
spectively). Hence, Estévez, Quintela and Vieu (2002) present the following
results, which describe the relative amount by which hcv fails to minimize
the MISE∗ and ISE, respectively:

∣∣∣∣MISE∗ (hcv) − MISE∗ (h0)
MISE∗ (h0)

∣∣∣∣ = Op

(
n−(1/2−r/p)/(2k+1)

)
, (17.7)

and ∣∣∣∣∣∣
ISE (hcv) − ISE

(
ĥ0

)
ISE

(
ĥ0

)
∣∣∣∣∣∣ = Op

(
n−(1/2−r/p)/(2k+1)

)
,

provided r is a positive integer (r < p/2), p is some integer p > 3 controlling
the dependence amount, and k is the order of kernel function.

As a result of (17.7) it is easy to establish the following rates, which quantifies
the relative distance between hcv or ĥ0 towards the optimal bandwidth, h0:∣∣∣∣hcv − h0

h0

∣∣∣∣ = Op

(
n−(1/2−r/p)/(2k+1)

)
(17.8)

and ∣∣∣∣∣ ĥ0 − h0

h0

∣∣∣∣∣ = Op

(
n−(1/2−r/p)/(2k+1)

)
. (17.9)

Note that the relative difference between hcv and h0 seems, at first glance, to
be fairly slow (17.8). However, we should not be too worried because it is of
the same order as the difference between ĥ0 and h0 (17.9). This means that
the automatically selected bandwidth hcv is as close (at least asymptotically)
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to the referential bandwidth h0 as ĥ0 (which is another reasonable candidate
to be a referential bandwidth) does.

On the other hand, if we observe with care the proof of these theorems,
we conclude that these rates are basically determined by the rates estimating
f (·). Hence, the rates of convergence under independence conditions (p = ∞)
are the same as in density estimation, that is, Op

(
n−1/2(2k+1)

)
(Hall and

Marron, 1987).

In spite of the above quality properties, it’s well known that if the obser-
vations are dependent, cross-validation procedure will produce an under-
smoothed bandwidth. This has been observed in several functional estima-
tion contexts, and also confirmed in hazard estimation by the computational
studies of Estévez and Quintela (1999).

The observation of the rates of convergence given previously suggests us to
introduce the following version of cross-validation: we propose to penalize
the cross-validation bandwidth hcv in such a way that the new bandwidth
hp

cv still has the same convergence rate as hcv. So, we take

hp
cv = hcv + λn, (17.10)

with
λn = O

(
n−(3/2−r/p)/(2k+1)

)
, (17.11)

and it is possible to establish the following results, which are obvious corol-
laries of (17.7) and (17.8):

With the conditions and notations of (17.7), and if, in addition, (17.11) is
satisfied,∣∣∣∣MISE∗ (hp

cv) − MISE∗ (h0)
MISE∗ (h0)

∣∣∣∣ = Op

(
n−(1/2−r/p)/(2k+1)

)
. (17.12)

In addition, under the conditions of (17.8),∣∣∣∣hp
cv − h0

h0

∣∣∣∣ = Op

(
n−(1/2−r/p)/(2k+1)

)
. (17.13)

Hence, these results guarantee us that the penalized cross-validated band-
width is still asymptotically optimal.

A complete simulation study has allowed to derive an empirical formula for
the penalized cross-validated bandwidth and proves that such bandwidth
works better than ordinary cross-validation (Estévez, Quintela and Vieu,
2002).
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17.3 An Application to Real Data

17.3.1 The Occurrence Process of Earthquakes

Earthquakes can be represented by point events in a five-dimensional
(Ψi, λi, di, ti,Mi) space-time-energy continuum, where Ψi and λi are the
latitude and longitude of the epicenter, di the depth of the focus, ti the ori-
gin time and Mi the magnitude. The starting point of consideration is the
one-dimensional series of occurrence times {ti}. To give a precise meaning
to this time series, its space, time and magnitude boundaries must be speci-
fied. Obviously, these boundaries will be chosen according to the objectives
of the study: to characterize different seismic areas in the same time period,
to analyze several seismic series in a particular region, etc.

Space specifications define the volume from which the population of earth-
quakes, represented by the time series {ti}, is taken. This may be done in
practice by specifying an area A and a lower limit in depth H. Since de-
tectability is limited, a lower limit of magnitude M0 must also be specified.
This limit is a function of the station distribution and sensitivity, and defines
the lowest magnitude for which all events from anywhere in the bounded
region can be detected.

Once a bounded set of time occurrence is established, a series can be con-
structed with the time intervals between consecutive earthquakes {∆ti}, such
that for ∆ti = ti − ti−1. The distribution of the values of these intervals is
of great interest to specify the time structure of the seismicity of a region.

The simplest statistical model to fit a series of occurrence times of earth-
quakes is the Poisson process, under which the time intervals between con-
secutive events are exponentially distributed. This model presupposes in-
dependence of the events, so that the occurrence of one earthquake is not
influenced by that of previous ones, which is very far away from reality. In
effect, several authors, Vere-Jones (1970), Udias and Rice (1975), have found,
for different populations of earthquakes, that the Poisson fit to the time series
of microearthquakes is very poor, especially for active periods. The deviation
from the model is principally due to the existence of a much larger number
of small intervals than expected. The reason for such a large number of
small intervals is that the earthquakes happen forming clusters, that is, one
main shock is followed and/or preceded by a stream of smaller shocks, called
aftershocks and/or precursors, see for details Lomnitz and Hax (1967) and
Vere-Jones and Davies (1966), produced in the same general focal region.

Therefore, some authors (Vere-Jones, 1970) have defined the occurrence



17.3 An Application to Real Data 337

process of earthquakes in terms of two components: (i) a process of cluster
centers; and (ii) a subsidiary process defining the configuration of the mem-
bers within a cluster. The final process is taken as the superposition of all
the clusters. Several possible models for these processes can be found in the
literature, for example the Compound Poisson Processes (Vere-Jones and
Davies, 1966), Trigger Models (Lomnitz and Nava, 1983) or Epidemic-type
Models (Ogata, 1988 and references therein). All these models assume struc-
tural conditions on the occurrence of earthquakes, as for example, that the
process of cluster centers is stationary and follows a Poisson distribution.
This hypothesis is not very likely either for particular cases. A drawback of
these approaches is that they depend very much on the models, and so are
subject to the instability and goodness of fit problems noted in Section 17.1.

As we mentioned in Section 17.1, nonparametric methods for analyzing the
distribution of time intervals between consecutive earthquakes - occurred in
Galicia- will be considered, obtaining another attempt to describe temporal
behavior of an earthquake series in a geographic region.

17.3.2 Galicia Earthquakes Data

Seismic activity increased substantially in Galicia (Spanish region) during
the 1990’s, creating some times a significantly social alarm. The data ana-
lyzed correspond to the 978 earthquakes occurring from January 15, 1987 to
May 3, 2000. Their epicenters, scattered throughout Galicia, show small
spatial groupings at high risk areas named Sarria, Monforte and Celanova.

For this region Figures 17.1 and 17.2 show the sequence of time intervals
between consecutive shocks {∆ti}978

i=1 and their magnitudes. These graphs
indicate a quiet period until September 1995 and three temporal groupings
in December 1995, May 1997 and May-June 1998, which are related with the
strongest earthquakes.

The hazard function estimation (Figure 17.3), which has been built using the
Epanechnikov kernel in rh (17.1), presents a common shape in a seismology
framework: it decreases suddenly in the first hours and then it fluctuates
around a small risk. This shape confirms the well known fact that earthquakes
form clusters. We use the example program XCSkernelhazard to make this
figure (the bandwidth calculated by cross-validation with an Epanechnikov
kernel in the quantlet denbwsel). XCSkernelhazard is the example that
allows us to estimate the hazard function to our data.

Observation: In this work, we also have programmed three quantlets more,
named XCSempiricalfunction, XCSkerneldistribfunction and
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Figure 17.1: Secuence graph of time intervals between consecutive earth-
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Figure 17.2: Sequence graph of magnitudes.

XCSkernelhazard2. The two first are examples of empirical and kernel dis-
tribution function of a normal random sample, respectively, and the third
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Figure 17.3: Hazard estimation of time intervals between consecutive shocks.
XCSkernelhazard.xpl

quantlet shows the kernel hazard estimations using 17.1 and 17.2.

XCSempiricalfunction.xpl

XCSkerneldistribfunction.xpl
XCSkernelhazard2.xpl

Therefore, 206 clusters with ”cluster length” less than 144 hours have been
formed (a cluster is defined as a set of earthquakes originating from a rela-
tively small volume, and separated in time by intervals smaller than a fixed
duration -”cluster length”-. The cluster center is a shock representative of
the cluster -the first shock, for instance-. Then, the occurrence process of
earthquakes is taken as the superposition of all the clusters.). The sequence
of sizes and magnitudes of cluster centers (Figures 17.4 and 17.5) show three
important clusters, the first one beginning with a big shock (4.7 on the Richter
scale). Figures 17.4, 17.5 and 17.2 also suggest that the strongest earthquakes
are related to small clusters, that is, such events are not followed or preceded
by many earthquakes.

The behavior of the clusters will be studied using the process of origin times
{ti} and its intensity function. This function gives, for each time t, λ (t)
the average number of earthquakes per unit of time, t hours after the main
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Figure 17.4: Sequence graph of cluster sizes (a total of 206).
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Figure 17.5: Sequence graph of magnitudes of cluster centers.

shock (cluster center). This function clearly shows the evolution of the cluster
with time, and therefore, it is suitable for comparing the seismic activity of
several geographic regions. In this work, we propose to estimate the intensity
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function by means of a kernel estimator, which is defined as:

λ̂ (t) =
1
h

n∑
i=1

K

(
t − ti

h

)
, ∀t ∈ R+

(Wand and Jones (1995), Choi and Hall (1999) and their references), where
K (·) is the kernel function and h the bandwidth.

This function is easy to use in XploRe, only seeing that this is the density
estimate multiplied by n.

The first cluster is composed of 147 shocks, whose epicenters are contained
in a small area close to Sarria (Lugo). The intensity estimation (Figure 17.6)
indicates that: (i) the cluster begins with a high number of shocks (the first
of magnitude 4.6), (ii) there is another grouping of events coinciding with
another earthquake of magnitude 4.6, and (iii) the intensity function is low
in the remainder of the range. XCSintensityfunction allows us to calculate
the intensity function with bandwidth h (you can select it as in the hazard
case).
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Figure 17.6: Intensity estimation for first cluster (December 1995).
XCSintensityfunction.xpl

The second cluster consists of 190 earthquakes, whose epicenters are also
near Sarria (Lugo). The shape of the intensity function (Figure 17.7) reflects
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the behavior of the cluster members: a small group of precursors warns that
important shocks are to arrive (one of magnitude 5.1 and another of 4.9) and
then there is a sequence of aftershocks.
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Figure 17.7: Intensity estimation for second cluster (May 1997).

Finally, the third cluster involves 79 events, with epicenters in Celanova
(Orense). This is the weakest cluster (few shocks of low magnitude). Its
estimated intensity function (Figure 17.8) shows fluctuations around quite
small values the whole time.

A more detail study of the seismic activity of Galicia together with an similar
analysis of another Spanish region – Granada, traditionally area of great
seismic activity – can be seen in Estévez, Lorenzo and Quintela (2002).

17.4 Conclusions

In this work we show how the hazard and intensity functions represent an-
other way of describing the temporal structure of seismic activity in a ge-
ographic region. Kernel estimation of hazard function has confirmed what
Vere-Jones (1970), Udias and Rice (1975) and many others have noted: earth-
quakes have the tendency to group. The occurrence process of these groups
has also been studied by means of the hazard function and each important
cluster has been described using the intensity function.
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Figure 17.8: Intensity estimation for third cluster (June 1998).

As we argued, a major advantage of nonparametric methods is that they
do not require formulation of structural models, which are often well suited
only for data that have closely related seismic causes. Another novelty is
that we take into account the possible dependence of the data to estimate
the distribution of time intervals between earthquakes, which has not been
considered in most statistics studies on seismicity.
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18 Polychotomous Regression:
Application to Landcover
Prediction

Frédéric Ferraty, Martin Paegelow and Pascal Sarda

18.1 Introduction

An important field of investigation in Geography is the modelization of the
evolution of land cover in view of analyzing the dynamics of this evolution
and then to build predictive maps. This analysis is now possible with the
increasing performance of the apparatus of measure: sattelite image, aerial
photographs, ... Whereas lot of statistical methods are now available for
geographical spatial data and implemented in numerous softwares, very few
methods have been improved in the context of spatio-temporal data. However
there is a need to develop tools for helping environmental management (for
instance in view of preventing risks) and national and regional development.

In this paper, we propose to use a polychotomous regression model to mod-
elize and to predict land cover of a given area: we show how to adapt this
model in order to take into account the spatial correlation and the temporal
evolution of the vegetation indexes. The land cover (map) is presented in
the form of pixels, and for each pixel a value (a color) representing a kind of
vegetation (from a given nomenclatura): we have several maps for different
dates in the past. As a matter of fact the model allows us to predict the value
of vegetation for a pixel knowing the values of this pixel and of the pixels in
its neigbourhood in the past.

We study data from an area in the Pyrénées mountains (south of France).
These data are quite interesting for our purpose since the mediterranean
mountains knows from the end of the first half of the 19th century spectacular
changes in the land covers. These changes come from the decline of the old
agricultural system and the drift from the land.
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The paper is organized as follows. In Section 18.2, we describe more precisely
the data. The polychotomous regression model for land cover prediction is
presented in Section 18.3. We show how to use this model for our problem
and define the estimator in 18.4. Application of this model to the data is
given in sections 18.5 and 18.6. Among others, we discuss how to choose the
different parameters of the model (shape of the neighbourhood of a pixel,
value for the smoothing parameter of the model).

18.2 Presentation of the Data

18.2.1 The Area: the Garrotxes

The “Garrotxes” is an area in the south of France (Pyrénées mountains).
More exactly, it is localized in the department (administrative area) of
Pyrénées Orientales: see Figure 18.1 below. The type of agriculture was es-
sentially agropastoral traditional. Then, this area has known lot of changes
in the landcover from the 19th century. Whereas agriculture has almost dis-
apeared due to the city migration, the pastoral activity knows an increasing
from the eighties. It is important for the near future to manage this pas-
toral activity by means of different actions on the landcover. For this, the
knowledge of the evolution of the landcover is essential.

18.2.2 The Data Set

The data set consists in a sequence of maps of landcover for the years 1980,
1990 and 2000. The area we have studied is divided into 40401 pixels
(201×201) which is a part of the Garrotxes: each pixel is a square with
side of about 18 meters. For each pixel we have

• the type of vegetation with 8 types coded from 1 to 8:

1 : “Coniferous forests”,

2 : “Deciduous forests”,

3 : “Scrubs”,

4 : “Broom lands”,

5 : “Grass pastures”,

6 : “Grasslands”,

7 : “Agriculture”,
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Figure 18.1: Localization of the Garrotxes in the department of Pyrénées
Orientales.

8 : “Urban”

• several environmental variables:

– elevation,

– slope,

– aspect,

– distance of roads and villages,

– type of forest management (administrative or not),

– type of area (pastoral or not).

For each pixel, the environmental variables remain unchanged during the
period of observation. Figure 18.2 below shows the land cover of the aera for
the year 1980.

18.3 The Multilogit Regression Model

It is quite usual to modelize a regression problem where the response is cat-
egorical by a multiple logistic regression model also known as polychotomous
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Figure 18.2: Land cover for the part of Garrotxes area in 1980.

regression model. We refer to Hosmer, Lemeshow (1989) for a description of
this model and to Kooperberg, Bose, Stone (1987) for a smooth version of
this model. In our context we aim at predicting the type of vegetation for a
pixel at date t by the types of vegetation of this pixel and of neighbouring
pixels at date t− 1: thus the model takes into account both spatial and tem-
poral aspects. Moreover we will include in the set of explanatory variables
environmental variables which does not depend on time. Let us note that
we have chosen a time dependence of order 1 since it allows to produce a
model not too complex with a reasonable number of parameters to estimate
(with respect to the number of observations). Note also that the size and
the shape of the neighborhood will be essential (see below for a discussion on
this topic).

We give now a more formal description of the polychotomous regression model
for our problem. For each pixel i, i = 1, . . . , N , let us note by Xi(t) the
type of vegetation at time t. We then define for pixel i a neighborhood,
that is a set of pixels Ji. Our aim is to predict the value Xi(t) knowing
the value of Xj(t − 1), j ∈ Ji, and the value of environmental variables
for pixel i denoted by Yi = (Y 1

i , . . . , Y K
i ) (independent of t). Denoting by

Di(t − 1) = {Xj(t − 1), j ∈ Ji} and by V the number of different vegetation
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types (8 in our case), we will predict Xi(t) by an estimation of the quantity

arg max
v=1,...,V

P (Xi(t) = v|Di(t − 1), Yi) .

At first let us write

P (Xi(t) = v|Di(t − 1), Yi) =
exp θ (v|Di(t − 1), Yi)∑V

v=1 exp θ (v′|Di(t − 1), Yi)
,

where

θ (v|Di(t − 1), Yi) = log
P (Xi(t) = v|Di(t − 1), Yi)
P (Xi(t) = V |Di(t − 1), Yi)

.

Now, the polychotomous regression model consists in writting θ(v|Di(t −
1), Yi) as

θ(v|Di(t − 1), Yi) = αv +
∑

x∈Di(t−1)

V∑
l=1

βvlI(x = l) +
K∑

k=1

γvjY
k
i ,

where δ = (α1, . . . , αV −1, β1,1, . . . , β1,V β2,1, . . . , β2,V , . . . , βV −1,1, . . . , βV −1,V ,
γ1,1, . . . , γ1,K , . . . , γV −1,1, . . . , γV −1,K) is the vector of parameters of the model.
Note that since θ(V |Di(t − 1), Yi) = 0, we have αV = 0, βV,l = 0 for all
l = 1, . . . , V and γV,k = 0 for all k = 1, . . . ,K.

18.4 Penalized Log-likelihood Estimation

We estimate the vectors of parameters by means of a penalized log-likelihood
maximization. The log-likelihood function is given by

l(δ) = log

(
N∏

i=1

P (Zi(t)|Di(t − 1), Yi, δ)

)
.

Kooperberg, Bose, Stone (1987) have shown that introducing a penalization
term in the log-likelihhod function may have some computational benefits: it
allows numerical stability and guarantees the existence of a finite maximum.
Following their idea, we then define the penalized log-likelihood function as

lε(δ) = l(δ) − ε

N∑
i=1

V∑
v=1

u2
iv,
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where for v = 1, . . . , V

uiv = θ(v|Di(t − 1), Yi, δ) −
1
V

V∑
v′=1

θ(v′|Di(t − 1), Yi, δ),

and ε is the penalization parameter. For reasonable small values of ε, the
penalty term would not affect the value of the estimators.

For numerical maximization of the penalized log-likelihood function we use
a Newton-Raphson algorithm.

18.5 Polychotomous Regression in Action

As pointed out above the estimators of the parameters of the model will
depend on the size and on the shape of the neighborhood for pixels and on
the value of the penalization parameter ε. For the shape of the neighborhood
we choose to keep it as a square centered on the pixel. We have then to
choose the (odd) number of pixels for the side of the square and the value
of ε. The choice has been achieved through two steps namely an estimation
step and a validation step described below.

• The estimation step is based on the maps from the years 1980 and
1990: it consists in calculating the estimator δ̂ of δ for several values
of the size of the neighborhood and of the penalization parameter ε.
The computation of δ is achieved by the maximization of the penalized
log-likelihood function defined at the previous Section.

• For the validation step, we use the map for the year 2000 and compare it
with the predicted map for this year using the estimator computed pre-
viously in the following way. Once the estimator δ̂ has been computed,
we estimate the probability of transition replacing the parameter by its
estimator. We then obtain the quantities

P̂ (Xi(t + 1) = v|Di(t), Yi), v = 1, . . . , V.

At time t + 1 (in this case t + 1 = 2000), we affect the most probable
type of vegetation at pixel i, that is the value v which maximizes{

P̂ (Xi(t + 1) = v|Di(t), Yi)
}

v=1,...,V
.

We then keep the values of the size of the neighborhood and of ε which
produces a map with the best percentage of well-predicted pixels (for
the year 2000).
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Finally we use the values selected in the last step above to produce a map
for the year 2010. Concerning the implementation of such a method, all
programs are written with the R language (R, 2004); maps and R sources
are available on request.

18.6 Results and Interpretation

To see the accuracy of our porcedure we compare the (real) map for the year
2000 with the predicted map for this year. Figure 18.3 shows this true map
of land cover.
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Figure 18.3: Land cover for the part of Garrotxes area in 2000

After having used the procedure as described in the previous Section, we have
selected a squared neighborhood of size 3 pixels and a parameter ε equal to
0.1. With these values we produced an estimated map (for the year 2000)
shown in Figure 18.4.

Table 18.1 below shows the percentage of different types of vegetation in
the map of the year 2000 compared with the estimated perecentage. Table
18.1 shows that globally the predicted percentage are quite near of the real
percentages.



354 18 Landcover Prediction

Coniferous forests
Deciduous forests
Scrubs
Broom lands
Grass lands

Urban

Figure 18.4: Estimated land cover for the part of Garrotxes area in 2000

Table 18.1: Percentage of different vegetation types in 2000

Land cover types True percentage Estimated percentage
Coniferous forests 44.5 49.6
Deciduous forests 17.4 10.1

Scrubs 19.1 11
Broom lands 4.7 12.3

Grass pastures 12.3 16
Grasslands 0.0001 0

However, we have to compare the position of the vegetation types to look
at the accuracy of the procedure. We consider now the percentage of miss-
classified pixels. The global percentage of missclassified pixels was 27.9%.
This can be seen as a quite good percentage since only 3 dates are available.
Also, the performance of such a procedure can be seen by comparing figures
18.3 and 18.4 which show similar global structures. However if we look at
the details of missclassified pixels with respect to each type of vegetation we
obtain the following Table 18.2 (we retain only the types of vegetation which
cover at least 1 percent of the area).
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Table 18.2: Percentage of missclassified pixels in 2000

Land cover types True percentage Percentage of missclassified pixels
Coniferous forests 44.5 7.1
Deciduous forests 17.4 44.8

Scrubs 19.1 65.5
Broom lands 4.7 28.1
Grasslands 12.3 18.5

Table 18.2 shows that the results are quite different for different types of veg-
etation: Coniferous forests, Broom lands and Grasslands are well predicted
for the two firsts and quite well for the third. At the opposite, Deciduous
forests and Scrubs are badly predicted (more than half of the pixels are not
well predicted). This fact can be explain in two ways. At first, Deciduous
forests and Scrubs are unstable in the sense that they are submitted to ran-
dom effects that our model does not take into account. For instance, into
the period of ten years separating two maps a fire can transform deciduous
forest into scrubs. This can explain that scrubs is the more dynamic type
of vegetation. Moreover, the classification of several types of vegetation is
subject to some measure of error: as a matter of fact the frontier between
deciduous forests and scrubs is not so easy to determine.

As a conclusion to our study, we have seen that the polychotomous procedure
introduced to predict land cover maps has given in a certain sense some quite
good results and also has shown some limitations. Stable and frequent vege-
tation types have been well predicted. In the opposite, results for vegetation
types submitted to random changes are not so good. We see several ways
to improve further studies for land cover prediction. On the geographical
ground, it is important to have closer dates of measures which will lead to
have a more precise idea of the dynamics. It is also important to think of
defining a precise nomenclatura of vegetations. For the modelization aspects,
the polychotomous regression could also be improved for instance by taking
different shapes of neighborhood (rectangular, not centered in the pixel that
we want to predict or with a size depending of this pixel). We can also think
to integrate additional variables in order to modelize effects such as forest
fires. Finally we can compare this procedure with other modelizations: this
has been done in Paegelow, Villa, Cornez, Ferraty, Ferré, Sarda (2004) and
in Villa, Paegelow, Cornez, Ferraty, Ferré, Sarda (2004) where a Geographic
Information System and a neural netwok procedure have been investigated
on the same data sets. The third approaches lead to quite similar reults (and



356 Bibliography

similar rates of missclassified pixels). Also the same limitations have been
highlighted.
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19 The Application of Fuzzy
Clustering to Satellite Images
Data

Hizir Sofyan, Muzailin Affan and Khaled Bawahidi

19.1 Introduction

Recent advances in the field of aerospace technology have led to the collection
of huge amounts of satellite image data. Since the availability of data is
abundant, it will be easier to study the environmental change in a specific
area by monitoring the land use and land cover. Land use is one of the factors
that influences environmental changes. Most of the land use changes are
caused by human activities, such as deforestation for expanding agricultural
land or for urban use. This will be major aspects of attention we relation to
the city such as Ipoh in Malaysia with the reduction in the rain forest stand,
air pollution, extremely rapid extension of its urban area and many other
environmental changes (Günther, Radermacher, and Riekert, 1995).

Clustering can be used to obtain some initial information from satellite im-
ages. This method constructs groups in such a way that the profiles of objects
in the same groups are relatively homogenous whereas the profiles of objects
in different groups are relatively heterogeneous.

The main advantage of using the method is that interesting structures or
clusters can be found directly from the images data without using any back-
ground knowledge. By conventional clustering methods, a class is either
assigned to or not assigned to a defined group.

Fuzzy clustering which applies the concept of fuzzy sets to cluster analysis
allocates members pertaining to a group at each pixel of the images data
by use of a membership function which associates to each cluster ranging
between 0 and 1.
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The primary objective in this article is to use the technique of unsupervised
fuzzy classification in monitoring the urban land use change using Ipoh city as
the case study area. In this study, fuzzy clustering methods were implemented
using the statistical software package XploRe and GIS (GRASS) and Remote
Sensing (ERDAS) were used to classify multi-spectral Landsat TM images.
The result of this investigation shows that the underlying structures and
patterns from satellite image data can be classified more precisely than the
conventional ones.

In the subsequent Section 2 and 3, we present reviews of remote sensing and
fuzzy clustering method. Section 4 describes data and methods. Section 5
presents the results and discussions.

19.2 Remote Sensing

Remote sensing is a form of measuring physical characteristics of remote ob-
ject without being in contact with them (Günther, Radermacher, and Riek-
ert, 1995). In this case, the earth surface is used as the target of observation.
The remote sensing system is a repeatedly consistent activity toward the
earth surface which is supposed to monitor the earth system and its effect on
the human activities. Here, the measurement is focused on images which is
essentially a two dimensional spatial grid of spectral and spatial information.

Satellite image consists of several bands. These bands give information about
the spectral reflection from the earth surface. Each band will have a different
pixel value which depends on the measuring frequency. Each band has a value
between 0−255 representing the spectral distribution of these bands. In this
paper we just concentrate on images as data without attention to the pro-
cess of how the data have been physically absorbed. A more comprehensive
overview of the evaluation of remote sensor data can be found at Günther,
Hess, Mutz, Riekert, and Ruwwe (1993).

Traditionally, the thematically classification of an image follows the following
stages (Schowengerdt, 1997):

• Feature extraction: Transformation of the multispectral image by a
spatial or spectral transform to a feature image.

• Classification: Extraction of the pixels to be classified either by train-
ing the classifier to recognize certain classes through the supervised or
unsupervised classification method and using statistical procedures to
aggregate the pixels.
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• Labelling: Labelling the output map by analysts, consisting of one
label for each pixel.

More references about land use-land change classification hierarchy can be
found at Anderson, Hardy, Roach, and Witmer (1976).

A case that emerges in relation to mapping the urban land-use class is to
differentiate between classes which are closely related to each other such as
”urban residential” or ”light industrial” areas. Therefore, it will be necessary
to see the more complex relationship among the physical measurement, multi-
spectral image and destination map class. However, sometimes having known
this all is not enough, we still need additional information which is referred
to as ancillary information.

19.3 Fuzzy C-means Method

v = xcfcme(x, c, m, e, alpha)

This quantlet performs a fuzzy C-means cluster analysis.

One approach to fuzzy clustering is the fuzzy C-Means (Bezdek, 1981). Be-
fore Bezdek, Dunn (1973) had developed the fuzzy C-Means Algorithm. The
idea of Dunn’s algorithm is to extend the classical within groups sum of
squared error objective function to a fuzzy version by minimizing this objec-
tive function. Bezdek generalized this fuzzy objective function by introducing
the weighting exponent m, 1 ≤ m < ∞:

Jm(U, V ) =
n∑

k=1

c∑
i=1

(uik)md2(xk, vi), (19.1)

where U is a partition of X in c part, V = v = (v1, v2, ..., vc) are the cluster
centers in Rp, and A is any (p×p) symmetric positive definite matrix defined
as the following:

d(xk, vi) =
√

(xk − vi)�(xk − vi) (19.2)

where d(xk, vi) is an inner product induced norm on Rp, uik is referred to as
the grade of membership of xk to the cluster i. This grade of membership
satisfies the following constraints:
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0 ≤ uik ≤ 1, for 1 ≤ i ≤ c, 1 ≤ k ≤ n, (19.3)

0 <
n∑

k=1

uik < n, for 1 ≤ i ≤ c, (19.4)

c∑
i=1

uik = 1, for 1 ≤ k ≤ n. (19.5)

The fuzzy C-Means (FCM) uses an iterative optimization of the objective
function, based on the weighted similarity measure between xk and the cluster
center vi.

Steps of the fuzzy C-Means algorithm, according to Hellendorn and Driankov
(1998) follow:

Algorithm

1. Given a data set X = {x1, x2, ..., xn}, select the number of clusters
2 ≤ c < N , the maximum number of iterations T , the distance norm
d2(xk, vi), the fuzziness parameter m > 1, and the termination condi-
tion ε > 0.

2. Give an initial value U (0).

3. For t = 1, 2, ..., T

a) Calculate the c cluster centers {vi,t}, i = 1, ..., c

vi,t =

∑n
k=1 um

ik,t−1xk∑n
k=1 um

ik,t−1

(19.6)

b) Update the membership matrix. Check the occurrence of singu-
larities. Let I = {1, ..., c},

Ik,t = {i|1 ≤ i ≤ c, dik,t =‖ xk − vi,t ‖= 0},

and Īk,t = {1, 2, ..., c}/Ik,t

Then calculate the following

uik,t =
c∑

j=1

(
dik,t

djk,t

) 2
m−1

, if Υk,t = 0 (19.7)

Choose aik,t = 1/#(Υk,t),∀i ∈ Υ ; #(·) denotes the ordinal num-
ber.
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4. If Et =‖ Ut−1 − Ut ‖≤ ε then stop otherwise return to step 3.

This procedure converges to a local minimum or a saddle point of Jm. The
FCM algorithm computes the partition matrix U and the clusters’ prototypes
in order to derive the fuzzy models from these matrices.

19.3.1 Data and Methods

The data set consists of 7 channels from a Landsat TM scene (256×256 pixels)
around Ipoh city in Malaysia. The data were obtained from the School of
Aerospace Engineering, Universiti Sains Malaysia, Malaysia. The image was
georeferenced to Malaysian RSO projection, with RMS error less than 0.5
pixel.

The chosen area of study will therefore concentrate itself around the Ipoh
city. Some reasons for this choice are that:

• This location lies in the Kinta valley, once a thriving for mining area,
which is currently undergoing changes to its land-use.

• There is an availability of satellite digits data since 1991 such as Landsat
and SPOT.

The site and its surroundings include the urban and suburban area where
the major land cover comprises the mixture of building, vegetation, bare soil,
and water. The land classes that appear in Figure 19.1 show a fairly complex
mixture that obviously will create a big challenge to determine the right class.

The methodology that we will used are unsupervised classification (fuzzy
clustering) and then compare this with the ISODATA unsupervised classi-
fication method. More information of ISODATA unsupervised classification
algorithm can be found at Ball and Hall (1967).

Firstly, we manipulated the data with XploRe. The value of the spectrum
frequency of the seven bands is to be extracted, where the total observations
that we have 256 × 256 × 7 = 458752 pixels. We then apply fuzzy clustering
to all of the seven bands. As a default, we set the value of m = 2 and c = 5.
The choice of m = 2 is due to its fast convergence compared to other numbers
of m. Meanwhile the c = 5 what we have chosen is based on the research
undertaken by Bawahidi, et al. (2003).

We conducted also with the similar data using ISODATA algorithm. This
process done by ERDAS software, in which this algorithm already imple-
mented in ERDAS.
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Figure 19.1: Image of Ipoh City

19.4 Results and Discussions

By analyzing the data, it is assumed that there is no more noise. Multi-
resolution image is usually high correlated. Either when it is seen visually or
numerically (Schowengerdt, 1997).

Figure 19.2 shows the test data and all 7 bands of Ipoh City. Bawahidi, et
al. (2003) has carried out a classification using an unsupervised ISODATA
classification method. This method classified the data into 15 classes. These
classes were then clustered into 5 classes and named as: water, agriculture,
grass, urban areas, barren and mining area.

However, it is known that classifying an urban area using Landsat TM data
is not easy. Especially when it is done in a rural settlement surrounded with
meadows, brush land, and agricultural fields. When the area is fallow, the
brightness value obtained will be the same with that of the urban area itself.
This will result in a false process of classification of the classes.

Next, we will see the performance algorithm of the suggested unsupervised
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Figure 19.2: Scenes from test data and 7 band images of Ipoh City

classification (fuzzy clustering) and then compare this with the ISODATA
classification methods.

We got the cluster results of the fuzzy clustering method from XploRe and
transferred to GRASS for display purposes. We only choose the observa-
tion of pixels where the membership value is greater than 0.5. Pixels which
have membership value smaller than 0.5, we leave it for further investigation.
There are around 800 pixels which are not belong to certain cluster but to
two or three cluster together.

We also got the cluster results of ISODATA from ERDAS and transferred to
GRASS for display purposes. All of the two clustering results together with
the test images are shown in Figure 19.3.

We also presented the accuracy assessment of both methods. These accuracy
assessments were done by ERDAS Imagine. We choose the pixel to be com-
pared randomly. From the Figure 19.3, it is shown clearly that an airport
is lying on Grass Land. There is a relationship with the table of accuracy
assessment, where for the Grass Land class, the accuracy is increased from
88% to 92%.

In general, it can be clearly seen that the latter method (fuzzy clustering)
attains a greater level of accuracy than the first one (ISODATA). The overall
accuracy is significantly increased from 85% to 91%.

We have presented fuzzy clustering method for remotely sensed imagery of
Ipoh City will be proposed in this study. It seems to be clear from its accu-
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Figure 19.3: Scenes of test image, five clusters with the ISODATA method
and the Fuzzy method

Table 19.1: Accuracy assessment for the ISODATA clustering

Class name W/S F/A U/B G B/M Total User’s
Water/shadow 33 2 2 1 1 39 0.85
Forset/agriculture 1 108 8 5 2 124 0.87
Urban/built-up 2 6 67 7 3 85 0.79
Grass Land 2 2 4 77 3 88 0.88
Barren/Mining area 1 0 2 1 26 30 0.87
Total 39 118 83 91 35 366
Producers’ accuracies 0.85 0.92 0.81 0.85 0.74
Overall Accuracy 85%

racy that the fuzzy c-means method significantly outperforms the ISODATA
approach.
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Table 19.2: Accuracy assessment for the fuzzy clustering

Class name W/S F/A U/B G B/M Total User’s
Water/shadow 55 2 0 1 1 59 0.93
Forset/agriculture 1 112 2 1 0 116 0.97
Urban/built-up 0 6 59 7 3 75 0.79
Grass Land 1 2 0 65 3 71 0.92
Barren/Mining area 0 0 2 2 41 45 0.91
Total 57 122 63 76 48 366
Producers’ accuracies 0.96 0.92 0.94 0.86 0.85
Overall Accuracy 91%
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