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Foreword

More than 27 years ago, Don Rubin and I edited a book titled Test Equating
(Holland & Rubin, 1982). At that time there was very little literature other than

journal articles and technical reports to guide researchers towards the interesting

problems in this small but very practical branch of educational measurement. Now,

Alina von Davier is editing a new book with this same aim, to expose researchers to

the most recent ideas and topics in test equating.

In our day, there was an extreme paucity of material on equating. Of course,

there was Angoff’s famous 1971 chapter in Educational Measurement that was the
single most read piece on equating (so much so that ETS reprinted it as a separate

volume in 1984), and there was Lord’s 1950 technical exegesis of what linear

equating was all about with standard errors and careful analysis, as well as the test

equating chapter in his 1980 book on IRT where he gives his (in)famous theorem

that test equating is either impossible or unnecessary. But that was about it. I have

heard through the grapevine that during that time ETS’s president even went so far

as to suggest that equating research was no longer a subject that ETS ought to

support—fortunately, he was persuaded otherwise.

When Don Rubin and I were editing our book, people learned about test equating

by doing it, with no help from their graduate education at any of the best psycho-

metric training centers, anywhere, just the small literature mentioned above. That

day is fortunately gone. There is now a fabulous textbook (Kolen & Brennan, 2004)

now in its second edition. Test equating is often a part of the graduate-school

curriculum in quantitative methods in education. Of course, I must mention my

2004 book with Alina von Davier and Dorothy Thayer, The Kernel Method of Test
Equating, because it is an attempt to unify many aspects of test equating into a

single coherent system.

In the late 1990s, test equating became interesting even to the U.S. Congress,

which asked the National Academy of Science if all elementary school tests of, for

example, mathematics, could be “equated” somehow, and thereby remove the need

for President Clinton’s proposal for a single National Voluntary Test. The National

Academy panel of experts said no (Feuer, Holland, Green, Bertenthal, & Hemphill,
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1999). The (Republican) congressional response was to ask the question again, and,

in return, was asked, What part of “No” don’t you understand? (Koretz, Barron,

Mitchell, & Stecher, 1999).

There has always been a small body of literature on test equating in the educa-

tional measurement journals (after all, the equating of test forms under various

conditions of data collection is what many of the people in the field of educational

measurement actually do, so it is not surprising that they write about what they have

figured out in order to help others who need to equate tests in similar circum-

stances). Yet, since the 1980s, this literature has exploded. The above mentioned

textbook (Kolen & Brennan, 2004) grew out of this enormous growth in the

technical literature on equating.

Alina von Davier, in this remarkable volume, is pulling together the most recent

and advanced parts of this literature to set the stage for further exciting and

innovative work on test equating. The topics are important, and the contributors

are some of the best in the field. I expect this volume to move the theory and

practice of test equating forward on many fronts.

St. Petersburg, FL Paul W. Holland

May 16, 2009
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Preface

This edited volume provides an overview from a statistical theory viewpoint of

recent research directions in the field of equating, linking, and scaling.

The idea for this volume emerged in December 2007 while I was planning my

own research studies and other research projects funded under the Equating and

Applied Psychometrics research initiative, which I have lead for the past four years

at Educational Testing Service (ETS). At the same time this planning took place,

I was also overseeing the research in support of the international testing programs in

my center at ETS. I realized that equating and linking were becoming more visible

due to the increase in number and variety of standardized assessments in the United

States and around the world. I also came to see that the research on equating and

linking had changed, moving from applications of existing psychometric equating

models to development of new and more theoretical equating models. In particular,

research in the field has soared since the publishing of two test equating books in

2004, the second edition of Test Equating, Scaling, and Linking: Methods and
Practices (Kolen & Brennan, 2004) and The Kernel Method of Test Equating (von

Davier, Holland, & Thayer, 2004b). Much of the new work has focused on statisti-

cal aspects of the equating process, and several examples of this sort of work are

represented in this volume.

In addition to covering statistical methods, most of the existing books on

equating also focus on the practice of equating, the implications of test development

and test use for equating practice and policies, and the daily equating challenges

that need to be solved. In some sense, the scope of this book is narrower than of

other existing books: to view the equating and linking process as a statistical

estimation task. The goal of this volume is to propose new equating models, to

take theoretical statistical tools and apply them to the practice of equating in novel

and useful ways, and to tie explicitly the assumptions made by each of the equating

models to observable (or at least inferable) data conditions.

The intended audience for this volume is rather broad: researchers and graduate

students in statistics, psychometrics, and educational measurement who are looking

for useful research topics. Among the volume’s goals are to push the work on
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equating, linking, and scaling in new directions and to invite the readership to

consider the research questions raised here and further the work.

In order to bring newly hired psychometricians in testing organizations quickly

up to speed on equating details, it is best to provide a controlled framework

consisting of a wide range of formal decision aids, ranging from visual displays

and charts to indices and flags. Many of these tools are direct applications of

statistical methodologies. Given this, another purpose of this book is to bring

about the development of quality control, statistical process control, and decision

tools to assist throughout the equating process, often done in an extremely fast-

paced operational environment.

How this volume is organized. The volume covers recently developed models for

equating, linking, and scaling and new approaches to testing hypotheses, assump-

tions, and model fit. The book starts with a chapter that presents a statistical

perspective on the test equating process. The book is then divided into three

parts. The first part focuses on data collection designs and assumptions made in

the measurement process in standardized testing to avoid the confounding of test

form differences with ability differences. The second part of the book focuses on

new measurement and equating models. The third part of this volume presents

research methodologies in support of the evaluation of equating results. The

structure of the book is described in more detail in the Overview section.

This book provides a snapshot in time. The list of models and approaches

presented here is neither exhaustive nor definitive. It is hoped that readers will

find inspiration from the chapters of this book and will approach the field of linking

and equating with curiosity and interest in continuing the presently underway

research and in making improvements to operational practice. Not everything

presented here is ready to be applied in the practical and complex world of

standardized educational assessments. However, my hope is that the models pre-

sented here give a perspective on the abundance of possibilities and create a fertile

framework for future research ideas and practical implementations.

Acknowledgments. The book was funded by ETS in the framework of the

Equating and Applied Psychometrics research initiative. I am indebted to ETS

and to many ETS researchers and psychometricians for their assistance and encour-

agement in the production of this book: Ida Lawrence, who established and con-

tinues to support the Equating and Applied Psychometrics research initiative; John

Mazzeo and Dianne Henderson-Montero for their managerial support and feed-

back; Dan Eignor, Shelby Haberman, and Jim Carlson for their careful reviews of

all ETS manuscripts and many of the other chapters not written by ETS staff; and

Kim Fryer for editorial support and assistance in the production of the book. I am

thankful to Paul Holland, from whom I learned everything I know about equating.

Last but not least, I am thankful to my family—especially to my husband, son, and

father—for their unconditional love and support.

Princeton, NJ Alina A. von Davier

April 15, 2010
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Overview

In the introductory chapter of this book, “A Statistical Perspective on Equating Test

Scores,” which sets the stage for the reminder of the volume, I describe the equating

process as a feature of complex statistical models used for measuring abilities in

standardized assessments. I also propose a framework for organizing all existing

observed-score equating methods.

The remaining chapters in the book are organized in three parts. The first part,

Research Questions and Data Collection Designs, includes studies that focus on the
appropriate data collection designs for equating, linking, and scaling, and the

challenges and assumptions associated with each of the designs and the methods.

There are six chapters in Part I.

The Dorans, Moses, and Eignor chapter, “Equating Test Scores: Toward Best

Practices,” emphasizes the practical aspects of the equating process, the need for a

solid data collection design for equating, and the challenges involved by applying

specific equating procedures. The chapter by Kolen, Tong, and Brennan, “Scoring

and Scaling Educational Tests,” provides a detailed overview of scaling procedures,

covering the current thinking on scaling approaches, from the scoring unit

employed to the policy issues that surround score uses. The chapter by Carlson,

“Statistical Models for Vertical Linking,” transitions into a specific design and

research question challenge: How to link vertically the results of several testing

instruments that were constructed to intentionally differ in difficulty and that were

taken by groups of examinees who differ in ability. Carlson presents an overview of

the models in practical use for vertical linking. The chapter by McArdle and

Grimm, “An Empirical Example of Change Analysis by Linking Longitudinal

Item Response Data From Multiple Tests,” presents an even more challenging

research question: How can one develop a longitudinal scale over a very long

period of time and with sparse data. McArdle and Grimm illustrate the use of

linking techniques and their challenges in a different context than educational

assessments: In the area of research on life-span and on the dynamics of aging.

The Holland and Strawderman chapter, “How to Average Equating Functions, If

You Must,” addresses the question of how to stabilize the results of the equating
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process if results from more than one equating are available. If you build an

equating plan, or as it is called, a braiding plan, can you average the resulting

distinct equating conversions from the different strands of the braiding plan? Is the

result still an equating function? The authors describe a procedure that might be

considered for averaging equating conversions. The chapter by Livingston and

Kim, “New Approaches to Equating With Small Samples,” addresses a very

practical problem: If you know that the test forms to be equated differ in difficulty

and the samples are too small to reliably conduct any classical equating procedures,

what can you do? The authors discuss several models for equating with small

samples.

Part II of this volume, Measurement and Equating Models, includes eight

chapters that propose new models for test equating and linking. Most of the material

presented in this part of the book describes new equating and linking models that

clearly fit within the traditional frameworks of observed-score equating and of IRT

linking and equating, as discussed in the introductory chapter.

Four of the eight chapters describe new methods for transforming the discrete

test score distributions into continuous distributions in order to achieve equiper-

centile equating: The chapter by Haberman, “Using Exponential Families for

Equating,” describes the use of exponential families for continuizing test score

distributions; the chapter by Wang, “An Alternative Continuization Method: The

Continuized Log-Linear Method,” describes the application of log-linear models to

continuize the test score distributions; and the chapter by Lee and von Davier,

“Equating Through Alternative Kernels,” discusses how various continuous vari-

ables with distributions (normal, logistic, and uniform) can be used as kernels to

continuize test score distributions. The chapter by Karabatsos and Walker, “A

Bayesian Nonparametric Model for Test Equating,” provides a Bayesian equating

model for the continuized distribution of test scores, by means of a mixture of beta

distributions. Under Bayes theorem, the prior distributions for the test score dis-

tributions are combined with the data to achieve (continuous) posterior distributions

and the classical equipercentile equating function that uses these posterior distribu-

tions can then be applied.

The chapter by Chen, Livingston, and Holland, “Generalized Equating Func-

tions for NEAT Designs,” describes new hybrid models within the kernel equating

framework. One of the most interesting hybrid models proposed is a nonlinear

version of Levine linear equating. Most of these equating models can be integrated

into the observed-score equating framework described in the introduction, includ-

ing the hybrid models. The van der Linden chapter, “Local Observed-Score Equat-

ing,” beautifully describes the need for developing an equating model that is

derived from Lord’s equity requirement. I had a difficult time deciding whether

this chapter fit best in Part I or Part II. The chapter shows that the local observed-

score equating method also fits well under an observed-score equating framework

described in the introduction, although this chapter also provides a nice transition to

the chapters that investigate IRT-based methods.

The other two chapters in this second part of the book focus on IRT parameter

linking. The chapter by von Davier and von Davier, “A General Model for IRT
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Scale Linking and Scale Transformations,” presents a framework for the currently

used IRT parameter-linking methods: Fixed-item-parameters, concurrent calibra-

tion, mean-mean, mean-sigma (Kolen & Brennan, 2004), and the Stocking and

Lord (1983) and Haebara (1980) methods are considered. This framework can

potentially include more complex types of linking, such as those that account for

a growth factor. The chapter by Xu, Douglas, and Lee, “Linking With Nonpara-

metric IRT Models,” discusses how to link ability scales from separate calibrations

of two different test forms of the same assessment, when the calibration is accom-

plished by fitting nonparametric IRT models to the data. The linking of the item

characteristic curves of the common items is attained on an interim scale—uniform

or normal—by minimizing a loss-function. It is interesting to note the similarities

between the loss-function used by Xu et al., the traditional Stocking and Lord

(1983) and Haebara (1980) scale-linking methods, and the restriction function used

by von Davier and von Davier. Conceptually, they are all very similar.

Part III of this book, Evaluation, includes chapters on procedures that can be

used to evaluate the equating, linking, and scaling results by employing new

accuracy measures, by investigating the robustness of the results when the assump-

tions are met to varying degrees, by testing hypotheses about the equating models,

and by monitoring the stability of the results over time. This part includes five

chapters.

The chapter by Ogasawara, “Applications of Asymptotic Expansion in Item

Response Theory Linking,” presents the formulas for the asymptotic standard

error of the IRT scale transformation coefficients from the moment methods: The

mean-mean, mean-sigma, and the mean-geometric mean scale linking methods are

considered (see also Kolen & Brennan, 2004, for a description of the methods). The

chapter by Sinharay, Holland, and von Davier, “Evaluating the Missing Data

Assumptions of the Chain and Poststratification Equating Methods,” presents a

detailed investigation of the untestable assumptions behind two popular nonlinear

equating methods used with a nonequivalent groups design. The chapter describes a

manipulated data set, or pseudo-data set, that allows testing of the untestable

assumptions. The chapter by Glas and Béguin, “Robustness of IRT Observed-

Score Equating,” investigates the robustness of the IRT true score equating methods

and applies the Wald statistic to test hypotheses. More precisely, the Wald test is

used to evaluate the null hypothesis that the expected score distributions on which

the equating procedure is based are constant over subsamples against the alternative

that they are not. The chapter by Rijmen, Qu, and von Davier, “Hypothesis Testing

of Equating Differences in the Kernel Equating Framework,” applies the formula of

the standard error of equating difference developed by von Davier, Holland, and

Thayer (2004b) to the full vector of equated raw-scores and constructs a test for

testing linear hypotheses about the equating results. The chapter by Li, Li, and von

Davier, “Applying Time-Series Analysis to Detect Scale Drift,” proposes the use of

time-series methods for monitoring the stability of reported scores over a long

sequence of administrations. This study is related to traditional scale drift studies

(Kolen & Brennan, 2004; Morrison & Fitzpatrick, 1992; Petersen, Cook, &

Stocking, 1983) in the sense that the time series analysis investigated can
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potentially detect any unusual pattern in the reported scores, including the pattern

resulting from a potential scale drift.

I expect that this collection of chapters will be of interest to a broader audience

than practitioners of equating. The field of test equating, linking, and scaling is rich

in opportunities for psychologists, mathematicians, and statisticians to work on

important applications.
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19 Hypothesis Testing of Equating Differences in the Kernel

Equating Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

Frank Rijmen, Yanxuan Qu, and Alina A. von Davier

20 Applying Time-Series Analysis to Detect Scale Drift . . . . . . . . . . . . . . . . 327

Deping Li, Shuhong Li, and Alina A. von Davier

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 347

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

xvi Contents



Contributors
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Chapter 1

A Statistical Perspective on Equating Test Scores

Alina A. von Davier

“The fact that statistical methods of inference play so slight a role... reflect[s] the lack of

influence modern statistical methods has so far had on current methods for test equating.”

Rubin (1982, p. 53)

“The equating problem reduces to one of modeling and statistical theory.”

Morris (1982, p. 170)

1.1 Introduction

The comparability of scores across different test forms of a standardized assessment

has been a major focus of educational measurement and the testing industry for

the past 90 years (see Holland, 2007, for a history of linking). This chapter focuses

on the statistical methods available for equating test forms from standardized

educational assessments that report scores at the individual level (see also Dorans,

Moses, & Eignor, Chapter 2 of this volume). The overview here is given in terms of

frameworks1 that emphasize the statistical perspective with respect to the equating

methodologies that have been developed by testing practitioners since the 1920s.

The position taken in this paper is that the purpose of the psychometricians’ work is

to accurately and fairly measure and compare educational skills using multiple test

forms from an educational assessment. Therefore, from this measurement perspec-

tive, equating of test forms is only one necessary step in the measurement process.

Equating is only necessary because a standardized educational assessment uses

1Conceptual frameworks (theoretical frameworks) are a type of intermediate theory that have the

potential to connect to all aspects of inquiry (e.g., problem definition, purpose, literature review,

methodology, data collection and analysis). Conceptual frameworks act like maps that give

coherence to empirical inquiry (“Conceptual Framework,” n.d.).

A.A. von Davier

Educational Testing Service, Rosedale Rd, Princeton, NJ 08541, USA

e-mail: avondavier@ets.org

A.A. von Davier (ed.), Statistical Models for Test Equating, Scaling, and Linking,
Statistics for Social and Behavioral Sciences,

DOI 10.1007/978-0-387-98138-3_1, # Springer ScienceþBusiness Media, LLC 2011
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numerous test forms that tend to differ in difficulty although they are built to the

same specifications (“nominally parallel test forms,” Lord & Novick, 1968, p. 180).

Hence, equating can be viewed as the process of controlling statistically for the

confounding variable “test form” in the measurement process. If the test develop-

ment process were perfect, then equating would not be necessary. See also Lord’s

(1980) theorem 13.3.1 in Chapter 13. The term linking has slightly different

meanings in the field of educational measurement, and it is used here as (a) a

general term for denoting a relationship between test forms (at the total score level,

at the item parameter level, etc.); (b) as a weaker form of equating; and (c) as a

synonym to the process of placing item response theory (IRT) item parameter

estimates on the same scale, which sometimes is also called IRT calibration. In
this chapter I refer to equating as a strong form of linking and as a subclass of

linking methods (Holland & Dorans, 2006). Test equating can be carried out both

using observed-score equating (OSE) and IRT methods, but the word equating is

most often associated with the raw scores of a test. See Holland and Dorans, Kolen

and Brennan (2004), Dorans et al. (Chapter 2 of this volume), and Yen and

Fitzpatrick (2006) for an extensive view of categories of linking methods.

The process of measuring and comparing competencies in an educational

assessment is described here in ways that integrate various existing approaches.

A discussion of equating as a part of the measurement process is given first. Then

I introduce the idea of applying a testlet or a bifactor model to measure skills and

equate scores. This type of model would capture the test-form effect as a latent

variable with a distribution. This variable, the test-form effect, can be (a) moni-

tored over time to inform on the stability of equating, (b) used as feedback for the

test developers to improve upon the degree of parallelism of test forms, and

(c) used for monitoring the form effect on subgroups. Next, an equating frame-

work for the OSE methods is introduced. I discuss how the search for a theory of

OSE led to the development of a framework that provides a map that gives

coherence to empirical inquiry. A framework for IRT parameter linking is given

by M. von Davier and von Davier (Chapter 14 of this volume), and a practical

perspective on equating methods is given by Dorans et al. in Chapter 2. The last

section of this chapter and the Overview outline the rest of the volume. The

chapters are grouped according to the steps of a measurement process that are

described in the next section.

1.2 The Measurement Model, the Unit of Measurement,

and Equating

Parallels between a generic statistical modeling process and an educational mea-

surement process that includes the equating of test forms are presented in this

section. Subsequently, a link between the equating methodologies and the unit of

measurement is discussed.
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1.2.1 Statistical Modeling and Assumptions

The measurement process in standardized testing, which includes test form equating,

follows the same steps as a typical statistical modeling process. Statistical models

are ideal and simplistic representations of a (complex) reality that aid in the

description and understanding of a specific process or that explain or predict future

outcomes. Statistical modeling is accomplished by first identifying the main vari-

ables and their interactions that explain the particular process. Using a simple

model to describe a complex reality requires making many assumptions that

allow the reality to be simplified. The usual steps in any statistical modeling process

are as follows:

1. Statistical modeling starts with a research question and with a set of data.

2. One of the challenges of statistical modeling is the danger of confounding: The

inferences one makes about one variable based on a model might be confounded

by interactions with other variables that exist in the data and that have not been

explicitly modeled. The confounding trap can be addressed by elegant and

elaborate sampling procedures, data collection designs, and explicit modeling

of the variables.

3. A statistical model is proposed and fitted to the data, and the model parameters

are estimated.

4. Assumptions are made about the data generating process. If the model fits the

data to an acceptable degree,2 then inferences are made based on the model.

5. The results are evaluated with respect to (sampling) error and bias. Given that all

statistical models are approximations of reality and that they almost never fit the

data, statisticians have developed indices that attempt to quantify the degree to

which the results are accurate. The bias introduced by the modeling approach is

investigated.

The same sequence of events describes the process of measurement in standar-

dized testing (see also Braun & Holland, 1982). The steps in the measurement

process are as follows:

1. The measurement process starts with two or more test forms built to the same

specifications (nominally parallel test forms), with the research question being

how to measure and compare the skills of the test takers regardless of which

form they took.

2. The challenge in measuring the skills of test takers, who take different forms of

a test, is how to avoid the confounding of differences in form difficulty with

the differences in the ability of the test takers. In order to disentangle the test

forms differences and ability differences, data are collected in specific ways

and assumptions about the data generating process are explicitly incorporated.

2“All models are wrong but some are useful” (Box & Draper, 1987, p. 74).
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See von Davier, Holland, and Thayer (2004b, Chapter 2) and Dorans et al.

(Chapter 2 of this volume) for details on data collection designs.

3. The next step is modeling the data generating process. Data from educational tests

are in most cases noisy and models have been proposed to fit them (log-linear

models, spline functions, IRT models). These models rely on assumptions. The

measurement models that include equating also have underlying assumptions. For

example, in OSE, the model-estimated test-score distributions are linked using an

equipercentile function. The equipercentile function is a mathematical function

composition that requires that the data be continuous, and the test scores usually are

not. Hence, the data need to be continuized. Continuization involves an approxi-

mation approach commonly employed in probability theory and statistical theory.

IRT models make different assumptions from OSE. For example, the estimated

item or ability parameters are linked using a linear transformation assuming the

IRT model fits the data well for each test form. Or, the method called IRT true-
score equating assumes that the relationship between the true-scores holds also for

the observed-scores.

4. Hence, assumptions are made about the data generating process. If the model fits

the data to an acceptable degree, then inferences are made based on the model.

5. Since the parameters of the equating models are sample estimates, the equating

results are subject to sample variability. At the end of the equating procedure

(after several steps of making assumptions), one will quantify the degree of error

cumulated in the process. This is obtained through the use of statistical indices:

standard errors of parameters, standard errors of equating (SEE), standard errors

of equating differences (SEED), as well as other statistical indices such as the

likelihood ratio statistics, Freeman-Tukey residuals, and the Akaike criterion

(Bishop, Fienberg, & Holland, 1975; Bozdogan, 1987). In addition, the potential

bias in the equating results should be evaluated according to different criteria,

such as the historical information available, stability of results over time,

consistency checks when multiple equating methods are available, changes in

demographics, population invariance, and scale drift. One might employ quality

assurance methods or statistical process control methods to monitor the stability

of the reported scores over time—such as cumulative sum charts and time series

analyses (See Li, Li, & von Davier, Chapter 20 of this volume).

The parallel between a generic statistical process and the educational measure-

ment process is illustrated in Figure 1.1. As already mentioned, no model fits the

data perfectly; moreover, many models are very complex and rely on assumptions

that are not easily tested. Therefore, a discussion of the merits of different models

requires investigation of the assumptions that underlie the models and, more

importantly, analysis of the consequences of failure to meet these assumptions.

In very simple data collection equating designs, such as the equivalent-groups

design and the single-group design, the OSE methods assume very little. As Braun

and Holland (1982) noted, the OSE methods are

. . . completely atheoretical in the sense that they are totally free of any conception

(or misconception) of the subject matter of the two tests X and Y . . . . We are only
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preventing from equating a verbal test to a mathematical test by common sense. This is an

inherent problem with observed-score equating. (p. 16)

On the other hand, with the more complex nonequivalent groups with an anchor

test (NEAT) design all OSE methods make more assumptions, some of them

untestable (see Sinharay, Holland, & von Davier, Chapter 17 of this volume; also,

Braun & Holland, 1982). Due to these untestable assumptions, some OSE models

are difficult to evaluate with the data at hand. The IRT model assumptions are

equally demanding and difficult to evaluate.

The question with both sets of equating models (OSE and IRT) is whether

the model errors necessarily invalidate the procedures or whether the errors are

sufficiently limited in their consequences so that the equating approaches are

acceptable. This analysis can be difficult to carry out both with IRT and OSE

methods when employing complex designs. IRT does provide more possibilities in

complex linking situations that are sometimes not feasible with OSE (such as in

survey assessments, where the data are collected following a matrix design—where

not all test takers take all items). However, a matrix design and a complex IRT
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Fig. 1.1 The parallel between a generic statistical process and the educational measurement

process. IRT ¼ item response theory; OSE ¼ observed-score equating
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model also involve an increased level of difficulty with respect to verification of

assumptions and an increased reliance on strong assumptions that are needed to

compensate for missing data. The selection of an equating method mainly matters

when the need for equating is strongest (that is, when the forms differ in difficulty)

and all methods produce similar results when the forms and populations are

identical.

1.2.2 Equating and Measurement

The purpose of this section is to identify the unit of measurement in a measurement

process that includes equating of test forms. Then I identify what is to be linked

when the equating of scores is desired, when OSE and IRT methods are employed.

It is assumed that an appropriate data collection design is available for equating

(see Holland & Dorans, 2006). An interesting discussion of similar questions has

been given in Braun and Holland (1982), and Morris (1982).

As Lord and Novick (1968) pointed out, any measurement “begins with a

procedure for identifying elements of the real world with the elements or constructs

of an abstract logical system (a model)” (p. 16). Lord and Novick continued,

To specify this measurement we must do three things: First we must identify the object

being measured, the person, or the experimental unit. Then we must identify the property or

behavior being directly measured.... Finally, we must identify the numerical assignment

rule by which we assign a number to this property of the unit being measured. (p. 16)

Educational testing programs apply ameasurement tool (the test form) to test takers

assumed to be randomly sampled from a population. The assessments measure a

specific skill that can be “the examinee’s responses to the items” (Lord & Novick,

1968, p. 16), a latent skill, or a merely unobserved skill. “Theoretical constructs are

often related to the behavioral domain through observable variables by considering the

latter as measures or indicants of the former” (Lord & Novick, 1968, p. 19). The idea

that ameasurement is something true (“the property or behavior” that the instrument is

supposed to measure) plus an error of measurement is an old concept developed

initially in astronomy and other physical sciences (see Lord&Novick, 1968, p. 31; see

Holland, 2007, for a history of testing and psychometrics). The measurement takes

place indirectly through a number of carefully developed items that comprise the test

form given to a sample of test takers (the random variable with a distribution). The

measurement data can be in the form of arrays of direct responses, such as arrays of 0s

and 1s representing correct or incorrect responses to multiple-choice items, or in some

cases, further aggregated (through adding the number of correct responses) to total

scores and distributions. Kolen, Tong, and Brennan (Chapter 3 of this volume) called

the unit of measurement “raw score:” “Raw scores can be as simple as a sum of the

item scores or be so complicated that they depend on the entire pattern of item

responses.” Regardless of how the scores are obtained, they are the realizations of

the random variable—the testing instrument and form.
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In a standardized educational assessment many test forms are built to the same

specifications, and each of these test forms is a testing instrument. These nominally

parallel test forms (Lord & Novick, 1968, p. 180) usually differ in difficulty,

and therefore, the measurement challenge is how to disentangle the unintended

differences in difficulty among the test forms from the ability of the test takers. In

other words, the role of equating is to insure an accurate measurement of an

underlying skill for a test taker, regardless of what test form has been taken by

this test taker (see Figure 1.1). The method chosen to equate test forms depends on

the model used for measurement.

In assessments where the OSE methods are employed, the item information is

aggregated across the test takers, and the test-score distribution is used as the basis

for equating the test forms. Test forms are random variables with distributions,

and the scores are realizations of these random variables. In (equipercentile) OSE,

the cumulative distributions of the random variables test forms are mapped onto

each other such that the percentiles on one will match the percentiles on the other.

As indicated earlier by quoting Braun and Holland (1982), OSE does not explicitly

require a meaning of the score used (i.e., total observed score, number-correct

score, weighted number-correct score, formula-score). In conclusion, for the OSE

methods, the unit of measurement is the total test score (regardless of how it was

obtained), and the equating is accomplished through matching the two test-score

distributions (either in terms of percentiles or in terms of their means and standard

deviations).

In assessments where IRT-based methods are used for equating, the analysis

starts with data as arrays of 0s and 1s representing correct or incorrect responses to

multiple-choice items for each person.3 Then the measurement of the underlying

skill is obtained through modeling the interaction between the features of the items

and of the persons who take those items. The IRT-based methods rely on a model

for the probability of a correct response to a particular item by a particular person.

Assuming the model fits the data, the adjustment for differences between the two

test forms is accomplished through linking the item (or ability) parameters. In a

subsequent step, this linking might be applied to raw test scores, and therefore,

achieve equating of scores, or it might be directly applied to scale scores (Yen,

1986). Hence, for IRT-based methods, the unit of measurement is the probability

that a person answers an item correctly (item by person’s skill) and the adjustment

for form differences is done through a linear transformation of the item parameters

or of the parameters of the distribution of the underlying skill.

The appeal of the IRT models lies within the psychometric theory: IRT models

are mathematical models of a test to infer the ability of a test taker and to classify

the test takers according to their ability. Linking the item parameters to adjust for

form differences is inherent to the IRT model. In contrast, as Braun and Holland

(1982) pointed out, the OSE methods are atheoretical.

3There are models for accomplishing the same things with tests using polytomously scored items.
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The measurement and equating models that use a total test score as a unit

of measurement and match the percentiles of test-score distributions, and models

that use the item–person interaction as a unit of measurement and link item

or person parameters, do have similarities; sometimes they overlap or build on

each other. This volume offers an account of several methods of this sort (see

the following chapters: Karabatsos & Walker, Chapter 11; Chen, Livingston, &

Holland, Chapter 12; van der Linden, Chapter 13; Glas & Béguin, Chapter 18).

In my opinion, the value of thinking of equating as a part of a complex

measurement process lies in the multitude of possibilities that become available

to the researcher. These possibilities may include applying existing models from

(or developing new models in) other areas of psychology, econometrics, statistics,

or even from other parts of psychometrics. That is, borrowing or developing new

measurement models in a very different framework than educational measurement

that could also achieve equating becomes easier to conceptualize in a broader

framework. In the next section I give an example of such a cross-contamination

of ideas.

1.3 Measurement of Skills and Equating of Test Scores

Using a Testlet Model

At least three models have been developed to account for the effects of specific

groups of items or testlets that might be included in an assessment. These item

bundles may refer to the same passage, or the same test material, and the responses

to the items from the testlets might not be independent given the ability, and

therefore, the assumption of unidimensionality of the IRT model might be violated.

One way to account for the testlet effect is to incorporate specific dimensions in

addition to the general underlying dimension of the IRT model. Three such models

are the bifactor model (Gibbons & Hedeker, 1992), the second-order factor model

(Rijmen, 2009b), and the testlet model (Bradlow, Wainer, & Wang, 1999). The last

two models were shown to be formally equivalent in Rijmen, and therefore, I will

briefly discuss only the bifactor and second-order model here.

In the bifactor model (Gibbons & Hedeker, 1992), each item measures a general

dimension and one of K specific dimensions. Typically, all dimensions are assumed

to be independent. Here I will use a less general restriction: These dimensions are

assumed to be independent given the general dimension. Figure 1.2 shows a

bifactor model with the conditional independence restriction using a directed

acyclic graph for four sets of items y1 to y4, the general ability yg, and the specific

testlets’ effects, y1 to y4.
A second-order model also includes separate testlet effects. Figure 1.3 illustrates

a second-order model with the same conditional independence restriction. In a

second-order model, each testlet has a separate dimension. As in the bifacor

model, the specific testlet effects are assumed to be conditionally independent,
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given the general ability. In this model the general ability is indirectly measured by

the items, through the specific testlet factors. In Figure 1.3 this is represented

through the absence of directed edges between the general ability yg and the specific
testlets’ effects, y1 to y4.

Now assume that each of the y1 to y4 actually denote a test form in Figures 1.2 and

1.3. Assume that these test forms are nominally equivalent forms that need to be

equated. Assume for simplicity reasons that each of the four forms represented in

Figures 1.2 and 1.3 does not include any testlets. Under these assumptions, each of the

three models, the bifactor, the second-order, or the testlet model, can be applied as the

measurement model for a single-group data collection design, where the same test

takers took all four test forms. Other data collection designs can be eventually

considered (see Rijmen, 2009a, where the model was applied to a matrix design

from the Progress in International Reading Literacy Study). This assumption is

made here only to simplify the parallels between the concurrent unidimensional IRT

Fig. 1.2 Directed acyclic graph of the bifactor model. From Three Multidimensional Models for
Testlet Based Tests, by F. Rijmen, 2009b, Princeton, NJ: ETS, p. 2. Copyright 2009 ETS.

Reprinted with permission

Fig. 1.3 Directed acyclic graph of the second-order model. From Three Multidimensional Models
for Testlet Based Tests, by F. Rijmen, 2009b, Princeton, NJ: ETS, p. 5. Copyright 2009 ETS.

Reprinted with permission
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calibration and linking, and equating of scores on one side, and the concurrent

calibration with a testlet model, and equating of scores on the other side. Once the

concurrent calibration of items has been achieved, and the items, test forms, and ability

parameters have been estimated using one of the testlet models mentioned here, then

equating of scores can be achieved through the general ability yg using the method

called IRT true-score equating, or using themethod called IRTOSE, or using the local

equating method (van der Linden, Chapter 13 of this volume).

Obviously, the length of the test forms, the sample size, the specifics of the data

collection design, the degree of correlation between the various dimensions, each

can be a challenge for fitting successfully a complex model such as any of the testlet

models mentioned above. This will be the topic of future research.

In my opinion, the advantage of using a testlet or test-form model for linking and

equating lies in the estimate of the test-form effect. As a practitioner, I can see the

advantages of monitoring the distribution of the test-form effect over time to

support reporting stable equating results and of providing meaningful feedback to

the test developers. This feature might be of particular interest for assessments with

an almost continuous administration mode. For assessments with numerous admin-

istrations one could apply the statistical process control charts to several variables

(the means of the general-ability and the form-effect dimensions estimates over

time together with a standard deviation band). If differential test-form functioning

is of concern, then these specific test-form variables can be monitored for the

subgroups of interest. The testlet model applied to test forms also can be extended

to incorporate testlets inside each form, as in a hierarchical model.

Another example of a cross-contamination of ideas is presented in Rock (1982).

In his paper, “Equating Using Confirmatory Factor Analysis,” Rock showed how to

use maximum-likelihood factor analysis procedures to estimate the equating para-

meters, under the assumption that the components of the vector of the test scores

have a multivariate normal distribution.

Next, a mathematical framework that includes all OSE methods is described.

The OSE framework follows the measurement model described in Figure 1.1 and

follows the description of the OSE methods as equating approaches that match the

test score distributions.

1.4 An OSE Framework

In this section, a framework for the OSE methods is introduced. The advantages of a

single framework that includes all OSE methods are (a) a formal level of cohesive-

ness, (b) a modular structure that leads to one software package for all methods, and

(c) the facilitation of development and comparison of new equating models. This

framework is referred as the OSE framework. This framework follows the line of

argument from the previous two sections.
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Identifying a framework that connects the methods used in observed-score

equating practice is part of the continuous search for a theory of equating (see

also Holland & Hoskens, 2003; von Davier, in press). This equating framework

together with Dorans and Holland’s five requirements of an equating procedure

(Dorans & Holland, 2000), is the closest to a theory that is available for observed-

score equating.

The OSE framework outlined here consists of the five steps in the OSE process

as described in von Davier et al. (2004a) for the kernel equating and includes an

explicit description of the relationship between the observed-score equipercentile and

linear equating functions. Moreover, the framework described here shows concep-

tual similarities with the mathematical framework introduced in Braun and Holland

(1982). Next, the notation and the OSE framework are presented.

In the following exposition, it is assumed that an appropriate data collection

design is available for measuring skills on a standardized educational assessment,

where equating of test scores is needed. The two nominally parallel test forms to be

equated are assumed to be well constructed and equally reliable. As in Figure 1.1,

the research question is how to measure accurately and fairly the educational skills

of the test takers who took these two nominally parallel test forms. The two test

forms to be equated are denoted here by X and Y; the same notation is also used for

the test scores as random variables with distributions. Score distributions are usually
discrete, so to describe them, both their possible values and the associated prob-

abilities of these possible values are given. The possible values for the random

variables X and Y are denoted by xj (with j ¼ 1, . . . , J) and yk (with k ¼ 1, . . . , K),
respectively. As mentioned earlier, for the OSEmethods, the unit of measurement is

the test score, and the equating is accomplished by matching the two test score

distributions (either in terms of percentiles or in terms of their means and standard

deviations). In the simple case of total-number-correct scoring, the possible values

for X are consecutive integers, such as x1 ¼ 0, x2 ¼ 1, etc. In other cases, the

possible values can be negative or have fractional parts—as it is the case of

unrounded formula scores or ability estimates frommodels that use IRT.We assume

in the following that the unit of measurement is the total number correct score.

Most OSE functions (in particular the nonlinear ones) depend on the score

probability distributions on a target population, called T here. The vectors of the

score probabilities are denoted by r and s on T:

r ¼ r1; . . . ; rJð Þ; and s ¼ s1; . . . ; sKð Þ: (1.1)

and each rj and sk are defined by

rj ¼ PfX ¼ xjjTg and sk ¼ PfY ¼ ykjTg: (1.2)

The score probabilities for X are associated with the X raw scores, {xj}, and
those for Y are associated with the Y raw scores, {yk}. The steps of the OSE
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framework describe the equating process and are covered in detail in the following

subsections.

1.4.1 Step 1: Presmoothing

It is customary to presmooth the data to remove some of the sampling noise if the

samples are below 20,000. The score probabilities are either estimated through

various procedures such as fitting log-linear models to the observed-score test

probabilities or by estimating them using the sample frequencies if the samples

are large; either way, they are subsequently collected as part of a row vector, û.

A description of log-linear model presmoothing is not given here because (a) it is

richly documented in the literature (Holland & Thayer, 1987, 1989, 2000; Moses &

Holland, 2008); (b) it is an equating step that is already widely followed and

understood by practitioners of equating; and (c) in theory (and consistent with the

goals of this paper), it can be achieved using other methods and models that easily

can be made to match the OSE framework.

1.4.2 Step 2: Estimating the Score Probabilities

The estimated marginal score probabilities r̂ and ŝ are actually computed (explicitly

or not) using the design function (DF) described below. The estimated equating

function can be written to express the influence of the data collection design as

êyðxÞ ¼ ey x;DFðûÞ½ �: (1.3)

Equivalently, it can be written as

êyðxÞ ¼ eyðx; r̂; ŝÞ; (1.4)

where u is generic notation for the data vector that reflects the way the data are

collected and û denotes its estimate.

For example, if the data are collected from an equivalent-groups design, then the

data are in the form of two univariate distributions; in this case the design function

is the identity function and u ¼ (r, s). If the data are collected following a single-

group design, where the same group of test takers takes both test forms X and Y,
then u is the vector whose components are the joint probabilities from the bivariate

distribution. In this case, the design function is a linear function that computes the

marginal probabilities r and s from this bivariate distribution. The design function

becomes more complex as the various equating methods for the NEAT design

become more complex, but the results of its application to vector u are always the

score probability vectors, r and s on T.
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1.4.3 Step 3: Continuization

There are different ways to continuize the discrete score distributions. In the case of

kernel equating (Gaussian, uniform, logistic), the kernel functions are the added

continuous random variables to the original discrete variable. I am describing the

kernel method of continuization because it also includes the linear interpolation.

The traditional equipercentile equating function uses a piecewise linear function as

the new continuous distribution. This also can be expressed as in Equations 1.5 and

1.6, with V being a uniform kernel (see Holland & Thayer, 1989, and Lee & von

Davier, Chapter 10 of this volume).

Consider X(hX) as a continuous transformation of X such that

X hXð Þ ¼ aX X þ hXVð Þ þ 1�aXð ÞmXT ; (1.5)

where

a2X ¼ s2XT
s2XT þ s2Vh

2
X

(1.6)

and hX is the bandwidth controlling the degree of smoothness. In Equation 1.5, V is

a continuous (kernel) distribution with variance s2V and mean 0. The mean and the

variance of X on T are denoted by mXT and s2XT , respectively. The role of aX in

Equation 1.5 is to insure that the first two moments of the transformed random

variable X(hX) are the same as the first two moments of the original discrete variable

X. When hX is large, the distribution of X(hX) approximates the distribution of V;
when hX is small, X(hX) approximates X, but as a continuous function. In von Davier
et al. (2004a), V follows a standard normal distribution (that is, a Gaussian kernel,

with mean 0 and variance 1), which is why the terms Gaussian kernel equating and
kernel equating are sometime used interchangeably. However, Lee and von Davier

(2008; also see Chapter 10 of this volume) discussed the use of alternative kernels

for equating, and in their approach V is a generic continuous distribution. The Y
distribution is continuized in a similar way.

One important property of the OSE framework that was developed for kernel

equating functions (Gaussian or other kernels) is that by manipulating the band-

widths for the new distributions one can obtain a family of equating functions that

includes linear equating (when the bandwidths are large) and equipercentile equat-

ing (when the bandwidths are small) as special cases. The choice of bandwidth

balances the closeness of the continuous distribution to the data and the smoothness

of the new continuous function. The continuized function X(hX) can be evaluated or
diagnosed by comparing its moments to the moments of the discrete score distribu-

tion, in this case, of X. Other OSE methods employ different strategies to continuize

the distributions (see Haberman, Chapter 8 of this volume; Wang, Chapter 9 of this

volume).
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1.4.4 Step 4: Computing the Equating Function

Once the discrete distribution functions have been transformed into continuous

cumulative distribution functions (CDFs), the observed-score equipercentile equating

function that equates X to Y is computed as

êyðxÞ ¼ ey½x;DFðûÞ� ¼ GTc
�1½FTcðx; r̂Þ; ŝ�; (1.7)

where GTc is the continuized cumulative distribution function of Y on the target

population T and FTc is the continuized cumulative distribution function of X on T.
The equating function eY in Equation 1.7 can have different formulas (linear or

nonlinear, for example). In a NEAT design, it can take the form of chained

equating, poststratification equating, Levine equating, and so on.

1.4.5 Step 5: Evaluating the Equating Results and Computing
Accuracy Measures

The equating function can be evaluated by comparing the moments of the equated

scores distribution êyðxÞ to the moments of the targeted discrete-score distribution,

in this case, of Y. See von Davier et al. (2004b, Chapter 4) for a diagnostic measure,

called the percent relative error, that compares the moments of the distributions of

the equated scores to the moments of the reference distribution. Other commonly

used diagnostic measures involve accuracy measures (see below) and historical

information available about the equating results from previous administrations of

forms of the assessment. One might employ quality assurance methods or statistical

process control methods to monitor the stability of the reported scores over time—

such as cumulative sum charts, time series analyses, and so on (see Li et al., Chapter

20 of this volume).

The standard error of equating (SEE) and the standard error of equating differ-

ence (SEED) are described next. von Davier et al. (2004b) applied the delta method
(Kendall & Stuart, 1977; Rao, 1973) to obtain both the SEE and the SEED. The

delta method was applied to the function from Equation 1.7 that depends on the

parameter vectors r and s on T. According to the delta method, the analytical

expression of the asymptotic variance of the equating function is given by

Var½êyðxÞ� ¼ Varfey½x;DFðûÞ�g � JeyJDFŜJ
t

DFJ
t
ey
; (1.8)

where Ŝ is the estimated asymptotic variance of the vectors r and s after pre-

smoothing; Jey is the Jacobian vector of ey, that is, the vector of the first derivatives
of ey (x; r, s) with respect to each component of r and s; and JDF is the Jacobian

matrix of DF, that is, the matrix of the first derivatives of the design function with

respect to each component of vector u.
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The asymptotic SEE for ey(x) is the square root of the asymptotic variance in

Equation 1.8, and it depends on three factors that correspond to the data collection

and manipulation steps carried out so far: (a) presmoothing (using a log-linear

model, for example) through estimating the r and s and their estimated covariance

matrix Ŝ; (b) the data collection design through the JDF, and (c) the combination of

continuization and the mathematical form of the equating function from Step 4

(computing the equating function) in the OSE framework.

Moreover, the formula given in Equation 1.8 makes obvious the modular

character of the OSE framework (and implicitly, of the software package developed

for the OSE framework): If one chooses a different log-linear model, then the only

thing that will change in the formula given in Equation 1.8 is Ŝ. If one changes

the data collection design, the only thing that will change in the formula given

in Equation 1.8 is JDF. Finally, if one changes the equating method (linear or

nonlinear, chained versus frequency estimation, etc.), the only piece that will

change in Equation 1.8 is Jey .

Hence, the formula of the estimated asymptotic variance of the equating function

from Equation 1.8, that is,

OSE framework � JeyJDFŜJ
t

DFJ
t
ey
; (1.9)

could be seen simplistically as the formal representation of the OSE framework.

In addition to the five steps in the equating process described above that are

synthesized in Equation 1.9, the OSE framework includes an explicit description of

the relationship between the observed-score equipercentile and linear equating

functions, which is described below.

1.4.6 The Relation Between Linear and Equipercentile
Equating Functions

von Davier et al. (2004a, b) argued that all OSE functions from X to Y on T can be

regarded as equipercentile equating functions that have the form shown in Equa-

tions 1.7 and 1.10:

EquiXY T xð Þ ¼ G�1
Tc FTcðxÞ½ �; (1.10)

where FTc(x) and GTc(y) are continuous forms of the CDFs of X and Y on T, and

y ¼ G�1
Tc ðpÞ is the inverse function of p ¼ GTc(y). Different assumptions about

FTc(x) and GTc(y) lead to different versions of EquiXY T(x), and, therefore, to
different OSE functions (e.g., chained equating, frequency estimation, etc.).

Let mXT, mYT, sXT, and sYT denote the means and standard deviations of X and Y
on T that are computed from FTc(x) and GTc(y), as in mXT ¼ R

xdFTcðxÞ, and so on.
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In general, any linear equating function is formed from the first two moments of X
and Y on T as

LinXY T xð Þ ¼ mYT þ ðsYT=sXTÞðx� mXTÞ: (1.11)

The linear equating function in Equation 1.11 that uses the first two moments

computed from FTc(x) and GTc(y) will be said to be compatible with EquiXY T(x) in
Equation 1.10. The compatible version of LinXY T(x) appears in the theorem below

(see von Davier et al. 2004a, for the proof of the theorem). The theorem connects

the equipercentile function, EquiXY T(x), in Equation 1.10 to its compatible linear

equating function, LinXY T(x), in Equation 1.11.

Theorem. For any population, T, if FTc(x) and GTc(y) are continuous CDFs, and
F0 and G0 are the standardized CDFs that determine the shapes of FTc(x) and
GTc(y), that is, both F0 and G0 have mean 0 and variance 1 and

FTc xð Þ ¼ F0

x� mXT
sXT

� �
and GTc yð Þ ¼ G0

y� mYT
sYT

� �
; (1.12)

then

EquiXY T xð Þ ¼ G�1
Tc FTcðxÞ½ � ¼ LinXY T xð Þ þ R xð Þ; (1.13)

where the remainder term;R xð Þ; is equal to sYTr
x� mXT
sXT

� �
; (1.14)

and r(z) is the function

r zð Þ ¼ G�1
0 F0ðzÞ½ � � z: (1.15)

When FTc(x) and GTc(y) have the same shape, it follows that r(z) ¼ 0 in Equation
1.15 for all z, so that the remainder in Equation 1.13 satisfies R(x) ¼ 0, and thus
EquiXY T(x) ¼ LinXY T(x).

It is important to recognize that, for the various methods used in the NEAT

design, it is not always true that the means and standard deviations of X and Y used

to compute LinXY T(x) are the same as those from FTc(x) and GTc(y) that are used in
Equation 1.8 to form EquiXY T(x). The compatibility of a linear and equipercentile

equating function depends on both the equating method employed and how the

continuization process for obtaining FTc(x) and GTc(y) is carried out. The compati-

bility of linear and nonlinear equating functions does hold for the kernel equating

methods but does not hold for all classes of equating methods, as discussed in

von Davier, Fournier-Zajack, and Holland (2007). For example, the traditional

method of continuization by linear interpolation (Kolen & Brennan, 2004) does

not reproduce the variance of the underlying discrete distribution. The piecewise
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linear continuous CDF that the linear interpolation method produces is only guar-

anteed to reproduce the mean of the discrete distribution that underlies it. The

variance of the continuized CDF is larger than that of the underlying discrete

distribution by 1/12 (Holland & Thayer, 1989). Moreover, the four moments of X
and Y on T that are implicitly used by the chained linear or the Tucker linear method

are not necessarily the same, nor are they the same as those of the continuized CDFs

of frequency estimation or the chained equipercentile methods.

In conclusion, the OSE framework includes the five steps of the equating

practice formally described in Equation 1.9 and incorporates both the linear and

nonlinear equating functions together with a description of their relationship. The

theorem above, which shows that the linear and equipercentile equating methods

are related, emphasizes the generalizability of the framework. It was shown that the

OSE framework is a statistical modeling framework as described in Figure 1.1,

where the unit of measurement is the test score and the equating of scores is

accomplished via distribution matching.

1.5 Discussion and Outline of the Book

This chapter reviews the existing measurement and equating models for (one-

dimensional) tests that measure the same construct. The intention is to have the

reader conceptually anchor the new models and approaches presented in the

following chapters of the volume into the frameworks outlined in this introduction.

The measurement model presented in Figure 1.1 is the basis for the structure of

this volume. In order to reflect the steps in the measurement model as described in

Figure 1.1, the book has three parts: (a) Research Questions and Data Collection
Designs, (b) Measurement and Equating Models, and (c) Evaluation. The chapters
have been grouped to reflect the match between the research methodologies of their

focus and each of the steps in the measurement process. The classification of the

chapters in these three parts is, of course, approximate; each of the components of

the measurement process is addressed in every paper.

Author Note: Many thanks go tomy colleagues Paul Holland, Jim Carlson, Shelby Haberman, Dan

Eignor, Dianne Henderson-Montero, and Kim Fryer for their detailed reviews and comments on the

material that led to this chapter. Any opinions expressed in this chapter are those of the author and

not necessarily of Educational Testing Service.
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Chapter 2

Equating Test Scores: Toward Best Practices

Neil J. Dorans, Tim P. Moses, and Daniel R. Eignor

Score equating is essential for any testing program that continually produces new

editions of a test and for which the expectation is that scores from these editions

have the same meaning over time. Different editions may be built to a common

blueprint and designed to measure the same constructs, but they almost invariably

differ somewhat in their psychometric properties. If one edition is more difficult

than another, examinees would be expected to receive lower scores on the harder

form. Score equating seeks to eliminate the effects on scores of these unintended

differences in test form difficulty. Score equating is necessary to be fair to exam-

inees and to provide score users with scores that mean the same thing across

different editions or forms of the test.

In high-stakes testing programs, in particular, it is extremely important that test

equating be done carefully and accurately. The reported scores, even though they

represent the endpoint of a large test production, administration, and scoring

enterprise, are the most visible part of a testing program. An error in the equating

function or score conversion can affect the scores for all examinees, which is both a

fairness and a validity concern. The credibility of a testing organization hinges on

activities associated with producing, equating, and reporting scores because the

reported score is so visible.

This chapter addresses the practical implications of score equating. Section 2.1

introduces test score equating as a special case of the more general class of

procedures called score linking procedures. Section 2.2 is concerned with the

material that is available before data are collected for equating, the tests, the anchor

tests, the old form or reference form raw to scale scaling function, and the number

of reference forms available. Section 2.3 lists most common data collection designs

that are used in the equating of test scores. In Section 2.4, we list some common

observed-score equating functions. Section 2.5 describes common data-processing
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practices that occur prior to computations of equating functions. In Section 2.6,

attention is given to how to evaluate an equating function and postequating

activities.

2.1 Linking and Equating: Foundational Aspects

Score linking is used to describe the transformation from a score on one test to a score

on another test; score equating is a special type of score linking.Much has beenwritten

on score equating and linking. The most complete coverage of the entire field of score

equating and score linking, in general, is provided by Kolen and Brennan (2004).

Other works include: von Davier, Holland, and Thayer (2004b); Feuer, Holland,

Green, Bertenthal, and Hemphill (1999); Koretz, Bertenthal, and Green (1999);

Livingston (2004); Holland and Dorans (2006); Flanagan (1951); Angoff (1971);

Petersen, Kolen, and Hoover (1989); and several chapters in Dorans, Pommerich,

and Holland (2007; see Cook, 2007; Holland, 2007; Kolen, 2007; Petersen, 2007; von

Davier, 2007). With all this background material available to the reader, we can be

brief and incisive in our treatment of the salient issues, first distinguishing different

types of linking and then using these distinctions when describing equating issues in

Sections 2.2–2.6.

2.1.1 Classes of Score Linking Methods: Definition of Terms

A link between scores on two tests is a transformation from a score on one test to a

score on another test. The different types of links have been divided into three

basic categories called predicting, scale aligning and equating (Holland & Dorans,

2006). It is essential to understand the differences between these categories because

they are often confused in practice. Understanding the distinctions among these

categories can prevent violations of professional practice.

2.1.1.1 Predicting

Predicting, the oldest form of score linking, has been confused with equating from

the earliest days of psychometrics. The confusion still occurs; Ebretson and Reise

(2000) wrote, “In linear equating, for example, scores on one test form are regressed

on the other test form” (p. 21). The goal of predicting is to minimize errors of

prediction of a score on the dependent or criterion variable from information on

other predictor variables. This goal guarantees an asymmetry between what is being

predicted and what is used to make the prediction. This asymmetry prevents

prediction from meeting one of the fundamental prerequisites of equating, the

goal of which is to produce scores that can be used interchangeably.
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2.1.1.2 Scale Aligning

The goal of scale aligning is to transform the scores from two different tests onto a

common scale. Scaling procedures are about 100 years old. Scale aligning is

the second category in the Holland and Dorans (2006) framework. It has many

subcategories, including activities such as battery scaling (Kolen, 2004), anchor

scaling (Holland & Dorans, 2006), vertical scaling (Harris, 2007; Kolen & Brennan,

2004; Patz & Yao, 2007; Yen, 2007), calibration (Holland & Dorans, 2006), and

concordance (Pommerich & Dorans, 2004). Scale aligning and score equating are

often confused because the statistical procedures used for scale alignment also can

be used to equate tests.

2.1.1.3 Equating

Equating is the strongest form of linking between the scores on two tests. Equating

may be viewed as a form of scale aligning in which very strong requirements

are placed on the tests being linked. The goal of equating is to produce a linkage

between scores on two test forms such that the scores from each test form can be

used as if they had come from the same test. Strong requirements must be put on the

blueprints for the two tests and on the method used for linking scores in order to

establish an effective equating. Among other things, the two tests must measure

the same construct at almost the same level of difficulty and with the same degree of

reliability. Some practices that can help ensure the achievement of equating

requirements are described in Section 2.2.

2.1.1.4 What Constitutes an Equating?

The goal of equating is what distinguishes it from other forms of linking. The goal

of score equating is to allow the scores from both tests to be used interchangeably.

Experience has shown that the scores and tests that produce the scores must satisfy

very strong requirements to achieve this demanding goal of interchangeability.

There are five requirements that are widely viewed as necessary for a linking to

be an equating (Holland & Dorans, 2006):

1. The equal-construct requirement: The two tests should both be measures of the

same construct (latent trait, skill, ability).

2. The equal-reliability requirement: The two tests should have the same level of

reliability.

3. The symmetry requirement: The equating transformation for mapping the scores

of test Y to those of test X should be the inverse of the equating transformation

for mapping the scores of X to those of Y.
4. The equity requirement: It should be a matter of indifference to an examinee as

to which of two tests the examinee actually takes.
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5. The population-invariance requirement: The equating function used to link

the scores of X and Y should be the same regardless of the choice of population

or subpopulation from which it is derived.

Both formal and informal statements of subsets of these five requirements appear

in a variety of earlier sources (Angoff, 1971; Kolen & Brennan, 2004; Lord, 1950,

1980; Petersen et al., 1989). Dorans and Holland (2000) explicitly discussed these

five requirements and indicated various ways in which the five “can be criticized as

being vague, irrelevant, impractical, trivial or hopelessly stringent” (p. 283).

2.2 Test Specifications and Score Linking Plans

2.2.1 Test Specifications

Based on the equity condition (Requirement 4 in Section 2.1.2.1), Lord (1980)

stated that equating was either unnecessary (because it pertains to test forms

intended to be parallel) or impossible (because strictly parallel test forms are

not likely to be constructed in practice). Even so, equatings are conducted to ensure

fair assessment. Although not much can be done about the impossible aspect,

best practices can be used to try to make equating as unnecessary as possible.

Poor-quality tests cannot be equated properly for several reasons. For one, they may

not measure the same construct. Proper test development increases the likelihood

that equating will be unnecessary. Well-defined test specifications are a necessary

first step. Test editions need to be constructed to the same blueprint. Under proper

assembly rules, old and new forms are equally reliable measures of the same

construct that are built to the same set of well-specified content and statistical

specifications.

Untried or new test questions need to be pretested, and pretested under condi-

tions that reflect actual test administration conditions. When the test forms include

unpretested questions or questions pretested in small samples, there is greater

likelihood that test forms will not be identical and that equating adjustments

will be necessary. Plans for test development should be based on the availability

of high-quality pretested material. Continuous testing often can undermine the

quality of tests and test scores by draining pools of pretested items quicker than

these items can be replenished.

2.2.2 Anchor Test

Often an anchor test plays a crucial role in the equating process. It is generally

considered good practice to construct the anchor test according to the test specifica-

tions, so that it is a miniversion of the two tests being equated. That means it should
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have the same difficulty level and contain the same content as the tests to be

equated. In the case where the anchor is internal to the test, context effects become

a possible issue. To minimize these effects, internal anchor (or common) items are

often placed in the same location within each test.

2.2.3 Score Linking Plans

The raw-to-raw equating is not an end, but the means to an end, namely an

appropriate score conversion function. This critical point is sometimes given

short shrift in discussions of equating that focus on methods. A multistep process

is used to put scores from a new test onto an existing score-reporting scale. Before

the new test form is administered, there exists a conversion, s(y), for an old test form
that takes raw scores, y, on the old test form Y onto the score-reporting scale. This

old-form scaling function, s(y), is independent of the new form. Once data are

collected on the new form, data from the new form and the old form are used to

compute a raw-to-raw equating function, e(x), that links raw scores x on a new test

X to those of an old test form Y.
The final step in the process is to produce a function that converts the equated X

raw scores to the score-reporting scale by composing the equating function, y¼ e(x)
with s(y). This puts the raw scores of X onto the reporting scale, ss(e(x)). The
existing score scale for a test limits the quality of the new-form scaling that can be

achieved via the equating of a new form. Equatings can produce poor new-form

scalings if the old-form scaling is problematic. Even tests as widely used as the

SAT® could have undesirable new-form scalings that were affected by poor align-

ment of the score scale with the intended uses of the test score. In the case of the

SAT, poor score scale alignment in which the average Math score was 50 points

higher than the average Verbal score led to widespread misinterpretations about a

person’s relative verbal and mathematical ability and was rectified by recentering of

the SAT scores (Dorans, 2002). Many score scales suffer from poor construction,

whereas others discard useful information because of the way the meaning of the

scale has changed over time. In other words, the value that best equating practices

have for reported scores is sometimes constrained by factors that lie outside the

domain of equating.

Testing programs that use best practices have well-designed score equating plans

and well-aligned score scales that increase the likelihood that scores on different

forms can be used interchangeably. Links to multiple old forms are preferable to a

link to a single old form. The SAT plan is an example of a sound linking plan

that works well, as demonstrated by Haberman, Guo, Liu, and Dorans (2008). Some

testing programs link in a haphazard way as if some magical method of score

equating might play the role of deus ex machina to set scores straight. Data

collection planning, developing linking plans, and maintaining score scales are

crucial best practices.
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2.3 Data Collection Designs Used in Test Score Equating

To obtain the clearest estimates of test-form difficulty differences, all score equating

methods must control for differential ability of the examinee groups employed in

the linking process. Data collection procedures should be guided by a concern for

obtaining equivalent groups, either directly or indirectly. Often, two different tests

that are not strictly parallel are given to two different groups of examinees of

unequal ability. Assuming that the samples are large enough to ignore sampling

error, differences in the distributions of the resulting scores can be due to one or

both of two factors: the relative difficulty of the two tests and the relative ability of
the two groups of examinees on these tests. Differences in difficulty are what test

score equating is supposed to take care of; difference in ability of the groups is a

confounding factor that needs to be eliminated before the equating process can take

place.

In practice, there are two distinct approaches for addressing the separation of test

difficulty and group ability differences. The first approach is to use a common

population of examinees, so there are no ability differences. The other approach is

to use an anchor measure of the construct being assessed by X and Y. When the

same examinees take both tests, we achieve direct control over differential exam-

inee ability. In practice, it is more common to use two equivalent samples of

examinees from a common population instead of identical examinees. The second

approach assumes that performance on a set of common items or an anchor measure

can quantify the ability differences between two distinct, but not necessarily

equivalent, samples of examinees. The use of an anchor measure can lead to

more flexible data collection designs than the use of common examinees. However,

the use of anchor measures requires users to make various assumptions that are not

needed when the examinees taking the tests are either the same or from equivalent

samples. When there are ability differences, the various statistical adjustments for

ability differences often produce different results.

In all of our descriptions, we will identify one or more populations of examinees

and one or more samples from these populations. We will assume that all samples are

random samples, even though in practice this may be only an approximation. More

extended discussions of data collection designs are given in Angoff (1971), Petersen

et al. (1989), von Davier et al. (2004b), Kolen and Brennan (2004), and Holland and

Dorans (2006).

The single-group design is the simplest data collection design. In the single-

group design, all examinees in a single sample of examinees from population P take

both tests. The single-group design can provide accurate equating results with

relatively small sample sizes.

In most equating situations, it is impossible to arrange for enough testing time

for every examinee to take more than one test. The simplest solution is to have two

separate samples take each form of the test. In the equivalent-groups design, two
equivalent samples are taken from a common population P; one is tested with test

form X and the other with test form Y. The equivalent-groups design is often used
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for equating. Sometimes test booklets are assigned randomly to groups, which is

why this design is sometimes called the random-groups design (Kolen & Brennan,

2004). A more common situation is to construct the two samples by “spiraling” the

test booklets for the two tests. The booklets are alternated in the packaging process

so that when the tests are distributed to examinees they are alternated, first form X,
then form Y, and then form X again, and so on. Well-executed, spiraled samples are

often more “equivalent” (i.e., less different) than random samples because they are

approximately stratified random samples. The equivalent-groups design is fairly

convenient to administer. It does not require that the two tests have any items in

common, but this design can be used even when they do have items in common.

When samples sizes are large and forms can be reused without security problems,

the equivalent-groups design is usually regarded as a good choice because it avoids

the issue of possible order effects that can arise in the single-group design where

each examinee takes both tests.

In order to allow for the possibility of order effects in the single-group design,

the sample is sometimes randomly divided in half; in each half-sized subsample the

two tests are taken in different orders—form X first and then form Y, or vice versa.
The result is the counterbalanced data collection design. The counterbalanced

design contains both the single-group and equivalent-groups designs. Usually, the

counterbalanced design requires a special study for collecting the data.

In anchor test designs there are two populations P and Q, with a sample of

examinees from P taking test X, and a sample from Q taking test Y. In addition, both
samples take an anchor test,A.We follow the terminology of vonDavier et al. (2004b)

and call this the nonequivalent groups with anchor test (NEAT) design. Kolen and

Brennan (2004) and others referred to this as the common-item nonequivalent groups
design or simply the common item or the anchor test design.

The role of the anchor test is to quantify the differences in ability between

samples from P and Q that affect their performance on the two tests to be equated,

X and Y. The best kind of an anchor for equating is a test that measures the same

construct that X and Y measure. The anchor A is usually a shorter and less reliable

test than the tests to be equated.1

Formally, the NEAT design contains two single-group designs. The anchor test

design is more flexible than the equivalent-groups design because it allows the two

samples taking X and Y to be different, or nonequivalent. It is also more efficient

than the single-group design because it does not require examinees to take both

X and Y.
Although the use of anchor tests may appear to be a minor variation of the previous

data collection designs, the use of common items involves new assumptions that are

1There are exceptions to this general case. For example, sometimes a multiple-choice anchor test is

used to link two versions of an all constructed response test. Here the anchor score is more reliable

than the scores to be equated. Although the characteristics of anchor tests are usually not

specifically described in the requirements of equating or in summaries of these requirements, in

practice linkings that utilize anchors that measure different constructs than the tests to be equated

are considered unlikely to meet the requirements of equating.
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not necessary in the use of single-group, equivalent-groups, and counterbalanced

designs, where common examinees are used; see Sections 2.1–2.3 of Holland and

Dorans (2006). Some type of assumption, however, is required in the NEAT design to

make up for the fact that X is never observed for examinees in Q and Y is never

observed for examinees in P. For this reason, there are several distinct methods of

scaling and equating tests using the NEAT design. Each of these methods corresponds

to making different untestable assumptions about the missing data.

One way to think about the difference between the NEAT design and the single-

group, equivalent-groups, and counterbalanced designs is as the difference between

observational studies versus experimental designs (Rosenbaum, 1995). The single-

group design is like a repeated measures design with a single group and two

treatments, the equivalent-groups design is like a randomized comparison with

two treatment groups, and the counterbalanced design is like a repeated measures

design with a single group and counterbalanced order of treatments. In contrast, the

NEAT design is like an observational study with two nonrandomized study groups

that are possibly subject to varying amounts of self-selection.

2.3.1 Discussion of Data Collection Designs

Data collection is one of themost important aspects of best practices in equating. Each

of the data collection designs mentioned in this section has advantages and disadvan-

tages that make it more or less useful for different situations. For equating, the single-

group design requires the smallest sample sizes, and the equivalent-groups design

requires the largest sample sizes to achieve the same level of accuracy, asmeasured by

the standard error of equating (see Lord, 1950; Holland & Dorans, 2006). The anchor

test (i.e., NEAT) designs require sample sizes somewhere in between those of the

single- and equivalent-groups designs, although the sample size requirements depend

on how strongly correlated the anchor test is with the two tests to be equated and how

similar the two populations are. Higher correlations and smaller differences in profi-

ciency between populations require smaller sample sizes than lower correlations and

larger differences in proficiency between populations.

We would argue that the ideal design, in theory and in terms of best practice, is a

large-sample, equivalent-groups design with an external anchor test. If the anchor

test is administered last, only the anchor test can be affected by possible order

effects. A comparison of the distributions of the anchor test in the two (equivalent)

samples then allows differential order effects to be identified. If they are substantial,

the anchor test can be ignored, leaving a simple equivalent-groups design, where no

order effects are possible. If the anchor test is internal to the two tests, then context

or order (e.g., item location effects) may arise and need to be dealt with.

An important potential drawback of the equivalent-groups design for score

equating is that the test form that has been previously equated has to be given at

least twice—once when it was originally equated and then again as the old form in

the equating of a new form. In some testing programs, it may be problematic for
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reasons of test security to reuse operational forms. This leads to consideration of

special administrations for purposes of equating. However, if special nonopera-

tional test administrations are arranged to collect equating data using the equivalent-

groups design, then the issue of examinee motivation arises, as discussed in Holland

and Dorans (2006).

The single-group design requires a smaller sample size to achieve the same level

of statistical accuracy as that obtained by an equivalent-groups design with a larger

sample, but it brings with it issues of order effects and requires twice as much time

to administer both tests. A particular problem with the single-group design is that

there is no way to assess for order effects. The counterbalanced design, on the other

hand, allows order effects to be estimated. However, if they are large and different

for the two tests, then there may be no option but to ignore the data from the tests

given second and treat the result as an equivalent-groups design. Because of the

greatly reduced sample size, the resulting equivalent-groups design may produce

equating results that are less accurate than desired. von Davier et al. (2004b)

proposed making a formal statistical decision for the counterbalanced design to

assess the order effects.

The anchor test design is the most complex design to execute well, especially

if differences in ability between the old- and new-form equating samples are

large. Whether an equating test is an external anchor or an internal anchor also

has an impact, as do the number of anchor tests and the type of score linking plan

employed.

2.3.2 Considerations for External Anchor Tests

It is often advised that the anchor test should be a miniversion of the two tests being

equated (Angoff, 1971). Making the anchor test a miniversion of the whole test is

sometimes in conflict with the need to disguise an external anchor test to make it

look like one of the scored sections of the test. For example, to be a miniversion of

the test, the anchor test might need to include a variety of item types, whereas, to

mirror a specific section of the test, the anchor test might need to include only a

limited number of item types. The phrase external anchor usually refers to items

that are administered in a separately timed section and that do not count towards the

examinee’s score. One major advantage of external anchors is that they may serve

multiple purposes, for example, equating, pretesting, and tryout of new item types.

This is accomplished by spiraling versions of the test with different content in this

“variable” section. This process also can be used to improve test security by

limiting the exposure of the anchor test to a relatively small proportion of the

total group tested.

For best practices, it is important to disguise the external anchor test so that it

appears to be just another section of the test. One reason for this is that some

examinees may identify the anchor test and, knowing that it does not count towards

their final score, skip it or use the time to work on sections that count towards their
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score (even though they are instructed not to do this). Although this type of

behavior may appear to benefit these examinees, because of the way that the anchor

test is used in equating, such behavior actually may result in lowering the scores of

all examinees if enough of them do it. This counterintuitive result can be explained

as follows. The anchor test is used to compare the performance of the current group

of examinees on the anchor test to that of a previous group. If a substantial number

of the current examinees underperform on the anchor test, this will make them

appear less able than they really are. As a consequence, the new test will appear to

be somewhat easier than it really is relative to the old test. In score equating, a raw

score on an easier test is converted to a lower scaled score than that for the same raw

score on a harder test. Therefore, the scores reported on the new test will be lower

than they would have been had all examinees performed up to their abilities on the

anchor test. As indicated in Section 2.5.1, it is best practice to exclude from the

equating analysis any examinees whose anchor test performance is inconsistent

with their total test performance.

2.3.3 Considerations for Internal Anchor Tests

Items in an internal anchor test are part of the assessment and count towards each

examinee’s score. Internal anchor items are usually spread throughout the test.

Some external anchors (i.e., items that are left out of or are external to the total

score) are administered internally and consequently face some of the issues asso-

ciated with internal anchors. For the observed-score equating methods described in

Section 2.4, where the score on the anchor test plays an important role, it is

desirable for the anchor test to be a miniversion of the two tests. This may be

more feasible for internal anchor tests than for external anchor tests.

Because the items in an internal anchor test count towards the score, examinees

are unlikely to skip them. On the other hand, once anchor test items have been used

in the test administration of the old form, the items may become susceptible to

security breaches and become known by examinees taking the new form to be

equated. For anchor items to be effective, they must maintain their statistical

properties across the old and new forms. The primary problems with internal anchor

tests are context effects, along with the just-mentioned security breaches. Context

effects can occur when common items are administered in different locations

(e.g., common Item 10 in one form is Item 20 in the other form) or under different

testing conditions (i.e., paper and pencil versus computer delivered), or when they

are adjacent to different kinds of items in the two tests. These effects are well

documented (Brennan, 1992; Harris & Gao, 2003; Leary & Dorans, 1985). Security

breaches are an unfortunate reality for many testing programs, and due diligence is

required to prevent them or to recognize them when they occur.
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2.3.4 Strengthening the Anchor Test

When there are only small differences in ability between the two samples of

examinees used in an anchor test design, all linear equating methods tend to give

similar results, as do all nonlinear equating methods. Linear and nonlinear equating

methods are discussed in Section 2.4. To the extent that an anchor test design

(Section 2.3.4) is almost an equivalent-groups design (Section 2.3.2) with an anchor

test, the need for the anchor test is minimized and the quality of equating increases.

When the two samples are very different in ability, the use of the anchor test

information becomes critical, because it is the only means for distinguishing differ-

ences in ability between the two groups of examinees from differences in difficulty

between the two tests that are being equated. The most important properties of the

anchor test are its stability over occasions when it is used (mentioned above) and its

correlation with the scores on the two tests being equated. The correlation should be as

high as possible. Long internal and external anchors are generally better for equating

than short ones, as longer anchors are usuallymore reliable andmore highly correlated

with the tests.

In many settings, there is only one old form. Some tests are equated to two old

forms, sometimes routinely, sometimes in response to a possible equating problem

with one of the old forms. The SAT links each new form back to four old forms

through four different anchor tests (Haberman et al., 2008). This design reduces the

influence of any one old form on the determination of the new-form raw-to-scale

conversion. It is desirable to have links to multiple old forms, especially in cases

where a large ability difference is anticipated between the groups involved in one of

the links.

2.4 Procedures for Equating Scores

Many procedures have been developed over the years for equating tests. Holland

and Dorans (2006) considered three factors when attempting to develop a taxonomy

of equating methods: (a) common-population versus common-item data collection

designs, (b) observed-score versus true-score procedures, and (c) linear versus

nonlinear methods.

Because equating is an empirical procedure, it requires a data collection design

and a procedure for transforming scores on one test form to scores on another.

Linear methods produce a linear function for mapping the scores from X to Y,
whereas nonlinear methods allow the transformation to be curved. Observed-score

procedures directly transform (or equate) the observed scores on X to those on Y.
True-score methods are designed to transform the true scores on X to the true scores

of Y. True score methods employ a statistical model with an examinee’s true score

defined as their expected observed test score based on the chosen statistical model.

The psychometric models used to date are those of classical test theory and item
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response theory. Holland and Hoskens (2003) showed how these two psychometric

models may be viewed as aspects of the same model.

In this section, we will limit our discussion to observed-score equating methods

that use the data collection designs described in Section 2.3. Our focus is on

observed-score equating because true scores are unobserved and consequently

primarily of theoretical interest only. Consult Holland and Dorans (2006) for

more complete treatments of observed-score and true-score procedures.

2.4.1 Observed-Score Procedures for Equating Scores
in a Common Population

Three data collection designs in Section 2.3 make use of a common population of

examinees: the single-group, the equivalent-groups, and the counterbalanced

designs. They all involve a single populationP, which is also the target population, T.
We will use a definition of observed-score equating that applies to either linear

or nonlinear procedures, depending on whether additional assumptions are satisfied.

This allows us to consider both linear and nonlinear observed-score equating

methods from a single point of view.

Some notation will be used throughout the rest of this chapter. The cumulative
distribution function (CDF) of the scores of examinees in the target population, T,
on test X is denoted by FT(x), and it is defined as the proportion of examinees in T
who score at or below x on test X. More formally, FT(x) ¼ P{X � x j T}, where
P {. j T} denotes the population proportion or probability in T. Similarly, GT(y) ¼
P{Y� y j T}, is the CDF of Y over T. CDFs increase from 0 up to 1 as x (or y) moves

from left to right along the horizontal axis in a two-way plot of test score by

proportion of examinees. In this notation, x and y may be any real values, not

necessarily just the possible scores on the two tests. For distributions of observed

scores such as number right or rounded formula scores, the CDFs are step functions

that have points of increase only at each possible score (Kolen & Brennan, 2004). In

Section 2.4.3 we address the issue of the discreteness of score distributions in detail.

2.4.1.1 The Equipercentile Equating Function

The equipercentile definition of comparable scores is that x (a score on test form X)
and y (a score on test form Y) are comparable in T if FT(x)¼ GT(y). This means that

x and y have the same percentile in the target population, T.When the two CDFs are

continuous and strictly increasing, the equation FT(x) ¼ GT(y) can always be

satisfied and can be solved for y in terms of x. Solving for y leads to the equiper-
centile function, EquiYT(x), that links x to y on T, defined by

y ¼ EquiYT xð Þ ¼ G�1
T ðFTðxÞÞ: (2.1)
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In Equation 2.1, y ¼ G�1
T ðpÞ denotes the inverse function of p¼GT(y). Note that

with discrete data, this relationship does not hold because for most x scores there is
no y score for which the two cumulative distributions, one for x and one for y are

exactly equal. Hence, with most applications, steps are taken to make the data

appear continuous, and different steps can yield different answers.

Note that the target population T is explicit in the definition of EquiYT(x) (Dorans&
Holland, 2000; Holland &Dorans, 2006; von Davier et al., 2004b). In general, there is

nothing to prevent EquiYT(x) from varying with the choice of T, thereby violating

Requirement 5, the subpopulation-invariance requirement, of Section 2.1.2.1. The

equipercentile function is used for equating and other kinds of linking. For equating,

we expect the influence of T to be small or negligible, and we call the scores

equivalent. In other kinds of linking, T can have a substantial effect, and we call the

scores comparable in T.

2.4.1.2 The Linear Equating Function

If Equation 2.1 is satisfied, then EquiYT(x) will transform the distribution of X on T
so that it is the same as the distribution of Y on T.

It is sometimes appropriate to assume that the two CDFs, FT(x) and GT(y), have
the same shape and only differ in their means and standard deviations. To formalize

the idea of a common shape, suppose that FT(x) and GT(y) both have the form,

FT xð Þ ¼ K½ðx� mXTÞ=sXT and GT yð Þ ¼ K� ½ðy� mYTÞ=sYT�; (2.2)

where K is a CDF with mean zero and standard deviation 1.

When Equation 2.2 holds, FT(x) andGT(y) both have the shape determined by K.
In this case, it can be shown that the equipercentile function is the linear function,
LinYT(x), defined as

LinYT xð Þ ¼ mYT þ ðsYT=sXTÞðx� mXTÞ: (2.3)

The linear function also may be derived as the transformation that gives the X
scores the same mean and standard deviation as the Y scores on T. Both of the linear

and equipercentile functions satisfy the symmetry requirement (Requirement 3)

of Section 2.1.2.1. This means that LinXT(y) ¼ LinYT
�1(x), and EquiXT(y) ¼

EquiYT
�1(x), i.e., equating Y to X is the inverse of the function for equating X to Y.

In general, the function EquiYT(x) curves around the function LinYT(x).
The linear function requires estimates of the means and standard deviations of X

and Y scores over the target population, T. It is easy to obtain these estimates for the

single-group and equivalent-groups designs described in Section 2.3 (see Angoff,

1971, or Kolen & Brennan, 2004). It is less straightforward to obtain estimates for

the counterbalanced design, as noted by Holland and Dorans (2006).
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2.4.2 Procedures for Equating Scores on Complete Tests
When Using Common Items

The anchor test design is widely used for equating scores because its use of

common items to control for differential examinee ability gives it greater opera-

tional flexibility than the approaches using common examinees. Examinees need

only take one test, and the samples need not be from a common population.

However, this flexibility comes with a price. First of all, the target population is

less clear-cut for the NEAT design (see Section 2.3.4)—there are two populations,

P and Q, and either could serve as the target population. In addition, the use of the

NEAT design requires additional assumptions to allow for the missing data—X is

never observed in Q and Y is never observed in P. We use the term complete test to
indicate that everyone in P sees all items on X and that that everyone in Q sees all

items on Y. Our use of the term missing data is restricted to data that are missing by

design. The assumptions needed to make allowances for the missing data are not

easily tested with the observed data, and they are often unstated. We will discuss

two distinct sets of assumptions that may be used to justify the observed-score

procedures that are commonly used with the NEAT design.

Braun and Holland (1982) proposed that the target population for the NEAT

design, or what they called the synthetic population, be created by weightingP andQ.
They denoted the synthetic population by T¼ wPþ (1� w)Q, by which they meant

that distributions (or moments) of X or Y over T are obtained by first computing

them over P and Q, separately, and then averaging them with w and (1 � w) to get

the distribution over T. There is considerable evidence that the choice of w has a

relatively minor influence on equating results; for example, see von Davier et al.

(2004b). This insensitivity to w is an example of the population-invariance require-

ment of Section 2.1.2.1. The definition of the synthetic population forces the user

to confront the need to create distributions (or moments) for X on Q and Y in P,
where there are no data. In order to do this, assumptions must be made about the

missing data.

Equating methods used with the NEAT design can be classified into two major

types, according to the way they use the information from the anchor. The first type

of missing-data assumption commonly employed is of the poststratification equat-
ing (PSE) type; the second is of the chain equating (CE) type. Each of these types of
assumptions asserts that an important distributional property that connects scores

on X or Y to scores on the anchor test A is the same for any T ¼ wP þ (1 � w)Q, in
other words, is population invariant. Our emphasis here is on the role of such

assumptions for observed-score equating because that is where they are the most

completely understood at this time.

The PSE types of assumptions all have the form that the conditional distribution

of X given A (or of Y given A) is the same for any synthetic population, T ¼ wP þ
(1 � w)Q. In this approach, we estimate, for each score on the anchor test, the

distribution of scores on the new form and on the old form in T. We then use these

estimates for equating purposes as if they had actually been observed in T. The PSE
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type of equating assumes that the relationship that generalizes from each equating

sample to the target population is a conditional relationship. In terms of the missing

data in the NEAT design, this means that conditional on the anchor test score, A, the
distribution of X in Q (where it is missing) is the same as in P (where it is not

missing). In the special case of an equivalent-groups design with anchor test, P¼ Q
and the PSE assumptions hold exactly. When P and Q are different, the PSE

assumptions are not necessarily valid, but there are no data to contradict them.

The CE assumptions all have the form that a linking function from X to A (or

from Y to A) is the same for any synthetic population, T ¼ wP þ (1 � w)Q. In this

approach, we link the scores on the new form to scores on the anchor and then link

the scores on the anchor to the scores on the old form. The “chain” formed by these

two links connects the scores on the new form to those on the old form. The CE type

of equating approach assumes that the linking relationship that generalizes from

each equating sample to the target population is an equating relationship. It is less

clear for the CE assumptions than for the PSE assumptions what is implied about

the missing data in the NEAT design (Kolen & Brennan, 2004, p. 146).

In the special case of an equivalent-groups design with anchor test, P ¼ Q and

the CE assumptions hold exactly. In this special situation, the corresponding

methods based on either the PSE or the CE assumptions will produce identical

results. When P and Q are different, the PSE assumptions and CE assumptions can

result in equating functions that are different, and there are no data to allow us to

contradict or help us choose between either set of assumptions.

In addition to the PSE and CE types of procedures, classical test theory may

be used to derive an additional linear observed-score procedure for the NEAT

design—the Levine observed-score equating function, LevYT(x) (Kolen & Brennan,

2004). LevYT(x) may be derived from two population-invariance assumptions that

are different from those that we have considered so far and that are based on classical

test theory.

2.5 Data Processing Practices

Prior to equating, several steps should be taken to improve the quality of the data.

These best practices of data processing deal with sample selection, item screening,

and continuizing and smoothing score distributions.

2.5.1 Sample Selection

Tests are designed with a target population in mind (defined as T throughout Section

2.4). For example, admissions tests are used to gather standardized information about

candidates who plan to enter a college or university. The SAT excludes individuals

who are not juniors or seniors in high school from its equating samples because they

are not considered members of the target population (Liang, Dorans, & Sinharay,
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2009). Consequently, junior high school students, for whom the test was not devel-

oped but who take the test, are not included in the equating sample. In addition, it is

common practice to exclude individuals whomay have taken the anchor test (whether

internal or external) at an earlier administration. This is done to remove any potential

influence of these individuals on the equating results. Examinees who perform well

below chance expectation on the test are sometimes excluded, though many of these

examinees already might have been excluded if they were not part of the target group.

There is an issue as to whether nonnative speakers of the language in which the test is

administered should also be excluded. One study by Liang et al. (2009) suggested this

may not be an issue as long as the proportion of nonnative speakers does not change

markedly across administrations.

Statistical outlier analysis can be used to identify those examinees whose anchor

test performance is substantially different from their performance on the opera-

tional test, namely the scores are so different that both scores cannot be plausible

indicators of the examinee’s ability. Removing these examinees from the equating

sample prevents their unlikely performance from having an undue effect on the

resulting equating function.

2.5.2 Checking That Anchor Items Act Like Common Items

For both internal anchor (anchor items count towards the total score) and external

anchor (items do not count towards the score) tests, the statistical properties of the

common items should be evaluated to make sure they have not differentially

changed from the one test administration to the other. Differential item functioning

methods may be used to compare the performance of the common items with the two

test administrations treated as the reference and focal groups, and the total score on

the common items as the matching criterion (see Holland & Wainer, 1993, espe-

cially Chapter 3). Simple plots of item difficulty values and other statistics also may

be used to detect changes in items. Internal common items are susceptible to context

effects because they may be embedded within different sets of items in the two tests.

Changes in widely held knowledge also may lead to changes in performance on

anchor test items. For example, a hard question about a new law on a certification

exam may become very easy once the law becomes part of the standard training

curriculum. There are many examples of this type of “rapid aging” of test questions.

2.5.3 The Need to Continuize the Discrete Distributions of Scores

The equipercentile function defined in Section 2.5.2 can depend on how FT(x) and
GT(y) are made continuous or continuized. Test scores are typically integers, such

as number-right scores or rounded formula-scores. Because of this, the inverse

function, required in Equation 2.1 of Section 2.4.1.1, is not well defined—for many
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values of p, there is no score, y, for which p¼GT(y). This is not due to the finiteness
of real samples, but rather to the discreteness of real test scores. To get around this,
three methods of continuization of FT(x) and GT(y) are in current use. Holland and

Dorans (2006) treated two of these methods, the linear interpolation and kernel

smoothing methods, in detail. The linear equating function defined in Equation 2.3

of Section 2.4.1.2 is a third continuization method.

The first two approaches to continuization have two primary differences. First, the

use of linear interpolation results in an equipercentile function that is piecewise linear

and continuous. Such functions may have “kinks” that practitioners feel need to be

smoothed out by a further smoothing, often called postsmoothing (Fairbank, 1987;

Kolen & Brennan, 2004). In contrast, kernel smoothing results in equipercentile

functions that are completely smooth (i.e., differentiable everywhere) and that do

not need further postsmoothing. Second, the equipercentile functions obtained by

linear interpolation always map the highest score on test form X into the highest score

on test form Y and the same for the lowest scores (unlike kernel smoothing and the

linear equating function). While it is sometimes desirable, in some cases the highest

score on an easier test should not be mapped onto the highest score of a harder test.

For more discussion of this point, see Petersen et al. (1989), Kolen and Brennan

(2004), and von Davier et al. (2004b).

2.5.4 Smoothing

Irregularities in the score distributions can produce irregularities in the equipercen-

tile equating function that do not generalize to other groups of test takers. Conse-

quently, it is generally considered advisable to smooth the raw-score frequencies,

the CDFs, or the equipercentile equating function itself (Holland & Thayer, 1987,

2000; Kolen & Jarjoura, 1987; Kolen & Brennan, 2004; von Davier et al., 2004b).

The purpose of this step is to eliminate some of the sampling variability present in

the raw-score frequencies, in order to produce smoother CDFs for computation of

the equipercentile function.

When presmoothing data, it is important to achieve a balance between a good

representation of the original data and smoothness. Smoothness reduces sampling

variability, whereas a good representation of the data reduces the possibility of bias.

For example, if a log-linear model is used, it needs to preserve the most important

features of the data, such as means, variances and skewnesses, and any other special

features. The more parameters employed in the smoothing, the better the model will

represent the original data, but the less smooth the fitted model becomes.

2.6 Evaluating an Equating Function

Quality and similarity of tests to be equated, choice of data collection design,

characteristics of anchor test in relation to the total tests, sample sizes and examinee
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characteristics, screening items, and tests for outliers and choice of analyses all

involve best practices that contribute to a successful equating. First, we summarize

best practices. Then we discuss challenges to the production of a quality equating

and close by discussing directions for additional research.

2.6.1 Best Practices

The amount of data collected (sample size) has a substantial effect on the usefulness

of the resulting equating. Because it is desirable for the statistical uncertainty

associated with test equating to be much smaller than the other sources of variation

in test results, it is important that the results of test equating be based on samples

that are large enough to insure this.

Ideally, the data should come from a large representative sample of motivated

examinees that is divided in half either randomly or randomly within strata to

achieve equivalent groups. Each half is administered either the new form or the old

form of a test. If timing is generous and examinees are up to the task of taking both

tests, a counterbalanced design could be employed in which each half of the sample

is broken into halves again and then both the new and old forms are administered to

examinees in a counterbalanced order.

When an anchor test is used, the items are evaluated via differential item

functioning procedures to see if they are performing in the same way in both the

old- and new-form samples. The anchor test needs to be highly correlated with the

total tests. All items on both tests are evaluated to see if they are performing as

expected.

It is valuable to equate with several different models, including both linear and

equipercentile models. In the equivalent-groups case, the equipercentile method can

be compared to the linearmethod using the standard error of equating, which describes

sampling error, and the difference that matters, an effect size that can be used to assess

whether differences in equating functions have practical significance or is an artifact

of rounding. Holland and Dorans (2006) described the difference that matters, the

standard error of equating, and the standard error of equating difference. If the

departures from linearity are less than the difference that matters and less than what

would be expected due to sampling error, the linear model is often chosen on the

grounds of parsimony because it was not sufficiently falsified by the data. Otherwise,

the more general, less falsifiable, equipercentile model is selected. Rijmen, Qu, and

von Davier (Chapter 19, this volume) provide another approach to choosing among

linking functions.

In the anchor test case, it is particularly important to employ multiple models, as

each model rests on different sets of assumptions. The search for a single best model

that could be employed universally would be unwise data analysis (Tukey, 1963).

An equating should be checked for its reasonableness. How do we determine

reasonableness? We compare the raw-to-scale conversion for the new form to those

that have been obtained in the past. Is the new form conversion an outlier? Is it
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consistent with other difficulty information that may be available for that form and

other forms that have been administered in the past? Is the performance of the group

taking the new form consistent with the performance of other groups that are

expected to be similar to it? For example, in testing programs with large volumes

and relatively stable populations, it is reasonable to expect that the new-form

sample will have a similar scale score distribution to that obtained at the same

time the year before. If the test is used to certify mastery, then the pass rates should

be relatively stable from year to year, though not necessarily across administrations

within a year.

2.6.2 Challenges to Producing High-Quality Equatings

Large, representative, motivated samples that result from a random assignment of

test forms to examinees are not always attainable. Reliability is not always as high

as desired. Anchor tests may not be very reliable, especially internal anchors with

few items. Anchors, especially external anchors, are not always highly related to the

tests being equated. Tests are not always appropriate for the group that takes them.

These issues often arise when best design and data collection practices are not

followed.

2.6.2.1 Data Collection Design Issues

Some threats to sound equating are related to the choice of data collection design.

The NEAT design is often used because of the greater flexibility it provides.

Statistical procedures are needed to adjust for ability differences between groups

when the NEAT design is used. Assumptions need to be made in order to make

these adjustments. The assumptions may be flawed.

2.6.2.2 Psychometric Properties of the Tests and Anchors

Characteristics of the test to be equated affect the quality of equating. Pretesting of

untried items prior to their operational use produces higher quality exams. The

absence of pretesting may result in tests with fewer scorable items than planned.

The resulting shorter, less reliable tests are harder to equate because a greater

portion of score variability is noise and the resultant equating functions are less

stable. More importantly, tests made up of unpretested items can turn out to be

different in content and difficulty from the tests to which they are to be equated;

these factors increase the difficulty of equating.

The role of the anchor test is to provide a common score that can be used to

adjust for group ability differences before adjusting for test difficulty differences
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via equating. Scores from short anchor tests tend to have inadequate reliabilities and

consequently less than desirable correlations with the test scores. Low correlations

also may result when the content of the anchor test differs from the test. Context

effects can affect the comparability of anchor items. Anchors that are too hard or

too easy for the target population produce skewed score distributions that are not

helpful for equating.

To disguise the anchor items in a NEAT design, the items are often embedded

within sections of scored operational items. Internal anchors or common items may

not be located in the same item positions within the old and new forms, making

them more susceptible to context effects that may diminish their utility as measures

of ability. In addition, the common items may be few in number, making the anchor

test relatively unreliable and less useful for identifying differences in ability

between the samples.

2.6.2.3 Samples

Unrepresentative or unmotivated samples undermine equating. Special care should

be taken to ensure that only members of the population of interest are included in

the samples. If possible, the sample should be representative of the population as

well.

With the NEAT design, the old- and new-form samples may perform very

differently on the anchor test. Large ability differences on the anchor test tend to

yield situations where equating is unsatisfactory unless the anchor is highly related

to both tests to be equated. In this setting, different equating methods tend to give

different answers unless the anchor test is strongly related to both the old and new

tests. This divergence of results is indicative of a poor data collection design.

Equating cannot be done effectively in small samples. The smaller the sample size,

the more restricted is the class of stable equating methods. Smoothing score distribu-

tions works in moderately sized samples but does not help much with very small

samples, especially when it is not clear how representative the sample is of the

intended population. In these situations, one option may be to make strong assump-

tions about the equating function (Livingston & Kim, Chapter 7, this volume). For

example, it may be necessary to assume the identity is a reasonable approximation to

the equating function or that the identity shifted by a constant that is estimated by the

data provides a reasonable approximation.

The best practices solution to the small sample size problem may be to report

raw scores and state that they cannot be compared across test forms. If the sample

size suggested by consideration of standard errors is not achieved, raw scores could

be reported with the caveat that they are not comparable to other scores, but that

they could be made comparable when adequate data become available. This would

protect testing organizations from challenges resulting from the use of either biased

linking functions or unstable equating functions. To do otherwise might be problematic

over the long term.
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2.6.2.4 Lack of Population Invariance

One of the most basic requirements of score equating is that equating functions, to

the extent possible, should be subpopulation invariant.2 The “same construct” and

“equal reliability” requirements are prerequisites for subpopulation invariance. One

way to demonstrate that two tests are not equatable is to show that the equating

functions used to link their scores are not invariant across different subpopulations

of examinees. Lack of invariance in a linking function indicates that the differential

difficulty of the two tests is not consistent across different groups. Note that

subpopulation invariance is a matter of degree. In the situations where equating is

usually performed, subpopulation invariance implies that the dependence of the

equating function on the subpopulation used to compute it is small enough to be

ignored.

Score equity assessment focuses on whether or not test scores on different forms

that are expected to be used interchangeably are in fact interchangeable across

different subpopulations (Dorans & Liu, 2009). The subpopulation invariance of

linking functions is used across important subgroups (e.g., gender groups) to assess

the degree of score exchangeability. Score equity assessment focuses on invariance

at the reported score level. It is a basic quality control tool that can be used to assess

whether a test construction process is under control, as can checks on the consis-

tency of raw-to-scale conversions across forms (Haberman et al., 2008).

2.6.3 Additional Directions for Future Research

There is a need for comprehensive empirical investigations of equating conditions

as well as additional theoretical work that can further inform the best practices

described in this chapter. The various challenges discussed in previous portions of

this section should be explored via systematic investigations of the appropriateness

of different equating procedures in a variety of realistic settings. These empirical

investigations have their progenitors, such as the comprehensive studies conducted

by Marco, Petersen, and Stewart (1983a) as well as other studies cited in Kolen and

Brennan (2004). Recent work by Sinharay and Holland (2010) is indicative of the

kind of work that can be done to better understand the robustness of various

procedures to violation of their assumptions (See also Sinharay, Holland, & von

Davier, Chapter 17, this volume.)

Foremost among factors that need to be studied are the effects on equating

results of the magnitude of ability differences between P and Q as measured by

the anchor items and of the shape of the score distributions. In addition, it would be

2Note that these subpopulations should not be defined on the basis of the tests to be equated or the

anchor test, because the assumptions made by equating methods are sensitive to direct selection on

the test or anchor, as demonstrated by Wright and Dorans (1993).
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worthwhile to manipulate difficulty differences between X, Y and A as well as the

reliability of the total score and the anchor score, expanding on investigations such

as Moses and Kim (2007). Correlations of the anchor score with total score and

sample size should also be manipulated and studied. Ideally, real data would be

used as the starting point for these studies.

Another area that needs attention is the consistency of equating results over long

periods of time, a point made by Brennan (2007) and studied recently on the SAT®

by Haberman et al. (2008). These researchers examined the consistency of SAT

Math and SAT Verbal equatings between 1995 and 2005 and found them to be very

stable. This type of work is especially important in settings where tests are admi-

nistered on an almost continuous basis (Li, Li, & von Davier, Chapter 20, this

volume). In these settings, substantial score drift may occur such that scores may

not be comparable across periods as short as one year. The quest to test continu-

ously may subvert one of the basic goals of fair assessment.

Several new methods for equating as well as some new definitions have been and

will be introduced. These methods should be stress tested and adapted before they

are adopted for use. Procedures that make strong assumptions about the data may

give answers that are theoretically pleasing but are difficult to apply in practice and

even more difficult to justify to test users. Holland (1994) noted that tests are both

measurements and contests. They are contests in the sense that examinees expect to

be treated fairly—equal scores for comparable performance. Equating, as discussed

by Dorans (2008), can be thought of as a means of ensuring fair contests: An

emphasis needs to be placed on fair and equitable treatment of examinees that is

commensurate with their actual performance on the test they took. The use of best

practices in equating is essential to achieving this goal.

The focus of this chapter has been on best practices for score equating. Score

equating is only one aspect of the score reporting process. Other components of the

score reporting process affect the final raw-to-scale conversions. Because these

components are not as amenable to mathematical treatment as score equating

methods, they have not received as much treatment as they should. The best

score equating practices can be undermined by a weakness elsewhere in the

process, such as poorly defined test specifications or the use of a flawed old-form

scaling function. A few of these non-score-equating components have been men-

tioned in this report, but the treatment has not been as complete as it should be.

Author Note: Any opinions expressed in this chapter are those of the authors and not necessarily of

Educational Testing Service.
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Chapter 3

Scoring and Scaling Educational Tests

Michael J. Kolen, Ye Tong, and Robert L. Brennan

The numbers that are associated with examinee performance on educational or

psychological tests are defined through the process of scaling. This process produces
a score scale, and the scores that are reported to examinees are referred to as scale
scores. Kolen (2006) referred to the term primary score scale, which is the focus of
this chapter, as the scale that is used to underlie psychometric properties for tests.

A key component in the process of developing a score scale is the raw score for
an examinee on a test, which is a function of the item scores for that examinee. Raw

scores can be as simple as a sum of the item scores or be so complicated that they

depend on the entire pattern of item responses.

Raw scores are transformed to scale scores to facilitate the meaning of scores for

test users. For example, raw scores might be transformed to scale scores so that they

have predefined distributional properties for a particular group of examinees, referred

to as a norm group. Normative information might be incorporated by constructing

scale scores to be approximately normally distributed with a mean of 50 and a

standard deviation of 10 for a national population of examinees. In addition, proce-

dures can be used for incorporating content and score precision information into score

scales.

The purpose of this chapter is to describe methods for developing score scales

for educational and psychological tests. Different types of raw scores are consid-

ered along with models for transforming raw scores to scale scores. Both traditional

and item response theory (IRT) methods are considered. The focus of this chapter is
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on fixed tests, rather than on computer-adaptive tests (Drasgow, Luecht, & Bennett,

2006), although many of the issues considered apply to both.

3.1 Unit and Item Scores

Kolen (2006) distinguished unit scores from item scores. A unit score is the score
on the smallest unit on which a score is found, which is referred to as a scoreable
unit. An item score is a score over all scoreable units for an item.

For multiple-choice test questions that are scored right-wrong, unit scores and

item scores often are the same. Such scores are either incorrect (0) or correct (1).

Unit and item scores are often distinguishable when judges score the item responses.

As an example, consider an essay item that is scored 1 (low) through 5 (high) by each
of two judges, with the item score being the sum of scores over the two judges. In

this situation, there is a unit score for Judge 1 (range 1 to 5), a unit score for Judge

2 (range 1 to 5), and an item score over the two judges (range 2 to 10).

Or, consider a situation in which a block of five questions is associated with a

reading passage. If a test developer is using IRT and is concerned that there might

be conditional dependencies among responses to questions associated with a

reading passage, the developer might treat the questions associated with passage

as a single item, with scores on this item being the number of questions associated

with the passage that the examinee answers correctly. In this case, each question

would have a unit score of 0 or 1, and the item score would range from 0 to 5.

According to Kolen (2006), “The characteristic that most readily distinguishes unit

scores from item scores is... whereas there may be operational dependencies among

unit scores, item scores are considered operationally independent” (p. 157).

Let Vi be a random variable indicating score on item i and vi be a particular score.
For a dichotomously scored item, vi ¼ 0 when an examinee incorrectly answers the

item and vi ¼ 1 when an examinee correctly answers the item.

Consider the essay item described earlier. For this item, Vi ¼ 2, 3, . . ., 10
represent the possible scores for this item. In this chapter, it is assumed that when

polytomously scored items are used, they are ordered response item scores repre-

sented by consecutive integers. Higher item scores represent more proficient per-

formance on the item.

Item types exist where responses are not necessarily ordered, such as nominal

response scoring. Such item types are not considered in this chapter.

3.2 Traditional Raw Scores

Let X refer to the raw score on a test. The summed score, X, is defined as

X ¼
Xn
i¼1

Vi; (3.1)
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where n is the number of items on the test. Equation 3.1 is often used as a raw score

when all of the items on a test are of the same format.

The weighted summed score, Xw,

Xw ¼
Xn
i¼1

wiVi; (3.2)

uses weights, wi, to weight the item score for each item. Various procedures for

choosing weights include choosing weights that maximize score reliability and

choosing weights so that each item contributes a desired amount to the raw score.

3.3 Traditional Scale Scores

Raw scores such as those in Equations 3.1 and 3.2 have limitations as primary score

scales for tests. Alternate test forms are test forms that are built to a common set of

content and statistical specifications. With alternate test forms, the raw scores

typically do not have a consistent meaning across forms. For this reason, scores

other than raw scores are used as primary score scales, whenever alternate forms of

a test exist. The primary score scale typically is developed with an initial form of

the test, and test equating methods (Holland & Dorans, 2006; Kolen & Brennan,

2004) are used to link raw scores on new forms to the score scale.

The raw score is transformed to a scale score. For summed scores, the scale

score, SX, is a function of the summed score, X, such that SX ¼ SXðXÞ. This
transformation often is provided in tabular form. For weighted summed scores,

the scale score, SwX, is a function of the weighted summed score, Xw, such that

SwX ¼ SwXðXwÞ. For weighted summed scores, there are often many possible scale

scores, so a continuous function may be used. In either case, scale scores are

typically rounded to integers for score reporting purposes.

Linear or nonlinear transformations of raw scores are used to produce scale

scores that can be meaningfully interpreted. Normative, score precision, and con-

tent information can be incorporated. Transformations that can be used to incorpo-

rate each of these types of meaning are considered next.

3.3.1 Incorporating Normative Information

Incorporating normative information begins with the administration of the test to a

norm group. Statistical characteristics of the scale score distribution are set relative

to this norm group. The scale scores are meaningful to the extent that the norm

group is central to score interpretation.

For example, a third-grade reading test might be administered to a national norm

group intended to be representative of third graders in the nation. The mean and

standard deviation of scale scores on the test might be set to particular values for
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this norm group. By knowing the mean and standard deviation of scale scores, test

users would be able to quickly ascertain, for example, whether a particular student’s

score was above the mean. This information would be relevant to the extent that

scores for the norm group are central to score interpretation. Kolen (2006, pp. 163–164)

provided equations for linearly transforming raw scores to scale scores with a

particular mean and standard deviation.

Nonlinear transformations also are used to develop score scales. Normalized

scores involve one such transformation. To normalize scores, percentile ranks of

raw scores are found and then transformed using an inverse normal transformation.

These normalized scores are then transformed to have a desired mean and standard

deviation. Normalized scale scores can be used to quickly ascertain the percentile

rank of a particular student’s score using facts about the normal distribution. For

example, with normalized scores, a score that is one standard deviation above the

mean has a percentile rank of approximately 84. Kolen (2006, pp. 164–165)

provided a detailed description of the process of score normalization.

Scale scores typically are reported to examinees as integer scores. For example,

McCall (1939) suggested using T scores, which are scale scores that are normalized

with an approximate mean of 50 and standard deviation of 10, with the scores

rounded to integers. Intelligence test scores typically are normalized scores with a

mean of 100 and a standard deviation of 15 or 16 in a national norm group (Angoff,

1971/1984, p. 525–526), with the scores rounded to integers.

3.3.2 Incorporating Score Precision Information

According to Flanagan (1951), scale score units should “be of an order of magni-

tude most appropriate to express their accuracy of measurement” (p. 246). Flanagan

indicated that the use of too few score points fails to “preserve all of the information

contained in raw scores” (p. 247). However, the use of too many scale score points

might lead test users to attach significance to scale score differences that are

predominantly due to measurement error.

Based on these considerations, rules of thumb have been developed to help

choose the number of distinct score points to use for a scale. For example, the scale

for the Iowa Tests of Educational Development (ITED, 1958) was constructed so

that an approximate 50% confidence interval for true scores could be found by

adding 1 scale score point to and subtracting 1 scale score point from an examinee’s

scale score. Similarly, Truman L. Kelley (W. H. Angoff, personal communication,

February 17, 1987) suggested constructing scale scores so that an approximate 68%

confidence interval could be constructed by adding 3 scale score points to and

subtracting 3 scale score points from each examinee’s scale score.

Kolen and Brennan (2004, pp. 346–347) showed that by making suitable

assumptions, the approximate range of scale scores that produces the desired

score scale property is

6
h

zg
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� rXX0

p ; (3.3)
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where h is the width of the desired confidence interval (1 for the ITED rule, 3 for the

Kelley rule), zg is the unit-normal score associated with the confidence coefficient g
(zg � .6745 for the ITED rule and zg �1 for the Kelley rule), and rXX0 is test

reliability.The result from Equation 3.3 is rounded to an integer. As an example,

assume that test reliability is .91. Then for the ITED rule, Equation 3.3 indicates

that 30 distinct scale score points should be used, and Kelley’s rule indicates that 60

distinct score points should be used.

Noting that conditional measurement error variability is typically unequal along

the score scale, Kolen (1988) suggested using a variance stabilizing transformation

to equalize error variability. Kolen (1988) argued that when scores are transformed

in this way, a single standard error of measurement could be used when reporting

measurement error variability. He used the following arcsine transformation sug-

gested by Freeman and Tukey (1950):

gðXÞ ¼ :5 sin�1 X

nþ 1

� �� �1
2

(
þ sin�1 X þ 1

nþ 1

� �� �1
2

)
: (3.4)

Scores transformed using Equation 3.4 are then transformed to have a desired mean

and standard deviation and to have a reasonable number of distinct integer score

points. Kolen, Hanson, and Brennan (1992) found that this transformation ade-

quately stabilized error variance for tests with dichotomously scored items. Ban and

Lee (2007) found a similar property for tests with polytomously scored items.

3.3.3 Incorporating Content Information

Ebel (1962) stated, “To be meaningful any test scores must be related to test content

as well as to the scores of other examinees” (p. 18). Recently, focus has been on

providing content meaningful scale scores.

One such procedure, item mapping, was reviewed by Zwick, Senturk, Wang, and

Loomis (2001). In item mapping, test items are associated with various scale score

points. For dichotomously scored items, the probability of correct response on each

item is regressed on scale score. The response probability (RP) level is defined as

the probability (expressed as a percentage) of correct response on a test-item given

scale score that is associated with mastery, proficiency, or some other category as

defined by the test developer. The same RP level is used for all dichotomously

scored items on the test. Using regressions of item score on scale score, an item is

said to map at the scale score associated with an RP of correctly answering the item.

RP values typically range from .5 to .8. Additional criteria are often used when

choosing items to report on an item map, such as item discrimination and test

developer judgment. Modifications of the procedures are used with polytomously

scored items.The outcome of an item mapping procedure is a map illustrating which

items correspond to each of an ordered set of scale scores.
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Another way to incorporate content information is to use scale anchoring.
The first step in scale anchoring is to develop an item map. Then, a set of scale

score points is chosen, such as a selected set of percentiles. Subject-matter experts

review the items that map near each of the selected points and develop general

statements that represent the skills of the examinees scoring at each point. See

Allen, Carlson, and Zelenak (1999) for an example of scale anchoring with the

National Assessment of Educational Progress and ACT (2001) for an example of

scale anchoring as used with the ACT Standards for Transition.

Standard setting procedures, as recently reviewed by Hambleton and Pitoniak

(2006), begin with a statement about what competent examinees know and are able

to do. Structured judgmental processes are used to find the scale score point

that differentiates candidates who are minimally competent from those who are

less than minimally competent. In achievement testing situations, various achieve-

ment levels are often stated, such as basic, proficient, and advanced. Judgmental

standard-setting techniques are used to find the scale score points that differentiate

between adjacent levels.

3.3.4 Using Equating to Maintain Score Scales

Equating methods (Holland & Dorans, 2006; Kolen & Brennan, 2004) are used to

maintain scale scores as new forms are developed. For equating to be possible, the

new forms must be developed to the same content and statistical specifications as

the form used for scale construction. With traditional scaling and equating method-

ology, a major goal is to transform raw scores to scale scores on new test forms so

that the distribution of scale scores is the same in a population of examinees.

3.4 IRT Proficiency Estimates

Traditional methods focus on scores that are observed rather than on true scores or

IRT proficiencies. Procedures for using psychometric methods to help evaluate

scale scores with traditional methods exist and are described in a later section of

this chapter. First, scale scores based on IRT (Thissen & Wainer, 2001) are

considered.

The development of IRT scaling methods depends on the use of an IRT model.

In this section, IRT models are considered in which examinee proficiency, y, is
assumed to be unidimensional. A local independence assumption also is required,

in which, conditional on proficiency, examinee responses are assumed to be inde-

pendent. The focus of the IRT methods in this section is on polytomously scored
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items. Note, however, that dichotomously scored items can be viewed as poly-

tomously scored items with two response categories (wrong and right).

A curve is fit for each possible response to an item that relates probability of that

response given proficiency that is symbolized as PðVi ¼ vijyÞ and is referred to as the
category response function. IRTmodels considered here have the responses ordered a

priori, where responses associated with higher scores are indicative of greater profi-

ciency. Popularmodels for tests containing dichotomously scored items are the Rasch,

two-parameter logistic, and three-parameter logistic models. Popular models for tests

containing polytomously scored items are the graded-response model, partial-credit

model, and generalized partial-credit model. Nonparametric models also exist. See

Yen and Fitzpatrick (2006) and van der Linden and Hambleton (1997) for reviews of

many of these models.

In IRT, the category response functions are estimated for each item. Then,

proficiency is estimated for each examinee. In this chapter, initial focus is on IRT

proficiency estimation. Later, the focus is on the transformed (often linearly, but

sometimes nonlinearly) proficiencies typically used when developing scale scores.

For this reason, IRT proficiency estimates can be thought of as raw scores that are

subsequently transformed to scale scores.

Estimates of IRT proficiency can be based on summed scores (Equation 3.1),

weighted summed scores (Equation 3.2), or on complicated scoring functions that
can be symbolized as

Xc ¼ f V1;V2; . . .;Vnð Þ; (3.5)

where f is the function used to convert item scores to total score. Some models,

such as the Rasch model, consider only summed scores. With other models, the

psychometrician can choose which scoring function to use. Procedures for estimating

IRT proficiency are described next.

3.4.1 IRT Maximum Likelihood Scoring

IRT maximum likelihood scoring requires the use of a complicated scoring function

for many IRT models. Under the assumption of local independence, y is found that

maximizes the likelihood equation,

L ¼
nQ

i ¼ 1

pðVi ¼ vijyÞ; (3.6)

and it is symbolized as ŷMLE.
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3.4.2 IRT With Summed Scores Using the Test Characteristic
Function

In IRT it is possible to estimate proficiency as a function of summed scores or

weighted summed scores. Assume that item i is scored in mi ordered categories,

where the categories are indexed k ¼ 1; 2; . . .;mi. Defining Wik as the score asso-

ciated with item i and category k, the item response function for item i is defined as

ti yð Þ ¼
Xmi

k¼1

Wik � P Vi ¼ kjyð Þ; (3.7)

which represents the expected score on item i for an examinee of proficiency y. For
IRTmodels with ordered responses, it is assumed that tiðyÞ is monotonic increasing.

The test characteristic function is defined as the sum, over test items, of the item

response functions such that

tðyÞ ¼
Xn
i¼1

tiðyÞ; (3.8)

which represents the true score for an examinee of proficiency y. This function is

also monotonic increasing.

A weighted test characteristic function also can be defined as

twðyÞ ¼
Xn
i¼1

witiðyÞ; (3.9)

where the wi are positive-valued weights that are applied to each of the items when

forming a total score.

An estimate of proficiency, based on a summed score for an examinee, can

be found by substituting the summed score for tðyÞ in Equation 3.8 and then

solving for y using numerical methods. Similarly, proficiency can be estimated

for weighted sum scores. The resulting estimate using Equation 3.8 is referred to

as ŷTCF and is monotonically related to the summed score. The resulting estimate

using Equation 3.9 is referred to as ŷwTCF and is monotonically related to the

weighted summed score.

3.4.3 IRT Bayesian Scoring With Complicated Scoring Functions

IRT Bayesian estimates of proficiency can make use of a complicated scoring

function. In addition, they require specification of the distribution of proficiency

in the population, g(y). The Bayesian modal estimator is the y that maximizes
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L � gðyÞ ¼ Qn
i¼1

PðVi ¼ vijyÞ � gðyÞ (3.10)

and is symbolized as ŷBME. The Bayesian expected a posteriori (EAP) estimator is

the mean of the posterior distribution and is calculated as

ŷEAP ¼ EðyjV1 ¼ v1;V2 ¼ v2; . . .;Vn ¼ vnÞ

¼

Ð
y
y
Qn
i¼1

PðVi ¼ vijyÞgðyÞdy
Ð
y

Qn
i¼1

PðVi ¼ vijyÞgðyÞdy
: (3.11)

3.4.4 Bayesian Scoring Using Summed Scores

A Bayesian EAP estimate of proficiency based on the summed score is

ŷsEAP ¼ EðyjXÞ

¼

R
y
y � PðX ¼ xjyÞ � gðyÞdy
R
y
PðX ¼ xjyÞ � gðyÞdy

: (3.12)

The term PðX ¼ xjyÞ represents the probability of earning a particular summed

score given proficiency and can be calculated from item parameter estimates

using a recursive algorithm provided by Thissen, Pommerich, Billeaud, and

Williams (1995) and illustrated by Kolen and Brennan (2004, pp. 219-221),

which is a generalization of a recursive algorithm developed by Lord and

Wingersky (1984).

Concerned that the estimate in Equation 3.12 treats score points on different item

types as being equal, Rosa, Swygert, Nelson, and Thissen (2001) presented an

alternative Bayesian EAP estimator. For this alternative, define X1 as the summed

score on the first item type and X2 as summed score on the second item type. The

EAP is the expected proficiency given scores on each item type and is

ŷs2EAP ¼ EðyjX1;X2Þ

¼

Ð
y
y � PðX1 ¼ x1jyÞ � PðX2 ¼ x2jyÞ � gðyÞdy
Ð
y
PðX1 ¼ x1jyÞ � PðX2 ¼ x2jyÞ � gðyÞdy

; (3.13)
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where PðX1 ¼ x1jyÞ and PðX2 ¼ x2jyÞ are calculated using the recursive algorithm

provided by Thissen et al. (1995). Note that this estimate is, in general, different for

examinees with different combinations of scores on the two item types. Rosa et al.

(2001) presented results for this method in a two-dimensional scoring table, with

summed scores on one item type represented by the rows and summed scores on the

other item type represented by the columns. Rosa et al. indicated that this method

can be generalized to tests with more than two item types. Thissen, Nelson, and

Swygert (2001) provided an approximate method in which the EAP is estimated

separately for each item type and then a weighted average is formed. Bayesian EAP

estimates have yet to be developed based on the weighted summed scores defined in

Equation 3.2.

3.4.5 Statistical Properties of Estimates of IRT Proficiency

The maximum likelihood estimator ŷMLE and test characteristic function estimators

ŷTCF and ŷwTCF do not depend on the distribution of proficiency in the population,

gðyÞ. All of the Bayesian estimators depend on gðyÞ.
ŷMLE, ŷTCF, and ŷwTCF do not exist (are infinite) for examinees whose item score

is the lowest possible score on all of the items. In addition, these estimators do not

exist for examinees whose item score is the highest possible score on all of the

items. Other extreme response patterns exist for which ŷMLE does not exist. Also,

for models with a lower asymptote item parameter, like the three-parameter logistic

model, ŷTCF does not exist for summed scores that are below the sum, over items, of

the lower asymptote parameters. A similar issue is of concern for ŷwTCF. In practice,
ad hoc rules are used to assign proficiency estimates for these response patterns or

summed scores. The Bayesian estimators typically exist in these situations, which is

a benefit of these estimators.

The maximum likelihood estimator of proficiency, ŷMLE, is consistent (Lord,

1980, p. 59), meaning that it converges to y as the number of items becomes large.

Thus,

EðŷMLEjyÞ � y: (3.14)

Note also that EðXjyÞ ¼ tðyÞ ¼ Pn
i¼1

tiðyÞ, which means that the summed score X

is an unbiased estimate of true summed score t. This suggests that EðŷTCFjyÞ is

close to y.
The Bayesian estimators are shrinkage estimators intended to be biased when a

test is less than perfectly reliable. So for most values of y,

EðŷEAPjyÞ 6¼ y: (3.15)
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Defining my as the mean of the distribution of proficiency,

If y < my; then E ðŷEAPjyÞ > y
If y > my; then E ðŷEAPjyÞ < y:

(3.16)

Similar relationships hold for the other Bayesian estimators.

Test information is a central concept in IRT when considering conditional error

variability in estimating IRT proficiency. Conditional error variance in estimating

proficiency in IRT using maximum likelihood is equal to 1 divided by test infor-

mation. Expressions for conditional error variances of the maximum likelihood

estimators, varðŷMLEjyÞ, and for the test characteristic function estimators,

varðŷTCFjyÞ and varðŷwTCFjyÞ, for dichotomous models have been provided by

Lord (1980) and for polytomous models by Muraki (1993), Samejima (1969), and

Yen and Fitzpatrick (2006). Note that the square root of the conditional error

variance is the conditional standard error of measurement for estimating IRT

proficiency.

An expression for the conditional error variance for Bayesian EAP estimators

was provided by Thissen and Orlando (2001) and is as follows for ŷEAP:

varðŷEAPjV1 ¼ v1;V2 ¼ v2; . . .; Vn ¼ vnÞ

¼

R
y
ðŷEAP � yÞ2 Qn

i¼1

PðVi ¼ vijyÞgðyÞdy
R
y

Qn
i¼1

PðVi ¼ vijyÞgðyÞdy
:

(3.17)

Similar expressions can be used for ŷsEAP.
Note that the Bayesian conditional variances are conditional on examinee

response patterns, which is typical for Bayesian estimators, rather than on y, as is
the case with the maximum likelihood and test characteristic function estimators.

This observation highlights a crucial difference in the meaning of conditional error

variances for Bayesian and maximum likelihood estimates of proficiency.

The following relationship is expected to hold:

varðŷTCFjyÞ � varðŷMLEjyÞ � varðŷEAPjyÞ: (3.18)

Note that varðŷTCFjyÞ � varðŷMLEjyÞ because ŷTCF is based on summed scores,

which leads to a loss of information as compared to ŷMLE. Also, varðŷMLEjyÞ �
varðŷEAPjyÞ, because Bayesian estimators are shrinkage estimators that generally

have smaller error variances than maximum likelihood estimators. However, the

Bayesian estimators are biased, which could cause the conditional mean-squared

error for ŷEAP, defined as MSEðŷEAPjyÞ ¼ E½ðŷEAP � yÞjy�2, to be greater than the

mean-squared error for ŷMLE. Note that conditional mean-squared error takes into

account both error variance and bias. In addition it is expected that
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varðŷEAPjyÞ � varðŷsEAPjyÞ; (3.19)

because there is less error involved with pattern scores than summed scores,

resulting in less shrinkage with ŷEAP than with ŷsEAP.
The relationships between conditional variances have implications for themarginal

variances. In particular, the following relationship is expected to hold if the distribu-

tion of y is well specified:

varðŷTCFÞ � varðŷMLEÞ � varðŷEAPÞ � ðŷsEAPÞ: (3.20)

As illustrated in the next section, the inequalities can have practical implications.

3.4.6 Example: Effects of Different Marginal Distributions
on Percentage Proficient

Suppose there are four performance levels (Levels I through IV) for a state

assessment program. Based on a standard setting study, cut scores on the y scale

are�0.8 for Level I-II, 0.2 for Level II-III and 1.3 for Level III-IV. As illustrated in

this section, the choice of proficiency estimator can have a substantial effect on the

percentage of students classified at each of the performance levels.

In this hypothetical example, the scaling data for Grade 7 of the Vocabulary test

of the Iowa Tests of Basic Skills were used. The test contains 41 multiple-choice

items. For more information on the dataset used, see Tong and Kolen (2007). For

each student in the dataset (N ¼ 1,199), ŷMLE, ŷEAP, ŷsEAP, and ŷTCF were computed

based on the same set of item parameter estimates. Table 3.1 shows the mean and

standard deviation (SD) of the proficiency estimates for all the students included

in the example. Figure 3.1 shows the cumulative frequency distribution of the

proficiency estimates for these students. The variabilities of these estimators are

ordered, as expected based on Equation 3.20, as

SDðŷsEAPÞ < SDðŷEAPÞ < SDðŷMLEÞ < SDðŷTCFÞ:

Table 3.1 Example: Effects of IRT Proficiency Estimator on Percent in Proficiency Level

Proficiency estimator M SD Percentage proficiency by level

I II III IV

ŷMLE
0.012 1.143 20.77 35.95 32.53 10.76

ŷEAP �0.002 0.949 19.27 38.70 33.86 8.17

ŷsEAP 0.000 0.933 19.43 36.53 37.20 6.84

ŷTCF �0.003 1.164 22.02 33.94 33.53 10.51
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From Figure 3.1, the cumulative distributions for ŷEAP and ŷsEAP are similar to one

other and the cumulative distributions for ŷTCF and ŷMLE are similar to one other.

Using the y cut scores from standard setting, students were classified into each of

the four performance levels using the four proficiency estimates. The percentage in

each level for each of the estimators is reported in Table 3.1. As can be observed,

ŷMLE and ŷTCF tend to produce larger percentages of students in Levels I and IV,

consistent with the observation that these estimators have relatively larger varia-

bility. Of the 1,199 students in the data, 31 students (about 13%) had different

performance-level classifications using different proficiency estimators. The differ-

ences were within one performance level. These results illustrate that, in practice,

the choice of IRT proficiency estimator can affect the proficiency level reported for

a student.

3.5 IRT Scale Scores

IRT scale scores often are developed by linearly transforming IRT proficiencies and

then rounding to integers. When a linear transformation is used, the estimators and

their statistical properties can be found directly based on the linear transformation.

Sometimes IRT scale scores are transformed nonlinearly to scale scores. Lord (1980,

pp. 84–88) argued that a nonlinear transformation of y could be preferable to y.
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Define h as a continuous monotonically increasing function of proficiency, such

that

y� ¼ hðyÞ: (3.21)

Lord (1980, pp. 187–188) showed that the maximum likelihood estimator for a

nonlinear transformed proficiency could be found by applying the nonlinear trans-

formation to the maximum likelihood estimator parameter estimate. That is, he

showed that

ŷ�MLE ¼ hðŷMLEÞ: (3.22)

Estimates based on the test characteristic function are found by a similar substitu-

tion. Lord (1980, pp. 187–188) also showed that Bayesian estimators do not possess

this property. Thus, for example,

ŷ�EAP 6¼ hðŷEAPÞ: (3.23)

To find ŷ
�
EAP would require computing the estimate using Equation 3.11 after

substituting y* for each occurrence of y.
One nonlinear transformation that is often used is the domain score (Bock,

Thissen, & Zimowski, 1997; Pommerich, Nicewander, & Hanson, 1999), which

is calculated as follows:

y�domain ¼ 1

ndomain

Xndomain
i¼1

tiðyÞ; (3.24)

where tiðyÞ is defined in Equation 3.7, and the summation is over all ndomain items in

the domain, where the domain is a large number of items intended to reflect the

content that is being assessed. Substituting ŷMLE for y in Equation 3.24 produces the
maximum likelihood estimator of y�domain. However, substituting ŷEAP for y in

Equation 3.24 does not produce a Bayesian EAP estimator of y�domain.

3.6 Multidimensional IRT Raw Scores for Mixed Format Tests

In applying IRT with mixed item types, an initial decision that is made is whether or

not a single dimension can be used to describe performance. Rodriguez (2003)

reviewed the construct equivalence of multiple-choice and constructed-response

items. He concluded that these item types typically measure different constructs,

although in certain circumstances the constructs are very similar. Wainer and

Thissen (1993) argued that the constructs often are similar enough that the mixed

item types can be reasonably analyzed with a unidimensional model. If a test

developer decides that a multidimensional model is required, it is sometimes
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possible to analyze each item type using a unidimensional model. IRT proficiency

can be estimated separately for each item type, and then a weighted composite of

the two proficiencies computed as an overall estimate of proficiency. This sort of

procedure was used, for example, with the National Assessment of Educational

Progress Science Assessment (Allen et al., 1999).

3.7 Psychometric Properties of Scale Scores

Psychometric properties of scale scores include (a) the expected (true) scale score,

(b) the conditional error variance of scale scores, and (c) the reliability of scale

scores for an examinee population. In addition, when alternate forms of a test exist,

psychometric properties of interest include (a) the extent to which expected scale

scores are the same on the alternate forms, often referred to as first-order equity; (b)
the extent to which the conditional error variance of scale scores is the same on the

alternate forms, often referred to as second-order equity; and (c) the extent to which
reliability of scale scores is the same on alternate forms.

Assuming that scale scores are a function of summed scores of a test consisting

of dichotomously scored items, Kolen et al. (1992) developed procedures for

assessing these psychometric properties using a strong true-score model. For the

same situation, Kolen, Zeng, and Hanson (1996) developed procedures for asses-

sing these psychometric properties using an IRT model. Wang, Kolen, and Harris

(2000) extended the IRT procedures to summed scores for polytomous IRT models.

The Wang et al. (2000) approach is used to express the psychometric properties

as follows. Recall that SX(X) represents the transformation of summed scores to

scale scores. The expected (true) scale score given y is expressed as

tSX ¼
XmaxX

j¼minX

SXðjÞ � PðX ¼ jjyÞ; (3.25)

where PðX ¼ jjyÞ is calculated using a recursive algorithm (Thissen et al., 1995),

and min X and max X are the minimum and maximum summed score. Conditional

error variance of scale scores is expressed as

varðSXjyÞ ¼
XmaxX

j¼minX

SXðjÞ � tSX½ �2�PðX ¼ jjyÞ: (3.26)

Reliability of scale scores is expressed as

rðSX; SX0 Þ ¼ 1�

R
y
varðSXjyÞgðyÞdy

s2SX
; (3.27)
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where s2SX is the variance of scale scores in the population. Using examples from

operational testing programs, this framework has been used to study the relation-

ship between y and true scale score, the pattern of conditional standard errors of

measurement, the extent to which the arcsine transformation stabilizes error vari-

ance, first-order equity across alternate forms, second-order equity across alternate

forms, reliability of scale scores, and the effects of rounding on reliability for

different scales (Ban & Lee, 2007; Kolen et al., 1992, 1996; Tong & Kolen,

2005; Wang et al., 2000). These procedures have yet to be extended to weighted

summed scores or to more complex scoring functions.

When the IRT proficiency scale is nonlinearly transformed as in Equation 3.21,

based on Lord (1980, p. 85) the conditional error variance of ŷ�MLE is approximated as

var ŷ�MLEjy
� �

� dy�

dy

� �2

var ŷMLEjy
� �

; (3.28)

where dy�
dy

	 
2
is the squared first derivative of the transformation of y to y*. A similar

relationship holds for ŷ
�
TCC and ŷ

�
wTCC. Note that this conditional error variance does

not take rounding into account. To find the conditional error variance for Bayesian

estimators for transformed variables, in Equation 3.17 y is replaced by y* and ŷEAP
is replaced by ŷ

�
EAP. For these procedures, the transformation of y to y* must be

monotonic increasing and continuous. When the transformation to scale scores is

not continuous, such as when scale scores are rounded to integers, these procedures

at best can provide an approximation to conditional error variance. In such cases,

simulation procedures can be used to estimate bias and conditional error variance of

scale scores.

3.8 Concluding Comments

Currently a variety of raw scores is used with educational tests that include summed

scores, weighted summed scores, and various IRT proficiency estimates. We have

demonstrated that the choice of raw score has practical implications for the psy-

chometric properties of scores, including conditional measurement error, reliabil-

ity, and score distributions. Raw scores are transformed to scale scores to enhance

score interpretations. The transformations can be chosen so as to incorporate

normative, content, and score precision properties.
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Chapter 4

Statistical Models for Vertical Linking

James E. Carlson

4.1 Introduction

Vertical linking, sometimes referred to as vertical scaling or cross-grade scaling,

comprises a variety of techniques used to develop and maintain vertical scales that

are developmental in nature, encompassing two or more grades in schools. Separate

tests designed to measure achievement on the same dimension at each grade level

are linked through various procedures to enable the measurement of growth across

the levels. Formal equating, having the goal of interchangeability of scores on

different test forms, is not possible for vertical linking because interchangeability is

not feasible in this context: The appropriate content of the tests for the different

grade levels necessarily differ because the curricula differ. In addition, the difficulty

levels of tests at two adjacent grade levels are typically different, so the tests cannot

be parallel as required for a formal equating. Most of the designs used to accom-

plish vertical linking do, however, involve some content that is appropriate for

adjacent grade levels.

Several of the statistical procedures discussed in other chapters of this work, for

example item response theory (IRT), can be applied to the problem of vertical

linking. Although non-IRT approaches such as equipercentile methods can be used,

most vertical linking is done in large-scale assessment programs that use IRT

scaling, so those methods will be the focus of this chapter.

Although grade-level tests are used in discussions here, note that several test

publishers have developed vertical scales comprising levels each of which may be

administered at several grade levels. The designs for vertical linking discussed in

this chapter all use cross-sectional data. That is, the data are assumed to be collected

during a given time period using independent samples from the different grade

levels. An alternative that has not, to my knowledge, been used is a longitudinal
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design in which data are collected in successive years from the same cohort of

students. For example, the same student cohort is tested at the third grade in one

year and the fourth grade in the following year. With such a design, the samples will

not be independent and data will not be available on all students for both years, due

to students’ transferring schools or being held at the same grade level. Such

characteristics of longitudinal samples must be taken into consideration when

using those designs.

4.2 Designs for Vertical Linking

Holland and Dorans (2006, pp. 197-201), Kolen (2006, pp. 173–174), and Kolen

and Brennan, 2004, pp. 372–418) described several common-item and equivalent-

groups designs that may be used for collecting the data necessary to develop a

vertical scale. There are alternatives to those discussed in these sources. One

example of the common-item design and one of the equivalent-groups design will

be used as illustrations.

In both designs, a linking procedure typically involves starting by linking scales

in two adjacent grades (e.g., the second- to the first-grade level), continues by

linking scales in the next grade (e.g., third grade to second), and proceeds similarly

until scales in all grades in the assessment are linked to form the vertical scale. The

linking can begin at any grade level, for example starting with a middle grade and

linking upward and downward from there. Another design discussed by Kolen and

Brennan (2004), the scaling test design, involves administering one test form (the

scaling test) to all grades. The results of that administration are used to set the

vertical scale. The scales of test forms at each grade level are subsequently linked to

that vertical scale. In my opinion, this design is not appropriate for most educational

assessments because it involves testing most students with a number of items that

are too difficult or too easy for them, hence yielding no information for those

students. An additional issue involves testing students on content that they have not

had the opportunity to learn. Although this is partially an ethical issue, the lack of

information yielded by the data is also a technical issue that is mentioned where

relevant to each design.

4.2.1 Common-Item Designs

In a common-item design, a group of students at each grade level is selected to be

administered blocks of items. Some blocks comprising the common items (referred

to as anchor blocks) are administered at adjacent grade levels. One form of this

design is illustrated in Table 4.1. In this design students at each grade level

are administered some blocks of items unique to their grade level and some
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anchor-item blocks shared with adjacent grade levels. The latter provide the vehicle

for linking.

For example, third-grade students take a block (G3) of third-grade items and a

linking block (G3-4) of items appropriate for Grades 3 and 4. The fourth-grade

students take a block (G4) of fourth-grade items and two linking blocks: one of

items appropriate for Grades 3 and 4, and the other of items appropriate for Grades

4 and 5 (G4-5). Using scores on the linking block (G3-4) from students from Grades

3 and 4, scales from G3 and G4 can be linked. Saying the G3-4 block is appropriate

for Grades 3 and 4 means that students at both grade levels have had the opportunity

to learn the content being tested.

4.2.2 Equivalent-Groups Design

In the equivalent-groups design, randomly equivalent groups of students at the

same grade level are administered different blocks of items, and most of the blocks

are administered to groups at adjacent grade levels. One example of this design is

illustrated in Table 4.2. In this design one sample of students at each grade level

takes a test form including a block of items in common with the adjacent grade

below, one sample takes item blocks only for that grade, and the third sample takes

a block of items in common with the adjacent grade above. For the lowest and

highest grades in the design they can, of course, only share item blocks with one

adjacent grade. For example, the shaded portion of Table 4.2 shows that there are

three randomly equivalent samples at the fourth grade. Sample 4a takes a block

(3B) of third-grade items and a block (4A) of fourth-grade items, Sample 4b takes

two blocks (4A, 4B) of fourth-grade items, and Sample 4c takes a block (4B) of

fourth-grade items and a block (5A) of fifth-grade items. Two blocks within each

grade are used for illustrative purposes; different assessments will use different

numbers of blocks depending on issues such as content coverage and the need for

different forms because of security issues. One important aspect of the content

coverage issue for vertical scaling designs is that administering items at a grade

level above that of the students would not be appropriate if the students have not

Table 4.1 A Common-Item Design With On-Grade and Anchor Item Blocks

Student grade On-grade item block Anchor (linking) item block

G3-4 G4-5 G5-6 G6-7 G7-8 G8-9

3 G3 X � � � �
4 G4 X X

5 G5 X X

6 G6 X X

7 G7 X X

8 G8 X X

9 G9 X
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been exposed to the relevant content in the item blocks. To do so would not yield

any useful information for scaling or for scoring. Hence, for example, Block 4A in

Table 4.2 must contain content appropriate for both third- and fourth-grade stu-

dents. In order to cover all fourth-grade content in the assessment, however,

typically additional blocks at that grade level must cover content not appropriate

for administration to students in Grades 3 or 5.

Note that Kolen and Brennan (2004) illustrated a simpler equivalent-groups

design that has common items only with the grade below, so the lowest grade

shares no blocks with an adjacent grade. One problem with their design is that all

item blocks except one each for the lowest and highest grades must be comprised of

content appropriate for two grade levels. That is, the design does not allow for items

with content appropriate for a single grade level. As discussed above, adequately

covering all the important curricular content at each grade level likely requires

including blocks of items testing content that is only appropriate for one of the

grades in the assessment. Other variations on this design are also possible.

4.3 IRT Models for Vertical Linking

Methods based on IRT models discussed in other chapters of this work are most

commonly used in vertical linking (see also Holland & Dorans, 2006; Kolen, 2006;

Patz & Yao, 2007; Thissen & Steinberg, 1986; Yen & Fitzpatrick, 2006). Although

Table 4.2 Equivalent Groups Design with Common Blocks of Items at Adjacent Grades

Student

grade

Student

samples

Item blocks by grade

G3 G4 G5 G6 G7 G8 G9

3A 3B 4A 4B 5A 5B 6A 6B 7A 7B 8A 8B 9A 9B

3 3a X X

3b X X

4 4a X X

4b X X

4c X X

5 5a X X

5b X X

5c X X

6 6a X X

6b X X

6c X X

7 7a X X

7b X X

7c X X

8 8a X X

8b X X

8c X X

9 9a X X

9b X X

Note. Student samples randomly equivalent within grade.
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those sources provide discussion of many models, this chapter focuses on the

models most commonly used in operational educational assessment programs.

Either the common-item or the equivalent-groups design may be used to gather

the data, as described below.

Most of the IRT models commonly used in assessments using vertical scaling are

special cases of a model that can be written in one general form. Define

fjk ¼ Dajðy� bjkÞ
ðk ¼ 0; 1; 2; :::; mj � 1Þ
bj0 ¼ 0:0

(4.1)

where D is a scaling factor of 1.7 (Haley, as cited in Lord & Novick, 1968, p. 399;

specified so that the logistic and normal ogive models differ by less than .01 for all

y values), aj is the discrimination parameter for item j, y is the proficiency variable,
and bjk is a location parameter for the kth-level of item j having mj score levels

numbered from zero to mj�1. Then, the general form of the logistic model (an

alternative is a similar normal model; see Lord & Novick, 1968) for item j is

PjkðyÞ ¼ cj þ
1� cj
� �

e

Pk
t¼0

fjt

Pmj�1

s¼0

e

Ps
t¼0

fjt

¼ cj þ
1� cj
� �

e fj0 e fj1 ::: e fjk

e fj0 þ e fj0e fj1 þ ::: þ e fj0e fj1 :::e fjmj�1

¼ cj þ
1� cj
� � Qk

t¼0

e fjt

Pmj�1

s¼0

Qs
t¼0

e fjt

(4.2)

where cj is the lower asymptote parameter. Note that for all two-parameter models

cj is zero, including two equivalent models that were independently developed at

about the same time: Yen’s (as cited in Yen & Fitzpatrick, 2006) two-parameter

partial-credit model and Muraki’s (1992) generalized partial-credit model.1 Yen’s

model defines the expression in Equation 4.1 as

fjk ¼ kajy�
Xmj�1

t¼0

gjt

ðk ¼ 1; 2; 3; :::; mj � 1Þ
gj 0 ¼ 0:0;

1Yen developed her model in 1991 (published in a technical report in 1992, as cited in Yen &

Fitzpatrick, 2006).
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whereas Muraki defines it as

fjk ¼ ajðy� bj þ djkÞ
dj0 ¼ 0:0;

The three parameterizations of the model are related as follows:

aj ¼ aj

gjk ¼ ajbjk

bj ¼ 1

mj � 1

Xmj�1

k¼1

bjk

djk ¼ bj � bjk ðk ¼ 1; 2; 3; :::; mj � 1Þ;

Note also that for a dichotomously scored item mj is 2 and Equation 4.2 reduces

to one of the logistic models: one-parameter logistic (1PL), 2PL, and 3PL. With a, b,
and c all present it is the 3PL; with c set to zero it is the 2PL; and if a is set to 1.0 (a
actually can be any constant value across all items) and c to 0.0, it is the 1PL.

Most, if not all, of the IRT models discussed by Thissen and Steinberg (1986)

and Yen and Fitzpatrick (2006, pp. 113-118), and in other chapters of this book, can

be used to fit an IRT model to the data used in vertical scaling. A competitor to the

two-parameteror generalized partial-credit model is Samejima’s (1969) graded-

response model, which is used for vertical scaling purposes in a number of educa-

tional assessment programs. Again, the graded-response model can be expressed in

either normal ogive or logistic form, and the latter can be expressed as

PjkðyÞ ¼ 1þ e�fjk
� ��1 � 1þ e�fj;kþ1

� ��1
;

where fjk and fj,k+1 are as defined in Equation 4.1.

4.3.1 The Common-Item Design

As mentioned above, in the common-item design linking is carried out through an

anchor block of items administered at adjacent grade levels under the assumption

that the parameters of the items are common to the two levels. Also as mentioned

above, the content covered in the anchor block of items must be appropriate for

students at both grade levels to avoid testing some students with items that yield no

information, due to lack of opportunity to learn in their grade-level curriculum.

Fitting the IRT model to the data is usually referred to as a calibration of the items

and results in estimates of parameters for each item. The item parameter estimates

for the anchor block of items in two adjacent grade levels are then used to perform
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the linking. When underlying assumptions are satisfied and the tests of two adjacent

grade levels are separately calibrated, as described by Kolen (2006, p. 176), the

parameters of the anchor items at the two levels are linearly related and therefore

can be placed on the same scale via a linear transformation. The item parameters

and proficiency variable are transformed via

y� ¼ K2 þ K1y

b� ¼ K2 þ K1b

a� ¼ a

K1

;

where the quantities with the asterisks represent the transformed quantities and the

constants, K1 and K2 are determined by the specific linear transformation method

employed. Methods of doing this include mean-mean, mean-sigma, and the Stocking-

Lord and Haebara test characteristic-curve (TCC) methods (see Yen & Fitzpatrick,

2006, pp. 134-135; Kolen & Brennan, 2004, pp. 387-388).

An alternative to the linear transformation methods is concurrent calibration, in

which data from several grades are calibrated together. This method assumes that

the anchor items have the same parameters in each grade to which they are

administered.

To link all grades via linear transformationmethods, the process begins by defining

one grade level as the base level and proceeding to link the other grades in a chain of

transformations. For example, to linkGrades 3–9, the Grade 3 calibration results could

be used to define the base scale. Using the anchor items common toGrades 3 and 4, the

linear transformationmethodwould be used to transform the anchor items’ calibration

results in the fourth grade to the third-grade scale. Nonanchor items on the fourth-

grade testwould undergo the same transformation to place themon the scale.A similar

procedure would be used to place the fifth-grade results on the scale, using the anchor

items common to Grades 4 and 5. This procedure would be continued until the scale

encompassed all seven grade levels.

4.3.1.1 Mean-Mean and Mean-Sigma Methods

As mentioned by Kolen and Brennan (2004), the mean-mean and mean-sigma

methods use the means, or means and standard deviations, respectively, of the

location parameter estimates for the anchor items to define the linear transforma-

tions. The transformation constants are defined as

K2 ¼ st
su

K1 ¼ Mt � K2Mu;
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where Nt and st represent the mean and standard deviation of the target location

parameters and Mu and su represent the mean and standard deviation of the

untransformed location parameter estimates. For the mean-mean method, K2 is

set to 1.0 and K1 is simply the difference between the target mean and the

untransformed mean of the location parameters.2

As mentioned by Kolen and Brennan (2004, p. 168) and Yen and Fitzpatrick

(2006, pp. 134-145) these simple linear transformations of parameter estimates

can be problematic in that different combinations of these IRT parameter esti-

mates can result in very similar item response functions (IRFs, discussed below).

The TCC methods avoid this problem by using the IRFs and TCCs rather than the

individual parameter estimates. Yen and Fitzpatrick also mentioned that the TCC

methods have the advantage of “using weights for the minimization based on a

distribution of abilities, so that more weight is given in parts of the scale where

there are more examinees” and minimize “differences in expected scores rather

than observed scores or parameters” (p. 135). I prefer the TCC methods for

another reason mentioned by Yen and Fitzpatrick. In many assessments, the

TCC is the basis for estimates of examinees’ scores using estimation methods

presented by Yen (1984; see also Yen & Fitzpatrick, 2006, p. 137). Hence,

matching the TCCs for the anchor items on two forms of a test provides a criterion

that is directly related to commonly used scoring procedures. To apply the TCC

methods, separately calibrate the data within samples of the two datasets whose scales

are to be linked. The TCC in one group serves as the target for the transformation,

and the other is to be transformed to match as closely as possible that target TCC.

The untransformed and transformed TCCs in the latter group are usually referred

to as the provisional and transformed curves.

4.3.1.2 The Stocking-Lord TCC Method

The TCC method of Stocking and Lord (1983) is probably the most widely used

method for vertical linking through anchor items. One formulation of the criterion

for the Stocking-Lord method is minimization of the sum over examinees of

squared differences between the target and transformed TCCs at given values of

the latent variable (proficiency) in the IRT model. Using P̂jki yið Þ to represent the

target-group estimated probability (calculated using estimates of the item para-

meters) for the kth level of item j for a specific value of proficiency, yi, and
P̂�
jki yið Þ the probability estimate of the other group after the transformation (hence

2Note that Kolen and Brennan (2004) used parameters (m and s for means and standard devia-

tions, respectively), whereas I use statistics. Because actual linking procedures are carried out

using sample data, I use statistical notation consistent with this practice. The transformation

constants can, of course, be considered to be estimates of parameters defined using the population

means and standard deviations.
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incorporating the two transformation constants, K1 and K2), the Stocking-Lord

method finds the transformation constants that minimize the expression

X
i2Q

wi

XJ
j¼1

Xmj�1

k¼1

kP̂jkiðyiÞ �
XJ
j¼1

Xmj�1

k¼1

kP̂�
jkiðyiÞ

" #2

; (4.3)

where Q represents a set of values of the proficiency variable y, J represents the

number of anchor items, and the wi are weights.

The set Q can be defined in a number of ways. It may include the values on the y
scale where the estimates have been found for the entire sample of examinees, or it

may be a set of values on the scale at equal intervals between two extremes of the

scale. The weights in the latter case would represent the densities of the distribution

of proficiencies at the points on the scale. These densities can be determined from an

assumed distribution (e.g., the normal) or from the distribution of sample estimates.

Kolen and Brennan (2004) listed five ways of defining the points in Q. Note that the
two terms within brackets in Equation 4.3 represent sums of values of the IRF for the

jth item, before and after transformation. For example, the target IRF for item j is

IRFji ¼
Xmj�1

k¼1

kP̂jkiðyiÞ;

and the sum of the IRFs at yi is

bzi ¼ XJ
j¼1

Xmj�1

k¼1

kP̂jkiðyiÞ;

where bzi represents the value of the sample TCC at yiwhich can be considered to be
an estimate of the population value, zi. Minimizing Equation 4.3 involves finding

the K1 and K2 that minimize the weighted sum of squared differences between the

target and transformed TCCs. Note that for a dichotomously scored item the IRF is

simply the item characteristic curve.

4.3.1.3 The Haebara TCC Method

A method developed by Haebara (as cited in Kolen & Brennan, 2004) is an

alternative to the Stocking-Lord method. This method defines the sum of squared

differences between the IRFs of the common items across values on the scale and

determines the values of K1 and K2 that minimize the sum of this quantity over

examinees. The expression for the quantity minimized in this procedure is

X
i2Q

wi

XJ
j¼1

Xmj�1

k¼1

P̂jkiðyiÞ �
Xmj�1

k¼1

P̂�
jkiðyiÞ

" #2

:
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Hence, the Haebara method finds the transformation constants that minimize the

weighted sum (over items and proficiency values, yi) of squared differences

between the two sets of IRFs, whereas the Stocking Lord method minimizes the

weighted sum (over proficiency values) of squared differences between the two

TCCs.

4.3.1.4 Concurrent Calibration

An alternative to the transformation methods described above is a concurrent

calibration. This method, as described by Kolen (2006, pp. 176–177), entails

using a multiple-group calibration program, enabling the development of a scale

that allows for the expected differences in score distributions across grades on the

vertical scale. All items at all grade levels are placed on the same vertical scale

without the need for further transformations. The groups are the grade levels, and

the common-item blocks across grades are critical to the scaling. Without those

linking blocks, the results of the calibration analysis would be identical to separate

calibration analyses at each grade level

4.3.2 The Equivalent-Groups Design

Developing a vertical scale using this design, as mentioned above, involves select-

ing randomly equivalent samples of examinees at each grade level. Separate

calibration analyses are first conducted for each group of examinees at a specified

grade level (hence separate analyses within each grade level for each of the

equivalent groups). Referring to Table 4.2, the two randomly equivalent third-

grade samples would be separately calibrated, yielding two independent sets of

estimates of the item parameters in item Block 3B, and at the same time Blocks 3A

and 4A would be calibrated on the same scale. The independent estimates for Block

3B could be averaged to provide the best estimates of those item parameters. The

resulting means, however, may yield biased estimates. An alternative is concurrent

calibration within grades. On the other hand, independent calibration followed by

examination of differences in Block 3B IRFs of the two samples would be useful for

studying model fit or sample equivalency issues. Similarly, the three independent

equivalent samples at the fourth grade would be separately calibrated, yielding

estimates of fourth-grade Blocks 4A and 4B as well as of Blocks 3B and 5A, all on

the same scale. Then, the mean-mean, mean-sigma, Stocking-Lord, or Haebara

method would be used to place the third- and fourth-grade items on the same scale.

Similar analyses in a chain of linking analyses across the grade levels would result

in the vertical scale across the seven grades. This part of the methodology is hence

similar to that described above for the nonequivalent-groups designs. Alternatively,

concurrent calibration procedures could be used to place all item parameters across

all grade levels on the same vertical scale.
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An alternative to the equivalent-groups design discussed above involves admin-

istering tests for two grade levels in randomly equivalent samples in the higher of

the two grade levels. I will illustrate using Grades 3, 4, and 5 as an example. The

first step is to administer Grade 3 item blocks to one fourth-grade sample and Grade 4

item blocks to a randomly equivalent fourth-grade sample. Then, use the mean-

sigma procedure to align the estimates of proficiency (y) to place the Grades 3 and 4
item parameter estimates on the same scale. In the second step, repeat this with

Grades 4 and 5 item blocks administered to two randomly equivalent Grade 5

student samples. Finally, link the Grade 3–4 and Grade 4–5 scales using the Grade 4

items as an anchor set in a TCC method.

4.4 Model Fit Procedures

Model fit procedures can be used when conducting a vertical linking by both the

common-item and equivalent-groups designs. A number of model fit procedures are

available for assessing the calibration results of IRT scaling in general. Here I focus

only on the methods used during vertical linking.

One of the most common procedures is to compare plots of the anchor item IRFs

of each item for the two groups (equivalent-groups design, as mentioned above) or

for the two forms (common-item design). In practice this procedure is usually

limited to examination of the plots. Conceivably, however, IRT methods sometimes

used to compare IRFs in the context of differential item functioning analyses could

be used in the vertical scaling context. Although individual item parameter esti-

mates could be compared, as mentioned above different sets of estimates can result

in highly similar IRFs, and the similarity of the latter is most important in using this

method to examine model fit.

Another methodology that is often used with designs involving anchor item sets

is comparison of the three TCCs involved. To illustrate, consider that a scale has

been established within the third grade in the common-item design of Table 4.1 and

we are linking the fourth-grade scale to it. The three TCCs are of (a) the Grade 3

target data, (b) the untransformed Grade 4 data, and (c) the transformed Grade 4

data. In this example, the criterion of importance is that the transformed Grade 4

TCC be as identical as possible to the target Grade 3 TCC. Comparison of the

untransformed with the transformed Grade 4 data simply provides information

about how the transformation affected the TCC.

Another important aspect of the vertical scale development that should be

examined is the progression of the scaling results across grade levels. One way of

examining this is to plot the TCCs of each grade level as separate curves in a single

plot. If the vertical scaling has been successful, the plot should show curves that do

not cross, with an orderly progression of location of the curves across grades

(lowest grade located lowest on the scale and each higher grade located somewhat

higher than the next lower grade). The distances between these curves need not be
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the same, because there is usually no basis for assuming that grade itself (i.e., Grade 3,

Grade 4) is an interval scale.

In a typical testing program, different test forms are used within each grade in

each assessment year. The new forms are usually equated within each grade level to

the old forms. As the vertical scale is used across calendar years, the model-fit

methodology results should be compared from year to year. Such comparison may

reveal problems developing with the scale or the scaling procedures. Some items,

for example, may show changes in the IRFs across years due to item parameter

drift. If the exact same set of items is used year to year, drift can be detected through

examination of the TCCs. If alternate forms are used each year, differences in the

TCCs could reflect selection of differentially difficult items, but this normally

would be taken care of through the within-grade year-to-year equating. Changes

in the patterns of the TCCs across grades from year to year may be an indication of

scale drift. If such things are observed, investigation through discussion with

content experts and school officials should be undertaken to determine any curricu-

lar or population changes. In the event that these cross-year comparisons bring into

question the validity of the scale, the scale may need to be reset by redoing the

vertical linking with more recent data than used to develop the original scale.

4.5 Discussion

In this chapter I have described the most commonly used designs and methodology

for developing vertical scales. Because the most common application is in large-scale

educational assessment programs, the focus has been on methods used in such

programs, primarily those using IRT models. There are many variations on the

methodology discussed and alternative methodology not discussed in this chapter,

so the reader is encouraged to refer to references cited herein as well as sources cited

in those references. Additionally, I would like to point out that new research and

development in this area is currently produced with some frequency, so those

individuals wishing to keep current on the topics of this chapter should read the

latest journals and conference programs in which psychometric methods are reported.

Author Note: Any opinions expressed in this chapter are those of the authors and not necessarily of

Educational Testing Service.
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Chapter 5

An Empirical Example of Change Analysis

by Linking Longitudinal Item Response

Data From Multiple Tests

John J. McArdle and Kevin J. Grimm

Linking, equating, and calibrating refer to a series of statistical methods for

comparing scores from tests (scales, measures, etc.) that do not contain the same

exact set of measurements but presume to measure the same underlying construct.

Lord (1955a,1955b) provided one of the first examples of this kind where one test

(x) was administered to 1,200 people, while two other tests (y1& y2) were each only
administered to a different half of the group. The resulting data and analysis were

reprinted in Cudeck (2000), who showed that the assumption of a single factor

model for all three tests (x, y1, y2) made it possible to identify a maximum

likelihood estimator of the correlation among the two variables that were never

measured on the same persons (y1 & y2). In contemporary terms the common score

(x) served as an anchor for the correlation of the other two scores, and this simple

design is one version of what is termed a nonequivalent anchor test (von Davier,

Holland, & Thayer, 2004b).

There has been a great deal of work on similar incomplete data problems at the

level of items. The introduction of item response methods led to improved linking

techniques (e.g., common-item equating, common-person equating) as item res-

ponse models have built-in linking mechanisms for incomplete data (Embretson,

1996). Most of the recent work on this topic has been summarized in Dorans,

Pommerich, and Holland (2007), and Dorans (2007) provided a good readable

overview of linking scores. Dorans examined the general assumptions of different

data collection designs and gave explicit definitions of equating, calibrating, and

linking. Dorans also provided a compelling example of the importance of adequate

linking using multiple health outcome instruments, and how an individual’s health
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may be misunderstood if alternative tests presumed to measure the same construct

fail to do so.

The research we present here has far fewer consequences because it is not

intended for high-stakes decision making. Instead, we attempt to use the new

approaches in item linking to deal with a perplexing problem in lifespan

research—we ask, “How can we get a reasonable measure of the same construct

when the tests themselves are changing over age and time?” The approach we

present here is intended to be useful for research into the dynamics of aging but is

not intended as a placement device or as an improved marker of health.

5.1 Challenges in Lifespan Developmental Research

Examining change over extended periods of time or during critical developmental

periods where the expression of the construct changes is a complex undertaking.

Often the measurement of the construct must change to adequately capture the

construct. In these situations changes in measurement and changes in the construct

are difficult to separate. One empirical example comes from the Intergenerational

Studies (IGS) of Human Development, a collection of three studies initiated at the

University of California-Berkeley in 1928. A main interest of the IGS was to

examine the growth and change of cognitive abilities during infancy, childhood,

adolescence, and adulthood. In the IGS, cognitive abilities have been measured

with a variety of tests across the 70 years of the study, including the California First-

Year Mental Scale (Bayley, 1933), California Preschool Mental Scale (Jaffa, 1934),

Stanford-Binet (Terman, 1916), Stanford-Binet Form L and Form M (Terman &

Merrill, 1937), Wechsler-Bellevue Intelligence Scale (Wechsler, 1946), Wechsler

Adult Intelligence Scale (WAIS; Wechsler, 1955), and the Wechsler Adult Intelli-

gence Scale-Revised (WAIS-R; Wechsler, 1981). These measures were chosen

because they were the best available age-appropriate tests.

Changes in cognitive abilities could be measured for each developmental period.

For example, Figure 5.1 is a series of longitudinal plots for specific developmental

periods where the same cognitive test was administered. Plots A and B in Figure 5.1

are of the California First-Year Mental Scale and California Preschool Mental Scale

for participants in the Berkeley Growth Study and Berkeley Guidance-Control

Study, respectively. These two plots cover a similar developmental period (i.e.,

birth through age 5) using different cognitive tests but generally show a pattern of

rapid increase. Plot C in Figure 5.1 shows mental age from the series of Stanford-

Binet tests (i.e., 1916, Form L, FormM), mostly collected from ages 6–17. Plot D in

Figure 5.1 shows Block Design scores from the Wechsler-Bellevue Intelligence

Scale measured from ages 16–27 years and shows a period of slight growth and

stability. Plot E in Figure 5.1 shows Block Design scores from the WAIS, which

was administered once; therefore individual change patterns cannot be captured.

Finally, Plot F in Figure 5.1 shows Block Design scores from the WAIS-R and

shows stability in the change pattern and large between-person differences therein.

It is important to note that the Block Design scores from the Wechsler tests are
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not on a common scale; however, some items are identical across edition of the

Wechsler. Additionally, the tests described above may be measuring different

constructs at the total score level, even though they are all intelligence tests.

An alternative view regarding the developmental process is that it is continu-

ously evolving. Thus, by selecting items from different tests that measure a

common construct and scaling them with an appropriate model, a lifespan trajec-

tory of specific cognitive abilities may be represented. Scaling items, in essence,

would equate items from different tests, recognizing their differences in level of

Fig. 5.1 Longitudinal plot of (a) First-Year Mental Scale total score, (b) Preschool Mental Scale

total score, (c) Stanford-Binet mental age, (d) Wechsler-Bellevue Block Design, (e) Wechsler

Adult Intelligence Scale (WAIS) Block Design, and (f) WAIS-Revised (WAIS-R) Block Design
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difficulty and relationship with the underlying construct. In order to link the tests,

there must be sufficient item overlap within and between test forms. Item overlap

occurs because different tests were administered at the same occasion and because

different tests contain the same items.

In this chapter we describe an example of using item response linking proce-

dures with scarce longitudinal item-level data collected over a 70-year period to

help understand and evaluate theories of cognitive growth and decline. Data for this

project come from the IGS and the Bradway-McArdle Longitudinal Study (BMLS).

We realize that IGS and BMLS data are weak in terms of equating but recognize

their longitudinal strength. Building on the data’s strength, we link items measuring

nonverbal intelligence and model within-person changes in the lifespan develop-

ment of nonverbal intelligence and the between-person differences therein.

5.2 Longitudinal Item-Level Data

Longitudinal studies provide an added dimension (e.g., time/age) to consider when

linking item-level data. Measurement invariance is tremendously important in

longitudinal studies as researchers are most interested in studying change; however,

measurement invariance is often overlooked or assumed because the same test is

often administered in longitudinal studies. In many instances in longitudinal studies

it is not reasonable to administer the same test (see Edwards & Wirth, 2009;

McArdle, Grimm, Hamagami, Bowles, & Meredith, 2009). Potential reasons

include age appropriateness, improved and revised tests become available, and

prior poor experiences. For example, the Child-Behavior Checklist (Achenbach &

Rescorla, 2001), an informant-based behavior rating scale, is an often-used measure

of behavior problems in children and has two age-appropriate forms. One form is

appropriate for children between the ages of 1½ and 5 years, whereas the second

form is appropriate for children between 6 and 18 years old. The two forms share

the same dimensions of behavior problems (e.g., internalizing and externalizing)

and share several items, but they do have items specific to each age-appropriate

form. Also, there are items that both forms share but are expected to relate to the

underlying dimensions in different ways (e.g., a question about crying is part of the

internalizing dimension in the 6–18 form but not part of the internalizing or

externalizing dimensions in the 1½–5 form).

5.3 Method

We start with descriptions of the samples and measures, an overview of the item

response and longitudinal models, and results from fitting these models to the

longitudinal data. Table 5.1 contains information regarding the cognitive tests

that were administered at each age for each sample.
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5.3.1 Berkeley Growth Study

The Berkeley Growth Study was initiated by Nancy Bayley in 1928. Sixty-one

infants were enrolled between September 15, 1928, and May 15, 1929, to trace

early mental, motor, and physical development during the first years of life. An

additional 13 infants were enrolled in the Berkeley Growth Study within 3 years of

the start of the study, bringing the final sample size to 74.

Data collection in the Berkeley Growth Study began within 4 days of an infant’s

birth as anthropometric, neurological, and physiological measurements were made in

the hospital by pediatricians. Participating infants were assessed at the Institute of

HumanDevelopment at theUniversity ofCalifornia-Berkeley everymonth from1–15

months of age, every 3 months from 18–36 months of age, and then annually from

4–18 years of age. In adulthood the participants were measured at 21, 25, 30, 36,

52, and 72 years of age. The Berkeley Growth Study was the most measurement-

intensive IGS study.

Table 5.1 Summary of Measurement Occasions for Each Sample

Age Berkeley Growth Guidance-Control Oakland Growth Bradway-McArdle

Longitudinal

2–5 ½ � � � SB-L, SB-M (139)

6 1916 SB (60) 1916 SB (205) � �
7 1916 SB (47), SB-L (8) 1916 SB (204) � �
8 SB-L (51) SB-L (187) � �
9 SB-L (53) SB-L (94), SB-M (98) � �
10 SB-M (53) SB-L (102), SB-M (88) � �
11 SB-L (48) SB-L (77) � �
12 SB-M (50) SB-L (90), SB-M (43) 1916 SB (192) �
13–14 SB-L (42) SB-L (82), SB-M (97) � SB-L (111)

15 � SB-M (51) � �
16 WB-I (48) � � �
17 SB-M (44) � SB-M (147) �
18 WB-I (41) WB-I (157) � �
21 WB-I (37) � � �
25 WB-I (25) � � �
29 � � � WAIS, SB-L (110)

36 WAIS (54) � � �
40 � WAIS (156) � WAIS, SB-LM (48)

50 � � WAIS (103) �
53 WAIS-R (41) WAIS-R (118) � WAIS (53)

60 � � WAIS-R (78) �
63 � � � WAIS (48)

72 WAIS-R (31) � � �
Note: Sample sizes are contained within parentheses next to the test name; more than one sample

size within a single testing age denotes different participants. 1916 SB ¼ 1916 edition of the

Stanford-Binet, SB-L ¼ Revised Stanford-Binet Form L, SB-M ¼ Revised Stanford-Binet

Form M, SB-LM ¼ Revised Stanford-Binet Form LM, WB ¼ Wechsler-Bellevue Intelligence

Scale, WAIS¼Wechsler Adult Intelligence Scale, WAIS-R¼Wechsler Adult Intelligence Scale-

Revised
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5.3.2 Berkeley Guidance-Control Study

The Berkeley Guidance-Control Study began in early 1928 under the leadership of

Jean Macfarlane. The 248 original participants in the Berkeley Guidance-Control

Study were drawn from a survey of every third birth in Berkeley from January 1,

1928, through June 30, 1929. The initial nature of the Berkeley Guidance-Control

Study was a 6-year project with goals of (a) documenting the frequency and

occurrence of behavior and personality problems in a cross-sectional sample of

young children during the preschool years, (b) identifying the biological and

environmental factors associated with the presence or absence of such behavioral

problems, and (c) estimating the effects of guidance activities with the parents of

these children.

Monthly home visits began when infants were 3 months old and continued

through 18 months of age. When the infants were 21 months of age, half of the

sample (n¼ 124) was assigned to the guidance condition, and the remaining half of

the sample (n¼ 124) was assigned to the control condition. Parents of the infants in

the guidance condition engaged in intensive discussions with public health nurses

and other project staff. An initial, intensive assessment of the infants and their

parents was conducted at 21 months. Thereafter, infants and parents were inter-

viewed and tested every 6 months from the child’s age of 2–4 years and then

annually from 5–18 years of age. In adulthood, the Berkeley Guidance-Control

Study participants were assessed at ages 30, 40, and 52.

5.3.3 Oakland Growth Study

The Oakland Growth Study began in 1931 under the guidance of Harold Jones,

Mary Jones, and Herbert Stolz. A total of 212 students attending five elementary

schools in Oakland, California, were enrolled into the study. The goal of the

Oakland Growth Study was to study normal adolescence, particularly physical

and physiological maturation and peer relationships. Initial measurements were

taken in 1932 when the participants ranged in age from 10–12 years. Participants in

the Oakland Growth Study were assessed semiannually during the six years of

junior and senior high school. In adulthood, the participants were assessed at ages

38, 48, and 60.

5.3.4 Bradway-McArdle Longitudinal Study

The Bradway-McArdle Longitudinal Study began in 1931 when 139 children aged

2½ to 5 years were tested as part of the standardization of the Revised Stanford-

Binet (Terman & Merrill, 1937). The sample was tested by Katherine Bradway
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(Bradway, 1944, 1945a. 1945b) with the Revised Stanford-Binet in 1941. The

sample was tested in 1957, 1969, 1984, and 1992. McArdle, Hamagami, Meredith,

and Bradway (2000) coordinated the last three waves of data collection. It is

important to note that this sample took Forms L and M of the Stanford-Binet in

the same occasion in 1931; Form L of the Stanford-Binet and the WAIS in 1957;

Form LM of the Stanford-Binet and the WAIS in 1969, and the WAIS and

additional WAIS-R items in 1992.

5.3.5 Measures of Nonverbal Intelligence

The cognitive measures administered in these studies and examined here include

the 1916 Stanford-Binet (Terman, 1916), Revised Stanford-Binet (Form L, Form

M, & Form LM; Terman & Merrill, 1937, 1960), Wechsler-Bellevue Intelligence

Scale (Wechsler, 1946), WAIS (Wechsler, 1955), and the WAIS-R (Wechsler,

1981). From these scales, nonverbal intelligence items were selected. For the

Stanford-Binet tests, item selection was based on a categorization conducted by

Bradway (1945). A list of nonverbal items selected from the Stanford-Binet tests is

presented in Table 5.2. The first column of Table 5.2 contains a running total of the

number of items that measure nonverbal intelligence from the Stanford-Binet tests.

As seen, 65 items from the Stanford-Binet measure nonverbal intelligence. The

second column contains the name of the item, and the third through sixth columns

contain the Stanford-Binet item number if the item appeared on the edition of the

test. These columns were left blank if the item did not appear on the edition. Items

on the Stanford-Binet tests are grouped by age appropriateness (as opposed to

construct), and item numbers reflect this. For example, II-1 means this item is the

first item from the age 2 items. Table 5.2 shows the level (or lack thereof) of item

overlap across editions of the Stanford-Binet. Each edition of the Stanford-Binet

contains items that are unique and shared with other editions.

For the Wechsler tests, items from Picture Completion, Picture Arrangement,

Block Design, and Object Assembly were chosen to represent nonverbal intelli-

gence. A list of the nonverbal items from the Wechsler tests is presented in

Table 5.3. As in Table 5.2, the first column is a running total of the number of

items selected from the Wechsler series of tests. As seen, 68 distinct items were

selected. Column 2 contains the subscale from which the item comes from, and

columns 3–5 indicate the item number from each edition of the Wechsler intelli-

gence scales. Columns were left blank if the edition did not contain the item

allowing for the examination of item overlap across Wechsler editions. It is

important to note that, in several cases, the scoring of items had to be modified to

be considered equivalent because of different time bonuses. In the Wechsler series

of intelligence tests, the scoring system from the WAIS was adopted for the

Wechsler-Bellevue and WAIS-R where appropriate. Several items were similar

on the surface and in name but were slightly different in presentation or scoring.
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Table 5.2 Nonverbal Items From the Stanford-Binet Intelligence Scales and Their Overlap

Across Test Forms

Item

number

Item 1916

Stanford-

Binet

Stanford-

Binet Form L

Stanford-

Binet FormM

Stanford-

Binet Form

LM

01 Delayed Response � � II-1 II-2

02 Form Board (1) � II-1 II-4 II-1

03 Block Tower � II-4 � II-4

04 Motor Coordination (1) � � IIH-2 �
05 Form Board - Rotated (1) � IIH-6 � �
06 Stringing Beads (2) � � IIH-A �
07 Vertical Line � � III-4 III-6

08 Stringing Beads (4) � III-1 � III-1

09 Block Bridge � III-3 III-1 III-3

10 Circle (1) � III-5 � III-5

11 Form Board - Rotated (2) � III-A III-A IIH-A

12 Patience: Pict (1) � � IIIH-2 IIIH-2

13 Animal Pict. (4) � � IIIH-3 IIIH-3

14 Sorting Buttons � � IIIH-5 IIIH-5

15 Matching Obj. (3) � � IIIH-A �
16 Cross � IIIH-A � �
17 Stringing Beads (7) � � IV-2 �
18 Compar. Lines IV-1 � � �
19 Discrimination of Forms (3) IV-2 � � �
20 Pict. Comp. (Man) � IV-3 � �
21 Discrimination of Forms (8) � IV-5 � IV-5

22 Animal Pict. (6) � � IV-A �
23 Animal Pict. (7) � � IVH-1 �
24 Pict. Compl. (Bird) � � IVH-4 �
25 Pict. Compar. (3) � IVH-3 � �
26 Patience: Pict. (2) V-5 � IVH-A �
27 Pictorial Sim. & Dif II (9) � � V-3 V-5

28 Patience Rec. (2) � � V-4 V-6

29 Pict. Compl. (Man) � V-1 � V-1

30 Folding Triangle � V-2 � V-2

31 Square (1) IV-4 V-4 � V-4

32 Mut. Pict. (3) VI-2 � V-6 �
33 Mut. Pict. (4) � � � VI-3

34 Knot VII-4 V-A V-A V-A

35 Bead Chain I � VI-2 VI-2 �
36 Mut. Pict. (4) � VI-3 � �
37 Pict. Compar. (5) � VI-5 � �
38 Pict. Absurd. I (3) VII-2 VII-1 � �
39 Pict. Absurd. I (4) � � � VII-1

40 Diamond (2) � VII-3 � �
41 Diamond (1) VII-6 � � VII-3

42 Pict. Absurd. I (2) � � VII-3 �
43 Ball & field VIII-1 � � �
44 Paper Cutting I (1) � IX-1 � IX-1

45 Pict. Absurd. II � X-2 � �
46 Absurditites (4) X-2 - - -
47 Pict. Absurd. II � � XII-5 XII-3

48 Plan of Search � XIII-1 XIII-1 XIII-1

(continued)
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These items were treated as distinct instead of requiring assumptions regarding

their equivalence. This data collation leads to 3,566 people-occasions measured on

130 items.

5.4 Models

5.4.1 Measurement Models

We focus on a strong measurement model to account for the within-time relation-

ships among the nonverbal intelligence items. We begin with a longitudinal one-

parameter logistic (1PL) or Rasch model (Rasch, 1960). A longitudinal 1PL model

can be written as

ln
P Xi½t� ¼ 1ð Þn

1� P Xi½t� ¼ 1ð Þn

� �
¼ y½t�n � bi (5.1)

where y½t�n is person n’s ability at time t, bi is item i’s difficulty parameter, and

P Xi½t� ¼ 1ð Þn is the probability that person n answered item i correctly at time

t given the person’s ability and item’s difficulty. The longitudinal 1PL model was

Table 5.2 (continued)

Item

number

Item 1916

Stanford-

Binet

Stanford-

Binet Form L

Stanford-

Binet FormM

Stanford-

Binet Form

LM

49 Paper Cutting I (2) � XIII-3 � XIII-A

50 Reasoning � � XIV-1 XIV-3

51 Induction XIV-2 XIV-2 � XIV-2

52 Pict. Absurd. III � XIV-3 XIV-2 �
53 Ingenuity (1) � XIV-4 XIV-5 XIV-4

54 Codes (1.5) � AA-2 AA-4 �
55 Ingenuity (2) � AA-6 AA-2 AA-2

56 Directions I (4) � � AA-6 AA-6

57 Paper Cutting � � AA-8 AA-A

58 Boxes (3) AA-4 SAI-2 � �
59 Enclosed Box (4) � � � SAI-2

60 Ingenuity (3) � � SAII-2 SAII-4

61 Codes II (1) � � SAII-5 SAII-A

62 Code AA-6 � � �
63 Paper Cutting II SA-2 SAIII-4 � �
64 Reasoning � SAIII-5 � SAIII-5

65 Ingenuity SA-6 � � �
Note: Item numbers represent the age level and item number; for example, II-1 is the first item at

the age 2 level. IIH ¼ age 2½ items; AA ¼ Average Adult level; SAI ¼ Superior Adult I; SAII ¼
Superior Adult II; SAIII ¼ Superior Adult III; -A ¼ represents alternative item
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Table 5.3 Nonverbal Items From theWechsler Intelligence Scales and Their Overlap Across Test

Forms

Subscale &

item number

Item Wechsler-Bellevue Wechsler Adult

Intelligence Scale

Wechsler Adult

Intelligence

Scale-Revised

01 Picture Completion � 1 1

02 Picture Completion 8 � �
03 Picture Completion � � 2

04 Picture Completion � � 3

05 Picture Completion 4 5 4

06 Picture Completion � 4 �
07 Picture Completion � � 5

08 Picture Completion 10 6 6

09 Picture Completion � 7 7

10 Picture Completion � � 8

11 Picture Completion � 9 �
12 Picture Completion � � 9

13 Picture Completion � 12 �
14 Picture Completion � � 10

15 Picture Completion 11 16 �
16 Picture Completion � � 11

17 Picture Completion 5 15 �
18 Picture Completion � � 12

19 Picture Completion � 8 13

20 Picture Completion 15 18 14

21 Picture Completion � � 15

22 Picture Completion � � 16

23 Picture Completion � � 17

24 Picture Completion � 19 18

25 Picture Completion 14 21 19

26 Picture Completion � 20 20

27 Picture Completion 6 2 �
28 Picture Completion 1 3 �
29 Picture Completion 13 10 �
30 Picture Completion � 11 �
31 Picture Completion � 13 �
32 Picture Completion 7 14 �
33 Picture Completion � 17 �
34 Picture Completion 2 � �
35 Picture Completion 3 � �
36 Picture Completion 9 � �
37 Picture Completion 12 � �
38 Block Design � 1 (Time ¼ 60) 1 (Time ¼ 60)

39 Block Design � 2 (Time ¼ 60) 2 (Time ¼ 60)

40 Block Design 1 (Time ¼ 75) 3 (Time ¼ 60)

41 Block Design 2 (Time ¼ 75) 4 (Time ¼ 60) 3 (Time ¼ 60)

42 Block Design 3 (Time ¼ 75) 5 (Time ¼ 60) 4 (Time ¼ 60)

43 Block Design 4 (Time ¼ 75) 6 (Time ¼ 60) 5 (Time ¼ 60)

44 Block Design 5 (Time ¼ 150) 7 (Time ¼ 120) 6 (Time ¼ 120)

45 Block Design 6 (Time ¼ 150) 8 (Time ¼ 120) 7 (Time ¼ 120)

46 Block Design � 9 (Time ¼ 120) 8 (Time ¼ 120)

47 Block Design � 10 (Time ¼ 120) 9 (Time ¼ 120)

48 Block Design 7 (Time ¼ 196) � �
49 Picture Arrangement � 1 (Time ¼ 60) �
50 Picture Arrangement 1 (Time ¼ 60) 2 (Time ¼ 60) 1 (Time ¼ 60)

51 Picture Arrangement 2 (Time ¼ 60) 3 (Time ¼ 60) �
52 Picture Arrangement � 4 (Time ¼ 60) 4 (Time ¼ 60)

53 Picture Arrangement � 5 (Time ¼ 60) �
(continued)
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then extended to accommodate multicategory (polytomous) response formats

because several items from the Wechsler tests have partial credit scoring. This

model can be written as

ln
P Xi½t� ¼ xð Þn

1� P Xi½t� ¼ xð Þn

� �
¼ y½t�n � dij (5.2)

where P Xi½t� ¼ xð Þn is the probability the response of person n to item i is in category
x, given the response is either in category x or x – 1, and dij is the step-difficulty for
step j of item i. This measurement model is a straightforward longitudinal extension

of Masters’s partial-credit model (Masters, 1982). In both equations, we note that

person ability is time dependent and item difficulty (or step difficulty) does

not depend on time. It is also important to note that we are going to estimate y[t]n
for each person at each measurement occasion.

5.4.2 Longitudinal Models

To model lifespan changes in nonverbal ability, we use growth curves with an

interest in exponential change patterns, as exponential patterns have been found to

adequately fit lifespan changes in a variety of cognitive abilities (see McArdle,

Ferrer-Caja, Hamagami, & Woodcock, 2002; McArdle et al., 2009). The basic

growth curve for the ability estimates can be written as

y½t�n ¼ g0n þ g1n A½t�ð Þ þ e½t�n
g0n ¼ m0 þ d0n

g1n ¼ m1 þ d1n

(5.3)

Table 5.3 (continued)

Subscale &

item number

Item Wechsler-Bellevue Wechsler Adult

Intelligence Scale

Wechsler Adult

Intelligence

Scale-Revised

54 Picture Arrangement 4 (Time ¼ 120) 6 (Time ¼ 60) 2 (Time ¼ 60)

55 Picture Arrangement 6 (Time ¼ 120) 7 (Time ¼ 120) �
56 Picture Arrangement 5 (Time ¼ 120) 8 (Time ¼ 120) 10 (Time ¼ 120)

57 Picture Arrangement - � 3 (Time ¼ 60)

58 Picture Arrangement � � 6 (Time ¼ 90)

59 Picture Arrangement � � 7 (Time ¼ 90)

60 Picture Arrangement � � 9 (Time ¼ 120)

61 Picture Arrangement 3 (Time ¼ 60) � �
62 Picture Arrangement � � 5 (Time ¼ 90)

63 Picture Arrangement � � 8 (Time ¼ 90)

64 Object Assembly 1 (Time ¼ 120) 1 (Time ¼ 120) 1 (Time ¼ 120)

65 Object Assembly � 2 (Time ¼ 120) 2 (Time ¼ 120)

66 Object Assembly 2 (Time ¼ 180) � �
67 Object Assembly 3 (Time ¼ 180) 3 (Time ¼ 180) 3 (Time ¼ 180)

68 Object Assembly � 4 (Time ¼ 180) 4 (Time ¼ 180)
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where g0n is the intercept for person n, g1n is the slope for person n, A is a vector of

basis functions, and e[t]n is the time-dependent (Level 1) residual term. The Level 1

intercept and slope are decomposed into a sample-level (Level 2) means (m0 and m1)
and individual deviations (d0n and d1n) from the sample-level means. Individual

deviations are assumed to be multivariate normally distributed with a mean of 0,

variances (s20 and s21), and a covariance (s01). The time-dependent residuals are

assumed to be normally distributed with a mean of 0 and a single variance (s2e).
We fit the growth curves with the following basis functions: level only (A[t]¼0),

linear (A[t]¼t), exponential (A½t� ¼ 1� e�pg�tð Þ), and dual exponential

(A½t� ¼ e�pd �t � e�pg�tð Þ). The dual exponential was of specific interest because the
model captures growth and decline as pd is the decline rate and pg is the growth rate.
With this model, we can test whether the decline rate is significantly different from

zero (pd 6¼ 0). The decline rate is an important parameter in the lifespan develop-

ment of cognitive abilities because a significant decline rate indicates ability

declines as adults age.

5.4.3 Analysis Plan

There are several alternative ways to analyze these kinds of data using these types

of models (see McArdle et al., 2009). For clarity here, we only present a two-phase

approach for analyzing the longitudinal item-level data. In the first phase the

measurement model (Equation 5.2) is fit to the longitudinal item-level data, without

capitalizing on the repeated measures nature of the data. The benefit of this first

analysis is that it provides a linking equation for conversion of the observed score

pattern of any test (items administered) at any occasion. In any case where a person

has responded to a series of items, theoretical ability scores (y[t]n) from the overall

measurement model are estimated and treated as observed longitudinal data in the

second phase. The explicit assumption of invariance of the construct over time is

similar to those made for scales using metric factorial invariance (see McArdle,

1994, 2007). However, we recognize that the lack of common overlapping items

within occasions makes it difficult to reject this strict invariance hypothesis, so our

original substantive choice of item content is critical.

In the second phase the linked scores (ability estimates) from Step 1 are treated

as observed data for each person at each time and the within-person changes in the

ability estimates are modeled using growth curves (Equation 5.3). On the other

hand, the combined model (Equations 5.2 and 5.3) can be estimated, and this

approach is often seen as optimal, as it produces easy-to-use parameter estimates

and allows the modeling of nonverbal ability as a latent entity instead of an

observed (estimated) entity.

Although we do not want to treat this two-phase approach as optimal, it certainly

is practical. This two-phase approach is not optimal from a statistical point of

view—the nonverbal ability scores have to be estimated using the prior model

assumptions, and these assumptions are likely to have some faults. However, as we
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demonstrate here, this two-phase approach is simple, is computationally efficient,

and allows exploration of longitudinal patterns in the ability estimates from the first

step (as in McArdle et al., 2009). It is possible to create a joint estimation of the

scores within the longitudinal growth models (as in McArdle et al., 2009), and these

and more complex programming scripts can be downloaded from http://psychol-

ogy.ucdavis.edu/labs/Grimm/personal/downloads.html.

5.5 Results

5.5.1 Step 1: Nonverbal Ability Estimates

A total of 65 items from the Stanford-Binet were deemed to measure nonverbal

intelligence, 68 items (37 Picture Completion, 11 Block Design, 15 Picture

Arrangement, and 5 Object Assembly) from the Wechsler intelligence tests, and a

total of 3,566 person-occasions. The partial-credit model was fit to these data;

ability estimates were calculated for 3,184 (nonextreme) person-occasions, and

item difficulties were calculated for 123 (nonextreme) items. By fitting the par-

tial-credit model to the item-level data in this way, we assumed the item parameters

did not vary across time. That is, item difficulty and discrimination were the same

for a given item regardless of age, year, and occasion.

Fit of the partial credit model was evaluated in terms of the item fit. Commonly

used item fit indices are termed INFIT, OUTFIT, and point biserial correlation.

INFIT and OUTFIT consider the amount of noise when the ability level of the

participant is close to and far from the item difficulty, respectively. There is an

expected amount of noise for each item and person, based on the probabilistic

nature of the model. When the amount of noise is as expected, INFIT and OUTFIT

statistics will be 1.0. If a person or item is acting too predictably, the person/item is

considered muted and the INFIT and OUTFIT will show this by being considerably

less than one, while noisy people/items will have values greater than one. Generally

acceptable limits on INFIT and OUTFIT statistics are 0.8 – 1.2 with 0.6 – 1.4 being

liberal boundaries. It’s important to note that the OUTFIT statistic may be unreli-

able for extreme cases (easiest and hardest). The point biserial correlation is another

indication of item fit as it is the correlation between the participant’s probability of

correctly answering the item and participant’s score on the test, basically determin-

ing whether people with higher overall scores tend to correctly answer the item. The

fit of the nonverbal items to the partial credit model was generally good as only five

items showed misfit based on liberal boundaries of INFIT. Based on OUTFIT, 29

items showed misfit with most items showing less noise than expected, which may

be a function of repeated testing. Point biserial correlations were positive for 114

items; negative point biserial correlations were found for nine items. Items with

negative biserial correlations tended to have few responses.

Person reliability was generally high (.92); however, it might have been over-

estimated because the repeated measures nature of the data was not accounted for in
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this model. Estimates of nonverbal ability were calculated for each person at each

occasion using the partial-credit model. The ability estimates were a simple function

of the items administered at each occasion and the participant’s responses to those

items, ignoring age at measurement. The scaling of the ability estimates was such

that the average item difficulty was 0 (i.e., Sbi ¼ 0), and between- and within-

person differences were scaled in a logit metric reflecting linear probability changes.

After calculating nonverbal ability estimates for each person at each occasion,

they were plotted against the persons’ age at testing in the lifespan trajectory plot

displayed in Figure 5.2. The lifespan trajectories of nonverbal ability are repre-

sented for each person, and the ability estimates have, under the partial-credit

model, the same interpretation at ages ranging from 2–72. From Figure 5.2, it is

easy to see that the trajectories of nonverbal ability rose rapidly through childhood,

decelerated during adolescence, flattened out during adulthood, and potentially

show a slow but terminal decline into older adulthood. Most importantly, there

appear to be sizable individual differences in both the level of nonverbal ability and

between-person differences in those changes across the lifespan.

5.5.2 Step 2: Growth Modeling of Nonverbal Ability

Several growth models (i.e., level only, linear, single exponential, dual exponential)

were fit to the ability estimates from the partial-credit model. The level-only model

provided baseline fit statistics for comparison purposes to determine whether there

Fig. 5.2 Longitudinal plot of nonverbal ability estimates
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were systematic changes in nonverbal ability span. The linear and quadratic models

did not converge, indicating they were not appropriate for these data. The single and

dual exponential models fit better than the level-only model, and the dual exponen-

tial model fit significantly better than the single exponential model (D-2LL ¼ 81,

Dparms ¼ 1), indicating that nonverbal ability declined during older adulthood.

Parameter estimates from the dual exponential model are contained in Table 5.4.

The average rate of change was positive (�1 ¼ .71), and there was significant

variation in the average rate of change (s1
2 ¼ .10). The mean intercept, centered

at 20 years, was 5.46, and there was significant variation in nonverbal ability at this

age (s0
2 ¼ .57). There was a negative covariance (s01 ¼ -.02; r01 ¼ -.31) between

the intercept and rate of change such that participants with more nonverbal ability at

age 20 tended to have slower rates of change. The expected mean (and between-

person deviations) of the age-based latent curve of nonverbal ability is displayed in

Figure 5.3. Figure 5.3 shows the sharp increases during childhood before changes

in nonverbal ability decelerated, peaked around 30 years of age, and slowly

declined through older adulthood. It also becomes apparent that even though the

decline rate was significantly different from zero, there was only a small amount of

decline in nonverbal ability for participants in these studies.

5.6 Discussion

Analyzing item-level data in longitudinal studies could become the norm in applied

longitudinal research because of its many practical benefits, including the possibil-

ity of using longitudinal data where the scales have changed (see McArdle et al.,

2009). Of course, there are also many limitations to analyzing item-level data, some

of which researchers and publishers may need to overcome. That is, it would be

possible to create “translation tables” from larger scale cross-sectional studies using

common items and apply these to our inevitably smaller longitudinal studies.

The benefits of using item-level data in longitudinal studies include the poten-

tial reduction practice effects by administering different tests at different occa-

sions, checks and tests of item drift and differential item functioning across time

Table 5.4 Parameter

Estimates From the Dual

Exponential Growth Model

Fit to the Nonverbal Ability

Estimates

Parameter Parameter

estimate

Standard

error

Fixed effects

Intercept (�0) 5.46 .045

Slope (�1) 0.71 .098

Growth rate (pg) 0.20 .006

Decline rate (pd) 0.09 .011

Random effects

Intercept (s20) 0.57 .063

Slope (s21) 0.01 .002

Intercept-slope covariance (r01) �0.02 .007

Residual (s2e) 1.09 .033
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and age, more precise estimates of ability compared to simple sum scores, and

information regarding the relative magnitudes of measurement error within

and across time. One way to reduce practice effects is to administer a new test

(and therefore items) at each successive occasion. This would reduce item-specific

retest effects, which may be contributing to the lack of significant decline in

nonverbal ability reported here. Next, tests of measurement equivalence or the

invariance of item discrimination and difficulty (and thresholds) parameters can be

examined across time or age to make sure the measurement properties are stable.

Items may become more difficult or may not relate to the underlying construct in

the same way across time.

There are many ways to consider the utility of factorial invariance in longitudi-

nal studies (McArdle, 2007). In one approach to this problem, Horn and McArdle

(1992) and McArdle and Cattell (1994) treated factorial invariance as a desirable

property—so desirable that the search was extended (over groups) to allow result-

ing invariant functions, which are highly complex representations of the original

data. In contrast, in the approach suggested by Horn, McArdle, and Mason (1983)

and Edwards and Wirth (2009), the lack of measurement invariance is not neces-

sarily a bad result, and it largely becomes problematic if measurement invariance is

assumed and not tested. Unfortunately, this is exactly the problem of the typical

longitudinal study with completely changing measurements, where it becomes

difficult to provide formal tests of hypotheses. What is needed in new longitudinal

studies is more appreciation of the utility of overlapping items from one time to the

Fig. 5.3 Predicted trajectory for nonverbal ability based on the dual exponential growth model
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next, because as of now there is no formal way to go back in time to add such useful

items (F. M. Lord, personal communication, June 1977).

In this context, longitudinal analysis of item-level data helps our precision in

two ways. First, our estimates of ability are more precise since we are only focusing

on the items that each participant answered and their response pattern, as opposed to

making assumptions regarding the correctness and incorrectness of items that were

not administered to the participant based on starting and stopping rules common to

intelligence tests. Second, using item-level data allows for estimating the standard

error of measurement for each individual response pattern at each occasion. This

information can be used to weight data in the estimation of statistical models to

provide more precise estimates of important model parameters.

Drawbacks of using item-level data in longitudinal research stem from sample

size restrictions and availability of user-friendly software for combining item

response models with higher order statistical models to examine applied research

questions. Item response models often have many parameters to estimate, which are

poorly estimated with small and nonrepresentative samples—the types of samples

that are often found in psychological and longitudinal research. One way to

overcome this problem is for researchers and test makers to publish item para-

meters. In this situation, item parameters can be fixed to known values and the

benefits of item response models are carried forward to the examination of the

applied research question, without having to estimate item parameters with a small

and potentially biased sample.

This research is intended to raise new questions about the optimal use of item

responses in longitudinal data. For example, it is clear that dropping some items at

later occasions is a reasonable technique, especially if the item does not have high

discriminatory power. It is also clear that dropping items is reasonable when there is

a large mismatch between item difficulty and person ability, and we see this in the

administration of commonly used cognitive assessments with their built-in starting

and stopping rules. However, it is not yet clear how much statistical power will be

lost in the longitudinal assessments if items are dropped, even though they had been

presented at earlier occasions. Careful study of the existing item-level longitudinal

data can be useful in the determination of what is most reasonable for future studies.

But we hope it is also obvious that the goal of this study is to improve the scales used

in lifespan dynamics research. This research does not deal with the more difficult

situation faced by high-stakes testing, and this longitudinal item-linking approach

will certainly need to be improved before these critical issues can be considered.

5.7 Concluding Remarks

Longitudinal data are not ideal for equating tests because of item-level practice

effects, item drift, and changes in ability level. Ideally, equating multiple tests

would be conducted with large and appropriately aged samples measured at appro-

priate time periods. However, given the nature of the IGS and BMLS data, this was
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not possible. As mentioned, the data described here were weak for linking multiple

tests forms. Sample sizes were small at any given occasion, especially when

multiple test forms were administered (e.g., n ¼ 110 for the BMLS when the

WAIS and Stanford-Binet Form L were administered). Additionally, only age-

appropriate items were administered at any measurement occasion. Thus, equating

at a given occasion would have led to highly unstable item parameters. Instead, we

utilized the longitudinal strength of the data and fit an item response model to all of

available data leading to more stable estimates of item parameters that are on the

same scale. Finally, we leaned heavily on a very simple item response model with

strong assumptions (e.g., longitudinal measurement invariance, equal discrimina-

tion) that were untestable given our limited data. To the extent that model assump-

tions are not met by our data, our results are misleading.
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Chapter 6

How to Average Equating Functions,

If You Must

Paul W. Holland and William E. Strawderman

6.1 Introduction and Notation

An interest in averaging two or more equating functions can arise in various

settings. As the motivation for the angle bisector method described later in this

paper, Angoff (1971) mentioned situations with multiple estimates of the same

linear equating function for which averaging the different estimates may be appro-

priate. In the nonequivalent groups with anchor test (NEAT) equating design,

several possible linear and nonlinear equating methods are available. These are

based on different assumptions about the missing data in that design (von Davier,

Holland, & Thayer, 2004b). It might be useful to average the results of some of the

options for a final compromisemethod. Other recent proposals include averaging an

estimated equating function with the identity transformation to achieve more

stability in small samples (Kim, von Davier, & Haberman, 2008) as well as creating

hybrid equating functions that are averages of linear and equipercentile equating

functions, putting more weight on one than on the other (von Davier, Fournier-

Zajac, & Holland, 2006). In his discussion of the angle bisector, Angoff implicitly

weighted the two linear functions equally. The idea of weighting the two functions

differently is a natural and potentially useful added flexibility to the averaging

process that we use throughout our discussion.

We denote by e1(x) and e2(x) two different equating functions for linking scores

on test X to scores on test Y. We will assume that e1(x) and e2(x) are strictly
increasing continuous functions of x over the entire real line. The use of the entire
real line is appropriate for both linear equating functions and for the method of
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kernel equating (von Davier et al., 2004b). Our main discussion concerns averages

of equating functions that are defined for all real x.
Suppose it is desired to average e1(x) and e2(x) in some way, putting weight w on

e1(x) and 1 – w on e2(x). In order to have a general notation for this, we will let �
denote an operator that forms a weighted average of two such functions, e1 and e2,
and puts weight w on e1 and 1 – w on e2. At this point we do not define exactly what
� is and let it stand for any method of averaging. Our notation for any such

weighted average of e1 and e2 is

we1 � 1� wð Þe2 (6.1)

to denote the resulting equating function. We denote its value at some X-score, x, by

we1 � 1� wð Þe2 xð Þ: (6.2)

If there are three such functions, e1, e2, e3, then their weighted average function
is denoted as

w1e1 � w2e2 � w3e3; (6.3)

where the weights, wi, sum to 1.

6.2 Some Desirable Properties of Averages of Equating

Functions

Using our notation we can describe various properties that the operator, �, should

be expected to possess. The first five appear to be obvious requirements for any type

of averaging process.

6.2.1 Property 1

Property 1: The order of averaging does not matter, so that

we1 � 1� wð Þe2 ¼ 1� wð Þe2 � we1: (6.4)

6.2.2 Property 2

Property 2: The weighted average should lie between the two functions being

averaged, so that

if e1ðxÞ � e2ðxÞ; then e1ðxÞ � we1 � ð1� wÞe2ðxÞ � e2ðxÞ: (6.5)
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Property 2 also implies the following natural property:

6.2.3 Property 3

Property 3: If the two equating functions are equal at a score, x, the weighted

average has that same common value at x, so that

if e1 xð Þ ¼ e2 xð Þ; thenwe1 � 1� wð Þe2 xð Þ ¼ e1 xð Þ: (6.6)

6.2.4 Property 4

It also seems reasonable for the average of two equating functions (that are always

strictly increasing and continuous) to have both of these conditions as well. Thus,

our next condition is Property 4: For any w, we1 � (1 – w)e2(x) is a continuous and
strictly increasing function of x.

6.2.5 Property 5

When it is desired to average three equating functions, as in Equation 6.3, it also

seems natural to require the averaging process to get the same result as first averag-

ing of a pair of the functions and then averaging that average with the remaining

function, that is, Property 5: If w1, w2, w3 are positive and sum to 1.0, then

w1e1 � w2e2 � w3e3 ¼ w1e1 � 1� w1ð Þ½ w2

1� w1

e2 � w3

1� w1

e3�: (6.7)

Again, without dwelling on notational issues in Equation 6.7, the order of the

pair-wise averaging should not matter, either.

6.2.6 Property 6

There are other, less obvious assumptions that one might expect of an averaging

operator for equating functions. One of them is Property 6: If e1 and e2 are linear
functions then so is we1 � (1 – w)e2, for any w. We think that Property 6 is a

reasonable restriction to add to the list, because one justification for the linear

equating function is its simplicity. An averaging process that changed linear func-

tions to a nonlinear one seems to us to add a complication where there was none

before.
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6.2.7 Property 7

In addition to Properties 1–6 for �, there is one very special property that has long

been regarded as important for any equating function—the property of symmetry.
This means that linking X to Y via the function y¼ e(x) is assumed to imply that the

link from Y to X is given by the inverse function, x¼ e�1(y), as noted by Dorans and
Holland (2000). The traditional interpretation of the symmetry condition when

applied to averaging equating functions is that averaging the inverse functions,

e�1
1 and e�1

2 , results in the inverse function of the average of e1 and e2.
Using our notation for �, the condition of symmetry may be expressed as

Property 7:

For anyw; w e1 � ð1� wÞe2ð Þ�1 ¼ we�1
1 � ð1� wÞe�1

2 : (6.8)

From Equation 6.8 we can see that the symmetry property requires that the

averaging operator, �, be formally distributive relative to the inverse operator.

6.3 The Point-Wise Weighted Average

The simplest type of weighted average that comes to mind is the simple point-wise
weighted average of e1 and e2. It is defined as

m xð Þ ¼ we1 xð Þ þ 1� wð Þe2 xð Þ; (6.9)

where w is a fixed value, such as w ¼ 1/2.

Geometrically, m is found by averaging the values of e1 and e2 along the vertical
line located at x. For its heuristic value, our notation in Equations 6.1 and 6.2 was

chosen to mimic Equation 6.9 as much as possible. In general, m(x) in Equation 6.9
will satisfy Properties 1–6, for any choice of w. However, m(x) will not always
satisfy the symmetry property, Property 7. That is, if the inverses, e�1

1 ð yÞ and

e�1
2 ðyÞ, are averaged to obtain

m�ðyÞ ¼ we�1
1 ð yÞ þ ð1� wÞe�1

2 ðyÞ; (6.10)

then only in special circumstances willm*(y) be the inverse ofm(x) in Equation 6.9.
This is easiest to see when e1 and e2 are linear. For example, suppose e1 and e2

have the form

e1 xð Þ ¼ a1 þ b1x; and e2 xð Þ ¼ ¼ a2 þ b2x: (6.11)

The point-wise weighted average of Equation 6.11 becomes

m xð Þ ¼ �aþ �bx; (6.12)
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where

�b ¼ wb1 þ ð1� wÞ b2 and �a ¼ wa1 þ ð1� wÞa2: (6.13)

However, the inverse functions for e1 and e2 are also linear with slopes 1/b1 and
1/b2, respectively. Thus, the point-wise average of the inverse functions, m*(x), has
a slope that is the average of the reciprocals of the bis:

b� ¼ w 1=b1ð Þ þ 1� wð Þð1=b2Þ: (6.14)

The inverse function of m*(x) is also linear and has slope 1/b*, where b* is given in
Equation 6.14. Thus, the slope of the inverse of m*(x) is the harmonic mean of b1
and b2. So, in order for the slope of the inverse of m*(x) to be the point-wise

weighted average of the slopes of e1 and e2, the mean and the harmonic means of b1
and b2 must be equal. It is well known that this is only true if b1 and b2 are equal, in
which case the equating functions are parallel. It is also easy to show that the

intercepts do not add any new conditions. Thus we have Result 1 below.

6.3.1 Result 1

Result 1: The point-wise weighted average in Equation 6.9 satisfies the symmetry

property for two linear equating functions if and only if the slopes, b1 and b2, are
equal.

When e1(x) and e2(x) are non-linear they may still be parallel with a constant

difference between them, that is

e1 xð Þ ¼ e2 xð Þ þ c for all x: (6.15)

When Equation 6.15 holds, it is easy to establish Result 2.

6.3.2 Result 2

Result 2: If e1(x) and e2(x) are nonlinear but parallel so that Equation 6.15 holds,

then the point-wise weighted average also will satisfy the symmetry property,

Property 7. In this case, the point-wise average is simply a constant added (or

subtracted) to either e1 or e2, for example,

m xð Þ ¼ e2 xð Þ þ wc ¼ e1 xð Þ � 1� wð Þc: (6.16)

Thus, although the point-wise weighted average does not always satisfy the sym-

metry property, it does satisfy it if e1(x) and e2(x) are parallel curves or lines.
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6.4 The Angle Bisector Method of Averaging Two Linear

Functions

Angoff (1971) made passing reference to the angle bisector method of averaging

two linear equating functions. In discussions with Angoff, Holland was informed

that this method was explicitly proposed as a way of preserving the symmetry

property, Property 7. Figure 6.1 illustrates the angle bisector, denoted by eAB.
While the geometry of the angle bisector is easy to understand, for computations

a formula is more useful. Holland and Strawderman (1989) give such a formula. We

state their result next, and outline its proof in Section 6.5.

6.4.1 Result 3: Computation of the Unweighted Angle Bisector

Result 3: If e1(x) and e2(x) are two linear equating functions as in Equation 6.9 that

intersect at a point, then the linear function that bisects the angle between them is

the point-wise weighted average

eAB ¼ We1 þ 1�Wð Þe2; (6.17)

with W given by

W ¼ ð1þ b21Þ�1=2

ð1þ b21Þ�1=2 þ ð1þ b22Þ�1=2
: (6.18)

Y-axis

y2

y1

e2

eAB

e1

0

0

X-axis x2 x1

Fig. 6.1 The angle bisector is also the chord bisector
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Note that in Result 3, if the two slopes are the same thenW ¼ ½ and the formula

for the angle bisector reduces to the equally weighted point-wise average of the two

parallel lines. It may be shown directly that the angle bisector given by Equations

6.17 and 6.18 satisfies the symmetry property, Property 7, for any two linear

equating functions. Thus, in order for the point-wise weighted average Equation

6.9 to satisfy Property 7 for any pair of linear equating functions, it is necessary for

the weight, w, to depend on the functions being averaged. It cannot be the same

value for all pairs of functions.

6.5 Some Generalizations of the Angle Bisector Method

One way to understand the angle bisector for two linear functions is to imagine a

circle of radius 1 centered at the point of intersection of the two lines. For

simplicity, and without loss of generality, assume that the intersection point is at

the origin, (x, y) ¼ (0, 0). This is also illustrated in Figure 6.1.

The linear function, ei, intersects the circle at the point (xi, yi) ¼ (xi, bi xi), and
because the circle has radius 1 we have

ðxiÞ2 þ ðbixiÞ2 ¼ 1; or

xi ¼ ð1þ ðbiÞ2Þ�1=2:
(6.19)

Thus, the linear function, ei, intersects the circle at the point

xi; yið Þ ¼ ðð1þ ðbiÞ2Þ�1=2; bið1þ ðbiÞ2Þ�1=2Þ: (6.20)

The line that bisects the angle between e1 and e2 also bisects the chord that

connects the intersection points, (x1, y1) and (x2, y2) given in Equation 6.20. The point
of bisection of the chord is ((x1þ x2)/2, (y1þ y2)/2). From this it follows that the line

through the origin that goes through the point of bisection of the chord has the slope,

b ¼ y1 þ y2
x1 þ x2

¼ Wb1 þ ð1�WÞb2; (6.21)

where W is given by Equation 6.18. This shows that the angle bisector is the point-

wise weighted average given in Result 3.

Oneway to generalize the angle bisector to includeweights, as inEquation 6.1, is to

divide the chord between (x1, y1) and (x2, y2) given in Equation 6.20 proportionally
to w and 1 – w instead of bisecting it. If we do this, the point on the chord that is w of

the way from (x2, y2) to (x1, y1) is (wx1þ (1 –w)x2,wy1þ (1 –w)y2). It follows that the
line through the origin that goes through this w-point on the chord has the slope

b ¼ wy1 þ ð1� wÞy2
wx1 þ ð1� wÞx2 ¼ Wb1 þ ð1�WÞb2; (6.22)
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where W is now given by

W ¼ wð1þ b21Þ�1=2

wð1þ b 2
1Þ�1=2 þ ð1� wÞð1þ b 2

2Þ�1=2
: (6.23)

Hence, a weighted generalization of the angle bisector of two linear equating

functions is given by Equation 6.17, with W specified by Equation 6.23.

This generalization of the angle bisector will divide the angle between e1 and e2
proportionally to w and 1 – w only when w¼½. Otherwise, this generalization only

approximately divides the angle proportionately. In addition, direct calculations

show that this generalization of the angle bisector will satisfy all of the properties,

Properties 1–7.

However, the angle bisector may be generalized in other ways as well. For

example, instead of a circle centered at the point of intersection, suppose we place

an Lp-circle there instead. An Lp-circle is defined by Equation 6.24:

xj jp þ jyjp ¼ 1; (6.24)

where p> 0. Examples of Lp-circles for various choices of p¼ 1 and 3 are given in

Figures 6.2 and 6.3.

If we now use the chord that connects the intersection points of the two lines with

a given Lp-circle, as we did above for the ordinary circle, we find the following
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Fig. 6.2 Plot of the unit Lp-circle, p ¼ 1
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generalization of the angle bisector. We form the point-wise weighted average in

Equation 6.17, but we use as W the following weight:

W ¼ wð1þ bp1Þ�1=p

wð1þ bp
1Þ�1=p þ ð1� wÞð1þ bp

2Þ�1=p
; (6.25)

for some p> 0, and 0< w< 1. It is a simple exercise to show that the use ofW from

Equation 6.25 as the weight in Equation 6.17 also will satisfy Properties 1–7 for any

choice of p > 0, and 0 < w < 1. We will find the case of p ¼ 1 of special interest

later. In that case W has the form

W ¼ wð1þ b1Þ�1

wð1þ b1Þ�1 þ ð1� wÞð1þ b2Þ�1
: (6.26)

Thus, the system of weighted averages (Equation 6.17) with weights that depend on

the two slopes, as in Equation 6.25, produces a variety of ways to average linear

equating functions that all satisfy Properties 1–7. Thus, the angle bisector is seen to

be only one of an infinite family of possibilities. It is worth mentioning here that

when w ¼ ½, all of these averages of two linear equating functions using Equation

6.25 have the property of putting more weight on the line with the smaller slope. As
a simple example, if b1 ¼ 1 and b2 ¼ 2, then for w ¼ ½, Equation 6.26 gives the

value W ¼ 0.6 for the case of p ¼ 1.
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Fig. 6.3 Plot of the unit Lp-circle, p ¼ 3
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An apparent limitation of all of these circle methods of averaging two linear

functions is that they do not immediately generalize to the case of three or more

such functions. When there are three functions, they do not necessarily meet at a

point; there could be three intersection points. In such a case, the idea of using an

Lp-circle centered at the “point of intersection” makes little sense. However, the

condition Property 5 gives us a way out of this narrow consideration. Applying it to

the point-wise weighted average results obtained so far, it is tedious but straight-

forward to show that the multiple function generalization of Equation 6.17 coupled

with Equation 6.25 is given by Result 4.

6.5.1 Result 4

Result 4: If {wi} are positive and sum to 1.0 and if {ei} are linear equating

functions, then Property 5 requires that the pair-wise averages based on Equations

6.17 and 6.25 lead to

w1e1 � w2e2 � w3e3 � . . . ¼
X
i

Wiei (6.27)

where

Wi
wið1þ b p

i Þ�1=p

P
j

wjð1þ b p
j Þ�1=p

: (6.28)

Result 4 gives a solution to the problem of averaging several different linear

equating functions that is easily applied in practice, once choices for p and w are

made.

Holland and Strawderman (1989) introduced the idea of the symmetric weighted
average (swave) of two equating functions that satisfies conditions of Properties

1–7 for any pair of linear or nonlinear equating functions. In the next two sections

we develop a generalization of the symmetric average.

6.6 The Geometry of Inverse Functions and Related Matters

To begin, it is useful to illustrate the geometry of a strictly increasing continuous

function, y¼ e(x), and its inverse, x¼ e�1(y). First, fix a value of x in the domain of

e(·), and let y ¼ e(x). Then the four points, (x, y), (x, x), (y, y) and (y, x), form the

four corners of a square in the (x, y) plane, where the length of each side is jx – yj.
The two points, (x, x) and (y, y), both lie on the 45-degree line; the other two points
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lie on opposite sides of the 45-degree line on a line that is at right angles, or

orthogonal, to it. In addition, (x, y) and (y, x) are equidistant from the 45-degree

line. However, by definition of the inverse function, when y ¼ e(x), it is also the

case that x ¼ e-1(y). Hence, the four points mentioned above can be re-expressed as

(x, e(x)), (x, x), (e(x), e(x)), and (y, e-1(y)), respectively.
The points (x, e(x)) and (y, e-1(y)) are equidistant from the 45-degree line and on

opposite sides of it. Furthermore, the line connecting them is orthogonal to the 45-

degree line and is bisected by it. These simple facts are important for the rest of this

discussion. For example, from them we immediately can conclude that the graphs

of e(·) and e-1(·) are reflections of each other about the 45-degree line in the (x, y)
plane. This observation is the basis for the swave defined in Section 6.7.

Another simple fact that we will make repeated use of is that a strictly increasing

continuous function of x, e(x), crosses any line that is orthogonal to the 45-degree

line in exactly one place. This is illustrated in Figure 6.4 for the graphs of two

functions. In order to have a shorthand term for lines that are orthogonal to the

45-degree line, we will call them the orthogonal lines when this is unambiguous.

We recall the elementary fact that the equation for what we are calling an

orthogonal line is

y ¼ �xþ c; or yþ x ¼ c; for some constant; c: (6.29)

Thus, we have the relationship

e x1ð Þ þ x1 ¼ c ¼ yþ x (6.30)

Y-axis 45-degree line

e2
y+x = c

e1

x2 x1 X-axis

Fig. 6.4 An illustration of the intersections of e1(x) and e2(x) with an orthogonal line
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for any other point, (x, y), that is on the orthogonal line. Equation 6.30 plays an

important role in the definition of the swave in Section 6.7. Finally, we note that if

e is a strictly increasing continuous function, then its inverse, e�1, is one as well.

6.7 The Swave: The Symmetric w-Average of Two
Equating Functions

With this preparation, we are ready to define the symmetric w-average or swave of
two linear or nonlinear equating functions, e1(x) and e2(x). Note that from the above

discussion, any orthogonal line, of the form given by Equation 6.29, will intersect

e1(x) at a point, x1, and e2(x) at another point, x2. This is also illustrated in Figure 6.4.

The idea is that the value of the swave, ew(·), is given by the point on the

orthogonal line that corresponds to the weighted average of the two points, (x1,
e1(x1)) and (x2, e2(x2)):

�x; ew �xð Þð Þ ¼ w x1;e1 x1ð Þ� �þ 1� wð Þ x2; e2 x2ð Þð Þ: (6.31)

This is illustrated in Figure 6.5.

The point, ( �x; ew �xð Þð Þ), is the weighted average of the two points, (x1, e1(x1)) and
(x2, e2(x2)). Thus,

�x ¼ wx1 þ 1� wð Þx2; (6.32)

Y-axis 45-degree line

e2
y + x = c

e1

ew(x)

x2 x x1 X-axis

Fig. 6.5 An illustration of the swave of e1(x) and e2(x) at x¼ w x1 + (1 –w ) x2 for aw greater than ½
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and

ew �xð Þ ¼ we1ðx1Þ þ ð1� wÞe2ðx2Þ: (6.33)

In Equation 6.31, �x is given by Equation 6.32. In order to define ew(x) for an
arbitrary point, x, we start with x and define x1 ¼ x – (1 – w)t and x2 ¼ x þ wt for
some, as yet unknown, positive or negative value, t. Note that from the definitions

of x1 and x2, their weighted average, wx1 þ (1 – w)x2, equals x, so the given x can
play the role �x of Equation 6.32.

Next, we find a value of t such that (x1, e1(x1)) and (x2, e2(x2)) lie on the same

orthogonal line, as in Figure 6.5. From Equation 6.30, this condition on t requires
that Equation 6.34 is satisfied:

e1 x1ð Þ þ x1 ¼ e2 x2ð Þ þ x2: (6.34)

Equation 6.34 may be expressed in terms of x and t as

e1 x� 1� wð Þtð Þ þ x� 1� wð Þt ¼ e2 xþ wtð Þ þ xþ wt:

or

t ¼ e1 x� 1� wð Þtð Þ � e2 xþ wtð Þ: (6.35)

Equation 6.35 plays an important role in what follows.

In general, for each value of x, Equation 6.35 is a nonlinear equation in t. As we
show in the Appendix, for any choice of x and w and for any strictly increasing

continuous equating functions, e1 and e2, Equation 6.35 always has a unique
solution for t. The solution of Equation 6.35 for t implicitly defines t as a function
of x, which we denote by t(x). Once t(x) is in hand, the value of the swave at x, ew(x),
is computed from the expression,

ew xð Þ ¼ we1 x� 1� wð Þt xð Þð Þ þ 1� wð Þe2 xþ wt xð Þð Þ: (6.36)

The definition of ew in Equation 6.36 is an example of the operator� in Equation

6.1. In Equation 6.36, there is a clear sense in which the weight w is applied to e1
and 1 – w is applied to e2. We show later that the swave differs from the point-wise

weighted average in Equation 6.9, except when the two equating functions are

parallel, as discussed above. Moreover, the definition of the swave is a process that
requires the whole functions, e1 and e2, rather than just their evaluation at the

selected x-value. In the Appendix we show that the solution for t in Equations 6.35

and 6.36 is unique.

In the Appendix we show that the swave satisfies conditions in Properties

2 and 4. We discuss below the application of the swave to linear equating functions

and show that it satisfies Property 6. That the swave satisfies Property 7, the

symmetry property, is given in Result 5, next.
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6.7.1 Result 5

Result 5: The swave, ew(x), defined by Equations 6.35 and 6.36, satisfies the

symmetry property, Property 7.

Proof. Suppose we start with the inverse functions, e�1
1 and e�1

2 , and form their

swave, denoted e*w(y), for a given y-value. Then Equations 6.35 and 6.36 imply

that for any choice of y there is a value t* that satisfies

t� ¼ e�1
1 y� 1� wð Þt�ð Þ � e�1

2 xþ wt�ð Þ (6.37)

and

e�w yð Þ ¼ we�1
1 y� 1� wð Þt�ð Þ þ 1� wð Þe�1

2 yþ wt�ð Þ: (6.38)

Now let

y1 ¼ y� 1� wð Þt�; and y2 ¼ yþ wt�:

Also, define x, x1, and x2 by

x ¼ e�w yð Þ; x1 ¼ e�1
1 y1ð Þ; and x2 ¼ e�1

2 y2ð Þ: (6.39)

Hence, by definition of the inverse,

y1 ¼ e1 x1ð Þ; y2 ¼ e2 x2ð Þ; and y ¼ e��1
w xð Þ: (6.40)

From the definition of the swave, the following three points are all on the same

orthogonal line:

y; e�w yð Þð Þ; ðy1; e�1
1 y1ð ÞÞ; and ðy2; e�1

2 y2ð ÞÞ:

However, using the relationships in Equations 6.38 and 6.39, these three points are

the same as the following three points, which are also on that orthogonal line:

e�w
�1 xð Þ; x� �

; e1 x1ð Þ; x1ð Þ; and e2 x2ð Þ; x2ð Þ:

Furthermore, the following three points are on that same orthogonal line:

x; e�w
�1 xð Þ� �

; x1; e1 x1ð Þð Þ; and x2; e2 x1ð Þð Þ:

Yet, from Equation 6.38 it follows that

x ¼ wx1 þ 1� wð Þx2; (6.41)

so we let t ¼ x2 – x1, and therefore, x1 ¼ x – (1 – w)t, and x2 ¼ x þ wt.
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Furthermore, from the definitions of y1 and y2, we have

y ¼ wy1 þ 1� wð Þy2
and therefore

y ¼ we1 x1ð Þ þ 1� wð Þe2 x2ð Þ;

so that

y ¼ e��1
w xð Þ ¼ we1 x� 1� wð Þtð Þ þ 1� wð Þe2 xþ wtð Þ: (6.42)

Thus, the inverse function, e*w
�1, satisfies Equation 6.36 for the swave. The

only question remaining is whether the value of t in Equation 6.42 satisfies

Equation 6.35.

However, the points (x1, e1(x1)) and (x2, e2(x2)) are on the same orthogonal line.

Therefore, they satisfy Equation 6.34, from which Equation 6.35 for t follows.
This shows that the inverse function, e*w

�1, satisfies the condition of the

symmetric w-average, ew, so that from the uniqueness of the solution to Equation

6.35 we have e*w
�1 ¼ ew, which proves Result 5. From the definitions of y1, y2, x1,

and x2 in the proof of Result 5, it is easy to see that the t* that solves Equation 6.37

for the inverse functions and the t that solves Equation 6.35 for the original

functions are related by t* ¼ x1 – x2 ¼ – t, so that t and t* have the same magnitude
but the opposite sign.

6.8 The Swave of Two Linear Equating Functions

In this section we examine the form of the swave in the linear case. The equation

for t, Equation 6.35, now becomes linear in t and can be solved explicitly. So

assume that

e1 xð Þ ¼ a1 þ b1x; and e2 xð Þ ¼ a2 þ b2x: (6.43)

Then, Equation 6.35 is

t ¼ a1 þ b1 x� 1� wð Þtð Þ � a2 � b2 xþ wtð Þ:

Hence,

t 1þ 1� wð Þb1 þ wb2ð Þ ¼ a1 � a2ð Þ þ b1 � b2ð Þx

so that

tðxÞ ¼ ða1 � a2Þ þ ðb1 � b2Þx
1þ ð1� wÞb1 þ wb2

: (6.44)
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Substituting the value of t(x) from Equation 6.44 into the equation for ew(x) in
Equation 6.36 results in

ewðxÞ ¼ �aþ �bx� wð1� wÞðb1 � b2Þ a1 � a2 þ ðb1 � b2Þx
1þ ð1� wÞb1 þ wb2

; (6.45)

where �a ¼ wa1 þ ð1� wÞa2 and �b ¼ wb1 þ ð1� wÞb2 denote the weighted

averages of the intercepts and slopes of e1 and e2, respectively.
From Equation 6.45 we immediately see that, in the linear case, the swave, ew(x),

is identical to the point-wise weighted average in Equation 6.9 if and only if the two

slopes, b1 and b2, are identical, and the two linear functions are parallel. Simplify-

ing Equation 6.45 further we obtain

ew xð Þ ¼ We1 xð Þ þ 1�Wð Þe2 xð Þ; (6.46)

where

W ¼ wð1þ b1Þ�1

wð1þ b1Þ�1 þ ð1� wÞð1þ b2Þ�1
: (6.47)

Thus, in the linear case, the swave is exactly the point-wise weighted average

that arises for an Lp-circle with p ¼ 1, in other words, Equation 6.26, discussed in

Section 6.5. From Result 5, we know that the swave always satisfies the symmetry

condition, Property 7, but this is also easily shown directly. We see that, in the

linear case, the swave also satisfies Property 6.

Chapter 6 Appendix

6.A.1 Computing the Swave for Two Equating Functions

The key to computing ew is Equation 6.35. This equation for t(x) is nonlinear in
general, so computing t(x) requires numerical methods. A derivative-free approach

that is useful in this situation is Brent’s method. To use this method to solve

Equation 6.35 for t we first define g(t) as follows:

g tð Þ ¼ t� e1 x� 1� wð Þtð Þ þ e2 xþ w tð Þ: (6.A.1)

If t0 solves Equation 6.35, then t0 is a zero of g(t) in Equation 6.A.1. Brent’s

method is a way of finding the zeros of functions. It requires that two values of t are
known, one for which g(t) is positive and one for which g(t) is negative. Theorem 1

summarizes several useful facts about g(t) and provides the two needed values of

t for use in Brent’s method.
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Theorem 1. If e1 and e2 are strictly increasing continuous functions, then g(t)
defined in Equation 6.A.1 is a strictly increasing continuous function that has a
unique zero at t0. Furthermore, t0 is positive if and only if e1(x) – e2(x) is positive.
Consequently, if e1(x) – e2(x) is positive, then g(0) is negative and g(e1(x) – e2(x)) is
positive; furthermore, if e1(x) – e2(x) is negative, then g(0) is positive and g(e1(x) –
e2(x)) is negative.

Proof. The functions t, – e1(x – (1 – w) t), and e2(x þ w t) are all strictly increasing

continuous functions of t so that their sum, g(t), is also a strictly increasing

continuous function of t. Hence, if g(t) has a zero at t0, this is its only zero. In

order to show that g(t) does have a zero at some t0 it suffices to show that, for large

enough t, g(t) > 0 and, for small enough t, g(t) < 0. But if t > 0, it follows from the

strictly increasing (in t) nature of – e1(x – (1 – w) t) and of e2(x þ w t) that

g tð Þ> t� e1 xð Þ � e2 xð Þ½ �: (6.A.2)

The right side of Equation 6.A.2 is greater than 0 if t is larger than e1(x) – e2(x).
Similarly, if t < 0, it also follows that

g tð Þ< t� e1 xð Þ � e2 xð Þ½ �: (6.A.3)

The right side of Equation 6.A.3 is less than 0 if t is less than e1(x) – e2(x). Hence,
these two inequalities show that g(t) always has a single zero at a value we denote

by t0.
Now, suppose that t0 > 0. Then g(t0) ¼ 0 by definition so that

0< t0 ¼ e1 x� 1� wð Þ t0ð Þ � e2 xþ w t0ð Þ (6.A.4)

But by the strict monotonicity of e1 and e2, we have

e1 x� 1� wð Þ t0ð Þ< e1 xð Þ; and� e2 xþ w t0ð Þ<� e2 xð Þ

so that

e1 x� 1� wð Þ t0ð Þ � e2 xþ wt0ð Þ< e1 xð Þ � e2 xð Þ: (6.A.5)

Combining Equations 6.A.4 and 6.A.5 shows that if t0> 0, then e1(x) – e2(x)> 0.

A similar argument shows that if t0 < 0, then e1(x) – e2(x) < 0. Hence t0 is

positive if and only if e1(x) – e2(x) is positive. Note that we can always compute

e1(x) – e2(x) because it is assumed that these functions are given to us. Thus, from

the relative sizes of e1(x) and e2(x) we can determine the sign of the zero, t0.
Because g(t) is strictly increasing we have the following additional result. If

e1(x) – e2(x) is positive, then t0 is also positive and therefore g(0) is negative. Also,
if e1(x) – e2(x) is negative, then t0 is also negative and therefore g(0) is positive.

6 How to Average Equating Functions, If You Must 105



Now suppose again that e1(x) – e2(x) is positive so that t0 is also positive.

However, from Equation 6.19, for any positive t, g(t) > t – [e1(x) – e2(x)], so let

t ¼ t0. Hence,

0 ¼ g t0ð Þ> t0 � e1 xð Þ � e2 xð Þ½ �; (6.A.6)

so that

0< t0 < e1 xð Þ � e2 xð Þ: (6.A.7)

Hence, g(e1(x) – e2(x)) is positive as well. Thus, whenever e1(x) – e2(x) is

positive, then g(0) is negative and g(e1(x) – e2(x)) is positive. When e1(x) – e2(x)
is negative, a similar argument shows that

e1 xð Þ � e2 xð Þ< t0 < 0: (6.A.8)

Hence g(e1(x) – e2(x)) is negative. This finishes the proof of Theorem 1.

6.A.2 Properties of the Swave

Theorem 2. The swave, ew(x), satisfies Property 2 and lies strictly between e1(x)
and e2(x), for all x.

Proof. Consider the case when e1(x) > e2(x) (the reverse case is proved in a similar

way). We wish to show that e1(x) > ew(x) > e2(x). Because e1(x) > e2(x), from
Theorem 1 it follows that t(x) > 0 as well. From the strictly increasing natures of e1
and e2, it follows that

e1 x1ð Þ< e1 xð Þ; and e2 x2ð Þ> e2ðxÞ:

We wish to show that e1(x) > ew(x) > e2(x), so consider first the upper bound. By

definition,

ew xð Þ ¼ we1 x1ð Þ þ 1� wð Þe2 x2ð Þ<we1 xð Þ þ 1� wð Þe2 x2ð Þ:

However,

0< t xð Þ ¼ e1 x1ð Þ � e2 x2ð Þ; so that e2 x2ð Þ< e1 x1ð Þ< e1 xð Þ:

Combining these results give us

ew xð Þ<we1 xð Þ þ 1� wð Þe1 xð Þ ¼ e1 xð Þ;

the result we wanted to prove. The lower bound is found in an analogous manner.
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Theorem 3. The swave is strictly increasing if e1 and e2 are.

Facts: e(x) monotone implies c(x) ¼ x þ e(x) is strictly monotone (since it is

a sum of a monotone and a strictly monotone function). Also, c(x*) > c(x) implies

x* > x and e(x*) > e(x).
Let ci(x)¼ xþ ei(x), i¼ 1, 2. Also let ew(x)¼ we1(x1)þ (1 – w)e2(x2), where x¼

wx1 þ (1 – w)x2 and c1(x1) ¼ c2(x2), i.e., x1 þ e1(x1) ¼ x2 þ e2(x2) so that (xi, ei(xi))
are on same orthogonal line.

Assume ei(x) are both monotone increasing. Now suppose x* > x where x ¼
wx1þ (1 – w)x2 and x*¼ wx1*þ (1 – w)x2* and suppose further that c1(x1)¼ c2(x2)
and that c1(x1*)¼ c2(x2*). Then, (xi, ei(xi)) are both on the same orthogonal line and

(xi*, ei(xi*)) are too (but possibly a different line). We want to conclude that x1* >
x1 and x2* > x2. This will allow us to conclude that ei(xi*) > ei(xi) and hence that

ew(x*) > ew(x), thereby proving the monotonicity of ew.

Proof. Assume to the contrary that x1* � x1. Then c2(x2*) ¼ c1(x1*) � c1(x1) ¼
c2(x2), so that x2* � x2. This in turn implies that x* ¼ wx1* þ (1 – w)x2* � wx1 þ
(1 – w)x2 ¼ x, or x* � x, contradicting the assumption that x* > x. A similar

argument shows that x2* > x2. Hence, ei(xi*) > ei(xi) and ew(x*) > ew(x), thereby
proving the monotonicity of ew.
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Chapter 7

New Approaches to Equating With

Small Samples

Samuel A. Livingston and Sooyeon Kim

7.1 Overview

The purpose of this chapter is to introduce the reader to some recent innovations

intended to solve the problem of equating test scores on the basis of data from small

numbers of test takers. We begin with a brief description of the problem and of the

techniques that psychometricians now use in attempting to deal with it. We then

describe three new approaches to the problem, each dealing with a different stage of

the equating process: (1) data collection, (2) estimating the equating relationship

from the data collected, and (3) using collateral information to improve the esti-

mate. We begin with Stage 2, describing a new method of estimating the equating

transformation from small-sample data. We also describe the type of research

studies we are using to evaluate the effectiveness of this new method. Then we

move to Stage 3, describing some procedures for using collateral information from

other equatings to improve the accuracy of an equating based on small-sample data.

Finally, we turn to Stage 1, describing a new data collection plan in which the new

form is introduced in a series of stages rather than all at once.

7.2 The Problem

Equating test scores is a statistical procedure, and its results, like those of most other

statistical procedures, are subject to sampling variability. The smaller the samples

of test takers from which the equating is computed, the more the equating results are

likely to deviate from what they would be in a different pair of samples—or in the

population that the samples represent. For tests equated through randomly
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equivalent groups, with no anchor, the important number is the total number of test

takers available for the equating administration—possibly 200, 100, or even fewer.

For tests equated through common items, the problem becomes particularly acute

when very few test takers take the new test form at its first administration—possibly

30, 20, or even fewer. As the psychometricians responsible for the equating of the

scores, we need to find a raw-to-scale score conversion that will make the scores of

the test takers who take the new form comparable to the scores of test takers who

took other forms of the test. We cannot make the problem go away by simply

claiming that the test takers whose scores we can observe in time for the equating

are the entire target population for the equating of those two test forms. In many

cases, a test form taken at first by only a few test takers will be administered later to

many others. We can accumulate data over two or more administrations of the new

form and re-equate the scores, but the scores of the first group of test takers will

already have been reported.

Even if the new form will not be administered again, the problem remains. The

important principle is that an individual test taker’s reported score should not

depend heavily (ideally, not at all) on the particular group of test takers whose

data are used to equate the scores on the form that the test taker happened to take.1

We need to determine an equating relationship that will generalize to other groups

that may differ in ability. What we really want is a good estimate of the equiper-

centile equating relationship in the population of potential test takers—not simply

an equating of means and standard deviations on the two forms, but an equating of

the full score distributions.

7.3 Current Practice

One way to improve the accuracy of equipercentile equating in small samples of

test takers is to presmooth the score distributions (see Livingston, 1993). However,

if the samples of test takers are quite small, this technique may not reduce the

sampling variability in the equating to an acceptable level.

Another procedure that has been recommended is to establish a minimum

sample size for equating. If the available samples meet the sample size requirement,

equate the scores; if samples of the specified size are not available, assume the new

form and reference form to be of equal difficulty throughout the score range (see

Kolen & Brennan, 1995, p. 272; Kolen & Brennan, 2004, pp. 289-290). We believe

there are better ways to deal with the problem.

Possibly the most common approach to estimating a relationship in a population

on the basis of small-sample data is to use a strong model. Strong models require

1This principle is the basis for the requirement of population invariance (see, e.g., Dorans, Moses,

& Eignor, Chapter 2 of this volume). In the case of equating with small samples, a greater problem

is that the samples of test takers may not adequately represent any population.
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only a small number of parameters to be estimated from the data, in effect

substituting assumptions for data. In test score equating, the strong model most

commonly used is the linear equating model. Its basic assumption is that in the

target population, the distributions of scores on the new form (to be equated) and on

the reference form (to which it is being equated) differ only in their means and

standard deviations. An even stronger model is that of mean equating, a linear

equating model that assumes that the score distributions on the new form and

reference form in the target population differ only in their means (see Kolen &

Brennan, 1995, pp. 29-30; Kolen & Brennan, 2004, pp. 30-31). Both of these

models constrain the equating relationship to be linear. However, when test forms

differ in difficulty, the equating relationship between them typically is not linear.

If the difficulty difference is substantial, the relationship is not even approximately

linear. A harder form and an easier form, administered to the same group of test

takers, will tend to produce differently skewed distributions. The stronger test

takers’ scores will tend to vary more on the harder form than on the easier form;

the weaker test takers’ scores will tend to vary more on the easier form than on the

harder form. Consequently, the slope of the equating transformation will not be the

same for the weaker test takers as for the stronger test takers. A linear transforma-

tion, with its constant slope, cannot adequately model the equating relationship.

7.4 Circle-Arc Equating

Circle-arc equating is a strong model that does not assume the equating relationship

to be linear. It is based on an idea from Divgi (1987). Divgi’s idea was to constrain

the equating curve to pass through two prespecified end points and an empirically

determined middle point. Although the circle-arc model is different from Divgi’s, it

also constrains the equating curve to pass through two prespecified end points and

an empirically determined middle point. In circle-arc equating, the lower end point

corresponds to the lowest meaningful score on each form. On a multiple-choice test

scored by counting the number of correct answers, the lowest meaningful score

would typically be the chance score—the expected score for a test taker who

responds at random (e.g., without reading the questions). The upper end point

corresponds to the maximum possible score on each form. The middle point is

determined by equating at a single point in the middle of the score distribution.

7.4.1 The Circle-Arc Method

The circle-arc equating method requires only one point on the equating curve to be

estimated from the small-sample data. The first step of the method is to determine

that point. The user of the method can choose the x-value at which to make the

estimate, and that x-value need not be a score that actually can be obtained on the
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test. The part of the score scale where the equated scores can be estimated most

accurately, particularly in small samples, is the middle of the distribution. If the

equating is a direct equating (e.g., an equivalent-groups equating), the middle point

can be determined by equating the mean score on the new form directly to the mean

score on the reference form. If the equating is through an anchor score (e.g.,

a common-item equating), the middle point can be determined by equating at the

mean score of the smaller group of test takers. Typically, the smaller group will be

the group taking the new form.

If the middle point happens to lie on the line connecting the end points, that line is

the estimated equating curve. If not, the next step is to use the end points and the

middle point to determine the equating curve. There are two versions of circle-arc

equating, and they differ in the way they fit a curve to these three points. We call one

version symmetric circle-arc equating and the other simplified circle-arc equating.
Symmetric circle-arc equating is actually simpler conceptually, but its formulas are

a bit cumbersome. Simplified circle-arc equating uses a slightly more complicated

model in order to simplify the formulas. In the research studies we have done (which

we describe later in this chapter), the two versions of the circle-arc method have

produced about equally accurate results. The formulas for both versions appear in

the Appendix to this chapter. Both versions are described in Livingston and Kim

(2008); only the simplified version is included in Livingston and Kim (2009), but the

formulas for the symmetric version are given in Livingston and Kim (2010).

Both methods are applications of the geometrical fact that if three points do not

lie on a straight line, they uniquely determine a circle. Symmetric circle-arc

equating fits a circle arc directly to the three data points. Simplified circle-arc

equating transforms the three data points by decomposing the equating function

into a linear component and a curvilinear component (an idea borrowed from von

Davier, Holland, & Thayer, 2004b, pp. 11–13). The linear component is the line

connecting the two end points. The curvilinear component is the vertical deviation

of the equating curve from that line. It is estimated by fitting a circle arc to the three

transformed data points.

Figure 7.1 illustrates the simplified circle-arc procedure. The horizontal axis

represents the score on the new form, that is, the test form to be equated. The

vertical axis represents the corresponding score on the reference form. The two

prespecified end points and the empirically determined middle point are indicated

by the three small circles. The line connecting the two end points is the linear

component of the estimated equating curve. The three data points are transformed

by subtracting the y-value of that line, which we call L(x). The three transformed

points are indicated by the squares at the bottom of Figure 7.1. Both end points are

transformed onto the horizontal axis. The middle point is transformed to a point

above or below the horizontal axis—above it if the new form is harder than the

reference form, and below it if the new form is easier than the reference form. In the

example illustrated by Figure 7.1, the new form is harder than the reference form.

Consequently, the original middle point is above the line L(x), and the transformed

middle point is above the horizontal axis.
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The three transformed data points uniquely determine an arc of a circle. The arc

connecting the three transformed data points is shown at the bottom of Figure 7.1.

This arc serves as an estimate of the curvilinear component of the equating function.

For each possible raw score on the new form, there is a corresponding point on the

arc. The next step is to add the linear component back in, by adding the height of the

line L(x) to the height of the arc. The three original data points are retransformed

back to their original positions, and the full arc is transformed into an estimate of the

equipercentile equating function, shown in the upper portion of the figure. The last

step is to extend the equating transformation below the lower end point, by con-

necting that point linearly to the point corresponding to the minimum possible score

on each form. This line is arbitrary—hardly a problem, since the lower end point of

the curve corresponds to the lowest meaningful score on each form.

Purists may object that simplified circle-arc equating is not truly an equating

method, because it is not symmetric in its treatment of the new form and reference

form. Indeed, it is not symmetric, but we are not suggesting either circle-arc method

as a way to define the equating relationship in the population. We are suggesting

them as tools for estimating the equipercentile equating relationship in the popula-

tion. The equipercentile equating relationship is symmetric, but the best available

procedure for estimating it from small-sample data may not be symmetric.

Because the end points of the estimated equating curve are constrained, the

estimate produced by either circle-arc method has a sampling variance of zero at the

end points. The conditional standard error of equating (CSEE) at those points is

zero. At the middle point, the CSEE depends on the equating method used to

determine the y value for that point. The CSEE at that point can be estimated by

Original data points
Linear component

Transformed data points
Estimated curvilinear component
Estimated equating function
Arbitrary extension

Fig. 7.1 Illustration of the simplified circle-arc equating method
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whatever procedure is appropriate for that method. At any other point, the CSEE

can be approximated by a simple proportion; the CSEE values at any two points are

approximately proportional to their deviations from the line connecting the two end

points. If ðx2; y2Þ is the middle point, for which an estimate of the CSEE is

available, and ðxj; yjÞ is the point for which the CSEE is to be estimated, then

CSEEðyjÞ
CSEEðy2Þ¼

: yj � LðxjÞ
y2 � Lðx2Þ

� �
(7.1)

7.4.2 Resampling Studies

We have been conducting resampling studies to evaluate the accuracy of equating

in small samples by several methods, including the two circle-arc methods. We

have investigated both common-item equating and random-groups equating, using

somewhat larger sample sizes in the random-groups design. The basic procedure for

a random-groups design is as follows (Livingston & Kim, 2010):

Choose an existing test form of approximately 100 or more items, a form that has

been administered to several thousand test takers. Consider those test takers as the

target population for equating. Divide the test form into two nonoverlapping

subforms, parallel in content but unequal in difficulty. Designate one subform

as the new form and the other as the reference form for equating. Compute the

direct equipercentile equating of the new form to the reference form in the full

target population; this equating is the criterion equating for the resampling study.

To evaluate the small-sample equating methods, for a given sample size, perform

several hundred replications of this procedure:

1. Draw a pair of nonoverlapping samples of test takers, sampling from the full

population.

2. Compute the distribution of scores on the new form in one sample of test takers

and on the reference form in the other sample.

3. Use those score distributions to equate the new form to the reference form, by all

the small-sample methods to be compared.

4. At each new-form raw-score level, record the difference between the results of

each small-sample equating method and the criterion equating.

Summarize the results for each small-sample equating method, summarizing

over the several hundred replications by computing, for each raw score on the new

form, the root-mean-square deviation (RMSD) of the sample equatings from the

population equating.

We repeated this procedure with six operational test forms, each from a different

test. To average the results over the six test forms, we expressed the RMSD values

in terms of the standard deviation of the scores on the reference form in the full

population. We then conditioned on percentiles of the distribution of scores on the
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new form in the population and took the root mean square, over the six test forms, of

the RMSD values at those percentiles. The result is a set of curves, one for each

small-sample equating method. Figure 7.2 shows the resulting curves for the two

circle-arc methods, for three other equating methods, and for the identity, with

samples of 200 test takers for each form (a small sample size for random-groups

equating). In the middle of the distribution, all the equating methods performed

about equally well. At the low end of the distribution, the two circle-arc methods

and mean equating were more accurate than linear or equipercentile equating. At the

high end of the distribution, the two circle-arc methods were much more accurate

than the other methods at estimating the equipercentile equating in the population.

The resampling procedure for common-item equating (Kim & Livingston, 2010)

was a bit more complicated. Again, we used data from test forms taken by several

thousand examinees, but in this case we selected forms that had been given on two

separate occasions to populations that differed somewhat in ability. As in the

random-groups studies, we used the items in the full test form as an item pool to

construct subforms to be equated, but in this case the subforms included a set of

items in common, for use as an anchor in the small-sample equatings. The criterion

equating was the direct equipercentile equating of the two subforms in the com-

bined population of test takers taking the full test form. In the resampling studies,

instead of selecting both new-form and reference-form samples from the same

population of test takers, we designated the test takers from one testing occasion

as the new-form population and those from the other testing occasion as the

reference-form population. The sample sizes we investigated were smaller than

those in the random-groups studies. We also specified the reference-form sample to

Fig. 7.2 Example of resampling study results
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be 3 times as large as the new-form sample, to reflect the usual small-sample

common-item equating situation, in which reference-form data are accumulated

over two or more testing occasions. The results of the common-item equating

studies in small samples (50 or smaller for the new form, 150 or smaller for the

reference form) were generally similar to those of the random-groups studies, with

one difference: At the low end of the score distribution, mean equating was clearly

the most accurate method, even more accurate than the circle-arc methods (which

were the most accurate in the upper portion of the score distribution).

7.5 Equating With Collateral Information

When we psychometricians equate test scores on the basis of data from very small

groups of test takers, we are trying to estimate the equating relationship we would

find if we had data from very large groups of test takers. One way to improve an

estimation process, especially when the data come from a small sample, is to

incorporate collateral information (see, e.g., Efron & Morris, 1977). Collateral

information for equating test scores is often available from equatings of other

forms of the test we want to equate and of other tests.

7.5.1 Empirical Bayes Estimation

The idea of using collateral information suggests an empirical Bayes approach. The

basic premise is that the current, small-sample equating can be regarded as a single

observation randomly sampled from a large domain of possible equatings, each

with its own new form, reference form, and samples of test takers. For a given pair

of test forms, there is a “true” equating function: the function that would result from

averaging over all the equatings of that particular pair of test forms with different

samples of test takers. All the equatings in the domain are assumed to provide

information that may be relevant for estimating this true equating function. There-

fore, how broadly to define the domain is an important question. (We discuss it

briefly under Section 7.5.2, Problems and Limitations, below.)

Developing a Bayesian estimate for an equating function turns out to be a com-

plex problem. A practical way to simplify the problem is to estimate the equating

transformation one point at a time. For each possible raw score on the new form,

there is a single equated score on the reference form to be estimated. Estimating a

single equated score is a much more manageable task than estimating the equating

transformation all at once.2

2For an alternative approach based on modeling the discrete bivariate distribution of scores on the

two forms to be equated, see Karabatsos and Walker (Chapter 11 of this volume).
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For a given raw score x on the new form, the empirical Bayes estimate of the

corresponding equated score y on the reference form is a weighted average of a

“current” estimate and a “prior” estimate, which we will call ycurrent and yprior. The
current estimate is the equated score implied by the small-sample equating. The

prior estimate is the average of the equating results in all the equatings used as

collateral information, with the addition of the current equating. The current

equating is included in the prior estimate because the prior estimate is intended to

represent a domain of possible equatings, and the current equating is a member of

the domain.

The Bayesian formula for combining the current and prior estimates is

€yEB ¼
1

varðycurrentÞ ycurrent þ 1
varðypriorÞ yprior

1
varðycurrentÞ þ 1

varðypriorÞ

¼ varðypriorÞ
� �

ycurrent þ varðycurrentÞ½ �yprior
varðypriorÞ þ varðycurrentÞ (7.2)

The smaller the samples of test takers in the current equating, the more unstable

the results are likely to be, resulting in a larger variance for ycurrent and a smaller

weight for it in the empirical Bayes estimate. On the other hand, the fewer equatings

that contribute to the prior estimate and the more those equatings differ, the larger

the variance of yprior and the smaller the weight for it in the empirical Bayes

estimate.3

7.5.2 Problems and Limitations

One feature of the real world of testing that complicates this Bayesian procedure is

that test forms differ in length. Even alternate forms of the same test sometimes

differ in length, because of the exclusion of one or more items from the scoring.

One solution to this “apples and oranges” problem is to convert the scores on all the

forms, in the current equating and in all the prior equatings, to percentages. This

tactic creates a common metric and makes it possible to use interpolation to

determine corresponding scores on forms that do not have exactly the same number

of items.

Another difficulty in implementing this approach is that the empirical Bayes

formula requires, at each new-form raw-score value, an estimate of the sampling

variance of the current equating (i.e., the square of the CSEE). An estimate

computed from the small-sample data in the current equating is likely to be

3We thank Charles Lewis for his help in working out the details of this procedure. A paper by

Livingston and Lewis (2009) contains a more complete description and explanation of the

procedure.
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inaccurate. We have been investigating the possibility of using data from many

equatings to develop estimates of this variance, as a function of sample size, test

length, and approximate test difficulty.

Yet another difficulty in implementing this approach is that of deciding what

equatings to include as collateral information. Should the collateral information

include equatings of other tests? If so, how different from the test to be equated can

another test be and still provide useful information? This question is an empirical

question, and the answers may differ for different kinds of tests. We have been

doing some research (consisting of resampling studies), and the results indicate that

the most important factor is, not surprisingly, the way in which new forms of the

test differ in difficulty from the forms to which they are equated (Kim, Livingston,

& Lewis, 2008, 2009).

To see what can go wrong, consider a situation in which the new form to be

equated is easier than the reference form, but in all the prior equatings used as

collateral information, the new form was harder than the reference form. In this

case, the collateral information will pull the equated score toward a value that is

typical for the domain but wrong for the current equating. The same problem will

occur if the new form to be equated is much harder or much easier than the

reference form but in all the prior equatings the new form and reference form

were very similar in difficulty.

7.5.3 A Simpler Approach to Using Collateral Information

The empirical Bayes procedure described above is highly sensitive to the choice of

equatings used as collateral information. In addition, the calculations involved are

laborious. However, there is another procedure, based on similar reasoning, that

does not depend as heavily on the choice of collateral information and is also

simpler to use operationally.

Consider the prior estimate of the equated score at each score level. The

Bayesian procedure described above uses the mean of a group of equatings. Its

results depend heavily on the choice of those equatings. Now suppose the domain of

equatings that provide collateral information includes two equatings for each pair of

test forms—equating form X to form Y and equating form Y to form X. In that case,

averaging over all the equatings in the domain will yield a result very close to the

identity (Y ¼ X). Instead of using the mean of a specified set of equatings, we can

simply use the identity as the prior estimate toward which the small-sample

equating results will be pulled.

Using the identity is not a new idea. Some writers have advocated using the

identity as the equating function whenever the size of the samples available falls

below a specified threshold—one that depends on the extent to which test forms are

expected to differ in difficulty (Kolen & Brennan, 1995, p. 272; Kolen & Brennan,

2004, pp. 289-290; Skaggs, 2005, p. 309). We think there is a better way to take

sample size into account. Instead of making an “either–or” decision, compute a

118 S.A. Livingston and S. Kim



weighted average of the small-sample equating and the identity. For a given raw-

score x, if yobs (x) represents the equated score observed in the small-sample

equating, the adjustment is simply

yadjðxÞ ¼ w yobsðxÞ½ � þ ð1� wÞx ; (7.3)

where w is a number between 0 and 1.

The practical question for implementing this procedure is how to choose a value

for w. Kim, von Davier, and Haberman (2008) investigated this method with the

value of w fixed at 0.5, but ideally, the value of w should vary with the size of the

samples; the larger the samples, the greater the weight for the observed equating.

The Bayesian formula of Equation 7.2 offers a solution, for a user who can estimate

the sampling variance of the small-sample equating and the variance of the equated

scores in the domain. Both of these quantities will vary from one score level to

another and not necessarily in proportion with each other. Therefore, with this

approach, the value ofw in Equation 7.3 would vary from one score level to another.

The variance of the small-sample equating—varðycurrentÞ in Equation 7.2—at a

given new-form raw-score level—varðycurrentÞ in Equation 7.2— is simply the

square of the CSEE. There are formulas for estimating this quantity for various

equating methods, but the resulting estimates may be highly inaccurate if they are

based on data from very small samples of test takers. A possible solution to this

problem would be to conduct a series of resampling studies to estimate the CSEE

empirically for samples of various sizes.

The variance of the equated scores in the domain of equatings, for a given new-

form raw score—varðypriorÞ in Equation 7.2—can be estimated empirically from

prior equatings. The key question is which prior equatings to include in the

estimate. We prefer to define the domain of equatings broadly. Limiting the domain

to the forms of a single test often narrows the field of prior equatings down to a

small sample that may not be representative of a domain that includes the equatings

of all future forms of the test. The greatest danger is that the previous forms of a

single test may have been much more alike in difficulty than the future forms will be

(for an example, see Kim, Livingston, & Lewis, 2008). Limiting the domain of prior

equatings to forms of that single test would yield too low a value for varðypriorÞ. The
resulting adjustment formula would place too much weight on the identity and too

little on the observed equating.

7.6 Introducing the New Form by Stages

Another, very different approach to the small-sample equating problem is to change

theway inwhich new forms of the test are introduced. A new technique, developed by

Grant (see Puhan,Moses, Grant, &McHale, 2009) and now being used operationally,

is to introduce the new form in stages, rather than all at once. This technique requires

that the test be structured in testlets, small-scale tests that each represent the full test
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in content and format. It also requires that the test form given at each administration

include one testlet that is not included in computing the test takers’ scores.

As an example, consider a test consisting of five testlets that are included in

computing the test takers’ scores and one additional testlet that is not included in the

scores. Table 7.1 shows a plan that might be followed for assembling the first seven

forms of this test. The asterisks indicate the testlets that are not included in computing

the test takers’ scores—one such testlet in each form.With each new form, one of the

scored testlets in the previous form is replaced. It is replaced in the printed new form

by a new testlet, which is not scored. It is replaced in the scoring of the new form by

the testlet that was new (and therefore was not scored) in the previous form.

Each new test form is equated to the previous form in the group of test takers

who took the previous form. Form B is equated to Form A in the group of test takers

who took Form A, Form C is equated to Form B in the group of test takers who took

Form B, and so on. This single-group equating is extremely powerful, because any

difference in ability between the sample of test takers and the population is the same

for the new form as for the reference form; the equating sample for both forms

consists of the same individuals. In addition, the forms to be equated are highly

similar, since they have four fifths of their items in common. This overlap of forms

limits the extent to which the equating in the sample can deviate from the equating

in the population. Because of these two features, this data collection plan is called

the single-group, nearly equivalent test (SiGNET) design.

An additional advantage of the SiGNET design is that each new form is equated

on the basis of data collected in the administration of the previous form. Therefore,

each new form can be equated before it is administered. If a form is administered

two or more times before the next form is introduced, the data from those admin-

istrations can be combined to provide a larger sample for equating the next form.

Notice in Table 7.1 that Form F is the first form that does not include any of the

scored items in Form A. However, Form E has only one fifth of its items in common

with Form A, about the same as would be expected if Form E were to be equated to

Form A through common items. How does the accuracy of equating Form E to

Form A through the chain of single-group equatings in the SiGNET design compare

with the accuracy of equating Form E to Form A in a single common-item

equating? A resampling study by Puhan, Moses, Grant, and McHale (2009) pro-

vides an answer. That study compared the RMSD of equating through a chain of

four single-group equatings in a SiGNET design with the accuracy of a single

Table 7.1 Plan for Introducing a New Form by Stages

Form A Form B Form C Form D Form E Form F Form G

Testlet 1 Testlet 7* Testlet 7 Testlet 7 Testlet 7 Testlet 7 Testlet 7

Testlet 2 Testlet 2 Testlet 8* Testlet 8 Testlet 8 Testlet 8 Testlet 8

Testlet 3 Testlet 3 Testlet 3 Testlet 9* Testlet 9 Testlet 9 Testlet 9

Testlet 4 Testlet 4 Testlet 4 Testlet 4 Testlet 10* Testlet 10 Testlet 10

Testlet 5 Testlet 5 Testlet 5 Testlet 5 Testlet 5 Testlet 11* Testlet 11

Testlet 6* Testlet 6 Testlet 6 Testlet 6 Testlet 6 Testlet 6 Testlet 12*

*Not included in computing the test takers’ scores.
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common-item equating. When all the equating samples in both designs included 50

test takers, the RMSD of the SiGNET equating was about two thirds that of the

conventional common-item equating.

7.7 Combining the Approaches

It is certainly possible to combine two or more of the new approaches described

above. The circle-arc method, the procedures for using collateral information, and

the SiGNET design address different aspects of the equating process. The SiGNET

design answers the question, “How should I collect the data for equating?” The

circle-arc method answers the question, “How should I use those data to estimate

the equating function?” The procedures for incorporating collateral information

answer the question, “How should I adjust the estimate to decrease its reliance on

the data when the samples are small?”

The possibility of combining these approaches multiplies the number of options

available for equating scores on test forms taken by small numbers of test takers. The

larger number of possibilities complicates the task of evaluating these procedures. It is

useful to know how effective each procedure is when used alone, but it is also useful

to know how effective the various combinations of procedures are. To what extent do

they supplement each other? To what extent are they redundant? Does the SiGNET

design make the use of collateral information unnecessary, or even counterproduc-

tive? Would the SiGNET design be even more effective if the single-group equatings

were done by the circle-arc method? And, of course, the answers to these questions

are likely to depend heavily on the sample size. There are enough research questions

here to keep several psychometricians and graduate students busy for a while.

Chapter 7 Appendix

7.A.1 Formulas for Circle-Arc Equating

In the symmetric circle-arc method, the estimated equating curve is an arc of a circle.

Let ðx1; y1Þ represent the lower end point of the equating curve, let ðx2; y2Þ represent
the empirically determinedmiddle point, and let ðx3; y3Þ represent the upper end point.
Let r represent the radius of the circle, and label the coordinates of its center ðxc; ycÞ.

The equation of the circle is ðX � xcÞ2 þ ðY � ycÞ2 ¼ r2 or, equivalently,

Y � ycj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðX � xcÞ2

q
. If the new form is harder than the reference form,

the middle point will lie above the line connecting the lower and upper points, so

that the center of the circle will be below the arc. For all points ðX; YÞ on the arc,

Y>yc, so that Y � ycj j ¼ Y � yc, and the formula for the arc will be

Y ¼ yc þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðX � xcÞ2

q
: (7.A.1)
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If the new form is easier than the reference form, the middle point will lie

below the line connecting the lower and upper end points, so that the center of

the circle will be above the arc. For all points (X, Y) on the arc, Y<yc, so that

Y � ycj j ¼ yc � Y, and the formula for the arc will be

Y ¼ yc �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 � ðX � xcÞ2

q
: (7.A.2)

A simple decision rule is to use Equation 7.A.1 if y2>yc and Equation 7.A.2 if

y2<yc.
The formulas for xc and yc in the symmetric circle-arc method are a bit cumber-

some:

xc ¼ ðx21 þ y21Þðy3 � y2Þ þ ðx22 þ y22Þðy1 � y3Þ þ ðx23 þ y23Þðy2 � y1Þ
2 x1ðy3 � y2Þ þ x2ðy1 � y3Þ þ x3ðy2 � y1Þ½ � (7.A.3)

and

yc ¼ ðx21 þ y21Þðx3 � x2Þ þ ðx22 þ y22Þðx1 � x3Þ þ ðx23 þ y23Þðx2 � x1Þ
2 y1ðx3 � x2Þ þ y2ðx1 � x3Þ þ y3ðx2 � x1Þ½ � ; (7.A.4)

but the formula for r2 is simply

r2 ¼ ðx1 � xcÞ2 þ ðy1 � ycÞ2: (7.A.5)

In the simplified circle-arc method, the transformed points to be connected by a

circle arc are ðx1; 0Þ, ðx2; y2�Þ, and ðx3; 0Þ, where

y2
� ¼ y2 � y3 � y1

x3 � x1

� �
x2 � x1ð Þ: (7.A.6)

The transformation of the data points results in a much simpler set of formulas

for the coordinates of the center of the circle:

xc ¼ x1 þ x3
2

; (7.A.7)

yc ¼ ðx21Þðx3 � x2Þ � ðx22 þ ðy2�Þ2Þðx3 � x1Þ þ ðx23Þðx2 � x1Þ
2 y2�ðx1 � x3Þ½ � ; (7.A.8)

and a slightly simpler formula for r2:

r2 ¼ ðx1 � xcÞ2 þ yc
2: (7.A.9)

Author Note: Any opinions expressed in this chapter are those of the author and not necessarily of

Educational Testing Service.
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Part II
Measurement and Equating Models



Chapter 8

Using Exponential Families for Equating

Shelby J. Haberman

8.1 Introduction

In common equipercentile equating methods such as the percentile-rank method or

kernel equating (von Davier, Holland, & Thayer, 2004b), sample distributions of

test scores are approximated by continuous distributions with positive density

functions on intervals that include all possible scores. The use of continuous

distributions with positive densities facilitates the equating process, for such dis-

tributions have continuous and strictly increasing distribution functions on intervals

of interest, so conversion functions can be constructed based on the principles of

equipercentile equating. When the density functions are also continuous, as is the

case in kernel equating, the further gain is achieved that the conversion functions

are differentiable. This gain permits derivation of normal approximations for the

distribution of the conversion function, so estimated asymptotic standard deviations

(EASDs) can be derived.

An obvious challenge with any approach to equipercentile equating is the

accuracy of an approximation of a discrete distribution by a continuous distribution.

The percentile-rank approach, even with log-linear smoothing, provides an approx-

imating continuous distribution with the same expectation as the original sample

distribution but with a different variance. The kernel method provides an approx-

imating continuous distribution with the same mean and variance as the original

sample distribution, but higher order moments do not normally coincide.

With continuous exponential families, continuous distributions with positive and

continuous density functions are obtained with a selected collection of moments that

are consistent with the corresponding sample moments for the test scores. For

example, one can specify that the first four moments of a distribution from a continu-

ous exponential family are equal to the first four moments from a sample distribution.
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For simplicity, two equating designs are considered, a design for randomly

equivalent groups and a design for single groups. In each design, Forms 1 and

2 are compared. Raw scores on Form 1 are real numbers from c1 to d1, and raw

scores on Form 2 are real numbers from c2 to d2. For j equal 1 or 2, let Xj be a

random variable that represents the score on form j of a randomly selected popula-

tion member, so that Xj has values from cj to dj > cj. It is not necessary for the Xj to

have integer values or to be discrete, but many typical applications do involve raw

scores that are integers. To avoid cases of no interest, it is assumed that Xj has a

positive variance s2ðXjÞ for each form j.
The designs under study differ in terms of data collection. In the design for

randomly equivalent groups, two independent random samples are drawn. For

j equal 1 or 2, sample j has size nj. The observations Xij, 1 � i � nj, are independent
and identically distributed with the same distribution as Xj. In the design for a single

group, one sample of size n1 ¼ n2 ¼ n is drawn with observations Xi ¼ ðXi1;Xi2Þ
with the same distribution as X ¼ ðX1;X2Þ.

For either sampling approach, many of the basic elements of equating are the

same. For any real random variable Y, let F(Y) denote the distribution function of Y,
so that Fðx;YÞ, x real, is the probability that Y � x. Let the quantile function Q(Y)
be defined for p in (0,1) so that Q(p,Y) is the smallest x such that Fðx; YÞ � p. The
functions FðXjÞ and QðXjÞ are nondecreasing; however, they are not continuous in

typical equating problems in which the raw scores are integers or fractions and thus

are not readily employed in equating. In addition, even if FðXjÞ and QðXjÞ are

continuous, the sample functions �FðXjÞ and �QðXjÞ are not. Here �Fðx;XjÞ is the

fraction of Xij � x, 1 � i � nj, and �Qðp;XjÞ, 0 < p < 1, is the smallest x such that
�Fðx;XjÞ � p.

Instead of FðXjÞ and QðXjÞ, j equal 1 or 2, equipercentile equating uses continu-

ous random variables Aj such that each Aj has a positive density f(Aj) on an open

interval Bj that includes ½cj; dj�, and the distribution function F(Aj) of Aj approx-

imates the distribution function F(Xj). For x in Bj, the density of Aj has value

f ðx;AjÞ. Because the distribution function F(Aj) is continuous and strictly increas-

ing, the quantile function Q(Aj) of Aj satisfies FðQðp;AjÞ;AjÞ ¼ p for p in (0,1), so

that Q(Aj) is the strictly increasing continuous inverse of the restriction of F(Aj) to

Bj. The equating function eðA1;A2Þ for conversion of a score on Form 1 to a score

on Form 2 is the composite function QðFðA1Þ;A2Þ, so that, for x in B1, eðA1;A2Þ has
value eðx;A1;A2Þ ¼ QðFðx;A1Þ;A2Þ in B2. Clearly, eðA1;A2Þ is strictly increasing

and continuous. The conversion function eðA2;A1Þ ¼ QðFðA2Þ;A1Þ from Form 2 to

Form 1 may be defined so that eðA2;A1Þ is a function from B2 to B1. The functions

eðA1;A2Þ and eðA2;A1Þ are inverses of each other, so that eðeðx;A1;A2Þ;A2;A1Þ ¼ x
for x in B1 and eðeðx;A2;A1Þ;A1;A2Þ ¼ x for x in B2. If f(Aj) is continuous on

Bj for each form j, then application of standard results from calculus show that

the restriction of the distribution function F(Aj) to Bj is continuously differentia-

ble with derivative f ðx;AjÞ at x in Bj, the quantile function Q(Aj) is conti-

nuously differentiable on (0,1) with derivative 1=f ðQðp;AjÞ;AjÞ at p in (0,1), the

conversion function eðA1;A2Þ is continuously differentiable with derivative

e0ðx;A1;A2Þ ¼ f ðx;A1Þ=f ðeðx;A1;A2ÞA2Þ at x in B1, and the conversion function
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eðA2;A1Þ is continuously differentiable with derivative e0ðx;A2;A1Þ ¼ f ðx;A2Þ=
f ðe; ðx;A1;A2ÞA2Þ at x in B2.

In Section 8.2, continuous exponential families are considered for equivalent

groups, and in Section 8.3, continuous exponential families are considered for

single groups. The treatment of continuous exponential families in equating is

closely related to Wang (2008, this volume); however, the discussion in this chapter

differs from Wang in terms of numerical methods, model evaluation, and the

generality of models for single groups.

8.2 Continuous Exponential Families for Randomly

Equivalent Groups

To define a general continuous exponential family, consider a bounded real interval

C with at least two points. Let K be a positive integer, and let u be a bounded

K-dimensional integrable function on C. In most applications in this chapter, given

C and K, u is v(K,C), where v(K,C) has coordinates vkðCÞ, 1 � k � K; vkðCÞ, k � 0,

is a polynomial of degree k on Cwith values vkðx;CÞ for x in C; and, for a uniformly

distributed random variableUC on the interval C, the vkðCÞ satisfy the orthogonality
constraints

EðviðUC;CÞvkðUC;CÞÞ ¼
1; i ¼ k;

0; i 6¼ k;

(

for integers i and k, 1 � i � k � K. Computation of the vkðCÞ is discussed in the

Appendix. The convention is used in the definition of vkðx;CÞ that the coefficient of
xk is positive.

The definition of a continuous exponential family is simplified by use of

standard vector inner products. For K-dimensional vectors y and z with respective

coordinates yk and zk, 1 � k � K, let y0z be
PK

k¼1 ykzk. To any K-dimensional

vector y corresponds a random variable Yðy; uÞ with values in C with a density

function f ðYðy; uÞÞ equal to

gðy; uÞ ¼ gðy; uÞexpðy0uÞ; (8.1)

where

1=gðy; uÞ ¼
ð
C

expðy0uÞ

(Gilula & Haberman, 2000) and gðy; uÞ has value gðz; y; uÞ at z in C. The family of

distributions with densities gðy; uÞ for K-dimensional vectors y is the continuous

exponential family of distributions defined by u. A fundamental characteristic
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of these distributions is that they have positive density functions on C. These
density functions are continuous if u is continuous. In all cases, if 0K denotes the

K-dimensional vector with all coordinates 0, then Yð0K; uÞ has the same uniform

distribution on C as does Uc. If u ¼ v2ðCÞ and y2 < 0, then Yðy; uÞ is distributed as
a normal random variable X, conditional on X being in C. To ensure that all

distributions in the continuous exponential family are distinct, it is assumed that

the covariance matrix of uðUCÞ is positive definite. Under this condition, the

covariance matrix Vðy; uÞ of uðYðy; uÞÞ is positive definite for each y. As a

consequence of the fundamental theorem of algebra, this condition on the covari-

ance matrix of uðUCÞ holds in the polynomial case of u ¼ vðK;CÞ.
For continuous exponential families, distribution functions are easily con-

structed and are strictly increasing and continuous on C. Let the indicator function
wCðxÞ be the real function on C such that wCðxÞ has value wCðz; xÞ ¼ 1 for z � x and
value wCðz; xÞ ¼ 0 for z > x. Then the restriction of the distribution function

FðYðy; uÞÞ of Yðy; uÞ to C is Gðy; uÞ, where, for x in C, Gðy; uÞ has value

Gðx; y; uÞ ¼
ð
C

wCðxÞgðy; uÞ:

As in Gilula and Haberman (2000), the distribution of a random variable Z with

values in C may be approximated by a distribution in the continuous exponential

family of distributions generated by u. The quality of the approximation provided

by the distribution with density gðy; uÞ is assessed by the expected log penalty

HðZ; y; uÞ ¼ �Eðlog gðZ; y; uÞÞ ¼ �log gðy; uÞ þ y0EðuðZÞÞ: (8.2)

The smaller the value of HðZ; y; uÞ, the better is the approximation.

Several rationales can be considered for use of the expected logarithmic penalty

HðZ; y; uÞ, according to Gilula and Haberman (2000). Consider a probabilistic pre-

diction of Z by use of a positive density function h on C. If Z ¼ z, then let a log

penalty of �log hðzÞ be assigned. If �log f ðZÞ has a finite expectation, then the

expected log penalty is HðhÞ ¼ Eð�log hðZÞÞ. If Z is continuous and has positive

density f and if the expectation of �log f ðZÞ is finite, then IðZÞ ¼ Hðf Þ � HðhÞ, so
that the optimal probability prediction is obtained with the actual density of Z. In
addition, HðhÞ ¼ IðZÞ only if f is a density function of Z. This feature in which the

penalty is determined by the value of the density at the observed value of Z and the

expected penalty is minimized by selection of the density f of Z is only encountered

if the penalty from use of the density function h is of the form a� b log hðzÞ for
Z ¼ z for some real constants a and b > 0.

This rationale is not applicable if Z is discrete. In general, if Z is discrete, then the

smallest possible expected log penalty Eð�log hðZÞÞ is �1, for, given any real

c > 0, h may be defined so that hðZÞ ¼ c with probability 1 and the expected log

penalty is �log c. The constant c may be arbitrarily large, so the expected log

penalty may be arbitrarily small. Nonetheless, the criterion Eð�log hðZÞÞ cannot be
made arbitrarily small if adequate constraints are imposed on h. In this section, the
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requirement that the density function used for prediction of Z is gðy; uÞ fromEquation

8.1 suffices to ensure existence of a finite infimum IðZ; uÞ of the expected log penalty
HðZ; y; uÞ from Equation 8.2 over all y.

Provided that CovðuðZÞÞ is positive definite, a unique K-dimensional vector

uðZ; uÞ with coordinates ukðZ; uÞ, 1 � k � K, exists such that HðZ; uðZ; uÞÞ is

equal to the infimum IðZ; uÞ of HðZ; y; uÞ for K-dimensional vectors y. Let

Y�ðZ; uÞ ¼ YðuðZ; uÞ; uÞ. Then uðZ; uÞ is the unique solution of the equation

EðuðY�ðZ; uÞÞÞ ¼ EðuðZÞÞ:

The left-hand side of the equation is readily expressed in terms of an integral. If

mðy;uÞ ¼
ð
C

ugðy; uÞ;

then

EðuðYðy; uÞÞÞ ¼ mðy; uÞ:
Thus,

mðuðZ; uÞ; uÞ ¼ EðuðZÞÞ:
In the polynomial case of u ¼ vðK;CÞ, the fundamental theorem of calculus

implies that CovðuðZÞÞ is positive definite, unless a finite set C0 with no more than

K points exists such that PðZ 2 C0Þ ¼ 1. In addition, the moment constraints

Eð½Y�ðZ; vðK;CÞÞ�kÞ ¼ EðZkÞ hold for 1 � k � K.
The value of uðZ; uÞ may be found by the Newton-Raphson algorithm. Let

Vðy; uÞ ¼
ð
C

½u� mðy; uÞ�½u� mðy; uÞ�0gðy; uÞ�:

Given an initial approximation u0, the algorithm at step t � 0 yields a new

approximation

utþ1 ¼ ut þ ½Vðut; uÞ��1½EðuðZÞÞ � mðut; uÞ� (8.3)

of uðZ; uÞ. Normally, ut converges to uðZ; uÞ as t increases. The selection of

u0 ¼ 0K is normally acceptable. When u is infinitely differentiable with bounded

derivatives of all orders on C, use of Gauss-Legendre integration facilitates numer-

ical work (Abramowitz & Stegun, 1965, p. 887).

8.2.1 Estimation of Parameters

Estimation of uðZ; uÞ is straightforward. Let Un be a uniformly distributed random

variable on the integers 1 to n. For any n-dimensional vector z of real numbers, let
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c(z) be the real random variable such that c(z) has value zi if Un ¼ i, 1 � i � n.
Thus EðuðcðzÞÞÞ is the sample average n�1

Pn
i¼1 uðziÞ. Let Zi, 1 � i � n, be

independent and identically distributed random variables with common distribution

Z, and let Z be the n-dimensional vector with coordinates Zi, 1 � i � n. Then
uðZ; uÞ has estimate uðcðZÞ; uÞÞ whenever the sample covariance matrix of the

uðZiÞ, 1 � i � n, is positive definite. The estimate uðcðZÞ; uÞ converges to uðZ; uÞ
with probability 1 as n approaches 1. If V�ðZ; uÞ is VðuðZ;uÞ; uÞ, then

n1=2½uðcðZÞ; uÞ � uðZ; uÞ� converges in distribution to a multivariate normal ran-

dom variable with zero mean and with covariance matrix

SðZ; uÞ ¼ ½V�ðZ; uÞ��1
CovðuðZÞÞ½V�ðZ; uÞ��1: (8.4)

The estimate SðcðZÞ; uÞ converges to SðZ; uÞ with probability 1 as the sample

size n increases. For any K-dimensional vector d that is not equal to 0K , approxi-

mate confidence intervals for d0uðZ; uÞ may be based on the observation that

d0uðcðZÞ; uÞ � d0uðZ; uÞ
½d0SðcðZÞ; uÞd=n�1=2

converges in distribution to a standard normal random variable. The denominator

½d0SðcðZÞ; uÞd=n�1=2 may be termed the EASD of d0uðcðZÞ; uÞ.
The estimate IðcðZÞ; uÞ converges to IðZ; uÞ with probability 1, and

n1=2½IðcðZÞ; uÞ � IðZ; uÞ� converges in distribution to a normal random variable

with mean 0 and variance s2ðI; Z; uÞ equal to the variance of uðZ; uÞ=CovðuðZÞÞ=
uðZ; uÞ of log gðZ; uðZ; uÞ; uÞ. As the sample size n increases, s2ðI; cðZÞ; uÞ
converges to s2ðI; Z; uÞ with probability 1, so that the EASD of IðcðZÞ; uÞ is

½s2ðI; cðZÞ; uÞ=n�1=2.
The estimated distribution function F�ðx; cðZÞ; uÞ ¼ Fðx; Y�ðcðZÞ; uÞ; uÞ con-

verges with probability 1 to F�ðx; Z; uÞ ¼ Fðx; Y�ðZ; uÞÞ for each x in C, and the

estimated quantile function Q�ðp; cðZÞ; uÞ ¼ Qðp; Y�ðcðZÞ; uÞÞ converges with

probability 1 to Q�ðp; Z; uÞ ¼ Qðp; Y�ðZ; uÞÞ for 0 < p < 1. The scaled difference

n1=2½F�ðx; cðZÞ; uÞ � F�ðx; Z; uÞ� converges in distribution to a normal random

variable with mean 0 and variance

s2ðF�; x; Z; uÞ ¼ ½T�ðx; Z; uÞ�0SðZ; uÞ½T�ðx; Z; uÞ�;
where

T�ðx; Z; uÞ ¼ Tðx; uðZ; uÞ; uÞ
and

Tðx; y; uÞ ¼
ð
C

wCðxÞ½u� mðy; uÞ�gðy; uÞ:
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The estimate s2ðF�; x; cðZÞ; uÞ converges with probability 1 to s2ðF�; x; Z; uÞ.
Let g�ðZ; uÞ ¼ gðuðZ; uÞ; uÞ have value g�ðx; Z; uÞ at x in C. If u is continuous at

Q�ðp; Z; uÞ, then n1=2½Q�ðp; cðZÞ; uÞ � Q�ðp; Z; uÞ� converges in distribution to a

normal random variable with mean 0 and variance

s2ðQ�; p; Z; uÞ ¼ s2ðF�;Q�ðp; Z; uÞ; Z; uÞ
½g�ðQ�ðp;Z; uÞ; Z; uÞ�2

:

The estimate s2ðQ�; p; cðZÞ; uÞ converges with probability 1 to s2ðQ�; p; Z; uÞ as
n increases. Note that if u is vðK;CÞ, then the continuity requirement always holds.

8.2.2 Equating Functions for Continuous Exponential Families

In the equating application, for j equals 1 or 2, let Kj be a positive integer, and let

uj be a bounded, Kj-dimensional, integrable function on Bj. Let CovðujðXjÞÞ be

positive definite. Then one may consider the conversion function

e�ðX1; u1;X2; u2Þ ¼ eðY�ðX1; u1Þ; Y�ðX2; u2ÞÞ
for conversion from Form 1 to Form 2 and the conversion function

e�ðX2; u2;X1; u1Þ ¼ eðY�ðX2; u2Þ; Y�ðX1; u1ÞÞ
for conversion from Form 2 to Form 1. For x in B1, let e�ðX1; u1;X2; u2Þ have value
e�ðx;X1; u1;X2; u2Þ. For x in B2, let e�ðX2; u2;X1; u1Þ have value e�ðx;X2; u2;
X1; u1Þ.

Given the available random sample data Xij, 1 � i � nj, 1 � j � 2, estimation of

the conversion functions is straightforward. Let Xj be the nj-dimensional vector

with coordinates Xij, 1 � i � nj. Then e�ðx; cðX1Þ; u1; cðX2Þ; u2Þ converges with

probability 1 to e�ðx;X1; u1;X2; u2Þ for x in B1, and e�ðx; cðX2Þ; u2; cðX1Þ; u1Þ
converges with probability 1 to e�ðx;X2; u2;X1;u1Þ for x in B2 as n1 and n2 approach
1. If u is continuous at e�ðx;X1; u1;X2; u2Þ for an x in B1, then

e�ðx; cðX1Þ; u1; cðX2Þ;X2; u2Þ � e�ðx;X1; u1;X2; u2Þ
sðe�; x;X1; u1;X2; u2; n1; n2Þ

converges in distribution to a standard normal random variable as n1 and n2 become

large, as in Equation 8.4, where

s2ðe�; x;X1; u1;X2; u2; n1; n2Þ ¼ s2 F�; x;X1; u1ð Þ
n1 gðe� x;X1; u1;X2; u2ð Þ½ �2

þ s2ðQ�;F�ðx;X1; u1Þ;X2; u2Þ
n2

: (8.5)
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In addition, the ratio

s2ðe�; x; cðX1Þ; u1; cðX2Þ; u2; n1; n2Þ
s2ðe�; x;X1; u1;X2;u2; n1; n2Þ (8.6)

converges to 1 with probability 1, so that the EASD of e�ðx; cðX1Þ; u1; cðX2Þ; u2Þ is
sðe�; x; cðX1Þ; u1; cðX2Þ; u2; n1; n2Þ. Similar results apply to conversion from Form

2 to Form 1. Note that continuity requirements always hold in the polynomial case

with uj ¼ vðKj;BjÞ.

8.2.3 Example

Table 7.1 of von Davier et al. (2004b) provided two distributions of test scores

that are integers from cj ¼ 0 to dj ¼ 20. To illustrate results, the intervals

Bj ¼ ð�0:5; 20:5Þ are employed. Results in terms of estimated expected log penal-

ties are summarized in Table 8.1. These tables suggest that gains over the quadratic

case (Kj ¼ 2) are very modest for both X1 and X2.

Equating results are provided in Table 8.2 for conversions from Form 1 to Form 2.

Given Table 8.1, the quadratic model is considered for both X1 and X2, so that

K1 ¼ K2 ¼ 2. Two comparisons are provided with familiar equating procedures. In

the case of kernel equating, comparable quadratic log-linear models were used. The

bandwidths employed by Version 2.1 of the LOGLIN/KE program (Chen, Yan,

Han, & von Davier, 2006) were employed. The percentile-rank computations

correspond to the use of the tangent rule of integration in Wang (2008) for the

quadratic continuous exponential families. In terms of continuous exponential

families, the percentile-rank results also can be produced if vðx; 2;BjÞ is replaced
by the rounded approximation vðrndðxÞ; 2;BjÞ, where rndðxÞ is the nearest integer to
x. The convention to adopt for the definition of rndðxÞ for values such as x¼ 1.5 has

no material effect on the analysis; however, the discontinuity of rndðxÞ for such

values does imply that asymptotic normality approximations are not entirely satis-

factory. As a consequence, they are not provided. In this example, the three con-

versions are very similar for all possible values of X1. For the two methods for which

EASDs are available, results are rather similar. The results for the continuous

exponential family are relatively best at the extremes of the distribution.

Table 8.1 Estimated

Expected Log Penalties for

Variables X1 and X2 for

Polynomial Models

Variable Degree Estimate EASD

X1 2 2.747 0.015

X1 3 2.747 0.015

X1 4 2.745 0.015

X2 2 2.773 0.014

X2 3 2.772 0.014

X2 4 2.771 0.014

Note: EASD ¼ estimated asymptotic standard deviation.
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8.3 Continuous Exponential Families for a Single Group

In the case of a single group, the joint distribution of X ¼ ðX1;X2Þ is approximated

by use of a bivariate continuous exponential family. The definition of a bivariate

continuous exponential family is similar to that for a univariate continuous expo-

nential family. However, in bivariate exponential families, a nonempty, bounded,

convex open set C of the plane is used such that each value ofX is in a closed subset

D of C.
As in the univariate case, let K be a positive integer, and let u be a bounded

K-dimensional integrable function on C. In many cases, u is defined by use of bi-

variate polynomials. To any K-dimensional vector y corresponds a two-dimensional

random variable Yðy; uÞ ¼ ðY1ðy; uÞ; Y2ðy; uÞÞ with values in C with a density

function f Y(y,u)) equal to

gðy; uÞ ¼ gðy; uÞ expðy0uÞ;

where from Equation 8.1

1=gðy; uÞ ¼
ð
C

expðy0uÞ

Table 8.2 Comparison of Conversions From Form 1 to Form 2

Value Continuous exponential Kernel Percentile-rank

estimateEstimate EASD Estimate EASD

0 0.091 0.110 �0.061 0.194 0.095

1 1.215 0.209 1.234 0.235 1.179

2 2.304 0.239 2.343 0.253 2.255

3 3.377 0.240 3.413 0.253 3.325

4 4.442 0.230 4.473 0.242 4.392

5 5.504 0.214 5.529 0.225 5.458

6 6.564 0.198 6.582 0.207 6.522

7 7.621 0.182 7.634 0.189 7.585

8 8.677 0.169 8.685 0.174 8.647

9 9.732 0.159 9.734 0.162 9.706

10 10.784 0.155 10.781 0.155 10.761

11 11.834 0.155 11.825 0.153 11.823

12 12.880 0.160 12.865 0.156 12.859

13 13.919 0.168 13.900 0.163 13.898

14 14.950 0.177 14.925 0.172 14.928

15 15.966 0.184 15.936 0.179 15.947

16 16.959 0.187 16.925 0.182 16.949

17 17.912 0.179 17.879 0.178 17.927

18 18.802 0.156 18.799 0.164 18.871

19 19.592 0.109 19.723 0.145 19.760

20 20.240 0.040 20.818 0.119 20.380

Note: EASD ¼ estimated asymptotic standard deviation.
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and gðy; uÞ has value gðz; y; uÞ at z in C. As in the univariate case, the family of

distributions with densities gðy;uÞ for K-dimensional vectors y is the continuous

exponential family of distributions defined by u. These density functions are

always positive on C, and they are continuous if u is continuous. If UC is a

random vector with a uniform distribution on C, then problems of parameter

identification may be avoided by the requirement that uðUCÞ have a positive-

definite covariance matrix. As in the univariate case, Yð0K; uÞ has the same

distribution as UC.

In equating applications, marginal distributions are important. For j equal 1 or 2,
let Cj be the open set that consists of real x such that x ¼ xj for some ðx1; x2Þ in C.
For x in Cj, let wjCðxÞ be the set of ðx1; x2Þ in C1 with xj � x. Then the restriction

Gjðy; uÞ of the distribution function FðYjðy; uÞÞ to Cj has value

Gjðx; y; uÞ ¼
ð
C

wjCðxÞgðy; uÞ

at x in Cj. The function Gjðy; uÞ is continuous and strictly increasing on Cj, and

Yjðy; uÞ has density function gjðx; y; uÞ. For z1 in C1,

g1ðz1; y; uÞ ¼
ð
C2ðz1Þ

gðz; y; uÞdz2;

where C2ðz1Þ ¼ fz2 2 C2 : ðz1; z2Þ 2 C2g. Similarly,

g2ðz2; y; uÞ ¼
ð
C1ðz2Þ

gðz; y; uÞdz1;

where C1ðz2Þ ¼ fz1 2 C1 : ðz1; z2Þ 2 C1g. The function Gjðy; uÞ is continuously

differentiable if u is continuous.

As in the univariate case, the distribution of the random vector X with values in

C may be approximated by a distribution in the continuous exponential family of

distributions generated by u. The quality of the approximation provided by the

distribution with density gðy; uÞ is assessed by the expected log penalty from

Equation 8.2

HðX; y; uÞ ¼ �Eðlog gðX; y; uÞÞ ¼ �log gðy; uÞ þ y0EðuðZÞÞ:

The smaller the value of HðX; y; uÞ, the better is the approximation.

Provided that CovðuðXÞÞ is positive definite, a unique K-dimensional vector

uðX; uÞ with coordinates ukðX; uÞ, 1 � k � K, exists such that HðX; uðX; uÞÞ is

equal to the infimum IðX; uÞ of HðX; y; uÞ for K-dimensional vectors y. Let

Y�ðX; uÞ ¼ ðY�1ðX; uÞ; Y�2ðX; uÞÞ ¼ YðuðX; uÞ; uÞÞ. Then uðX; uÞ is the unique

solution of the equation

EðuðY�ðX; uÞÞÞ ¼ EðuðXÞÞ:
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If

mðy;uÞ ¼
ð
C

ugðy; uÞ;

then

EðuðYðy;uÞÞÞ ¼ mðy; uÞ;

and

mðuðX; uÞ; uÞ ¼ EðuðXÞÞ:

The value of uðX; uÞmay be found by the Newton-Raphson algorithm. Note that

the positive-definite covariance matrix of Yðy; uÞ is

Vðy; uÞ ¼
ð
C

½u� mðy; uÞ�½u� mðy; uÞ�0gðy; uÞ:

Given an initial approximation u0, the algorithm at step t � 0 yields a new

approximation

utþ1 ¼ ut þ ½Vðut;uÞ��1½EðuðXÞÞ � mðut; uÞ�

of uðX; uÞ as in Equation 8.3. Normally, ut converges to uðX; uÞ as t increases. As
in the univariate case, the selection of u0 ¼ 0K is normally acceptable.

8.3.1 Estimation of Parameters

Estimation of uðX; uÞ is quite similar to the corresponding estimation in the univar-

iate case. For any n-by-2 real matrix z with elements zij, 1 � i � n, 1 � j � 2, let

cðzÞ be the two-dimensional random variable such that cðzÞ has value ðzi1; zi2Þ if
Un ¼ i, 1 � i � n. Let Z be the n-by-2 matrix with elements Xij, 1 � i � n,
1 � j � 2. Then uðX; uÞ has estimate uðcðZÞ; uÞ whenever the sample covariance

matrix of the uðXiÞ, 1 � i � n, is positive definite. The estimate uðcðZÞ; uÞ con-
verges to uðX; uÞ with probability 1 as n approaches 1. If V�ðX; uÞ is

VðuðX; uÞ; uÞ, then n1=2½uðcðZÞ; uÞ � uðX; uÞ� converges in distribution to a multi-

variate normal random variable with zero mean and with covariance matrix

SðX; uÞ ¼ ½V�ðX; uÞ��1
CovðuðXÞÞ½V�ðX; uÞ��1;

as in Equation 8.4.

The estimate SðcðZÞ; uÞ converges to SðX; uÞ with probability 1 as the

sample size n increases. For any K-dimensional vector d that is not equal to 0K ,
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approximate confidence intervals for d0uðX; uÞ may be based on the observation

that

d0uðcðZÞ; uÞd� d0uðX; uÞ
½d0SðcðZÞ; uÞd=n�1=2

converges in distribution to a standard normal random variable. The denominator

½d0SðcðZÞ; uÞd=n�1=2 may be termed the EASD of d0uðcðZÞ; uÞ.
The estimate IðcðZÞ; uÞ converges to IðX; uÞ with probability 1, and

n1=2½IðcðZÞ; uÞ � IðX; uÞ� converges in distribution to a normal random variable

with mean 0 and variance s2ðI;X; uÞ equal to the variance of log gðX; uðX; uÞ; uÞ.
This variance is ½uðX; uÞ�0 COVðuðXÞÞ uðX; uÞ. As the sample size n increases,

s2ðI; cðZÞ; uÞ converges to s2ðI;X; uÞ with probability 1, so that the EASD of

IðcðZÞ; uÞ is ½s2ðI; cðZÞ; uÞ=n�1=2.
For x in Cj and j equal 1 or 2, Fj�ðx; cðZÞ; uÞ ¼ Fðx; Yj�ðcðZÞ; uÞ; uÞ converges to

Fj�ðx;X;uÞ with probability 1 for each x in C. Thus, the estimated quantile function

Q�jðp; cðZÞ; uÞ ¼ Qðp; Y�jðcðZÞ; uÞÞ converges with probability 1 to Q�jðp;X; uÞ
for 0 < p < 1. The scaled difference n1=2½F�jðx; cðZÞ; uÞ � F�jðx;X; uÞ� converges
in distribution to a normal random variable with mean 0 and variance

s2ðF�j; x;X; uÞ ¼ ½T�jðx;X; uÞ�0SðX; uÞ½T�jðx;X; uÞ�;

where

T�jðx; Z;uÞ ¼ Tjðx; uðX; uÞ; uÞ

and

Tjðx; y; uÞ ¼
ð
C

wjCðxÞ½u� mðy; uÞ�gðy; uÞ:

The estimate s2ðF�; x; cðZÞ; uÞ converges with probability 1 to s2ðF�; x;X; uÞ.
Let g�jðX; uÞ ¼ gðuðX; uÞ; uÞ have value g�jðx;X; uÞ at x in Cj. If u is continuous,

then n1=2½Q�jðp; cðZÞ; uÞ � Q�jðp;X; uÞ� converges in distribution to a normal ran-

dom variable with mean 0 and variance

s2ðQ�j; p;X; uÞ ¼ s2ðF�j;Q�jðp;X; uÞ;X; uÞ
½g�jðQ�jðp;X; uÞ;X; uÞ�2

:

The estimate s2ðQ�j; p; cðZÞ; uÞ converges with probability 1 to s2ðQ�; p;X; uÞ as n
increases.
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8.3.1.1 Conversion Functions

The conversion function e�1ðX; uÞ ¼ eðY�1ðX; uÞ; Y�2ðX; uÞÞ may be used for con-

version from Form 1 to Form 2. The conversion function e�2ðX; uÞ ¼
eðY�2ðX; uÞ; Y�1ðX; uÞÞ may be used for conversion from Form 2 to Form 1. For x
in Cj, let e�jðX; uÞ have value e�jðx;X; uÞ. Then e�jðx; cðZÞ; uÞ converges with

probability 1 to e�jðx;Z; uÞ. If u is continuous and h ¼ 3� j, so that h ¼ 1 if j ¼ 2

and h ¼ 2 if j ¼ 1, then n1=2½e�jðx; cðZÞ; uÞ � e�jðx;X; uÞ� converges in distribution

to a normal random variable with mean 0 and variance

s2ðe�j; x;X; uÞ ¼ ½Tdjðx;X; uÞ�0SðX; uÞTdjðx;X; uÞ;

as in Equation 8.4 and 8.5, where

Tdjðx;X; uÞ ¼ T�jðx;X; uÞ � T�hðe�jðx;X; uÞ;X; uÞ:

The estimate s2ðe�j; x; cðZÞ; uÞ converges with probability 1 to s2ðe�j; x;X; uÞ.

8.3.1.2 Polynomials

In the simplest case, C is the Cartesian product B1 � B2, so that C consists of

all pairs ðx1; x2Þ such that each xj is in Bj. One common case has Kj � 2 and

u ¼ vðK1;K2;B1;B2Þ, where, for x ¼ ðx1; x2Þ in C, coordinate k of vðK1;K2;
B1;B2Þ has value vkðx;K1;K2;B1;B2Þ ¼ vkðx1;K1;B1Þ for 1 � k � K1, coordinate

K1 þ k has value vkðx2;K2;B2Þ for 1 � k � K2, and coordinate k ¼ K1 þ K2 þ 1 is

v1ðx1;K1;B1Þv2ðx2;K1;B2Þ. For this definition of u, u is continuous, so that all

normal approximations apply. For the marginal variable Y�jðX; uÞ, the first Kj

moments are the same as the corresponding moments of Xj. In addition, the

covariance of Y�1ðX; uÞ and Y�2ðX; uÞ is the same as the covariance of X1 and X2.

If K1 ¼ K2 ¼ 2 and if u2ðX; uÞ and u4ðX; uÞ are negative, then X is distributed

as the conditional distribution of a bivariate normal vector given that the vector is

in C. Other choices are possible. For example, Wang (2008) considered a case with

K ¼ K1K2, C ¼ B1 � B2, and with each coordinate of uðxÞ a product vðx1; k1;B1Þ
vðx2; k2;B2Þ for kj from 1 to Kj. If u is the vector with the first K1 þ K2 coordinates

of vðK1;K2;B1;B2Þ, then it is readily seen that e�jðx;X; uÞ is the same as the

conversion function e�ðx;Xj; vðKj;BjÞ;Xh; vðKh;BhÞÞ from the case of equivalent

groups, although the use of single groups typically leads to a different normal

approximation for e�jðx; cðZÞ; uÞ than the normal approximation for e�ðx; cðXjÞ;
vðKj;BjÞ; cðXhÞ; vðKh;BhÞÞ.

8.3.2 Example

Table 8.2 of von Davier et al. (2004b) provided an example of a single-group

design with cj ¼ 0 and dj ¼ 20 for 1 � j � 2. To illustrate results, let

8 Using Exponential Families for Equating 137



B1 ¼ B2 ¼ ð�0:5; 20:5Þ, C ¼ B1 � B2, and u ¼ vðK;K;B1;B2Þ; 2 � K � 4.

Results in terms of estimated expected log penalties are summarized in Table 8.3.

These results suggest that gains beyond the quadratic case are quite small, although

the quartic case differs from the cubic case more than the cubic case differs from the

quadratic case.

Not surprisingly, the three choices of K lead to rather similar conversion func-

tions. Consider Table 8.4 for the case of conversion of Form 1 to Form 2. A bit more

variability in results exists for very high or very low values, although estimated

asymptotic standard deviations are more variable than are estimated conversions.

Note that results are also similar to those for kernel equating (von Davier et al.,

2004b, Ch. 8) shown in Table 8.5. These results employ a log-linear model for the

joint distribution of the scores, which is comparable to the model defined by K ¼ 3

for a continuous exponential family. The log-linear fit preserves the initial three

marginal moments for each score distribution as well as the covariance of the two

scores. As a consequence, the marginal distributions produced by the kernel method

have the same means and variances as do the corresponding distributions of Xi1 and

Table 8.3 Estimated

Expected Log Penalties
K Estimate EASD

2 4.969 0.022

3 4.968 0.022

4 4.960 0.022

Note: EASD ¼ estimated asymptotic standard deviation.

Table 8.4 Comparison of Conversions From Form 1 to Form 2

Value K ¼ 2 K ¼ 3 K ¼ 4

Estimate EASD Estimate EASD Estimate EASD

0 0.111 0.077 �0.040 0.113 0.404 0.262

1 1.168 0.128 0.927 0.204 1.404 0.264

2 2.144 0.135 1.917 0.208 2.269 0.221

3 3.091 0.130 2.910 0.182 3.121 0.176

4 4.028 0.120 3.899 0.151 3.987 0.140

5 4.959 0.108 4.881 0.122 4.874 0.117

6 5.889 0.097 5.854 0.101 5.785 0.105

7 6.819 0.086 6.819 0.087 6.721 0.100

8 7.748 0.076 7.775 0.080 7.679 0.095

9 8.677 0.069 8.722 0.078 8.653 0.090

10 9.606 0.065 9.661 0.078 9.634 0.086

11 10.536 0.064 10.591 0.077 10.611 0.085

12 11.465 0.066 11.512 0.077 11.574 0.088

13 12.394 0.073 12.425 0.077 12.514 0.092

14 13.324 0.081 13.331 0.081 13.427 0.094

15 14.256 0.091 14.231 0.090 14.310 0.096

16 15.193 0.102 15.128 0.105 15.166 0.101

17 16.141 0.113 16.033 0.126 16.003 0.116

18 17.119 0.121 16.967 0.149 16.838 0.142

19 18.173 0.123 17.985 0.167 17.716 0.174

20 19.495 0.094 19.304 0.150 18.842 0.198

Note: EASD ¼ estimated asymptotic standard deviation.
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Xi2. However, the kernel methods yields the distribution of a continuous random

variable for the first form with a skewness coefficient that is 0.987 times the original

skewness coefficient for Xi1 and a distribution of a continuous random variable for

the second form with a skewness coefficient that is 0.983 times the original

skewness coefficient for Xi2.

8.4 Conclusions

Equating via continuous exponential families can be regarded as a viable competi-

tor to kernel equating and to the percentile-rank approach. Continuous exponential

families lead to simpler procedures and more thorough moment agreement, for

fewer steps are involved in equating by continuous exponential families, due to

elimination of kernel smoothing. In addition, equating by continuous exponential

families does not require selection of bandwidths.

One example does not produce an operational method, and kernel equating is

rapidly approaching operational use, so it is important to consider some required

steps. Although equivalent-groups designs and single-group designs are used in

testing programs, a large fraction of equating designs are more complex. Nonethe-

less, these designs typically can be explored by repeated application of single-group

or equivalent-groups designs. For example, the single-group design provides the

basis for more complex linking designs with anchor tests (von Davier et al., 2004b,

Table 8.5 Conversions From

Form 1 to Form 2 by Kernel

Equating

Value Estimate EASD

0 �0.002 0.162

1 0.999 0.221

2 1.981 0.221

3 2.956 0.193

4 3.926 0.159

5 4.890 0.128

6 5.850 0.104

7 6.805 0.089

8 7.756 0.080

9 8.702 0.078

10 9.643 0.077

11 10.580 0.077

12 11.512 0.077

13 12.439 0.078

14 13.362 0.083

15 14.283 0.095

16 15.206 0.115

17 16.140 0.140

18 17.105 0.167

19 18.155 0.185

20 19.411 0.158

Note: EASD ¼ estimated asymptotic standard deviation.
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Ch. 9). No reason exists to expect that continuous exponential families cannot be

applied to any standard equating situation to which kernel equating has been

applied.

It is certainly appropriate to consider a variety of applications to data, and some

work on quality of large-sample approximations is appropriate when smaller

sample sizes are contemplated. Although this gain is not apparent in the examples

studied, a possible gain from continuous exponential families is that application to

assessments with unevenly spaced scores or very large numbers of possible scores

is completely straightforward. Thus, direct conversion from a raw score on one

form to an unrounded scale score on a second form involves no difficulties. In

addition, in tests with formula scoring, no need exists to round raw scores to

integers during equating.

Chapter 8 Appendix

8.A.1 Computation of Orthogonal Polynomials

Computation of the orthogonal polynomials vkðCÞ, k � 0, is rather straightforward

given standard properties of Legendre polynomials (Abramowitz & Stegun, 1965,

Ch. 8, 22). The Legendre polynomial of degree 0 is P0ðxÞ ¼ 1; the Legendre

polynomial of degree 1 is P1ðxÞ ¼ x; and the Legendre polynomial Pkþ1ðxÞ of

degree k þ 1, k � 1, is determined by the recurrence relationship

Pkþ1ðxÞ ¼ ðk þ 1Þ�1½ð2k þ 1ÞxPkðxÞ � kPk�1ðxÞ�; (8.A.1)

so that P2ðxÞ ¼ ð3x2 � 1Þ=2. For nonnegative integers i and k, the integral Ð 1�1
PiPk

is 0 for i 6¼ k and 1=ð2k þ 1Þ for i ¼ k. Use of elementary rules of integration

shows that one may let

vkðx;CÞ ¼ ð2k þ 1Þ1=2Pkð½2x� infðCÞ � supðCÞ�=½supðCÞ � infðCÞ�Þ:

Author Note:Any opinions expressed in this chapter are those of the author and not necessarily of

Educational Testing Service.
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Chapter 9

An Alternative Continuization Method:

The Continuized Log-Linear Method

Tianyou Wang

9.1 Introduction

von Davier, Holland and Thayer (2004b, pp. 45–47) described a five-step, test-

equating framework: (a) presmoothing, (b) estimating score probabilities, (c) con-

tinuization, (d) equating, and (e) calculating the standard error of equating. In this

framework, the presmoothing step is usually done with log-linear smoothing. Step

2 is to transform smoothed distribution into two marginal distributions for the target

population (sometimes called synthetic population). In their framework, Step 3 is

done with an adjusted Gaussian kernel procedure.

The advantage of the von Davier et al. (2004b) framework is that it modularizes

the equating process so that different designs and methods only affect certain steps.

For instance, different data collection designs will result in different design func-

tions in Step 2. For a random-groups design, Step 2 is usually omitted in the

traditional description of the equating process, but in this framework an identity

design function is used. Likewise, different equating methods only affect Step 4.

The main difference between this framework and previous equating procedures

is that it has a continuization step, so that the equating step is based on two

continuous distributions rather than two discrete distributions. Denote the random

variables for the test scores for test X as X and for test Y as Y, and the target

population cumulative distributions of X and Y as F(X) andG(Y), respectively. Then
the equipercentile equating function êYðxÞ is given by Equation 9.1:

êYðXÞ ¼ G�1ðFðXÞÞ; (9.1)

The traditional, percentile rank-based, equating procedure also can be viewed

as a uniform-kernel continuization procedure under this framework. However,

T. Wang

The University of Iowa, 210B Lindquist Center, Iowa City, IA 52242, USA

e-mail: tianyouwang@yahoo.com

A.A. von Davier (ed.), Statistical Models for Test Equating, Scaling, and Linking,
Statistics for Social and Behavioral Sciences,

DOI 10.1007/978-0-387-98138-3_9, # Springer ScienceþBusiness Media, LLC 2011

141



uniform kernel produces piecewise linear culumlative distributions, which may not

be the ideal procedure. Wang (2008) proposed an alternative continuization method

that directly takes the log-linear function in the presmoothing step and transforms it

into a continuous distribution. This method is called the continuized log-linear

(CLL) method and is described for different data collection designs in the next two

sections.

9.2 The CLL Method for the Equivalent-Groups Design

For the equivalent-groups design, the design function is the identity function. The

distributions obtained from Step 2 are the same as those from Step 1. For this

design, an alternative continuization procedure that utilizes the polynomial log-

linear function obtained in the log-linear smoothing step is presented here, the CLL

distribution. The probability density function (PDF) is expressed as

f ðxÞ ¼ 1

D
expðbTbÞ; (9.2)

where bT ¼ ð1; x; x2; . . . ; xMÞ is a vector of polynomial terms of test X score

x, b ¼ ðb0; b1; b2; . . . ; bMÞT is the vector of parameters, and M is the order (or

degree) of the polynomial. Holland and Thayer (1987, 2000) gave detailed descrip-

tions about model parameter estimation and how to select the polynomial degreeM.

D is a normalizing constant that ensures that f(x) is a PDF.
It is easy to show that all the moments of the CLL distribution are approximately

equal to those of the smoothed discrete distribution by the following relationship

between i-th noncentral moments of the CLL distribution and the smoothed discrete

distribution:

Ð u
l xiexpðbTbÞdxÐ u
l expðbTbÞdx � 1

N

XJ
x¼0

xiexpðbTbÞ; (9.3)

where J is the number of test items, and l and u are the lower and upper limit of

integration. In this case, they are set to be �0.5 and J þ 0.5, respectively, so that

the probabilities of the end points of the discrete distribution are allowed to spread

out in both directions. N is the sample size. This approximation holds because the

right side of the equation is actually an expression for numerical integration of the

left side with equally spaced quadrature points. The numerator and denominator of

the left side can be separately expressed as

ðu
l

xiexpðbTbÞdx �
XJ
x¼0

xiexpðbTbÞ;
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and

D ¼
ðu
l

expðbTbÞdx �
XJ
x¼0

expðb0 þ b1xþ � � � þ bMx
MÞ ¼ N: (9.4)

This means that the normalizing constant is approximately equal to the sample

size, which is known prior to equating. This result significantly simplifies the

computation. The above expressions are very similar to the trapezoidal rule (see

Thisted, 1988, p. 264; note that the subinterval length equals 1). The range of the

continuous distribution is set from �0.5 to J þ 0.5 so that in the quadrature the

function is evaluated at the midpoints of the subintervals rather than at the end

points, as in the regular trapezoidal rule. This range is consistent with the range of

the percentile-rank method in conventional equipercentile equating (Kolen &

Brennan, 2004, pp. 39–46). Because of the smoothness of the log-linear function,

the approximation can be quite close when the number of quadrature points (i.e., the

score points J) gets large.
The proposed CLL continuization seems to have several advantages over kernel

continuization. First, CLL continuization is simpler and more direct. Second, it is

smoother and is guaranteed to be without the small bumpiness in the kernel

continuization. Third, it preserves all the moments of the discrete distribution to

the precision of equally spaced numerical integration with J + 1 quadrature points.

The next section illustrates these points with two data sets, one from von Davier

et al. (2004b) and the other from Kolen and Brennan (2004).

9.3 The CLL Method for Other Designs

The CLL approach for the equivalent-groups design can be extended to other

designs, such as the single-group design, the single-group counterbalanced design,

and the nonequivalent groups with anchor test (NEAT) design. Typically, these

designs require a bivariate log-linear smoothing procedure in Step 1 of the test

equating framework described earlier in this paper. With the Gaussian kernel

continuization method, Step 2 is the step that applies the design functions, and

Step 3 is the continuization step. With the CLL continuization method, because the

continuization step must directly utilize the log-linear function from Step 1, con-

tinuization must be carried out immediately after Step 1. So, the design function

must be applied after the continuization step and must be applied on continuous

distribution functions rather than on discrete distributions, as in the kernel method.

Another difference in the design function is that with the kernel method, the design

functions are applied to discrete distributions and are thus in matrix form (see von

Davier et al., 2004b, Ch. 2 for a detailed description). However, with the CLL

method, the design function is a conceptual term that encapsulates the procedures

(usually expressed as a set of equations) that transform the continuized distributions
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into two marginal distributions for X and Y in the target population. The following

subsections describe the procedures for various equating designs. For the equiva-

lent-groups design described in the precious section, the design function is an

identity function, which means that no such procedure is needed.

9.3.1 For the Single-Group, Counterbalanced Design

For the single-group design, both test X and test Y are administered to the same

group of examinees. For the counterbalenced design, the whole group takes both

test X and test Y; however, approximately half of the group takes test X first and

then test Y, whereas the other half takes test Y first and then test X. The first half

group will be labeled as Group 1 and the second half as Group 2. The single-group

design can be viewed as a special case of the counterbalanced design where there

is only Group 1.

The log-linear functions are taken directly from Step 1 (treating them as contin-

uous functions) and normalized to be PDFs. For Group 1, the PDF can be expressed

as Equation 9.5:

f1ðx; yÞ ¼ 1

D1

expðbTbÞ; (9.5)

where bT ¼ ð1; x; x2; . . . ; xMX ; y; y2; . . . ; yMY; xy; x2y; xy2; . . . ; xCXyCY Þ is a vector of

polynomial terms of x and y, b ¼ ðb00; b01; b02; . . . ; b0MX
; b10; b20; . . . ; bMY0

;

b11; b12; b21; . . . ;bCXCY
ÞT is a vector of parameters, MX and MY are the orders of

marginal polynomial terms for X and Y, CX and CY are the orders of the cross-

product terms for X and Y, andD1 is a normalizing constant that ensures that f1(x, y)
is a PDF. Again, it can be shown that the normalizing constant approximates the

sample size.

The joint PDF of Group 2, f2(x, y), can be found in a similar fashion. Given the

weights of X and Y for Group 1, wX and wY, the combined marginal distributions of

X and Y can be expressed as follows:

f ðxÞ ¼ wX

ðuY
lY

f1ðx; yÞdyþ ð1� wXÞ
ðuY
lY

f2ðx; yÞdy; (9.6)

f ðyÞ ¼ wy

ðuX
lX

f1ðx; yÞdxþ ð1� wyÞ
ðuX
lX

f2ðx; yÞdx: (9.7)

Numerical integration is used in carrying out the necessary integrations. The rest

of the equating procedure is the same as for the equivalent-groups design.

144 T. Wang



9.3.2 For the NEAT Design

For the NEAT design, Group 1 from Population 1 takes test X plus the anchor set V,
and Group 2 from Population 2 takes test Y plus the anchor set V. The continuous
bivariate PDFs f1(x,v) for X and V, f2(y,v) for Y and V can be obtained in a similar

fashion as described in the previous section for the counterbalanced design. The

NEAT design has essentially two equating methods: the frequency estimation (also

called poststratification) and the chained equipercentile equating method. The

frequency estimation method is based on the assumption that the conditional

distributions of test scores conditioning on an anchor test score remain invariant

across populations, which can be expressed as follows:

f2ðxjvÞ ¼ f1ðxjvÞ ¼ f1ðx; vÞ=f1ðvÞ; (9.8)

f1ðyjvÞ ¼ f2ðyjvÞ ¼ f2ðy; vÞ=f2ðvÞ; (9.9)

The marginal distributions can be found by the following expressions:

f1ðxÞ ¼
ðuV
lV

f1ðx; vÞdv; (9.10)

f2ðyÞ ¼
ðuV
lV

f2ðy; vÞdv; (9.11)

f1ðvÞ ¼
ðuX
lX

f1ðx; vÞdx; (9.12)

f2ðvÞ ¼
ðuY
lY

f2ðy; vÞdy; (9.13)

With this assumption and given the weight of Population 1 in the target popula-

tion, w1, the marginal distributions of X and Y for the target population are

fTðxÞ ¼ w1f1ðxÞ þ ð1� w1Þ
ðuV
lV

f1ðxjvÞf2ðvÞdv; (9.14)

fTðyÞ ¼ w1

ðuV
lV

f2ðyjvÞf1ðvÞdvþ ð1� w1Þf2ðyÞ; (9.15)

The rest of the equating procedure is the same as in the equivalent-groups

design.

The chained equipercentile equating method first equates X to V using f1(x) and
f1(v), and then equates the V equivalent X scores to Y using f2(v) and f2(y). Given
all the continuous marginal distributions in Equations 9.10–9.13, Equation 9.1 must

be applied twice to accomplish the chain equipercentile equating procedure.
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9.4 Standard Error of Equating for CLL under

the Equivalent-Groups Design

von Davier et al. (2004b) derived this general expression for the asymptotic

standard error of equating (SEE):

SEEYðxÞ ¼ ĴeY ĴDFC
�� ��: (9.16)

This expression is decomposed into three parts, each relating to a different

stage of the equating process. ĴeY is related to continuization (Step 3) and equating

(Step 4). ĴDF is related to the estimation of score probabilities (Step 2). C is related

to presmoothing (Step 1). Because the CLL method uses the log-linear function

directly in the continuization step, the cumulative distribution functions of test X

and test Y depend on the the estimated parameter vectors b̂X and b̂Y of the log-

linear models rather than on the estimated score probabilities r̂ and ŝ in von Davier

et al. (2004b). Let F denote the cumulative distribution functions of X and G denote

the cumulative distribution functions of Y. The equating function from X to Y can be

expressed as

eYðxÞ ¼ eYðx;bX;bYÞ ¼ G�1ðFðx;bXÞ;bYÞ; (9.17)

where

Fðx; bXÞ ¼
Ð x
l expðbTXbXÞdtÐ u
l expðbTXbXÞdt

; (9.18)

and

Gðy; bYÞ ¼
Ð y
l expðbTYbYÞdtÐ u
l expðbTYbYÞdt

: (9.19)

Using the d-method and following a similar approach as in Holland, King, and

Thayer (1989), the square of the SEE can be expressed as

s2
YðxÞ ¼ ð›eYÞTSð›eYÞ (9.20)

where

S ¼ Sb̂X
Sb̂X b̂Y

Sb̂Xb̂Y
Sb̂Y

" #
; (9.21)

and

ð@eYÞ ¼
@eY
@bX

@eY
@bY

2
664

3
775: (9.22)
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The elements of S are further obtained by the following equations:

Sb̂X
¼ ðBT

XSmXBXÞ�1; (9.23)

where BX is the design matrix for X in the log-linear model (see Holland & Thayer,

1987) and

SmX ¼ NðDpX � pXp
T
XÞ; (9.24)

where pX is the vector of probabilities in the multinomial categories for Form X and

DpX is a diagonal matrix made from pX. Sb̂Y
can be obtained in a similar fashion.

Because X and Y are two independent groups, it follows that the model parameter

estimates for the two groups are also independent, which is expressed as

Sb̂Xb̂Y
¼ 0: (9.25)

The elements of ð@eYÞ can be obtained from Equations 9.26 and 9.27:

@eY
@bXi

¼ 1
@Gðy;bYÞ

@y

jy¼eYðxÞ
@Fðx;bXÞ

@bXi

(9.26)

@eY
@bYi

¼ � 1
@Gðy;bYÞ

@y

jy¼eYðxÞ
@Gðy;bYÞ

@bYi

jy¼eYðxÞ: (9.27)

Given Equations 9.18 and 9.19, the derivatives in Equations 9.26 and 9.27 can be

derived straightforwardly. Their expressions can be quite messy and thus are

omitted here.

The general expression of SEE in Equation 9.20 applies to all designs. However,

for designs other than the equivalent-groups design, calculating expression in

Equation 9.22 could be quite complicated, depending on the specific design and

equating method, and is beyond the scope of this chapter.

9.5 Illustration With Real Test Data

9.5.1 Comparison of the Continuization Procedures

Because the CLL method performs the continuization step before applying the

design function, and the kernel method applies the design function before the

continuization step, the two continuization procedures only can be compared

directly under the equivalent-groups design where the design function is the
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identity function and thus can be skipped. This section compares the CLL and

kernel continuization methods using two real data sets in terms of the smoothness of

the continuous distribution and preservation of moments.

The first data set is taken from von Davier et al. (2004b, Table 9.1) and is a

20-item test data set. Only test form X data are used here. First, the log-linear model

is fitted with degree 2 to the raw frequency data. Then the kernel continuization is

implemented with three different bandwidth parameter values: h ¼ 0:33; h ¼ 0:622,
and h ¼ 1:0. The h value of 0.622 represents the optimal h that minimizes the

combined penalty function for this data set. The other two h values are somewhat

arbitrary, but with one somewhat smaller than the optimal value and the other

somewhat larger than the optimal value.

The CLL distribution is plotted against the kernel distribution in Figure 9.1. The

upper part shows that the kernel distributions are very close to the CLL distribution.

In fact, the three lines almost coincide with each other, except with h ¼ 1 making

the kernel distribution depart slightly from the CLL distribution, especially at the

ends of the score scale. As discussed previously, this departure reflects a distortion

of the shape of the discrete distribution.

The lower part of Figure 9.1 plots the differences between the kernel distribu-

tions and the CLL distribution. It can be seen that with h ¼.622 the kernel

distribution still has some bumps,although they are too small to be seen in the

upper part of Figure 9.1.(Note that the vertical scales for the upper and lower part of

Figure 9.1 are very different.)

The moments for different continuizations for this data set are in Table 9.1. Note

that log-linear smoothing with degree 2 maintains the first two moments of the raw

score distribution. Themoments for the kernel distributions were computed based on

the theoretical results in von Davier et al. (2004b), namely, that the first two

moments of kernel distribution are the same as the log-linear discrete distribution,

but the skewness and kurtosis differ by a factor of ðaXÞ3 and ðaXÞ4, respectively. The
moments for CLL were empirically computed using numerical integration. For the

Table 9.1 The Moments and Differences in Moments for the 20-Item Data Set (With Kernel

Moments Computed Based on Formula)

Test X Raw dist. Log-linear Kernel CLL

0.33 0.622 1.0

Moments

Mean 10.8183 10.8183 10.8183 10.8183 10.8183 10.8283

SD 3.8059 3.8059 3.8059 3.8059 3.8059 3.7909

Skewness 0.0026 �0.0649 �0.0641 �0.0623 �0.0587 �0.0502

Kurtosis 2.5322 2.6990 2.6588 2.5604 2.3616 2.6723

Difference in moments with the log-linear discrete distribution

Mean - - 0.0000 0.0000 0.0000 0.0100

SD - - 0.0000 0.0000 0.0000 �0.0150

Skewness - - 0.0007 0.0025 0.0062 0.0147

Kurtosis - - �0.0401 �0.1386 �0.3373 �0.0267

Note. CLL ¼ continuzed log-linear
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kernel method, the case of h ¼ .33 can be ignored, since it produced unacceptably

large bumps. All CLL moments approximate those of the log-linear distribution

reasonably well, whereas the kernel methods have bigger differences in kurtosis.

The kernel continuization did not distort the skewness of the distribution, even when

a large h was specified, because the skewness of the discrete distribution was very

small.

The same analyses were repeated for the 40-item ACT mathematics data in

Kolen and Brennan (2004). A log-linear model with a degree of 6 was fitted to the

raw frequency. The same kernel and CLL procedures were applied as for the first

illustrative example. Three h parameter values were used for this data set: 0.33,

0.597, and 1.0. The value 0.597 represents the optimal h that minimizes the

combined penalty function. (It turns out that in both data sets, the second penalty

function PEN2 does not have any effect on the combined penalty because there is no
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Fig. 9.1 Comparisons of kernel continuization and continuzed log-linear (CLL) for the 20-item

data set. Pdf ¼ probability density function
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U-shaped distribution around any score point.) Results are plotted in Figure 9.2.

These plots show similar patterns of comparisons to those for the 20-item data set in

the first example.

The moments of various distributions for this data set are in Table 9.2. The CLL

moments are slightly closer to the discrete distribution moments than the kernel

moments, although both methods produce very close moments. The CLL method

preserves moments better in this case because the number of score points is larger

and the approximation in Equation 9.3 is more accurate when the number of score

points is larger.

Overall, these two illustrations confirm that the CLL continuization method

has certain advantages over the kernel method with respect to simplicity, a

smoother continuous distribution, and preserving moments better when the

number of score points is relative large and the discrete distributions are highly

skewed.
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9.5.2 Comparisons of Equating Functions

The 40-item test data sets are also used to compare the equating functions under the

equivalent-groups design based on three methods: (a) the traditional equipercentile

equating method based on percentile ranks, (b) the kernel method, and (c) the CLL

method. The optimal h parameters were used to compute the kernel continuous

distributions. The traditional equipercentile method is also applied to the

unsmoothed raw frequency data as a baseline for comparison. The results for the

40-item data set are in Table 9.3. The equating functions and their differences are

plotted in Figure 9.3. The results showed that the equating functions based on these

three methods were quite similar. Except at the end points of the score scale, the

differences were within 0.1.

Another set of real test data with a pairs of test forms was taken from Kolen

and Brennan (2004, p. 147) to compare the CLL method with the kernel method

under the NEAT design. The test had 36 items with a 12-item internal anchor test.

The sample size was 1,655 for the X group and 1,638 for the Y group. A bivariate

log-linear smoothing procedure was used for the smoothing step. The frequency

estimation method was used for computing the equating function. The frequency

estimation method under the NEAT design requires a rather complicated design

function. Three continuization and equating methods are computed and com-

pared: (a) the traditional equipercentile equating method based on percentile

ranks, (b) the kernel method, and (c) the CLL method. The results are in

Table 9.4. The equating functions and their differences are plotted in Figure

9.4. The results showed that the CLL method produces equating results similar

to the kernel method but slightly different from the traditional log-linear equi-

percentile method.

9.5.3 Comparison of SEE Estimates

The SEEs for the CLL method were computed for the 20-item data set using

Equation 9.25 and are contained in Table 9.5. The SEEs for the kernel method

were also computed and are presented in Table 9.5, which shows that the SEEs for

the two methods were very similar.

9.6 Summary

Wang (2008) proposed an alternative continuization method for the test equating

framework constructed by von Davier et al. (2004b). With this new continuization

method, there are two major differences between the proposed CLL method and the

kernel method: (a) The proposed CLL method directly uses the function from the
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log-linear smoothing step and makes it into a PDF, and (b) the continuization step

occurs before the design function is applied. The illustration with real test data

shows that with a relatively long test length, the CLL method produces smoother

continuous score distributions and preserves the moments better than the kernel

method. The equating results from the CLL method are quite similar to the kernel

Table 9.3 The Equating Functions for the 40-Item Data Set Under an Equivalent-Groups Design

Score Raw equating Log-linear kernel (.597) CLL equating

0 0.0000 �0.4384 �0.7031 �0.4199

1 0.9796 0.1239 0.0537 0.1406

2 1.6462 0.9293 0.9143 0.9664

3 2.2856 1.8264 1.8069 1.8473

4 2.8932 2.7410 2.7072 2.7369

5 3.6205 3.6573 3.6082 3.6300

6 4.4997 4.5710 4.5112 4.5266

7 5.5148 5.4725 5.4191 5.4291

8 6.3124 6.3577 6.3355 6.3411

9 7.2242 7.2731 7.2648 7.2668

10 8.1607 8.2143 8.2119 8.2111

11 9.1827 9.1819 9.1819 9.1792

12 10.1859 10.1790 10.1798 10.1762

13 11.2513 11.2092 11.2101 11.2067

14 12.3896 12.2750 12.2761 12.2734

15 13.3929 13.3764 13.3784 13.3770

16 14.5240 14.5111 14.5147 14.5146

17 15.7169 15.6784 15.6790 15.6801

18 16.8234 16.8638 16.8623 16.8647

19 18.0092 18.0566 18.0541 18.0580

20 19.1647 19.2469 19.2449 19.2497

21 20.3676 20.4262 20.4263 20.4312

22 21.4556 21.5911 21.5916 21.5961

23 22.6871 22.7368 22.7365 22.7404

24 23.9157 23.8595 23.8588 23.8623

25 25.0292 24.9594 24.9586 24.9616

26 26.1612 26.0374 26.0369 26.0394

27 27.2633 27.0954 27.0955 27.0973

28 28.1801 28.1357 28.1364 28.1375

29 29.1424 29.1606 29.1621 29.1625

30 30.1305 30.1729 30.1750 30.1746

31 31.1297 31.1749 31.1777 31.1765

32 32.1357 32.1691 32.1726 32.1705

33 33.0781 33.1576 33.1618 33.1588

34 34.0172 34.1424 34.1470 34.1434

35 35.1016 35.1250 35.1300 35.1257

36 36.2426 36.1064 36.1118 36.1068

37 37.1248 37.0873 37.0929 37.0873

38 38.1321 38.0676 38.0729 38.0670

39 39.0807 39.0462 39.0514 39.0448

40 39.9006 40.0202 40.0256 40.0177

Note. CLL ¼ continuzed log-linear.
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method results under both the equivalent-groups design and the NEAT design. The

similarity of the equating results make it difficult to make any recommendation

about which method is the best choice under real testing situations. The compar-

isons are not comprehensive and lack objective criteria to evaluate the equating

errors. A more thorough simulation study is needed to compare the kernel and CLL

methods in order to make some practical recommendations.

A few differences between the CLL method and the kernel method merit

discussion. First, because the CLL method requires that the continuization step

occur before the design function is applied, the design function is applied to

–0.25

–0.20

–0.15

–0.10

–0.05

0.00

D
if

fe
re

nc
e 

w
ith

 L
og

-l
in

ea
r 

E
qu

at
in

g

kernel equating
CLL equating

–1.5

–1.0

–0.5

0.0

E
qu

at
in

g 
Fu

nc
tio

n 
M

in
us

 I
de

nt
ity

 F
un

ct
io

n

403020100
Score

403020100
Score

raw equating
loglinear equating
kernel equating
CLL equating

Fig. 9.3 Comparisons of equating functions for the 40-item data set under an equivalent-groups

design. CLL ¼ continuzed log-linear

154 T. Wang



continuous distributions. This makes the expression of the design function easier to

describe and program than with the kernel method. For example, for the frequency

estimation method under the NEAT design, the kernel method applies a compli-

cated set of matrix and vector operations in order to estimate the marginal distribu-

tions for the target population. For the CLL method, the design function is

expressed nicely in Equations 9.8–9.15.

Table 9.4 The Frequency-Estimation Equating Functions for the 36-Item Data Set Under a

NEAT Design

Score Log-linear frequency

estimation

Kernel frequency

estimation

CLL frequency

estimation

0 �0.0129 0.0313 0.0059

1 1.0242 1.0827 1.0723

2 2.0988 2.1552 2.1357

3 3.1986 3.2375 3.2256

4 4.3091 4.3239 4.3132

5 5.4200 5.4122 5.4031

6 6.5194 6.5007 6.4929

7 7.5971 7.5880 7.5828

8 8.6759 8.6729 8.6688

9 9.7542 9.7546 9.7515

10 10.8305 10.8322 10.8303

11 11.9035 11.9053 11.9048

12 12.9721 12.9733 12.9738

13 14.0353 14.0357 14.0370

14 15.0924 15.0923 15.0941

15 16.1426 16.1423 16.1447

16 17.1854 17.1854 17.1881

17 18.2200 18.2209 18.2238

18 19.2460 19.2483 19.2513

19 20.2627 20.2668 20.2698

20 21.2694 21.2756 21.2783

21 22.2653 22.2740 22.2770

22 23.2495 23.2612 23.2636

23 24.2209 24.2362 24.2386

24 25.1784 25.1982 25.2004

25 26.1207 26.1464 26.1480

26 27.0466 27.0804 27.0813

27 27.9550 27.9997 27.9998

28 28.8454 28.9046 28.9050

29 29.7179 29.7964 29.7949

30 30.5739 30.6769 30.6760

31 31.4295 31.5496 31.5461

32 32.2939 32.4192 32.4163

33 33.1700 33.2920 33.2908

34 34.0732 34.1764 34.1807

35 35.0130 35.0836 35.1035

36 35.9983 36.0326 36.0800

Note. CLL ¼ continuzed log-linear method; NEAT ¼ nonequivalent groups with anchor test.
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Seond, the kernel method appears to have closed mathematical form in the

continuization and equating steps, whereas the CLL method requires numerical

integration. A closer look shows that computing the normal cumulative distribution

functions in the kernel method also requires numerical integration or some approxi-

mation algorithm. Therefore, computationally speaking, both methods require

some kind of numerical method for computation, although the CLL method

requires more frequent use of numerical integration.

Finally, the kernel method requires a bandwidth parameter h for the Gaussian

kernel. Having this parameter presents advantages and disadvantages. The advan-

tage is that users can manipulate this parameter to achieve some goal. For example,

when h is set very large, the kernel method becomes a linear equating method. The

disadvantage is that it is rather arbitrary. Although von Davier et. al (2004b)

proposed a penalty function to compute the optimal bandwidth, this penalty
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function itself is also arbitrary in some sense. The CLL method, on the other hand,

does not have such a parameter and thus saves a step in the computation.

The software used to computed the procedures described in this paper is avail-

able from the author upon request (tianyouwang@yahoo.com).

Table 9.5 The Standard

Errors of Equating (SEEs) for

the 20-Item Data Set

Score Kernel SEE CLL SEE

0 0.2200 0.2100

1 0.2895 0.2933

2 0.2875 0.2904

3 0.2664 0.2682

4 0.2410 0.2418

5 0.2170 0.2169

6 0.1967 0.1963

7 0.1812 0.1808

8 0.1708 0.1705

9 0.1646 0.1646

10 0.1619 0.1622

11 0.1621 0.1627

12 0.1653 0.1661

13 0.1721 0.1731

14 0.1827 0.1839

15 0.1951 0.1969

16 0.2038 0.2064

17 0.1990 0.2028

18 0.1700 0.1747

19 0.1186 0.1170

20 0.0703 0.0396
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Chapter 10

Equating Through Alternative Kernels

Yi-Hsuan Lee and Alina A. von Davier

10.1 Introduction

The need for test equating arises when two or more test forms measure the same

construct and can yield different scores for the same examinee. The most common

example involves multiple forms of a test within a testing program, as opposed to a

single testing instrument. In a testing program, different test forms that are similar in

content and format typically contain completely different test items. Consequently,

the tests can vary in difficulty depending on the degree of control available in the

test development process.

The goal of test equating is to allow the scores on different forms of the same test

to be used and interpreted interchangeably. Test equating requires some type of

control for differential examinee ability in the assessment of, and adjustment for,

differential test difficulty; the differences in abilities are controlled by employing an

appropriate data collection design.

Many observed-score equating methods are based on the equipercentile equating

function, which requires that the initial, discrete score distribution functions have

been continuized. Several important observed-score equating methods may be

viewed as differing only in the way the continuization is achieved. The classical

equipercentile equating method (i.e., the percentile-rank method) uses linear inter-

polation to make the discrete distribution piecewise linear and therefore continuous.

The kernel equating (von Davier, Holland, & Thayer, 2004b) method uses Gaussian

kernel (GK) smoothing to approximate the discrete histogram by a continuous

density function.

A five-step process of kernel equating was introduced in von Davier et al. (2004b)

for manipulation of raw data from any type of data collection design, either for

common examinees (e.g., the equivalent-groups, single-group, and counterbalanced
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designs) or for common items (e.g., the nonequivalent groups with anchor test, or

NEAT, design). The five steps are (a) presmoothing of the initial, discrete score

distributions using log-linear models (Holland & Thayer, 2000); (b) estimation of

the marginal discrete score distributions by applying the design function, which is a

mapping reflecting the data-collection design; (c) continuization of the marginal,

discrete score distributions; (d) computation and diagnosis of the equating functions;

and (e) evaluation of statistical accuracy in terms of standard error of equating (SEE)

and standard error of equating difference (SEED). Description of the five-step

process can be found in the introductory chapter of this volume.

Kernel smoothing is a means of nonparametric smoothing. It continuizes a

discrete random variable X by adding to it a continuous and independent random

variable V with a positive constant hX controlling the degree of smoothness. Let

X(hX) denote the continuous approximation of X. Then

XðhXÞ ¼ X þ hXV: (10.1)

The hX is the so-called bandwidth and is free to select to achieve certain practical

purpose. Kernel function refers to the density function of V. When kernel smooth-

ing was first introduced to test equating by Holland and Thayer (1989), V was

assumed to be a standard normal random variable. As a continuation, the conceptual

framework of kernel equating was further established and introduced in von Davier

et al. (2004b) with concentration on GK.

Equation 10.1 can be regarded as the central idea of kernel smoothing. In

principle, it is feasible to substitute any continuous random variable for the one

following a standard normal distribution. The choice of bandwidth hX is often

believed to be more crucial than the choice of kernel function in kernel regression

(Wasserman, 2006); however, knowledge of ordinary kernel smoothing is not

necessarily applicable in kernel equating without further justification. One example

is the selection of bandwidth. In most applications of observed-score equating, the

test scores X of each test are discrete variables. The selection of hX involves a

compromise between two features. First, the distribution function of X(hX) has to be
relatively smooth. Second, X(hX) should be a close approximation of X at each

possible score. The common expectation that the constant hX approaches 0 as the

sample size becomes large should not hold in kernel equating.

A by-product of smoothing is that X(hX) will carry not only the characteristics of
X but also the characteristics of V. Thus, there is cause of concern about the impact

of the characteristics of V on each step of the equating process after continuization.

To illustrate, two alternative kernel functions, the logistic kernel (LK) and the

(continuous) uniform kernel (UK), will be employed along with the GK. In item-

response theory, a logistic function is acknowledged to closely approximate the

classical normal-ogive curve with mathematical convenience. It has a simple

expression for the cumulative distribution function (CDF), avoiding the integration

involved in the CDF of a normal distribution and resolves many theoretical and

numerical problems in conjunction with the computation of CDF. The same

convenience also advantages the process of kernel equating when deriving formulas
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for SEE and SEED. When V follows a uniform distribution, Equation 10.1 leads to

the product of linear interpolation. The inclusion of UK in the framework allows

direct comparisons through SEE and SEED between equating results from kernel

equating with a specific kernel function and those from the percentile-rank method.

LK shares much common ground with GK with respect to distributional char-

acteristics, with the exception of heavier tails and sharper peak. UK has a finite

range and can be viewed as a no-tail distribution. These characteristics can be

quantified by moments or cumulants of various orders, and it appears natural

to evaluate the continuous approximations of LK, UK, and GK through these

measures to see how the distributional properties are inherited.

Some notations are needed before we proceed. Two tests are to be equated, test

form X and test form Y, and a target population, T, on which this is to be done.

Assume that T is fixed throughout this chapter. Let X be the score on test X and Y be

the score on test Y, where X and Y are random variables. The possible scores of X
and Y are xi, 1 � i � I, and yj, 1 � j � J, respectively. The corresponding score

probabilities are r ¼ frig1�i�I and s ¼ fsjg1�j�J with ri ¼ PðX ¼ xiÞ and

sj ¼ PðY ¼ yjÞ. In the case of concern, assume xi, 1 � i � I, to be consecutive

integers; similarly for yj, 1 � j � J. The CDFs for X and Y are FðxÞ ¼ PðX � xÞ
and GðyÞ ¼ PðY � yÞ. If F(x) and G(y) were continuous and strictly increasing, the
equipercentile equating function for the conversion from test X to test Y would be

defined as eYðxÞ ¼ G�1ðFðxÞÞ, and the conversion from test Y to test X would be

defined similarly as eXðyÞ ¼ F�1ðGðyÞÞ. In practice, F(x) and G(y) are made

continuous before applying the equipercentile equating functions. Let FhXðx; rÞ
and f hXðx; rÞ be the CDF and probability density function (PDF) of X(hX). Similarly,

let Y(hY) denote the continuous approximation of Y with bandwidth hY, and let

GhY ðy; sÞ and ghY ðy; sÞ be its CDF and PDF, respectively.

The LK and UK considered in this study are presented in Section 10.2, including

details about the quantities needed in the equating process. Section 10.3 focuses on

the step of continuization using LK and UK. Most of the results are applicable to

generic kernel functions. In Section 10.4, LK, UK, and GK are applied to the

equivalent-groups data given in Chapter 7 of von Davier et al. (2004b). Results

are concluded in Section 10.5. The computation of SEE and SEED involves the first

derivatives of FhXðx; rÞ and GhY ðy; sÞ with respect to r and s, respectively. In the

Appendix, the formulas for the derivatives are generalizations to LK and UK.

10.2 Alternative Kernels

The name of logistic or uniform distribution can refer to a family of distributions

with variation in the parameters for location and scale or for boundaries. Moments

and cumulants are functions of these parameters, but standardized measures such as

skewness and kurtosis are invariant in this respect. The main concern is how

choices of V can affect the equating process. One relevant issue regards the impact
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of employing two distributions that diverge only in the scales. To investigate this

issue, two distributions were chosen from each family of distributions under

consideration.

10.2.1 Logistic Kernel (LK)

Suppose V is a logistic random variable. Its PDF has the form

kðvÞ ¼ expð�v=sÞ
sð1þ expð�v=sÞÞ2 ;

and its CDF is given by

KðvÞ ¼ 1

1þ expð�v=sÞ ;

where s is the scale parameter. V has mean 0 and variance s2V ¼ p2s2=3. Varying the
scale parameter would expand or shrink the distribution. If s¼1, the distribution

is called the standard logistic, whose variance is p2=3. The distribution can be

rescaled to have mean 0 and identity variance by setting s ¼ ffiffiffi
3

p
=p, which is called

the rescaled logistic herein. In the rest of the chapter, SLK stands for the cases

where standard logistic is used as the kernel function, and RLK stands for those with

rescaled logistic kernel function.

The heavier tails and sharper peak of a logistic distribution lead to larger

cumulants of even orders than do those of a normal distribution. When V follows

a standard logistic distribution, for jtj<1, the moment-generating function of V is

given by

MVðtÞ ¼ E expðtVÞð Þ ¼
ð1
�1

expðtvÞ � expð�vÞ
1þ expð�vÞð Þ2 dv

¼
ð1
0

x�t 1� xð Þtdx
¼ B 1� t; 1þ tð Þ
¼ Gð1� tÞGð1þ tÞ;

where x ¼ ð1þ expðvÞÞ�1
, B(·,·) is the beta function, and G(·) is the gamma

function (Balakrishnan, 1992). The cumulant-generating function of V is

log MVðtÞ ¼ log Gð1� tÞ þ log Gð1þ tÞ: (10.2)
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Let G(n)(·) be the nth derivative of G(·) for any positive integer n. The cumulants

of SLK may be derived from Equation 10.2 by differentiating with respect to t and
setting t to 0. The next theorem gives the mathematical expressions of the cumulants

for a general LK.

Theorem 10.1. Define

cðuÞ ¼ d logGðuÞ
du

¼ Gð1ÞðuÞ
GðuÞ ;

and let cðnÞð�Þ be the nth derivative of c(·) for any positive integer n. Then the nth
cumulant of a logistic random variable V with scale parameter s is found to be

kn;V ¼ 0 if n is odd

2sncðn�1Þð1Þ if n is even
:

�

For any n � 1 the value of cðn�1Þð1Þ is given by cðn�1Þð1Þ ¼ ð�1Þnðn� 1Þ!zðnÞ
and cð1Þ ¼ Gð1Þð1Þ ¼ �0:5772, where z(·) is the Riemann zeta function. These

numbers were tabulated by Abramowitz and Stegun (1972), and the first six values

of z(n) are zð1Þ ¼ 1, zð2Þ ¼ p2=6, zð3Þ � 1:2021, zð4Þ ¼ p4=90, zð5Þ � 1:0369,
and zð6Þ ¼ p6=945. Note that zðnÞ> 0 for even n � 2, so kn;V > 0 for even n � 2:

10.2.2 Uniform Kernel (UK)

Suppose V is a uniform random variable with PDF

kðvÞ ¼ 1=ð2bÞ for� b � v � b
0 otherwise

;

�

where b is a positive real number, and CDF

KðvÞ ¼
0 for v<� b

ðvþ bÞ=2b for � b � v<b
1 for v � b

8<
: :

TheV has mean 0 and variance b2/3. The standard uniform distribution often refers

to V with b ¼ 1/2; the variance is s2V ¼ 1=12. When V is rescaled to have identity

variance, the resulting distribution is called rescaled uniform. Standard uniform

distribution and rescaled uniform distribution will be incorporated in the procedure

of continuization; these methods will be denoted as SUK and RUK, respectively.
Following the previous notation, kn;V is the nth cumulant of V. Kupperman

(1952) showed that all odd cumulants vanish and even cumulants are given by

kn;V ¼ ð2bÞnBn

n
for even number n;
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where Bn are Bernoulli numbers. The first 11 Bernoulli numbers are B0 ¼ 1,

B1 ¼ �1/2, B2 ¼ 1/6, B4 ¼ �1/30, B6 ¼ 1/42, B8 ¼ �1/30, B10 ¼ 5/66, and B3

¼ B5 ¼ B7 ¼ B9 ¼ 0. Note that the even cumulants of UK have no definite sign.

10.3 Continuization With Alternative Kernels

Equation 10.1 illustrates the central idea of kernel smoothing, but XðhXÞ can be

defined in various ways for different purposes. In test equating, one desirable

feature is to preserve moments of the discrete score distribution. Accordingly, in

the kernel equating framework XðhXÞ is defined to preserve the mean and variance

of X by

XðhXÞ ¼ aXðX þ hXVÞ þ ð1� aXÞmX; (10.3)

where

a2X ¼ s2X
s2X þ s2Vh

2
X

:

The continuous approximation for Y is analogously defined as

YðhYÞ ¼ aYðY þ hYVÞ þ ð1� aYÞmY ;
where

a2Y ¼ s2Y
s2Y þ s2Vh

2
Y

:

Continuization of X and Y is based on the same formulation with a specific V. We

will take X as an example and describe the properties relevant to X(hX) for different
kernels.

Theorems 10.2–10.5 below are generalizations of Theorems 4.1–4.3 in von

Davier et al. (2004b) to LK and UK. Theorem 10.2 illustrates a few limiting

properties of X(hX) and a2X as hX approaches 0 or infinity. Theorems 10.3 and 10.4

define the CDFs and PDFs of X(hX) in which V is logistically and uniformly

distributed, respectively, and Theorem 10.5 shows their forms as hX approaches

0 or infinity.

Theorem 10.2. The following statements hold:

(a) lim
hX!0

aX ¼ 1;

(b) lim
hX!1

aX ¼ 0;

(c) lim
hX!1

hXaX ¼ sX=sV ;

(d) lim
hX!0

XðhXÞ ¼ X; and

(e) lim
hX!1

XðhXÞ ¼ ðsX=sVÞV þ mX:
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Theorem 10.3. Assume that V is logistically distributed with CDF and PDF defined
in Section 10.2.1. Then CDF of X(hX) is given by

FhXðx; rÞ ¼
X
i

riKðRiXðxÞÞ

with RiXðxÞ ¼ ðx� aXxi � ð1� aXÞmXÞ=ðaXhXÞ. The corresponding PDF is

fhXðx; rÞ ¼
1

aXhX

X
i

rikðRiXðxÞÞ:

Theorem 10.4. If V follows a uniform distribution with CDF and PDF given in
Section 10.2.2, then the CDF of X(hX) is

FhXðx; rÞ ¼
X
i :

RiXðxÞ � b

ri þ
X
i :

�b � RiXðxÞ � b

ri � RiXðxÞ þ b

2b

� �
; (10.5)

where Rix(x) is defined in Theorem 10.3. In addition, the PDF is

fhXðx; rÞ ¼
1

aXhX

X
i :

�b � RiXðxÞ � b

ri
2b

: (10.6)

Note that linear interpolation as it is achieved in existing equating practice does

not involve rescaling, which leads to a continuous distribution that does not

preserve the variance of the discrete score distribution.

Theorem 10.5. The RiX(x) defined in Theorem 10.3 has the following approximate
forms when hX approaches 0 and infinity:

(a) RiXðxÞ ¼ x� xi
hX

þ oðhXÞ as hX ! 0, and

(b) RiXðxÞ ¼ x� mX
sX=sV

� sX
sVhX

� �
� x� mX

sX=sV

� �
þ o

sX
sVhX

� �
as hX ! 1:

10.3.1 Selection of Bandwidth

In the kernel equating framework, the optimal bandwidth minimizes a penalty

function comprising two components. One is the least square term

PEN1ðhXÞ ¼
X
i

r̂i �fhXðxi; r̂Þð Þ2;
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where r̂ ¼ fr̂ig1�i�I are the fitted score probabilities of r in the presmoothing step,

and fhXðxi; r̂Þ is an estimate of fhXðxi; rÞ. The other is a smoothness penalty term that

avoids rapid fluctuations in the approximated density,

PEN2ðhXÞ ¼
X
i

Aið1� BiÞ;

where

Ai ¼ 1 if f
ð1Þ
hX

ðx; r̂Þ<0 at x ¼ xi � 0:25
0 otherwise

�
;

Bi ¼ 0 if f
ð1Þ
hX

ðx; r̂Þ > 0 at x ¼ xi þ 0:25
1 otherwise

�
;

and f
ð1Þ
hX

ðx; r̂Þ is the first derivative of fhXðx; r̂Þ. Choices of hX that allow a U-shaped

fhXðx; r̂Þ around the score point xi would result in a penalty of 1. Combining

PEN1ðhXÞ and PEN2ðhXÞ gives the complete penalty function

PENðhXÞ ¼ PEN1ðhXÞ þ PEN2ðhXÞ; (10.7)

which will keep the histogram with fitted score probabilities r̂ and the continuized

density fhXðx; r̂Þ close to each other at each score point, while preventing fhXðx; r̂Þ
from having too many 0 derivatives.

For LK, we have

f
ð1Þ
hX

ðx; rÞ ¼ 1

sðaXhXÞ2
X
i

rikðRiXðxÞÞ½1� 2KðRiXðxÞÞ�:

For UK, fhXðx; rÞ is piecewise constant and is differentiable at x¼xi, 1 � i � I. From
Equation 10.6, f

ð1Þ
hX

ðx; rÞ ¼ 0 for all x satisfying RiXðxÞ 6¼ �b, 1 � i � I.
Thus PEN2ðhXÞ ¼ 0 with probability 1. The optimal bandwidth for UK should

yield 2bhX close to 1, the distance between two consecutive possible scores.

10.3.2 Evaluation

It is common to compare distributions through moments or cumulants. Here we

chose to examine cumulants, for each cumulant of a sum of independent random

variables is the sum of the corresponding cumulants of the addends. A concise

equation can be achieved to describe the relationship between cumulants of the

discrete score distribution, kernel function, and the resulting continuous approxi-

mation. It allows not only numerical but theoretical comparisons between cumu-

lants of X(hX) for various kernels.
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Theorem 10.6. Let knðhXÞ denote the nth cumulant of X(hX), kn,X denote the nth
cumulant of X, and kn,v denote the nth cumulant of V. Then for n � 3,

knðhXÞ ¼ ðaXÞnðkn;X þ ðhXÞnkn;VÞ: (10.8)

Because aX 2 ð0; 1Þ and hX > 0, a kernel function with knv having the same sign

as kn,x leads to a closer approximation in terms of cumulants. Notice that Theorem

4.4 in von Davier et al. (2004b) is a special case of Theorem 10.6 because, for GK,

kn;V ¼ 0 for any n � 3.

10.4 Application

The data used for illustration are results from two 20-item mathematics tests given

in Chapter 7 of von Davier et al. (2004b). The tests, both number-right scored tests,

were administered independently to two samples from a national population of

examinees, which yields an equivalent-groups design. The two sample sizes are

1,453 and 1,455, respectively.

The raw data in an equivalent-groups design are often summarized as two sets of

univariate frequencies. Figure 10.1 shows the histograms of the observed frequen-

cies. Two univariate log-linear models were fitted independently to each set of

frequencies. The moments preserved in the final models were the first two and three

for X and Y, respectively. That is, the mean and variance of X and the mean,

variance, and skewness of Y were preserved. The model fit was examined through

the likelihood ratio test and the Freeman-Tukey residuals; the results showed no

evidence of lack of fit. The fitted frequencies for test X and test Y are sketched in

Figure 10.1 as well. The r̂, the fitted score probabilities of X, are the ratios between
the fitted frequencies and the sample size. The ŝ are attainable by the same means.

Fig. 10.1 Observed frequencies and fitted frequencies for test X and test Y
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The optimal bandwidths using SLK, RLK, SUK, RUK, and GK are listed in

Table 10.1. The first finding comes from the comparison between the standard and

rescaled versions of LK or UK. Suppose the former has mean 0 and standard

deviation s1, while the latter has mean 0 and standard deviation s2. Then the

corresponding optimal bandwidths, h1 and h2, for X or Y, satisfy the following

equality:

s1h1 ¼ s2h2: (10.9)

In other words, the scale difference in different versions is adjusted by the selected

bandwidths. Different versions of kernel function produce identical continuized

score distributions as long as they come from one family of distributions.

The second finding is obtained through the comparison among GK, RLK, and

RUK. Their first three moments (i.e., mean, variance, and skewness) are the same,

but their major differences in shape can be characterized by the fourth moment or,

equivalently, the kurtosis. Among the three, RLK has the largest kurtosis and RUK

has the smallest kurtosis (the larger the kurtosis, the heavier the tails). Table 10.1

indicates that the heavier the tails of a kernel function, the larger the optimal

bandwidth. Note that kurtosis is a standardized measure, so different versions

from the same family of distributions have the same kurtosis. This observation

can be generalized to SLK and SUK through Equation 10.9: the heavier the tails of a

kernel function, the larger the product of its standard deviation and the optimal

bandwidth.

Figure 10.2 displays the fhXðx; r̂Þ and the left tail of FhXðx; r̂Þ for LK, UK, and GK
with optimal bandwidths. The graph in the left panel reveals that the fhXðx; r̂Þ for LK
and GK are smooth functions and hard to be distinguished. The fhXðx; r̂Þ for UK is

piecewise constant and appears to outline the histogram of the fitted frequencies for

test X in Figure 10.1. The right panel only presents the portion of FhXðx; r̂Þ within
the range of -1 to 2, for the difference between curves may not be seen easily when

graphed against the whole score range. Apparently, the FhXðx; r̂Þ for LK has heavier

left tail than that for GK, which corresponds to the fact that LK has heavier tails

than GK. The use of UK results in a piecewise linear FhXðx; r̂Þ, which is how linear

interpolation functions in the percentile-rank method. Yet, we improved upon the

linear interpolation by rescaling it in Equation 10.3 so that its continuous approxi-

mation preserves not only the mean but also the variance of the discrete score

Table 10.1 Optimal
Bandwidths for X(hX)
and YðhYÞ

Logistic kernel Uniform kernel Gaussian

kernel

Standard Rescaled Standard Rescaled

hX 0.5117 0.9280 1.0029 0.2895 0.6223

hY 0.4462 0.8094 1.0027 0.2895 0.5706

aX 0.9715 0.9715 0.9971 0.9971 0.9869

aY 0.9795 0.9795 0.9973 0.9973 0.9896
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distribution. It is clear that the distributional characteristics of kernel functions are

inherited by the corresponding continuous approximations. Figures for ghYðy; ŝÞ and
GhY ðy; ŝÞ exhibit the same properties, so they are omitted.

According to Equation 10.8, two phenomena are anticipated in assessing the

continuized score distributions. First, the smaller the hX, the closer the knðhXÞ to
kn;X. Second, for a fixed hX, if kn;X and kn;V have the same sign, the corresponding V
will yield a closer continuous approximation in terms of cumulants. Attentions

should be paid especially to even cumulants, as the three kernels have 0 odd

cumulants. Recall that all even cumulants for LK are positive; the fourth and

sixth cumulants for UK are negative and positive, respectively; and the even

cumulants for GK of orders higher than three are 0. In this data example, cumulants

were calculated numerically and found to coincide with theoretical findings from

Equation 10.8. In Table 10.2, the second column shows the cumulants of the fitted,

discrete score distributions; the fourth cumulant is negative and the sixth cumulant

is positive. Because the comparison of cumulants involves two varying factors, type

of kernel and bandwidth, it can be simplified by first examining cumulants for LK,

UK, and GK with fixed bandwidths. The three chosen levels of bandwidth were

small hX (hX ¼ 0.2895), moderate hX (hX ¼ 0.6223), and large hX (hX ¼ 0.9280).

Each hX is optimal for a certain kernel function, and the cumulants of optimal cases

are highlighted in boldface. If we focus on one type of kernel and vary the level of

bandwidth, it is evident that the cumulants under small hX are closest to the

corresponding cumulants of the fitted discrete score distributions.

For a fixed hX, the performance of a kernel function from the viewpoint of how

close its fhX x; r̂ð Þ can approximate the histogram of r̂ has the following orders (from

the best to the worst): UK, GK, LK for the fourth cumulant and LK, GK, UK for the

sixth cumulant. The discrepancy in the orderings is due to the sign change in kn;X
for n ¼ 4 and 6. In sum, UK best preserves kn;X for n � 3 with its optimal

Fig. 10.2 Continuized score distributions of X: probability density functions (PDFs) and left tail

of cumulative distribution functions (CDFs)
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bandwidth. Cumulants of LK with its optimal bandwidth shrink by the most amount

since they correspond to the largest bandwidth among the three kernels.

The conversion of scores from test X to test Y is based on the equation

êYðxÞ ¼ G�1
hY
ðFhXðx; r̂Þ; ŝÞ with optimal bandwidths. Similarly, the conversion of

scores from test Y to test X is êXðyÞ ¼ F�1
hX
ðGhY ðy; ŝÞ; r̂Þ. They are sample estimates

of eY(x) and eX(x) based on r̂ and ŝ. In Table 10.3, the equated scores for LK and GK

are comparable, except for extreme scores, because their FhXðx; r̂Þ and GhY ðy; ŝÞ
mainly differ at tails. UK tends to provide the most extreme equated scores among

the three kernels. In addition, the average difference of equated scores between UK

and GK is about twice as large as the average difference between LK and GK for the

conversion from test X to test Y. For the inverse conversion, the average difference

between UK and GK exceeds three times of the average difference between LK and

GK. Overall, the maximal difference between any two kernels is about 0.18 raw-

score point.

The sampling variability in êY ðxÞ or êX ðyÞ is measured by the standard devia-

tion of the asymptotic distribution, or the SEEs. It is known that distributions with

heavier tails yield more robust modeling of data with more extreme values, and the

same phenomenon is revealed when LK is employed. Figure 10.3 demonstrates that

the SEEs for LK and GK do not differ remarkably. There is slightly less variation in

the SEEs for LK. However, the SEEs for GK tend to have sharper drops at extreme

scores, which are X ¼ 0 and 20 and Y ¼ 0, 1, and 20 in this example. If the two

forms to be equated have more discrepancy in the shape of their score distributions,

Table 10.2 Cumulants of
XðhXÞWith Fixed Bandwidths

Order Discrete LK UK GK

hX ¼ 0.2895

1 10.82 10.82 10.82 10.82

2 14.48 14.48 14.48 14.48

3 �3.57 �3.54 �3.56 �3.54

4 �63.16 �62.42 �63.10 �62.43

5 23.17 22.83 22.81 22.83

6 510.69 501.88 501.86 501.85

hX ¼ 0.6223

1 10.82 10.82 10.82 10.82

2 14.48 14.48 14.48 14.48

3 �3.57 �3.44 �3.44 �3.44

4 �63.16 �59.74 �60.09 �59.91

5 23.17 21.70 21.75 21.71

6 510.69 472.19 471.72 471.77

hX ¼ 0.9280

1 10.82 10.82 10.82 10.82

2 14.48 14.48 14.48 14.48

3 �3.57 �3.28 �3.27 �3.28

4 �63.16 �55.49 �57.13 �56.27

5 23.17 20.06 20.06 20.05

6 510.69 432.12 431.89 429.45

Note: Boldface indicates cumulants of a certain kernel function

with its optimal bandwidth. LK¼ logistic kernel; GK¼ Guassian

kernel; UK ¼ uniform kernel
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the equating functions for GK are likely to show sharp humps in the SEEs, but

the SEEs for LK will remain less variable. On the other hand, the SEEs for UK

do not display the same pattern and have greater variations from one conversion

to another.

Table 10.3 Equated Scores With Optimal Bandwidths

Score X to Y Y to X

LK UK GK LK UK GK

0 0.447 0.439 0.394 �0.413 �0.227 �0.322

1 1.573 1.639 1.581 0.486 0.557 0.497

2 2.629 2.678 2.640 1.396 1.429 1.386

3 3.635 3.676 3.644 2.365 2.389 2.356

4 4.625 4.660 4.632 3.367 3.392 3.360

5 5.614 5.643 5.618 4.379 4.405 4.375

6 6.608 6.631 6.610 5.389 5.415 5.387

7 7.612 7.628 7.612 6.392 6.415 6.391

8 8.627 8.636 8.626 7.384 7.403 7.385

9 9.655 9.658 9.653 8.365 8.379 8.366

10 10.696 10.694 10.694 9.333 9.342 9.335

11 11.750 11.745 11.747 10.290 10.295 10.293

12 12.815 12.810 12.813 11.236 11.239 11.239

13 13.888 13.885 13.887 12.174 12.175 12.175

14 14.963 14.964 14.964 13.105 13.105 13.105

15 16.031 16.035 16.034 14.034 14.033 14.033

16 17.072 17.081 17.078 14.971 14.967 14.968

17 18.058 18.073 18.068 15.930 15.920 15.924

18 18.952 18.970 18.961 16.939 16.922 16.929

19 19.734 19.707 19.718 18.058 18.036 18.048

20 20.461 20.278 20.393 19.369 19.399 19.415

Note: LK ¼ logistic kernel; GK ¼ Guassian kernel; UK ¼ uniform kernel

Fig. 10.3 Standard errors of equating (SEEs) for logistic (LK), uniform (UK), and Gaussian (GK)

kernels
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It is straightforward to compare two estimated equating functions, for exam-

ple, êY;LK ðxÞ and êY;GK ðxÞ for LK and GK by RðxÞ ¼ êY;LK ðxÞ � êY;GK ðxÞ with a

uncertainty measure, the SEED, to identify the 95% confidence interval for R(x).
Analogously, RðxÞ ¼ êY;UKðxÞ � êY;GKðxÞ compares the estimated equating func-

tions for UK and GK. The R(x) for comparisons between LK and GK and between

UK and GK are plotted in Figure 10.4, all converting X to Y. Two curves represent-
ing �1.96 times of the SEEDs are also provided as the upper and lower bounds

of the 95% confidence interval. For the comparison between LK and GK, R(0) and
R(20) are significantly different at the 0.05 level, but the scale of SEED is less than

0.1 raw-score point, so the difference may still be negligible in practice. Again,

the absolute values of R(x) and SEEDs increase as x approaches its boundaries,

0 and 20. The right panel shows that the difference between êY;UK ðxÞ and êY;GK ðxÞ
is much larger than that of êY;LKðxÞ and êY;GKðxÞ for all score points outside the rage
of 9–17. The difference is nonsignificant at the 0.05 level, however, since the

corresponding SEEDs are greater in scale.

10.5 Conclusions

Kernel equating is a unified approach for test equating and uses only GK smoothing

to continuize the discrete score distributions. This chapter demonstrates the feasi-

bility to incorporate alternative kernels in the five-step process and elaborates on

tools for comparisons between various kernels. Equating through LK, UK, or GK

has discrepancies in the continuized score distributions (e.g., heavier tails, piece-

wise continuity, or thinner tails that are inherited from the kernel functions) and

hence in any product since the step of continuization. Although these discrepancies

do not yield pronounced changes in the equated scores, certain desirable properties

in the equating process could be achieved by manipulating the kernels.

Fig. 10.4 Difference and standard errors of equating difference (SEEDs) between êY ðxÞ of two
kernel functions: logistic (LK) versus Gaussian (GK) and uniform (UK) versus Gaussian (GK)
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Chapter 10 Appendix

10.A.1 Computation of SEE With Alternative Kernels

The equating functions, eY(x) and eX(y), are functions of r and s through a design

function and the composition of FhXðx; rÞ and GhY ðy; sÞ. The asymptotic variances

of êYðxÞ and êXðyÞ, which are equivalent to the squares of the SEEs, can be derived

with the application of delta method given the asymptotic variances of r̂ and ŝ.

Under the assumption that the bandwidths are fixed constants, for each conversion,

the resulting asymptotic variance involves the matrix multiplication of three ingre-

dients: the C-matrix from presmoothing, the Jacobian of the design function, and

the Jacobian of the equating function. Changing kernel functions only affects the

expression of the third ingredient, whose generalization to LK and UK is depicted

in the remainder of this section. Details of the other two ingredients should refer to

Chapter 5 of von Davier et al. (2004b).

Let JeY denote the Jacobian of eYðxÞ with respect to r and s. JeY is a 1	 ðI þ JÞ
vector in which

JeY ¼
@eY
@r

;
@eY
@s

� �
¼ @eY

@r1
; � � � ; @eY

@rI
;
@eY
@s1

; � � � ; @eY
@sJ

� �
:

When the score distributions F(x) and G(y) have been approximated by suffi-

ciently smoothed CDFs, the derivatives of the equating function can be computed,

@eY
@ri

¼ 1

Gð1Þ �
@FhXðx; rÞ

@ri
; (10.A.1)

@eY
@sj

¼ � 1

Gð1Þ �
@GhY ðeYðxÞ; sÞ

@sj
; (10.A.2)

where Gð1Þ ¼ ghY ðeYðxÞ; sÞ. With some calculus, the partial derivative in Equation

A.10.1 is found to be

@FhXðx; rÞ
@ri

¼ KðRiXðxÞÞ �MiXðx; rÞ fhXðx; rÞ; (10.A.3)

where

MiXðx; rÞ ¼ 1

2
x� mXð Þ 1� a2X

� � xi � mX
sX

� �2

þ 1� aXð Þxi;

and KðRiXðxÞÞ is the CDF of LK or UK evaluated at RiXðxÞ. In general, K(�) can be

the CDF of any kernel function. Replacement of X, x, F, and r in Equation 10.A.3 by
Y, y,G, and s, respectively, leads to the partial derivative @GhY ðy; sÞ=@sj in Equation
10.A.2. An estimate of JeY can be achieved given r ¼ r̂ and s ¼ ŝ. Formulas for

the Jacobian of eXðyÞ and its estimate are similar in form to those for JeY .

Author Note: Any opinions expressed in this chapter are those of the authors and not necessarily

of Educational Testing Service.
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Chapter 11

A Bayesian Nonparametric Model for Test

Equating

George Karabatsos and Stephen G. Walker

11.1 Introduction

In observed score equating, the aim is to infer the equating function, eY(X), which
gives the score on test Y that is equivalent to any chosen score x on test X.
Equipercentile equating is based on the premise that test scores x and y are

equivalent if and only if FXðxÞ ¼ FYðyÞ, and therefore assumes that the equating

function is defined by:

eYðxÞ ¼ F�1
Y FXðxÞð Þ ¼ y;

where ðFX;FYÞ denote the cumulative distribution functions (CDFs) of the scores

of test X and test Y. Of course, in order for such equating to be sensible, certain

assumptions are required about the tests and the examinee populations. Also, in the

practice of test equating, examinee scores on the two tests are collected according to

one of the three major types of equating designs, namely, (a) the single-group

design, (b) the equivalent-groups design, and (c) the nonequivalent-groups design.

The single-group design may be counterbalanced, and either the equivalent-groups

or the nonequivalent-groups design may make use of an internal- or external-anchor

test. For more details about the aforementioned assumptions and concepts of test

equating, see the textbooks by von Davier, Holland, and Thayer (2004b) and Kolen

and Brennan (2004).
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If the CDFs FX and FY are discrete distributions, then for virtually any score x on
test X, the CDF probability FXðxÞ does not coincide with the CDF probability FXðyÞ
of any possible score y of test Y. Then, the equipercentile equating function is ill-

defined. This poses a challenge in equipercentile equating, because in psychometric

practice observed test scores are discrete. A solution to this problem is to model (FX,

FY) as continuous distributions and treating them as smoothed versions of discrete

test score distributions (GX, GY), respectively. This approach is taken by current

methods of observed-score equating. In the kernel method of equating (von Davier

et al., 2004b), (FX, FY) are each modeled by a mixture of normal densities (the

kernels) with mixing weights defined by estimates of (GX, GY), and the number of

mixing components (for test X and for test Y) is decided by some model-selection

procedure. If the kernels are uniform distributions, then classical equating with the

percentile rank method is obtained (Holland & Thayer, 1989; also see Chapter 5 of

this book by Lee & von Davier). Also, the classical methods of linear equating and

mean equating each provide an approach to equipercentile equating under the

assumption that (FX, FY) are distributions with the same shape (Karabatsos &

Walker, 2009a). However, in practice, it does not seem reasonable to assume that

the (continuized) population distributions of test scores are normal or come from a

mixture of specific uniform distributions.

In this chapter we present a Bayesian nonparametric model for test equating,

which can be applied to all the major equating designs (see Section 2.4 for details),

and we illustrate the model in the analysis of two data sets. This equating model,

first introduced by Karabatsos and Walker (2009a), involves the use of a bivariate

Bernstein polynomial prior distribution for (FX, FY) that supports the entire space of

(random) continuous distributions. In particular, the model specifies (FX, FY) by a

mixture of beta densities via a Bernstein polynomial, where (GX, GY) provide

mixing weights and are modeled by a bivariate Dirichlet process prior distribution

(Walker & Muliere, 2003). Also, the number of mixing components (for test X and

for test Y) are modeled as random and assigned a prior distribution. Under Bayes

theorem, these priors combine with the data to yield the posterior distribution of

(FX, FY) and of the equating function eYðxÞ ¼ F�1
Y FXðxÞð Þ. As proven by Diaconis

and Ylvisaker (1985), for a sufficiently large number of mixture components, a

mixture of beta distributions can approximate arbitrarily well any distribution on a

closed interval. For reviews of the many theoretical studies and practical applica-

tions of Bayesian nonparametrics, see, for example, Walker, Damien, Laud, and

Smith (1999) and M€uller and Quintana (2004). Also, see Karabatsos and Walker

(2009b) for a review from the psychometric perspective.

The Bayesian nonparametric model for equating provides important advantages

over the existing approaches to observed-score equating. In the approach, the

Dirichlet process prior distribution can be specified to account for any dependence

between (GX, GY), and thus it accounts for any dependence between the continuized

test score distributions (FX, FY). This dependence can even be specified for the

equivalent-groups design, where the other equating methods assume independence.

However, independence is a questionable assumption, especially considering that

the two tests to be equated are designed to measure the same construct (e.g., math
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ability). Moreover, unlike the existing approaches to observed score equating, the

Bayesian nonparametric model provides an approach to symmetric equating that

always equates scores that fall within the correct range of test scores. Also, using

the Bayesian nonparametric model, the posterior distribution of the equating func-

tion eYðxÞ ¼ F�1
Y FXðxÞð Þ provides inference of the 95% credible interval of the

equated score. Thus, the Bayesian model provides a way to fully account for the

uncertainty in the equated scores, for any sample size. In contrast, all the previous

approaches to observed-score equating only rely on large-sample approximations to

estimate the confidence interval of the equated score.

We present the Bayesian nonparametric equating model in the next section and

describe the key concepts of this model, including the Dirichlet process, the

bivariate Dirichlet process, the random Bernstein polynomial prior distribution,

and the bivariate Bernstein prior distribution. In Section 11.3 we illustrate the

Bayesian nonparametric equating model in the analysis of two data sets generated

from the equivalent-groups design and the nonequivalent-groups design with inter-

nal anchor, respectively. In the first application, we compare the equating results of

the Bayesian model against the results obtained by the four other approaches to

observed-score equating. We conclude in Section 11.4.

11.2 Bayesian Nonparametric Equating Model

11.2.1 Dirichlet Process Prior

The Dirichlet process prior (Ferguson, 1973) is conveniently described through

Sethuraman’s (1994) representation, which is based on a countably infinite sam-

pling strategy. So let yj, for j ¼ 1; 2; . . . , be independent and identically distributed
from a fixed distribution functionG0, and let vj, for j ¼ 1; 2; . . . , be independent and
identically distributed from the Beta (1, m) distribution. Then a random distribution

function chosen from a Dirichlet process prior with parameters (m, G0) can be

constructed via

GðxÞ ¼
X1
j¼1

oj 1ðyj � xÞ;

where o1 ¼ v1 and for j> 1, oj ¼ vj
Q

l<j ð1� vlÞ; and 1(·) is the indicator func-

tion. In other words, realizations of the Dirichlet process can be represented as

infinite mixtures of point masses. The locations yi of the point masses are a sample

from G0. It is obvious from the above construction that any random distribution G
generated from a Dirichlet process prior is discrete with probability 1.

Also, for any value x from a sample space X, the random distribution (CDF) G(x),
modeled under the Dirichlet Process prior, has a beta distribution,

GðxÞ � BetaðmG0ðxÞ;mf1� G0ðxÞgÞ;
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with prior mean E½GðxÞ� ¼ G0ðxÞ; and prior variance

Var½GðxÞ� ¼ G0ðxÞ½1� G0ðxÞ�
mþ 1

:

Hence m (the precision parameter) acts as an uncertainty parameter, increasing

the variance of G as m becomes small. Given a set of data xn ¼ {x1,. . ., xn} having
empirical distribution Ĝð�Þ, the posterior distribution of G is also a Dirichlet

process, with updated parameters given by m ! mþ n. The posterior distribution
is given by

GðxÞjxn � BetaðmG0ðxÞ þ nĜðxÞ;m½1� G0ðxÞ� þ n½1� ĜðxÞ�Þ;

and it has mean E½GðxÞjxn� ¼ mG0ðxÞþnĜðxÞ
mþn : Thus, the posterior mean is a mixture of

the prior guess (G0) and the data (Ĝ), with the weights of the mixture given by the

precision parameter (m) and the sample size (n), respectively.

11.2.2 Random Bernstein Polynomial Prior

As mentioned earlier, the Dirichlet process prior fully supports discrete distribu-

tions. Here, a nonparametric prior is described, called the random Bernstein poly-

nomial prior, which gives support to the entire space of continuous distributions

and will provide a smooth method for equating test scores. As the name suggests,

the random Bernstein polynomial prior distribution depends on the Bernstein

polynomial (Lorentz, 1953). For any function G defined on [0,1] (not necessarily

a distribution function) such that Gð0Þ ¼ 0, the Bernstein polynomial of order p of

G is defined by

Bðx;G; pÞ ¼
Xp
k¼0

G
k

p

� �
p
k

� �
xkð1� xÞp�k

(11.1)

¼
Xp
k¼1

G
k

p

� �
� G

k � 1

p

� �� �
Betaðxjk; p� k þ 1Þ (11.2)

¼
Xp
k¼1

wk;pBetaðxjk; p� k þ 1Þ; (11.3)

and it has derivative

f ðx;G; pÞ ¼
Xp
k¼1

wk;pbðxjk; p� k þ 1Þ;
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where bð�ja; bÞ denotes the density corresponding to the CDF of the beta distribu-

tion, Betaða; bÞ. Also, wk;p ¼ Gðk=pÞ � Gððk � 1Þ=pÞ; k ¼ 1; . . . ; p.
Note that if G is a CDF on [0,1], Bðx ;G; pÞ is also a CDF on [0,1], corresponding

to probability density function f(x; G, p), defined by a mixture of p beta CDFs with

mixing weights ðw1;p; . . . ;wp;pÞ. Therefore, ifG and p are random, then Bðx;G; pÞ is
a random continuous CDF, with corresponding random probability density function

f ðx;G; pÞ. The random Bernstein-Dirichlet polynomial prior distribution of Petrone

(1999) has G as a Dirichlet process with parameters ðm;G0Þ, with p assigned an

independent discrete prior distribution pðpÞ defined on {1,2,. . .}. Her work

extended from the results of Dalal and Hall (1983) and Diaconis and Ylvisaker

(1985), who proved that, for sufficiently large p, mixtures of the form given in

Equations 11.1–11.3 can approximate any CDF on [0,1], to any arbitrary degree of

accuracy. Moreover, as Petrone (1999) has shown, the Bernstein polynomial prior

distribution must treat p as random to guarantee that the prior supports the entire

space of (Lebesgue-measurable) continuous densities on [0,1]. Suppose that a set

of data x1; . . . ; xn 2 ½0; 1� are independent and identically distributed samples from

a true density, denoted by f0. Standard arguments of probability theory involving

Bayes theorem can be used to show that the data update the Bernstein prior to yield

a posterior distribution of the random density f (via the posterior distribution of

ðG; pÞ). Walker (2004, Section 6.3) proved the posterior consistency of the random

Bernstein model (prior), in the sense that as n ! 1; the posterior distribution of

the model converges to a point mass at the true f0. In fact (Walker, Lijoi, & Pr€unster,
2007), if the choice of prior distribution pðpÞ satisfies pðpÞ<exp ð�4p logpÞ, the
convergence rate of the posterior matches the convergence rate of the sieve

maximum likelihood estimate of f0.

11.2.3 Dependent Bivariate Model

Amodel for constructing a bivariate Dirichlet process has been given in Walker and

Muliere (2003). The idea is as follows: Take GX � P(m, G0) and then, for some

fixed r 2 {0,1,2,. . .}, take z1; . . . ; zr to be independent and identically distributed

from GX. Then take

GY � Pðmþ r; ðmG0 þ r bFrÞ=ðmþ rÞÞ;

where F̂r is the empirical distribution of {z1,. . ., zr}. Walker and Muliere (2003)

showed that the marginal distribution of GY is Pðm;G0Þ. It is possible to have the

marginals from different Dirichlet processes. However, it will be assumed that the

priors for the two random distributions are the same. It is also easy to show that for

any measurable set A, the correlation between GX(A) and GY(A) is given by

CorrðGXðAÞ;GYðAÞÞ ¼ r=ðmþ rÞ;
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and hence this provides an interpretation for the prior parameter r.
For modeling continuous test score distributions (FX, FY), it is possible to

construct a bivariate random Bernstein polynomial prior distribution on (FX, FY)

via the random distributions:

FXð�;GX; pXÞ ¼
XpX
k¼1

GX
k

pX

� �
� GX

k � 1

pX

� �� �
Betað�jk; pX � k þ 1Þ;

FYð�;GY ; pYÞ ¼
XpY
k¼1

GY
k

pY

� �
� GY

k � 1

pY

� �� �
Betað�jk; pY � k þ 1Þ:

with (GX, GY) coming from the bivariate Dirichlet Process model, and with inde-

pendent prior distributions pðpXÞ and pð pYÞ. Each of these random distributions is

defined on (0,1]. However, without loss of generality, it is possible to model

observed test scores after transforming each of them into (0,1). For example,

if xmin and xmax denote the minimum and maximum possible scores on a test X,
each observed test score x can be mapped into (0,1) by the equation x0 ¼ (x� xminþ
e)/(xmax � xmin þ 2e), where e > 0 is a very small constant. The scores can

be transformed back to their original scale by taking X ¼ X0 (xmax � xmin þ 2e)
þ xmin � e.

Given samples of observed scores xn(X) ¼ {x1,. . ., xn(X)} and yn(Y) ¼ {y1,. . .,
yn(Y)} on the two tests (assumed to be mapped onto a sample space (0,1)), the

random bivariate Bernstein polynomial prior combines with these data to define a

joint posterior distribution, which we denote by FX, FYj xn(X), yn(Y). As proven by

Walker et al. (2007), posterior consistency of the bivariate model is obtainable

when the independent prior distributions ðpXðpXÞ; pYðpYÞÞ satisfy pðpX; pYÞ
/ expð�4pX log pXÞexpð�4pY log pYÞ. Also, this posterior consistency implies

consistent estimation of the posterior distribution of the equating function

eYð�Þ ¼ F�1
0Y ðF0Xð�ÞÞ; as desired. Karabatsos and Walker (2009b) described a

Gibbs sampling algorithm that can be used to infer the posterior distribution FX,

FYj xn(X),yn(Y), which is an extension of Petrone’s (1999) Gibbs algorithm. We wrote

a MATLAB program to implement the algorithm, and it can be obtained through

correspondence with the first author.

At each iteration of this Gibbs algorithm, a current set of {pX, GX} for test X and

{pY, GY} for test Y is available, from which it is possible to construct random

distribution functions (FX, FY) and the random equating function

eYðxÞ ¼ F�1
Y FXðxÞð Þ ¼ y:

Hence, for each score x on test X, a posterior distribution for the equated score on
test Y is available. A (finite-sample) 95% credible (“confidence”) interval of an

equated score eYðxÞ ¼ F�1
Y ðFXðxÞÞ is easily obtained from the samples of posterior

distribution FX, FYj xn(X), yn(Y). A point estimate of an equated score eY(X) also can

be obtained from this posterior distribution. While one conventional choice of point
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estimate is given by the posterior mean of eY(X), the posterior median point estimate

of eY(·) has the advantage that it is invariant over monotone transformations. This

invariance is important considering that the test scores are transformed into the

(0,1) domain and back onto the original scale of the test scores.

11.2.4 Applying the Model to Different Equating Designs

The Bayesian nonparametric equating method presented in Section 11.2.3 readily

applies to the equivalent-groups design with no anchor test and applies to the

single-group design. However, with minor modifications, this method can be easily

extended to an equivalent-groups or nonequivalent-groups design with an anchor

test, or to a counterbalanced design.

For an equating design having an anchor test, it is possible to adopt the idea of

chained equipercentile equating (Angoff, 1971). In particular, let xn(X) and vnðV1Þ
denote the set of scores observed from examinee Group 1 who completed test X and

an anchor test V, and let YnðYÞ and vnðV2Þ denote sets of scores observed from examinee

Group 2 who completed test Y and the same anchor test V. Then, under an equating

design with anchor test, it is possible to infer the posterior distribution of the random

equating functions eYðxÞ ¼ F�1
Y ðFV2

ðeV1
ðxÞÞÞ and eV1

ðxÞ ¼ F�1
V1

FX1
ðxÞð Þ; based on

samples from the posterior distributions FX;FV1
jxnðXÞ; vnðV1Þ and FY ;FV2

jynðYÞ; vnðV2Þ,
each modeled under a bivariate Bernstein prior.

For a counterbalanced design, it is possible to adopt the ideas from von Davier

et al. (2004b, Section 2.3), to combine the information of the two examinee

Groups 1 and 2. Specifically, the inference of the posterior distribution of the

random equating function eYðxÞ ¼ F�1
Y FXðxÞð Þ is obtained by taking FXð�Þ ¼

ˆXFX1
ð�Þ þ ð1�ˆXÞFX2

ð�Þ and FYð�Þ ¼ ˆYFY1ð�Þ þ ð1�ˆYÞFY2ð�Þ, where ðFX1
;

FX2
;FY1 ;FY2Þ are from the posterior distributions FX1

;FY2 jxnðX1Þ; ynðY2Þ and FX2
;

FY1 jxnðX2Þ; ynðY1Þ under two bivariate Bernstein models. Also, 0 � ˆX;ˆY � 1 are

chosen weights, and they can be varied to determine how much they change the

posterior distribution of eY(·).

11.3 Illustrations

The following two subsections illustrate the Bayesian model for the equating of

test scores arising from the equivalent-groups design, the counterbalanced design,

and the nonequivalent-groups design, respectively. In applying our Bayesian model

to each of the three data sets, we assumed the following specification of the prior

distributions. In particular, we assumed the bivariate Dirichlet process to have

baseline distribution G0 that equals the Beta(1,1) distribution, and we assumed a

relatively noninformative prior by taking m ¼ 1 and r ¼ 4, reflecting the (rather

uncertain) prior belief that the correlation of the scores between two tests is
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0:8 ¼ r=ðmþ rÞ. In particular, the choice of “prior sample size” of m¼ 1 leads to a

posterior distribution of FX, FY that is primarily determined by the observed data.

Furthermore, up to a constant of proportionality, we specify an independent prior

distribution of pðpÞ / expð�4plogpÞ for px and for py. As discussed in Section

11.2.3, this choice of prior ensures the consistency of the posterior distribution of

(FX, FY). Also, for each data set analyzed with the Bayesian model, we implemen-

ted the Gibbs sampling algorithm to generate 10,000 samples from the posterior

distribution of (FX, FY), including (PX, PY), after discarding the first 2,000 Gibbs

samples as burn-in. We found through separate analyses that 10,000 samples had

converged to samples from the posterior distribution.

11.3.1 Equivalent-Groups Design

The Bayesian nonparametric equating model is demonstrated in the analysis of a

large data set generated from an equivalent-groups design. This data set, obtained

from von Davier et al. (2004b, p. 100), consists of 1,453 examinees who completed

test X and 1,455 examinees completing test Y of a national mathematics exam. Each

test has 20 items and is scored by number correct. The average score on test X is

10.82 (SD ¼ 3.81), and the average score on test Y is 11.59 (SD ¼ 3.93), and so the

second test is easier than the first. For the Bayesian nonparametric model for

equating, the marginal posterior distributions of PX and of PY concentrated on

1 and 2, respectively. Figure 11.1 presents the posterior median estimate of the

equating function under the Bayesian equating model.

Figure 11.1 also presents four more estimates of the equating functions, obtained

by the kernel, percentile-rank, linear, and mean methods of equating, respectively.

We use the kernel estimate that is reported in Chapter 7 of von Davier et al.

(2004b). According to the figure, the Bayesian estimate differs substantially from

the estimate obtained by the other four methods. This difference suggests that in the
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Fig. 11.1 The posterior

median estimate of eY(·) given
by the top solid line,

enveloped by the 95%

posterior credible interval

(dotted lines). The other solid

lines give the point-estimates

of eY(·) obtained via the

kernel, percentile-rank

(bottom solid line), linear,

and mean methods of

equating
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data, the test score distributions (FX, FY) are correlated. In particular, the Bayesian

model accounts for the dependence (correlation) between FX and FY, whereas in the

other four methods, they are assumed to be independent (zero correlation) under the

equivalent-groups design. However, there must be correlation between the two test

forms, given that the two forms were designed to measure the same construct of

math ability. Moreover, Figure 11.1 shows that the kernel, linear, and mean

equating methods equate some scores on test X that fall above the 0–20 range of

possible scores on test Y. In contrast, the Bayesian nonparametric model equated

scores on test X with scores that fall inside the range of test Y, as it will always do.

11.3.2 Nonequivalent-Groups Design and Chained Equating

In this section we apply the Bayesian nonparametric equating model to analyze a

classic data set arising from a nonequivalent-groups design with internal anchor,

obtained from Kolen and Brennan (2004). The first group of examinees completed

test X, and the second group of examinees completed test Y, both groups being

random samples from different populations. Here, test X and test Y each have 36

items and is scored by number correct, and both tests have 12 items in common.

These 12 common items form an internal anchor test because they contribute to the

scoring of test X and of test Y. While the two examinee groups come from different

populations, the anchor test provides a way to link the two groups and the two tests.

The anchor test completed by the first examinee group (population) is labeled as V1

and the anchor test completed by the second examinee group is labeled as V2, even

though both groups completed the same anchor test. The first group of 1,655

examinees had a mean score of 15.82 (SD ¼ 6.53) on test X, and a mean score of

5.11 (SD ¼ 2.38) for the anchor test. The second group of examinees had a mean

score of 18.67 (SD ¼ 6.88) on test Y and a mean score of 5.86 (SD ¼ 2.45) on the

anchor test.
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Fig. 11.2 The posterior

median estimate of eY(·)
(solid line), enveloped by the

95% posterior credible

interval (dotted lines)
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In the analysis of these data from the nonequivalent-groups design, chained

equipercentile equating was used with the Bayesian nonparametric model, as

described in Section 11.2.4. The marginal posterior distribution of pX1
; pV1

; pV2
;

and pY2 concentrated on values of 6, 1, 3, and 5 respectively. Figure 11.2 presents

the posterior median estimate of the equating function estimate, along with the

corresponding 95% confidence interval from the posterior distribution.

11.4 Conclusions

This study introduced a Bayesian nonparametric model for test equating. It is

defined by a bivariate Bernstein polynomial prior distribution for (FX, FY) that

supports the entire space of (random) continuous distributions, with this prior

depending on the bivariate Dirichlet process. The Bayesian equating model has

important theoretical and practical advantages over all the previous approaches to

observed score equating. A key advantage of the Bayesian equating model is that in

equivalent-groups designs, it accounts for the realistic situation that the two dis-

tributions of test scores (FX, FY) are correlated, instead of independent, as is often

assumed in the previous methods of observed score equating. This dependence

seems reasonable, considering that in practice, the two tests that are to be equated

are designed to measure the same psychological construct (e.g., ability in some

math domain). We also note that the Bayesian model provides a method of

symmetric equating which yields equated scores within the range of test scores,

something which could not be said about the other methods of observed score

equating. Finally, through the posterior distribution, the Bayesian model provides a

95% credible interval for the equated score. Thus, unlike previous approaches to

observed score equating, the Bayesian model fully accounts for uncertainly in the

equating score, for any given sample size.
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Chapter 12

Generalized Equating Functions for NEAT

Designs

Haiwen H. Chen, Samuel A. Livingston, and Paul W. Holland

12.1 Introduction

The purpose of this chapter is to introduce generalized equating functions for the

equating of test scores through an anchor. Depending on the choice of parameter

values, the generalized equating function can perform either linear equating or

equipercentile equating, either by poststratification on the anchor or by chained

linking through the anchor.

The generalized equating functions can represent either linear or equipercentile

equating because they are based on the kernel equating procedure (von Davier,

Holland, & Thayer, 2004b), which allows the user to choose a bandwidth for convert-

ing the discrete distributions of scores into continuous distributions. A large band-

width causes the equating to be linear; a small bandwidth results in equipercentile

equating. In addition, the generalized equating functions translates the choice of

assumptions about the test and the anchor—the choice that leads to one or another

of the familiar anchor equating methods—into the choice of a value for a new

single parameter, called k. For example, with a large bandwidth, one value of the

k parameter will produce Tucker equating; another value will produce chained linear

equating; still another will produce Levine equating (Levine, 1955). Those same

three values for k, used with a small bandwidth, will produce frequency estimation

equipercentile equating, chained equipercentile equating, and a nonlinear method

analogous to Levine equating. Thek parameter also can take on infinitelymany other

values, producing a family of equatingmethods that includes themethodsmentioned

above as special cases.
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Section 12.2 of this chapter presents some of the terminology that will be used.

Section 12.3 presents a uniform way to reproduce the three common linear equating

methods: (a) the chained linear method, (b) the Tucker method, and (c) the Levine

method. Section 12.4 presents the generalized equating function by poststratifica-

tion on the anchor and shows how it can produce the familiar linear and equiper-

centile equating methods. Section 12.5 provides an example of the application of

the generalized equating function to simulated data derived from an actual data set,

varying the value of the k parameter.

12.2 Terminology

The equating of scores on two different forms of a test is often accomplished on the

basis of data collected when the groups of examinees taking the two forms are not

of equal ability but are linked by a common “anchor” test taken by both groups.

This data collection plan is often referred to as the nonequivalent groups with

anchor test (NEAT) design. In this chapter, X and Y will refer to the scores on the

two test forms; Awill refer to the score on the anchor test. The examinees taking the

two forms will be assumed to be sampled from different populations, referred to as

P and Q (corresponding to test forms X and Y, respectively).
Several methods have been proposed for equating test scores on the basis of data

from a NEAT design. Some of those methods constrain the equating relationship to

be of the form Y¼aþbX. Those methods will be referred to as linear equating
methods. Other methods do not impose this constraint; instead, they estimate the

function that transforms the distribution of X into the distribution of Y in some

specified population of examinees. Those methods will be referred to as nonlinear
equating methods. The specified population will be referred to as S and is assumed

to be a composite of populations P and Q, represented in the ratio w to (1 � w).
To equate test scores on the basis of data from a NEAT design, it is necessary to

assume that some characteristics of the bivariate distributions of test and anchor

scores are population invariant—that they are the same in populations P, Q, and S.
One common assumption is that the conditional distributions of X and Y, given A,
are population invariant. That assumption makes it possible to estimate the dis-

tributions of scores X and Y in population S and then use those estimated distribu-

tions to equate X to Y. Equating on the basis of this assumption will be referred to as

poststratification equating. The linear version of poststratification equating is the

Braun-Holland method (Braun & Holland, 1982). Other linear equating methods

based on similar assumptions include the Tucker method and the Levine method

(Kolen & Brennan, 2004, pp. 105–132). The nonlinear version of poststratification

equating (described by Angoff, 1971/1984) is commonly known as “frequency

estimation” (p. 113) equating.

An alternative set of assumptions is that the symmetric linking relationships of X
to A and of Y to A are population invariant. Equating methods based on these assump-

tions link score X to score A by assuming the linking relationship in population S to
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be the same as in population P; they then link score A to score Y by assuming the

linking relationship in population S to be the same as in population Q. These
methods will be referred to as chained equating. The linear and nonlinear versions

of chained equating are commonly known as chained linear and chained equiper-
centile equating.

12.3 A General Form for Tucker, Levine, and Chained

Linear Equating

The basic equation for the linear equating of score X to score Y by estimating the

means and standard deviations of X and Y in population S is Equation 12.1:

y ¼ f ðxÞ ¼ sSðYÞ
sSðXÞ ½x� mSðXÞ� þ mSðYÞ: (12.1)

The most familiar linear equating methods are Tucker equating, Levine equat-

ing, and chained linear equating.

In this section, the equations for the Tucker, Levine, and chained linear equating

methods will be derived, with details, in a way that shows clearly how they are

similar and how they are different, although many results have been published

before in the same or slightly different forms (Kolen & Brennan, 2004; von Davier

& Kong, 2005; von Davier, 2008; Kane et al., 2009). There are two types of Levine

equating, but they are similar in many important ways. In this chapter, they will be

considered as a single method until it becomes necessary to distinguish between

them.

12.3.1 Chained Linear Equating

The main assumption of chained linear equating is that the symmetric linear links

from score X to score A and from score Y to score A are population invariant. The

symmetric linear link from X to A in population P is

a ¼ f xð Þ ¼ aP þ bPx; (12.2)

where a is a value of A and x is a value of X, and

bP ¼ sP Að Þ=sP Xð Þ: (12.3)

aP ¼ mP Að Þ � bPmP Xð Þ; (12.4)
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Under the assumption that Equation 12.2 is population invariant, the terms in

Equations 12.3 and 12.4 have the same values in population P as in population S.
Hence we have

bP ¼ sS Að Þ=sS Xð Þ ¼ sP Að Þ=sP Xð Þ; (12.5)

mS Að Þ � bPmS Xð Þ ¼ mP Að Þ � bPmP Xð Þ: (12.6)

Then Equations 12.5 and 12.6 can be solved for mS(X) and sS(X). A similar

development leads to formulas for mS(Y) and sS(Y). Using the identity mS(A) ¼
wmP(A) þ (1 � w)mQ(A), under the population invariance assumptions of chained

linear equating, the means and standard deviations of X and Y in population S are

given by Equation 12.7:

að Þ mS Xð Þ ¼ mP Xð Þ � 1� wð Þ½sP Xð Þ=sP Að Þ�½mP Að Þ � mQ Að Þ�;
bð Þ mS Yð Þ ¼ mQ Yð Þ þ w½sQ Yð Þ=sQ Að Þ�½mP Að Þ � mQ Að Þ�:
cð Þ sS Xð Þ ¼ sS Að Þ½sP Xð Þ=sP Að Þ�
dð Þ sS Yð Þ ¼ sS Að Þ½sQ Yð Þ=sQ Að Þ�

(12.7)

Substituting the terms from Equation 12.7 into Equation 12.1, we get the usual

form of the equation for chained linear equating:

y ¼ f ðxÞ ¼ mQðYÞ þ
sQðYÞsPðAÞ
sQðAÞsPðXÞ x� mPðXÞ½ � þ sQðYÞ

sQðAÞ mPðAÞ � mQðAÞ
� �

: (12.8)

Notice that the weight w cancels out of Equation 12.8. Chained linear equating

does not depend on the relative proportions of populations P and Q in population S.

12.3.2 Tucker Equating

The main assumption of Tucker equating is that the regressions of X and Y on A
(i.e., the best linear predictors of X and Y from A) are population invariant. The best
linear predictor of score X from score A in population P can be expressed as

x ¼ f0 að Þ ¼ a0P þ b0Pa; (12.9)

where x is a value of X and a is a value of A, and

b0P ¼ rP X;Að Þ½sP Xð Þ=sP Að Þ� (12.10)

a0P ¼ mP Xð Þ � b0PmP Að Þ (12.11)
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These are the values that minimize
P

X � a0P � b0PA
� �2

in population P.
The assumption that the best linear predictor is population invariant implies that

b0S ¼ b0P, so that

rS X;Að Þ½sS Xð Þ=sS Að Þ� ¼ rP X;Að Þ½sP Xð Þ=sP Að Þ�; (12.12)

which can be solved for sS(X). The population invariance assumption also implies

that a0S ¼ a0P, so that

mS Xð Þ � b0SmS Að Þ ¼ mP Xð Þ�b0PmP Að Þ: (12.13)

Yet, b0S ¼ b0P, and mS(A) can be expressed in terms of the known quantities

mP(A), mQ(A), and w. Therefore, Equation 12.13 can be solved for mS(X). A similar

development leads to formulas for mS(Y) and sS(Y).
Therefore, under the assumptions that the best linear predictors of X and Y from

A are population invariant, the means and standard deviations of X and Y in

population S are given by Equation 12.14:

að ÞmS Xð Þ ¼ mP Xð Þ � 1� wð ÞrP X;Að Þ½sP Xð Þ=sP Að Þ�½mP Að Þ � mQ Að Þ�;
bð ÞmS Yð Þ ¼ mQ Yð Þ þ wrQ Y;Að Þ½sQ Yð Þ=sQ Að Þ�½mP Að Þ � mQ Að Þ�;
cð ÞsS Xð Þ ¼ sS Að Þ½rP X;Að Þ=rS X;Að Þ�½sP Xð Þ=sP Að Þ�;
dð ÞsS Yð Þ ¼ sS Að Þ½rQ Y;Að Þ=rS Y;Að Þ�½sQ Yð Þ=sQ Að Þ�: (12.14)

Substituting the estimated means and standard deviations from Equation 12.14

into Equation 12.1, we get this form of the equation for Tucker equating:

y ¼ f ðxÞ ¼ mQðYÞ þ
rQðY;AÞrSðX;AÞsQðYÞsPðAÞ
rPðX;AÞrSðY;AÞsQðAÞsPðXÞ

x� mPðXÞ½ �

þ rQðY;AÞsQðYÞ
sQðAÞ mPðAÞ � mQðAÞ

� �

þ ð1� wÞ 1� rSðX;AÞ
rSðY;AÞ

� �
rQðY;AÞsQðYÞ

sQðAÞ mPðAÞ � mQðAÞ
� �

: (12.15)

The weight w does not cancel out of this equation; Tucker equating depends on

the relative proportions of populations P andQ in population S. To compare Tucker

equating with chained linear equating, we need to remove this dependence, by

finding a realistic condition under which the third term of this expression is zero. In

a NEAT design, it is not realistic to assume that populations P and Q have equal

mean scores on A. However, it may be realistic to assume that the correlations of X
with A and of Y with A are equal in population S: rS(X, A) ¼ rS(Y, A). This
assumption leads to the equation for a weight-independent version of Tucker

equating:

12 Generalized Equating Functions for NEAT Designs 189



y ¼ f ðxÞ ¼ mQðYÞ þ
rQðY;AÞsQðYÞsPðAÞ
rPðX;AÞsQðAÞsPðXÞ

x� mPðXÞ½ �

þ rQðY;AÞsQðYÞ
sQðAÞ mPðAÞ � mQðAÞ

� �
: (12.16)

12.3.3 Levine Equating

The Levine equating methods use the notion of true score from classical test theory,

which states that any examinee’s score on a test can be decomposed into a true
score, the part that does not vary over repeated testing, and an error of measure-
ment, the part that varies:

X ¼ TX þ EX: (12.17)

Errors of measurement are assumed to be purely random — uncorrelated with

each other and with true scores — and to have a mean of zero. It follows from this

assumption that the correlation of X with TX in a population is the ratio of their

standard deviations in that population:

rP X; TXð Þ ¼ sP TXð Þ=sP Xð Þ (12.18)

One may see that rP(X,TX) is simply the square root of the reliability of test X in

population P.
For equating test scores through an anchor score, it is possible to make assump-

tions like those of the Tucker method but, instead of applying them to the observed

scores and conditional standard deviations, to apply them to the true scores and

standard errors of measurement. That approach leads to the Levine method (Kolen &

Brennan, 2004).

The main assumptions of the Levine equating methods are that true scores on X
and Y are perfectly correlated with true scores on A and that the functions linking

true scores on X and Y to true scores on A are population invariant. By definition, the

linear link from TX to TA on P is

ta ¼ f ðtxÞ ¼ a00P þ b00Ptx; (12.19)

where ta is a value of TA and tx is a value of TX, and

b00P ¼ sP TAð Þ=sP TXð Þ (12.20)

a00P ¼ mP TAð Þ � b00PmP TXð Þ ¼ mP Að Þ � b00PmP Xð Þ (12.21)
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Here in Equation 12.21, the assumption that the mean of EA (the measurement

error of A) is 0 is used to replace the mean of TA (the true score of A) by the mean of

A. Similarly, the mean of TX is replaced by the mean of X.
Using the population invariance assumption,

b00P ¼ sS TAð Þ=sS TXð Þ ¼ sP TAð Þ=sP TXð Þ (12.22)

mS Að Þ � b00PmS Xð Þ ¼ mP Að Þ � b00PmP Xð Þ (12.23)

Equations 12.22 and 12.23 can be solved to get formulas for mS(X) and sS(X). A
similar development leads to formulas for mS(Y) and sS(Y). Under the assumptions

that the linear links between the true scores are population invariant, the means and

standard deviations of X and Y over S are given by Equation 12.24:

að Þ mS Xð Þ ¼ mP Xð Þ � 1� wð Þ½sP TXð Þ=sP TAð Þ�½mP Að Þ � mQ Að Þ�;
bð Þ mS Yð Þ ¼ mQ Yð Þ þ w½sQ TYð Þ=sQ TAð Þ�½mP Að Þ � mQ Að Þ�:
cð Þ sS Xð Þ ¼ sS TAð Þ=rS X; TXð Þ½sP TXð Þ=sP TAð Þ�
dð Þ sS Yð Þ ¼ sS TAð Þ=rS Y;TYð Þ½sQ TYð Þ=sQ TAð Þ� (12.24)

Here the result given in Equation 12.18 has been used to replace sS(TX) with
sS(X) and similarly for sS(TY).

Substituting the estimated means and standard deviations from Equation 12.24

into Equation12.1, we get this form of the equation for Levine observed-score

equating:

y ¼ f ðxÞ ¼ mQðYÞ þ
rSðX; TXÞsQðTYÞsPðTAÞ
rSðY; TYÞsQðTAÞsPðTXÞ

x� mPðXÞ½ �

þ sQðTYÞ
sQðTAÞ mPðAÞ � mQðAÞ

� �

þ ð1� wÞ 1� rSðX; TXÞ
rSðY; TYÞ

� �
sQðTYÞ
sQðTAÞ mPðAÞ � mQðAÞ

� �
: (12.25)

The weight w does not cancel out of this equation; Levine observed-score

equating depends on the relative proportions of populations P and Q in population

S. To compare Levine observed-score equating with chained linear equating, we

need to remove this dependence, by finding a realistic condition under which the

third term of this expression is zero. The only likely possibility is that scores X and

Y are equally reliable in population S: rS(X, TX)¼ rS(Y, TY). This assumption leads

to a weight-independent version of Levine observed-score equating:
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y ¼ f ðxÞ

¼ mQðYÞ þ
sQðTYÞsPðTAÞ
sQðTAÞsPðTXÞ x� mPðXÞ½ � þ sQðTYÞ

sQðTAÞ mPðAÞ � mQðAÞ
� �

(12.26)

Equation 12.26 is identical to the equation for Levine true-score equating.

Now the equations for chained linear equating (Equation 12.8), the weight-

independent version of Tucker equating (Equation 12.16), and the weight-independent

version of Levine equating (Equation 12.26) can be compared. Those three equa-

tions can all be written as Equation 12.27:

y ¼ f ðxÞ ¼ mQðYÞ þ
’QðY;AÞ sQðYÞ

sQðAÞ
’PðX;AÞ sPðXÞsPðAÞ

x� mPðXÞ½ �

þ ’QðY;AÞ
sQðYÞ
sQðAÞ

� �
mPðAÞ � mQðAÞ
� �

: (12.27)

where ’P(X, A) and ’Q(Y, A) are factors determined by a given equating.

A comparison of this general Equation 12.27 with the equations for the three

linear methods shows that

l if ’P(X, A) ¼’Q(Y, A) ¼ 1, then Equation 12.27 is Equation 12.8, the equation

for chained linear equating;
l if ’P(X, A)¼ rP(X, A) and ’Q(Y, A)¼ rQ(Y, A), then Equation 12.27 is Equation

12.16, the equation for the weight-independent version of Tucker equating; and
l if ’P(X, A) ¼ rP(X, TX) / rP(A, TA) and ’Q(Y, A) ¼ rQ(Y, TY) / rQ(A, TA), then

Equation 12.27 is Equation 12.26, the equation for the weight-independent

version of Levine equating.

The quantities rP(X, A) and rQ(Y,A) are necessarily less than 1. The quantities

rP(X,TX) / rP(A.TA) and rQ(Y, TY) / rQ(A, TA) are nearly always greater than 1.

Therefore, the three methods are ordered, with chained linear in between Tucker

and Levine. This relationship explains why, in practical equating situations where

the three methods produce different results, the results of chained linear equating

nearly always are in between those of Tucker equating and Levine equating.

Of course, there are infinitely many possible values for ’P(X, A) and ’Q(Y, A).
Each possible set of values for these parameters leads to a different linear equating

method.

12.4 A Generalized Equating Function

Equation 12.27 is a general expression for linear equating in a NEAT design.

It leads to a family of linear equating methods, including the Tucker, Levine, and

chained linear methods and infinitely many others. But is there a corresponding

family of nonlinear equating methods?
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The kernel equating procedure provides a way to answer this question. Kernel

equating is not a single equating method; it is a procedure that leads to many

possible equating methods. Two versions of the kernel equating procedure can be

used in a NEAT design: One follows the logic of poststratification equating, and the

other follows the logic of chained equating. The kernel equating procedure for

poststratification equating of X to Y through A involves four steps:

1. Pre-Smoothing (optional): Fit a log-linear model to each of the bivariate test-

anchor score distributions (X, A) in population P and (Y, A) in population Q. The
output of this step is a pair of discrete bivariate distributions that are smoother

(less irregular) than those observed.

2. Estimation: use the poststratification equating assumption to estimate the score

distributions of X and Y (still discrete) in population S.
3. Continuization: replace the discrete distributions estimated for population S by

continuous distributions.

4. Equating: link each value of X to the value of Y that has the same percentile rank

in the continuized distributions of X and Y estimated for population S.

The kernel procedure for chained equating involves two separate linkings. The

four steps of the procedure are as follows:

1. Pre-Smoothing (optional): Fit a log-linear model to each of the bivariate test-

anchor score distributions (X, A) in population P and (Y, A) in population Q. The
output of this step is a pair of discrete bivariate distributions that are smoother

(less irregular) than those observed.

2. Estimation: estimate the (marginal) score distributions of X and A (still discrete)

in population P and the score distributions of Y and A in population Q, respec-
tively.

3. Continuization: replace the four discrete marginal distributions by continuous

distributions.

4. The equating requires two steps: (a) linking of X to A (link each value of X to the

value of A that has the same percentile rank in the continuized marginal

distributions of X and A) and (b) linking of A to Y (link each value of A
determined in Step 4a to the value of Y that has the same percentile rank in the

continuized marginal distributions of Y and A).

The continuization step requires the user of the procedure to specify a bandwidth

parameter that determines how far the continuized distributions can depart from the

discrete distributions. Small values of the bandwidth parameter make the conti-

nuized distribution closely match the discrete distribution, so that the kernel

equating very closely resembles the usual type of equipercentile equating. Large

values of the bandwidth parameter make the continuized distributions closely

resemble normal distributions, so that the kernel equating is, for all practical

purposes, linear. Therefore, any linear equating method that can be closely repro-

duced by a kernel equating procedure with a large bandwidth has an analogous

nonlinear method: that same kernel equating procedure with a small bandwidth.
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To find the nonlinear equating method that corresponds to a given linear

equating method, all that is necessary is to find a kernel equating procedure that

is essentially equivalent to that linear equating method. The kernel procedure for

chained equating has the natural connection between chained equipercentile equat-

ing and chained linear, while the kernel procedure for poststratification equating

with large bandwidth produces the Braun-Holland equating method. However, it

has been shown in Braun & Holland (1982) that with additional assumptions, the

Braun-Holland equating becomes the Tucker equating method. This establishment

will serve as the cornerstone to build the generalized equating function based on

poststratification equating.

What makes it possible to get the Levine equating from the kernel equating

procedures is a transformation that can be applied to the pre-smoothed bivariate

test-anchor distributions. This transformation is called the mean-preserving linear

transformation (MPLT). The MPLT has the effect of changing the standard devia-

tions of the two variables, while leaving the means unchanged. The transformation

has two parameters, and the right choice of values for those parameters will change

the kernel equating procedure, so that instead of being essentially equivalent to one

linear equating method, it becomes essentially equivalent to another linear equating

method. The two parameters, denoted here as lX and nX, function as multipliers for

the standard deviations of the two variables. Using X and A represent the test score

and anchor score variables before applying the MPLT and X� and A� to represent

those variables after applying the MPLT,

að Þ m X�ð Þ ¼ m Xð Þ;
bð Þ m A�ð Þ ¼ m Að Þ;
cð Þ s X�ð Þ ¼ lXs Xð Þ;
dð Þ s A�ð Þ ¼ nXs Að Þ:

(12.28)

If X and A were continuous variables, this change in the standard deviations

could be accomplished by simply transforming the variables X and A. However, X
and A represent test scores, which are nearly always discrete variables. Transform-

ing X and A would produce a discrete bivariate distribution in which most of the

values of each variable would not be possible scores on the test and anchor.

Therefore, it is necessary to find a transformation that changes the standard devia-

tions of X and A while keeping the set of possible values unchanged, by redistribut-

ing the probabilities. The distribution of X* and A* has exactly the same set of

possible values as the distribution of X and A. What changes is the probability

associated with each pair of values (x, a). (See Brennan & Lee, 2006, and Wang &

Brennan, 2007, for details.)

The MPLT can be inserted into the kernel equating procedure by applying it

immediately after the pre-smoothing step. The result is a generalized equating
function with two sets of parameters: a set of four MPLT parameters (lX, nX, lY
and nY) and a set of bandwidth parameters for the continuization step. Poststratifica-

tion equating has two bandwidth parameters (which generally have the same value);
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chained equating has four bandwidth parameters. Because there are two versions of

kernel equating, there are two generalized equating functions, generalized post-

stratification equating and generalized chained equating.

Although any set of values for the four MPLT parameters will result in an

equating function, some sets of values are better than others—more interesting

theoretically and more useful practically. The MPLT makes it possible to change

one linear equating into another, by expressing the linear equating as a kernel

equating procedure with a large bandwidth and by applying the MPLT to the pre-

smoothed test-anchor distributions. In particular, it is possible to find a set of MPLT

parameters that will transform the kernel equating procedure that replicates Levine

equating (Chen & Holland, 2009). In this case, the MPLT parameters are

lX ¼ 1þ eX;

nX ¼ lXrP X;Að ÞrP A; TAð Þ=rP X; TXð Þ;
lY ¼ 1þ eY ;

nY ¼ lYrQ Y;Að ÞrQ A; TAð Þ=rQ Y; TYð Þ;

(12.29)

where eX and eY are, respectively, functions of rP(X, A)rP(A, TA) /rP(X, TX) and
rQ(Y, A)rQ(A, TA) /rQ(Y, TY), and the values of both are almost zero.

Then, if the large bandwidth parameter in the continuization step is replaced

with a small bandwidth parameter, the result is a kernel equating procedure that

produces a nonlinear analogue to Levine equating, called Levine observed-score
equipercentile equating.

Chen and Holland (2009) generalized this procedure by defining a family of

MPLT parameters that depend on a single parameter k as follows:

aðkÞ ¼ ½rP X;Að ÞrP A; TAð Þ=rP X; TXð Þ�k;
bðkÞ ¼ ½rQ Y;Að ÞrQ A; TAð Þ=rQ Y; TYð Þ�k: (12.30)

lX ¼ 1þ eXðaðkÞÞ; nX ¼ lXaðkÞ; lY ¼ 1þ eYðaðkÞÞ; and nY ¼ lYaðkÞ:
(12.31)

The parameter k can be any number but preferably should be in the range of [0, 1].

The functions eX( ) and eY( ) have very complicated forms but usually can be ignored

when they are evaluated near 1, and eX(1) ¼ eY(1) ¼ 0. This set of MPLT

parameters, used in a kernel equating procedure with a small bandwidth, leads to

an equipercentile equating associated with k. Used in the kernel equating procedure
for poststratification equating with a large bandwidth, they lead to a linear equating

whose weight-independent version is given by Equation 12.27, with ’Q(Y, A) ¼
rQ(Y, A)

1�k(rQ[Y, TY]/rQ[A, TA])
k, and so on. If k ¼ 0, then it leads to the Tucker

equating; if k¼ 1, then it leads to the Levine equating. Chained linear equating also

can be reproduced by an appropriate value for k, if the correlations of X with A and
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of Y with A in population S are nearly equal. In that case, we need to determine k to

make both ’P(X, A) ¼ 1 and ’Q(Y, A) ¼ 1. To make ’P(X, A) ¼ 1,

k ¼ ln rPðX;AÞ
ln rPðX;AÞ þ ln rPðA; TAÞ � ln rPðX; TXÞ

(12.32a)

and to make ’Q(Y, A) ¼ 1,

k ¼ ln rQðY;AÞ
ln rQðY;AÞ þ ln rQðA; TAÞ � ln rQðY; TYÞ

(12.32b)

If the numbers from both Equations 12.32a and 12.32b are nearly equal, their

average can be used as the value of k, so that ’Q(Y, A)� 1 and ’P(X, A)� 1, and the

equating function will be very nearly equivalent to chained linear equating. How-

ever, because it is derived from poststratification equating, it will be weight

dependent.

The special case of generalized poststratification equating in which the MPLT

parameters are defined as in Equation 12.31 is called k-PSE. This generalized

equating function, with minor adjustments, can approximate all commonly used

methods for equating in a NEAT design. Poststratification equating (i.e., frequency-

estimation equipercentile equating) is the special form of k-PSE with k ¼ 0 and a

small bandwidth. Braun-Holland and Tucker equating is the special form of k-PSE
with k ¼ 0 and a large bandwidth. The Levine methods are the special case of

k-PSE with k¼ 1 and a large bandwidth. Chained equipercentile and chained linear

equating are the special cases of k-PSE with the k value given in Equation12.32-

with a small bandwidth for equipercentile equating and a large bandwidth for linear

equating. The hybrid Levine method (von Davier, Fournier-Zajac, & Holland

2006b) is similar to the Levine observed-score equipercentile equating we defined

in this section, since both have Levine observed-score equating as their linear form

under kernel equating. Chen and Holland (2009) showed that the modified post-

stratification equating (Wang & Brennan, 2007) for NEAT designs with an external

anchor is almost same as the special case of k-PSE with k ¼ ½ and with a small

bandwidth. Finally, the chained true-score equipercentile equating developed in

Chen and Holland (2008) is the weight-independent version of the Levine

observed-score equipercentile equating.

Similarly, we can create a k-generalized chained equating (k-CE). The k-
indexed family of lX, nX, lY, and nY is

lXðkÞ ¼ rP X; TXð Þk; nXðkÞ ¼ rP A; TAð Þk; lYðkÞ ¼ rQ Y; TYð Þk; and

nYðkÞ ¼ rQ A; TAð Þk: (12.33)

For k ¼ 0 with a small bandwidth, the equating is chained equipercentile; with a

large bandwidth, it is chained linear. For k¼ 1 with a small bandwidth, the equating
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is chained true-score equipercentile equating; with a large bandwidth, it is Levine

true-score equating. We can also approximate the poststratification equating and the

Tucker equating, but the value of k will be negative. Notice that k-CE is weight

independent.

12.5 Examples and Discussion

In this section, simulated data based on a data set from an operational testing

program is used to demonstrate the generalized equating function, particularly the

k-PSE, illustrating the following specific relationships:

l Tucker equating can be approximated closely by k-PSE with k ¼ 0 and a large

kernel equating bandwidth;
l Levine observed-score equating can be approximated closely by k-PSE with k¼

1 and a large kernel equating bandwidth;
l Chained equipercentile equating can be approximated closely by k-PSE with the

k value determined by Equation 12.32and a small kernel equating bandwidth.

The data set contains 2 simulated bivariate distributions, each derived from the

same named pre-smoothed distribution described in details in Chapter 10 of A. A.

von Davier et al. (2004b). Test X and test Y each contain 78 items; the external

anchor A contains 35 items. Table 12.1 shows summary statistics for this simulated

data set.

The score distributions in population Q were strongly skewed in a positive

direction, on both test form Y and the anchor. In population P, the distributions of
scores on test form X was skewed, but less strongly, and in the opposite direction.

The first comparison is between the Tucker equating function with w ¼ 0.5 and

the kPSE with k¼ 0, w ¼ 0.5, and kernel equating bandwidth ¼ 5,400. The

difference between these two equating functions is less than 0.02 raw-score points

(0.0012 SD) at all points of the score scale (see Figure 12.1).
The second comparison is between the Levine observed-score equating function

with w ¼ 0.5 and the k PSE with k ¼ 1, w ¼ 0.5, and kernel equating bandwidth ¼
5,400. The difference between these two equating functions is less than 0.06 raw-

score points (0.0036 SD) at all points of the score scale (see Figure 12.1).

Table 12.1 Summary Statistics for the Data Set

Statistic Sample from population P, n ¼ 10,000 Sample from population Q, n ¼ 10,000

Test X Anchor A Test Y Anchor A

Mean 39.3 17.1 32.5 14.3

SD 17.2 8.4 16.7 8.2

Correlation 0.88 0.88

Skewness �0.11 �0.02 0.23 0.26

Kurtosis 2.24 2.15 2.28 2.25
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The third comparison is between the chained equipercentile equating function

(produced from kernel equating software with bandwidth ¼ 2) and the k PSE with

k determined by Equation 12.32 and kernel equating bandwidth¼ 2. The difference

is not as tiny in this comparison as in the previous two comparisons, but still not

large; it varies over the score scale from approximately �0.11 to þ0.27 raw-score

points (�0.007 toþ0.016 SD). If both the weight w and the kwere adjusted slightly,

the difference would be consistently less than 0.20 raw-score points (0.012 SD).
For many years, psychometricians comparing different equating functions com-

puted from the same operational data have observed predictable differences

between the Tucker, chained linear, and Levine observed-score equating methods.

Fig. 12.2 Differences between k-PSE and Tucker equating, for five values of k

Fig. 12.1 Plots of three equating functions and their counterparts generated by k-PSE.
BW ¼ bandwidth
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When the new-form equating sample scores higher than the reference-form equat-

ing sample on the anchor test, the Levine method yields the highest equated scores;

the Tucker method yields the lowest. Figure 12.2 shows that similar differences

occur with curvilinear k PSE equating. The plot shows the differences between

k-PSE equating and Tucker equating, for five different values of k. With k¼ 0 (the

lowest curve in the figure), k-PSE equating corresponds to the usual frequency-

estimation method, which is the curvilinear analog to Tucker equating. With k ¼ 1

(the highest curve), the k-PSE equating becomes the curvilinear analog to Levine

observed-score equating. As the value of k increases from 0 to 1, the equated scores

become progressively higher.

The kernel equating procedure incorporating the MPLT, with no restrictions on

the MPLT parameters lX, nX, lY, and nX, except that they are all positive, defines a

generalized equating function. This generalized equating function provides a

framework for creating new equating methods with desired properties. On the

other hand, the generalized equating function with k gives a much better solution

for operational work. Each not only pairs the three most familiar linear equatings

with its nonlinear counterpart but also expands to a system of equatings indexed

with continuous parameters, which the users can choose to get an optimal equating

solution based on any criteria they choose.

There are some computation issues. The first is how to compute the true score

coefficients defined in Equation 12.18. Currently, we used the formulas in Kolen

and Brennan (2004). Interestingly, for NEAT designs using an external anchor,

a(k), defined in Equation 12.30 is rP(A, TA)
2k; for NEAT designs using an internal

anchor, a(k) is rP(X, A)
2k. These formulas assume that the true scores on the test

and the anchor have a perfect linear correlation, which is possible only if the

equating relationship is linear. However, even when the relationship is not linear,

the correlation of true scores is often close to 1.00 (Chen & Holland, 2008). For

most cases, the linear assumption can be used for the computation. More extreme

cases are discussed in the Chen and Holland (2008) paper, and the formulas are

modified accordingly.

The second issue is how to compute the distribution defined by MPLT (Equation

12.28) on the integers. The distributions of the anchor scores in both samples (from

populations P and Q) have distributions on the same score points—the possible

scores on the anchor. The conditional distributions are computed at these values of

the anchor score A. However, the MPLT defined by Equation 12.28 misaligns the

anchor scores. Therefore, it is necessary to redistribute the score frequencies at each

noninteger value of A to the adjacent integers. The method used by Brennan and

Lee (2006) and by Wang and Brennan (2007) produced frequencies of zero at some

anchor score points, which distorted the score estimation and made the computation

for estimating the standard error of equating impossible. A new method has been

created to solve this problem by doing the redistribution in the log-linear pre-

smoothing (Chen & Holland, 2010). The implementation of this solution in the

pre-smoothing software is currently under development.
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12.6 Conclusion

The generalized equating function is built with two basic elements: a base equat-

ing—either poststratification equating or chained equating—and the modified ker-

nel equating framework, including the MPLT. If the base equating is poststratification

equating, the generalized equating function is called generalized poststratification

equating. The generalized poststratification equating is weight dependent; it

depends on the relative weights of the two separately sampled examinee popula-

tions (P and Q) in the combined population for which the equating function is to be

estimated. If the base equating is chained equating, the generalized equating

function is called generalized chained equating and is weight independent. In

some cases, the generalized poststratification equating is not sensitive to differences

in the weights, and in those cases, generalized poststratification equating and

generalized chained equating are equivalent. Therefore, generalized poststratifica-

tion equating can be considered the more general approach.

The k-equating is a special case of the generalized equating function in which

the differences between equating methods are expressed as differences in the value

of a parameter, called k. The k-equating can unite all the commonly used classical

methods for equating in a NEAT design, by reducing the selection of each equating

to a choice of a value for k. By expanding the choice to include other values of k,
the k-equating can be made to generate a whole family of well-defined equating

functions. This modification gives equating practitioners a wide choice of available

methods and makes it easy to find the equating method that optimizes some

specified criterion.

The approach to equating described in this chapter could lead to at least two

types of future development and research. One is the development of criteria for the

quality of an equating—criteria for choosing among the many possible values of the

MPLT and bandwidth parameters. Another is to expand the family of generalized

equating functions, by adapting the generalized equating function to include other

existing equating methods (e.g., methods based on pre-smoothing the score dis-

tributions using item response theory) or by varying parameters of the generalized

equating function to create new equating methods.

Author Note: Any opinions expressed in this chapter are those of the authors and not necessarily

of Educational Testing Service.
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Chapter 13

Local Observed-Score Equating

Wim J. van der Linden

13.1 Introduction

One of the highlights in the observed-score equating literature is a theorem by Lord

in his 1980 monograph, Applications of Item Response Theory to Practical Testing
Problems. The theorem states that observed scores on two different tests cannot be

equated unless the scores are perfectly reliable or the forms are strictly parallel

(Lord, 1980, Chapter 13, Theorem 13.3.1). Because the first condition is impossible

and equating under the second condition is unnecessary, the theorem is rather

sobering.

My research on local equating was deeply motivated by Lord’s theorem and its

related notion of equity of equating introduced in the same chapter to explain the

“cannot be equated” part of the theorem. Before discussing the principles of local

equating, we therefore review the chapter in which the theorem was introduced.

It is quite instructive to see how cautiously Lord (1980) proceeded in the chapter:

He began by introducing the problem of observed-score equating under the ideal

condition of no measurement error (“case of infallible measures”) and used the

equipercentile transformation—one of the historic achievements of observed-score

equating research—for this case. His next step was the introduction of measurement

error (“case of fallible measures”). For this case he gave his famous theorem to

show that the use of the equipercentile transformation either does not hold or is

unnecessary. Lord then formulated two alternative methods of equating known

as item response theory (IRT) observed-score equating and true-score equating.

The former deals only indirectly with measurement error by using a parametric

estimate of the observed-score distributions for the two tests rather than sample

distributions. The latter ignores measurement error altogether. Interestingly, Lord
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appeared unable to express a preference for either of these approximate methods, and

the chapter ended entirely open, with an intriguing question that I will discuss below.

It is clear that Lord (1980) was aware of the need of observed-score equating

as well as the popularity of the methods practiced in his days. On the other hand,

although the presentation of the two approximate methods indicates that he was

willing to strike a balance between practice and what psychometric theory allows us

to do, the open end of the chapter suggests that he was unable to do so.

Lord’s (1980) attitude toward observed-score equating reminds me of a cartoon I

once saw, in which one scientist said, "Look at the nice application I have!” and the

other responded, “Yes, but does it work in theory?” In a field such as test theory,

where numbers do not mean anything unless they can be proven to behave accord-

ing to a model for their formal properties, our affinity should definitely go to the

second scientist.

13.2 Lord’s Analysis of Equating

Lord’s (1980) treatment of equating is based on the conceptualization of measure-

ment that underlies IRT—the main topic of his monograph. Key in the conceptuali-

zation is the observation that responses to test items reflect not only the ability the

test measures but also the properties of the items. Equating is an attempt to

disentangle these abilities and item properties at the level of the observed scores

on different test forms.

I will follow Lord’s (1980) notation and use y to denote the ability parameter. In

addition, X and Y denote the number-correct scores on two different tests that

measure the same y, and X and Y denote the tests themselves. For convenience,

throughout this chapter, tests X and Y are assumed to have equal length. Because X
and Y are dependent both on the abilities of the test takers and the properties of the

items, an equating problem exists. Suppose that test Y is the newer form and Y has

to be equated back to X. The goal is to find the transformation x¼ ’(y) from Y to the

scale of X that guarantees that the transformed scores on test Y are indistinguishable

from the scores on test X.

This conceptualization does not restrict the generality of our analysis in any way;

it would do so only if a specific response model were assumed and the results

depended on the properties of this model. As each of the mainstream response

models used in the testing industry involves a different parameterization of the

items, in order to maintain generality, we therefore deliberately avoid specifying

any item parameters.

Each equating study involves the choice of a sampling design, but the current

conceptualization is also neutral with respect to this choice. For any response model

with adequate person and item parameters, we can estimate the parameters in the

presence of structurally missing responses. Except for a mild requirement of

“connectedness” (van der Linden, 2010), equating based on such models, therefore,

does not require a specific equating design.
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13.2.1 Equating Without Measurement Error

Lord (1980) introduced the equating problem by considering the case of two per-

fectly reliable scores X and Y (“case of infallible measures”), a condition under

which observed scores are fixed quantities and the distinction between observed and

true scores disappears. If X and Y are perfectly reliable scores for tests measuring

the same y, each of these three quantities orders any given population of test takers

identically. Consequently, the scores on tests X and Y for any test taker always have

the same rank in their distributions for the population of choice. This equivalence of

rank establishes an immediate equating relation—if an examinee takes one of the

forms, we know that he or she always would obtain the score on the other form

associated with the same rank in the population.

In more statistical terms, let F(x) be the (cumulative) distribution function of the

scores on test X and G(y) the distribution function of the scores on test Y for an

arbitrary population of test takers. Both functions are assumed to be monotonic. For

convenience, we also will ignore problems due to the discreteness of number-

correct scores throughout this chapter. Let y be the quantile in the distribution on

test Y for an arbitrary cumulative proportion p of the population; that is,

GðyÞ ¼ p: (13.1)

The equivalent score ’(y) on test X follows then from

Fð’ðyÞÞ ¼ p: (13.2)

.

Or, making ’(y) explicit,

’ðyÞ ¼ F�1ðGðyÞÞ: (13.3)

This transformation is the well-known equipercentile transformation in the

equating literature. It is typically estimated by sampling the same population

twice, administering test forms X and Y to the two samples, estimating the distri-

butions functions of X and Y from the samples, and establishing the relationship by

varying p in Equations 13.1 and 13.2 systematically. As the focus of this chapter is

not on sampling issues, I do not discuss these issues further.

For perfectly reliable scores, the same transformation from Y to X in Equation

13.3 is obtained for different populations of test takers; that is, use of the equiper-

centile transformation guarantees population invariance. This invariance is a prac-

tical feature, in that it does not seriously restrict equating studies in the choice of

their subjects. Also, the choice of population cannot bias the equating in any way:

No matter the selection of test takers, the equating errors

e1ðxÞ � ’ðyÞ � x (13.4)
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are always equal to zero for each individual test taker. These two features are

documented in the following theorem:

Theorem 1. For perfectly reliable test scores X and Y, the equipercentile transfor-
mation ’(y) in Equation 6.3 is (a) unbiased and (b) invariant across populations of

test takers with distributions that have the full range of X and Y as support.

These attractive properties of population invariance and error-free equating are

immediately lost when we move from the ideal world of infallible measurements to

the real world of test scores with errors.

13.2.2 Equating With Measurement Error

In the case of fallible measures, test takers no longer have fixed observed scores on

test forms X and Y, but their scores vary across replicated administrations of these

tests. Statistically, we therefore should view the observed scores x and y for a test
taker as realizations of random variables X and Y.

Several things change when scores with measurement error have to be equated.

First, it no longer holds that the actually observed scores X ¼ x and Y ¼ y on an

administration of the two tests order a given population of test takers identically.

Measurement errors distort the ranks of the test takers in the distributions of X and Y
for any population; that is, test takers are likely to have a higher rank in one

observed-score distribution than dictated by their yS but a lower rank in another.

The principle of equivalence of rank of the scores on test forms X and Y, on which

the equipercentile transformation in Equation 13.3 was based, is thus violated and

the transformation is no longer valid.

Second, the goal of equating is to find the transformation ’(y) from Y to the scale

of X that guarantees identical scores. But the criterion can never be met for the case

of random errors because these errors introduce nonzero components in the defini-

tion of equating error e1(y) in Equation 13.4. In fact, the problem is even more

fundamental in that the definition in Equation 13.4 itself is no longer sufficient: Test

scores are now to be viewed as random variables, and it is not enough to just

evaluate a single realization of them when the interest should be in their full

distribution. Lord (1980) was aware of this problem and replaced the criterion in

Equation 13.4 for the case of equating with measurement error by the more general

criterion of equity, which he defined intuitively as follows: “If an equating of tests

X and Y is to be equitable to each applicant, it must be a matter of indifference

to applicants at every given ability level y whether they are to take test X or Y”

(p. 195).

Lord’s formal definition of equity generalizes Equation 13.4 to the requirement

for the full distributions of the scores on X and Y given y and stipulates that

f’ðYÞjy ¼ fXjy; for all y; (13.5)
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where f’(Y)jy and fXjy are the probability functions of the transformed scores on test

Y and the scores on test X for the chosen population (Lord, 1980, Equation 13.3).

This definition of equity is based on a clear concern about fairness of equating: If

the two distributions would differ, a test taker might be disadvantaged by taking

one test rather than the other. For instance, a high-ability test taker with a larger

variance for his or her observed score on test Y than on test X runs a larger risk of

not passing a certain cutoff score on the former than the latter.

Thirdly, and lastly, the feature of population invariance of the equipercentile

transformation is immediately lost when X and Y have measurement error. This can

be shown by deriving their distributions for an arbitrary population with ability

distribution f(y) as

fXðxÞ ¼
ð
fXjyðxÞf ðyÞdy; (13.6)

fYðyÞ ¼
ð
fYjyðyÞf ðyÞdy: (13.7)

The equipercentile transformation is applied to the marginal distributions fX(x)
and fY(y). As test forms X and Y have different items, fX|y(x) and fY|y(y) are different.
Any change of f(y), therefore, has a differential effect on fX(x) and fY(y), and
produces a different equating transformation. This is hard to accept for individual

test takers who expect their test scores to be adjusted for the differences between the

items in tests X and Y but actually get a score that depends on the abilities of the

other test takers who happen to be in the chosen population.

13.2.3 Lord’s Theorem

We are now able to discuss Lord’s theorem:

Theorem 2. Under realistic conditions, scores X and Y on two tests cannot be

equated unless either (i) both scores are perfectly reliable or (ii) the two tests are

strictly parallel [in which case ’(y) ¼ y].

As the equipercentile transformation in Equation 13.3 was derived for the

case of perfectly reliable scores, the sufficiency of this condition for equipercentile

observed equating is obvious. To prove the sufficiency of the second condition

(strictly parallel tests), Lord (1980) used the criterion of equity in Equation 13.5 and

showed that the criterion only holds for monotonic transformations x ¼ ’(y) when
the two tests are item-by-item parallel, in which case ’(y)¼ y. I will skip the formal

proof and refer interested readers to Lord (1980, Section 13.3).

It is important to observe that Lord’s proof shows that the only monotonic trans-
formation from Y to X for which equity is possible is the identity transformation
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when the two tests are strictly parallel. It thus makes no sense to look for any other

monotonic transformation than the equipercentile transformation that might result

in equitable equating. In fact, the following example makes us even wonder if any
transformation could ever produce an equitable equating for all test takers: Suppose

the test scores that need to be equated are for tests with Guttman items at two

different locations y1<y2. All n items in test X are located at y1, all n items in test Y

at y2 For test takers with y<y1, the distributions of Xjy and Yjy are degenerate

distributions at x ¼ 0 and y ¼ 0, respectively; for test takers with y > y2, they are

degenerate distributions at x ¼ n and y ¼ n. Hence, for these two groups of test

takers, the two tests automatically produce identically distributed scores. However,

for y1 < y < y2, the distributions of Yjy remain at y ¼ 0 but those of Xjy are now at

x ¼ n. For these test takers, the number-correct scores have to be mapped from 0 on

test Y to n on test X. Thus, in order to produce an equitable equating, we have

to choose between this extreme transformation (and forget about the test takers

below y1 and above y2) and the identity transformation (and forget about those

between y1 and y2).

13.2.4 Two Approximate Methods

Lord (1980) then offered two approximate methods of equating. One method is IRT

true-score equating. Let i¼1, . . . , n denote the items in form X and j¼1,...,n those

in form Y. Each of the mainstream response models for dichotomously scored items

specifies a probability for the correct response as a function of y. We use Pi(y) and
Pj(y) for the response probabilities on the items in form X and form Y, respectively.

The (number-correct) true scores on forms X and Y are given by

x ¼
Xn
i¼1

PiðyÞ; (13.8)

� ¼
Xn
j¼1

PjðyÞ: (13.9)

If the item parameters have been estimated from response data with enough

precision, the only unknown quantity in Equations 13.8 and 13.9 is y. (Because the
response model is usually not identified, for the item parameters to be on the same

scale they have to be estimated simultaneously from response data for an appropri-

ate sampling design.) Variation of the unknown y creates a relation between x and �
that represents x as a (monotonic) function of �. Ignoring the differences between

observed scores X and Y and their true scores x and �, IRT true-score equating uses

this function to equate Y to X.
The other method is IRT observed-score equating. The method is based on an

approximation of Equations 13.6 and 13.7 by
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f̂XðxÞ ¼ N�1
XN
a¼1

f ðx jbyaÞ; (13.10)

f̂YðyÞ ¼ N�1
XN
a¼1

f ðy jbyaÞ; (13.11)

where ŷa are the ability estimates for a sample of test takers a ¼ 1, . . . , N. The two
estimated marginal distributions of forms X and Y are then used to derive the

equipercentile transformation.

13.2.5 An Intriguing Question

Lord (1980) was doubtful about the use of the method of true-score equating: “We

do not know an examinee’s true score. We can estimate his true score. . ..However,
an estimated true score does not have the properties of true scores; an estimated true

score, after all, is just another kind of fallible observed score” (Lord, 1980, p. 203).

But he also had his doubts about the method of IRT observed-score equating: “Is this

better than applying. . .true-score equating. . .to observed scores x and y?”.
Lord (1980) then explained the reason for his inability to choose between the two

approximate methods: “At present, we have no criterion for evaluating the degree

of inadequacy of an imperfect equating. Without such a criterion, the question

cannot be answered” (p. 203). The same uncertainty is echoed in the final section of

the chapter, which Lord (1980) began by admitting that practical pressures often

require that tests be equated at least approximately. He then summarized as follows:

“What is really needed is a criterion for evaluating approximate procedures, so as to

be able to choose from among them. If you can’t be fair (provide equity) to
everyone, what is the best next thing?” (p. 207).

This final question is intriguing. At the time, Lord already must have worked on

his asymptotic standard error of equipercentile equating, which was published

2 years later (Lord, 1982b), so he clearly did not refer to this development. Rather

than something that only evaluates the effect of sample size (as a standard error

does) but leaves the equating method itself untouched, he wanted a yardstick that

would allow him to make a more fundamental comparison between alternative

equating methods and to assess which would be closest to equity (provide “the next
best thing”).

13.3 Local Equating

Local equating is an attempt to answer Lord’s question. Its basic result is a theorem

that identifies an equating that would provide full equity and immediately suggests

how to evaluate any actual equating method against this ideal. Also, the theorem
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involves a twist that forces us to rethink much of our current theory and practice of

equating—a process that has led me both to better understanding of the fundamental

nature of the observed-score equating problem and a more intuitive appreciation of

the idea of local equating. It also suggests new equating methods that better

approximate the equity criterion than equipercentile equating. In this section, I

review the theorem and provide alternative motivations of local equating. A few

new equating methods based on the idea of local equating are discussed in the next

section

13.3.1 Main Theorem

The theorem follows directly from the equity criterion in Equation 13.5. Lord

(1980) expressed the criterion as an equality of conditional probability functions.

Equivalently, it could be expressed as an equality of the conditional distribution

functions F’(Y)jy for the equated scores on test Y and FXjy for the observed score

on test X. However, rather than as an equality, we express the criterion as a

definition of equating error,

e2ðx; yÞ � F’ðYÞjy � FXjy; (13.12)

and require all error to be equal to zero for all y. The transformations x ¼ ’�ðyÞthat
solve this set of equations are the error-free or true equating transformations.

Thus, it should hold that

FXjyðxÞ ¼ F’ðYÞjyð’ðyÞÞ; y 2 R: (13.13)

Solving for x by taking the inverse of FXjy,

x ¼ ’�ðy; yÞ ¼ F�1
XjyF’ðYÞjyð’ðyÞÞ; y 2 R: (13.14)

However, because ’(·) is monotone, F’(Y)jy(j(y))¼ FYjy(y). Substitution results in

’�ðy; yÞ ¼ F�1
XjyðFYjyðyÞÞ; y 2 R; (13.15)

as the family of true equating transformations.

Surprisingly, Equation 13.15 involves the same type of transformation as for

the equipercentile equating in Equation 13.3, but it is now applied to each of the

conditional distributions of Xjy and Yjy instead of only once to the marginal

distributions of X and Y for a population of test takers. The fact that the derivation

leads to an entire family of transformations reveals a rather restrictive implicit

assumption in Lord’s theorem, as well as all of our traditional thinking about

equating: namely, that the equating should be based on a single transformation

208 W.J. van der Linden



for the entire population of choice. Relaxing the assumption to different transfor-

mations for different ability levels opens up a whole new level of possibilities for

observed-score equating that is waiting to be explored. The following theorem is

offered as an alternative to Lord’s (for an extended version, see van der Linden,

2000):

Theorem 3. For the population of test takers P for which test scores X and Y
measure the same ability y, equating with the family of transformations ’�ðy; yÞ in
Equation 13.15 has the following properties: (i) equity for each p ∈ P; (ii) symme-

try in X and Y for each p ∈ P; and (iii) invariance within P.

Proof. (i) For each p ∈ P there is a corresponding value of y, and for each y
the transformation in Equation 13.15 matches the conditional distributions of ’*(Y)
and X given y. (ii) The inverse of F�1

XjyFYjyðyÞ is F�1
YjyFXjyðxÞa, which is Equation

13.15 for the equating from X to Y. (iii) The conditional formulation of Equation

13.15 implies independence from the distribution of y over P. As a consequence, the
family holds for any subpopulation of P.

In addition to equity, the family of transformations thus has the properties of

symmetry and population invariance—other criteria identified by Lord (1980,

Section 13.5) as essential to equating. The criterion of symmetry is usually moti-

vated by observing that it would be hard to understand why a reversal of the roles of

X and Y should lead to a different type of equating. It should—and does—hold for

the definition of the true equating transformations in Equation 13.15. When select-

ing an actual method in an equating study, we sometimes are faced with trade-offs

between the three criteria, and it then makes sense to sacrifice some symmetry to get

closer to the more desirable property of equity. As we shall see later, the same

choice is made for some of the traditional methods of equating.

As for the issue of population invariance, the criterion of equity in Equation 13.5

is defined conditional on y. Hence, if the criterion holds, it automatically holds for

any subpopulation of P as well. But the criterion also implies the definition of the

family of transformations in Equation 13.15. It follows that equity is a sufficient
condition for population invariance within P. This conclusion implies that an

effective attempt to get closer to population invariance is approximating equity.

Also, note that the theorem defines the ultimate population P for which the

invariance holds as the population of persons for which tests X and Y measure the

same y. We have a clear empirical criterion to evaluate membership of P: the joint
fit of the response model in the testing program for the two tests. Besides, although

the definition of P excludes arbitrariness, it is nevertheless open in that it not only

includes all past or current test takers whose response behavior fit the model but

encompasses future test takers for which this can be shown to hold as well. Finally,

unlike traditional observed-score equating, the definition of P does not entail any

necessity of random sampling of test takers.

The error definition in Equation 13.12 implies the ideal or true equating that pro-

vides equity but also offers the “criterion for evaluating approximate procedures”

that Lord (1980) wanted so badly: For any arbitrary transformation ’(y), the
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criterion is just the difference between the conditional distribution functions for the

equated scores ’(Y)jy and the scores Xjy in Equation 13.12. Observe that the

difference is a function of x and that we have a different function for each y ∈ R.
Also, because of its conditioning on y, the evaluation is population invariant within
P—an evaluation of the equated scores ’(Y) for any subpopulation of P automati-

cally holds for any other subpopulation.

Alternatively, we can compare any given transformation ’(y) directly with the

family of true transformations ’�ðy; yÞ in Equation 13.15. This comparison leads to

the alternative family of error functions:

e3ðy; yÞ ¼ ’ðyÞ � ’�ðy; yÞ
¼ ’ðyÞ � F�1

XjyðFYjyðyÞÞ; y 2 R:
(13.16)

Of course, the results from both evaluations are equivalent: An equating trans-

formation is error free if and only if its equated scores are. A critical difference

between Equations 13.12 and 13.16, however, exists with respect to the scale on

which they are defined: The error functions in Equation 13.12 are functions of x but
those in Equation 13.16 are functions of y. The former are convenient when we have

to evaluate an equating from a test Y with a variable composition to a fixed form X,

for instance, from an adaptive to a linear test. For a more extensive discussion of

these two alternative families of error functions, see van der Linden (2006a, b).

The definition of equating error is only the first step toward a standard statistical

evaluation of observed-score equating. For the implementations of local equating

discussed later in this chapter, the error functions above will be used to define the

bias and mean-square error functions of an equating, that is, the expectations of the
error and squared error over essential random elements in the implementation.

These additional steps take the evaluation of equating to the same level as, for

instance, the standard evaluation of an estimator of an unknown parameter or a

decision rule in statistics.

In principle, we are now ready to look for equating methods that approximate the

family in Equation 13.15 as closely as possible and evaluate these methods using

these statistical criteria. The challenge, of course, is to find a proxy of the unknown

y that takes us as closely as possible to the true member in the family for each test

taker. Before exploring the possibilities, I motivate the idea of local equating from a

few alternative points of view.

13.3.2 Alternative Motivations of Local Equating

All of current observed-score equating is based on the use of a single transforma-

tion. However, the example at the end of the discussion of Lord’s theorem above

already hinted at the fact that no transformation whatsoever could ever establish an
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equitable equating at each ability level for a population of test takers. The following

thought experiment illustrates this point again (van der Linden &Wiberg, in press).

Suppose a person p with ability level yp takes test form Y, and a test specialist is

asked to equate his or her observed score yp to a score on test form X. For the sake of

argument, suppose the specialist is given the full observed-score distributions for

yp on both tests, that is, FX(xjyp) and FY(yjyp). For this single-person population, an
obvious choice from a traditional point of view is to use the equipercentile trans-

formation x ¼ ’pðyÞ ¼ F�1
XjypðFYjypðyÞÞ to equate the observed score yp to a score on

form X. Now suppose a second person q with another ability level takes the same

test, and the same specialist is asked to equate this person’s observed score yq.
The specialist, who is also given the distribution functions for q, is then faced with

the choice between (a) using a separate equipercentile transformation for q or (b)

treating the two test takers as a new population and using the equipercentile

transformation for the marginal distributions of it. The first option would only

involve establishing another individual transformation ’q(y), analogous to ’p(y).
The result would be an equitable, symmetric, and population-invariant equating for

both test takers. The second option would require the marginal distribution func-

tions for the population, which is the average of the separate functions for p and q.
Letting F0

XðxÞ and F0
YðyÞ denote the two averages, the alternative equating transfor-

mation would be x ¼ ’0ðyÞ ¼ F0
X
�1ðF0

YðyÞÞ. This second option would miss all

three features. In fact, its problem would become even more acute if we kept adding

test takers to the population: For each new test taker, the equating transformation

would change. Even more embarrassing, the same would happen to the equated

scores of all earlier test takers.
Clearly, traditional equipercentile equating involves a compromise between the

different transformations required for the ability levels of each of the test takers in

an assumed population. In doing so, it makes systematic errors for each of them. In

more statistical terms, we can conclude that the use of a single equating transfor-

mation for different ability levels involves equatings that are structurally biased for

each of them. The error function in Equation 13.12 reflects the size of the bias for

each individual test taker.

The history of test theory shows an earlier occasion where a similar choice had to

be made between a one-size-fits-all approach and one based on individual ability

levels—the choice of the standard error of measurement for a test. The classical

standard error was a single number for an entire population of test takers derived

from the reliability of the test. It was quickly recognized that this error was a

compromise between the actual errors at each ability level and was thus always

biased. For example, a test that matches an individual test taker’s ability level is

known to be more informative than one that is much too difficult or too easy—a

fact that should be reflected in the standard errors for the individual test takers.

The classical standard error is now widely replaced by the conditional standard

deviation of the observed score given ability, that is,

½VarðX j yÞ�1=2: (13.17)
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The family of true equating transformations ’�ðy; yÞ in Equation 13.15 is based

on the full conditional distributions of the observed test scores, of which this

conditional standard error represents the dispersion.

Interestingly, the family ’�ðy; yÞ also can be shown to generalize Lord’s first

approximate equating method—the true-score equating in Equations 13.8–13.9.

The equating following from this set of two equations is usually presented as a table

with selected pairs of values of � and x used to equate the observed scores on form

Y to X. It is tempting to think of this format as the representation of a single

equating transformation. However, this conclusion would overlook that Equations

13.8–13.9 actually are a system of parametric equations, that is, a family of

mappings with y as index. When applied to equate Y to X, it becomes the family

of true equating transformations in Equation 13.15 with its distributions degener-

ated to their expected values E(X j y) and E(Y j y):

EðYjyÞ ! EðXjyÞ; y 2 R: (13.18)

Obviously, much is to be gained when we avoid this degeneration and turn to an

equating based on the full conditional distributions of X and Y.
It is also instructive to view Lord’s (1980) second approximate method in

Equations 13.10–13.11 from the perspective of the family of true equatings in

Equation 13.15. This method substitutes ability estimates bya for the test takers

in a sample a ¼ 1, . . . , N into the set of equations for the marginal distributions of

X and Y in Equations 13.6–13.7. However, as already indicated, the factors fXjy(x)
and fYjy(y) in these equations are for different items, and any change of population

h(y) (or sample of test takers in this approximate method) has a differential effect

on fX(x) and fY(y) and therefore produces a different equipercentile transformation.

An effective solution to this problem of population dependency is to just ignore the

common second factor h(y) in the integrands in Equations 13.6–13.7 and base IRT

observed-score equating only on their first factors fXjy(x) and fYjy(y) for the esti-

mates bya, precisely the choice made in the first local equating method discussed

later in this chapter.

On the other hand, the traditional approach to the problem of population depen-

dency has been to identify some special population h(y) and use this as a standard

for the equating. Two versions of the approach exist. One is based on the idea of a

synthetic population to be derived from the two actual populations that take tests X

and Y. Braun and Holland (1982, Section 3.3.2), who introduced the notion, defined

it as any population with a distribution function equal to a linear combination of the

functions for the two separate populations. More formally, if FX(y) and FY(y) are the
distribution functions for the populations who take tests X and Y, the synthetic

population has distribution function

wFXðyÞ þ ð1� wÞFYðyÞ; (13.19)

with 0 � w � 1 a weight to be specified by the testing program. The definition

could be justified by two-stage sampling of the test takers in the equating study from
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the separate populations for tests X and Y with weights w and 1-w. However, this
type of weighted sampling is rarely used in this context. More importantly, equat-

ings are always required only for the scores of the population that takes the new test

form, Y, and any nonzero weight w would detract from this goal (van der Linden &

Wiberg, in press).

The other approach recognizes this fact and uses the population for Y as the

standard. It does so by identifying the critical variables on which the populations

for X and Y differ and using them to resample the population for X to match

the population for Y. The two matched distributions are then used in the actual

equating. For evaluations of this approach with matched samples, see, for instance,

Dorans (1990); Dorans, Liu, and Hammond (2008); Liou, Cheng, and Li (2001);

and Wright and Dorans (1993).

The use of synthetic or matched populations does not take population depen-

dency away. For each test taker, it still holds that the equated score depends on the

abilities of the other test takers in these synthetic or matched populations. Rather

than equating X and Y for populations with identical ability distributions, as these

two approaches attempt, we should equate them for identical abilities (i.e., condi-

tion on ability). Finally, notice that the use of a matched population also implies

loss of symmetry of the equating. Except for the case of weight w ¼ .5, the same

holds for the use of a synthetic population.

At first sight, local equating may seem liable to two different objections, one

involving an issue of fairness and the other being more philosophical. The former

has to do with the fact that local equating implies different equated scores for the

same score Y ¼ y by test takers with different abilities. This different treatment of

equal observed scores seems unacceptable. However, the following example shows

that actually the opposite holds: Consider the case of two test takers p and q who

both have a score of 23 items correct on a 30-item test Y. Traditional equipercentile

equating routinely would give both test takers the same equated score, a higher

score than 23 if test Y appears to be more difficult than test X and a lower score if it

appears to be easier. Now, suppose we are told that p and q have the observed-score
distributions in Figure 13.1. As the figure reveals, the score observed for q was in

the lower tail of q’s distribution. However, p had better luck; p’s score was in the

upper tail of the distribution. Would it be fair to give the two individuals the same

equated score on test X? Or should we adjust their equated scores for measurement

error? After all, we do live in a world of fallible measures.

The critical question, of course, is where our knowledge of the abilities and the

observed-score distributions of the test takers could come from. The true challenge

to local equating lies in the answer to this question, not in any of the conceptual or

more formal issues we have dealt with so far. But in fact we often know more

than we realize. For instance, in observed-score equating, we generally ignore the

information in the response patterns that leads to the observed scores. The example

in Figure 13.1 typically arises when two test takers have equal number-correct

scores but one fails on some of the easier items and the other on some of the

more difficult ones. We immediately return to this important question in the next

section.
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The more philosophical issue regards the question of how we seriously could

propose using different equating transformations for a single measurement instru-

ment. No one would ever consider doing this, for instance, when a tape measure

appears to be locally stretched and its (monotonically) distorted measurements need

to be equated back to those by a flawless measure. The idea of using different

transformations to equate identical measurements on the distorted scale back to the

standard scale would seem silly. Why, then, propose this for number-correct score

equating in testing? This question is problematic because of its implicit claim of

the number-correct score as a measure with the same status as length measured by

a tape measure. Number-correct scores are entirely different quantities, though.

Unlike length measures, they are not fundamental measures, which always can be

reduced to a comparison between the object that is measured and a concatenation of

standard objects (e.g., an object on one scale and a set of standard weights on the

other). They are also not derived from such measures. (For a classic treatment of

fundamental and derived measurement, see Campbell, 1928). More surprisingly,

perhaps, although defined as counts of correct responses, number-correct scores

are not counting measures, either. They would only be counting measures if all

responses were equivalent. But they are not—each of them always is the result of an

interaction between a different combination of ability level and item properties.

This last fundamental fact was already noted when I introduced Lord’s (1980)

notation for observed-score equating in the beginning of this chapter and stated,

“Because X and Y are dependent both on the abilities of the test takers and the

properties of the items, an equating problem exists.” An effective way of disen-

tangling ability and item effects on test scores is to model them at the level of the

item-person combinations with separate item and person parameters, as IRT does.

Observed-score equating is an attempt to deal with the same problem at the level of

test scores in the form of a score transformation. But before applying any transfor-

mation to adjust for the differences between the items in different tests, we have

to condition on the abilities to get rid of their effects. Monotonic transformations
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Fig. 13.1 Example of two test takers p and q with different abilities but the same realized

observed score Y ¼ 23
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x ¼ ’(y) that adjust simultaneously for item and ability effects on observed test

scores on tests X and Y do not exist.

13.4 A Few Local Equating Methods

According to Lord’s theorem, observed-score equating is possible only if the scores

on forms X and Y are perfectly reliable or strictly parallel. On the other hand,

Theorem 3 in this chapter shows that equating under regular conditions is still pos-

sible, provided we drop the restriction of a single transformation for all ability levels.

It may seem as if Theorem 3 only replaces one kind of impossible condition

(perfect reliability or strictly parallelness) by another (known ability). However, an

important difference exists between them. Post hoc changes of the reliability and

the degree of parallelness of test forms are impossible; when equating the scores on

a test form, we cannot go back and make them more reliable or parallel. As a result,

Lord’s theorem leaves us paralyzed; it offers no hint whatsoever as to what to do

when real-world tests have less than perfect reliability or are not parallel. On the

other hand, we can always try to approximate the family of true equating transfor-

mations in Equation 13.15 using whatever information is available in the test

administration or equating study. Clearly, the closer the approximation, the better

the equating. In fact, even a rough estimate or a simple classification of the abilities

may be better than combining them into an assumed population before conducting

the equating.

The name local equating is derived from the attempt to get as close as possible to

the true equating transformations in Equation 13.15 to perform the equating. The

error definitions in Equation 13.12 or Equation 13.16 can be used to evaluate

methods based on such attempts in terms of their bias and mean standard error

using a computer simulation with response data generated for known abilities under

a plausible model.

Now that we know the road to equitable, population-independent equating, and

have the tools to evaluate progress along it, we are ready to begin a search for

Lord’s “next best thing.” The local equating methods below are first steps along this

road. I only review their basic ideas and show an occasional result from an

evaluation. More complete treatments and discussions of available results are

found in the references.

13.4.1 Estimating Ability

The first method is a local alternative to the IRT observed-score equating method in

Equations 13.10–13.11. It follows the earlier suggestion to obtain population-

independent equating by ignoring the common second factor h(y) in Equations

13.6–13.7 and basing the equating entirely on their first factors, fXjy(x) and fYjy(y).
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The main feature of this method is estimation of y under a response model that fits

the testing program, substituting the estimate in the true equating in Equation 13.15.

In fact, the procedure is entirely analogous to the use of the conditional standard

error of measurement in Equation 13.17, which also involves substitution of a y
estimate when used in operational testing.

For dichotomously scored test items, the conditional distributions of Y and X
given y belong to the generalized binomial family (e.g., Lord, 1980, Section 4.1).

Unlike the regular binomial family, its members do not have distribution functions

in closed form but are given by the generating function

Yn
i¼1

½QiðyÞ þ tPiðyÞ�; (13.20)

where Pi(y) is the success probability on item i for the response model in the testing

program and Qi(y)¼1�Pi(y). Upon multiplication, the coefficients of the factors

t1, t2,. . . in the expression are the probabilities of X¼ 1, 2, . . . . The probabilities are
easily calculated for forms X and Y using the well-known recursive procedure in

Lord and Wingersky (1984). From these probabilities, we can calculate the family

of true equating transformations in Equation 13.15. Thus, the family can be easily

calculated for any selection of ys as soon as the items in forms X and Y have been

calibrated for the testing program.

The estimates of y can be point estimates, such as maximum-likelihood esti-

mates assuming known item parameters or Bayesian expected a posterior estimates.

But we could also use the full posterior distribution of y for the test taker’s response
vector on form X to calculate his or her posterior expectation of the true family in

Equation 13.15. However, this alternative is more difficult to calculate and has not

shown to lead to any significant improvement over the simple procedures with a

point estimate of y plugged directly into Equation 13.15. More details on this local

method are given in van der Linden (2000, 2006a).

The local method of IRT observed-score equating lends itself nicely to observed-

score equating problems for test programs based on a response model. Another

natural application is the equating of an adaptive test to a reference test released to

its test takers for score-reporting purposes. In adaptive testing, y estimates are

immediately available. Surprisingly, this proposed equating of the number-correct

scores on an adaptive test is entirely insensitive to the fact that different test takers

get different selections of items; the use of the true equating transformations for the

test takers’ item selections at their y estimates automatically adjusts both for their

ability differences and the selection of the items (van der Linden, 2006b).

Observe that two different summaries of the information in the response patterns

on test Y are used: number-correct scores and y estimates. The latter picks up the

information ignored by the former. The earlier example for the two test takers with

the same number of items correct on Y in Figure 13.1, used to illustrate that they

nevertheless deserved different equated scores, was based precisely on this alterna-

tive type of IRT observed-score equating.

216 W.J. van der Linden



For later comparison, it is also interesting to note the different use of the condi-

tional distribution functions in traditional and local IRT observed-score equating.

In both versions, y estimates of the test takers and the conditional distributions of

X and Y given these estimates are calculated from Equation 13.20. In the traditional

version, the conditional distributions are then averaged over the sample of test

takers to get an estimate of the marginal distributions for assumed populations on X
and Y, and the equipercentile transformation is calculated for these marginal

distributions (e.g., Zeng & Kolen, 1995). In the local version of the method, no

averaging takes place, but different equipercentile transformations are calculated

directly for the different conditional distributions of X and Y given y.
Figure 13.2 shows a typical result from a more extensive evaluation of the method

of local IRT observed-score equating against traditional equipercentile equating in

van der Linden (2006a). The curves in the two plots show the bias functions based on

the responses on two 40-item tests X and Y simulated under the three-parameter

logistic response model for the simulated values y ¼�2.0,�1.5, . . . , 2.0 (curves

more to the left are for lower y values). The bias functions were the expectations of

the error functions in Equation 13.16 across the simulated observed-score distribu-

tions on test Y given y. (The mean standard error functions in this study, which were

the expectations of the squares of the same errors, are omitted here because they

showed identical patterns of differences.) For the local method, the bias was ignor-

able. But the bias for the traditional method went up to 4 score points (i.e., 10% of the

score range) for some combinations of ys and observed scores. For an increase in test
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length, the bias for the traditional method became even worse, but for the local

method it vanished because of better estimation of y. For the same reason, the bias

decreased with the discrimination parameters of the items in test Y. Likewise, the

local method appeared to be insensitive to differences in item difficulty between tests

in X and Y because y estimates have this property.

13.4.2 Anchor Score as a Proxy of Ability

The traditional methods for observed-score equating for a nonequivalent-groups-

and-anchor test (NEAT) design are chain equating and equating with poststratifica-

tion. The former consist of equipercentile equating from Y to the observed score A
on an anchor test A for the population that takes form Y with subsequent equating

from A to X for the population that takes form X. The equating transformation from

Y to X is the composition of the separate transformations for these two steps. In

equating with poststratification, the conditional distributions of X and Y given A¼ a
are used to derive the distributions on forms X and Y for a target population, usually

a population that is a synthesis of those that took the two forms as in Equation

13.19, and the actual equating is equipercentile equating of the distributions for this

target population (von Davier, Holland, & Thayer, 2004b, Section 2.4.2).

As a local alternative to these traditional methods, it seems natural to use the

extra information provided by the anchor test to approximate the true family of

equating transformations in Equation 13.15. For simplicity, we assume an anchor

test A with score A that is not part of Y (“external anchor”). For an equating with an

internal anchor, we just have to add the score on this internal anchor to the equated

score derived in this section.

For an anchor test to be usable, A has to be a measure of the same y as X and Y.
Formally, this means a classical true score tA�E(A) that is a monotonic increasing

function of the same ability y as the true scores for X and Y. The exact shape of the
function, which in IRT is known as the test characteristic function, depends on the

items in A as well as the scale chosen for y. It should thus hold that tA¼g(y) where g
is an (unknown) monotonically increasing function and y is the same ability as for

X and Y.
An important equality follows for the conditional observed-score distributions in

the true equating transformations in Equation 13.15. For instance, for the distribu-

tion of X given y it holds that

f ðx j yÞ ¼ f ðx j g�1ðtAÞÞ ¼ f ðx j tAÞ: (13.21)

Similarly, f(yjy) ¼ f(yjtA). Thus, whereas y and the true score on the anchor test

are on entirely different scales, the observed-score distributions given these two

quantities are always identical.

This fact immediately suggests an alternative to the local method in the preced-

ing section. Instead of using an estimate of y for each test taker, we could use an
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estimate of tA and, except for estimation error, get the same equating. An obvious

estimate of tA is the observed score A. The result is a simple approximation of the

family of true transformations in Equation 13.15 by

’ðy; aÞ ¼ F�1
XjaðFYjaðyÞÞ; a ¼ 0; :::;m; (13.22)

where m is the length of the anchor test and FXja(x) and FYja(y) are the distribution
functions of X and Y given A ¼ a. Local equating based on this method is easy to

implement; it is just equipercentile equating directly from the conditional distribu-

tions of Y to those of X given A ¼ a.
It is interesting to compare the use of the different observed-score distributions

available in the NEAT design between the two traditional methods and this local

method:

1. In chain equating, the equipercentile transformation is derived from four differ-

ent population distributions, namely, the distributions of X and Y for the popula-

tions that take tests X and Y and the distributions of A for the same two

populations.

2. In equating with poststratification, the conditional distributions of X and Y given

A ¼ a are used to derive the marginal distributions of X and Y for a target

population. The equating transformation is applied to these two distributions.

3. The current method of local equating directly uses the conditional distributions

of X and Y given A ¼ a to derive the family of equating transformations in

Equation 13.22.

The only difference between the previous method of local equating based on

maximum likelihood or Bayesian estimation of y and the use of the anchor test

scores A ¼ a as a proxy of y resides in the estimation or measurement error

involved. (I use the term proxy instead of estimate because, due to scale differences,
A is not a good estimate of y.) These errors have two different consequences. First,

for both equatings they lead to a mixing of the conditional distributions in Equation

13.15 that actually should be used. For direct estimation of y, the mixing is over the

distribution of y given the estimate, yjby. But for Equation 13.22, it is over y j A ¼ a
where y¼ g�1(ta). The former can be expected to be narrower than the latter, which

is based on less accurate number-correct scoring. The impact of these mixing

distributions, which generally depend on the lengths of X and A as well as the

quality of their items, requires further study. But it is undoubtedly less serious than

the impact of mixing the conditional distributions on forms X and Y over the entire

marginal population distribution f(y) in Equations 13.6–13.7, on which the tradi-

tional methods are based. Second, in the current local method, the conditional

distributions of X and Y given A ¼ a are estimated directly from the sample,

whereas in the preceding method they are estimated as the generalized binomial

distributions in Equation 13.20. For smaller sample sizes, the former will be less

accurate.

Figure 13.3 shows results from the evaluation of the chain-equating, poststrati-

fication and local method for a NEAT design in van der Linden and Wiberg
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(in press). The results are for a study with the same setup as for Figure 13.2 but with

a 40-item anchor test added to the design. Again, the local method outperformed the

two traditional methods. But it had a slightly larger bias than the local method in the

preceding section, because of the less favorable mixing of the conditional distribu-

tions of X and Y given y when A is used as a proxy of y. However, the more accurate

the proxy, the narrower the mixing distributions. Hence, as also demonstrated in

this study, the bias in the equated scores vanishes with the two main determinants of

the reliability of A—the length of the anchor test and the discriminating power of its

items. In this respect, the role of the anchor test in the current method is entirely

comparable to that of test form Y from which y is estimated in the preceding

method.

For testing programs that are response-model based, Janssen, Magis, SanMartin,

and Del Pino (2009) presented a version of local equating for the NEAT design with

maximum-likelihood estimation of y from the anchor test instead of the use of

A as a proxy for it. The empirical results presented by these authors showed bias

functions for this alternative method that are essentially identical to those in

Figure 13.2 and better than those in Figure 13.3. Janssen et al. also explained this

difference in performance by the fact that maximum-likelihood estimation of y
from A did a better job of approaching the intended conditional distributions of X
and Y given y than the use of number-correct anchor scores.

The study that produced the results in Figure 13.3 did not address the role

of sampling error in the estimation of the conditional distributions of X and Y
given A¼ a. For small samples, the error will be substantial. A standard approach to
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small-sample equating for NEAT designs, especially if the main differences

between the distributions of the observed scores on forms X and Y are in their

first and second moments, is linear equating in the form of Tucker, Levine, or linear

chain equating (Kolen & Brennan, 2004, Ch. 4). The use of local methods for linear

equating is explored in Wiberg and van der Linden (2009). One of their methods

uses the conditional means, mXja and mYja, and standard deviations, sXja and sYja,
of X and Y given A ¼ a to conduct the equating. The result is the family of

transformations

x ¼ ’ðy; aÞ ¼ mXja þ
sXja
sYja

ðy� mYjaÞ; a ¼ 0; :::;m: (13.23)

In an empirical evaluation, the method yielded better results than the traditional

Tucker, Levine, and linear chain equating methods but also improved on Equation

13.22 because of its reliance only on estimates of the first two moments instead of

the full conditional distributions of X and Y given A ¼ a.
So far, no explicit smoothing has been applied to any local equating method. The

application of smoothing techniques should reduce the impact of sampling error in

the estimation of the conditional distributions of X and Y given A¼ a for the NEAT
design to be considerable, especially for the techniques of presmoothing of

observed-score distributions proposed in von Davier et al. (2004b, Chapter 3).

13.4.3 Y ¼ y as a Proxy of Ability

The argument for the use of anchor score A as a proxy for y in the previous section

holds equally well for the realized observed score Y ¼ y. The score can be assumed

to have a true score � that is a function of the same ability y as the true score on form
X; see Equation 13.8–13.9. Again, scale differences between conditioning variables

do not matter, and we can just focus on the distributions of X and Y given � instead

of y. As Y ¼ y is an obvious estimate of �, it seems worthwhile exploring the

possibilities of local equating based on the conditional distributions of X and Y
given Y ¼ y that is, use

’ðyÞ ¼ F�1
XjyðFYjyðyÞÞ; y ¼ 0; :::; n: (13.24)

In an equating study with a single-group design, the distributions of X given

Y ¼ y can be estimated directly from the bivariate distribution of X and Y produced

by the study. The distributions of Y given y are more difficult to access. In fact, they

are only observable for replicated administrations of form Y to the same test takers.

However, Wiberg and van der Linden (2009) identified one case for which replica-

tions are unnecessary—linear equating conditional on Y ¼ y. For this case, the

general form of the linear transformation for observed-score equating specifies to
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x ¼ ’ðyÞ ¼ mXjy þ
sXjy
sYjy

ðy� mYjyÞ; y ¼ 0; :::; n: (13.25)

As classical test theory shows, mYjy ¼ y. Hence, the family simplifies to

x ¼ ’ðyÞ ¼ mXjy; y ¼ 0; :::; n: (13.26)

For all test takers with score Y ¼ y, this local method thus equates the observed

scores on Y to their conditional means on X.

In spite of the standard warning against the confusion of equating with regression

in the equating literature (e.g., Kolen & Brennan, 2004, Section 2.3), the local linear

equating in Equation 13.26 has the same formal structure as the (nonlinear) regres-

sion function of Y on X. Actually, however, Equation 13.26 is a family of degenerate

mappings with index y, just like the family for IRT true-score equating in Equation

13.18. (In fact, the equating in Equation 13.26 follows directly from Equation 13.18

if we substitute y as proxy for y.) Although it is thus incorrect to view Equation

13.26 as a direct postulate of the use of the regression function of X on Y for

observed-score equating, the formal equivalence between the two is intriguing.

Apparently, the fact that we allow for measurement error in X and Y when equating

does force us to rethink the relation between equating and regression.

An evaluation of Equation 13.26 showed a favorable bias only for the higher

values of y (Wiberg & van der Linden, 2009). Because the responses were

simulated under the three-parameter logistic model, the larger bias at the lower

values of y should be interpreted as the effect of guessing for low-ability test

takers—a phenomenon known to trouble traditional equipercentile equating as

well. This bias problem has to be fixed before practical use of the local method in

this section can be recommended.

13.4.4 Proxies Based on Collateral Information

In principle, every variable for which the expected or true scores for the test takers

are increasing functions of the y measured by forms X and Y could be used as a

proxy to produce an equating. The best option seems collateral information directly

related to the performances by the test takers on X or Y, such as the response times

on the items in Y or scores on a earlier related test. However, the use of more

general background variables, such as earlier schooling or socioeconomic factors,

should be avoided because of the immediate danger of social bias.

Empirical studies with these types of collateral information on y have not yet

been conducted. Of course, different sources of collateral information will yield

equatings with different statistical qualities. But the only thing that counts is

rigorous evaluation of each of these qualities based on the definitions of equating

error in Equations 13.12 and 13.16. These evaluations should help us to identify the

best feasible method for an equating problem.

222 W.J. van der Linden



13.5 Concluding Remarks

The role of measurement error has been largely ignored in the equating literature.

When I had the opportunity to review two new texts on observed equating that now

have become standard references for every specialist and student in this area, I was

impressed by their comprehensiveness and technical quality but missed the neces-

sary attention to measurement error. Both reviews ended with the same conclusion:

“It is time for test equating to get a firm psychometric footing” (van der Linden,

1997, 2006c).

It is tempting to think of measurement error as “small epsilons to be added to test

scores” and to believe that for well-designed tests the only loss involved in ignoring

their existence are somewhat less precise equated scores. This chapter shows that

this view is incorrect. Equating problems without measurement error are structur-

ally different from problems with error; the score distributions for the former imply

single-level modeling; those for the latter hierarchical modeling. Lord’s (1980)

discussion of observed-score equating for the cases of infallible and fallible mea-

sures already revealed some of the differences: Without measurement error equat-

ing is automatically equitable and population independent, but with error these

features are immediately gone. This chapter has added another difference: Without

measurement error the same transformation suffices for any population of test

takers, but with error the transformations become ability dependent and we need

to look for different transformations for different ability levels.

The statistical consequence of ignoring such structural differences is not “some-

what less precise equated scores” but bias that, under realistic conditions, can

become large. This consequence is not unique to equating; it has been well

researched and documented in other areas, a prime example being regression with

errors in the predictors, which have a long history of study as “errors-in-variables”

problems in econometrics.

As the review of the local equating methods above suggests, the main change for

equating to allow for measurement error is a shift from equating based on marginal

distributions for an assumed population to the conditional distributions given a

statistical estimate or a proxy for the ability measured by the tests. In principle, the

formal techniques required for distribution estimation, smoothing, and the actual

equating, as well as the possible designs for equating studies, remain the same.

Thus, in principle, in order to deal with measurement error we do not have to reject

a whole history of prolific equating research, only to redirect its application.
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Chapter 14

A General Model for IRT Scale Linking

and Scale Transformations

Matthias von Davier and Alina A. von Davier

14.1 Introduction

The need for equating arises when two or more tests on the same construct or

subject area can yield different scores for the same examinee. The goal of test

equating is to allow the scores on different forms of the same tests to be used and

interpreted interchangeably. Item response theory (IRT; Hambleton, Swaminathan,

& Rogers, 1991; Lord, 1980; Thissen & Wainer, 2001) has provided new ways to

approach test equating. Using IRT in the equating process usually also requires

some sort of linking procedure to place the IRT parameter estimates on a common

scale.

In this chapter we focus on the IRT linking procedures used for data collection

designs that involve common items. The data collection designs that use this

method are nonequivalent groups with anchor test (NEAT) designs and can have

both internal and external anchor tests (see, e.g., Kolen & Brennan, 1995; von

Davier, Holland, & Thayer, 2004b).

The NEAT design has two populations of test takers, populations P andQ (P and

Q) of test takers and a sample of examinees from each. The sample from P takes test

form X, or X.The sample from Q takes test form Y, or Y and both samples take a set

of common items, the anchor test V. This design is often used when only one test

form can be administered at one test administration because of test security or other

practical concerns. The two populations may not be equivalent in that the two

samples are not from a common population.

The two test forms X and Y and the anchor V are, in general, not parallel test
forms, that is, their conditional expectations and error variances for a given

examinee will not be identical. More specifically, the anchor test V is usually

shorter and less reliable than either X or Y. Angoff (1971/1984) gave advice on
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designing anchor tests. For a comparison of a variety of methods for treating the

NEAT design, see Kolen and Brennan (1995); Marco, Petersen, and Stewart

(1983b); and Petersen, Marco, and Stewart (1982).

In this chapter we examine the IRT scale transformation and IRT linking

methods used in the NEAT design to link X and Y More exactly, we propose a

unified approach to the IRT linking methods: mean-sigma and mean-mean, concur-

rent calibration, fixed-parameters calibration, the Stocking and Lord characteristic-

curves approach, and the Haebara characteristic-curves approach (see Kolen &

Brennan, 1995, Ch. 6, for a detailed description of these methods). Moreover, we

believe that our view of IRT linking can be extended to cover other flavors of IRT

scaling and linking procedures.

In our approach, the parameter space is described by all the parameters of the

IRT model fitted to the data from both populations in a marginal maximum

likelihood framework. Under the usual assumptions for the NEAT design, which

are described later, the joint log-likelihood function for this model on the data from

both populations can be expressed as the sum of two log-likelihood functions

corresponding to each of the two groups of data and parameters.

The main idea in our approach is to view any linking method as a restriction

function on the joint parameter space of the instruments to be equated. Once this is

understood, rewriting the joint log-likelihood function by including a term for each

restriction and an appropriately implemented maximization procedure will accom-

plish the linking. The maximization is carried out using a vector of Lagrange

multipliers (see, e.g., Aitchison & Silvey, 1958; Glas, 1999; von Davier, 2003a).

We will show that the new approach is general enough to cover the usual item

response models—the one-parameter logistic (1PL), 2PL, and 3PL models—as

well as polytomous, unidimensional IRT models like the generalized partial-credit

model.

This new perspective on IRT linking has advantages. First, providing a common

framework for all IRT scale linking methods yields a better understanding of the

differences between the approaches, which opens paths to more flexible methods of

IRT linking. Also, viewing the IRT linking as a restriction function allows us to

control the strength of the restriction. For example, the concurrent calibration with

fixed item parameters is the most restrictive IRT linking method, as it assumes the

equality of all parameters in the anchor test. When such a strong restriction is not

appropriate, the proposed method provides alternatives. Moreover, the method

provides a family of linking functions that ranges from the most restrictive one,

the concurrent calibration with fixed item parameters, to separate calibration

(without additional restrictions, i.e., to no linking at all). Finally, the new perspec-

tive allows the development of methods to check the IRT linking (such as Lagrange

multiplier tests) for appropriateness of different methods. For this, similar princi-

ples as developed in Glas (1999, 2006) could be applied to check the invariance of

certain parameters or types of parameters.

This chapter, a summarized version of von Davier and von Davier (2007),

describes the theoretical framework and derivations of a general approach to IRT

linking. It generalizes a linking method implemented and utilized by von Davier
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&Yamamoto (2004) to link IRT scales across three student populations. The rest of

the chapter is structured as follows. First we introduce our notation and briefly

describe the well-known IRT linking methods. Then, we investigate the joint log-

likelihood function and the restriction function more formally and for several IRT

linking methods. Finally, we discuss the advantages of this perspective on the IRT

linking.

14.2 The NEAT Design and IRT Linking

14.2.1 The NEAT Design

The data structure and assumptions needed for the NEAT design are described in

von Davier et al. (2004b). Briefly, population P yields Sample 1, taking test form X;

population Q yields Sample 2, taking test form Y. Both samples take anchor test V.
We denote the matrices of observed item responses to the tests X, V, and Y by X, V
and Y. The subscripts P and Q denote the populations.

The analysis of the NEAT design usually makes the following assumptions:

1. There are two populations of examinees P and Q, each of which can take one of

the tests and the anchor.

2. The two samples are independently and randomly drawn from P and Q, respec-
tively. In the NEAT design X is not observed in population Q, and Y is not

observed in population P. To overcome this feature, all linking methods devel-

oped for the NEAT design (both observed-score and IRT methods) must make

additional assumptions of a type that does not arise in the other linking designs.

3. The tests to be equated, X and Y, and the anchor V, are all unidimensional (i.e.,

all items measure the same unidimensional construct), carefully constructed

tests, in which the local independence assumption holds (Hambleton et al.,

1991).

These three assumptions are sufficient for our exposition. We will not impose

any constraints on the distributions of X, Y or V, that is, the score distribution will be
assumed to be multinomial. Alternatives, such as log-linear models for observed

score distributions (Rost & von Davier, 1992, 1995; von Davier, 1994, 2000) and

latent skill distributions (Xu & von Davier, 2008) have been discussed and are also

used in observed-score equating (von Davier et al., 2004b).

14.2.2 Unidimensional IRT Models

IRT models rely on the assumptions of monotonicity, undimensionality, and local

independence (Hambleton et al., 1991). These models express the probability of
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a response xni of a given person, n (n ¼ 1; :::; N), to a given item, i (i ¼ 1; :::; I), as a
function of the person’s ability yn and a possibly vector valued item parameter, bi,

Pni ¼ PðX ¼ xniÞ ¼ f ðxni; yn; biÞ (14.1)

In the case of the well-known 3PL model (Lord & Novick, 1968), the item

parameter is three-dimensional and consists of the slope, the difficulty, and the

guessing parameter, bti ¼ ðai; bi; ciÞ.The 3PL model, which serves as the standard

example of an item response model in this paper, is given by

P xi ¼ 1jy; ai; bi; cið Þ ¼ ci þ ð1� ciÞlogit�1 ai y� bið Þ½ �; (14.2)

with logit�1ðxÞ ¼ expðxÞ=ð1þ expðxÞÞ. However, most results presented here do

not depend on the specific choice of the item response model and apply to models

for both dichotomous and polytomous data.

14.2.3 IRT Linking

When conducting IRT scale linking in the NEAT design, the parameters of the item

response model from different test forms need to be, or need to be brought, on the

same IRT scale. IRT models without scale constraints are undetermined: linear

transformations of the item, and person parameters do not change the likelihood of

observed responses. Therefore, the potentially different scales from separate cali-

brations can be brought on the same scale in one of the following ways: Assuming

that the calibration was carried out separately on the two samples from the two

different populations P and Q, two sets of parameter estimates for the anchor test V
will be available for examinees in the two groups. These separate parameter

estimates of the anchor in the two groups serve as the basis for the scale transfor-

mation (mean-mean, mean-sigma methods, or characteristic-curves methods, such

as Stocking and Lord or Haebara methods).

As an alternative, the item parameters from X, V (in both populations), and Y can

be estimated jointly, coding the items that an examinee did not receive as “not

administered,” since these outcomes were unobserved and are missing by design.

The item parameters are estimated simultaneously, and separate ability distribu-

tions are assumed in the two populations, while the parameters of the anchor are

assumed to be identical in both populations; this IRT scaling is usually referred to as

concurrent calibration. Another calibration method is the fixed-parameters method.
This approach differs from concurrent calibration in that common items whose

parameters are known (either from a previous-year calibration or a separate cali-

bration) are anchored or fixed to their known values, often estimates from a

previous calibration, during calibration of other forms, or the same common

items within a form administered in a different year or in a different population.
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By treating the common item parameters as known, they are not estimated, and the

item parameters from the unique items are forced onto the same scale as the fixed,

common items. This procedure is implemented in IRT calibration using models

referred to as multiple-group models with constraints of common items across

groups (populations, forms). For more details, see Kolen and Brennan (1995),

Stocking and Lord (1983), Haebara (1980), or Hambleton et al. (1991).

14.3 A Lagrangean Approach to IRT Linking

Let the sample size of the group from P that takes (X, V) be denoted by NP, let the

sample size of the group from Q that takes (Y, V) be NQ and denote N ¼ NP þ NQ:
We will use the following notation for the item parameters in the different test

forms and populations:

bi ¼
bXPj

; 1 � i � J; ð1Þ
bVPl

; J þ 1 � i � ðJ þ LÞ; ð2Þ
bVQl

; ðJ þ LÞ þ 1 � i � ðJ þ 2LÞ; ð3Þ
bYQk ; ðJ þ 2LÞ þ 1 � i � IP;

8>><
>>:

(14.3)

where IP ¼ J þ 2Lþ K denotes the total number of items and J, L, and K are the

number of the items in the tests X, V, and Y respectively. For example, bXPj
denotes

the (possible vector-valued) item parameter for item j from the set of items from the

test X that was taken by the examinees from P. Similarly, bVPl
denotes the (possibly

vector-valued) item parameter for item l from the set of items from the anchor test V
that was taken by the examinees from P, and so forth.

The total number of the item parameters (TNIP) is the dimension of the vector of

the item parameters times the number of parameters per item. For example, if all

items are modeled via the Rasch model, TNIP ¼ 1� IP; for a 2PL model,

TNIP ¼ 2� IP; and for the 3PL model, TNIP ¼ 3� IP; For mixtures of item

model types in one test, TNIP is the sum of individual item parameter dimensions

(1, 2, or 3 for dichotomous items and 2 or more for partial-credit items) over all

items.

14.3.1 Separate Calibration

When estimating separately, the item and ability distribution parameters for popu-

lation P are obtained given data (X, VP), separately from the item and ability

distribution parameters for population Q given data (Y, VQ). Technically, this can

be accomplished by fitting one IRT model to the combined data without assuming

that the common items have the same item parameters in both populations.
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As mentioned before, the parameter space is described by all the parameters in

the IRT model fitted to the data from both populations, in a marginal maximum

likelihood framework. Software such as MULTILOG (Thissen, 1991) and PARS-

CALE (Muraki & Bock, 1991) as well as the more recent mdltm (von Davier, 2005)

may be used to perform such calibrations.1

Let pP and pQ denote the parameters used to model the ability distribution. We

may think of them as pP;Q ¼ ðmP;Q; sP;QÞ in the case where we assume normal

ability distributions. In somewhat more flexible models, we may assume that the

pP,Q is a set of multinomial probabilities over quadrature points approximating

arbitrary distribution shapes. Hence, the complete parameter space is contained in

the (transposed) parameter vector

�t ¼ ðbXP
; bVP

; pP;bYQ ; bVQ
; pQÞ; (14.4)

Given Assumptions 1 and 2 and the properties of the logit and logarithm

functions, we can rewrite the joint log-likelihood function for the IRT model

applied to the data from both populations as the sum of the two log-likelihood

functions,

L �;X;VP;Y;VQ

� � ¼ L bXP
; bVP

; pp;X;VP

� �þLðbYQ ; bVQ
; pQ; Y;VQÞ (14.5)

In other words, the two separate models are estimated and the two log-likelihood

functions are maximized jointly using marginal maximum likelihood. Now, it is

easy to conceive any linking function as a restriction function on the parameter

space and any linking process as a maximization of Equation 14.5 under the linking

restriction. Later we will illustrate in detail how this approach works for each

linking method. Next, we illustrate the concurrent calibration method in some

detail and then outline how this approach translates to each of the other IRT linking

methods: mean-mean, mean-sigma, Stocking and Lord, Haebara, and fixed para-

meters.

14.3.2 Lagrangean Concurrent Calibration

When estimating concurrently, the item and ability distribution parameters for

population P are obtained given data (X,VP) simultaneously with the item and

ability distribution parameters for population Q given data X, VQ.Technically,

two separate ability distributions are estimated and the two log-likelihood

1Themdltm software is a command line controlled program that runs on various operating systems.

Executables can be made available for noncommercial purposes upon request; please contact the

first author of this chapter for details.
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functions are maximized jointly with certain restrictions on the item parameters,

namely

bVPl
¼ bVQl

(14.6)

for l ¼ 1, . . . , L.
Let R denote the L-dimensional restriction function with the components

given by

Rlð�Þ ¼ klðbVPl
� bVQl

Þ; (14.7)

with kl ¼ 1 for active restrictions on item l.
For the 2PL and 3PL, the restrictions may be imposed only on the b parameters

and not on the slope and guessing parameters. This can be achieved by first using

projections, h, and then imposing the same constraints as before. The projection,

say a mapping h would isolate the item difficulty b out of the three-dimensional

item parameter in the case of the 3PL, and then apply the restriction function on

this parameter only. That is, bVl ¼ hðbVlÞ to obtain the difficulty, and then use

Rlð�Þ ¼ klðhðbVPl
Þ � hðbVQl

ÞÞ to impose constraints on the difficulties only.

Hence, the concurrent calibration refers to maximizing Equation 14.5 under the

restriction

Rlð�Þ ¼ 0: (14.8)

This setup, maximizing Equation 14.5 under the restriction Equation 14.8, is

used whenever certain item parameters are assumed to be equal across populations,

in our case across P and Q.
Given a vector l of Lagrangean multipliers, the linking process can be viewed as

maximizing the modified log-likelihood function

L �;l;X;Vp;Y;VQ

� �¼L bXp;bVp;pP;X;VP

� �þLðbYQ;bVQ;pQ;Y;VQÞ�ltRð�Þ: (14.9)

Note that if we choose kl ¼ 0 for all l the restriction functions, all

Rlð�Þ ¼ klðbVPl
� bVQl

Þ vanish. In that case, the bVP
and bVQ

are no longer con-

strained to be equal; instead of concurrent calibration with equality constraints,

maximizing the likelihood simultaneously now yields separate calibrations and

allows the item parameters in the anchor test V to differ between P and Q.
The function in Equation 14.9 is then maximized with respect to parameters �

and l.
In concurrent calibration, Equation 14.9 includes a term Rl for each item

l ¼ 1; . . . ; L in the anchor test V. This term enables the imposition of equality

constraints on the parameters bVP
and bVQ

.
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14.3.3 Lagrangean Fixed-Parameters Scale Linkage

In this method, common items whose parameters are known (for example, from a

previous administration calibration or a separate calibration) are anchored or fixed

to their known estimates, wl; l ¼ 1; ::: L; during calibration of other forms, or forms

with common items in other assessment years or populations. These common item

parameters are treated as known and therefore are not estimated; the item para-

meters from the items that are not common to the forms are forced onto the same

scale as the fixed items. This calibration procedure is more restrictive than concur-

rent calibration.

As before, let now R denote the 2L-dimensional restriction function with the

components given by

Rð�Þt ¼ ðRPlð�Þ; RQlð�ÞÞ: (14.10)

where

RPlð�Þ ¼ klðbVPl
� wlÞ;

RQlð�Þ ¼ klðbVQl
� wlÞ; (14.11)

and hence the concurrent calibration refers to maximizing Equation 14.9 under the

restriction

Rð�Þ ¼ 0: (14.12)

14.3.4 Lagrangean Mean-Mean IRT Scale Linking

If an IRTmodel fits the data, any linear transformation2 (with slope A and intercept B)
of the y-scale also fits these data, provided that the item parameters are also

transformed (see, e.g., Kolen & Brennan, 1995, pp. 162–167). In the NEAT design,

the most straightforward way to transform scales when the parameters were esti-

mated separately is to use the means and standard deviations of the item parameter

estimates of the common items for computing the slope and the intercept of the

linear transformation. Loyd and Hoover (1980) described the mean-mean method,

where the mean of the a-parameter estimates for the common items is used to

estimate the slope of the linear transformation. The mean of the b-parameter

2A more general result holds: All strictly monotone transformations of y are also permissible. This

feature, however, will not be pursued further in this chapter.

232 M. von Davier and A.A. von Davier



estimates of the common items is then used to estimate the intercept of the linear

transformation (see Kolen & Brennan, 1995, p. 168).

Lagrange multipliers also may be used to achieve IRT scale linking according to

the mean-mean approach. Again, maximizing the modified log-likelihood function

L given in Equation 14.9 with a different set of restrictions does the trick. For the

mean-mean IRT linking, the restriction function is two-dimensional with the

components Ra and Rb, R
t ¼ (Ra, Rb) To match the mean of anchor parameters of

population P, define

Rað�Þ ¼
XL
l¼1

haðbVQl
Þ � AP

 !
(14.13)

with a constant term AP ¼P haðbVPl
Þ, which is not viewed as a function of the bVP

(but recomputed at each iteration during maximization) in order to allow uncon-

strained maximization for P and enforce the mean of bVQ to match this mean in P.
As has been explained, h is a projection.

The same is done with the difficulty parameters bl ¼ hbðblÞ:

Rbð�Þ ¼
XL
l¼1

hbðbVQl
Þ � BP

 !
: (14.14)

This new approach to IRT linking includes also a more general approach that

handles populations P and Q symmetrically using

Rað�Þ ¼
XL
l¼1

haðbVQl
Þ � haðbVPl

Þ
 !

(14.15)

with haðbiÞ ¼ ai and

Rbð�Þ ¼
XL
l¼1

hbðbVQl
Þ � hbðbVPl

Þ
 !

(14.16)

with hbðbiÞ ¼ bi. This avoids the arbitrary choice whether to match P or Q’s slope
and difficulty means on the anchor test V.

14.3.5 Lagrangean Mean-Var IRT Scale Linking

The mean-var IRT scale linkage (Marco, 1977) obviously can be implemented in

the same way, with only a slight difference in the restrictions used. The means and
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the standard deviations of the b-parameters are used to estimate the slope and the

intercept of the linear transformation.

Again, a two-dimensional restriction function with components Ra and Rb is

needed. In order to match the mean and variance of the anchor test’s difficulty

parameter in population P, we define

Rað�Þ ¼
XL
l¼1

haðbVQl
Þ � BP

 !
(14.17)

with a constant term BP ¼P haðbVPl
Þ, which again is not viewed as a function of

the bVP
. The same is done with the squared difficulties, b2l ¼ h2bðblÞ;

Rbð�Þ ¼
XL
l¼1

h2bðbVQl
Þ � B2

P

 !
(14.18)

where B2
P ¼P h2bðbVPl

Þ.
As before, a more general approach handles populations P and Q symmetrically

using

Rað�Þ ¼
XL
l¼1

hbðbVQl
Þ �

XL
l¼1

hbðbVPl
Þ

 !
(14.19)

with hbðbiÞ ¼ bi and

Rbð�Þ ¼
XL
l¼1

h2bðbVQl
Þ �

XL
l¼1

h2bðbVPl
Þ

 !
(14.20)

with h2bðbiÞ ¼ b2i .

14.3.6 Lagrangean Stocking and Lord Scale Linkage

Characteristic-curves transformation methods were proposed (Haebara, 1980;

Stocking & Lord, 1983) in order to avoid some issues related to the mean-mean

and mean-var approaches. For the mean-mean and mean-var approaches, various

combinations of the item parameter estimates produce almost identical item-char-

acteristic curves over the range of ability at which most examinees score.

The Stocking and Lord (1983) IRT scale linkage finds parameters for the linear

transformation of item parameters in one population (say, Q) that matches the test

characteristic function of the anchor in the reference population (say, P). The
Stocking and Lord transformation finds a linear transformation (a slope A and an
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intercept B) of the item parameters—difficulties and slopes—in one population

based on a matching of test characteristic curves. Expressing this in the marginal

maximum likelihood framework yields

ðA;BÞ ¼ min
XG
g¼1

p�g
XL
l¼1

p yg; bVPl
� �� p yg;Bþ AbVQl

� �� � !22
4

3
5; (14.21)

where the weights p�g of the quadrature points yg for g ¼ 1, . . . , G. are given by

p�g ¼
nPgpPg þ nQgpQg

nPg þ nQg
: (14.22)

We propose using a method employing the same rationale as the Stocking and

Lord (1983) approach, namely optimizing the match of the test characteristic curves

between the anchors VP and VQ. In the proposed framework, the primitive of these

functions, which is the criterion to be minimized to match the two test characteristic

functions as closely as possible, is defined as

RSLð�Þ ¼
XG
g¼1

p�g
XL
l¼1

p yg; bVPl
� �� p yg; bVQl

� �� � !22
4

3
5: (14.23)

In order to minimize Equation 14.23, we implement the Lagrangean in such a

way that

Lð�; lÞ ¼ LðX;VPÞ þ LðY;VQÞ � lJRSLð�Þ; (14.24)

or, more explicitly,

Lð�; lÞ ¼ LðX;VPÞ þ LðY;VQÞ � lTPJP;RSLð�Þ � lTQJQ;RSLð�Þ: (14.25)

The components of interest of the Jacobian JRSLð�Þ are defined by components

for the anchor item parameters in P,

@RSLð�Þ
@bi;P

¼
XG
g¼1

p�g
@p yg; bVPi
� �
@biVP

2
XL
l¼1

p yg; bVPl
� �� p yg; bVQl

� �� �" #
; (14.26)

and for the components representing the item parameters in Q we find

@RSLð�Þ
@bi;Q

¼ �
XG
g¼1

p�g
@p yg; bVQi
� �
@biVP

2
XL
l¼1

p yg; bVPl
� �� p yg;bVQl

� �� �" #
(14.27)
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because of the negative sign of all b�;Q terms. Let W 2 {P, Q} denote that the

following exposition applies to both P and Q. The derivatives in the equations

above actually represent vector-valued derivatives if bi;W is vector valued. For

example, we have

@RSLð�Þ
@bi;W

¼ @RSLð�Þ
@ai;W

;
@RSLð�Þ
@bi;W

;
@RSLð�Þ
@ci;W

� �

in the case of the 3PL model, where W stands for either P and Q.
By maximizing Equation 14.19 we will find the transformation of the difficulties

and the slopes in one population based on matching test characteristics. Note that in

our approach this transformation does not need to be linear (although it will be

linear if the model fits the data).

14.3.7 Lagrangean Haebera Scale Linkage

Haebara (1980) expressed the differences between the characteristic curves as the

sum of the squared differences between the item characteristic functions for each

item over the common items for examinees of a particular ability yn. The Haebara
method is more restrictive than the Stocking and Lord (1983) method because the

restrictions take place at the item level (i.e., for each item), whereas the Stocking

and Lord approach poses a global restriction at the test level. The slope and the

intercept of the linear transformation can be found by minimizing the expression on

the right-hand side of Equation 14.28:

ðA;BÞ ¼ min
XG
g¼1

p�g
XL
l¼1

p yg; bVPl
� �� p yg;Bþ AbVQl

� �� �2" #
; (14.28)

(see, e.g., Kolen & Brennan, 1995, p. 170).

The algorithm we are proposing is similar to the one described previously for the

Stocking and Lord scale linking; the only difference (from the computational point

of view) is in the form of the restriction function:

RHð�Þ ¼
XG
g¼1

p�g
XL
l¼1

p yg; bVPl
� �� p yg; bVQl

� �� �2" #
(14.29)

As before, in order to minimize Equation 14.29, we implement the Lagrangeans

in such a way that

Lð�; lÞ ¼ LðX;VPÞ þ LðY;VQÞ � lJRH ð�Þ; (14.30)
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or, more explicitly,

Lð�; lÞ ¼ LðX;VPÞ þ LðY;VQÞ � lTPJPRHð�Þ � lTQJQRHð�Þ: (14.31)

The components of interest of the Jacobian JRHð�Þ are

@RHð�Þ
@blP

;
@RHð�Þ
@blQ

: (14.32)

Again, the partial derivatives may be vector valued for each bi;PjQ; so that the

dimension of the restriction is approximately 2L times average number of item

parameter dimensions, 3 if only the 3PL model is used but maybe higher when

generalized partial-credit items or other polytomous item response models are

present.

14.4 An Illustration of Concurrent Calibration

The illustration reuses data from a pilot language test that was described in detail by

von Davier (2005), where the data were analyzed using diagnostic models as well as

IRT models. For the selection of models tested, von Davier (2005) found that the

mixed 2PL, generalized partial-credit model fits the data best among the models

tested in this study. For illustration of some of the concepts outlined in this chapter,

we reproduce only the slopes and difficulties of the dichotomous items, so that the

tables of this example will consist of subset items, all with two response categories.

Items 11, 25, and 38 were items with a polytomous response format. They were part

of the calibration but are not reproduced here in order to keep the tables easy to read

and to allow comparisons of constraints based on one slope and one difficulty

parameter only.

The data came from different subsamples, each student receiving an identifica-

tion code number that included information about the testing site. For the example

presented here, students were split into two subsamples comprising of identification

codes lower than 3,000 and equal to or higher than 3,000. This produced two

subsamples that represented similar populations such as the ones observed when

data are collected over 2 days of test administration, a common feature of large-

scale testing programs. In our example, the data split in such a way produced two

subsamples that may differ slightly in average ability, although not expected to

demonstrate systematic differences in response rates. The first subsample, from

population P, consists of NP ¼ 1,463, and the subsample that constitutes population

Q consists of NQ ¼ 1,257 students. All item calibrations were performed using the

mdltm software (von Davier, 2005), which incorporates standard ways of con-

straining the average of item parameters, or the mean and variance of the ability

distribution using parameter adjustments in the maximization methods employed,
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in order to remove the indeterminacy of the IRT scale. More specifically, the

estimates of item difficulties and slopes from the current iteration of the maximiza-

tion procedure are adjusted either to match certain constants or to match the current

estimate of the mean and variance of the ability distribution. Then, maximization

continues in the following iteration. These steps, or steps equivalent to these,

correspond to Equations 14.13 and 14.14 and are necessary to remove the indeter-

minacy (invariance under linear transformations) of the IRT scale.3

For the second calibration in this example, equality constraints across popula-

tions were used to link the scales across multiple groups. The equality constraints of

item difficulties and slope parameters across two or more populations in a multiple-

group IRT model, as shown in the example below, are implemented in mdltm in a

way that is equivalent to the Lagrangean multiplier approach presented in Section

14.3.3. and 14.3.4.

Table 14.1 shows the item parameter estimates in these two subsamples for a

multiple-group, 2PL IRT model with the same set of constraints on the mean of

item difficulties and slopes in both populations.

Table 14.2 shows item parameter estimates of a concurrent calibration that sets

equality constraints only on a subset of the items, in this example imposing equality

of item parameters on the first half, or 19 items. This is, as outlined above, a form of

IRT scale linkage that involves setting equality constraints on subsets of items and

allowing unique parameters for other items across the groups. If all items were

assumed to have the same parameters, this would represent a concurrent calibration

with complete equality of all item parameters (see the relevant subsections in

Section 14.3).

The ability distributions in the two different calibrations are given in Table 14.3.

The constraints on the average difficulty and slope parameters were chosen to

match 0.0 for the average difficulty and 1.0 for the average slope. This did not

change overall results, because IRT scales are invariant under linear transforma-

tions.

Table 14.3 shows that the means and variances of the ability distributions in the

two different conditions are comparable. The constraints used in Condition A are

weaker than in Condition B. The number of constraints set in Condition B is 41 (19

slopes þ 18 dichotomous difficulties + 4 thresholds for the five-category Item 114)

and amounts effectively to a reduction of free parameters for the two-group model

to be estimated from 170 in Condition A to 129 in Condition B.

The fit of the models estimated in the two conditions is comparable, the log

likelihood is La ¼ �56994.954 (BICa ¼ 115334.33) for Condition A and

La ¼ �57018.37 (BICb¼115056.93) for Condition B. Taking the reduction of

estimated parameters into account, the smaller Bayesian information criterion

3An alternative to procedures relying on these averages is to remove the indeterminacy by setting

one item difficulty and the slope of that item to prespecified constants, and fix these values for that

item without updating in the maximization.
4The polytomous items are not shown in the tables but were part of the data, with mixed item

format in both calibrations.
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(Schwarz, 1978) for Condition B indicates that the model with 19 items constrained

to have equal item parameters across groups fits the data relatively better in terms of

balancing parsimony and model-data fit.

14.5 Discussion

This chapter presents a new perspective on IRT linking. We introduce a unified

approach to IRT linking, emphasizing the similarities between different methods.

We show that IRT linking might consist of a family of IRT linking functions, where

Table 14.1 Multiple Group Calibration in Two Populations, Separately Calibrated

Item Mean slopes Mean difficulties

Pop. P Pop. Q Pop. P Pop. Q

1 0.789 0.867 �0.345 �0.500

2 0.976 0.893 �0.042 0.190

3 1.222 1.503 0.603 0.593

4 1.304 1.405 0.670 0.759

5 0.660 0.770 �0.512 �0.461

6 1.042 1.059 0.710 0.584

7 0.701 0.678 �0.039 �0.113

8 1.672 1.471 0.152 0.351

9 0.373 0.418 0.820 0.749

10 0.830 0.838 �0.804 �0.907

12 1.132 0.872 0.635 0.845

13 2.270 1.787 2.740 2.604

14 0.581 0.530 0.329 0.383

15 1.091 1.243 �0.245 �0.467

16 1.057 0.900 �1.262 �1.052

17 0.751 0.912 �0.919 �1.042

18 1.449 1.670 �1.158 �1.365

19 1.365 1.305 2.021 2.034

20 2.011 1.592 1.937 2.212

21 0.815 0.779 0.328 0.342

22 1.234 1.598 0.850 0.872

23 1.248 1.231 0.329 0.063

24 1.019 1.042 0.301 0.124

26 0.886 0.930 �0.576 �0.550

27 0.979 0.842 �0.494 �0.394

28 0.853 0.930 0.627 0.515

29 0.563 0.609 0.433 0.269

30 1.845 1.768 0.331 0.614

31 0.478 0.530 �0.839 �0.961

32 1.036 1.199 �0.367 �0.468

33 0.628 0.588 0.013 0.307

34 0.645 0.600 0.381 0.606

35 0.914 0.886 �0.590 �0.523

36 0.686 0.904 1.291 0.967

37 0.661 0.504 �0.941 �0.862
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Table 14.2 Concurrent Calibration With First 19 Items Constrained to Same Slopes and Diffi-

culties in Both Populations

Item Slopes Difficulties

Pop. P Pop. Q Pop. P Pop. Q

1 0.833 0.833 �0.423 �0.423

2 0.929 0.929 0.075 0.075

3 1.349 1.349 0.588 0.588

4 1.347 1.347 0.711 0.711

5 0.709 0.709 �0.491 �0.491

6 1.059 1.059 0.648 0.648

7 0.694 0.694 �0.073 �0.073

8 1.564 1.564 0.259 0.259

9 0.397 0.397 0.784 0.784

10 0.838 0.838 �0.853 �0.853

12 0.995 0.995 0.750 0.750

13 1.997 1.997 2.669 2.669

14 0.555 0.555 0.359 0.359

15 1.170 1.170 �0.354 �0.354

16 0.979 0.979 �1.153 �1.153

17 0.828 0.828 �0.981 �0.981

18 1.554 1.554 �1.256 �1.256

19 1.338 1.338 2.031 2.031

20 1.993 1.602 1.946 2.206

21 0.821 0.779 0.332 0.338

22 1.241 1.603 0.858 0.865

23 1.256 1.227 0.336 0.058

24 1.023 1.045 0.308 0.118

26 0.894 0.927 �0.574 �0.552

27 0.985 0.843 �0.489 �0.398

28 0.861 0.928 0.631 0.512

29 0.566 0.609 0.436 0.267

30 1.848 1.768 0.343 0.606

31 0.485 0.527 �0.842 �0.961

32 1.046 1.196 �0.365 �0.472

33 0.633 0.588 0.016 0.304

34 0.651 0.601 0.383 0.603

35 0.923 0.884 �0.587 �0.526

36 0.691 0.900 1.295 0.963

37 0.667 0.505 �0.940 �0.865

Table 14.3 Comparison of Mean and Variance Estimates for the Ability Parameter

Across the Concurrent Calibration With 19 Items Constrained and the Mean-Mean

Linkage Constraining Item Parameters

Population Mean Standard deviation

A. Constraints on mean of item difficulties (0.0) and slopes (1.0)

P 1.041 1.269

Q 0.898 1.369

B. Equality constraints on first 19 items

P 1.028 1.260

Q 0.904 1.371
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restrictions can be turned on or off, according to what the data suggest. Moreover,

this new approach allows both generalizations and exactly matching implementa-

tions of the existing methods, as the existing IRT linking methods are included as

special cases in this new family of IRT linking functions.

We believe that this approach will allow the development of statistical tests

(such as Lagrange multiplier tests) for checking the appropriateness of different

IRT linking methods (see Glas, 1999, for a similar approach used for investigating

nested IRT models). Such a test would allow checking whether lifting certain

restrictions will yield a significant improvement in model-data fit, for example in

a case where Lagrangean concurrent calibration is used for all anchor items in a

vertical linkage and a certain set of items exposes parameter drift over time.

This approach to IRT linking can be easily viewed in a Markov chain Monte

Carlo (MCMC) framework, where, by specifying appropriate prior distributions,

the estimation of the modified likelihood functions is straightforward. At the same

time, the view of any linking function as a restriction function implies a larger

flexibility in the linking process: When dealing with vertical linking, this method

can incorporate the modeling of growth, possibly expressed as a hierarchical

structure of the item parameters in the anchor.

Such a hierarchical structure was proposed by Patz, Yao, Chia, Lewis, and

Hoskens (2003), who used the MCMC estimation method. The hierarchical

approach Patz et al. proposed is “a more general version of concurrent estimation

of the unidimensional IRT model" (p. 40), and their motivation has similarities with

ours: to unify the two most commonly used linking methods for vertical equating,

the very restrictive concurrent calibration method and separate calibration followed

by a test characteristic-curves linking.

If we recast this hierarchical approach of the proficiencies across grades into a

hierarchical structure of the (common) item difficulties, a short summary of the Patz

et al. (2003) approach (slightly generalized) in our notation is

Rlð�Þ ¼ klðhðbVPl
Þ � f ðhðbQPl

ÞÞÞ; (14.33)

where kl ¼ 1 for active restrictions on item l, Rl denotes the component l of the
restriction function, h is the projection described before, and f is a function of the

common item parameters of the old administration (or previous grade). In order to

obtain the hierarchical structure at the level of the difficulties of the common items,

we consider

hðbVPl
Þ ¼ bVPl

:

Following the approach of Patz et al. (2003), the relationship between the

difficulty of the item parameters across grades can be expressed as a quadratic

function,

f ðhðbQPl
ÞÞ ¼ f ðbQPl

Þ ¼ ab2QPl
þ gbQPl

þ d; (14.34)
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where a, g, d are additional parameters of the model that need to be estimated.

Furthermore, the modified likelihood function, with a restriction function described

in Equation 14.33, can be maximized using the Lagrange multipliers in the same

way as explained for the other linking methods. Note that from a computational

point of view, this is only a slight generalization of the restriction functions

described for the mean-mean and mean-var linking methods.

Obviously, additional investigations are necessary in order to insure that the

model is identified and to insure the convergence of the maximization algorithm.

Although here we propose an analytical approach and will try to use an expectation-

maximization algorithm, a MCMC estimation method would be straightforward to

implement.

Moreover, the approach presented in this paper may easily be extended to

multidimensional IRT models, at least for simple-structure, multiscale IRT models

(like the one used in the National Assessment of Educational Progress and other

large-scale assessments). There is no additional formal work necessary, and the

method proposed in this report can be readily applied. Patz et al. (2003) also

investigated multidimensional IRT models for vertical linking and used the

MCMC estimation method. However, implementing and maximizing modified

likelihood functions under such restrictions using analytical methods are of interest

for future research.

Longitudinal studies also may benefit from these two approaches: one that

assumes a hierarchical structure in the item parameters of the anchor and one that

assumes a multidimensionality of the proficiencies (or of the common item diffi-

culties) across school grades. This flexibility also may be a desirable feature in

educational large-scale assessments, where in some instances it is necessary to relax

the restriction of equality of all item parameters. In conclusion, this new approach is

very promising for assessment programs that use IRT linking.

Author Note: Any opinions expressed in this chapter are those of the author and not necessarily

of Educational Testing Service.
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Chapter 15

Linking With Nonparametric IRT Models

Xueli Xu, Jeff A. Douglas, and Young-Sun Lee

15.1 Introduction

In educational testing, it is a common practice to produce test forms under a nonequiv-

alent groups with anchor test (NEAT) design. In this design, the two test forms share

a certain number of common items, while the populations who take the test forms

might not be equivalent to each other. Test linking is conducted to establish the

equivalency of ability scales from separate item response theory (IRT) calibrations

of two test forms. Among existing linking methods, two approaches are related to

the study in this paper: IRTmodel-based linking (Loyd&Hoover, 1980;Marco, 1977;

Stocking & Lord, 1983) and equipercentile linking (Kolen & Brennan, 1995; von

Davier, Holland, & Thayer, 2004b).

From the viewpoint of IRT models, the necessity of linking is embedded in the

models themselves. That is, the linear indeterminancy of ability requires a linear

transformation to ensure the equivalency between the two test forms when sepa-

rately calibrated. If a three-parameter logistic (3PL) model

Pðy; a; b; cÞ ¼ cþ 1� c

1þ expð�aðy� bÞÞ (15.1)

is used in item calibration, thenPðAyþ B; a=A;Abþ B; cÞ remains the same value as

Pðy; a; b; cÞ by an appropriate linear transformation. Thus, the linear transformation is
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used tomaintain the item characteristic curves (ICCs) of common items.However, the

linear transformationmight not be appropriate if the parametric form is incorrect, or if

the difference between ability distributions involves something more than a location

and scale change. When assuming that the target score distributions from the two test

forms are equivalent when the common-item score is held constant, this issue has been

addressed by the equipercentile linking. This method is implemented by transforming

raw scores from one test to the scale of raw scores of another test. Obviously, this

method ismodel independent. However, the assumption of equivalence is likely to fail

when the two groups differ substantially in ability, age, or other demographic infor-

mation (Liou, 1998).

An alternative to these two approaches (IRT model-based linking and equiper-

centile linking) is fitting a more flexible model to the data and conducting linking by

using nonparametrically estimated items. Currently, no methods for linking are

available when using nonparametrically estimated IRT models. This is a serious

practical limitation. These flexible nonparametric models will prove most useful

when no single parametric family fits the entire set of ICCs well, and in situations

like this, nonparametric methods of linking will be required. Our aim is to make

such methods available so that nonparametrically estimated models can be consid-

ered to be practical alternatives for operational use.

15.2 Estimating the ICCs Nonparametrically

Methods of nonparametric ICC estimation include kernel smoothing with a selected

scale for the latent trait (Douglas, 1997; Ramsay, 1991), isotonic regression (Lee,

2002), monotone splines (Ramsay & Abrahamowicz, 1989), penalized maximum

likelihood estimation (Rossi, Wang, & Ramsay, 2002), as well as several others.

For the linking methods to be presented later, most of the nonparametric estimation

methods will apply. However, due to the need to compute the inverse function of an

ICC, monotone methods are preferred. In this paper, we use kernel smoothing to

obtain the initial estimates of ICCs and then smooth the estimates once again using

a B-spline smoother constrained to be monotone. First we review kernel smoothing

and constrained B-spline smoothing.

15.2.1 Kernel Smoothing

Suppose N examinees (i ¼ 1,2,. . ., N) are randomly sampled and take a test of

length n ( j¼ 1,2,. . ., n). The kernel smoothed estimate of the ICC of item j, PjðyÞ, is
the weighted average of the response vector fYjg ¼ fY1j; . . . ; YNjg,

PjðyÞ ¼
XN
i¼1

wiYij; (15.2)
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where the weights wi of examinee i are defined in a certain way so that they are

nonnegative and reach a maximum when y ¼ yi and will approach or equal zero as

jy� yij increases. In order to keep PjðyÞ within [0,1], the weights should, at the

same time, satisfy two conditions: wir0 and
P

i wi ¼ 1. Thus, it is preferable to

use nonnegative kernel functions and Nadaraya-Watson weights (Nadaraya, 1964;

Watson, 1964):

wi ¼
Kðy�yi

h ÞP
i Kðy�yi

h Þ ; (15.3)

where h is a smoothing parameter, y is a grid point along a desired latent scale, yi is
the ability of examinee i, and K(·) is a kernel function.

The kernel smoothing estimator of PjðyÞ is consistent when yi can be estimated

without error. However, the latent trait values of yi are not observable. The Nadar-
aya-Watson weights still can be used after substituting yi for true yi. A common and

appropriate way to estimate yi is to transform the ranked raw scores to the

corresponding quantiles of the chosen latent ability distribution, which is usually

on a standard uniform U(0,1) scale. This leads to the kernel smoothed estimate

PjðyÞ ¼
PN

i¼1 Kðy�ŷi
h ÞYijPN

i¼1 Kðy�ŷi
h Þ

; (15.4)

proposed by Ramsay (1991) and implemented in TestGraf (Ramsay, 2001). The

consistency of this estimate was proved by Douglas (1997).

In kernel smoothing, the bandwidth h is used to control the balance between the

bias and variance of estimation. At this point, there is no theorem on an optimal

bandwidth for ICC estimation. However, we can use results from simpler models

where the covariate is measured without error as a guideline. For example, Ramsay

(1991) suggested that h ¼ N�1=5 works well when using a Gaussian kernel.

15.2.2 Constrained B-spline Smoothing

A simple but effective monotone smoothing method using splines was proposed to

solve the nonparametric regression problem (He & Shi, 1998). They proposed a

method based on the constrained least absolute deviation in the space of B-spline

functions. The idea of this method is to characterize the monotonicity by linear

constraints as well as to solve the least absolute deviation efficiently via linear

programming (He & Shi, 1998). Suppose n pairs of observations (xi, yi) are used to

estimate the nondecreasing regression curve g(x). The model to be estimated is

yi ¼ gðxiÞ þ ui; i ¼ 1; . . . ; n (15.5)
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where ui is random error. Assume that g(x) is uniformly continuous and has a second-

order derivative. Then the function g and its first-order derivative function g0 can be

approximated adequately by B-splines and their derivatives. Assuming x 2 ½a; b�,
letting the knots ts be selected as a ¼ t1<t2; . . . ; <tkn ¼ b; He and Shi (1998) chose

to use quadratic B-splines with degree of 2. LetBðxÞ ¼ ðB1ðxÞ;B2ðxÞ; . . . ;BQðxÞÞT be
the normalized B-splines based on the knots ts, where Q ¼ kn þ p, with p þ 1 being

the order of the B-spline. The estimate of g(x), denoted by gnðxÞ ¼ BðxÞT â for â 2 RQ,

is obtained by minimizing

Xn
i¼1

jyi � BðxiÞTaj; (15.6)

subject to the linear constraint to ensure monotonicity,

B0ðtsÞTa>0 (15.7)

where s ¼ 1,..., kn and is subject to other linear constraints, such as those for the

boundary points. Here, B0ð�Þ is a vector of the first derivative functions of B(·). This
technique is implemented by an R function SCOBS (He & Ng, 1998). The consis-

tency of function estimation and effectiveness of this method have been explored in

several papers (He & Shi, 1998; Koenker, Ng, & Portnoy, 1994).

Though this constrained B-spline method cannot be used directly to estimate

nonparametric IRT models for binary responses, it can be used as a postsmoother

after a nonmonotone method such as kernel smoothing is used to estimate ICCs. In

particular, we treat the kernel smoothed estimate PjðymÞ and ym as a pair of

observations without error, in which ym is a grid point on a desired scale.

15.3 Nonparametric IRT Linking

Nonparametrically estimated ICCs provide us not only with more flexible forms to

fit the data but also a platform to conduct linking. Two approaches are proposed to

conduct linking under nonparametric IRT models. One of them conducts linking on

a uniform U(0,1) scale, the other on a normal N(0,1) scale. These two approaches

are introduced in the following sections.

15.3.1 Constrained Spline Linking on a U(0,1) Scale

Let � be a point in the sample space of a latent variable and P(�) be the probability
of giving a correct answer conditional on �. Let F1 and F2 be the cumulative
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distribution functions of two nonequivalent testing populations, with F1ð�Þ ¼ y1
and F2ð�Þ ¼ y2 being the correspondence in different populations. As mentioned in

the introduction to the kernel smoothing method, the nonparametric calibration

process implicitly transforms � from its original scale to a U(0,1) scale through the

cumulative distribution function. For illustration, Equations 15.8 and 15.9 describe

the process of calibration with respect to F1 and F2, respectively.

Pð�Þ ¼ PðF�1
1 ðy1ÞÞ ¼ P1ðy1Þ (15.8)

Pð�Þ ¼ PðF�1
2 ðy2ÞÞ ¼ P2ðy2Þ: (15.9)

Thus, we in fact put the latent variable � on a U(0,1) scale relative to the different
groups. This will lead to the “pseudo difference” expressed in ICCs P1 and P2.

Linking means finding the transformation

y2 ¼ F2 � F�1
1 ðy1Þ ¼ P�1

2 � P1ðy1Þ ¼ gðy1Þ (15.10)

on the U(0,1) scale. Based on the fact that P̂1ðyÞand P̂2ðyÞare consistent estimates of

P1ðyÞand P2ðyÞ(Douglas, 1997), we can obtain an estimate of the linking function

g(y) by minimizing the loss function:

Z X
j2common

jĝðyÞ � P̂�1
2j � P̂1jðyÞjdy; (15.11)

where P1jðyÞ is the estimate of ICC for item j and Group 1, P2jðyÞ for item j and

Group 2, and the summation is taken over all the common items in the two test

forms. In our application, P̂2j
�1 � P̂1jðyÞ is taken as an observation without error.

The estimate ĝðyÞ is obtained as the best solution in the span of a family of

constrained B-splines. One approximates ĝðyÞ by PM
m¼1 bmBmðyÞ, subject to

bmB
0
mðyÞ>0;

g0ðyÞ>0;

gð0Þ ¼ 0;

gð1Þ ¼ 1;

where B0
mð�Þ and g0ð�Þ are first derivatives of Bmð�Þ and gð�Þ defined earlier.

The additional constraints and possible penalty functions make it difficult to

derive an explicit standard error of the linking function. However, the bootstrap

method can be used to obtain pointwise estimates of the standard error.
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15.3.2 Linear Linking on a N(0,1) Scale

It is well known that the linear linking is appropriate for the logistic and the probit

IRT models with normally distributed latent traits. Even though the linking function

in the nonparametric setting need not be constrained to be linear, linear linking on a

N(0,1) scale is still possible when using nonparametrically estimated ICCs. Under a

nonparametric IRT framework, we can change the scale of the latent variable if

desired. To illustrate this issue, we revisit Equations 15.8 and 15.9 and transform

the U(0,1) scale to a N(0,1) scale by inserting the cumulative distribution function

of a standard normal random variable, denoted by F:

Pð�Þ ¼ P1ðy1Þ ¼ P1ðFðy11ÞÞ (15.12)

Pð�Þ ¼ P2ðy2Þ ¼ P2ðFðy21ÞÞ: (15.13)

Thus, y11 and y21 are now on a N(0,1) scale. The linear linking is done by finding

A and B to minimize the loss function:

ð X
j2ðcommonÞ

½yi � AF�1 � P2j
�1 � P1j � FðyiÞ � B�2dy (15.14)

where P1jð�Þ and P2jð�Þ are the consistent estimates of P1jð�Þ and P2jð�Þ for item j in
common item set, respectively.

15.4 Simulation Study

15.4.1 Design

In our simulation study, two parallel test forms and four pairs of populations were

selected to study the behaviors of the proposed approaches. Each test form

contained 30 common items and 10 unique items. The items were characterized

by a 2PL model. The parameter a is generated from U(0.75,2.5) and the parameter b

is generated from a N(0,1). These two test forms are denoted as form 1 and form 2.

The four pairs of populations in this study are:

l N(0,1) vs. N(0.25,1)
l truncated normal N(0,1)I[�2,2] vs. U(�2,2)
l Beta(1,1) vs. Beta(1.5,0.5)
l Beta(1,2) vs. Beta(2,1)

Their corresponding density functions are shown in Figure 15.1.
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Figure 15.1 gives us an understanding of how these four pairs of populations

compare. In the first pair, both populations have the same shape except for the

location. In the second pair, both populations are symmetric about point 0 but have

different shapes. For the third pair, one population is symmetric, whereas the other

has extreme mass on the high end of the ability scale. In the final pair, both

populations have larger mass on the end points of the ability scale, but in different

directions. The first pair is an ideal situation for real practice and is more realistic

than the other three pairs. These more extreme cases are included to examine how

the proposed approaches behave in such situations. If the proposed approaches can

work in these extreme situations, then they can be expected to work in less extreme

conditions.

Within each pair, the first population is considered the target population; the

second one will be linked to the target population. The true linking function in each

pair can be derived from the true distribution forms. Suppose F1 and F2 are the

cumulative distribution functions in each pair. They are on a U(0,1) scale. The true

linking function is F�1
2 � F1, if the first distribution is taken as the target. The true

linking function also can be obtained by smoothing techniques such as the con-

strained splines if its closed form is hard to get. Within each pair, 3,000 examinees

are generated from the specified populations respectively and the data are generated

Fig. 15.1 Four pairs of comparison
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according to the 2PL model. Once the responses are generated, these two test forms

are calibrated on a U(0,1) scale and a N(0,1) scale for their corresponding popula-

tions. The kernel smoothing method is then used to get the initial estimates of the

ICCs, with the bandwidth set as 0.20, which is roughly 3000�1=5. Then SCOBS is

utilized to make the estimated ICCs monotone and to estimate the linking function ĝ
when using the constrained spline approach. The maximum number of knots is set

at 6, which was recommended by He and Shi (1998). In the linear approach, the

linking parameters A and B are estimated from a least squares criterion displayed in

Equation 15.14. The entire procedure is repeated 100 times for each pair in order to

calculate the linking errors.

Three statistics are used to measure the efficacy of the proposed linking methods.

One is the root mean-square error (RMSE) of the linking function along the U(0,1)

scale,

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

X
r

½gðymÞ � ĝrðymÞ�2=R=M;
r

(15.15)

where R is the number of replications,M is the number of grid points on y scale, and
m and r are indices forM and R. Here ĝr is the estimated linking function from the

rth repetition, and g is the true linking function. This statistic is used to examine

how well the true linking function is recovered by the estimated one. The other is

the root mean-square difference (RMSD) of test functions for the anchor items,

RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
m

ð
X
j

P2jðĝðymÞÞ �
X
j

P1jðymÞÞ2=M
s

; (15.16)

where j is the index for common items and M has the same meaning as above. This

statistic is employed to examine the recovery of the true test characteristic function.

The third statistic is called an improvement ratio (IR), which is similar to the

statistic used in Kaskowitz and De Ayala (2001).

IR ¼ 1� Fequate

Foriginal
; (15.17)

where

Fequate ¼
X
m

X
j

½P2jðĝðymÞÞ � P1jðymÞ�2=ðJ �MÞ (15.18)

and

Foriginal ¼
X
m

X
j

½P2jðymÞ � P1jðymÞ�2=ðJ �MÞ: (15.19)
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Here j is the total number of anchor items andM has the same meaning as above.

Foriginal represents the largest discrepancy between item response functions on the

common set, whereas Fequate stands for the discrepancy between item response

functions due to linking. This ratio reflects the improvement due to linking.

15.4.2 Results and Discussion

The summary of the results is shown in Tables 15.1–15.3 and Figures 15.2 and 15.3.

Table 15.1 presents the RMSE of the estimated linking function. Since the scales of

the constrained spline linking and the linear linking are different, the scale of linear

linking is transformed to the U(0,1) scale before calculating the RMSE. The label

RMSECS represents the RMSE using the constrained spline linking, whereas RMSEL

represents the RMSE using linear linking. Table 15.1 reveals that linear linking has

similar or smaller RMSE in the estimate of the linking function, but all the RMSE

Table 15.1 Root Mean-Square Error (RMSE) Under Two Proposed Approaches

Using 3,000 Examinees

RMSECS RMSEL

N(0,1) vs. N(0.25,1) 0.0167 0.0134

N(0,1)I[�2,2] vs. U(�2,2) 0.0161 0.0218

Beta(1,1) vs. Beta(1.5,0.5) 0.0267 0.0263

Beta(1,2) vs. Beta(2,1) 0.0229 0.0131

Average 0.0206 0.0187

Note. CS ¼ constrained spline linking; L ¼ linear linking.

Table 15.2 Root Mean-Squared Difference (RMSD) Under Two Proposed

Approaches Using 3,000 Examinees

RMSDCS RMSDL

N(0,1) vs. N(0.25,1) 0.2130 0.2214

N(0,1)I[�2,2] vs. U(�2,2) 0.3363 0.3416

Beta(1,1) vs. Beta(1.5,0.5) 0.3780 0.3760

Beta(1,2) vs. Beta(2,1) 0.3233 0.3186

Average 0.3127 0.3144

Note. CS ¼ constrained spline linking; L ¼ linear linking.

Table 15.3 Improvement Ratio (IR) Under Two Proposed Approaches Using 3,000

Examinees

IRCS IRL

N(0,1) vs. N(0.25,1) 0.868 0.816

N(0,1)I[�2,2] vs. U(�2,2) 0.963 0.903

Beta(1,1) vs. Beta(1.5,0.5) 0.956 0.946

Beta(1,2) vs. Beta(2,1) 0.821 0.808

average 0.902 0.880

Note. CS ¼ constrained spline linking; L ¼ linear linking.
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are below the nominal level 0.05. Table 15.2 presents the RMSD for the common-

item test. The scale of the linear linking is transformed to U(0,1) scale before

calculating the RMSD. The label RMSECS is the RMSD of the test function by

constrained spline linking, whereas RMSEL is the RMSD by linear linking. Notice

that the RMSD of the test functions resulted from these two methods are similar to

each other. Table 15.3 gives us the IR results for these two proposed linking

approaches. Both methods have similar IRs in all cases. Figures 15.2 and 15.3

illustrate the results. Figure 15.2 presents the recovery of the true linking function,

and Figure 15.3 presents the recovery of the true test function of the common

items. The solid line represents the true function (either a linking function or a test

function), and the dashed and the dashed-dotted lines are for the corresponding

estimated functions by using the constrained B-spline and the linear methods,

respectively. Given the figures are printed in black and white, it is hard to distin-

guish the lines in some graphs. Specifically, there are three lines in each graph. The

solid line represents the true function (either a linking function or a test function),

and the dashed and the dashed-dotted lines are for the corresponding estimated

functions by using the constrained B-spline and the linear methods, respectively.

The results enable us to say that both proposed methods work well in all four

situations in terms of recovering the true linking function. Both methods show

similar performances in terms of the RMSD of the estimated test functions and IR.

Furthermore, results show that the large population differences in the last two pairs

have little impact in recovering the true linking functions but have impact in

recovering the true test functions of the common items. When two extremely

different populations are linked, it is expected that the test functions of these two

Fig. 15.2 Recovery of true linking functions

252 X. Xu et al.



populations differ on the end points of the ability scale. It turns out that for the last

two pairs, the true test functions have a large difference on the lower end of the

ability scale. This fact leads to poor recovery of test functions on the lower end of

ability, which is displayed in the last two pairs. From the results of the simulation

study, we expect that the proposed methods are able to recover the true linking

function even when the parametric models do not fit the data or when the testing

populations of interest have large discrepancies.

15.5 Real Data Example

A real data example is also used to compare the two proposed methods and the test

characteristic curve (TCC; Stocking & Lord, 1983) method. The TCC method is an

IRT model-based approach. As described in the introduction, an IRT model-based

method is initiated from the linear indeterminancy of ability in IRT functional form:

Pðy; a; b; cÞ ¼ PðAyþ B; a=A;Abþ B; cÞ: (15.20)

Under the NEAT design, the common items are calibrated separately for each

population. According to the TCC method, the slope A and the intercept B are

obtained by minimizing the overall squared differences between ICCs for the

Fig. 15.3 Recovery of true test functions of common items
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common items from separate calibrations. The objective function is shown in the

equation below, denoted as SL(y).

SLðyÞ ¼
Z

½
X

j2Common
Pjðy; a1j; b1j; c1jÞ

�
X

j2Common
Pjðy; a2j=A;Ab2j þ B; c1jÞ�2 f1ðyÞdy; (15.21)

where a.j is the parameter a of item j for Group 1 or 2. The same indices are for

parameter b and c. In this study, the programs BILOG-MG (Zimowski, Muraki,

Mislevy, & Bock, 1996) and EQUATE (Baker, 1990) are used to calibrate item

parameters and to implement the TCC method, respectively.

The data were taken from the responses to a mathematics placement test

administered in 1993 in the University of Wisconsin system. Two forms of 46

multiple-choice-item tests with five alternatives, Form 1 and Form 2, are used in

this study. Every 10th item is a pilot item, and all the other items on the test are

common items. Omitted responses or not reached items were scored as incorrect.

Form 1 was administered to 1,938 male students and Form 2 to 1,716 female

students. After some preliminary analysis, one item was deleted from the analysis

because its ICC was a decreasing function of the latent ability. It is assumed that the

common items should behave similarly across testing populations. Thus SIBTEST

(Shealy & Stout, 1993) was used to detect any possible differentially functioning

items. In this study, the males were considered as the focal group and the females as

the reference group. The critical value was set at a¼0.05. After this examination, 21

items were left to construct the common-item group. To summarize, each form

contained 45 items, with 21 common to both forms.

The empirical raw-score distributions of these two testing samples are shown in

Figure 15.4. An empirical transformation function was derived by two steps.

Specifically, the first step was to find the empirical raw-score distributions and

convert them to a U(0,1) scale and then to find the transformation between these

two transformed empirical raw-score distributions. This empirical linking function

is shown as the solid line in Figure 15.5. The other estimated linking functions

obtained from other methods (represented by the dashed or dashed-dotted lines) are

compared to this empirical linking function.

Form 1 and Form 2 were calibrated with male and female groups, respectively.

For each group, the items were calibrated parametrically by a 3PL model and

nonparametrically on the U(0,1) scale and on the N(0,1) scale, and then transformed

back to U(0,1) scale.

After item calibration, constrained spline linking, linear linking, and TCC

method linking were used to link the female group to the male group. In the

constrained spline approach, we specified the maximum number of knots as 6 and

the bandwidth of smoothing as 0.22, which is approximately 1938�1/5. These

methods were compared in terms of (a) the RMSE of the estimated linking func-

tions, taking the empirical linking function as the truth, and (b) linking error, which
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Fig. 15.5 Real data analysis: Transformation functions under different methods

Fig. 15.4 Empirical score distributions for real data
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for the constrained spline linking and linear linking is obtained from 100 bootstrap

samples. Figure 15.5 depicts how close the estimated linking functions are to the

empirical linking function.

The solid line in Figure 15.5 is the empirical relationship between abilities of the

male and female groups. The other three curves are the relationship curves after

conducting the linking procedures. The legend of the figure gives you the RMSE of

these three linking approaches. For example, the RMSE by using constrained spline

linking was 0.015, while linear aproach resulted in RMSE 0.031, and the RMSE of

the TCC method was 0.018. We noticed that the constrained spline approach had a

similar RMSE to the TCC method, whereas the linear approach on N(0,1) scale had

a relatively higher RMSE.

Figure 15.6 shows the linking error for the constrained spline linking and linear

linking. These linking errors were obtained from the bootstrapping method. On

average, the linear approach on the N(0,1) scale had a smaller linking error than the

constrained spline approach, though both were within the nominal level.

As for the linking under the TCC method, Table 15.4 summarizes the results.

The linking slope is 1.004, and the intercept is -0.3708. For the purpose of

comparison, the linking slope obtained from linear linking on the N(0,1) scale

was 0.867, and the intercept from this approach was -0.362.

In this real data analysis, we actually employed four different linking methods.

The empirical linking function was in fact derived by the equipercentile technique,

Fig. 15.6 Real data analysis: Bootstrapped SE
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which is a core method in observed score linking. The two proposed methods and

the TCC method were compared with the empirical linking function. The results in

this study showed that there is not much difference among these four methods,

except that the linear linking on the N(0,1) scale is slightly off. This is probably due

to the good fit of the parametric model. When the parametric model is appropriate

for the data, all methods will converge and show similar results.

Fig. 15.7 Four nonparametric item characteristic curves

Table 15.4 Means and Standard Deviations of Item Parameter Estimates and Linking Constants

for the Common Items

Form A Form B

a b c a b c

Item M 2.284 �0.1316 0.1943 2.2246 0.2218 0.1872

SD 0.6073 0.3246 0.0524 0.6165 0.3205 0.0555

Linking constants A ¼ 1.0004 B ¼ �0.3696

Transformed items M 2.2236 �0.1477 0.1872

Transformed items SD 0.6163 0.3206 0.0555
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15.6 Discussion

It is well admitted that no parametric model for item responses is perfect, even in a

large-scale assessment. Figure 15.7 gives us four example items, which are taken

from the data of a Psychology 101 exam at McGill University that are featured in

the manual of TestGraf (Ramsay, 2001). Although these items are often treated as

“bad” items relative to the parametric models, we still want to (and have to) include

them as a part of data analysis.

Nonparametric IRT models have been developed to fit the data with more

flexible functional forms. However, the nonparametric IRT models are not widely

used in testing practice. One reason is little knowledge about the applications of this

model, such as in linking applications, among other complications. Through the

simulation study and the real data analysis, we have shown that both proposed

methods are able to recover the true linking functions, even when the nonequivalent

populations differ substantially. When a parametric model fits the data well, both of

the proposed methods will behave similarly with traditional methods. The results of

this study give us hope that we can do real applications with nonparametric IRT

models.

Author Note: Any opinions expressed in this chapter are those of the authors and not necessarily

of Educational Testing Service.
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Chapter 16

Applications of Asymptotic Expansion

in Item Response Theory Linking

Haruhiko Ogasawara

16.1 Introduction

The purpose of this chapter is to have asymptotic expansions of the distributions of

the estimators of linking coefficients using item response theory (IRT; see, e.g.,

Bock & Moustaki, 2007) in the common-item nonequivalent groups design. In

IRT linking, usually item parameters are available only as their estimates. Con-

sequently, the parameters in IRT linking, that is, linking coefficients, are subject to

sampling variation. So, it is important to see the magnitudes of the estimates

considering this variation. One of the typical methods to evaluate their sizes is

using the asymptotic standard errors (ASEs) of the estimators of linking coefficients.

The ASEs of the coefficient estimators by the methods using moments of item
parameters (hereafter referred to asmoment methods; Loyd&Hoover, 1980; Mislevy

& Bock, 1990; Marco, 1977; see also Kolen & Brennan, 2004, Ch. 6) were derived

by Ogasawara (2000). The corresponding ASEs for the methods using response

functions (Haebara, 1980; Stocking & Lord, 1983; see also Kolen & Brennan,

2004, Ch. 6) were obtained by Ogasawara (2001b). The ASEs in equating methods

for true and observed scores were obtained by Lord (1982a) and Ogasawara (2001a,

2003), whereas the standard errors by the bootstrap were investigated by Tsai,

Hanson, Kolen, and Forsyth (2001; see also Kolen & Brennan, 2004, Ch. 7). The

ASEs by kernel equating (see von Davier, Holland, & Thayer, 2004b) were obtained

by Liou, Cheng, and Johnson (1997) and von Davier et al. by different methods.

The ASEs can be used with the asymptotic normality of the coefficient estima-

tors based on the central limit theorem. This normality is asymptotically correct

and gives reasonable approximations of the actual distributions in many cases, with

finite sample sizes encountered in practice. On the other hand, especially in IRT, the
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speed of convergence to the normal distribution for item parameter estimators

seems to be relatively slow with comparison to that for continuous observed

variables (e.g., factor loading estimators; see Wirth & Edwards, 2007).

Ogasawara (2009) showed that the actual standard error for the estimator of a

difficulty parameter in the two-parameter logistic (2PL) model using Bock and

Lieberman’s (1970, Table 1) data was as large as 2.00 times the corresponding ASE

with N ¼ 1,000, where N is the sample size. Even when N ¼ 2,000, the actual

standard error was still as large as 1.29 times the corresponding ASE. The slow

convergence may be partially explained by limited information available in binary

responses.

It is known that the discrepancy between the actual standard errors and the ASEs

can be improved by asymptotic expansions beyond the normal approximation.

As addressed earlier, the normal approximation uses the normal distribution of a

parameter estimator when sample sizes are infinitely large. However, in practice,

sample sizes are finite. So, there is some room to improve this approximation.

In principle, under some regularity conditions based on asymptotics, the approxi-

mation can be improved as much as is desired by successively using higher order

terms with respect to powers of sample sizes. This is the method of asymptotic

expansion to obtain an approximate distribution of an estimator when it is difficult

to determine the exact distribution (see, e.g., Hall, 1992/1997). The results of the

next higher order approximation beyond the normal one are given by using the

approximations of bias (the difference of the expectation of an estimator and

its corresponding true or population value) and the skewness (a measure of the

asymmetry of the distribution). The second next higher order results are given by

using the approximations of the added term of the higher order variance and the

kurtosis of the distribution of the estimator as well as the measures used in the

relatively lower order asymptotic expansions (note that the usual normal approxi-

mation is seen as an asymptotic expansion using only the first-order ASE).

In IRT, so far the usage of asymptotic expansions has been limited to the level

of the asymptotic normality with the usual ASEs. However, in a recent work

(Ogasawara, 2009), I obtained the higher order approximations of the distributions

of the item parameter estimators. I showed that, for instance, the ratios of 2.00 and

1.29 mentioned above were theoretically predicted by the higher order ASE

(HASE) as 1.31 and 1.17, respectively, although the former value 1.31 is still

conservative for 2.00.

In IRT linking, the estimators of linking coefficients are functions of item

parameter estimators; consequently, the similar slow convergence to asymptotic

normality is expected. It will be illustrated that the ratio of the actual standard error

to the corresponding ASE can be more than 2 and that using HASE reduces the

ratio. This is an example of the practical use of asymptotic expansion.

The organization of this paper is as follows. In Section 16.2, the situation of IRT

linking with definitions of some linking coefficients is given. Section 16.3 gives the

main results of the asymptotic expansions for the distributions of a coefficient

estimator standardized by the population ASE and the corresponding Studentized

one. Note that Studentization indicates the standardization by the ASE estimator
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when the population ASE is unavailable, as is usual in practice. These results will

be summarized as Theorems 1 and 2, respectively. In Section 16.4, numerical

examples based on data available in the literature are illustrated using simulations

for comparison to the corresponding theoretical or asymptotic results. Section 16.5

gives some concluding remarks. The technical details required for the main results

are provided in the Appendix.

16.2 Linking Coefficients

In this section, the linking design with the associated unidimensional IRT model is

introduced, followed by the definitions of linking coefficients given by the moment

methods for illustration. Assume the common-item nonequivalent groups design

for linking. The n common (anchor) items can be internal or external to the tests to

be linked. If the IRT model fits the data, the item parameters for the common items

are expected to be the same up to a linear transformation. Denote the slope and

the intercept by coefficients A and B, respectively. Let the number of possibly

nonequivalent independent examinee groups be denoted by G, and in many cases

G ¼ 2. For generality, assume the 3PL model with

PrðYg j ¼ 1jyðgÞ; ag j; bg j; cg jÞ ¼ cg j þ 1� cg j
1þ expf�Dag jðyðgÞ � bg jÞg ;

yðgÞ � Nð0; 1Þ ðg ¼ 1; :::;G; j ¼ 1; :::; ngÞ
(16.1)

where Yg j ¼ 1 indicates that a randomly chosen examinee with the proficiency

score yðgÞ in the gth examinee group responds correctly to the jth item in a set of ng
items (including n common ones) whose parameters are jointly estimated. Note that

the examinees in the gth group may respond to other items, especially in the case of

external common items with separate estimation for the parameters of common and

unique (noncommon) items. Yg j ¼ 0 indicates a wrong answer in the above case.

The same means and variances of yðgÞ over examinee groups are due to the model

indeterminacy for the difficulty (bg j) and discrimination (ag j) parameters in the jth
item. In Equation 16.1, cg j is the lower asymptote for the guessing probability of the

item, and D ¼ 1.7 is a conventional constant.

Consider the case of G ¼ 2 with the assumption that the scale of yð2Þ is

transformed to that of yð1Þ in order to have the same scale by

y�ð2Þ ¼ Ayð2Þ þ B with b�2j ¼ Ab2j þ B and a�2j ¼ a2j=A (16.2)

(note that c2j s are unchanged). Then,

PrðY2j ¼ 1jy�ð2Þ; a�2j; b�2j; c2jÞ ¼ PrðY2j ¼ 1jyð2Þ; a2j; b2j; c2jÞ ð j ¼ 1; :::; n 2Þ: (16.3)
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For illustrative purposes, I deal with the cases of estimating the population

coefficients A and B by three moment methods: the mean-sigma (m/s), the mean-

mean (m/m), and the mean-geometric mean (m/gm) methods. Let the common items

be located in the first n in the ng items for the gth examinee group. Then,

Â s �
Pn

j¼1 b̂
2
1j � n�1

Pn
j¼1 b̂ 1j

� �2
Pn

j¼1 b̂
2
2j � n�1

Pn
j¼1 b̂ 2j

� �2
0
B@

1
CA
1=2

; B̂ s � n�1
Xn
j¼1

b̂ 1j � Â sn
�1
Xn
j¼1

b̂ 2j

(16.4)

for the m/s method,

Âm �
Xn
j¼1

â 2j=
Xn
j¼1

â 1j ; B̂m � n�1
Xn
j¼1

b̂ 1j � Â mn
�1
Xn
j¼1

b̂ 2j (16.5)

for the m/m method, and

Â g �
Yn

j¼1
â2j=â1j

� �1=n
; B̂ g � n�1

Xn
j¼1

b̂ 1j � Â gn
�1
Xn
j¼1

b̂ 2j (16.6)

for them/gmmethod, where âg j and b̂g j ðg ¼ 1; :::;G; j ¼ 1; :::; nÞ are the estimators

of ag j and bg j, respectively. The estimators are assumed to be given by marginal

maximum likelihood separately in each examinee group:

Lg ¼ Ng!QKg

k¼1 rg k!

YKg

k¼1
prg kg k ; Kg ¼ 2ng ;

pg k ¼
ð1

�1

�Yng

j¼1
CXgk j

g j ð1�Cg jÞ1�Xgk j

�
fðyÞdy;

Cg j ¼ Cðy; ag j; bg j; cg jÞ ¼ cg j þ 1� cg j
1þ expf�Dag jðy� bg jÞg ; ð16:7Þ

fðyÞ ¼ ð1=
ffiffiffi
2

p
Þ expð�y2=2Þ ðg ¼ 1; :::;G; k ¼ 1; :::;Kg; j ¼ 1; :::; ngÞ;

where Ng is the number of examinees in the gth group; rg k is the number of

examinees showing the kth response pattern in ng items for the gth group;

Xgk j ¼ 1 and Xgk j ¼ 0 indicate the success and failure in the jth item of the kth

response pattern for the gth group, respectively; and cg j ¼ cg0j ðg; g0 ¼ 1; :::;G;
j ¼ 1; :::; nÞ. The integral in Equation 16.7 to have pg k is difficult to obtain

algebraically and is approximated by M quadrature points in actual computation:

pg k¼:
XM

m¼1

Yng

j¼1
CXgk j

gm jð1�Cgm jÞ1�Xg k j

n o
WðQmÞ ðg ¼ 1; :::;G; k ¼ 1; :::;KgÞ;

(16.8)
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where Cgm j ¼ CðQm; ag j; bg j; cg jÞ, WðQmÞ is the weight at the quadrature point

Qm, and the notation for the parameters, such as ag j, is also used for population

parameters for simplicity.

16.3 Asymptotic Expansions for Coefficient Estimators

This section gives main results. First, the asymptotic expansion of the distribution

of a linking coefficient estimator standardized by the population ASE is given,

which will be summarized as Theorem 1. Second, the corresponding result for

the estimator Studentized by the ASE estimator will be shown in Theorem 2. In

Theorem 2 a confidence interval will be provided for the population linking

coefficient more accurate than that given by the usual normal approximation

using only the ASE estimator.

Let

EðpÞ ¼ pT ¼ ðpTð1Þ0; :::;pTðGÞ0Þ0; pTðgÞ ¼ ðpT g1; :::; pT gKg
Þ0;

u ¼ ðuð1Þ0; :::; uðGÞ0Þ0 and uðgÞ ¼ N1=2
g ðpðgÞ � pTðgÞÞ;

(16.9)

where

p ¼ ðpð1Þ0; :::; pðGÞ0Þ0; pðgÞ ¼ ðpg1; :::; pgKg
Þ0

and

pg k ¼ rg k=Ng ðg ¼ 1; :::;G; k ¼ 1; :::;KgÞ: (16.10)

Note that pg k is the sample proportion for the kth response pattern in the gth
examinee group. When the IRT model fitted to data is incorrectly specified,

the population values for response patterns derived by the model are given by a

ðPG
g¼1 KgÞ � 1 vector, say, p0 with p0 6¼ pT. On the other hand, when the model is

true, p0 ¼ pT.

Let g be the generic coefficient representing one of Am;Bm; :::;Ag;Bg (note

that g also represents other coefficients given by response function methods, for

example, which will be addressed in Section 16.5), and ĝ ¼ gðâÞ, where â is a

q� 1 vector of item parameter estimators with, for example, q ¼ 2n or q ¼ 4n
depending on methods used in Equations 16.4–16.6. We see that â ¼ aðpÞ.

For Ng, assume that lim
Ng!1
N0g!1

Ng=Ng0 ¼ Oð1Þ ðg; g0 ¼ 1; :::;GÞ. Let ~N be a number

satisfying lim
Ng!1
~N!1

Ng= ~N ¼ Oð1Þ>0 ðg ¼ 1; :::;GÞ, e.g., ~N ¼ PG
g¼1

Ng=G, and

Na ¼ diagðNa
11K1

0; :::;Na
G1KG

0Þ, where Na
g ¼ ðNgÞa and 1Kg

is the Kg � 1 vector
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of 1s. Suppose that the Taylor series expansion of ĝ about its population value g0
holds:

ĝ ¼ g0 þ
@g0
@ pT

0 N
�1

2uþ 1

2

@

@ pT
0

� �<2>

g0

( )
N�1

2 <2>u<2>

þ 1

6

@

@ pT
0

� �<3>

g0

( )
N�1

2 <3>u<3> þ Opð ~N�2Þ; (16.11)

where @g0=@ pT � @ĝ=@ pjp¼pT for simplicity of notation with other partial deriva-

tives defined similarly, X<k> ¼ X� � � � � X (k times) is the k-fold Kronecker

product, and Na<k> ¼ ðNaÞ<k>
.

It is known that the asymptotic expansion of the distribution of ĝ is determined

by the asymptotic cumulants or moments of ĝ. In Section 16.A.1 of the Appendix,

I derive the asymptotic cumulants of ĝ up to the fourth order using Equation 16.11.

Define v ¼ ĝ� g0 with its cumulants

k1ðvÞ ¼ EðvÞ ¼ z1ðvÞ þ Oð ~N�2Þ;
k2ðvÞ ¼ E½fv� EðvÞg2	 ¼ z2ðvÞ þ zD2ðvÞ þ Oð ~N�3Þ;
k3ðvÞ ¼ E½fv� EðvÞg3	 ¼ z3ðvÞ þ Oð ~N�3Þ;
k4ðvÞ ¼ E½fv� EðvÞg4	 � 3fk2ðvÞg2 ¼ z4ðvÞ þ Oð ~N�4Þ;

(16.12)

where ziðvÞ ði ¼ 1; :::; 4Þ and zD2ðvÞ are the asymptotic cumulants of various orders

in terms of the powers of ~N (see Section 16.A.1 of the Appendix). Then, we have

one of the main results as follows.

Theorem 1. Under regularity conditions for validity of asymptotic expansion, the
density of ðĝ� g0Þ=z1=22 at x is given by the local Edgeworth expansion

f
ĝ�g0
z1=22

¼ x

 !
¼
"
1þ z1x

z1=22

þ z3
6z3=22

ðx3�3xÞ
( )

fOð ~N�1=2Þg

þ
(
1

2
ðzD2þz21Þ

x2�1

z2
þ z4

24
þz1z3

6

� �
x4�6x2þ3

z22

þz23ðx6�15x4þ45x2�15Þ
72z32

)
fOð ~N�1Þg

#
fðxÞþOð ~N�3=2Þ; (16.13)

where for fð�Þ see Equation 16.7; the subscript fOð ~NaÞg denotes for clarity that

the subscripted term is of order Oð ~NaÞ; and zi ¼ ziðvÞði ¼ 1; :::; 4Þ with

zD2 ¼ zD2ðvÞ are given by Equations 16.A.2, 16.A.8, 16.A.9, and 16.A.14 (see

Appendix).
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Proof. From the standard statistical theory (e.g., Hall, 1992/1997; see also Ogasawara,

2006, 2007b) and from Section 16.A.1 of the Appendix for the asymptotic cumulants

of Equation 16.12, we have Equation 16.13. Q.E.D.

Note that Theorem 1 can be used both with and without model misspecification.

In order to apply Theorem 1, the partial derivatives of ĝ ¼ gðpÞ with respect to

p up to the third order evaluated at p ¼ pT are required, which are derived in two

steps. The first step is to have the partial derivatives of ĝ ¼ gðâÞ with respect to â,
which is relatively easy to derive in the cases of the moment methods for linking,

since the function ĝ ¼ gðâÞ is an elementary one (see Equations 16.4–16.6) and

will be provided in Section 16.A.2 of the Appendix for completeness. The second

step is to derive the partial derivatives of â ¼ aðpÞ with respect to p, which

require formulas in implicit functions (see Ogasawara, 2007a, 2007c) and are

given by Ogasawara (2009, Appendix) for the 3PL model but not repeated here,

as they are involved.

The final results of the required partial derivatives are given by the chain rule

@ĝ
@pg i

¼ @ĝ
@ â0

@ â

@pg i
;

@2ĝ
@pg i@pg0j

¼ @ â0

@pg i

@2ĝ
@ â @â0

@ â

@pg0j
þ @ĝ
@ â0

@2â

@pg i@pg0j
;

@2ĝ
@pg i@pg0j@pg00k

¼ @3ĝ

ð@ â0Þ<3>

@ â

@pg i
� @ â

@pg0j
� @ â

@pg00k

þ
X3

ðg i;g0j;g00kÞ

@ â0

@pg i

@2ĝ
@ â @â0

@2â

@pg0j@pg00k
þ @ĝ
@ â0

@3â

@pg i@pg0j@pg00k

ðg ; g0; g00 ¼ 1; :::;G; i ¼ 1; :::;Kg; j ¼ 1; :::;Kg0 ; k ¼ 1; :::;Kg00 Þ; ð16:14Þ

where
P3

ð�Þ denotes the sum of 3 terms having similar patterns with respect

to gi; g0j and g00k. Note that in Equation 16.14 some of the partial derivatives,

such as @2â=@pg i@pg0j when g 6¼ g0, are zero.
In the rest of this section I derive the confidence interval for g0. The results are

summarized in Theorem 2 below. Note that whereas Theorem 1 gives an improved

approximation to the distribution of the coefficient estimators, this approximation

cannot directly be used for interval estimation of g0 since the population values used
in Theorem 1 are usually unavailable in practice. Instead, I focus on the following

Studentized coefficient or pivotal statistic for interval estimation of g0:

t ¼ ðĝ� goÞ=ẑ1=22 : (16.15)

Assume that the following Taylor series holds:

t ¼ z�1=2
2

@g0
@ pT

0N
�1

2uþ 1

2
z�1=2
2

@

@ pT
0

� �<2>

g0

( )
N�1

2
<2>u<2>

� 1

2
z�3=2
2

@g0
@pT

0N
�1

2u
@z2
@ pT

0N
�1

2uþ Opð ~N�1Þ: ð16:16Þ

Then, the first three cumulants of t are given by
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k1ðtÞ ¼ z10 þ Oð ~N�3=2Þ ðz10 ¼ Oð ~N�1=2ÞÞ;
k2ðtÞ ¼ 1þ Oð ~N�1Þ ðz20 ¼ 1Þ;
k3ðtÞ ¼ z30 þ Oð ~N�3=2Þ ðz30 ¼ Oð ~N�1=2ÞÞ:

(16.17)

From the standard statistical theory (see the references for Theorem 1) and the

asymptotic cumulants given by Equation 16.17 (for z10 and z30 see Section 16.A.3 of
the Appendix) using the Cornish-Fisher expansion, we have Theorem 2.

Theorem 2. The confidence interval for g0 with asymptotic confidence coefficient

1� ~a (e.g., ~a ¼ 0:05) accurate up to Oð ~N�1=2Þ, when the discreteness of the
multinomial distribution is neglected, is

ĝþ ½
z~a=2 � fẑ10 þ ðẑ30=6Þðz2~a=2 � 1Þg	 ẑ1=22 ; (16.18)

where
R z~a=2
�1 fðz�Þdz� ¼ 1� ð~a=2Þ; and ~N1=2ẑi0ði ¼ 1; 3Þ and ~Nẑ2 are consistent

estimators of the corresponding asymptotic cumulants independent of ~N.

16.4 Numerical Illustration

In the previous section, the main results of asymptotic expansions were given based

on asymptotic theory, which hold when the sample sizes are large. This section

gives illustrations of some aspects of the asymptotic expansions in order to show

their usefulness with finite sample sizes.

Numerical examples using the two data sets provided by Bock and Lieberman

(1970) and reanalyzed by Bock and Aitkin (1981) are shown with simulations. The

two data sets consist of binary responses of 5 items selected from the Law School

Admission Test (LSAT) by 1,000 examinees. That is, the first data set is comprised

of 1,000 � 5 responses from LSAT Section 6 items, and the second one 1,000 � 5

responses from LSAT Section 7 items. In a previous study (Ogasawara, 2009), I

used these data with the 2PL model, and Bock and his colleagues used the 2P

normal ogive or probit model. The 2PL model with cj ¼ 0 in place of the 3PL

model in Section 16.2 is used due to the difficulty of estimating item parameters

without priors or restrictions on parameters in simulations. Note that the main

results in Section 16.3 hold for the 2PL, 3PL, and corresponding probit models

with some adaptations.

The population item parameters were given from fitting 2PLM to the two data

sets (for selected population values, see Ogasawara, 2009). The 5 items in each

data set were regarded as common items for two nonequivalent independent

examinee groups (n ¼ 5). The second examinee group was constructed such that

y�ð2Þ � Nð�0:5; 1:22Þ i.e., A ¼ 1.2, B ¼ �0.5, while in estimation yðgÞ � Nð0; 1Þ
ðg ¼ 1; 2Þ was assumed. That is, on average the ability level of the second group

was set to be somewhat lower than the reference group, and the dispersion of ability

268 H. Ogasawara



was larger. This situation was employed considering that the items are relatively

easy; the proportions of examinees with all correct responses were 29.8% and

30.8% in the original data sets of LSAT Section 6 and 7, respectively.

For simplicity, no additional items had parameters jointly estimated with those

for the 5 common items, which gave n ¼ n 1 ¼ n 2 ¼ 5 with G ¼ 2. The numbers of

examinees in the first and second groups were N � ~N ¼ N 1 ¼ N 2 ¼ 1; 000 or

N ¼ 2,000 in simulations. For the number of quadrature points in integration (see

Equation 16.7), 15 was used in both simulated and theoretical computation.

Tables 16.1–16.4 show the simulated and asymptotic values (the ratios) of the

cumulants of the estimators of the linking coefficients. Simulations were performed

by randomly generating item responses without model misspecification. From the

generated observations, item parameters were estimated by marginal maximum

likelihood followed by estimation of linking coefficients. The number of replica-

tions was 10,000 in each condition of the simulations. Some pairs of samples were

excluded due to nonconvergence in item parameter estimation. The numbers of

the excluded pairs, until regular 10,000 pairs of samples were obtained, are 38 for

N ¼ 1,000 in Tables 16.1 and 16.2 and 1 for N ¼ 1,000 in Tables 16.3 and 16.4.

The simulated cumulants in Tables 16.1–16.4 were given by k-statistics
(unbiased estimators of population cumulants) from 10,000 estimates for each

linking coefficient, which were multiplied by appropriate powers of N for ease

of comparison to the corresponding asymptotic values independent of N. The ratio
HASE/ASE is given by ðz2 þ zD2Þ1=2=z1=22 , which depends on N. The simulated

version corresponding to HASE/ASE is SD/ASE, where SD is the square root of

the usual unbiased sample variance given from 10,000 estimates for each linking

coefficient in simulations.

Table 16.1 Simulated and Asymptotic Cumulants of the Coefficient Estimators for Law School

Admission Test Section 6: Dispersion, Bias, and Skewness

N1=2z1=22 (dispersion) Nz1 (bias) N1=2z3=z
3=2
2 (skewness)

Sim. Th. Sim. Th. Sim. Th.

N ¼ 1,000 N ¼ 2,000 N ¼ 1,000 N ¼ 2,000 N ¼ 1,000 N ¼ 2,000

As 22.5 17.5 10.2 247 208 157 172 787 39

Bs 15.4 12.7 7.1 152 122 91 173 1,110 19

Am 4.7 4.7 4.6 2 7 5 16 18 16

Bm 12.5 9.5 5.9 �147 �122 �91 �144 �596 �26

Ag 5.4 5.1 4.6 34 34 26 29 31 17

Bg 10.6 8.3 5.6 �108 �89 �65 �148 �624 �21

ðz2 0Þ1=2 (dispersion) N1=2z1
0(bias) N1=2z3

0 (skewness)

As 0.84 0.90 1 �0.5 0.5 5.6 �41 �44 �20

Bs 0.77 0.85 1 1.3 2.3 9.1 �27 �27 �4

Am 0.97 0.99 1 �4.5 �3.7 �2.4 �15 �15 �5

Bm 0.73 0.84 1 �4.2 �5.7 �7.6 23 25 21

Ag 0.94 0.98 1 �0.7 0.5 1.8 �20 �18 �6

Bg 0.80 0.88 1 �2.6 �3.9 �5.7 23 24 15

Note: N ¼ N1 ¼ N2, Th. ¼ theoretical or asymptotic values, Sim. ¼ simulated values
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The tables show that on the whole the simulated values are reasonably similar to

the corresponding asymptotic values, especially when N ¼ 2,000. However, some

of the simulated standard errors (multiplied by N1=2) for z1=22 are more than 2 times

the corresponding asymptotic values with N ¼ 1,000 (e.g., SD/ASE ¼ 2.21 for As in

Table 16.2). As mentioned in Section 16.1, this was expected since the similar results

were observed for the simulated results for item parameters in LSAT Section 6 (see

Ogasawara, 2009) and the linking coefficient estimators are functions of these item

parameter estimators. Using HASE, 2.21 was predicted as 1.64 in Table 16.2. In Table

16.4 for LSAT Section 7, the simulated values of SD/ASE are close to the

corresponding theoretical ones, where some of the ratios are substantially larger than 1.

Table 16.2 Simulated and Asymptotic Cumulants of the Coefficient Estimators for Law School

Admission Test Section 6: Kurtosis and Standard Error Ratios

Nz4=z
2
2(kurtosis) HASE(SD)/ASE for non-Studentized estimators Population

parametersN ¼ 1,000 N ¼ 2,000

Sim. Th. Sim. Th. Sim. Th.

N ¼1,000 N ¼ 2,000

As 61,270 1.7�106 4,214 2.21 1.64 1.72 1.36 1.2

Bs 60,939 2.9�106 1,333 2.18 1.51 1.79 1.28 �0.5

Am 610 1,009 905 1.02 1.02 1.02 1.01 1.2

Bm 50,124 1.2�106 3,171 2.11 1.56 1.60 1.31 �0.5

Ag 2,832 5,512 1,014 1.17 1.19 1.09 1.10 1.2

Bg 54,327 1.3�106 2,192 1.90 1.44 1.50 1.24 �0.5

Note: N ¼ N1 ¼ N2, Th. ¼ theoretical or asymptotic values, Sim. ¼ simulated values, ASE ¼
asymptotic standard errors ¼ z2

1=2, HASE ¼ higher order ASE ¼ ðz2 þ zD2Þ1=2, SD ¼ standard

deviations from simulations

Table 16.3 Simulated and Asymptotic Cumulants of the Coefficient Estimators for Law School

Admissions Test Section 7: Dispersion, Bias, and Skewness

N1=2z1=22 (dispersion) Nz1 (bias) N1=2z3=z
3=2
2 (skewness)

Sim. Th. Sim. Th. Sim. Th.

N¼1,000 N¼2,000 N¼1,000 N¼2,000 N¼1,000 N¼2,000

As 11.0 9.9 9.1 73 66 64 45 38 31

Bs 5.1 4.7 4.5 26 21 20 32 25 19

Am 3.5 3.4 3.3 2 2 2 11 9 9

Bm 4.3 3.9 3.6 �21 �21 �20 �17 �13 �10

Ag 3.5 3.3 3.3 10 10 9 13 11 10

Bg 3.6 3.3 3.2 �16 �16 �15 �18 �12 �9

ðz02Þ1=2 (dispersion) N1=2z1 0 (bias) N1=2z3 0 (skewness)
As 0.98 0.99 1 �3.0 �3.3 �0.4 �29 �29 �14

Bs 0.91 0.95 1 �1.0 �1.6 1.1 �16 �16 �2

Am 0.97 0.98 1 �2.4 �2.3 �1.2 �8 �10 �1

Bm 0.92 0.96 1 �1.4 �1.8 �2.5 10 10 9

Ag 1.00 1.00 1 �0.8 �0.6 0.7 �10 �11 �2

Bg 0.94 0.97 1 �0.9 �1.4 �2.4 11 10 6

Note: N ¼ N1 ¼ N2, Th. ¼ theoretical or asymptotic values, Sim. ¼ simulated values
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It is reassuring to see that the simulated standard errors of Studentized estimators

are relatively closer to the corresponding unit asymptotic values than those of the

non-Studentized estimators mentioned above (the smallest value is 0.73 for Bm in

Table 16.1). The skewnesses of the non-Studentized estimators of coefficient A are

all positive, whereas the kurtoses are all positive in Tables 16.2 and 16.4. It is known

that among the moment methods, the m/smethod gives unstable results (e.g., Baker

& Al-Karni, 1991; Ogasawara, 2000). This is also repeated in Tables 16.1–16.4. In

addition, the tables show that the m/s method gives relatively larger values in other

cumulants.

16.5 Some Remarks

In previous sections, the results of the asymptotic expansions of coefficient estima-

tors in IRT linking were shown for the case of the common-item nonequivalent

groups design for linking. The numerical illustrations showed that the asymptotic

expansions give reasonable approximations to the cumulants of the distributions of

the coefficient estimators using the 2PL model.

The number of common or anchor items was 5 in the numerical examples, which

was chosen for illustrative purposes to avoid excessively long time for computing.

However, the number may be smaller than those used in practice. When the number

is increased, more stable results are expected, which was illustrated in a previous

study (Ogasawara, 2000, Tables 2 & 4) using n¼ 10 and 15 with the same numbers

of unique items whose parameters were jointly estimated with those for the

common items.

It is known that the moment methods for linking tend to give less stable results

than those using item and test response functions (see Ogasawara, 2001b). Note that

the essential results given in this chapter can be applied to the cases of the response

function methods when the corresponding partial derivatives of the coefficient

Table 16.4 Simulated and Asymptotic Cumulants of the Coefficient Estimators for Law School

Admissions Test Section 7: Kurtosis and Standard Error Ratios

Nz4=z
2
2 (kurtosis) HASE(SD)/ASE for non-Studentized estimators Population

parametersN ¼ 1,000 N ¼ 2,000

Sim. Th. Sim. Th. Sim. Th.

N¼1,000 N¼2,000

As 4,588 3,062 3,226 1.21 1.24 1.10 1.13 1.2

Bs 3,417 2,071 1,668 1.14 1.18 1.06 1.09 �0.5

Am 763 256 299 1.06 1.04 1.01 1.02 1.2

Bm 1,862 1,002 943 1.18 1.19 1.08 1.10 �0.5

Ag 393 382 315 1.06 1.06 1.02 1.03 1.2

Bg 1,615 904 732 1.13 1.15 1.06 1.08 �0.5

Note: N ¼ N1 ¼ N2, Th. ¼ theoretical or asymptotic values, Sim. ¼ simulated values, ASE ¼
asymptotic standard errors ¼ z2

1=2, HASE ¼ higher order ASE ¼ ðz2 þ zD2Þ1=2, SD ¼ standard

deviations from simulations
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estimators with respect to associated item parameters are available. The linking

coefficients by the moment methods are elementary functions of item parameters,

whereas those by the response function methods are implicit ones. The partial

derivatives of the linking coefficients by the response function methods with respect

to item parameters concerned can be given straightforwardly (for the first partial

derivatives, see Ogasawara, 2001b, Equations 34 & 36) by applying the formulas for

the partial derivatives in implicit functions (e.g., Ogasawara, 2007a, c).

Chapter 16 Appendix

16.A.1 Asymptotic Cumulants for Theorem 1

From Equation 16.11, we have

k1ðvÞ ¼ 1

2

@

@ pT
0

� �<2>

g0

( )
N�1

2
<2>Eðu<2>Þ þ Oð ~N�2Þ (16.A.1)

where Eðuu0Þ ¼ BdiagðVð1Þ; :::;VðGÞÞ; Bdiag (·) denotes a block diagonal matrix

with matrices used as arguments being its diagonal blocks; ðVðgÞÞij ¼ og i j ¼
Eðug iug jÞ; ¼ Ngcovðpg i; pg jÞ ¼ dijpTg i � pTg ipT g j ðg ¼ 1; :::;G; i; j ¼ 1; :::;KgÞ;
ð�Þij is the (i, j)th element of a matrix; and dij is the Kronecker delta.

From Equation 16.A.1, we have
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where z1ðvÞ is the asymptotic bias of v of order Oð ~N�1Þ.
For k2ðvÞ, using Equations 16.12 and 16.12,

k2ðvÞ¼
XG
g¼1

N�1
g

@g0
@pTðgÞ0

VðgÞ
@g0

@pTðgÞ
þ @g0

@pT
0 �

@

@pT
0

� �<2>

g0

( )" #
N�1

2<3>Eðu<3>Þ

þ E
1

4

@

@ pT
0

� �<2>

g0

( )
N�1

2
<2>u<2>

" #28<
:

9=
;

þ 1

3

@g0
@ pT

0 �
@

@ pT
0

� �<3>

g0

( )" #
N�1

2
<4>Eðu<4>Þ � fk1ðvÞg2 þ Oð ~N�3Þ

(16.A.3)
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The second term on the right-hand side of Equation 16.A.3 is

XG
g¼1

N�2
g

XKg

i;j;k¼1

@g0
@ pg i

@2g0
@ pg j@ pg k

Jgði; j; kÞ; (16.A.4)

where

Jgði; j; kÞ ¼ N2
gEfðpg i � pT g iÞðpg j � pT g jÞðpg k � pT g kÞg

¼ dijdikðpT g i � 3p2T g iÞ � fdijð1� dikÞpT g ipT g k þ dikð1� dijÞpT g ipT g j

þ djkð1� djiÞpT g jpT g ig þ 2pT g ipT g jpT g k ði; j; k ¼ 1; � � �;KgÞ
(16.A.5)

(see, e.g., Stuart & Ord, 1994, Equation 7.18). The sum of the third and fifth terms

on the right-hand side of Equation 16.A.3 becomes

E
1

4

@

@ pT
0

� �<2>

g0

( )
N�1

2
<2>u<2>

" #28<
:

9=
;� fk1ðvÞg2

¼
XG
g;g0¼1

N�1
g N�1

g0
XKg

i;j¼1

XKg0

k;l¼1

1

4

�
@2g0

@pTgi@pTgj

@2g0
@pTg0k@pTg0l

þ1

4

@2g0
@pTgi@pg0k

@2g0
@pTgj@pTg0l

þ1

4

@2g0
@pTgi@pTg0l

@2g0
@pTgj@pTg0k

�

�ogi jog0k l�1

4

XG
g¼1

N�1
g

 XKg

i;j¼1

@2g0
@pTgi@pTgj

ogi j

!2

þOð ~N�3Þ

¼ 1

2

XG
g;g0¼1

N�1
g N�1

g0
XKg

i;j¼1

XKg0

k;l¼1

@2g0
@pT g i@pT g0k

@2g0
@pT g j@pT g0l

og i jog0k l þ Oð ~N�3Þ

(16.A.6)

The remaining fourth term on the right-hand side of Equation 16.A.3 is

XG
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From Equations 16.A.4–16.A.7, Equation 16.A.3 becomes
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where z2ðvÞ is the asymptotic variance of v of order Oð ~N�1Þ and zD2ðvÞ is the added
higher order asymptotic variance of v of order Oð ~N�2Þ.

Similarly, for k3ðvÞ we have
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where z3ðvÞ is the asymptotic third cumulant of v of order Oð ~N�2Þ with

z3ðvÞ=fz2ðvÞg3=2 being the asymptotic skewness of order Oð ~N�1=2Þ.
Lastly, for k4ðvÞ, it follows that

k4ðvÞ ¼ E½fv� EðvÞg4	 � 3fk2ðvÞg2

¼ Eðv4Þ � 4Eðv3ÞEðvÞ � 3fEðv2Þg2 þ 12Eðv2ÞfEðvÞg2 � 6fEðvÞg4;
(16.A.10)

where from Equation 16.11,
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Jgði; j; k; lÞ is the N3
g times the multivariate fourth cumulant of pg i; pg j; pg k and

pg l, that is,
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gkðpg i; pg i; pg i; pg iÞ ¼ pT g ið1� pT g iÞf1� 6pT g ið1� pT g iÞg;
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ðg ¼ 1; :::;G; i; j; k; l ¼ 1; :::;Kg; i 6¼ j; i 6¼ k; i 6¼ l; j 6¼ k; j 6¼ l; k 6¼ lÞ
(16.A.12)

(see, e.g., Stuart & Ord, 1994, Equation 7.18); and S
h

is the sum of h terms with

similar patterns.

The sum of the remaining terms other than Eðv4Þ on the right-hand side of

Equation 16.A.10 is given by
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(16.A.13)

From Equations 16.A.11 and 16.A.13, Equation 16.A.10 becomes
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@pTgi@pTgj

@g0
@pTg0k

@g0
@pTg0l

@g0
@pTg0m

ogijJg0 ðk;l;mÞ

þ
X

g;g0g00;gð3Þ;

G

gð4Þ;gð5Þ¼1

XKg

i¼1

XKg0

j¼1

XKg00

k¼1

XKgð3Þ

l¼1

XKgð4Þ

m¼1

XKgð5Þ

a¼1

 
3

2

@2g0
@pTgi@pTg0 j@pTg00 k

@2g0
@pTgð3Þl

@g0
@pTgð4Þm

@g0
@pTgð5Þa

þ 2

3

@3g0
@ pT g i@ pT g0 j@ pT g0 0k

@2g0
@ pT gð3Þl

@g0
@ pT gð4Þm

@g0
@ pT gð5Þa

!

�
X15

dg g0dg0 0gð3Þdgð4Þgð5ÞN
�1
g N�1

g0 0 N
�1
gð4Þog i jog0 0k logð4Þma

� 4z1ðvÞz3ðvÞ � 6z2ðvÞzD2ðvÞ � 6z2ðvÞfz1ðvÞg2 þ Oð ~N�4Þ
� z4ðvÞ þ Oð ~N�4Þ;

(16.A.14)
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where z4ðvÞ is the asymptotic fourth cumulant of v of order Oð ~N�3Þ with

z4ðvÞ=fz2ðvÞg2 being the asymptotic kurtosis of order Oð ~N�1Þ.

16.A.2 Nonzero Partial Derivatives

In the following, subscripts j, k, l ¼ 1,. . . , n.

16.A.2.1 The m/s Method

Define sbg ¼
Pn

i¼1 b
2
g i � n�1

Pn
i¼1 bg i

� �2� �1=2

ðg ¼ 1; 2Þ (note that sbg is a scaled
SD) and �bg� ¼ n�1

Pn
i¼1 bg i ðg ¼ 1; 2Þ. Then,

@As

@b 1j
¼ ðb 1j � �b 1�Þs�2

b1 As;
@As

@b 2j
¼ �ðb 2j � �b 2�Þs�2

b2 As;

@Bs

@b 1j
¼ n�1 � �b 2�

@As

@b 1j
;

@Bs

@b 2j
¼ �n�1As � �b 2�

@As

@b 2j
;

@2As

@b1j@b1k
¼fðdjk�n�1Þs�2

b1 �2ðb1j� �b1�Þðb1k� �b1�Þs�4
b1 gAsþðb1j� �b1�Þs�2

b1

@As

@b1k
;

@2As

@b 1j@b 2k
¼ ðb 1j � �b 1�Þs�2

b1

@As

@b 2k
;

@2As

@b2j@b2k
¼f�ðdjk�n�1Þs�2

b2 þ2ðb2j� �b2�Þðb2k� �b2�Þs�4
b2 gAs�ðb2j� �b2�Þs�2

b2

@As

@b2k
;

@2Bs

@b 1j@b 1k
¼ ��b 2�

@2As

@b 1j@b 1k
;

@2Bs

@b 1j@b 2k
¼ �n�1 @As

@b 1j
� �b 2�

@2As

@b 1j@b 2k
;

@2Bs

@b 2j@b 2k
¼ �n�1 @As

@b 2j
� n�1 @As

@b 2k
� �b 2�

@2As

@b 2j@b 2k
;

@3As

@b 1j@b 1k@b 1l
¼
�
� 2

X3
ðj; k; lÞ

ðdjk � n�1Þðb 1l � �b 1�Þs�4
b1 þ 8ðb 1j � �b 1�Þðb 1k � �b 1�Þ

� ðb 1l � �b 1�Þs�6
b1

�
As þ fðdjk � n�1Þs�2

b1 � 2ðb 1j � �b 1�Þ

� ðb 1k � �b 1�Þs�4
b1 g@As=@b 1l þ fðdjl � n�1Þs�2

b1 � 2ðb 1j � �b 1�Þ
� ðb 1l � �b 1�Þs�4

b1 g@As=@b 1k þ ðb 1j � �b 1�Þs�2
b1 @

2As=@b 1k@b 1l;
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@3As

@b 1j@b 1k@b 2l
¼ fðdjk � n�1Þs�2

b1 � 2ðb 1j � �b 1�Þðb 1k � �b 1�Þs�4
b1 g@As=@b 2l

þ ðb 1j � �b 1�Þs�2
b1 @

2As=@b 1k@b 2l;

@3As

@b 1j@b 2k@b 2l
¼ ðb 1j � �b 1�Þs�2

b1 @
2As=@b 2k@b 2l;

@3As

@b 2j@b 2k@b 2l
¼
�
2
X3
ð j; k; lÞ

ðdjk � n�1Þðb 2l � �b 2�Þs�4
b2 � 8ðb 2j � �b 2�Þðb 2k � �b 2�Þ

� ðb 2l � �b 2�Þs�6
b2

�
As þ f�ðdjk � n�1Þs�2

b2 þ 2ðb 2j � �b 2�Þ

� ðb 2k � �b 2�Þs�4
b2 g@As=@b 2l þ f�ðdjl � n�1Þs�2

b2 þ 2ðb 2j � �b 2�Þ
� ðb 2l � �b 2�Þs�4

b2 g@As=@b 2k � ðb 2j � �b 2�Þs�2
b2 @

2As=@b 2k@b 2l;

@3Bs

@b1j@b1k@b1l
¼��b2�

@3As

@b1j@b1k@b1l
;

@3Bs

@b1j@b1k@b2l
¼�n�1 @2As

@b1j@b1k
� �b2�

@3As

@b1j@b1k@b2l
;

@3Bs

@b1j@b2k@b2l
¼�n�1 @2As

@b1j@b2k
�n�1 @2As

@b1j@b2l
� �b2�

@3As

@b1j@b2k@b2l
;

@3Bs

@b2j@b2k@b2l
¼�n�1 @2As

@b2j@b2k
�n�1 @2As

@b2j@b2l
�n�1 @2As

@b2k@b2l
� �b2�

@3As

@b2j@b2k@b2l
;

16.A.2.2 The m/m Method

Define ag� ¼
Pn

i¼1 ag i ðg ¼ 1; 2Þ: Then,

@Am

@ða 1j; a 2jÞ0
¼

�a�2
1� a2�

a�1
1�

 !
;

@Bm

@ða 1j; a 2jÞ0
¼

a�2
1� a2� �b 2�

�a�1
1� �b 2�

 !
;

@Bm

@ðb1j; b2jÞ0
¼

n�1

�n�1a�1
1� a2�

 !
;

@2Am

@a 1j@ða1k; a2kÞ0
¼ 2a�3

1� a2�
�a�2

1�

 !
;

@2Bm

@a 1j@ða1k; a2kÞ0 ¼
�2a�3

1� a2� �b 2�
a�2
1� �b 2�

 !
;

@2Bm

@ða 1j; a2jÞ0@b2k ¼
n�1a�2

1� a2�
�n�1a�1

1�

 !
;
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@3Am

@a1j@a1k@a1l
¼�6a�4

1� a2�;
@3Am

@a1j@a1k@a2l
¼ 2a�3

1 ;
@3Bm

@a1j@a1k@a1l
¼ 6a�4

1 a2� �b2�;

@3Bm

@a1j@a1k@a2l
¼�2a�3

1� �b2�;
@3Bm

@a1j@a1k@b2l
¼�2n�1a�3

1� a2�;
@3Bm

@a1j@a2k@b2l
¼ n�1a�2

1� :

16.A.2.3 The m/gm Method

@Ag

@ða 1j; a 2jÞ0
¼

�n�1a�1
1j Ag

n�1a�1
2j Ag

0
@

1
A;

@Bg

@ða 1j; a 2jÞ ¼ � @Ag

@ða 1j; a 2jÞ
�b 2�;

@Bg

@ðb1j; b2jÞ0
¼

n�1

�n�1Ag

 !
;

@2Ag

@a 1j@a 1k
¼ n�1djka�2

1j Ag � n�1a�1
1j

@Ag

@a 1k
;

@2Ag

@a 1j@a 2k
¼ �n�1a�1

1j

@Ag

@a 2k
;

@2Ag

@a 2j@a 2k
¼ �n�1djka�2

2j Ag þ n�1a�1
2j

@Ag

@a 2k
;

@2Bg

@a 1j@a 1k
¼ � @2Ag

@a 1j@a 1k

�b 2�;

@2Bg

@a 1j@a 2k
¼ � @2Ag

@a 1j@a 2k

�b 2�;
@2Bg

@a 1j@b 2k
¼ �n�1 @Ag

@a 1j
;

@2Bg

@a 2j@a 2k
¼ � @2Ag

@a 2j@a 2k

�b 2�;
@2Bg

@a 2j@b 2k
¼ �n�1 @Ag

@a 2j
;

@3Ag

@a 1j@a 1k@a 1l
¼ �2n�1djkdjla�3

1j Ag þ n�1djka�2
1j

@Ag

@a 1l

þ n�1djla�2
1j

@Ag

@a 1k
� n�1a�1

1j

@2Ag

@a 1k@a 1l
;

@3Ag

@a 1j@a 1k@a 2l
¼ n�1djka�2

1j

@Ag

@a 2l
� n�1a�1

1j

@2Ag

@a 1k@a 2l
;

@3Ag

@a 1j@a 2k@a 2l
¼ �n�1a�1

1j

@2Ag

@a 2k@a 2l
;

@3Ag

@a 2j@a2k@a2l
¼ 2n�1djkdjla�3

2j Ag � n�1djka�2
2j

@Ag

@a 2l

� n�1djla�2
2j

@Ag

@a 2k
þ n�1a�1

2j

@2Ag

@a 2k@a 2l
;

@3Bg

@a 1j@a 1k@a1l
¼ � @3Ag

@a 1j@a 1k@a1l
�b2�;

@3Bg

@a 1j@a 1k@a2l
¼ � @3Ag

@a 1j@a 1k@a2l
�b2�;
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@3Bg

@a 1j@a 1k@b2l
¼ �n�1 @2Ag

@a 1j@a 1k
;

@3Bg

@a 1j@a2k@a2l
¼ � @3Ag

@a 1j@a2k@a2l
�b2�;

@3Bg

@a 1j@a 2k@b2l
¼ �n�1 @2Ag

@a 1j@a 2k
;

@3Bg

@a 2j@a 2k@a2l
¼ � @3Ag

@a 2j@a2k@a2l
�b2�;

@3Bg

@a 2j@a 2k@b2l
¼ �n�1 @2Ag

@a 2j@a 2k
:

16.A.3 Asymptotic Cumulants for Theorem 2

From Equations 16.16 and 16.17, we have

z10 ¼ z�1=2
2 z1 �

1

2
z�3=2
2

XG
g¼1

@g0
@ pTðgÞ0

VðgÞ
@z2

@ pTðgÞ
;

z30 ¼ E½ft� EðtÞg3	 þ Oð ~N�3=2Þ ¼ z�3=2
2 z3 � 3z�3=2

2

XG
g¼1

@g0
@ pTðgÞ0

VðgÞ
@z2

@ pTðgÞ

(16.A.15)

(see also Ogasawara, 2007b), where

@z2
@ pT g k

¼ 2N�1
g

@2g0
@ pT g k@ pTðgÞ0

VðgÞ
@g0

@ pTðgÞ
þ N�1

g

@g0
@ pTðgÞ0

@VðgÞ
@ pT g k

@g0
@ pTðgÞ

;

@VðgÞ
@ pT g k

¼ EðgÞkk � eðgÞkpTðgÞ0 � pTðgÞeðgÞk 0 ðg ¼ 1; :::;G; k ¼ 1; :::;KgÞ;

(16.A.16)

where EðgÞkk is the Kg � Kg matrix whose (k, k)th element is 1 with others 0; and

eðgÞk is the k-th column of the Kg � Kg identity matrix.
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Chapter 17

Evaluating the Missing Data Assumptions

of the Chain and Poststratification

Equating Methods

Sandip Sinharay, Paul W. Holland, and Alina A. von Davier

17.1 Introduction

The nonequivalent groups with anchor test (NEAT) design, also known as the

common-item, nonequivalent groups design (Kolen & Brennan, 2004), is used for

equating several operational tests. Two types of observed-score equating methods

often used with the NEAT design are chain equating (CE) and poststratification

equating (PSE). Here, we consider their nonlinear versions, that is, the frequency-

estimation equipercentile method for PSE and the chained equipercentile methods for

CE (see Kolen & Brennan, 2004).

Von Davier, Holland, and Thayer (2004b) showed that both the CE and PSE

methods are examples of observed-score equating methods under different assump-

tions about the missing data in the NEAT design. These assumptions cannot be

directly evaluated using the data that are usually available under a NEAT design.

Here, we examine some predictions of these different assumptions for the distribution

of the missing data and compare them to observed data that arise in a special study.

In practical situations, the PSE and CE methods tend to produce different results

when the two nonequivalent groups of examinees differ substantially on the anchor

test. However, given that both methods rely on assumptions about missing data, it

is difficult to conclude which of the two is more appropriate in a given situation.

The CE and PSE methods were compared from several perspectives in von Davier,

Holland, and Thayer (2003, 2004a, b) and von Davier (2003b). These studies

showed that both the PSE and CE methods appear to be similar in their standard

errors of equating and in their degrees of population invariance. Thus, those two

considerations do not lead to a clear choice between the methods.
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A series of empirical and simulation studies compared CE and PSE with respect

to their equating bias and variability. The usual approach in these research works

was to design a study where a true or criterion equating is available and to investigate

the closeness of the different methods to the criterion equating. Examples of studies

that compared the CE and PSE methods using pseudotest data are Livingston,

Dorans, and Wright (1990); Wright and Dorans (1993); von Davier et al. (2006);

and Ricker and von Davier (2007). Wang, Brennan, and Kolen (2006) compared the

CE and PSE methods using an item response theory (IRT) simulation, and Sinharay

and Holland (2007) used both pseudotest data and an IRT simulation. All of these

studies found that the CE methods tend to show less bias and about the same

variability as the corresponding PSE methods when the two groups have large

differences. Thus, it is increasingly clear that CE methods may be preferable to

PSE methods when the groups differ widely on the anchor test.

Livingston et al. (1990) offered an explanation of the larger bias for PSE. They

argued that stratifying on observed scores is a fallible approximation to stratifying

on true scores, and this fallibility results in undercorrection of the group differences

that increases as the anchor-score difference between the groups increases. How-

ever, Wright and Dorans (1993) showed that when the two groups are selected in a

manner that closely approximates the missing data assumptions of PSE, the PSE

methods are less biased than CE methods (regardless of how different the groups

are on the anchor test). Moreover, the difference in bias found for PSE in the IRT

simulation study of Wang et al. (2006) and Sinharay and Holland (2007) could be

because data simulated from an IRT model cannot satisfy the assumptions of PSE.

The approaches employed in the above-mentioned studies are direct and simple in

conception, but they do not allow for any detail in the explanation of why one method

is closer to the criterion than the others. For the NEAT design this is especially

problematic because both PSE and CE make different assumptions about missing

data. It is natural to ask how adequate these different assumptions are.

The present study uses the data described in von Davier et al. (2006), where, in

addition to having a natural criterion equating, data are also available that are the

missing data of the NEAT design in practice. The presence of these otherwise

missing data allows us to evaluate the underlying missing-data assumptions of CE

and PSE. The agreement of CE and PSE with the criterion equating for these data

has been reported in von Davier et al. (2006) and Ricker and von Davier (2007). In

those studies, equipercentile functions of both PSE and CE were very close to the

criterion equipercentile function, but the CE results were slightly closer. This

chapter, a summarized version of Holland, Sinharay, von Davier, and Han (2008),

describes how the satisfaction of the missing-data assumptions of CE and PSE

reflect these findings about the equating functions.

17.2 Notation and Basic Ideas

In the NEAT design, two operational tests, X and Y, are given to two different

samples of examinees from different test populations (denoted here by P and Q).
In addition, an anchor test A is given to both samples. Test X is observed on P but
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not Q, and Y is observed on Q but not P; data for X in Q and Y in P are always

missing in a NEAT design. The task is to equate the scores of X to those of Y on a

target population, T, to be described in more detail below. Both external and

internal anchor tests are considered in this study.

The target population T for the NEAT design is the synthetic population based on
P and Q (Braun & Holland, 1982), in which P and Q are given weights that indicate

their degree of influence on T. Following Braun and Holland (1982), T is denoted by

T ¼ wPþ 1� wð ÞQ; 0 � w � 1: (17.1)

The total population, often denoted by P þ Q, that is obtained by pooling the

samples from P and Q, is the synthetic population for which w in Equation 17.1 is

proportional to the sample size from P, that is, w¼ NP/(NPþ NQ), where NP and NQ

denote the sample sizes from P and Q.
In our discussion, we will let F, G and H denote the cumulative distribution

functions (CDFs) of X, Y and A, respectively, and will further specify the popula-

tions on which these CDFs are determined by the subscripts P, Q, and T. For
example, FP(x) denotes the proportion of examines in P for which X is less than or

equal to the value x, that is, FP(x) ¼ Prob{X � x | P}.
We take the position that to justify an equating method as an observed-score

equating method requires showing that the method is equivalent to an equipercen-
tile equating function defined on the target population, that is, for some choices of

FT(x) and GT(y),

EquiXY ;T xð Þ ¼ GT
�1 FT xð Þð Þ: (17.2)

17.3 Equating Methods for the NEAT Design

A basic requirement for developing an observed-score equating method for the

NEAT design is to make sufficiently strong and not directly testable missing-

data assumptions that allow FT(x) and GT(y) to be estimated in order to apply

Equation 17.2. The assumptions of CE and PSE, formalized in von Davier et al.

(2004a), are the following:

l CE assumptions. The equipercentile function computed in P for linking X to A is

the same as that for linking X to A in T for any choice of T¼ wPþ (1� w)Q. An
analogous assumption holds for the links from A to Y in Q and in T.

l PSE assumptions. The conditional distribution of X given A in P is the same as

the conditional distribution of X given A in T for any choice of T ¼ wPþ (1 � w)
Q. An analogous assumption holds for Y given A in Q and in T.

The PSE assumptions imply missing data assumptions that are conditional on the

anchor test. TheCE assumptions require somemanipulation to see their implication for

the missing data, which we do in the next section. There is no simple connection
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between these two sets of assumptions. Researchers von Davier et al. (2004b) gave an

example where the means of A in P and Q differed by about a third of a standard

deviation and the two methods produced results that are reliably different enough to

have practical consequences. In such an example it is impossible for both sets of

assumptions to be simultaneously satisfied—one or both sets must be violated.

17.4 The Predictions of PSE and CE for the Missing Data

The assumptions of both PSE and CE can be used to specify the distributions of X in

Q and Y in P that would be observed if they were available in the NEAT design. The

approach taken in this paper is to formulate these as predictions and then to evaluate

these predictions using data from a special pseudotest study, described later, where

the usually missing data are present.

17.4.1 The PSE Predictions

The PSE assumptions are supposed to hold for any choice of T ¼ wP þ (1 � w)Q,
so that in particular they hold for T ¼ Q. Thus, the PSE assumptions imply that the

conditional distribution of X given A in Q may be expressed as

Prob X ¼ xjjA ¼ al;Q
� � ¼ Prob X ¼ xjjA ¼ al;P

� �
: (17.3)

Hence, under the PSE assumptions, the marginal distribution of X in Q, fjQ ¼
Prob{X ¼ xj | Q}, is given by

fjQ ¼
X
j

Prob X ¼ xjjQ
� � ¼

X
j

Prob X ¼ xjjA ¼ al;Q
� �

hlQ

¼ P X ¼ xjjA ¼ al;P
� �

hlQ; (17.4)

where hlQ ¼ Prob{A ¼ al | Q} is the marginal distribution of A in Q. Thus,
Equation 17.4 is the PSE prediction of fjQ. Similar predictions for the marginal

distribution of Y in P follow from the PSE assumption for the conditional distribu-

tion of Y given A in P.
To implement the PSE predictions we first used polynomial log-linear models

(Holland & Thayer, 2000) to presmooth the bivariate distribution of (X, A) obtained
from P and the bivariate distribution of (Y, A) fromQ. The same form of polynomial

log-linear model was used for presmoothing the bivariate score distributions of

each pseudotest and anchor test. The chosen bivariate model fit five marginal

moments for each score variable plus four cross-product moments of the form xa,
xa2, x2a and x2a2. We denote these presmoothed bivariate probabilities as

pjl ¼ Prob X ¼ xj;A ¼ aljP
� �

and qkl ¼ Prob Y ¼ yk;A ¼ aljQf g: (17.5)

284 S. Sinharay et al.



Second, using these bivariate probabilities, we formed the marginal distributions

of A in P and Q, that is, hlP ¼ Prob{A ¼ al | P}¼
P
j
pjl and hlQ ¼ Prob{A ¼ al |

Q}¼P
k

qkl.

Third, we computed the conditional probability, Prob{X ¼ xj | A ¼ al, P}, as the
ratio pjl/hlP

1. Fourth, we used these estimated conditional probabilities and assump-

tion (Equation 17.3) to obtain the predicted score probabilities for X in Q via

Equation 17.4, that is,

fjQ ¼
X
l

pjl=hlP
� �

hlQ:

Similarly, the predicted score probabilities for Y in Q are given by gkP ¼P
l

(qkl/hlQ)hlP.

We denote the observed frequencies of X in Q by njQ and those of Y in P by nkP.
In a real NEAT design, neither of these two sets of frequencies is available, but in

the special pseudotest data set that we will use, they are. They satisfy
P
j

njQ¼ NQ,

and
P
k

nkP¼ NP. To evaluate the PSE assumptions, we propose to compare in

several ways the predicted frequencies, {NQ fjQ} and {NP gkP}, to the observed

frequencies, {njQ} and {nkP}, from the pseudodata set.

17.4.2 The CE Predictions

The CE assumptions do not directly concern discrete score distributions. Assuming

that all distributions have been continuized, von Davier et al. (2004b) formalized

the CE assumption for X and A as

H�1
T FT xð Þð Þ ¼ H�1

P FP xð Þð Þ for any T ¼ wPþ 1� wð ÞQ: (17.6)

From the definition of inverse functions, Equation 17.6 is equivalent to defining

the CDF, FT(x), by

FT xð Þ ¼ HT H�1
P FP xð Þð Þ� �

; for any T ¼ wPþ 1� wð ÞQ: (17.7)

Thus, Equation 17.7 shows that CE makes very specific assumptions about the

form of the continuized CDF of X for any T. In a similar manner, the CE assumption

that the equipercentile function linking A to Y is the same for any T is equivalent to

defining the inverse CDF, G�1
T(u), by

G�1
T uð Þ ¼ G�1

Q HQ H�1
T uð Þ� �� �

; for any T ¼ wPþ 1� wð ÞQ: (17.8)

1Note that because of the use of presmoothing, all values of hlP are positive.
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Equations 17.7 and 17.8 may be combined to form the equipercentile function

linking X to Y on any T ¼ wP þ (1 – w)Q as

G�1
T FT xð Þð Þ ¼ G�1

Q HQ H�1
T HT H�1

P FP xð Þð Þ� �� �� �� �
¼ G�1

Q HQ H�1
P FP xð Þð Þ� �� �

: (17.9)

The right-hand side of Equation 17.9 is the usual formula for the chained

equipercentile function, whereas the left-hand side is the definition of the equiper-

centile function, EquiXY;T(x), in Equation 17.2. Thus, under the CE assumptions

given above, the usual formula for the chained equipercentile function is an

equipercentile function on any synthetic population, T. The usual justification of

CE is informal—a plausible composition of two links, X to A and A to Y. However,
Equation 17.9 shows that the CE assumptions result in an actual observed-score

equating method, in the sense of Equation 17.2.

If we now take T ¼ Q in Equation 17.7, then for the continuized CDF, the CE

assumptions imply that

FQ xð Þ ¼ HQ H�1
P FP xð Þð Þ� �

: (17.10)

Similarly, taking T ¼ P in Equation 17.8 and inverting the relationship, the CE

assumptions imply that

GP yð Þ ¼ HP H�1
Q GQ yð Þ� �� �

: (17.11)

Thus, Equations 17.10 and 17.11 show that the predictions of CE for X in Q and

for Y in P are for the continuized CDFs of these distributions rather than for

the discrete score distributions themselves. Next, we describe the steps involved

in obtaining CE predictions for the discrete score distributions from CE predictions

for the continuized CDFs.

We started the computations with the presmoothed discrete bivariate distributions,

pjl and qkl, from Equation 17.5 that were also used for the PSE predictions. The

presmoothed marginal score probabilities of X in P, A in P, A in Q and Y in Q are

obtained by row and column summation of these bivariate distributions and are

denoted, respectively, by fjP, hlP, hlQ, and gkQ, in parallel with the notation used earlier.
Then, we continuized these score probabilities to get the continuous CDFs FP(x),

HP(a), HQ(a), and GQ(y). We used the linear interpolation method (Kolen &

Brennan, 2004) for continuization.

Then, we used Equations 17.10 and 17.11 to obtain the CE predicted continuized
CDFs of X in Q and Y in P. We needed to discretize the continuous CDFs in

Equations 17.10 and 17.11 to obtain predictions comparable to those of PSE for the

discrete distributions. We used an intuitive and simple method for discretizing the

continuous CDF FQ(x). The problem is to associate probabilities from FQ(x) with
the discrete scores on X, denoted by xj, for j ¼ 1 to J. To do this is it is natural to

evaluate FQ(x) at values on either side of each xj and subtract them. We used the
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half-way points, xj* ¼ (xj þ xjþ1)/2, for j ¼ 1 to J � 1. Note that for equally spaced

integer scores, the half-way points are the corresponding half integers from x1 þ ½

to xJ � ½. At the ends we use plus or minus infinity as necessary. Thus, a discrete

probability, rjQ, for X ¼ xj in Q is given by

rjQ ¼ FQ xj
�� �� FQ xj�1

�� �
; for j ¼ 2; 3; . . . ; J � 1;

rJQ ¼ 1� FQ xJ
�
�1

� �
; and r1Q ¼ FQ x1

�ð Þ: (17.12)

The {rjQ} computed above are discrete probabilities that sum to 1.0.

The method of discretization in Equation 17.12 works for any continuous

CDF and is of possible independent interest. See Holland, Sinharay, von Davier,

and Han (2008) for more on this issue.

The {rjQ} in Equation 17.12 are the CE-predicted score probabilities for X in Q.
In the same way, using analogous notation, the continuous CDF of Y in P, GP(y),
may be discretized to obtain predicted score probabilities for Y in P given by

skP ¼ GP yk
�ð Þ � GP yk

�
�1

� �
; for k ¼ 2; 3; . . . ;K � 1;

sKP ¼ 1� GP yK
�
�1

� �
; and s1P ¼ GP y1

�ð Þ: (17.13)

We used the values of {NQ rjQ} as the CE predictions of the X-in-Q frequencies,

{njQ}, just as {NQ fjQ} are the PSE predictions of these frequencies. In a similar

way, we used NP skP as the CE predictions of the Y-in-P frequencies, {nkP}. We

are now able to put the CE and PSE assumptions on an equal footing for our

comparisons.

17.4.3 Comparing the Predicted Frequencies With the Data

We used three different approaches to compare the observed and predicted fre-

quencies. First, we graphed the observed and predicted frequencies together to get

an overall view of how well the predictions track the observed frequencies. To

focus attention on the differences between the observed and predicted frequencies,

we also graph their Freeman-Tukey (FT) residuals (Holland & Thayer, 2000). The

FT residuals have the form

ffiffiffiffi
ni

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ni þ 1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mi þ 1

p
; (17.14)

where ni denotes the observed frequencies and mi the predicted frequencies for

either CE or PSE. If the observed frequencies only show random variation around

the predictions, the FT residuals will show no pattern and lie in the range expected

for approximate normal deviates, that is, within �3 (Mosteller & Youtz, 1961).

Second, we used three standard goodness-of-fit measures to get a more sum-

marized assessment of the agreement between the observed and predicted
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frequencies: (a) likelihood ratio chi-square, (b) Pearson chi-square, and (c) sum of

squared FT residuals (Holland & Thayer, 2000). Equations 17.15–17.17 define

these measures:

Pearson w2 statistic; w2 ¼
X
i

ðni � miÞ2
mi

; (17.15)

likelihood ratio w2 statistic; G2 ¼ 2
X
i

ni logðni=miÞ; (17.16)

and the FT w2 statistic; w2FT ¼
X
i

ð ffiffiffiffi
ni

p þ
ffiffiffiffiffiffiffiffiffiffiffiffi
ni þ 1

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4mi þ 1

p
Þ2: (17.17)

These three measures are often used as summary indices to assess the overall

closeness of fitted frequencies to observed frequencies in discrete distributions of

scores.

Third, for an alternative summary look at the predictions, we compared the

first two moments—mean and standard deviation—of the predicted and observed

frequencies and used the percent relative difference between the predicted

and observed moments as a way to quantify the relative accuracy of the predictions.

17.5 Study Details

17.5.1 The Data Set

The original data were from one form of a licensing test for prospective teachers.

The form included 120 multiple-choice items, about equally divided among four

content areas: language arts, mathematics, social studies, and science. Ordinarily,

the single total score from different forms of this test was equated through a NEAT

design with an internal anchor test. The form of the test used here was administered

twice, and the two examinee populations played the role of populations P and Q in

our analysis.

The mean total scores (number right) of the examinees taking the test at these

two administrations differed by approximately one fourth of a standard deviation,

as can be seen from the second column of Table 17.1.

17.5.2 Construction of the Pseudotests

We used these data to construct two pseudotests, X and Y, as well as three different
anchor pseudotests, A1, A2, and A3, of different lengths. A pseudotest consists of

a subset of the test items from the original 120-item test, and the score on
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the pseudotest for an examinee is found from the responses of that examinee to the

items in the pseudotest. The pseudotests, X and Y, each contained 44 items, 11 items

from each of the four content areas. Tests X and Y having no items in common, were

made parallel in content, but test X was constructed to be much easier than test Y.

17.5.3 The External Anchor Test Cases

To create data sets with external anchor tests, a basic set of 24 items (six from

each content area) was selected to be representative of the original test and to serve

as the largest external anchor, A1. This anchor had no items in commonwith either X
or Y. The two other anchor tests, A2 and A3, were formed by deleting four and eight

items, respectively, from A1 in such a way that A2 was a 20-item subset of A1, and
A3 was a 16-item subset of A2. Furthermore, to maintain parallelism in content, test

A2 had five items from each content area, whereas A3 had four. The mean percent

correct of the anchor tests approximately equaled that for the original test. The

structure of the various pseudotests is given in von Davier et al. (2006).

Table 17.1 also gives the numbers, means, standard deviations, alpha reliabil-

ities, and average proportion correct for the scores on X, Y, A1, A2, and A3 and

for the two sums X1 ¼ X þ A1 and Y1 ¼ Y þ A1 (that play a role for the internal

anchor cases discussed shortly) for the examinees in P, Q and the combined group.

X was considerably easier than Y (the average percentage correct on X ranged from

80–83% whereas on Y the range was 60–64%). The mean score on X for the

combined group was 127% of a standard deviation larger than the mean score on

Y. In addition, all three anchor tests showed differences of approximately a quarter

of a standard deviation between P and Q. The reliabilities of the three anchor

tests behaved as expected, with A1 being the most reliable and A3 the least reliable.
However, the range of these reliabilities was modest—from.68 to.75 on the

combined group.

The pseudotest data were designed to lead to a difficult equating problem for

which CE and PSE were expected to give different answers. This was done in order

to provide a sharp comparison between these methods in a nonlinear equating

situation. The large difference in difficulty between X and Y made the equating

problem nonlinear. The difference in the test performance of P and Q was inten-

tionally chosen to be as large as possible; this difference insured that CE and PSE

would give different results.

17.5.4 The Internal Anchor Test Cases

To create data sets that had internal anchor tests, we formed X1¼ Xþ A1 and Y1¼
Y þ A1. Then, we paired X1 and Y1 with A1, A2, or A3 as the three internal anchor

test cases. Because A2 was a subset of A1 and A3 was a subset of A2, each of the
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three anchor tests was internal to the total scores, X1 and Y1. This approach allowed
us to keep the total tests of the same size (44 þ 24 ¼ 68 items) as we varied the

lengths (and therefore the reliabilities) of the anchor tests.

17.5.5 Mimicking the NEAT Design

Because all the examinees in P and Q took all 120 items on the original test, all of

the examinees in P and Q also had scores for X, Y, X1, and Y1 as well as for each of
the three anchor tests, A1, A2, and A3. In order to mimic the structure of the NEAT

design, we pretended that scores for X or X1 were not available for the examinees in

the test administration designated asQ and that scores for Y or Y1 were not available
for the examinees in P. However, because all scores were, in fact, available for the

pseudo-test data, they allowed us to compare the frequencies predicted by the CE

and PSE assumptions with the actual frequencies in the data.

17.6 Results

Holland et al. (2008) evaluated for these data the CE and PSE assumptions directly.

They found that neither the CE nor the PSE assumptions are exactly correct, but

neither is terribly wrong either. They concluded that it is impossible to determine

which assumption is violated the most.

This section compares the predictions made by CE and PSE with the observed

data for X or X1 in Q and for Y or Y1 in P. The comparisons are divided into three

parts, as described below.

17.6.1 Comparisons of the Observed and Predicted Frequencies

Figure 17.1 shows the observed and predicted frequencies for CE and PSE for X and

X1 in Q and for Y and Y1 in P, for the case of the longest anchor test, A1. (All of the
graphs for the shorter anchor tests look very similar and are omitted.) The solid

lines connect the observed frequencies.

It is evident that the predicted distributions for CE and PSE are very similar and

depart from the observed frequencies by similar amounts and in similar directions.

In general, the agreement between the observed and predicted frequencies is quite

good, indicating that both CE and PSE make predictions that are reasonably close to

the data. To look at the differences in more detail, we used the FT residuals that are

graphed in Figure 17.2.

Figure 17.2 shows that the patterns of the FT residuals for CE and PSE are very

similar and appear fairly random, well within the expected range for well-fitting

predictions. However, the residuals for CE often are smaller than those for PSE. This

is clearest in the middle range of scores in the top row of plots in Figure 17.2.
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In summary, both CE and PSE track the data fairly well and both sets of predictions

appear to be somewhat more similar to each other than they are to the observed

data.

17.6.2 Comparisons of the Goodness-of-Fit Measures

Table 17.2 gives the values for w2, G2, and w2FT , defined earlier, for all the cases in

the study. 17.2 shows, just like Figure 17.2, that the predictions of CE are somewhat

closer to the observed frequencies than the PSE predictions. In all cases, all of the

goodness-of-fit measures are smaller for CE than for PSE. Thus, while the CE

and PSE predictions are very similar, as seen in Figure 17.1, those of CE are, on

average, slightly closer to the observed frequencies.

In addition, there is a consistent tendency for the goodness-of-fit measures for

PSE to get smaller as the length of the anchor test increases. Thus, the length (and
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Fig. 17.1 Frequencies for X in Q and Y in P for external anchor test A1 (top row) and for X1 in Q
and Y1 in P for internal anchor test A1 (bottom row)
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the reliability) of the anchor test has a distinct and measurable effect on improving

the predictions of PSE. The predictions for CE do not show this trend for the external

anchor test cases, but they do show it for the internal anchor test cases.

17.6.3 Comparisons of the Moments

Our final comparison of the predictions for CE and PSE concerns those of the mean

and standard deviation of the observed frequency distributions. The values of these

moments are given in Table 17.3. The table also shows the percent relative differences

between the observed and predicted moments. The percent relative difference is the

predicted moment minus the observed moment divided by the absolute value of the
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observed moment times 100. Thus, positive values indicate overprediction, and

negative values indicate underprediction.

In almost every case in Table 17.3, in terms of the absolute value of the percent

relative difference, the CE predictions are closer than the PSE predictions to

the observed data. The predictions of the means are accurate for both methods;

the means have the consistently smallest percent relative differences in Table 17.3,

but the differences for the CE predictions are always smaller. For the standard

deviations, the percent relative differences are generally a little larger than for the

means, but again, those for CE are always smaller.

As seen earlier for the goodness-of-fit measures, there is a consistent tendency for

the accuracy of the PSE predictions of the means and standard deviations to increase

as the length of the anchor test increases. The CE predictions for the mean and

standard deviation for the internal anchor test show the same consistent improve-

ment as the length of the anchor test increases.

17.7 Conclusions and Discussion

This study investigated the assumptions that underlie the twomost common observed-

score equating methods for the NEAT design—CE and PSE. In the usual operational

settings, these assumptions are untestable and cannot be evaluated. In this study we

Table 17.2 The Three Goodness-of-Fit Measures for Chained Equating (CE) and Poststratifica-
tion Equating (PSE)

External anchor cases Internal anchor cases

Tests and anchors w2 G2 w2FT Tests and anchors w2 G2 w2FT
X, A1: Q X1, A1: Q
PSE 63.9 68.5 66.3 PSE 55.4 60.6 56.0

CE 55.5 55.1 52.1 CE-L 50.3 53.7 49.1

X, A2 X1, A2
PSE 72.0 77.6 76.0 PSE 67.4 73.8 69.4

CE 65.1 65.3 62.9 CE-L 67.2 71.4 66.9

X, A3 X1, A3
PSE 78.0 86.7 85.1 PSE 74.0 82.9 77.7

CE 60.7 64.0 60.4 CE-L 69.1 75.2 69.4

Y, A1: P Y1, A1: P
PSE 49.3 51.4 49.9 PSE 76.6 75.9 72.3

CE 37.0 40.9 39.2 CE-L 71.2 72.5 69.2

Y, A2 Y1, A2
PSE 58.7 59.8 58.0 PSE 89.4 87.1 83.5

CE 48.0 50.0 47.4 CE-L 82.6 82.7 79.4

Y, A3 Y1, A3
PSE 68.3 68.9 67.4 PSE 103.5 97.4 93.7

CE 44.6 46.1 45.0 CE-L 92.8 88.1 85.0

Note. A1 is the longest anchor test, A3 is the shortest. Shaded cells indicate cases for which PSE

has smaller goodness-of-fit values than CE
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used a special data set that allowed us to evaluate the predictions that result from the

two sets of missing data assumptions.

The special study was designed as a stringent test of CE versus PSE in that the

mean on the anchor tests was specifically selected to be very different. The tests to

be equated, X and Y, were constructed to be very different in difficulty so nonlinear
functions would be necessary for the equatings. The tests were not unusual in terms

of their reliabilities for the numbers of items in them, and they were constructed to

mimic the multitopic content coverage of the original test. We found that CE and

PSE were similar in terms of how well the predicted distributions approximated the

observed distributions, with the CE-based predictions being slightly closer to the

observed distributions than those of PSE.

So how general are these results? First of all, our results follow an ever-

increasing set of findings that slightly favor CE over PSE methods in real test

situations, and we do not expect that to change with further research. Second, we

tried to find a case where real data would show a big difference between CE and

PSE, which did not happen. Thus, we suggest that it will take a more extreme

equating situation to find bigger differences between CE and PSE methods.

Sinharay and Holland (in press) further discuss this issue.

Where do we stand on CE versus PSE? It is fair to say that for many years the

psychometric basis for CE was cloudy. It appears to use two equatings of unequally

reliable tests and then chain them together for the final result. Such a procedure

might inherit some problems because of the unequal reliability issues of each

link. Kolen and Brennan (2004, p. 146) referred to CE as having “theoretical

shortcomings” for this reason. We have attempted to discover what these problems

might be but currently regard such efforts as pointless. The theoretical basis of CE

is exactly like that of PSE and consists of sets of assumptions about the missing data

in the NEAT design that, in turn, allow CE to be interpreted as an observed-score

equipercentile equating function for the NEAT design. Moreover, there is accumu-

lating evidence that the assumptions of CE are reasonable and likely to be useful in

a variety of circumstances (see, for example, Sinharay & Holland, 2010, in press).

We show that although CE and PSE make nearly the same predictions in an

equating situation that was designed to make them differ, those of CE are consis-

tently, if only slightly, more accurate than those of PSE. Further research is surely

needed to help distinguish situations where one of these methods is to be preferred.

Yet, CE is a clear competitor to PSE and the other observed-score equating methods

for the NEAT design. In our opinion, CE has no obvious theoretical shortcomings.

Author Note: Any opinions expressed in this chapter are those of the authors and not necessarily

of Educational Testing Service.
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Chapter 18

Robustness of IRT Observed-Score Equating

C.A.W. Glas and Anton A. Béguin

18.1 Introduction

One of the most important aspects of equating, scaling, and linking is whether

the models used are appropriate. In this chapter, some heuristic methods and a

more formal model test for the evaluation of the robustness of the procedures used

for equating, scaling, and linking are presented. The methods are outlined in

the framework of item response theory (IRT) observed score (OS) equating of

number-correct (NC) scores (Kolen & Brennan, 1995; Zeng & Kolen, 1995). The

methods for the evaluation of IRT-OS-NC equating will be demonstrated using

concurrent estimation of the parameters of the one-parameter logistic (1PL) model

and the three-parameter logistic (3PL) model. In this procedure the parameters are

estimated on a common scale by using all available data simultaneously. The data

used are from the national school-leaving examinations at the end of secondary

education in the Netherlands. To put the presentation into perspective, the applica-

tion will be presented first.

18.2 Equating of School-Leaving Examinations

Although much attention is given to producing equivalent school-leaving examina-

tions for secondary education from year to year, research has shown (see the

Inspectorate of Secondary Education in the Netherlands, 1992) that the difficulty

of examinations and the level of proficiency of the examinees can still fluctuate

significantly over time. Therefore, the following equating procedure was developed

for setting the cut-off scores of the examinations. For all examinations participating

C.A.W. Glas (*) and A.A. Béguin
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in the procedure, the committee for the examinations in secondary education chose

a reference examination where the quality and the difficulty of the items were such

that the cut-off score presented a suitable reference point. The cut-off scores of new

examinations are equated to this reference point. One of the main difficulties of

equating new examinations is the problem of secrecy: Examinations cannot be

made public until they are administered. Another problem is that the examinations

have no overlapping items. These problems are overcome by collecting additional

data to create a link between the data from the two examinations. These additional

data are collected in so-called linking groups which are sampled from another

stream of secondary education. These linking groups respond to items from the old

and the new examination directly after the new examination has been administered.

Figure 18.1 displays the data collection design for equating the 1992 English

language comprehension examinations at the higher general secondary education

(HAVO) level to the analogous 1998 examination. The figure is a symbolic

representation of an item administration design in form of a persons-by-items

matrix; the shaded areas represent a combination of persons and items were data

are available, and the blank areas are unobserved.

Both examinations consisted of 50 dichotomously scored items. So the total

number of items in the design was 100. Further, it can be seen that the design

contains five linking groups and the design is such that the linking groups cover

all items of the two examinations. Every linking group responded to a test with a

test length between 18 and 22 items, and every item in the design was presented to

exactly one of the linking groups.

Based on the data of the two examinations, one could directly apply equiper-

centile equating using the two OS distributions of the two examinations. This,

however, would be based on the assumption that either the ability level of the two

examinations populations (i.e., the 1992 and the 1998 population) or the difficulty

level of the two examinations (i.e., the 1992 examination and the 1998 examination)

had not changed. In practice, this assumption may not be tenable. The purpose

of the linking groups is to collect additional information that makes it possible to

estimate differences in ability levels and differences in difficulty levels using

Fig. 18.1 Item

administration design for

equating examinations. The

area labeled “Reference”

pertains to the 1992

examination; the area labeled

“New” pertains to the 1998

examination
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concurrent marginal maximum likelihood (MML) estimation of an IRT model. This

procedure will be outlined in detail below.

In concurrent MML estimation, the item and population parameters are esti-

mated concurrently on a common scale. So, contrary to procedures where separate

sets of parameters are estimated for different groups of respondents that are

subsequently linked to a common scale, in concurrent estimation the model has

only one set of item parameter estimates to describe all response data. That is, it is

assumed that each item has the same difficulty parameters in each of the groups in

which the item was administered (see, for instance, von Davier & von Davier,

2004). Although simulation studies (Hanson & Béguin, 2002; Kim & Cohen, 2002)

have shown that concurrent calibration leads to better parameter recovery, Kolen

and Brennan (1995) argued that separate calibration is preferred because it gives a

check on the unidimentionality of the model. In the present chapter, examples of

testing the model using concurrent MML estimates are given.

Using IRT creates some freedom in designing the data collection. For instance,

the proficiency level of the linking groups and the examination populations need not

be exactly the same; in the MML estimation procedure outlined below, every group

in the design has its own ability distribution. On the other hand, the assumption

underlying the procedure is that the responses of the linking groups fit the same IRT

model as the responses of the examination groups. For instance, if the linking

groups do not seriously respond to the items administered, equating the two

examinations via these linking groups would be threatened. Therefore, much

attention is given to the procedure for collecting the data of the linking groups;

in fact, the tests are presented to these students as school tests with consequences

for their final appraisal. One of the procedures for testing model fit proposed below

will focus on the quality of the responses of the linking groups.

18.3 IRT Models

In this chapter, only examinations with dichotomously scored items are discussed.

Consider an equating design with I items and N persons. Let item administration

variable din be defined as

dni ¼ 1 if item i; is presented to person n;
0 otherwise;

�
(18.1)

for i ¼ 1, . . ., I and n ¼ 1, . . ., N, and let the response of person n to the item i be
represented by an stochastic variable Xni, with realization xni. If dni ¼ 1, xni is
defined by

xni ¼ 1 if the response of person nto item i is correct;
0 otherwise

�
(18.2)
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If dni ¼ 0, then xni is equal to an arbitrary constant

Two approaches to modeling the responses are used: the 1PL model (Rasch,

1960) and the 3PL model (Birnbaum, 1968; Lord, 1980). In the 1PL model, the

probability of a correct response of person n on item i is given by

PðXni ¼ 1jyn; biÞ ¼ expðyn � biÞ
1þ expðyn � biÞ

; (18.3)

where bi is the item parameter of item i. A computational advantage of this model is

that the respondent’s NC score is a minimal sufficient statistic for the ability

parameter. The alternative model, the 3PL model, is a more general model, where

for each item two additional item parameters are introduced. First, the ability

parameter y is multiplied by an item parameter ai, which is commonly referred to

as the discrimination parameter. Second, the model is extended with a guessing

parameter gi which allows for describing guessing behavior. In this model, the

probability of a correct response of person n on item i, is

PðXni ¼ 1jyn; ai; bi; giÞ ¼ ciðynÞ ¼ gi þ ð1� giÞ
expðaiyn � biÞ

1þ expðaiyn � biÞ
: (18.4)

Note that if gi ¼ 0 and ai ¼ 1, ciðynÞ specializes to the response probability in

the 1PL model.

The advantage of the 3PL over the 1PL model is that guessing of responses

can be taken into account. The examinations used here as an example contain

multiple-choice items so the 3PL model may fit better than the 1PL model. An

advantage of the 1PL model over the 3PL model is that with small sample sizes it

may result in more stable parameter estimates (Lord, 1983).

To estimate the item parameters, a multiple-group MML estimation procedure

is used. Let the elements of the vector of item parameters, x, be defined as xi ¼ ðbiÞ
for the 1PL model and as xi ¼ ðai; bi; giÞ for the 3PL model. The probability of

observing response pattern Xn, conditional on the item administration vector dn, is

given by

pðxnjdn; yn; jÞ ¼
YI
i¼1

ciðynÞxnið1� ciðynÞ1�xni
� �dni

(18.5)

with ciðynÞ as defined in 18.4. Notice that through dni, the probability,

pðxnjdn; yn; jÞ only depends on the parameters of the items actually administered

to person n. The likelihood in Equation 18.5 implies the usual assumption of local

independence; that is, it is assumed that the responses are independent given yn.
Further, throughout this chapter we will make the assumption of independence

between respondents and ignorable missing data. The latter holds because the

design vectors dn are fixed.
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In the concurrent MML estimation procedure, it will be assumed that every

group in the design is sampled from a specific ability distribution. So, for instance,

the data in the design in Figure 18.1 are evaluated using seven ability distributions;

that is, one distribution for the examinees administered the reference examinations,

one for the examinees administered the new examination, and five were for

the linking groups. Let the ability parameters of the respondents of group b
have a normal distribution with density gðyjmb; sbÞ. More specifically, the ability

parameter of a random respondent n has a normal distribution with density

gðynjmbðnÞ; sbðnÞÞ, where b(n) denotes the population to which person n belongs.

The probability of observing response pattern xn, given dn, as a function of the item
and population parameters is

pðxnjdn; j; mbðnÞ; sbðnÞÞ ¼
ð
pðxnjdn; yn; jÞgðynjmbðnÞ; sbðnÞÞdyn ; (18.6)

where pðxnjdn; yn; jÞ is defined in Equation 18.5. MML estimation boils down to

maximizing the log-likelihood

Lðj;m;sÞ ¼
X
n

log pðxnjdn; j; mbðnÞ; sbðnÞÞ; (18.7)

with respect to all item parameters j and all population parameters m and s.
All item and population parameters can be concurrently estimated on a common

scale using readily available software, for instance with BILOG-MG (Zimowski,

Muraki, Mislevy, & Bock, 1996). Béguin (2000) and Béguin and Glas (2001)

presented an alternative Bayesian approach to estimation of IRT models in the

framework of IRT-OS-NC equating, but that approach is beyond the scope of this

chapter.

Table 18.1 Cumulative Percentages of the Reference (1992) and New (1998) Population on the

Reference and New Examination

Score Reference population New population

Reference exam New exam Reference exam New exam

25 19.8 14.5 12.1 15.7

26 23.6 17.5 14.7 18.7
27 28.0 20.7 17.8 22.0

28 31.8 24.5 21.2 25.7

29 35.9 28.6 25.1 29.7

30 41.0 33.1 29.4 34.0

31 45.6 37.9 34.0 38.6

32 50.4 43.0 39.0 43.4

Mean 32.3 33.2 33.9 33.2

SD 7.5 7.0 6.8 7.3

SE (Mean) 0.41 0.39

SE (SD) 0.13 0.10
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18.4 IRT-OS-NC Equating

Once the parameters of the IRT model have been estimated, the next step is

equipercentile equating carried out as if respondents of one population had taken

both examinations. Consider the example in Table 18.1. The example was com-

puted using the data of the 1992 and 1998 English language comprehension

examinations at HAVO level introduced above. The second and fourth column of

Table 18.1 display the cumulative relative frequencies for the reference and new

examination as observed in 1992 and 1998, respectively. These two cumulative

distributions were based on the actual OS distributions obtained from the two

examinations. These distributions are displayed in Figure 18.2. Figure 18.2 also

contains estimates of two score distributions that were not observed: the score

distribution on the 1992 examination if it had been administered to the 1998

population and the score distribution on the 1998 examination if it had been

administered to the 1992 population. The estimates of these two distributions are

based on the concurrent MML estimates of the item and population parameters.

These two estimated score distributions were used to compute the cumulative

distributions in the third and fifth column of Table 18.1. The estimation method

will be discussed in the next section. Essentially, the distribution of the reference

population (1992) on the new (1998) examination is computed using the parameters

of the items of the 1998 examination and the population parameters of the 1992

population.

The third column of Table 18.1 contains a part of the cumulative score distribu-

tion of the reference population on the new examination. This cumulative score

distribution is displayed in Figure 18.2b, together with a confidence interval and

the observed cumulative distribution produced by the reference sample. The com-

putation of confidence intervals will be returned to below. The cut-off score for the

new examination is set in such a way that the expected percentage of respondents

Fig. 18.2 Observed and expected score distributions
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failing the new examination in the reference population is approximately equal to

the percentage of examinees in the reference population failing the reference

examination. In the example in Table 18.1, the cut-off score of the reference

examination was 27; as a result, 28.0% failed the examination. The new cut-off

score was set to 29, because at this cut-off score the percentage of the reference

population failing the new examination was approximately equal to 28.0, which is

the percentage failing the reference examination. Obviously, the new examination

was easier. This is also reflected in the mean score of the two examinations

displayed at the bottom of Table 18.1. The old and the new cut-off scores are

marked by a straight line under the percentages. It can be seen that 25.1% of

students in the new population failed the new examination, suggesting that the

new population is more proficient than the reference population. This is also

reflected in the mean scores of the two populations.

The procedure has two interesting aspects. First, the score distributions on the

reference examination for the reference population can be obtained in two different

ways: It can be computed directly from the data, as done above, or it can be

estimated based on the IRT model. Analogously, the score distribution on the

new examination for the new population also can be obtained in two different

ways: using the actual examination data with the associated score distribution and

using an estimate of this score distribution under an IRT model. The expected score

distribution estimated under an IRT model will be referred to as expected score
distribution, whereas the distribution determined directly from the data will be

referred to as OS distribution. The difference between the observed and expected

frequencies can be the basis for a Pearson-type test statistic for testing the model

fit in either the reference-examination data set or the new-examination data set

(see Glas & Verhelst, 1989, the R0-statistic). In the example of equating examina-

tions English HAVO, Figure 18.3 contains only expected-score distributions,

whereas Figure 18.2 contains OS distributions for the reference population on the

Fig. 18.3 Expected score distributions
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reference examination and for the new population on the new examination. Con-

sequently, equating could be performed in two different ways, based on the curves

of Figure 18.3 or on the curves of Figure 18.2.

Second, the cut-off scores of the two examinations could be equated based on the

score distributions of the new population or based on the score distributions of the

reference population. If the IRT model fits, a choice between these possibilities

should not influence the outcome of the equating procedure. This provides a basis

for the evaluation of the appropriateness of the procedure, which we return to

below, together with a comparison of the results obtained using the 1PL and 3PL

models.

18.5 Some Computational Aspects of IRT-OS-NC Equating

After the parameters of the IRT model have been estimated on a common scale,

the estimates of the frequency distributions are computed as follows. Label the

populations in the design displayed in Figure 18.1 as b ¼ new, reference, 1,...,5. In
this design, every population is associated with a specific design vector, db,
that indicates which items were administered to the sample of examinees from

population b. Let dref and dnew be the design vector of the examinees from the

reference and new examination, respectively. The probability of obtaining a score

r on the reference examination for the examinees in population b (b ¼ new,
reference, 1,...,5) is denoted by p(r; ref, b) Given the IRT item and population

parameters, this probability is given by

pðr; ref ; bÞ ¼
X

fxjr;dref g

ð
pðxjdref ; y; jÞgðyjmb; sbÞdy; (18.8)

where fxjr; dref g stands for the set of all possible response patterns on the reference
examination resulting in a score r and pðxjdref ; y; xÞ is the probability of a response
pattern on the reference examination given y computed as defined in Equation 18.5.

In the same manner, one can compute the probability of students in population

b (b ¼ new, reference, 1, . . . , 5) obtaining a score r on the new examination using

pðr; new; bÞ ¼
X

fxjr;dnewg

ð
pðxjdnew; y; jÞgðyjmb; sbÞdy ; (18.9)

where fxjr; dnewg stands for the set of all possible response patterns on the new

examination resulting in a score r.
Computation of the distributions defined by Equations 18.8 and 18.9 involves

summing over the set of all possible response patterns x on some examination

resulting in a score r, fxjr; dg, where d is a design vector. For a given proficiency

y the score distribution is a compound binomial distribution (Kolen & Brennan,
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1995). A recursion formula (Lord & Wingersky, 1984) can be used to compute

the score distribution of respondents of a given ability. Define fkðr yij Þ as the

probability of a NC score r over the first k items, given the ability y. Define
f1ðr ¼ 0 yj Þ ¼ ð1� p1Þ as the probability of earning a score of 0 on the first item

and f1ðr ¼ 1 yj Þ ¼ p1 as the probability of earning a score 1 on the first item. For

k>1, the recursion formula is given by

fkðr yj Þ ¼
fk�1ðr yj Þð1� pkÞ if r ¼ 0;
fk�1ðr yj Þð1� pkÞ þ fk�1ðr � 1 yj Þpk if 0 < r < k;
fk�1ðr � 1 yj Þpk if r ¼ k:

8<
: (18.10)

The expected score distribution for a population can be obtained from Equations

18.8 and 18.9 by changing the order of summation and integration. The integration

over a normal distribution can be evaluated using Gauss-Hermite quadrature

(Abramowitz & Stegun, 1972). In the examples presented in this chapter, 180

quadrature points were used for every one of the seven ability distributions (new,

reference and linking groups 1, . . . , 5) involved. At each of the quadrature points

the result of the summation is obtained using the recursion formula shown in

Equation 18.10.

18.6 Evaluation of the Results of the Equating Procedure

The cut-off scores of six examinations in language comprehension administered in

1998 were equated to the cut-off scores of reference examinations administered

in 1992. The subjects of the examinations are listed under the heading “Subject”

in Table 18.2. The examinations were administered at two levels: subjects labeled

“D” in Table 18.2 were at the intermediate general secondary education level

(MAVO-D-level), and subjects labeled “H” were at HAVO level. All examinations

consisted of 50 dichotomous items. All designs were as depicted in Figure 18.1.

In this section, it is investigated whether the 1PL and 3PL models produced

similar results. Two other aspects of the procedure will be compared. First, two

Table 18.2 Data Overview

Subject Reference exam New exam Link

NRef Mean SD NNew Mean SD Nlink

English D 1,693 35.16 6.92 4,000 34.42 7.47 1,101

English H 2,039 32.32 7.45 4,000 33.89 6.76 673

German D 2,021 34.00 6.28 4,000 29.72 6.45 803

German H 2,129 34.51 5.59 4,000 32.19 6.57 327

French D 2,097 32.28 7.23 4,000 30.13 7.06 750

French H 2,144 35.72 6.80 4,000 31.48 6.69 454

Note: Mean ¼ mean observed frequency distribution; SD ¼ standard deviation observed fre-

quency distribution
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versions of the equating procedure are compared, one version where all relevant

distributions are expected score distributions, and one version where the available

OS distributions are used, that is, the score distribution observed in 1992 and

the score distribution observed in 1998. Second, results obtained using either the

reference or the new population as the basis for equating the examinations are

compared.

In Table 18.3, the results of the equating procedure are given for the version of

the procedure where only expected score distributions are used. These score

distributions were obtained for the reference population and for the new population.

In Table 18.3, equivalent scores on the new examinations are presented for

Table 18.3 Results of the Equating Procedure With Expected Score Distributions

Subject r(b) f1
R f3

R f13
RR f1

N f3
N D13

NN D11
RN D33

RN

German D 25 23 23 0 23 23 0 0 0

30 28 27 1 28 27 1 0 0

31 29 28 1 29 28 1 0 0

35 33 32 1 33 32 1 0 0

40 39 37 2 39 37 2 0 0

German H 25 26 25 1 26 25 1 0 0

30 31 30 1 31 30 1 0 0

35 36 36 0 36 36 0 0 0

40 41 41 0 41 41 0 0 0

English D 25 23 25 �2 23 25 �2 0 0

28 26 27 �1 26 28 �2 0 �1

30 29 29 0 29 30 �1 0 �1

35 34 35 �1 34 35 �1 0 0

40 40 40 0 40 40 0 0 0

English H 25 26 26 0 26 26 0 0 0

27 28 28 0 28 28 0 0 0

30 31 31 0 31 31 0 0 0

35 36 36 0 36 36 0 0 0

40 40 40 0 40 40 0 0 0

French D 25 27 27 0 27 27 0 0 0

30 32 32 0 32 32 0 0 0

35 37 37 0 37 37 0 0 0

40 41 42 �1 41 42 �1 0 0

French H 25 23 23 0 23 23 0 0 0

30 28 28 0 28 28 0 0 0

35 34 33 1 34 33 1 0 0

40 39 38 1 39 38 1 0 0

Abs. sum 14 16 0 2

r: number-correct score (boldface: cut-off score)

f1
R: equated scores using 1PLM and Reference population

f3
R: equated scores using 3PLM and Reference population

f1
N: equated scores using 1PLM and New population

f3
N: equated scores using 3PLM and New population

D13
RR : difference f1

R � f3
R; D

13
NN : difference f1

N � f3
N

D11
RN : difference f1

R � f1
N ; D

33
RN : difference f3

R � f3
N
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a number of different score points on the reference examination. The score points

listed in Table 18.3 are the actual cut-off score and the score points, r¼25,30,35,40

on the reference examination. In Table 18.3, the results pertaining to the actual

cut-off scores are printed in boldface characters. The results obtained using score

distributions based on the reference population are listed in Columns 3–5, and the

results obtained using score distributions based on the new population are listed in

Columns 6– 8. The scores on the new examination associated with the scores of the

reference examination computed using the 1PL model are given in Column 3. For

instance, a score of 25 on the reference examination Reading Comprehension in

German at MAVO-D level is equated to a score of 23 on the new examination, and a

score of 30 on the reference examination is equated to a score of 28 on the new

examination. In the Column 4, the scores obtained under the 3PL model are given.

For this case, a score of 30 on the reference examination is equated to a score of 27

on the new one. Notice that for a score of 30 the results for the 1PL and the 3PL

models differ by 1 score point. Column 5 contains the difference between the

new scores obtained via the 1PL and 3PL models. For convenience, the sum of

the absolute values of these differences is given at the bottom line of the table. So,

for the 27 scores equated here, the absolute difference in equated score points

computed using the 1PL and the 3PL models equals 14 score points, and the

absolute difference between equated scores is never more than 2 points. The three

following columns contain information comparable to the three previous ones, but

the scores on the new examination were computed using score distributions for the

new population. Notice that the results obtained using the reference and the new

population are much alike. This is corroborated in the two last columns that contain

the differences in results obtained using score distributions based on either the

reference or new population. The column labeled “D11
RN” shows the differences for

the 1PL model and column labeled “D33
RN” shows the differences for the 3PL model.

Two conclusions can be drawn from Table 18.3. First, the 1PL and 3PL models

produce quite similar results. On average there was less than 1 score point differ-

ence, with differences never larger than 2 score points. The second conclusion is

that using either the reference or new population for determining the difference

between the examination made little difference. The bottom of Table 18.3 shows

that the sum of the absolute values of the differences are 0 and 2 score points.

As already mentioned, the procedure can be carried out in two manners: one

where all relevant score distributions are estimated using the IRT model and one

where the available OS distributions of the two examinations are used. The above

results used the former approach. Results of application of the second approach are

given in Table 18.4.

The format of Table 18.4 is the same as the format of Table 18.3. The indices in

Tables 18.3 and 18.4 (explained at the bottom of the two tables) are defined exactly

the same, only they are computed using two alternative methods. In Table 18.3

expected score distributions are used, and in Table 18.4 the available OS distribu-

tions on the examination are used. The latter approach produced results that were

far less satisfactory. For the 1PL model, the summed differences between using

the reference and the new population, D11
RN , rose from 0 to 11 score points. For the
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3PL model, this difference, D33
RN , rose from 2 to 14 points. In other words, the

requirement of an equating function that is invariant over populations (Petersen,

Kolen, & Hoover, 1989) is better met when using frequencies that are all based on

the IRT model. An explanation for this outcome is that results of equipercentile

equating are vulnerable to fluctuations due to sampling error in the OS distributions.

To overcome this problem it is common practice to use smoothing techniques to

reduce the fluctuation in the score distributions. The expected score distribution

computed using IRT models can be considered as a smoothed score distribution.

Therefore, IRT equating using only expected score distributions reduces

Table 18.4 Results of the Equating Procedure With Observed Score Distributions

r(b) f1
R f3

R f13
RR f1

N f3
N D13

NN D11
RN D13

RN

German D 25 23 23 0 23 22 1 0 1

30 28 27 1 28 27 1 0 0

31 29 28 1 29 28 1 0 0

35 33 32 1 33 32 1 0 0

40 39 36 3 39 37 2 0 �1

German H 25 25 25 0 26 24 2 �1 1

30 31 30 1 31 30 1 0 0

35 36 36 0 36 36 0 0 0

40 41 41 0 42 41 1 �1 0

English D 25 23 25 �2 23 24 �1 0 1

28 27 28 �1 27 27 0 0 1

30 29 30 �1 28 29 �1 1 1

35 34 35 �1 34 35 �1 0 0

40 40 39 1 39 40 �1 1 �1

English H 25 27 27 0 27 26 1 0 1

27 29 29 0 28 28 0 1 1

30 32 31 1 31 31 0 1 0

35 36 35 1 35 35 0 1 0

40 40 40 0 40 40 0 0 0

French D 25 27 28 �1 27 27 0 0 1

30 33 33 0 31 33 �2 2 0

35 37 37 0 37 37 0 0 0

40 41 41 0 42 42 0 �1 �1

French H 25 23 23 0 23 22 1 0 1

30 28 28 0 28 27 1 0 1

35 34 33 1 33 32 1 1 1

40 39 38 1 39 38 1 0 0

Abs. sum 18 21 11 14

r: number-correct score (boldface: cut-off score)

f1
R: equated scores using 1PLM and Reference population

f3
R: equated scores using 3PLM and Reference population

f1
N: equated scores using 1PLM and New population

f3
N: equated scores using 3PLM and New population

D13
RR: difference f

1
R � f3

R; D
13
NN difference f1

N � f3
N

D13
RN : difference f

1
R � f1

N ; D
3
RN difference f3

R � f3
N
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fluctuations in the results of equating and, consequently, improves the invariance of

equating over populations.

18.7 Confidence Intervals for Score Distributions

When a practitioner must set a cut-off score on an examination that is equivalent to

the cut-off on some reference examination, the first question that comes to mind is

about the reliability of the equating function. In the example in Table 18.1, a cut-off

score of 27 on the reference examination is equated with a cut-off score 29 on the

new examination upon observing that the observed 28.0% in the second column is

closest to the 28.7% in the third column. To what extent are these percentages

reliable? In Table 18.5, 90% confidence intervals are given for the estimated

percentages on which equating is based. Their computation will be explained

below. Consider the information on the English reading comprehension examina-

tion, which was also used for producing Table 18.1. In the boldface row labeled

“English H,” information is given on the results of the reference population taking

the reference examination. This row contains the observed percentage of students

Table 18.5 90% Confidence Intervals for Cumulative Percentages

Subject Score Observed % Lower bound % Upper bound Observed-Expected Z

German D 31 33.1 31.6 33.0 34.4 0.0 0.06

28 24.2 27.9 31.5

29 29.1 32.7 36.4

30 34.4 37.9 41.5

German H 30 23.4 22.0 23.4 24.8 0.0 0.04

30 14.8 18.4 21.9

31 19.3 22.7 26.1

32 24.4 27.6 30.7

English D 28 18.1 16.3 17.5 18.6 0.6 0.84

25 11.1 13.6 16.1

26 13.5 16.1 18.7

27 16.2 19.0 21.7

English H 27 28.0 24.4 25.7 27.0 0.3 2.92

27 17.0 20.7 24.4

28 20.7 24.5 28.3

29 24.7 28.6 32.4

French D 25 18.8 17.5 18.6 19.7 0.2 0.29

26 11.8 14.7 17.6

27 14.7 17.8 20.9

28 18.0 21.2 24.4

French H 30 22.4 20.6 21.8 23.0 0.6 0.84

27 13.1 17.5 22.0

28 16.0 20.7 25.3

29 19.4 24.2 29.0

Note: Obs. % ¼ observed cumulative percentage; Expected % ¼ expected cumulative percentage

under the one-parameter-logistic model. Lower and upper bounds are of 90% confidence interval

of expected %. Z: normalized difference Observed – Expected
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scoring 27 points or less, the cumulative percentage under the 1PL model, the lower

and upper bound of the 90% confidence interval for this percentage, and the

difference and normalized difference between the observed cumulative percentage

and the cumulative percentage under the 1PL model. The normalized difference

was computed by dividing the difference by its standard error. This normalized

difference can be seen as a very crude measure of model fit. Together with the plots

of the frequency distributions given in Figures 18.1 and 18.2, these differences give

a first indication of how well the model applied.

Continuing the example labeled “English H” in Table 18.5, in the three rows

under the boldface row, for three scores the estimates of the cumulative percentages

for the reference population on the new examination and their confidence intervals

are given. These three scores are chosen in such a way that the middle score is the

new cut-off score if equating is performed using only expected score distributions.

The other two scores can be considered as possible alternative cut-off scores. For

instance, in the “English H” example in Table 18.5, the observed cumulative

percentage 28% is located within the confidence band related to score 29, while it

is near the upper confidence bound related to score 28. If the observed percentage of

the cut-off score is replaced by an expected percentage, the confidence band of this

estimate, which is given in the boldface row, also comes into play.

But the basic question essentially remains the same: Are the estimates precise

enough to justify equating an old cut-off score to a unique new cut-off score? Or

are the random fluctuations such that several new cut-off scores are plausible?

Summarizing the results of Table 18.5, the exams German D and German H each

has only one plausible cut-off score of 29 and 31, respectively. Notice that the

cumulative percentages of 33.0% and 23.4% are well outside the confidence bands

of the scores directly above and below the chosen cut-off score. For the exams

French D, English D, and English H, two cut-off scores could be considered

plausible. For the exams in English it also made a difference whether equating

was performed using only expected score distributions or using available OS

distributions. Finally, for the examination French H, the confidence interval of

Score 27, 28 and 29 contained the percentage 21.8. So using the cumulative

percentage of examinees under the cut-off score on the reference examination

estimated under the IRT model, all three scores could be considered plausible

values for the cut-off score in the new examination.

18.8 Computation of Confidence Intervals

for Score Distributions

In this section, the parametric and nonparametric bootstrap method (Efron, 1979,

1982; Efron & Tibshirani, 1993) will be introduced as a method for computing

confidence intervals of the expected score distributions. The nonparametric boot-

strap proceeds by resampling with replacement from the data. The sample size is

the same as the size of the original sample, and the probability of an element being
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sampled is the same for all response patterns in the original sample. By estimating

the parameters of the IRT model on every sample, the standard error of the

estimator of the computed score distribution can be evaluated. In the parametric

bootstrap, new values for the parameters are drawn based on the parameter estimates

and estimated inverse information matrix. Using these repeated draws, the score

distributions can be computed and their standard errors can be evaluated by asses-

sing the variance over repeated draws.

Results of application of both bootstrap procedures are presented for the data

from the English language proficiency examination on HAVO level in 1992

and 1998. These data were also used for producing the Figures 18.2 and 18.3 and

Table 18.1. The confidence intervals presented in the two figures and the standard

Table 18.6 Confidence Intervals Using Bootstrap Procedures, English HAVO 1998, Population

1992

r Nonparametric, 400 replications Parametric, 400 replications

Pr Cum. SE(Pr) SE(Cum.) E(Pr) Cum. SE(Pr) SE(Cum)

5 0.003 0.01 0.001 0.001 0.004 0.01 0.001 0.002

10 0.054 0.13 0.010 0.026 0.057 0.14 0.013 0.036

15 0.318 1.06 0.041 0.157 0.329 1.10 0.053 0.206

20 1.085 4.68 0.097 0.519 1.106 4.82 0.119 0.658

25 2.566 14.27 0.147 1.151 2.590 14.52 0.172 1.410

30 4.463 32.79 0.130 1.817 4.469 33.12 0.148 2.157

35 5.594 59.14 0.086 1.980 5.571 59.41 0.114 2.292

40 4.439 84.73 0.213 1.254 4.405 84.84 0.248 1.433

45 1.460 98.13 0.156 0.258 1.450 98.14 0.178 0.296

50 0.019 100.00 0.004 0.000 0.020 100.00 0.005 0.000

Mean 33.25 SD 6.98 Mean 33.20 SD 7.01

SE 0.35 SE 0.10 SE 0.41 SE 0.13

Note: r ¼ number-correct score; P ¼ estimated percentage; Cum. ¼ cumulative percentage

Table 18.7 Confidence Intervals Using Bootstrap Procedures English HAVO 1998, Population

1998

r Nonparametric, 400 replications Parametric, 400 replications

Pr Cum. SE(Pr) SE(Cum.) E(Pr) Cum. SE(Pr) SE(Cum)

5 0.002 0.00 0.000 0.001 0.002 0.00 0.000 0.001

10 0.038 0.09 0.004 0.011 0.038 0.09 0.004 0.012

15 0.244 0.78 0.015 0.062 0.244 0.78 0.018 0.070

20 0.901 3.73 0.030 0.183 0.901 3.73 0.038 0.218

25 2.288 12.07 0.037 0.345 2.290 12.08 0.049 0.437

30 4.257 29.33 0.050 0.465 4.261 29.35 0.052 0.616

35 5.702 55.51 0.063 0.526 5.705 55.55 0.065 0.651

40 4.839 82.63 0.054 0.447 4.835 82.67 0.070 0.481

45 1.707 97.76 0.065 0.130 1.700 97.77 0.067 0.130

50 0.024 100.00 0.003 0.000 0.024 100.00 0.003 0.000

Mean 33.90 SD 6.84 Mean 33.90 SD 6.83

SE 0.09 SE 0.07 SE 0.11 SE 0.07

Note: r ¼ number-correct score; P ¼ estimated percentage; Cum. ¼ cumulative percentage
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errors reported in the two bottom lines of Table 18.1 were computed using a

parametric bootstrap procedure with 400 replications. Table 18.6 shows results

for the parametric and nonparametric bootstrap estimate of the score distribution of

the 1992 population on the 1998 examination using the 1PL model. Table 18.7

shows the results for the 1998 population on the 1998 examination using the 1PL

model. For brevity, only the results for every fifth score point are presented. In the

two bottom lines of the tables, the mean, the standard deviation, and their standard

errors are given.

The standard errors in Table 18.7 are much smaller than the standard errors in

Table 18.6. So, the computed standard errors dropped markedly when the score

distribution was estimated on the test the candidates actually took. For instance, the

standard error of the mean using the nonparametric bootstrap was 0.09, markedly

smaller than 0.35, the standard error of for the mean on the test not taken by the

candidates. The same results held for the estimated score distributions. For instance,

the standard error of the estimate of the percentage of candidates with score 25

dropped from.147 to .037. This effect can also be seen in the two bottom lines of

Table 18.1. For instance, for the reference population, the standard error of the

mean was.16 for the reference examination and .38 for the new examination. This

difference, of course, was as expected, since the data provide more information on

the examination 1998 for population 1998 than for population 1992. Furthermore,

the estimated standard error of the nonparametric bootstrap is a bit smaller than

the estimate using the parametric bootstrap. This result is as expected since the

parametric bootstrap accounts for an additional source of variance, that is, the

uncertainty about the parameters. Therefore, in this context, the parametric boot-

strap is preferred over the nonparametric bootstrap. A disadvantage of the para-

metric bootstrap is that it cannot be applied in problems where the number of

parameters is such that the inverse of the information matrix cannot be precisely

computed. An example is the 3PL model in the above design. With two examina-

tions of 50 items each and seven population parameter distributions, the number of

parameters is 312. In such cases, the nonparametric bootstrap is the only feasible

alternative.

18.9 A Wald Test for IRT-OS-NC Equating

In this last section, a procedure for evaluating model fit in the framework of

IRT-OS-NC equating will be discussed. Of course, there are many possible sources

of model violations, and many test statistics have been proposed for evaluating

model fit, which are quite relevant in the present context (see Andersen, 1973; Glas,

1988, 1999; Glas & Verhelst, 1989, 1995; Molenaar, 1983; and Orlando & Thissen,

2000). Besides the model violations covered by these statistics, in the present

application one specific violation deserves special attention: the question whether

the data from the linking groups are suited for equating the examinations. There-

fore, the focus of the present section will be on the stability of the estimated score
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distributions if different linking groups are used. The idea is to cross-validate the

procedure using independent replications sampled from the original data. This is

accomplished by partitioning the data of both examinations into G data sets, that is,

into G subsamples. To every one of these data sets, the data of one or more linking

groups are added, but in such a way that the data sets will have no linking groups in

common. Summing up, each data set consists of a sample from the data of both the

examinations and of one or more linking groups. In this way, the equating proce-

dure can be carried out in G independent samples. The stability of the procedure

will be evaluated in two ways: (a) by computing equivalent scores as was done

above and evaluating whether the two equating functions produce similar results

and (b) by performing a Wald test. The Wald test will be explained first.

Glas and Verhelst (1995) pointed out that in the framework of IRT, the Wald test

(Wald, 1943) can be used for testing whether some IRT model holds in meaningful

subsamples of the complete sample of respondents. In this section, the Wald test

will be used to evaluate the null hypothesis that the expected score distributions on

which the equating procedure is based are constant over subsamples against the

alternative that they are not. Let the parameters of the IRT model for the g-th
subsample be denoted lg, g 2 f1; 2; . . . ;Gg. Define a vector f(l) with elements Pr,

where Pr is the probability of obtaining a score r such as defined in Equations 18.8

and 18.9. In the example below, this will be the expected score distribution on

the reference examination. Because of the restriction
P

r Pr ¼ 1, at least one

proportion Pr is deleted. Let fðlgÞ be a distribution computed using the data of

subsample g. Further, let lg and lg be the parameter estimates in two subsamples g
and g, respectively. We will test the null hypothesis that the two score distributions

are identical, that is,

h ¼ fðlgÞ � fðlg0 Þ ¼ 0: (18.11)

The difference h is estimated using independent samples of examination candi-

dates and different and independent linking groups. Since the responses of the two

subsamples are independent, the Wald test statistic is given by the quadratic form

W ¼ h0½Sg þ Sg0 ��1
h; (18.12)

where Sg and Sg are the covariance matrices of fðlgÞ and fðlgÞ , respectively.W is

asymptotically chi-square distributed with degrees of freedom equal to the number

of elements of h (Wald, 1943). For shorter tests, W can be evaluated using MML

estimates and the covariance matrices can be explicitly computed. For longer tests

and models with many parameters, such as the 3PL model, both the covariance

matrices and the value of the test statistic W can be estimated using the nonpara-

metric bootstrap method described above. This approach was followed in the

present example.

Some results of the test are given in Table 18.8. The tests pertain to estimated

score distributions on the reference examination. To test the stability of the score

distribution, the samples of respondents of the examinations were divided into four
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subsamples of approximately equal sample size. Next, four data sets were assem-

bled, each consisting of the data of one linking group, the data of one of the four

subsamples from the reference examination, and the data of one of the four

subsamples from the new examination. The design for these four new data sets is

similar to the design depicted in Figure 18.1, except that in the prevailing case only

one linking group is present. In this way four data sets were constructed, for each

data set the item and population parameters of the 3PL model were estimated, all

relevant distributions were estimated by computing their expected values, and the

equating procedure was conducted. Finally, four Wald statistics were computed.

Consider Table 18.8. The first column concerns the hypothesis that there is no

difference between the estimated distributions of the reference population on the

reference examination in the setup where the first linking group provided the link

and the setup where this link was forged by the second linking group. The next

column pertains to a similar hypothesis concerning the third and fourth linking

group. The last two columns contain the result for a similar hypothesis concerning

the estimated distributions of the new population on the reference examination. For

all six examination topics, the score distribution considered ranged from 21 to 40,

that is, 20 of the 50 possible score points were considered. In Table 18.8, the Wald

tests with a significance probability less than.01 are marked with a double asterisk.

It can be seen that model fit is not overwhelmingly good: 12 out of 24 tests are

significant at the.01 level. However, there seem to be differences between the

various topics; for instance, French at HAVO-level seems to fit quite well. This

was corroborated further by a procedure were equivalent scores were computed for

a partition of the data into five different subsamples, each one with its own linking

group.

Consider Table 18.9. For six topics four scores on the reference test were

considered. For each of the five subsamples, these four scores were equated to

scores on the new examination via the reference population. The columns labeled

“L1” to “L5” show the resulting scores on the new test. These new scores seem to

fluctuate quite a bit, but it must be kept in mind that every one of these scores was

computed using only a fifth of the original sample size, so the precision has suffered

considerably. The column labeled “Total” displays the sum of the absolute differ-

ences between all pairs of new scores. Since there are five new scores for every

original score, there are 10 such pairs. So, for instance, the mean absolute difference

Table 18.8 Results of the Wald Test for Stability of Estimated Score Distributions, by Population

Subsample

Subject Reference New

1 vs 2 3 vs 4 1 vs 2 3 vs 4

German D 97.9** 12.0 202.3** 180.0**

German H 156.5** 16.8 8.1 232.7**

English D 24.6 8.9 460.1** 19.5

English H 52.9** 8.1 239.8** 4.1

French D 120.3** 100.4** 547.6** 158.2**

French H 4.5 15.6 21.7 10.8

**p <0.01
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between the new scores associated with the original score 20 on the D-level

examination in German is 4.8 score points.

An interesting question in this context is how this result must be interpreted

given the small sample sizes in the subsamples. To shed some light on this question,

the following procedure was followed. For every examination, new data sets were

generated using the parameter estimates obtained on the original complete data sets,

that is, the data sets described in Table 18.2. These new generated data sets

conformed the null hypothesis of the 3PL model. Next, for every data set, the

procedure of equating the two examinations via the reference population in the five

subsamples was conducted. For every examination this procedure was replicated

100 times. In this manner, the distribution of the sum of the absolute differences of

new scores under the null hypothesis that the 3PL model (with true parameters as

estimated) holds could be approximated, and the approximated significance proba-

bility of the realization using the real data could be determined. The mean sum of

absolute differences over the 100 replications and the significance probability of the

real data realization are given in the last two columns of Table 18.9. The overall

model fit is not very good, however. Also, here French at HAVO-level stands out as

well fitting, and German at HAVO-level shows acceptable model fit.

Table 18.9 Stability of Equating Functions in Subsamples

Topic r(b) L1 L2 L3 L4 L5 Total Expected p

German D 20 16 23 21 15 14 48 15.5 0.00

25 20 28 27 21 19 50 14.5 0.00

30 26 32 32 27 24 44 13.1 0.00

35 31 37 37 33 29 44 11.4 0.00

German H 20 16 19 17 21 17 24 15.2 0.10

25 22 24 22 26 22 20 12.4 0.15

30 27 29 27 31 28 20 10.3 0.05

35 33 34 32 36 33 18 9.5 0.10

English D 20 20 26 18 19 20 34 14.1 0.00

25 24 31 23 24 25 34 12.5 0.00

30 29 35 28 29 30 30 10.3 0.00

35 34 39 33 34 34 24 8.8 0.00

English H 20 21 26 19 18 23 40 12.8 0.00

25 26 31 24 23 28 40 12.0 0.00

30 31 36 29 28 32 38 10.0 0.00

35 36 40 34 33 37 34 9.2 0.00

French D 20 18 13 19 16 23 46 13.2 0.00

25 24 18 24 20 27 44 13.7 0.00

30 29 22 29 25 32 48 13.4 0.00

35 35 28 34 29 36 44 12.7 0.00

French H 20 21 20 18 18 19 16 16.0 0.55

25 26 25 23 24 24 14 15.4 0.75

30 31 30 29 29 29 10 12.8 0.85

35 36 35 34 34 34 10 10.7 0.70
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18.10 Conclusions

In this chapter, we proposed some heuristic methods and a more formal model

test for the evaluation of the robustness of IRT-OS-NC equating, and we showed

the feasibility of the methods in a practical situation using an application in a real

examination situation. In the application, the differences between the results

obtained using the 1PL and the 3PL models were not very striking. Overall

model fit was not very satisfactory; only one of the examination topics fitted well,

and a second topic fitted acceptably. The case presented here was further analyzed

by Béguin (2000) and by Béguin and Glas (2001) using multidimensional IRT

models (Bock, Gibbons, & Muraki, 1988) and a Bayesian approach to estimation.

However, the methods presented in this chapter easily can be adapted to an MML

framework for multidimensional IRT models; the main difference is replacing the

normal ability distribution gðyjmb; sbÞ with a multivariate normal distribution

gðyjmb;SbÞ.
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Chapter 19

Hypothesis Testing of Equating Differences

in the Kernel Equating Framework

Frank Rijmen, Yanxuan Qu, and Alina A. von Davier

19.1 Introduction

Test equating methods are used to produce scores that are interchangeable across

different test forms (Kolen & Brennan, 2004). In practice, often more than one

equating method is applied to the data stemming from a particular test administra-

tion. If differences in estimated equating functions are observed, the question arises

as to whether these differences reflect real differences in the underlying “true”

equating functions or merely reflect sampling error. That is, are observed differ-

ences in equating functions statistically significant?

By dividing the squared estimated equating difference at a given score point by

the square of its asymptotic standard error, a Wald test (Wald, 1943) is obtained to

test for the statistical significance of the equating difference. Carrying out a Wald

test at a particular score point is tantamount to the decision rule that was proposed

by von Davier, Holland, and Thayer (2004b), who used twice the standard error of

the equating difference as a critical value for determining whether there is a

difference between two equation functions at a given score point (using 1.96 times

the standard error would be formally equivalent to carrying out a Wald test at a type I

error rate of .05).

Typically, one will be interested in whether one equating function results in

different equated scores than another equation function over a range of score points

(e.g., a range of potential cut points in a licensure examination). The procedure

proposed by von Davier et al. (2004b), being equivalent with carrying out a Wald

test at each individual score point with a type I error rate of a, suffers from the

multiple testing problem. That is, by carrying out multiple tests at a specific level of

significance a, one test for each score point of interest, the actual type I error rate is
higher than a. Because the tests are not independent, correcting the significance
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level of the individual test by dividing a by the number of tests carried out (the

Bonferroni method of adjustment) will be overly conservative.

In this study, we generalize the expressions for the standard error of an equated

score and for the standard error of the equating difference at an individual score

point to expressions for the variance-covariance matrix of the set of equated scores,

and for the variance-covariance matrix of the differences between equating func-

tions over the whole range of score points. The latter matrix can be used to construct

a multivariate Wald test for a set of linear functions of differences between equated

scores.

The multivariate Wald test offers two main advantages. First, the test can be

used as an omnibus test due to its multivariate nature. This way, a set of hypotheses

can be tested simultaneously at a type I error rate of a, thus alleviating the multiple

testing problem. For example, the Wald test allows for testing the joint hypothesis

that there are no differences between two equating functions over a certain range of

score points. Second, one can test for a larger variety of hypotheses because each

hypothesis is specified as a linear function of differences between equating func-

tions. For example, one can test whether, over a certain range of interest, one

equating function results in a higher average equated score than another function.

The expressions are derived within the general framework of the kernel method

of test equating (von Davier et al., 2004b). In the next section, the kernel method of

equating is introduced, together with some notational conventions. Subsequently,

we derive the asymptotic variance-covariance matrix for the set of equated scores

and for the set of differences between equated scores. The derivation is very similar

to the derivation of the asymptotic standard errors presented in von Davier et al.

(2004b). In a fourth section, we explain how Wald tests can be constructed based

on the expression for the asymptotic variance-covariance matrix of differences

in equated scores. The use of this Wald test is illustrated with a dataset from a

professional licensure examination.

19.2 The Kernel Method of Equating

The kernel method of equating is a general procedure to equate one test form

to another. The kernel method of equating can be described in five steps. The

interested reader is referred to von Davier et al. (2004b). Throughout, we adopt the

convention that the form to be equated is denoted by Y, and the base form is denoted

by X. X and Y also denote the random variables for the score on the respective

forms. Without loss of generality, we assume that possible scores on both X and Y
range from 1 to J. The following is a brief description of each of the five steps of

kernel equating.

1. In a first step, a statistical model for the observed test scores is constructed.

Depending on the design, the score distributions ofX and Y are modeled separately

(equivalent-groups design), their bivariate distribution is modeled (single-group
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design, counterbalanced design), or the bivariate distributions of X and an anchor

test Z, and of Y and Z are modeled (nonequivalent groups with anchor test design).

The score distribution being discrete, a typical choice is to model the score

distributions with a log-linear model, but other choices could be made.

The structural part of the statistical model specifies a functional relation between

the model parameters and the probabilities of the score distribution. Collecting

all these probabilities in a vector p and all model parameters in a vector u,

p ¼ g uð Þ: (19.1)

That is, the statistical model is a vector-valued function, where each component

specifies the probability of a score (or combination of scores when bivariate

score distributions are modeled) as a function of the parameters u of the

statistical model.

2. Second, the probabilities of the scores of X and Y in the target population are

expressed as a function of the probabilities obtained in Step 1. The function is

called the design function (DF) because its form is determined by the test

equating design,

r ¼ DF pð Þ; (19.2)

where r consists of two subvectors rX and rY, denoting the score probabilities of

X and Y, respectively.

3. Since X and Y are discrete variables, their cumulative distributions FX and FY

are piecewise constant functions. In this step, the continuous random variables

Xc and Yc are defined so that their distribution functions F
SX and F

SY are smooth

continuous approximations of FX and FY, respectively. Several smoothing meth-

ods are available. The kernel method of equating is named from the use of

Gaussian kernel smoothing techniques. The motivation for this smoothing step

is that piecewise constant functions are not invertible. However, invertible

functions are needed for computing the equipercentile equating function, as

given in Equation 19.3. Von Davier et al. (2004b) described how linear and

percentile rank equating functions can be mimicked by controlling the smooth-

ness of the functions through a particular choice of the “bandwidth” of a

Gaussian kernel. Given a choice for the bandwidth, F
SX and F

SY functionally

depend on r only. More specifically, F
SX and F

SY are weighted sums of

J Gaussian cumulative distribution functions, where the weights are the score

probabilities collected in rX and rY, respectively (for technical details, see A.A.

von Davier et al., 2004b, Chapters 3 & 4).

4. The previous three steps were preparatory steps for the equating step. Here, each

possible score on Y is equated to a comparable score on X through the equiper-

centile equating function,

e�X yð Þ ¼ F�1
SX

ðF
SY

yÞð Þ (19.3)
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Even though F
SX and F

SY are functions with a continuous domain, they are only

evaluated at the discrete points y ¼ 1, . . . , J, and F
SY

yð Þ, respectively.
5. Calculating the standard error of equating is the final step. The next section is

devoted to this step.

Steps 1–4 are described in a very general way. They will be instantiated

differently depending on the equating design, the choice of a statistical model,

the desired degree of smoothing, and so forth. Using this quite general framework

offers the advantage of demonstrating what is common to many equating methods.

At its very general level, the kernel equating method can be described as a vector-

valued function with J components, where each component maps score j, j ¼
1, . . . , J, on Y onto its equated score on X, and where each component is a function

of the parameters of the statistical model for the score distribution. Furthermore,

this function is a composition of functions itself, reflecting Steps 1–4 of the kernel

equating method described above. Let eq denote the vector-valued function that

describes Steps 1–4,

eq ¼

eq1 uð Þ
..
.

eqj uð Þ
..
.

eqJ uð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA
: (19.4)

Each component j of eq can be written as a composition of the functions

described in Steps 1–4:

eqj ¼ ejX � DF � g; (19.5)

Hence, starting with model parameters u, the score probabilities r of X and Y are

obtained by applying the design function DF to p ¼ g uð Þ. The score probabilities

provide the weights for the smoothed cumulative distribution functions F
SX and F

SY ,

so that ejX is a function that maps r on the equated score on X of the jth score on Y.
Note that there are J ejX functions, one for each score Y. Furthermore, e�X in Equation
19.3 is a function that maps y onto its equated score on X, whereas ejX maps r on the

equated score on X.

19.3 The Standard Error of Equating

Population equating functions are estimated from a sample and therefore subject to

sampling variability. The standard error is a measure of the variability of the

estimated quantities. Von Davier et al. (2004b) described how the standard errors

of equated scores can be obtained using the delta method. Without going into the
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mathematical details (which can be found in, e.g., Lehmann, 1999), the delta

method is based on the property that, if a vector of parameter estimates b̂ is

(asymptotically) normally distributed with variance matrix Î, a vector-valued

continuously differentiable function f of b̂ is asymptotically normally distributed

as well, and its variance is obtained by pre- and postmultiplying Î with the Jacobian

matrix Jf of the function evaluated at the parameter estimates,

COVðf ðb̂ÞÞ ¼ Jf ðb̂ÞSðJf ðb̂ÞÞt (19.6)

The delta method is based on a first-order Taylor approximation of f in b̂, and
therefore, for a finite sample size, the asymptotic approximation will be less

accurate the more nonlinear f is in the neighborhood of b̂. The rank of the

covariance matrix COVðf ðb̂ÞÞ is at most the minimum of the ranks of Î and Jf.

Hence, a necessary condition to ensure that the distribution of f ðb̂Þ is a proper

distribution is that the dimensionality of f ðb̂Þ is not larger than the dimensionality

of b̂.
Applied to the kernel method of equating, the parameters of the statistical model

for the score distributions, u, play the role of b in Equation 19.6, and the equation

function eq the role of function f. Hence,

COVðeqðûÞÞ ¼ JeqðûÞSðJeqðûÞÞt (19.7)

Since eq is a composition of functions, its Jacobian may be computed as the

product of their Jacobians (the chain rule of differentiation):

Jeq ¼ @ eqðuÞ
@u

¼ @ eXðrÞ
@r

@DFðpÞ
@p

@gðuÞ
@u

¼ JeJDFJg (19.8)

Holland and Thayer (1987) gave expressions for Jg when the score distributions

are modeled with log-linear models, and von Davier et al. (2004b) presented JDF for

the different equating designs. Von Davier et al. also gave the row vector of

derivatives
�@ejX
@r

�t
, which forms the jth row of Je in Equation 19.8.

The rank of the variance matrix COVðeqðûÞÞ is at most the minimum of the

ranks of Je, JDF and Jg. Hence, unless a completely saturated log-linear model is

used during presmoothing, COVðeqðûÞÞ will not be of full rank, and the multivari-

ate distribution of eqðûÞ is degenerate. However, Equation 19.7 is still useful, since
the asymptotic distributions of single equated scores and pairs, triples, and so forth

of equated scores are simply obtained by selecting the corresponding entries in

COVðeqðûÞÞ.
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Von Davier et al. (2004b) also presented expressions for the standard error of the

difference between two equating functions evaluated in the same score of Y. Using
Equations 19.5 and 19.7, their result is easily generalized to the variance-covari-

ance matrix of the vector of differences between two equating functions. In

particular, let the same log-linear model be used for both equating functions.

Having the same design function by definition, the equating difference function

mapping each score of Y into the difference of equated scores is a vector-valued

function with as the jth component

Dj
eq ¼ ej1X � ej2X

� �
� DF � g; (19.9)

The asymptotic variance matrix is obtained as

COV Deq û
� �� �

¼ JDeq
û

� �
S JDeq

û
� �� �t

; (19.10)

where

JDeq
¼ @ Deq uð Þ

@u

¼ @ e1X � e2Xð Þ rð Þ
@r

@DF Rð Þ
@R

@g uð Þ
@u

¼ Je1 � Je2ð ÞJDFJg

(19.11)

19.4 Wald Tests to Assess the Difference

Between Equating Functions

In this section, we present a generalization of the Wald test presented in von Davier

et al. (2004b), which tests for the difference between two equating functions at

individual score points. Von Davier et al. divided the equating difference at a given

score point by its asymptotic standard error. This statistic is asymptotically standard

normally distributed under the null hypothesis that there is no difference between

the two equating functions. This is a specific instantiation of the Wald test.

In its general form, the Wald statistic to test a set of linear hypotheses Lb ¼ 0,

where each row of L represents a linear hypothesis on b, has the following form:

w ¼ Lb̂
� �0

LCOV b̂
� �

L0
� ��1

Lb̂: (19.12)

If b̂ is asymptotically normally distributed, w is asymptotically chi-squared

distributed with as degrees of freedom the number of rows of L.
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In the context of testing for a difference between two equating methods, DeqðûÞ
fulfills the role of b̂, and its covariance matrix is given in Equations 19.10 and

19.11. Hence,

wDeq
¼ ðLDeqðûÞÞ0ðLCOVðDeqðûÞÞL0Þ�1

LDeqðûÞ . . . (19.13)

Even though COVðDeqðûÞÞ is in general not of full rank, as explained above, a

valid test statistic can be obtained as long as LCOVðDeqðûÞÞL0 is of full rank. In
general, if the number of linear hypotheses tested is low, this will be the case,

because each linear hypothesis represents a row in L, and the number of rows in L

equals the size of LCOVðDeqðûÞÞL0.
Three immediate choices for L come to mind. First, if L is a vector of zeros

except for element j, which equals 1, the test developed by von Davier et al. (2004b)
for testing for the equating difference at a single score point is obtained. Second,

one can test the joint hypothesis that the equating difference is different from zero at

a subset of score points. The number of hypotheses that can be tested simulta-

neously equals the rank of COVðDeqðûÞÞ and hence is bounded from above by the

number of parameters of the log-linear model. Third, if interest lies only in an

average difference on a certain range of scores, this is accomplished by letting L be

a vector with its jth element equal to one if the equating difference at score j is of
interest, and zero otherwise.

19.5 Application

The use of the multivariate Wald test is illustrated with data stemming from two

forms of a professional licensure test. The data were collected under an equivalent-

groups design. The descriptive statistics for both forms are provided in Table 19.1.

The test scores ranged from 0 to 40. Cut points for passing the licensure examina-

tion ranged from 24 to 32 on the base form. The results in this section are based on a

random sample of 1,000 examinees for each form.

Using Akaike’s (1974) information criterion as a selection criterion, log-linear

models with 6 and 6 moments were selected, for Test Forms X and Y (X and Y),
respectively. Two equating functions were computed. In the first equating function,

equipercentile equating, the bandwidths of the Gaussian kernels (used during

the continuization step of the kernel method of equating) were automatically

chosen by minimizing the sum of the first and second penalty function presented

in von Davier et al. (2004b, Equation 4.30, K ¼ 1). The optimal bandwidth values

Table 19.1 Descriptive Statistics for the Raw Scores of Forms X and Y

Form N Mean SD Min. Max. Skew Kurtosis Reliability

X 5,407 29.40 7.17 6.00 40.00 �0.68 �0.23 0.88

Y 5,389 30.69 7.24 4.00 40.00 �0.91 0.09 0.90
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were 0.54 and 0.53, for form X and form Y, respectively. For the second equating

function (linear equating), the bandwidths were set to a large value, 100 times the

standard deviation of the scores for each form, in order to mimic the linear equating

function. The difference between the equipercentile (with optimal bandwidth) and

linear equating function is plotted in Figure 19.1, together with the 95% confidence

bands (and 99.4% confidence bands, see below). Since the possible cut points range

from 24 to 32, special interest lies in whether the two equating functions are

significantly different from each other in that range. For scorepoints 26–32, zero is

outside the 95% confidence interval, suggesting that the two equating functions result

in a significantly different equated score for those score points.

Because one is testing nine hypotheses, the overall type I error is much higher

than 0.05. Applying the Bonferroni correction for multiple testing (Abdi, 2007), the

two equating functions are declared significantly different at a score point when

zero falls outside the 99.4% (100 – 5/9) confidence interval. In this case, the

difference is no longer significant at score points 26 and 27.

As can be seen in Figure 19.1, the difference between the equipercentile and the

linear equating function is a smooth function. Hence, testing for a difference

between the two equating functions at scorepoint j is likely not independent of

the test at scorepoint j þ 1. Consequently, the Bonferroni correction for multiple

testing is too conservative.

Fisher’s (1960) protected least significance difference test offers a procedure

to control the overall type I error rate while being less conservative than the

Fig. 19.1 Equating differences and their confidence intervals
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Bonferroni correction. In this context, first an omnibus test is carried out at a

specific a level that tests the null hypothesis that there is no difference between

the two equating functions at any of the nine score points within the range of

interest. Only if the omnibus test rejects the null hypothesis, an individual test at the

same a level as the omnibus test is carried out for each score point.

The omnibus test was performed using the multivariate Wald test. L consisted

of nine rows, one for each score point in the range from 24 to 32, where in each row

j all entries were set to zero, except entry 23 þ j. The Wald statistic was 7,146.81,

df ¼ 9, p < .001. Hence, the two equation functions were not the same in the range

24 to 32. Carrying out the second step of Fisher’s protected least significant

difference test at a ¼ 0.05 revealed significant differences for scores 26 to 32.

Note that Fisher’s protected least squares difference test does not allow for claiming

significant differences outside the range from 24 to 32 when zero falls outside the

95% confidence interval. The reason is that those score points were not included in

the omnibus test and thus were not “protected” against an inflated type I error rate

due to multiple testing.

As a second illustration of the use of the Wald test, we tested whether the

equipercentile equating function resulted in higher equated scores on average

over the score range from 24 to 32. This hypothesis was tested by defining L to

be a vector with its jth element equal to one if 24 � j � 32, and zero otherwise. The

Wald statistic amounted to 7.61, df ¼ 1, p < .001. On average, the curvilinear

equating function resulted in higher equated scores. This means that, on average

over all potential cut points, more examinees would pass the test if form Y was

equated to form X with a curvilinear equation function than if when a linear

equating function were used.

19.6 Discussion

In this paper, we presented the general expressions for the variance-covariance

matrix of the differences in equated scores stemming from different equating

functions. The derivations were presented within the overall framework of the

kernel method of equating (von Davier et al., 2004b). This matrix can be used to

construct a multivariate Wald test for a set of linear functions of differences

between equated scores.

The multivariate Wald test is general and versatile in its use, as was illustrated

with data stemming from a professional licensure exam. A first use is to specify a

multivariate omnibus test as a first step in Fisher’s protected least significance

difference test. The use of the omnibus test protects for an inflated type I error rate

due to multiple testing, in that no individual tests are carried out if the omnibus test

does not reject the null hypothesis.

In the example, an omnibus test was specified to test for the difference between

two equating functions over the range of potential cut scores of the test. The result

indicated that the curvilinear equating function did not result in the same equated
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scores as the linear equating function overall. The tests for differences at the

individual score points that were carried out as the second stage of Fisher’s least

significant difference test indicated that the two equating functions resulted in

different equated scores at cut scores 26 to 32.

Fisher’s protected least significant difference test is a very old procedure, and

many other procedures exist (Carmer & Swanson, 1973; Kuehl, 2000). Insofar these

procedures incorporate the use of an omnibus test, the multivariate Wald test will be

a part of these procedures as well.

Second, the Wald test can be used to test any hypothesis on a linear combination

of differences between equating functions. In the application, this use was illu-

strated by constructing a test for the average difference between the curvilinear and

the linear equating function over the range of potential cut scores. The result

indicated that, on average, the curvilinear equating function resulted in higher

equated scores than the linear equating function.

The Wald test has many other useful applications. For example, when a test is

used to classify examinees in more than two proficiency levels, more than one cut

point has to be specified. An omnibus Wald test could be used to test whether two

equating functions are different at any of the cut points. In addition, one could test

whether one equating function consistently leads to more examinees in higher

proficiency levels.

The data of the application were collected using an equivalent-groups design,

and subsequently we compared the linear with the equipercentile equating function.

However, the expressions for the variance-covariance matrix of the set of equated

scores and for the variance-covariance matrix of the differences between equating

functions were presented within the general framework of kernel equating. There-

fore, multivariate Wald tests can be constructed straightforwardly to assess differ-

ences between equating functions other than the linear and equipercentile function,

and for data collection designs other than the equivalent-groups design. For exam-

ple, it may be of interest to use multivariate Wald tests to assess the differences

between chain equating and poststratification methods in a nonequivalent groups

with anchor test design.

The fact that the difference between two equating functions is statistically

significant is only one part of the story. For large samples, even a small difference

may reach statistical significance. In order to judge the practical significance

between two equating functions, Dorans and Feigenbaum (1994) introduced the

difference that matters, the difference that would result in a different score after

rounding. A difference between two equating functions is judged to be practically

significant whenever it exceeds the difference that matters.

Author Note: The authors would like to thank Tim Moses for sharing SAS macros to carry out

kernel equating and to compute the standard error of the equating difference at a given score point.

The results reported in this paper were obtained through an adaptation of Tim’s SAS macros. Any

opinions expressed in this chapter are those of the authors and not necessarily of Educational

Testing Service.
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Chapter 20

Applying Time-Series Analysis to Detect

Scale Drift

Deping Li, Shuhong Li, and Alina A. von Davier

20.1 Introduction

This chapter focuses on applying the method of regression with autoregressive

moving-average (ARMA) errors to monitor equated scores over time. This method

can provide a whole picture of equated scores without the use of any additional

equating designs. Depending on how a test is scored (e.g., scored by number

correct, formula scored, item response theory [IRT] scored), the raw score of an

examinee on a test will look different. In order to aid the interpretability of the

scores provided to test users and test takers, the raw scores are transformed to scale

scores. The scale scores are the reported scores received by test users and therefore

are the most visible and important part of an assessment. Typically, scaling

is established by mapping raw scores from a single test form to scale scores.

Establishing the scale for reporting scores is a process that is both statistically

and policy based, and it should support the purpose of the assessment. The reporting

scale should (a) have an established mean and variance, (b) allow for a good

representation of easier or more difficult subsequent test forms, (c) avoid (misleading)

comparisons with different and already established assessments, and (d) incorpo-

rate score precision (such as reflecting a special relationship of the standard error

of measurement across the score points, or deciding about the number of score scale

points). It is common to talk about equating and scaling as a two-step process.

In practice, the scaling of the scores from a new test form is accomplished as

follows: Raw scores on the new test form are equated back to the raw scores of the

previous (old) form for which the scaling has been established.

The reported scores provide information regarding pass-fail decisions and policy

decisions and facilitate comparisons across individuals and institutions. Score

scales could be criterion referenced, so that reported scores are associated with
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levels of achievement on content domains. Score scale also could be norm refer-

enced, so that reported scores are associated with specific percentiles in the popula-

tions taking the test. In order for a test to be fair towards test takers who take

different forms, maintaining the same meaning of score scales over time is critical

for educational testing programs.

Equating methods are used to maintain the meaning of scale scores as new forms

are developed, but equating involves various sources of errors (Kolen & Brennan,

2004). Equating errors can accumulate and lead to problems for comparing equated

scores across forms (e.g., Livingston, 2004), or even worse, can lead to scale drift.
Scale drift makes a scale no longer a relevant basis for interpreting test results.

In the past, it was common to investigate potential scale drift for a standardized

program, and scale drift was usually corrected or avoided by a carefully designed

braiding plan for equating. However, for some programs, an equating braiding plan

is not feasible because of security concerns.

Several methods have been put forward for evaluating scale drift. For example,

in some studies, scale drift was evaluated through the differences between equated

scores and certain criteria using equating in a circle (Petersen, Cook, & Stocking,

1983) and direct/indirect equating methods (Kao, Kim, & Hatrak, 2005; Morrison

& Fitzpatrick, 1992). However, the traditional techniques available to psychome-

tricians have been developed for tests with only a small number of administrations

per year; therefore, they are not appropriate to catch changes in a complex flow of

equated scores. Similar challenges arise in computerized adaptive testing and in

conventional linear testing with very large numbers of distinct forms. Moreover,

these classical approaches for detecting scale drift require additional equating

designs and form reuses, which are usually costly, insecure, and infeasible for

some testing programs. As a result, there is a strong need to seek appropriate

methodologies to detect changes in the reported scores in particular for some testing

programs that have a large number of administrations in a year.

The outline of this chapter is as follows. After a brief introduction on the scaling

procedures and the traditional methods for investigating issues of scale drift, the

quality assurance tools in educational assessments and the regression models with

ARMA errors are discussed. A simulation study is then presented, followed by the

discussion of the results and conclusions as well as recommendations from the

simulation study using regression with ARMA errors.

20.2 Traditional Approaches to Assessing Scale Drift

Ideally, the approach to monitoring equated scores and assessing potential scale

drift problems is to have a well-planned equating design, in which a reference form

(old form) is readministered to an equivalent group and re-equated back to the base

form (Kolen & Brennan, 2004). If the conversion from directly equating the

reference form to the base form and the conversion from equating the reference

form back to the base form through some intervening forms agree with each other,
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the equating results in question are considered consistent. However, this approach

requires finding equivalent groups for equating and readministration of a reference

form. Repeating an old form as an intact form or an intact part of a form may not be

allowed by some testing programs because of test security concerns or the difficulty

of interpreting scores on the old form, due to the evolution of curriculum and

content.

Morrison and Fitzpatrick (1992) suggested evaluating equating and scale stability

by comparing the results from a direct equating and an indirect equating function.

A direct equating function, which served as the criterion, was obtained from

equating new forms directly back to base forms; an indirect equating function

was obtained from equating new forms back to base forms through some interme-

diate forms. The differences between these two functions indicated whether

equated scores were aberrant and whether potential scale drift existed. To make a

circular chain of equatings was another widely used approach of assessing equating

and scale stability. In this approach, a base form, which had previously been put on

scale, was equated to itself through some intervening forms. Any discrepancy

between the conversion from a circular chain of equatings and the conversion

from the base form to itself (identity) were attributed to potential scale drift (e.g.,

Petersen et al., 1983). These traditional approaches require additional equating

designs—a direct equating and a circular equating—and also require form reuses.

Additionally, the results may not necessarily be consistent when different numbers

of intermediate forms are involved into the evaluation.

20.3 Quality Assurance Tools in Educational Assessment

Regression with ARMA errors is in fact a time-series analysis method that views a

sequence of equated scores or other test results in educational assessments as a

random process. Methods of statistical process control, which have been wide-

spread in industrial settings for quality assurance of mass production, were applied

to the field of educational measurement in the last decades. Van Krimpen-Stoop and

Meijer (2001) employed cumulative sum (CUSUM) control charts to develop

a person-fit index in a computer-adaptive testing environment. Armstrong and

Shi (2009) further developed model-free CUSUM methods to detect person-fit

problems. Meijer (2009) explored the statistical process control techniques to

ensure quality in a measurement process for rating performance items in opera-

tional assessments. Veerkamp and Glas (2000) used CUSUM charts to detect

drifts in item parameter estimates in a computer-adaptive testing environment.

The motivation of the present study was to explore how time-series methods can

be used further as a device to monitor reported scores and detect potential scale drift

problems.

The time-series methods employ all available results of unrounded raw-to-scale

conversions on each test form. Therefore, they can provide a holistic picture on

20 Applying Time-Series Analysis to Detect Scale Drift 329



how score conversions change over time. Note that the methods are applied to a

sequence of raw-to-scale score conversions for a given raw score point. For a

test form, there are r ¼ 0, 1, 2, R raw score points. Correspondingly, there are

R sequences of raw-to-scale score conversions. Raw-to-scale conversions vary

at different raw score points and vary across forms as well. For a given raw

score point, the degree to which raw-to-scale conversions vary often indicates the

equating and scale stability. The larger the variability of score conversions, the less

stable the equating results. The range of score conversions depicts the largest

change in raw-to-scale conversions across forms.

The variability of score conversions is closely associated with test form

constructions, test taker demographics, and the quality of equating. In an extreme

case in which forms are strictly parallel, no equating is needed, and therefore, no

variability exists among score conversions at any raw score point. On the other

hand, if equating were free of errors, the variability of raw-to-scale conversions

for a given raw score could be entirely explained by the actual differences in

form difficulty because “equating adjusts for differences in form difficulty, not for
differences in content” (Kolen & Brennan, 2004, p. 3). In this situation, score

conversions were considered free of error accumulation. However, equating is

never perfect. Measurement errors, sampling errors, systematic errors, errors from

rounding, and errors resulting from a failure to meet equating assumptions can

accumulate to affect equating and scale stability. Moreover, as pointed by Kolen

and Brennan,

even though test developers attempt to construct test forms that are as similar as possible to

one another in content and statistical specifications, the forms typically differ somewhat in

difficulty. Equating is intended to adjust for these difficulty differences, allowing the forms

to be used interchangeably. (p. 3)

Therefore, the variability of score conversions will reflect both the differences in

form difficulty and the cumulative effects of various sources of errors.

Regression with errors that satisfies an ARMA model is hardly a new topic,

although it has not yet been used widely to study score conversions. Box and

Jenkins (1970) have developed a systematic class of ARMA models to handle

time-correlated data for modeling and forecasting, and the ARMA models are an

important parametric family of a stationary time-series, in which joint probability

distributions do not change when shifted in time. More details on these models

can be found from Box and Jenkins (1970); Box, Jenkins, and Reinsel (1994);

Shumway and Stoffer (2006); Brockwell and Davis (2002); and Chatfield (2003).

If a time series appears to have trend and seasonal components, it may be

necessary to apply a preliminary transformation to the series. Fitting an ARMA

model to a series of equated scores X1, X2, . . . , XT (across forms) for a given raw

score point r (r ¼ 0, 1, 2, . . . , R) assumes the series are generated by a stationary

time series. There are several ways in which the trend and seasonality can be

removed, some involving estimating the components and subtracting them from

the data, and others depending on differencing the data, replacing the original series

Xt byUt¼ Xt� Xt–d for some positive integer d. Whichever method is used, the aim

is to produce a stationary series (e.g., Brockwell & Davis, 2002, p. 23).
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Typically, in time-series modeling the knowledge of the underlying mechanism

generating the data is limited, and the choice of a suitable class of models is usually

data driven (Brockwell & Davis, 2002, pp. 97–98). For a series of score conversions

at a given raw score point, the basic measures of the autocorrelation function (ACF)

and partial autocorrelation function (PACF) using the graphical representation may

be used to suggest a model for the series (see the Appendix for more discussions

on ACF and PACF). An effective application of the Box and Jenkins’s models

requires at least a moderately long series. Chatfield (2003) recommended at least

50 observations (i.e., in our case, administrations), whereas many others have

recommended at least 100 observations.

Since equated scores across forms naturally form a time-correlated series, it is

not appropriate to analyze them using the standard linear regression method, in

which the errors are assumed to be independent and identically distributed. The

autocorrelation may arise from the dependency of the equating function on a new

form and a previous form. For example, in the chained equating design, if the

traditional equipercentile method is used for equating, then the equating function

depends on the score distributions for the new form and the previous form—so do

the equated scores at any given raw score point. Similarly, if the IRT true-score

equating method is used, the equating function relies on the test characteristic curve

on the new form and the test characteristic curve on the previous form. Note that

equating functions are not established for each form independently; they depend on

both the new forms and the previous reference forms. Therefore, a series of equated

scores at a raw score point is not observed independently and is inappropriate for

the regular regression analysis.

Let a simple regression with ARMA errors be fitted to a series of equated scores

Xt for 1 � t � T for T administrations, with form difficulty f(t) as an explanatory

variable. That is equivalently written as

Xt ¼ b0 þ b1 f tð Þ þWt: (20.1)

The form difficulty f(t) in Equation 20.1 is the major explanatory variable for

predicting equated scores, because equating adjusts differences in form difficulty,

which can be the average difficulty parameters of items in a form.1 In Equation 20.1,

Wt is an error sequence for 1 � t � T; b0 is the intercept; and b1 is the effect of form
difficulty on changes in the equated scores, Xt. IfWt is a random error for all t, or ifWt

is white noise—Wt � WN(0s2)—Equation 20.1 becomes the ordinary regression,

and b0, b1, and s2 can be obtained through the least-squares estimation method.

However, in equating contexts, where forms are linked or chained from each other, the

error sequence Wt may be time correlated, and it is more appropriate to fit a suitable

ARMA (p, q) model. For example, if Wt in Equation 20.1 could follow an AR(1)

1Item parameter estimates need to be transformed onto the same IRT scale so that the average form

difficulty can be compared from one test form to another.
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model for every t (i.e., an autoregressive process with order p ¼ 1, q ¼ 0), then

Wt can be written as

Wt � c Wt�1 ¼ Zt; cj j<1; Zt � WNð0; s2Þ: (20.2)

Or if Wt could follow a MA(2) (i.e., a moving-average process with order (p ¼ 0,

q ¼ 2) process for every t, then

Wt ¼ Zt þ �1 Zt�1 þ �2 Zt�2; Zt � WNð0; s2Þ: (20.3)

Regardless of what ARMA (p, q) models can fit Wt, it is necessary to test

whether or not Wt is random for all t (see below). If autocorrelations exist in the

error sequence Wt, it is often more appropriate to assume that the errors Wt are

observations of a zero-mean stationary process.

Two procedures are often employed to test whether autocorrelations exist in

errorsWt. One is the Durbin-Watson test (e.g., Chatfield, 2003, p. 69; Montgomery,

Peck & Vining, 2001) and the other is the Ljung-Box test (Ljung & Box, 1978). The

null hypothesis for the Durbin-Watson test is that autocorrelation is 0 at a lag of 1.

Rejecting the test suggests that autocorrelations exist in Wt and that Wt may not be

random, for all t, 1 � t � T. The null hypothesis for the Ljung-Box test is that the

residuals are independent. Rejecting the test suggests Wt may not be independent.

The above discussions on a simple regression can be extended to a more general

form of regression with ARMA (p, q) errors, in which Equation 20.1 becomes

Xt ¼ y 0
tbþWt; t ¼ 1; : : :;T; (20.4)

where yt¼ (yt1, . . . , ytk) consists of a vector of explanatory variables at time t, and b
is a vector of their effects b¼(b1, . . . . , bk). The error sequenceWt in Equation 20.4

satisfies a more general ARMA(p, q) process if

c Bð ÞWt ¼ � Bð ÞZt; Zt � WNð0; s2Þ; (20.5)

where c(B) and �(B) stand for the autoregressive operator and moving-average

operator, respectively. The autoregressive operator c(B) is defined to be c(B) ¼
1� c1B� c2B

2� · · ·� cpB
p and the moving-average operator �(B) is defined to be

�(B) ¼ 1 � �1 B
2 � · · · � �qB

q, where B is a backward shift operator.2 For special

cases, the model is said to be an autoregressive process AR(p) of order p if �(B) � 1

(see AR(1) in Equation 20.2). The model is said to be a moving-average process MA

(q) of order q if c(B) � 1 (see MA(2) in Equation 20.3).

Model parameters in Equations 20.4 and 20.5 include regression coefficients

b ¼ (b0, b1, . . . , bk), the ARMA model parameters (c1, . . . ,cp) and (�1, . . . , �q),
and the residual variance s2. Generalized least-squares estimates for the regression

2The backward shift operator is defined as BXt ¼ Xt-1, B
j (Xt) ¼ Xt-j for j � 1.
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effects b and maximum likelihood estimates of the ARMA model parameters

(c1, . . . ,cp) and (�1, . . . , �q), as well as s
2 can be obtained simultaneously through

an extension of an iterative scheme proposed by Cochrane and Orcutt in 1949 (as

cited in Brockwell & Davis, 2002, pp. 210–219; also see Cochrane & Orcutt, 1987).

When regression with ARMA errors is applied to a series of equated scores,

three indicators can be used to monitor the equated scores over time: (a) the effect

for form difficulty, (b) the effect for form order, and (c) the residual variance.

Since form difficulty f(t), as is shown in Equation 20.1, is one major explanatory

variable to explain the variability in equated scores, it is hypothesized that the effect

for form difficulty would be significant. In addition, the order of the form adminis-

tration may have implications on changes in equated scores due to accumulation of

errors. In theory, the form order should not have a large effect on the equated scores.

However, due to accumulation of errors in a longer chain, a greater amount of errors

may be involved in equated results. If the effect of the form order is significant,

equated scores would increase or decrease according to the form order even

conditional on the same value of form difficulty, which is an indicator of problems

in the linking and equating results. Besides, the residual standard deviation s (or the

variance of the deviation of the regression function and data observations) that

depicts the variation in equated scores after accounting for differences in form

difficulty would be quite small when compared to the standard error of measure-

ment and the standard deviation of the sequence of equated scores. A large amount

of residual variance implies a large amount of variability in equated scores that are

due to errors. For successful equating, at least 80% of the variability in equated scores

corresponding to middle score levels is due to the differences in form difficulties.

20.4 Simulation Design

A simulation study was carried out to illustrate how the method of regression with

ARMA errors can be used to monitor score conversions over time. Two specific

scenarios were considered in the simulation study. In the first scenario (equivalent

groups), we hypothesized that the equating results and the underlying scale would

be stable over time because the test forms were taken by equivalent groups of

simulees. In the second scenario (nonequivalent groups), we hypothesized that the

equating results would have a large variability across forms and might involve more

errors because the population ability differences were intentionally simulated to be

too large for observing stable equating results. We expected to see that the form

difficulty would predict the equated scores. We also expected the amount of

variability after accounting for form difficulty to be smaller for the samples that

were similar in ability (equivalent groups) than for the samples that were largely

different in the case of nonequivalent groups.

For the purpose of the study, 100 test forms were simulated using an anchor test

design, with each form consisting of 50 unique items and 30 common items that did

not contribute to test scores. Each anchor of 30 common items linked only two
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adjacent forms and did not overlap with any other anchor of 30 common items that

linked another pair of adjacent forms. The forms were not linked in a single chain;

instead, the forms were linked together with 20 strands (i.e., a strand starting with a

form from F1 to F20; see Figure 20.1), each involving five forms. The first form of

each strand (e.g., F3, F4, . . . , F20) did not link directly to the base form (i.e., F1).

These forms created another chain of 20 forms (i.e., F1 to F20).3 The graphic

presentation of the equating design is given in Figure 20.1.

The 100 test forms in the simulation study were generated for 100 groups of

simulees. The item responses were simulated using a two-parameter logistic IRT

model (e.g., Hambleton & Swaminathan, 1985; Lord, 1980). All items in a form

were dichotomous. One group responding to a form involved a sample of 5,000

simulees, who were generated from a standard normal distribution (i.e., equivalent

groups). All forms were calibrated separately, and the item parameters were

transformed onto the same metric using the Stocking and Lord (1983) method.

To create a scale for further analysis, the first form on the first strand was treated as

the base form (F1) with a score range between 0 and 50, and scores on the other

forms were eventually equated to the base form scale using the IRT true-score

method. An unrounded conversion function of raw-to-equated-raw scores was

obtained on each form (except the base form). These conversion functions for

raw-to-equated-raw scores formed a series of equated scores at any fixed raw-

score point, and the time-series method was employed to analyze these series of

equated scores at different raw-score points. The forms were simulated to differ in

difficulty.

The study was then repeated with samples from nonequivalent groups of simu-

lees. Specifically, the 100 test forms were given to 100 groups of simulees (each

group having 5,000 simulees), which were simulated from normal distributions

with the same standard deviation but different means (from a uniform distribution

Fig. 20.1 Data collection design used for the simulation study

3Note that this equating design is used to collect data for the analysis in the simulation study. It is

used only for illustrative purpose. The effects of equating design on equating and scale stability are

not the focus of this chapter.
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within an interval between �.20 and .20). Under conditions in which population

ability difference is large, linking and equating would involve a large amount of

errors; therefore, a series of equated scores at a given raw score point would have

larger variability. The study for nonequivalent groups was used to evaluate whether

the time-series method had adequate power to detect problems in equated scores

due to large differences in population ability.

In the case of nonequivalent groups, in addition to form difficulty, form order

also might also affect the equating results due to error accumulation. If a new form

was directly equated to the base form, the order was 1; if a form was equated back to

the base form through 4 intervening forms, then the order was 5. The maximum

order in the simulation was 23. The longer a chain, the more errors might accumu-

late within equating results. If the effect of the form order was significant, it was

more likely to obtain aberrant equating results. In this sense, the method could

provide a statistical device in terms of the effect of the form order to detect any

atypical results in equated scores.

20.5 Results

The unrounded equating functions for raw-to-equated-raw scores from the 100 test

forms constitute a series of equated scores at any given raw scores. Figure 20.2

displays the series of equated scores across the 100 test forms from equivalent
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Fig. 20.2 Four examples of series of equated scores (equivalent groups)
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groups when the raw score was 15, 25, 35, and 45, respectively. Figure 20.3

displays the series of equated scores across the 100 test forms from nonequivalent

groups when the raw score was 15, 25, 35, and 45, respectively. The figures provide

a whole picture of the changes in equated scores over time, from which one can

identify when equated scores appeared to be outliers, when equated score increase

or decrease, and how the changes in equated scores were different for different raw

score points.

Tables 20.1 and 20.2 summarize the equating functions for the raw-to-equated-

raw scores for all test forms at various raw score points and their correlations with

form difficulty (denote Corr1 and Corr2. Corr1 represents the correlation between

the equated scores corresponding to given a raw score and the average item diffi-

culty; Corr2 is the correlation between the equated scores and the mean of the

average item scores) in the simulation study. The equated scores for a given raw-

score point varied across test forms, and the variability appeared to be greater for

the middle scores than for the extreme scores. For example, the standard deviations

for the series of equated scores corresponding to raw score r¼ 19 were greater than

4, and the range for the series was about 20. However, the standard deviations for

the series corresponding to raw scores r (r < 3 or r > 33) appeared to be less than 3

(see Table 20.1). The correlations between series of equated scores and form

difficulty were also stronger for the series corresponding to the middle raw-score

levels than the extremes (Tables 20.1 and 20.2), and the correlations for series of

equated scores from equivalent groups were greater than the counterparts from
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nonequivalent groups. The form-to-form difference in difficulty is larger in this

study than those observed in typical operational practice in order to clearly investi-

gate the effect of the form difficulty on score conversions. In addition, the average

item difficulty for the base form happened to be much easier than the subsequent

forms. As a result, the means of the equated scores were much greater than the

corresponding raw scores (Tables 20.1 and 20.2). The results corresponding to the

extreme scores were slightly different from the results corresponding to the middle

raw-score levels (e.g., smaller correlations and standard deviations), and the differ-

ences may be closely related to the ceiling effects for IRT true-score equating

functions at extremes because the minimum and maximum equated scores (or

true scores) are constrained within [0, 50], regardless of the differences in form

difficulties.

Figures 20.4 and 20.5 display the plots of the equated scores and form difficulty

at four different raw scores (r ¼ 15, 25, 35, 45) for equivalent groups and

Table 20.1 Descriptive Statistics for Score Conversions Over 100 Forms (Equivalent Groups)

Raw score Mean SD Min Median Max Range Corr1 Corr2

1 1.52 0.83 0.34 1.31 3.92 3.57 .53 �0.50

3 5.79 2.51 2.00 5.08 13.89 11.89 .75 �0.72

5 10.35 3.29 4.46 9.86 19.35 14.89 .85 �0.83

7 14.21 3.59 6.73 14.28 23.56 16.83 .90 �0.88

9 17.44 3.81 9.04 17.57 27.18 18.14 .93 �0.91

11 20.29 4.03 11.32 20.42 30.34 19.02 .94 �0.93

13 22.90 4.22 13.39 23.20 33.11 19.72 .95 �0.94

15 25.33 4.37 15.33 25.71 35.53 20.20 .95 �0.95

17 27.63 4.47 17.25 28.13 37.65 20.39 .96 �0.96

19 29.81 4.50 19.20 30.43 39.49 20.29 .96 �0.96

21 31.89 4.47 21.20 32.43 41.07 19.86 .96 �0.96

23 33.86 4.38 23.30 34.49 42.41 19.11 .96 �0.96

25 35.72 4.22 25.49 36.56 43.55 18.06 .96 �0.96

27 37.48 3.99 27.76 38.44 44.51 16.75 .95 �0.96

29 39.12 3.71 30.11 40.00 45.32 15.22 .94 �0.95

31 40.65 3.37 32.49 41.40 46.02 13.52 .94 �0.94

33 42.07 2.98 34.88 42.73 46.60 11.71 .93 �0.93

35 43.36 2.57 36.99 43.97 47.11 10.11 .91 �0.92

37 44.55 2.15 38.94 45.12 47.56 8.62 .90 �0.91

39 45.62 1.74 40.91 46.02 48.01 7.10 .88 �0.89

41 46.58 1.36 42.87 46.87 48.47 5.60 .86 �0.86

43 47.44 1.01 44.78 47.69 48.87 4.09 .83 �0.83

45 48.23 0.70 46.34 48.44 49.24 2.89 .79 �0.78

47 48.96 0.43 47.52 49.07 49.56 2.03 .72 �0.70

49 49.67 0.17 48.86 49.71 49.89 1.03 .46 �0.44

Note: Corr1 ¼ the correlation between the equated scores at each raw score point and the average

form difficulty; Corr2 ¼ the correlation between the equated scores and the average p values

(p value means the proportion of number correct for each item). The results for the even scores are

similar to the results for the odd scores and they are available from the authors. The means of

the equated scores at many score points (Column 2) are much greater than the corresponding raw

score point because the average item difficulty for the base form happened to be much smaller than

the subsequent forms.
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nonequivalent groups, respectively. One can see whether the score conversions are

consistent or inconsistent with the average item difficulties. Both figures show that

the equated scores and the average form difficulty are strongly correlated, but

stronger correlations appear for equivalent groups in Figure 20.4 than for nonequiv-

alent groups in Figure 20.5. Intuitively, one may think of using the standard linear

regression analysis for these data.

The results for parameter estimates from a simple regression analysis between the

equated scores and the average item difficulties for equivalent and nonequivalent

groups are presented in Tables 20.3 and 20.4, respectively. Note that the slopes b̂1 for
form difficulty were all significant (p < .000 in column 9). The R-squares in the

simple regression models corresponding to the middle score levels are about 90% and

80% for the equivalent groups and nonequivalent groups, respectively, suggesting

about 90% variability in the equated scores are due to the form difficulties for the

equivalent groups, and about 80% for the nonequivalent groups.

Table 20.2 Descriptive Statistics for Score Conversions Over 100 Forms (Nonequivalent

Groups)

Raw scores Mean SD Min Median Max Range Corr1 Corr2

1 1.55 0.90 0.29 1.28 4.97 4.68 0.49 �0.47

3 5.89 2.58 1.56 5.40 13.73 12.17 0.70 �0.67

5 10.50 3.38 3.86 10.03 19.25 15.39 0.79 �0.76

7 14.33 3.71 6.65 14.11 23.12 16.47 0.82 �0.78

9 17.53 3.96 9.04 17.46 26.26 17.22 0.84 �0.79

11 20.36 4.20 11.32 20.26 29.41 18.09 0.85 �0.81

13 22.95 4.41 13.44 22.83 32.32 18.88 0.86 �0.81

15 25.38 4.58 15.46 25.50 34.90 19.44 0.87 �0.82

17 27.68 4.68 17.46 27.73 37.16 19.70 0.87 �0.83

19 29.88 4.73 19.47 29.84 39.15 19.68 0.88 �0.83

21 31.97 4.70 21.55 32.09 40.86 19.31 0.88 �0.84

23 33.95 4.60 23.73 34.22 42.32 18.59 0.88 �0.84

25 35.83 4.43 26.00 36.24 43.54 17.54 0.88 �0.84

27 37.60 4.19 28.35 38.19 44.56 16.22 0.87 �0.84

29 39.26 3.89 30.38 39.86 45.42 15.04 0.87 �0.83

31 40.80 3.53 32.45 41.36 46.13 13.68 0.86 �0.82

33 42.21 3.13 34.49 42.78 46.73 12.24 0.85 �0.81

35 43.50 2.70 36.41 43.98 47.23 10.82 0.83 �0.80

37 44.67 2.25 38.41 45.12 47.71 9.31 0.82 �0.78

39 45.73 1.81 40.45 46.10 48.21 7.76 0.80 �0.76

41 46.67 1.40 42.50 46.97 48.63 6.13 0.78 �0.74

43 47.50 1.04 44.51 47.73 48.99 4.49 0.75 �0.70

45 48.26 0.72 45.97 48.43 49.32 3.35 0.72 �0.66

47 48.97 0.44 47.30 49.08 49.61 2.31 0.64 �0.58

49 49.67 0.18 48.78 49.71 49.88 1.10 0.42 �0.35

Note: Corr1 ¼ the correlation between the equated scores at each raw score point and the average

form difficulty; Corr2 ¼ the correlation between the equated scores and the mean p values

(p value means the proportion of number correct for each item). The results for the even scores

are similar to the results for the odd scores and are available from the authors. The means of

the equated scores at many score points (Column 2) are much greater than the corresponding raw

score points because the average item difficulty for the base form happened to be much smaller

than the subsequent forms.
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In order to check whether the simple regression model as given in Equation 20.1

adequately described the data. (i.e., to check whether the errors were correlated),

the Durbin-Watson test (e.g., Chatfield, 2003, p. 69; Montgomery et al., 2001) and

the Ljung-Box test (Ljung & Box, 1978) were employed to test the residuals (or

deviations of the observations from the regression function) of the simple regres-

sion model (see columns 10 and 11 in Tables 20.3 and 20.4). The Durbin-Watson

tests were significant for models on the series of equated scores corresponding to

raw scores greater than 9 for equivalent groups (Table 20.3), implying the auto-

correlations do exist at most series of equated scores at many raw score levels. The

Durbin-Watson tests were significant for series of equated scores at every score

level for nonequivalent groups (Table 20.4). Similar results from the Ljung-Box

test (Ljung & Box, 1978), also at a lag of 1 (last two columns in Tables 20.3 and

20.4) confirmed the results from the Durbin-Watson test. These two tests provided

some consistent evidence that the residuals were not random or independent and

that the simple regression model was inadequate.

Based on the results from the regular regression analysis (Tables 20.3 and 20.4),

a correction of autocorrelations using ARMA models was suggested. Before fitting

a suitable ARMA model to the residuals, differencing was applied to remove the

trend in order to obtain a stationary series. Thus, the original series Xt were replaced

with the differenced data Ut ¼ Xt� Xt�2 and a moving-average process with

order q ¼ 2 (i.e., MA(2); see Equation 20.3) was fitted to the stationary residuals
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Nt ¼Wt �Wt -2 for t ¼ 3, 4, . . .,T. Table 20.5 presents the results of fitting a simple

regression with an MA(2) model to the differenced data from equivalent groups.4

Again at each raw score level, the slopes for form difficulty b̂1 were significant

(see columns 6 and 7 of Table 20.5), as is expected. The standard errors of the

slopes SE(b̂1) became smaller in the new model. Most of the standard deviations of

the residuals ŝ were even less than those in the simple regression model (column 6

in Table 20.3). Comparing the total variability of the equated scores (column 3 in

Table 20.1) and the standard error of measurement (on overage 2.5 for each form),

one notices that the residual standard deviation s’s were quite small, which is also

expected in the example for equivalent groups. The Ljung-Box test (at a lag of 1) of

randomness for the residuals (last two columns in Table 20.5) was not significant,

implying that the residuals were random and the new model was appropriate and

adequate. In short, the results from the example of equivalent groups (Table 20.5)

appeared to be what are expected: Although long chains of equatings with 100 test

forms were involved, the equating results were stable because the samples were

equivalent groups. As a result, the equating results were consistent across forms.

The results from the models for the series of equated scores corresponding to

extreme scores were slightly different from the results for the series corresponding
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4Except the models for lower score levels since a simple regression model appeared to be

adequate.
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to the middle raw-score levels, and again the differences may be closely related to

the ceiling effects for IRT true-score equating functions at extremes, which would

lead to less accurate results as those from the middle scores.

The regression with MA(2) errors was applied to the differenced data for the

case of nonequivalent groups, and the administration order5 was added to interpret

the variability of equated scores. Comparing the results of this new model (Table

20.6) to the results from the simple regression model (Table 20.4) for nonequivalent

groups, one observes that the effects for the form difficulty b̂1 were significant for
series of equated scores at all raw score levels, which is not different from our

expectation. Their standard errors SE (b̂1), however, were much smaller than their

counterparts from the regular regression analysis (Table 20.4). It is worth noting

that the slopes for the administration order, b̂2 (column 4 in Table 20.6), appeared to

Table 20.3 Results for Simple Regression Models and for the Durbin-Watson and Ljung-Box

Tests (Equivalent Groups)

Raw score b̂0 SE(b̂0) b̂1 SE(b̂1) ŝ R2 t-value p DW p w2Box p

1 1.49 .07 1.34 .22 0.71 .28 6.23 .000 1.63 .031 3.18 .075

3 5.67 .17 5.71 .51 1.67 .56 11.2 .000 1.80 .162 0.84 .358

5 10.17 .17 8.53 .52 1.72 .73 16.31 .000 1.80 .153 1.00 .317

7 14.00 .16 9.82 .47 1.55 .82 20.8 .000 1.73 .085 1.62 .203

9 17.22 .14 10.71 .44 1.44 .86 24.33 .000 1.60 .021 3.26 .071

11 20.05 .14 11.48 .42 1.39 .88 27.12 .000 1.46 .003 5.58 .018

13 22.65 .13 12.15 .41 1.35 .90 29.58 .000 1.34 .000 8.52 .004

15 25.07 .13 12.66 .40 1.31 .91 31.62 .000 1.21 .000 12.07 .001

17 27.36 .13 12.97 .39 1.29 .92 33.09 .000 1.10 .000 16.03 .000

19 29.54 .13 13.09 .39 1.27 .92 33.88 .000 1.00 .000 19.97 .000

21 31.62 .13 13.01 .38 1.26 .92 33.94 .000 0.92 .000 23.13 .000

23 33.59 .13 12.72 .38 1.25 .92 33.25 .000 0.88 .000 24.87 .000

25 35.47 .13 12.21 .38 1.25 .91 31.95 .000 0.87 .000 25.21 .000

27 37.24 .13 11.50 .38 1.25 .90 30.20 .000 0.88 .000 24.33 .000

29 38.90 .12 10.60 .38 1.23 .89 28.23 .000 0.90 .000 22.68 .000

31 40.46 .12 9.55 .36 1.20 .88 26.20 .000 0.93 .000 20.75 .000

33 41.89 .11 8.37 .35 1.14 .86 24.19 .000 0.96 .000 18.65 .000

35 43.22 .11 7.13 .32 1.05 .83 22.26 .000 0.99 .000 16.50 .000

37 44.43 .09 5.87 .29 0.94 .81 20.39 .000 1.01 .000 14.38 .000

39 45.52 .08 4.65 .25 0.82 .78 18.52 .000 1.04 .000 12.35 .000

41 46.5 .07 3.53 .21 0.70 .74 16.66 .000 1.05 .000 10.73 .001

43 47.39 .06 2.54 .17 0.56 .69 14.78 .000 1.06 .000 9.93 .002

45 48.19 .04 1.68 .13 0.43 .63 12.79 .000 1.07 .000 9.77 .002

47 48.94 .03 0.92 .09 0.30 .51 10.14 .000 1.15 .000 8.88 .003

49 49.67 .02 0.24 .05 0.15 .22 5.20 .000 1.33 .000 7.12 .008

Note: R2¼ the estimate of the multiple R square. t-values are used in testing the hypothesis b1¼ 0,

where b1 is the slope of form difficulty. DW values are used for the Durbin-Watson test at a lag

of 1. The null hypothesis is the autocorrelation is 0 at a lag of 1. w2Box is the chi-squared value using
Ljung-Box test at a lag of 1. The results for the even scores are similar to the results for the odd

scores and are available from the authors.

5The administration order in this simulation study was not the same as the form order. However,

in general, the greater the administration order, the greater the form order.
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be significant in particular for models of the series of equated scores at the upper

score levels (r � 37), implying that equated scores would increase over time,

probably due to accumulation of errors. For example, the series of equated scores

corresponding to a raw score r¼ 37 would increase .22 score points when one form

was administered even conditionally on the same value of the form difficulty. The

equated scores would increase more than 1 score point were five forms added for an

example like this. The equated scores would increase less for models for the series

of equated scores at raw scores greater than 37 due to the ceiling effects.

The residual standard deviation ŝs appeared to be a bit large for the case of

nonequivalent groups (Table 20.6), with many ŝs greater than the standard error of

measurement (on average 2.5 in the simulation study). More than 20% of the

variability in the equated scores corresponding to the middle score levels was due

to random errors or accumulation of errors. As expected, large ŝ values suggest that

a large amount of errors has accumulated and that equating and the underlying scale

Table 20.4 Results for Simple Regression Models and for the Durbin-Watson and Ljung-Box

Tests (Nonequivalent Groups)

Raw score b̂0 SE(b̂0) b̂1 SE(b̂1) ŝ R2 t-value p DW p w2Box p

1 1.47 .08 1.32 .24 0.79 .24 5.53 .000 1.40 .001 8.53 .003

3 5.57 .19 5.47 .56 1.85 .49 9.77 .000 1.43 .002 7.58 .006

5 10.03 .21 8.09 .63 2.07 .63 12.89 .000 1.31 .000 11.32 .001

7 13.79 .21 9.22 .64 2.11 .68 14.41 .000 1.20 .000 15.23 .000

9 16.95 .22 10.05 .65 2.15 .71 15.44 .000 1.13 .000 17.48 .000

11 19.73 .22 10.80 .67 2.20 .73 16.19 .000 1.10 .000 18.54 .000

13 22.28 .23 11.46 .68 2.25 .74 16.80 .000 1.08 .000 19.21 .000

15 24.68 .23 11.98 .69 2.28 .75 17.31 .000 1.06 .000 20.11 .000

17 26.96 .23 12.33 .70 2.30 .76 17.71 .000 1.04 .000 21.24 .000

19 29.15 .23 12.50 .69 2.29 .77 18.03 .000 1.00 .000 22.60 .000

21 31.24 .23 12.46 .68 2.26 .77 18.21 .000 0.98 .000 23.86 .000

23 33.24 .22 12.20 .67 2.21 .77 18.23 .000 0.95 .000 24.75 .000

25 35.15 .22 11.73 .65 2.14 .77 18.07 .000 0.94 .000 25.06 .000

27 36.96 .21 11.04 .62 2.06 .76 17.72 .000 0.94 .000 24.66 .000

29 38.67 .20 10.17 .59 1.95 .75 17.18 .000 0.95 .000 23.53 .000

31 40.26 .19 9.13 .55 1.83 .74 16.50 .000 0.98 .000 21.76 .000

33 41.75 .17 7.99 .51 1.68 .72 15.72 .000 1.01 .000 19.70 .000

35 43.11 .15 6.77 .45 1.50 .69 14.91 .000 1.04 .000 17.53 .000

37 44.35 .13 5.55 .39 1.30 .67 14.08 .000 1.07 .000 15.43 .000

39 45.47 .11 4.37 .33 1.09 .64 13.22 .000 1.08 .000 13.59 .000

41 46.47 .09 3.30 .27 0.88 .61 12.32 .000 1.09 .000 12.12 .000

43 47.37 .07 2.35 .21 0.68 .57 11.32 .000 1.09 .000 11.25 .001

45 48.17 .05 1.54 .15 0.50 .51 10.14 .000 1.10 .000 10.60 .001

47 48.92 .03 0.85 .10 0.33 .42 8.35 .000 1.17 .000 9.26 .002

49 49.66 .02 0.23 .05 0.16 .18 4.60 .000 1.33 .000 7.39 .007

Note: (1) R2 represents the estimate of the multiple R square. (2) t-values are used in testing the

hypothesis b1 ¼ 0, where b1 is the slope of form difficulty. (3) DW values are used for the Durbin-

Watson test. The null hypothesis is the autocorrelation is 0 at a lag of 1. (4) w2Box is the Chi-squared
value using the Ljung-Box test at a lag of 1. (5) The results for the even scores are similar to the

results for the odd scores and are available from the authors.
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may not be stable. However, the Ljung-Box test (at a lag of 1) of randomness of

errors (last two columns in Table 20.6) were not significant (p < .01), suggesting

that the residuals were random (or independent) and the time-series model was

appropriate and adequate.

Population differences in ability may explain for the problem of a large amount

of residual variance in the case of nonequivalent groups. Kolen and Brennan (2004)

pointed out, “Mean group differences of around .3 or more standard deviation unit
can result in substantial differences among methods, and differences larger than .5
standard deviation unit can be especially troublesome” (p. 286). In the simulation

study, the mean group difference was about .4 standard deviation units for the case

of nonequivalent groups, which was considered troublesome. Therefore, the effects

of examinee population differences were reflected in the equating results from

nonequivalent groups (Table 20.6). Compared to the results from the same equating

method for the same test forms from equivalent groups, the results from nonequiv-

alent groups (in Table 20.6) involved much larger errors. Although the slopes for

the form difficulty were still significant, the corresponding residual standard devia-

tions were much larger than the counterparts for equivalent groups (Table 20.5) and

were even greater than the standard error of measurement (on average 2.5 in the

simulation study) at many score points. Moreover, the effects for the administration

order were also significant for the series of equated scores at some raw score points,

Table 20.5 Parameter Estimates for Regression With Autoregressive Moving-Average Errors

(Equivalent Groups)

Raw score b̂1 SE(b̂1) t-value ŝ �̂1 �̂2 w2Box p

11 10.99 .36 30.56 1.61 .22 �.69 .10 .75

13 11.63 .33 34.74 1.50 .26 �.66 .28 .60

15 12.12 .31 38.82 1.41 .31 �.62 .56 .45

17 12.44 .29 42.55 1.33 .35 �.58 .82 .36

19 12.58 .28 45.63 1.26 .38 �.55 .99 .32

21 12.53 .26 47.55 1.21 .41 �.53 1.01 .31

23 12.27 .26 47.73 1.19 .41 �.51 .90 .34

25 11.79 .25 46.23 1.18 .41 �.51 .76 .38

27 11.12 .26 47.38 1.18 .40 �.51 .64 .42

29 10.25 .26 39.85 1.18 .39 �.51 .56 .45

31 9.23 .25 31.20 1.17 .38 �.52 .53 .47

33 8.09 .25 32.72 1.13 .37 �.53 .52 .47

35 6.89 .23 29.62 1.06 .63 �.53 .53 .47

37 5.67 .21 26.87 0.96 .35 �.53 .51 .48

39 4.48 .18 24.31 0.84 .35 �.52 .48 .49

41 3.39 .15 21.89 0.71 .35 �.51 .44 .51

43 2.43 .12 19.43 0.57 .35 �.50 .44 .51

45 1.59 .10 16.54 0.44 .34 �.50 .48 .49

47 0.86 .07 11.97 0.32 .38 �.62 .29 .59

49 0.20 .04 5.13 0.18 .28 �.72 .01 .92

Note: Prob (> |t|) ¼. 000 for all results. b̂1 is the slope for form difficulty. �̂1 and �̂2 are the model

parameters in the moving-average process. w2Box is the chi-squared value using Ljung-Box test at a
lag of 1. The results for the even scores are similar to the results for the odd scores and are available

from the authors.
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showing that equated scores would increase as new forms were administered. This

increase would be indicative of potential issues.

20.6 Discussion

In this paper, the regression with ARMA errors borrowed from time-series analysis

field was applied to a test with a large number of distinct forms. Specifically, the

method was described and a simulation study was carried out to illustrate how to

apply these models in monitoring the stability of the equated scores and how

to evaluate the effectiveness of the models to inform choosing among them.

The findings from the two scenarios considered in the simulation study seemed to

suggest that form difficulty would effectively explain changes in equated scores over

time because the results from the hypothesis testing for the effects of form difficulty

were significant. The results from the simulation study also showed that the method

Table 20.6 Parameter Estimates for Regression With Autoregressive Moving-Average Errors

(Nonequivalent Groups)

Raw score b̂1 SE(b̂1) b̂2 SE(b̂2) ŝ �̂1 �̂2 w2Box p

1 1.31* .20 �.08 .05 0.91 .28 �.72 0.21 .65

3 5.40* .48 �.26 .12 2.18 .28 �.72 0.04 .83

5 7.83* .54 �.22 .13 2.44 .26 �.74 1.21 .27

7 8.90* .54 �.10 .12 2.46 .23 �.77 2.15 .14

9 9.71* .54 �.01 .12 2.48 .20 �.79 2.84 .09

11 10.45* .56 .06 .12 2.55 .18 �.81 3.54 .06

13 11.11* .58 .11 .12 2.63 .17 �.83 4.17 .04

15 11.61* .59 .14 .12 2.68 .17 �.83 4.76 .03

17 11.95* .59 .16 .13 2.69 .18 �.82 5.21 .02

19 12.09* .58 .18 .13 2.65 .21 �.79 5.50 .02

21 12.04* .57 .20 .13 2.57 .25 �.75 5.61 .02

23 11.80* .54 .22 .13 2.47 .30 �.70 5.54 .02

25 11.35* .52 .24 .13 2.36 .33 �.67 5.32 .02

27 10.70* .49 .25 .13 2.24 .35 �.65 4.98 .03

29 9.85* .46 .26 .12 2.12 .36 �.64 4.53 .03

31 8.85* .43 .26 .11 1.99 .35 �.65 4.01 .05

33 7.73* .40 .26 .10 1.84 .35 �.65 3.48 .06

35 6.54* .36 .24 .09 1.65 .34 �.66 2.93 .09

37 5.35* .31 .22* .08 1.43 .34 �.66 2.39 .12

39 4.19* .26 .19* .07 1.17 .30 �.60 1.87 .17

41 3.14* .20 .16* .05 0.92 .30 �.57 1.34 .25

43 2.23* .15 .12* .04 0.70 .31 .54 0.88 .35

45 1.45* .11 .09* .03 0.51 .30 �.53 0.55 .46

47 0.78* .08 .06* .02 0.35 .27 �.55 0.27 .61

49 0.19* .04 .02 .01 0.19 .28 �.72 0.02 .89

Note: b̂1 is the slope for the average form difficulty; b̂2 is the slope for the form order. �̂1 and �̂2 are
the model parameters in the moving-average process. w2 is the chi-squared value using Ljung-Box
test at a lag of 1. The results for the even scores are similar to the results for the odd scores and are

available from the authors.

*p <.01
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of regression with ARMA errors was more appropriate than the regular regression

analysis for time-correlated series from equating functions. Based on the results, the

time-series method effectively identified which series of equated scores had potential

problems for equating through the analysis of the variability in the equated scores.

Equating can lead to variable equated scores due to errors, but it does not

necessarily yield scale drift. The time-series method does not directly measure

scale drift, and it does not exactly measure or even identify scale drift in the same

sense as traditional approaches do. Instead, it shows whether a large amount of

variability in equated scores is due to differences in form difficulty or due to errors.

If equating is successful, a large amount of variability in equated scores is due to

differences in form difficulties. The variability due to form difficulty differences

can be effectively controlled by form constructions, anchor selections, and better

choice of equating methods, but the variability due to errors may be more difficult

to explain and control. Therefore, the results from the time-series method can give

testing programs important information on assessing the quality of equating results

as a whole. Furthermore, time-series plots of equated scores can also identify which

test form at which score level show inconsistent results with the rest of the test

forms (i.e., the outlier test forms).

Finally, the focus of this chapter is to introduce the time-series method for

monitoring the stability of a series of equating results. For illustrative purpose,

the simulation study only addresses how a suitable ARMAmodel can be considered

for time-correlated series of equated scores and how psychometricians can employ

this method to monitor equating and scale stability over time. Though this is beyond

the scope of this chapter, it is necessary to conduct further research to compare the

differences of results in various ARMAmodels to identify better models to describe

the data. Moreover, it is sometimes not feasible to have a moderately long sequence

of equating results, which is required for reliable parameter estimation for the time-

series method. As a consequence, the method is limited by the need for many

administrations for this method to work (at least 50), which is a challenge for many

educational assessment instruments that have only several administrations per year.

In practice, it is not uncommon to have a large number of administrations (or test

forms) if the IRT methods are used for linking and equating. Therefore, the time-

series method may be considered as one potential alternative approach for monitor-

ing equated scores and detecting potential scale drift when the IRT methods are

used for linking and equating.

Chapter 20 Appendix

20.A.1 Basic Terms for Times-Series Analysis

The terms ACF and PACF are fundamental for time-series analysis. Here we give

the basic definitions for these terms. For more detailed discussion, see Brockwell

and Davis (2002), Shumway and Stoffer (2006), and Chatfield (2003).
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20.A.2 Autocorrelation Function (ACF)

Autocorrelation is a measure of the linear relationship between two separate

instances of the same random variable, as distinct from correlation, which refers

to the linear relationship between two distinct random variables. As with correla-

tion, the possible values lie between �1 and 1 inclusive, with unrelated instances

having a theoretical autocorrelation of 0. In time-series analysis, autocorrelation

often measures the extent of the linear relation between values at time points that

are a fixed interval (the lag) apart.

When the autocorrelation is used to detect nonrandomness, it is usually the first

(or lag 1) autocorrelation that is of interest. When the autocorrelation is used to

suggest an appropriate time-series model, the autocorrelation is usually plotted for

many lags.

20.A.3 Partial Autocorrelation Function (PACF)

PACF at lag h is the autocorrelation between Xt and Xt-h that is not accounted for by

lags 1 through h � 1. The values of PACF also vary between �1 and 1, with the

value near �1 or 1 indicating stronger correlation. The PACF removes the effect of

shorter lag autocorrelation from the correlation estimate for longer lags. Sample

ACFs and PACFs can be estimated from data observations x1, x2, . . ., xT.
A partial correlation is the amount of correlation between a variable and a lag of

itself that is not explained by correlations at all lower order lags. A sample ACF

may suggest which of the many possible stationary time-series models is a suitable

candidate for representing the dependency among the series. For example, the

sample ACF that is close to zero for all nonzero lags suggests that an appropriate

model for the data might be a model of independent and identically distributed

noise. Every stationary process with mean zero and autocorrelations vanishing

at lags greater than q can be represented as a moving-average process of order q.

The PACF of a causal AR(p) process is 0 for lags larger than p.

Author Note: Any opinions expressed in this chapter are those of the authors and not necessarily

of Educational Testing Service.
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