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PREFACE

Why Use Statistics?

As a researcher who uses statistics frequently, and as an avid listener of talk radio, I find myself
yelling at my radio daily. Although I realize that my cries go unheard, I cannot help myself. As
radio talk show hosts, politicians making political speeches, and the general public all know, there is
nothing more powerful and persuasive than the personal story, or what statisticians call anecdotal
evidence. My favorite example of this comes from an exchange I had with a staff member of my
congressman some years ago. I called his office to complain about a pamphlet his office had sent to
me decrying the pathetic state of public education. I spoke to his staff member in charge of
education. I told her, using statistics reported in a variety of sources (e.g., Berliner and Biddle's The
Manufactured Crisis and the annual "Condition of Education" reports in the Phi Delta Kappan
written by Gerald Bracey), that there are many signs that our system is doing quite well, including
higher graduation rates, greater numbers of students in college, rising standardized test scores, and
modest gains in SAT scores for all races of students. The staff member told me that despite these
statistics, she knew our public schools were failing because she attended the same high school her
father had, and he received a better education than she. I hung up and yelled at my phone.

Many people have a general distrust of statistics, believing that crafty statisticians can
"make statistics say whatever they want" or "lie with statistics." In fact, if a researcher calculates
the statistics correctly, he or she cannot make them say anything other than what they say, and
statistics never lie. Rather, crafty researchers can interpret what the statistics mean in a variety of
ways, and those who do not understand statistics are forced to either accept the interpretations that
statisticians and researchers offer or reject statistics completely. I believe a better option is to gain
an understanding of how statistics work and then use mat understanding to interpret the statistics one
sees and hears for oneself. The purpose of this book is to make it a little easier to understand
statistics.

Uses of Statistics

One of the potential shortfalls of anecdotal data is that they are idiosyncratic. Just as the
congressional staffer told me her father received a better education from the high school they both
attended than she did, I could have easily received a higher quality education than my father did.
Statistics allow researchers to collect information, or data, from a large number of people and then
summarize their typical experience. Do most people receive a better or worse education than their
parents? Statistics allow researchers to take a large batch of data and summarize it into a couple of
numbers, such as an average. Of course, when many data are summarized into a single number, a lot
of information is lost, including the fact that different people have very different experiences. So it
is important to remember that, for the most part, statistics do not provide useful information about
each individual's experience. Rather, researchers generally use statistics to make general statements
about a population. Although personal stories are often moving or interesting, it is often important
to understand what the typical or average experience is. For this, we need statistics.

Statistics are also used to reach conclusions about general differences between groups. For
example, suppose that in my family, there are four children, two men and two women. Suppose that
the women in my family are taller than the men. This personal experience may lead me to the
conclusion that women are generally taller than men. Of course, we know that, on average, men are
taller than women. The reason we know this is because researchers have taken large, random
samples of men and women and compared their average heights. Researchers are often interested in
making such comparisons: Do cancer patients survive longer using one drug than another? Is one
method of teaching children to read more effective than another? Do men and women differ in their
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enjoyment of a certain movie? To answer these questions, we need to collect data from randomly
selected samples and compare these data using statistics. The results we get from such comparisons
are often more trustworthy than the simple observations people make from nonrandom samples, such
as the different heights of men and women in my family.

Statistics can also be used to see if scores on two variables are related and to make
predictions. For example, statistics can be used to see whether smoking cigarettes is related to the
likelihood of developing lung cancer. For years, tobacco companies argued that there was no
relationship between smoking and cancer. Sure, some people who smoked developed cancer. But
the tobacco companies argued that (a) many people who smoke never develop cancer, and (b) many
people who smoke tend to do other things that may lead to cancer development, such as eating
unhealthy foods and not exercising. With the help of statistics in a number of studies, researchers
were finally able to produce a preponderance of evidence indicating that, in fact, there is a
relationship between cigarette smoking and cancer. Because statistics tend to focus on overall
patterns rather than individual cases, this research did not suggest that everyone who smokes will
develop cancer. Rather, the research demonstrated that, on average, people have a greater chance of
developing cancer if they smoke cigarettes than if they do not.

With a moment's thought, you can imagine a large number of interesting and important
questions that statistics about relationships can help you answer. Is there a relationship between self-
esteem and academic achievement? Is there a relationship between the appearance of criminal
defendants and their likelihood of being convicted? Is it possible to predict the violent crime rate of
a state from the amount of money the state spends on drug treatment programs? If we know the
father's height, how accurately can we predict son's height? These and thousands of other questions
have been examined by researchers using statistics designed to determine the relationship between
variables in a population.

How to Use This Book

This book is not intended to be used as a primary source of information for those who are unfamiliar
with statistics. Rather, it is meant to be a supplement to a more detailed statistics textbook, such as
that recommended for a statistics course in the social sciences. Or, if you have already taken a
course or two in statistics, this book may be useful as a reference book to refresh your memory about
statistical concepts you have encountered in the past. It is important to remember that this book is
much less detailed than a traditional textbook. Each of the concepts discussed in this book is more
complex than the presentation in this book would suggest, and a thorough understanding of these
concepts may be acquired only with the use of a more traditional, more detailed textbook.

With that warning firmly in mind, let me describe the potential benefits of this book, and
how to make the most of them. As a researcher and a teacher of statistics, I have found that statistics
textbooks often contain a lot of technical information that can be intimidating to nonstatisticians.
Although, as I said previously, this information is important, sometimes it is useful to have a short,
simple description of a statistic, when it should be used, and how to make sense of it. This is
particularly true for students taking only their first or second statistics course, those who do not
consider themselves to be "mathematically inclined," and those who may have taken statistics years
ago and now find themselves in need of a little refresher. My purpose in writing this book is to
provide short, simple descriptions and explanations of a number of statistics that are easy to read and
understand.

To help you use this book in a manner that best suits your needs, I have organized each
chapter into three sections. In the first section, a brief (one to two pages) description of the statistic
is given, including what the statistic is used for and what information it provides. The second
section of each chapter contains a slightly longer (three to eight pages) discussion of the statistic. In
this section, I provide a bit more information about how the statistic works, an explanation of how
the formula for calculating the statistic works, the strengths and weaknesses of the statistic, and the
conditions that must exist to use the statistic. Finally, each chapter concludes with an example in
which the statistic is used and interpreted.

Before reading the book, it may be helpful to note three of its features. First, some of the
chapters discuss more than one statistic. For example, in Chapter 2, three measures of central
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tendency are described: the mean, median, and mode. Second, some of the chapters cover statistical
concepts rather than specific statistical techniques. For example, in Chapter 4 the normal
distribution is discussed. There are also chapters on statistical significance and on statistical
interactions. Finally, you should remember that the chapters in this book are not necessarily
designed to be read in order. The book is organized such that the more basic statistics and statistical
concepts are in the earlier chapters whereas the more complex concepts appear later in the book.
However, it is not necessary to read one chapter before understanding the next. Rather, each chapter
in the book was written to stand on its own. This was done so that you could use each chapter as
needed. If, for example, you had no problem understanding t tests when you learned about them in
your statistics class but find yourself struggling to understand one-way analysis of variance, you may
want to skip the t test chapter (Chapter 9) and skip directly to the analysis of variance chapter
(Chapter 10).

New Features in This Edition

This second edition of Statistics in Plain English includes a number of features not available in the
first edition. Two new chapters have been added. The first new chapter (Chapter 1) includes a
description of basic research concepts including sampling, definitions of different types of variables,
and basic research designs. The second new chapter introduces the concept of nonparametric
statistics and includes a detailed description of the chi-square test of independence. The original
chapters from the first edition have each received upgrades including more graphs to better illustrate
the concepts, clearer and more precise descriptions of each statistic, and a bad joke inserted here and
there. Chapter 7 received an extreme makeover and now includes a discussion of confidence
intervals alongside descriptions of statistical significance and effect size. This second edition also
comes with a CD mat includes Powerpoint presentations for each chapter and a very cool set of
interactive problems for each chapter. The problems all have built-in support features including
hints, an overview of problem solutions, and links between problems and the appropriate Powerpoint
presentations. Now when a student gets stuck on a problem, she can click a button and be linked to
the appropriate Powerpoint presentation. These presentations can also be used by teachers to help
them create lectures and stimulate discussions.

Statistics are powerful tools that help people understand interesting phenomena. Whether
you are a student, a researcher, or just a citizen interested in understanding the world around you,
statistics can offer one method for helping you make sense of your environment. This book was
written using plain English to make it easier for non-statisticians to take advantage of the many
benefits statistics can offer. I hope you find it useful.
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CHAPTER 1

INTRODUCTION TO SOCIAL SCIENCE RESEARCH
PRINCIPLES AND TERMINOLOGY

When I was in graduate school, one of my statistics professors often repeated what passes, in
statistics, for a joke: "If this is all Greek to you, well that's good." Unfortunately, most of the class
was so lost we didn't even get the joke. The world of statistics and research in the social sciences,
like any specialized field, has its own terminology, language, and conventions. In this chapter, I
review some of the fundamental research principles and terminology including the distinction
between samples and populations, methods of sampling, types of variables, the distinction between
inferential and descriptive statistics, and a brief word about different types of research designs.

POPULATIONS AND SAMPLES, STATISTICS AND PARAMETERS

A population is an individual or group that represents all the members of a certain group or
category of interest. A sample is a subset drawn from the larger population (see Figure 1.1). For
example, suppose that I wanted to know the average income of the current full-time, tenured faculty
at Harvard. There are two ways that I could find this average. First, I could get a list of every full-
time, tenured faculty member at Harvard and find out the annual income of each member on this list.
Because this list contains every member of the group that I am interested in, it can be considered a
population. If I were to collect these data and calculate the mean, I would have generated a
parameter, because a parameter is a value generated from, or applied to, a population. Another way
to generate the mean income of the tenured faculty at Harvard would be to randomly select a subset
of faculty names from my list and calculate the average income of this subset. The subset is known
as a sample (in this case it is a random sample), and the mean that I generate from this sample is a
type of statistic. Statistics are values derived from sample data, whereas parameters are values that
are either derived from, or applied to, population data.

It is important to keep a couple of things in mind about samples and populations. First, a
population does not need to be large to count as a population. For example, if I wanted to know the
average height of the students in my statistics class this term, then all of the members of the class
(collectively) would comprise the population. If my class only has five students in it, then my
population only has five cases. Second, populations (and samples) do not have to include people.
For example, suppose I want to know the average age of the dogs that visited a veterinary clinic in
the last year. The population in this study is made up of dogs, not people. Similarly, I may want to
know the total amount of carbon monoxide produced by Ford vehicles that were assembled in the
United States during 2005. In this example, my population is cars, but not all cars—it is limited to
Ford cars, and only those actually assembled in a single country during a single calendar year.

Third, the researcher generally defines the population, either explicitly or implicitly. In the
examples above, I defined my populations (of dogs and cars) explicitly. Often, however, researchers
define their populations less clearly. For example, a researcher may say that the aim of her study is
to examine the frequency of depression among adolescents. Her sample, however, may only include
a group of 15-year-olds who visited a mental health service provider in Connecticut in a given year.
This presents a potential problem, and leads directly into the fourth and final little thing to keep in
mind about samples and populations: Samples are not necessarily good representations of the
populations from which they were selected. In the example about the rates of depression among
adolescents, notice that there are two potential populations. First, there is the population identified
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by the researcher and implied in her research question: adolescents. But notice that adolescents is a
very large group, including all human beings, in all countries, between the ages of, say, 13 and 20.
Second, there is the much more specific population that was defined by the sample that was selected:
15-year-olds who visited a mental health service provider in Connecticut during a given year.

FIGURE 1.1 A population and a sample drawn from the population.

Inferential and Descriptive Statistics

Why is it important to determine which of these two populations is of interest in this study? Because
the consumer of this research must be able to determine how well the results from the sample
generalize to the larger population. Clearly, depression rates among 15-year-olds who visit mental
health service providers in Connecticut may be different from other adolescents. For example,
adolescents who visit mental health service providers may, on average, be more depressed than those
who do not seek the services of a psychologist. Similarly, adolescents in Connecticut may be more
depressed, as a group, than adolescents in California, where the sun shines and Mickey Mouse keeps
everyone smiling. Perhaps 15-year-olds, who have to suffer the indignities of beginning high school
without yet being able to legally drive, are more depressed than their 16-year-old, driving peers. In
short, there are many reasons to suspect that the adolescents who were not included in the study may
differ in their depression rates than adolescents who were in the study. When such differences exist,
it is difficult to apply the results garnered from a sample to the larger population. In research
terminology, the results may not generalize from the sample to the population, particularly if the
population is not clearly defined.

So why is generalizability important? To answer this question, I need to introduce the
distinction between descriptive and inferential statistics. Descriptive statistics apply only to the
members of a sample or population from which data have been collected. In contrast, inferential
statistics refer to the use of sample data to reach some conclusions (i.e., make some inferences)
about the characteristics of the larger population that the sample is supposed to represent. Although
researchers are sometimes interested in simply describing the characteristics of a sample, for the
most part we are much more concerned with what our sample tells us about the population from
which the sample was drawn. In the depression study, the researcher does not care so much about
the depression levels of her sample per se. Rather, she wants to use the data from her sample to
reach some conclusions about the depression levels of adolescents in general. But to make the leap
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from sample data to inferences about a population, one must be very clear about whether the sample
accurately represents the population. An important first step in this process is to clearly define the
population that the sample is alleged to represent.

SAMPLING ISSUES

There are a number of ways researchers can select samples. One of the most useful, but also the
most difficult, is random sampling. In statistics, the term random has a much more specific
meaning than the common usage of the term. It does not mean haphazard. In statistical jargon,
random means that every member of a population has an equal chance of being selected into a
sample. The major benefit of random sampling is that any differences between the sample and the
population from which the sample was selected will not be systematic. Notice that in the depression
study example, the sample differed from the population in important, systematic (i.e., nonrandom)
ways. For example, the researcher most likely systematically selected adolescents who were more
likely to be depressed than the average adolescent because she selected those who had visited mental
health service providers. Although randomly selected samples may differ from the larger population
in important ways (especially if the sample is small), these differences are due to chance rather than
to a systematic bias in the selection process.

Representative sampling is a second way of selecting cases for a study. With this method,
the researcher purposely selects cases so that they will match the larger population on specific
characteristics. For example, if I want to conduct a study examining the average annual income of
adults in San Francisco, by definition my population is "adults in San Francisco." This population
includes a number of subgroups (e.g., different ethnic and racial groups, men and women, retired
adults, disabled adults, parents and single adults, etc.). These different subgroups may be expected
to have different incomes. To get an accurate picture of the incomes of the adult population in San
Francisco, I may want to select a sample that represents the population well. Therefore, I would try
to match the percentages of each group in my sample that I have in my population. For example, if
15% of the adult population in San Francisco is retired, I would select my sample in a manner that
included 15% retired adults. Similarly, if 55% of the adult population in San Francisco is male, 55%
of my sample should be male. With random sampling, I may get a sample that looks like my
population or I may not. But with representative sampling, I can ensure that my sample looks
similar to my population on some important variables. This type of sampling procedure can be
costly and time-consuming, but it increases my chances of being able to generalize the results from
my sample to the population.

Another common method of selecting samples is called convenience sampling. In
convenience sampling, the researcher generally selects participants on the basis of proximity, ease-
of-access, and willingness to participate (i.e., convenience). For example, if I want to do a study on
the achievement levels of eighth-grade students, I may select a sample of 200 students from the
nearest middle school to my office. I might ask the parents of 300 of the eighth-grade students in the
school to participate, receive permission from the parents of 220 of the students, and then collect
data from the 200 students that show up at school on the day I hand out my survey. This is a
convenience sample. Although this method of selecting a sample is clearly less labor-intensive than
selecting a random or representative sample, that does not necessary make it a bad way to select a
sample. If my convenience sample does not differ from my population of interest in ways that
influence the outcome of the study, then it is a perfectly acceptable method of selecting a sample.

TYPES OF VARIABLES AND SCALES OF MEASUREMENT

In social science research, a number of terms are used to describe different types of variables. A
variable is pretty much anything that can be codified and have more than a single value (e.g.,
income, gender, age, height, attitudes about school, score on a measure of depression, etc.). A
constant, in contrast, has only a single score. For example, if every member of a sample is male, the
"gender" category is a constant. Types of variables include quantitative (or continuous) and
qualitative (or categorical). A quantitative variable is one that is scored in such a way that the
numbers, or values, indicate some sort of amount. For example, height is a quantitative (or
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continuous) variable because higher scores on this variable indicate a greater amount of height. In
contrast, qualitative variables are those for which the assigned values do not indicate more or less of
a certain quality. If I conduct a study to compare the eating habits of people from Maine, New
Mexico, and Wyoming, my "state" variable has three values (e.g., 1 = Maine, 2 = New Mexico, 3 =
Wyoming). Notice that a value of 3 on this variable is not more than a value of 1 or 2—it is simply
different. The labels represent qualitative differences in location, not quantitative differences. A
commonly used qualitative variable in social science research is the dichotomous variable. This is
a variable that has two different categories (e.g., male and female).

Most statistics textbooks describe four different scales of measurement for variables:
nominal, ordinal, interval, and ratio. A nominally scaled variable is one in which the labels that are
used to identify the different levels of the variable have no weight, or numeric value. For example,
researchers often want to examine whether men and women differ on some variable (e.g., income).
To conduct statistics using most computer software, this gender variable would need to be scored
using numbers to represent each group. For example, men may be labeled "0" and women may be
labeled "1." In this case, a value of 1 does not indicate a higher score than a value of 0. Rather, 0
and 1 are simply names, or labels, that have been assigned to each group.

With ordinal variables, the values do have weight. If I wanted to know the 10 richest
people in America, the wealthiest American would receive a score of 1, the next richest a score of 2,
and so on through 10. Notice that while this scoring system tells me where each of the wealthiest 10
Americans stands in relation to the others (e.g., Bill Gates is 1, Oprah Winfrey is 8, etc.), it does not
tell me how much distance there is between each score. So while I know that the wealthiest
American is richer than the second wealthiest, I do not know if he has one dollar more or one billion
dollars more. Variables scored using either interval and ratio scales, in contrast, contain
information about both relative value and distance. For example, if I know that one member of my
sample is 58 inches tall, another is 60 inches tall, and a third is 66 inches tall, I know who is tallest
and how much taller or shorter each member of my sample is in relation to the others. Because my
height variable is measured using inches, and all inches are equal in length, the height variable is
measured using a scale of equal intervals and provides information about both relative position and
distance. Both interval and ratio scales use measures with equal distances between each unit. Ratio
scales also include a zero value (e.g., air temperature using the Celsius scale of measurement).
Figure 1.2 provides an illustration of the difference between ordinal and interval/ratio scales of
measurement.

FIGURE 1.2 Difference between ordinal and interval/ratio scales of measurement.
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RESEARCH DESIGNS

There are a variety of research methods and designs employed by social scientists. Sometimes
researchers use an experimental design. In this type of research, the experimenter divides the cases
in the sample into different groups and then compares the groups on one or more variables of
interest. For example, I may want to know whether my newly developed mathematics curriculum is
better than the old method. I select a sample of 40 students and, using random assignment, teach
20 students a lesson using the old curriculum and the other 20 using the new curriculum. Then I test
each group to see which group learned more mathematics concepts. By applying students to the two
groups using random assignment, I hope that any important differences between the two groups get
distributed evenly between the two groups and that any differences in test scores between the two
groups is due to differences in the effectiveness of the two curricula used to teach them. Of course,
this may not be true.

Correlational research designs are also a common method of conducting research in the
social sciences. In this type of research, participants are not usually randomly assigned to groups. In
addition, the researcher typically does not actually manipulate anything. Rather, the researcher
simply collects data on several variables and then conducts some statistical analyses to determine
how strongly different variables are related to each other. For example, I may be interested in
whether employee productivity is related to how much employees sleep (at home, not on the job).
So I select a sample of 100 adult workers, measure their productivity at work, and measure how long
each employee sleeps on an average night in a given week. I may find that there is a strong
relationship between sleep and productivity. Now logically, I may want to argue that this makes
sense, because a more rested employee will be able to work harder and more efficiently. Although
this conclusion makes sense, it is too strong a conclusion to reach based on my correlational data
alone. Correlational studies can only tell us whether variables are related to each other—they cannot
lead to conclusions about causality. After all, it is possible that being more productive at work
causes longer sleep at home. Getting one's work done may relieve stress and perhaps even allows
the worker to sleep in a little longer in the morning, both of which create longer sleep.

Experimental research designs are good because they allow the researcher to isolate specific
independent variables that may cause variation, or changes, in dependent variables. In the
example above, I manipulated the independent variable of mathematics curriculum and was able to
reasonably conclude that the type of math curriculum used affected students' scores on the
dependent variable, test scores. The primary drawbacks of experimental designs are that they are
often difficult to accomplish in a clean way and they often do not generalize to real-world situations.
For example, in my study above, I cannot be sure whether it was the math curricula that influenced
test scores or some other factor, such as pre-existing difference in the mathematics abilities of my
two groups of students or differences in the teacher styles that had nothing to do with the curricula,
but could have influenced test scores (e.g., the clarity or enthusiasm of the teacher). The strengths of
correlational research designs is that they are often easier to conduct than experimental research,
they allow for the relatively easy inclusion of many variables, and they allow the researcher to
examine many variables simultaneously. The principle drawback of correlational research is that
such research does not allow for the careful controls necessary for drawing conclusions about causal
associations between variables.

WRAPPING UP AND LOOKING FORWARD

The purpose of this chapter was to provide a quick overview of many of the basic principles and
terminology employed in social science research. With a foundation in the types of variables,
experimental designs, and sampling methods used in social science research it will be easier to
understand the uses of the statistics described in the remaining chapters of this book. Now we are
ready to talk statistics. It may still all be Greek to you, but that's not necessarily a bad thing.
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GLOSSARY OF TERMS FOR CHAPTER 1

Constant: A construct that has only one value (e.g., if every member of a sample was 10 years old,
the "age" construct would be a constant).

Convenience sampling: Selecting a sample based on ease of access or availability.
Correlational research design: A style of research used to examine the associations among

variables. Variables are not manipulated by the researcher in this type of research design.
Dependent variable: The values of the dependent variable are hypothesized to depend upon the

values of the independent variable. For example, height depends, in part, on gender.
Descriptive statistics: Statistics used to described the characteristics of a distribution of scores.
Dichotomous variable: A variable that has only two discrete values (e.g., a pregnancy variable can

have a value of 0 for "not pregnant" and 1 for "pregnant."
Experimental research design: A type of research in which the experimenter, or researcher,

manipulates certain aspects of the research. These usually include manipulations of the
independent variable and assignment of cases to groups.

Generalize (or Generalizability): The ability to use the results of data collected from a sample to
reach conclusions about the characteristics of the population, or any other cases not
included in the sample.

Independent variable: A variable on which the values of the dependent variable are hypothesized
to depend. Independent variables are often, but not always, manipulated by the researcher.

Inferential statistics: Statistics, derived from sample data, that are used to make inferences about
the population from which the sample was drawn.

Interval or Ratio variable: Variables measured with numerical values with equal distance, or
space, between each number (e.g., 2 is twice as much as 1, 4 is twice as much as 2, the
distance between 1 and 2 is the same as the distance between 2 and 3).

Nominally scaled variable: A variable in which the numerical values assigned to each category are
simply labels rather than meaningful numbers.

Ordinal variable: Variables measured with numerical values where the numbers are meaningful
(e.g., 2 is larger than 1) but the distance between the numbers is not constant.

Parameter: A value, or values, derived from population data.
Population: The collection of cases that comprise the entire set of cases with the specified

characteristics (e.g., all living adult males in the United States).
Qualitative (or categorical) variable: A variable that has discrete categories. If the categories are

given numerical values, the values have meaning as nominal references but not as
numerical values (e.g., in 1 = "male" and 2 = "female," 1 is not more or less than 2).

Quantitative (or continuous) variable: A variable that has assigned values and the values are
ordered and meaningful, such that 1 is less than 2, 2 is less than 3, and so on.

Random assignment: Assignment members of a sample to different groups (e.g., experimental and
control) randomly, or without consideration of any of the characteristics of sample
members.

Random sample (or Random sampling): Selecting cases from a population in a manner that
ensures each member of the population has an equal chance of being selected into the
sample.

Representative sampling: A method of selecting a sample in which members are purposely
selected to create a sample that represents the population on some characteristic(s) of
interest (e.g., when a sample is selected to have the same percentages of various ethnic
groups as the larger population).

Sample: A collection of cases selected from a larger population.
Statistic: A characteristic, or value, derived from sample data.
Variable: Any construct with more than one value that is examined in research.



CHAPTER 2

MEASURES OF CENTRAL TENDENCY

Whenever you collect data, you end up with a group of scores on one or more variables. If you take
the scores on one variable and arrange them in order from lowest to highest, what you get is a
distribution of scores. Researchers often want to know about the characteristics of these
distributions of scores, such as the shape of the distribution, how spread out the scores are, what the
most common score is, and so on. One set of distribution characteristics that researchers are usually
interested in is central tendency. This set consists of the mean, median, and mode.

The mean is probably the most commonly used statistic in all social science research. The
mean is simply the arithmetic average of a distribution of scores, and researchers like it because it
provides a single, simple number that gives a rough summary of the distribution. It is important to
remember that although the mean provides a useful piece of information, it does not tell you
anything about how spread out the scores are (i.e., variance) or how many scores in the distribution
are close to the mean. It is possible for a distribution to have very few scores at or near the mean.

The median is the score in the distribution that marks the 50th percentile. That is, 50%
percent of the scores in the distribution fall above the median and 50% fall below it. Researchers
often use the median when they want to divide their distribution scores into two equal groups (called
a median split). The median is also a useful statistic to examine when the scores in a distribution
are skewed or when there are a few extreme scores at the high end or the low end of the distribution.
This is discussed in more detail in the following pages.

The mode is the least used of the measures of central tendency because it provides the least
amount of information. The mode simply indicates which score in the distribution occurs most
often, or has the highest frequency.

A Word About Populations and Samples

You will notice in Table 2.1 that there are two different symbols used for the mean, X and u.
Two different symbols are needed because it is important to distinguish between a statistic that
applies to a sample and a parameter that applies to a population. The symbol used to represent
the population mean is u. Statistics are values derived from sample data, whereas parameters are
values that are either derived from, or applied to, population data. It is important to note that all
samples are representative of some population and that all sample statistics can be used as estimates
of population parameters. In the case of the mean, the sample statistic is represented with the
symbol X. The distinction between sample statistics and population parameters appears in several
chapters (e.g., Chapters 1, 3, 5, and 7).

MEASURES OF CENTRAL TENDENCY IN DEPTH

The calculations for each measure of central tendency are mercifully straightforward. With the aid
of a calculator or statistics software program, you will probably never need to calculate any of these
statistics by hand. But for the sake of knowledge and in the event you find yourself without a
calculator and in need of these statistics, here is the information you will need.

Because the mean is an average, calculating the mean involves adding, or summing, all of
the scores in a distribution and dividing by the number of scores. So, if you have 10 scores in a
distribution, you would add all of the scores together to find the sum and then divide the sum by 10,

-7-
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which is the number of scores in the distribution. The formula for calculating the mean is presented
in Table 2.1.

TABLE 2.1 Formula for calculating the mean of a distribution.

or

where X is the sample mean
u is the population mean

E means "the sum of
X is an individual score in the distribution
n is the number of scores in the sample
N is the number of scores in the population

The calculation of the median (P5o) for a simple distribution of scores1 is even simpler than
the calculation of the mean. To find the median of a distribution, you need to first arrange all of the
scores in the distribution in order, from smallest to largest. Once this is done, you simply need to
find the middle score in the distribution. If there is an odd number of scores in the distribution, there
will be a single score that marks the middle of the distribution. For example, if there are 11 scores in
the distribution arranged in descending order from smallest to largest, the 6th score will be the
median because there will be 5 scores below it and 5 scores above it. However, if there are an even
number of scores in the distribution, there is no single middle score. In this case, the median is the
average of the two scores in the middle of the distribution (as long as the scores are arranged in
order, from largest to smallest). For example, if there are 10 scores in a distribution, to find the
median you will need to find the average of the 5th and 6th scores. To find this average, add the two
scores together and divide by two.

To find the mode, there is no need to calculate anything. The mode is simply the
category in the distribution that has the highest number of scores, or the highest frequency. For
example, suppose you have the following distribution of IQ test scores from 10 students:

86 90 95 100 100 100 110 110 115 120

In this distribution, the score that occurs most frequently is 100, making it the mode of the
distribution. If a distribution has more than one category with the most common score, the
distribution has multiple modes and is called multimodal. One common example of a multimodal
distribution is the bimodal distribution. Researchers often get bimodal distributions when they ask
people to respond to controversial questions that tend to polarize the public. For example, if I were
to ask a sample of 100 people how they feel about capital punishment, I might get the results
presented in Table 2.2. In this example, because most people either strongly oppose or strongly
support capital punishment, I end up with a bimodal distribution of scores.

1 It is also possible to calculate the median of a grouped frequency distribution. For an excellent description of the technique for
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On the following scale, please indicate how you feel about capital punishment.

TABLE 2.2 Frequency of responses.

Category of Responses on the Scale

1

45

2

3

3

4

4

3

5

45Frequency of Responses in
Each Category

EXAMPLE: THE MEAN, MEDIAN, AND MODE OF A SKEWED DISTRIBUTION

As you will see in Chapter 4, when scores in a distribution are normally distributed, the mean,
median, and mode are all at the same point: the center of the distribution. In the messy world of
social science, however, the scores from a sample on a given variable are often not normally
distributed. When the scores in a distribution tend to bunch up at one end of the distribution and
there are a few scores at the other end, the distribution is said to be skewed. When working with a
skewed distribution, the mean, median, and mode are usually all at different points.

It is important to note that the procedures used to calculate a mean, median, and mode are
the same whether you are dealing with a skewed or a normal distribution. All that changes are
where these three measures of central tendency are in relation to each other. To illustrate, I created a
fictional distribution of scores based on a sample size of 30. Suppose that I were to ask a sample of
30 randomly selected fifth graders whether they think it is important to do well in school. Suppose
further that I ask them to rate how important they think it is to do well in school using a 5-point
scale, with 1 = "not at all important" and 5 = "very important." Because most fifth graders tend to
believe it is very important to do well in school, most of the scores in this distribution are at the high
end of the scale, with a few scores at the low end. I have arranged my fictitious scores in order from
smallest to largest and get the following distribution:

1

4

5

1

4

5

1

4

5

2

4

5

2

4

5

2

4

5

3

4

5

3

4

5

3

5

5

3

5

5

As you can see, there are only a few scores near the low end of the distribution (1 and 2) and more at
the high end of the distribution (4 and 5). To get a clear picture of what this skewed distribution
looks like, I have created the graph in Figure 2.1.

This graph provides a picture of what some skewed distributions look like. Notice how
most of the scores are clustered at the higher end of the distribution and there are a few scores
creating a tail toward the lower end. This is known as a negatively skewed distribution, because the
tail goes toward the lower end. If the tail of the distribution were pulled out toward the higher end,
this would have been a positively skewed distribution.

calculating a median from a grouped frequency distribution, see Spatz (2001) Basic Statistics: Tales of Distributions (7th ed.).
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A quick glance at the scores in the distribution, or at the graph, reveals that the mode is 5
because there were more scores of 5 than any other number in the distribution.

To calculate the mean, we simply apply the formula mentioned earlier. That is, we add up
all of the scores (EX) and then divide this sum by the number of scores in the distribution (n). This
gives us a fraction of 113/30, which reduces to 3.7666. When we round to the second place after the
decimal, we end up with a mean of 3.77.

FIGURE 2.1 A skewed distribution.

To find the median of this distribution, we arrange the scores in order from smallest to
largest and find the middle score. In this distribution, there are 30 scores, so there will be 2 in the
middle. When arranged in order, the 2 scores in the middle (the 15th and 16th scores) are both 4.
When we add these two scores together and divide by 2, we end up with 4, making our median 4.

As I mentioned earlier, the mean of a distribution can be affected by scores that are
unusually large or small for a distribution, sometimes called outliers, whereas the median is not
affected by such scores. In the case of a skewed distribution, the mean is usually pulled in the
direction of the tail, because the tail is where the outliers are. In a negatively skewed distribution,
such as the one presented previously, we would expect the mean to be smaller than the median,
because the mean is pulled toward the tail whereas the median is not. In our example, the mean
(3.77) is somewhat lower than the median (4). In positively skewed distributions, the mean is
somewhat higher than the median.

WRAPPING UP AND LOOKING FORWARD

Measures of central tendency, particularly the mean and the median, are some of the most used and
useful statistics for researchers. They each provide important information about an entire
distribution of scores in a single number. For example, we know that the average height of a man in
the United States is five feet nine inches tall. This single number is used to summarize information
about millions of men in this country. But for the same reason that the mean and median are useful,
they can often be dangerous if we forget that a statistic such as the mean ignores a lot of information
about a distribution, including the great amount of variety that exists in many distributions. Without
considering the variety as well as the average, it becomes easy to make sweeping generalizations, or
stereotypes, based on the mean. The measure of variance is the topic of the next chapter.
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GLOSSARY OF TERMS AND SYMBOLS FOR CHAPTER 2

Bimodal: A distribution that has two values that have the highest frequency of scores.
Distribution: A collection, or group, of scores from a sample on a single variable. Often, but not

necessarily, these scores are arranged in order from smallest to largest.
Mean: The arithmetic average of a distribution of scores.
Median split: Dividing a distribution of scores into two equal groups by using the median score as

the divider. Those scores above the median are the "high" group whereas those below the
median are the "low" group.

Median: The score in a distribution that marks the 50th percentile. It is the score at which 50% of
the distribution falls below and 50% fall above.

Mode: The score in the distribution that occurs most frequently.
Multimodal: When a distribution of scores has two or more values that have the highest frequency

of scores.
Negative skew: In a skewed distribution, when most of the scores are clustered at the higher end of

the distribution with a few scores creating a tail at the lower end of the distribution.
Outliers: Extreme scores that are more than two standard deviations above or below the mean.
Positive skew: In a skewed distribution, when most of the scores are clustered at the lower end of

the distribution with a few scores creating a tail at the higher end of the distribution.
Parameter: A value derived from the data collected from a population, or the value inferred to the

population from a sample statistic.
Population: The group from which data are collected or a sample is selected. The population

encompasses the entire group for which the data are alleged to apply.
Sample: An individual or group, selected from a population, from whom or which data are

collected.
Skew: When a distribution of scores has a high number of scores clustered at one end of the

distribution with relatively few scores spread out toward the other end of the distribution,
forming a tail.

Statistic: A value derived from the data collected from a sample.

£ The sum of; to sum.
X An individual score in a distribution.
EX The sum of X; adding up all of the scores in a distribution.

X The mean of a sample.
u The mean of a population.
n The number of cases, or scores, in a sample.
N The number of cases, or scores, in a population.
P50 Symbol for the median.
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CHAPTER 3

MEASURES OF VARIABILITY

Measures of central tendency, such as the mean and the median described in Chapter 2, provide
useful information. But it is important to recognize that these measures are limited and, by
themselves, do not provide a great deal of information. There is an old saying that provides a
caution about the mean: "If your head is in the freezer and your feet are in the oven, on average
you're comfortable." To illustrate, consider this example: Suppose I gave a sample of 100 fifth-
grade children a survey to assess their level of depression. Suppose further that this sample had a
mean of 10.0 on my depression survey and a median of 10.0 as well. All we know from this
information is that the mean and median are in the same place in my distribution, and this place is
10.0. Now consider what we do not know. We do not know if this is a high score or a low score.
We do not know if all of the students in my sample have about the same level of depression or if
they differ from each other. We do not know the highest depression score in our distribution or the
lowest score. Simply put, we do not yet know anything about the dispersion of scores in the
distribution. In other words, we do not yet know anything about the variety of the scores in the
distribution.

There are three measures of dispersion that researchers typically examine: the range, the
variance, and the standard deviation. Of these, the standard deviation is perhaps the most
informative and certainly the most widely used.

Range

The range is simply the difference between the largest score (the maximum value) and the smallest
score (the minimum value) of a distribution. This statistic gives researchers a quick sense of how
spread out the scores of a distribution are, but it is not a particularly useful statistic because it can be
quite misleading. For example, in our depression survey described earlier, we may have 1 student
score a 1 and another score a 20, but the other 98 may all score 10. In this example, the range will
be 19 (20 - 1 = 19), but the scores really are not as spread out as the range might suggest.
Researchers often take a quick look at the range to see whether all or most of the points on a scale,
such as a survey, were covered in the sample.

Another common measure of the range of scores in a distribution is the interquartile range
(IQR). Unlike the range, which is the difference between the largest and smallest score in the
distribution, the IQR is the difference between the score that marks the 75th percentile (the third
quartile) and the score that marks the 25th percentile (the first quartile). If the scores in a
distribution were arranged in order from largest to smallest and then divided into groups of equal
size, the IQR would contain the scores in the two middle quartiles (see Figure 3.1).

Variance

The variance provides a statistical average of the amount of dispersion in a distribution of scores.
Because of the mathematical manipulation needed to produce a variance statistic (more about this in
the next section), variance, by itself, is not often used by researchers to gain a sense of a distribution.
In general, variance is used more as a step in the calculation of other statistics (e.g., analysis of
variance) than as a stand-alone statistic. But with a simple manipulation, the variance can be
transformed into the standard deviation, which is one of the statistician's favorite tools.

-13-
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FIGURE 3.1 The interquartile range.

Standard Deviation

The best way to understand a standard deviation is to consider what the two words mean. Deviation,
in this case, refers to the difference between an individual score in a distribution and the average
score for the distribution. So if the average score for a distribution is 10 (as in our previous
example), and an individual child has a score of 12, the deviation is 2. The other word in the term
standard deviation is standard. In this case, standard means typical, or average. So a standard
deviation is the typical, or average, deviation between individual scores in a distribution and the
mean for the distribution.2 This is a very useful statistic because it provides a handy measure of how
spread out the scores are in the distribution. When combined, the mean and standard deviation
provide a pretty good picture of what the distribution of scores is like.

In a sense, the range provides a measure of the total spread in a distribution (i.e., from the
lowest to the highest scores), whereas the variance and standard deviation are measures of the
average amount of spread within the distribution. Researchers tend to look at the range when they
want a quick snapshot of a distribution, such as when they want to know whether all of the response
categories on a survey question have been used (i.e., did people use all 5 points on the 5-point Likert
scale?) or they want a sense of the overall balance of scores in the distribution. Researchers rarely
look at the variance alone, because it does not use the same scale as the original measure of a
variable, although the variance statistic is very useful for the calculation of other statistics (such as
analysis of variance; see Chapter 10). The standard deviation is a very useful statistic that
researchers constantly examine to provide the most easily interpretable and meaningful measure of
the average dispersion of scores in a distribution.

2 Although the standard deviation is technically not the "average deviation" for a distribution of scores, in practice this is a
useful heuristic for gaining a rough conceptual understanding of what this statistic is. The actual formula for the average
deviation would be E( |X - mean | )/N.
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MEASURES OF VARIABILITY IN DEPTH

Calculating the Variance and Standard Deviation

There are two central issues that I need to address when considering the formulas for calculating the
variance and standard deviation of a distribution: (a) whether to use the formula for the sample or the
population, and (b) how to make sense of these formulas.

It is important to note that the formulas for calculating the variance and the standard
deviation differ depending on whether you are working with a distribution of scores taken from a
sample or from a population. The reason these two formulas are different is quite complex and
requires more space than allowed in a short book like this. I provide an overly brief explanation here
and then encourage you to find a more thorough explanation in a traditional statistics textbook.
Briefly, when we do not know the population mean, we must use the sample mean as an estimate.
But the sample mean will probably differ from the population mean. Whenever we use a number
other than the actual mean to calculate the variance, we will end up with a larger variance, and
therefore a larger standard deviation, than if we had used the actual mean. This will be true
regardless of whether the number we use in our formula is smaller or larger than our actual mean.
Because the sample mean usually differs from the population mean, the variance and standard
deviation that we calculate using the sample mean will probably be smaller than it would have been
had we used the population mean. Therefore, when we use the sample mean to generate an estimate
of the population variance or standard deviation, we will actually underestimate the size of the true
variance in the population because if we had used the population mean in place of the sample mean,
we would have created a larger sum of squared deviations, and a larger variance and standard
deviation. To adjust for this underestimation, we use n - 1 in the denominator of our sample
formulas. Smaller denominators produce larger overall variance and standard deviation statistics,
which will be more accurate estimates of the population parameters.

Sample Statistics as Estimates of Population Parameters

It is important to remember that most statistics, although generated from sample data, are used to
make estimations about the population. As discussed in Chapter 1, researchers usually want to use
their sample data to make some inferences about the population that the sample represents.
Therefore, sample statistics often represent estimates of the population parameters. This point is
discussed in more detail later in the book when examining inferential statistics. But it is important
to keep this in mind as you read about these measures of variation. The formulas for calculating the
variance and standard deviation of sample data are actually designed to make these sample statistics
better estimates of the population parameters (i.e., the population variance and standard deviation).
In later chapters (e.g., 6, 7, 8), you will see how researchers use statistics like standard errors,
confidence intervals, and probabilities to figure out how well their sample data estimate population
parameters.

The formulas for calculating the variance and standard deviation of a population and the
estimates of the population variance and standard deviation based on a sample are presented in Table
3.1. As you can see, the formulas for calculating the variance and the standard deviation are virtually
identical. Because both require that you calculate the variance first, we begin with the formulas for
calculating the variance (see the upper row of Table 3.1). This formula is known as the deviation
score formula.3

When working with a population distribution, the formulas for both the variance and the
standard deviation have a denominator of N, which is the size of the population. In the real world of
research, particularly social science research, we usually assume that we are working with a sample
that represents a larger population. For example, if I study the effectiveness of my new reading

3 It is also possible to calculate the variance and standard deviation using the raw score formula, which does not require that
you calculate the mean. The raw score formula is included in most standard statistics textbooks.
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program with a class of second graders, as a researcher I assume that these particular second graders
represent a larger population of second graders, or students more generally. Because of this type of
inference, researchers generally think of their research participants as a sample rather than a
population, and the formula for calculating the variance of a sample is the formula more often used.
Notice that the formula for calculating the variance of a sample is identical to that used for the
population, except the denominator for the sample formula is n - 1.

How much of a difference does it make if we use N or n - 1 in our denominator? Well, that
depends on the size of the sample. If we have a sample of 500 people, there is virtually no
difference between the variance formula for the population and for the estimate based on the sample.
After all, dividing a numerator by 500 is almost the same as dividing it by 499. But when we have a
small sample, such as a sample of 10, then there is a relatively large difference between the results
produced by the population and sample formulas.

TABLE 3.1 Variance and standard deviation formulas.

Population Estimate Based on a Sample

Variance

where 2 = to sum
X- a score in the distribution
u = the population mean
N = the number of cases in the

population

where £ = to sum
X = a score in the distribution
X = the sample mean
n = the number of cases in the

sample

Standard Deviation

where E = to sum
X- a score in the distribution
u. = the population mean
N - the number of cases in the

Population

where E = to sum
X- a score in the distribution
X = the sample mean
n = the number of cases in the

sample

To illustrate, suppose that I am calculating a standard deviation. After crunching the
numbers, I find a numerator of 100. I divide this numerator by four different values depending on
the sample size and whether we divide by N or n - 1. The results of these calculations are
summarized in Table 3.2. With a sample size of 500, subtracting 1 from the denominator alters the
size of the standard deviation by less than one one-thousandth. With a sample size of 10, subtracting
1 from the denominator increases the size of the standard deviation by nearly 2 tenths. Note that in
both the population and sample examples, given the same value in the numerator, larger samples
produce dramatically smaller standard deviations. This makes sense because the larger the sample,
the more likely each member of the sample will have a value near the mean, thereby producing a
smaller standard deviation.
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TABLE 3.2 Effects of sample size and n -1 on standard deviation.

Population

Sample

The second issue to address involves making sense of the formulas for calculating the
variance. In all honesty, there will be very few times that you will need to use this formula. Outside
of my teaching duties, I haven't calculated a standard deviation by hand since my first statistics
course. Thankfully, all computer statistics and spreadsheet programs, and many calculators,
compute the variance and standard deviation for us. Nevertheless, it is mildly interesting and quite
informative to examine how these variance formulas work.

To begin this examination, let me remind you that the variance is simply an average of a
distribution. To get an average, we need to add up all of the scores in a distribution and divide this
sum by the number of scores in the distribution, which is n (remember the formula for calculating
the mean in Chapter 2?). With the variance, however, we need to remember that we are not
interested in the average score of the distribution. Rather, we are interested in the average
difference, or deviation, between each score in the distribution and the mean of the distribution. To
get this information, we have to calculate a deviation score for each individual score in the
distribution (see Figure 3.2). This score is calculated by taking an individual score and subtracting
the mean from that score. If we compute a deviation score for each individual score in the
distribution, then we can sum the deviation scores and divide by n to get the average, or standard,
deviation, right? Not quite.

FIGURE 3.2 A deviation.
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The problem here is that, by definition, the mean of a distribution is the mathematical
middle of the distribution. Therefore, some of the scores in the distribution will fall above the mean
(producing positive deviation scores), and some will fall below the mean (producing negative
deviation scores). When we add these positive and negative deviation scores together, the sum will
be zero. Because the mean is the mathematical middle of the distribution, we will get zero when we
add up these deviation scores no matter how big or small our sample, or how skewed or normal our
distribution. And because we cannot find an average of zero (i.e., zero divided by n is zero, no
matter what n is), we need to do something to get rid of this zero.

The solution statisticians came up with is to make each deviation score positive by squaring
it. So, for each score in a distribution, we subtract the mean of the distribution and then square the
deviation. If you look at the deviation score formulas in Table 3.1, you will see that all that the
formula is doing with (X - u)2 is to take each score, subtract the mean, and square the resulting
deviation score. What you get when you do this is the all-important squared deviation, which is
used all the time in statistics. If we then put a summation sign in front, we have E ( X - u)2. What this
tells us is that after we produce a squared deviation score for each case in our distribution, we then
need to add up all of these squared deviations, giving us the sum of squared deviations, or the sum
of squares (SS). Once this is done, we divide by the number of cases in our distribution, and we get
an average, or mean, of the squared deviations. This is our variance.

The final step in this process is converting the variance into a standard deviation.
Remember that in order to calculate the variance, we have to square each deviation score. We do
this to avoid getting a sum of zero in our numerator. When we square these scores, we change our
statistic from our original scale of measurement (i.e., whatever units of measurement were used to
generate our distribution of scores) to a squared score. To reverse this process and give us a statistic
that is back to our original unit of measurement, we merely need to take the square root of our
variance. When we do this, we switch from the variance to the standard deviation. Therefore, the
formula for calculating the standard deviation is exactly the same as the formula for calculating the
variance, except we put a big square root symbol over the whole formula. Notice that because of the
squaring and square rooting process, the standard deviation and the variance are always positive
numbers.

Why Have Variance?

If the variance is a difficult statistic to understand, and rarely examined by researchers, why not just
eliminate this statistic and jump straight to the standard deviation? There are two reasons. First, we
need to calculate the variance before we can find the standard deviation anyway, so it is not more
work. Second, the fundamental piece of the variance formula, which is the sum of the squared
deviations, is used in a number of other statistics, most notably analysis of variance (ANOVA).
When you learn about more advanced statistics such as ANOVA (Chapter 10), factorial ANOVA
(Chapter 11), and even regression (Chapter 13), you will see that each of these statistics uses the sum
of squares, which is just another way of saying the sum of the squared deviations. Because the sum
of squares is such an important piece of so many statistics, the variance statistic has maintained a
place in the teaching of basic statistics.

EXAMPLE: EXAMINING THE RANGE, VARIANCE, AND STANDARD DEVIATION

I conducted a study in which I gave questionnaires to approximately 500 high school students in the
9th and llth grades. In the examples that follow, we examine the mean, range, variance, and
standard deviation of the distribution of responses to two of these questions. To make sense of these
(and all) statistics, you need to know the exact wording of the survey items and the response scale
used to answer the survey items. Although this may sound obvious, I mention it here because, if you
notice, much of the statistical information reported in the news (e.g., the results of polls) does not
provide the exact wording of the questions or the response choices. Without this information, it is
difficult to know exactly what the responses mean, and "lying with statistics" becomes easier.

The first survey item we examine reads, "If I have enough time, I can do even the most
difficult work in this class." This item is designed to measure students' confidence in their abilities
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to succeed in their classwork. Students were asked to respond to this question by circling a number
on a scale from 1 to 5. On this scale, circling the 1 means that the statement is "not at all true" and
the 5 means "very true." So students were basically asked to indicate how true they felt the
statement was on a scale from 1 to 5, with higher numbers indicating a stronger belief that the
statement was true.

I received responses from 491 students on this item. The distribution of responses
produced the following statistics:

Sample Size = 491
Mean = 4.21

Standard Deviation = .98
Variance = (.98)2 = .96

Range = 5 - 1 = 4

A graph of the frequency distribution for the responses on this item appears in Figure 3.3.
As you can see in this graph, most of the students in the sample circled number 4 or number 5 on the
response scale, indicating that they felt the item was quite true (i.e., that they were confident in their
ability to do their classwork if they were given enough time). Because most students circled a 4 or a
5, the average score on this item is quite high (4.21 out of a possible 5). This is a negatively skewed
distribution.

The graph in Figure 3.3 also provides information about the variety of scores in this
distribution. Although our range statistic is 4, indicating that students in the sample circled both the
highest and the lowest number on the response scale, we can see that the range does not really
provide much useful information. For example, the range does not tell us that most of the students in
our sample scored at the high end of the scale. By combining the information from the range
statistic with the mean statistic, we can reach the following conclusion: "Although the distribution of
scores on this item covers the full range, it appears that most scores are at the higher end of the
response scale."

FIGURE 3.3 Frequency distribution of scores on the confidence item.
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Now that we've determined that (a) the distribution of scores covers the full range of
possible scores (i.e., from 1 to 5), and (b) most of the responses are at the high end of the scale
(because the mean is 4.21 out of a possible 5), we may want a more precise measure of the average
amount of variety among the scores in the distribution. For this we turn to the variance and standard
deviation statistics. In this example, the variance (.96) is almost exactly the same as the standard
deviation (.98). This is something of a fluke. Do not be fooled. It is quite rare for the variance and
standard deviation to be so similar. In fact, this only happens if the standard deviation is about 1.0,
because 1.0 squared is 1.0. So in this rare case, the variance and standard deviation provide almost
the same information. Namely, they indicate that the average difference between an individual score
in the distribution and the mean for the distribution is about 1 point on the 5-point scale.

Taken together, these statistics tell us the same things that the graph tells us, but more
precisely. Namely, we now know that (a) students in the study answered this item covering the
whole range of response choices (i.e., 1 - 5); (b) most of the students answered at or near the top of
the range, because the mean is quite high; and (c) the scores in this distribution generally pack fairly
closely together with most students having circled a number within 1 point of the mean, because the
standard deviation was .98. The variance tells us that the average squared deviation is .96, and we
scratch our heads, wonder what good it does us to know the average squared deviation, and move on.

In our second example, we examine students' responses to the item, "I would feel really
good if I were the only one who could answer the teacher's question in class." This item is one of
several on the survey designed to measure students' desires to demonstrate to others that they are
smart, or academically able.

We received responses from 491 students on this item, and the distribution produced the
following statistics:

Sample Size = 491
Mean = 2.92

Standard Deviation = 1.43
Variance = (1.43)2 = 2.04

Range = 5 -1=4

Figure 3.4 illustrates the distribution of students' responses to this item across each of the
five response categories. It is obvious, when looking at this graph, how the distribution of scores on
this item differs from the distribution of scores on the confidence item presented in Figure 3.3. But
if we didn't have this graph, how could we use the statistics to discover the differences between the
distributions of scores on these two items?

FIGURE 3.4 Frequency distribution of scores on the desire to demonstrate ability item.
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Notice that, as with the previous item, the range is 4, indicating that some students circled
the number 1 on the response scale and some circled the number 5. Because the ranges for both the
confidence and the wanting to appear able items are equal (i.e., 4), they do nothing to indicate the
differences in the distributions of the responses to these two items. That is why the range is not a
particularly useful statistic—it simply does not provide very much information.

Our first real indication that the distributions differ substantially comes from a comparison
of the means. In the previous example, the mean of 4.21 indicated that most of the students must
have circled either a 4 or a 5 on the response scale. For this second item, the mean of 2.92 is a bit
less informative. Although it provides an average score, it is impossible from just examining the
mean to determine whether most students circled a 2 or 3 on the scale, or whether roughly equal
numbers of students circled each of the five numbers on the response scale, or whether almost half of
the students circled 1 whereas the other half circled 5. All three scenarios would produce a mean of
about 2.92, because that is roughly the middle of the response scale.

To get a better picture of this distribution, we need to consider the standard deviation in
conjunction with the mean. Before discussing the actual standard deviation for this distribution of
scores, let us briefly consider what we would expect the standard deviation to be for each of the
three scenarios just described. First, if almost all of the students circled a 2 or a 3 on the response
scale, we would expect a fairly small standard deviation, as we saw in the previous example using
the confidence item. The more similar the responses are to an item, the smaller the standard
deviation. However, if half of the students circled 1 and the other half circled 5, we would expect a
large standard deviation (about 2.0) because each score would be about two units away from the
mean i.e., if the mean is about 3.0 and each response is either 1 or 5, each response is about two units
away from the mean. Finally, if the responses are fairly evenly spread out across the five response
categories, we would expect a moderately sized standard deviation (about 1.50).

Now, when we look at the actual mean for this distribution (2.92) and the actual standard
deviation (1.43), we can develop a rough picture of the distribution in our minds. Because we know
that on a scale from 1 to 5, a mean of 2.92 is about in the middle, we can guess that the distribution
looks somewhat symmetrical (i.e., that there will be roughly the same number of responses in the 4
and 5 categories as there are in the 1 and 2 categories. Furthermore, because we've got a moderately
sized standard deviation of 1.43, we know that the scores are pretty well spread out, with a healthy
number of students in each of the five response categories. So we know that we didn't get an
overwhelming number of students circling 3 and we didn't get students circling only 1 or 5. At this
point, this is about all we can say about this distribution: The mean is near the middle of the scale,
and the responses are pretty well spread out across the five response categories. To say any more,
we would need to look at the number of responses in each category, such as that presented in Figure
3.4.

As we look at the actual distribution of scores presented in the graph in Figure 3.4, we can
see that the predictions we generated from our statistics about the shape of the distribution are pretty
accurate. Notice that we did not need to consider the variance at all, because the variance in this
example (2.04) is on a different scale of measurement than our original 5-point response scale, and
therefore is very difficult to interpret. Variance is an important statistic for many techniques (e.g.,
ANOVA, regression), but it does little to help us understand the shape of a distribution of scores.
The mean, standard deviation, and to a lesser extent the range, when considered together, can
provide a rough picture of a distribution of scores. Often, a rough picture is all a researcher needs or
wants. Sometimes, however, researchers need to know more precisely the characteristics of a
distribution of scores. In that case, a picture, such as a graph, may be worth a thousand words.

Another useful way to examine a distribution of scores is to create a boxplot. In Figure 3.5,
a boxplot is presented for the same variable that is represented in Figure 3.4, wanting to demonstrate
ability. This boxplot was produced in the SPSS statistical software program. The box in this graph
contains some very useful information. First, the thick line in the middle of the box represents the
median of this distribution of scores. The top line of the box represents the 75th percentile of the
distribution and the bottom line represents the 25th percentile. Therefore, the top and bottom lines
of the box reveal the interquartile range (IQR) for this distribution. In other words, 50% of the
scores on this variable in this distribution are contained within the upper and lower lines of this box
(i.e., 50% of the scores are between just above a score of 2 and just below a score of 4). The vertical
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lines coming out of the top and bottom of the box and culminating in horizontal lines reveal the
largest and smallest scores in the distribution, or the range. These scores are 5 and 1, producing a
range of 5 - 1 = 4. As you can see, the boxplot in Figure 3.5 contains a lot of useful information
about the spread of scores on this variable in a single picture.

FIGURE 3.5 Boxplot for the desire to appear able variable.

WRAPPING UP AND LOOKING FORWARD

Measures of variation, such as the variance, standard deviation, and range, are important descriptive
statistics. They provide useful information about how spread out the scores of a distribution are, and
the shape of the distribution. Perhaps even more important than their utility as descriptors of a single
distribution of scores is their role in more advanced statistics such as those coming in later chapters
(e.g., ANOVA in Chapters 10, 11, and 12). In the next chapter, we examine the properties of a
theoretical distribution, the normal distribution, that has a specific shape and characteristics. Using
some of the concepts from Chapter 3, we can see how the normal distribution can be used to make
inferences about the population based on sample data.

GLOSSARY OF TERMS AND SYMBOLS FOR CHAPTER 3

Boxplot: A graphic representation of the distribution of scores on a variable that includes the range,
the median, and the interquartile range.

Interquartile range (IQR): The difference between the 75th percentile and 25th percentile scores in
a distribution.

Range: The difference between the largest score and the smallest score of a distribution.
Squared deviation: The difference between an individual score in a distribution and the mean for

the distribution, squared.
Standard deviation: The average deviation between the individual scores in the distribution and

the mean for the distribution.
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Sum of squared deviations, sum of squares: The sum of each squared deviation for all of the
cases in the sample.

Variance: The sum of the squared deviations divided by the number of cases in the population, or
by the number of cases minus one in the sample.

u The population mean.
X An individual score in a distribution.
s2 The sample variance.
s The sample standard deviation.
o The population standard deviation.
o The population variance.
SS The sum of squares, or sum of squared deviations.
n The number of cases in the sample.
N The number of cases in the population.
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CHAPTER 4

THE NORMAL DISTRIBUTION

The normal distribution is a concept with which most people have some familiarity, although they
often have never heard of the term. A more familiar name for the normal distribution is the bell
curve, because a normal distribution forms the shape of a bell. The normal distribution is extremely
important to statistics and has some specific characteristics that make it so useful. In this chapter, I
briefly describe what a normal distribution is and why it is so important to researchers. Then I
discuss some of the features of the normal distribution, and of sampling, in more depth.

Characteristics of the Normal Distribution

If you take a look at the normal distribution shape presented in Figure 4.1, you may notice that the
normal distribution has three fundamental characteristics. First, it is symmetrical, meaning that the
upper half and the lower half of the distribution are mirror images of each other. Second, the mean,
median, and mode are all in the same place, in the center of the distribution (i.e., the top of the bell
curve). Because of this second feature, the normal distribution is highest in the middle, it is
unimodal, and it curves downward toward the top and bottom of the distribution. Finally, the
normal distribution is asymptotic, meaning that the upper and lower tails of the distribution never
actually touch the baseline, also known as the X axis.

FIGURE 4.1 The normal distribution.
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Why Is the Normal Distribution So Important?

When researchers collect data from a sample, sometimes all they want to know about are
characteristics of the sample. For example, if I wanted to examine the eating habits of 100 first-year
college students, I would just select 100 students, ask them what they eat, and summarize my data.
These data might give me statistics such as the average number of calories consumed each day by
the 100 students in my sample, the most commonly eaten foods, the variety of foods eaten, and so
on. All of these statistics simply describe characteristics of my sample, and are therefore called
descriptive statistics. Descriptive statistics generally are used only to describe a specific sample.
When all we care about is describing a specific sample, it does not matter whether the scores from
the sample are normally distributed or not.

Many times, however, researchers want to do more than simply describe a sample.
Sometimes, they want to know what the exact probability is of something occurring in their sample
just due to chance. For example, if the average student in my sample consumes 2,000 calories a day,
what are the chances, or probability, of having a student in the sample who consumes 5,000 calories
a day? The three characteristics of the normal distribution are each critical in statistics because they
allow us to make good use of probability statistics.

In addition, researchers often want to be able to make inferences about the population
based on the data they collect from their sample. To determine whether some phenomenon
observed in a sample represents an actual phenomenon in the population from which the sample was
drawn, inferential statistics are used. For example, suppose I begin with an assumption that in the
population of men and women there is no difference in the average number of calories consumed in
a day. This assumption of no differences is known as a null hypothesis. Now suppose that I select
a sample of men and a sample of women, compare their average daily calorie consumption, and find
that the men eat an average of 200 calories more per day than do the women. Given my null
hypothsis of no differences, what is the probability of finding a difference this large between my
samples by chance? To calculate these probabilities, I need to rely on the normal distribution,
because the characteristics of the normal distribution allow statisticians to generate exact probability
statistics. In the next section, I will briefly explain how this works.

THE NORMAL DISTRIBUTION IN DEPTH

It is important to note that the normal distribution is what is known in statistics as a theoretical
distribution. That is, one rarely, if ever, gets a distribution of scores from a sample that forms an
exact, normal distribution. Rather, what you get when you collect data is a distribution of scores that
may or may not approach a normal, bell-shaped curve. Because the theoretical normal distribution is
what statisticians use to develop probabilities, a distribution of scores that is not normal may be at
odds with these probabilities. Therefore, there are a number of statistics that begin with the
assumption that scores are normally distributed. When this assumption is violated (i.e., when the
scores in a distribution are not normally distributed), there can be dire consequences.

The most obvious consequence of violating the assumption of a normal distribution is that
the probabilities associated with a normal distribution are not valid. For example, if you have a
normal distribution of scores on some variable (e.g., IQ test scores of adults in the United States),
you can use the probabilities based on the normal distribution to determine exactly what percentage
of the scores in the distribution will be 120 or higher on the IQ test (see Chapter 4 for a description
of how to do this). But suppose the scores in our distribution do not form a normal distribution.
Suppose, for some reason, we have an unusually large number of high scores (e.g., over 120) and an
unusually small number of low scores (e.g., below 90) in our distribution. If this were the case,
when we use probability estimates based on the normal distribution, we would underestimate the
actual number of high scores in our distribution and overestimate the actual number of low scores in
our distribution.



NORMAL DISTRIBUTION - 27 -

The Relationship Between Sampling Method
and the Normal Distribution

As I discussed in Chapter 1, researchers use a variety of different ways of selecting samples.
Sometimes, samples are selected so that they represent the population in specific ways, such as the
percentage of men or the proportion of wealthy individuals (representative sampling). Other times,
samples are selected randomly with the hope that any differences between the sample and the
population are also random, rather than systematic (random sampling). Often, however, samples
are selected for their convenience rather than for how they represent the larger population
(convenience sampling). The problem of violating the assumption of normality becomes most
problematic when our sample is not an adequate representation of our population.

The relationship between the normal distribution and sampling methods is as follows. The
probabilities generated from the normal distribution depend on (a) the shape of the distribution and
(b) the idea that the sample is not somehow systematically different from the population. If I select a
sample randomly from a population, I know that this sample may not look the same as another
sample of equal size selected randomly from the same population. But any differences between my
sample and other random samples of the same size selected from the same population would differ
from each other randomly, not systematically. In other words, my sampling method was not biased
such that I would continually select a sample from one end of my population (e.g., the more wealthy,
the better educated, the higher achieving) if I continued using the same method for selecting my
sample. Contrast this with a convenience sampling method. If I only select schools that are near my
home or work, I will continually select schools with similar characteristics. For example, if I live in
the Bible Belt, my sample will probably be biased in that my sample will more likely hold
fundamentalist religious beliefs than the larger population of schoolchildren. Now if this
characteristic is not related to the variable I am studying (e.g., achievement), then it may not matter
that my sample is biased in this way. But if this bias is related to my variable of interest (e.g., "How
strongly do American schoolchildren believe in God?"), then I may have a problem.

Suppose that I live and work in Cambridge, Massachusetts. Cambridge is in a section of
the country with an inordinate number of highly educated people because there are a number of
high-quality universities in the immediate area (Harvard, MIT, Boston College, Boston University,
etc.). If I conduct a study of student achievement using a convenience sample from this area, and try
to argue that my sample represents the larger population of students in the United States,
probabilities that are based on the normal distribution may not apply. That is because my sample
will be more likely than the national average to score at the high end of the distribution. If, based on
my sample, I try to predict the average achievement level of students in the United States, or the
percentage that score in the bottom quartile, or the score that marks the 75th percentile, all of these
predictions will be off, because the probabilites that are generated by the normal distribution assume
that the sample is not biased. If this assumption is violated, we cannot trust our results.

Skew and Kurtosis

Two characteristics used to describe a distribution of scores are skew and kurtosis. When a sample
of scores is not normally distributed (i.e., not the bell shape), there are a variety of shapes it can
assume. One way a distribution can deviate from the bell shape is if there is a bunching of scores at
one end and a few scores pulling a tail of the distribution out toward the other end. If there are a few
scores creating an elongated tail at the higher end of the distribution, it is said to be positively
skewed. If the tail is pulled out toward the lower end of the distribution, the shape is called
negatively skewed. These shapes are depicted in Figure 4.2.

As you might have guessed, skewed distributions can distort the accuracy of the
probabilities based on the normal distribution. For example, if most of the scores in a distribution
occur at the low end with a few scores at the higher end (positively skewed distribution), the
probabilities that are based on the normal distribution will underestimate the actual number of scores
at the lower end of this skewed distribution and overestimate the number of scores at the higher end
of the distribution. In a negatively skewed distribution, the opposite pattern of errors in prediction
will occur.
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FIGURE 4.2 Positively and negatively skewed distributions.

From Basic Statistics: Tales of Distributions, 6th edition, by C. Spatz © 1997. Reprinted with permission of Wadsworth,
a division of Thomson Learning. Fax 800 730-2215.

Kurtosis refers to the shape of the distribution in terms of height, or flatness. When a
distribution has a peak that is higher than that found in a normal, bell-shaped distribution, it is called
leptokurtic. When a distribution is flatter than a normal distribution, it is called platykurtic.
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Because the normal distribution contains a certain percentage of scores in the middle area (i.e., about
68% of the scores fall between 1 standard deviation above and 1 standard deviation below the
mean), a distribution that is either patykurtic or letpkurtic will likely have a different percentage of
scores near the mean than will a normal distribution. Specifically, a letptokurtic distribution will
probably have a greater percentage of scores closer to the mean and fewer in the upper and lower
tails of the distribution, whereas a platykurtic distribution will have more scores at the ends and
fewer in the middle than will a normal distribution.

EXAMPLE: APPLYING NORMAL DISTRIBUTION PROBABILITIES TO A
NONNORMAL DISTRIBUTION

To illustrate some of the difficulties that can arise when we try to apply the probabilities that are
generated from using the normal distribution to a distribution of scores that is skewed, I present a
distribution of sixth-grade students' scores on a measure of self-esteem. In these data, 677 students
completed a questionnaire that included four items designed to measure students' overall sense of
self-esteem. Examples of these questions include "On the whole, I am satisfied with myself and "I
feel I have a number of good qualities." Students responded to each of these four questions using a
5-point rating scale with 1 = "not at all true" and 5 = "very true." Students' responses on these four
items were then averaged, creating a single self-esteem score that ranged from a possible low of 1 to
a possible high of 5. The frequency distribution for this self-esteem variable is presented in Figure
4.3.

FIGURE 4.3 Frequency distribution for self-esteem scores.

As you can see, the distribution of scores presented in Figure 4.3 does not form a nice,
normal, bell-shaped distribution. Rather, most of the students in this sample scored at the high end
of the distribution, and a long tail extends out toward the lower end of the scale. This is a classic,
negatively skewed distribution of scores. The happy part of this story is that most of the students in
this sample appear to feel quite good about themselves. The sad part of the story is that some of the
assumptions of the normal distribution are violated by this skewed distribution. Let's take a look at
some specifics.
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One of the qualities of a normal distribution is that it is symmetrical, with an equal
percentage of the scores between the mean and 1 standard deviation below the mean as there are
between the mean and 1 standard deviation above the mean. In other words, in a normal
distribution, there should be about 34% of the scores within 1 standard deviation above the mean and
34% within 1 standard deviation below the mean. In our distribution of self-esteem scores presented
earlier, the mean is 4.28 and the standard deviation is .72. A full 50% of the distribution falls
between the mean and 1 standard deviation above the mean in this group of scores (see Figure 4.4).
So, although I might predict that about 16% of my distribution will have scores more than 1 standard
deviation above the mean in a normal distribution, in my skewed distribution of self-esteem scores, I
can see that there are no students with scores more than 1 standard deviation above the mean. In
Chapter 5, I present a more thorough discussion of how to use the normal distribution to calculate
standard deviation units and percentile scores in a normal distribution.

As this example demonstrates, the probabilities that statisticians have generated using the
normal distribution may not apply well to skewed or otherwise nonnormal distributions of data. This
should not lead you to believe, however, that nonnormal distributions of scores are worthless. In
fact, even if you have a nonnormal distribution of scores in your sample, these scores can create
normal sampling distributions for use in inferential statistics (see Chapter 6). What is perhaps most
important to keep in mind is that a nonnormal distribution of scores may be an indication that your
sample differs in important and systematic ways from the population that it is supposed to represent.
When making inferences about a population based on a sample, be very careful to define the
population precisely and to be aware of any biases you may have introduced by your method of
selecting your sample. It is also important to note, however, that not all variables are normally
distributed in the population. Therefore, nonnormal sample data may be an accurate representation
of nonnormal population data, as well as an indication that the sample does not accurately represent
the population. The normal distribution can be used to generate probabilities about the likelihood of
selecting an individual or another sample with certain characteristics (e.g., distance from the mean)
from a population. If your sample is not normal and your method of selecting the sample may be
systematically biased to include those with certain characteristics (e.g., higher than average
achievers, lower than average income, etc.), then the probabilities of the normal distribution may not
apply well to your sample.

FIGURE 4.4 The normal distribution divided into standard deviation units.
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WRAPPING UP AND LOOKING FORWARD

The theoretical normal distribution is a critical element of statistics primarily because many of the
probabilities that are used in inferential statistics are based on the assumption of normal
distributions. As you will see in coming chapters, statisticians use these probabilities to determine
the probability of getting certain statistics and to make inferences about the population based on the
sample. Even if the data in a sample are not normally distributed, it is possible that the data in the
population from which the sample was selected may be normally distributed. In Chapter 5, I
describe how the normal distribution, through the use of z scores and standardization, is used to
determine the probability of obtaining an individual score from a sample that is a certain distance
away from the sample mean. You will also learn about other fun statistics like percentile scores in
Chapter 5.

GLOSSARY OF TERMS FOR CHAPTER 4

Asymptotic: When the ends, or "tails," of a distribution never intersect with the X axis; they extend
indefinitely.

Bell curve: The common term for the normal distribution. It is called the bell curve because of its
bell-like shape.

Biased: When a sample is not selected randomly, it may be a biased sample. A sample is biased
when the members are selected in a way that systematically overrepresents some segment
of the population and underrepresents other segments.

Convenience sampling: When a sample is selected because it is convenient rather than random.
Descriptive statistics: Statistics that describe the characteristics of a given sample or population.

These statistics are only meant to describe the characteristics of those from whom data were
collected.

Inferential statistics: Statistics generated from sample data that are used to make inferences about
the characteristics of the population the sample is alleged to represent.

Kurtosis: The shape of a distribution of scores in terms of its flatness or peakedness.
Leptokurtic: A term regarding the shape of a distribution. A leptokurtic distribution is one with a

higher peak and thinner tails.
Negatively skewed: When a tail of a distribution of scores extends toward the lower end of the

distribution.
Normal distribution: A bell-shaped distribution of scores that has the mean, median, and mode in

the middle of the distribution and is symmetrical and asymptotic.
Null Hypohesis: A hypothesis that there is no effect.
Platykurtic: A term regarding the shape of a distribution. A platykurtic distribution is one with a

lower peak and thicker tails.
Population: The group from which data are collected or a sample is selected. The population

encompasses the entire group for which the data are alleged to apply.
Positively skewed: When a tail of a distribution of scores extends toward the upper end of the

distribution.
Probability: The likelihood of an event occurring.
Random sampling: A method of selecting a sample in which every member of the population has

an equal chance of being selected.
Representative sampling: A method of selecting a sample in which members are purposely

selected to create a sample that represents the population on some characteristics) of
interest (e.g., when a sample is selected to have the same percentages of various ethnic
groups as the larger population).

Sample: An individual or group, selected from a population, from whom data are collected.
Skew: The degree to which a distribution of scores deviates from normal in terms of asymmetrical

extension of the tails.
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Symmetrical: When a distribution has the same shape on either side of the median.
Theoretical distribution: A distribution based on statistical probabilities rather than empirical data.
Unimodal: A distribution that has a single mode.



CHAPTER 5

STANDARDIZATION AND z SCORES

If you know the mean and standard deviation of a distribution of scores, you have enough
information to develop a picture of the distribution. Sometimes researchers are interested in
describing individual scores within a distribution. Using the mean and the standard deviation,
researchers are able to generate a standard score, also called a z score, to help them understand
where an individual score falls in relation to other scores in the distribution. Through a process of
standardization, researchers are also better able to compare individual scores in the distributions of
two separate variables. Standardization is simply a process of converting each score in a distribution
to a z score. A z score is a number that indicates how far above or below the mean a given score in
the distribution is in standard deviation units. So standardization is simply the process of converting
individual raw scores in the distribution into standard deviation units.

Suppose that you are a college student taking final exams. In your biology class, you take
your final exam and get a score of 65 out of a possible 100. In your statistics final, you get a score
of 42 out of 200. On which exam did you get a "better" score? The answer to this question may be
more complicated than it appears. First, we must determine what we mean by "better." If better
means percentage of correct answers on the exam, clearly you did better on the biology exam. But if
your statistics exam was much more difficult than your biology exam, is it fair to judge your
performance solely on the basis of percentage of correct responses? A more fair alternative may be
to see how well you did compared to other students in your classes. To make such a comparison, we
need to know the mean and standard deviation of each distribution. With these statistics, we can
generate z scores.

Suppose the mean on the biology exam was 60 with a standard deviation of 10. That means
you scored 5 points above the mean, which is half of a standard deviation above the mean (higher
than the average for the class). Suppose further that the average on the statistics test was 37 with a
standard deviation of 5. Again, you scored 5 points above the mean, but this represents a full
standard deviation over the average. Using these statistics, on which test would you say you
performed better? To fully understand the answer to this question, let's examine standardization and
z scores in more depth.

STANDARDIZATION AND z SCORES IN DEPTH

As you can see in the previous example, it is often difficult to compare two scores on two variables
when the variables are measured using different scales. The biology test in the example was
measured on a scale from 1 to 100, whereas the statistics exam used a scale from 1 to 200. When
variables have such different scales of measurement, it is almost meaningless to compare the raw
scores (i.e., 65 and 42 on these exams). Instead, we need some way to put these two exams on the
same scale, or to standardize them. One of the most common methods of standardization used in
statistics is to convert raw scores into standard deviation units, or z scores. The formula for doing
this is very simple and is presented in Table 5.1.

As you can see from the formulas in Table 5.1, to standardize a score (i.e., to create a z
score), you simply subtract the mean from an individual raw score and divide this by the standard
deviation. So if the raw score is above the mean, the z score will be positive, whereas a raw score
below the mean will produce a negative z score. When an entire distribution of scores is
standardized, the average (i.e., mean) z score for the standardized distribution will always be 0, and
the standard deviation of this distribution will always be 1.0.
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TABLE 5.1 Formula for calculating a z score.

raw score - mean

standard deviation

or

or

where X = raw score

u = population mean

o = population standard deviation
X = sample mean
s - sample standard deviation

Interpreting z Scores

z scores tell researchers instantly how large or small an individual score is relative to other scores in
the distribution. For example, if I know that one of my students got a z score of -1.5 on an exam, I
would know that student scored 1.5 standard deviations below the mean on that exam. If another
student had a z score of .29, I would know the student scored .29 standard deviation units above the
mean on the exam.

Let's pause here and think for a moment about what z scores do not tell us. If I told you
that I had a z score of 1.0 on my last spelling test, what would you think of my performance? What
you would know for sure is that (a) I did better than the average person taking the test, (b) my score
was 1 standard deviation above the mean, and (c) if the scores in the distribution were normally
distributed (Chapter 3), my score was better than about two thirds of the scores in the distribution.
But what you would not know would be (a) how many words I spelled correctly, (b) if I am a good
speller, (c) how difficult the test was, (d) if the other people taking the test are good spellers, (e) how
many other people took the test, and so on. As you can see, a z score alone does not provide as
much information as we might want. To further demonstrate this point, suppose that after I told you
I had a z score of 1.0 on the spelling test, I went on to tell you that the average score on the test was
12 out of 50 and that everyone else who took the test was 7 years old. Not very impressive in that
context, is it?

Now, with the appropriate cautions in mind, let's consider a couple more uses of z scores
and standardization. One of the handiest features of z scores is that, when used with a normally
distributed set of scores, they can be used to determine percentile scores. That is, if you have a
normal distribution of scores, you can use z scores to discover which score marks the 90th percentile
of a distribution (i.e., that raw score at which 10% of the distribution scored above and 90% scored
below). This is because statisticians have demonstrated that in a normal distribution, a precise
percentage of scores will fall between the mean and 1 standard deviation above the mean. Because
normal distributions are perfectly symmetrical, we know that the exact same percentage of scores
that falls between the mean and 1 standard deviation above the mean will also fall between the mean
and 1 standard deviation below the mean. In fact, statisticians have determined the precise
percentage of scores that will fall between the mean and any z score (i.e., number of standard
deviation units above or below the mean). A table of these values is provided in Appendix A. When
you also consider that in a normal distribution the mean always marks the exact center of the
distribution, you know that the mean is the spot in the distribution in which 50% of the cases fall
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below and 50% fall above. With this in mind, it is easy to find the score in a distribution that marks
the 90th percentile, or any percentile, for that matter. In Figure 5.1, we can see the percentage of
scores in a normal distribution that fall between different z score values. This figure contains the
standard normal distribution.

FIGURE 5.1 The standard normal distribution.

Let us consider an example. Suppose I know that the average SAT-math score for white
males is 517, with a standard deviation of 100, and forms a normal distribution. In this distribution,
I already know that the score that marks the 50th percentile is 517. Suppose I want to know the
score that marks the 90th percentile. To find this number, I have to follow a series of simple steps.

Step 1: Using a z score table from a traditional statistics textbook, find
the z score that marks the 90th percentile. To do this, we need to
remember that the 90th percentile is 40 percentile points above the
mean, so we are looking for the z score at which 40% of the distribution
falls between the mean and this z score. An alternative method is to
find the z score at which 10% of the distribution falls above, because
the 90th percentile score divides the distribution into sections with 90%
of the score falling below this point and 10% falling above, z score
tables in traditional statistics textbooks always provide at least one of
these scores (i.e., the percentage of the distribution that falls between
the mean and the z score or the percentage that falls above the z score),
and often both. In the current example, the z score that corresponds
with the 90th percentile is 1.28. So z = 1.28.

Step 2: Convert this z score back into the original unit of
measurement. Remember that the SAT-math test is measured on a
scale from 0 to 800. We now know that the mean for white males who
took the test in 1989 was 517, and that 90th percentile score of this
distribution is 1.28 standard deviations above the mean (because z =
1.28). So what is the actual SAT-math score that marks the 90th
percentile? To answer this, we have to convert our z score from
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standard deviation units into raw score units and add this to the mean.
The formula for doing this is

In this equation, X is the raw score we are trying to discover, u is the

average score in the distribution, z is the z score we found, and o is the
standard deviation for the distribution. Plugging our numbers into the
formula, we find that

Z=517 + (1.28)(100)
X=517+128

X=645

Step 3: Now we can wrap words around our result and answer our
original question. When doing this, it is often helpful to use the
original question when stating our finding, as follows:

Question: What is the score that marks the 90th percentile of the
distribution of white male students' SAT-math scores in 1989?
Answer: The score of 645 marks the 90th percentile of the distribution
of white male students' SAT-math scores in 1989. This z score,
percentile score, and the corresponding raw score are depicted in Figure
5.2.

FIGURE 5.2 The score that marks the 90th percentile of this distribution.

Just as we can use z scores to find the raw score that marks a certain percentile in a
distribution, we can also use z scores to help us convert a known raw score into a percentile score.
For example, if I know that a student in my distribution has a score of 425 on the SAT-math test, I
might want to know the percentage of the distribution that scored above and below 425. This is the
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type of conversion that has happened when students' standardized test scores are published in the
local newspaper using percentiles under headlines such as "California Students Score in 45th
Percentile on National Test!" Similarly, when a proud parent exclaims "My Johnny is in the top
10% in height for his age group!" a conversion from a raw score to a percentile score has taken
place, with the help of a z score. Here's how it's done:

Step 1: We must begin by converting the raw score into a z score. In
our example, the raw score is 425 (X = 425). To convert this into a z

score, we simply recall our mean (u = 517) and our standard deviation

(o= 100) and then plug these numbers into the z score formula:

Step 2: Now that we have a z score, we need to look in the nearest z
score table to find either the percentage of the normal distribution that
falls between the mean and a z score of -.92 or the percentage of the
distribution that falls below a z score of -.92. Notice that we are dealing
with a negative z score in our example. Most z score tables only report
positive z scores, but because normal distributions are symmetrical, the
percentage of the distributions that fall between the mean and z are
identical whether the z score is positive or negative. Similarly, the
percentage that falls above a positive z score is identical to the percentage
that falls below a negative z score. My z score table tells me that 32% of
the normal distribution of scores will fall between the mean and a z score
of-.92 and 18% will fall below a z score of-.92.

FIGURE 5.3 The percentage of the distribution scoring above and below 425.
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Step 3: To wrap words around this result, I must begin with the
recollection that in my example, a z score of -.88 corresponds with a
raw score of 425 on the SAT-math test among the white males who
took the test in 1989. So, I would say, "A score of 425 on the SAT-
math test marks the 19th percentile of the distribution of test scores
among white males in 1989." (See Figure 5.3 for a graph of this
percentile score.)

z scores used with a normal distribution can also be used to figure out the proportion of
scores that fall between two raw scores. For example, suppose that you got a score of 417 on the
SAT-math test and your friend got a score of 567. "Wow!" your friend says. "I blew you away!
There must be about 50% of the population that scored between you and me on this test." Your ego
bruised, you decide to see if your friend is right in his assessment. Here's what you need to do.

Step 1: First, convert each raw score into z scores. Recall the mean (u

= 517) and standard deviation (o= 100) and then plug these numbers
into the z score formula:

Your z score

Your friend's z score

Step 2: Now that we have the z scores, we need to look in the nearest z
score table to find either the percentage of the normal distribution that
falls between the mean and a z score of-1.00 and the percentage of the
distribution that falls between the mean and a z score of .50. Notice that
we are dealing with one negative and one positive z score in our example.
Our z score table tells me that 34.13% of the normal distribution of scores
will fall between the mean and a z score of -1.00 and 19.15% will fall
between the mean and a z score of .50. To determine the total proportion
of scores that fall between these two z scores, we need to add the two
proportions together: .3413 + .1915 = .5328.

Step 3: Admit defeat in a bitter and defensive way. "Ha ha," you say
to your friend. "It is not 50% of the population that scored between
you and me on the SAT-math test. It was 53.28%!" (See Figure 5.4.)



z SCORES -39-

FIGURE 5.4 Proportion of scores in a distribution between two raw scores.

Finally, we can use z scores and percentile scores to determine the proportion of scores in a
normal distribution that fall between two raw scores on the same side of the mean. For example,
suppose you have another friend who got a raw score of 617 on the SAT-math test. Now you want
to determine the proportion of the population that scored between 617 and 567 on the test. Here is
what you do.

Step 1: First, convert each raw score into z scores. Recall the mean
(u = 517) and standard deviation (o = 100) and then plug these
numbers into the z score formula:

Friend 1's z score

Friend 2's z score
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Step 2: Now that we have the z scores, we need to look in the nearest z
score table to find either the percentage of the normal distribution that
falls between the mean and a z score of 1.00 and the percentage of the
distribution that falls between the mean and a z score of .50. Notice that
now we are dealing with two positive z scores in our example because
both of the raw scores were above the population mean. Our z score table
tells us that 34.13% of the normal distribution of scores will fall between
the mean and a z score of 1.00 and 19.15% will fall between the mean and
a z score of .50. To determine the total proportion of scores that fall
between these two z scores, we need to subtract the smaller proportion
from the larger proportion: .3413 - .1915 = .1498.

Step 3: Rub the results in Friend 1's face. "Ha ha! My new best
friend got a score that was 14.98 percentile points higher than yours!"
(See Figure 5.5 for a graph.)

FIGURE 5.5 Proportion of scores in a distribution between two raw scores (both above mean).

The examples just presented represent handy uses of z scores for understanding both an
entire distribution of scores and individual scores within that distribution. It is important to note that
using z scores to find percentile scores is only appropriate when the data in the distribution are
normally distributed. When you do not have a normal distribution, the z scores that you calculate
will not produce accurate percentile scores. (See Chapter 4 for a discussion of the importance of
normal distributions.) It is possible to calculate percentile scores without having a normal
distribution. To do this, you do not convert z scores to percentile scores. Rather, you rank order
your data and find the score at which a certain percentage of the scores fall above and a certain
percentage fall below. This is exactly the procedure you used to find the median of a simple
frequency distribution in Chapter 3. The median is, after all, simply the score that marks the 50th
percentile in a distribution.

Standardized scores are used in a variety of statistics and are perhaps most helpful for
comparing scores that are measured using different scales of measurement. As discussed earlier in
this chapter, it is difficult to compare two scores that are measured on different scales (e.g., height
and weight) without first converting them into a common unit of measurement. Standardizing scores
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is simply this process of conversion. In the final section of this chapter, I present and briefly
describe two distributions of scores described by both raw scores and z scores.

EXAMPLES: COMPARING RAW SCORES AND z SCORES

To illustrate the overlap between raw scores and standardized z scores, I first present data from a
sample of elementary and middle school students from whom I collected data a few years ago. I
gave these students a survey to assess their motivational beliefs and attitudes about a standardized
achievement test they were to take the following week. One of the items on the survey read, "The
ITBS test will measure how smart I am." Students responded to this question using an 8-point scale
with 1 = "strongly disagree" and 8 = "strongly agree." The frequency distribution is presented in
Figure 5.6. This distribution has a mean of 5.38 and a standard deviation of 2.35.

As you can see, this is not a normal, bell-shaped distribution. This distribution has a sort of
odd shape where there is the hint of a normal distribution in Scores 2 through 7 but then there are
"spikes" at the ends, particularly at the high end. The result is an asymmetrical distribution. If you
compare the z scores on top of each column with the raw scores at the bottom of each column, you
can see how these scores are related to each other. For example, we can see that all of the raw scores
of 5 or lower have negative z scores. This is because the mean of a distribution always has a z score
of 0, and any raw scores below the mean will have negative z scores. In this distribution, the mean is
5.38, so all raw scores of 5 and below have negative z scores and all raw scores of 6 or above have
positive z scores.

Another feature of this distribution that is clearly illustrated by the z scores is that there is a
larger range of scores below the mean than above the mean. This is fairly obvious, because the
mean is well above the midpoint on this scale. The highest scores in this distribution are just a little
more than 1 standard deviation above the mean (z = 1.12), whereas the lowest scores are nearly 2
standard deviations below the mean (z = -1.86). Finally, the inclusion of standard deviation scores
with each raw score allows us to immediately determine how many standard deviations away from
the mean a particular raw score falls. For example, we can see that a student who had a raw score of
3 on this variable scored just about exactly 1 standard deviation below the mean (z = -1.01).

FIGURE 5.6 Frequency distribution for "The test will show how smart I am" item.
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For our second example, I have chosen a variable with a much smaller standard deviation.
Using the same 8-point scale described earlier, students were asked to respond to the item "I think it
is important to do well on the UBS test." Students overwhelmingly agreed with this statement, as
the mean (7.28) and relatively small standard deviation (1.33) revealed. The frequency distribution
for the scores on this item is presented in Figure 5.7.

FIGURE 5.7 Frequency distribution for "Important to do well" item.

In this graph, we can see that the distribution is highly skewed, with most students circling
the number 8 on the scale. Because so many students answered similarly, the standard deviation is
quite small, with only a relatively few scores at the lower end of the distribution. The small standard
deviation coupled with the high mean create a situation where very low scores on the scale have
extremely small z scores. For example, the few students with a raw score of 1 on the scale (n = 7)
had z scores of -4.72, indicating that these students were more than 4% standard deviations below
the mean. Those students with the highest score on the scale were only about half a standard
deviation above the mean because, with such a high mean, it was impossible to get a score very far
above the mean.

The two examples provided previously both illustrate the relation between z scores and raw
scores for distributions that are skewed. Please note that because these data were not normally
distributed, it would be inappropriate to calculate percentile scores from the z scores derived from
these data. If you did need to calculate percentile scores from a skewed or otherwise nonnormal
distribution, you could use the ranking method described earlier in the chapter. In both of the
distributions presented in Figures 5.6 and 5.7, the means were above the midpoint on the scale, and
subsequently there was a greater range of z scores below than above the mean. Such is not the case
when the scores are normally distributed. To illustrate this, I use data from a different data set. I
used surveys to measure a sample of high school students' motivational goals in school. One goal
that I measured is known as a performance-approach goal. This goal reflects a concern, or a desire,
to outperform classmates and peers for the sake of demonstrating superior ability. The items on the
survey were measured using a scale from 1 to 5 (1 = "not at all true" and 5 = "very true"). The
frequency distribution is presented in Figure 5.8.
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FIGURE 5.8 Frequency distribution for performance-approach goals.

This distribution of scores had a mean of 3.00 and a standard deviation of .92. As you can
see, the data are quite normally distributed. When the data are normally distributed, we would
expect most of our cases to have z scores at or near zero because in a normal distribution, most of the
cases are near the mean. Also notice that as we move farther away from the mean (i.e., z scores over
2.0 or less than -2.0), there are fewer cases. In a normal distribution, then, the probability of finding
a particular z score becomes smaller as the value of the z score moves further away from zero. As
Figures 5.6 and 5.7 illustrate, this is not always the case in skewed distributions.

WRAPPING UP AND LOOKING FORWARD

z scores provide a handy way of interpreting where a raw score is in relation to the mean. We can
use z scores to quickly and easily determine where an individual score in a distribution falls relative
to other scores in the distribution, either by interpreting the z score in standard deviation units or by
calculating percentile scores. Using the table of probabilities based on the normal distribution
presented in Appendix A, we can also use z scores to determine how unusual a given score in a
distribution is (i.e., the probability of obtaining an individual score of that size when selecting the
individual at random). In the next chapter, I will use information about the mean, standard
deviation, normal distributions, z scores, and probability to explain one of the most important
concepts in statistics: the standard error.

GLOSSARY OF TERMS AND SYMBOLS FOR CHAPTER 5

Percentile scores: Scores that indicate the point in a distribution at which a particular percentage of
the scores in the distribution fall above and below. For example, the score that marks the
50th percentile in a distribution indicates that 50% of the scores in that distribution fall
above that score and 50% fall below it.
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Raw scores: These are the individual observed scores on measured variables.
Standard score: A raw score that has been converted to a z score by subtracting it from the mean

and dividing by the standard deviation of the distribution. It is an individual score
expressed as a deviation from the mean in standard deviation units.

Standardization: The process of converting a raw score into a standard score.
z score: Another term for a standard score.

z A standard score.
X A raw score.

u A population mean.

a A population standard deviation.



CHAPTER 6

STANDARD ERRORS

The concept of standard error is one that many students of statistics find confusing when they first
encounter it. In all honesty, there are many students, and many researchers, who never fully grasp
the concept. I am convinced that many people have problems with understanding standard errors
because they require a bit of a leap into the abstract and because, with the advent of computer
programs, it is possible to lead a long and productive research life without having to think about or
analyze a standard error for years at a time. Therefore, many researchers choose to gloss over this
abstract concept. This is a mistake. I hold this opinion because, as a teacher of statistics, I have
learned that when one is able to truly understand the concept of standard error, many of our most
beloved inferential statistics (t tests, ANOVA, regression coefficients, correlations) become easy to
understand. So let me offer this piece of advice: Keep trying to understand the contents of this
chapter, and other information you get about standard errors, even if you find it confusing the first or
second time you read it. With a little effort and patience, you can understand standard errors and
many of the statistics that rely on them.

What Is a Standard Error?

There are two answers to this question. First, there is the technical answer, which is the definition of
a standard error. A standard error is, in effect, the standard deviation of the sampling distribution
of some statistic (e.g., the mean, the difference between two means, the correlation coefficient, etc.).
I realize that this makes no sense until you know what a sampling distribution is, and I explain this in
the next section of this chapter. For now, I recommend that you repeat the definition to yourself 10
times: "The standard error is, in effect, the standard deviation of the sampling distribution of some
statistic."

The second answer is that the standard error is the denominator in the formulas used to
calculate many inferential statistics. In the following chapters, you will see the standard error as the
denominator in many formulas. This is because the standard error is the measure of how much
random variation we would expect from samples of equal size drawn from the same population.
Again, look at the preceding sentence, think about it, and rest assured that it is explained in more
detail in the next few pages.

STANDARD ERRORS IN DEPTH

The Conceptual Description of the Standard Error of the Mean

To begin this more detailed discussion of standard errors, I introduce the esoteric component of the
concept. This is the section that you may need to read several times to let sink in. Although there
are standard errors for all statistics, we will focus on the standard error of the mean.

When we think of a distribution of scores, we think of a certain number of scores that are
plotted in some sort of frequency graph to form a distribution (see Chapters 2 and 4). In these
distributions, each case has a score that is part of the distribution. Just as these simple frequency
distributions are plotted, or graphed, we can also plot distributions of sample means. Imagine that
we want to find the average shoe size of adult women in the United States. In this study, the
population we are interested in is all adult American women. But it would be expensive and tedious
to measure the shoe size of all adult American women. So we select a sample of 100 women, at
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random, from our population. At this point, it is very important to realize that our sample of 100
women may or may not look like the typical Amemrican woman (in terms of shoe size). When we
select a sample at random, it is possible to get a sample that represents an extreme end of the
population (e.g., a sample with an unusually large average shoe size). If we were to throw our first
sample of women back into the general population and chose another random sample of the same
size (i.e., 100), it is possible that this second sample may have an average shoe size that is quite
different from our first sample.

Once you realize that different random samples of equal size can produce different mean
scores on some variable (e.g., different average shoe sizes), the next step in this conceptual puzzle is
easy: If we were to take 1,000 different random samples of women, each of 100, and compute the
average shoe size of each sample, these 1,000 sample means would form their own distribution.
This distribution would be called the sampling distribution of the mean.

To illustrate this concept, let's consider an example with a small population (N = 5).
Suppose my population consists of five college students enrolled in a seminar on statistics. Because
it is a small seminar, these five students represent the entire population of this seminar. These
students each took the final exam that was scored on a scale from 1 to 10, with lower scores
indicating poorer performance on the exam. The scores for each student are presented in Table 6.1,
arranged in descending order according to how well they did on the exam.

TABLE 6.1 Population of students' scores on final exam.

Students

Student 1

Student 2

Student 3

Student 4

Student 5

Score on Final Exam

3

6

6

7

9

If I were to select a random sample of two students from this population (n = 2), I might get
student 2 and student 5. This sample would have a mean of 7.5 because [(6 + 9) + 2 = 7.5]. If I
were to put those two students back into the population and randomly select another sample of 2, 1
might get Student 4 and Student 5. This sample would have a mean of 8 because [(7 + 9) + 2 = 8]. I
put those students back into the population and randomly select another sample of 2, such as
Students 1 and 3. This sample would have a mean of 4.5. As you can see, just by virtue of those
included in each random sample I select from my population, I get different sample means. Now if I
were to repeat this process of randomly selecting samples of two students from my population,
calculating their mean, and returning the members of the sample to the population (called sampling
with replacement), eventually I would get a distribution of sample means that would look something
like the distribution presented in Figure 6.1. As you can see, these means form a distribution. This
example illustrates how random samples of a given size selected from a population will produce a
distribution of sample means, eventually forming a sampling distribution of the mean.

Just as the other distributions we have discussed have a mean and a standard deviation, this
sampling distribution of the mean also has these characteristics. To distinguish a sampling
distribution from a simple frequency distribution, the mean and standard deviation of the sampling
distribution of the mean have special names. The mean of the sampling distribution of the mean is
called the expected value of the mean. It is called the expected value because the mean of the
sampling distribution of the means is the same as the population mean. When we select a sample
from the population, our best guess is that the mean for the sample will be the same as the mean for
the population, so our expected mean will be the population mean. The standard deviation of the
sampling distribution of the mean is called the standard error. So the standard error is simply the
standard deviation of the sampling distribution.
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FIGURE 6.1 Sampling distribution of the mean.

The final step in understanding the concept of standard error of the mean is to understand
what this statistic tells us. If you will recall the discussion about standard deviations in Chapter 3,
you will remember mat the standard deviation tells us the average difference, or deviation, between
an individual score in the distribution and the mean for the distribution. The standard error of the
mean provides essentially the same information, except it refers to the average difference between
the expected value (e.g., the population mean) and an individual sample mean. So one way to think
about the standard error of the mean is that it tells us how confident we should be that a sample mean
represents the actual population mean. Phrased another way, the standard error of the mean provides
a measure of how much error we can expect when we say that a sample mean represents the mean of
the larger population. That is why it is called a standard error. Knowing how much error we can
expect when selecting a sample of a given size from a population is critical in helping us determine
whether our sample statistic, such as the sample mean, is meaningfully different from the population
parameter, such as the population mean. This is the foundation of all of the inferential statistics that
are discussed in later chapters. A graphic depicting a sampling distribution of the mean is presented
in Figure 6.2.

How to Calculate the Standard Error

Most of the time, researchers do not draw 1,000 samples of equal size from the population and then
figure out the mean and standard deviation of this distribution of sample means. In fact, most of the
time, researchers collect data from only a single sample, and then use this sample to make inferences
about the population from which the sample was drawn. How can we make inferences about a larger
population on the basis of a single sample?

To make such inferences about the population from a single sample, researchers must use
what they know about their sample to make educated guesses, or estimates, about the population. I
demonstrate this concept using the shoe-size example mentioned earlier. Suppose that I have a
random sample of 100 women. Now if this sample were truly selected at random (i.e., every adult
woman in the United States had an equal chance of being selected), my most logical assumption
would be that this sample represents the larger population accurately. Therefore, I would have to
assume that the mean shoe size of my sample (suppose it is 6) is also the mean shoe size of the larger
population. Of course, I cannot know if this is true. In fact, as discussed earlier, there is good
reason to believe that my sample may not represent my population well. But if the only information
I have about U.S. adult women's shoe size conies from my sample of 100 women, my best guess
about what the larger population of women looks like must be that they are similar to this sample of
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100 women. Now I am faced with a critical question: When I guess that the population of women in
the United States has an average shoe size of 6 (based on my sample average), how much error can I
expect to have in this estimation? In other words, what is the standard error?

FIGURE 6.2 Sampling distribution of the mean.

To answer this question, I must examine two characteristics of my sample. First, how large
is my sample? The larger my sample, the less error I should have in my estimate about the
population. This makes sense because the larger my sample, the more my sample should look like
my population, and the more accurate my estimates of my population will be. If there are 100
million women in the United States and I use a sample of 50 million to predict their average shoe
size, I would expect this prediction to be more accurate than a prediction based on a sample of 100
women. Therefore, the larger my sample, the smaller my standard error.

The second characteristic of my sample that I need to examine is the standard deviation.
Remember that the standard deviation is a measure of how much variation there is in the scores in
my sample. If the scores in my sample are very diverse (i.e., a lot of variation, a large standard
deviation), I can assume that the scores in my population are also quite diverse. So, if some women
in my sample have size 2 shoes and others have size 14 shoes, I can assume there is also a pretty
large variety of shoe sizes in my population. On the other hand, if all of the women in my sample
have shoe sizes of either 5, 6, or 7, I can assume that most of the women in the larger population
have an equally small variety of shoe sizes. Although these assumptions about the population may
not be true (e.g., I may have selected a biased sample from the population), I must rely on them
because this is all the information I have. So, the larger the sample standard deviation, the greater
the assumed variation of scores in the population, and consequently the larger the standard error of
the mean. (Note: In those instances where I know the population standard deviation, I can use that
in my calculation of the standard error of the mean. See Table 6.2 for that formula.)
An examination of the formula for calculating the standard error of the mean reveals the central role
of the sample standard deviation (or population standard deviation, if known) and the sample size in
determining the standard error. As you can see, the formula is simply the standard deviation of the
sample or population divided by the square root of n, the sample size. As with all fractions, as the
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numerator gets larger, so does the resulting standard error. Similarly, as the size of the denominator
decreases, the resulting standard error increases. Small samples with large standard deviations
produce large standard errors, because these characteristics make it more difficult to have confidence
that our sample accurately represents our population. In contrast, a large sample with a small
standard deviation will produce a small standard error, because such characteristics make it more
likely that our sample accurately represents our population.

TABLE 6.2 Formulas for calculating the standard error of the mean.

where a is the standard deviation for the population
s is the sample estimate of the standard deviation
n is the size of the sample

The Central Limit Theorem

Simply put, the central limit theorem states that as long as you have a reasonably large sample size
(e.g., n = 30), the sampling distribution of the mean will be normally distributed, even if the
distribution of scores in your sample is not. In earlier chapters (i.e., Chapters 2 and 4), I discussed
distributions that were not in the shape of a nice, normal, bell curve. What the central limit theorem
proves is that even when you have such a nonnormal distribution in your population, the sampling
distribution of the mean will most likely approximate a nice, normal, bell-shaped distribution as
long as you have at least 30 cases in your sample. Even if you have fewer than 30 cases in your
sample, the sampling distribution of the mean will probably be near normal if you have at least 10
cases in your sample. Even in our earlier example where we had only two cases per sample, the
sampling distribution of the mean had the beginning of a normal shape.

Although we do not concern ourselves here with why the central limit theorem works, you
need to understand why the veracity of this theorem is so important. As I discussed in Chapter 4, a
number of statistics rely on probabilities that are generated from normal distributions. For example,
I may want to know whether the average IQ test scores of a sample of 50 adults in California is
different from the larger population of adults. If my sample has an average IQ test score of 110, and
the national average is 100, I can see that my sample average differs from the population average by
10 points. Is 10 points a meaningful difference or a trivial one? To answer that question, I must be
able to discover the probability of getting a difference of 10 points by random chance. In other
words, if I were to select another random sample of 50 adults from California and compute their
average IQ test score, what are the odds that they will have an average that is 10 points higher than
the national average of 100? To determine this probability, I must have a normal distribution of
sample means, or a normal sampling distribution of the mean. The central limit theorem indicates
that as long as I have a sample size of at least 30, my sampling distribution of the mean is likely to
approximate a normal distribution.

The Normal Distribution and t Distributions: Comparing z Scores and t Values

In Chapter 5, we learned how to determine the probability of randomly selecting an individual case
with a particular score on some variable from a population with a given mean on that variable. We
did this by converting the raw score into a z score. Now that we know how to compute a standard
error, we can use z scores again to determine the probability of randomly selecting a sample with a
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particular mean on a variable from a population with a given mean on the same variable. We can
also use the family of t distributions to generate t values to figure out the same types of probabilities.
To explain this, I will begin by comparing the normal distribution with the family of t distributions.

As discussed in Chapter 4, the normal distribution is a theoretical distribution with a bell
shape and is based on the idea of population data. We also know that the probabilities associated
with z scores are associated with the normal distribution (Chapter 5). In addition, we know that a
standard deviation derived from sample data is only an estimate of the population standard deviation
(Chapter 3). Because the formula for calculating the sample standard deviation has n - 1 in the
denominator, we also know that the smaller the sample, the less precisely the sample standard
deviation estimates the population standard deviation. Finally, we know that the standard error
formula (Table 6.2) is based partly on the standard deviation.

When we put all of this information together, we end up with a little bit of the dilemma. If
we can use the standard error to generate z scores and probabilities, and these z scores and
probabilities are based on the normal distribution, what do we do in those cases where we are using
sample data and we have a small sample? Won't our small sample influence our standard error?
And won't this standard error influence our z scores? Will our z scores and probabilities be accurate
if we have a small sample? Fortunately, these concerns have already been addressed by brains larger
than mine. It turns out that the normal distribution has a close family of relatives: the family of t
distributions. These distributions are very much like the normal distribution, except the shape of t
distributions is influenced by sample size. With large samples (e.g., > 120), the shape of the t
distribution is virtually identical to the normal distribution. As sample size decreases, however, the
shape of the t distribution becomes flatter in the middle and higher on the ends. In other words, as
sample size decreases, there will be fewer cases near the mean and more cases away from the mean,
out in the tails of the distribution. Like the normal distribution, t distributions are still symmetrical.

Just as we use the z table (Appendix A) to find probabilities associated with the normal
distribution, we use the table of t values (Appendix B) to find probabilities associated with the t
distributions. Along the left column of Appendix B are numbers in ascending order. These are
degrees of freedom and they are directly related to sample size. To use this table, you simply
calculate a t value (using basically the same formula that you use to find a z score) and then, using
the appropriate degrees of freedom, figure out where your t value falls in Appendix B to determine
the probability of finding a t value of that size. Whenever you don't know the population standard
deviation and must use an estimate from a sample, it is wise to use the family of t distributions. Here
is an example to illustrate these ideas.

In Chapter 5, we used this formula to calculate a z score from a raw score:

z = .
raw score - mean

standard deviation

where X= raw score
u = population mean

a = standard deviation

The formula for converting a sample mean into a z score is almost identical, except the
individual raw score is replaced by the sample mean and the standard deviation is replaced by the
standard error. In addition, if we do not know the population standard deviation, the standard
deviation estimate from the sample must be used and we are computing a t value rather than a z
score. These formulas are found in Table 6.3.

Now, suppose that I know that the average American man exercises for 60 minutes a week.
Suppose, further, that I have a random sample of 144 men and that this sample exercises for an
average of 65 minutes per week with a standard deviation of 10 minutes. What is the probability of

or
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getting a random sample of this size with a mean of 65 if the actual population mean is 60 by
chancel To answer this question, I compute a t value:

TABLE 6.3 z score and t value formulas.

When a is known

When a is not known

sample mean — population mean
t =

standard error

or

where u = population mean
(7- = standard error using population standard deviation

X - sample mean
S -x = sample estimate of the standard error

If we look in Appendix B, using the row with °° degrees of freedom, we can see that the
probability of getting a t value of this size or larger by chance with a sample of this size is less than
.001. Notice that if we had calculated a z score rather than a t score (i.e., if the population standard
deviation had been 10), our z value would have been the same (i.e., z = 6.02) and our probability, as
found in Appendix A, would have been less than .00003 (see Figure 6.3). The normal distribution
(associated with z scores) and the t distributions are virtually identical when the sample size is larger
than 120.

sample mean - population mean
z =

standard error

or



FIGURE 6.3 Probability of finding this difference between the means by chance when n - 144.

Finally, to illustrate the difference between the t distributions and the normal distribution,
suppose that our sample size had been 25 rather than 144. We would have calculated the t value just
as we did before, but our standard error would be different (because our sample size is smaller),
thereby producing a smaller t value:

Now, looking at our table of t values with 24 degrees of freedom, we find that the
probability of getting a t value of this size or larger is just about .02 (see Figure 6.4). Notice that if
we had our larger sample size of 144, the probability of getting a t value of 2.50 or larger would have
been closer to .01.

So when the sample size is large, the normal distribution and the t distribution are virtually
identical. But as our sample size decreases, the t distribution changes and so do the probabilities
associated with it. When the population standard deviation is known, the normal distribution can be
used. But when the population standard deviation is not known, or the sample size is small, the
family of t distributions should be used. Now we can turn our attention to how standard errors are
used in other statistics.

- 52 - CHAPTER 6
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FIGURE 6.4 Probability of finding this difference between the means by chance when n = 25.

The Use of Standard Errors in Inferential Statistics

Some type of standard error is used in every inferential statistic, including those discussed in this
book (t tests, ANOVA, regression, etc.). In inferential statistics, we want to know whether
something that we observe in our sample represents a similar phenomenon in the larger population
from which the sample was drawn. For example, if I compare the average weight of a sample 100
men to that of a sample of 100 women and find that, on average, men in my sample weigh 60 pounds
more than women in my sample, I may want to know whether I should conclude that, on average,
men in the larger population weigh more than women in the population. Similarly, if I find a
correlation (see Chapter 7) of r — .45 between height and weight in my sample of 100 men, I might
want to know whether this relationship between height and weight in my sample means there is
probably a relationship between these two variables in the larger population of men. To answer
these questions, I need to use standard errors.

In many inferential statistics formulas, I need to see whether the phenomenon I observed in
my sample(s) is large or small relative to my standard error. Recall from the definition of standard
error presented earlier in this chapter that a standard error is a measure of the average amount of
variance, or difference, we can expect from different samples of the same size selected from a
population. So, the question we are asking with many inferential statistics is whether some statistic
we see in our sample is big or small compared to the amount of variance (or error) we would expect
if we had randomly selected a different sample of the same size. This question can be summarized
with the following fraction:

size of sample statistic

standard error

As an illustration, let us return to the example comparing the average weight of men and
women. We already know that, in my samples, the difference between the average weight of men
and women was 60 pounds. The statistic that I am interested in here is the difference between the
two means (i.e., the average weight of men and the average weight of women). If I were to select
two different samples of the same size from the populations of men and women and find the
difference in those two sample means, I would probably find a difference that was either larger or
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smaller than the difference I found in the comparison of the first two samples. If I kept selecting
different samples and compared their means, I would eventually get a sampling distribution of the
differences between the means, and this sampling distribution would have a standard error.
Suppose that the standard error of this sampling distribution was 10. Let's plug that standard error
into our fraction formula presented earlier:

sample statistic = 60

standard error = 10

From this formula, I can see that the difference between my two sample means is six times larger
than the difference I would expect to find just due to random sampling error. This suggests that the
difference between my two sample means is probably not due to chance. (Note that the word chance
refers to the chance selection of a sample with a set of scores from an extreme end of the
distribution.) Using a table of probabilities based on the t distribution (see Chapter 9 and Appendix
B), I can calculate the exact probability of getting a ratio this large (i.e., 60:10, or 6:1). So, to
summarize, the standard error is often used in inferential statistics to see whether our sample statistic
is larger or smaller than the average differences in the statistic we would expect to occur by chance
due to differences between samples. I now discuss some examples to demonstrate the effect of
sample size and the standard deviation on the size of the standard error of the mean.

EXAMPLE: SAMPLE SIZE AND STANDARD DEVIATION EFFECTS
ON THE STANDARD ERROR

To illustrate the effect that sample size and standard deviation have on the size of the standard error
of the mean, let's take a look at a variable from a set of data I collected a few years ago. The
purpose of the study was to examine students' motivational beliefs about standardized achievement
tests. I examined whether students thought it was important to do well on the standardized test they
were about to take in school, whether they had anxiety about the test, whether they expected to do
well on the test, whether they thought of themselves as good test takers, and so on.

One of the goals of the study was to compare the motivational beliefs of elementary school
students with those of middle school students. The sample for the study included 137 fifth graders in
elementary school and 536 seventh and eighth graders in middle school. Suppose we wanted to
know the standard error of the mean on the variable "I expect to do well on the test" for each of the
two groups in the study, the elementary school students and the middle school students. To calculate
these standard errors, we would need to know the standard deviation for each group on our variable
and the sample size for each group. These statistics are presented in Table 6.4.

A quick glance at the standard deviations for each group reveals that they are very similar (s
= 1.38 for the elementary school sample, s = 1.46 for the middle school sample). However, because
there is quite a large difference in the size of the two samples, we should expect somewhat different
standard errors of the mean for each group. Which group do you think will have the larger standard
error of the mean?

TABLE 6.4 Standard deviations and sample sizes.

Elementary School Sample Middle School Sample

Expect to Do
Well on Test

Standard Dev.

1.38

Sample Size

137

Standard Dev.

1.46

Sample Size

536

Recall from the formula presented earlier in this chapter that to find the standard error of
the mean, we simply need to divide the standard deviation by the square root of the sample size. For
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the elementary school sample, we need to divide 1.38 by the square root of 137. The square root of
137 = 11.70. When we divide 1.38 by 11.70, we get .12. So the standard error of the mean for the
elementary sample is .12. Following the same procedure for the middle school sample, we find that
the standard error of the mean for this group will equal 1.46 divided by the square root of 546. The
square root of 546 = 23.37. When we divide 1.46 by 23.37, we get .06. As you can see, the standard
error of the mean for the middle school sample (s -x = .06) is half the size of the standard error of the

mean for the elementary school sample (s -x = .12). Because the standard deviations are roughly

equal for these two groups, virtually all of the difference in their standard errors is attributable to
differences in sample size (see Figure 6.5).

FIGURE 6.5 Effect of sample size on the standard error of the mean.

To illustrate the effect of the standard deviation on the size of the standard error, let's take a
look at a second variable from this study: students' scores on the verbal portion of the standardized
achievement tests. Scores on this portion of the test range from a possible low of 0 to a possible
high of 100. In the elementary school sample, the standard deviation on this variable was 23.81.
The sample size is still 137. To find the standard error of the mean, we must divide 23.81 by the
square root of 137, which we know from our previous example is 11.70. And, 23.81 divided by
11.70 equals 2.04. So the standard error of the mean in this example is 2.04. When we compare this
number with the standard error of the mean for the elementary school sample on the "Expect to do
well on the test" variable (s-x = .12), we see that the larger standard deviation for the test score

variable created a much larger standard error, even though the sample size remained the same, 137.
As these examples demonstrate, the size of the standard error of the mean depends on the

size of the standard deviation and the size of the sample. As sample size increases, and the standard
deviation remains constant, the standard error of the mean decreases. As the size of the standard
deviation increases, the size of the standard error of the mean increases as well. Remember that the
standard error is generally used in the denominator of the formulas statisticians use to calculate
inferential statistics. Therefore, smaller standard errors will produce larger statistics, such as z
scores and t values (because smaller denominators produce larger overall numbers than larger
denominators do when the numerators are equal). Larger statistics are more likely to be judged by
the researcher to indicate a meaningful, or statistically significant, effect in the sample. In other
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words, a large statistic like a t value or a z score is more likely than small statistics to indicate that a
phenomenon observed in a sample represents a meaningful phenomenon in the population as well.
(Statistical significance is discussed in greater detail in Chapter 7). Therefore, all else being equal,
larger sample sizes are more likely to produce statistically significant results because larger sample
sizes produce smaller standard errors.

WRAPPING UP AND LOOKING FORWARD

Standard error is often a difficult concept to grasp the first time it is encountered (or the second or
the third). Because it is such a fundamental concept in inferential statistics, however, I encourage
you to keep trying to make sense of both the meaning and the usefulness of standard errors. As we
learned in this chapter, standard errors can be used to determine probabilities of sample statistics
(such as the mean) in much the same way that we used standard scores to determine probabilities
associated with individual scores in Chapter 4. Because of the usefulness of standard errors in
determining probabilities, standard errors play a critical role in determining whether a statistic is
statistically significant. Because standard errors are influenced by sample size, statistical
significance will also be influenced by these sample characteristics. In the next chapter, the issue of
statistical significance, and the effects of sample size on statistical significance, are discussed in
more depth.

GLOSSARY OF TERMS AND SYMBOLS FOR CHAPTER 6

Central limit theorem: The fact that as sample size increases, the sampling distribution of the
mean becomes increasingly normal, regardless of the shape of the distribution of the
sample.

Degrees of freedom: Roughly, the minimum amount of data needed to calculate a statistic. More
practically, it is a number, or numbers, used to approximate the number of observations in
the data set for the purpose of determining statistical significance.

Expected value of the mean: The value of the mean one would expect to get from a random
sample selected from a population with a known mean. For example, if one knows the
population has a mean of 5 on some variable, one would expect a random sample selected
from the population to also have a mean of 5.

Inferential statistics: Statistics generated from sample data that are used to make inferences about
the characteristics of the population the sample is alleged to represent.

Sampling distribution of the differences between the means: The distribution of scores that
would be generated if one were to repeatedly draw two random samples of a given size
from two populations and calculate the difference between the sample means.

Sampling distribution of the mean: The distribution of scores that would be generated if one were
to repeatedly draw random samples of a given size from a population and calculate the
mean for each sample drawn.

Sampling distribution: A theoretical distribution of any statistic that one would get by repeatedly
drawing random samples of a given size from the population and calculating the statistic of
interest for each sample.

Standard error: The standard deviation of the sampling distribution.
Statistically significant: A term indicating that a phenomenon observed in a sample (or samples)

has meaningful implications for the population (e.g., that the difference between a sample
mean and a population mean is statistically significant or that a relationship observed
between two variables in a sample is strong enough, relative to the standard error, to
indicate a relationship between the two variables in the population from which the sample
was selected).

s-x The standard error of the mean estimated from the sample standard deviation (i.e., when the

population standard deviation is unknown).
a-x The standard error of the mean when the population standard deviation is known.



CHAPTER 7

STATISTICAL SIGNIFICANCE, EFFECT SIZE,
AND CONFIDENCE INTERVALS

When researchers use the data collected from samples to make inferences about the population (or
populations) from which the samples were selected, they need to have some way of deciding how
meaningful the sample data are. Are the differences between two samples (e.g., a group of adults
from Alaska and a group of adults from New York) in their average levels of happiness large enough
to conclude that the populations of adults from these two states actually differ in how happy they
are? Is the relationship between years of education and income among a sample of 50 American
adults strong enough to determine that income is related to education in the larger population of
American adults? How do researchers reach important conclusions about how well sample statistics
generalize to the larger population?

Three of the common tools used by researchers to reach such conclusions include testing
for statistical significance and calculating the effect sizes and confidence intervals. All of these
tools provide indexes of how meaningful the results of statistical analyses are. Despite their frequent
appearance in reports of quantitative research (particularly measures of statistical significance), these
concepts are poorly understood by many researchers. The purpose of this chapter is to provide you,
the reader, with a solid foundation of the concepts of statistical significance, effect size, and
confidence intervals. Because statistical significance, effect size, and confidence intervals can be
calculated for virtually any statistic, it is not possible in this short chapter to provide instructions on
how to determine statistical significance or calculate an effect size or confidence interval across all
research situations. Therefore, the focus of this chapter is to describe what these concepts mean and
how to interpret them, as well as to provide general information about how statistical significance
and effect sizes are determined.

Statistics are often divided into two types: descriptive statistics and inferential statistics.
As I mentioned in Chapter 1, descriptive statistics are those statistics that describe the characteristics
of a given set of data. For example, if I collect weight data for a group of 30 adults, I can use a
variety of statistics to describe the weight characteristics of these 30 adults (e.g., their average, or
mean, weight, the range from the lowest to the highest weight, the standard deviation for this group,
etc.). Notice that all of these descriptive statistics do nothing more than provide information about
this specific group of 30 individuals from whom I collected data.

Although descriptive statistics are useful and important, researchers are often interested in
extending their results beyond the specific group of people from whom they have collected data (i.e.,
their sample, or samples). From their sample data, researchers often want to determine whether
there is some phenomenon of interest occurring in the larger population(s) that these samples
represent. For example, I may want to know whether, in the general population, boys and girls differ
in their levels of physical aggression. To determine this, I could conduct a study in which I measure
the physical aggression levels of every boy and girl in the United States and see whether boys and
girls differ. This study would be very costly, however, and very time consuming. Another approach
is to select a sample of boys and a sample of girls, measure their levels of physical aggression, see if
they differ, and from these sample data infer about differences in the larger populations of boys and
girls. If I eventually conclude that my results are statistically significant, in essence I am concluding
that the differences I observed in the average levels of aggression of the boys and girls in my two
samples represent a likelihood that there is also a difference in the average levels of aggression in the
populations of boys and girls from which these samples were selected.

As the name implies, inferential statistics are always about making inferences about the

-57-
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larger population(s) on the basis of data collected from a sample or samples. To understand how this
works, we first need to understand the distinction between a population and a sample and get
comfortable with some concepts from probability. Once we have developed an understanding of
statistical significance, we can then compare the concepts of statistical significance and practical
significance. This distinction leads us to the second major concept covered in this chapter, which is
effect size. Briefly, effect size is a measure of how large an observed effect is without regard to the
size of the sample. In the earlier example examining levels of aggression, the effect that I am
interested in is the difference in boys' and girls' average levels of aggression. Finally, we can
calculate a confidence interval to provide a range of values that we are confident, to a certain degree
of probability, contain the actual population parameter.

STATISTICAL SIGNIFICANCE IN DEPTH

Samples and Populations

The first step in understanding statistical significance is to understand the difference between a
sample and a population. This difference has been discussed earlier (Chapter 1). Briefly, a sample
is an individual or group from whom or from which data are collected. A population is the
individual or group that the sample is supposed to represent. For the purposes of understanding the
concept of statistical significance, it is critical that you remember that when researchers collect data
from a sample, they are often interested in using these data to make inferences about the population
from which the sample was drawn. Statistical significance refers to the likelihood, or probability,
that a statistic derived from a sample represents some genuine phenomenon in the population from
which the sample was selected. In other words, statistical significance provides a measure to help us
decide whether what we observe in our sample is also going on in the population that the sample is
supposed to represent.

One factor that often complicates this process of making inferences from the sample to the
population is that in many, if not most, research studies in the social sciences, the population is never
explicitly defined. This is somewhat problematic, because when we argue that a statistical result is
statistically significant, we are essentially arguing that the result we found in our sample is
representative of some effect in the population from which the sample was selected. If we have not
adequately defined our population, it is not entirely clear what to make of such a result (see Chapter
1 for a more detailed discussion of defining populations). For the purposes of this chapter, however,
suffice it to say that samples are those individuals or groups from whom or which data are collected,
whereas populations are the entire collection of individuals or cases from which the samples are
selected.

Probability

As discussed earlier in Chapter 4 and Chapter 6, probability plays a key role in inferential statistics.
When it comes to deciding whether a result in a study is statistically significant, we must rely on
probability to make the determination. Here is how it works.

When we calculate an inferential statistic, that statistic is part of a sampling distribution.
From our discussion of standard errors in Chapter 6, you will recall that whenever we select a
sample from a population and calculate a statistic from the sample, we have to keep in mind that if
we had selected a different sample of the same size from the same population, we probably would
get a slightly different statistic from the new sample. For example, if I randomly selected a sample
of 1,000 men from the population of men in the United States and measured their shoe size, I might
find an average shoe size of 10 for this sample. Now, if I were to randomly select a new sample of
1,000 men from the population of men in the United States and calculate their average shoe size, I
might get a different mean, such as 9. If I were to select an infinite number of random samples of
1,000 and calculate the average shoe sizes of each of these samples, I would end up with a sampling
distribution of the mean, and this sampling distribution would have a standard deviation, called the
standard error of the mean (see Chapter 6 for a review of this concept). Just as there is a sampling
distribution and a standard error of the mean, so there are sampling distributions and standard errors
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for all statistics, including correlation coefficients, F ratios from ANOVA, t values from t tests,
regression coefficients, and so on.

Because these sampling distributions have certain stable mathematical characteristics, we
can use the standard errors to calculate the exact probability of obtaining a specific sample statistic,
from a sample of a given size, using a specific known or hypothesized population parameter. It's
time for an example. Suppose that, from previous research by the shoe industry, I know that the
average shoe size for the population of men in the United States is a size 9. Because this is the
known average for the population, this average is a parameter and not a statistic. Now suppose I
randomly select a sample of 1,000 men and find that their average shoe size is 10, with a standard
deviation of 2. Notice that the average for my sample (10) is a statistic because it comes from my
sample, not my population. With these numbers, I can answer two slightly different but related
questions. First, if the average shoe size in the population is really 9, what is the probability of
selecting a random sample of 1,000 men who have an average shoe size of 10? Second, is the
difference between my population mean (9) and my sample mean (10) statistically significant? The
answer to my first question provides the basis for the answer to my second question. Notice that
simply by looking at the two means, I can clearly see that they are different (i.e., 9 is different from
10). So I am trying to answer a deeper question than whether they differ. Rather, I am trying to
determine whether the difference between my sample and population means is statistically
significant. In other words, I am trying to determine whether the difference between my sample and
populations means is too large to likely have occurred by chance (i.e., who I happened to get in my
sample).

Notice that if I do not select my sample at random, it would be easy to find a sample of
1,000 men with an average shoe size of 10. I could buy customer lists from shoe stores and select
1,000 men who bought size 10 shoes. Or I could place an advertisement in the paper seeking men
who wear a size 10 shoe. But if my population mean is really 9, and my sample is really selected at
random, then there is some probability, or chance, that I could wind up with a sample of 1,000 men
with an average shoe size of 10. In statistics, this chance is referred is as random sampling error
or random chance.

Back to the example. If my population mean is 9, and my random sample of 1,000 men has
a mean of 10 and a standard deviation of 2, I can calculate the standard error by dividing the
standard deviation by the square root of the sample size (see Chapter 6 for this formula).

Where sx = the standard error of the mean

Now that I know the standard error is .06, I can calculate a t value to find the approximate
probability of getting a sample mean of 10 by random chance if the population mean is really 9.
(Note: For sample sizes larger than 120, the t distribution is identical to the normal distribution.
Therefore, for large sample sizes, t values and z values, and their associated probabilities, are
virtually identical. See Chapters 4 and 6 for more information.)

When using the t distribution to find probabilities, we can simply take the absolute value of
t. Once we have our absolute value for t (t = 16.67), we can consult the t table in Appendix B and
see that, when the degrees of freedom equal infinity (i.e., greater than 120), the probability of getting
a t value of 16.67 or greater is less than .001. In fact, because the critical t value associated with a
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probability of .001 is only 3.291, and our actual t value is 16.67, we can conclude that the random
chance of getting a sample mean of 10 when the population mean is 9 is much less than .001. (See
Figure 7.1.) In other words, when we randomly select a sample of 1,000 men and calculate their
average shoe size, when we know that the average shoe size of men in the population is 9, we would
expect to get a sample mean of 10 much less than 1 time in 1,000. With our table of t values, that is
as accurate as we can get.

FIGURE 7.1 A statistically significant t value.

So we have already calculated the probability, or random chance, of finding a sample mean
of 10 when the population mean is 9 is very small, less than one in a thousand, when the sample size
is 1,000 and is randomly selected. This probability is known as .p value, with the p standing for
probability. In our current example, we would say that we found p < .001, which is the way p
values are generally reported in research reports and scholarly journals. Now we can turn our
attention to the second question: Is the difference between a population mean of 9 and a sample
mean of 10 statistically significant? Well, the quick answer is "Yes." The longer answer requires us
to delve into the world of hypothesis testing.

Hypothesis Testing and Type I Errors

The idea here is simple. Before we calculate the statistic and decide whether a result is statistically
significant, we should establish a standard, or benchmark. To do this, we develop a hypothesis and
establish a criterion that we will use when deciding whether to retain or reject our hypothesis. The
primary hypothesis of interest in social science research is the null hypothesis (H1). As the name
implies, the null hypothesis always suggests that there will be an absence of effect. For example, the
null hypothesis suggests that a sample mean will not be different from the population mean, or that
two population means (e.g., boys and girls) will not differ, or that two variables (e.g., education and
income) will not be related to each other in the population. Notice that the null hypothesis always
refers to an absence of effect in the population. To illustrate, let us return to the shoe-size example.
Recall that we already knew our population average shoe size was 9. Given this, we would expect
that if we were to randomly select a sample from that population, and calculate the average shoe size
for the sample, that average would also be 9. We might know that there is a chance our sample
would have a different mean than our population, but our best guess is that our sample would have
the same mean as our population. Therefore, our null hypothesis would be that our population mean
and our sample mean would not differ from each other (i.e., no effect). We could write this
hypothesis symbolically as follows:
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where u represents the population mean
X represents the sample mean

Notice that at this point, we have not yet selected our sample of 1,000 men and we have not
yet calculated a sample mean. This entire hypothesis building process occurs a priori (i.e., before
we conduct our test of statistical significance). Of course, where there is one hypothesis (the null), it
is always possible to have alternative hypotheses. One alternative to the null hypothesis is the
opposite hypothesis. Whereas the null hypothesis is that the sample and population means will equal
each other, an alternative hypothesis could be that they will not equal each other. This alternative
hypothesis (HA or H1) would be written symbolically as

where urepresents the population mean
X represents the sample mean

Notice that our alternative hypothesis does not include any speculation about whether the
sample mean will be larger or smaller than the population mean, only that the two differ. This is
known as a two-tailed alternative hypothesis. I could have proposed a different alternative
hypothesis. For example, I might have proposed that my sample mean would be larger than my
population mean because the population mean was calculated several years ago and men (and their
feet) are getting larger with each new generation. When my alternative hypothesis is directional
(i.e., includes speculation about which value will be larger), I have one-tailed alternative hypothesis.
In the example about shoe size, my one-tailed alternative hypothesis would look like this:

H: u < x w h e r e u represents t he population mean
X represents the sample mean

Let's suppose, for this example, that we are using the two-tailed hypothesis and that the
population mean and the sample mean are different from each other, with no direction of difference
specified. At this point in the process, we have established our null and alternative hypotheses. You
may assume that all we need to do is randomly select our 1,000 men, find their average shoe size,
and see if it is different from or equal to 9. But, alas, it is not quite that simple. Suppose that we get
our sample and find their average shoe size is 9.00001. Technically, that is different from 9, but is it
different enough to be considered meaningful? Keep in mind that whenever we select a sample at
random from a population, there is always a chance that it will differ slightly from the population.
Although our best guess is that our sample mean will be the same as our population mean, we have
to remember that it would be almost impossible for our sample to look exactly like our population.
So our question becomes this: How different does our sample mean have to be from our population
mean before we consider the difference meaningful, or significant. If our sample mean is just a little
different from our population mean, we can shrug it off and say, "Well, the difference is probably
just due to random sampling error, or chance" But how different do our sample and population
means need to be before we conclude that the difference is probably not due to chance? That's
where our alpha level, or Type I error, comes into play.

As I explained earlier in this chapter, and in Chapters 4 and 6, sampling distributions and
standard errors of these distributions allow us to compute probabilities for obtaining sample statistics
of various sizes. When I say "probability" this is, in fact, shorthand for "the probability of obtaining
this sample statistic due to chance or random sampling error. " Given that samples generally do not
precisely represent the populations from which they are drawn, we should expect some difference
between the sample statistic and the population parameter simply due to the luck of the draw, or
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random sampling error. If we reach into our population and pull out another random sample, we will
probably get slightly different statistics again. So some of the difference between a sample statistic,
like the mean, and a population parameter will always be due to who we happened to get in our
random sample, which is why it is called random sampling error. Recall from Chapter 6 that, with a
statistic like the mean, the sampling distribution of the mean is a normal distribution. So our random
sampling method will produce many sample means that are close to the value of the population mean
and fewer that are further away from the population mean. The further the sample mean is from the
population mean, the less likely it is to occur by chance, or random sampling error.

Before we can conclude that the differences between the sample statistic and the population
parameter are probably not just due to random sampling error, we have to decide how unlikely the
chances are of getting a difference between the statistic and the population parameter just by chance
if the null hypothesis is true. In other words, before we can reject the null hypothesis, we want to be
reasonably sure that any difference between the sample statistic and the population parameter is not
just due to random sampling error, or chance. In the social sciences, the convention is to set that
level at .05. In other words, social scientists generally agree that if the probability of getting a
difference between the sample statistic and the population parameter by chance is less than 5%, we
can reject the null hypothesis and conclude that the differences between the statistic and the
parameter are probably not due to chance. (See Figure 7.2.)

The agreed-upon probability of .05 (symbolized as a = .05) represents the Type I error rate
that we, as researchers, are willing to accept before we conduct our statistical analysis. Remember
that the purpose of our analysis is to determine whether we should retain or reject our null
hypothesis. When we decide to reject the null hypothesis, what we are saying in essence, is that we
are concluding that the difference between our sample statistic and our population parameter is not
due to random sampling error. But when we make this decision, we have to remember that it is
always possible to get even very large differences just due to random sampling error, or chance. In
our shoe-size example, when I randomly select 1,000 men, it is possible that, just due to some fluke,
I select 1,000 men with an average shoe size of 17. Now this is extremely unlikely, but it is always
possible. You never know what you're going to get when you select a random sample. In my earlier
example, where my sample had an average shoe size of 10, I found the probability of getting a
sample mean of 10 when my population mean was 9, by chance, was less than one in a thousand.
Though unlikely, it is still possible that this difference between my sample and population means
was just due to chance. So because my p value (p < .001) is much smaller than my alpha level (a =
.05), I will reject the null hypothesis and conclude that my sample mean is actually different from
my population mean, that this is probably not just a fluke of random sampling, and that my result is
statistically significant. When I reach this conclusion, I may be wrong. In fact, I may be rejecting
the null hypothesis, even though the null hypothesis is true. Such errors (rejecting the null
hypothesis when it is true) are called Type I errors.

To summarize, when we do inferential statistics, we want to know whether something that
we observe in a sample represents an actual phenomenon in the population. So we set up a null
hypothesis that there is no real difference between our sample statistic and our population parameter,
and we select an alpha level that serves as our benchmark for helping us decide whether to reject or
retain our null hypothesis. If our p value (which we get after we calculate our statistic) is smaller
than our selected alpha level, we will reject the null hypothesis. When we reject the null hypothesis,
we are concluding that the difference between the sample statistic and the population parameter is
probably not due to chance, or random sampling error. However, when we reach this conclusion,
there is always a chance that we will be wrong, having made a Type I error. One goal of statistics is
to avoid making such errors, so to be extra safe we may want to select a more conservative alpha
level, such as .01, and say that unless our p value is smaller than .01, we will retain our null
hypothesis. In our shoe-size example, our p value was much smaller than either .05 or .01, so we
reject the null hypothesis and conclude that, for some reason, our sample of 1,000 men had a
statistically significantly larger average shoe size than did our general population. Because we
concluded that this difference was probably not due to random sampling error, or chance, we must
conclude that our sample represents a different population. Perhaps the population mean of 9
represents the population of men born from an earlier generation and the sample mean of 10
represents a population of (larger) men born more recently.
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FIGURE 7.2 Regions of rejection for a two-tailed test.

FIGURE 7.3 Region of rejection for a one-tailed test.

EFFECT SIZE IN DEPTH

As an indication of the importance of a result in quantitative research, statistical significance has
enjoyed a rather privileged position for decades. Social scientists have long given the "p < .05" rule
a sort of magical quality, with any result carrying a probability greater than .05 being quickly
discarded into the trash heap of "nonsignificant" results. Recently, however, researchers and journal
editors have begun to view statistical significance in a slightly less flattering light, recognizing one
of its major shortcomings: It is perhaps too heavily influenced by sample size. As a result, more and
more researchers are becoming aware of the importance of effect size and increasingly are including
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reports of effect size in their work.
To determine whether a statistic is statistically significant, we follow the same general

sequence regardless of the statistic (z scores, t values, F values, correlation coefficients, etc.). First,
we find the difference between a sample statistic and a population parameter (either the actual
parameter or, if this is not known, a hypothesized value for the parameter). Next, we divide that
difference by the standard error. Finally, we determine the probability of getting a ratio of that size
due to chance, or random sampling error. (For a review of this process, refer to the earlier section in
this chapter when we calculated the t value for the shoe-size example).
The problem with this process is that when we divide the numerator (i.e., the difference between the
sample statistic and the population parameter) by the denominator (i.e., the standard error), the
sample size plays a large role. In all of the formulas that we use for standard error, the larger the
sample size, the smaller the standard error (see Chapter 6). When we plug the standard error into the
formula for determining t values, F values, and z scores, we see that the smaller the standard error,
the larger these values become, and the more likely that they will be considered statistically
significant. Because of this effect of sample size, we sometimes find that even very small
differences between the sample statistic and the population parameter can be statistically significant
if the sample size is large. In Figure 7.4, the influence of sample size on statistical significance is
depicted graphically. The left side of the graph shows a fairly large difference between the sample
mean and population mean, but this difference is not statistically significant with a small sample size
(n = 4). In contrast, a small difference between sample means with a large sample size (n = 1600)
can produce a statistically significant result, as shown on the right side of Figure 7.4.

FIGURE 7.4 The influence of sample size on statistical significance.

To illustrate this point, let us consider an example with two different sample sizes. Suppose
we know that the average IQ score for the population of adults in the United States is 100. Now
suppose that I randomly select two samples of adults. One of my samples contains 25 adults, the
other 1600. Each of these two samples produces an average IQ score of 105 and a standard
deviation of 15. Is the difference between 105 and 100 statistically significant? To answer this
question, I need to calculate a / value for each sample. The standard error for our sample with 25
adults will be

s, = l5+j25 =15 + 5=>3

where s~ is the standard error of the mean
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The standard error for our second sample, with 1,600 adults, will be

sx = 15 + A/1600 => 15 + 40 => .375

Plugging these standard errors into our t value formulas, we find that the t value for the 25-
person sample is (105 - 100) + 3, or 1.67. Looking in our table of t distributions (Appendix B), we
can see that the p value for a t value of 1.67 is between .10 and .20. The t value for the sample with
1,600 adults is (105 - 100) + .375, or 13.33, with a corresponding p value of p < .0001. If we are
using an alpha level of .05, then a difference of 5 points on the IQ test would not be considered
statistically significant if we only had a sample size of 25, but would be highly statistically
significant if our sample size were 1,600. Because sample size plays such a big role in determining
statistical significance, many statistics textbooks make a distinction between statistical significance
and practical significance. With a sample size of 1,600, a difference of even 1 point on the IQ test
would produce a statistically significant result (t = 1 + .375 => t - 2.67, p < .01). However, if we had
a very small sample size of 4, even a 15-point difference in average IQ scores would not be
statistically significant (t = 15 + 7.50 => t = 2.00, p > .10). (See Figure 7.3 for a graphic illustration
of this.) But is a difference of 1 point on a test with a range of over 150 points really important in
the real world? And is a difference of 15 points not meaningful? In other words, is it a significant
difference in the practical sense of the word significant? One way to answer this question is to
examine the effect size.

There are different formulas for calculating the effect sizes of different statistics, but these
formulas share common features. The formulas for calculating most inferential statistics involve a
ratio of a numerator (such as the difference between a sample mean and a population mean in a one-
sample t test) divided by a standard error. Similarly, most effect size formulas use the same
numerator, but divide this numerator by a standard deviation rather than a standard error. The trick,
then, is knowing how to come up with the appropriate standard deviation to use in a particular effect
size formula.

We can examine the simplest form of effect size by returning to our examples using IQ
scores. Remember that we have a population with an average IQ score of 100. We also had two
samples, each with an average IQ score of 105 and a standard deviation of 15; one with a sample
size of 25 and the other with a sample size of 1,600. Also recall that to find the standard error for
calculating our t scores, we simply divided the standard deviation by the square root of the sample
size. So for the sample with 25 members, our standard error was

Sx = l5+j25 =>15+-5=>3

where s-= is the standard error of the mean' X

To calculate an effect size, what we need to do is convert this standard error back into a
standard deviation. If we divide the standard deviation by the square root of the sample size to find
the standard error, we can multiply the standard error by the square root of the sample size to find the
standard deviation. When we do this, we find that

s = 3-j25 = > 3 x 5 = > 1 5

where s is the sample standard deviation

Notice that the standard deviation would be exactly the same if we calculated it for the larger sample
size of 1,600, even though the standard error was much smaller for that sample.

s = .375 V1600 => .375 x 40 => 15

Once we have our standard deviation, it is easy to calculate an effect size, which has the
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symbol d. In the IQ example, we could determine the effect size as follows:

where d is the effect size

As you can see, the formula for the effect size translates the numerator into standard
deviation units. When the numerator represents some sort of difference score (e.g., the difference
between two or more group means, the difference between a sample statistic and a population
parameter), the effect size will represent that difference in standard deviation units. This is similar to
representing the difference in standard error units, as most inferential statistics do (e.g., t values, F
values, correlation coefficients), except that sample size is eliminated from the process.

There are no hard and fast rules regarding the interpretation of effect sizes. Some textbook
authors suggest that effect sizes smaller than .20 are small, those between .25 and .75 are moderate,
and those over .80 are large. When determining whether an effect size is meaningful, it is important
to consider what you are testing and what your perspective is. If I am comparing the mortality rates
of two samples trying two different experimental drugs, even small effect sizes are important,
because we are talking about life and death. But if I'm comparing two different samples' preference
for ice cream flavors, even fairly large effect sizes may have little more than trivial importance to
most people.4 Keep in mind, however, that what is trivial to one person may be vitally important to
another. Although I do not care about even large differences in people's preference for certain ice
cream flavors, the CEO of an ice cream company may care very much about even small differences
in preference. In fact, a small preference for chocolate over vanilla can mean millions of dollars to
an ice cream company (and the owners of stock in the company). The point here is that "practical
significance" is a subjective concept. Although statistics can provide measures of effect size,
interpreting the importance of these effect sizes is an imprecise science.

The recent push by some researchers to focus more heavily on effect sizes than on
statistical significance reminds me that I should conclude this section of the chapter by urging you to
take both effect size and statistical significance into consideration as you read and conduct research.
Notice that in the previous examples, the exact same effect size was produced with the 25-person
sample as with the 1,600-person sample. These results suggest that sample size does not matter. In
fact, sample size is very important. Stated simply, it is easier to come up with fluke, or chance
results with smaller sample sizes than with larger sample sizes. Our tests of statistical significance,
which are sensitive to sample size, tell us the probability that our results are due to random sampling
error, or chance. Because larger sample sizes have a better likelihood of representing the
populations from which they were selected, the results of studies that use larger sample sizes are
more reliable than those using smaller sample sizes, if all else is equal (e.g., how the samples were
selected, the methods used in the study, etc.). When used together, tests of statistical significance
and measures of effect size can provide important information regarding the reliability and
importance of statistical results. Of course, our own judgments about the meaning, causes, and
consequences of our results are also important factors.

CONFIDENCE INTERVALS IN DEPTH
Confidence intervals are becoming increasingly common in reports of inferential statistics, in part
because they provide another measure of effect size. When a researcher uses sample data to make

There are other types of effect sizes frequently reported in research. One of the most common of these is the percentage of variance
explained by the independent variable. I mention this in later chapters as I discuss the concept of explained variance.
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some inference about a population, she usually does not really know the actual value of the
population parameter. All she has is her sample data. But using probability and confidence
intervals, she can make an educated prediction about the approximate value of the population
parameter.

To illustrate how confidence intervals work, let's return to the shoe-size example from
earlier in the chapter. But let me slightly rephrase the statement about the average shoe size in the
population. Instead of saying, as I did earlier, "In the population of American men, the average
shoes size is 9," let me say, "Suppose that the average shoe size of American men is 9." This is
technically more accurate because, assuming the average shoe size in the population was determined
some time ago, we do not really know the average shoe size of the current population of American
men. So our hypothesized value of the average shoe size in the population is 9, and our observed
shoe size in our sample of 1,000 men is 10, with a standard deviation of 2. Using these data, we can
calculate a confidence interval.

Recall that in our earlier example, using the same values for the sample mean, standard
deviation, and sample size, we calculated a standard error of .06. Using these data, we can calculate
a confidence interval. The confidence interval provides a range of values that we are confident, to a
certain degree of probability, contains the population parameter (e.g., the population mean). Most of
the time, researchers want to be either 95% or 99% confident that the confidence interval contains
the population parameter. These values correspond with p values of .05 and .01, respectively. The
formulas for calculating 95% and 99% confidence intervals are provided in Table 7.2. Notice that
the formula for the confidence interval involves building the interval around the sample statistic
(both greater than and less than the sample statistic). Because the confidence interval involves
values both greater and less than the sample statistic, we always use the alpha level for the two-tailed
test to find our t value, even if we had a one-tailed alternative hypothesis when testing for statistical
significance.

TABLE 7.2 Formulas for calculating confidence intervals for the mean.

where CI9s is a 95% confidence interval
0199 is a 99% confidence interval
X is the sample mean
5- is the standard error

X

t9S is the t value for a two-tailed test, alpha level of .05 with a given degrees of freedom
t99 is the t value for a two-tailed test, alpha level of .01 with a given degrees of freedom

If we look in Appendix B for a two-tailed test with df=<*> and a = .05, we find t9$ = 1.96.
Plugging this value into our confidence interval formula we, get the following:

CI95 = 10 ± (1.96)(.06)

CI95 = 10 ± .12

CI95 = 9.88,10.12

To wrap words around this result, we would say that we are 95% confident that the
population mean is contained within the interval ranging from 9.88 to 10.12. In other words, given
our sample mean of 10, and not knowing our population mean, we are 95% confident that the
population that this sample represents has a mean between 9.88 and 10.12. Notice that this
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confidence interval does not contain the value of 9.00, which we hypothesized to be our population
mean. It turns out that our sample most likely does not represent a population with a mean shoe size
of 9. That is why, when we compared our sample mean of 10 with the population mean of 9, we
found the two means to be statistically significantly different from each other.

If we want to create an interval that we are even more confident contains our population
mean, notice that we just need to widen the interval a little. To calculate a 99% confidence interval
using these data, we first look in Appendix B for a two-tailed test with df=°° and a = .01, and we
find t99 = 2.576. Plugging these numbers into the confidence interval formula, we get

CI99 = 10 ± (2.576)(.06)

Cl99=10 ± .15

CLw = 9.85,10.15

Now we can conclude that we are 99% confident that the population mean is contained
within the interval between 9.85 and 10.15. This interval also does not contain the value of 9.00.
This tells us that the sample mean of 10 is statistically significantly different from the hypothesized
population mean of 9.00 at the p < .01 level. The results of these two confidence intervals are
presented graphically in Figure 7.5.

EXAMPLE: STATISTICAL SIGNIFICANCE, CONFIDENCE INTERVAL, AND
EFFECT SIZE FOR A ONE-SAMPLE TTEST OF MOTIVATION

To illustrate the concepts of statistical significance and effect size, I present the results from
a one-sample t test that I conducted using data from research I conducted with high school students.
In this study, 483 students were given surveys in their social studies classrooms to measure their
motivation, beliefs, and attitudes about school and schoolwork. One of the constructs that my
colleague and I measured was a motivational orientation called performance-approach goals.
Performance-approach goals refer to students' perceptions that one purpose of trying to achieve
academically is to demonstrate to others how smart they are, sometimes by outperforming other
students. We used a measure of performance-approach goals that was developed by Carol Midgley
and her colleagues at the University of Michigan (Midgley, Kaplan, & Middleton, et al, 1998). This
measure includes five items: (1) "I'd like to show my teacher that I'm smarter than the other students
in this class"; (2) "I would feel successful in this class if I did better than most of the other students";
(3) "I want to do better than other students in this class"; (4) "Doing better than other students in this
class is important to me"; and (5) "I would feel really good if I were the only one who could answer
the teacher's questions in this class." Students responded to each of these questions using a 5-point
Likert scale (with 1 = "not at all true" and 5 = "very true"). Students' responses to these five items
were then averaged, creating a performance-approach goals scale with a range from 1 to 5.

I wanted to see whether my sample of high school students in California had a different
mean on this performance-approach goals scale than the larger population of high school students in
the United States. Suppose that previous research conducted with a large sample of high school
students that accurately represented the larger population of high school students throughout the
United States found the average score on the performance-approach goals scale was 3.00. Some
might argue that students in California, with the sun and relatively easy lifestyle, are less competitive
than students in the rest of the country. So we might expect students in the California sample to
have lower average scores on the performance-approach goals scale when compared with the
average scores in the American population of high school students. Others think this is hogwash.
California is more expensive and has more competition for jobs than other parts of the country, so
perhaps these students are more competitive than the typical American student. Because both sides
of the argument are presented, our alternative hypothesis is two-tailed. What we are testing is the
null hypothesis (H0: u

 = X) against the two-tailed alternative (HA: u = X ) .
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FIGURE 7.5 Confidence intervals and sample size.
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So I used the SPSS statistics program to conduct a one-sample Mest. In Table 7.3, the
actual SPSS output from the t test is presented. In this output, the top part of the table shows the
sample size (n = 490), the mean for the sample (X = 3.0449, or 3.04), the standard deviation (5- =
.98199, or .98) and the standard error of the mean (s- - .04436, or .04). The lower part of Table 7.3

provides the t value (t - 1.012), the degrees of freedom ( d f = 489), the p value for this t (Sig. 2-tailed
= .312), and the difference between the sample mean and the hypothesized population mean ( X -u =
.0449). Finally, the 95% confidence interval for the difference between the sample and population
means is provided (CI95 = -.0423, .1321).

TABLE 7.3 SPSS output for a one-sample t test.

One-Sample Statistics

performance
approach goals

N

490

Mean

3.0449

Std. Deviation

.98199

Std. Error
Mean

.04436

One-Sample Test

performance
approach goals

Test Value = 3.00

t

1.012

df

489

Sig. (2-tailed)

.312

Mean
Difference

.0449

95% Confidence
Interval of the

Difference
Lower

-.0423

Upper

.1321

If we are using the conventional alpha level of .05 (i.e., a = .05), then we can see that our
p value is larger than our alpha level, and we would retain the null hypothesis of no differences
between the average scores of the sample of California high school students and the national
population of high school students on the performance-approach goals scale. Therefore, we would
conclude that our results are not statistically significant and we can make a more far-reaching
conclusion: "The population of California high school students does not differ from the larger
population of American high school students on the performance-approach goal measure" (assuming
this sample represents the larger population of California high school students).

Using the information in Table 7.3 and the table of t values presented in Appendix B, we
can recreate this t test, see why it is not statistically significant, and calculate the effect size and
confidence interval. First, using the means and the standard error of the sample mean, we can
reproduce the equation used to generate the t value:

Next, using the degrees of freedom (df - 489), we can look in Appendix B to find the
approximate probability of finding a t value of this size or larger by chance. Because our degrees of
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freedom are larger than 120, we must look in the row labeled with the infinity symbol («»). Because
the absolute value of our observed t value is 1.01, which is considerably smaller than the value of
1.96 that is associated with an a = .05 (two-tailed test), we must retain our null hypothesis. Our
SPSS output confirms this, placing the probability at a more precise number, p = .312, considerably
larger than the .05 cut-off level for rejecting the null hypothesis. This would not be considered
statistically significant if we are using the conventional alpha level of .05

Now let's calculate two 95% confidence intervals using these data: one for the sample mean
and one for the difference between the sample and population means. Both will provide similar
information about the magnitude of the differences between the sample and population means. First,
the sample mean:

CI95 = 3.0449 ± (1.96)(.04436)

CI95 = 3.0449 ± .0869

CI95 = 2.958,3.132

This confidence interval tells us that, based on the sample mean, we are 95% confident the
population that this sample represents has a mean between the values of 2.958 and 3.132. Because
that interval contains the hypothesized value of the population mean for American high school
students on this variable, we must conclude that the population represented by our sample does not
differ significantly from the population of American high school students. If our sample represents
California high school students, then we say, "There is no difference between the population of
California high school students and the population of American high school students on the
performance-approach goals measure."

Now let's compute the confidence interval for the difference between the sample and
population means.

CI95 = .0449± (1.96)(.06)

CI95 = .04436 ± .0869

CI95 = -.0423, .1321

Once again, we can see that our 95% confidence interval contains the hypothesized
difference between the sample and population means presented in the null hypothesis (H0: u= X).
Therefore, we must retain our null hypothesis, just as we did with the other confidence interval we
calculated for these data.

Finally, we can calculate an effect size for these data. Because our result was not
statistically significant, we probably would not actually want to calculate an effect size for this t test.
But for the sake of understanding, let's do it anyway:

where d is the effect size

X is the sample mean
u. is the population mean

S is the standard deviation for the effect size

Although we have a standard deviation for each of the sample in the study, we do not yet
have a standard deviation to use in our effect size formula. To find it, we multiply the standard error
by the square root of the sample size, as we did in our earlier example.
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S= ^490" x.0869

S= 22.14 x.0869

S=1.92

Now that we have our standard deviation, we can easily calculate the effect size:

Our effect size of .02 is very small, as we might expect from a nonstatistically significant
result. When we combine the results of our analysis of statistical significance with our effect size
and confidence interval results, we have a consistent picture: "The California students do not really
differ from the students in the rest of the country in their endorsement of performance-approach
goals."

WRAPPING UP AND LOOKING FORWARD

For several decades, statistical significance has been the measuring stick used by social scientists to
determine whether the results of their analyses are meaningful. But as we have seen in this chapter
and in our discussion of standard errors in Chapter 6, tests of statistical significance are quite
dependent on sample size. With large samples, even trivial effects are often statistically significant,
whereas with small sample sizes, quite large effects may not reach statistical significance. Because
of this, there has recently been an increasing appreciation of, and demand for, measures of practical
significance as well. When determining the practical significance of your own results, or of those
you encounter in published articles or books, you are well advised to consider all of the measures at
your disposal. Is the result statistically significant? How large is the effect size? And, as you look
at the effect in your data and place your data in the context of real-world relevance, use your
judgment to decide whether you are talking about a meaningful or a trivial result. In the chapters to
come, we will encounter several examples of inferential statistics. Use what you have learned in this
chapter to determine whether the results presented should be considered practically significant.

GLOSSARY OF TERMS AND SYMBOLS FOR CHAPTER 7

Alpha level: The a priori probability of falsely rejecting the null hypothesis that the researcher is
willing to accept. It is used, in conjunction with the p value, to determine whether a sample
statistic is statistically significant.

Alternative hypothesis: The alternative to the null hypothesis. Usually, it is the hypothesis that
there is some effect present in the population (e.g., two population means are not equal, two
variables are correlated, a sample mean is different from a population mean, etc.).

Confidence interval: An interval calculated using sample statistics to contain the population
parameter, within a certain degree of confidence (e.g., 95% confidence).

Descriptive statistics: Statistics that describe the characteristics of a given sample or population.
These statistics are only meant to describe the characteristics of those from whom data were
collected.

Effect size: A measure of the size of the effect observed in some statistic. It is a way of determining
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the practical significance of a statistic by reducing the impact of sample size.
Inferential statistics: Statistics generated from sample data that are used to make inferences about

the characteristics of the population the sample is alleged to represent.
Null hypothesis: The hypothesis that there is no effect in the population (e.g., that two population

means are not different from each other, that two variables are not correlated in the
population).

One-tailed: A test of statistical significance that is conducted just for one tail of the distribution
(e.g., that the sample mean will be larger than the population mean).

Population: The group from which data are collected or a sample is selected. The population
encompasses the entire group for which the data are alleged to apply.

Practical significance: A judgment about whether a statistic is relevant, or of any importance, in the
real world.

p value: The probability of obtaining a statistic of a given size from a sample of a given size by
chance, or due to random error.

Random chance: The probability of a statistical event occurring due simply to random variations in
the characteristics of samples of a given size selected randomly from a population.

Random sampling error: The error, or variation, associated with randomly selecting samples of a
given size from a population.

Sample: An individual or group, selected from a population, from whom or which data are
collected.

Statistical significance: When the probability of obtaining a statistic of a given size due strictly to
random sampling error, or chance, is less than the selected alpha level, the result is said to
be statistically significant. It also represents a rejection of the null hypothesis.

Two-tailed: A test of statistical significance that is conducted just for both tails of the distribution
(e.g., that the sample mean will be different from the population mean).

Type I error: Rejecting the null hypothesis when in fact the null hypothesis is true.

p The p value, or probability.
a The alpha level.
d One measure of effect size.
S The standard deviation used in the effect size formula.
00 Infinity.
sx The standard error calculated with the sample standard deviation.
01 The standard error calculated with the population standard deviation.
HO The null hypothesis.
HA or HI The alternative hypothesis.
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CHAPTER 8

CORRELATION

In several of the previous chapters, we examined statistics and parameters that describe a single
variable at a time, such as the mean, standard deviation, z scores, and standard errors. Although such
single-variable statistics are important, researchers are often interested in examining the relations
among two or more variables. One of the most basic measures of the association among variables,
and a foundational statistic for several more complex statistics, is the correlation coefficient
Although there are a number of different types of correlation coefficients, the most commonly used
in social science research is the Pearson product-moment correlation coefficient. Most of this
chapter is devoted to understanding this statistic, with a brief description of three other types of
correlations: the point-biserial coefficient, the Spearman rho coefficient, and the phi coefficient

When to Use Correlation and What It Tells Us

Researchers compute correlation coefficients when they want to know how two variables are related
to each other. For a Pearson product-moment correlation, both of the variables must be measured on
an interval or ratio scale and are known as continuous variables. For example, suppose I want to
know whether there is a relationship between the amount of time students spend studying for an
exam and their scores on the exam. I suspect that the more hours students spend studying, the higher
their scores will be on the exam. But I also suspect that there is not a perfect correspondence
between time spent studying and test scores. Some students will probably get low scores on the
exam even if they study for a long time, simply because they may have a hard time understanding
the material. Indeed, there will probably be a number of students who spend an inordinately long
period of time studying for the test precisely because they are having trouble understanding the
material. On the other hand, there will probably be some students who do very well on the test
without spending very much time studying. Despite these "exceptions" to my rule, I still
hypothesize that, on average, as the amount of time spent studying increases, so do students' scores
on the exam.

There are two fundamental characteristics of correlation coefficients researchers care about.
The first of these is the direction of the correlation coefficient. Correlation coefficients can be
either positive or negative. A positive correlation indicates that the values on the two variables
being analyzed move in the same direction. That is, as scores on one variable go up, scores on the
other variable go up as well (on average). Similarly, on average, as scores on one variable go down,
scores on the other variable go down. Returning to my earlier example, if there is a positive
correlation between the amount of time students spend studying and their test scores, I can tell that,
on average, the more time students spend studying, the higher their scores are on the test. This is
equivalent to saying that, on average, the less time they spend studying, the lower their scores are on
the test. Both of these represent a positive correlation between time spent studying and test scores.
(Note: I keep saying "on average" because it is important to note that the presence of a correlation
between two variables does not mean that this relationship holds true for each member of the sample
or population. Rather, it means that, in general, there is a relationship of a given direction and
strength between two variables in the sample or population.)

A negative correlation indicates that the values on the two variables being analyzed move
in opposite directions. That is, as scores on one variable go up, scores on the other variable go
down, and vice versa (on average). If there were a negative correlation between the amount of time
spent studying and test scores, I would know that, on average, the more time students spend studying
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for the exam, the lower they actually score on the exam. Similarly, with a negative correlation I
would also conclude that, on average, the less time students spend studying, the higher their scores
are on the exam. These positive and negative correlations are represented by scattergrams in Figure
8.1. Scattergrams are simply graphs that indicate the scores of each case in a sample simultaneously
on two variables. For example, in the positive correlation scattergram in Figure 8.1, the first case in
the sample studied for 1 hour and got a score of 30 on the exam. The second case studied for 2
hours and scored a 40 on the exam.

FIGURE 8.1 Examples of positive and negative correlations.

The second fundamental characteristic of correlation coefficients is the strength or
magnitude of the relationship. Correlation coefficients range in strength from -1.00 to +1.00. A
correlation coefficient of .00 indicates that there is no relationship between the two variables being
examined. That is, scores on one of the variables are not related in any meaningful way to scores on
the second variable. The closer the correlation coefficient is to either -1.00 or +1.00, the stronger
the relationship is between the two variables. A perfect negative correlation of-1.00 indicates that
for every member of the sample or population, a higher score on one variable is related to a lower
score on the other variable. A perfect positive correlation of +1.00 reveals that for every member
of the sample or population, a higher score on one variable is related to a higher score on the other
variable.

Perfect correlations are never found in actual social science research. Generally, correlation
coefficients stay between -.70 and +.70. Some textbook authors suggest that correlation coefficients
between -.20 and +.20 indicate a weak relation between two variables, those between .20 and .50
(either positive or negative) represent a moderate relationship, and those larger than .50 (either
positive or negative) represent a strong relationship. These general rules of thumb for judging the
relevance of correlation coefficients must be taken with a grain of salt. For example, even a "small"
correlation between alcohol consumption and liver disease (e.g., +.15) is important, whereas a strong
correlation between how much children like vanilla and chocolate ice cream (e.g., +.70) may not be
so important.

The scattergrams presented in Figure 8.1 represent very strong positive and negative
correlations (r = .97 and r = -.97 for the positive and negative correlations, respectively; r is the
symbol for the sample Pearson correlation coefficient). In Figure 8.2, a scattergram representing
virtually no correlation between the number of hours spent studying and the scores on the exam is
presented. Notice that there is no discernible pattern between the scores on the two variables. In
other words, the data presented in Figure 8.2 reveal that it would be virtually impossible to predict
an individual's test score simply by knowing how many hours the person studied for the exam.
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FIGURE 8.2 No correlation between hours spent studying and exam scores.

PEARSON CORRELATION COEFFICIENTS IN DEPTH

The first step in understanding how Pearson correlation coefficients are calculated is to notice that
we are concerned with a sample's scores on two variables at the same time. Returning to our
previous example of study time and test scores, suppose that we randomly select a sample of five
students and measure the time they spent studying for the exam and their exam scores. The data are
presented in Table 8.1 (with a scattergram in Figure 8.3).

TABLE 8.1 Data for correlation coefficient.

Hours Spent Studying
(X Variable)

Student 1

Student 2

Student 3

Student 4

Student 5

5

6

7

8

9

Exam Score
(Y Variable)

80

85

70

90

85

For these data to be used in a correlation analysis, it is critical that the scores on the two
variables are paired. That is, for each student in my sample, the score on the x variable (hours spent
studying) is paired with his or her own score on the 7 variable (exam score). If I want to determine
the relation between hours spent studying and exam scores, I cannot pair Student 1's hours spent
studying with Student 4's test score. I must match each student's score on the X variable with his or
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her own score on the Y variable. Once I have done this, I can determine whether, on average, hours
spent studying is related to exam scores.

FIGURE 8.3 Scattergram of data from Table 8.1.

Calculating the Correlation Coefficient

There are several different formulas that can be used to calculate Pearson product-moment
correlation coefficients. These formulas produce the same result and differ only in their ease of use.
In fact, none of them is particularly easy to use. I present one of them here to illustrate the principles
of correlation coefficients. Should you find yourself in need of knowing the relation between two
variables, I recommend that you use a calculator or statistics program that generates correlation
coefficients for you.

The formula presented in Table 8.2 requires that you standardize your variables (see
Chapter 5). Remember that when you standardize a variable, you are simply subtracting the mean
from each score in your sample and dividing by the standard deviation. What this does is provide a z
score for each case in the sample. Those members of the sample with scores below the mean will
have negative z scores, whereas those members of the sample with scores above the mean will have
positive 2 scores.

TABLE 8.2 Definitional formula for Pearson correlation coefficient.

where r - Pearson product-moment correlation coefficient
Zx = a z score for variable X
Zy = a paired z score for variable Y
N = the number of pairs of X and Y scores

Notice that this formula looks similar to some of the other formulas that we have already
encountered. For example, the denominator is N, which is the number of pairs of scores (i.e., the
number of cases in the sample). Whenever we divide by N, we are finding an average. This was
true when we examined the formula for the mean in Chapter 2 and the formulas for variance and
standard deviation in Chapter 3. So we know that the correlation coefficient will be an average of
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some kind. But what is it an average of? Now take a look at the numerator. Here, we see that we
must find the sum (E) of something. Recall that when discussing the formulas for the variance and
standard deviation in Chapter 3, we also encountered this summation sign in the numerator. There,
we had to find the sum of the squared deviations between each individual score and the mean. But
in the formula for computing the correlation coefficient, we have to find the sum of the cross
products between the z scores on each of the two variables being examined for each case in the
sample. When we multiply each individual's score on one variable with that individual's score on
the second variable (i.e., find a cross product), sum those across all of the individuals in the sample,
and then divide by N, we have an average cross product, and this is known as covariance. If we
standardize this covariance, we end up with a correlation coefficient. In the formula provided in
Table 8.2, we simply standardized the variables before we computed the cross products, thereby
producing a standardized covariance statistic, which is a correlation coefficient.

In this formula, notice what is happening. First, we are multiplying the paired z scores
together. When we do this, notice that if an individual case in the sample has scores above the mean
on each of the two variables being examined, the two z scores being multiplied will both be positive,
and the resulting cross product will also be positive. Similarly, if an individual case has scores
below the mean on each of the two variables, the z scores being multiplied will both be negative, and
the cross product will again be positive. Therefore, if we have a sample where low scores on one
variable tend to be associated with low scores on the other variable, and high scores on one variable
tend to be associated with high scores on the second variable, then when we add up the products
from our multiplications, we will end up with a positive number. This is how we get a positive
correlation coefficient.

Now consider what happens when high scores on one variable are associated with low
scores on the second variable. If an individual case in a sample has a score that is higher than the
average on the first variable (i.e., a positive z score) and a score that is below the mean on the second
variable (i.e., a negative z score), when these two z scores are multiplied together, they will produce
a negative product. If, for most of the cases in the sample, high scores on one variable are associated

with low scores on the second variable, the sum of the products of the z scores [E(zxzy)] will be
negative. This is how we get a negative correlation coefficient.

What the Correlation Coefficient Does, and Does Not, Tell Us

Correlation coefficients such as the Pearson are very powerful statistics. They allow us to determine
whether, on average, the values on one variable are associated with the values on a second variable.
This can be very useful information, but people, including social scientists, are often tempted to
ascribe more meaning to correlation coefficients than they deserve. Namely, people often confuse
the concepts of correlation and causation. Correlation (co-relation) simply means that variation in
the scores on one variable correspond with variation in the scores on a second variable. Causation
means that variation in the scores on one variable cause or create variation in the scores on a second
variable.

When we make the leap from correlation to causation, we may be wrong. As an example, I
offer this story, which I heard in my introductory psychology class. As the story goes, one winter
shortly after World War II, there was an explosion in the number of storks nesting in some northern
European country (I cannot remember which). Approximately 9 months later, there was a large
jump in the number of babies that were born. Now, the link between storks and babies being what it
is, many concluded that this correlation between the number of storks and the number of babies
represented a causal relationship. Fortunately, science tells us that babies do not come from storks
after all, at least not human babies. However, there is something that storks and babies have in
common: Both can be "summoned" by cold temperatures and warm fireplaces. It seems that storks
like to nest in warm chimneys during cold winters. As it happens, cold winter nights also foster
baby-making behavior. The apparent cause-and-effect relationship between storks and babies was in
fact caused by a third variable: a cold winter.

For a more serious example, we can look at the relationship between SAT scores and first-
year college grade point average. The correlation between these two variables is about .40.
Although these two variables are moderately correlated, it would be difficult to argue that higher
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SAT scores cause higher achievement in the first year of college. Rather, there is probably some
other variable, or set of variables, responsible for this relationship. For example, we know that
taking a greater number of advanced math courses in high school is associated with higher SAT
scores and with higher grades in first-year math courses in college.

The point of these examples is simple: Evidence of a relationship between two variables
(i.e., a correlation) does not necessarily mean that there is a causal relationship between the two
variables. However, it should also be noted that a correlation between two variables is a necessary
ingredient of any argument that the two variables are causally related. In other words, I cannot
claim that one variable causes another (e.g., that smoking causes cancer) if there is no correlation
between smoking and cancer. If I do find a correlation between smoking and cancer, I must rule out
other factors before I can conclude that it is smoking that causes cancer.

In addition to the correlation-causation issue, there are a few other important features of
correlations worth noting. First, simple Pearson correlations are designed to examine linear
relations among variables. In other words, they describe average straight relations among variables.
For example, if you find a positive correlation between two variables, you can predict how much the
scores in one variable will increase with each corresponding increase in the second variable. But not
all relations between variables are linear. For example, there is a curvilinear relationship between
anxiety and performance on a number of academic and nonacademic behaviors. When taking a math
test, for example, a little bit of anxiety actually may help performance. However, once a student
becomes too nervous, this anxiety can interfere with performance. We call this a curvilinear
relationship because what began as a positive relationship between performance and anxiety at lower
levels of anxiety becomes a negative relationship at higher levels of anxiety. This curvilinear
relationship is presented graphically in Figure 8.4. Because correlation coefficients show the
average relation between two variables, when the relationship between two variables is curvilinear,
the correlation coefficient can be quite small, suggesting a weaker relationship than may actually
exist.

FIGURE 8.4 A curvilinear relationship.

Another common problem that arises when examining correlation coefficients is the
problem of truncated range. This problem is encountered when the scores on one or both of the
variables in the analysis do not have much variety in the distribution of scores, possibly due to a
ceiling or floor effect. For example, suppose that I gave a sample of students a very easy test with a
possible high score of 100. Then suppose I wanted to see if there was a correlation between scores
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on my test and how much time students spent studying for the test. Suppose I got the following data,
presented in Table 8.3.

In this example, all of my students did well on the test, whether they spent many hours
studying for it or not. Because the test was too easy, a ceiling effect may have occurred, thereby
truncating the range of scores on the exam. Although there may be a relationship between how
much time students spent studying and their knowledge of the material, my test was not sensitive
enough to reveal this relationship. The weak correlation that will be produced by the data in Table
8.3 may not reflect the true relationship between how much students study and how much they learn.

TABLE 8.3 Data for studying-exam score correlation.

Hours Spent Studying
(X Variable)

Student 1

Student 2

Student 3

Student 4

Student 5

0

2

4

7

10

Exam Score
(Y Variable)

95

95

100

95

100

Statistically Significant Correlations

When researchers calculate correlation coefficients, they often want to know whether a correlation
found in sample data represents the existence of a relationship between two variables in the
population from which the sample was selected. In other words, they want to test whether the
correlation coefficient is statistically significant (see Chapter 7 for a discussion of statistical
significance). To test whether a correlation coefficient is statistically significant, the researcher
begins with the null hypothesis that there is absolutely no relationship between the two variables in
the population, or that the correlation coefficient in the population equals zero. The alternative
hypothesis is that there is, in fact, a statistical relationship between the two variables in the
population and that the population correlation coefficient is not equal to zero. So what we are testing
here is whether our correlation coefficient is statistically significantly different from 0. These two
competing hypotheses can be expressed with symbols:

where p is rho, the population correlation coefficient.

The t distribution is used to test whether a correlation coefficient is statistically significant.
Therefore, we must conduct a t test. As with all t tests, the t test that we use for correlation
coefficients involves a ratio, or fraction. The numerator of the fraction is the difference between two
values. The denominator is the standard error. When we want to see whether a sample correlation
coefficient is significantly different from zero, the numerator of the t test formula will be the sample

correlation coefficient, r, minus the hypothesized value of the population correlation coefficient (p),
which in our null hypothesis is zero. The denominator will be the standard error of the sample
correlation coefficient:
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where r is the sample correlation coefficient,
p is the population correlation coefficient,

sr is the standard error of the sample correlation coefficient.

Fortunately, with the help of a little algebra, we do not need to calculate sr to calculate the t

value for correlation coefficients. First, for the sake of knowledge, let me present the formula for sr:

s r =J(1 - r 2 )+(N-2)

where r2 is the correlation coefficient squared and
N is the number of cases in the sample.

The formula for calculating the t value is

where degrees of freedom is the number of cases in the sample minus two (df=N- 2)

To illustrate this formula in action, let's consider an example. Some research suggests that
there is a relationship between the number of hours of sunlight people are exposed to during the day
and their mood. People living at extreme northern latitudes, for example, are exposed to very little
sunlight in the depths of winter days and weeks without more than a few hours of sunlight per day.
There is some evidence that such sunlight deprivation is related to feelings of depression and
sadness. In fact, there is even a name for the condition: seasonal affective disorder, or SAD. To
examine this relationship for myself, I randomly select 100 people from various regions of the
world, measure the time from sunrise to sunset on a given day where each person lives, and get a
measure of each person's mood on a scale from 1 to 10 (1 = "very sad," 10 = "very happy").
Because the members of my sample live at various latitudes, the number of daylight hours will vary.
If I conduct my study in January, those participants living in the north will have relatively short
days, whereas those living in the south will have long days.

Suppose that I compute a Pearson correlation coefficient with these data and find that the
correlation between number of sunlight hours in the day and scores on the mood scale is r = .25. Is
this a statistically significant correlation? To answer that question, we must find a t value associated
with this correlation coefficient and determine the probability of obtaining a t value of this size by
chance (see Chapter 7). In this example,
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To see whether this t value is statistically significant, we must look at the table of t values
in Appendix B. There we can see that, because our degrees of freedom equals 98, we must look at t
values in both the df- 60 row and the df- 120 row. Looking at the df = 60 row, we can see that a t
value of 2.56 has a probability of between .01 and .02 (for a two-tailed test). We get the same results
when looking in the df = 120 row. Therefore, we conclude that our p value is between .01 and .02.
If our alpha level is the traditional .05, we would conclude that our correlation coefficient is
statistically significant. In other words, we would conclude that, on the basis of our sample statistic,
in the larger population of adults the longer the daylight hours, the better their mood, on average.
We could convey all of that information to the informed reader of statistics by writing, "We found a
significant relationship between number of daylight hours and mood (r = .25, t(98) = 2.56, p < .05)."

This example also provides a good opportunity to once again remind you of the dangers of
assuming that a correlation represents a causal relationship between two variables. Although it may
well be that longer days cause the average adult to feel better, these data do not prove it. An
alternative causal explanation for our results is that shorter days are also associated with colder days,
whereas longer days are generally associated with warmer days. It may be the case that warmth
causes better moods and the lack of warmth causes depression and sadness. If people had warm,
short days, they might be just as happy as if they had warm, long days. So remember: Just because
two variables are correlated, it does not mean that one causes the other.

The Coefficient of Determination

Although correlation coefficients give an idea of the strength of the relationship between two
variables, they often seem a bit nebulous. If you get a correlation coefficient of .40, is that a strong
relationship? Fortunately, correlation coefficients can be used to obtain a seemingly more concrete
statistic: the coefficient of determination. Even better, it is easy to calculate.

When we want to know if two variables are related to each other, we are really asking a
somewhat more complex question: Are the variations in the scores on one variable somehow
associated with the variations in the scores on a second variable? Put another way, a correlation
coefficient tells us whether we can know anything about the scores on one variable if we already
know the scores on a second variable. In common statistical vernacular, what we want to be able to
do with a measure of association, like a correlation coefficient, is be able to explain some of the
variance in the scores on one variable based on our knowledge of the scores on a second variable.
The coefficient of determination tells us how much of the variance in the scores of one variable can
be understood, or explained, by the scores on a second variable.

One way to conceptualize explained variance is to understand that when two variables are
correlated with each other, they share a certain percentage of their variance. Consider an example.
If we have a sample of 10 people, and we measure their height and their weight, we've got 10 scores
on each of two variables. Assuming that my 10 people differ in how tall they are, there will be some
total amount of variance in their scores on the height variable. There will also be some total amount
of variance in their scores on the weight variable, assuming that they do not all weigh the same
amount. These total variances are depicted in Figure 8.5 as two full squares, each representing
100% of the variance in their respective variables. Notice how they do not overlap.
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FIGURE 8.5 Uncorrelated variables.

When two variables are related, or correlated, with each other, there is a certain amount of
shared variance between them. In Figure 8.5, the two squares are not touching each other,
suggesting that all of the variance in each variable is independent of the other variable. There is no
overlap. But when two variables are correlated, there is some shared variance. The stronger the
correlation, the greater the amount of shared variance, and the more variance you can explain in one
variable by knowing the scores on the second variable. The precise percentage of shared, or
explained, variance can be determined by squaring the correlation coefficient. This squared
correlation coefficient is known as the coefficient of determination. Some examples of different
coefficients of determination are presented in Figure 8.6. The stronger the correlation, the greater
the amount of shared variance, and the higher the coefficient of determination. It is still important to
remember that even though the coefficient of determination is used to tell us how much of the
variance in one variable can be explained by the variance in a second variable, coefficients of
determination do not necessarily indicate a causal relationship between the two variables.

FIGURE 8.6 Examples of different coefficients of determination.
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A BRIEF WORD ON OTHER TYPES OF CORRELATION COEFFICIENTS

Although Pearson correlation coefficients are probably the most commonly used and reported in the
social sciences, they are limited by the requirement that both variables are measured on interval or
ratio scales. Fortunately, there are methods available for calculating the strength of the relationship
between two variables even if one or both variables are not measured using interval or ratio scales.
In this section, I briefly describe three of these "other" correlation coefficients. It is important to
note that all of these statistics are very similar to the Pearson correlation coefficient and each
produces a correlation coefficient that is similar to the Pearson r. They are simply specialized
versions of the Pearson correlation coefficient that can be used when one or both of the variables are
not measured using interval or ratio scales.

Point Biserial

When one of our variables is a continuous variable (i.e., measured on an interval or ratio scale) and
the other is a two-level categorical (a.k.a. nominal) variable (also known as a dichotomous
variable), we need to calculate a point-biserial correlation coefficient. This coefficient is a
specialized version of the Pearson correlation coefficient discussed earlier in this chapter. For
example, suppose I want to know whether there is a relationship between whether a person owns a
car (yes or no) and their score on a written test of traffic rule knowledge, such as the tests one must
pass to get a driver's license. In this example, we are examining the relation between one
categorical variable with two categories (whether one owns a car) and one continuous variable
(one's score on the driver's test). Therefore, the point-biserial correlation is the appropriate statistic
in this instance.

Phi

Sometimes researchers want to know whether two dichotomous variables are correlated. In this

case, we would calculate a phi coefficient (O), which is another specialized version of the Pearson r.
For example, suppose I want to know whether gender (male, female) is associated with whether one
smokes cigarettes or not (smoker, nonsmoker). In this case, with two dichotomous variables, I
would calculate a phi coefficient. (Note: Those readers familiar with chi-square analysis will notice
that two dichotomous variables can also be analyzed using chi-square.)

Spearman Rho

Sometimes data are recorded as ranks. Because ranks are a form of ordinal data, and the other
correlation coefficients discussed so far involve either continuous (interval, ratio) or dichotomous
variables, we need a different type of statistic to calculate the correlation between two variables that
use ranked data. In this case, the Spearman rho, a specialized form of the Pearson r, is appropriate.
For example, many schools use students' grade point averages (a continuous scale) to rank students
(an ordinal scale). In addition, students' scores on standardized achievement tests can be ranked. To
see whether a students' rank in their school is related to their rank on the standardized test, a
Spearman rho coefficient can be calculated.

EXAMPLE: THE CORRELATION BETWEEN GRADES AND TEST SCORES

Student achievement can be measured in a variety of ways. One common method of evaluating
students is to assign them letter grades. These grades can be converted into numbers (e.g., A = 4, B
= 3, etc.). In high school, students' grades across all of their classes (e.g., mathematics, science,
social studies, etc.) can be combined into an average, thereby creating a grade point average (GPA),
which is measured on a continuous, interval scale ranging from a possible low of 0 to a possible high
of 4.33 (if the school gives grades of A+). Because grades are assigned by teachers, they are
sometimes considered to be overly subjective. That is, different teachers may assign different grades
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to the same work. Similarly, there are some individual teachers that may give different grades to
two students who produce the same quality of work. To ostensibly overcome such subjectivity,
another form of assessment, the standardized test, was created. With this type of assessment, all
students of a given grade level answer the same questions and their responses are scored by
computer, thereby removing the human element and its subjectivity.

Some argue that standardized tests of ability and teacher-assigned grades generally measure
the same thing. That is, for the most part, bright students will score well both on the test and in their
grades. Others argue that standardized tests of ability and teacher-assigned grades really measure
somewhat different things. Whereas standardized tests may measure how well students answer
multiple-choice questions, teachers have the benefit of knowing students, and can take things like
students' effort, creativity, and motivation into account when assigning grades. The first step in
discovering which of these two viewpoints is more accurate is to see how strongly grades and test
scores are related to each other. If there is a very strong correlation between the two, then both
grades and test scores may in fact be measuring the same general trait. But if the two scores are only
moderately correlated, perhaps they really do measure separate constructs. By constructs, I mean the
actual "thing" that we are trying to measure. In the preceding example, if grades and test scores are
strongly correlated, we could argue that both of these measures represent some underlying construct,
such as "intelligence" or "academic ability." On the other hand, if these two variables are not
strongly correlated, they each may represent different things, or constructs.

My colleague, Carol Giancarlo, and I collected data from a sample of 314 eleventh-grade
students at a high school in California. Among the data we collected were their cumulative GPAs
(i.e., their GPAs accumulated from the time they began high school until the time the data were
collected). In addition, we gave students the Naglieri Nonverbal Ability Test (NNAT; Naglieri,
1996), a nonverbal test of general mental reasoning and critical thinking skills. To see if there was a
statistically significant correlation between these two measures of ability, I used the SPSS statistical
software program to calculate a correlation coefficient and a p value. The SPSS printout from this
analysis is presented in Table 8.5.

The results presented in Table 8.5 provide several pieces of information. First, there are
three correlation coefficients presented. The correlations on the diagonal show the correlation
between a single variable and itself. Therefore, the first correlation coefficient presented reveals mat
GPA is correlated with itself perfectly (r = 1.0000). Because we always get a correlation of 1.00
when we correlate a variable with itself, these correlations presented on the diagonal are
meaningless. That is why there is not a p value reported for them. The numbers in the parentheses,
just below the correlation coefficients, report the sample size. There were 314 eleventh-grade
students in this sample. The correlation coefficient that is off the diagonal is the one we're interested
in. Here, we can see that students' GPAs were moderately correlated with their scores on the
Naglieri test (r = .4291). This correlation is statistically significant, with a p value of less than .0001
(p < .0001).

TABLE 8.4 SPSS printout of correlation analysis.

GPA Naglieri

GPA

Naglieri

1
(
P

(
P

.0000
314)

— .

.4291
314)

= .000

1.0000
( 314)
P = •

To gain a clearer understanding of the relationship between GPA and Naglieri test scores,
we can calculate a coefficient of determination. We do this by squaring the correlation coefficient.
When we square this correlation coefficient (.4291 x .4291 = .1841), we see that GPA explains a
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little bit more than 18% of the variance in the Naglieri test scores. Although this is a substantial
percentage, it still leaves more than 80% of the ability test scores unexplained. Because of this large
percentage of unexplained variance, we must conclude that teacher-assigned grades reflect
something substantially different from general mental reasoning abilities and critical thinking skills,
as measured by the Naglieri test.

WRAPPING UP AND LOOKING FORWARD

Correlation coefficients, in particular Pearson correlation coefficients, provide a way to determine
both the direction and the strength of the relationship between two variables measured on a
continuous scale. This index can provide evidence that two variables are related to each other, or
that they are not, but does not, in and of itself, demonstrate a causal association between two
variables. In this chapter, I also introduced the concepts of explained or shared variance and the
coefficient of determination. Determining how much variance in one variable is shared with, or
explained by, another variable is at the core of all of the statistics that are discussed in the remaining
chapters of this book. In particular, correlation coefficients are the precursors to the more
sophisticated statistics involved in multiple regression (Chapter 13). In the next chapter, we examine
t tests, which allow us to look at the association between a two-category independent variable and a
continuous dependent variable.

GLOSSARY OF TERMS AND SYMBOLS FOR CHAPTER 8

Causation: The concept that variation in one variable causes variation in another variable.
Coefficient of determination: A statistic found by squaring the Pearson correlation coefficient that

reveals the percentage of variance explained in each of the two correlated variables by the
other variable.

Continuous variables: Variables that are measured using an interval or ratio scale.
Correlation coefficient: A statistic that reveals the strength and direction of the relationship

between two variables.
Covariance: The average of the cross-products of a distribution.
Cross products: The product of multiplying each individual's scores on two variables.
Curvilinear: A relationship between two variables that is positive at some values but negative at

other values.
Degrees of freedom: Roughly, the minimum amount of data needed to calculate a statistic. More

practically, it is a number, or numbers, used to approximate the number of observations in
the data set for the purpose of determining statistical significance.

Dichotomous variable: A categorical, or nominal, variable with two categories.
Direction: A characteristic of a correlation that describes whether two variables are positively or

negatively related to each other.
Explained variance: The percentage of variance in one variable that we can account for, or

understand, by knowing the value of the second variable in the correlation.
Negative correlation: A descriptive feature of a correlation indicating that as scores on one of the

correlated variables increase, scores on the other variable decrease, and vice versa.
Pearson product-moment correlation coefficient: A statistic indicating the strength and direction

of the relation between two continuous variables.
Perfect negative correlation: A correlation coefficient of r = -1.0. Occurs when the increasing

scores of a given size on one of the variables in a correlation are associated with decreasing
scores of a related size on the second variable in the correlation (e.g., for each 1-unit
increase in the score on variable X there is a corresponding 2-unit decrease in the scores on
variable Y).

Perfect positive correlation: A correlation coefficient of r = +1.0. Occurs when the increasing
scores of a given size on one of the variables in a correlation are associated with increasing
scores of a related size on the second variable in the correlation (e.g., for each 1-unit
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increase in the score on variable X there is a corresponding 2-unit increase in the scores on
variable Y).

Phi coefficient: The coefficient describing the correlation between two dichotomous variables.
Point-biserial coefficient: The coefficient describing the relationship between one interval or ratio

scaled (i.e., continuous) variable and one dichotomous variable.
Positive correlation: A characteristic of a correlation; when the scores on the two correlated

variables move in the same direction, on average. As the scores on one variable rise, scores
on the other variable rise, and vice versa.

Scattergram: A graphical depiction of each member of a distribution's score on two variables
simultaneously.

Shared variance: The concept of two variables overlapping such that some of the variance in each
variable is shared. The stronger the correlation between two variables, the greater the
amount of shared variance between them.

Spearman rho coefficient: The correlation coefficient used to measure the association between two
variables measured on an ordinal scale (e.g., ranked data).

Strength, magnitude: A characteristic of the correlation with a focus on how strongly two
variables are related.

Truncated range: When the responses on a variable are clustered near the top or the bottom of the
possible range of scores, thereby limiting the range of scores and possibly limiting the
strength of the correlation.

z score: Standardized score.

r The sample Pearson correlation coefficient.

p Rho, the population correlation coefficient.

sr The standard error of the correlation coefficient.

r2 The coefficient of determination.

df Degrees of freedom.

O The phi coefficient, which is the correlation between two dichotomous variables.
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CHAPTER 9

t TESTS

What Is a t Test?

Because there is a distinction between the common statistical vernacular definition of t tests and the
more technical definition, t tests can be a little confusing. The common-use definition or description
of t tests is simply comparing two means to see if they are significantly different from each other.
The more technical definition or description of a t test is any statistical test that uses the t, or
Student's t, family of distributions. In this chapter, I will briefly describe the family of distributions
known as the t distribution. Then I will discuss the two most commonly conducted t tests, the
independent samples t test and the paired or dependent samples t test.

t Distributions

In Chapters 4 and 5, I discussed the normal distribution and how to use the normal distribution to
find z scores. The probabilities that are based on the normal distribution are accurate when (a) the
population standard deviation is known, and/or (b) we have a large sample (i.e., n > 120). If neither
of these is true, then we cannot assume that we have a nicely shaped bell curve and we cannot use
the probabilities that are based on this normal distribution. Instead, we have to adjust our probability
estimates by taking our sample size into account. As I discussed in Chapter 6, we are fortunate to
have a set of distributions that have already been created for us that do this, and this is known as the
family of t distributions. Which specific t distribution you use for a given problem depends on the
size of your sample. There is a table of probabilities based on the different t distributions in
Appendix B.

The Independent Samples t Test

One of the most commonly used t tests is the independent samples t test. You use this test when you
want to compare the means of two independent samples on a given variable. For example, if you
wanted to compare the average height of 50 randomly selected men to that of 50 randomly selected
women, you would conduct an independent samples t test. Note that the sample of men is not
related to the sample of women, and there is no overlap between these two samples (i.e., one cannot
be a member of both groups). Therefore, these groups are independent, and an independent samples
t test is appropriate. To conduct an independent samples t test, you need one categorical or nominal
independent variable and one continuous or intervally scaled dependent variable. A dependent
variable is a variable on which the scores may differ, or depend on the value of the independent
variable. An independent variable is the variable that may cause, or simply be used to predict, the
value of the dependent variable. The independent variable in a t test is simply a variable with two
categories (e.g., men and women, fifth graders and ninth graders, etc.). In this type of t test, we want
to know whether the average scores on the dependent variable differ according to which group one
belongs to (i.e., the level of the independent variable). For example, we may want to know if the
average height of people (height is the dependent, continuous variable) depends on whether the
person is a man or a woman (gender of the person is the independent, categorical variable).

-89-



- 90 - CHAPTER 9

Dependent Samples t Test

A dependent samples t test is also used to compare two means on a single dependent variable.
Unlike the independent samples test, however, a dependent samples t test is used to compare the
means of a single sample or of two matched or paired samples. For example, if a group of students
took a math test in March and that same group of students took the same math test two months later
in May, we could compare their average scores on the two test dates using a dependent samples t
test. Or, suppose that we wanted to compare a sample of boys' Scholastic Aptitude Test (SAT)
scores with their fathers' SAT scores. In this example, each boy in our study would be matched with
his father. In both of these examples, each score is matched, or paired with, a second score.
Because of this pairing, we say that the scores are dependent upon each other, and a dependent
samples t test is warranted.

INDEPENDENT SAMPLES t TESTS IN DEPTH

To understand how t tests work, it may be most helpful to first try to understand the conceptual
issues and then move to the more mechanical issues involved in the formulas. Because the
independent and dependent forms of the t tests are quite different, I discuss them separately. Let's
begin with the independent samples t test.

Conceptual Issues with the Independent Samples t Test

The most complicated conceptual issue in the independent samples t test involves the standard error
for the test. If you think about what this t test does, you can see that it is designed to answer a fairly
straightforward question: Do two independent samples differ from each other significantly in their
average scores on some variable? Using an example to clarify this question, we might want to know
whether a random sample of 50 men differs significantly from a random sample of 50 women in
their average enjoyment of a new television show. Suppose that I arranged to have each sample
view my new television show and than rate, on a scale from 1 to 10, how much they enjoyed the
show, with higher scores indicating greater enjoyment. In addition, suppose that my sample of men
gave the show an average rating of 7.5 and my sample of women gave the show an average rating of
6.5.

In looking at these two means, I can clearly see that my sample of men had a higher mean
enjoyment of the television show than did my sample of women. But if you'll look closely at my
earlier question, I did not ask simply whether my sample of men differed from my sample of women
in their average enjoyment of the show. I asked whether they differed significantly in their average
enjoyment of the show. The word significantly is critical in much of statistics, so I discuss it briefly
here as it applies to independent t tests (for a more thorough discussion, see Chapter 7).

When I conduct an independent samples t test, I generally must collect data from two
samples and compare the means of these two samples. But I am interested not only in whether these
two samples differ on some variable. I am also interested in whether the differences in the two
sample means are large enough to suggest that there are also differences in the two populations that
these samples represent. So, returning to our previous example, I already know that the 50 men in
my sample enjoyed the television show more, on average, than did the 50 women in my sample. So
what? Who really cares about these 50 men and these 50 women, other than their friends and
families? What I really want to know is whether the difference between these two samples of men
and women is large enough to indicate that men in general (i.e., the population of men that this
sample represents) will like the television show more than women in general (i.e., the population of
women that this sample represents). In other words, is this difference of 1.0 between my two
samples large enough to represent a real difference between the populations of men and women?
The way of asking this question in statistical shorthand is to ask, "Is the difference between the
means of these two samples statistically significant?" (or significant for short).

To answer this question, I must know how much difference I should expect to see between
two samples of this size drawn from these two populations. If I were to randomly select a different
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where X1 is the mean for sample 1

X2 is the mean for sample 2

Sx1-x2 is the standard error of the difference between the means

The Standard Error of the Difference between Independent Sample Means

The standard error of the difference between independent sample means is a little bit more complex
than the standard error of the mean discussed in Chapter 6. That's because instead of dealing with a
single sample, now we have to find a single standard error involving two samples. Generally
speaking, this involves simply combining standard errors of the two samples. In fact, when the two
samples are roughly the same size, the standard error for the difference between the means is similar
to simply combining the two sample standard errors of the mean, as the formula presented in Table
9.1 indicates.

When the two samples are not roughly equal in size, there is a potential problem with using
the formulas in Table 9.1 to calculate the standard error. Because these formulas essentially blend
the standard errors of each sample together, they also essentially give each sample equal weight and
treat the two samples as one new, larger sample. But if the two samples are not of equal size, and
especially if they do not have equal standard deviations, then we must adjust the formula for the
standard error to take these differences into account. The only difference between this formula and
the formula for the standard error when the sample sizes are equal is that the unequal sample size
formula adjusts for the different sample sizes. This adjustment is necessary to give the proper
weight to each sample's contribution to the overall standard error. Independent t tests assume that
the size of the variance in each sample is about equal. If this assumption is violated, and one sample
is considerably larger than the other, you could end up in a situation where a little sample with a
large variance is creating a larger standard error than it should in the independent t test. To keep this
from happening, when sample sizes are not equal, the formula for calculating the standard error of
the independent t test needs to be adjusted to give each sample the proper weight. (If the variances
of the two samples are grossly unequal, the sample sizes very different, and/or the data are not
normally distributed, a nonparametric alternative to the t test—the Mann-Whitney U test—should be
considered.)

sample of 50 men and a different sample of 50 women, I might get the opposite effect, where the
women outscore the men. Or, I might get an even larger difference, where men outscore the women
by 3 points rather than 1. So the critical question here is this: What is the average expected
difference between the means of two samples of this size (i.e., 50 each) selected randomly from these
two populations? In other words, what is the standard error of the difference between the
means?

As I have said before, understanding the concept of standard error provides the key to
understanding how inferential statistics work, so take your time and reread the preceding four
paragraphs to make sure you get the gist. Regarding the specific case of independent samples t tests,
we can conclude that the question we want to answer is whether the difference between our two
sample means is large or small compared to the amount of difference we would expect to see just by
selecting two different samples. Phrased another way, we want to know whether our observed
difference between our two sample means is large relative to the standard error of the difference
between the means. The general formula for this question is as follows:

_ observed difference between sample means

standard error of the difference between the means

or
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In practice, let us hope that you will never need to actually calculate any of these standard
errors by hand. Because computer statistical programs compute these for us these days, it may be
more important to understand the concepts involved than the components of the formulas
themselves. In this spirit, try to understand what the standard error of the difference between
independent samples means is and why it may differ if the sample sizes are unequal. Simply put, the
standard error of the difference between two independent samples means is the average expected
difference between any two samples of a given size randomly selected from a population on a given
variable. In our example comparing men's and women's enjoyment of the new television show, the
standard error would be the average (i.e., standard) amount of difference (i.e., error) we would
expect to find between any two samples of 50 men and 50 women selected randomly from the larger
populations of men and women.

TABLE 9.1 Formula for calculating the standard error of the difference between

independent sample means when the sample sizes are roughly equal (i.e., n1 ~ n2).

Determining the Significance of the t Value for an Independent Samples t Test

Once we calculate the standard error and plug it into our formula for calculating the t value, we are
left with an observed t value. How do we know if this t value is statistically significant? In other
words, how do we decide if this t value is large enough to indicate that the difference between my
sample means probably represents a real difference between my population means? To answer this
question, we must find the probability of getting a t value of that size by chance. In other words,
what are the odds that the difference between my two samples means is just due to the luck of the
draw when I selected these two samples at random rather than some real difference between the two
populations? Fortunately, statisticians have already calculated these odds for us, and a table with
such odds is included in Appendix B. Even more fortunately, statistical software programs used on
computers calculate these probabilities for us, so there will hopefully never be a need for you to use
Appendix B. I provide it here because I think the experience of calculating a t value by hand and
determining whether it is statistically significant can help you understand how t tests work.

In Chapter 5, we saw how statisticians generated probabilities based on the normal
distribution. With t distributions, the exact same principles are involved, except that now we have to
take into account the size of the samples we are using. This is because the shape of the t distribution
changes as the sample size changes, and when the shape of the distribution changes, so do the
probabilities associated with it. The way that we take the sample size into account in statistics is to
calculate degrees of freedom (df).. The explanation of exactly what a degree of freedom is may be a
bit more complicated than is worth discussing here (although you can read about it in most statistics
textbooks if you are interested). At this point, suffice it to say that in an independent samples t test,
you find the degrees of freedom by adding the two sample sizes together and subtracting 2. So the
formula is df- n1 + n2 - 2. Once you have your degrees of freedom and your t value, you can look
in the table of t values in Appendix B to see if the difference between your two sample means is
significant.

To illustrate this, let's return to our example comparing men's and women's enjoyment of
the new television program. Let's just suppose that the standard error of the difference between the
means is .40. When I plug this number into the t value formula, I get the following:

sx1 is the standard error of the mean for the first sample

sx2 is the standard error of the mean for the second sample
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Now that we have a t value and our degrees of freedom, we can look in Appendix B to find
the probability of getting a t value of this size (t = 2.50) by chance when we have 98 degrees of
freedom. Because 98 degrees of freedom is between 60 and 120, I will look in the df- 60 row to be
on the safe side. Choosing the smaller degrees of freedom gives me a more conservative test
(meaning that if my result is statistically significant at the df = 60 level, it will certainly be
significant at the df= 98 level). Looking across the d f = 6 0 row, and using the values for a two-
tailed test, I can see that my observed t value (t0 - 2.50) is between the critical t values of 2.390 and
2.660. I can see that the alpha levels associated with these two critical t values in Appendix B are
.02 and .01. Therefore, my table tells me that the probability of getting a t value this large by chance
(i.e., due strictly to random sampling) is between 1% and 2%. In other words, when we randomly
select two samples of 50 each from two different populations, we would expect to a t value of this
size less than 2% of the time when there is no real difference between the population means (for a
more thorough discussion of this issue, see Chapter 7). Because this is such a small probability, I
conclude that the difference between my sample of 50 men and my sample of 50 women that I
observed in the average ratings of enjoyment of the television show probably represents a real
difference between the larger populations of men and women rather than some fluke difference that
emerged simply because of who I happened to get in my samples (i.e., random sampling error; see
Figure 9.1).

FIGURE 9.1 Statistical significance of an observed t value.

It is important to remember that although this difference between the means was
statistically significant (if we were using an alpha level of .05), that does not necessarily mean that it
is practically significant (refer to the discussion about effect size in Chapter 7). Just as the standard
error of the mean is influenced by the size of the sample, the standard error of the difference between
the means is also affected by sample size. The larger the samples, the smaller the standard error and
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the more likely it is that you will find a statistically significant result. To determine whether this
difference between men and women is practically significant, we should consider the actual raw
score difference. Men in our sample scored an average of 1 point higher on a 10-point scale than did
women. Is that a big difference? Well, that is a judgment call. I would consider that a fairly
inconsequential difference because we are talking about preferences for a television show. I don't
consider a 1-point difference on a 10-point scale regarding television preferences to be important.
But potential advertisers might consider this a meaningful difference. Those wanting to advertise
female-oriented products may not select this show, which seems to appeal more to male viewers.

Another way to determine whether this difference in the means is practically significant is
to calculate an effect size. The formula for the effect size for an independent samples t test is
presented in Table 9.2. To calculate the effect size, you must first calculate the denominator. Using
our example where the sample size for one group is 50 and the standard error of the difference
between the means is .40, we get the following:

We can then plug this into the formula for the effect size, along with the two sample means:

So our effect size for this problem is .35, which would be considered a small- to medium-
size effect.

TABLE 9.2 Formula for the effect size for an independent samples t test.

where Xl is the mean for the first sample

X2 is the mean for the second sample

n1 is the sample size for one sample

s is the standard deviation estimate for the effect size
(sx - x 2) is the standard error of the difference between the means

PAIRED OR DEPENDENT SAMPLES t TESTS IN DEPTH

Most of what I wrote before about the independent samples t test applies to the paired or dependent
samples t test as well. We are still interested in determining whether the difference in the means that
we observe in some sample(s) on some variable represents a true difference in the population(s)
from which the sample(s) were selected. For example, suppose I wanted to know whether
employees at my widget-making factory are more productive after they return from a 2-week
vacation. I randomly select 30 of my employees and calculate the average number of widgets made
by each employee during the week before they go on vacation. I find that, on average, my
employees made 250 widgets each during the week. During the week after they return from
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vacation, I keep track of how many widgets is made by the same sample of 30 employees and find
that, on average, they made 300 widgets each during the week after returning from their vacations.

Just as with the independent samples t test, here I am concerned not only with whether this
sample of 30 employees made more or fewer widgets after their vacation. I can look at the
prevacation and postvacation averages and see that these 30 employees, on average, made an
average of 50 more widgets a week after their vacation. That is quite a lot. But I also want to know
whether what I observed in this sample represents a likely difference in the productivity of the larger
population of widget makers after a vacation. In other words, is this a statistically significant
difference? The only real distinction between this dependent samples t test and the independent
samples t test is that rather than comparing two samples on a single dependent variable, now I am
comparing the average scores of a single sample (i.e., the same group of 30 employees) on two
variables (i.e., prevacation widget-making average and postvacation widget-making average). To
make this comparison, I will again need to conduct a t test in which I find the difference between the
two means and divide by the standard error of the difference between two dependent sample means.
This equation looks like this:

_ observed difference between prevacation and postvacation means

standard error of the difference between the means

where X is the prevacation mean
Y is the postvacation mean

SD is the standard error of the difference between the means

The formula for calculating the standard error of the difference between the means for
dependent samples is slightly different than the one for independent samples, but the principles
involved (i.e., what the standard error represents) are the same. Keep in mind that if I were to
continually randomly select a sample of 30 widget makers and compare their prevacation and
postvacation productivity, I could generate a distribution of difference scores. For some samples,
there would be no difference between prevacation and postvacation productivity. For others, there
would be increases in productivity and for still other samples there would be decreases in
productivity. This distribution of difference scores (i.e., differences between prevacation and
postvacation averages) would have a mean and a standard deviation. The standard deviation of this
distribution would be the standard error of the differences between dependent samples. The formula
for this standard error is presented below in Table 9.3.

As you can see in Table 9.3, the easiest way to find the standard error is to follow a two-
step process. First, we can find the standard deviation of difference scores for my sample. Then, we
can divide this by the square root of the sample size to find the standard error. This formula is very
similar to the formula for finding the standard error of the mean.

Another difference between dependent and independent samples t tests can be found in the
calculation of the degrees of freedom. Whereas we had to add the two samples together and subtract
2 in the independent samples formula, for dependent samples we find the number of pairs of scores
and subtract 1. In our example of widget makers, we have 30 pairs of scores because we have two
scores for each person in the sample (one prevacation score and one postvacation score). In the case
of a paired t test where we have two paired samples (e.g., fathers and their sons), we use the same
formula for calculating the standard error and the degrees of freedom. We must simply remember to
match each score in one sample with a corresponding score in the second sample (e.g., comparing
each father's score with only his son's score).
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TABLE 9.3 Formula for the standard error of the difference between
dependent sample means.

where s-D is the standard error of the difference between dependent sample means

SD is the standard deviation of the difference between dependent sample means

D is the difference between each pair of X and Yscores (i.e., X- Y)
N is the number of pairs of scores

Once we've found our t value and degrees of freedom, the process for determining the
probability of finding a t value of a given size with a given number of degrees of freedom is exactly
the same as it was for the independent samples t test.

EXAMPLE: COMPARING BOYS' AND GIRLS' GRADE POINT AVERAGES

To illustrate how t tests work in practice, I provide one example of an independent samples t test and
one of a dependent samples t test using data from a longitudinal study conducted by Carol Midgley
and her colleagues. In this study, a sample of students were given surveys each year for several
years beginning when the students were in the fifth grade. In the examples that follow, I present two
comparisons of students' GPAs. The GPA is an average of students' grades in the four core
academic areas: math, science, English, and social studies. Grades were measured using a 13-point
scale with 13 = "A+" and 0 = "F".

In the first analysis, an independent samples t test was conducted to compare the average
grades of sixth-grade boys and girls. This analysis was conducted using SPSS computer software.
Thankfully, this program computes the means, standard error, t value, and probability of obtaining
the t value by chance. Because the computer does all of this work, there is nothing to compute by
hand, and I can focus all of my energy on interpreting the results. I present the actual results from
the t test conducted with SPSS in Table 9.4.

SPSS presents the sample sizes for boys (n = 361) and girls (n = 349) first, followed by the
mean, standard deviation ("SD"), and standard error of the mean ("SE of mean") for each group.
Next, SPSS reports the actual difference between the two sample means ("Mean Difference =

-1.5604"). This mean difference is negative because boys are the X\ group and girls are the
X2 group. Because girls have the higher mean, when we subtract the girls mean from the boys mean
(i.e., X1 -X2) we get a negative number. Below the mean difference we see the "Levene's Test for

Equality of Variances." 5 This test tells us that there is not a significant difference between the
standard deviations of the two groups on the dependent variable (GPA). Below the test for equality

When conducting independent samples t tests you must check whether the variances, or standard deviations, of the dependent
variable are equal between the two samples. It is important to know whether the scores on the dependent variable are more varied in
one sample than in the other because when we calculate the standard error for the independent samples t test, we are basically
combining the standard errors from the two samples. Because standard errors are determined in part by the size of the standard
deviation, if we combine two standard deviations that are quite different from each other the samples will not provide as accurate an
estimate of the population as they would have had they been similar. To adjust for this, we must reduce our degrees of freedom when
the variances of our two samples are not equal. SPSS does this automatically, as the example presented in Table 9.4 indicates.
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of variances, SPSS prints two lines with the actual t value (-7.45), the degrees of freedom ("df "=
708), the p value ("2-Tail Sig" = .000), and the standard error of the difference between the means
("SE of Diff" = .210 and .209). These two lines of statistics are presented separately depending on
whether we have equal or unequal variances. Because we had equal variances (as determined by
Levene's test), we should interpret the top line, which is identified by the "Equal" name in the left
column. Notice that these two lines of statistics are almost identical. That is because the variances
are not significantly different between the two groups. If they were different, the statistics presented
in these two lines would differ more dramatically.

TABLE 9.4 SPSS results of independent samples t test.

Number
Variable of Cases Mean SD SE of Mean

Sixth-Grade GPA

Male 361 6.5783 2.837 .149
Female 349 8.1387 2 .744 .147

Mean Difference = -1.5604

Levene's Test for Equality of Variances: F = .639 p = .424

t Test for Equality of Means

Variances t Value df 2-Tail Sig SE of Diff

Equal -7.45 708 .000 .210
Unequal -7.45 708.00 .000 .209

If we take the difference between the means and divide by the standard error of the
difference between the independent sample means, we get the following equation for t:

t = -1.5604 -.210

t = -7.45

The probability of getting a t value of -7.45 with 708 degrees of freedom is very small, as our p
value ("2-Tail Sig") of .000 reveals. Because t distributions are symmetrical (as are normal
distributions), there is the exact same probability of obtaining a given negative t value by chance as
there is of obtaining the same positive t value. For our purposes, then, we can treat negative t values
as absolute numbers. (If you were testing a 1-tailed alternative hypothesis, you would need to take
into account whether the t value is negative or positive. See Chapter 7 for a discussion of 1-tailed
and 2-tailed tests.)

The results of the t test presented in Table 9.4 indicate that our sample of girls had higher
average GPAs than did our sample of boys, and that this difference was statistically significant. In
other words, if we kept randomly selecting samples of these sizes from the larger populations of
sixth grade boys and girls and comparing their average GPAs, the odds of finding a difference
between the means that is this large if there is no real difference between the means of the two
populations is .000. This does not mean there is absolutely no chance. It just means that SPSS does
not print probabilities smaller than .001 (e.g., .00001). Because this is such a small probability, we
conclude that the difference between the two sample means probably represents a genuine difference
between the larger populations of boys and girls that these samples represent. Notice in Figure 9.2
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that this observed t value falls in the region of rejection, further indication that we should reject the
null hypothesis of no differences between the means of boys and girls. Girls have significantly
higher GPAs than boys (see Figure 9.2). Reminder: Statistical significance is influenced by sample
size. Our sample size was quite large, so a difference of about 1.56 points on a 14-point scale was
statistically significant. But is it practically significant? You can compute an effect size to help you
decide.

FIGURE 9.2 Results of t test comparing GPAs of girls and boys.

EXAMPLE: COMPARING FIFTH-AND SIXTH-GRADE GPAs

Our second example involves a comparison of students' grade point averages in fifth grade with the
same sample's GPAs a year later, at the end of sixth grade. For each student in the sample (n = 689),
there are two scores: one GPA for fifth grade, one GPA for sixth grade. This provides a total of 689
pairs of scores, and leaves us with 688 degrees of freedom (df- number of pairs - 1). A quick
glance at the means reveals that, in this sample, students had slightly higher average GPAs in fifth
grade (8.0800) than they did a year later in sixth grade (7.3487). But is this a statistically significant
difference? To know, we must conduct a dependent samples t test, which I did using SPSS (see
Table 9.5).

TABLE 9.5 SPSS results for dependent samples t test.

Variable

GPA5 . 2

GPA6.2

Number of
Pairs

689

2-Tail
Corr Sig.

.635 .000

Mean

8.0800

7.3487

SD

2.509

2.911

SE of Mean

.096

.111

Paired Differences

Mean SD SE of Mean / t Value df 2-Tail Sig.

.7312 2.343 .089 8.19 688 .000
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This analysis produced a t value of 8.19, which my SPSS program told me had a probability
of occurring less than one time in a thousand due to chance ("2-tail Sig" = .000). Therefore, I
conclude that the difference between fifth-and-sixth grade GPAs in my sample probably represents a
real difference between the GPAs of the larger population of fifth and sixth graders that my sample
represents. My observed t value falls squarely in the region of rejection (see Figure 9.3), indicating
that I should reject the null hypothesis of no difference between the means of fifth-and sixth-graders.

FIGURE 9.3 Results of paired, or dependent, samples t test.

Although this difference is statistically significant, notice that it is a difference of only
about .73 points on a 14-point scale. Also notice that the SPSS program also provides a measure of
the correlation between the two variables ("corr" = .635) and indicates that this correlation
coefficient is statistically significant. This tells you that students' fifth-grade GPA is strongly related
to their sixth-grade GPA, as you might expect. Finally, notice that at the bottom left of Table 9.5,
the difference between the means ("Paired Differences Mean"), the standard deviation of the
difference between the means ("SD"), and the standard error of the difference between the means
("SE of Mean") are presented. The differences between the means divided by the standard error of
the difference between the means produces the t value.

WRAPPING UP AND LOOKING FORWARD

The two types of t tests described in this chapter share two things in common. First, they both test
the equality of means. Second, they both rely on the t distribution to produce the probabilities used
to test statistical significance. Beyond that, these two types of t tests are really quite different. The
independent samples t test is used to examine the equality of means from two independent groups.
Such a test has much in common with one-way ANOVA (Chapter 10) and factorial ANOVA
(Chapter 11). In contrast, the dependent samples t test is used to examine whether the means of
related groups, or of two variables examined within the same group, are equal. This test is more
directly related to repeated-measures ANOVA as discussed in Chapter 12.
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GLOSSARY OF TERMS AND SYMBOLS FOR CHAPTER 9

Categorical, nominal: When variables are measured using categories, or names.
Continuous, intervally scaled: When variables are measured using numbers along a continuum

with equal distances, or values, between each number along the continuum.
Dependent variable: A variable for which the values may depend on, or differ by, the value of the

independent variable. When the dependent variable is statistically related to the
independent variable, the value of the dependent variable "depends" on, or is predicted by,
the value of the independent variable.

Dependent, or paired, samples t test: A test of the statistical similarity between the means of two
paired, or dependent, samles.

Independent samples t test: A test of the statistical similarity between the means of two
independent samples on a single variable.

Independent variable: A variable that may predict or produce variation in the dependent variable.
The independent variable may be nominal or continuous and is sometimes manipulated by
the researcher (e.g., when the researcher assigns participants to an experimental or control
group, thereby creating a two-category independent variable).

Matched, paired, dependent samples: When each score of one sample is matched to one score
from a second sample. Or, in the case of a single sample measured at two times, when each
score at Time 1 is matched with the score for the same individual at Time 2.

Matched, paired, dependent samples t test: Test comparing the means of paired, matched, or
dependent samples on a single variable.

Significant: Shortened form of the expression "statistically significant."
Standard error of the difference between the means: A statistic indicating the standard deviation

of the sampling distribution of the difference between the means.

Sx1-x2 The standard error of difference between two independent sample means.

SD The standard error of the difference between two dependent, or paired sample means.

SD The standard deviation of the difference between two dependent, or paired sample means.

df Degrees of freedom.
t The t value.



CHAPTER 10

ONE-WAY ANALYSIS OF VARIANCE

The purpose of a one-way analysis of variance (one-way ANOVA) is to compare the means of two
or more groups (the independent variable) on one dependent variable to see if the group means are
significantly different from each other. In fact, if you want to compare the means of two
independent groups on a single variable, you can use either an independent samples t test or a one-
way ANOVA. The results will be identical, except instead of producing a t value, the ANOVA will
produce an F ratio, which is simply the t value squared (more about this in the next section of this
chapter). Because the t test and the one-way ANOVA produce identical results when there are only
two groups being compared, most researchers use the one-way ANOVA only when they are
comparing three or more groups. To conduct a one-way ANOVA, you need to have a categorical (or
nominal) variable that has at least two independent groups (e.g., a race variable with the categories
African-American, Latino, and Euro-American) as the independent variable and a continuous
variable (e.g., achievement test scores) as the dependent variable.

Because the independent t test and the one-way ANOVA are so similar, people often
wonder, Why don't we just use t tests instead of one-way ANOVAs? Perhaps the best way to
answer this question is by using an example. Suppose that I want to go into the potato chip business.
I've got three different recipes, but because I'm new to the business and don't have a lot of money, I
can produce only one flavor. I want to see which flavor people like best and produce that one. I
randomly select 90 adults and randomly divide them into three groups. One group tries my BBQ-
flavored chips, the second group tries my ranch-flavored chips, and the third group tastes my cheese-
flavored chips. All participants in each group fill out a rating form after tasting the chips to indicate
how much they liked the taste of the chips. The rating scale goes from a score of 1 ("hated it") to 7
("loved it"). I then compare the average ratings of the three groups to see which group liked the
taste of their chips the most. In this example, the chip flavor (BBQ, Ranch, Cheese) is my
categorical, independent variable and the rating of the taste of the chips is my continuous, dependent
variable.

To see which flavor received the highest average rating, I could run three separate
independent t tests comparing (a) BBQ with Ranch, (b) BBQ with Cheese, and (c) Ranch with
Cheese. The problem with running three separate t tests is that each time we run a t test, we must
make a decision about whether the difference between the two means is meaningful, or statistically
significant. This decision is based on probability, and every time we make such a decision, there is a
slight chance we might be wrong (see Chapter 7 on statistical significance). The more times we
make decisions about the significance of t tests, the greater the chances are that we will be wrong. In
other words, the more t tests we run, the greater the chances become of deciding that a t test is
significant (i.e., that the means being compared are really different) when it really is not. In still
other words, running multiple t tests increases the likelihood of making a Type I error (i.e., rejecting
the null hypothesis when, in fact, it is true). A one-way ANOVA fixes this problem by adjusting for
the number of groups being compared. To see how it does this, let's take a look at one-way
ANOVA in more detail.

ONE-WAY ANOVA IN DEPTH

The purpose of a one-way ANOVA is to divide up the variance in some dependent variable into two
components: the variance attributable to between-group differences, and the variance attributable to
within-group differences, also known as error. When we select a sample from a population and
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calculate the mean for that sample on some variable, that sample mean is our best predictor of the
population mean. In other words, if we do not know the mean of the population, our best guess
about what the population mean is would have to come from the mean of a sample drawn randomly
from that population. Any scores in the sample that differ from the sample mean are believed to
include what statisticians call error. For example, suppose I have a sample of 20 randomly selected
fifth graders. I give them a test of basic skills in math and find out that, in my sample, the average
number of items answered correctly on my test is 12. If I were to select one student in my sample
and find that she had a score of 10 on the test, the difference between her score and the sample mean
would be considered error (see Figure 10.1).

FIGURE 10.1 An example of within-group error.

The variation that we find among the scores in a sample is not just considered error. In fact,
it is thought to represent a specific kind of error: random error. When we select a sample at
random from a population, we expect that the members of that sample will not all have identical
scores on our variable of interest (e.g., test scores). That is, we expect that there will be some
variability in the scores of the members of the sample. That's just what happens when you select
members of a sample randomly from a population. Therefore, the variation in scores that we see
among the members of our sample is just considered random error.

The question that we can address using ANOVA is this: Is the average amount of
difference, or variation, between the scores of members of different samples large or small compared
to the average amount of variation within each sample, otherwise known as random error (a.k.a.
error)? To answer this question, we have to determine three things. First, we have to calculate the
average amount of variation within each of our samples. This is called the mean square within
(MSW) or the mean square error (MSe). Second, we have to find the average amount of variation
between the groups. This is called the mean square between (MSb). Once we've found these two
statistics, we must find their ratio by dividing the mean square between by the mean square error.
This ratio provides our F value, and when we have our F value we can look at our family of F
distributions to see if the differences between the groups are statistically significant (see Table 10.1).

Note that, although it may sound like analysis of variance is a whole new concept, in fact it
is virtually identical to the independent t test discussed in Chapter 9. Recall that the formula for
calculating an independent t test also involves finding a ratio. The top portion of the fraction is the



ONE-WAY ANOVA -103 -

difference between two sample means, which is analogous to the mean square between (MSb) just
presented. The only differences between the two are (a) rather than finding a simple difference
between two means as in a t test, in ANOVA we are finding the average difference between means,
because we often are comparing more than two means; and (b) we are using the squared value of the
difference between the means. The bottom portion of the fraction for the t test is the standard error
of the difference between two sample means. This is exactly the same as the average, or standard,
error within groups. In the formula used to calculate the F value in ANOVA, we must square this
average within-group error. So, just as in the t test, in ANOVA we are trying to find the average
difference between group means relative to the average amount of variation within each group.

TABLE 10.1 Formula for the F value.

where F is the F value
MSb is mean square between group
MSe is mean square error, or within groups

To find the MSe and MSb we must begin by finding the sum of squares error (SSe) and the
sum of squares between (SSb). This sum of squares idea is not new. It is the same sum of squares
introduced in Chapter 3 in the discussion about variance and standard deviation. Sum of squares is
actually short for sum of squared deviations. In the case of ANOVA, we have two types of
deviations. The first is deviation between each score in a sample and the mean for that sample (i.e.,
error). The second type of deviation is between each sample mean and the mean for all of the groups
combined, called the grand mean (i.e., between groups). These two types of deviations are
presented in Figure 10.2.

FIGURE 10.2 Illustrations of between-groups and within-groups deviations.

mean square betweenF =
mean square error

or
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To find the sum of squares error (SSe):

1. Subtract the group mean from each individual score in each group: (X- X ).

2. Square each of these deviation scores: (X-X)2.

3. Add them all up for each group: E(X-X)2 .

4. Then add up all of the sums of squares for all of the groups:
E ( X l - X l ) 2 + E ( X 2 - X 2 ) + . . . + E ( X k - X k ) 2

Note: The subscripts indicate the individual groups, through the last group,
which is indicated with the subscript k.

The method used to calculate the sum of squares between groups (SSb) is just slightly more
complicated than the SSe formula. To find the SSb we

1. Subtract the grand mean from the group mean: ( X - XT ); T indicates total, or the mean

for the total group.

2. Square each of these deviation scores: (X - XT )2.

3. Multiply each squared deviation by the number of cases in the group: [n( X-XT )2].

4. Add these squared deviations from each group together: E[n( X-XT )2].

The only real differences between the formula for calculating the SSe and the SSb are

1. In the SSe we subtract the group mean from the individual scores in each group,
whereas in the SSb we subtract the grand mean from each group mean.

2. In the SSb we multiply each squared deviation by the number of cases in each
group. We must do this to get an approximate deviation between the group mean
and the grand mean for each case in every group.

If we were to add the SSe to the SSb, the resulting sum would be called the sum of squares
total (SST). A brief word about the SST is in order. Suppose that we have three randomly selected
samples of children. One is a sample of 5th graders, another is a sample of 8th graders, and the third
is a sample of 11th graders. If we were to give each student in each sample a spelling test, we could
add up the scores for all of the children in the three samples combined and divide by the total
number of scores to produce one average score. Because we have combined the scores from all
three samples, this overall average score would be called the grand mean, or total mean, which
would have the symbol XT . Using this grand mean, we could calculate a squared deviation score

for each child in all three of our samples combined using the familiar formula (X - XT )2. The

interesting thing about these squared deviations is that, for each child, the difference between each
child's score and the grand mean is the sum of that child's deviation from the mean of his or her own
group plus the deviation of that group mean from the grand mean. So, suppose Jimmy is in the fifth-
grade sample. Jimmy gets a score of 25 on the spelling test. The average score for the fifth-grade
sample is 30, and the average score for all of the samples combined (i.e., the grand mean) is 35. The
difference between Jimmy's score (25) and the grand mean (35) is just the difference between
Jimmy's score and the mean for his group (25 - 30 = -5) plus the difference between his group's
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mean and the grand mean (30 - 35 = -5). Jimmy's deviation from the grand mean is -10 (See Figure
10.3). If we square that deviation score, we end up with a squared deviation of 100 for Jimmy.

FIGURE 10.3 Within- and between-group deviations for a particular individual.

Now, if we calculated a deviation score for each child in all three samples and added up all
of these deviation scores using the old E ( X - X T ) 2 formula, the result would be the sum of squares

total, or the SST. (Notice that this formula is the same one that we used way back in Chapter 2! It is
the numerator for the variance formula!) The interesting thing about this SST is that it is really just
the sum of the SSb, and the SSe. SST= SSb + SSe. This makes sense, because, as we saw with Jimmy,
the difference between any individual score and the grand mean is just the sum of the difference
between the individual score and the mean of the group that the individual is from plus the
difference between that group mean and the grand mean. This is the crux of ANOVA.

Deciding If the Group Means Are Significantly Different

Once we have calculated the SSb and the SSe, we have to convert them to average squared deviation
scores, or MSb and MSe. This is necessary because there are far more deviation scores in the SSe than
there are in the SSb, so the sums of squares can be a bit misleading. What we want to know in an
ANOVA is whether the average difference between the group means is large or small relative to the
average difference between the individual scores and their respective group means, or the average
amount of error within each group. To convert these sums of squares into mean squares, we must
divide the sums of squares by their appropriate degrees of freedom.

For the SSb, remember that we are only making comparisons between each of the groups.
The degrees of freedom for the SSb is always the number of groups minus 1. If we use K to represent
the number of groups, and df to represent degrees of freedom, then the formula for the between
groups degrees of freedom is df = K- 1. So, to convert an SSb to an MSb, we divide SSb by K - 1.
The degrees of freedom for SSe is found by taking the number of scores in each group and
subtracting 1 from each group. So, if we have three groups, our df for SSe will be (n1 - 1) + (n2 -1) +
(773 - 1). Notice that this is the same formula for the degrees of freedom that was used for the
independent samples t test in Chapter 9. The only difference is that we have one more group here.
A simpler way to write thisdf formula is N - K, where N is the total number of cases for all groups
combined and K is the number of groups. Once we have this df, we can convert the SSe into an MSe

by simply dividing SSe by N - K. Table 10.2 contains a summary of the formulas for converting the
sums of squares into mean squares.
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TABLE 10.2 Converting sums of squares into mean squares.

MSb = Mean squares between groups
SSb - Sum of squares between groups
N = The number of cases combined across all

groups
K = The number of groups

MSe = Mean squares error
SSe = Sum of squares error
K = The number of groups
N = The number of cases combined across all

groups

Once we have found our MSb and our MSe, all we have to do is divide MSb by MSe to find
our F value. Once we've found our F value, we need to look in our table of F values (Appendix C)
to see whether it is statistically significant. This table of F values is similar to the table of t values
we used in Chapter 9, with one important difference. Unlike t values, the significance of F values
depends on both the number of cases in the samples (i.e., the df for MSe) and the number of groups
being compared (i.e., the df for MSb). This second df is critical, because it is what is used to control
for the fact that we are comparing more than two groups. Without it, we might as well conduct
multiple t tests, and this is problematic for the reasons discussed at the beginning of the chapter. In
Appendix C, we can find critical values for F associated with different alpha levels. If our observed
value of F (Fo) is larger than our critical value of F (Fc), we must conclude that there are
statistically significant differences between the group means (see Figure 10.4).

FIGURE 10.4 A statistically significant F value.

Post-Hoc Tests

Our work is not done once we have found a statistically significant difference between the group
means. Remember that when we calculated MSb, we ended up with an average difference between
the group means. If we are comparing three group means, we might find a relatively large average
difference between these group means even if two of the three group means are identical. Therefore,
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a statistically significant F value tells us only that somewhere there is a meaningful difference
between my group means. But it does not tell us which groups differ from each other significantly.
To do this, we must conduct post-hoc tests.

There are a variety of post-hoc tests available. Some are more conservative, making it
more difficult to find statistically significant differences between groups, whereas others are more
liberal. All post-hoc tests use the same basic principle. They allow you to compare each group
mean to each other group mean and determine if they are significantly different while controlling for
the number of group comparisons being made. As we saw in Chapters 7 and 9, to determine if the
difference between two group means is statistically significant, we subtract one group mean from the
other and divide by a standard error. The difference between the various types of post-hoc tests is
what each test uses for the standard error. You should consult a traditional textbook for a discussion
on the various types of post-hoc tests that are used. In this book, for the purposes of demonstration,
we will consider the Tukey HSD (HSD stands for Honestly Significantly Different) post-hoc test.
This is a fairly liberal test, meaning that it is more likely to produce statistically significant
differences than some other tests (e.g., the Scheffe).

The Tukey test compares each group mean to each other group mean by using the familiar
formula described for t tests in Chapter 9. Specifically, it is the mean of one group minus the mean
of a second group divided by the standard error:

and ng = the number of cases in each group

When we solve this equation, we get an observed Tukey HSD value. To see if this
observed value is significant, and therefore indicating a statistically significant difference between
the two groups being compared, we must compare our observed Tukey HSD value with a critical
value. We find this critical value in Appendix D, which we read in pretty much the same way that
we read the F -value table. That is, the number of groups being compared is listed on the top row of
the table and thedf error is along the left column. In this table, only the critical values for an alpha
level of .05 are presented.

Once we have calculated a Tukey HSD for each of the group comparisons we need to
make, we can say which groups are significantly different from each other on our dependent
variable. Notice that, because the standard error used in the Tukey HSD test assumes that each
group has an equal number of cases, this is not the best post-hoc test to use if you have groups with
unequal sample sizes.

A Priori Contrasts

Post-hoc tests such as the Tukey HSD automatically compare each group in the study with each of
the other groups. Sometimes, however, researchers are interested in knowing whether particular
groups, or combinations of groups, differ from each other in their averages on the dependent
variable. These analyses are known as a priori contrasts. Although such comparisons are generally
conducted after the overall ANOVA has been conducted, they are called a priori contrasts because
they are guided by research questions and hypotheses that were stated before the analyses were
conducted. For example, suppose that I want to know whether children in different cities differ in
their love for pepperoni pizza. I collect random samples of 10-year-olds from San Francisco,
Chicago, Paris, and Rome. I ask all of the children to rate how much they like pepperoni pizza on a
scale from 1 ("hate it") to 20 ("love it"). Because American children tend to eat a lot of junk food, I
hypothesize that American children, regardless of which American city they come from, will like
pepperoni pizza more than European children do. To test this hypothesis, I contrast the average
ratings of my American samples, combined across the two American cities, with those of the
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European children combined across the two European cities. Alternatively, I might hypothesize that
children from Rome report liking pepperoni pizza more than children in the other three cities, on
average, because Italy is the birthplace of pizza. To test this, I could contrast the mean of my sample
of children from Rome with the mean of my samples from the other three cities combined. Such
contrasts allow researchers to test specific hypotheses regarding differences between the groups in
their studies.

Effect Size

In addition to the calculation of effect size (d) presented in Chapters 7 and 9, another common
measure of effect size is the percentage of variance in the dependent variable that is explained by the
independent variable(s). To illustrate how this works, I present the results of an analysis using the
SPSS computer software program to analyze a set of fictional data that I made up.

Suppose that I want to test a drug that I developed to increase students' interest in their
schoolwork. I randomly select 75 third-grade students and randomly assign them to one of three
groups A "High Dose" group, a "Low Dose" group, and a "Placebo" group. After dividing students
into their respective groups, I give them the appropriate dosage of my new drug (or a placebo) and
then give them all the exact same schoolwork assignment. I measure their interest in the schoolwork
by asking them to rate how interesting they thought the work was on a scale from 1 ("not
interesting") to 5 ("very interesting"). Then I use SPSS to conduct an ANOVA on my data, and I get
the output from the program presented in Table 10.3.

TABLE 10.3 SPSS output for ANOVA examining interest by drug treatment group.

Descriptive Statistics

High Dose
Low Dose
Placebo
Total

2.7600
3.6000
2.6000
2.9867

1.2675
1.2583
.9129

1.2247

25
25
25
75

ANOVA Results

Source

Corrected Model
Intercept
Group
Error

Type El Sum
of Squares

14.427
669.013

14.427
96.560

df

2
1
2

72

Mean Square

7.213
669.013

7.213
1.341

F

5.379
498.850

5.379

Sig.

.007

.000

.007

Eta Squared

.130

.874

.130

The results produced by SPSS include descriptive statistics such as the means, standard
deviations, and sample sizes for each of the three groups as well as the overall mean ("Total") for the
entire sample of 75 students. In the descriptive statistics, we can see that the "Low Dose" group has
a somewhat higher average mean on the dependent variable (i.e., interest in the schoolwork) than do
the other two groups. Turning now to the ANOVA results below the descriptive statistics in Table
10.3, there are identical statistics for the "Corrected Model" row and the "Group" row. The "Model"
row includes all effects in the model, such as all independent variables and interaction effects (see

Independent Variable Mean Std. N
Deviation
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Chapter 11 for a discussion of these multiple effects). In the present example, there is only one
independent variable, so the "Model" statistics are the same as the "Group" statistics.

Let's focus on the "Group" row. This row includes all of the between-group information,
because "Group" is our independent group variable. Here we see the Sum of Squares between
(SSb),

6 which is 14.427. The degrees of freedom ("df") here is 2, because with three groups, K - 1 =
2. The sum of squares divided by degrees of freedom produces the mean square (MSb), which is
7.213. The statistics for the sum of squares error (SSe), degrees of freedom for the error component,
and mean square error (MSe) are all in the row below the "Group" row. The F value ("F") for this
ANOVA is 5.379, which was produced by dividing the mean square from the "Group" row by the
mean square from the error row. This F value is statistically significant ("Sig." = .007). The "Sig"
is the same thing as the p value (described in Chapter 7). Finally, in the "Eta Squared" column, we
can see that we have a value of .130 in the "Group" row. Eta squared is a measure of the association
between the independent variable ("Group") and the dependent variable ("Interest"). It indicates that
13% of the variance in the scores on the interest variable can be explained by the Group variable. In
other words, I can account for 13% of the variance in the interest scores simply by knowing whether
students were in the "High Dose," "Low Dose," or "Placebo" group. Eta squared is essentially the
same as the coefficient of determination (r2) discussed in Chapter 8 and again in Chapter 13.

TABLE 10.4 SPSS results of Tukey HSD post-hoc tests.

(I) Treatment 1, Treatment
2, Control

High Dose

Low Dose

Placebo

(J) Treatment 1,
Treatment 2, Control

Low Dose

Placebo

High Dose

Placebo

High Dose

Low Dose

Mean Difference
(I-J)

-.8400

.1600

.8400

1.0000

-.1600

-1.0000

Std. Error

.328

.328

.328

.328

.328

.328

Sig.

.033

.877

.033

.009

.877

.009

Now that we know mat there is a statistically significant difference between the three
groups in their level of interest, and that group membership accounts for 13% of the variance in
interest scores, it is time to look at our Tukey post-hoc analysis to determine which groups
significantly differ from each other. The SPSS results of this analysis are presented in Table 10.4.
The far left column of this table contains the reference group (I), and the column to the right of this
shows the comparison groups (J). So in the first comparison, the mean for the "High Dose" group is
compared to the mean for the "Low Dose" group. We can see that the "Mean Difference" between
these two groups is -.8400, indicating that the "High Dose" group had a mean that was .84 points
lower than the mean of the "Low Dose" group on the interest variable. In the last column, we can
see that this difference is statistically significant ("Sig." = .033). So we can conclude that students in
the "Low Dose" group, on average, were more interested in their work than were students in the
"High Dose" group. In the next comparison between "High Dose" and "Placebo" we find a mean
difference of .16, which was not significant ("Sig." = .877). Looking at the next set of comparisons,
we see that the "Low Dose" group is significantly different from both the "High Dose" group (we
already knew this) and the "Placebo" group. At this point, all of our comparisons have been made

SPSS generally reports this as the Type III sum of squares. This sum of squares is known as the "residual" sum of squares because it
is calculated after taking the effects of other independent variables, covariates, and interaction effects into account.
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and we can conclude that, on average, students in the "Low Dose" group were significantly more
interested in their work than were students in the "High Dose" and "Placebo" groups, but there was
no significant difference between the interest of students in the "High Dose" and "Placebo" groups.

EXAMPLE: COMPARING THE PREFERENCES OF 5-, 8-, AND 12-YEAR-OLDS

Suppose that I've got three groups: 5-year-olds, 8-year-olds, and 12-year-olds. I want to compare
these groups in their liking of bubble gum ice cream, on a scale from 1 to 5. I get the data presented
in Table 10.5. From the individual scores presented for each group, all of the additional data can be
calculated. Let's walk through these steps.

TABLE 10.5 Data for 5-, 8-, and 12-year-olds' liking of bubble gum ice cream.

5-Year-Olds

5

5

4

4

3

Mean1 = 4.2

8-Year-Olds

5

4

4

3

3

Mean2 = 3.8

12-Year-Olds

4

3

2

2

1

Mean3 = 2 .4

Step 1: Find the mean for each group.

To find the mean for each group, add the scores together within the group and divide
by the number of cases in the group. These group means have been calculated and
are presented in Table 10.5.

Step 2: Calculate the grand mean.

This can be done either by adding all of the 15 scores up across the groups and
dividing by 15 or, because each group has the same number of cases in this example,
by adding up the three group means and dividing by 3: 4.2 + 3.8 + 2.4 = 10.4 / 3 =
3.47.

Step 3: Calculate the sum of squares error (SSe).

First, we must find the squared deviation between each individual score and the
group mean. These calculations are presented in Table 10.6. When we sum the
three sums of squares, we get SSe - 10.8.

Step 4: Calculate the sum of squares between groups (SSb).

Recall that to find the SSb we need to subtract the grand mean from the group mean,
square it, and multiply by the number of cases in the group. Then we add each of
these numbers together. So for our three groups we get

Group 1: 5(4.2 - 3.47)2 = 5(.53) = 2.65
Group 2: 5(3.8 - 3.47)2 = 5(.l 1) = .55

Group 3: 5(2.4 - 3.47)2 = 5(1.14) = 5.7
Sum: 2.65+ .55+5.7 = 8.90
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TABLE 10.6 Squared deviations for the ANOVA example.

5-Year-Olds

(5

(5

-4

-4

•2)2 =

•2)2 =

(4-4.2)2 =

(4

(3

-4

-4.

.2)2 =

2)2 =

.64

.64

.04

.04

1.44

8-Year-Olds

(5.

(4

(4

(3

(3

SSI = 2.8

- 3.8)2 = 1

-3.

-3.
_ 3

-3.

SS2

8)2 =

8)2 =

8)2 =

8)2 =

= 2.8

.44

.04

.04

.64

.64

12-Year-Olds

(4

(3

(2

(2

(1

_ 2

-2

-2

-2

-2.

4)2 = 2.56

•4)2 = .

.4)2 = .

•4)2 = .

4)2 = 1

36

16

16

.96

SS3 = 5.2

Step 5: Calculate the mean square error (MSe).

To find the MSe we divide the SSe by the degrees of freedom for the error (dfe).
The dfe is N - K. In this example we have 15 cases across 3 groups, so the degrees
of freedom are 15 - 3 = 12. When we divide the SSe by 12 we get

MSe = 10.8 / 12 = .90

Step 6: Calculate the mean square between groups (MSb).

To find the MSb we divide the SSb by the degrees of freedom between groups (dfb).
The dfb is K -1. In this example we have three groups, so the degrees of freedom
are 3 - 1 = 2. When we divide the SSb by 2 we get

MSb = 8.90 / 2 = 4.45

Step 7: Calculate the F ratio.

The F ratio can be found by dividing the MSb by the MSE:

Step 8: Find the critical value for F from Appendix C
<

Looking in Appendix C, with 2 degrees of freedom in the numerator and 12
degrees of freedom in the denominator, we find a critical value of F of 3.88 (with
a = .05).

Step 9: Decide whether the F value is statistically significant.

By comparing our observed F value of 4.94 with the critical F value of 3.88, we
can see that Fo > Fc. Therefore, we conclude that our results are statistically
significant (see Figure 10.5).



-112- CHAPTER 10

FIGURE 10.5 Critical and observed F values for ANOVA example.

Assuming we selected an alpha level of .05, we now know that we have a statistically
significant F value. This tells us that there is a statistically significant difference between the means
of our three groups in their liking of bubble gum ice cream. But I do not yet know which of my
three groups differ. To figure this out, I need to conduct post-hoc tests. So, I conduct Tukey tests to
compare my three groups. Recall that the formula for the Tukey test is the mean of one group minus
the mean of another group divided by the standard error. When all of our groups have equal
numbers of cases, then the standard error for the Tukey test is the same for each comparison of
groups. In our example, we have equal numbers of cases in each group, so we only need to calculate
the standard error once:

With our standard error for the Tukey tests in place, we can compare the means for each of
the three groups.

The final step in our analysis is to determine whether each of these Tukey HSD values is
statistically significant. To do this, we must look at the table of critical values for the studentized
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range statistic in Appendix D. The values in this table are organized in a similar way to those
presented in the table of F values in Appendix C. However, instead of using the degrees of freedom
between groups to find the appropriate column, we use the number of groups. In this example, we
have three groups, so we find the column labeled "3." To find the appropriate row, we use the
degrees of freedom for the error. In this example our dfe was 12. So, with an alpha level of .05, our
Tukey value must be larger than 3.77 before we consider it statistically significant. I know this
because the critical Tukey value in Appendix D for 3 groups and 12 degrees of freedom is 3.77.

My Tukey value comparing Groups 1 and 2 was only .95. Because this is smaller than the
value of 3.77, I conclude that Groups 1 and 2 do not differ significantly in how much they like
bubble gum ice cream, on average. The Tukey values for the comparison of Group 1 with Group 3
produced a Tukey value of 4.29, which is larger than 3.77, so I can conclude that Group 1 is
different from Group 3. My third Tukey test produced a value of 3.33, indicating that Group 2 is not
significantly different from Group 3. By looking at the means presented for each group in Table
10.3, I can see that, on average, 5-year-olds like bubble gum ice cream more than 12-year-olds, but
5-year-olds do not differ significantly from 8-year-olds and 8-year-olds do not differ significantly
from 12-year-olds in how much they like bubble gum ice cream (see Figure 10.6).

FIGURE 10.6 Results of the Tukey test.

To summarize these results in a form that you might see in a published journal I would write
the following: "I performed a one-way ANOVA to compare the three groups' average liking of
bubble gum ice cream. This analysis produced a statistically significant result (F(2,12) - 4.94, p <
.05). Post-hoc Tukey tests revealed that the only significant difference between groups was found
between 5-year-olds and 12-year-olds, with the younger children liking bubble gum ice cream
significantly more than the older children."

WRAPPING UP AND LOOKING FORWARD

One-way ANOVA, when combined with post-hoc tests and a priori contrasts, is a powerful
technique for discovering whether group means differ on some dependent variable. The F value
from a one-way ANOVA tells us whether, overall, there are significant differences between our
group means. But we cannot stop with the F value. To get the maximum information from a one-
way ANOVA, we must conduct the post-hoc tests to determine which groups differ. ANOVA
incorporates several of the concepts that I have discussed in previous chapters. The sums of squares
used in ANOVA is based on the squared deviations first introduced in Chapter 3 in the discussion of
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variance. The comparisons of group means is similar to the information about independent samples t
tests presented in Chapter 9. And the eta-squared statistic, which is a measure of association
between the independent and dependent variables, is related to the concepts of shared variance and
variance explained discussed in Chapter 8 as well as the notion of effect size discussed in Chapter 7.

In this chapter, a brief introduction to the most basic ANOVA model and post-hoc tests was
provided. It is important to remember that many models are not this simple. In the real world of
social science research, it is often difficult to find groups with equal numbers of cases. When groups
have different numbers of cases, the ANOVA model becomes a bit more complicated. I encourage
you to read more about one-way ANOVA models, and I offer some references to help you learn
more. In the next two chapters, I examine two more advanced types of ANOVA techniques:
factorial ANOVA and repeated-measures ANOVA.

In this chapter and those that preceded it, I examined several of the most basic, and most
commonly used, statistics in the social sciences. These statistics form the building blocks for most
of the more advanced techniques used by researchers. For example, t tests and one-way ANOVA
represent the basic techniques for examining the relations between nominal or categorical
independent variables and continuous dependent variables. More advanced methods of examining
such relations, such as factorial ANOVA and repeated-measures ANOVA are merely elaborations of
the more basic methods I have already discussed. Similarly, techniques for examining the relations
among two or more continuous variables are all based on the statistical technique already discussed
in Chapter 8, correlations. More advanced techniques, such as factor analysis and regression, are
based on correlations.

In the remaining chapters of this book, three of more advanced statistical techniques are
described. Because the purpose of this book is to provide a short, nontechnical description of a
number of statistical methods commonly used by social scientists, there is not adequate space to
provide detailed descriptions of these more advanced techniques. Specifically, the technical
descriptions of the formulas used to generate these statistics is beyond the scope and purpose of this
book. Therefore, in the chapters that follow, general descriptions of each technique are provided,
including what the technique does, when to use it, and an example of results generated from a
statistical analysis using the technique. Suggestions for further reading on each technique are also
provided.

GLOSSARY OF TERMS AND SYMBOLS FOR CHAPTER 10

a priori contrasts: Comparisons of means that are planned before the ANOVA is conducted. Can
include comparing the mean of one group to two or more other groups combined.

Between group: Refers to effects (e.g., variance, differences) that occur between the members of
different groups in an ANOVA.

F value: The statistic used to indicate the average amount of difference between group means
relative to the average amount of variance within each group.

Grand mean: The statistical average for all of the cases in all of the groups on the dependent
variable.

Mean square between: The average squared deviation between the group means and the grand
mean.

Mean square error: The average squared deviation between each individual and their respective
group means.

Mean square within: The average squared deviation between each group mean and the individual
scores within each group.

One-way ANOVA: Analysis of variance conducted to test whether two or more group means differ
significantly on a single dependent variable.

Post-hoc tests: Statistical tests conducted after obtaining the overall F value from the ANOVA to
examine whether each group mean differs significantly from each other group mean.

Random error: Refers to differences between individual scores and sample means that are
presumed to occur simply because of the random effects inherent in selecting cases for the
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sample. (Note that random error, more broadly, refers to differences between sample data
or statistics and population data or parameters caused by random selection procedures.)

Studentized range statistic: Distributions used to determine the statistical significance of post-hoc
tests.

Sum of squares between: Sum of the squared deviations between the group means and the grand
mean.

Sum of squares error: Sum of the squared deviations between individual scores and group means
on the dependent variable.

Sum of squares total: Sum of the squared deviations between individual scores and the grand mean
on the dependent variable. This is also the sum of the SSb and the SSe.

Within-group: Refers to effects (e.g., variance, differences) that occur between the members of the
same groups in an ANOVA.

Tukey HSD: Name of a common post-hoc test.

MSW Mean square within groups.
MSe Mean square error (which is the same as the mean square within groups).
MSb Mean square between groups.
SSe Sum of squares error (or within groups).
SSb Sum of squares between groups.
SST Sum of squares total.
XT The grand mean.

F The F value.
df Degrees of freedom.
K The number of groups.
N The number of cases in all of the groups combined.
n The number of cases in a given group (for calculating SSb).
ng The number of cases in each group (for Tukey HSD test).

RECOMMENDED READING

Marascuilo, L. A., & Serlin, R. C. (1988). Statistical methods for the social and behavioral
sciences. (pp.472-516). New York: Freeman.

Iverson, G. R., & Norpoth, H. (1987). Analysis of variance (2nd ed.). Newbury Park, CA:
Sage.
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CHAPTER 11

FACTORIAL ANALYSIS OF VARIANCE

In the previous chapter, we examined one-way ANOVA. In this chapter and the one that follows,
we explore the wonders of two more advanced methods of analyzing variance: factorial ANOVA
and repeated-measures ANOVA. These techniques are based on the same general principles as one-
way ANOVA. Namely, they all involve the partitioning of the variance of a dependent variable into
its component parts (e.g., the part attributable to between-group differences, the part attributable to
within-group variance, or error). In addition, these techniques allow us to examine more complex,
and often more interesting questions than is allowed by simple one-way ANOVA. As mentioned at
the end of the last chapter, these more advanced statistical techniques involve much more complex
formulas than those we have seen previously. Therefore, in this chapter and those that follow, only a
basic introduction to the techniques is offered. You should keep in mind that there is much more to
these statistics than described in these pages, and you should consider reading more about them in
the suggested readings at the end of each chapter.

When to Use Factorial ANOVA

Factorial ANOVA is the technique to use when you have one continuous (i.e., interval or ratio
scaled) dependent variable and two or more categorical (i.e., nominally scaled) independent
variables. For example, suppose I want to know whether boys and girls differ in the amount of
television they watch per week, on average. Suppose I also want to know whether children in
different regions of the United States (i.e., East, West, North, and South) differ in their average
amount of television watched per week. In this example, average amount of television watched per
week is my dependent variable, and gender and region of the country are my two independent
variables. This is known as a 2 x 4 factorial analysis, because one of my independent variables has
two levels (gender) and one has four levels (region). If I were writing about this analysis in an
academic paper, I would write, "I conducted a 2 (gender) x 4 (region) factorial ANOVA."

Now when I run my factorial ANOVA, I get three interesting results. First, I get two main
effects: one for my comparison of boys and girls and one for my comparison of children from
different regions of the country. These results are similar to the results I would get if I simply ran
two one-way ANOVAs, with one important difference, which I describe in the next section. In
addition to these main effects, my factorial ANOVA also produces an interaction effect, or simply
an interaction. An interaction is present when the differences between the groups of one
independent variable on the dependent variable vary according to the level of a second independent
variable. Interaction effects are also known as moderator effects. I discuss interactions in greater
detail in the next section as well. For now, suffice it to say that interaction effects are often very
interesting and important pieces of information for social scientists.

Some Cautions

Just as with one-way ANOVA, when conducting a factorial ANOVA it is important to determine
whether the amount of variance within each group is roughly equal (known as homogeneity of
variance). As discussed in the previous chapter, the ideal situation in ANOVA is to have roughly
equal sample sizes in each group and a roughly equal amount of variation (e.g., the standard
deviation) in each group. If the variances are not roughly equal, there can be difficulties with the
probabilities associated with tests of statistical significance. These problems can be exacerbated
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when the groups have different sample sizes, a situation that often occurs in factorial
ANOVA because the sample is being divided up into so many categories. So it is important to test
whether the groups being compared have similar standard deviations.

Returning to our previous example, suppose we have 40 boys and 40 girls in the entire
sample. In addition, suppose that we have 20 children from each of the four regions in our sample.
To test the main effects, these numbers are acceptable. That is, it is reasonable to compare 40 boys
to 40 girls if we want to know whether boys and girls differ in their average amount of television
viewing. Similarly, it is reasonable to compare 20 children from each of the four different regions of
the country. But suppose that in the West, our sample of 20 children includes only 5 girls and 15
boys, whereas in the North our sample includes 15 girls and only 5 boys. When we divide up our
sample by two independent variables, it is easy to wind up with cell sizes that are too small to
conduct meaningful ANOVAs. A cell is a subset of cases representing one unique point of
intersection between the independent variables. In the aforementioned example, there would be
eight cells: girls from the West, boys from the West, girls from the South, boys from the South, and
so on. When you consider that factorial ANOVAs can have more than two independent variables,
the sample can be subdivided a number of times. Without a large initial sample, it is easy to wind up
with cells that contain too few cases. As a general rule, cells that have fewer than 10 cases are too
small to include in ANOVAs; cell sizes of at least 20 are preferred.

FACTORIAL ANOVA IN DEPTH

When dividing up the variance of a dependent variable, such as hours of television watched per
week, into its component parts, there are a number of components that we can examine. In this
section, we examine three of these components: Main effects, interaction effects, and simple
effects. In addition, I also present an introduction to the idea of partial and controlled effects, an
issue that is revisited in Chapter 13 on multiple regression.

Main Effects and Controlled or Partial Effects

As mentioned earlier, a factorial ANOVA will produce main effects for each independent variable in
the analysis. These main effects will each have their own F value, and are very similar to the results
that would be produced if you just conducted a one-way ANOVA for each independent variable on
the dependent variable. However, there is one glorious benefit of looking at the main effects in a
factorial ANOVA rather than separate one-way ANOVAs: When looking at the main effects from a
factorial ANOVA, it is possible to test whether there are significant differences between the groups
of one independent variable on the dependent variable while controlling for, or partialing out the
effects of the other independent variable(s) on the dependent variable. Let me clarify this confusing
sentence by returning to my example of television viewing.

Suppose that when I examine whether boys and girls differ in the average amount of
television they watch per week, I find that there is a significant difference: Boys watch significantly
more television than girls. In addition, suppose that children in the North watch, on average, more
television than children in the South. Now, suppose that, in my sample of children from the
Northern region of the country, there are twice as many boys as girls, whereas in my sample from
the South there are twice as many girls as boys. Now I've got a potential problem. How do I know
whether my finding that children in the North watch more television than children in the South is not
just some artifact caused by the greater proportion of boys in my Northern sample? By "artifact" I
mean that the North-South difference is merely a by-product of the difference between boys and
girls; region of the country is not an important factor in and of itself. Think about it: If I already
know that boys watch more television, on average, than girls, then I would expect my Northern
sample to watch more television than my Southern sample because there is a greater proportion of
boys in my Northern sample than in the Southern sample. So my question is this: How can I
determine whether there is a difference in the average amount of television watched by children in
the North and South beyond the difference caused by the unequal proportions of boys and girls in the
samples from these two regions. Phrased another way, is there an effect of region on television
viewing beyond or in addition to the effect of gender?
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To answer this intriguing question, I must examine the main effect of region on television
viewing after controlling for, or partialing out the effect of gender. I can do this in a factorial
ANOVA. To understand how this is accomplished, keep in mind that what we are trying to do with
an ANOVA is to explain the variance in our dependent variable (amount of television children watch
per week) by dividing that variance up into its component parts. If boys and girls differ in how
much they watch television, then part of the variance is explained, or accounted for, by gender. In
other words, we can understand a bit of the differences among children in their weekly television
viewing if we know their gender. Now, once we remove that portion of the total variance that is
explained by gender, we can test whether any additional part of the variance can be explained by
knowing what region of the country children are from. If children from the North and South still
differ in the amount of television they watch, after partialing out or controlling for the chunk of
variance explained by gender, then we know that there is a main effect of region independent of the
effect of gender. In statistical jargon, we would say, "There is a main effect of region on amount of
television watched after controlling for the effect of gender." This is powerful information. In
factorial ANOVA, it is possible to examine each main effect and each interaction effect when
controlling for all other effects in the analysis (see Figure 11.1).

FIGURE 11.1 Partitioning the total variance in television viewing.

Interactions

A second benefit of factorial ANOVA is that it allows researchers to test whether there are any
statistical interactions present. Interactions can be a complex concept to grasp. Making the whole
issue even more confusing is that the level of possible interactions increases as the number of
independent variables increases. For example, when there are two independent variables in the
analysis, there are two possible main effects and one possible two-way interaction effect (i.e., the
interaction between the two independent variables). If there are three independent variables in the
analysis, there are three possible main effects, three possible two-way interaction effects, and one
possible three-way interaction effect. The whole analysis can get very complicated very quickly. To
keep things simple, let's take a look at two-way interactions first.
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In my television-viewing example, suppose that I randomly select 25 boys and 25 girls
from each of the four regions of the country, measure the number of hours each child spent watching
television, and calculate the averages for each group. (Note: Unlike the example provided earlier,
there are equal numbers of boys and girls from each region in this sample.) These averages are
presented in Table 11.1.

TABLE 11.1 Mean hours of television viewed per week by gender and region.

Girls

Boys

Overall Averages
by Region

North

20 hrs.

25 hrs.

22.5 hrs.

East

15 hrs.

20 hrs.

17.5 hrs.

West

15 hrs.

20 hrs.

17.5 hrs.

South

10 hrs.

25 hrs.

17.5 hrs.

Overall
Averages by

Gender

15 hrs.

22.5 hrs.

As we see when examining the means in Table 11.1, boys in each region watch more
television, on average, than girls. The overall averages by gender presented in the last column
indicate that there appears to be a main effect for gender, with boys watching an average of 22.5
hours of television per week and girls watching an average of only 15 hours per week. When we
look at the overall averages presented for each region (bottom row), we can see that children in the
North watch more television, on average, than do children in the other three regions. Therefore, we
can tell that there appear to be main effects for gender and region on amount of television watched.
Notice that I said "appear to be main effects." To determine whether these main effects are
statistically significant, we have to determine the probability of obtaining differences of this size
between randomly selected groups of this size (see Chapter 7 for a discussion of significance tests
and their meaning).

Once we have examined the main effects, we can turn our attention to the possible
interaction effects. To do this, we need to examine the means in each of the eight cells presented in
Table 11.1 (i.e., Northern boys, Northern girls, Eastern boys, Eastern girls, etc.). When we examine
these means, we can see that in the North, East, and West, boys watch an average of 5 hours more
television per week than do girls. But in the South, boys watch an average of 15 more hours of
television than girls. Therefore, it appears that the differences in the amount of television watched
by girls and boys are not uniform across the four regions of the country. In other words, the
relationship between gender and amount of television watched depends on, or is moderated by, the
region of the country. Because the definition of a two-way interaction is that the relationship
between an independent variable and a dependent variable is moderated by a second independent
variable, we appear to have a two-way interaction here.

When we find a statistically significant interaction (again, we must examine the p value of
the F ratio for the interaction term to determine if it is statistically significant), we must determine
the nature of the interaction and then describe the interaction. One excellent method for getting a
handle on the nature of the interaction is to depict it graphically. To do this, all we need to do is to
graph the means. Line graphs and bar graphs work best. I have produced a line graph that
represents the data presented in Table 11.1. This graph is presented in Figure 11.2.

When we look at this graph, the nature of the interaction becomes readily apparent.
Specifically, what we can see is that there is a consistent pattern for the relationship between gender
and amount of television viewed in three of the regions (North, East, and West), but in the fourth
region (South) the pattern changes somewhat. Specifically, the gap between boys and girls in the
average amount of television watched per week is much wider in the South than in the other three
regions. In Figure 11.2, we can see that the means for boys and girls on the dependent variable are
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further apart in one region than in the other, but the lines never cross. That is, there is no region in
which girls have higher average scores than boys on the dependent variable.

FIGURE 11.2 Interaction of gender and region.

As you look at the graph presented in Figure 11.2, notice that you can see both the main
effects and the interaction effects. Recall that the main effect for gender indicates that, when we
combine the scores from all four regions, boys appear to have higher average scores than girls on our
dependent variable (i.e., amount of television watched per week). In Figure 11.2 this effect is clear,
as we can see that the line for boys is higher than the line for girls in all four regions. We can also
see evidence of a main effect for region, although this effect is somewhat less clear than the main
effect for boys. We see the region effect by noting that for both boys and girls, the average amount
of television viewing is higher in the North than in either the East or West regions. This main effect
is complicated a bit, however, by the presence of the interaction. Notice that whereas the mean is
lower in the South than in the North for girls (supporting our main effect for region), the mean for
boys in the South is equal to the mean for boys in the North. This raises a difficult question: When
we say there is a main effect for region, with children in the North watching more television, on
average, than children in the other three regions, are we being accurate?

Interpreting Main Effects in the Presence of an Interaction Effect

Researchers do not always agree on the best way to interpret main effects when there is a significant
interaction effect. Some argue that it makes little sense to interpret main effects at all when there is
an interaction effect present, because the interaction effect essentially modifies (or nullifies) the
meaning of the main effect. In the preceding example, the main effect for region that shows children
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in the North watch more television than children elsewhere is really only true within the girls
sample. In fact, boys in the South watch as much television as boys in the North, and girls in the
North do not watch more television than boys in any region. Therefore, some would argue that we
should just describe the nature of the interaction, and not interpret the main effects. The logic of this
argument is as follows: If I say that children in the North watch more television than children in
other regions, the statement is misleading because it is not true for boys. To be accurate, I should
just say that girls in the North watch more television that girls in other regions.

Others, myself included, think it makes sense to interpret all of the effects and to consider
them in relation to each other. Returning to our earlier example, we can see that there is a main
effect for gender, with boys watching more television, on average, than girls. We can also see that
this effect is especially pronounced in the South. In addition, we can say that overall, when we
combine the samples of boys and girls together, there is a main effect for region such that Northern
children watch more television than children in other regions, on average. When we add the
consideration of the interaction effect, we can further argue that this overall effect is due primarily to
differences within the sample of girls, and less to variation within the sample of boys. It is possible
to get an interaction effect without a main effect (see Figure 11.3. In this example, boys and girls
have equal means, as do children in each of the four geographic regions). Therefore, it makes sense
to report and interpret significant main effects, even in the presence of an interaction effect. The key
is to provide enough information so that readers of your results can makes sense of them. To do this,
it may be necessary to discuss your interaction and main effects in relation to each other.

FIGURE 11.3 Interaction with equal means.

Here is another example to more clearly illustrate the problems of interpreting main effects
in the presence of significant interactions. Suppose that I were to examine the math skills of boys
and girls in two different types of mathematics programs. Students in the "Traditional" program
study math in the usual way, reading a textbook and working out math problems in class. Students
in the "Experimental" program work in groups to solve problems collaboratively and work with
more real-world, applied problems. After one year, I give a math test to 25 randomly selected boys
and 25 randomly selected girls from each math program. I calculate the averages for these four
groups, which are presented in Figure 11.4.
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The means presented in the figure clearly show that although boys and girls in the
Traditional math program had similar average scores on the math test, girls did much better than
boys in the Experimental math program. This is an interaction. In addition, because girls in the
Experimental program did so well on their math test, the overall mean for the Experimental group is
significantly higher than the overall mean for the Traditional group, thereby creating a main effect
for math program. But does it make sense to say that students in the Experimental math program did
better on the test than students in the Traditional program? Clearly, this is not the case for the boys,
and some would argue that it would be misleading to point out the main effect for math program
because the effect is only present for the girls, not the boys. There is not a good, clean answer to this
question of how to interpret main effects in the presence of a significant interaction. My advice is to
present as much of the data as you can and then clearly describe what is going on. In the example
presented in Figure 11.4, I would say the following: "Students in the Experimental group scored
higher on the math test, on average, than did students in the Traditional condition, but this main
effect of math condition was caused by a significant gender by math condition interaction. Whereas
girls in the Experimental math condition did better than girls in the Traditional math group, there
was no difference for boys in each condition. So the new mathematics program appeared to work
well for girls but had little effect for boys."

Testing Simple Effects

Once we have found our main and interaction effects in factorial ANOVA, we can conduct one final
set of analyses to examine the simple effects. The methods used to calculate the simple effects and
determine whether they are statistically significant are analogous to the post-hoc tests described in
Chapter 10. What simple effects analysis allows us to do is to test whether there are significant
differences in the average scores of any particular cells. One of the benefits of simple effects
analysis is that is allows us to better understand some of the complexities in our data, particularly
how to make sense of significant interaction effects.

Returning to our sample data presented in Figure 11.4, we can see that we have four cells:
girls in the Traditional math program, Traditional boys, Experimental girls, and Experimental boys.
With a simple effects analysis, we can test whether boys in the Traditional math program ( X = 50)
had significantly higher average math test scores than did boys in the Experimental program ( X =
35). We could also test whether boys and girls in the Traditional program differed significantly.
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Perhaps most important for helping us understand the interaction effect, we can test whether girls in
the Experimental program had higher average math test scores than students in each of the three
other groups. For a detailed description of the methods for calculating simple effects, I recommend
reading Hinkle, Wiersma, and Jurs (1998).

Analysis of Covariance

Earlier in this chapter, I suggested that one of the benefits of conducting factorial ANOVAs is that it
allows us to determine whether groups differ on some dependent variable while controlling for, or
partialing out, the effects of other independent variables. A closely related concept that applies to all
types of ANOVA, including one-way, factorial, and repeated-measures, is the use of covariates in
these analyses. In analysis of covariance (ANCOVA), the idea is to test whether there are
differences between groups on a dependent variable after controlling for the effects of a different
variable, or set of variables. The difference between an ANCOVA and the types of controlled
variance I described earlier is that with an ANCOVA, the variable(s) that we are controlling for, or
partialing out the effects of, is not necessarily an independent variable. Let me explain.

In my earlier example, I was able to test whether boys and girls differed in the amount of
television they watched while controlling for the effects of which region of the country they lived in
(the second independent variable), as well as the interaction between the two independent variables.
But in an ANCOVA analysis, we can control the effects of variables besides independent variables.
For example, I could use socioeconomic status (SES) as a covariate and test whether children in
different regions of the country differ in the amount of television they watch after partialing out the
effects of their SES. Suppose that my sample of children from the North is less wealthy than my
samples from the three other regions. Suppose further than children from poorer families tend to
watch more television than children from wealthier families. Because of this, my earlier results that
found greater television watching among children in the Northern region may simply be due to the
fact that these children are less wealthy than children in the other regions. With ANCOVA, I can
test whether the difference in the viewing habits of children from different regions is due strictly to
differences in SES, or whether there are regional differences independent of the effects of SES. This
is particularly handy because even though factorial ANOVA only allows us to use categorical (i.e.,
nominally scaled) independent variables, with ANCOVA we can also control the effects of
continuous (i.e., intervally scaled) variables.

Effect Size

As I did in Chapter 10, I will illustrate effect size in factorial ANOVA, along with some of the
particulars about sums of squares, mean squares, and F values, using output from an analysis of my
own data using the SPSS computer software program. In this example, students' confidence in their
ability to understand and successfully complete their English classwork, referred to here as "self-
efficacy," is the dependent variable. I want to see whether high school boys and girls differ in their
self-efficacy (i.e., a main effect for gender), whether students with relatively high grade point
averages (GPA) differ from those with relatively low GPAs in their self-efficacy (i.e., a main effect
for GPA), and whether there is an interaction between gender and GPA on self-efficacy. Gender, of
course, is a two-category independent variable. To make GPA a two-category variable, I divide
students into high- and low-GPA groups by splitting the sample in two using the median GPA.
Researchers often divide continuous variables into variables with two or three neatly defined
categories (e.g., below the median and above the median; low, middle, and high groups). This
allows me to perform a 2 (gender) x 2 (GPA) factorial ANOVA. Self-efficacy is measured using a
survey with a 5-point scale (1 = "not at all confident" and 5 = "very confident"). My sample
consists of 468 high school students.

The results presented in Table 11.2 begin with descriptive statistics. These statistics are
presented separately by subgroups (e.g., low-achieving girls, high-achieving girls, all girls
combined, low-achieving boys, etc.). The means and standard deviations presented are for the
dependent variable, self-efficacy. By glancing over the means, we can see that the boys in our
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sample reported slightly higher average feelings of self-efficacy than did the girls, and this
difference appears to be largest among the boys and girls in the low-GP A group.

TABLE 11.2 SPSS results for gender by GPA factorial ANOVA.

Gender

Girl

Boy

Total

GPA

1.00
2.00
Total

1.00
2.00
Total

1.00
2.00
Total

Mean

3.6667
4.0050
3.8438

3.9309
4.0809
4.0031

3.7931
4.0381
3.9167

Std.
Deviation

.7758

.7599

.7845

.8494

.8485

.8503

.8208

.7989

.8182

n

121
133
254

111
103
214

232
236
468

ANOVA Results

Source

Corrected Model
Intercept
Gender
GPA
Gender x GPA
Error
Total
Corrected Total

Type III
Sum of

Squares

11.402
7129.435

3.354
6.912
1.028

301.237
7491.889
312.639

df

3
1
1
1
1

464
468
467

Mean
Square

3.801
7129.435

3.354
6.912
1.028
.649

F

5.854
10981.566

5.166
10.646

1.584

Sig.

.001

.000

.023

.001

.209

Eta Squared

.036

.959

.011

.022

.003

Turning our attention to the ANOVA results, there are a number of important features to
notice. In the far left column titled "Source," there are the various sources of variation in self-
efficacy. These are the different ways that the variance of the dependent variable, self-efficacy, is
sliced up by the independent variables. The first source is called the "Corrected Model." This is the
combination of all of the main and interaction effects. If covariates were used, these effects would
be included in the "Corrected Model" statistics. Reading from left to right, we can see that the full
model has a sum of squares (11.402), which when divided by three degrees of freedom ("df ' )
produces a "Mean Square" of 3.801. When we divide this by the mean square error a few rows
down (MSe = .649), we get an F value of 5.854. This has a "Sig." of .001 (in other words, p < .001).
Because this value is less than .05 (see Chapter 7), the overall model is statistically significant. But
is it practically significant? In the final column labeled "Eta Squared," we can see that the overall
model accounts for only 3.6% of the variance in self-handicapping scores. In other words, gender,
GPA level, and the interaction of these two combined only explain 3.6% of the variance. Although
this is statistically significant, this may not be a big enough effect size to be considered practically
significant. Remember that statistical significance is influenced by sample size, and 468 cases is a
pretty large sample. An effect size of .036, in contrast, is not affected by sample size and therefore
may be a better indicator of practical significance.
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In addition to the F value, p value, and effect size for the entire model, SPSS prints out
statistics for each of the main effects and the interaction effect as well. Here we can see that gender
is a statistically significant predictor of self-efficacy ("Sig." = .023), but the effect size of .011 is
very small. By looking at the overall means for girls and boys in the top portion of Table 11.2, we
can see that boys (Xboys 4.0031) have slightly higher average feelings of self-efficacy in English

than girls (X g i r l s = 3.8438). GPA has a larger F value (F = 10.646) and is statistically significant,

but it also has a small eta-squared value (.022). Students in the high-GPA group had slightly higher
average feelings of self-efficacy (Xhigh= 4.0381) than did students in the low-GPA group (X low =

3.793). The gender by GPA interaction was not statistically significant and has a tiny effect size.
Overall, then, the statistics presented in Table 11.2 reveal that although there are statistically
significant main effects for gender and GPA on self-efficacy, and the overall model is statistically
significant, these effect sizes are quite small and suggest that there is not a strong association
between either gender or GPA with self-efficacy among this sample of high school students.

There are two other features of the SPSS output presented in Table 11.2 worth noting.
First, the sum of squares that SPSS uses by default in a factorial ANOVA is called "Type III" sum of
squares. This means that when SPSS calculates the sum of squares for a particular effect, it does so
by accounting for the other effects in the model. So when the sum of squares for the gender effect is
calculated, for example, the effect of GPA and the gender by GPA interaction effects have been
partialed out already. This allows us to determine the unique effect of each main effect and
interaction effect. Second, notice that the F value for each effect is obtained by dividing the mean
square for that effect by the mean square error. This is the same way F values were calculated in
one-way ANOVA discussed in Chapter 10.

EXAMPLE: PERFORMANCE, CHOICE, AND PUBLIC VERSUS PRIVATE EVALUATION

In a study published in 1986, Jerry Burger, a psychology professor at Santa Clara University,
examined the effects of choice and public versus private evaluation on college students' performance
on an anagram-solving task. This experiment involved one dependent variable and two independent,
categorical variables. The dependent variable was the number of anagrams solved by participants in
a 2-minute period. One of the independent variables was whether participants were able to choose
the type of test they would perform. There were 55 participants in the study. About half of these
were randomly assigned into the "choice" group. This group was told that they could choose one
test to perform from a group of three different tests. The "no choice" group was told that they would
be randomly assigned one of the tests. In fact, the "choice" and "no choice" groups worked on the
same tests, but the choice group was given the perception that they had chosen the type of test they
would work on. So this first independent variable has two categories: Choice and no choice. The
second independent variable also had two categories: public versus private. Participants were told
either that their test score and ranking would be read aloud, along with their name (the public
condition), or that the test scores and ranks would be read aloud without identifying the name of the
test taker (the private condition). Participants were randomly assigned to the public or private
groups as well. The resulting ANOVA model for this experiment is a 2 (choice vs. no choice) x 2
(public vs. private feedback) factorial ANOVA.

TABLE 11.3 Mean number of anagrams solved for four treatment groups.

Public Private

Choice No Choice Choice No Choice

Number of Anagrams Solved 19.50 14.86 14.92 15.36
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The average numbers of anagrams solved by the members of each group are presented in
Table 11.3. These means are also graphed in Figure 11.5. Burger found a main effect for the choice
independent variable, such that participants who thought they were given a choice of which type of
test to take solved more anagrams, on average, than those who were not given a choice. In addition,
Burger found that participants in the public evaluation condition solved more anagrams, on average,
than participants in the private feedback condition. This is a second significant main effect. Finally,
he found an interaction between the two independent variables. If you look closely at the means in
Table 11.4 and in Figure 11.5, you can see that three of the four groups have very similar means.
Only the public/choice group appears to have solved a significantly greater number of anagrams than
did students in the other three groups. I could conduct a test of simple effects to determine whether
students in the public/choice group scored significantly higher than students in the public/no-choice
group.

FIGURE 11.5 Interaction of choice by public vs. private evaluation.

In this example, the presence of a significant interaction raises questions about how to
interpret our statistically significant main effects. Notice that Burger found a main effect for choice,
with students in the two choice groups combined solving more anagrams, on average, than students
in the two no-choice groups combined The problem here is that we can see that students in the
private/choice group did not score higher than students in the private/no-choice group, and had very
similar scores to students in the public/no-choice group. Therefore, this main effect for choice
versus no choice is caused entirely by the relatively high scores of the public/choice group. So when
Burger states that participants solved more anagrams on average when they were given a choice than
did participants who had no choice, he must carefully point out that this is only true for students in
the public condition. Similarly, the main effect for public over private is also caused solely by the
high scores of the public/choice group. By noting that there is a significant interaction of the two
independent variables, Burger is in effect telling his readers that they must interpret the main effects
very carefully. If we were simply to conclude that students perform better when given a choice, or
when their performance is made public, we would miss the intricacy of the story.

WRAPPING UP AND LOOKING FORWARD

In this chapter we were able to extend what we learned about ANOVA in Chapter 10 in three
important ways. First, we added the concept of multiple independent variables. By having more
than one independent variable in the model, we are able to more finely divide up, and explain, the
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variance in the dependent variable. Second, we examined the concept of controlling or partialing
out the effects of other variables in the model, including covariates, to get a better picture of the
unique relation between an independent and a dependent variable. Finally in this chapter, we
considered the importance of statistical interactions. All three of these concepts provide a hint of the
amazing power of many different statistical techniques to explore the relations among variables. In
the social sciences, as in most fields, variables are related to each other in very complex ways. We
live in a complex world. Although t tests and one-way ANOVA are useful statistical techniques,
they are often unable to examine the most interesting questions in the social sciences. It is the messy
world of interactions, shared variance, and multiple predictors that make the statistical life a life
worth living. So although the concepts in these last few chapters may seem a bit more difficult than
those discussed earlier in the book, they pay rich dividends when finally understood. In the next
chapter, we enter the complex yet particularly interesting world of repeated-measures ANOVA.

GLOSSARY OF TERMS FOR CHAPTER 11

Analysis of covariance (ANCOVA): An analysis of variance conducted with a covariate. It is an
analysis conducted to test for differences between group means after partialing out the
variance attributable to a covariate.

Cell size: The number of cases in each subgroup of the analysis.
Covariate(s): A variable, or group of variables, used to control, or account for, a portion of the

variance in the dependent variable, thus allowing the researcher to test for group differences
while controlling for the effects of the covariate.

Factorial ANOVA: An analysis of variance with at least two categorical independent variables.
Homogeneity of variance: An assumption of all ANOVA models that there are not statistically

significant differences in the within-group variances on the dependent variable between the
groups being compared.

Interaction (effect): When the relationship between the dependent variable and one independent
variable is moderated by a second independent variable. In other words, when the effect of
one independent variable on the dependent variable differs at various levels of a second
independent variable.

Main effects: These are the effects for each independent variable on the dependent variable. In
other words, differences between the group means for each independent variable on the
dependent variable.

Moderator: When the relationship between the dependent variable and one independent variable
differs according to the level of a second independent variable, the second independent
variable acts as a moderator variable. It is a variable that moderates, or influences, the
relationship between a dependent variable and an independent variable.

Partial and controlled effects: When the shared, or explained variance between a dependent
variable and an independent variable (or a covariate) is held constant, thereby allowing the
researcher to examine group differences net of the controlled effects.

Simple effects: The differences between the means of each subgroup in a factorial ANOVA. (A
subgroup involves the division of an independent variable into smaller groups. For
example, if ethnicity is one independent variable, e.g., African-American, Asian-American,
and Hispanic-Latino, and gender is another variable, then each ethnic group has two
subgroups, e.g., African-American females and African American-males.)
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CHAPTER 12

REPEATED-MEASURES ANALYSIS OF VARIANCE

One type of t test discussed in Chapter 9 was the paired t test. One type of study in which a paired t
test would be used is when we have two scores for a single group on a single measure. For example,
if we had a group of third-grade students and we gave them a test of their math abilities at the
beginning of the school year and again at the end of the school year, we would have one group (third
graders) with two scores on one measure (the math test). In this situation, we could also use a
repeated-measures analysis of variance (ANOVA) to test whether students' scores on the math
test were different at the beginning and end of the academic year.

Repeated-measures ANOVA has a number of advantages over paired t tests, however.
First, with repeated-measures ANOVA, we can examine differences on a dependent variable that has
been measured at more than two time points, whereas with an independent t test we can only
compare scores on a dependent variable from two time points. Second, as discussed in Chapter 11
on factorial ANOVA, with a repeated-measures ANOVA we can control for the effects of one or
more covariates, thereby conducting a repeated-measures analysis of covariance (ANCOVA). Third,
in a repeated-measures ANOVA, we can also include one or more independent categorical, or group
variables. This type of mixed model is a particularly useful technique and is discussed in some
detail later in the chapter.

When to Use Each Type of Repeated-Measures Technique

The most basic form of a repeated-measures ANOVA occurs when there is a single group (e.g., third
graders) with two scores (e.g., beginning of the year, end of the year) on a single dependent variable
(e.g., a mathematics test). This is a very common model that is often used in simple laboratory
experiments. For example, suppose I wanted to know whether drinking alcohol affects the reaction
time of adults when driving. I could take a group of 50 adults and test their stop reaction time by
flashing a red light at each one of them when they are driving and measuring how long it takes for
each one to apply the brakes. After calculating the average amount of time it takes this group to
apply the brakes when sober, I could then ask each member of my group to consume two alcoholic
drinks and then again test their reaction time when driving, using the same methods. In this
example, I've got one group (50 adults) with two scores on one dependent variable (reaction time
when driving). After the second measure of reaction time, I could ask each of my participants to
consume two more alcoholic drinks and again test their reaction time. Now I've got three measures
of reaction time that I can use in my repeated-measures ANOVA. Notice that my dependent
variable is always the same measure (reaction time), and my group is always the same (sample of 50
adults). The results of my repeated-measures ANOVA will tell me whether, on average, there are
differences in reaction time across my three trials. If there are, I might logically conclude that
drinking alcohol affects reaction time, although there may be other explanations for my results (e.g.,
my participants may be getting tired or bored with the experiment, they may be getting used to the
test situation, etc.).

-129-
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FIGURE 12.1 Driving reaction time over three trials with increasing drinks.

In a slightly more advanced form of the test of reaction time, I could include a covariate. In
the previous example, suppose that I found the reaction time was fastest when my participants were
sober, a bit slower after two drinks, and a lot slower after four drinks. Suppose that I publish these
results and the national beer, wine, and liquor companies become worried that, because of my study,
people will stop drinking their products for fear of getting in automobile accidents. These producers
of alcoholic drinks begin to criticize my study. They suggest that because equal amounts of alcohol
generally have greater effects on those who weigh less than on heavier people, my results may have
been skewed by the effects of alcohol on the lighter people in my study. "Although the effects of
two alcoholic drinks may impair the reaction time of lighter people, even four alcoholic drinks will
not impair the reaction time of heavier people" said the United Alcohol Makers of America (a
fictitious group).

Stung by the criticism of the UAMA, I decide to replicate my study, but this time I use
weight as a covariate. Again, I measure participants' reaction time when driving completely sober,
after two alcoholic drinks and after four alcoholic drinks. In addition, this time I weigh each of my
participants. Now when I analyze my data, I include my weight covariate. I find that, after
controlling, or partialing out the effects of weight, there is no difference in the reaction time of
participants before they have any drinks and after they have two drinks, but after four drinks my
participants react more slowly, on average, than they did after zero or two drinks (Figure 12.2).
These results suggest that drinking may increase the reaction time of lighter people after only two
drinks, but it seems to impair the reaction time of people, regardless of weight, after four drinks.

Still bothered by my results, the UAMA suggests that my results are skewed because I did
not look at the effects of drinking on reaction time separately for men and women. "Women are
more dramatically affected by alcohol than men, regardless of weight," claims the UAMA. They
argue that although consuming four alcoholic drinks may slow the reaction time of women, it will
not have an effect on heavy men. Though I am dubious of the argument that heavy men should have
their rights to drink and drive protected, in the name of science I decide to conduct one final study.
In this study, again with 50 adults (25 women and 25 men) of various weights, I again test their
reaction time while driving after zero, two, and four alcoholic drinks. Now I've got one dependent
variable (reaction time) measured at three time points, one covariate (weight), and one independent
group variable (gender of participant). Notice that although number of drinks is technically an
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independent variable, it is not a categorical, or group, variable. In other words, I do not have three
independent groups (the zero-drink group, the two-drink group, and the four-drink group). Rather, I
have three dependent, or repeated, measures of the same dependent variable, reaction time.

FIGURE 12.2 Driving reaction time over three trials, controlling for weight.

When I examine the results of my study, I find that, after controlling for the effects of my
covariate (weight), there is still no difference in reaction time measured after zero and two drinks,
but still slower reaction time, on average, after four drinks. In addition, I find no interaction between
gender and number of drinks on reaction time. This tells me that both men and women have slower
reaction time after four drinks, regardless of their weight (see Figure 12.3).

To summarize, my three different repeated-measures ANOVAs produced the following
results. The first one found that adults' reaction times while driving were slower, on average, after
two drinks and slower still after four drinks. My second test included the covariate of weight, and I
found that when we control for the effects of weight, reaction time is not slower after two drinks but
is slower after four drinks. Finally, in my third analysis, I examined whether changes in reaction
time after two and four drinks, when controlling for weight, was different for men and women. I
found that it was not. These three analyses provide a snapshot of how repeated-measures ANOVA
works and what information it can provide. Now let's take a closer look at how it works.
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FIGURE 12.3 Driving reaction time over three trials by gender, controlling for weight.

REPEATED-MEASURES ANOVA IN DEPTH

Repeated-measures ANOVA is governed by the same general principles as all ANOVA techniques.
As with one-way ANOVA and factorial ANOVA, in repeated-measures ANOVA we are concerned
with dividing up the variance in the dependent variable. Recall that in a one-way ANOVA, we
separated the total variance in the dependent variable into two parts: that attributable to differences
between the groups, and that attributable to differences among individuals in the same group (a.k.a.,
the error variance). In a repeated-measures ANOVA with no independent group variable, we are
still interested in the error variance. However, we also want to find out how much of the total
variance can be attributed to time, or trial. That is, how much of the total variance in the dependent
variable is attributable to differences within individuals across the times they were measured on the
dependent variable.

Consider an example. Suppose that I am interested in examining whether a group of
students increase their knowledge and skills from one academic year to the next. To do this, I give
my sample a standardized test of vocabulary (with a possible range of 1 to 100), once when they are
finishing third grade and again when they are finishing fourth grade. When I do this, suppose I get
the data presented in Table 12.1.

For each of the 10 cases in Table 12.1, we have two test scores, giving us a total of 20
scores in the table. We could find an average for these 20 scores, and a standard deviation, and a
variance. In a repeated-measures ANOVA, we want to try to partition this total variance into
different pieces. In the most basic form of repeated-measures ANOVA, there are three ways that we
can slice up this variance. First, there is the portion of variance attributable to deviations in scores
between the individual cases in the sample. For each case in our sample, we have two scores (one
for Time 1 and one for Time 2). We can find an average of these two scores, for each individual,
and then see how much this individual average differs from the overall average. In Table 12.1, for
example, the first case has an average score of 50 across the two trials (40 + 60 + 2 = 50). The
overall average for the scores in the table is 56.75. So there is some variation in the average scores
of the 10 individuals in the sample. This is one source of variation.
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TABLE 12.1 Vocabulary test scores at two time points.

Case Number Test Score, Time 1 (Third Grade) Test Score, Time 2 (Fourth Grade)

1

2

3

4

5

6

7

8

9

10

Trial (or Time)
Average

40

55

60

40

75

80

65

40

20

45

X=51.5

60

55

70

45

70

85

75

60

35

60

X=61.6

The second source of variation in the scores involves the within-subject variance, or
differences, between Time 1 and Time 2 scores. As we can see by looking at the scores in Table
12.1 and in Figure 12.4, it appears that students generally had different scores on the test at Time 1
than they did at Time 2. These intra-individual, or within-subject, differences between Time 1 and
Time 2 scores can be seen more easily in the graph presented in Figure 12.4. These intra-individual
changes reflect differences, or variance, within each individual, and therefore are called within-
subject effects. What we are interested in is whether, on average, individuals' scores were different
at Time 1 (in third grade) than they were at Time 2 (in fourth grade). Notice that we are asking
whether there were differences in the scores between Time 1 and Time 2 on average. If the scores
of some of the cases went up from Time 1 to Time 2, but the scores of other cases went down by the
same amount, then these changes would cancel each other out, and there would be no average
difference between the Time 1 and Time 2 scores. But if the scores either went up or down on
average between Time 1 and Time 2, then we could say that some of the total variation can be
attributable to within-subject differences across time. A look at the scores in Table 12.1 and Figure
12.4 reveals that scores appear to increase from Time 1 to Time 2. To examine whether there are
differences in the average scores across time, all we need to do is calculate the average score at each
time and find the difference between these average scores and the overall average. In the preceding
paragraph, we found that the overall average score was 56.75. In Table 12.1, we can see that the
average for Time 1 is 51.5, and the average score for Time 2 is 61.5. So we can see that there is
some variance in the average scores at the two times (i.e., third and fourth grade), suggesting that
there may be a within-subjects effect.
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FIGURE 12.4 Time 1 and Time 2 test scores.

The third source of variation in the scores comes from the interaction between the within-
subject scores and the variance in scores across the subjects. Although it appears that the scores of
the members in our study increased, on average, from Time 1 to Time 2, it does not appear that these
within-subject changes over time were the same across all of the subjects in the sample. As Figure
12.4 clearly shows, some subjects had large increases in their test scores from Time 1 to Time 2
(e.g., Subjects 1, 8, 9, and 10), whereas others had more modest increases, one had no change
(Subject 2) and one actually had a lower score at Time 2 (Subject 5). So there appears to be a case,
or subject, by time interaction. In other words, the size of the increase in test score from third to
fourth grade depends on which subject we are looking at. This difference among the subjects in the
magnitude of change from Time 1 to Time 2 represents the third source of variance.

Using these three sources of variance, we can then calculate an F ratio and determine
whether there are statistically significant differences in the average scores at Time 1 and the average
scores at Time 2. To do this, we divide the mean square for the differences between the trials, or
time, averages (MST) by the mean square for the subject by trial interaction (MSS x T). The
degrees of freedom F ratio is the number of trials minus 1 (T - 1) and (T - 1)(S - 1), where S
represents the number of subjects in the sample. What we get when we calculate this F ratio is an
answer to the following question: How large is the difference between the average scores at Time 1
and Time 2 relative to (i.e., divided by) the average amount of variation among subjects in their
change from Time 1 to Time 2? Because differences in the rate of change across time are just
considered random fluctuations among individuals, this F ratio, like all F ratios, is a measure of
systematic variance in scores divided by random variance in scores. (Note: For a more detailed
discussion of these sources of variance, including how to calculate the sum of squares for each
source, see Glass and Hopkins, 1996.)

In this most basic form of repeated-measures ANOVA, notice that what we are primarily
concerned with is whether there is a systematic pattern of differences within individuals, or subjects,
in the scores on the dependent variable measured at two time points. Also notice that if we had three
points of data (e.g., test scores from third, fourth, and fifth grades), our question would remain the
same: Is there a pattern of differences in the scores within subjects over time? Keep in mind that
when I say "a pattern" or "a systematic pattern," I mean on average. So, to rephrase the question, a
simple repeated-measures ANOVA can help us detect whether, on average, scores differ within
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subjects across multiple points of data collection on the dependent variable. This type of simple
repeated-measures ANOVA is sometimes referred to as a within-subjects design.

Repeated-Measures Analysis of Covariance (ANCOVA)

A slightly more complicated form of repeated-measures ANOVA can be produced by adding one or
more covariates to the model. As discussed earlier in this chapter, as well as in Chapter 11 on
factorial ANOVA, covariates can be used to partial out some portion of the variance in the
dependent variable. I illustrate how this works by returning to the example data presented in Table
12.1.

One could argue that the results of my repeated-measures ANOVA were skewed by the
scores of the more intelligent students in my sample. Although the students in my sample scored
higher on the vocabulary test at the end of fourth grade than they did at the end of third grade, we
must keep in mind that the change in scores over time represents an average change. Some students
in my sample improved quite a bit over time, whereas others did not increase at all, and one (Subject
5) actually declined. So it is possible that this overall average improvement over time was caused by
large increases among the brightest students. To explore this hypothesis, I conduct a new repeated-
measures ANOVA, but this time I include a covariate: IQ test scores.

When I conduct my repeated-measures ANCOVA, I now have three ways of partitioning
the total variance in my vocabulary test scores. First, there is the portion of variance that is
accounted for by my covariate, IQ test scores. If students' IQ test scores are related to (i.e.,
correlated with) their vocabulary test scores, then the IQ test scores will explain, or account for,
some percentage of the variance in students' vocabulary test scores (see Chapter 8 for a more
thorough explanation of this concept). Second, after partialing out the portion of variance
attributable to IQ test scores, I can see whether any of the remaining variance in vocabulary test
scores is accounted for by changes in vocabulary test scores from third to fourth grade. In other
words, once we control for the effects of IQ test scores, do the scores of my sample change
significantly from Time 1 (third grade) to Time 2 (fourth grade), on average? Is there still a within-
subjects effect after controlling for IQ test scores? Finally, after accounting for the variance in
vocabulary test scores that is attributable to the covariate (i.e., IQ test scores) and the within-subjects
effect (i.e., changes from third to fourth grade), there will still be some variance in vocabulary test
scores that is not explained. This is error variance, which is the same as the random variance that we
normally find between different members of the same sample (see Figure 12.5).

FIGURE 12.5 Partitioning of variance of vocabulary test scores.
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To reiterate, when a covariate (or several covariates) are added to the repeated-measures
ANOVA model, they are simply included to "soak up" a portion of the variance in the dependent
variable. Then, we can see whether there are any within-subject differences in the scores on the
dependent variable, when controlling for, or partialing out that portion of the variance accounted for
by the covariate(s). In the example we have been using, the addition of the IQ score covariate allows
us to answer this question: Do students' vocabulary test scores change, on average, from third to
fourth grade independently of their IQ scores? Phrased another way, we can ask whether, when
controlling for IQ, students' vocabulary test scores change from third to fourth grade.

Adding an Independent Group Variable

Now that we have complicated matters a bit by adding a covariate to the model, let's finish the job
by adding an independent categorical, or group variable. Suppose, for example, that my 10 cases
listed in Table 12.1 included an equal number of boys and girls. This two-level independent variable
may allow us to divvy up the variance in our dependent variable even more, but only if there are
differences in the scores of boys and girls.

There are two ways that this independent group variable may explain variance in
vocabulary test scores. First, boys and girls may simply differ in their average scores on the
vocabulary test. Suppose that when we divide the scores in Table 12.1 by gender, we get the
results presented in Table 12.2. If the data were aligned in this way, we would find that at Time 1,
the average score on the vocabulary test was 35 for boys and 65 for girls. Similarly, at Time 2, the
average score for boys was 52 whereas for girls it was 71. At both Time 1 and Time 2, boys appear
to have lower average scores on the vocabulary test than girls. Therefore, there appears to be a main
effect for gender. Because this main effect represents a difference between groups of cases in the
study, this type of effect is called a between-groups or between-subjects main effect. In other
words, some of the variance in vocabulary test scores can be explained by knowing the group (i.e.,
gender) to which the student belongs.

TABLE 12.2 Vocabulary test scores at two time points.

Case Number Test Score, Time 1 (Third Grade) Test Score, Time 2 (Fourth Grade)

Boys

9 20 35

4 30 45

8 40 60

1 40 60

10 45 60

Girls

2 55

3 60

7 65

5 75

6 80

55

70

75

70

85

The second way that my independent group variable can explain some of the variance in
my dependent variable is through an interaction effect. If I were to graph the means for boys and
girls at both time points, I would get an interesting picture. As we can see in Figure 12.6, the main
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effect for gender is clear. In addition, it is also clear that there is a within-subject effect, because
both boys and girls have higher scores at Time 2 than they did at Time 1.

FIGURE 12.6 Gender by time interaction.

But what also becomes clear in Figure 12.6 is that the amount of change from Time 1 to
Time 2 appears to be greater for boys than for girls. Whereas the average score for girls increased 6
points from third to fourth grade, it grew 17 points for boys. These different amounts of change
represent another source of explained variance in vocabulary test scores: the interaction of the
within-subjects effect with the between-subjects effect. In other words, there appears to be a gender
(i.e., between-subjects) by time (i.e., within-subjects) interaction on vocabulary test scores. Note
that questions about how to interpret the main effect in the presence of a statistically significant
interaction arise here, just as they did in our discussions of interactions in factorial ANOVAs
(Chapter 11). In our current example, the main, within-subjects effect for time (i.e., that test scores
went up from Time 1 to Time 2) may be due primarily to the large increase in scores for boys. So it
may be misleading to say simply that students' scores increase with time (i.e., the main effect)
without also noting that the time by gender interaction reveals a large increase for boys but only a
modest increase for girls in test scores over time.

To summarize, our final model has a number of effects, each of which can explain some of
the variance in the vocabulary test scores of the cases in my sample. First, some of the variance in
vocabulary test scores can be explained by students' IQ test scores. On average, students with
higher IQ test scores had higher vocabulary test scores. Second, even after controlling for IQ, there
was a within-subjects main effect. That is, I can know something about students' scores on the
vocabulary test by knowing whether we are talking about Time 1 or Time 2 test scores because, on
average, students had higher scores at Time 2. Third, there was a between-subjects effect for gender,
so I can explain some of the variance in vocabulary test scores by knowing the gender of the student.
Girls had higher scores, on average, than did boys. Fourth, my time by gender interaction explains
some additional variance in vocabulary test scores. Although both boys' and girls' scores improved
over time, this improvement was more dramatic among boys, on average. Finally, there is some
variance in vocabulary test scores that I cannot explain with my covariate, time, gender, or
interaction effects: This is error variance (see Figure 12.7).
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FIGURE 12.7 Partitioning of variance in vocabulary test scores with between-subjects, within-
subjects, and covariate portions.

Please keep in mind that my different effects (time, gender, interaction, covariate) will only
explain variation in my dependent variable if the relations between my dependent variable and these
effects are statistically significant (see Chapter 7). With only 10 cases in my sample, many of these
effects may not be statistically significant.

EXAMPLE: CHANGING ATTITUDES ABOUT STANDARDIZED TESTS

Every year, students across the country take standardized tests of achievement. Several years ago, I
conducted a study to explore students' beliefs and attitudes about taking a standardized test, the Iowa
Test of Basic Skills (ITBS). The participants in the study included fifth graders from an elementary
school and seventh and eighth graders from two middle schools. There were 570 students in the
sample. Students were given a survey the week before they took the ITBS and then were given
another survey during the week after they took the test. This pretest-posttest design allowed me to
examine how students were thinking about the test before taking it, and then to reassess their
thinking soon after taking the test.

The two surveys contained questions about a variety of beliefs and attitudes, including test
anxiety, self-concept, attributions for success and failure, and other variables related to motivation.
One set of questions assessed students' perceptions about the validity of the test. On the pretest
survey, the measure of validity beliefs included items such as "I think the ITBS test will be a good
measure of what I can do in school" and "The ITBS test will measure how smart I am." On the
posttest survey, the measure of validity beliefs included such items as "My score on the ITBS test
will tell me how smart I am" and "The ITBS test was a good test of how much I have learned in
school." Students answered each of these questions using an 8-point scale ranging from 1 ("strongly
disagree") to 8 ("strongly agree"). Students' answers to each question were averaged to create a
single pretest validity score (VALID) and a single posttest validity score (PSTVALID), each with a
range of 1 to 8.

One question that we can ask with these data is whether students' beliefs about the validity
of the tests, in terms of the test measuring what they know or can do academically, changed, on
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average, from before they took the test to after. Students may develop a set of beliefs about the test
before they take it, perhaps due to what their teachers and school administrators tell them in
preparation for the test. But once they take the test, and see what sorts of questions the test contains,
they may change their beliefs about what the test really measures. This is a within-subjects type of
question: Are there changes within individuals in attitudes about the validity of the test from Time 1
to Time 2?

One factor that may cause students to change their attitudes about the validity of the ITBS
test is how well they performed on the test. When taking the test, those who thought the test was
difficult, and knew that they were not doing well on it, may develop a somewhat defensive
perception that the tests are unfair or invalid. On the other hand, those who felt the test was easy and
knew they were doing well when taking the test may tend to develop self-augmenting perceptions of
the test, such as the test reveals their intelligence and is a valid measure. To control for these
performance-based differences in perceptions of test validity, I add two covariates to the model, both
measures of actual test performance. One covariate is the students' scores, in percentile terms, on
the math portion of the ITBS test. The other covariate is students' percentile scores on the verbal
portion of the test. The addition of these two variables turns my repeated-measures ANOVA into a
repeated-measures ANCOVA. This repeated-measures ANCOVA can be used to answer the
following question: When controlling for actual achievement on the test, are there changes within
individuals in students' attitudes about the validity of the test from Time 1 to Time 2?

Finally, it is possible that boys' and girls' perceptions of the validity of the test may differ.
Perhaps one gender is more trusting of standardized measures than the other. In addition, perhaps
one gender tends to have more idealized perceptions of the tests' validity before taking the test, but
these perceptions change after actually taking the test. The other gender, with no such idealized
preconceptions, may not change their attitudes after taking the test. By adding the independent
group variable of gender, I can now address all of the following questions with my model:

1. When controlling for the effects of gender and achievement, are there changes
within subjects in students' attitudes about the validity of the test from Time 1
to Time 2?

2. When controlling for within-subject effects and achievement, are there
differences between boys' and girls' average beliefs about the validity of the
test (i.e., between-subjects effects)?

3. Is there a within-subject by between-subject interaction, such that the size of
the change in perceptions about the validity of the tests from Time 1 to Time 2
is different for boys and girls, when controlling for the effects of achievement?

As you can see, there are a number of very interesting questions that I can examine in a
single repeated-measures ANCOVA. To examine these questions, I conducted my analysis using
SPSS software. The actual SPSS output from the analysis is presented in Table 12.3. I explain each
piece of information in the order it appears in Table 12.3.

The first set of information in Table 12.3 shows the means, standard deviations, and sample
sizes for the pretest dependent variable (Pretest Validity) and the posttest dependent variable
(Posttest Validity). A quick glance at the separate means for boys and girls on the Pretest Validity
and Posttest Validity variables reveals that whereas the girls' averages are virtually identical from
Time 1 to Time 2, the boys' mean declines somewhat (from 6.2852 to 6.0076). We can also see that
at both Time 1 and Time 2, boys appear to score higher, on average, than girls on the validity
perception measures (see Figure 12.8). Whether these differences are statistically significant is still
to be determined. Regardless of whether these differences are statistically significant, they may not
be practically significant: Boys and girls do not appear to differ much in their average perceptions of
the validity of the ITBS test.
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TABLE 12.3 SPSS output for repeated-measures ANCOVA.

Descriptive Statistics

Gender Mean Std. Deviation N

Pretest Validity

Posttest Validity

Girl 5.7679 1.5762
Boy 6.2852 1.4761
Total 6.0071 1.5510

Girl 5.7096 1.5190
Boy 6.0076 1.5324
Total 5.8473 1.5311

307
264
571

307
264
571

Tests for Between-Subjects Effects

Source

Intercept
Reading Test Score
Math Test Score
Gender
Error

Type III Sum of df Mean Square
Squares

10642.913 1 10642.913
35.006 1 35.006
5.266 1 5.266

41.941 1 41.941
2059.273 567 3.632

F

2930.419
9.639
1.450

11.548

Sig. Eta Squared

.000 .838

.002 .017

.229 .003

.001 .020

Validity
Validity * Read Test
Validity* Math Test
Validity * Gender
Error(Validity)

8.884
.164

3.533
3.670

474.437

1
1
1
1

567

8.884
.164

3.533
3.670

.837

10.617
.196

4.222
4.386

.001

.659

.040

.037

.018

.000

.007

.008

Below the means and standard deviations in the SPSS output, we find the "Tests for
Between-Subjects Effects." Here we see five separate sums of squares (55), degrees of freedom (df),
and mean squares (MS). We also get F values, "Sig." p values, and our effect size measure, "Eta
Squared." The statistics we are most interested in here is the F value "Sig" p value, and "Eta
Squared" effect size for the analysis involving Gender. These statistics tell us whether, on average,
boys and girls differ in their average perceptions of validity of the ITBS, when controlling for their
performance on the test. It is important to remember that this between-subjects test is for the pretest
Validity scores and the posttest Validity scores combined. Because the "Sig" is a p value, and this p
value is much less than .05, we conclude that, on average, across times, boys and girls differ in their
perceptions of the validity of the tests. If we take a look at the means presented earlier, we can
conclude that boys have more faith in the validity of the test scores than do girls, even after
controlling for performance on the test. Notice that the eta squared statistic for the gender effect is
quite small (eta2 = .02), indicating that gender accounts for only 2% of the variance in the combined
pretest and posttest Validity scores. This suggests that our statistically significant result may not be
practically significant. The data presented in this part of the table also reveal that there is a

Tests Involving Within-Subjects Effects

Source Type III Sum of df Mean Square F Sig. Eta Squared
Squares
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significant relationship between one of our covariates (Reading test scores) and our dependent
variable (the combined pretest and posttest Validity scores).

FIGURE 12.8 Change in beliefs about validity of standardized test scores by gender.

Continuing down the SPSS output in Table 12.3, we get to the section labeled "Test
involving Within-Subject Effect." Here we are most interested in the results for Validity and the
Validity * Gender interaction. Validity is the name that I have given to the combination of the pre
and posttest scores on the validity measure. When these two scores are combined to create a within-
subjects factor (which I called Validity), we can conduct a test to see whether there were statistically
significant within-subject changes, on average, on the validity measures from Time 1 to Time 2.
Because this within-subjects test is concerned with changes or differences within subjects across the
two times, the dependent variable in this analysis is not the combined scores on the pretest Validity
and posttest Validity variables, as it was in the between-subjects test. Rather, the dependent variable
is the difference or change in the scores, within-subjects, from Time 1 to Time 2. Because our F
value for Validity has a corresponding p value of p = .001 (as listed in the "Sig." column), we can
see that, on average, students' belief in the validity of the test did change from Time 1 to Time 2. By
looking at the means reported earlier, we can see that, on average, students had more faith in the
validity of the test before they took the test than they did after taking the test. The eta squared
statistic for this effect (eta2 = .018) indicates that there was a small effect size for this effect. We can
also see, from the Validity * Math Test (F = 4.222) and the associated p value ("Sig." = .040), that
there was a significant relationship between the math test covariate and our dependent variable in
this analysis. In other words, there was significant relationship between how well students
performed on the math portion of the ITBS test and how much their beliefs in the validity of the test
changed over time. There was no significant relationship between performance on the reading
portion of the ITBS test and changes in beliefs about the validity of the test.

In addition to the main within-subject effect, we can see that there is a significant Validity
by Gender interaction ("Sig.", or p = .037). This tells us that the within-subject changes from Time
1 to Time 2 in beliefs about the validity of the ITBS test were not of equal size among boys and
girls. If you recall from the means presented at the top of Table 12.3, this comes as no surprise (see
Figure 12.8). We can see that whereas girls' mean score on the validity variable changed little from
Time 1 to Time 2, for boys there was a noticeable decrease in beliefs about the validity of the test
from Time 1 to Time 2. It is important to keep in mind that even the statistically significant results
in this analysis are all quite modest, as revealed by the small effect sizes (see Chapter 7 for a
discussion of effect size).
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Now that we have found a significant interaction, we perhaps need to modify our
conclusions about the main effects we have found. First, the differences between boys' and girls'
average perceptions that the test is valid appear to be due primarily to the relatively large gap in
Time 1 scores. Boys' and girls' perceptions of the validity of the test were more similar after they
actually took the test, although boys were still slightly more likely to believe the tests were valid.
Second, the statistically significant within-subject change in beliefs about test validity over time
appear to be caused entirely by changes in the boys' perceptions from Time 1 to Time 2. Girls
barely changed their beliefs about validity over time.

Taken as a group, the results of our repeated-measures ANCOVA reveal a great deal about
how boys and girls think about the validity of the ITBS. First, we know that although performance
on the English portion of the test is related to beliefs about the validity of the test, it is performance
on the math portion of the test that is related to changes in beliefs about validity. Second, we know
that boys tend to view the tests as more valid than girls, particularly before they take the test,
regardless of how well students performed on the test (i.e., controlling for the effects of test scores).
Third, we know that students tend to decline in their beliefs about the validity of the test after taking
the test, but this decline appears to only occur among boys. Finally, we know that all of these effects
are quite small because the small effect sizes tell us so. This is a lot of information, and it
demonstrates the power of repeated measures.

Interpreting Graphs: A Cautionary Tale

When trying to make sense of a graph, it is important that the reader beware. The same data can
look very different depending on the scale used in the graph. If you take a look at Figure 12.8,
you'll notice that the bars representing the means for boys and girls look pretty similar, both at the
pretest and the posttest. That is because in that graph I used an "honest" y-axis. That is to say I used
the full range of scores, 1-7, on the y-axis that appeared in the original scale of measurement used
when I collected the data. By using a less honest, smaller range on my y-axis, take a look at what
happens to the graph:

See how much larger the differences between the means appear? I'm presenting the exact same data
as I did in Figure 12.8 but it looks different, and more impressive, here just because I changed the
scale on the y-axis. So when reading graphs, pay attention to the y-axis.
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WRAPPING UP AND LOOKING FORWARD

In some ways, repeated-measures ANOVA is a simple extension of ideas we have already discussed.
The similarities with paired t tests (Chapter 9) are clear, as is the idea of parsing up the variance of a
dependent variable into various components. But the tremendous power of repeated-measures
ANOVA can only be appreciated when we take a moment to consider all of the pieces of
information that we can gain from a single analysis. The combination of within-subjects and
between-subjects variance, along with the interaction between these components, allows social
scientists to examine a range of very complex, and very interesting, questions. Repeated-measures
ANOVA is a particularly useful technique for examining change over time, either in longitudinal
studies or in experimental studies using a pretreatment, posttreatment design. It is also particularly
useful for examining whether patterns of change over time vary for different groups.

In the final chapter of the book, we will examine one of the most widely used and versatile
statistical techniques: regression. As you finish this chapter and move onto the next, it is important
to remember that we are only able to scratch the surface of the powerful techniques presented in the
last three chapters of this book. To gain a full appreciation of what factorial ANOVA, repeated-
measures ANOVA, and regression can do, you will need to read more about these techniques.

GLOSSARY OF TERMS AND SYMBOLS FOR CHAPTER 12

Between-subjects effect: Differences attributable to variance among the scores on the dependent
variable for individual cases in the ANOVA model.

Between-groups effect: Differences in the average scores for different groups in the ANOVA
model.

Group variable(s): Categorical independent variable(s) in the ANOVA model.
Mean square for the differences between the trials: The average squared deviation between the

participants' average across all trials and their scores on each trial.
Mean square for the subject by trial interaction: The average squared deviation between each

individual's change in scores across trials and the average change in scores across trials.
Repeated-measures analysis of variance (ANOVA): A statistical technique used to examine

whether the average scores on a dependent variable change over time or trials (i.e., when
measured repeatedly).

Time, trial: Each time for which data are collected on the dependent variable.
Within-subject variance: Differences within each individual case on scores on the dependent

variable across trials.
Within-subjects design: A repeated-measures ANOVA design in which intra-individual changes

across trials are tested. This technique allows the researcher to test whether, on average,
individuals score differently at one time than another.

MSS x T: Mean square for the interaction of subject by trial.
MST : Mean square for the differences between the trials.
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CHAPTER 13

REGRESSION

In Chapter 8, the concept of correlation was introduced. Correlation involves a measure of the
degree to which two variables are related to each other. A closely related concept, coefficient of
determination, was also introduced in that chapter. This statistic provides a measure of the strength
of the association between two variables in terms of percentage of variance explained. Both of these
concepts are present in regression. In this chapter, the concepts of simple linear regression and
multiple regression are introduced.

Regression is a very common statistic in the social sciences. One of the reasons it is such a
popular technique is because it is so versatile. Regression, particularly multiple regression, allows
researchers to examine the nature and strength of the relations between the variables, the relative
predictive power of several independent variables on a dependent variable, and the unique
contribution of one or more independent variables when controlling for one or more covariates. It is
also possible to test for interactions in multiple regression. With all of the possible applications of
multiple regression, it is clear that it is impossible to describe all of the functions of regression in this
brief chapter. Therefore, the focus of this chapter is to provide an introduction to the concept and
uses of regression, and to refer the reader to resources providing additional information.

Simple Versus Multiple Regression

The difference between simple and multiple regression is similar to the difference between one-way
and factorial ANOVA. Like one-way ANOVA, simple regression analysis involves a single
independent, or predictor variable and a single dependent, or outcome variable. This is the same
number of variables used in a simple correlation analysis. The difference between a Pearson
correlation coefficient and a simple regression analysis is that whereas the correlation does not
distinguish between independent and dependent variables, in a regression analysis there is always a
designated predictor variable and a designated dependent variable. That is because the purpose of
regression analysis is to make predictions about the value of the dependent variable given certain
values of the predictor variable. This is a simple extension of a correlation analysis. If I am
interested in the relationship between height and weight, for example, I could use simple regression
analysis to answer this question: If I know a man's height, what would I predict his weight to be?
Of course, the accuracy of my prediction will only be as good as my correlation will allow, with
stronger correlations leading to more accurate predictions. Therefore, simple linear regression is not
really a more powerful tool than simple correlation analysis. But it does give me another way of
conceptualizing the relation between two variables, a point I elaborate on shortly.

The real power of regression analysis can be found in multiple regression. Like factorial
ANOVA, multiple regression involves models that have two or more predictor variables and a single
dependent variable. For example, suppose that, again, I am interested in predicting how much a
person weighs (i.e., weight is the dependent variable). Now, suppose that in addition to height, I
know how many minutes of exercise the person gets per day, and how many calories a day he
consumes. Now I've got three predictor variables (height, exercise, and calories consumed) to help
me make an educated guess about the person's weight. Multiple regression analysis allows me to
see, among other things, (a) how much these three predictor variables, as a group, are related to
weight, (b) the strength of the relationship between each predictor variable and the dependent
variable while controlling for the other predictor variables in the model, (c) the relative strength of
each predictor variable, and (d) whether there are interaction effects between the predictor variables.

-145-
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As you can see, multiple regression is a particularly versatile and powerful statistical technique.

Variables Used in Regression

As with correlation analysis, in regression the dependent and independent variables need to be
measured on an interval or ratio scale. Dichotomous (i.e., categorical variables with two categories)
predictor variables can also be used. There is a special form of regression analysis, logit regression,
that allows us to examine dichotomous dependent variables, but this type of regression is beyond the
scope of this book. In this chapter, we limit our consideration of regression to those types that
involve a continuous dependent variable and either continuous or dichotomous predictor variables.

REGRESSION IN DEPTH

Regression, particularly simple linear regression, is a statistical technique that is very closely related
to correlations (discussed in Chapter 8). In fact, when examining the relationship between two
continuous (i.e., measured on an interval or ratio scale) variables, either a correlation coefficient or a
regression equation can be used. Indeed, the Pearson correlation coefficient is nothing more than a
simple linear regression coefficient that has been standardized. The benefits of conducting a
regression analysis rather than a correlation analysis are (a) regression analysis yields more
information, particularly when conducted with one of the common statistical software packages, and
(b) the regression equation allows us to think about the relation between the two variables of interest
in a more intuitive way. Whereas the correlation coefficient provides us with a single number (e.g.,
r = .40), which we can then try to interpret, the regression analysis yields a formula for calculating
the predicted value of one variable when we know the actual value of the second variable. Here's
how it works.

The key to understanding regression is to understand the formula for the regression
equation. So I begin by presenting the most simple form of the regression equation, describe how it
works, and then move on to more complicated forms of the equation. In Table 13.1, the regression
equation used to find the predicted value of Y is presented along with definitions of the components.

TABLE 13.1 The regression equation.

where Y is the predicted value of the Y variable
b is the unstandardized regression coefficient, or the slope
a is intercept (i.e., the point where the regression line intercepts the Y axis)

In simple linear regression, we begin with the assumption that the two variables are
linearly related. In other words, if the two variables are actually related to each other, we assume
that every time there is an increase of a given size in value on the X variable (called the predictor or
independent variable), there is a corresponding increase (if there is a positive correlation) or
decrease (if there is a negative correlation) of a given size in the Y variable (called the dependent, or
outcome, or criterion variable). In other words, if the value of X increases from a value of 1 to a
value of 2, and 7 increases by 2 points, then when X increases from 2 to 3, we would predict that the
value of Y would increase another 2 points.

To illustrate this point, let's consider the following set of data. Suppose I want to know
whether there is a relationship between the amount of education people have and their monthly
income. Education level is measured in years, beginning with kindergarten and extending through
graduate school. Income is measured in thousands of dollars. Suppose that I randomly select a
sample of 10 adults and measure their level of education and their monthly income, getting the data
provided in Table 13.2.
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When we look at these data, we can see that, in general, monthly income increases as the
level of education increases. This is a general, rather than an absolute, trend because in some cases a
person with more years of education makes less money per month than someone with less education
(e.g., Case 10 and Case 9, Case 6 and Case 5). So although not every person with more education
makes more money, on average more years of education are associated with higher monthly
incomes. The correlation coefficient that describes the relation of these two variables is r = .83,
which is a very strong, positive correlation (see Chapter 8 for a more detailed discussion of
correlation coefficients).

TABLE 13.2 Income and education level data.

Education Level (X) Monthly Income (Y)
(in thousands)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Case 9

Case 10

Mean

Standard Deviation

Correlation Coefficient

6 years

8 years

11 years

12 years

12 years

13 years

14 years

16 years

16 years

21 years

12.9

4.25

.83

1

1.5

1

2

4

2.5

5

6

10

8

4.1

3.12

If we were to plot these data on a simple graph, we would produce a scatterpiot, such as
the one provided in Figure 13.1. In this scatterpiot, there are 10 data points, one for each case in the
study. Note that each data point marks the spot where education level (the X variable) and monthly
income (the Y variable) meet for each case. For example, the point that has a value of 10 on the Y
axis (income) and 16 on the X axis (education level) is the data point for the 10th case in our sample.
These 10 data points in our scatterpiot reveal a fairly distinct trend. Notice that the points rise
somewhat uniformly from the lower left corner of the graph to the upper right corner. This shape is
a clear indicator of the positive relationship (i.e., correlation) between education level and income.
If there had been a perfect correlation between these two variables (i.e., r = 1.0), the data points
would be aligned in a perfectly straight line, rising from lower left to upper right on the graph. If the
relationship between these two variables were weaker (e.g., r = .30), the data points would be more
widely scattered, making the lower-left to upper-right trend much less clear.
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FIGURE 13.1 Scatterplot for education and income.

With the data provided in Table 13.2, we can calculate all of the pieces of the regression
equation. The regression equation allows us to do two things. First, it lets us find predicted values
for the Y variable for any given value of the X variable. In other words, we can predict a person's
monthly income if we know how many years of education he or she has. Second, the regression
equation allows us to produce the regression line. The regression line is the basis for linear
regression and can help us understand how regression works.

There are a number of different types of regression formulas, but the most commonly used
is called ordinary least squares regression, or OLS. OLS is based on an idea that we have seen
before: the sum of squares (see Chapters 2 and 9). If you wanted to, you could draw a number of
straight lines that bisect the data points presented in the scatterplot in Figure 13.1. For example, you
could draw a horizontal line that extends out from the number 5 on the Y axis. Similarly, you could
draw a straight line that extends down from the number 10 on the 7 axis to the number 25 on the X
axis. No matter how you decided to draw your straight line, notice that at least some of the data
points in the scatterplot will not fall exactly on the line. Some or all will fall above the line, some
may fall directly on the line, and some or all will fall below the line. Any data point that does not
fall directly on the line will have a certain amount of distance between the point and the line. Now if
you were to calculate the distance between the data point and the line you have drawn, and then
square that distance, you would have a squared deviation for that point. If you calculated the
squared deviation for each data point that did not fall on the line, and added all of these squared
deviations together, you would end up with the sum of squared deviations, or sum of squares.

Now here is the key: The sum of the squared deviations, or sum of squares, will differ
depending on where you draw your line. In any scatterplot, there is only one line that produces the
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smallest sum of squares. This line is known as the line of least squares, and this is the regression
line. So, the reason this type of regression is called ordinary least squares regression is because in
this type of regression, the regression line represents the straight line that produces the smallest sum
of squared deviations from the line. This regression line represents the predicted values of Y at any
given value of X. Of course, when we predict a value of 7 for a given value of X, our prediction may
be off. This error in prediction is represented by the distance between the regression line and the
actual data point(s) in the scatterplot. To illustrate how this works, we first need to calculate the
properties of the regression line (i.e., its slope and intercept). Then, we draw this regression line into
the scatterplot, and you can see how well it "fits" the data (i.e., how close the data points fall to the
regression line).

If you take a look at the formula for the regression equation in Table 13.1, you will that
there are four components: (a) Y is the predicted value of the 7 variable, (b) b is the unstandardized
regression coefficient, and is also the slope of the regression line, (c) X is the value of the X
variable, and (d) a is the value of the intercept (i.e., where the regression line crosses the 7 axis).
Because Y is the value produced by regression equation, let's save that one for last. And because X
is just a given value on the X variable, there is not really anything to work out with that one. So let's
take a closer look at a and b.

We cannot calculate the intercept before we know the slope of the regression line, so let's
begin there. The formula for calculating the regression coefficient is

where b is the regression coefficient,
r is the correlation between the X and 7 variables,

sy is the standard deviation of the 7 variable,
sx is the standard deviation of the X variable.

Looking at the data in Table 13.2, we can see that r - .83, sy = 3.12, Sx = 4.25. When we
plug these numbers into the formula, we get the following:

Notice that the regression coefficient is simply the correlation coefficient times the ratio of
the standard deviations for the two variables involved. When we multiply the correlation coefficient
by this ratio of standard deviations, we are roughly transforming the correlation coefficient into the
scales of measurement used for the two variables. Notice that there is a smaller range, or less
variety, of scores on our 7 variable that there is on our X variable in this example. This is reflected
in the ratio of standard deviations used to calculate b.

Now that we've got our b, we can calculate our intercept, a. The formula for a is as
follows:

a = Y - b X

where 7 is the average value of 7,
X is the average value of X,

and b is the regression coefficient.
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When we plug in the values from Table 13.2, we find that

a = 4.1-(.61)(12.9)

0 = 4.1-7.87

a = -3.77.

This value of a indicates that the intercept for the regression line is -3.77. In other words, the
regression line crosses the Y axis at a value of -3.77. In still other words, this intercept tells us that
when X = 0, we would predict the value of Y to be -3.77. Of course, in the real world, it is not
possible to have a monthly income of negative 3.77 thousand dollars. Such unrealistic values
remind us that we are dealing with predicted values of Y. Given our data, if a person has absolutely
no formal education, we would predict that person to make a negative amount of money.

Now we can start to fill out our regression equation. The original formula

now reads

It is important to remember that when we use the regression equation to find predicted values of Y
for different values of X, we are not calculating the actual value of Y. We are only making
predictions about the value of 7. Whenever we make predictions, we will sometimes be incorrect.
Therefore, there is bound to be some error (e) in our predictions about the values of Y at given
values of X. The stronger the relationship (i.e., correlation) between my X and 7 variables, the less
error there will be in my predictions. The error is the difference between the actual, or observed,
value of Y and the predicted value of Y. Because the predicted value of Y is simply a + bX, we can
express the formula for the error in two ways:

So rather than a single regression equation, there are actually two. One of them, the one
presented in Table 13.1, is for the predicted value of Y ( Y ) . The other one is for the actual, or
observed value of 7. This equation takes into account the errors in our predictions, and is written as
7= bX+ a + e.

Now that we've got our regression equation, we can put it to use. First, let's wrap words
around it, so that we can make sure we understand what it tells us. Our regression coefficient tells us
that "For every unit of increase in X, there is a corresponding predicted increase of .61 units in 7."
Applying this to our variables, we can say that "For every additional year of education, we would
predict an increase of .61 ($1,000), or $610, in monthly income." We know that the predicted value
of 7 will increase when X increases, and vice versa, because the regression coefficient is positive.
Had it been negative, we would predict a decrease in 7 when X increases.

Next, let's use our regression equation to find predicted values of Y at given values of X.
For example, what would we predict the monthly income to be for a person with 9 years of formal
education? To answer this question, we plug in the value of 9 for the X variable and solve the
equation:

Y = -3.77 + .61(9)

7 =-3.77 + 5.59

7 =1.82
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So we would predict that a person with 9 years of education would make $1,820 per month, plus or
minus our error in prediction (e).

Finally, we can use our regression equation to compute our regression line. We already
know, from the value of the intercept, that our regression line will cross the Y axis at a value of
-3.77. To draw a straight line, all we need to do is calculate one additional point. To make sure we
include all of the points in our scatterplot, let's just calculate a predicted value of Y for a person with
25 years of education.

Y = -3.77 + .61(25)

Y = -3.77 + 15.25

Y =11.48

FIGURE 13.2 Scatterplot with regression line.

If we were to draw a regression line through our scatterplot, using the two points we found
from our intercept and the predicted 7 value, we would get something like the line presented in
Figure 13.2.

With the regression line added to the scatterplot, some of the concepts mentioned earlier in
this chapter may be easier to understand. First, notice that our regression line does not accurately
predict the actual 7 values for any of our cases except for Case 8. That data point is precisely on the
regression line. For each of the other nine cases, there is some amount of error present in the
prediction. In some cases, the amount of error is very little (e.g., Case 7), whereas in others the
amount of error is quite large (e.g., Case 9). These errors in prediction are known as residuals. In
some cases, our predicted value was less than our observed value (e.g., Cases 1, 2, 5, 7, and 9). For
these cases, we have underpredicted their income based on their level of education. Such
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underpredictions produce positive residuals (because the residual = observed scores - predicted
score). For other cases (Cases 3, 4, 6, and 10) we overpredicted the 7 value, creating negative
residuals. Second, notice the distance between each case and the line. When we square each of
these distances and then add them all together, we get the sum of squares. Third, notice that the
regression line marks the line where the sum of the squared distances is smallest. To test this, try
drawing some other lines and noting the way it increases the overall amount of error in prediction.
Finally, notice where the regression line crosses the Y axis (the intercept) and the how much higher
up the Y axis the regression line goes for each increase of one unit value in X (the slope). The slope
and the intercept will correspond with the values that we found for b and a, respectively.

MULTIPLE REGRESSION

Now that we've discussed the elements of simple linear regression, let's move on to a consideration
of multiple regression. Despite the impressive qualities of simple linear regression, the plain truth
is that when we only have two variables, simple linear regression does not provide much more
information than would a simple correlation coefficient. Because of this, you rarely see a simple
linear regression with two variables reported in a published study. But multiple regression is a
whole different story. Multiple regression is a very powerful statistic that can be used to provide a
staggering array of useful information. At this point, it may be worth reminding you that in a short
book like this, we only scratch the surface of what multiple regression can do and how it works. The
interested reader should refer to one or all of the references listed at the end of this chapter to find
more information on this powerful technique.

To illustrate some of the benefits of multiple regression, let's add a second predictor
variable to our example. So far, using the data from Table 13.2, we have examined the relationship
between education level and income. In this example, education level has been used as our predictor
or independent variable and income has been used as our dependent or outcome variable. We found
that, on average, in our sample one's monthly salary is predicted to increase by $610 for every
additional year of schooling the individual has received. But there was some error in our
predictions, indicating that there are other variables that predict how much money one makes. One
such predictor may be the length of time one has been out of school. Because people tend to make
more money the longer they have been in the workforce, it stands to reason that those adults in our
sample who finished school a long time ago may be making more than those who finished school
more recently. Although Case 4 and Case 5 each had 12 years of schooling, Case 5 makes more
money than Case 4. Perhaps this is due to Case 5 being in the workforce longer than Case 4.

When we add this second predictor variable to the model, we get the following regression
equation:

where Y is the predicted value of the dependent variable,
X1 is the value of the first predictor variable,

and X2 is the value of the second predictor variable.

This regression equation with two predictor variables will allow me to examine a number of
different questions. First, I can see whether my two predictor variables, combined, are significantly
related to, or predictive of, my dependent variable, and how much of the variance my predictor
variables explain in my dependent variable. Second, I can test whether each of my predictor
variables is significantly related to my dependent variable when controlling for the other predictor
variable. When I say "controlling for the other predictor variable," I mean that I can examine
whether a predictor variable is related to the dependent variable after I partial out, or take away, the
portion of the variance in my dependent variable that has already been accounted for by my other
independent variable. Third, I can see which of my two predictor variables is the stronger predictor
of my dependent variable. Fourth, I can test whether one predictor variable is related to my
dependent variable after controlling for the other predictor variable, thus conducting a sort of
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ANCOVA (see Chapter 10 for a discussion of ANCOVA). There are many other things I can do
with multiple regression, but I will limit my discussion to these four.

Suppose the for the 10 cases in my sample, I also measure the number of years that they
have been in the workforce, and I get the data presented in Table 13.3. These data reveal that both
years of education and years in the workforce are positively correlated with monthly income. But
how much of the variance in income can these two predictor variables explain together? Will years
of education still predict income when we control for the effects of years in the workforce? In other
words, after I partial out the portion of the variance in income that is accounted for by years in the
workforce, will years of education still be able to help us predict income? Which of these two
independent variables will be the stronger predictor of income? And will each make a unique
contribution in explaining variance in income?

TABLE 13.3 Income and education level data.

Education Level (X1) Years Working (X2) Monthly Income (Y)
(in thousands)

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Case 9

Case 10

Mean

Standard Deviation

Correlation With Income

6 years

8 years

11 years

12 years

12 years

13 years

14 years

16 years

16 years

21 years

12.9

4.25

r = .83

10

14

8

7

20

15

17

22

30

10

15

7.20

r =.70

1

1.5

1

2

4

2.5

5

6

10

8

4.1

3.12

To answer these questions, I use the SPSS statistical software package to analyze my data.
(Note: With only 10 cases in my sample, it is not wise to run a multiple regression. I am doing so
for illustration purposes only. When conducting multiple regression analyses, you should have at
least 30 cases plus 10 cases for each predictor variable in the model.) I begin by computing the
Perason correlation coefficients for all three of the variables in the model. The results are presented
in Table 13.4.
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TABLE 13.4 Correlations among variables in regression model.

Years of Education Years in Workforce Monthly Income

Years of Education 1.000

Years in Workforce

Monthly Income

.310

.826

1.000

.695 1.00

These data reveal that both level of education and years in the workforce are both correlated
with monthly income (r = .826 and r = .695 for education and workforce with income, respectively).
In Table 13.4, we can also see that there is a small-to-moderate correlation between our two
predictors, years of education and years in the workforce (r = .310). Because this correlation is
fairly weak, we can infer that both of these independent variables may predict education level.

Remember that in a multiple regression, we've got multiple predictor variables trying to
explain variance in the dependent variable. For a predictor variable to explain variance in a
dependent variable, it must be related to the dependent variable (see Chapter 7 and the discussion on
the coefficient of determination). In our current example, both of our predictor variables are
strongly correlated with our dependent variable, so this condition is met. In addition, for each of our
predictor variables to explain a unique, or independent portion of the variance in the dependent
variable, our two predictor variables cannot be too strongly related to each other. If our two
predictor variables are strongly correlated with each other, then there is not going to be very much
unexplained variance in my predictor variables left over to explain variance in the dependent
variable (see Figure 13.4).

FIGURE 13.4 Shared variance in multiple regression.

For example, suppose that the correlation between scores on a reading test are strongly
correlated with scores on a writing test (r = .90). Now suppose that I want to use reading and writing
test scores to predict students' grades in the English class. Because reading and writing test scores
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are so highly correlated with each other, I will probably not explain any more of the variance in
English class grades using both predictor variables than if I use just one or the other. In other words,
once I use reading test scores to predict English class grades, adding writing test scores to my
regression model will probably not explain any more of the variance in my dependent variable,
because reading and writing test scores are so closely related to each other.

This concept is represented graphically in Figure 13.4. The shaded area represents shared
variance. Notice that the shaded area in the two predictor variables is so large, it is virtually
impossible for any of the unshaded areas in each predictor variable to overlap with the dependent
variable. These unshaded areas represent the unique variance explaining power of each predictor.
You can see that when these unique portions of the predictor variables are small, it is difficult for
each predictor to explain a unique portion of the variance in the dependent variable. Strong
correlations among predictor variables is called multicollinearity and can cause problems in
multiple regression analysis because it can make it difficult to identify the unique relation between
each predictor variable and the dependent variable.

Returning to our example of using education level and years in the workforce to predict
monthly income, when I conduct the regression analysis using SPSS, I get the results presented in
Table 13.5. There are a variety of results produced with a multiple regression model. These results
have been organized into three sections in Table 13.5. I have labeled the first section "Variance
Explained." Here, we can see that we get an "R" value of .946. This is the multiple correlation
coefficient (R), and it provides a measure of the correlation between the two predictors combined
and the dependent variable. It is also the correlation between the observed value of Y and the

predicted value of Y (Y ). So together, years of education and years in the workforce have a very
strong correlation with monthly income. Next, we get an "R Square" value (symbolized R2). This is
essentially the coefficient of determination (see Chapter 7) for my combined predictor variables and
the dependent variables, and it provides us with a percentage of variance explained. So years of
education and years in the workforce, combined, explain 89.6% of the variance in monthly income.
When you consider that this leaves only about 10% of the variance in monthly income unexplained,
you can see that this is a very large amount of variance explained. The R2 statistic is the measure of
effect size used in multiple regression. Because it is a measure of variance explained (like r2 in
correlation and eta-squared in ANOVA), it provides a handy way of assessing the practical
significance of the relation of the predictors to the dependent variable. In this example, the effect
size is large, suggesting practical significance as well as statistical significance. The "Adjusted R
Square" accounts for some of the error associated with multiple predictor variables by taking the
number of predictor variables and the sample size into account, and thereby adjusts the R2 value
down a little bit. Finally, there is a standard error for the R and R2 value (see Chapter 5 for a
discussion of standard errors).

Moving down the table to the "ANOVA Results" section, we get some statistics that help us
determine whether our overall regression model is statistically significant. This section simply tells
us whether our two predictor variables, combined, are able to explain a statistically significant
portion of the variance in our dependent variable. The F value of 30.095, with a corresponding p
value of .000, reveals that our regression model is statistically significant. In other words, the
relationship between years of education and years in the workforce combined (our predictor
variables) and monthly income (our dependent variable) is statistically significant (i.e., greater than
zero). Notice that these ANOVA statistics are quite similar to those presented in Chapter 10 on
gender and GPA predicting feelings of self-efficacy among high school students. The sum of
squares model in Table 10.2 corresponds to the sum of squares regression in Table 13.5. In both
cases, we have sums of squares associated with the combined predictors, or the overall model.

Similarly, the sum of squares error in Table 10.2 is analogous to the sum of squares residual
in Table 13.5. That is because residuals are simply another form of error. Just as the overall F value
in Table 10.2 is produced by dividing the mean squares for the model by the mean squares error, the
overall F value produced in Table 13.5 is produced by dividing the means squares regression by the
mean squares residual. In both cases, we get an F value, and a corresponding significance test,
which indicates whether, overall, our predictors are significantly related to our dependent variable.



-156- CHAPTER 13

TABLE 13.5 Sample multiple regression results predicting monthly income.

R

Variance Explained

R Square Adjusted R Std, Error of
Square the Estimate

.946 .896 .866 1.1405

ANOVA Results

Regression
Residual
Total

Sum of Squares

78.295
9.105

87.400

Df

2
1
9

Mean Square F Value

39.147 30.095
1.301

p Value

.000

Regression Coefficients

Unstandardized
Coefficients

Standardized
Coefficients

B Std. Error Beta t Value p Value

Intercept
Years Education
Years Work

-5.504
.495
.210

1.298
.094
.056

.676

.485

-4.241
5.270
3.783

.004

.001

.007

Finally, in the third section of Table 13.5, we get to the most interesting part of the table.
Here we see our intercept and the regression coefficients for each predictor variable. These are the
pieces of the regression equation. We can use these statistics to create the regression equation:

where Y is the predicted value of Y,
X1 is the value of the years of education variable,

and X2 is the value of the years in the workforce variable.

The unstandardized regression coefficients can be found in the column labeled "B." Because years
of education and years in the workforce are variables with different standard deviations, it is difficult
to compare the size of the unstandardized regression coefficients. The variables are simply
measured on different scales, making comparisons difficult. However, in the column labeled "Beta",
the standardized regression coefficients are presented. These regression coefficients have been
standardized, thereby converting the unstandardized coefficients into coefficients with the same
scale of measurement (z scores; see Chapter 4 for a discussion of standardization). Here we can see
that the two predictors are fairly close in their strength of relation to the dependent variable, but
years of education is a bit stronger than years of work. In the next two columns, labeled "t value"
and "p value," we get measures that allow us to determine whether each predictor variable is
statistically significantly related to the dependent variable. Recall that earlier, in the ANOVA
section of the table, we saw that the two predictor variables combined were significantly related to
the dependent variable. Now we can use t tests to see if the slope for each predictor variable is
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significantly different from zero. The p values associated with each predictor variable are much
smaller than .05, indicating that each of my independent variables is a significant predictor of my
dependent variable. So both years of education and years in the workforce are statistically
significant predictors of monthly income.

It is important to note that in this last section of Table 13.5, each regression coefficient
shows the strength of the relationship between the predictor variable and the outcome variable while
controlling for the other predictor variable. Recall that in the simple regression model with one
predictor variable, I found that there was a relationship between years of education and monthly
income. One of my questions in the multiple regression model was whether this education-income
link would remain statistically significant when controlling for, or partialing out, the effects of years
in the workforce. As the results presented in Table 13.5 indicate, even when controlling for the
effects of years in the workforce, years of education is still a statistically significant predictor of
monthly income. Similarly, when controlling for years of education, years in the workforce predicts
monthly income as well.

As you can see, multiple regression provides a wealth of information about the relations
between predictor variables and dependent variables. Amazingly, in our previous example, we just
scratched the surface of all that can be done with multiple regression analysis. Therefore, I strongly
encourage you to read more about multiple regression using the references provided at the end of
this chapter. I also want to caution you about how to interpret regression analyses, whether they be
simple or multiple regressions. Despite the uses of such terms as predictor and dependent variables,
it is important to remember that regression analysis is based on good old correlations. Just as
correlations should not be mistaken for proof of causal relationships between variables, regression
analyses cannot prove that one variable, or set of variables, causes variation in another variable.
Regression analyses can reveal how sets of variables are related to each other, but cannot prove
causal relations among variables.

EXAMPLE: PREDICTING THE USE OF SELF-HANDICAPPING STRATEGIES

Sometimes students engage in behaviors that actually undermine their chances of succeeding
academically. For example, they may procrastinate rather than study for an upcoming test, or they
may spend time with their friends when they should be doing their homework. These behaviors are
called "self-handicapping" because they actually inhibit students' chances of succeeding. One
reason that students may engage in such behaviors is to provide an explanation for their poor
academic performance, should it occur. If students fears that they may perform poorly on an
academic task, they may not want others to think that the reason for this poor performance is that
they lack ability, or intelligence. So some students strategically engage in self-handicapping to
provide an alternative explanation for the poor performance. That is why these behaviors are called
self-handicapping strategies.

Because self-handicapping strategies can undermine academic achievement and may be a
sign of academic withdrawal on the part of students, it is important to understand the factors that are
associated with the use of these strategies. Self-handicapping represents a concern with not looking
academically unable, even if that means perhaps sacrificing performance. Therefore, engaging in
self-handicapping behaviors may be related to students' goals of avoiding appearing academically
unable to others. In addition, because self-handicapping may be provoked by performance situations
in which students expect to fail, perhaps it occurs more commonly among lower achieving students,
who have a history of poor academic performance. Moreover, it is reasonable to suspect that when
students lack confidence in their academic abilities, they will be more likely to use self-handicapping
strategies. Finally, there may be gender differences in how concerned high school students are with
looking academically unable to others. Therefore, I conducted a multiple regression analysis to
examine whether avoidance goals, self-efficacy, gender, and GPA, as a group and individually,
predicted the use of self-handicapping strategies.

My colleague, Carol Giancarlo, and I recently collected data from 464 high school students
in which we used surveys to measure their self-reported use of self-handicapping strategies. In
addition, the survey contained questions about their desire to avoid looking academically unable
(called "avoidance goals") and their confidence in their ability to perform academically (called "self-
efficacy"). We also collected information about the students' gender (i.e., whether they were boys



-158- CHAPTER 13

or girls) and their overall GPA in high school. Self-handicapping, avoidance goals, and self-efficacy
were all measured using a 1-5 scale. Low scores indicated that students did not believe the items
were true for them (i.e., did not use self-handicapping strategies, were not confident in their abilities,
were not concerned with trying to avoid looking academically unable), whereas high scores
indicated the opposite. Gender was "dummy" coded (boys = 1, girls = 0), and GPA was measured
using a scale from 0 to 4.0 (0 = F, 4.0 = A average).

Once again, I used SPSS to analyze my data. The results of this multiple regression
analysis are presented in Table 13.6. In the first section of the table, "Variance Explained," there is
an R value of .347, and an R2 value of .12. These statistics tell us that the four predictor variables,
combined, have a moderate correlation with self-handicapping (multiple R = .347) and explain 12%
of the variance in handicaping. This R2 value is reduced to .113 when adjusted for the error
associated with multiple predictor variables. In the second section of the table, "ANOVA Results," I
see that I have an F value of 15.686 and a corresponding p value of .000. These results tell me that,
as a group, my four predictor variables explain a statistically significant portion of the variance in
self-handicapping. In other words, my overall regression model is statistically significant.

TABLE 13.6 Multiple regression results for predicting self-handicapping.

R

Variance Explained

R Square Adjusted R Std. Error of
Square the Estimate

.347 .120 .113 .9005

ANOVA Results

Sum of Squares Df Mean Square F Value p Value

Regression
Residual
Total

50.877
372.182
423.059

4
459
463

12.719 15.686
.811

.000

Regression Coefficients

Unstandardized
Coefficients

Intercept

Avoidance Goals
Grades (GPA)
Gender
Self Efficacy

B

3.630

.132
-.254
.105

-.232

Std. Error

.264

.045

.054

.085

.052

Standardized
Coefficients

Beta

.130
-.209
.055
-.198

t Value

13.775

2.943
-4.690
1.234

-4.425

p Value

.000

.003

.000

.218

.000

In the last section of the table, I find my unstandardized regression coefficients (column
labeled "B") for each predictor variable in the model, as well as my intercept. These tell me that
GPA and self-efficacy are negatively related to self-handicapping, whereas gender and avoidance
goals are positively related to self-handicapping. Scanning toward the right side of the table, I find
the standardized regression coefficients (column labeled "Beta"). These coefficients, which are all
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converted to the same, standardized scale, reveal that GPA and self-efficacy appear to be more
strongly related to self-handicapping than are avoidance goals and, in particular, gender. Continuing
to scan toward the right side of the table, I find my t values and p values for each coefficient. These
tell me which of my independent variables are statistically significant predictors of self-
handicapping. The p values tell me that all of the independent variables, except for gender, are
significant predictors of handicapping.

So what can we make of these results? First, my predictors explain a significant percentage
of the variance in self-handicapping, although not a particularly large percentage (about 11%).
Second, as we might expect, students with higher GPAs report engaging in less self-handicapping
behavior than students with lower GPAs. Third, students with more confidence in their academic
abilities engage in less self-handicapping than do students with less confidence in their abilities.
Fourth, students who are concerned with not looking academically unable in school are more likely
to use self-handicapping strategies than are students without this concern. Finally, boys and girls do
not differ significantly in their reported use of self-handicapping strategies. Although boys scored
slightly higher than girls on the handicapping items (we know this because the regression coefficient
was positive, and the gender variable was coded boys = 1, girls = 0), this difference was not
statistically significant.

It is important to remember that the results for each independent variable are reported while
controlling for the effects of the other independent variables. So the statistically significant
relationship between self-efficacy and self-handicapping exists even when we control for the effects
of GPA and avoidance goals. This is important, because one may be tempted to argue that the
relationship between confidence and self-handicapping is merely a by-product of academic
achievement. Those who perform better in school should be more confident in their abilities, and
therefore should engage in less self-handicapping. What the results of this multiple regression reveal
is that there is a statistically significant relationship between self-efficacy and self-handicapping
even after controlling for the effects of academic performance. Confidence is associated with less
self-handicapping regardless of one's level of academic achievement. Similarly, when students are
concerned with not looking dumb in school (avoidance goals), regardless of their actual level of
achievement (GPA), they are more likely to engage in self-handicapping behavior. The ability to
examine both the combined and independent relations among predictor variables and a dependent
variable is the true value of multiple regression analysis.

WRAPPING UP AND LOOKING FORWARD

The overlap between correlations (Chapter 8) and regression are plain. In fact, simple linear
regression provides a statistic, the regression coefficient, that is simply the unstandardized version of
the Pearson correlation coefficient. What may be less clear, but equally important, is that regression
is also a close relative of ANOVA. As you saw in the discussion of Table 13.6, regression is a form
of analysis of variance. Once again, we are interested in dividing up the variance of a dependent
variable and explaining it with our independent variables. The major difference between ANOVA
and regression generally involves the types of variables that are analyzed, with ANOVA using
categorical independent variables and regression using continuous independent variables. As you
learn more about regression on your own, you will learn that even this simple distinction is a false
one, as categorical independent variables can be analyzed in regression.

GLOSSARY OF TERMS AND SYMBOLS FOR CHAPTER 13

Dependent, outcome, criterion variable: Different terms for the dependent variable.
Dichotomous: Divided into two categories.
Error: Amount of difference between the predicted value and the observed value of the dependent

variable. It is also the amount of unexplained variance in the dependent variable.
Independent, predictor variable: Different terms for the independent variable.
Intercept: Point at which the regression line intersects the Y axis. Also, the value of 7 when X- 0.
Multicollinearity: The degree of overlap among predictor variables in a multiple regression. High

multicollinearity among predictor variables can cause difficulties finding unique relations
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among predictors and the dependent variable.
Multiple correlation coefficient: A statistic measuring the strength of the association between

multiple independent variables, as a group, and the dependent variable.
Multiple regression: A regression model with more than one independent, or predictor, variable.
Observed value: The actual, measured value of the 7 variable at a given value of X.
Ordinary least squares regression (OLS): A common form of regression that uses the smallest

sum of squared deviations to generate the regression line.
Overpredicted: Observed values of 7 at given values of X that are below the predicted values of 7

(i.e., the values predicted by the regression equation).
Predicted values: Estimates of the value of 7 at given values of X that are generated by the

regression equation.
Regression coefficient: A measure of the relationship between each predictor variable and the

dependent variable. In simple linear regression, this is also the slope of the regression line.
In multiple regression, the various regression coefficients combine to create the slope of the
regression line.

Regression equation: The components, including the regression coefficients, intercept, error term,
and X and Y values that are used to generate predicted values for Y and the regression line.

Regression line: The line that can be drawn through a scatterplot of the data that best "fits" the data
(i.e., minimizes the squared deviations between observed values and the regression line).

Residuals: Errors in prediction. The difference between observed and predicted values of 7.
Scatterplot: A graphic representation of the data along two dimensions (X and Y).
Simple linear regression: The regression model employed when there is a single dependent and a

single independent variable.
Slope: The average amount of change in the 7 variable for each one unit of change in the X

variable.
Standardized regression coefficient: The regression coefficient converted into standardized

values.
Underpredicted: Observed values of Y at given values of X that are above the predicted values of 7

(i.e., the values predicted by the regression equation).
Unique variance: The proportion of variance in the dependent variable explained by an

independent variable when controlling for all other independent variables in the model.

A

Y The predicted value of 7, the dependent variable.
Y The observed value of 7, the dependent variable.
b The unstandardized regression coefficient.
a The intercept.
e The error term.
R The multiple correlation coefficient.
R2 The percentage of variance explained by the regression model.
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CHAPTER 14

THE CHI-SQUARE TEST OF INDEPENDENCE

All of the inferential statistics discussed in this book share a set of assumptions. Regression,
ANOVA, correlation, and t tests all assume that the data involved are scores on some measure (e.g.,
IQ scores, height, income, scores on a measure of depression) calculated from samples drawn from
populations that are normally distributed, and everything is hunky-dory in the world of research. Of
course, as discussed in Chapter 1, these conditions are often not met in social science research.
Populations are sometimes skewed rather than normal. Sometimes researchers want to know about
things besides those that can be measured. Research is often messy and unpredictable rather than
hunky-dory.

The violation of these assumptions represents sort of a good news, bad news situation. The bad
news is that if the assumptions are violated to an alarming degree, the results of these statistics can
be difficult to interpret, even meaningless. The good news is that "to an alarming degree" is an
imprecise phrase and open to interpretation. In many situations, violating assumptions of normally
distributed data often do not make the results invalid, or even alter them very much. Another piece
of good news is that even when the assumptions of these statistics are horrifically violated, there is a
whole batch of statistics that researchers can use that do not have the same assumptions of normality
and random selection: nonparametric statistics.

There are a number of nonparametric tests available. The Mann-Whitney U test is sort of a
nonparametric equivalent of the independent t test. The Kruskal-Wallis analysis of variance for
ranked data can be roughly substituted for the one-way ANOVA for continuously scaled variables.
These nonparametric statistics can be extremely useful, and descriptions of their uses and
characteristics can be found in most standard-length statistics textbooks. In this chapter, I limit my
attention to one of the most commonly used nonparametric tests: the chi-square (x2) test of
independence. This test is appropriate for use when you have data from two categorical, or
nominally scaled, variables (see Chapter 1 for a description of these variable types). With
categorical variables, the cases in your sample are divided among the different categories of your
categorical variables. For example, gender is a categorical variable and the cases in a sample of
human beings can be divided into male and female, the two categories of the gender variable. When
you have two categorical variables, you may want to know whether the division of cases in one
variable is independent of the other categorical variable. For example, suppose you have a sample of
boys and girls from the 5th, 8th, and 12th grades of school. You may want to know whether your
representation of boys and girls depends on their grade level, or if the division of boys and girls is
about what you would expect independent of grade level. That is the type of question that the chi-
square test of independence was designed to answer.

A more precise way of stating the purpose of the chi-square test of independence is this: It
allows you to determine whether cases in a sample fall into categories in proportions equal to what
one would expect by chance. For example, suppose that you work in a liberal arts college. You
want to know whether the men and women in your college differ in their selection of majors. So you
randomly select 100 men and 100 women and ask them to tell you their major. You get the data
presented in Table 14.1.

Does this distribution of data represent a statistically significant gender difference in
majors? Before you can answer that question, you need to know more information. Specifically,
you need to determine how many men and women you expect to major in these three areas just based
on the number of each gender and each major in the sample. This is the type of question that the chi-
square test of independence allows you to answer.

-161-
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TABLE 14.1 Gender and major data for chi-square test of independence.

Psychology English Biology

Women 30 25 45

CHI-SQUARE TEST OF INDEPENDENCE IN DEPTH

The chi-square test of independence works by comparing the categorically coded data that you have
collected (known as the observed frequencies) with the frequencies that you would expect to get in
each cell of a table by chance alone (known as the expected frequencies). What the test allows you
to determine is whether the observed frequencies are significantly different from the expected
frequencies. When conducting t tests (Chapter 9), you calculated an observed t value and compared
that to a critical t value that you found by looking at the values in Appendix B. These critical values
were based on a family of theoretical distributions, and you had to use the degrees of freedom to
determine which t distribution you should use. You used a similar process to compare your
observed and critical F values in ANOVA (Chapter 10). As luck would have it, there happens to be
a family of distributions for the chi-square statistic as well, and the critical values from this family of
distributions are presented in Appendix E. Just as with t values and F values, you will need to use
degrees of freedom to find the appropriate chi-square value as well.

But first tilings first. How do you calculate the observed x2 value? Well, we need to add a
little bit of information to Table 14.1. Namely, we need to add the column totals, the row totals, and
the overall total number of cases. Table 14.2 provides the revised table. With these totals, we can
calculate the expected values for each cell. Note that the table of values to be analyzed in a chi-
square test of independence is known as a contingency table. That is because in this type of
analysis, we are testing whether the number of cases in one category of one variable are contingent
upon (i.e., dependent or independent of) the other variable. For example, does the proportion of
Biology majors depend on the gender of the student?

TABLE 14.2 Revised gender and major data for chi-square test of independence.

Men

Women

Column totals

Psychology

35

30

65

English

50

25

75

Biology

15

45

60

Row totals

100

100

200

Using the observed frequencies in each cell of the table (i.e., 35 men who are Psychology
majors, 30 women Psychology majors, 50 male English majors, etc.) and the total frequencies for the
rows, columns, and total sample, a set of expected frequencies can be calculated for each of the six
cells in Table 14.2. To find the expected frequency for a cell, you just need to do a little arithmetic.
The first (i.e., top-left) cell of Table 14.2 includes 35 male Psychology majors. Given the numbers
of men and Psychology majors in the total sample, how many male Psychology majors would we
expect to have in our sample by chance? To answer this question, we divide the total number of men
in our sample (100) by the total sample size (200); then we divide the total number of Psychology
majors (65) by the total sample (200); multiply these two fractions together, and multiply that
number by the total sample. The result looks like this:

Men 35 50 15



v

Therefore, based on the total number of men and the total number of Psychology majors in my
sample, I would expect (based on probability alone) that 32.5 members of my sample would be male
Psychology majors.

I can follow the same procedure to calculate expected values for each of the other five cells
in the table as well. If I did so, I would get the expected values that are summarized in Table 14.3.

TABLE 14.3 Expected values for gender and major data.

Psychology English Biology

Men

Women

Notice that the expected values for men and women are equal for the two columns in each
cell. That is because there are equal numbers of men and women in the sample. With equal
numbers of men and women in the sample, we would expect (based on probability alone) that there
will be an equal number of male and female Psychology majors, an equal number of male and
female English majors, and an equal number of male and female Biology majors. Of course, the
selection of a major is not based solely on probability, so our expected values differ from our
observed values. But do they differ significantly? To answer this question we must calculate the x2

statistic. For this, I will need to compare the observed and expected values. When comparing these
values, it helps to have all of the expected and observed values in one place, so I have put the values
from Table 14.1 together with the values from Table 14.3 together in Table 14.4.

TABLE 14.4 Combined observed and expected frequencies.

Psychology English Biology

Observed Expected Observed Expected Observed Expected

Men 35 32.5 50 37.5 15 33.3

Women 30 32.5 25 37.5 45 33.3

To compare the observed and expected frequencies, and in the process produce a x2 value, I use the
formula presented in Table 14.5.
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TABLE 14.5 Formula for calculating x2

Where O is the observed value in each cell
and E is the expected value in each cell

When I apply the formula from Table 14.5 to the values in Table 14.4, I get the values and
X2 presented in Table 14.6. The final step in the process is to add up, or sum, the values produced in
each of the six cells in Table 14.6. Summing the six squared differences between observed and
expected values from Table 14.6 produces the x2 value:

.19 + .19 + 4.17 + 4.17 + 10.47 + 10.47 = 29.76

X2 =29.76

TABLE 14.6 Combined observed and expected frequencies.

Men

Psychology English Biology

Women

Notice that the relatively large differences between men and women choosing English or
Biology as majors were the primary contributors to the large x2 value. Because the differences
between the observed and expected values among the Psychology majors were fairly small, they
contributed less to the overall x2.

Now that we have produced an observed x2 value, we must compare it to a critical x2 value
from Appendix E to determine whether the differences between men and women in their choice of
major is statistically significant. You read this table similarly to the t value table presented in
Appendix B. First, you need to determine the degrees of freedom (df) for the problem. In a chi-
square test of independence, df= (R -1)(C - 1) where R is the number of rows and C is the number
of columns in the contingency table.

In our example, R = 2 and C = 3, so df = (2 - 1)(3 - 1) = 2. Next, we need to determine our
alpha level for this test. If we adopt an alpha level of .05, we can look in Appendix E (with 2
degrees of freedom) and find a critical x2 value of 5.99. Because our observed x2 value is 29.76, we
conclude that there is a statistically significant difference in choice of major between men and
women. In fact, our observed x2 value is large enough to be statistically significant at the .001 level
(i.e., p <.001).

What did we just do there? If you read the chapter on t tests (Chapter 9) or correlations
(Chapter 8), you may recognize what we did as hypothesis testing. In the preceding example, our
null hypothesis was that choice of major was independent of (or unrelated to) gender. Our
alternative hypothesis was that which major students selected in college depended on whether the
students were men or women. We then calculated an observed value of x2, selected an alpha level
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(.05), found the critical value of x2, and determined that our observed x2 was larger than our critical
X2 value. Therefore, we rejected the null hypothesis and concluded that choice of major did depend
on gender. In fact, the probability of getting an observed x2 as large as the one we found, by chance,
was less than .001 (p < .001). Written in hypothesis-testing form, we did the following:

Ho: Gender and choice of major are independent, or unrelated

HA: Choice of major depends on, or is contingent upon, gender

a = .05

df=2

x2critical = 5.99

X2 observed= 29.76

Decision: Reject Ho and conclude choice of major depends on the gender of the student.

EXAMPLE: GENERATIONAL STATUS AND GRADE LEVEL

Researchers often use chi-square tests of independence to examine whether members of a sample are
evenly distributed among different groups. If some students are "overrepresented" in one group and
"underrepresented" in another, it can be difficult to interpret the results of analyses. For example,
suppose I want to know whether boys or girls in a high school perform better on a standardized math
test. This is a typical question among high school principals. They often must report to parents and
the larger community how their students are doing, and whether they are serving their male and
female students equally well. So I conduct an independent samples t test and find that, on average,
the boys score significantly higher than the girls on the standardized math test. Is that the end of the
story? Maybe not.

Before I can comfortably conclude that boys and girls score differently on the test, I need to
see whether the boys and girls groups differ in ways that might be related to performance on the
math test. For example, suppose that this sample has a large number of students from families mat
immigrated to the United States fairly recently. In this example, suppose that we compare first-
generation (students that were born outside of the United States and then moved here), second-
generation (students who were born in the United States to mothers born outside of the United
States), and third-generation students (students and their mothers bom in the United States). When
we compare these three group's scores on the math test using a one-way ANOVA, we find that the
third-generation students did worse on the test, on average, than either the first- or second-generation
groups.

So here is the big question: What if more of the low-scoring, third-generation students in
the sample were girls than boys? If this is true, then the cause of the girls scoring lower than the
boys on the math test may be due to their generational status (i.e., girls are more likely than boys to
be third-generation) rather than their gender. So before reaching any conclusions about gender
differences in math abilities, we need to do a chi-square test of independence to see if gender and
generational status are independent groups.

With the help of my computer and SPSS statistical software, I am able to conduct this test
in seconds. The results are presented in Table 14.7. Each cell in the table includes the observed
frequency ("Count") on the top row and the expected frequency below it ("Expected Count").
Notice that in most cells, the differences between the observed and expected frequencies are quite
small. The largest disparities appear in the column for the second generation ("2nd gen"). The
observed x2 value, with df = 2, is 5.19. As we learned earlier in this chapter, the critical x2 value,
with df = 2 and a = .05, is 5.99. Therefore, the test of independence is not statistically significant,
and we can conclude that generational status is independent of gender. Neither boys nor girls are
significantly overrepresented in any of the three generational groups.



-166- CHAPTER 14

TABLE 14.7 SPSS contingency table for gender by generational status.

gender girl Count
Expected Count

boy Count
Expected Count

Total Count
Expected Count

Generational Group
3+ gen

156
152.7

125
128.3

281
281.0

2nd gen
215

230.3
209

193.7

424
424.0

1st gen
125

113.0
83

95.0

208
208.0

Total
496

496.0
417

417.0

913

913.0

So what are we to make of this result? Well, it appears that the difference between boys
and girls in their scores on the math test is not due to generational status. Of course, there may be
other factors to rule out before concluding that the gender differences in math scores are real and not
just the by-product of differences on other categorical variables (e.g., ethnicity) or continuous
variables (e.g., socioeconomic status). But we can rule out generational status as a cause of the
gender difference in math scores.

WRAPPING UP

The chi-square test of independence is only one of many nonparametric tests used by social science
researchers. Because social scientists often use data that violate one or more of the assumptions
required for the valid use of parametric statistics, it is important that you become familiar with
several nonparametric techniques. The limited scope of this book precluded me from describing
most of these techniques. Do not let their exclusion lull you into a false sense of security with
parametric statistics—those are not always the adequate tools for the job.

The purpose of this book was to provide plain English explanations of the most commonly
used statistical techniques. Because this book is short, and because there is only so much about
statistics that can be explained in plain English, I hope that you will consider this the beginning of
your journey into the statistical world rather than the end. Although sometimes intimidating and
daunting, the world of statistics is also rewarding and worth the effort. Whether we like it or not, all
of our lives are touched and, at times, strongly affected by statistics. It is important that we make the
effort to understand how statistics work and what they mean. If you have made it to the end of this
book, you have already made substantial strides toward achieving that understanding. I'm sure that
with continued effort, you will be able to take advantage of the many insights that an understanding
of statistics can provide. Enjoy the ride.

GLOSSARY OF TERMS AND SYMBOLS FOR CHAPTER 14

Chi-square: A statistic used to compare observed and expected frequencies in sample data.
Contingency table: A table that shows the intersection of two categorical (nominal) variables. This

table produces the cells in which expected and observed frequencies can be compared.
Expected frequencies: The number of cases that one would expect to appear in the cell, row totals,

or column totals based on probability alone.
Kruskal-Wallis: A nonparametric statistic, using ranked data, that is roughly analogous to a one-

way ANOVA.
Mann-Whitney U: A nonparametric statistic, using ranked data, that is roughly analogous to an

independent samples t test.
Nonparametric statistics: A group of statistics that are not tied to assumptions common to

parametric statistics, including normally distributed data and homogeneity of variance.



CHI-SQUARE -167 -

Observed frequencies: The actual, or observed, number of cases in the cells, rows, or columns of a
contingency table.

X2 The chi-square statistic.

o The observed frequency.

E The expected frequency.

df Degrees of freedom.

R The number of rows in the contingency table.

C The number of columns in the contingency table.
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APPENDIX A: Area under the normal curve between u and z and beyond z.

APPENDIX B: Critical values of the t distributions.

APPENDIX C: Critical values of the F distributions.

APPENDIX D: Critical values of the Studentized range statistic (for the Tukey HSD test).

APPENDIX E: Critical values of the chi-square distributions.
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0.15
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0.21
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0.44
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0.49
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B
Area

between
mean and

z
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.0319
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.0517
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.1103

.1141

.1179

.1217

.1255

.1293

.1331

.1368

.1406

.1443

.1480

.1517

.1554

.1591

.1628

.1664

.1700

.1736

.1772

.1808

.1844

.1879

.1915

.1950

.1985

.2019

.2054

C

Area
beyond
z

.5000

.4960

.4920

.4880

.4840

.4801

.4761

.4721

.4681

.4641

.4602

.4562

.4522

.4483

.4443

.4404

.4364

.4325

.4286

.4247

.4207

.4168

.4129

.4090

.4052

.4013

.3974

.3936

.3897

.3859

.3821

.3783

.3745

.3707

.3669

.3632

.3594

.3557

.3520

.3483

.3446

.3409

.3372

.3336

.3300

.3264

.3228

.3192

.3156

.3121

.3085

.3050

.3015

.2981

.2946

A

z

0.55
0.56
0.57
0.58
0.59

0.60
0.61
0.62
0.63
0.64

0.65
0.66
0.67
0.68
0.69

0.70
0.71
0.72
0.73
0.74

0.75
0.76
0.77
0.78
0.79

0.80
0.81
0.82
0.83
0.84

0.85
0.86
0.87
0.88
0.89

0.90
0.91
0.92
0.93
0.94

0.95
0.96
0.97
0.98
0.99

1.00
1.01
1.02
1.03
1.04

1.05
1.06
1.07
1.08
1.09

B
Area

between
mean and

z

.2088

.2123

.2157

.2190

.2224

.2257

.2291

.2324

.2357

.2389

.2422

.2454

.2486

.2517

.2549

.2580

.2611

.2642

.2673

.2704

.2734

.2764

.2794

.2823

.2852

.2881

.2910

.2939

.2967

.2995

.3023

.3051

.3078

.3106

.3133

.3159

.3186

.3212

.3238

.3264

.3289

.3315

.3340

.3365

.3389

.3413

.3438

.3461

.3485

.3508

.3531

.3554

.3577

.3599

.3621

C

Area
beyond

z

.2912

.2877

.2843

.2810

.2776

.2743

.2709

.2676

.2643

.2611

.2578

.2546

.2514

.2483

.2451

.2420

.2389

.2358

.2327

.2296

.2266

.2236

.2206

.2177

.2148

.2119

.2090

.2061

.2033

.2005

.1977

.1949

.1922

.1894

.1867

.1841

.1814

.1788

.1762

.1736

.1711

.1685

.1660

.1635

.1611

.1587

.1562

.1539

.1515

.1492

.1469

.1446

.1423

.1401

.1379

A

z

1.10
1 . 1 1
1.12
1.13
1.14

1.15
1.16
1.17
1.18
1.19

1.20
1.21
1.22
1.23
1.24

1.25
1.26
1.27
1.28
1.29

1.30
1.31
1.32
1.33
1.34

1.35
1.36
.37
.38
.39

.40

.41

.42

.43

.44

.45

.46

.47

.48
1.49

1.50
.51
.52
.53
.54

.55

.56

.57

.58

.59

.60

.61

.62
1.63
1.64

B
Area

between
mean and

z

.3643

.3665

.3686

.3708

.3729

.3749

.3770

.3790

.3810

.3830

.3849

.3869

.3888

.3907

.3925

.3944

.3962

.3980

.3997

.4015

.4032

.4049

.4066

.4082

.4099

.4115

.4131

.4147

.4162

.4177

.4192

.4207

.4222

.4236

.4251

.4265

.4279

.4292

.4306

.4319

.4332

.4345

.4357

.4370

.4382

.4394

.4406

.4418

.4429

.4441

.4452

.4463

.4474

.4484

.4495

C

Area
beyond
z

.1357

.1335

.1314

.1292

.1271

.1251

.1230

.1210

.1190

.1170

1151
1131
. 1 1 1 2
.1093
.1075

.1056

.1038

.1020

.1003

.0985

.0968

.0951

.0934

.0918

.0901

.0885

.0869

.0853

.0838

.0823

.0808

.0793

.0778

.0764

.0749

.0735
0721
.0708
.0694
.0681

.0668

.0655

.0643

.0630

.0618

.0606

.0594
0582
.0571
.0559

.0548

.0537

.0526

.0516

.0505
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A

z

1.65
1.66
1.67
1.68
1.69

1.70
1.71
1.72
1.73
1.74

1.75
1.76
1.77
1.78
1.79

1.80
1.81
1.82
1.83
1.84

1.85
1.86
1.87
1.88
1.89

1.90
1.91
1.92
.93
.94

.95

.96

.97

.98
1.99

2.00
2.01
2.02
2.03
2.04

2.05
2.06
2.07
2.08
2.09

2.10
2.11
2.12
2.13
2.14

2.15
2.16
2.17
2.18
2.19

2.20
2.21

B
Area

between
mean and

z

.4505

.4515

.4525

.4535

.4545

.4554

.4564

.4573

.4582

.4591

.4599

.4608

.4616

.4625

.4633

.4641

.4649

.4656

.4664

.4671

.4678

.4686

.4693

.4699

.4706

.4713

.4719

.4726

.4732

.4738

.4744

.4750

.4756

.4761

.4767

.4772

.4778

.4783

.4788

.4793

.4798

.4803

.4808

.4812

.4817

.4821

.4826

.4830

.4834

.4838

.4842

.4846

.4850

.4854

.4857

.4861

.4864

C

Area
beyond
z

.0495

.0485

.0475

.0465

.0455

.0446

.0436

.0427

.0418

.0409

.0401

.0392

.0384

.0375

.0367

.0359

.0351

.0344

.0336

.0329

.0322

.0314

.0307

.0301

.0294

.0287

.0281

.0274

.0268

.0262

.0256

.0250

.0244

.0239

.0233

.0228

.0222

.0217

.0212

.0207

.0202

.0197

.0192

.0188

.0183

.0179

.0174

.0170

.0166

.0162

.0158

.0154

.0150

.0146

.0143

.0139

.0136

A

z

2.22
2.23
2.24
2.25
2.26

2.27
2.28
2.29
2.30
2.31

2.32
2.33
2.34
2.35
2.36

2.37
2.38
2.39
2.40
2.41

2.42
2.43
2.44
2.45
2.46

2.47
2.48
2.49
2.50
2.51

2.52
2.53
2.54
2.55
2.56

2.57
2.58
2.59
2.60
2.61

2.62
2.63
2.64
2.65
2.66

2.67
2.68
2.69
2.70
2.71

2.72
2.73
2.74
2.75
2.76

2.77
2.78

B
Area

between
mean and

z

.4868

.4871

.4875

.4878

.4881

.4884

.4887

.4890

.4893

.4896

.4898

.4901

.4904

.4906

.4909

.4911

.4913

.4916

.4918

.4920

.4922

.4925

.4927

.4929

.4931

.4932

.4934

.4936

.4938

.4940

.4941

.4943

.4945

.4946

.4948

.4949

.4951

.4952

.4953

.4955

.4956

.4957

.4959

.4960

.4961

.4962

.4963

.4964

.4965

.4966

.4967

.4968

.4969

.4970

.4971

.4972

.4973

C

Area
beyond

z

.0132

.0129

.0125

.0122

.0119

.0116

.0113

.0110

.0107

.0104

.0102

.0099

.0096

.0094

.0091

.0089

.0087

.0084

.0082

.0080

.0078

.0075

.0073

.0071

.0069

.0068

.0066

.0064

.0062

.0060

.0059

.0057

.0055

.0054

.0052

.0051

.0049

.0048

.0047

.0045

.0044

.0043

.0041

.0040

.0039

.0038

.0037

.0036

.0035

.0034

.0033

.0032

.0031

.0030

.0029

.0028

.0027

A

z

2.79
2.80
2.81
2.82
2,83

2.84
2.85
2.86
2.87
2.88

2.89
2.90
2.91
2.92
2.93

2.94
2.95
2.96
2.97
2.98

2.99
3.00
3.01
3.02
3.03

3.04
3.05
3.06
3.07
3.08

3.09
3.10
3.11
3.12
3.13

3.14
3.15
3.16
3.17
3.18

3.19
3.20
3.21
3.22
3.23

3.24
3.25
3.30
3.35
3.40

3.45
3.50
3.60
3.70
3.80

3.90
4.00

B
Area

between
mean and

z

.4974

.4974

.4975
4976
.4977

.4977

.4978

.4979

.4979

.4980

.4981

.4981

.4982

.4982

.4983

.4984

.4984

.4985

.4985

.4986

.4986

.4987

.4987

.4987

.4988

.4988

.4989

.4989

.4989

.4990

.4990

.4990

.4991

.4991

.4991

.4992

.4992

.4992

.4992

.4993

.4993

.4993

.4993

.4994

.4994

.4994

.4994

.4995

.4996

.4997

.4997

.4998

.4998
4999
.4999

.49995

.49997

C

Area
beyond
z

0026
0026
.0025
0024
0023

.0023

.0022

.0021

.0021

.0020

.0019
0019
.0018
0018
0017

.0016

.0016

.0015

.0015

.0014

.0014

.0013
0013
.0013
0012

0012
0011
.0011
.0011
.0010

.0010

.0010

.0009
0009
.0009

.0008
0008
0008
.0008
.0007

.0007

.0007

.0007

.0006

.0006

0006
0006
0005
0004
.0003

.0003

.0002

.0002

.0001

.0001

.00005

.00003

SOURCE: From Basic Statistics Tales of Distributions, 6th edition, by C. Spatz © 1997. Reprinted with permission
of Wadsworth, a division of Thomson Learning. Fax 800 730-2215.
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.20 .10

a level for two-tailed test

.05 .02 .01 .001

Df

1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

26
27
28
29
30

40
60
120

.10

3.078
1.886
1.638
1.533
1.476

1.440
1.415
1.397
1.383
1.372

1.363
1.356
1.350
1.345
1.341

1.337
1.333
1.330
1.328
1.325

1.323
1.321
1.319
1.318
1.316

1.315
1.314
1.313
1.311
1.310

1.303
1.296
1.289
1.282

.05

6.314
2.920
2.353
2.132
2.015

1.943
1.895
1.860
1.833
1.812

1.796
1.782
1.771
1.761
1.753

1.746
1.740
1.734
1.729
1.725

1.721
1.717
1.714
1.711
1.708

1.706
1.703
1.701
1.699
1.697

1.684
1.671
1.658
1.645

a level for one-tailed test

.025 .01

12.706
4.303
3.182
2.776
2.571

2.447
2.365
2.306
2.262
2.228

2.201
2.179
2.160
2.145
2.131

2.120
2.110
2.101
2.093
2.086

2.080
2.074
2.069
2.064
2.060

2.056
2.052
2.048
2.045
2.042

2.021
2.000
1.980
1.960

31.821
6.965
4.541
3.747
3.365

3.143
2.998
2.896
2.821
2.764

2.718
2.681
2.650
2.624
2.602

2.583
2.567
2.552
2.539
2.528

2.518
2.508
2.500
2.492
2.485

2.479
2.474
2.467
2.462
2.457

2.423
2.390
2.358
2.326

.005

63.657
9.925
5.841
4.604
4.032

3.707
3.499
3.355
3.250
3.169

3.106
3.055
3.012
2.977
2.947

2.921
2.898
2.878
2.861
2.845

2.831
2.819
2.807
2.797
2.787

2.779
2.771
2.763
2.756
2.750

2.704
2.660
2.617
2.576

.0005

636.619
31.598
12.924
8.610
6.869

5.959
5.408
5.041
4.781
4.587

4.437
4.318
4.221
4.140
4.073

4.015
3.965
3.922
3.883
3.850

3.819
3.792
3.767
3.745
3.725

3.707
3.690
3.674
3.659
3.646

3.551
3.460
3.373
3.291

To be significant the t value obtained from the data must be equal to or greater than the value shown in the table.

SOURCE: From Table III in R. A. Fisher and F. Yates, Statistical tables for biological, agricultural, and medical
research (6th ed.), published by Longman Group Ltd. (1963). Reprinted with permissioa
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a levels of .05 (lightface) and .01 (boldface) for the distribution of F

Degrees of Freedom (for the numerator of F ratio)

2
.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1

161
4,052

18.51
98.49

10.13
34.12

7.71
21.20

6.61
16.26

5.99
13.74

5.59
12.25

5.32
11.26

5.12
10.56

4.96
10.04

4.84
9.65

4.75
9.33

4.67
9.07

2

200
4,999

19.00
99.00

9.55
30.82

6.94
18.00

5.79
13.27

5.14
10.92

4.74
9.55

4.46
8.65

4.26
8.02

4.10
7.56

3.98
7.20

3.88
6.93

3.80
6.70

3

216
5,403

19.16
99.17

9.28
29.46

6.59
16.69

5.41
12.06

4.76
9.78

4.35
8.45

4.07
7.59

3.86
6.99

3.71
6.55

3.59
6.22

3.49
5.95

3.41
5.74

4

225
5,625

19.25
99.25

9.12
28.71

6.39
15.98

5.19
11.39

4.53
9.15

4.12
7.85

3.84
7.01

3.63
6.42

3.48
5.99

3.36
5.67

3.26
5.41

3.18
5.20

5

230
5,764

19.30
99.30

9.01
28.24

6.26
15.52

5.05
10.97

4.39
8.75

3.97
7.46

3.69
6.63

3.48
6.06

3.33
5.64

3.20
5.32

3.11
5.06

3.02
4.86

6

234
5,859

19.33
9933

8.94
27.91

6.16
15.21

4.95
10.67

4.28
8.47

3.87
7.19

3.58
6.37

3.37
5.80

3.22
5.39

3.09
5.07

3.00
4.82

2.92
4.62

7

237
5,928

19.36
9934

8.88
27.67

6.09
14.98

4.88
10.45

4.21
8.26

3.79
7.00

3.50
6.19

3.29
5.62

3.14
5.21

3.01
4.88

2.92
4.65

2.84
4.44

8

239
5,981

19.37
99.36

8.84
27.49

6.04
14.80

4.82
10.27

4.15
8.10

3.73
6.84

3.44
6.03

3.23
5.47

3.07
5.06

2.95
4.74

2.85
4.50

2.77
4.30

9

241
6,022

19.38
9939

8.81
2734

6.00
14.66

4.78
10.15

4.10
7.98

3.68
6.71

3.39
5.91

3.18
5.35

3.02
4.95

2.90
4.63

2.80
4.39

2.72
4.19

10

242
6,056

19.39
99.40

8.78
27.23

5.96
14.54

4.74
10.05

4.06
7.87

3.63
6.62

3.34
5.82

3.13
5.26

2.97
4.85

2.86
4.54

2.76
4.30

2.67
4.10

11

243
6,082

19.40
99.41

8.76
27.13

5.93
14.45

4.70
9.96

4.03
7.79

3.60
6.54

3.31
5.74

3.10
5.18

2.94
4.78

2.82
4.46

2.72
4.22

2.63
4.02

12

244
6,106

19.41
99.42

8.74
27.05

5.91
1437

4.68
9.89

4.00
7.72

3.57
6.47

3.28
5.67

3.07
5.11

2.91
4.71

2.79
4.40

2.69
4.16

2.60
3.96

14

245
6,142

19.42
99.43

8.71
26.92

5.87
14.24

4.64
9.77

3.96
7.60

3.52
6.35

3.23
5.56

3.02
5.00

2.86
4.60

2.74
4.29

2.64
4.05

2.55
3.85

16

246
6,169

19.43
99.44

8.69
26.83

5.84
14.15

4.60
9.68

3.92
7.52

3.49
6.27

3.20
5.48

2.98
4.92

2.82
4.52

2.70
4.21

2.60
3.98

2.51
3.78

20

248
6,208

19.44
99.45

8.66
26.69

5.80
14.02

4.56
9.55

3.87
739

3.44
6.15

3.15
536

2.93
4.80

2.77
4.41

2.65
4.10

2.54
3.86

2.46
3.67

24

249
6,234

19.45
99.46

8.64
26.60

5.77
13.93

4.53
9.47

3.84
731

3.41
6.07

3.12
5.28

2.90
4.73

2.74
4.33

2.61
4.02

2.50
3.78

2.42
3.59

30

250
6,258

19.46
99.47

8.62
26.50

5.74
13.83

4.50
9.38

3.81
7.23

3.38
5.98

3.08
5.20

2.86
4.64

2.70
4.25

2.57
3.94

2.46
3.70

2.38
3.51

40

251
6,286

19.47
99.48

8.60
26.41

5.71
13.74

4.46
9.29

3.77
7.14

3.34
5.90

3.05
5.11

2.82
4.56

2.67
4.17

2.53
3.86

2.42
3.61

2.34
3.42

50

252
6302

19.47
99.49

8.58
2635

5.70
13.69

4.44
9.24

3.75
7.09

3.32
5.85

3.03
5.06

2.80
4.51

2.64
4.12

2.50
3.80

2.40
3.56

2.32
3.37

75

253
6323

19.48
99.49

8.57
26.27

5.68
13.61

4.42
9.17

3.72
7.02

3.29
5.78

3.00
5.00

2.77
4.45

2.61
4.05

2.47
3.74

2.36
3.49

2.28
3.30

100

253
6334

19.49
99.49

8.56
26.23

5.66
13.57

4.40
9.13

3.71
6.99

3.28
5.75

2.98
4.96

2.76
4.41

2.59
4.01

2.45
3.70

2.35
3.46

2.26
3.27

200

254
6352

19.49
99.49

8.54
26.18

5.65
13.52

4.38
9.07

3.69
6.94

3.25
5.70

2.96
4.91

2.73
4.36

2.56
3.96

2.42
3.66

2.32
3.41

2.24
3.28

500

254
6361

19.50
99.50

8.54
26.14

5.64
13.48

4.37
9.04

3.68
6.90

3.24
5.67

2.94
4.88

2.72
433

2.55
3.93

2.41
3.62

2.31
338

2.22
3.18

00

254
6366

19.50
99.50

8.53
26.12

5.63
13.46

4.36
9.02

3.67
6.88

3.23
5.65

2.93
4.86

2.71
431

2.54
3.91

2.40
3.60

2.30
336

2.21
3.16

1

2

3

4

5

6

7

8

9

10

11

12

13

To be statistically significant the F obtained from the data must be equal to or greater than the value shown in the table.
SOURCE: From Statistical Methods, by G. W. Snedecor and W. W. Cochran, (7th ed.). Copyright © 1980 Iowa State University Press. Reprinted with permission.

continued



APPENDIX C (continued)

Degrees of Freedom (for the numerator of F ratio)

'1

03
C

&

\4

\5

\6

18

19

20

21

22

23

24

25

26

1

4.60
8.86

4.54
8.68

4.49
8.53

4.45
8.40

4.41
8.28

4.38
8.18

4.35
8.10

4.32
8.02

4.30
7.94

4.28
7.88

4.26
7.82

4.24
7.77

4.22
7.72

2

3.74
6.51

3.68
6.36

3.63
6.23

3.59
6.11

3.55
6.01

3.52
5.93

3.49
5.85

3.47
5.78

3.44
5.72

3.42
5.66

3.40
5.61

3.38
5.57

3.37
5.53

3

3.34
5.56

3.29
5.52

3.24
5.29

3.20
5.18

3.16
5.09

3.13
5.01

3.10
4.94

3.07
4.87

3.05
4.82

3.03
4.76

3.01
4.72

2.99
4.68

2.98
4.64

4

3.11
5.03

3.06
4.89

3.01
4.77

2.96
4.67

2.93
4.58

2.90
4.50

2.87
4.43

2.84
4.37

2.82
4.31

2.80
4.26

2.78
4.22

2.76
4.18

2.74
4.14

5

2.96
4.69

2.90
4.56

2.85
4.44

2.81
4.34

2.77
4.25

2.74
4.17

2.71
4.10

2.68
4.04

2.66
3.99

2.64
3.94

2.62
3.90

2.60
3.86

2.59
3.82

6

2.85
4.46

2.79
4.32

2.74
4.20

2.70
4.10

2.66
4.01

2.63
3.94

2.60
3.87

2.57
3.81

2.55
3.76

2.53
3.71

2.51
3.67

2.49
3.63

2.47
3.59

7

2.77
4.28

2.70
4.14

2.66
4.03

2.62
3.93

2.58
3.85

2.55
3.77

2.52
3.71

2.49
3.65

2.47
3.59

2.45
3.54

2.43
3.50

2.41
3.46

2.39
3.42

8

2.70
4.14

2.64
4.00

2.59
3.89

2.55
3.79

2.51
3.71

2.48
3.63

2.45
3.56

2.42
3.51

2.40
3.45

2.38
3.41

2.36
3.36

2.34
3.32

2.32
3.29

9

2.65
4.03

2.59
3.89

2.54
3.78

2.50
3.68

2.46
3.60

2.43
3.52

2.40
3.45

2.37
3.40

2.35
3.35

2.32
3.30

2.30
3.25

2.28
3.21

2.27
3.17

10

2.60
3.94

2.55
3.80

2.49
3.69

2.45
3.59

2.41
3.51

2.38
3.43

2.35
3.37

2.32
3.31

2.30
3.26

2.28
3.21

2.26
3.17

2.24
3.13

2.22
3.09

11

2.56
3.86

2.51
3.73

2.45
3.61

2.41
3.52

2.37
3.44

2.34
3.36

2.31
3.30

2.28
3.24

2.26
3.18

2.24
3.14

2.22
3.09

2.20
3.05

2.18
3.02

12

2.53
3.80

2.48
3.67

2.42
3.55

2.38
3.45

2.34
3.37

2.31
3.30

2.28
3.23

2.25
3.17

2.23
3.12

2.20
3.07

2.18
3.03

2.16
2.99

2.15
2.96

14

2.48
3.70

2.43
3.56

2.37
3.45

2.33
3.35

2.29
3.27

2.26
3.19

2.23
3.13

2.20
3.07

2.18
3.02

2.14
2.97

2.13
2.93

2.11
2.89

2.10
2.86

16

2.44
3.62

2.39
3.48

2.33
3.37

2.29
3.27

2.25
3.19

2.21
3.12

2.18
3.05

2.15
2.99

2.13
2.94

2.10
2.89

2.09
2.85

2.06
2.81

2.05
2.77

20

2.39
3.51

2.33
3.36

2.28
3.25

2.23
3.16

2.19
3.07

2.15
3.00

2.12
2.94

2.09
2.88

2.07
2.83

2.04
2.78

2.02
2.74

2.00
2.70

1.99
2.66

24

2.35
3.43

2.29
3.29

2.24
3.18

2.19
3.08

2.15
3.00

2.11
2.92

2.08
2.86

2.05
2.80

2.03
2.75

2.00
2.70

1.98
2.66

1.96
2.62

1.95
2.58

30

2.31
3.34

2.25
3.20

2.20
3.10

2.15
3.00

2.11
2.91

2.07
2.84

2.04
2.77

2.00
2.72

1.98
2.67

1.96
2.62

1.94
2.58

1.92
2.54

1.90
2.50

40

2.27
3.26

2.21
3.12

2.16
3.01

2.11
2.92

2.07
2.83

2.02
2.76

1.99
2.69

1.96
2.63

1.93
2.58

1.91
2.53

1.89
2.49

1.87
2.45

1.85
2.41

50

2.24
3.21

2.18
3.07

2.13
2.96

2.08
2.86

2.04
2.78

2.00
2.70

1.96
2.63

1.93
2.58

1.91
2.53

1.88
2.48

1.86
2.44

1.84
2.40

1.82
2.36

75

2.21
3.14

2.15
3.00

2.09
2.98

2.04
2.79

2.00
2.71

1.96
2.63

1.92
2.56

1.89
2.51

1.87
2.46

1.84
2.41

1.82
2.36

1.80
2.32

1.78
2.28

100

2.19
3.11

2.12
2.97

2.07
2.86

2.02
2.76

1.89
2.68

1.94
2.60

1.90
2.53

1.87
2.47

1.84
2.42

1.82
2.37

1.80
2.33

1.77
2.29

1.76
2.25

200

2.16
3.06

2.10
2.92

2.04
2.80

1.99
2.70

1.95
2.62

1.91
2.54

1.87
2.47

1.84
2.42

1.81
2.37

1.79
2.32

1.76
2.27

1.74
2.23

1.72
2.19

500

2.14
3.02

2.08
2.89

2.02
2.77

1.97
2.67

1.93
2.59

1.90
2.51

1.85
2.44

1.82
2.38

1.80
2.33

1.77
2.28

1.74
2.23

1.72
2.19

1.70
2.15

00

2.13
3.00

2.07
2.87

2.01
2.75

1.96
2.65

1.92
2.57

1.88
2.49

1.84
2.42

1.81
2.36

1.78
2.31

1.76
2.26

1.73
2.21

1.71
2.17

1.69
2.13

contfrtwed

14

15

16

17

18

19

20

21

22

23

24

25

26

>
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APPENDIX C (continued)

Degrees of freedom (for the numerator of F ratio)

'i

CO

27

28

29

30

32

34

36

38

40

42

44

46

48

1

4.21
7.68

4.20
7.64

4.18
7.60

4.17
7.56

4.15
7.50

4.13
7.44

4.11
7.39

4.10
7.35

4.08
7.31

4.07
7.27

4.06
7.25

4.05
7.21

4.04
7.19

2

3.35
5.49

3.34
5.45

3.33
5.42

3.32
5.39

3.30
5.34

3.28
5.29

3.26
5.24

3.25
5.21

3.23
5.18

3.22
5.15

3.21
5.12

3.20
5.10

3.19
5.08

3

2.96
4.60

2.95
4.57

2.93
4.54

2.92
4.51

2.90
4.46

2.88
4.42

2.86
4.38

2.85
4.34

2.84
4.31

2.83
4.29

2.82
4.26

2.81
4.24

2.80
4.22

4

2.73
4.11

2.71
4.07

2.70
4.04

2.69
4.02

2.67
3.97

2.65
3.93

2.63
3.89

2.62
3.86

2.61
3.83

2.59
3.80

2.58
3.78

2.57
3.76

2.56
3.74

5

2.57
3.79

2.56
3.76

2.54
3.73

2.53
3.70

2.51
3.66

2.49
3.61

2.48
3.58

2.46
3.54

2.45
3.51

2.44
3.49

2.43
3.46

2.42
3.44

2.41
3.42

6

2.46
3.56

2.44
3.53

2.43
3.50

2.42
3.47

2.40
3.42

2.38
3.38

2.36
3.35

2.35
3.32

2.34
3.29

2.32
3.26

2.31
3.24

2.30
3.22

2.30
3.20

7

2.37
3.39

2.36
3.36

2.35
3.33

2.34
3.30

2.32
3.25

2.30
3.21

2.28
3.18

2.26
3.15

2.25
3.12

2.24
3.10

2.23
3.07

2.22
3.05

2.21
3.04

8

2.30
3.26

2.29
3.23

2.28
3.20

2.27
3.17

2.25
3.12

2.23
3.08

2.21
3.04

2.19
3.02

2.18
2.99

2.17
2.96

2.16
2.94

2.14
2.92

2.14
2.90

9

2.25
3.14

2.24
3.11

2.22
3.08

2.21
3.06

2.19
3.01

2.17
2.97

2.15
2.94

2.14
2.91

2.12
2.88

2.11
2.86

2.10
2.84

2.09
2.82

2.08
2.80

10

2.20
3.06

2.19
3.03

2.18
3.00

2.16
2.98

2.14
2.94

2.12
2.89

2.10
2.86

2.09
2.82

2.07
2.80

2.06
2.77

2.05
2.75

2.04
2.73

2.03
2.71

11

2.16
2.98

2.15
2.95

2.14
2.92

2.12
2.90

2.10
2.86

2.08
2.82

2.06
2.78

2.05
2.75

2.04
2.73

2.02
2.70

2.01
2.68

2.00
2.66

1.99
2.64

12

2.13
2.93

2.12
2.90

2.10
2.87

2.09
2.84

2.07
2.80

2.05
2.76

2.03
2.72

2.02
2.69

2.00
2.66

1.99
2.64

1.98
2.62

1.97
2.60

1.96
2.58

14

2.08
2.83

2.06
2.80

2.05
2.77

2.04
2.74

2.02
2.70

2.00
2.66

1.98
2.62

1.96
2.59

1.95
2.56

1.94
2.54

1.92
2.52

1.91
2.50

1.90
2.48

16

2.03
2.74

2.02
2.71

2.00
2.68

1.99
2.66

1.97
2.62

1.95
2.58

1.93
2.54

1.92
2.51

1.90
2.49

1.89
2.46

1.88
2.44

1.87
2.42

1.86
2.40

20

1.97
2.63

1.96
2.60

1.94
2.57

1.93
2.55

1.91
2.51

1.89
2.47

1.87
2.43

1.85
2.40

1.84
2.37

1.82
2.35

1.81
2.32

1.80
2.30

1.79
2.28

24

1.93
2.55

1.91
2.52

1.90
2.49

1.89
2.47

1.86
2.42

1.84
2.38

1.82
2.35

1.80
2.32

1.79
2.29

1.78
2.26

1.76
2.24

1.75
2.22

1.74
2.20

30

1.88
2.47

1.87
2.44

1.85
2.41

1.84
2.38

1.82
2.34

1.80
2.30

1.78
2.26

1.76
2.22

1.74
2.20

1.73
2.17

1.72
2.15

1.71
2.13

1.70
2.11

40

1.84
2.38

1.81
2.35

1.80
2.32

1.79
2.29

1.76
2.25

1.74
2.21

1.72
2.17

1.71
2.14

1.69
2.11

1.68
2.08

1.66
2.06

1.65
2.04

1.64
2.02

50

1.80
2.33

1.78
2.30

1.77
2.27

1.76
2.24

1.74
2.20

1.71
2.15

1.69
2.12

1.67
2.08

1.66
2.05

1.64
2.02

1.63
2.00

1.62
1.98

1.61
1.96

75

1.76
2.25

1.75
2.22

1.73
2.19

1.72
2.16

1.69
2.12

1.67
2.08

1.65
2.04

1.63
2.00

.61

.97

.60

.94

.58

.92

.57

.90

1.56
1.88

100

1.74
2.21

1.72
2.18

1.71
2.15

1.69
2.13

1.67
2.08

1.64
2.04

1.62
2.00

1.60
1.97

1.59
1.94

1.57
1.91

1.56
1.88

1.54
1.86

1.53
1.84

200

1.71
2.16

1.69
2.13

1.68
2.10

1.66
2.07

1.64
2.02

1.61
1.98

1.59
1.94

1.57
1.90

1.55
1.88

.54

.85

.52

.82

.51

.80

1.50
1.78

500

1.68
2.12

1.67
2.09

1.65
2.06

1.64
2.03

1.61
1.98

1.59
1.94

1.56
1.90

1.54
1.86

1.53
1.84

1.51
1.80

1.50
1.78

1.48
1.76

1.47
1.73

>

.67 27 X

.65 28
2.06

.64 29
2.03

.62 30
2.01

.59 32
1.96

.57 34
1.91

.55 36

.87

.53 38

.84

.51 40

.81

.49 42

.78

.48 44

.75

1.46 46
1.72

1.45 48
1.70

continued



APPENDIX C (continued)

Degrees of freedom (for the numerator of F ratio)

10 11 12 14 16 20 24 30 40 50 75 100 200 500

50
.2
2 55

60

65

70

80

100

£ 125

15°

200

400

1000

00

4.03
7.17

4.02
7.12

4.00
7.08

3.99
7.04

3.98
7.01

3.96
6.96

3.94
6.90

3.92
6.84

3.91
6.81

3.89
6.76

3.86
6.70

3.85
6.66

3.84
6.63

3.18
5.06

3.17
5.01

3.15
4.98

3.14
4.95

3.13
4.92

3.11
4.88

3.09
4.82

3.07
4.78

3.06
4.75

3.04
4.71

3.02
4.66

3.00
4.62

2.99
4.60

2.79
4.20

2.78
4.16

2.76
4.13

2.75
4.10

2.74
4.08

2.72
4.04

2.70
3.98

2.68
3.94

2.67
3.91

2.65
3.88

2.62
3.83

2.61
3.80

2.60
3.78

2.56
3.72

2.54
3.68

2.52
3.65

2.51
3.62

2.50
3.60

2.48
3.56

2.46
3.51

2.44
3.47

2.43
3.44

2.41
3.41

2.39
3.36

2.38
3.34

2.37
332

2.40
3.41

2.38
3.37

2.37
3.34

2.36
3.31

2.35
3.29

2.33
3.25

2.30
3.20

2.29
3.17

2.27
3.14

2.26
3.11

2.23
3.06

2.22
3.04

2.21
3.02

2.29
3.18

2.27
3.15

2.25
3.12

2.24
3.09

2.23
3.07

2.21
3.04

2.19
2.99

2.17
2.95

2.16
2.92

2.14
2.90

2.12
2.85

2.10
2.82

2.09
2.80

2.20
3.02

2.18
2.98

2.17
2.95

2.15
2.93

2.14
2.91

2.12
2.87

2.10
2.82

2.08
2.79

2.07
2.76

2.05
2.73

2.03
2.69

2.02
2.66

2.01
2.64

2.13
2.88

2.11
2.85

2.10
2.82

2.08
2.79

2.07
2.77

2.05
2.74

2.03
2.69

2.01
2.65

2.00
2.62

1.98
2.60

1.96
2.55

1.95
2.53

1.94
2.51

2.07
2.78

2.05
2.75

2.04
2.72

2.02
2.70

2.01
2.67

1.99
2.64

1.97
2.59

1.95
2.56

1.94
2.53

1.92
2.50

1.90
2.46

1.89
2.43

1.88
2.41

2.02
2.70

2.00
2.66

1.99
2.63

1.98
2.61

1.97
2.59

1.95
2.55

1.92
2.51

1.90
2.47

1.89
2.44

1.87
2.41

1.85
2.37

1.84
2.34

1.83
2.32

1.98
2.62

1.97
2.59

1.95
2.56

1.94
2.54

1.93
2.51

1.91
2.48

1.88
2.43

1.86
2.40

1.85
237

1.83
234

1.81
2.29

1.80
2.26

1.79
2.24

1.95
2.56

1.93
2.53

1.92
2.50

1.90
2.47

1.89
2.45

1.88
2.41

1.85
2.36

1.83
233

1.82
2.30

1.80
2.28

1.78
2.23

1.76
2.20

1.75
2.18

1.90
2.46

1.88
2.43

1.86
2.40

1.85
237

1.84
2.35

1.82
232

1.79
2.26

1.77
2.23

1.76
2.20

1.74
2.17

1.72
2.12

1.70
2.09

1.69
2.07

1.85
239

1.83
235

1.81
2.32

1.80
2.30

1.79
2.28

1.77
2.24

1.75
2.19

1.72
2.15

1.71
2.12

1.69
2.09

1.67
2.04

1.65
2.01

1.64
1.99

1.78
2.26

1.76
2.23

1.75
2.20

1.73
2.18

1.72
2.15

1.70
2.11

1.68
2.06

1.65
2.03

1.64
2.00

1.62
1.97

1.60
1.92

1.58
1.89

1.57
1.87

1.74
2.18

1.72
2.15

1.70
2.12

1.68
2.09

1.67
2.07

1.65
2.03

1.63
1.98

1.60
1.94

1.59
1.91

1.57
1.88

1.54
1.84

1.53
1.81

1.52
1.79

1.69
2.10

1.67
2.06

1.65
2.03

1.63
2.00

1.62
1.98

1.60
1.94

1.57
1.89

1.55
1.85

1.54
1.83

1.52
1.79

1.49
1.74

1.47
1.71

1.46
1.69

1.63
2.00

1.61
1.96

1.59
1.93

1.57
1.90

1.56
1.88

1.54
1.84

1.51
1.79

1.49
1.75

1.47
1.72

1.45
1.69

1.42
1.64

1.41
1.61

1.40
1.59

1.60
1.94

1.58
1.90

1.56
1.87

1.54
1.84

1.53
1.82

1.51
1.78

1.48
1.73

1.45
1.68

1.44
1.66

1.42
1.62

1.38
1.57

1.36
1.54

1.35
1.52

.55

.86

.52

.82

.50

.79

.49

.76

.47

.74

.45

.70

.42

.64

.39

.59

.37

.56

.35

.53

.32

.47

.30

.44

1.28
1.41

1.52
1.82

1.50
1.78

1.48
1.74

1.46
1.71

1.45
1.69

1.42
1.65

1.39
1.59

1.36
1.54

1.34
1.51

1.32
1.48

1.28
1.42

1.26
138

1.24
1.36

1.48
1.76

1.46
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1.44
1.68

1.42
1.64

1.40
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1.38
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1.29
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.37
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APPENDIX D Critical values of the studentized range statistic (for Tukey HSD tests).

a = .05

Number of levels of the independent variable

df
error

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
24
30
40
60
120
00

2

17.97
6.08
4.50
3.93
3.64
3.46
3.34
3.26
3.20
3.15
3.11
3.08
3.06
3.03
3.01
3.00
2.98
2.97
2.96
2.95
2.92
2.89
2.86
2.83
2.80
2.77

3

26.98
8.33
5.91
5.04
4.60
4.34
4.16
4.04
3.95
3.88
3.82
3.77
3.74
3.70
3.67
3.65
3.63
3.61
3.59
3.58
3.53
3.49
3.44
3.40
3.36
3.31

4

2.82
9.80
6.82
5.76
5.22
4.90
4.68
4.53
4.42
4.33
4.26
4.20
4.15
4.11
4.08
4.05
4.02
4.00
3.98
3.96
3.90
3.84
3.79
3.74
3.69
3.63

5

37.07
10.88
7.50
6.29
5.67
5.31
5.06
4.89
4.76
4.65
4.57
4.51
4.45
4.41
4.37
4.33
4.30
4.28
4.25
4.23
4.17
4.10
4.04
3.98
3.92
3.86

6

40.41
11.74
8.04
6.71
6.03
5.63
5.36
5.17
5.02
4.91
4.82
4.75
4.69
4.64
4.60
4.56
4.52
4.50
4.47
4.44
4.37
4.30
4.23
4.16
4.10
4.03

7

43.12
12.44
8.48
7.05
6.33
5.90
5.61
5.40
5.24
5.12
5.03
4.95
4.88
4.83
4.78
4.74
4.70
4.67
4.64
4.62
4.54
4.46
4.39
4.31
4.24
4.17

8

45.40
13.03
8.85
7.35
6.58
6.12
5.82
5.60
5.43
5.30
5.20
5.12
5.05
4.99
4.94
4.90
4.86
4.82
4.79
4.77
4.68
4.60
4.52
4.44
4.36
4.29

9

47.36
13.54
9.18
7.60
6.80
6.32
6.00
5.77
5.60
5.46
5.35
5.26
5.19
5.13
5.08
5.03
4.99
4.96
4.92
4.90
4.81
4.72
4.64
4.55
4.47
4.39

10

49.07
13.99
9.46
7.33
7.00
6.49
6.16
5.92
5.74
5.60
5.49
5.40
5.32
5.25
5.20
5.15
5.11
5.07
5.04
5.01
4.92
4.82
4.74
4.65
4.56
4.47

11

50.59
14.39
9.72
8.03
7.17
6.65
6.30
6.05
5.87
5.72
5.60
5.51
5.43
5.36
5.31
5.26
5.21
5.17
5.14
5.11
5.01
4.92
4.82
4.73
4.64
4.55

12

51.96
14.75
9.95
8.21
7.32
6.79
6.43
6.18
5.98
5.83
5.71
5.62
5.53
5.46
5.40
5.35
5.31
5.27
5.23
5.20
5.10
5.00
4.90
4.81
4.71
4.62

13

53.20
15.08
10.15
8.37
7.47
6.92
6.55
6.29
6.09
5.94
5.81
5.71
5.63
5.55
5.49
5.44
5.39
5.35
5.32
5.28
5.18
5.08
4.98
4.88
4.78
4.68

14

54.33
15.38
10.35
8.52
7.60
7.03
6.66
6.39
6.19
6.03
5.90
5.79
5.71
5.64
5.57
5.52
5.47
5.43
5.39
5.36
5.25
5.15
5.04
4.94
4.84
4.74

15

55.36
15.65
10.53
8.66
7.72
7.14
6.76
6.48
6.28
6.11
5.98
5.88
5.79
5.71
5.65
5.59
5.54
5.50
5.46
5.43
5.32
5.21
5.11
5.00
4.90
4.80

SOURCE: From "Tables of Range and Studentized Range," by M. L. Harter, Annals of Mathematical Statistics, 31, 1122-1147 (1960). Reprinted with permission.



APPENDIX D (continued).

a = .01

Number of levels of the independent variable

df
error

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
24
30
40
60
120
00

2

90.03
14.04
8.26
6.51
5.70
5.24
4.95
4.75
4.60
4.48
4.39
4.32
4.26
4.21
4.17
4.13
4.10
4.07
4.05
4.02
3.96
3.89
3.82
3.76
3.70
3.64

3

135.00
19.02
10.62
8.12
6.98
6.33
5.92
5.64
5.43
5.27
5.15
5.05
4.96
4.90
4.84
4.79
4.74
4.70
4.67
4.64
4.55
4.46
4.37
4.28
4.20
4.12

4

164.30
22.29
12.17
9.17
7.80
7.03
6.54
6.20
5.96
5.77
5.62
5.50
5.40
5.32
5.25
5.19
5.14
5.09
5.05
5.02
4.91
4.80
4.70
4.60
3.50
4.40

5

185.60
24.72
13.33
9.96
8.42
7.56
7.00
6.62
6.35
6.14
5.97
5.84
5.73
5.63
5.56
5.49
5.43
5.38
5.33
5.29
5.17
5.05
4.93
4.82
4.71
4.60

6

202.20
26.63
14.24
10.58
8.91
7.97
7.37
6.96
6.66
6.43
6.25
6.10
5.98
5.88
5.80
5.72
5.66
5.60
5.55
5.51
5.37
5.24
5.11
4.99
4.87
4.76

7

215.80
28.20
15.00
11.10
9.32
8.32
7.68
7.24
6.92
6.67
6.48
6.32
6.19
6.08
5.99
5.92
5.85
5.79
5.74
5.69
5.54
5.40
5.26
5.13
5.01
4.88

8

227.20
29.53
15.64
11.55
9.67
8.62
7.94
7.47
7.13
6.88
6.67
6.51
6.37
6.26
6.16
6.08
6.01
5.94
5.89
5.84
5.69
5.54
5.39
5.25
5.12
4.99

9

237.00
30.68
12.60
11.93
9.97
8.87
8.17
7.68
7.32
7.06
6.84
6.67
6.53
6.41
6.31
6.22
6.15
6.08
6.02
5.97
5.81
5.65
5.50
5.36
5.21
5.08

10

245.60
31.69
16.69
12.27
10.24
9.10
8.37
7.86
7.50
7.21
6.99
6.81
6.67
6.54
6.44
6.35
6.27
6.20
6.14
6.09
5.92
5.76
5.60
5.45
5.30
5.16

11

253.20
32.59
17.13
12.57
10.48
9.30
8.55
8.03
7.65
7.36
7.13
6.94
6.79
6.66
6.56
6.46
6.38
6.31
6.25
6.19
6.02
5.85
5.69
5.53
5.38
5.23

12

260.00
33.40
17.53
12.84
10.70
9.48
8.71
8.18
7.78
7.48
7.25
7.06
6.90
6.77
6.66
6.56
6.48
6.41
6.34
6.28
6.11
5.93
5.76
5.60
5.44
5.29

13

266.20
34.13
17.89
13.09
10.89
9.65
8.86
8.31
7.91
7.60
7.36
7.17
7.01
6.87
6.76
6.66
6.57
6.50
6.43
6.37
6.19
6.01
5.84
5.67
5.51
5.35

14

271.80
34.81
18.22
13.32
11.08
9.81
9.00
8.44
8.02
7.71
7.46
7.26
7.10
6.96
6.84
6.74
6.66
6.58
6.51
6.45
6.26
6.08
5.90
5.73
5.56
5.40

15

277.00
35.43
18.52
13.53
11.24
9.95
9.12
8.55
8.13
7.81
7.56
7.36
7.19
7.05
6.93
6.82
6.73
6.66
6.58
6.52
6.33
6.14
5.96
5.78
5.61
5.45
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APPENDIX E Critical values of the x2 distribution.

df

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

.10

2.71

4.60

6.25

7.78

9.24

10.64

12.02

13.36

14.68

15.99

17.28

18.55

19.81

21.06

22.31

23.54

24.77

25.99

27.20

28.41

29.62

30.81

32.01

33.20

34.38

35.56

36.74

37.92

39.09

40.26

.05

3.84

5.99

7.82

9.49

11.07

12.59

14.07

15.51

16.92

18.31

19.68

21.03

22.36

23.68

25.00

26.30

27.59

28.87

30.14

31.41

32.67

33.92

35.17

36.42

37.65

38.88

40.11

41.34

42.56

43.77

a levels

.02

5.41

7.82

9.84

11.67

13.39

15.03

16.62

18.17

19.68

21.16

22.62

24.05

25.47

26.87

28.26

29.63

31.00

32.35

33.69

35.02

36.34

37.66

38.97

40.27

41.57

42.86

44.14

45.42

46.69

47.96

.01

6.64

9.21

11.34

13.28

15.09

16.81

18.48

20.09

21.67

23.21

24.72

26.22

27.69

29.14

30.58

32.00

33.41

34.80

36.19

37.57

38.93

40.29

41.64

42.98

44.31

45.64

46.96

48.28

49.59

50.89

.001

10.83

13.82

16.27

18.46

20.52

22.46

24.32

26.12

27.88

29.59

31.26

32.91

34.53

36.12

37.70

39.25

40.79

42.31

43.82

45.32

46.80

48.27

49.73

51.18

52.62

54.05

55.48

56.89

58.30

59.70

*To be significant the x2 obtained from the data must be equal to or larger than the value shown on the table.
SOURCE: From table IV in R.A. Fisher and F. Yates, Statistical Tables for Biological, Agricultural, and Medical
Research, Sixth Editioa published by Addison Wesley Longman Ltd., (1974). Reprinted with permission.
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GLOSSARY OF SYMBOLS

E The sum of; to sum.

X An individual, or raw, score in a distribution.

EX The sum of X; adding up all of the scores in a distribution.

X The mean of a sample.

u The mean of a population.

n The number of cases, or scores, in a sample.

N The number of cases, or scores, in a population.

P50 The median.

s2 The sample variance.

s The sample standard deviation.

a The population standard deviation.

o2 The population variance.

SS The sum of squares, or sum of squared deviations.

z A standard score.

Sx The standard error of the mean estimated from the sample standard deviation (i.e., when
the population standard deviation is unknown).

ox The standard error of the mean when the population standard deviation is known.

p p value, or probability.

a Alpha level.

d Effect size.

S The standard deviation used in the effect size formula.

Infinity.

Ho The null hypothesis.

HA or H1 The alternative hypothesis.

r The sample Pearson correlation coefficient.

p Rho, the population correlation coefficient.

sr The standard error of the correlation coefficient.

r2 The coefficient of determination.

df Degrees of freedom.

The phi coefficient, which is the correlation between two dichotomous variables.

Sx1-x2 The standard error of difference between two independent sample means.

The standard error of the difference between to dependent, matched, or paired samples.SD
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SD The standard deviation of the difference between two dependent, or paired sample means.

t The t value.

MSW The mean square within groups.

MSe The mean square error (which is the same as the mean square within groups).

MSb The mean square between groups.

SSe The sum of squares error (or within groups).

SSb The sum of squares between groups.

SST The sum of squares total.

XT The grand mean.

F The F value.

K The number of groups.

N The number of cases in all of the groups combined.

n The number of cases in a given group (for calculating SSb).

ng The number of cases in each group (for Tukey HSD test).

MSS x T The mean square for the interaction of subject by trial.

MST The mean square for the differences between the trials.
A

Y The predicted value of 7, the dependent variable.

Y The observed value of Y, the dependent variable.

b The unstandardized regression coefficient.

a The intercept.

e The error term.

R The multiple correlation coefficient.

R2 The percentage of variance explained by the regression model.
X2 The chi-square statistic.

O The observed frequency.

E The expected frequency.

R Symbol representing the number of rows in the contingency table.

C Symbol representing the number of columns in the contingency table.
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INDEX OF TERMS AND SUBJECTS

alpha level, 61-62, 65, 67, 70-73, 83, 93, 106-
107, 112-113, 164, 180
when it is used 62

alternative hypothesis, 61, 67, 68, 72-73, 81, 97,
164, 180

analysis of covariance (ANCOVA), 124, 128,
129, 135, 139-140, 142, 153
when it is used, 124
example, 135

asymptotic, 25, 31
bell curve, 25, 31, 49, 89
between-group, 101, 103, 105, 109, 117, 136,

143
example, 103

between-subjects effect, 136-141, 143
biased, 27, 30, 31, 48

example, 27
bimodal, 8, 11

example, 8
boxplot, 21-22

example 21
categorical (nominal) variable, 3, 6, 85, 87, 89,

100-101, 114, 117, 124, 126, 128-129, 131,
136, 143, 146, 159, 161-162, 166

causation, 79-80, 87
cell size, 118, 128
central limit theorem, 49, 56

when it is used, 49
chi-square test, 5, 161-166, 180

when it is used, 161
coefficient of determination, 83-84, 86-88, 109,

145, 154-155, 180
how it is calculated, 84, 86

when it is used, 83
example, 84

continuous (intervally scaled), 85, 87
continuous variable, 3, 6, 75, 87, 89, 101, 114,

124, 166
convenience sampling, 3, 6, 27, 31

when it is used, 3
covariance, 79, 87
covariate, 24-25, 124, 128-131, 135-139, 141,

145, 147
curvilinear relationship, 80, 87

example, 80

degrees of freedom, 50, 52, 56, 59, 67, 70,
82-83, 87-88, 92-93, 95-98, 100, 105, 109,
11, 113, 115, 125, 134, 140, 162, 164, 167,
180
how it is calculated, 92

dependent samples t test, 89, 90, 94-96, 99, 100
when it is used, 94
how it is calculated, 96
example, 98-99

dependent variable, 5, 6. 89, 90, 95-96, 100-101,
107-109, 114-115, 117-118, 120-121, 124,
126-131, 134-146, 152-157, 159-160, 181

dichotomous variable, 4, 6, 85, 87-88, 180
when it is used, 4

direction of relationship, 75, 87
effect size, 5, 57-73, 93-94, 98, 108, 114, 124-

126, 140-142, 155, 180
how it is calculated, 65

expected value, 46-47, 56, 152, 162-164
F value, 64, 102, 106-107, 109, 111-115, 118,

124-126, 140, 156-158, 162, 180
how it is calculated, 102

factorial analysis of variance (ANOVA), 18, 99,
114, 117-119, 123-126, 128-129, 137, 139,
143, 145
when it is used, 117

generalizabilty, 2, 6
grand mean, 103-105, 110, 114-115, 181

when it is used, 104
group variable, 109, 129-130, 132, 136, 139, 143
homogeneity of variance, 117, 128, 166
independent samples nest, 89-92, 94-97, 99-101,

114, 165-166
when it is used, 101

independent variable, 5-6, 87, 89, 100-101, 108-
109, 114, 117-120, 124-128, 131, 136, 143,
145, 146, 152-154, 157, 159-160
example, 117

inferential statistic, 2, 6, 15, 26, 30-31, 45, 47,
53-58, 62, 65-66, 72-73, 91, 161
when it is used, 26

interaction effect, 108, 117-126, 136-137, 145
intercept, 108, 125, 140, 146, 149-152, 156, 158,

159-160, 181
how it is calculated, 149
when it is used, 150
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interquartile range (IQR), 13-14, 21-22
example, 21

Kruskal-Wallis, 161, 166
kurtosis, 27-28, 31
leptokurtic, 28, 31
main effect, 117-128, 136-137, 142
mean, 1, 7-22, 25, 29-30, 33-49, 180

when it is used, 7
how it is calculated, 8
example, 9

mean square between, 102-103, 111, 114, 181
how it is calculated, 106

mean square within (or error), 102, 114-115, 181
how it is calculated, 106

median, 4, 7-11, 13, 21-23, 25, 31, 40, 124,
180
how it is calculated, 8
example, 9

mode, 4, 7-11, 25, 31-32
when it is used, 8
example, 9

moderator, 117, 128
multicollinearity, 155, 159
multimodal, 8, 11
multiple correlation coefficient, 155, 160, 180
multiple regression, 87, 118, 145-146, 152-160,

179
when it is used, 154
example, 158

negative correlation, 75-76, 79, 87, 146
example, 76

negatively skewed, 9-10, 19, 27-31
example, 19

nonparametric, 5, 91, 161, 166
normal distribution, 5, 9, 22, 25-31, 34-43, 49-

51, 59, 62, 89, 92, 97
example, 25

null hypothesis, 26, 60-62, 68, 70-73, 81, 98-99,
101, 164-165, 180
example, 62

observed value, 106, 107, 150-151, 155, 159-
160, 163-164, 181

one-way ANOVA, 99, 101-115, 117-118, 126,
128, 132, 161, 165-166
when it is used, 101

ordinary least squares regression (OLS), 148-
149, 160

outliers, 10-11
overpredicted, 152, 160
paired t test, SEE DEPENDENT t TEST
parameter, 1, 6-7, 11, 15, 47, 58-59, 61-62, 64,

66-67, 72, 75
partial (controlled effects), 118, 128

 product-moment correlation coefficient.,
, 78, 87, 180

when it is used, 75
how it is calculated, 78

perfect negative correlation, 76, 87
perfect positive correlation, 76, 87
phi coefficient, 75, 85, 88, 180
platykurtic, 28-29, 31
point-biserial coefficient, 75, 85, 88
population, 1-3, 6-8, 11, 15-17, 22-23, 26-27, 30-

31, 34, 38-39, 44-53, 56-62, 64-65, 67-68,
70-72, 74-75, 81, 83, 88-90, 92-95, 99, 101-
102, 115, 180

positive correlation, 75-76, 80, 88, 146-147
example, 75

positively skewed, 9-10, 27-28, 31
example, 28

post-hoc test, 106-107, 109, 112-115, 123
practical significance, 58, 65-66, 72-73, 125, 155
predicted value, 146, 148-152, 155-156,

159-160, 181
how it is how it is calculated, 146

priori, 61, 72, 107, 113-114
probability, 26, 31, 43, 49-54, 58-61, 64, 66-67,

70-73, 82-83, 93, 97, 99, 101, 120, 163,
165-166, 180
example, 53

p value, 60, 62, 65, 67, 70, 72-73, 83, 86, 97,
109, 120, 126, 140-141, 156-159, 180

random chance, 49, 59-60
random sampling, 3-6, 27, 31, 62
random sampling error, 54, 59, 61-62, 64, 73, 93
raw scores, 33, 38-42, 44, 180

example, 41
regression coefficient, 45, 59, 146, 149-150,

156-157, 158-160, 181
regression equation, 146, 148-152, 156, 160

how it is calculated, 146, 152
examples, 150, 156

regression line, 146, 148-152, 160
example, 151

representative sampling, 3, 6, 27, 31
example, 3

residuals, 151-152, 155, 160
example, 152

sampling distribution of the mean, 46-49, 56, 58,
62
how it is calculated, 47
example, 46

scatterplot, 147-149, 151, 160
examples, 148, 151

shared variance, 84, 87-88, 114, 128, 154-155
simple effects, 118, 123-124, 127-128

Pearson

75
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simple linear regression, 145-146, 152, 159-16
spearman rho coefficient, 75, 85, 88
standard deviation, 11, 13-23, 29-30, 33-37, 41-

59, 65-67, 71-75, 78-79, 89, 91, 94-96, 99-
101, 103, 108, 118, 139-140, 147, 149, 156,
180-181
how it is calculated, 16
example, 18-21

standard error, 45-46, 59-65, 70-71, 73, 90-92,
95, 112
how it is calculated for the mean, 59
example for the mean, 54

standard error of the difference between the
means, 91-95, 97, 99-100
how it is calculated, 95

standard score, 33, 44, 56, 180
standardization, 31, 33-34, 44, 157
standardized regression coefficient, 146, 149,

156, 158, 160, 181
statistical significance, 56-73, 81, 87, 93, 98-99,

101, 115, 117, 125, 156
example, 68

strength, magnitude, 88
studentized range statistic, 112-113, 115, 168
sum of squared deviations, sum of squares, 15,

18, 23, 103, 106, 109, 148-149, 160, 180

sum of squares between, 103-104, 106, 109-
110, 115
how it is calculated, 104

sum of squares error, 103-104, 106, 109-110,
115, 157, 180
how it is calculated, 104

sum of squares total, 104-105, 115, 181
symmetrical, 21, 25, 30-31, 34, 37, 41, 97
theoretical distribution, 22 , 26, 32, 50, 56, 162
time, trial, 143, 181
truncated range, 80, 88
TukeyHSD, 107, 109, 112-113, 115, 168, 181

how it is calculated, 107
examples, 109, 112-113

type I error, 60-62, 73, 101
underpredicted, 151, 160
unique variance, 154, 155, 160
variance, 7, 10, 13-23, 53, 79, 83-84, 87-88, 91,

97, 101, 103, 105, 108-109, 114-119, 124-
125, 129-138, 143, 152-161, 179, 180
how it is calculated, 16

within-group, 101-103, 115, 117, 128, 181
within-subjects design, 135, 143
z score, 31, 33-44, 64, 75, 78-79, 88-89,

157, 180
how it is calculated, 34
example, 41

z score, 31, 33-44, 49-51, 64, 75, 78-79, 88-89,




