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Introduction

“As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.”
Albert Einstein

We've all seen it. We've all experienced it, many times without knowing it. It’s in the
design of a beautiful stained-glass window in the middle of an Austrian cathedral. It’s
in the large and small workings of a car, computer, or space shuttle. It’s in the inno-
cent statement of a child asking, “How old are you?”

By now you’ve probably guessed what “it” is: mathematics.

Mathematics is everywhere. Sometimes it’s as subtle as the symmetry of a butter-
fly’s wings. Sometimes it’s as blatant as the U.S. debt figures displayed on a sign out-
side the Internal Revenue Service building in New York City.

Numbers sneak into our lives. They are used to determine a prescription for eye-
glasses; they reveal blood pressure, heart rate, and cholesterol levels, too. Numbers are
used so you can follow a bus, train, or plane schedule; or they can help you figure out
when your favorite store, restaurant, or library is open. In the home, numbers are
used for recipes, figuring out the voltage on a circuit in an electric switchbox, and
measuring a room for a carpet. Probably the most familiar connection we have to
numbers is in our daily use of money. Numbers, for instance, let you know whether
you're getting a fair deal on that morning cup of cappuccino.

The Handy Math Answer Book is your introduction to the world of numbers, from
their long history (and hints of the future) to how we use math in our everyday lives.
With more than 1,000 questions and answers in The Handy Math Answer Book (1,002,
to be mathematically precise) and over 100 photographs, 70 illustrations, and dozens
of equations to help explain or provide examples of fundamental mathematical princi-
ples, you'll cover a lot of ground in just one book!

Handy Math is split into four sections: “The History” includes famous (and some-
times infamous) people, places, and objects of mathematical importance; “The Basics”
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explains the various branches of mathematics, from fundamental arithmetic to com-
plex calculus; “Math in Science and Engineering” describes how relevant math is to
such fields as architecture, the natural sciences, and even art; and “Math All Around
Us” shows how much math is part of our daily lives, including everything from balanc-
ing a checkbook to playing the slots in Las Vegas.

The subject of math—and its many connections—is immense. After all, over two
thousand years ago the Greek mathematician Euclid wrote thirteen books about
geometry and other fields of mathematics (the famous Elements). It took him six of
those volumes just to describe elementary plane geometry. Today, even more is known
about mathematics, as you'll see in the list of resources described in the last chapter of
this book. Here we’ve provided you with everything from recommended print sources
to some of our favorite Web sites, such as “Dr. Math” and “SOS Math.” In this way,
Handy Math not only introduces you to the basics of math, but it also gives you the
resources to continue on your own mathematical journey.

Be warned: This journey is an extensive one. But you’ll soon learn that it’s satisfy-
ing and rewarding in every way. Not only will you understand what math is all about,
but you'll appreciate the mathematical beauty that surrounds you every day. Just as it
has astounded us, we’re sure you’ll be amazed by how numbers, equations, and sundry
other mathematical constructions continue to not only define, but also influence, the
world around us.
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HISTORY OF
MATHEMATICS

WHAT IS MATHEMATICS?

What is the origin of the word “mathematics™?

According to most sources, the word “mathematics” is derived from the Latin math-
maticus and from the Greek mathématikos, meaning “mathematical.” (Other forms
include mathéma, meaning “learning,” and manthanein, meaning “to learn.”)

In simple terms, what is mathematics?

Mathematics is often referred to as the science of quantity. The two traditional
branches of mathematics have been arithmetic and geometry, using the quantities of
numbers and shapes. And although arithmetic and geometry are still of major impor-
tance, modern mathematics expands the field into more complex branches by using a
greater variety of quantities.

Who were the first humans to use simple forms of mathematics?

No one really knows who first used simple forms of mathematics. It is thought that
the earliest peoples used something resembling mathematics because they would have
known the concepts of one, two, or many. Perhaps they even counted using items in
nature, such as 1, represented by the Sun or Moon; 2, their eyes or wings of a bird;
clover for 3; or legs of a fox for 4.

Archeologists have also found evidence of a crude form of mathematics in the tal-
lying systems of certain ancient populations. These include notches in wooden sticks
or bones and piles or lines of shells, sticks, or pebbles. This is an indication that cer-
tain prehistoric peoples had at least simple, visual ways of adding and subtracting
things, but they did not yet have a numbering system such as we have today.



EARLY COUNTING
AND NUMBERS

What are some examples of how
early peoples counted?

There were several different ways that
early civilizations recorded the numbers
of things. Some of the earliest archeo-
logical evidence of counting dates from
about 35000 to 20000 BCE, in which sev-
eral bones bear regularly spaced notch-
es. Most of these marked bones have
i been found in western Europe, includ-
Early humans used all sorts of images to represent . . .
numbers, including the fox, the image of which was ing in the Czech Republic and France.
used to indicate the number 4. Stone/Getty Images. The purpose of the notches is unclear,
but most scientists believe they do rep-
resent some method of counting. The marks may represent an early hunter’s num-
ber of kills; a way of keeping track of inventory (such as sheep or weapons); or a way
to track the movement of the Sun, Moon, or stars across the sky as a kind of crude
calendar.

Not as far back in time, shepherds in certain parts of West Africa counted the ani-
mals in their flocks by using shells and various colored straps. As each sheep passed,
the shepherd threaded a corresponding shell onto a white strap, until nine shells were
reached. As the tenth sheep went by, he would remove the white shells and put one on
a blue strap, representing ten. When 10 shells, representing 100 sheep, were on the
blue strap, a shell would then be placed on a red strap, a color that represented what
we would call the next decimal up. This would continue until the entire flock was
counted. This is also a good example of the use of base 10. (For more information
about bases, see “Math Basics.”)

Certain cultures also used gestures, such as pointing out parts of the body, to rep-
resent numbers. For example, in the former British New Guinea, the Bugilai culture
used the following gestures to represent numbers: 1, left hand little finger; 2, next fin-
ger; 3, middle finger; 4, index finger; 5, thumb; 6, wrist; 7, elbow; 8, shoulder; 9, left
breast; 10, right breast.

Another method of counting was accomplished with string or rope. For example,
in the early 16th century, the Incas used a complex form of string knots for account-
ing and sundry other reasons, such as calendars or messages. These recording strings
were called guipus, with units represented by knots on the strings. Special officers of
the king called quipucamayocs, or “keepers of the knots,” were responsible for mak-
ing and reading the quipus.



Why did the need for mathematics arise?

he reasons humans developed mathematics are the same reasons we use

math in our own modern lives: People needed to count items, keep track of
the seasons, and understand when to plant. Math may even have developed for
religious reasons, such as in recording or predicting natural or celestial phe-
nomena. For example, in ancient Egypt, flooding of the Nile River would wash
away all landmarks and markers. In order to keep track of people’s lands after
the floods, a way to measure the Earth had to be invented. The Greeks took
many of the Egyptian measurement ideas even further, creating mathematical
methods such as algebra and trigonometry.

How did certain ancient cultures count large numbers?

It is not surprising that one of the earliest ways to count was the most obvious: using
the hands. And because these “counting machines” were based on five digits on each
hand, most cultures invented numbering systems using base 10. Today, we call these
base numbers—or base of a number system—the numbers that determine place val-
ues. (For more information on base numbers, see “Math Basics.”)

However, not every group chose 10. Some cultures chose the number 12 (or base
12); the Mayans, Aztecs, Basques, and Celts chose base 20, adding the ten digits of the
feet. Still others, such as the Sumerians and Babylonians, used base 60 for reasons not
yet well understood.

The numbering systems based on 10 (or 12, 20, or 60) started when people
needed to represent large numbers using the smallest set of symbols. In order to do
this, one particular set would be given a special role. A regular sequence of numbers
would then be related to the chosen set. One can think of this as steps to various
floors of a building in which the steps are the various numbers—the steps to the
first floor are part of the “first order units”; the steps to the second floor are the
“second order units”; and so on. In today’s most common units (base 10), the first
order units are the numbers 1 through 9, the second order units are 10 through 19,
and so on.

What is the connection between counting and mathematics?

Although early counting is usually not considered to be mathematics, mathematics
began with counting. Ancient peoples apparently used counting to keep track of
sundry items, such as animals or lunar and solar movements. But it was only when
agriculture, business, and industry began that the true development of mathematics
became a necessity.
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What are the names of the various base systems?

he base 10 system is often referred to as the decimal system. The base 60 sys-

tem is called the sexagesimal system. (This should not be confused with the
sexadecimal system—also called the hexadecimal system—or the digital system
based on powers of 16.) A sexagesimal counting table is used to convert num-
bers using the 60 system into decimals, such as minutes and seconds.

The following table lists the common bases and corresponding number systems:

Base Number System

2 binary 9 nonary

3 ternary 10 decimal

4 quaternary 11 undenary
5 quinary 12 duodecimal
6 senary 16 hexadecimal
7 septenary 20 vigesimal

8 octal 60 sexagesimal

What is a numeral?

A numeral is a standard symbol for a number. For example, X is the Roman numeral
that corresponds to 10 in the standard Hindu-Arabic system.

What were the two fundamental ideas in the development of numerical symbols?

There were two basic principles in the development of numerical symbols: First, a cer-
tain standard sign for the unit is repeated over and over, with each sign representing
the number of units. For example, III is considered 3 in Roman numerals (see the
Greek and Roman Mathematics section below for an explanation of Roman numerals).
In the other principle, each number has its own distinct symbol. For example, “7” is the
symbol that represents seven units in the standard Hindu-Arabic numerals. (See below
for an explanation of Hindu-Arabic numbers; for more information, see “Math Basics.”)

MESOPOTAMIAN NUMBERS
AND MATHEMATICS

What was the Sumerian oral counting system?

The Sumerians—whose origins are debated, but who eventually settled in
Mesopotamia—used base 60 in their oral counting method. Because it required the



Who were the Mesopotamians?

he explanation of who the Mesopotamians were is not easy because there are

many historians who disagree on how to distinguish Mesopotamians from
other cultures and ethnic groups. In most texts, the label “Mesopotamian” refers
to most of the unrelated peoples who used cuneiform (a way of writing numbers;
see below), including the Sumerians, Persians, and so on. They are also often
referred to as Babylonians, after the city of Babylon, which was the center of
many of the surrounding empires that occupied the fertile plain between the
Tigris and Euphrates Rivers. But this area was also called Mesopotamia. There-
fore, the more correct label for these people is probably “Mesopotamians.”

In this text, Mesopotamians will be referred to by their various subdivisions
because each brought new ideas to the numbering systems and, eventually, math-
ematics. These divisions include the Sumerians, Akkadians, and Babylonians.

memorization of so many signs, the Sumerians also used base 10 like steps of a ladder
between the various orders of magnitude. For example, the numbers followed the
sequence 1, 60, 602, 603, and so on. Each one of the iterations had a specific name,
making the numbering system extremely complex.

No one truly knows why the Sumerians chose such a high base number. Theories
range from connections to the number of days in a year, weights and measurements,
and even that it was easier to use for their purposes. Today, this numbering system is
still visible in the way we tell time (hours, minutes, seconds) and in our definitions of
circular measurements (degrees, minutes, seconds).

How did the Sumerian written counting system change over time?

Around 3200 BCE, the Sumerians developed a written number system, attaching a spe-
cial graphical symbol to each of the larger numbers at various intervals (1, 10, 60,
3,600, etc.). Because of the rarity of stone, and the difficulty in preserving leather,
parchment, or wood, the Sumerians used a material that would not only last but
would be easy to imprint: clay. Each symbol was written on wet clay tablets, then
baked in the hot sunlight. This is why many of the tablets are still in existence today.

The Sumerian number system changed over the centuries. By about 3000 BCE, the
Sumerians decided to turn their numbering symbols counterclockwise by 90 degrees.
And by the 27th century BCE, the Sumerians began to physically write the numbers in
a different way, mainly because they changed writing utensils from the old stylus that
was cylindrical at one end and pointed at the other to a stylus that was flat. This
change in writing utensils, but not the clay, created the need for new symbols. The
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Who were the Akkadians?

he region of Mesopotamia was once the center of the Sumerian civilization, a

culture that flourished before 3500 BCE. Not only did the Sumerians have a
counting and writing system, but they were also a progressive culture, support-
ing irrigation systems, a legal system, and even a crude postal service. By about
2300 BCE, the Akkadians invaded the area, emerging as the dominant culture. As
most conquerors do, they imposed their own language on the area and even
used the Sumerians’ cuneiform system to spread their language and traditions
to the conquered culture.

Although the Akkadians brought a more backward culture into the mix, they
were responsible for inventing the abacus, an ancient counting tool. By 2150
BCE, the Sumerians had had enough: They revolted against the Akkadian rule,
eventually taking over again.

However, the Sumerians did not maintain their independence for long. By
2000 BCE their empire had collapsed, undermined by attacks from the west by
Amorites and from the east by Elamites. As the Sumerians disappeared, they
were replaced by the Assyro-Babylonians, who eventually established their capi-
tal at Babylon.

new way of writing numbers was called cuneiform script, which is from the Latin
cuneus, meaning “a wedge” and formis, meaning “like.”

Did any cultures use more than one base number in their numbering system?

Certain cultures may have used a particular base as their dominant numbering sys-
tem, such as the Sumerians’ base 60, but that doesn’t mean they didn’t use other base
numbers. For example, the Sumerians, Assyrians, and Babylonians used base 12,
mostly for use in their measurements. In addition, the Mesopotamian day was broken
into 12 equal parts; they also divided the circle, ecliptic, and zodiac into 12 sections of
30 degrees each.

What was the Babylonian numbering system?

The Babylonians were one of the first to use a positional system within their number-
ing system—the value of a sign depends on the position it occupies in a string of
signs. Neither the Sumerians nor the Akkadians used this system. The Babylonians
also divided the day into 24 hours, an hour into 60 minutes, and a minute into 60 sec-
onds, a way of telling time that has existed for the past 4,000 years. For example, the



What is the rule of position?

e are most familiar with the rule of position, or place value, as it is applied

to the Hindu-Arabic numerals 1, 2, 3, 4, 5, 6, 7, 8, 9, and 0. This is because
their values depend on the place or position they occupy in a written numerical
expression. For example, the number 5 represents 5 units, 50 is 5 tens, 500 is 5
hundreds, and so on. The values of the 5s depends upon their position in the
numerical expression. It is thought that the Chinese, Indian, Mayan, and
Mesopotamian (Babylonian) cultures were the first to develop this concept of
place value.

way we now write hours, minutes, and seconds is as follows: 6h, 20', 15"; the way the
Babylonians would have written this same expression (as sexagesimal fractions) was 6
20/60 15/3600.

Were there any problems with the Babylonian numbering system?

Yes. One in particular was the use of numbers that looked essentially the same. The
Babylonians conquered this problem by making sure the character spacing was differ-
ent for these numbers. This ended the confusion, but only as long as the scribes writ-
ing the characters bothered to leave the spaces.

Another problem with the early Babylonian numbering system was not having a
number to represent zero. The concept of zero in a numbering system did not exist at
that time. And with their sophistication, it is strange that the early Babylonians never
invented a symbol like zero to put into the empty positions in their numbering sys-
tem. The lack of this important placeholder no doubt hampered early Babylonian
astronomers and mathematicians from working out certain calculations.

Did the Babylonians finally use a symbol to indicate an empty space in
their numbers?

Yes, but it took centuries. In the meantime, scribes would not use a symbol repre-
senting an empty space in a text, but would use phrases such as “the grain is fin-
ished” at the end of a computation that indicated a zero. Apparently, the Babylonians
did comprehend the concepts of void and nothing, but they did not consider them to
be synonymous.

Around 400 BCE, the Babylonians began to record an empty space in their num-
bers, which were still represented in cuneiform. Interestingly, they did not seem to
view this space as a number—what we would call zero today—Dbut merely as a place-
holder.

SOILVWIHLVIN 40 AYOLSIH



10

What happened to the Babylonians?

fter the Amorites (a Semitic people) founded Babylon, there were several

dynasties that ruled the area, including those associated with the famous
king and lawmaker, Hammurabi (1792-1750 BcE). It was periodically taken over,
including in 1594 BCE by the Kassites and in the 12th century BCE by the Assyri-
ans. Through all these conquests, most of the Babylonian culture retained its
own distinctiveness. With the fall of the Assyrian Empire in 612 BCE, the Baby-
lonian culture bloomed, at least until its conquest by Cyris of Persia in 539 BCE.
It eventually died out a short time after being conquered by Alexander the Great
(356-323 BCE) in 331 BCE (ironically, Alexander died in Babylon, unable to recov-
er from a fever he contracted).

Who invented the symbol for zero?

Although the Babylonians determined there to be an empty space in their numbers,
they did not have a symbol for zero. Archeologists believe that a crude symbol for zero
was invented either in Indochina or India around the 7th century and by the Mayans
independently about a hundred years earlier. What was the main problem with the
invention of zero by the Mayans? Unlike more mobile cultures, they were not able to
spread the word around the world. Thus, their claim as the first people to use the sym-
bol for zero took centuries to uncover. (For more information about zero, see “Mathe-
matics throughout History.”)

What do we know about Babylonian mathematical tables?

Archeologists know that the Babylonians invented tables to represent various mathe-
matical calculations. Evidence comes from two tables found in 1854 at Senkerah on
the Euphrates River (dating from 2000 BCE). One listed the squares of numbers up to
59, and the other the cubes of numbers up to 32.

The Babylonians also used a method of division based on tables and the equation
a/b = a X (1/b). With this equation, all that was necessary was a table of reciprocals;
thus, the discovery of tables with reciprocals of numbers up to several billion.

They also constructed tables for the equation n® + n? in order to solve certain cubic
equations. For example, in the equation ax3® + bx% = ¢ (note: this is in our modern alge-
braic notation; the Babylonians had their own symbols for such an equation), they
would multiply the equation by a2, then divide it by ° to get (ax/b)® + (ax/b)? = ca?/b.

If y = ax/b, then y* + y? = ca?/b*, which could now be solved by looking up the 73
+ n2 table for the value of n that satisfies n° + n? = ca?/b®. When a solution was found



for y, then x was found by x = by/a. And
the Babylonians did all this without the
knowledge of algebra or the notations we
are familiar with today.

What other significant mathematical
contributions did the Babylonians
make?

Throughout the centuries, the Babylonians
made many mathematical contributions.
They were the earliest people to know
about the Pythagorean theorem, although
it was not known by that name. In fact,
Pythagoras, in his travels to the east, may
have learned about the theorem that would
eventually carry his name from the Babylo-
nians. In additiOI’l, the Babylonians pos- Alexander the Great, depicted here in an 1899 paint-
sessed all the theorems of plane geometry ing of the Battle of Gaugamela, Iraq (331 BCE), by

. . ~ artist Benjamin Ide Wheeler, conquered much of the
that the Greeks ascribed to Thales’ includ known world and brought an end to the Babylonian

ing the theorem eventually named after ciyilization. The rise and fall of civilizations

him. They also may have been the most  throughout history did much to influence the devel-

skilled algebraists of their time. even opment of mathematics over the centuries. Library
) of Congress.

though the symbols and methods they

used were much different than our modern

algebraic notations and procedures.

EGYPTIAN NUMBERS
AND MATHEMATICS

Who were the Egyptians?

The Egyptians rose to prominence around 3000 BCE in the area we now call Egypt, but
their society was already advanced, urbanized, and expanding rapidly long before that
time. Although their civilization arose about the same time that words and numbers
were first written down in Mesopotamia, archeologists do not believe there was any
sharing between the two cultures. The Egyptians already had writing and written
numerals; plus, the Egyptian signs and symbols were taken exclusively from the flora
and fauna of the Nile River basin. In addition, the Egyptians developed the utensils for
writing signs about a thousand years earlier. 11
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What type of numerals did the
Egyptians use?

By about 3000 BCE, the Egyptians had a
writing system based on hieroglyphs, or
pictures that represented words. Their
numerals were also based on hieroglyphs.
They used a base-10 system of numerals:
one unit, one ten, one hundred, and so
on to one million. The main drawback to
this system was the number of symbols
needed to define the numbers.

Did the Egyptians eventually develop
different numerals?

Yes, the Egyptians used another number

Hieroglyphs can often be found on such Egyptian system called hieratic numerals after the
structures as the Obe.hsks gf Hatshepsut, Karnak invention of writin g on papyrus. This
Temple, near the ancient city of Thebes. Robert . A

Harding World Imagery/Getty Images. allowed larger numbers to be written in a

more compact form. For example, there
were separate symbols for 1 through 9; 10, 20, 30, and so on; 100, 200, 300, and so on;
and 1,000, 2000, 3,000, and so on.

The only drawback was that the system required memorization of more sym-
bols—many more than for hieroglyphic notation. It took four distinct hieratic sym-
bols to represent the number 3,577; it took no less than 22 symbols to represent the
same number in hieroglyphs, but most of those symbols were redundant (see illustra-
tion on p. 15).

Both hieroglyphic and hieratic numerals existed together for close to two thou-
sand years—from the third to the first millennium BCE. In general, hieroglyph numer-
als were used when carved on such objects as stone obelisks, palace and temple walls,
and tombs. The hieratic symbols were much faster and easier to scribe, and they were
written on papyrus for records, inventories, wills, or for mathematical, astronomical,
economic, legal—or even magical—works.

Even though it is thought that the hieratic symbols were developed from the
corresponding hieroglyphs, the shapes of the signs changed considerably. One rea-
son in particular came from the reed brushes used to write hieratic symbols; writing
on papyrus differed greatly from writing using stone carvings, thus the need to
change the symbols to fit the writing devices. And as kingdoms and dynasties
changed, the hieratic numerals changed, too, with users having to memorize the
many distinct signs.



What are some examples of Egyptian multiplication?

gyptian multiplication methods did not require a great deal of memorization,

just a knowledge of the two times tables. For a simple example, to multiply
12 times 16, they would start with 1 and 12. Then they would double each num-
ber in each row (1 X 2 and 12 X 2; 2 X 2 and 24 X 2; and so on) until the num-
ber 16, resulting in the answer 192:

1 12
2 24
4 48
8 96
16 192

Another example computes a number that is not a multiple in the row, such
as 37 times 19:

1 19
2 38
4 76
8 152
16 304
32 608

First, do the usual procedure by starting with 1 and 19, then doubling the
numbers until you get to 32 (if you double 32 [= 64], you’ve overshot the num-
ber 37). Because 37 is higher than 32, go back over the list on the left-hand side,
figure out which numbers, with 32, add up to 37 (1, 4, and 32); then add the
numbers that correspond to those numbers, to the right (19, 76, and 608),
which equals the answer: 703. And you didn’t even need a calculator!

Did the Egyptians use fractions?

Yes, the Egyptian numbering system dealt with fractions, albeit with symbols that do
not resemble modern notation. Fractions were written by placing the hieroglyph for
“mouth” over the hieroglyph for the numerical expression. For example, 1/5 and 1/10
would be seen as the first two illustrations represented in the box on p. 15. Other frac-
tions, such as the two symbols for 1/2 (see illustration on p. 15), also have special signs.

What were the problems with the Egyptian number system?

The Egyptian number system had several problems, the most obvious being that it
was not written with certain arithmetic calculations in mind. Similar to Roman
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numerals, Egyptian numbers could be
used for addition and subtraction, but not
for simple multiplication and division.

All was not lost, however, as the Egyp-
tians devised a way to do multiplication
and division that involved addition. Multi-
plying and dividing by 10 was easy with
hieroglyphics—just replace each symbol
in the given number by the sign for the
next higher order. To multiply and divide
by any other factor, Egyptians devised the
tabulations based on the two times tables,
or a sequence of duplications.

The Egyptian civilization did much to contribute to

mathematics, including developing a numbering Why did the Egyptians need to

system and using geometry in architecture to create

ics?
the famous pyramids and other buildings. Photfogra- develop mathematlcs.

pher’s Choice/Getty Images. Probably the most pressing reason for the

development of Egyptian mathematics
came from a periodic occurrence in nature: the flooding of the Nile River. With the
advent of agriculture in the Nile River valleys, flooding was important, not only to pro-
vide fertile soil and water for the irrigated fields, but also to know when the fields
would become dry. In addition, along with the growth of the Egyptian society came a
need for a more complex way of keeping track of taxes, dividing property, buying and
selling goods, and even amassing an army. Thus, the need for counting and mathe-
matics arose, along with the development of a written system of numbers to complete
and record the myriad of transactions.

Where does most of our knowledge of Egyptian mathematics originate?

Most of our knowledge of Egyptian mathematics comes from writings on papyrus, a
type of writing paper made in ancient Egypt from the pith and long stems of the
papyrus plant. Most papyri no longer exist, as the material is fragile and disintegrates
over time. But two major papyri associated with Egyptian mathematics have survived.

Named after Scottish Egyptologist A. Henry Rhind, the Rhind papyrus is about 19
feet (6 meters) long and 1 foot (1/3 meter) wide. It was written around 1650 BCE by
Ahmes, an Egyptian scribe who claimed he was copying a 200-year-old document
(thus the original information is from about 1850 BcE). This papyrus contains 87
mathematical problems; most of these are practical, but some teach manipulation of
the number system (though with no application in mind). For example, the first six
problems of the Rhind papyrus ask the following: problem 1. how to divide n loaves
between 10 men, in whichn = 1; in problem 2, n = 2 ; in problem 3, n = 6; in prob-
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The number 3,577 is represented above using hiero- The symbols for 1/5, 1/10, and 1/2 are represented
glyphs (top) and hieratic symbols (bottom). Notice above using hieroglyphs.
these numbers are read from right to left.

lem 4, n = 7; in problem 5, n = 8; and in problem 6, n = 9. In addition, 81 out of the
87 problems involve operating with fractions, while other problems involve quantities
and even geometry. Rhind purchased the papyrus in 1858 in Luxor; it resides in the
British Museum in London.

Written around the 12th Egyptian dynasty, and named after the Russian city, the
mathematical information on the Moscow papyrus is not ascribed to any one Egypt-
ian, as no name is recorded on the document. The papyrus contains 25 problems simi-
lar to those in the Rhind papyrus, and many that show the Egyptians had a good grasp
of geometry, including a formula for a truncated pyramid. It resides in the Museum of
Fine Arts in Moscow.

GREEK AND ROMAN MATHEMATICS

Why was mathematics so important to the Greeks?

With a numbering system in place and knowledge from the Babylonians, the Greeks
became masters of mathematics, with the most progress taking place between the
years of 300 BCE and 200 cE, although the Greek culture had been in existence long
before that time. The Greeks changed the nature and approach to math, and they con-
sidered it one of the—if not the most—important subjects in science. The main rea-
son for their proclivity towards mathematics is easy to understand: The Greeks pre-
ferred reasoning over any other activity. Mathematics is based on reasoning, unlike
many scientific endeavors that require experimentation and observation.

15
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Who were some of the most
influential lonian, Greek, and
Hellenic mathematicians?

The Ionians, Greeks, and Hellenics had
some of the most progressive mathemati-
cians of their time, including such math-
ematicians as Heron of Alexandria, Zeno
of Elea, Eudoxus of Cnidus, Hippocrates
of Chios, and Pappus. The following are
only a few of the more influential mathe-
maticians.

Thales of Miletus (c. 625—c. 550 BCE,
Ionian), besides being purportedly the
The distance between the Moon and Earth was cal- founder of a philosophy school and the
culated by Hipparchus of Rhodes using basic first recorded western philosopher known,
trigonometry. Stone/Getty Images. . K

made great contributions to Greek mathe-
matics, especially by presenting Babylonian mathematics to the Greek culture. His trav-
els as a merchant undoubtedly exposed him to the geometry involved in measurement.
Such concepts eventually helped him to introduce geometry to Greece, solving such
problems as the height of the pyramids (using shadows), the distance of ships from a
shoreline, and reportedly predicting a solar eclipse.

Hipparchus of Rhodes (c. 170—c. 125 BCE, Greek; also seen as Hipparchus of Nicaea)
was an astronomer and mathematician who is credited with creating some of the basics
of trigonometry. This helped immensely in his astronomical studies, including the
determination of the Moon’s distance from the Earth. Claudius Ptolemaeus (or Ptole-
my) (c. 100—c. 170, Hellenic) was one of the most influential Greeks, not only in the
field of astronomy, but also in geometry and cartography. Basing his works on Hip-
parchus, Ptolemy developed the idea of epicycles in which each planet revolves in a cir-
cular orbit, and each goes around an Earth-centered universe. The Ptolomaic way of
explaining the solar system—which we now know is incorrect—dominated astronomy
for more than a thousand years.

Diophantus (c. 210—c. 290) was considered by some scholars to be the “father of
algebra.” In his treatise Arithmetica, he solved equations in several variables for inte-
gral solutions, or what we call diophantine equations today. (For more about these
equations, see “Algebra.”) He also calculated negative numbers as solutions to some
equations, but he considered such answers absurd.

What were Archimedes’s greatest contributions to mathematics?

Historians consider Archimedes (c. 287-212 BcCE, Hellenic) to be one of the greatest
Greek mathematicians of the classic era. Known for his discovery of the hydrostatic



principle, he also excelled in the mechan-
ics of simple machines; computed close
limits on the value of “pi” by comparing
polygons inscribed in and circumscribed
about a circle; worked out the formula to
calculate the volume of a sphere and cylin-
der; and expanded on Eudoxus’s method of
exhaustion that would eventually lead to
integral calculus. He also created a way of
expressing any natural number, no matter
how large; this was something that was
not possible with Greek numerals. (For
more information about Archimedes, see
“Mathematical Analysis” and “Geometry
and Trigonometry.”)

What Greek mathematician made
major contributions to geometry?

Ptolemy (center), depicted in this 1632 engraving
discussing ideas with Aristotle (left) and Copernicus

The Greek mathematician Euclid (c. 325-
c. 270 BCE) contributed to the develop-
ment of arithmetic and the geometric

(right), discovered valuable concepts concerning
cartography, geometry, and astronomy. Library of
Congress.

theory of quadratic equations. Although

little is known about his life—except that he taught in Alexandria, Egypt—his contri-
butions to geometry are well understood. The elementary geometry many of us learn in
high school is still largely based on Euclid. His 13 books of geometry and other mathe-
matics, titled Elements (or Stoicheion in Greek), were classics of his day. The first six
volumes offer explanations of elementary plane geometry; the other books present the
theory of numbers, certain problems in arithmetic (on a geometric basis), and solid
geometry. He also defines basic terms such as point and line, certain related axioms
and postulates, and a number of statements logically deduced from definitions, axioms,
and postulates. (For more information on axioms and postulates, see “Foundations of
Mathematics”; for more information about Euclid, see “Geometry and Trigonometry.”)

What was Pythagoras’s importance to mathematics?

Although the Chinese and Mesopotamians had discovered it a thousand years before,
most people credit Greek mathematician and philosopher Pythagoras of Samos (c.
582—c. 507 BCE) with being the first to prove the Pythagorean Theorem. This is a
famous geometry theorem relating the length of a right-angled triangle’s hypotenuse
(h) to the lengths of the other two sides (@ and b).

In other words, for any right triangle, the square of the length of the hypotenuse
is equal to the sum of the squares of the lengths of the other two sides.
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What were Pythagoras’s other
leg contributions?

It is interesting that the Pythagorean
h -<--T Theorem was not Pythagoras’s only con-
b tribution. He is considered the first pure
mathematician. He also founded a school

that stressed a fourfold division of knowl-
edge, including number theory (deemed
the most important of the pursuits at the
e a school and using only the natural num-
Ieé 5 ) 5 bers), music, geometry, and astronomy
h =a-+ b (these subjects were called the quadrivi-

hypotenuse

um in the Middle Ages). Along with logic,

. grammar, and rhetoric, these studies col-
The Pythagorean Theorem is an easy way to deter- I velv f d wh d d th
mine the length of one side of a right triangle, given eCtlve. y formed what was deemed the
one knows the length of the other two sides. essential areas of knowledge for any well-
rounded person.

Pythagoras not only taught these subjects, but also reincarnation and mysti-
cism, establishing an order similar to, or perhaps influenced by, the earlier Orphic
cult. The true lives of Pythagoras and his followers (who worshipped Pythagoras as
a demigod) are a bit of a mystery, as they followed a strict code of secrecy and
regarded their mathematical studies as something of a black art. The fundamental
belief of the Pythagoreans was that “all is number,” or that the entire universe—
even abstract ethical concepts such as justice—could be explained in terms of
numbers. But they also had some interesting non-mathematical beliefs, including
an aversion to beans.

Although the Pythagoreans were influential in the fields of mathematics and
geometry, they also made important contributions to astronomy and medicine and
were the first to teach that the Earth revolved around a fixed point (the Sun). This idea
would be popularized centuries later by Polish astronomer Nicolaus Copernicus
(1473-1543). By the end of the 5th century BCE, the Pythagoreans had become social
outcasts; many of them were killed as people grew angry at the group’s interference
with traditional religious customs.

Who was the first recorded female mathematician’

The first known female mathematician was Hypatia of Alexandria (370-415), who was
probably taught by her mathematician and philosopher father, Theon of Alexandria.
Around 400, she became the head of the Platonist school at Alexandria, lecturing on
mathematics and philosophy. Little is known of her writings, and more legend is
known of her than any true facts. It is thought that she was eventually killed by a mob.



What is the story behind “Archimedes in the bathtub”?

0ne of the most famous stories of Archimedes involves royalty: Hiero II of Syra-
cuse, King of Sicily, wanted to determine if a crown (actually, a wreath) he had
ordered was truly pure gold or alloyed with silver—in other words, whether or not
the Royal Goldsmith had substituted some of the gold with silver. The king called
in Archimedes to solve the problem. The Greek mathematician knew that silver
was less dense than gold (in other words, silver was not as heavy as gold), but with-
out pounding the crown into an easily weighed cubic shape, he didn’t know how to
determine the relative density of the irregularly shaped crown.

Perplexed, the mathematician did what many people do to get good ideas: he
took a bath. As he entered the tub, he noticed how the water rose, which made
him realize that the volume of the water that fell out of the tub was equal to that of
the volume of his body. Legend has it that Archimedes ran naked through the
streets shouting “Eureka!” (“I have found it!”) He knew that a given weight of gold
represented a smaller volume than an equal weight of silver because gold is much
denser than silver, so not as much is needed to displace the water. In other words,
a specific amount of gold would displace less water than an equal weight of silver.

The next day, Archimedes submerged the crown and an amount of gold
equal to what was supposed to be in the crown. He found that Hiero’s crown dis-
placed less water than an equal weight of gold, thus proving the crown was
alloyed with a less dense material (the silver) and not pure gold. This eventually
led to the hydrostatic principle, as it is now called, presented in Archimedes’s
appropriately named treatise, On Floating Bodies. As for the goldsmith, he was
beheaded for stealing the king’s gold.

What is the origin of Roman numerals?

Because the history of Roman numerals is not well documented, their origin is highly
debated. It is thought that the numerals were developed around 500 BCE, partially
from primitive Greek alphabet symbols that were not incorporated into Latin. The
actual reasons for the seven standard symbols are also argued. Some researchers
believe the symbol for 1 (I) was derived from one digit on the hand; the symbol for 5
(V) may have developed because the outstretched hand held vertically forms a “V”
from the space between the thumb and first finger; the symbol for 10 (X) may have
been two Vs joined at the points, or it may have had to do with the way people or mer-
chants used their hands to count in a way that resembled an “X.” All the reasons
offered so far have merely been educated guesses.

How ever the symbols were developed, they were used with efficiency and with
remarkable aptitude by the Romans. Unlike the ancient Greeks, the Romans weren’t
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Why were early Greek calendars such a mess?

Unlike the Mesopotamian cultures, the early Greeks paid less attention to
astronomy and more to cosmology (they were interested in studying where
the Earth and other cosmic bodies stand in relation to the universe). Because of
this, their astronomical observations were not accurate, creating confusing cal-
endars. This also led to a major conundrum: Almost every Greek city kept time
differently. In fact, during the Greek and Hellenistic times, most dates were given
in terms of the Olympiads. This only created another time-keeping problem: If
something happened during the 10th Olympiad, it meant the event occurred
within a four-year span. Such notation creates headaches for historians, who end
up making educated guesses as to the actual dates of Greek events, important
people’s deaths and births, and other significant historical occurrences.

truly interested in “pure” math, such as abstract geometry. Instead, they concentrated
on “applied math,” using mathematics and their Roman numerals for more practical
purposes, such as building roads, temples, bridges, and aqueducts; for keeping mer-
chant accounts; and for managing supplies for their armies.

Centuries after the Roman Empire fell, various cultures continued to use Roman
numerals. Even today, the symbols are still in existence; they are used on certain time-
pieces, in formal documents, and for listing dates in the form of years. For example,
just watch the end credits of your favorite movie or television program and you will
often see the movie’s copyright date represented with Roman numerals.

What are the basic Roman numerals and how are they used?

There are only seven basic Roman numerals, as seen in the following chart:

Number Roman Numeral

1 I

5 \
10 X
50 L
100 C
500 D
1000 M

There are many rules, of course, to this method of writing numerals. For example,
although the way to write a large number like 8,000 would be “MMMMMMMM,” this is
very cumbersome. In order to work with such large numbers, one rule was to write a



What was the “House of Wisdom”?

Around 786, the fifth Caliph of the Abbasid Dynasty began with Caliph Harun
al-Rashid, a leader who encouraged learning, including the translation of
many major Greek treatises into Arabic, such as Euclid’s Elements. Al-Ma’'mun
(786-833), the next Caliph, was even more interested in scholarship, creating
the House of Wisdom in Baghdad, one of several scientific centers in the Islamic
Empire. Here, too, Greek works such as Galen’s medical writings and Ptolemy’s
astronomical treatises were translated, not by language experts ignorant of
mathematics, but by scientists and mathematicians such as Al-Kindi (801-873),
Muhammad ibn Musa al-Khuwarizmi (see below), and the famous translator
Hunayn ibn Ishaq (809-873).

bar over a numeral, meaning to multiply by 1,000. Thus, 8,000 would be VIII—equal
to our Hindu-Arabic number 8—with a bar over the entire Roman numeral.

OTHER CULTURES
AND EARLY MATHEMATICS

What did the Chinese add to the study of mathematics?

Despite the attention the Greeks have received concerning the development of mathe-
matics, the Chinese were by no means uninterested in it. About the year 200 BCE, the
Chinese developed place value notation, and 100 years later they began to use negative
numbers. By the turn of the millennium and a few centuries beyond, they were using
decimal fractions (even for the value of “pi” [n]) and the first magic squares (for more
information about math puzzles, see “Recreational Math”). By the time European cul-
tures had begun to decline—from about 530 to 1000 cE—the Chinese were contribut-
ing not only to the field of mathematics, but also to the study of magnetism, mechani-
cal clocks, physical laws, and astronomy.

What is the most famous Chinese mathematics book’

The Jiuzhang suanshu, or Nine Chapters on the Mathematical Art, is the most
famous mathematical book to come out of ancient China. This book dominated math-
ematical development for more than 1,500 years, with contributions by numerous
Chinese scholars such as Xu Yue (c. 160—c. 227), though his contributions were lost.
It contains 246 problems meant to provide methods to solve everyday questions con-
cerning engineering, trade, taxation, and surveying.

21
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Why is Omar Khayyam so famous?

mar Khayyam is not as well known for his contributions to math as he is for

being immortalized by Edward FitzGerald, the 19th-century English poet
who translated Khayyam’s own 600 short, four-line poems in the Rubaiyat.
However, FitzGerald’s translations were not exact, and most scholars agree that
Khayyam did not write the line “a jug of wine, a loaf of bread, and Thou.” Those
words were actually conceived by FitzGerald. Interestingly enough, versions of
the forms and verses used in the Rubaiyat existed in Persian literature long
before Khayydm, and only about 120 verses can be attributed to him directly.

Who was Aryabhata I?

Aryabhata I (c. 476-550) was an Indian mathematician. Around 499 he wrote a treatise
on quadratic equations and other scientific problems called Aryabhatiya in which he
also determined the value of 3.1416 for pi (). Although he developed some rules of
arithmetic, trigonometry, and algebra, not all of them were correct.

What were some of the contributions by the Arab world to mathematics?

From about 700 to 1300, the Islamic culture was one of the most advanced civiliza-
tions in the West. The contributions of Arabic scholars to mathematics were helped
not only by their contact with so many other cultures (mainly from India and China),
but also because of the Islamic Empire’s unifying, dominant Arabic language. Using
knowledge from the Greeks, Arabian mathematics grew; the introduction of Indian
numerals (often called Arabic numerals) also helped with mathematical calculations.

What are some familiar Arabic terms used in mathematics?

There are numerous Arabic terms we use today in our studies of mathematics. One of the
most familiar is the term “algebra,” which came from the title of the book Al jabr w’al
mugqgabalah by Persian mathematician Muhammad ibn Musa al-Khuwarizmi (783—c. 850;
also seen as al-Khowarizmi and al-Khwarizmi); he was the scholar who described the
rules needed to do mathematical calculations in the Hindu-Arabic numeration system.
The book, whose title is roughly translated as Transposition and Reduction, explains all
about the basics of algebra. (For more information, see “Algebra.”)

Another Arabic derivation is “algorithm,” which stems from the Latinized version
of Muhammad ibn Musa al-Khuwarizmi’s own name. Over time, his name evolved
from al-Khuwarizmi to Alchoarismi, then Algorismi, Algorismus, Algorisme, and
finally Algorithm.



Who was Omar Khayyam?

Omar Khayyam (1048-1131), who was actually known as al-Khayyami, was a Persian
mathematician, poet, and astronomer. He wrote the Treatise on Demonstration of
Problems of Algebra, a book that contains a complete classification of cubic equations
with geometric solutions, all of which are found by means of intersecting conic sec-
tions. He solved the general cubic equation hundreds of years before Niccol6 Tartaglia
in the 16th century, but his work only had positive roots, because it was completely
geometrical (see elsewhere in this chapter for more about Tartaglia). He also calculat-
ed the length of the year to be 365.24219858156 days—a remarkably accurate result
for his time—and proved that algebra was definitely related to geometry.

MATHEMATICS AFTER
THE MIDDLE AGES

Who first introduced Arabic notation and the concept of zero to Europe?

[talian mathematician Leonardo of Pisa (c. 1170—c. 1250, who was also known as
Fibonacci, or “son of Bonacci,” although some historians say there is no evidence that
he or his contemporaries ever used that name) brought the idea of Arabic notation
and the concept of zero to Europe. His book Liber abaci (The Book of the Abacus) not
only introduced zero but also the arithmetic and algebra he had learned in Arab coun-
tries. Another book, Liber quadratorum (The Book of the Square) was the first major
European advance in number theory in a thousand years. He is also responsible for
presenting the Fibonacci sequence. (For more information about Fibonacci and the
Fibonacci sequence, see “Math Basics.”)

What were the major reasons for 16th-century advances in European
mathematics?

There are several reasons for advances in mathematics at the end of the Middle Ages.
The major reason, of course, was the beginning of the Renaissance, a time when there
was a renewed interest in learning. Another important event that pushed mathematics
was the invention of printing, which made many mathematics books, along with use-
ful mathematical tables, available to a wide audience. Still another advancement was
the replacement of the clumsy Roman numeral system by Hindu-Arabic numerals.
(For more information about the Hindu-Arabic numerals, see “Math Basics.”)

Who was Scipione del Ferro?

There were several mathematicians in the 16th century who worked on algebraic solu-
tions to cubic and quartic equations. (For more information on cubic and quartic equa-
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tions, see “Algebra.”) One of the first was Scipione del Ferro (1465-1526), who in 1515
discovered a formula to solve cubic equations. He kept his work a complete secret until
just before his death, when he revealed the method to his student Antonio Maria Fiore.

Who was Adam Ries?

Adam Ries (1492-1559) was the first person to write several books teaching the arith-
metic method by the old abacus and new Indian methods; his books also presented the
basics of addition, subtraction, multiplication, and division. Unlike most books of his
time that were written in Latin and only understood by mathematicians, scientists,
and engineers, Ries’s works were written in his native German and were therefore
understood by the general public. The books were also printed, making them more
readily available to a wider audience.

Who was Francois Viete?

French mathematician Frangois Viete (or Franciscus Vieta, 1540-1603) is often called
the “founder of modern algebra.” He introduced the use of letters as algebraic symbols
(although Descartes [see below] introduced the convention of letters at the end of the
alphabet [x, v, ...] for unknowns and letters at the beginning of the alphabet [a, b, ...]
for knowns), and connected algebra with geometry and trigonometry. He also includ-
ed trigonometric tables in his Canon Mathematicus (1571), along with the theory
behind their construction. This book was originally meant to be a mathematical intro-
duction to his unpublished astronomical treatise, Ad harmonicon coeleste. (For more
about Viete, see “Algebra” and “Geometry and Trigonometry.”)

What century produced the greatest revolution in mathematics?

Many mathematicians and historians believe that the 17th century saw not only the
unprecedented growth of science but also the greatest revolution in mathematics.
This century included the discovery of logarithms, the study of probability, the inter-
actions between mathematics, physics, and astronomy, and the development of one of
the most profound mathematical studies of all: calculus.

Who explained the nature of logarithms?

Scottish mathematician John Napier (1550-1617) first conceived the idea of loga-
rithms in 1594. It took him 20 years, until 1614, to publish a canon of logarithms
called Mirifici logarithmorum canonis descripto (Description of the Wonderful Canon
of Logarithms). The canon explains the nature of logarithms, gives their rules of use,
and offers logarithmic tables. (For more about logarithms, see “Algebra.”)



What was the scandal between mathematicians
working on cubic and quartic equations?

he early work on cubic equations was a tale of telling secrets, all taking place

in Italy. No sooner had Antonio Maria Fiore (1526?—?)—considered a mediocre
mathematician by scholars—received the secret of solving the cubic equation
from Scipione del Ferro than he was spreading the rumor of its solution. A self-
taught Italian mathematical genius known as Niccol6 Tartaglia (1500-1557?;
nicknamed “the stutterer”) was already discovering how to solve many kinds of
cubic equations. Not to be outdone, Tartaglia pushed himself to solve the equa-
tion x* + mx? = n, bragging about it when he had accomplished the task.

Fiore was outraged, which proved to be a fortuitous event for the study of
cubic (and eventually quartic) equations. Demanding a public contest between
himself and Tartaglia, the mathematicians were to give each other 30 problems
with 40 to 50 days in which to solve them. Each problem solved earned a small
prize, but the winner would be the one to solve the most problems. In the space
of two hours, Tartaglia solved all Fiore’s problems, all of which were based on
x3 + mx? = n. Eight days before the end of the contest, Tartaglia had found the
general method for solving all types of cubic equations, while Fiore had solved
none of Tartaglia’s problems.

But the story does not end there. Around 1539, Italian physician and mathe-
matician Girolamo Cardano (1501-1576; known in English as Jerome Cardan)
stepped into the picture. Impressed with Tartaglia’s abilities, Cardano asked him
to visit. He also convinced Tartaglia to divulge his secret solution of the cubic
equation, with Cardano promising not to tell until Tartaglia published his results.

Apparently, keeping secrets was not a common practice in Italy at this time,
and Cardano beat Tartaglia to publication. Cardano eventually encouraged his
student Luigi (Ludovico) Ferrari (1522—?) to work on solving the quartic equa-
tion, or the general polynomial equation of the fourth degree. Ferrari did just
that, and in 1545 Cardano published his Latin treatise on algebra, Ars Magna
(The Great Art), which included a combination of Tartaglia’s and Ferrari’s works
in cubic and quartic equations.

Who originated Cartesian coordinates?

Cartesian coordinates are a way of finding the location of a point using distances from
perpendicular axes. (For more information about coordinates, see “Geometry and
Trigonometry.”) The first steps toward such a coordinate system were suggested by
French philosopher, mathematician, and scientist René Descartes (1596-1650; in
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Latin, Renatus Cartesius); he was the first to publish a work explaining how to use
coordinates for finding points in space. Around the same time, Pierre de Fermat devel-
oped the same idea independently (see below). Both Descartes’s and Fermat’s ideas
would lead to what is now known as Cartesian coordinates.

Descartes is also considered by some to be the founder of analytical geometry. He
contributed to the ideas involved in negative roots and exponent notation, explained
the phenomenon of rainbows and the formation of clouds, and even dabbled in psy-
chology.

Who was Pierre de Fermat?

French mathematician Pierre de Fermat (1601-1665) made many contributions to
early methods leading to differential calculus; he was also considered by some to be
the founder of modern number theory (see “Math Basics”) and did much to establish
coordinate geometry, eventually leading to Cartesian coordinates. He supposedly
proved a theorem eventually called “Fermat’s Last Theorem.” It states that the equa-
tion x* + y* = 2" has no non-zero integer solutions for x, y, and z when n is greater
than 2. But there is no proof of Fermat’s “proof,” making most mathematicians skepti-
cal about his supposed discovery.

Was Fermat’s last theorem finally solved?

Just before the end of the 19th century, German industrialist and amateur mathemati-
cian Paul Wolfskehl, on the brink of suicide, began to explore a book on Fermat’s Last
Theorem. Enchanted with the numbers, he forgot about dying and instead believed
that mathematics had saved him. To repay such a debt, he left 100,000 marks (about
$2 million in today’s money) to the Goéttingen Academy of Science as a prize to anyone
who could publish the complete proof of Fermat’s Last Theorem. Announced in 1906
after Wolfskehl’s death, thousands of incorrect proofs were turned in, but no true
proof was offered.

But people kept trying—and failing. Fermat’s Last Theorem was finally solved in
1994 by English mathematician Andrew John Wiles (1953-). Wiles was offered the
Wolfskehl prize in 1997. By that time, the original $2 million had been affected by not
only hyperinflation but also the devaluation of the mark, reducing its value to
$50,000. But for Wiles, it didn’t matter; his proving the Last Theorem had been a
childhood dream.

It is interesting to note that some mathematicians do not believe Wiles uncovered
the true proof of Fermat’s Last Theorem. Instead, because many of the mathematical
techniques used by Wiles were developed within recent decades (some even by Wiles
himself), Wiles’s proof—although a masterpiece of mathematics—could not possibly
be the same as Fermat’s. Still other mathematicians wonder about Fermat’s words in
claiming that he had found a proof. Was it really a proven or flawed proof he was talk-



ing about? Or was he such a genius that
he took the proof he was able to see, in
his time, to his grave? Like so many mys-
teries of history, we may never know.

Who began the mathematical study

of probability?

French scientist and religious philoso-
pher Blaise Pascal (1623-1662) is known
not only for the study of probability but
for many other mathematically oriented
advances, such as a calculation machine
(invented at age 19 to help his father with
tax calculations, but it performed only
additions), hydrostatics, and conic sec-
tions. He is also credited (along with Fer-
mat) as the founder of modern theory of
probability. (For more information about

Seventeenth-century scientist Blaise Pascal was the
founder of mathematical probability, as well as other
1 113 . : ”

prObablhty’ see Applled Mathematics. ) achievements, such as devising one of the first cal-

culating machines.

Who was Sir Isaac Newton?

Sir Isaac Newton (1642-1727) was an English mathematician and physicist considered
by some to be one of the greatest scientists who ever lived. He was credited with
inventing differential calculus in 1665 and integral calculus the following year. (For
more information about calculus, see “Mathematical Analysis.”) The list of his
achievements—mathematical and scientific—does not end there: He is also credited
as the discoverer of the general binomial theorem, he worked on infinite series, and he
even made advancements in optics and chemistry.

Some of Newton’s greatest contributions include the development of the law of
universal gravitation, rules of planetary orbits, and sundry other astronomical con-
cepts. By 1687, Newton had written one of his most famous books, The Principia or
Philosophiae naturalis principia mathematica (The Mathematical Principles of Nat-
ural Philosophy), which is often called the greatest scientific book ever written. In it
Newton presents his theories of motion, gravity, and mechanics. Although he had
developed calculus earlier, he still used the customary classical geometry to work out
physical problems within the book.

Who was Baron Gottfried Wilhelm Leibniz?

A contemporary of Isaac Newton, German philosopher and mathematician Baron Got-
tfried Wilhelm Leibniz (1646-1716) is considered by some to be a largely forgotten
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mathematician, although his contributions to the field were just as important as New-
ton’s in many ways. He is often called the founder of symbolic logic; he introduced the
terms coordinate, abscissas, and ordinate for the field of coordinate geometry; he
invented a machine that could do multiplication and division; he discovered the well-
known series for pi divided by 4 (rt/4) that bears his name; and he independently devel-
oped infinitesimal calculus and was the first to describe it in print. Because his work
on calculus was published three years before Isaac Newton’s, Leibniz’s system of nota-
tion was universally adopted.

Who was considered the first statistician?

English statistician and tradesman John Graunt (1620-1674) was the first true statis-
tician and wrote the first book on statistics, although statistics in a simpler form was
known long before that. Graunt, a draper by profession, was the first to use a compila-
tion of data, which in this case involved the records of bills of mortality, or the records
of how and when people died in London from 1604 to 1661. In his Natural and Politi-
cal Observations Made upon the Bills of Mortality, he determined certain inclinations,
such as more boys were born than girls, women tend to live longer than men, etc. He
also developed the first mortality table, which showed how long a person might expect
to live after a certain age, a concept very familiar to us today, especially in fields such
as insurance and health.

Why was the Bernoulli family important to mathematics?

The Bernoulli (also seen as Bernouilli) family of the 17th and 18th centuries is syn-
onymous with mathematics and science. One of the developers of ordinary calculus,
calculus of variations, and the first to use the word “integral” was Jacob Bernoulli
(1654-1705; also known as Jakob, Jacques, or James). He also wrote about the theory
of probability, is often credited for developing the field of statistics, and discovered a
series of numbers that bear his name: the coefficients of the exponential series expan-
sion of x/(1 — e™).

Not to be outdone, his brother Johann (1667-1748; also known as Jean or John)
contributed to the field of integral and exponential calculus, was the founder of calcu-
lus of variations, and worked on geodesics, complex numbers, and trigonometry. His
son was not far behind: Daniel Bernoulli (1700-1782) was considered the first mathe-
matical physicist, publishing Hydrodynamica in 1738, which included his now
famous principle named in his honor (Bernoulli’s principle); and he brought out two
ideas that were ahead of his time by many years: the law of conservation of energy and
the kinetic-molecular theory of gases.

The Bernoulli legacy did not end there, with family members continuing to make
great mathematical and scientific contributions. There were two Nicolaus Bernoullis:
one, the brother of Jacob and Johann (1662-1716), was professor of mathematics at St.



What was in Joseph-Louis Lagrange’s letter
to Jean le Rond d’Alembert?

talian-French astronomer and mathematician Comte Joseph-Louis Lagrange

(1736-1813) made significant discoveries in mathematical astronomy, includ-
ing many functions, theories, etc. that bear his name (for example, Lagrange
point, Lagrange’s equations, Lagrange’s theorem, Lagrangian function). His
mentor was none other than French scientist Jean le Rond d’Alembert (1717—
1783), a physicist who expanded on Newton’s laws of motion, contributed to the
field of fluid motion, described the regular changes in the Earth’s axis, and was
the first to use partial differential equations in mathematical physics. He even
had time to edit, along with French philosopher Denis Diderot (1713-1784), the
Encyclopedié, a 17-volume encyclopedia of scientific knowledge published from
1751 to 1772.

Apparently, living in the years of such mathematical enlightenment had its
drawbacks. In 1781 Lagrange wrote a letter to d’Alembert about his greatest fear:
that the field of mathematics had reached its limit. At that point in time,
Lagrange believed everything mathematical had been discovered, uncovered,
and calculated. Little did he realize that mathematics was only in its infancy.

Petersburg, Russia’s Academy of Sciences; the other, the son of Johann and brother of
Daniel (1695-1726), was also a mathematician. Another Johann Bernoulli (1710-1790)
was another son of Johann (and brother of Daniel), who succeeded his father in the chair
of mathematics at Basel, Switzerland, and also contributed to physics. The younger
Johann also had a son named Johann (1746-1807), who was astronomer royal in Berlin
and also studied mathematics and geography. Finally, Jacob Bernoulli (1759-1789), yet
another son of the younger Johann, succeeded his uncle Daniel in teaching mathematics
and physics at St. Petersburg, but he met an untimely death by drowning.

Who was one of the most prolific mathematicians who ever lived?

Swiss mathematician Leonhard Euler (1707-1783) is considered to be one of the most
prolific mathematicians who ever lived. In fact, his accomplishments are beyond the
scope of this text. Suffice it to say that his collected works number more than 70 vol-
umes, with contributions in pure and applied mathematics, including the calculus of
variations, analysis, number theory, algebra, geometry, trigonometry, analytical
mechanics, hydrodynamics, and the lunar theory (calculation of the motion of the
Moon). Euler was one of the first to develop the methods of the calculus on a wide scale.
His most famous book, Elements of Algebra, rapidly became a classic; and he wrote a
geometry textbook (Yale University was the first American college to use the text).
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Although half-blind for much of his life—and totally blind for his last 17 years—
he had a near-legendary skill at calculation. Among his discoveries are the differential
equation named for him (a formula relating the number of faces, edges, and vertices of
a polyhedron, although Euler’s formula was discovered earlier by René Descartes); and
a famous equation connecting five fundamental numbers in mathematics. Like many
in the Bernoulli family, Euler eventually worked at the Academy of Sciences in St.
Petersburg, Russia, a center of learning founded by Peter the Great.

Who was Karl Friedrich Gauss?

German mathematician, physicist, and astronomer Karl Friedrich Gauss (1777-1855;
also seen as Johann Carl [or Karl] Friedrich Gauss) was considered one of the greatest
mathematicians of his time; some have even compared him to Archimedes and Newton.
His greatest mathematical contributions were in the fields of higher arithmetic and num-
ber theory. He discovered the law of quadratic reciprocity, determined the method of least
squares (independently of French mathematician Adrien-Marie Legendre [1752-1833]),
popularized the symbol “i” as the square root of negative 1 (although Euler first used the
symbol), did extensive investigations in the theory of space curves and surfaces, made
contributions to differential geometry, and much more. In 1801, after the discovery (and
subsequent loss) of the first asteroid, Ceres, by Giuseppe Piazzi, he calculated the object’s
orbit with little data; the asteroid was found again thanks to his calculations. He further
calculated the orbits of asteroids found over the next few years.

When was non-Euclidean geometry first announced?

Non-Euclidean geometry—or a system of geometry different from that developed by
Euclid (see p. 17)—was first announced by Russian mathematician Nikolai Ivanovich
Lobachevski (1792-1856; also seen as Lobatchevsky) in 1826. This idea had already
been independently developed by the Hungarian Janos (or Johann) Bolyai (1802-1860)
in 1823 and by Karl Friedrich Gauss (1777-1855) in 1816, but Lobachevski was the first
to publish on the subject.

In 1854 German mathematician Georg Friedrich Bernhard Riemann (1826-1866)
presented several new general geometric principles. His suggestion of another form of
non-Euclidean geometry further established this new way of looking at geometry. Rie-
mann was also responsible for presenting the Riemann hypothesis (or zeta function), a
complex function that remains an unsolved issue in mathematics today. (For more
information about geometry and Riemann, see “Geometry and Trigonometry.”)

Who developed the first ideas on symbolic logic?

English mathematician George Boole (1815-1864) was the first to develop ideas on
symbolic logic, that is, the use of symbols to represent logical principles. He proposed



Why was non-Euclidean geometry important to Albert Einstein?

on-Euclidian geometry, especially the form suggested by Bernhard Rie-

mann, enabled Albert Einstein (1879-1955) to work on his general relativity
theory (1916), showing that the true geometry of space may be non-Euclidean.
(For more information about mathematics and Einstein, see “Math in the Physi-
cal Sciences.”)

this in his treatise, An Investigation of the Laws of Thought, on Which Are Founded
the Mathematical Theories of Logic and Probabilities (1854). Today, this is called
Boolean algebra. (For more information about Boole, see “Algebra”; for more informa-
tion about symbolic logic, see “Foundations of Mathematics.”)

MODERN MATHEMATICS

Who first developed set theory?

German mathematician George (Georg) Ferdinand Ludwig Philipp Cantor
(1845-1918) was not only known for his work on transfinite numbers, but also for his
development of set theory, which is the basis of modern mathematical analysis (for
more information on set theory, see “Foundations of Mathematics”). His Mathematis-
che Annalen was a basic introduction to set theory. Unlike most long evolutionary his-
tories of mathematical subjects, Cantor’s set theory was his creation alone. In the late
19th century, Cantor also developed the Continuum Hypothesis. He realized that
there were many different sized infinities, further conjecturing that two particular
infinities constructed by different processes were the same size.

What was the Principia Mathematica?

In 1910 the first volume of the Principia Mathematica was published by Welsh mathe-
matician and logician Bertrand Arthur William Russell (1872-1970) and English
mathematician and philosopher Alfred North Whitehead (1861-1947). This book was
an attempt to put mathematics on a logical foundation, developing logic theory as a
basis for mathematics. It gave detailed derivations of many major theorems in set the-
ory, examined finite and transfinite arithmetic, and presented elementary measure
theory. The two mathematicians published three volumes, but the fourth, on geome-
try, was never completed.

On their own, both men did a great deal to advance mathematics, too. Russell dis-
covered the Russell paradox (see below), introduced the theory of types, and popular-
ized first-order predicate calculus. Russell’s logic consisted of two main ideas: that all
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What was Bertrand Russell’s “great paradox”?

In the early 1900s, Bertrand Russell discovered what is known as the “great
paradox” as it applies to the set of all sets: The set either contains itself or it
does not, but if it does, then it does not, and vice versa. The reason that this
paradox became so important was its affect on math