
atomic atomic 
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II 

4.225 

22.99111 J2 
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B 
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2s!2p 

13 26.982 

Al 
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3,,'3p 
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39.m'81 20 40.078 I 21 

K 5.S8 Ca 
19 44.956 I 22 

Sc 
47.88123 511.942 I 24 

Ti .1.03 V 
51.996 I 25 

Cr 
54.931 I 26 

Mn 
55.847 I 27 

Fe 
58.933128 58.69~ 129 63.546 I 311 

Co 3.52 Nl 3.6/ OI 
65.39 131 

Zn -
69.723 I 32 

Ga 5.658 

37 

h.c.c. 
4s 

1.53 

85.468 I 38 

Rh 

h.c.c. 
5s 

2,58 

Le.c. 
4s'! ~dC4~i ~dLfs; 

87.6
2 139 

Sr 3 •• S 

S.73 

88.9061411 

Y U3 

91.224 I 41 

Zr 

f.e.C'. 
5s' ~dc5~; :d~fs; 

b.c.c. 
3d'4s' 

92.9116 

Nb 

b.c.c. 
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h.c.c. 
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42 95.94 I 43 

Mo 

h,c.c. 
4d'~ 5s 
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3d'~ 4s1 

(98) I 44 

Tc 

h.c.p. 
4d6 5s 

h.c.c. 
3d6 451 

1111.117 

Ru 

~d~'~; 

h.c.p. 
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Rh 

h.c.p. 
4dR Ss 

r.c.c. 
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1116.42 147 1117.868 
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4d IfJ 

f.e.c. 
41111155 
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Cd 
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5.91 

comple~ 
4S14p '-

49 114.82 I 511 

In 
".95 

letT. 
5s'5p 

dia. 
4s'4p' 

dia.(tt) 
5s'5p' 

N 01- F 

hex. 
452 4p4 

2s'! 2p~ 

35.453 I 18 

a 

4.05 tl23Kl 

cumplcx 
.:Is! 4p'~ 

127.6153 126.9115 I 54 

Te - I 

56 137.3271 57 138.9U6172 178.49173 1811.948174 183.85175 186.2117 1 76 

CSIS.02 Ba 3.71 La 3./9 Hf 3.30 Ta 3./6 W 2.76 Re 
55 1911.2177 192.22178 195.08 179 196.9671811 2110.59 181 2114.383182 207.2183 2118.98184 (2119) 185 

Os 3.84 Ir 3 .• 2 Pt 4.08 Au - Hg 3.46 TI 4.9S Ph - Bi 3.34 Po -
(2111) /86 
At _ 

h.c.c. 
(,; 

3.S9 

b.c.c. 
6s' 

87 (223) 188 266.025 I 89 

Fr - Ra 5.3/ 

7s 75"!. 
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f.c.c. 
6d7s' 
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S.OS 
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5d) 651 

58 140.115 

Ce 
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41'65' 

19.25 
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59 1411.9118 I 611 

3,67 Pr 
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410) 6sl 
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144.24 I 61 

Nd 
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4f~ 651 

~d~tsl 

(145) 

Pm 

41"$6s2 

Le.c. 
5d' 
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Sm 
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41"'652 

f.C.C. 
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Eu 3.63 

5.78 
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f.c.c. 
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Why write yet another textbook on the solid state? Most previous books have concent-. 
rated on the physics, chemistry, or the materials aspe"cts of solids. However, this 
historical division is becoming increasingly irrelevant in the interdisciplinary scientific 
world in which we now find ourselves. So I have tried to write a comprehensive, yet 
comprehensible, book that deals with solids from all three viewpoints, although the 
main emphasis is on the physical behaviour of materials. Thus, I hope that the book will 
be equally accessible for students, or practitioners, in condensed-matter physics, solid
state chemistry, materials science or engineering. It should be suitable for beginning 
students in solid-state physics, or advanced undergraduates in solid-state chemistry or 
materials science or engineering, or for graduate students in all such disciplines. 

I have deliberately tried to keep the level of the mathematics used in this book to a 
relatively low level: a knowledge of differential (and vector) calculus is assumed, as is 
some knowledge of matrix manipulation. There are very many formulae and equations 
given in this book and I make no apology for this, since a proper understanding of the 
subject can only be achieved at the quantitative, not the qualitative, level. Nevertheless, 
I have tried, wherever possible, to introduce each topic in a descriptive manner, so that 
beginners can get an idea of what is involved, before a more detailed, and mathematical, 
discussion is given. However, I have tried, again wherever possible, to derive the 
equations used in a description of physical phenomena rather than simply to state 
them, since I feel that a much greater understanding is achieved thereby. In some 
cases, however, this has not proved possible, either for reasons of space in the text 
(although some such derivations have been made the subject of some of the problems), 
or because the level of mathematics involved is too advanced (in which case references 
are provided to the derivation given in other sources for the interested reader). 

Obviously some prior knowledge on the part of the student has been assumed in the 
writing of this book. It is assumed that students will already have taken courses in 
aspects of thermodynamics, statistical mechanics, elementary electricity and magnetism 
and quantum mechanics. However, I have tried to keep the level of quantum mechanics 
as simple as possible; for example, second quantization does not feature. 

The division of the material in this book is, perhaps, a little unusual. There are just 
eight chapters. The first four, dealing with Synthesis and Preparation of Materials, 
Atomic Structure and Bonding, Defects and Atomic Dynamics, consider mainly the 
properties of atoms in the solid state. The remaining four chapters, Electrons in Solids, 
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Electron Dynamics, Dielectric and Magnetic Properties, and Reduced Dimensionality, 
concentrate instead on the behaviour of electrons in materials. Special features include 
the following. The book begins with a brief survey of materials- synthesis and prepara
tion techniques. This important topic (the properties of solids cannot be studied if they 
cannot be produced!) is a central subject of solid-state chemistry, yet it is rarely 
mentioned in most solid-state physics texts. One theme running through the book is 
disorder: although the ideal single-crystalline state permits a mathematical description 
to be made of its physical behaviour, real materials are inevitably defective, and these 
defects can dominate the physical and chemical behaviour. In view of the importance of 
defects, this topic is therefore introduced early on (Chapter 3). In the section on 
eleCtrons in solids (Chapter 5), descriptions of electron states from the viewpoints of 
both physicists ('bands') and chemists ('bonds') are discussed and compared. The 
physical behaviour of materials described in Chapters 2-7 is for three-dimensional, 
bulk solids. In the final chapter, materials systems with dimensionalities less than 
three are discussed. Much of the most interesting solid-state research currently being 
carried out is on low-dimensional systems and so, to give the reader an impression of the 
interest and vitality of this field, many topics are discussed that are the subject of current 
research and which are not usually found in solid-state textbooks: examples include 
fullerenes, nanotubules and quantum dots, wires and wells. 

What has been left out? First, surface physics, that is the study of free surfaces of 
solids and their interactions with gases (and liquids), has been omitted entirely. This 
broad field has been the subject of a number of books. itself, and a reasonably compre
hensive discussion could not be included in this book without making it even longer and 
more unwieldy than it already is. Second, in retrospect, I would have liked to have 
included more discussion on polymers, although they do get a mention: perhaps in any 
future edition, this omission will be rectified. 

Throughout the book, I have used SI units, although occasionally I have lapsed into 
using units convenient in the description of the solid state, particularly the angstrom 
and the electron volt. I have made a conscious decision not to include c.g.s. units at all: 
students nowadays do not know the c.g.s. system, particularly relating to electrical and 
magnetic units, and I thjnk that their use, even side-by-side with SI units, can only 
confuse the reader. 

I am grateful to Drs J. P. Attfield, J. Klinowski, M. A. Morris, P. M. S. Monk, A. V. 
Powell, T. Rayment and A. D. Yoffe and Profs E. A. Davis and T. Hibma for reading and 
commenting on parts of the book, to Mr J. Portsmouth for helping with the figures and 
last, but definitely not least, I am particularly grateful to Laura Cot:dy and Catherine 
Byfield for transcribing my near-illegible scrawls into a more legible, and thanks to Laura 
a more systematic, form, a feat second only to the decipherment of the Rosetta Stone. 
However, all remaining infelicities and outright errors remain, of course, my own respon
sibility. 

Finally, I feel guilty about the neglect of my research group and of my family during 
the time taken to write this book; I am very grateful for their forbearance and under
standing of my physical, and mental, absence. 



Notes to students and instructors 

This book aims to be a reasonably comprehensive introduction to the physics and 
chemistry of solid materials. As a consequence, there is too much material iIi some 
chapters to be included in a lecture course on these individual SUbjects. In order to give 
some guidance as to the relative importance of separate sections in a particular chapter, 
sections have been categorized according to whether they are essential for a basic 
understanding of the subject, whether they are optional and suitable for a second 
reading (*), or whether they are more advanced topics suitable for a higher-level course 
(**). In addition, portions of a section which could be left for a second reading are 
marked by a line alongside the text. 

The book can be used in very different ways, depending on the subject being studied. 
Condensed-matter physicists could read, for instance, principally Chapters 2, 4, 5, 6, 7 
and parts of Chapter 8. Solid-state chemists could follow Chapters 1, 2, 3 (except § 3.4.3 
on mechanical properties), 5 (except perhaps for § 5.8) and parts of Chapter 8. Materials 
scientists or engineers, on the other hand, could read Chapters 1, 2, 3, 5 and parts of 
Chapters 7 and 8. Of course, for a fuller appreciation of the field as a whole, it is hoped 
that sometimes the reader might stray from the chosen path. 

A large number of problems and exercises (over 200 in total) appear at the end of each 
chapter. The purpose of these is two-fold: first to reinforce an understanding of the 
material presented in the text by performing numerical exercises, and second to supple
ment the material in the book, either by providing derivations of equations that have 
been merely stated in the text for reasons of space, or occasionally to go beyond the 
content of the text by introducing new ideas and concepts in some of the problems. A 
number of essay questions have also been set: every practising scientist has regularly to 
write essays, for example, in the form of journal articles or reports describing original 
research. In order to do this successfully, certain skills in marshalling and presenting 
information must be mastered, but this aspect of a scientific education is often neglected 
in university or college courses. Although some of the essay questions can be answered 
satisfactorily using the information presented in the book, some require outside reading, 
either of other, more advanced texts or of the primary research literature, and all 
answers to essay questions would benefit from the additional information gained in 
this way. Worked solutions of all the numerical problems are available, free of charge, 
from the publishers, to instructors who adopt this book for the course that they are 
teaching. 

S. R. Elliott 
Cambridge, July 1997 

List of 1a les 

2.1 The seven 3D crystal systems and their unit cells. 

2.2 Some ionic crystal structures and the site occupancy of interstitial voids 
in close-packed arrangements of one type of ion. 

2.3 Values of the Madelung constant for various crystal structures. 

2.4 Point-symmetry operations. 

2.5 The 32 crystallographic point groups assigned'to the 7 crystal systems. 

2.6 Extinction rules for diffraction for some lattice types and symmetry 
elements. 

3.1 Formation enthalpies and entropies of defects. 

3.2 Calculated tracer correlation factors for self-diffusion in the limit of 
infinitely low defect concentrations for different host structures and 
diffusion mechanisms. 

3.3 Values of the vacancy formation enthalpy and atomic migration enthalpy, 
and their sum, together with the activation energy for diffusion, in some 
f.c.c. metals. 

3.4 Pre-exponential factors and activation energies of diffusion for various 
diffusing species in a range of crystals. 

3.5 Values of Young's modulus, shear modulus, Poisson's ratio and 
elastic-stiffness coefficients for some elastically isotropic and cubic 
materials at ambient temperature and pressure. 

4.1 Sound velocities of acoustic modes in cubic crystals propagating in 
high-symmetry directions. 

4.2 Debye temperatures for some elements and compounds. 

5.1 Values of Fermi energy, temperature and wavevector for some metallic 
elements. 

48 

73 

76 

81 

88 

115 

154 

181 

183 

184 

193 

214 

266 

296 



5.2 Bulk moduli and cohesive energies of simple metals. 

5.3 Experimental baIidgaps for alkali halides. 

5.4 Bandgaps for tetrahedrally coordinated semiconducting crystals. 

5.5 Exciton binding energies. 

5.6 Values of elements of second-harmonic non-linear susceptibilities. 

6.1 Effective masses of electrons and holes in some direct-gap semiconductors. 

6.2 Hall coefficients for various metals. 

6.3 Superconducting elements and non-oxide compounds, and their 
superconducting transition temperatures. 

6.4 Parameters for some elemental superconductors. 

6.5 Superconducting oxides and their superconducting transition 
temperatures. 

6.6 Carrier mobilities at 300 K for some semiconductors. 

6.7 Theoretical (hydro genic) and experimental donor binding energies for 
shallow donors in III-V and II-VI semiconductors. 

6.8 Experimental donor and acceptor ~iI1~i!1geI1~J."gi~s for ~l.ll:>~ti!l.!!iqIllil 
dopants in Si and Ge. 

7.1 Values of depolarization factors for ellipsoidal-geometry samples 

7.2 Atomic polarizabilities for alkali cations and halide anions. 

7.3 Dielectric constants of alkali halide crystals. 

7.4 Static dielectric constants and the Penn gap for tetrahedral 
semiconductors. 

7.5 Values of the piezoelectric constant d123 for crystals h~.ving the 
zinc-blende structure with point-group symmetry Tf)(43m) .. 

. 7.6 Values of the electrical polarization along the unique crystal axis. 

7.7 Values of magnetic moment divided by the Bohr magnet on for rare-earth 
ions deduced from measured values of the Curie constant and compared 
with the theoretical value expected for the Hund's rule ground state. 

7.8 Values of magnetic moment divided by the Bohr magneton for 
transition-metal ions deduced from measured values of the Curie constant 
and compared with the theoretical value expected for the Hund's rule 
ground state or if angular momentum is quenched. 

8.1 Some representative conjugated polymers. 

8.2 Calculated and experimental Schottky-barrier heights 

307 

347 

351 

396 

401 

423 

458 

463 

474 

486 

497 

505 

505··· 

541 

545 

545 

546 

553 

554 

596 

598 

671 

699 

a.c. 
AM 
ARPES 

alternating current 
air mass 
angular-resolved photoemission spectroscopy 

b.c.c. body-centred cubic 
-BGS ..- - ---Bardeen=Gooper=Schrieffer-(theory)--
BKBO barium potassium bismuth ate 
BPBO barium lead bismuthate 
BSCCO barium strontium calcium cuprate 
CBE chemical beam epitaxy 
c.c.p. 
CMR 
c.p. 
CS 
CVD 
c.w. 
D 

cubic close-packed 
colossal magnetoresistance 
close-packed 
crystallographic shear 
chemical-vapour deposition 
continuous wave 
dimension( al) 
direct current 
de Haas-van Alphen (effect) 
dense random packing 
electron energy-loss spectroscopy 
electro luminescence 
electromotive force 
empirical pseudopotential method 
electron paramagnetic resonance 
electron spin resonance 

i 
l1li 

I 

d.c. 
dHvA 
DRP 
EELS 
EL 
EMF 
EPM 
EPR 
ESR 
EXAFS 
f.c.c. 
FET 
FF 

extended X-ray absorption fine structure (spectroscopy) 
face-centred cubic 
field-effect transistor 
fill factor 



xiv 

FID 
FT 
GEP 
GMR 
GRIN 
HBCCO 
h.c.p. 
HEMT 
HOMO 
IR 
ITO 
KCP 
KDP 
LA 
LASER 
LCAO 
LED 
LO 
LPE 
LST 
LUMO 
MBE· 
MIGS 
MOCVD 
MODFET 
MOMBE 
MOS 
MOSFET 
MQW 
N 
NEXAFS 
NFE 
NMR 
OPW 
PA 
PECVD 
PPP 
PPV 
PPy 
PZT 
RDF 
rJ. 
RKKY 
s.c. 
SCH 
SCL 
SHG 

free-induction decay 
Fourier transform 
general equivalent point 
giant magnetoresistance 
graded index 
mercury barium calcium cuprate 
hexagonal close-packed 
high electron mobility transistor 
highest occupied molecular orbital 
infrared 
indium tin oxide 
potassium platinocyanate 
potassium dihydrogen phosphate 
longitudinal acoustic 

GLOSSARY OF ABBREVIATIONS AND ACRONYMS 

light amplification by the stimulated emission of radiation 
linear combination of atomic orbitals 
light-emitting diode 
longitudinal optic 
liquid-phase epitaxy 
Lyddane-Sachs-Teller (equation) 
lowest unoccupied molecular orbital 
molecular-beam epitaxy 
metal-induced gap states 
metal-organic chemical-vapour deposition 
modulation-doped field-effect transistor 
metal-organic molecular-beam epitaxy 
metal-oxide-semiconductor 
metal-oxide-semiconductor field~effect transistor 
multiple quantum well 
normal (phonon-scattering process) 
near-edge X-ray absorption fine structure (spectroscopy) 
nearly-free electron (model) 
nuclear magnetic resonance 
orthogonal plane wave 
poly-acetylene 
plasma-enhanced chemical-vapour deposition 
poly-(p-phenylene) 
poly-(p-phenylene vinylene) 
poly-pyrrole 
lead zircon ate-titanate 
radial distribution function 
radio frequency 
Ruderman-Kittel-Kasuya-Yo sid a (interaction) 
simple cubic 
separate confinement by heterojunctions 
space-charge-limited (current) 
second-harmonic generation 

GLOSSARY OF ABBREVIATIONS AND ACRONYMS 

SQUID 
TA 
TB 
TBA 
TCNQ 
TLS 
TO 
TIF 
U 
UHV 
UPS 
UV 
XANES 
XPS 
YAG 
YBCO 
YIG 

superconducting quantum-interference device 
transverse acoustic 
tight binding 
tight-binding approximation 
tetracyanoq uinodimethane 
two-level system 
transverse optic 
tetra thi 0 fulvalene 
umklapp (phonon-scattering process) 
ultra-high vacuum 
ultraviolet photoemission spectroscopy 
ultraviolet 
X-ray absorption near-edge structure 
X-ray photoemission spectroscopy 
yttrium aluminium garnet 
yttrium barium cuprate 
yttrium iron garnet 

xv 



I 

It is impossible to avoid the use of the same symbol for more than one quantity in a 
scientific textbook, and this book is no exception. However, a list of symbols that 
denote a single quantity is given below: other symbols are defined in the text. 

Symbol 
a 

ai 

am 
ao 
A 
A 

A ern 

b 
b 
B 
B 
Babs 

Be 
Bel 
Be2 
Bern 

Bext 

B,(x) 
Bloc 

Bmac 

Br 
Bw 
c 
Cij 

Cv 

Cp 

Cv 

Meaning 
cubic unit-cell parameter 
activity of species i 
magnetic moment expressed as a number of Bohr magnetons 
Bohr radius 
Madelung constant 
magnetic vector potential 
Einstein coefficient for spontaneous radiative emission 
neutron scattering length 
Burgers vector 
bulk modulus 
magnetic flux density 
Einstein coefficient for stimulated radiative absorption 
superconducting critical magnetic flux density 
lower superconducting critical magnetic flux density 
upper superconducting critical magnetic flux density 
Einstein coefficient for stimulated radiative emission 
external magnetic flux density 
Brillouin function 
local magnetic flux density 
macroscopic magnetic flux density 
flux remanence 
Weiss molecular magnetic flux density 
mean gas molecular speed 
component of elastic-stiffness tensor 
heat capacity per unit volume at constant volume 
heat capacity at constant pressure 
heat capacity at constant volume 

Symbol 
d 
d 
D 
D 
1) 

DH 
D(E) 
e 
eij 

es 
E 
Ee 
Eloe 

Emae 
Ey 
';g 

';ga 

';gB,n 

';gB,p 
';ge 

';geov 
';gd 

';gF 

';gF,n 

';gF,p 

';gg 

';g~ 
';gh 

';gi 

';gp 

';gv 

Ic 
fi 
jj 
fH 
F 
F 
Fhkl 

FH 
ge 
g, 
gs 
gv 
g(k) 
g(';g) 
g(';g) 

Meaning 
piezoelectric tensor 
spectral (fracton) dimension 
diffusion coefficient (ID) 
electrical displacement 
diffusion coefficient tensor (3D) 
Hausdorff dimension 

density of electron states per volum . 
electron charge e per energy Interval 

component of strain tensor 
shear strain 
electric field 
coercive electric field 
local electric field 
macroscopic electric field 
Young's modulus 
energy 

acceptor binding energy 

Sc, hottky barrier height on an n-type . d 
Ie . semlCon uctor 

Schott y barner height on a P-type s . d 
. emlcon uctor conductlOn-band-minimum energy 

covalent energy 
donor binding energy 
Fermi energy 
electron quasi-Fermi level 
hole quasi-Fermi level 
(direct) bandgap energy 
indirect bandgap energy 
hybridization energy 
ionic energy 
.Penn gap 

v~len:e-band-maximum energy 
diffuslOn correlation factor 
ionicity 

X-ray scattering factor of atomj 
Helmholtz free energy per volume 
Faraday 
force 
scattering amplitude 
Helmholtz free energy 
electron g-factor 
Lande g-factor 
spin degeneracy 
valley degeneracy 

dens~ty of states per wavevector interval 
denSIty of states per energy interval 
density of electron states per energy interval f, . 

or one SPIn type 



Symbol Meaning Symbol Meaning 
gj (%) joint density of electron states per energy interval m* effective electron mass tensor e 
G Gibbs free energy m* effective hole mass h 
G reciprocal-lattice vector l mj longitudinal component of electron effective mass 
Gph photogeneration rate mt transverse component of electron effective mass 
Gs shear modulus M magnetization 
Go conductance Mr remanent magnetization 
G(r) reduced radial distribution function n electron concentration 
h Planck's constant nt complex refractive index 
n Planck's constant divided by 21f nc critical electron concentration for metal-insulator transition 
H enthalpy 

lli intrinsic carrier concentration 
H magnetic field intensity nr real part of refractive index 
He flux coercivity Na acceptor concentration 
Hei intrinsic coercivity Nc effective concentration of conduction-band states 
Hd demagnetizing magnetic field intensity Nd donor concentration 
Hmac macroscopic magnetic field intensity Nv effective concentration of valence-band states 
Hs shape-anisotropy magnetic field intensity p pressure 
I nuclear spin quantum number p hole concentration 
h base curren t p electric dipole moment 
Ie collector current p momentum 
Ie emitter current P electrical polarization 
leI electron ionization energy Pr remanent polarization 
[ph photocurrent Ps saturation polarization 
Is Stoner parameter P(w) mode participation ratio 
Ise short-circuit current q electrical charge 
j current density (charge flux) q phonon wavevector 
f total angular momentum quantum number Q(k) phonon mode amplitude 
f total angular momentum operator r distance vector 
3f exchange constant re pseudopotential core radius 
fN atomic flux of particle N rsp small-polaron radius 
fo heat flux rws Wigner-Seitz. radius 
f(r) radial distribution function R gas constant 
k wavevector R real-space lattice vector 
kB . Boltzmann constant R* exciton binding energy (Rydberg constant) 
kD Debye wavevector Rd donor Rydberg constant 
kF Fermi wavevector RH Hall coefficient 
K scattering (momentum-transfer) vector Ro hydrogen Rydberg constant 
K(w) optical-absorption coefficient 

sij component of elastic-compliance tensor 
I¢ phase-coherence length S entropy 
L Lorentz number S spin operator 
L angular momentum operator SF cross-sectional area of Fermi surface 
Lij Onsager coefficient ST thermopower 
1l.(x) Langevin function S(K) structure factor 
m** polaron effective mass t time 
m~ cyclotron effective mass T temperature 
me electron mass T torque 
m* effective electron mass Tc superconducting transition temperature e 
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Symbol Meaning Symbol Meaning 
TCf ferroelectric Curie temperature 7}q quantum efficiency 
TF Fermi temperature e angle 
u atomic displacement ecw Curie-Weiss temperature 
U internal energy eD Debye temperature 
UH Hubbard energy eN N eel temperature 
UK magnetic anisotropy energy density K, compressibility 
UM magnetic energy density K,GL Ginzberg-Landau parameter 
v velocity K,i imaginary part of refractive index 
Vd drift velocity K,T thermal conductivity 
VF Fermi velocity A wavelength 
Vg group velocity AF Fermi wavelength 
V volume AL London penetration depth 
Ve unit-cell volume (real space) AN Neel constant 
V* e unit-cell volume (reciprocal space) ATF Thomas-Fermi screening length 
Vg gate voltage AW Weiss constant 
Voe open-circuit voltage A mean-free path 
V(r) potential energy /-L chemical potential 
WH polaron hopping energy f-t magnetic moment 
z atomic coordination number /-LB Bohr magnet on 
Z atomic number /-Le electron mobility 
Z partition function /-Lh hole mobility 
i! grand sum /-LH Hall mobility 
O'.i tight-binding self-energy for orbital i /-Lr relative permeability 
O'.L inverse localization length /-LT Thomson heat 
O'.p polarizability /-LO vacuum permability 
(3i tight-binding overlap energy for orbital i l/ frequency 
(3T volume coefficient of thermal expansion lip Poisson ratio 
"I Griineisen constant 

~ 
spin wavefunction 

"Ii activity coefficient of species i II Peltier coefficient 
"1m gyromagnetic ratio p electric charge. density 
"Is surface (interfacial) energy p electrical resistivity tensor 
8ij Kronecker delta p(r) (atomic/electron) density function 
8(x) Dirac delta function (Y electrical conductivity 
~so spin-orbit splitting energy (Yij component of stress tensor 
~(T) superconducting energy gap at temperature T (Ys shear-stress tensor 
~(Y photoconductivity (Yo d.c. conductivity 
c:t complex dielectric constant (Y(w) a.c. conductivity 
c: electromotive force E scattering cross-section 
C:o vacuum permittivity r scattering/relaxation time 
C:I real part of dielectric c.onstant Ttf; inelastic scattering time 
C:2 imaginary part of dielectric constant <P packing fraction 
c:(O) static dielectric constant <P electrostatic potential 
c:(oo) high-frequency dielectric constant <Pc contact potential 
(BCS BCS coherence length <Pi work function of material i 
(0 superconducting coherence length P magnetic flux 
7} electrochemical potential Po flux quantum (fluxoid) 



Symbol 

X 
Xi 
Xm 
X(n) 

w(r) 
'Ij;(r) 
w 

Meaning 
dielectric susceptibility tensor 
electron affinity of material i 
magnetic susceptibility 
nth-order non-linear electrical susceptibility 
wavefunction 
wavefunction 
radial frequency 
cyclotron frequency 
Debye frequency 
longitudinal phonon-mode frequency 
plasma frequency 
transverse phonon-mode frequency 
solid angle 
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Introduction 

It is self-evident that, before the physical and chemical characteristics of any material 
can be investigated, it must first be produced in the required solid-state form. The 
subject of materials synthesis and preparation forms, not surprisingly, one of the core 
themes of solid-state chemistry and texts thereon, but is very often missing from books 
on solid-state physics. This omission is unfortunate, since it is often difficult to gain a 
proper appreciation of the properties of materials without knowing how they were 
prepared. For example, structural defects (the subject of Chapter 3) can often control 
much of the physical and chemical behaviour of solids; the type and concentration of 
such defects can be determined by the mode of preparation (or subsequent treatment, 
thermal or otherwise). For this reason, this book starts with a brief survey of some of 
the main methods employed to produce solid materials. 



Synt~esis and preparati?n mean rather different things. Synthesis of a material is the 
~orn:atIOn of a ~ew chemIcal product from different starting materials in the gas, the 
lIqUId o~ the solId ph~se: Pre:t:aration of a material, on the other hand, refers to the 
productIOn of a matenal m a different physical (but the same chemical) state, e.g. a thin 
film pr?duced from the bulle material, one crystalline form produced from another 
~rystallme (or non-c:;rstalline) fom: etc. In the following discussion, whilst -differentiat
mg bet~een synthesIs and ~rep~ratIOn techniques as they appear, these procedures will 
not be dIscussed separatelv m dIfferent sections Rather a ·f . h· t . -.., more um ymg approac IS 0 
dISCU~S sepa~atel'y the productIOn (synthesis or preparation) of solid materials from 
constItuents m dIfferent physical states of matter, i.e. gas, liquid or solid. 

1.1 GAS TO SOLID SYNTHESIS AND PREPARATION 

Gas to solid synthesis and preparation 1.1 
A number of synthetic and preparative techniques involve the condensation of gas
phase compounds, thereby forming solid-state materials, usually in the form of thin 
films deposited on a suitable substrate. Some of these techniques are of considerable 
technological importance, e.g. the production of multilayers of different semiconducting 
materials (§8.4.4) by molecular-beam epitaxy. In some cases, it is possible to change the 
composition of a solid by exposing it to a gas. Examples include the insertion of foreign 
atoms (intercalants) in the vapour phase into a solid material having a rather open 
structure, e.g. the insertion of fluorine or potassium (vapour) into the layered carbon 
crystal, graphite (see also §1.2.5), and oxygen into the crystal YBa2Cu306, forming the 
high-temperature superconductor, 'YBCO', YBa2Cu307-o (see §6.4.3). Another form of 
gas-solid reaction, experienced in everyday life, is the tarnishing of metals, in which 
reaction of a metal (e.g. Ag, Cu, etc.) with a reactive gas (e.g. O2, C12, H2S, etc.) forms a 
solid product at the solid-gas interface. Very often, tarnishing reactions exhibit para
bolic growth kinetics for the thickness,!:::'x ex t l / 2 (see §1.3.l for a derivation of this law). 
'Nitriding' of steels, the formation of a thin surface nitride layer following exposure to 
ammonia at high temperature (::::= 500 DC), is another example; the nitrides, formed by 
reacting with elements such as AI, Cr or V in the steel, provide a very tough exterior 
layer, used, for example, in the manufacture of gear wheels. 

1.1.1 Vapour deposition 

Perhaps the most straightforward form of gas-solid production technique involves the 
condensation of a vapour onto a (relatively) cooled substrate, the vapour phase of the 
starting material being achieved by the heating of a solid (sublimation) or a liquid 
(evaporation). In its simplest guise (see Fig. 1.1), a vapour-deposition apparatus consists 
of an evacuated chamber (typically pumped by an oil-diffusion pump equipped with a 
liquid-nitrogen trap (to remove water-vapour and hydrocarbon contaminants) or by a 
turbomolecular pump) in which the base pressure is ::; 10-4 Pa. The starting material, 

_______________________________________________ ---'usually in the form of a solid powder,is placed in a 'boat' made from a refractoI)Lille....,t.ua.J.-l ________ _ 
(e.g. Mo or Ta) which is resistively heated in the case of solid charges having relatively 
low melting points (say::; 1000 QC). The ensuing vapour, resulting from evaporation of 
the molten solid contained within the boat, then strikes a substrate positioned over the 
boat, where it condenses and forms a thin solid film; deposition rate~ of 0.1-1 f.Lmls are 
typical. In order to achieve compositional homogeneity and thickness uniformity, the 
substrate is often rotated about an axis normal to the plane of the substrate. 

This technique as described is one of physical preparation: a material in one solid 
phase (e.g. a bulk crystalline form) is transformed, via an intervening vapour-phase 
stage, into another physical phase with the same (nominal) chemical composition. 
Very often, metastable solid phases in thin-film form can be prepared in this way, 
especially if 'cold' substrates (either at room temperature or below) are used. In this 
case, the vapour-phase atoms/molecules have only a very short time (::::= 1O-12S) 
after collision with the surface to form a low-energy structure; hence, they can be 
thought of as 'sticking' to the substrate where they strike. In this way, excess free energy 
is 'frozen' into the resulting films; indeed, vapour deposition is one of the principal 
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Fig. 1.1 Schematic illustration of a thermal-evaporation vapour-deposition chamber. 

techniques for preparing amorphous (non-crystalline) thin films of materials, in which 
the structural disorder (i.e. configurational entropy) is much higher than that found in 
the corresponding crystalline phases. Increasing the substrate temperature will con
comitantly increase the surface mobility of adsorbed vapour species, thereby allowing 
(crystalline) structural modifications with lower free energies to be explored. 

Heating of the starting material need not be via resistive louIe heating of the metallic 
container, as in Fig. 1.1. Indeed, it may be desirable to avoid this method to preclude 
possible chemical interactions between the charge and container. For more highly 
refractory materials, electron-beam heating can be used, in which a focused, high
current electron beam is directed onto the material to be vaporized; this method can 
be used to produce thin films of, for example, amorphous silicon or germanium. 
Alternatively, high-power lasers can be used as the thermal source if the laser light is 
absorbed efficiently by the material to be vaporized. This technique is known as laser 
ablation, and is used, for example, to prepare thin films of the cuprate-based 'high
temperature' superconductors (see §6.4.3), e.g. YBa2Cu307; these films can even be 
produced in single-crystal form if an appropriate single-crystal substrate is used (e.g. 
SrTi03). In addition, laser ablation of a graphitic carbon target (doped with::: 1 at. % of 
Co and Ni) held at 1200 °C in flowing Ar produces single-wall carbon nanotubules 
(§8.3.4) (Thess et al. (1996». 

A common problem with the simple vapour-phase deposition techniques outlined 
above concerns compositional control when the starting material has a complex 
chemical composition. Fractionation often occurs, in which the compositions of the 
vapour and the initial solid charge are not the same. This can occur if the composition 
of the melt is not the same as that of the starting solid. In an incongruent melting 

transformation, at least one of the phases in a solid, containing at l~ast two or mo~e 
different thermodynamic phases with different compositions, has a dlf~erent com~~sl
tion from the equilibrium melt. Congruent melting, with .no ch~nge m COmP?Sltion 
between solid phases and liquid, occurs at the congruent pomt M.l~ the phase diagram 
shown in Fig. 1.2. The eutectic point, E, in Fig. 1.2, i.e. the compOSlt10~ a~d temperature 
at which the liquidus (solid-liquid equilibrium tie-line) occurs at a :nlmmum te:npera
ture, strictly marks an incongruent transformation. The solid obtaI~ed by coolmg the 
eutectic melt consists of a lamellar microstructure (dependent on coolmg rate) of altern
ating layers of the two phases, say a and (3, each with compositio~s diff.erent from t~at of 
the eutectic melt; however, the overall composition of the eutectic solId and melt IS the 
same, and hence the melting transformation may be regarded as being p.seudo-congruent 
for the present purpose. At compositions other than ~he eutectic ~r congruent 
melting points, the composition of the liquid when the SOlId. fir~t mel~s, l:e. when the 
solid is still in thermal equilibrium with the melt (below the lIqU1dus~, .IS different fr?~ 
that of the starting solid and hence the vapour under such condItIons can exhIbIt 
fractionation. . 

Another cause of compositional variation between evaporated film and startm.g 
material is if the vapour consists of molecular species that do not preserv~ the composI
tion of the melt; an example is the stoichiometric compound As2S3 .for WhICh the vapour 
in thermal equilibrium with the melt consists of the molecular spe~Ies As4S4 and S2. ~he 
composition of a film formed by quenching such a vapour can dIffer from the startmg 
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Fig. 1.2 Hypothetical solid-liquid phase diagram showi~~ eutectic (E) an~ congruent n:elting 
(M) points. The two solid phases involved have compOSItIons correspondmg to the pomts A 
andM. 



composition for tW? reasons: lighter molecular species may be preferentially pumped 
out of .the ev~por~tIOn chamber, or the different molecules may have different sticking 
coefficIents, I.e. differe~~ probab~lit~es f~r chemisorption or long-lived adsorption, on 
the substrate .. ComposItI~nal vanatIOns m films prepared by thermal evaporation can 
often .be obviated ?y usmg flash evaporation, in which the charge is heated, and 
vapo.nzed: very rapIdly, thereby not allowing time for the above thermal-equilibrium 
fractIOnatIOn effects to become important. 

A vapour-deposi~ion synthetic technique that allows precise compositional control is 
molecular-beam epItaxy (MBE). In this, separate, well-collimated molecular beams of 
each o.fthe required constituents (e.g: Ga, Al and As beams for Gal_xAlxAs films), each 
emer~I~g from the very small orifice of an electrically heated Knudsen (effusion) cell 
~ontammg t~e component, are directed at a substrate. The evaporation process occurs 
m !~ ul.tra-high vacuum .(~THV) chamb~r. (Fig. 1.3), with a base pressure of less than 
10 Pa. such DHV condItIOns ensure IDllllmal gas-phase contamination of the growing 
film (see Problem 1.1), and also allow ballistic transport of the molecular beam to the 
substrate (no ~catte:ing of t.he effusing atoms by gas-phase atoms or molecules). Each 
I~udsen C~lliS eqUIpped wIth.a computer-controlled shutter that allows the composi
tIOn a~d thIckness .of the growmg film to be controlled precisely. 

TypIcal MBE thm-film growth rates are IfLm h- I (:::::= 0.3 nm S-I), equivalent to about 
one monolayer per second; if the switching time between sources associated with the 
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Fig. 1.3 Schematic illustration of an MBE growth chamber. 

opening and closing of shutters is appreciably less than Is, then sharp changes, of the 
order of atomic dimensions, in the compositional profiles through the thickness of the 
film can be achieved. The composition of any particular layer is determined by the flux 
of atoms in each molecular beam, in. turn controlled by the temperatures of the 
Knudsen cells. In this way, very complicated 'artificial structures' (see §8.4.4) consisting 
of multilayers comprising different materials, e.g. the semiconductors GaAs and 
Gal_xAlxAs, can be fabricated; electrically active atoms ('dopants'-see §6.5.2), e.g. 
Si or Be for GaAs, can also be differentially incorporated in different layers by using 
molecular-beam sources of these dopant elements. 

If a single-crystal slice, say of GaAs, is used as the substrate for subsequent mole
cular-beam deposition of a film of, for example, GaAs or Gal_xAlxAs (which has very 
nearly the same size crystalline building block (or 'unit cell'-see §2.l.2) as GaAs), then, 
under favourable conditions (e.g. at an elevated substrate temperature of 500-600 °C for 
GaAs to ensure sufficient surface mobility), epitaxial growth of the film occurs; i.e. the 
film grows in exact structural registry at the interface with the underlying structure of 
the substrate. 

Not only can monolayer, epitaxial films of crystalline GaAs be grown on GaAs 
crystal substrates, but the chemical stoichiometry of GaAs can be maintained exactly 
in the vapour-deposited film, even for a non-stoichiometric ratio of the molecular-beam 
fluxes. Ga (and AI) atoms have a sticking coefficient of near .unity on GaAs substrates at 
:::::= 550°C, whereas arsenic (which vaporizes preferentially as the pyramidal molecule 
As4) has a sticking coefficient of nearly zero on a surface deficient in Ga but close to 
unity on Ga-rich surfaces (at elevated temperatures when the unreactive AS4 molecules 
can be pyrolytically decomposed to form As atoms that react with the Ga atoms). Thus, 
the film growth is controlled by the Ga-atom flux. 

Although the MBE technique offers precise compositional control over the film 
growth, its low growth rate and concomitant low sample throughput, coupled with 
the high cost of the DHV chamber and associated surface-diagnostic facilities, means 
that it is not suitable for high-volume industrial use. 

1.1.2 Chemical vapour deposition 

Chemical vapour deposition (CVD) is the process whereby reactive precursor vapour
phase molecular species react, either homogeneously in the gas phase or heterogene
ously at the solid-gas interface at the substrate surface, producing a film with a 
composition different from that of the starting materials. (This vapour-phase synthetic 
technique should be differentiated from MBE (§1.1.1), for example, where the only 
chemical reaction occurring is that between adsorbate atoms and atoms on the surface 
of the substrate.) The precursor molecules can be made to decompose by means of heat 
(pyrolysis), absorption of UV light (photolysis) or in an electrical plasma formed in the 
gas; thermal-CVD is the most commonly used method. This technique has the advant
age that refractory materials can be vapour-deposited at relatively low temperatures. 
However, process control may be difficult and ultra-pure volatile precursors may not be 
readily available. 

The technique of thermal-CVD is widely used to produce high-purity thin films of 
semiconducting materials (§5.2.5); such films can grow epitaxially onto single-crystal 



8 SYNTHESIS AND PREPARATION OF MATERIALS 

substrates at elevated substrate temperatures. An important application of thermal
CVD is the production of thin films of polycrystal1ine silicon by the thermal decom
position of silane: 

SiH4(g) ~t Si(s) + H2(g), (1.1 ) 

where the gaseous reaction byproduct (H2) escapes from the growing film of solid 
silicon (Si(s)). Electrical dopants (§6.5.2) can also be incorporated substitutionally into 
the structure of the crystalline Si films prepared by thermal-CVD by using precursor 
gases such as phosphine (PH3) and arsine (AsH3) which provide P and As dopants, 
respectively. 

Another important application of thermal-CVD is in the vapour-phase hydrolysis of 
silicon tetrachloride, giving 'synthetic-grade', high-purity silica glass: 

SiCI4(g) + 2H20(g) ~t Si02(s) + 4HCI(g). (1.2) 

Compound semiconductors that are technologically important, such as III-V materials 
(e.g. GaAs, InP or GaP), can also be grown epitaxially as single-crystal films using thermal
CVD, but in this case the precursor species are gaseous organic molecules; hence, this 
variant is termed metal-organic chemical-vapour deposition (MOCVD). For the synthesis 
of GaAs films, for example, trimethyl gallium and arsine can be used as precursors: 

(1.3) 

Phosphorus- and aluminium-containing materials can be made using PH3 and 
AI(CH3h as precursors. Gaseous hydride or organic molecules containing dopant 
atoms for this semiconducting system that can be used in the thermal-CVD process 
are SiH4, Te(C2H5)z and Mg(C2H5)z. 

A schematic illustration of an MOCVD growth apparatus is shown in Fig. 1.4. 
MOCVD has the advantage compared with MBE that the apparatus is cheap (no 
ultra-high vacuum equipment is required) and that the various sources of different 
atoms can easily be control1ed by gas-flow regulators. It has the disadvantage, however, 
that the whole gas volume of the reactor must be exchanged when changing from one 
gas source to another in order to grow a film of different composition. The associated 
switching time determines the minimum thickness of one type of film that can be grown 
by this technique: operation of the reactor at low gas pressures, however, al10ws this 
switching time to be reduced sufficiently so that atomically abrupt heterojunctions 
between two different materials (e.g. GaAs and Gal_xAlxAs-see §8.4.4) can be pro
duced, similar to those fabricated by MBE. 

The growth process in thermal-CVD is much more complicated than for vapour
deposition techniques, such as MBE (§ 1.1.1); diffusion of vapour species both towards 
and away from the reacting surface, and in the gas phase, as well a's surface-reaction 
kinetics all determine the overall growth kinetics. The temperature dependence of the 
MOCVD growth rate for GaAs from the precursors AsH3 and trimethyl gallium 
(Ga(CH3h, TMG) or triethyl gallium (Ga(C2H5h, TEG) is shown in Fig. 1.5. TEG 
is more easily dissociated than is TMG, so the growth rate (at lower temperatures) is 
therefore higher for TEG than TMG. The thermally activated behaviour of the growth 
rate for both Ga precursors at lower temperatures indicates that, in this regime, 
thermally activated surface-reaction rates control the film-growth kinetics. At higher 
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Fig. 1.4 Schematic illustration of an MOCVD growth apparatus. 
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Fig. 1.5 Temperature dependence of the growth rate of GaAs films by MOCVD using the 
precursor molecules AsH3 and trimethyl gallium (TMG) or triethyl gallium (TEG). The gas
flow velocities, v, and respective partial pressures of the precursor gases are given. (After Plass et 
al. (1988). Reprinted from J. Crystal Growth, 88, 455, Plass et al., © 1988 with kind permission 
from Elsevier Science - NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands) 

temperatures, the temperature-independent plateau in the growth rate is due to growth 
being limited by atomic-transport processes in the gas phase, either diffusion of react
ants towards, or of gaseous products away from, the substrate; the level of the growth 
rate in this regime depends on conditions inside the CVD reactor (e.g. gas-flow velo
city). The decrease in growth rate observed at the highest temperatures is due to 
competing reactions occurring also at places in the reactor other than at the substrate 
(e.g. at the reactor walls). 



A variant of MOCVD is called chemical beam epitaxy (CBE) or metal-organic 
molecular beam epitaxy (MOMBE); as the latter name implies, metal-organic precursor 
gases are fed into a UHV chamber, each controlled by a gas-flow regulator, and directed 
at the substrate as collimated molecular beams by injection through capillary inlets. In 
conventional thermal-CVD, decomposition of precursor molecules such as AsH3 first 
takes place via collisions in the gas phase above the heated substrate; in MOMBE, 
however, because of the very low background gas pressure, such gas-phase reactions do 
not occur, and instead the molecules are pyrolytically 'cracked' on passing through 
heated inlet capillaries. Needless to say, carbon is a prevalent contaminant in all forms 
of deposition techniques using metal-organic precursors. 
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Fig. 1.6 ~a) Schematic illustration o.f a plasma-enhanced chemical-vapour-deposition (PECVD) 
(or glow-d!scharge) apparatus. A radl.o-frequency (r.f.) alternating electric field causes a plasma to 
be set up m the gas, thereby producmg homogeneous gas-phase decomposition of the reactant 
molecules. (b) Capacitive coupling of the r.f. field to the plasma (shaded). (c) Inductive coupling 
of the rJ. field. . 

Energy sources other than heat can be used to initiate molecular decomposition in 
CVD. One obvious alternative source is light: photons (typically in the UV region of the 
electromagnetic spectrum) with energy sufficient to break (or severely weaken) intra
molecular chemical bonds can cause direct dissociation, or facilitate dissociation in 
association with gas-phase collisions. An example of the application of this photo-CVD 
technique is the photolysis of disilane (ShH6), thereby forming high-quality films of 
amorphous hydrogenated silicon, a-Si:H, typically containing a few (1-10) at. % of 
chemically bonded hydrogen (Yoshida et al. (1990». 

Another energy source that can be used to promote CVD is that associated with 
an electrical plasma (a gas of ionized atoms and electrons); this process is termed 
plasma-enhanced chemical vapour deposition (PECVD) or equivalently glow-discharge 
decomposition (see Fig. 1.6). It is commonly used to produce thin films of amorphous 
or polycrystalline (hydrogenated) silicon, depending on the conditions, from silane 
as precursor (see reaction (1.1». The plasma, struck in a mixture of the feedstock 
gas (e.g. SiH4) and a buffer gas (e.g. H2 or He), by the application of an a.c. 
electrical field (usually radio-frequency, and typically 13.6 MHz) causes the precursor 
molecules to dissociate into ions and neutral free radicals (e.g. SiH3·) in the gas phase 
by means of electron collisions. These species then impinge on a moderately heated 
substrate (at a lower temperature than conventionally used in thermal-CVD, e.g. ::::::: 
200 DC) to form an amorphous thin film. High dilution of SiH4 by H2, as well as higher 
substrate temperatures, favours the production of microcrystalline Si. Electrical 
dopants, e.g. P or B, can be incorporated substit1l:tionally into films produced by 
PECVD by admitting the gas phosphine (PH3) or diborane (B2H6) into the feedstock 
gas flow. 

Plasma-enhanced CVD (involving microwave excitation) is also used to prepare thin 
films of crystalline diamond from a hydrocarbon-hydrogen gas mixture; usually 0.5-5% 
methane (CH4) is used, with substrate temperatures of::::::: 700°C. Heteroepitaxy, which 
is the epitaxial growth of one material (diamond) on a substrate of a different material, 
can take place on lattice-matched substrates having very nearly the same size of crystal 
unit cell as diamond. Such substrates include boron nitride (BN), nickel and silicon 
carbide (,B-SiC). Single-<:;rystal Si substrates would be ideal, considering their wide 
availability and use in microelectronics applications. However, the lattice mismatch 
between diamond and silicon is approximately 34%, precluding direct heteroepitaxial 
growth. Nevertheless, if an intervening layer of ,B-SiC is grown on the silicon, then 
epitaxial diamond growth can take place. 

Finally, a variant of CVD is the method of vapour-phase tran~port, or chemical 
transport in the vapour phase. In this, a solid compound A is placed at one end of a 
sealed glass tube (Fig. 1.7) containing a reactive transport gas B and subject to a 
temperature gradient along the length of the tube. The solid A reacts with gaseous B 
to form a gaseous intermediate. This then transports to the far end of the tube under the 
influence of the thermal gradient, whereupon it decomposes, regenerating the com
pound A in purified (and often single-crystal) form: 

A(s) + B(g) ~ AB(g). (1.4) 

If the reaction forming AB is endothermic, the reactant A is placed at the hot end so that 
the reaction with B is favoured: the gaseous intermediate is transported to the cooler 
end, whereupon it decomposes to give solid A as the product. For an exothermic 
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Fig. 1.7 Illustration of the experimental confi . . . 
substance A via a gaseous intermediate AB fo gul~~on use~ In v~pour-phase transport of a solid 
For an endo~hermic reaction of formation ~f l~e y reactIOn with a gaseous transport agent, B. 
an exothermic reaction T < T ' the temperatures are such that T2 > T1, and for 

,2 I. 

reaction of A and B giving AB th . t . 
forms at the hot end. ,e leac ant IS placed at the cool end, and the product 

An example of an endothermic rea f fl· . 
metallic platinu d c IOn 0 t lIS sort mvolves the reaction between 

m an gaseous oxygen at temperatures in excess of 1200 DC: 

. Pt(s) + O2 (g) ~ PtOz(g). (1.5) 
An exothermIc example is the van A·1 I h d D .. 
involving the reaction of the til. ~ ~et 0 or ~he punficatIOn of certain metals, 

me a Wit t e transportmg agent, iodine, for example: 

Cr(s) + Iz(g) ~ CrIz(g). (1.6) 

By this reaction, metals such as Cu Fe Hf Nb Ta T d V b 
com d ·d .. "'" I an can e extracted from such 

agen~Oi~n t~e a~~~~::~i:~r~~e~h~r ~I~~;d~S~t~~~~e;:~ a~~~ ~:e u;~~oatshthe ~ran(}portindg) 
reactIOn:. ,ermlC lorwar 

9000 e 
ZnS(s) + Iz(g) ~ ZnI2(g) + ~ Sz(g). 

soooe - (1.7) 

~his rtehactdi?n can I even be use~ to synthesize ZnS in the first place from the elements 
smce e Irect e emental reactIOn ' 

Z (I) soooe 
. n + S(l) ~ ZnS(s) (1.8) 

~s very slow ~ecause a solid skin of product forms on the liquid metal thereby inhib· t. 
burther r~~ct~ns I~ the ~resence of iodine, however, reaction (1.8) ~oes to compl:t::~ 
r::~~~~ (l~). n IS carned away from the site of reaction by the vapour-transport 

HC
Tlhe ItIhI-V

t 
semiconductor GaAs can also be transported in a similar fashion using 

as e ransport agent: ' 

GaAs(s) + HCI(g) ~ GaCl(g) +!H2 (g) +iAs4 (g). (1.9) 

Sy.ntheAsisCo
l 
f GGaAs, making use of this vapour-transport equilibrium, can be achieved 

usmg s 3, a and H2 as reactants. 

~in~IlY, an i.ntri~uin~ var.iant is the possibility to transport two substances simultane
ous y m oppos~t~ dIrectIOns If one reaction is exothermic and another is endothermic A 
example of thIS IS the separation of tungsten and its dioxide . . d· d . n 
the vapour-transport species: ' usmg 10 me an water as 

1.1.3 Sputtering 

lOoooe 
W02(S) + h(g) WOzh(g), 

soooe 

soooe 
W(s) + 2HzO(g) + 3Iz(g) ~ WOzIz(g) + 4HI(g). 

lOoooe 

(1.10a) 

(1.10b) 

Sputtering is the process whereby material in a solid target is ablated by bomb
ardment with energetic ions from an electrical, low-pressure plasma struck in a gas. 
Ejected material from the target, in the form of ionized atoms or clusters of atoms, 
then subsequently passes to a substrate where a film of the target material is 
deposited. Most commonly, physical sputtering is used with a chemically inert plasma 
gas (such as Ar). This is a preparation technique where the target material is simply 
physically transported to the substrate and the resultant film should have (more-or-Iess) 
the same chemical composition as the target, since most elements have similar sputter
ing rates. (However, some of the sputtering gas may be physically entrained in voids in 
the sputtered film.) If a reactive gas, e.g. O2 or Hz, is included with the sputtering gas, 
then chemical sputtering can occur, and a compound of the target material and the gas 
can be synthesized as a thin film; an example is the formation of SiOz films from a 
silicon target and an oxygen-containing sputtering gas: 

Figure 1.8 shows a schematic illustration of a sputtering chamber. A base pressure of 
~ 10-4 Pa is maintained by an oil diffusion pump, and the sputtering gas is introduced 
into the chamber at a pressure of typically 0.1-1 Pa. The target material is bonded to 
one electrode and the substrate to another in a parallel-plate (capacitive) configuration. 
Usually the target is at the bottom, in 'sputter-up' mode, thereby allowing loose 
powders to be used as target material. The simplest way to induce sputtering is to 
apply a high negative d.c. voltage to the target, thereby attracting positively charged 
ions from the plasma struck in the sputtering gas and which sputter away the target 
surface. However, d.c. sputtering is only feasible for target materials that are metallic, or 

Substrate 
Plasma 

~~~~I_ Target 

+ 
Ar 
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pump 

Fig. 1.8 Schematic illustration of an r.f. sputtering chamber in sputter-up configuration. The 
target is bonded to the lower electrode, and the substrate to the upper electrode (equipped with a 
heater). A plasma is struck in the sputtering gas (e.g. Ar) fed into the chamber at a relatively high 
pressure, and pumped away by the vacuum system. 



at lea~t suf~ciently electrically conducting that the target can act as an electrode. This 
technIque wIll therefore not work for insulating target materials. 

In order to sputter poorly conducting materials, an a.c field (generally r.f., with a 
typical frequency of 13.6 MHz) is capacitively coupled to the plasma, as in one variant 
of a PECVD growth chamber (Fig. 1.6b), via capacitive coupling to the target electrode. 
For metall~c targets, this is achieved by connecting a capacitor in series with the target; 
non-metallIc targets are bonded to a metal backing electrode and this arrangement itself 
forms the capacitive link. In r.f. sputtering, after striking the plasma, positive ions in the 
plas~~ are attracted ~owards the target during each negative half-cycle. However, the 
mobIhty of electrons In the plasma is greater than that of the ions so more electrons 
than i.ons. are attra.cted tOi the top surface of the target during the re~pective half-cycles, 
resultmg m the buIld-up of a d.c. negative bias of a few kV on the target. (The value of 
the bias voltage can also be changed by applying an additional external bias to target 
and/or substrate.) In steady-state conditions, therefore, the ions are attracted from the 
plasma to the target by this d.c. bias. Sputtered ions from the target are carried towards 
the substrate by the following half-cycle of the r.f. field. 

Dep'os~~on rates for. phys~cal r.f. sputtering of i?sulators are rather low, typically 
1-10 ~ s ,b~t are a little ~~gher for metals. ReactIve sputtering rates can be appreci
ably hIgher stIll. T~e deposItIOn rat.e can be increased significantly by the technique of 
magnetron sputtenng, where a taIlored, constant magnetic field around the target 
electrode concentrates the plasma density in the vicinity of the target surface, thereby 
increasing the flux of ablating ions from the plasma onto the target. Further details of 
the sputtering technique can be found in Behrisch (1981, 1983, 1991). 

The sputtering technique lends itself to the creation of 'combinatorial libraries', i.e. 
collections of samples with varying compositions deposited onto the same substrate 
durin~ a giv~n depositi~n run. The different compositions are obtained by selectively 
maskmg var:ous.sputter~n? targets. This a~proach has been used to identify promising 
phosphors (I.e. lIght-emIttIng matenals) WIth the general composition Gd(La,Sr)AIO

x (Sun et al. 1997). 

liquid to solid synthesis and preparation 

Materials in bulle, rather than thin-film, form are often made starting from ~he liqui~ 
phase, either by solidification of ~ melt to ~orm single crystals when th~ c00lIn~ rate IS 
very low, or to form non-crystallIne matenals (glas~es) when t~e coolmg rate IS s~ffi
ciently fast that crystallization is precluded. AlternatIvely, m~tenals r:na~ be crys~alhzed 
from solution. Often, the matetials synthesis takes place In the lIqUId (partIcul.arl.y 
molten) phase prior to solidification, in which case the process of formi?g the solId ?S 
one of physical preparation (i.e. change of phase). In other cases, synthesIs of new ~~hd 
compounds can be achieved with the involvement of a liquid. One way of cat~go~lZlng 
such preparation and synthesis routes is in terms of whether a melt or a solutIOn IS the 
precursor liquid phase, and this scheme will be used here. 

1.2.1 Crystal growth from the melt 

Three generic methods of producing (single) crystalline material from a melt may be 
distinguished, depending on whether the crystal is 'pulled' out of the .melt,. or. crysta~l
ization takes place in a crucible container, or is 'container-less', OCCUrrIng wIthm ~ soh~ 
rod of material. Highly perfect, ultrapure single-crystal specimens can be grown In thIS 
way, particularly of semiconductors for use in the electronics indu~try, where t~e 
requirements for sample purity and crystal perfection. are extremely str~ngent: .ele~tn?
ally active impurities or structural defects must be precluded, otherWIse the mtnnsIC 
electronic behaviour of the semiconductor is severely degraded. Crystal-growth tech
nology has now reached the point where electrically active impurit~ concentrations in 
crystalline Si and Ge can be reduced below the level of 1016m-3 (th~s correspond~ to a 
purity of better than one part in 1012 !), although the concentratIOns ~f electr?cally 
inactive contaminants (e.g. H, C, 0) are typically four orders of magmtude hIgher. 
The density of structural defects, e.g. the line defect called a dislocation (§3.1.2), in such 
crystals can be reduced below the level of 106m-3. Now, even isotopically. pure large 
single crystals can be grown, for example of Ge (which naturally conSIsts Of. five 
isotopes). Further details on techniques for crystal growth from the melt are gIven, 
for example, in Brice (1973) and Roy (1992). 

Perhaps the most important technique for growing pe:-fect singl~ crystals f:-om.a melt 
(that forms congruently-see Fig. 1.2) is the CzochralskI method Illustrated In FIg. ~.9. 
In this a melt of the material contained in a crucible is maintained at !l temperature Just 
above its melting point. A single-crystal 'seed' attached to a pulling rod is pla~e~ in the 
surface of the melt and withdrawn slowly (typically with a pull rate of a few mIlhmetres 
per minute); the melt crystallizes epitaxially on the seed crystal, prese~ving its crystallo
graphic orientation in the pulled crystal. The pulling rod and cru~Ible are g~neral~y 
rotated, in opposite senses, at a frequency of a few tens of revolutIOns per mmute m 
order to maintain melt homogeneity (for compound materials) and a constant tempera
ture in the crystal-growth region. As a result, of course, of this rotation about its 
longitudinal axis, the pulled crystal has a cylindrical georr:etry; Si cryst.als can now be 
grown in this way with diameters greater than 0.2 m. A hIgh-pressure, I~ert-gas atr:no
sphere (~.g. of Ar) is often used around the growing crystal a?-d the melt In the cruCIble 
in order to reduce contamination of the crystal and also, In the case of compound 
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Fig. 1.9 Schematic illustration of the Czochralski method for growing single crystals from a 
melt, e.g. of Si. 

materials, e.g. GaAs and InP, in order to try to reduce the loss of the more volatile anion 
constituents. The me~t c~n ~lso be encapsulated by means of a layer of different liquid 
(e.g. molten boro? tnoxide m the case o~ the latter compound semiconductor) in order 
to prevent volatile loss (a1th~ugh Ob~lOUS!y boron contamination of the resulting 
crystals can be a problem); this technIque IS known as the liquid-encapsulated Czo
chralski method. 

An alternative v:ay of pro?~cing singl~ crystals from a congruently melting liquid is 
to subject the crucIble, contamI~g a melt m contact with a seed crystal, to a temperature 
gradient. In the Bridgman technIque", the temperature gradient along the crucible is kept 
constant while the a~~rage tem~erature of the furnace is reduced with time (Fig. I.IOa). 
In this way, the posItIOn at whIch ~he temperature is equal to the melting temperature, 
T m, of the material moves progressIvely along the length of the crucible and, with it, the 
crystallization front. A clo~ely related technique is the Stockbarger method, in which 
the crucible is moved relatIve to the furnace in which the temperature gradient and 
average temperature are both kept constant (Fig. 1.1Ob). The result is the same as for 
the Bridgman technique; the point at which the melt temperature equals Tm , and hence 
the crystallization front, moves progressively along the crucible as it is translated 
relative to the furnace. An example of the use of the Stockbarger method is in 
the manufacture of directionally solidified (or even single-crystal) turbine blades (see 
§ 3.4.3). 

A technique relate~ to the S.tockbarger method is the zone-melting technique for 
single-crystal productIOn. In thIS, th~ temperatu~e profile along the crucible is peak
shaped, with the temperature exceedmg the meltmg temperature of the material to be 
crystallized only in a very small regio~ (Fig. 1.1Oc); such a temperature profile can be 
achieved, for example: by means o~ a nng-shape? he~ter, the plane of which is perpen
dicular to the long aXIS of the cruCIble. The cruCIble IS translated relative to the heater, 
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Fig. 1.10 Schematic illustration of crystal-growth techniq~es er.nploy~ng ~emperature gradients: 
(a) Bridgman technique, in which the temperature gradIent IS mamtamed, but t?e av~rage 
temperature decreases with increasing t~me, t, > 12 > 13; (b) S~ockbarger metho?, m Whl.ch a 
crucible is translated relative to a fixed (lmear) temperature gradIent; (c) zone-meltmg techmque, 
in which a crucible is translated relative to a fixed (peaked) temperature profile; (d) floating-zone 
method in which a molten zone is confined by surface tension between a polycrystalline ingot and 
a single-crystal seed, both free-standing. 

and hence the hot zone, where the material melts, correspondingly moves along the 
crucible, leaving behind it a solid crystallized from a seed crystal. A modification of this 
method is used in the floating-zone technique in which a rod of polycrystalline material, 
clamped at one end and held vertically, is contacted with a seed crystal. This junction 
region is locally heated, as in zone melting, and the molten layer is held in place by 
surface tension (Fig. 1.10d). This floating zone is then moved slowly along the poly
crystalline rod by moving the rod relative to the heating elements; single-crystalline 
material is left behind the melt front. This technique" can be used to produce low
dislocation-density rods of crystalline Si. 

This approach is also used in the zone-refinement method to purify a pre-existing rod
like crystal. The ring-like heater is moved slowly along the rod, and the narrow molten 
region is therefore moved through the sample. The solubility o~ impurities will. be hi~~er 
in the hot molten region than in the surrounding cooler solId, and so the ImpUrItIes 
preferentially dissolve in the molten zone and hence are swept out of the crystal as the 
heater is moved along the rod. 

Single-crystal films can also be grown epitaxially on suitable substrates from the 
molten state; this technique is known as liquid-phase epitaxy (LPE). Pockets in a heated 
slider contain the molten material(s) to be deposited (Fig. 1.11). By moving the slider 
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Fig. 1.11 Schematic illustration of the liquid-phase epitaxy technique. 

over the surface of a: substrate, crystallite nucleation and epitaxial growth of a single
crystalline thin film take place from the melt at the substrate surface. By placing 
different materials in different pockets of the slider, layers of differing compositions 
can be grown one on top of another. This technique can be used to prepare thin 
crystalline layers of GaAs-based semiconductors (for example, for use as laser diodes 
-see §8.S.2.4). Liquid Ga is used as a solvent for solutes such as As or Al to make the 
basic semiconductor materials GaxAll_xAs, and also for solutes which can act as 
electrically active dopants in the semiconductors. When the liquid, viewed as a solution 
of say As in Ga (see also §1.2.3), is cooled as it comes into contact with the substrate it 
becomes supersaturated with As and nucleation of GaAs occurs at the interface betw:en 
~i~uid and. subst~ate. L.PE has the advantage that it is simple and inexpensive; however, 
It IS not sUltable If preCIse control over growth conditions, or a very thin film, is required 
(typical film thicknesses are a few microns). 
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Fig. 1.12 Schematic illustration of the Verneuil method for flame-fusion growth. 

An altogether different, container-less method for producing single crystals from the 
melt is the Verneuil technique illustrated in Fig. 1.12. Powder of the material to be made 
into a single crystal is dropped through a high-temperature flame (e.g. an oxy-hydrogen 
torch), wherein it melts and forms liquid droplets. These molten droplets then fall onto a 
seed crystal, held on a rotating pedestal support, where they solidify and form a single
crystal boule. This simple technique is commonly used to manufacture crystals of high
melting-point oxides, e.g. synthetic corundum (a-Ah03). Although this flame-fusion 
method is inexpensive, the relatively high crystal growth rate (~ 10 mm/h) leads to a 
somewhat poor quality of the ensuing crystals, having characteristic defects in the form 
of 'tree-ring' -like striations, resulting from fluctuations in the cooling rate of the molten 
layer in contact with the top surface of the boule. 

1.2.2 Liquid quenching 

In the previous section, the goal of the various materials-preparation procedures 
described therein was to produce as perfect a crystalline solid as possible, starting 
from a melt. Alternatively, sometimes a material is desired in a solid form that lacks 
any trace of crystallinity. A liquid (melt) is disordered both structurally (the long-range 
structural order, characteristic of a crystal-see §2.1.1-is absent in a liquid) and 
dynamically (the positions of atoms in a liquid fluctuate in time due to both vibrational 
and diffusive motion). Hence there is a prospect that, if a liquid could be cooled 
sufficiently quickly (i.e. 'quenched') so that crystallization could be bypassed, then the 
disordered structure characteristic of a liquid could be frozen-in, and a solid, structur
ally disordered phase would result; this is known as a glass. 

Such a vitrification (or glass-forming) process involves supercooling of a liquid below 
its normal freezing point (or, .equivalently, the melting point of the corresponding 
crystalline phase). The freezing of a crystalline solid is a first-order thermodynamic 
phase transition: there is a discontinuity in first-order thermodynamic variables, such as 
entropy, S = -(8Gj8T)p' or volume, V = (8Gj8p_)T' at the transition (Fig. 1.13). In 
contrast, the transformation from a melt to the glassy phase is a transition (see Fig. 
1.13) in which there is no discontinuity in first-order thermodynamic variables at the 
glass-transition temperature, Tg, but rather a change in their temperature gradient. 
Hen~e, there is a discontinuity in second-order thermodynamic variables, such as the 
calorimetric heat capacity at constant pressure: 

(1.11) 

This jump in heat capacity is a clearer marker of the glass transition than is the 
measurement of the change in slope of the temperature dependence of the density (see 
Fig. 1.13). Unlike the melt-freezing/crystal-melting first-order phase transition, the glass 
transition is not an equilibrium (second-order) thermodynamic transition because it is 
kinetically controlled; a melt supercooled with a quicker quenching rate has a lower 
value of Tg• The nature of the glass transition is still uncertain and the subject of much 
current research; however, it is clear that the process is mainiy one of kinetic arrest. 
As the temperature of the melt decreases in the supercooled regime, its viscosity 
correspondingly rapidly increases until the point is reached when, on the time-scale of 
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Fig. 1.13 Schematic illustration of the change in volume with temperature as a supercooled 
liquid is cooled through the glass-transition temperature, Tg , below the first-order crystallization 
phase transition at the melting/freezing temperature, Tm. A more rapid quenching rate, q2 > qt, 
gives a lower glass-transition temperature T~ < Tg• Shown in the inset is the variation of the heat 
capacity at constant pressure in the vicinity of Tg• 

the experiment, no further structural relaxation of the melt appears to take place: the 
material is then glassy and behaves as a solid. 

The above picture considers the glass transition entirely in terms of the behaviour of 
the supercooled liquid. Another important aspect, of course, is the avoidance of crystall
ization during quenching. The process of crystallization from a melt can be divided into 
two stages: nucleation and growth. Crystal nucleation is the formation, by thermally 
induced structural fluctuations in the melt, of crystal nuclei, i.e. microscopic regions, 
having the structure of the crystal, that are greater in size than a critical radius so that 
they can subsequently grow and not disintegrate to re-form the liquid structure. Nuclea
tion may be homogeneous (occurring in a random manner throughout the liquid) or, 
more commonly, heterogeneous (occurring at surfaces of the container, foreign par
ticles, etc.). Crystal growth is the subsequent process, whereby a crystal nucleus continues 
to enlarge by the progressive addition of atoms onto its surface from the liquid phase. 

The temperature dependences of the (homogeneous) crystallite nucleation rate in unit 
volume (/(t» and of the crystallite growth rate per unit volume (u(t» in the supercooled 
melt are shown schematically in Fig. 1.14. The curves are peaked, with the maximum 
rates Irnax and Urnax occurring generally at different temperatures. The rates exhibit such 
peaked behaviour because at very low (deeply undercooled) temperatures, the viscosity 
is so high that atomic motion is very difficult and the rates are small; at temperatures 
very close to the melting temperature, Trn , on the other hand, crystallites preferentially 
melt rather than form or grow, and again the rates are small (see also Problem 1.4). The 
critical temperature region for crystal growth is between TJ and T2 in Fig. 1.14; here, the 
nucleation rate is high enough for an appreciable number of crystallite nuclei to form in 
the first place, and, at the same time, the growth rate is high enough for these nuclei to 
grow into larger crystallites. Thus, in order to avoid crystallization, i.e. in order to 
prepare a glass, a melt must be quenched to temperatures below T2, the bottom of the 
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F' 114 Schematic illustration of the temperature dep~nd~nce of the crystallite nucleation rate, 
/~~d the crystallite growth rate, U, in the supercooled hqUld state below Tm· 

h
· d 'deally below T3 the bottom of the nucleation region, in a sufficiently 

growt regIOn, an t , • h t u t be 
short time that no crystallite nuclei can form or grow; I.e. the q~enc ra e, {' m} s 

reater than the nucleation or growth rates, q ;::: VI, Vu, where VIS the sam~ e vo ume. 
g For the case of network-forming glasses, in which a m~cromolecu!~r, hIghly cross
linked structure is formed (an everyday example is silica, SI02), the cntIcal quench r~te 
for vitrification can be quite small, say a few (tens of) de?ree~ per second: However, or 

. h'ch the atomic bonding is much less dIrectIOnal (e.g. m m~tals-see 
systems m WI. . }' I h h gher and 
§223 1) the viscosity in the supercooled melt remams re atlv.e y mu~ I . 
cr' s~~l1i;e formation is more prevalent. As a result, ultra-rapId coolmg techlll~ues 
m~st be employed in order to vitrify metallic alloys, e.g. PdsoGe2o, ?ne s~ch .tec~~Iqu~ 
is melt-s inning, in which a jet of melt is directed at the edge of a rapIdly ~pmnmg ISC 0 

er- fhe melt, on striking the surface of the disc, cools extremely ra?Idly (because of 
~~~1igh thermal conductivity ofCu-see §6.3.2.2) an~ is transformed mt~ a gl;;s66 t~~ 
of thickness ~ 0.1 mm (Fig. 1.15). In this way, coolmg rates of the or er 0 
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Fig. 1.15 Schematic illustration of a melt-spinning apparatus to produce glassy-metal ribbons. 



can be achieved. A modification of this approach, planar-flow casting, aIIows foils of 
'dth to rv 0 1 m to be produced. WI sup -' 

1.2.3 Crystallization from solution 

One common way of obtaining cr~sta~line material is from solution; everyday examples 
of this method include the crys.talhzatIOn of salt (NaCl) and sugar from their respective 
aqueous solutions. This technIque can be used both to prepare materials in (single-) 
crysta11ine form and also to synthesize crystals. This approach has the advantage that 
the starting state, a solution, is ge?eraIIy homogeneous .and sing!e-phase .. As a result, 
formation of crystalline products IS gelleral1y n:uch eaSIer than In al1-solld-state pro
cesses (§1.3.1) because atoms do not ?eed to dIffuse so far, and also because atomic 
diffusion is faster, meaning that solutIOn synthesis mostly occurs at much lower tem
peratures than in solid-state reactio~s. Mlatehrials. syn~hesis via solution is one example of 
what is known as chimie douce, or gent e c emlstry. 

Preparation of crystals fr.om solution involves diss.olving the .ma~erial to be crystal
lized in a suitable non-reactIve solvent, and then causIng crystallIzatIOn to occur, either 
by reducing the solubility of the solute (e.g. simply by reducing the temperature) or by 
increasing the solute concentra.tion in the solution by re~ovi~g some of the solvent (e.g. 
by evaporation), thereby fOrmIng a super~atur~ted solutIOn; In both cases, crystals wi11 
then form from the solution, the crystal SIze bemg larger, the lower the growth rate, in 
general. (The role played b~ defe~ts in cry~tal growt~ is dis~ussed in §3.4.1.) More 
controllable crystal growth IS ob.tame~, ObVIO.usly, by lInmer~Ing a seed crystal into a 
saturated solution. A problem wIth thIS technIque, however, IS the possibility of inclu
sion of the solvent in the crystals. 

Solvents used for low-temperature solution growth (say, at temperatures below 
100°C) are commonly water for th: crystallization of many inorganic compounds 
(although other solvents, e.g. ammOnIa or HF m.ay also be used), and various organic 
solvents (e.g. acetone, ethanol, carbon tetrachlonde, etc.) for crystals of organic mole
cules. A discussion of the low-temperature growth of crystals from solution is given in 

e.g. Brice (1973). . ' . 
High-temperature solutIOn growth mvolves temperatures much hIgher than the boil-

ing point of witer, typically of the order of 1000 dc. The solvents in this case can be 
liquid metals, e.g. Ga (a solvent for As, as used in the liquid-phase epitaxy (LPE) 
method - see §1.2.1), Pt (~ solvent for B), ~b, Sn a?d Zn, etc. (solvents for Si, Ge, 
GaAs, GaP, etc.). AlternatIvely, they can be morganIC compounds such as oxides or 
fluorides, e.g. KF (a solvent for BaTi03), SnFz (a. solvent for Zn~), NazB407 (a solvent 
for Fe 0 and with BZ03 as a co-solvent, for TIOz) etc. These Inorganic solvents are 
called ~u~es si~ce they effectively reduce the melting point of the pure solute by forming 
a lower-melting-point solution. This form of high-temperature solution growth is there
fore also known as flux growth. 

It is somewhat a matter of semantics whether or not crystal growth from liquid metals 
or inorganic fluxes should be regarded as being high-temperature solution growth or 
growth from a melt (see §1.2.1): The be~aviour of ~he solvent-solute system can be 
understood in terms of phase dIagrams, mtroduced m § 1.1.1, that display the phase
equilibrium fields as a function of temperature and composition for the binary system 

Tx .-----.---
I 

A·j 
Liq,uid 

I 

(a),A x 

Liquid 

A+B 

E 
Composition 

B+ 
liqUid 

B 

Liquid 

T1 -... -A +Liquid-

TB AB+ T2 
liquid 

TE 
I A+AB 

ABi+B 
I 

(b) A AB Y E B 
Composition 

Fig.1.16 (a) Representative phase diagram demonstrating the use of ~ flux B to g~ow crystals of 
A. The composition E is the eutectic composition. (b) RepresentatIve phase dIagram for an 
incongruently melting compound AB. Cooling of the liquid with the composition AB produces 
only crystals of A; a liquid with composition such as Y is needed to grow crystals of AB. 

A + B, where A is the solute, say, and B is the solvent. Perhaps the simplest case to 
consider is when the solute and solvent form a eutectic system: the addition of the flux B 
causes the melting point of A to decrease as A dissolves in B (Fig. 1.16a). Slow cooling 
ofa composition such as X marked in Fig. 1.16a, between the temperatures Tx and TE, 
produces CJ;ystals of A together with a liquid (solution of flux and solute) that varies in 
composition as the temperature changes (see Problem 1.5). Eventually, when the tem
perature reaches the eutectic temperature, TE , any remaining liquid will form a fine
grained solid eutectic mixture, consisting of smal1 crystals of both solute A and solvent 
B, embedded in which wi11 be the much larger crystals of A that formed during the slow
cooling process. These larger crystals can be removed from the eutectic matrix by, for 
example, mechanical means. 

Synthesis of a compound, say AB, may take place when a solute is dissolved in a 
solvent at high temperatures. The corresponding representative phase diagram for the 
case when AB is an incongruently melting compound is shown in Fig. 1.16b. An attempt 
to produce crystals of AB simply by cooling a liquid with this composition (for which 
the liquidus temperature is Tl (see Fig. 1.16b» will not succeed, since from the phase 
diagram it can be seen that what is produced first on cooling is crystalline A, not AB. 
However, cooling a liquid with the composition Y marked in Fig. 1.16b will give rise to 
crystals of AB being formed in the temperature range Tz to TE; on cooling below the 
eutectic temperature, TE, a eutectic crystalline mixture of AB and B wi11 form. 

Another, widely used method for synthesizing solid materials from solution is by 
chemical precipitation, in which a solution-phase reaction occurs, producing an insol
uble, often crystalline (albeit finely divided) precipitate. An example is the reaction in 
aqueous solution producing AgCl: 

AgN03(aq.) + NaCI(aq.) -+ AgCI(s) + NaN03(aq.). (1.12) 

Occasionally, amorphous (non-crystalline) precipitates are formed, for example when 
HzS gas is bubbled through a solution of arsenic oxide in dilute hydrochloric acid: 

AsZ03(aq.) + 3HzS(g) -+ ASZS3(S) + 3HzO. (1.13) 
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Fi~: 1.17 . Pressure-temperature phase diagram for water vapour and liquid in the vicinity of the 
cntIcal pomt X (Tcr.= 37~.2.oC;Pcr 218.3 bar), showing the vapour-liquid tie-line (A-X) ending 
at ~. The dashed hnes mdIcate the autogeneous pressures exerted in a closed pressure cell at 
vanous temperatures for the percentage filling factors of the 'bomb' at ambient temperature and 
pressure, as marked. 

Very often, the solubility of a material in a solvent, e.g. water, is insufficient under 
normal conditions (atmospheric pressure and temperatures of less than 100°C for 
water) to allow solution-phase synthesis and/or crystallization to be carried out. In 
such cases, solvents may be more effective in the supercritical state, i.e. at temperatures 
and p:essures above the c~iti~al point at (Ter, Per) in the liquid-vapour phase diagram 
(see FIg. 1.17), where the lIqUId and gaseous states become indistinguishable and form a 
co~on fluid phase. Supercritical C02(Ter = 304.2 K;Per = 7.38 MPa) is increasingly 
bemg used as a solvent for organic molecules and polymers. 
. Supe~critical ~ater (Te~ = 647.~ K;Per = 22.12 MPa) is an effective solvent for many 
morga~Ic ~atenals, partIcul~rIy m the presence of a mineralizer, a soluble compound 
producmg IOns that otherWIse would not be present in significant concentration in 
solution and which increase the solubility of the solute; this technique involving super
critical water is also known as the hydrothermal-growth method. Crystal growth under 
hydrothermal conditions takes place in a metal pressure cell, rather worryingly normally 
called ~ 'bo~b' (Fig. 1.18), in which the material to be dissolved and subsequently 
crystal!Ized IS placed. at the bottom, with seed crystals suspended at the top, and the 
b~~b IS part-filled WIth water. (The autogeneous (i.e. self-generated) pressures of super
CrItIcal water exe~"ted at te~peratures for various degrees of filling are shown in Fig. 
1.17.) T~e b.omb IS placed m a temperature gradient so that the temperature, T2, at the 
b?ttom IS hIgher than at the top, TJ : material at the bottom of the bomb is therefore 
dIssolved and th~ resulting solution is conveyed by convection to the top where, because 
the temperature IS lower, the solution becomes supersaturated and crystallization onto 
the seeds occurs. Hydrothermal growth is commonly used to prepare large single 
crystals of the a-quartz crystalline modification of silica under conditions of 400°C 
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Fig. 1.18 Schematic illustration of a pressure 'bomb' used -for hydrothermal crystal growth. 

and 170 MPa using NaOH as a mineralizer. The method can also be used to grow single 
crystals of corundum (or synthetic sapphire, a-Ah0 3)' . 

Although the hydrothermal:growth method has the disadvantag~ that very of~en 
mineralizer ions (e.g. OH- in the case of quartz) are incorporated mto the growmg 
crystal, it has the advantage, shared by all low-temperature solution techniques, that 
crystalline phases can be synthesized and prepa:ed t~at would be me~astable or unstable 
at the much higher temperatures encountered m soltd-state syntheSIS .(§1.3:1). . 

An example of a class of metastable materials that can be made m thIS way IS the 
zeolites, hydrous aluminosilicates with the general chemical formula 

Mx/n[(AI02)x(Si02)y]' mH20, 

in which the positively charged cations M of valence n (e.g. Na+ with.n. = 1) electrically 
compensate the negative charge on the aluminosilicate framework arIsmg from. t~e fa~t 
that both Al and Si are four-fold coordinated by oxygen atoms but aiummmm IS 
trivalent (Ae+) whereas silicon is tetravalent (Si4+). The name 'zeolite' "":as coin~d 
from the Greek words zeo (to boH) and lithos (stone), since naturally occurnng zeol~te 
minerals readily give up their water of crystallization on heating and appear to 'b~Il'. 
This behaviour occurs because the water molecules (and also th~ charge-compen.satmg 

cations) lie in the inter-linked cavities and channels (of size ~ 5 A) that character~ze the 
structure of these highly porous crystalline solids (Fig. 1.19), and hence such speCIes can 
readily be removed and/or ion-exchanged. The open aluminosilicate framework of 
zeolites can be regarded as being constructed from ordered aggregates of secondary 
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cage-like structural units, in tum comprising a number of comer-sharing SiO and AIO 
tetrahedra One commo I f h . 4 4 . . . n exam?e 0 suc a secondary umt is the sodalite (or (3) 
c~ge compnsmg 24 connected. SIlIca or alumina tetrahedra, which has the geometry 
o .a t;uncated ?ctahedron ~FIg. 1.19). Different modes of linkage between sodalite 
umts e~d to dIfferent zeo~Ite structures, e.g. sodium zeolite-A (x = y = 12, n = 1 
~ ~ 2? m the general zeolIte formula) (Fig. 1.19b), and zeolite-X and _y syntheti~ 
aUdJashites (Xl ~ 60, Y ~ 130, m ~ 250) (Fig. 1. 19c), each having differently sized cavities 

an c anne s. 

f ~~Oli~s dare synthesized and prepared in crystalline form via an interesting variation 
o ~ y rothermal-growth method, in which the added mineralizers (or certain 
::::mc mol~cules) act. as structural templates around which the alumino silicate frame
auk grows m. generatm~ the ~~rous zeoli tic structures. The starting material is a basic 
~ eous solutIOn of .sodI~m SIlIcate and aluminate (containing [AI ( OH) r ions) at a 

hIg~ pH, the base bemg eIther an alkali hydroxide (e.g. NaOH) or an org!nic base th 
catIon~ of the latter ~cting as efficient templating molecules. A gel (a semi-rigid ~rtl e 
cross-lmke? p.olymenc structure) then forms at room temperature by a roc~ss:r 
copolymenzatIOn (see §1.2.4), for example for a sodium zeolite: p 

NaAl(OH)4(aq.) + Na2Si03(aq.) + NaOH(aq.) -t 

NaAAI02)y(Si02)z . NaOH· H20(gel). 
(1.14) 

Hydrothermal treatment of the gel for several days at temperatures in the range 
60-200 °C under autogeneous pressure then yields crystals of the zeolite: 

( 1.15) 

Such a synthesis using NaOH as base will tend to produce rather dense zeolites, with 
relatively small cavities and channels and with SilA! ratios (y: x) of order 1: 1; an 
example is Na zeolite-A (Fig. 1. 19b). Silicon-rich zeolites can be made by increasing 
the proportion of silicate in the starting solution, but also by using large-sized (e.g. alkyl 
ammonium) cations in the base. The large size of cations such as tetramethyl ammo
nium, [N(CH3)4]+' used in the synthesis of zeolite ZK-4 (having the '3ame framework 
structure as zeolite-A, but with a SilA! ratio of 2.5: 1), or tetra-n-propyl ammonium, 
[N(C3H7 )4]+' used to synthesize ZSM-5 (with SilA! ratios from 20: 1 upwards, and used 
as a catalyst for the conversion of methanol to gasoline), means that few such cations 
can be incorporated in the structure and hence the proportion of Al (responsible for the 
negative charge on the framework) must be reduced. Further details about zeolites are 
given in, for example, Smart and Moore (1992) and Dyer (1988), and details of their 
synthesis are given in Barrer (1982). 

This templating effect is taken to the extreme in the synthesis of the meso porous 
MCM-41 molecular sieves, with large pore sizes of the order of 30-100 A, where long
chain surfactants, such as CnH 2n+! (CH3hN+Br-(8 < n < 16), are used as the template 
molecules (Kresge et al. (1992)). At relatively high reaction temperatures (> 100°C), the 
templating molecules remain separate and relatively dense, microporous zeolites (e.g. 
ZSM-5) are produced. However, at low temperatures (~ 100°C), these molecules, 
consisting of a hydrophobic (i.e. water-repelling) tail (i.e. the aliphatic chain) and a 
hydrophilic (water-attracting) head (i.e. the bromide ion) spontaneously aggregate to 
form a micelle, i.e. a cluster contliining tens or hundreds of molecules. The hydrophobic 

Hexagonal array. 

(a) (b) 

Mesoporous 
molecular sieve 

(c) 

Fig. 1.20 Schematic illustration of the use of micelles (clusters of long-chain molecules having 
hydrophobic (organic) and hydrophilic heads) as templates for the synthesis of a mesoporous 
silicate molecular sieve. (a) The hexagonal array formed by cylindrical micelles, with the hydro
phobic parts of the molecules being in the centre of the cylinder, and the hydrophilic head-groups 
on the outside (light grey): (b) Silicate species (dark grey) occupy the water in the space between 
micelles in the vicinity of the polar head-groups; (c) Calcination leaves a mesoporous silicate 
framework (MCM- 41) with hexagonal geometry. (After Kresge et al. (1992). Reprinted with 
permission from Nature 359,710. © 1992 Macmillan Magazines Ltd.) 
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ends attract each other, leaving the hydrophilic head groups on the outer surface of the 
cluster. In this case it is believed that cylindrical, rather than spheroidal, micelles are 
formed, which aggregate to give hexagonal arrays (Fig. 1.20) Hydrated silicate species in 
solution occupy the continuous region of water surrounding the micelles and can 
condense to form walls comprising amorphous silicates (see §1.2.4); calcination on 
heating then 'burns off' the organic templates, leaving a mesoporous silicate framework 
structure having the same hexagonal geometry as the micellar array (Fig. 1.20). 

Hydrothermal synthesis can also be employed to produce' 1 2 3' phosphate materials, 
e.g. AgTi2(P04h, that have a tunnel structure, somewhat like zeolites. In addition, a 
variety of transition-metal oxides, including many structures which cannot be prepared 
otherwise, can also be sYI}thesized by hydrothermal methods (see Whittingham (1996». 

1.2.4 Sol-gel methods 

An important technique that can be used to synthesize many materials, and prepare 
them in a variety. of sample shapes and forms, is the sol-gel process; this is another 
example of chimie douce. This method is especially suited for the synthesis and prepara
tion of refractory oxide materials at relatively low temperatures; for example, fully 
dense Si02 glass can be made this way at an operating temperature of 1200 °e, instead 
of the melting temperature, Tm ~ 2000 °e, although the precursor porous material in 
this process is formed at much lower temperatures. 

The starting point of this method is a sol, which is a colloidal dispersion of small 
particles suspended in a liquid. A sol can be stabilized by pep tizatiOl1 , i.e. the addition of 
peptizing agents (e.g. HN03) which forin an electrically charged layer around each 
particle; electrostatic repulsion then prevents particle aggregation. Under suitable che
mical and thermal conditions, the particles in some sols can be made to react or interact 
electrostatically so that they form a continuous, three-dimensional network of con
nected particles, known as a gel, instead of aggregating to form larger, but discrete, 
particles, as happens in precipitation or flocculation (Fig. 1.21). The 'wet' gel formed 
during the sol-gel process consists of a network of connected particles containing the 
liquid sol in its interstices. An as-prepared gel can behave as a rubbery, easily deformed 
solid or as an extremely fragile, brittle solid from a mechanical point of view; as a gel 
ages, more of the particles in the sol in the pores condense out onto the existing 
framework, thereby progressively stiffening it. The structure of a gel, as shown in Fig. 
1.21, is an example of a fractal structure (§2.1.1), in which the mass density scales as 
p(r) ex: rDH, where r is the radius of a cluster and the fractal dimension DH < 3: a fully 
dense material is characterized by p(r) ex: p3. 

The sol-gel process naturally lends itself to the preparation of gel samples in a wide 
variety of shapes and forms. Bulk gels can be made in the shape of any container that 
can be filled with a liquid sol. In addition,· gel films can be made by coating a substrate 
with the sol prior to gellification. Finally, even gel fibres can be made by drawing 
(pulling) a fibre from a gelling, viscous sol. 

Removal of the interstitial liquid from a wet gel produces a dry gel, known as a 
xerogel. However., drying a gel is not a trivial process if the structural integrity of a bulk 
(monolithic) gel sample is required to be maintained, i.e. if the sample must remain 
crack-free. Drying a gel simply by heating, to evaporate the interstitial liquid, inevitably 
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Fig. 1.21 Illustration of gel formation and precipitation (flocculation) from a sol. 

is roblematic: the gel shrinks and, worse, cracks form as a res~lt. of the dif\erential 
tr~sses enerated in the drying gel due to capillary forces. The ongm of t~ese mtern~~ 

s g b seen by reference to Fig. 1.22 which illustrates two pores of dIfferent radn 
stresses can e h' , I (F 1 22a) there are no 
in a el When the pores are completely full, in t e wet ge 1~.. . . ' . 

ca ilfar~ forces, but as the gel dries, leaving the pores part-filled ';Ith bqmd (FI~. 1.22b), 
m~nisci form at the liquid-vapour interface in each pore. !here ~s a pr~ss~re ?Iffere~ce 
D..p across the two sides of a meniscus (responsible for capIllary nse of bqmds m nan o~ 
tubes) that is associated with the surface e?ergy IS needed to create the free surface 0 

the liquid, and is given by Laplace's equatIOn: 
i:J.p (21scosO)/r. (1.16) 

H is the radius of ~he pore and 0 is the contact angle between meniscus and. pore 
(0 ere'o~ for perfect wetting of the surface ofthe pore by the liquid); thus, r/cosO IS the 
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. I ·n· (a) the 'wet' state where the pores are completely filled with sol 
:a:ig .. 1.22 Two p~res III a. ge 1. where ressure 'differences across the menisci are different, 
hqUld; (b) a partIally ~nhedd.fg;l, t d·Pr < r The associated differential stresses can cause 
D.P2 > D.PI, for pores Wit 1 leren ra n, 2 I· 

the gel to crack. 



r~dius of cu:vature of the meniscus. Hence, pores of different sizes will experience 
dIfferent capIllary stresses and, if these stress differences exceed the tensile strength of 
the gel material (§3.4.3), cracking occurs. 

. One ~ay of avoid~ng the ef~ect of capillary forces is to use supercritical (or hypercrit
~cal) drym? The gel IS placed m an autoclave, together with some of the same liquid that 
IS :rap~ed m th~ pores of the gel, and the temperature is raised until the critical point (cf. 
~ I~ FIg. 1.17) IS exceeded. Under these supercritical conditions, the distinction between 
hq~Id ~nd vapour vanishes: there are, therefore, no capillary forces in this supercritical 
flUId r~g~e. ~uccessive flushing of the autoclave by dry Ar then removes all traces of 
the flUId, lea~mg a dry, st~~turally intact gel called an aerogel. In practice, this method 
only ~o:'ks, m the case of SIlIca, for alcogels, made with alcohol as the liquid comprising 
t?~ on~mal sol~ hydro gels, where water is the liquid, cannot be dried in this way, since 
SIlIca dzssolves m water under supercritical conditions (§1.2.3). Aerogels, as prepared 
can ?ave.extr~mely h~gh values of porosity (~ 99%). They can subsequently be densified 
by smtermg, I.e. heatmg so that the pore volume collapses as a result of viscous flow of 
the gel framework. 

!:vo m~thods ?~ producing the sol precursor, e.g. of Si02, can be distinguished: either 
aCIdlficatIOn of sIl~cate solutions, or hydrolysis of Si-containing compounds with sub
sequent condensation of silanol groups. In the former, alkali silicate aqueous solutions 
are converted into solutions of silicic acid on acidification; when its concentration 
exc.eeds the solubility li~it of 100 p.p.m., monomeric Si(OH)4 species are produced 
whIch can then polymerIZe by the condensation reaction: 

-Si - OH + HO - Si- -7 -Si - 0 - Si - +H20. (1.17) 

At low pH,. spheroidal s~lica clusters of diameter 1-2 nm are formed by successive 
polyr~lenzatIOn/conde~satI~n reacti.ons. At high pH, larger particles are generated, 
formmg ~ stable sol wIth SI02 partIcles of diameter 10-20 nm for a pH of 10 (e.g. the 
commercial product, Ludox®). Such a high-pH silica sol is destabilized leading to gel 
~ormatio~, by aci~ification. Similar methods are used to convert the ~recursor TiCl4 mto partIcles of TI02 used in paint manufacture. 

An alternative method is to hydrolyse reactive metal compounds, for example alco
holates (also l~nown as alkoxides), M(OR)n' where M is a 'metal' (e.g. Si, Ge, B, AI, Ti, 
Y, Zr) and R IS an alkyl group (e.g. methyl, CH3, ethyl, C2Hs, or propyl, C

3H7). Since 
alcoholates and water are immiscible, the compounds are generally dissolved in an 
alcohol, e.g. methanol or ethanol. (However, intimate mechanical mixing of alcoholates 
and water can be a~~ieved using ultrasound, the resulting (dense) gels being 
termed sonogels.) AddItIOn of water to the alcoholate solutions causes hydrolysis to 
take place: 

M(OR)1l + nH20 -7 M(OH)1l + nROH. (1.18) 

This is followed by a series of condensation reactions as in reaction (1.17) the overall 
reaction of which is ' 

ml1 
mM(OH)n -7 mMOIl/ 2 + THzO; (1.19) 

th~ aggregates of the product form a sol. It can be seen that this method allows mixed 
oXIde gels to be produced readily, since intimate mixing of the alcoholate solutions 
occurs prior to hydrolysis. 

1.2.5 Ion exchange and intercalation 

A fmal class of chimie douce involves the exchange/insertion of chemical species, often 
ions into materials, thereby changing their composition and, sometimes, also their 
stru~ture. Ion exchange, as its name implies, is the replacement of one type of ion 
present in the structure of a material by another type. Intercalation is the insertion of a 
chemical species into the structure of a material where none existed before. A prerequi
site for both processes is an open structure so that the ch~mical species being exchanged 
or inserted can move relatively freely between the interior and exterior of a sample. In 
addition, ion exchange will only be feasible, under moderate reaction conditions, if the 
ions to be exchanged are not too strongly bonded in the structure. 

One class of materials exhibiting easy ion exchange is the aluminosilicates known as 
zeolites (§1.2.3), the structure of which is characterized by having large pores intercon
nected by channels; the well-defined channel diameter of a given zeolite (see Fig. 1.19) 
allows such materials to be used as molecular sieves. However, cations, often alkali ions, 
that compensate for the negative charge on the alumino silicate framework, also lie in 

. these pores and channels and hence are easy to exchange, simply by passing a solution 
containing the ion to be inserted over a zeolite containing another ion (as in" water 
softeners, where Ca2+ ions iii water are exchanged for Na+ ions in the zeolite). Even the 
aluminium ions in the zeolitic framework can be removed, albeit by somewhat more 
vigorous reactions involving acid treatment, in which decationation accompanies deal
umination: 

Si M+ Si Si Si 

'" / 

'" / 
0", /0 OH HO 

4HCI+ Ale -7 OH HO +MCI + AICI 3 (1.20) 

d "'0 / 
"'Si Si/ '" Si Si 

followed by a condensation (dehydroxylation) reaction to give two Si-O-Si sites. 
In other cases, channels in the structure are not so big and hence ion exchange is 

somewhat more difficult. The structure of Na-,B-alumina (§3.4.2.2) consists of layers of 
aluminium oxide, between which the N a + cations are situated and can move; ion 
exchange in this case can be achieved by immersion in a molten salt (at, e.g., 300 0q, 
containing the cation (e.g. Li+, K+, Rb+, Ag+, Cu+, etc.) to be inser.ted and exchanged 
for Na+ in the ,B-alumina. Note that easily exchangeable cations are monovalent: 
insertion of divalent cations (e.g. Ca2+) , replacing two Na+ ions, is possible, but 
exchange only takes place at high temperatures (e.g. ~ 800 0q since ionic transport 
of divalent cations is very slow. This is because the ionic binding energy between the 
cations and oxygen anions is much larger than for monovalent cations as a result of the 
increased electrical charge on the cation. 

Many crystals are lamellar, i.e. layer-like, but do not have exchangeable cations. In 
such cases, it is often possible, however, to intercalate chemical species between the 
layers, which are correspondingly pushed apart. Graphite, the layer-crystal polymorph 
of carbon (see §8.4.1) can be readily intercalated with either electropositive or electro
negative atoms (which subsequently ionize when intercalated), or with molecules from 
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the liquid phase (as well as from the vapour - see §1.1). Examples include the following 
intercalation reactions: 

Graphite + K(melt) ~ C8K, 

Graphite + Br2 ~ C8Br, 

Graphite + FeCl3 ~ Graphite: FeCI3 . 

(1.21 ) 

(1.22) 

(1.23) 

Note that well-defined stoichiometries of intercalated product can often be achieved, 
although non-stoichiometric compositions can also be synthesized. Many intercalation 
reactions are reversible; e.g. by subjecting the intercalated product to a vacuum, the 
intercalant can be removed. Further details on intercalation reactions in graphite, 
particularly concerning the electron transfer that occurs between intercalant and gra
phite host, are given in §8.4.1. 

A great number of layered, or tunnel-containing, compounds can be intercalated, 
including the layer crystals of transition-metal dicha1cogenides MX2 (M = transition 
metal; X = S or Se), for example TiS2, MOS2 etc. (see §8.4.1), as well as crystals ofV20s, 
M003, Ti02, Mn02. Intercalation of the tunnel compound crystalline W03 by Na gives 
the compounds NaxW03 which are known as sodium-tungsten bronzes after their 
metallic appearance (colour and optical reflectivity): the incorporation of metallic 
sodium in the optically transparent, electrically insulating material W03 is accompanied 
by electron transfer from intercalant to host, reSUlting in metallic behaviour of the 
intercalated compound for x ~ 0.2. 

Lithium can readily be intercalated between the layers of the layered crystal TiS2 
(see §8.4.1), either chemically or electrochemically, to form a continuous range of 

R 
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Cathode Anode 

LiCI04 in dioxolane Li metal 

Fig. 1.23 Illustration of the electrochemical intercalation of TiS2 by Li in an electro
chemical cell. 
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intercalation products LixTiS2(0 < x < 1». Chemical intercalation can be carried out 
by using n-butyllithium in an organic solvent (e.g. hexane) as the source of lithium: 

xC4H9Li + TiS2 ~ LixTiS2 + ~C8HI8. (1.24) 

More active lithiating agents, e.g. metallic lithium itself, can cause reduction of the 
dichalcogenide to lower cha1cogenides or even to metallic titanium. 

Alternatively, the intercalation may be carried out electrochemically, i.e. in an elec
trochemical cell, in which the powdered TiS2, mixed with electrically conducting gra
phite powder to enhance its electrical conductivity, forms the cathode (§3.5.2), with 
metallic lithium being the anode (Fig. 1.23). An ionically-conducting, Li+ -containing 
electrolyte (e.g. LiCI04 dissolved in a non-aqueous solvent, e.g. dioxolane) transports 
Li+ ions from anode to cathode, where they intercalate the TiS2. The corresponding 
half-cell reactions are therefore: 

Li ~ Li+ + e- (anode), 

TiS2 + Li+ + e- ~ LiTiS2 (cathode). 

(1.25a) 

(1.25b) 

The electrons liberated at the anode in reaction (1.25a) travel to the cathode, where they 
take part in reaction (1.25b), via an external electrical circuit (Fig. 1.23). 

Amorphous (non-crystalline) thin films ofW03 can be electrolytically intercalated 
with protons (using an aqueous acid as electrolyte) to give the compounds 
Hx W03 (x < 0.2) which have a deep blue colour instead of the very pale yellow colour 
of pure W03; this phenomenon of electrochromism, i.e. a colour change induced 
electrochemically, is due to the reduction of some W6+ ions to Ws+ ions. 



Solid to solid synthesis and preparation 1.3 
The synthesis .of solid ~ateria.ls, particularly in polycrystalline powdered form, is 
frequently carned out usmg solId precursors. However, solid-state reactions are often 
very slow and difficult t? carry out to completion unless performed at very high 
temperatures, where reactmg atoms can diffuse through solid materials to the reaction 
front m.o~e easily. Transformation of one phase to another (with the same chemical 
composItIOn) can also occur in the solid state, either at elevated temperatures or 
elevated pressures (or both). 

1.3.1 Solid-state reactio~s 

Soli~-state reactions can be divi~ed into two stages: nucleation of the reaction product 
and ItS subs~que?t growth. ConSIder the simplest case of two single crystals of different 
react~nt solIds, I? contact alo?g a planar interface (Fig. 1.24a), and for the sake of 
defimteness conSIder the reactIOn between a divalent oxide AO and a trivalent oxide 
B20 3 in a 1 : I ~olar rati? to form a product having the spinel structure (see §7.2.5.6 _ 
the archetype mmeral spmel has the composition MgAh0 4). The reaction is thus: 

AO + B20 3 --+ AB20 4. (1.26) 

Nucleation is, in general, difficult because product and reactants have different 
structures and hence considerable structural rearrangement of the lattice of the react
ants is required to form nuclei of the product. This reconstructive nucleation is 
obviously energetically costly, and hence will only occur to a significant extent at 
elevated temperatures. Nucleation is made easier, however, if the product and one of 

(a) 

(b) AO 

I f, 

New reactant:'" 
product interface ! 

I j..3x..J 
Ix: 4 i 

"14!'" 

B20 3 

ABP, 
product 
layer 

~ig. 1:24 . Schematic illustration of t.he progress of a solid-state reaction occurring by cationic 
mterdiffuSI?n, fOi' ~xample b~tween smgle crystals of a divalent oxide AO and a trivalent oxide, 
B20 3, form!ng a spmel matenal AB20 4 . (a) before reaction occurs; (b) after growth of the product 
layer, of thIckness D.x. 

the reactants have very similar structures, in terms of both the atomic arrangement and 
the bond lengths involved. This is the case, for example, for MgO and spinel, MgAlz04 
(although not for alumina and spinel): both have a cubic array of oxide ions (see §2.2.4). 
Thus, nuclei formation at the MgO interface is favoured since the oxide-ion arrange
ment (although obviously not the cation arrangement) can be effectively continuous 
across the reactant-product interface of a nucleus. Nucleation is particularly favoured 
when the structural matching of the two materials is so precise (say, bond lengths the 
same to within 10-15%) that epitaxial (or epitactic) nucleation occurs (§ 1.1.1), where 
there is structural registry in the plane of the interface, or particularly when topotactic 
nucleation occurs, where the structural registry also extends into the reactant and 
product nucleus in a direction normal to the interface. 

Once nuclei of the product have formed, growth of the product layer is generally 
limited by the diffusion of ions from reactant, through the product layer, to the reaction 
front. In the case of spinel formation, for example, there are two reaction fronts, one at 
the AO - AB204 interface and the other at the B203 - AB204 interface (Fig. 1.24b); 
this is an example of the Wagner reaction mechanism. In these systems, cation (A2+, 
B3+) diffusion is dominant, being faster than that of oxygen, and hence there is a 
counterdifJusion of the two cation species, A2+ from AO to B20 3, and B3+ from B203 
to AO. Thus, the reactions occurring at the two interfaces may be written as 

2B3+ + 4AO - 3A2+ --+ AB20 4 
3A2+ + 4B20 3 - 2B3+ --+ 3AB204 

giving the overall reaction as in (1.26): 

(AO - AB20 4 interface), 

(B203 - ~B204 interface), 

4AO + 4B203 --+ 4AB204, 

(1.27a) 

(1.27b) 

where the positive and negative signs for the cations in reactions (1.27) indicate their 
arrival or departure, respectively, from the particular interface. 

Note that, from reactions (1.27), it is apparent that the B20 3 - AB20 4 interface 
should move at three times the rate of the AO AB204 interface (Fig. 1. 24b); this 
differential movement of diffusion fronts is known as the Kirkendall effect (§3.4.2.1). 
However, at the temperature (c:= 1500 0c) at which reaction for (Mg, AI) spinel naturally 
takes place, a range of (MgO)x(Ah03)I_x solid solutions exist, with 0.5 < x < 0.6, i.e. 
corresponding to formulae ranging from MgO.73Ah.1804 to MgAI20 4. Thus, the product 
formed at the MgO-spinel interface will be the most magnesium-rich, i.e. the stoichio
metric composition with x = 0.5, but that formed at the interface with Ah03 will be the 
most aluminium-rich, i.e. x c:= 0.4. Hence, the two reaction interfaces .do not move with 
rates having the predicted ratio 1: 3; for the reaction between MgO and Fe203, for 
example, the growth-rate ratio has been found to be 1: 2.7. 

For the growth stage of spinel formation, as for many solid-state reactions (including 
tarnishing - §1.1), interdiffusion of ions through the product layer is the rate-control
ling step. In such a case, the thickness 6.x of the product layer increases parabolically 
with time, (6.x)2 ex: t. Diffusion of atoms in solids is almost invariably mediated by 
structural defects (e.g. atomic vacancies, etc. - see §3.4.2). There will be a linear 
concentration gradient of defects in the product layer under steady-state conditions, 
i.e. the defect concentration will be inversely proportional to 6.x. The defect, and 
concomitantly ion, flux (the number of diffusing species passing through unit area per 
unit time) is proportional to the concentration gradient (§3.4.2.1), and since the rate of 
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change of thickness of the product layer, d(6.x)jdt, is proportional to the ion flux, the 
growth rate can therefore be written as: 

d(6.x) k 
Cit 6.x' (1.28) 

where k is a rate constant. This rate law can be integrated to give parabolic growth 
kinetics: 

(6.x/ = 2kt. (1.29) 

This parabolic growth law has been confirmed experimentally, for example for the case 
of the formation of the spinel NiAh04 from NiO and Ah03 (Fig. 1.25). 

The rate of solid-state reactions also depends on the area of contact between the solid 
reactants, i.e. on their surface areas. The surface area of a given mass of solid can be 
increased enormously simply by making the particle size smaller (Problem l.8). Very 
fine powders can be produced most simply, in general, by precipitation from solution 
(§1.2.3); such a method also has the advantage that the reactant particles are intimately 
mixed, thereby ensuring homogeneity of the final product of the ensuing solid-state 
reaction. However, solid-state reactions involving powders invariably produce solid 
products having pore defects. 

In some solid-state processes, nucleation can be homogeneous, i.e. it can take place 
throughout the volume of the solid. This is often the case for thermal decomposition of 
solids, for example the reaction: 

(1.30) 
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Fig. 1.25 Parabolic-growth kinetics for the formation of the spinel NiAl20 4 from NiO and 
Ah03. (After Pettit et al. (1966). Reproduced by permission of American Ceramic Society) 

Suppose that in a solid there are N potential nucleation sites per volume at which 
thermal decomposition may occur, each of which has an equal a priori probability of 
becoming an actual nucleus. If n is the concentration of nuclei already present, then 

dl1 
dt =k(N.-n), (1.31) 

where k is a rate constant or, on integration: 

11 N[l - exp( -kt)]. (1.32) 

For small values of kt, the exponential in eqn. (1.32) can be expanded, giving a linear 
nucleation law: 

11 = kNt. (l.33) 

Assuming that the nuclei are spherical in shape, and that they grow with a constant 
linear velocity v, and that no new nuclei can grow in those regions where reaction has 
already occurred, then it can be shown that the fractional volume extent of the decom
position, 0', is given by (see Problem I.?): 

0' = [1 exp( -,8t4 )], (1.34) 

where 

,8 ( 1.35) 

Equation (1.34) is a particular example of the general, empirical Avrami-Erofeev 
equation: 

0' = [1 exp( -,8t")]. (1.36) 

Further details on solid-state reactions are given in Schmalzried (1981). 

1.3.2 High-pressure preparation and synthesis 

The application of high.pressure (often accompanied also by high temperature) to a 
solid can cause a transition to a different phase of the material, having a higher density 
and, often, higher coordination numbers of the atoms involved. Although such high
density phases can be thermodynamically stable only at high pressures (and tempera
tures), nevertheless they can be kinetically metastable under ambient conditions if 
pressure-quenched (i.e. decompressed, and cooled, rapidly), since .the reconstructive 
transformation that must take place for the high-pressure phase to revert to the low
pressure form is kinetically hindered at low temperatures where there is insufficient 
thermal energy available to initiate the necessary bond-breaking. 

An example of high-pressure solid-state preparation is the transformation of the 
graphite modification of carbon (the most stable fOlm at ambient pressure and tem
perature) to diamond: the coordination of the carbon atoms increases from three to 
four, and the density increases from 2.25 x 103 to 3.52 X 103 kg m-3

. The pressure
temperature phase diagram for these two polymorphic forms of carbon, together with 
the liquid phase, is shown in Fig. 1.26. Typical transformation conditions for the 
production of synthetic diamond are 13 GPa and 3000 °C; even at this elevated 
temperature, however, the transformation is sluggish. 
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Fig.1.26 Pressure-temperature phase diagram for carbon. (After Bundy (1963). Reprinted with 
permission from J. Chem. Phys. 38, 631. © 1963 American Institute of Physics) 

Other examples of pressure-induced transformations include that between the quartz 
and stishovite modifications of silica (SiOz), typically occurring at 12 GPa and 1200 °C: 
quartz has 4: 2 coordination of silicon and oxygen, respectively, wher~as stishovite 
(having the rutile structure §2.2.4.2) is characterized by 6: 3 coordination. Potassium 
chloride (KCI), having the rocksalt structure (§2.2.4.2) and 6: 6 coordination at ambient 
conditions, transforms to the caesium chloride structure (§2.2.4.2) with 8 : 8 coordina
tion, at a typical pressure of 2 GPa at ambient temperature. Cadmium sulphide, with 
the wurtzite structure (§2.2.4.2) and 4 : 4 coordination, is transformed to the rocksalt 
structure at 3 GPa at ambient temperature. 

Occasionally, high-pressure synthesis can be employed to synthesize solids that are 
not stable at ambient conditions; again, pressure quenching is used to obtain the high
pressure form in a metastable state at ambient conditions. An example is the synthesis 
of the distorted perovskite structure of PbSn03: 

>7GPa 
SnOz(s) + Pb2Sn04(s) ---7 2PbSn03(s). 

, 400°C 
(1.37) 

1.3.3 Glass-ceramics 

A broad definition of a ceramic is a solid compound of metallic elements and non-metallic 
elements (commonly oxygen) in which ionic bonding is predominant (see §2.2.4). In terms 
of this definition, inorganic (non-metallic) glasses form a sub-set of ceramic materials. 
However, the term glass-ceramic is normally reserved for those materials in which a glass 
has been controllably devitrified (crystallized) to give a fine-grained polycrystalline 
microstructure. The size of the crystallites in a glass-ceramic is typically 0.1 f.lm; for 
comparison, crystallite sizes in conventional ceramics are much larger, e.g. ~ 10 f.lm for 
alumina and 40 f.lm for porcelain (heat-treated (,fired') aluminosilicate). 

Heating a normal glass to temperatures comparable to the crystallite growth tem
perature (see Fig. 1.14) in general does not produce a glass-ceramic as the crystallized 
product: the resulting crystallites are much too large on average and have too wide a 
range of sizes. This is because crystallization in this case occurs at relatively few 
(heterogeneous) nucleation centres, generally distributed on the glass interfaces. In 
order to prepare a glass-ceramic, a large number of extrinsic nucleation centres (nucle
ants) must be distributed homogeneously through the matrix when preparing the glass 
precursor. This 'seeding' can be achieved by incorporating, say, thermally unstable 
metal oxides that decompose to give a colloidal suspension of very small metal particles 
during the melting, prior to vitrification; alternatively, metals such as Cu or Pt at a 
concentration of ~ 0.05 %, when dissolved in the melt, form colloidal metal dispersions. 
In addition, certain oxides, notably Ti02, can induce phase separation in the mdt, 
leading to an extremely fine dispersion. All these forms of structural inhomogeneity, 
dispersed uniformly throughout a melt-quenched glass, can act as heterogeneous 
nucleation centres. 

In order to form a glass-ceramic, a seeded glass is subjected to two thermal treat
ments. The first, at a lower temperature, Toue, nucleates crystallites in the seeded glasses; 
the second, at a higher temperature, Tgr , causes the growth of the crystal nuclei (cf. Fig. 
1.14). Most of the volume of the glass is crystallized, but a small proportion of the glassy 
phase persists in the interstices between crystallites. Since the viscosity of the glass is 
greatly decreased at elevated temperatures, e.g. Tgr , the glass tends to flow into the 
interstices, resulting in near-zero porosity for glass-cer:amics, in contrast to the appreci
able porosity of conventional (aluminosilicate) ceramics. 

One common family of glassy materials used to produce glass-ceramics is 
LhO - Ah03 - Si02, which crystallizes to give ,6-eucryptite (LhO· Ah03 ·2Si02) 
and ,6-spodumene (Li20 . Ah03 . 4Si02). These glass-ceramics have very low thermal
expansion coefficients and are used for cookware, a,stronomical-telescope mirror sup
ports, etc. Another family is glassy MgO - Ah03 - Si02, which crystallizes to cordier
ite (2MgO . 2Ah03 . 5Si02) and solid solutions of ,6-quartz, producing high-strength, 
electrically insulating glass-ceramics. Further details of glass-ceramics are given in 
McMillan (1979). 

Problems 

1.1 Estimate how long it takes to form a monolayer of nitrogen contaminap.t on a clean surface 
at 300 K for background nitrogen pressure corresponding to: 
(a) high vacuum (10-5 Pa); 
(b) ultra-high vacuum (10-9 Pa). 

1.2 What microstructure might be expected to occur in a thin film produced by thermal 
evaporation at an oblique angle of incidence onto a cooled substrate? 

1.3 Suggest a reaction scheme that would lead to separation of Cu20 from Cu or CuO using 
HCI as a transporting agent. 

1.4 Explain why, although the reaction between molten aluminium and sulphur proceeds very 
slowly at 800°C, the addition of iodine results in the ready formation of crystals of AhS3 at 
a cooler place. 

1.5 (a) By considering the changes in free energy accompanying the formation from a liquid of 
crystallite nuclei, assumed to be spherical in shape for simplicity, show that there is a 
critical radius, "c, below which 'embryos' are unstable and redissolve and above which 
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nuclei are stable and can grow, given by fc = 2a/ t::.g, where a is the surface (interfacial) 
energy per unit area, and t::.g is the difference in free energy per unit volume between 
liquid and solid. Hence, show that the free-energy (thermodynamic) barrier to nuclea
tion, associated with the formation of critical-sized embryos is t::.G* = 167fa3 /3 (t::.g) 2. 

By making suitable approximations, show further that t::.G* ~ 167fa3TI~ V~/3 
(t::.T)2(t::.Hd, where Tm is the melting temperature, t::.Hr the latent heat offusion, Vm 
the molar volume of the liquid and t::. T the degree of undercooling of the melt below T m. 

(b) By considering also the rate at which atoms attempt to cross the liquid-embryo inter
face, governed by the kinetic barrier to nucleation, t::.Ga, show that the rate of nucleation 
is given by I = k exp( -t::.Ga/ RT)exp( -t::.G* / RT). Hence account for the form of the 
temperature dependence of I shown in Fig. 1.14. 

1.6 For the eutectic binary phase diagram for solute A and flux B shown in Fig. 1.16a, where the 
eutectic composition, E, is, say, Ao.33 Bo.67, what is the fractional amount of liquid at 
temperatures Tx and the eutectic temperature, TE, for the composition X, say, Ao.sBo.2' 
(Hint: use a 'lever rule' for fractional amounts, derived from the principle of moments.) 
What happens to the concentration of the liquid, starting at X, as the melt is cooled from Tx 
to TE? 

1.7 Essay: Compare and contrast the various techniques for preparing single crystals from the 
liquid phase. What are the advantages and disadvantages in each case? 

1.8 What is the surface area in each case of the same volume of a material existing as: 
(a) a single cubic crystal of side 10-2 m; . 
(b) a powder of cube edge 10 J-Lm; 
(c) an ultra-fine precipitate of cube edge 10 nm? 

1.9' Derive the thermal-decomposition rate law, eqn. (1.34), for spherical nuclei, the number of 
which increases linearly with time (eqn. (1.33», and which grow at a constant velocity, v. 

1.10 Essay: Explain the advantages that 'chimie douce' has over conventional solid-state reac
tions in the synthesis of materials, giving examples of its application. 
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Most properties of solids are determined by their atomic arrangement, i.e. structure. 
Thus, in order properly to understand the physical behaviour exhibited by solid materi
als, it is essential at the outset to gain an understanding of their atomic structure. This 
chapter, therefore, consists of a classification scheme for solids, followed by a discussion 
of the different types of structures adopted by solids, and a brief survey of symmetry 
aspects. A discussion is then given of the different forms of empirical and exact 
quaritum-mechanical interatomic potentials used in computer simulations of the struc
ture of materials. Finally, a survey is given of various experimental techniques used in 
structure determination. 

Most texts on the solid state commence with a discussion of the atomic structure. This 
book differs from most in the type of materials included for discussion (e.g. quasicrys
tals and fractals), the inclusion of a section on computer simulation (an approach that is 
becoming increasingly more useful with the introduction of ever more powerful com
puting facilities) and the discussion of experimental techniques for structure determina
tion (such as X-ray absorption spectroscopy and holography) that normally do not 
feature in solid-state physics textbooks. 

Order and disorder 

2.1.1 Classification of solids 

In principle, all solid materials may be classified, in structural terms, into one of three 
distinct categories: 

• crystals 
• fractals 
• amorphous solids 

Crystals are the most structurally ordered of solids. This order is associated w.ith the 
existence of translational periodicity, whereby an atom, or group of atoms, for~m~ the 
unit cell, when translation ally repeated in a periodic fashion in all vector dIrectIOns 
defining the dimensional space in which the crystal is .defined, t?ereby ge.nerat:s the 
crystal (see Fig. 2.1). Normally, of course, the embeddmg space IS th~ee-dlm~nsIOnal, 
but in the example shown in Fig. 2.1 it is two-dimensional for ease of IllustratIOn. The 
embedding space may also have a dimensionality greater tha? th.ree; although ?f 
mathematical interest, such hyper-space crystals are of no phYSIcal mterest except m 
the case of quasicrystals (see below). 

Another distinct structural class of materials comprises fractals. These structures are 
characterized by being self-similar, that is the structure looks identical at all length 
scales. An everyday culinary example is the cauliflower: the overall shape (morphology) 
is superficially similar to that of the major florets forming the whole caulif1o~er, in. turn 
the same as the individual florets making up the major florets etc. A two-dImensIOnal 
mathematical eJ¥lmple of a fractal structure is the Sierpinski gasket (see Fig. 2.2), but 
there are many others (see e.g. Mandelbrot (1982), Peitgen et al. (1992)). Real materials 
exhibiting fractal structures are silica aerogels (very low-density materials, 0.1 g cm-3) 

~ 
I 
t 

Fig. 2.1 A two-dimensional crystal generated by the translationally periodic displacement of a 
unit cell (in this case, a square). 
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Fig. 2.2 A two-dimensional example of a fractal structure: the Sierpinski gasket. The basic steps 
to construct the Sierpinski gasket are shown: at a given step, each black triangle has an inverted 
tr~angular hole (one quarter the size) inserted, touching at the midpoints of the edges of the larger 
tnangle. 

made by gelling a silica sol under the appropriate conditions; the fractal structure in this 
can be envisaged as an ever-branching tree comprised of silica particles. 

Amorphous (or, synonymously, non-crystalline) materials form the third generic 
class of materials. Such materials are devoid of both the long-range order (trans
lational periodicity) characteristic of crystals and the self-similarity characteristic of 
fractals. Their structure, as will be seen later, can only be described in a statistical sense. 
This is not to say, however, that amorphous materials exhibit no structural order 
whatsoever; i.e. they are not necessarily completely random structurally. In many 
cases, particularly for those amorphous materials .in which directed (i.e. covalent) 
bonding is prevalent, the short-range order, characterized by the nearest-neighbour 
bond length and coordination number and bond angle, quantities defining local coor
dination polyhedra, is relatively well-defined, with only relatively small statistical fluc
tuations. However, much greater fluctuations characterize the connection of such 
coordination polyhedra, with the result that structural order is destroyed for distances 
beyond that corresponding to a few coordination polyhedra (see Fig. 2.3). The resulting 
structure for an amorphous covalent material is termed a continuous random net
work. 

It should be stressed that the above three general categories of structures of solids 
represent, in many cases, idealized situations. Thus, perfect single crystals are mathe
matically describable but physically unrealizable. Real crystals inevitably contain struc
tural defects (see Chapter 3) or extrinsic impurities that destroy the" complete 
translational periodicity characteristic of perfect crystallinity; note, however, that the 
disorder in this case is much more heterogeneous and localized than the more homo
geneous disorder characteristic of amorphous solids (see Fig. 2.3a). Even the surfaces of 
finite-sized, otherwise structurally perfect crystals cause the destruction of infinite 
periodic structural order. 

(b) 

Fig.2.3 (a) A two-dimensional representation of an amorphous, covalently bonded structure, in 
which one type of atom (.) is trigonally coordinated and another (0) is two-fold coordinated. A 
real example might be B20 3. (b) The corresponding crystalline modification of the amorphous 
structure shown in (a). 

For the case of fractal structures, self-similarity in real materials only extends over a 
certain range of distances. The lower limit is determined by the size of the 'bead' from 
which the fractal structure is generated; obviously, the size of the bead cannot be less 
than that of an individual atom. The upper limit o(the self-similarity length scale is 
determined by the onset of structural homogeneity and isotropy (often necessary to 
ensure the mechanical integrity of a fractal structure in which the density would 
otherwise decrease with increasing distance). 

An interesting class of materials are the so-called quasicrystals (see e.g. Jaric (1988), 
Janot (1995) which appear, at first sight, to fall into none of the above three generic 
structural categories. Such materials exhibit 'icosahedral' order, evident in the five-fold 
symmetry of the sharp diffraction spots comprising the electron diffraction patterns (see 
§2.6.l), first observed in a rapidly quenched alloy of MnAl6 (Shectman et al. (1984», or 
the icosahedral morphology of the growth habit exhibited by more stable quasicrystal
line alloy materials (e.g. AICuFe or AI6CuLi)) for which sl9w cooling of the melt can 
produce single quasicrystals (Fig. 2.4). The significance of the discovery of these 
materials is that no three-dimensional periodic lattice can have icosahedral symmetry, 
or any other point-group symmetry containing five-fold (or seven-fold or higher) 
rotations (see §2.3.2). Thus, these materials are aperiodic, yet simliltaneously exhibit 
orientational order (like conventional crystals), albeit with five-fold symmetry. A further 
conundrum is that the diffraction patterns of such materials consist of an arrangement 
of sharp spots: conventional crystallographic wisdom has it that sharp diffraction spots 
are characteristic only of single, translation ally periodic crystals (see §2.6.1). The struc
ture of quasicrystals can be understood, and the above paradoxes resolved, by noting 
that an aperiodic quasicrystalline structure in three dimensions (3D) is simply the 
projection onto 3D of a periodic (hypercubic) structure in 6D space (see e.g. Bale and 
Goldman (1988». A two-dimensional representation of quasicrystalline order is given 
by the 'Penrose tiling' (Penrose (1974))-see Fig. 2.5-in which an aperiodic structural 
arrangement, exhibiting local five-fold rotation symmetry, can be achieved by an 
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(a) (b) 

Fig. 2.4 Photographs of quasicrystals showing their characteristic five-fold symmetry: (a) a 
dodecahedron of AICuFe; (b) AI6CuLi3, showing 12 triacontahedra centred at the vertices of an 
icosahedron. (Courtesy of Dr. M. Audier.) 

Fig. 2.5 A 2D Penrose tiling illustrating quasicrystalline order: the structure is aperiodic, yet has 
local five-fold rotation symmetry (see point P). The two types of rhombi (fat and thin) comprising 
the tiling are shaded. 

appropriate arrangement of 'fat' and 'thin' rhombi, having acute angles of 720 and 36°, 
respectively (note 360°/5 = 72°). The Penrose tiling shown in Fig. 2.5 is, in fact, an 
appropriate projection of a 5D hypercubic lattice onto 2D (Whittaker and Whittaker 
(1990». 

2.1.2 Lattices and unit cells 

The description of the structure of (ideal) crystals is greatly simplified by the presence of 
translational periodicity. For further simplification, the discussion will be restricted to 
the case of three-dimensional objects (since these, of course, make up the vast majority 
of structures of interest to the solid-state physicist or chemist or materials scientist); 
however, the extension of crystallography to higher dimensions (of use in describing 
structures of quasicrystals, for example) is moderately straightforward (Bak and Gold
man (1988), Janot (1995». 

A 3D perfect crystal can be generated by decorating each point in an appropriate 
lattice with the same basis in each case (a basis being an atom or a group of atoms)-see 
Fig. 2.6. A lattice is an infinite array of mathematical points in 3D space having the 
translational periodicity characteristic of the· crystal. It is defined in terms of three 

0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 0 
0 0 0 0 0 

0 0 0 0 0 0 
(a) 0 (b)O (c) 0 0 0 0 0 

Fig.2.6 2D illustration of the relationship between (a) a lattice; (b) the atomic basis; (c) and the 
actual crystal structure. 

Fig.2.7 Different ways of choosing translation vectors for a 2D lattice. All except (a4' h4) are 
primitive vectors. 
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fundamental translation vectors, a, b, e: two lattice points are thus connected by a 
translation vector of the form 

R = ua + vb + we, (2.1 ) 

where u, v and IV are integers. There are many ways of choosing the translation vectors 
for a given lattice(see Fig. 2.7), but those for which eqn. (2.1) is satisfied are said to be 
primitive. The geometric object defined by the primitive axes (a parallelpiped in 3D) is 
termed the unit cell, and this has a volume (in 3D) given by: 

Vc = a· (b x e). (2.2) 

Different types of unit sell can be envisaged, depending on the relative disposition of 
lattice points within the cell. A cell containing lattice points only at the corners (Fig. 
2.8a) is termed primitive (P); others include additional lattice points at the body centre 
(body-centred, I-Fig. 2.8b), at the centre of opposite faces (side-centred, e.g. C-Fig. 
2.8c), and at the centre of all faces (face-centred, F-Fig. 2.8d). 

There are just fourteen 3D crystal lattices with different symmetries, the so-called 
Bravais lattices. These may be further subdivided into seven crystal systems, each having 
one or more different types of unit cell, as indicated in Table 2.1. The relationships 
between the unit vectors a, b, e and the intervector angles a, (3" defining the various 
unit cells are shown in Fig. 2.9 . 
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Fig. 2.8 Different types of unit cells~ (a) primitive (P); (b) body-centred (I); (c) side-centred, in 
the c direction (C); (d) face-centred (F). 

Table 2.1 The seven 3D crystal systems and their unit ceIls 

Crystal system Unit-cell coordinates Symmetry Bral'ais lattices 

Cubic a b = Cj a = 13 = , 90° Four 3-fold axes P, F, I 
Tetragonal a = b =/= Cja = 13 =, = 90° One 4-fold axis P, I 
Orthorhombic a =/:.b =/= Cj a 13 , = 90° Three 2-fold axes or P, F, I, C 

mirror planes (or A or B) 
Hexagonal 
Trigonal* 
Monoc1inict 
Tric1inic 

a = b =/= Cj a 13 = 90°" = 120° One 6-fold axis P 
a = b =/= cja = 13 = 90°" = 120° One 3-fold axis P 
a =/= b =/= Cj a 13 = 90°, 'Y =/= 90° One 2-fold axis or mirror plane P, C 
a=/=b=/=cja=/=j3=/=, None P 

* !t should be noted that there is an alternative definition of the trigonal cell, i.e. a b = C, Q {3 =1= 90°, but 
WIth a ~hombohedral (R) unit cell. Note also that some sources (particularly American) subsume the trigonal 
system mto the hexagonal system, making six crystal systems in total. 
t Note that an equivalent definition of the monoclinic cell, favoured by crystallographers, has 
O:=i=90°,{3 =1= 90°. 

Fig. 2.9 Relationship between unit-cell vectors a , b, c and the intervector angles a, 13, , defining 
the coordinates of the seven crystal systems. 
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Fig. 2.10 2D Bravais lattices: (a) Oblique lattice; (b) square lattice (Ial = Ihlj B 90°); 
(c) hexagonal lattice (Ial = Ihlj B = 120"); (d) rectangular lattice (Ial =/:. Ihlj B 90°); (e) centred 
rectangular lattice showing the primitive cell and the rectangular cell (lal =/= Ihl; B 90°). 

In 2D, there are only five Bravais lattices (Fig. 2.10). The one with the least symmetry 
is the oblique lattice with the intervector angle f) -1= 90° or 120° and sides a -1= b 



(Fig. 2. lOa). Restricting the angle e to 90° or 120° imposes additional rotation or mirror 
symmetries, resulting in four other Bravais lattices (Fig. 2. lOb-e). 

2.1.3 Nomenclature for crystal directions and planes 

It is often necessary to refer to a particular vector direction in a crystal, or to a 
particular plane of atoms, and for this a convention is needed which is general and 
valid for all crystal types. 

For the case of directions, consider a vector z connecting a general point P and the 
unit-cell origin 0 (Fig. 2.11). The vector z makes a projection of u' on the a axis, v' on 
the h axis and w' on the c axis (Fig. 2.11). The three numbers u', v', w' are then each 
divided by their highest common denominator to reduce them to a set of smallest 
integers u, v, w: the direction of z is then denoted [u ]I \11). If the projection of z along a 
particular unit-cell axis is in the negative direction, then the integer involved is distin
guished by placing a bar on top, e.g. u. A complete set of equivalent directions in a 
crystal is denoted as (uvw) (note the use of angular, rather than square brackets). Thus, 
for the case of the cubic crystal system as an example, the complete set of cube-edge 
directions is (100), the face diagonals (110) and the body diagonals (Ill). 

Atomic planes in crystals are labelled in a similar way to directions. Consider a 
general plane intersecting the unit-cell axes at u' a, v' hand w' c (see Fig. 2.12). The 
reciprocal quantities Ilu', Ill" and l/w' are then transformed to the smallest three 
integers, h, k, I, having the same ratios (the Miller indices), and the plane is then denoted 
as (h k /). Again, for a negative intersection of a plane with a unit-cell direction, the 
relevant index is distinguished by having a bar on top. Thus, the six faces of a cubic 
crystal are represented as (100), (010), (001), (100), (010), (00I). The complete set of 
planes of a particular type is denoted as '{h k I}: the set of cube faces is thus {100}. The 
most important atomic planes in cubic crystals are shown in Fig. 2.13. Howeyer, it is 
important to understand that not all Miller planes coincide with actual atomic planes. 

b 

a 

Fig. 2.11 Representation of directions in crystals. A vector z makes projections tI, v, w' onto the 
unit- cell axes a, b, c, respectively. Division of the set tI, v, w' by the highest common denominator 
produces the set u, v, w: the direction is then denoted as [u1'wJ. 

Fig. 2.12 Representation of atomic planes in crystals in terms of Miller indices. The plane 
intersects the unit-cell axes at tI, v, w'. The reciprocal quantities l/u',I/1"andl/w' are then 
converted into the smallest commensurate integers, hId. The plane is denoted (hkf). 

(111 ) (110) (001) 

Fig. 2.13 Important atomic planes in the cubic crystal system. 

Note that in cubic crystals (but not necessarily for other crystal systems), the direction 
[hkn is orthogonal to the plane (hk/). The use of particular types of brackets in different 
contexts should be noted. 

The Miller-index system has the advantage that the spacings between adjacent planes 
may be calculated readily (such lattice-plane spacings determine the condition for 
diffraction of waves (e.g. X-rays) by crystals-see §2.6.1). Thus, for a cubic crystal 
with unit-cell dimension a, the spacing dhkl between the planes {hk/} is given by (see 
Problem 2.Ib): 

(2.3) 

F or the case of hexagonal crystals, it is conventional and convenient to use four Miller 
indices (hkil) to characterize atomic planes, even though, strictly, one of the indices must 
be redundant. As before, the Miller indices are obtained by forming into the smallest 
integers the reciprocals of the intersections along four crystal axes. Three of the axes, a, 
h, c, are taken to lie in the basal plane at 120° to each other; the fourth axis, d, is normal 
to the other three (Fig. 2.14). Thus, for example, the basal plane is denoted (0001) and 
the set of hexagonal faces is represented as {l 0 I O}. 

ODTtr Rfr;;·OPHt:;.NEst 
M. r. ~t'. U. UHRAR Y 
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d. 

c 

)I-L---~ .. b 

a 

Fig. 2.14 Axes used to !obtain the Miller indices (hkil) for the hexagonal lattice. The d axis is 
perpendicular to the basal plane. 

2.1.4 Non-crystalline structures 

Non-crystalline, or amorphous, structures are devoid of long-range translational peri
odicity, and hence many of the simplifications inherent in the structural description of 
crystals (e.g. in terms of a unit cell containing only a very few atoms periodically 
continued in space) are not applicable. Thus, the unit cell of an amorphous solid can 
be regarded, albeit not very usefully, as being infinite in extent. Because of the degree of 

e(r) 
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Fig. 2.15 Schematic illustration of the structural origin of the density function, p(r), used to 
characterize the structure of non-crystalline materials. 
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Fig. 2.16 Illustration of various real-space correlation functions used to characterize the struc
ture of amorphous solids, in this case a model of vitreous Si02 (figure courtesy of Dr. S. Tara
skin): with average atomic density pO = 7.15 A -3. (a) p(r); (b) G(r) 41frp(r) - 41frpo; 
(c) T(r) 41frp(r); (d) J(r) 41f1.2p(r). 

randomness characterizing non-crystalline structures, a statistical description (in 
terms of spatial distributions or probability functions) is more appropriate. However, 
one simplifying feature which can be invoked in the case of amorphous materials is 
orientational isotropy: averaged over the whole solid, the. structural environment at 
a given distance from a particular (type of) atom is the same in all·directions. Thus, if 
the structure is described in the general case in terms of the density function per), being 
the atomic density at a vector distance r from a given origin atom, in the case of 
amorphous materials, per) becomes simply a one-dimensional function, pCr), dependent 
only on the scalar distance r, as a consequence of orientational isotropy (see Fig. 2.15). 
A number of real-space structural probability (correlation) functions, all related to per), 
are used to describe the structure of non-crystalline solids, and these are illustrated 
in Fig. 2.16. Of these, the most useful is the radial distribution function (RDF), defined 
as 

(2.4) 



54 ATOMIC STRUCTURE AND BONDING 

Since the RDF is simply the average probability of finding an atom in the distance 
interval dr between distances rand r + dr from a given origin atom, the integral of the 
curve of J(r) over a given peak, i.e. the area under the peak (say the first) gives the 
appropriate average atomic coordination number (e.g. the average nearest-neighbour 
coordination number). 

Atomic packing and geometry 

2.2.1 Types of interatomic bonding 

The structure of a solid is determined by a balance of the attractive and repulsive forces 
acting between the atoms making up the solid. Structural parameters such as equilib
rium bond lengths and angles, coordination numbers and atomic densities result from 
this balance of opposing forces. The cohesion of materials results essentially from the 
attractive electrostatic interaction between the negative charge of valence electrons and 
the positive charges of atomic nuclei. However, it is conventional to distinguish between 
different types of bonding, depending on the electron distribution in the solid. (Note 
that the gravitational attraction between atoms is much too small to contribute sig
nificantly to the bonding in solids-see Problem 2.3.) 

Thus, if there is no charge transferred between atoms, and the charge distribution of 
each atom is spherically symmetric, the only attractive interatomic interaction that can 
exist is the so-called van der Waals (or London) interaction, resulting from induced 
electric dipole-dipole effects. Although relatively weak, this attractive interaction is 
responsible for the cohesion of rare-gas solids, such as crystalline argon, and many 
molecular solids made up of organic molecules. It is also present in all other types of 
solids but this interaction is often swamped by the other, stronger interactions operative 
in those cases. The attractive van der Waals interaction acts pairwise between atoms, 
and depends on the interatomic separation to the inverse sixth power: this r-6 depen
dence ensures that the interaction is short-ranged, acting essentially only between 
nearest-neighbour pairs of atoms. It is also centrosymmetric, i.e. there is no orienta
tional dependence to the interaction. Thus, the cohesive energy of van der Waals solids 
is maximized by maximizing the atomic packing. 

In the opposite extreme, where there is complete charge transfer between different 
atoms commensurate with their valencies, i.e. atoms become positively charged cations 
and negatively charged anions, the dominant attractive interaction between the ions is 
ionic in character, with the lIr dependence characteristic of Coulomb electrostatic 
interactions. This ionic interaction is long-ranged; unlike the case of the van der Waals 
attractive interaction, the ionic force is not confined to nearest neighbours only, but# 
extends to very distant neighbours, making the evaluation of Coulombic cohesive 
energies rather complicated (see §2.2.4.1). The ionic interaction is also centrosymmetric; 
thus the lowest energy structures are those with large numbers of conjugate ions around 
a given ion (subject, however, to the avoidance of near-neighbour like-atom pairings, 
which would greatly destabilize the structure owing to the very high Coulomb repulsive 
interactions involved). 

Another scenario is when electropositive atoms become ionized, forming cations, but 
in the absence of other electronegative atoms (which would otherwise trap the liberated 
electrons, thereby forming conjugate ions, i.e. anions), the electrons instead form a 
delocalized electron 'gas' within which the ion cores are dispersed. Such materials are 
called metals. Contributions to the binding energy of metals come from a number of 
Sources, including the electrostatic attraction between the electron gas and the ion cores 
(see §2.2.3.1), but some of these interactions can only be understood following a 
thorough discussion of the behaviour of electrons in solids (Chapter 5). The interaction 
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is both long-ranged and also many-body (involving many particles simultaneously). The 
metallic bonding interaction involving the delocalized electron gas is again non-direc
tional, and so atomic structures are favoured in which the ion packing density is 
maximized. 

The fourth major type of bonding is the covalent interaction which, like the van der 
Waals interaction, is short-ranged and occurs between pairs of atoms. The overlap of 
partially occupied electron orbitals on each of two neighbouring atoms leads to a 
lowering of the overall electronic energy, and hence a net bonding interaction. However, 
such covalent bonds, i.e. regions of high electron density between atoms, are very 
directional in space, and so covalent materials are not close-packed like van der 
Waals, ionic or metallio solids, but instead adopt structures with low atomic densities. 

The final type of bond that is often distinguished is the so-called hydrogen bond. 
Since the hydrogen atom contains only one electron, it can only form a single covalent 
bond to another atom~ However, fully or partially ionized, a hydrogen atom can form 
essentially ionic bonds with other (electronegative) atoms, e.g. 0, N or F, a process 
facilitated by the very small size of the proton compared with other atoms or ions. This 
interaction plays an important role in certain inorganic materials, notably water. In the 
case of crystalline ice, H20 molecules are arranged so that each 0 atom is surrounded in 
a tetrahedral arrangement by four other 0 atoms with H atoms lying between each pair 
of 0 atoms, each 0 atom being essentially covalently bonded to two of the H atoms 
(thereby making an H20 molecule) and hydrogen-bonded to the other two H atoms
the so-called 'ice rule' (see Fig. 2.17). Hydrogen bonding also plays an essential role 
in biology, for example being responsible for the stability of the a-helix structure of 
DNA. 

0 H 

0 0 

Fig. 2.17 Illustration of the structure of ice, a hydrogen-bonded tetrahedral network of oxygen 
atoms. 

Finally, it should be noted that the bonding types described above represent 
extreme cases. Very often, for materials containing more than one type of atom and 
where partial charge transfer takes place, distinctions between, say, ionic and covalent 
bonding become inappropriate and the actual interatomic bonding is intermediate in 
character between the two extremes. For suc;:h cases of iono-covalent bonding, the 
fractions Ii of ionic (or heteropolar) character and!c of covalent (or homopolar) 
character in the bond are important quantities. Obviously, these are related via 
ji + !c = 1. For an elemental material like Ge,!c = 1 and Ii = 0, whereas for an ionic 
solid like NaCI,fi c:= 0.9. 

Phillips (1973) has given a scheme for estimating in solids the ionic fractions of bonds, 
or ionicities, in terms of appropriate energy gaps. For the case of a homopolar material, 
like Ge, only covalent interactions exist. The covalent interaction V AA between two 
orbitals on two neighbouring atoms, A, results in the formation of bonding and 
antibonding molecular-orbital levels, lying in energy below and above, respectively, 
the atomic-orbital energy level, and separated by the covalent energy egcov = 2 VAA. In 
the case of a solid, additional interactions with neighbouring atoms cause a broadening 
of the bonding and antibonding molecular-orbital levels into bands of electron states, 
fonning the valence band and conduction band, respectively (see Chapter 5 for a fuller 
discussion). In the solid, therefore, egcov can be associated with the separation between 
the centres of the two bands. 

In the case of heteropolar materials, e.g. the compound AB, where partial charge 
transfer takes place, the additional ionic interactions cause an increase of the energy gap 
from egcov to egp. The origin of this energy can be seen from a molecular-orbital (MO) 
picture of the bonding interaction between orbitals on neighbouring atoms A and 
B, having orbital energies egA and egB, respectively (Fig. 2.18). If VAB is the (covalent) 
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Fig. 2.18 Formation of bonding and antibonding states for a heteropolar diatomic molecule. 



interaction energy between the orbitals, the resulting bonding and antibonding orbital 
combinations have energies given by the solutions of the secular determinant: 

(2.5) 

i.e. 

(2.6) 

The energy difference ~p (the Penn gap) between the upper antibonding state and the 
lower bonding state in the molecular-orbital picture, or between band centres for the 
solid state, is therefor6 from -eqn. (2.6) 

(2.7a) 

or 

(2.7b) 

where ~i(= ~A - ~B) is the ionic contribution to the gap. For a covalent system, the 
Penn gap is ~p = ~cov. In this approach, the ionicity (fraction of ionic character) of a 
solid is given by (Phillips (1973»: 

(2.8) 

Estimates for the parameters in this approach, ~cov and ~i, can be obtained from 
optical absorption experiments (see §5.8): peaks in optical-absorption spectra can be 
associated with the energy separation between bands. Thus, for homopolar covalent 
materials (e.g. C, Si, Ge) ~cov is obtained immediately. In an isoelectronic series of 
compounds, e.g. Ge, GaAs, ZnSe, CuBr, the bond length is almost invariant, and hence 
it can be assumed that ~cov remains approximately constant. In other cases, it can be 
assumed that ~cov scales with the interatomic spacing d, e.g. as ~cov ex: d-2.5 (valid for 
the elements). For heteropolar materials, ~p can be found from optical-absorption 
spectra, and hence ~i can be obtained from eqn. (2.7b). The ionic energy is proportional 
to the electronegativity difference between the elements forming the heteropolar solid. 

2.2.2 Van der Waals solids 

2.2.2.1 Interatomic bonding 

Although the van der Waals interaction is ubiquitous, because it is so relatively weak it 
is only important in those solids where other interactions (ionic, covalent, metallic) are 
absent. This attractive interaction arises from induced dipole-dipole interactions, 
between even closed-shell atoms with spherically symmetric charge distributions, as a 
result of (zero-point) fluctuations in the charge distribution. The characteristic 1'-6 

dependence of the attractive van del' Waals interaction can be derived from classical 
electrostatics considerations (although properly the interaction is due to a quantum
mechanical effect and should be treated as such). A spontaneous fluctuation of an 
otherwise spherically symmetric charge distribution of an atom will produce an instan-

taneouS dipole moment, PI. This gives rise to an electric field at a distance r from the 
perturbed atom of the form E rv PI /1'3, which will polarize a second atom located at 1', 
having an electronic polarizability a, giving rise in it to an induced dipole moment 
P2 rv apI/r3. The potential of a dipole p in a field E is proportional to p' E, and hence 
the attractive part of the van der Waals inter:action varies as -Ar-6. (For a simplified 
quantum-mechanical derivation of this result, using coupled simple harmonic oscillat
ors with equal and opposite charges at either end, representing an atomic dipole 
consisting of a negative charge associated with the displaced electron distribution and 
the positive charge of the nucleus, see Borg and Dienes (1992) and Kittel (1996).) 

If the distance r between two atoms is progressively decreased, ultimately the 
electronic charge distributions of the two atoms will begin to overlap. The Pauli 
exclusion principle for fermions precludes the occupation of the same region of space 
by two electrons having the same quantum numbers. As the electron clouds overlap, the 
only way to satisfy the Pauli exclusion principle is for electrons to be pro?1oted to 
higher-lying states, thereby causing an increase in the (electronic) energy. Obviously, 
this behaviour leads to a repulsive interaction, and one which varies very rapidly with r. 
An empirical form often used to account for the repulsive term in the potential is a 
power law, such as B/rll

• Conventionally, the exponent n is chosen to be 12, which is 
sufficiently large to mimic well the abrupt increase in the actual potential with decreas
ing distance at short distances, but also, it must be admitted, for reasons of computa
tional expediency (combining well with the exponent 6 in the van del' Waals attractive 
part of the potential in algtlbraic manipulations). Thu~, the overall potential energy for a 
pair of atoms can be written in the form: 

U(r) = 4£ [ (;) 12 _ (;) 6] (2.9) 
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Fig.2.19 Form of the Lennard-Jones potential modelling the interaction between two rare-gas 
atoms. 
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where the parameters c and (J have the units of energy and length, respectively .. This, the 
Lennard-Jones potential, is illustrated in Fig. 2.19. Note that U(r) = 0 when r (J (or 
infinity). The position of the minimum in the pair potential can be found as usual by 
setting dU(r)jdr = 0, giving rmin = (2)1/6(J and Umin = -c. 

Although the 1'-12 term gives a reasonably satisfactory representation of the repulsive 
part of the potential due to Pauli-exclusion effects, nevertheless other empirical func
tional forms are also used which are equally algebraically manipulable, e.g. the expo
nential repulsive term 

Urep(r) = Aexp( -rj p), (2.10) 

where A and p are par~meters representing the strength and range of the interaction, 
respectively. ! 

The cohesive energy of a rare-gas crystal can be estimated by summing the Lennard
Jones potential (eqn .. (2.9» over all pairs of atoms in the crystal, assuming that the 
kinetic energy of the atoms may be neglected. Thus, the total potential energy is 

Utot =-N4€ I: ~ - I:: ~ 1 [ ( ) 12 ()6] 
2 i'!-j aijR i'l-j aijR 

(2.11) 

where N is the number of atoms in the crystal, the factor of 112 is to correct for 
overcounting of pair interactions when all atoms in tum are taken as the origin in 
evaluating the summations, and the interatomic distance is written as r = aijR, R being 
the nearest-neighbour separation. The quantities 111 L.ijaijl2 and 11 = L.ijaij6 can be 
evaluated for any particular crystal structure: for a cubic close-packed (face-centred 
cubic, f.c.c.) array, 111 12.13188,11= 14.45392; for a hexagonal close-packed (h.c.p.) 
crystal, m = 12.13229 and /1 = 14.45489; while for a body-centred cubic (b.c.c.) struc
ture, 111 = 9.114 18 and 11 = 12.2533 (KitteI (1996». A detailed description of these 
structural types will be given shortly, but suffice it to say now that both f.c.c. and 
h.c.P. structures have 12 nearest neighbours surrounding a given atom, whereas the 
coordination number is 8 for a b.c.c. structure. Thus, it can be seen that most of the 
cohesive-energy contribution in rare-gas crystals (which adopt the f.c.c. structure) 
comes from the nearest neighbours. The equilibrium interatomic spacing is found, 
from setting d Utot/ dr = 0, to be 

(
2111) 1/6 

R = - (J 1.09(J 
11 

(2.12) 

for the f.c.c. structure; substituting this value into eqn. (2.11), together with the values of 
/11 and 11 appropriate for the f.c.c. structure, gives as an estimate for the cohesive energy 

Utot = -8.6Nc. (2.13) 

Experimental values of the cohesive energy of rare-gas crystals are in the range 0.02 to 
0.2 eV/atom (Ne to Xe); eqn. (2.13) predicts values that are within 10% or so of these 
values. 

2.2.2.2 Cubic close-packed structure 

The archetypal examples of van der Waals solids are the rare-gas crystals, N e, Ar, Kr and 
Xe (He is a liquid at zero pressure due to large zero-point fluctuations). These crystallize 

in a close-packed (c.p.) structural arrangement, specifically the cubic close-packed 
(c.c.p.), or, equivalently, the face-centred cubic (f.c.c.), structure. The c.c.p. (fc.c.) crystal 
structure is also favoured by other spherically symmetric entities, e.g. the C60 molecule 
'buckminsterfullerene' (see §8.2.1), mutu~lly interacting via the van der Waals potential. 
The C.c.p. (fc.c.) and its close relation, the hexagonal close-packed (h.c.p.) structure (see 
§2.2.3.2), are the structures for which the nearest-neighbour coordination number is 
maximized (equal to 12) for a3D packing of equal-sized spheres. 3D close-packed 
structures are built up from stackings of close-packed 2D layers, in which every sphere 
(atom) is in contact with six others in a hexagonal arrangement (Fig. 2.20). Another c.p. 
layer can be laid on top of the first, such that each atom in the second layer sits in a 
hollow formed by three atoms in the first (A) layer; there are two such positions, labelled 
Band C in Fig. 2.20. The c.c.p. (fc.c.) structure then results from the packing sequence 
ABCABC ... Thus a given atom has a total coordination number of 12, comprising six 
atoms from the same layer, and three atoms each from the adjacent layers. 

The conventional (non-primitive) unit cell of the c.c.p. structure is the fc.c. cell (Fig. 
2.21a) which clearly exhibits the underlying cubic symmetry. This cell contains a total of 
four lattice points (each of the eight comer sites is shared between eight different cells; 
each of the six face-centred sites is shared between two cells). The primitive unit cell of 
the c.c.p. structure, on the other hand, is a rhombohedron (Fig. 2.21 b) containing only 
one lattice site, and is therefore only one-quarter the size of the fc.c. cell (Fig. 2.21a). 
The close-packed arrangement (Fig. 2.20) is not readily discernible by casual inspection 
of the fc.c. unit cell in Fig. 2.21a. In fact, the c.p. laye~s are the {Ill} planes of the fc.c. 
unit cell (see Fig. 2.22). 

The close-packed structures have the highest packing fraction of all crystalline 
structures comprising spheres (atoms) of one size; the packing fraction ¢ is defined as 
the ratio of the volume actually occupied by the spheres (atoms) to the volume of the 

Fig.2.20 A 2D close-packed layer of spheres (atoms) occupying A sites. Adjacent c.p. layers can 
occupy either B or C sites. 
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Fig.2.21 Unit cells for the cubic close-packed structure: (a) conventional (non-primitive) f.c.c. 
unit cell; (b) primitive rhombohedral unit cell. 

Fig.2.22 A (Ill) plane of the f.c.c. unit cell of the c.c.p. structure showing the close-packed layer 
(the atoms completing the hexagonal arrangement around atom I characteristic of the c.p. layers 
derive from other cells and are not shown). 

unit cell. For the c.c.p. (f.c.c.) structure composed of spheres of radius 1', the face 
diagonal is given by 41' (since the atoms 1, 2, 3 in Fig. 2.22, forming part of the c.p. 
layer in the (111) plane, are in contact), and hence the face edge length is given by 2J2r; 
the cell volume is thus l6-12r3. Since the volume of each sphere is 47rr3/3 and there are 
four lattice sites (spheres) per cell, the packing fraction is thus 

<P = 4 x 47rr
3 

= -I27r = 0.7405. 
16-121'3 x 3 

The same value of ¢ characterizes the h.c.p. structure as well. 

2.2.2.3 Wigner-8eitz cell 

(2.14) 

An equivalent, informative way of regarding crystalline structures is in terms of a 
different type of unit cell, the Wigner-Seitz unit cell. (This formalism is also particularly 

Fig.2.23 Illustration of the generation of the Wigner-Seitz cell in 2D. 

useful for the discussion of electronic properties in terms of the so-called reciprocal 
lattice-see §2.4.l) The rules for generating the Wigner-Seitz cell are illustrated in Fig. 
2.23 for the 2D case. Lines are drawn from a given lattice point to connect all other 
neighbouring lattice points. Lines in 2D (planes in 3D) are then drawn normal to these 
lines at the midpoints. The smallest area in 2D (volume in 3D) enclosed in this manner is 
the Wigner-Seitz cell. It is a primitive unit cell, and is atom-centred; all space can be 
covered by a periodic translation of the cell as for other unit cells. In the case where each 
lattice point represents an atom, the Wigner-Seitz cell also represents the atomic 
coordination polyhedron. 

For the c.C.p. (f.c.c.) structure, the correspondin.g Wigner-Seitz cell is a rhombic 
dodecahedron (see Fig. 2.24). Since this polyhedron has 12 faces, this indicates directly 
the 12-fold nearest-neighbour coordination of the c.c.p. lattice. The symmetries inher
ent in the cubic lattice (see §2.3.2) are also clearly evident: four 3--fold rotation axes in 
the (111) directions, three 4-fold axes in the (100) directions and six 2-fold axes in the 
(110) directions. 

--------;-"'1 
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Fig.2.24 The Wigner-Seitz cell of the c.c.p. (f.c.c.) lattice: the rhombic dodecahedron. The origin 
of the crystallographic axes has been shifted so that an atom lies at the centre of the cell. Bonds 
between this central atom and its 12 near neighbours are indicated. 
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2.2.2.4 Finite clusters 

Although the c.c.p. (f.c.c.) structure appears to be the most stable structure for van der 
Waals materials, such as rare-gas solids, this is true only for solids effectively infinite in 
extent; for smaller clusters of atoms, the f.c.c. structure may not, in fact, have the lowest 
free energy. The large surface-to-volume ratios of small clusters of atoms means that an 
additional destabilizing, surface-strain energy exists. It is interesting and significant that 
neutral (uncharged) rare-gas clusters exist containing 'magic' numbers of atoms (13, 19, 
23,26, 29, etc.). These can all be obtained by the serial addition of atoms to an initial 
13-atom icosahedral seed (Fig. 2.25a), thereby creating so-called Mackay icosahedra 
(Mackay (1982))-see Fig. 2.25b for a 55-atom example. It is significant that the two 
cluster structures showrt in Fig. 2.25 exhibit five-fold rotational symmetry, which is 
incompatible with translational periodicity in 3D (see §2.3.2). See §8.2.2.2 for a discus
sion of clusters ofNa atoms, where small magic numbers «1500) are determined by the 
numbers of electrons needed to fill completely the energy levels for electrons confined to 
a spherical potential well. 

(a) 

Fig.2.25 Structures for rare-gas clusters: (a) 13-atom icosahedron; (b) 55-atom Mackay icosa
hedron. 

2.2.3 Metallic solids 

2.2.3.1 Interatomic bonding 

Materials in which the valence electrons are spatially delocalized throughout the solid 
(and not confined to regions of high electron density, i.e. bonds, between atoms), and 
for which, concomitantly, the electrical conductivity is very high are termed metals. 
(Another succinct definition of a metal, in terms of the electronic structure, will be given 
in §5.2.5) The metallic binding interaction is impossible to understand properly without 
a prior discussion of electronic properties, and so a more thorough discussion of 
metallic cohesion will be deferred to §5.1.3.4. Nevertheless, some insight can be obtained 
from the following simple model, where it is assumed that the attractive part of the 
potential, binding atoms together, comes from the attraction between the positively 
charged ion cores and the negatively charged delocalized electron gas. 

Consider the model of an idealized metal, consisting of ion cores located at the lattice 
sites of a crystal and bathed in a uniform negative charge density, representing the 

(a) ...... 2R ...... 

Fig.2.26 (a) Schematic representation of a model for metals, positive ion cores bathed in a 
uniform sea of negative charge. (b) Model for calculating the cohesive energy of metals, in 
which the negative charge density, representing the delocalized electron gas, is confined to 
spherical volumes around each ion core, each sphere containing one electron. 

delocalized electron gas (Fig. 2.26a), represented instead by spherical volumes, of radius 
R, containing a uniform density of negative (electronic) charge, surrounding each ion 
core (Fig. 2.26b). R can be taken to be the Wigner-Seitz radius. The overall attractive 
potential energy per atom is evaluated by calculating the potential experienced by a 
spherical shell of charge (of thickness dr, lying between r( ~ R) and r + dr) due to the net 
charge (ion core plus electronic) lying within the spherical volume of radius r. This 
charge is given by 

(2.15) 

and therefore the electrostatic potential at the shell is ¢(r) = q(r)j47rcor, with co being 
the permittivity of free space. Thus the attractive potential energy of the charge in the 
spherical shell, dq 4m:2pdr, where p is the negative (electronic) charge density given by 

p = -ej(41rR3 j3) 

experiencing the potential ¢(r) is given by dVA = ¢(r)dq or 

47rr2p[e e(r3 jR3 )] 
--..:......!:.---.:........:..----.:..:!.dr. 

47rcor 

(2.16) 

Integrating over the volume of the sphere, of radius R, gives the net attractive potential 
energy per atom (ion core): 

-3e2 lR VA = -- [r - JAjR3]dr 
47rcoR3 0 (2.17) 

= _ge2 j407rcoR. 

Note that this term includes a contribution from the attractive Coulombic i;nteraction 
between electrons and ions and a repulsive contribution from electron-electron inter
actions (see §5.1.3.4). 

The repUlsive energy associated with the electron gas/ion core system is a little more 
subtle. At first sight, it might be thought that the electrostatic Coulombic repUlsion 
between the positiVely charged ion cores (Fig. 2.26) would give rise to a repulsive 
contribution to the energy. However, the intervening electron gas very effectively 



screens such repulsive interactions, and so this contribution can be neglected. The real 
origin of the repulsive interaction lies instead in the kinetic energy of the electron gas: 
due to quantum effects (effectively the Pauli exclusion principle), the kinetic energy of 
the electron-gas system increases when it becomes more compressed, i.e. it exhibits a 
repulsive behaviour. A proper discussion of this effect is given in §S.1.2; here, we merely 
quote the result for the repulsive energy (i.e. the mean kinetic energy of the electron gas, 
cf. eqn. (S.17», viz. 

(2.18) 

where me is the electron :plass, N is the total number of electrons and V the volume. The 
electron density in the model of Fig. 2.26b is given by 

N 1 
11=-=---

V 4n-R3/3 
(2.19) 

and thus 

(2.20) 

The total energy per atom, UT , in this model is then given by the sum of eqns. (2.17) and 
(2.20). 

The equilibrium separation, 2Ro, between ion cores in this model is found as usual by 
setting d UT I dR = 0, giving 

2 () 2/3 2Ro = 1M :co 9
4

71' = 4.9ao = 2.6A, 
3me 

(2.21 ) 

where ao is the hydro genic Bohr radius (ao = h2471'cole2me). This estimate is in (surpris
ingly) good agreement with experimental values for free-electron-like metals (e.g. Au, 
2.88 A; Cu, 2.S6 A). . 

Substitution of eqn. (2.21) into the expression for UT gives an estimate for the 
cohesive energy per atom 

Uo = -ge2/8071'coRo. (2.22) 

Evaluation of eqn. (2.22) gives Uo ~ -SeV latom, in reasonable agreement with experi
mental values (e.g. Au, 3.81 eV/atom; Cu, 3.49 eV/atom). 

2.2.3.2 Close-packed structures 

The non-orientational nature of the metallic bonding interaction in the simplest case 
ensures that metals usually adopt close-packed structures. The cubic close-packed (face
centred cubic) arrangement has already been discussed (§2.2.2.2); metals such as AI, Cu, 
Ni, Ag and Au adopt the c.c.p. (f.c.c.) structure. 

Another way of stacking the close-packed planes shown in Fig. 2.20 is in the sequence 
ABAB ... , instead of the sequence ABCABC characteristic of the c.c.p. (f.c.c.) struc
ture. The resulting structure is called the hexagonal close-packed (h.c.p.) structure. 
(Note that the h.c.p. structure is not a Bravais lattice.) In this case, the close-packed 
layers lie parallel to the basal plane of the structure (see Fig. 2.27). The packing density 

(a) (b) 

Fig.2.27 Hexagonal unit cell of the h.c.p. structure: (a) elevation view; (b) plan view. The atom 
shown shaded is the second atom of the basis at (1/3, 2/3, 1/2). 

is the same as that for the c.c.p. (f.c.c.) structure (0.740S), and the atomic coordination is . 
also 12. The unit cell contains two atoms as the basis: one is at (0, 0, 0) and the other at 
(1/3, 2/3, 1/2). The ratio of unit-cell parameters for the ideal h.c.p. structure is given by 
(see Problem 2.8): 

c (8) 1/2 -;; = 3 = 1.633. (2.23) 

A number of metals adopt the h.c. p. structure, even though the cia values often differ 
somewhat from the ideal case (e.g. Co, cia 1.622; Mg, 1.623; Zn, 1.861; Cd, 1.886). 

Another structure commonly adopted by metals (e.g. the alkali metals, and Cr, Fe, 
W) is the body-centred c~bic (b.c.c.) structure (for the conventional unit cell containing 
2 atoms per cell, see Fig. 2.8b). Unlike the c.c.p. and h.c.p. structures, the b.c.c. structure 
is not close-packed; the nearest-neighbour coordination number is 8, and the packing 
fraction, ¢ = 0.68, is lower than that of the c.c.p. and h.c.p. structures (see Problem 2.9). 

The differences in cohesive energies for metals crystallizing, for example, in the c.c.p., 
h.c.p. or b.c.c. structures are very small. As a result, metals may adopt different crystal 
structures depending on external parameters such as temperature or pressure; i.e. they are 
polymorphic. Understanding why certain metals adopt particular structures is a difficult 
task (see e.g. Sutton (1993»; the expression for the cohesive energy given by eqn. (2.22) is 
structure-independent, and such a structure-independent contribution makes up 90% of 
the total cohesive energy. The residual, structure-deciding contributions derive, for 
example, from the orientational effects of d-electrons in transition metals. 

2.2.3.3 Amorphous metals 

Thus far, the supposition has been that metals always form crystalline structures. 
However, in the case, say, of very rapid cooling of a melt, there may be insufficient 



time for the structure with the lowest free energy (that is, the crystal) to form, and a 
higher-energy, more disordered structure will be quenched in. 

The most extreme examples of such disordered structures are amorphous metals (see 
e.g. Elliott (1990)), which completely lack all translational and orientational order. They 
are commonly made by 'melt-spinning', in which ajet of the molten metal is directed at 
the edge of a rapidly spinning Cu disc (see §1.2.2); effective cooling rates of the order of 
106Ks-1 can be achieved in this way, and the metallic glass is produced in the form of a 
very long ribbon, a few mm (or cm) wide, and a few /-lm thick. Metals which can be 
rendered glassy in this way tend to be eutectic alloys of transition metals and 'metalloid' 
atoms (C, B, P, Si, etc.), e.g. PdsoSho or NisoB2o, although many other glass-forming 
alloy compositions exist. 

The simplest model for the structure of an amorphous metal is the self-explanatory 
dense-random packing (DRP) of equal-sized hard spheres. Each atom is surrounded by 
a different number of atoms; the average nearest-neighbour coordination number is 
~ 13. The packing fraction of a DRP structure (</J ~ 0.64) is appreciably lower than for 
the crystalline c.c.p. or h.c.p. structures (</J = 0.74). However, ultra-pure elemental 
metals do not readily form glasses, and the DRP model does not adequately describe 
the structure of, say, metal-metalloid alloys. Structural studies using diffraction (§2.6.1) 
indicate that, in the case of metal-metalloid alloys, the nearest-neighbour coordination 
number around metalloid atoms is smaller (~ 9) than that around metal atoms (c::: 13). 
Also, metalloid-metalloid nearest neighbours appear to be absent, although they 
would be expected to occur in a binary-atom DRP structure. Gaskell (1981) has 
suggested that there persist in the amorphous material local structural elements that 
are characteristic of the corresponding crystalline structure, namely the (capped) trigo
nal prismatic coordination polyhedron found for example in cementite, crystalline 
Fe3C, which has nine-fold coordination of the metalloid and no metalloid-metalloid 
close contacts (see Fig. 2.28). The occurrence of such stereo chemically favoured struc
tural units may be a result of directional-bonding effects associated with the transition
metal d-electrons. 

• Metalloid 0ij::cW 
T(2) 

~) ~) (~ 

~ig.2.28 ~rigonal prismatic. packing of transition metals around a metalloid atom occurring 
III crystallme metal-metallOId alloys and also, possibly, in glasses of the same materials 
(Gaskell (1981»: (a) 'C;apped' trigonal prism, showing the capping atoms (II) and prism 
atOI"I!-s (I). (b) Edge-sh.anng arrangeI?ent in the cementite (crystalline Fe3C) structure. (c) Edge
shanng arrangement m the crystallIne Fe3P structure. The metalloid-second-neighbour-metaI 
distances, M-T(2), are different in each case. (Reprinted with pennissionfrom Nature 289 474. 
© 1981 Macmillan Magazines Ltd.) , 

2.2.4 Ionic solids 

2.2.4.1 Interatomic bonding 

The electrostatic attractive interaction between oppositely charged cations and anions in 
ionic solids provides the major contribution to the overall binding part of the interaction 
energy is such materials; the magnitude of the van der Waals attractive interaction (see 
eqn. (2.9) is only about 1% of the Coulomb term. The Coulomb interionic interaction 
Uij (positive between like ions, negative between unlike ions) can be written as 

U~ = ±q2 
Ij 41fEoaijR) 

(2.24) 

where q is the ionic charge (assumed to be the same for all types of ion, i, j), and the 
interionic distance rij is written as rij = aijR, where R is the nearest-neighbour separation 
(cf. eqn. (2.11»). Summing over all ions in the solid gives 

±q2 _Aq2 

f; 4'7rE:oaijR = 4'7rE:oR) 
(2.25) 

where the so-called Madelung constant A is given by the sum 

(2.26) 

and the positive sign refers to pairs of ions with opposite charge, and the negative sign to 
ion pairs with the same charge. Obviously, the value of the Madelung constant depends 
on both the particular crystal structure adopted by the ions (see §2.2.4.2), and also 
whether it is defined in terms of the nearest-neighbour distance (as in eqn. (2.26» or in 
terms of other distances such as the unit-cell parameter a, etc. 

The repulsive interaction between ions (having closed-shell electronic configurations) 
is comparable to that between rare-gas atoms, and so a power-law form, f3/rll, is often 
chosen for the repulsive part of the potential. Thus, the total lattice energy Utot of a 
crystal comprising 2N ions (in the case of equally and oppositely charged ions, as in 
NaCl) is given by the Born-Lande equation: 

Utot =! x 2N('" ~_ Al ) 
2 f;;; aijR" 4'7rE:oR 

= N(f3b Aq2) 
R" 4'7rE:oR) 

(2.27) 

where 

(2.28) 

and where the factor 112 is used to avoid overcounting of pairs of interactions. Alter
natively, the exponential form (eqn. (2.10» for the repulsive potentials is often used, 
giving the Born-Mayer potential: 



U
tot 

= N(ZAe-R/ p _ Aq2 ), 
41fcoR 

(2.29) 

where it has been assumed that the repulsive interaction is so extremely short-ranged 
that a summation as in eqn. (2.28) simply gives the nearest-neighbour coordination 
number, Z, of the crystal in question. 

The expressions (2.27) and (2.29) can be simplified somewhat by evaluating them at 
the equilibrium position R = Ro, subject to the condition dUtot/dR = O. Thus, for the 
power-law repulsive potential case (eqn. (2.27)): 

UO . __ NAq2 (1 1) 
tot - 41fcoRo - -;;, (2.30) 

and for stability (U~t < 0), n must be greater than unity. For the exponential repulsive 
case (eqn. (2.29)), the result is: 

UO _ _ N Aq2 ( P ) 
tot - 41fcoRo I - Ro (2.31 ) 

where, for stability reasons, p < Ro. The Madelung constant can be calculated for given 
ionic crystal structures (see below). The repulsive-potential parameters can be evaluated 
from measured values of the bulle modulus (or compressibility). 

Use of eqn. (2.30) or (2.31) enables the lattice (or cohesive) energy of ionic crystals 
(with respect to free ions) to be calculated: they give very good agreement with experi
mental values. For the case, for example, of NaCI, the cohesive energy is 7.9 eV per 
formula unit (NaCl). For calculating the energy of a crystal of NaCI with respect to 
neutral atoms, the ionization energy (5.14 eV per atom) for the process Na -+ Na+ + e-, 
and the electron affinity (3.61 eV per atom) for the process CI + e- -+ Cl-, must also be 
taken into account. Thus, relative to neutral atoms, the lattice energy of the NaCI crystal 
is 7.9 + 3.6 - 5.1 = 6.4 eV per formula unit. ~ 

The compressibility, K" or its inverse, the bulk modulus, B, is defined as (see §3.4.3): 

K, == ~ = - + ( ~;) T' 
(2.32) 

From the first law of thermodynamics, and at low temperatures (T -+ OK), the applica
tion of an external pressure p to a solid causing a volume change -d V does external 
work on the solid, resulting in an increase in the internal energy dU = -pd V, or 

p = -(:~) T' 

Thus, from eqn. (2.32), the bulk modulus at the equilibrium volume (denoted by the 
subscript zero), is given by 

(2.33) 

Now 

&U = (&U) . (&R) 
&V &R &V 

and hence 

&2U = (&U) (&2R) (&2U) (&R)2 
&V2 &R &V2 + &R2 &V 

(2.34) 

At the equilibrium distance, R = Ro, (&U /&R)o = 0, and so the first term in eqn. (2.34) 
vanishes. ?Using, as an example V 2NR3 for the NaCI structure (see below), then 
(&R/ & V)(i = (36N2 Rci) -1, and hence the bulk modulus is given by 

B_1 (&2 Utot) 
- 18NRo &R2 o· 

(2.35) 

For the case of the power-law repulsive interaction (eqn. (2.27)), the bulk modulus 
becomes 

B= Aq2(n-l) 
721fcoRci 

(2.36) 

Comparison of eqn. (2.36) with experimental values of Band Ro for the case of say 
NaCI gives n ~ 9 (i.e. significantly smaller than the value 12 conventionally used in the 
Lennard-Iones potential for rare-gas solids (eqn. (2.11)). For the case of the exponential 
repulsive interaction (eqn. (2.29)), the bulle modulus is instead given by 

B = Aq2 (Ro _ 2) 
721fcoRci p -' 

(2.37) 

whence the parameter p can also be obtained by comparison with experimental values of 
the compressibility (p ~ O.IRo). 

2.2.4.2 Structures of ionic SOlids' 

In discussing the various crystal structures that ionic solids may adopt, the following 
considerations need to be borne in mind. In order to maximize the net electrostatic 
attraction between ions iQ a crystal, nearest-neighbour hetero-ionic coordination num
bers should be as high as possible (subject to a central ion maintaining 'contact' with the 
surrounding ions), and repulsive interactions between like ions should be minimized by 
ensuring that like ions are situated as far away from each other as possible. Further
more, local electroneutrality is preserved, i.e. the valence of a given ion is equal to the 
sum of the electrostatic bond strengths between it and adjacent ions of opposite charge, 
where the electrostatic bond strength, Eb, of the n bonds between M 11l+ cations and X~
anions is defined as 

Eb = min. (2.38) 

For each anion, the sum of the electrostatic bond strengths of the surrounding cations 
must equal the negative charge on the anion, viz. 

(2.39) 

This balance of competing requirements for attractive and repulsive components of the 
electrostatic interaction ensures that highly symmetric structures ensue with maximized 
volumes (to reduce repulsive interactions). . 
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Fig.2.29 Representation of the rocksalt (NaCl) structure (Na = e; Cl = 0). 

Perhaps the simplest ionic crystal structure of all is the so-called rocksalt structure 
adopted by NaCI (as well as KBr, AgBr, PbS, MgO, etc.). One way of generating the 
NaCI structure is to occupy alternately with Na+ or CI-ions the lattice sites of a simple 
cubic crystal. The result (Fig. 2.29) is an fc.c. crystal with a basis containing one Na+ 
ion (e.g. at the position 112 112 112, referred to the unit cell) and one CI- ion (at 0 0 0); 
there are four formula units (NaCl) in each unit cell-see Fig. 2.29). Each ion is 
surrounded by six nearest-neighbour ions of the opposite type in the (100) directions. 

An alternative, and instructive, way of regarding ionic structures is in terms of close
packed arrangements of anions (generally larger in size than cations), with the smaller 
cations occupying the interstitial voids in the close-packed array. It has already been 
demonstrated (§2.2.2.2) that the f.c.c. crystal can be constructed by assembling stacks of 
close-packed planes of atoms (Fig. 2.20) in the sequence ABCABC ... Between any two 
such stacks, interstitial voids are unavoidably created, and these voids are of two types 
(Fig. 2.30): octahedral sites (0), in which the number of atoms bordering the void is six, 
three from one layer and three from the adjacent layer, and tetrahedral sites (T), in 
which each void is bordered by three atoms from one layer and one atom from the 
adjacent layer. In fact, two types of tetrahedral holes can also be distinguished: T + sites 
are those in which the apex of the tetrahedron of atoms defining the void points up with 
respect to a layer normal, and T _sites are those in which the apex points down. There are 
equal numbers of 0, T + and T _sites, one each per anion. 

The NaCI structure is then generated by inserting Na+ cations in each of the octahe
dral holes occurring in an fc.c. (c.c.p.) lattice made up of CI- anions (the close-packed 
planes of CI- ions lie along the {Ill} planes of the resulting fc.c. rocksalt structure). 
The octahedral coordination of CI- ions about the Na+ ions is thus self-evident. 

This idea of generating ionic crystalline structures by decorating the interstitial voids 
in (more-or-Iess) close-packed arrangements of one type of ion with the ions of the 
opposite type is general and useful. Thus, for example, the NiAs structure is similar to 
the rocksalt structure in that the octahedral interstices are also occupied by cations, but 
the anion sub-lattice has a different (h.c.p.) stacking sequence, viz. ABAB ... Another 
structure based on an h.c.p. stacking of anions is the wurtzite (hexagonal ZnS) struc
ture, in which only one type (T + or T _) of tetrahedral interstice is occupied by 

o Octahedral sites 
A T + tetrahedral sites 
f::,. T _ tetrahedral sites 

Fig.2.30 Distribution of interstitial voids between two adjacent close-packed layers of atoms. 
Dashed circles represent atoms lying below the plane of atoms represented by full circles. 

cations: in this case, the structure consists of layers of ZnS4 (or equivalently SZn4) 
tetrahedra, connected via the apices, and arranged in an ABAB stacking sequence 
(alternate layers rotated by 1800 about the c-axis). It should be remarked that, in 
many cases, the interstitial voids are too small to accept the cations if the anion sub
lattice is tru~v close-packed. In this case, an expansion of the anion sub-lattice occurs, so 
that anions no longer contact each other in the {Ill} planes, but nevertheless the 
underlying lattice structure is retained; such structures are sometimes called eutactic. 
Table 2.2 gives a number of examples of common ionic crystal types based on such 
interstitial decorations of close-packed structures. In some structures with relatively 

Table 2.2 Some ·ionic crystal structures and the site occupancy of 
interstitial voids in close-packed arrangements of one type of ion 

Anion arrangement 

c.c.p. (f.c.c.) 

h.c.p. 

c.c.p. Ca03 layers 

Interstitial sites 
T+ T_ 0 

1-
1/8 1/8 

1/8 1/8 

rocksalt (NaCl) 
zincblende, sphalerite (ZnS) 

1/2 spinel (MgAI20 4) 

1/2 CdCl2 
antifluorite (Na20) 
NiAs 
wurtzite (ZnS) 

112 CdI2 
112 rutile* (Ti02) 

2/3 Al20 3 
1/2 olivine (Mg2Si04) 

1/4 perovskite (CaTi03) 

* The oxide layers are not planar but buckled. 



large cations and small anions, the cations instead form the close-packed layers and the 
anions then occupy the interstitial holes. An example is the fluorite (CaF2) structure 
(also adopted by the dioxides of large tetravalent cations, e.g. Pb02, U02), the inverse 
of which is the antifluorite structure where the anions are close-packed (see Table 2.2). 

Other ionic structures exist which are not based on close-packed structures. For 
example, the caesium chloride structure is based on the simple cubic structure. There 
is one formula unit per primitive cell, with one type of ion located at 000 and the other 
type at the body-centre position (1/2 112 112) of the simple cubic lattice (see Fig. 2.31). 
The nearest-neighbour coordination is evidently eight in this case. The structure is not 
b.c.c. since different types of atoms occur at the two lattice sites. 

Yet another way of regarding such structures is in terms of (almost) space-filling 
arrangements of linked polyhedra. Thus, for the rocksalt (NaCl) structure, as an 

Fig.2.31 Representation of the CsCI structure (Cs = 6; CI = 0). 

Fig.2.32 (a) Unit ceIl of the rocksalt structure illustrating the edge-sharing of NaCI6 octahedra. 
(b) The rocksalt structure characterized as an array of edge-sharing octahedra. The tetrahedral 
interstices, T +, T _, are also marked. 
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example, the crystal structure can be regarded as being made up from, say, NaCl6 
octahedra with all 12 edges of a given octahedron shared with those of neighbouring 
octahedra (Fig. 2.32). Such a structure, however, is not completely space-filling; empty 
tetrahedral cavities exist within the framework of linked octahedra (Fig. 2.32b). (These 
are the same as the tetrahedral interstices T +, T _ in the close-packed atomic representa
tion.) The rutile (Ti02) structure, as another example, can be regarded as a framework 
of octahedra each sharing two edges and six corners. 

2.2.4.3 Criteria governing adoption of ionic structures 

If ionic structures are regarded as comprising one type of ion (e.g. cations) occupy
ing interstitial voids in a (close-packed) arrangement of another type of ion (e.g. 
anions), then one factor governing whether a given pair of ions (say M+X-) will 
crystallize in a particular crystal structure is whether the cation will fit into a particular 
(tetrahedral or octahedral) interstice. Thus, a factor determining the occurrence of 
certain crystal types is the radius ratio rM/rx of cation radius to anion radius. Minimum 
radii of interstices (and hence of cations) can be determined for a given structure by 
geometry. 

For the case of an f.c.c.lattice (e.g. the rocksalt structure), in which the anions form a 
close-packed array, anions 1,2,3 in Fig. 2.33a form one close-packed layer in the (111) 
plane, in contact with another close-packed layer (anions 4, 5, 6), and thereby enclose an 
octahedral interstice, O. The diameter of the interstice is determined by the four atoms 
2, 3,4, 5 arranged in the (100) equatorial plane (Fig. 2:33b). Thus, from Fig. 2.33b it is. 
evident that 

and hence 

rM = ..J2 - 1 0.414. 
rx 

(b) 

(2.40) 

Fig.2.33 (a) Octahedral (0) and tetrahedral (T) interstitial (cation) sites in an f.c.c. anion array. 
(b) Depiction of the atomic arrangement around an octahedral interstice in the (100) equatorial 
plane. The numbers of the atoms correspond to those in (a). 
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For the tetrahedral interstices (T) in an f.c.c. structure, the distance between pointP 
and anion 5 in Fig. 2.33a is equal to 2(rM + rx) and is equal to the body diagonal of one 
of the eight small cubes making up the f.c.c. unit cell. Thus, 

[2(rM + rx)f = (2rX)2 + (-.f'irx) 2 

or 

rM =! (J6 - 2) 0.225. 
rx 2 

(2.41) 

Cations having radius ratios rM/rx > 0.414 fitting into octahedral holes in an f.c.c. 
anionic lattice would push aPart the anions (so that they were no longer close-packed 
but eutactic) until a critical radius ratio is reached where an increased coordination 
(eight-fold, characteristic of the CsCI structure) of anions in contact with the cation 
becomes possible. For the CsCI structure with eight-fold coordination, the sum of the 
anion and interstice diameters equals the body-diagonal distance of the cubic cell 

or 

[2(rM + rx)] = V3(2rx) 

rM = (V3 - 1) 0.732. 
rx 

(2.42) 

However, it should be admitted that radius-ratio considerations are generally not 
particularly successful for predicting preferred crystal types, especially if there is any 
partial covalent contribution to the bonding in the case of heteropolar systems. In such 
cases, the Phillips approach (§2.2.1) based on bond ionicities is much more successful. A 
plot of the ionic energy ~i versus covalent energy ~c for a number of crystals of the type 
A N B8

-
N (where Nis the number of valence electrons), including Group IV solids (C, Si, 

Ge), III-V compounds (GaAs, etc.), II-VI materials (e.g. ZnS), etc. shows that a critical 
value of ionicity (eqn. (2.8)), H 0.785, separates all four-fold (predominantly cova
lent) structures from six-fold coordinated ionic structures (see Fig. 2.34). 

2.2.4.4. The Madelung constant 

Having discussed the crystal structures that ionic materials may adopt, we are now in a 
position to evaluate the Madelung constant, A, introduced in eqn. (2.26). As mentioned 
earlier, the value of A depends on the particular crystal under consideration. However, 
evaluation of the summation in eqn. (2.26) cannot be carried out straightforwardly by 
simply inserting the appropriate interionic distances, since the resulting sum is not 
obviously convergent. Instead, different ways of grouping the terms must be found in 
order to make the sum convergent. As an example, for the case of the rocksalt (NaCl) 
structure (fig. (2.29)), the charges on the ions can be formally assigned to be either 
inside or outside the cubic unit cell. Thus, for a given cell, ions on faces retain 112 their 
charge, those at edges 114 their charge and those at corners just 118 their charge (two 
faces, four edges and eight corners being shared between neighbouring cells). Thus, 
evaluating e~n. (2.26) for ions within the cell having these formal charges gives 
6{2 ry; + ~ 1.45 as the contribution to A. Including the contribution from the 
next largest cube gives an additional contribution of 0.3, making the estimate 
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Fig.2.34 Plot of values of the ionic energy '&i versus '&c (representing the strength of the 
covalent interaction) for crystals of the type A N B8- N . The line corresponding to the critical 
ionicity N = 0.785 divides four-fold fTOm six-fold coordinated crystals (Phillips (1973). Reprinted 
by permission by Academic Press, Inc.). 

Table 2.3 Values of the Madelung constant for 
various crystal structures 

Crystal type 

Zincblende (ZnS) 
Wurtzite (ZnS) 
Rocksalt (NaCl) 
CsCl 
Cdh 
Rutile (Ti02) 

Fluorite/antifluorite 
Corundum (Ah03) 

A 

1.63806 
1.641 32 
1.747558 
1.762670 
4.71 
4.816 
5.03878 

25.031 2 

(After Borg and Dienes (1992). Reproduced by permission 
of Academic Press, Inc.) 
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A c::: 1.75, which is already close to the precise value. Evaluation of A for even larger 
cells produces a progressively more accurate estimate. This method only works satis
factorily if the surfaces of the cell are charge neutral. A powerful general method of 
evaluating the Madelung constant is via the Ewald summation method (§2.5.3.3). Table 
2.3 gives accurate values of the Madelung constant for the f.c.c. rocksalt and other ionic 
structures. 

2.2.5 Covalent solids 

2.2.5.1 Interatomic bonding; 

Covalent bonding differs from the previous types of bonding interactions by being 
strongly directional. The. electron density, associated with a pair of electrons with 
opposing spins being characteristic of covalency, is spatially localized between pairs of 
atoms and, particularly when orbital hybridization occurs, the electron charge density 
of bonding orbitals is concentrated also in certain orientations: for example, sp2 hybrids 
are arranged in a trigonal planar arrangement, with an angle of 120° between orbitals; 
sp3 hybrids point towards the four corners of a tetrahedron, with an angle of 109° 28' 
between orbitals (see §5.3.2). The formation of such covalent bonds is favoured energe
tically essentially because of the enhanced electrostatic interaction between the two 
positively charged nuclei of the atoms forming the bond and the negatively charged 
electron distribution lying between the nuclei. Covalent bonds are generally strong, and 
comparable in strength to ionic bonds. A full description of covalent-bond formation in 
isolated molecules is given in every physical chemistry textbook, and so will not be 
repeated here. However, in the solid state, due to interactions between an orbital on a 
given atom and orbitals on many other atoms, the discrete energy levels associated with 
molecular orbitals become broadened into energy bands; a full discussion of such solid
state effects will be deferred until Chapter 5. 

2.2.5.2 Covalent structures 

Due to the strong orientational characteristic of covalent bonding, structures compris
ing atoms bonded in this way have low densities: the nearest-neighbour coordination 
number is determined by the type of hybridization present (e.g. four for Sp3 hybridiza
tion), and is very much less than the value of 12 characteristic of close-packed struc
tures. 

The diamond structure (see Fig. 2.35a) is perhaps the archetypal covalent structure, 
adopted by the Group IV elements C (in the diamond polymorph), Si, Ge and Sn (in the 
Q polymorph). The primitive basis contains two atoms (at 000 and 114 114 114), and 
hence there are eight atoms in the conventional cubic unit (Fig. 2.35). The packing 
density of the diamond crystal is only <p 0.34 (recall that <p = 0.74 for close-packed 
f.c.c. or h.c.p. crystals). Although the representation of the structure shown in Fig. 2.35a 
in terms of a network of covalent bonds is the most usual, an equivalent way of 
regarding the structure is to represent it as a (non-space-filling) framework of CC4 
tetrahedra, each apex of a tetrahedron being connected to four others (Fig. 2.35b). 
Finally, but not particularly usefully, the diamond structure can also be regarded, 
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(a) (b) 

Fig.2.35 (a) The diamond structure, showing the tetrahedral arrangement of covalent bonds 
between atoms. (b) The diamond structure represented as a framework of corner-sharing CC4 
tetrahedra, i.e. with a C atom at the centroid of each tetrahedron. 

following the discussion in §2.2.4.2, as a cubic close-packed array of C atoms, with an 
equivalent number of (equal-sized) C atoms occupying T+ interstices. 

The sphalerite (cubic ZnS) structure is simply derived from the diamond structure by 
decorating one of the atoms of the basis with the cation and the other by the anion; 
heteropolar bonding is thereby assured. This structure is commonly adopted by binary 
AB compounds having mixed iono-covalent bonding, e.g. the materials SiC, GaAs, 
AlAs, GaP, AlP and InSb, all of which are semiconductors and exhibit interesting 
electronic behaviour (see Chapters 6 and 8). The sphalerite structure, too, can be 
represented either in terms of bonds (cf. Fig. 2.35a) or coordination polyhedra (cf. 
Fig. 2.35b), the latter being ZnS4 (or equivalently SZn4) tetrahedra. The ideal sphalerite 
structure can also be regarded instead as a decoration by, say, the Zn2+ ions of the T+ 
interstices in a cubic close-packed array of S2- anions (with an ABCABC stacking 
repeat). (Compare this structure with the wurtzite (hexagonal ZnS) structure-§2.2.4.2.) 
However, this simple stacking sequence is often not preserved in real crystals. Both ZnS 
and SiC, for example, exhibit polytypism, where the stacking sequence is much longer 
and more complex than the simple ABC repeat of the c.c.p. structure. 
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Symmetry 2 .. 3 
An understanding of the structure, and concomitant physical properties, of crystals can 
be greatly enhanced by the use of symmetry aspects. However, a proper understanding 
of the use of symmetry in this way relies on having a thorough prior knowledge of group 
theory. For this reason, and because this book does not set out to be a text on crystal
lography, only essential features of symmetry-related aspects of crystalline solids will be 
discussed here. (Moreover, symmetry is, obviously, of no use in the discussion of 
aperiodic materials, such as amorphous solids.) For further details, the reader is referred 
to the books by Burns (1990), Burns and Glazer (1990), Altmann (1991) and Nichols 
(1995), for example. . 

2.3.1 Symmetry operations 

A symmetry operation applied to an object (e.g. a molecule or a crystal) interchanges 
the positions of various parts of the object (e.g. the atoms) in such a way that the object 
appears exactly as it did before the operation took place (e.g. it is in an equivalent 
position). A trivial example, applicable to all objects, is the so-called identity operator, 
which leaves the object unchanged. Other operations involve rotation, inversion, reflec
tion and translation, and combinations thereof, as will be seen shortly. 

It is useful to distinguish, at the outset, two general types of symmetry operations. 
Point-symmetry operations are those carried out with respect to a fixed point in space; 
this point therefore does not translate during the operation. Such symmetry operations 
apply obviously to, say, individual molecules, but can also be used to characterize 
crystal structures. A point group is a self-consistent set of point-symmetry operations 
satisfying the rules for the existence of a mathematical group. t In contrast, the space 
group of a crystal is the set of all the symmetry operations, including the (infinite 
number of) unit-cell translations (cf. eqn. (2.1)), and symmetry operations (also involv
ing translations) such as screw operations and glide planes (see later), if they exist, as 
well as the point-group operations. There are 32 different crystallographic point groups 
and a total of 230 different space groups. 

One particularly irksome and confusing feature is that two different schemes for 
denoting symmetry operations are in use: the Sch6nflies notation (commonly used by 
solid-state physicists and chemists and molecular spectroscopists), and the Hermann
Mauguin notation (used by crystallographers), sometimes referred to as the Interna
tional notation (after the standard reference in which the system is outlined, the Inter
national Tables for X-ray Crystallography (Henry and Lonsdale (1952)). Since both 
systems are so widely used, a given symmetry operation described in this book will be 
denoted as Sch6nflies (International). 

The various point-symmetry operations of interest are listed in Table 2.4, together 
with their labelling according to the two notations. The identity operator E( 1), already 

t A group, in the strict mathematrical sense, is a collection of elements that satisfy th~. f?ur :onditions: 
(i) closure (the result of multiplying any two elements must also be member of the set); (n) Identity (one .~f 
the elements must be the identity operator E, such that EAi AiE = Ai for all members Ai of the set); (111) 
inverse (every element must possess an inverse, also in the set, such that Ail Aj = E, where Ail = Ai and AJ is a 
member of the set); (iv) associativity (such that (AB)C = A(BC)). 

Table 2.4 Point-symmetry operations 

Symmetry element Schiinjlfes 

Identity E 
Inversion (centre of symmetry) 
Rotation CII 
Rotatory inversion iCII 

Reflection (mirror) (]" 
Improper rotation (rotoreflection) SII 

International (Hermann-Mauguin) 

1 
I 
11 

ii 
In 

mentioned, simply leaves an object unchanged (or equivalently rotated by either 0 or 21f 
radians about any axis'); thus for any coordinate set (x, y, z), E(1) (x, )', z) -+ (x, y, z). 
The inversion operator inverts an object through an origin (the centre of inversion or 
symmetry), i.e. i (1) (x, y, z) -+ (-x, -y, -z). The ('proper') rotation operator CIl(n) 
rotates an object by 3600 /n (21f/n radians) about an axis (according to the right-hand 
screw rule by convention), i.e. C4(4) (x, y, z) -+ (y, -x, z). If this axis is not the principal 
axis (conventionally denoted the c-or z-axis), i.e. that having the highest symmetry of 
the object, then the operator is denoted C:l' and a superscript in the Sch6nflies notation 
denotes the actual rotation axis; e.g. C;~ is an n-fold rotation about the x-axis, i.e. Cf (x, 
)', z) -+ (x, -y, -z). Note that a numerical superscript means that the simple rota~ion 
operator should be repeated that number of times; e.g. C;:~ denotes the ~-fold ap~hca
tion of the n-fold rotation operator about the principal aXIS. The reflectIOn (or mirror
plane) operator u(m) displaces a given point of an object to the other side of the plan~ in 
question by an equal distance along the perpendicular to the plane; thus,. for reflectIOn 
across the z-plane (containing the x-y-axes), u(m) (x, y, z) -+ (x, y, -z). DIfferent planes 
of reflection can be considered: reflection in the horizontal plane, Uh, the plane of 
reflection being perpendicular to the principal axis and containing the origin; re~ection 
in the vertical plane, Uy, the plane of reflection containing the principal aXIS; and 
reflection in a diagonal plane, Ud, the reflection plane containing the principal axis 
but also bisecting the angle between the two-fold axes normal to the principal axis. 
Finally, the improper rotation (or rotoreflection) operator SIl refers to a rotation by 
21f/n followed by a reflection in the horizontal plane, i.e. Sn UhC/l (n~te the con.ven
tion for writing a subsequent symmetry operation to the left of the pno~ operatIOIl). 
Thus, S4 (x, y, z) -+ (y, -x, -z). These point-symmetry operations are Illustrated m 
Fig. 2.36. 

As an example, there are 12 point-symmetry operations characteristic of the molecule 
PF3Ch (see Fig, 2.37), namely E, C3, cj, 3CL Uh, 3uy, S3 and S~. This complete set of 
symm~try operations makes up the point group of the molecule. A point group ~an be 
represented graphically by means of a stereogram. This is a projection ?f point~ lymg ?n 
the surface of a sphere surrounding the object onto the x-y plane, the mtersectIOns WIth 
the plane being with lines from the points to the opposite pole. A point in the +z or -z 
hemisphere is represented by an open circle (0) or dot (0), respect.ively. (N.B. the 
difference in notation for points above and below a plane between pomt groups (0, .) 
and space groups (+, - ).) For the case of PF3Ch, starting with an arbitrary point, a 
general equivalent position (GEP) (not on a symmetry point, line or plane), and denoted 
as 1, the first symmetry operation E(1) applied to 1 leaves it unchanged: T?e secon.d 
operation, C3(3), changes I into the GEP 2, rotated by 120° about the pnncipal c-aXIS 
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Inversion through centre 

i(l) 

Rotatory inversion axes 

i(l) = inversion 

0(2) = mirror plane 

Fig.2.36 Illustration of point-symmetry operations and their notation in the Sch6nflies (Inter
national) system. Conventional diagrammatic symbols, e.g. filled oval, triangle, square, etc., used 
to represent such operations are also shown. Open circles denote a general object, such as a set of 
atoms, to which the symmetry operation is applied. The symbols +, - denote objects above, and 
below, the plane of the paper respectively. A split circle denotes one circle above and another 
below the plane. A comma inside a circle represents an enantiomorphic (or 'mirror) image of a 
circle without a comma (hands are also used to illustrate graphically such enantiomorphic pairs). 
This (+-,) notation is used for space groups, but not for point groups. (After Bums (1985). 
Reprinted by permission of Academic Press, Inc.) 

(the Cl-P-Cl bond in Fig. 2.36), Cj(32) applied to 1 generates the GEP 3, rotated by 
240°, etc. The stereo grammatic representation of the whole point group is shown in the 
inset to Fig. 2.37, where the first number of each pair refers to 0 and the second to -. 
The particular symmetry elements are also represented on the diagram. Thus, the thick 
radial lines represent the three O"v operations and the thick line for the outer circle 
represents O"h. The symbol at the centre refers to 83(65), and the three q operations in 
the xy plane are also indicated. Note that, in general, there are as many GEPs as there 
are symmetry elements in the point group (12 in this case). 

2.3.2 Crystallographic point groups 

The various point groups are given symbols from which all symmetry elements con
tained within the group may be inferred. The simplest examples are those containing 
purely rotational symmetry elements. For individual molecules, there are no restrictions 
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Fig.2.37 Point-symmetry elements for the molecule PF3CI2". Shown inset is the stereogram for 
the point group of the molecule. 

on the rotational symmetry operations Cn or 8n ; e.g. five-fold rotational symmetry 
exists for the pentagonal moleGule ferrocene (Fe(CsHsh). However, because we are 
interested in crystals, having translational periodicity, rotational symmetries Cn with 
n = 5 and n > 6 are incompatible with such long-range order. This restriction can be 
demonstrated in two dimensions as follows. 

Consider two lattice points A, B, separated by a unit translation vector,.. Applying a 
rotational symmetry operation, R, to A generates a new point A' (rotated by an angle a). 
Similarly, the inverse operator R-1 (also a symmetry operation) applied to B generates B' 
(rotated by an angle a in the opposite sense)-see Fig. 2.38. Since Rand R-1 are both 
symmetry operations, A' and B' must also be lattice points, and so the vector ,.' connect
ing them must be an integral multiple 111 of,. (because of periodicity), i.e. 

r' = Inr (2.43a) 

and from the geometry of Fig. 2.38, 

r' = -2rcosa + r. (2.43b) 

Combining these two equations gives 

cosa = (1- 111)/2 = M/2 (2.44) 

where M is also an integer. For closure of R, 0 < a < 180°, and so I cosa I ::::; 1 or 
I M I ::::; 2. Thus, from eqn. (2.44), a can only have values 0, 'if /3, 'if /2, 2'if /3, 'if; the only 
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Fig.2.38 Lattice points A' and B' obtained by applying rotational symmetry operations to the 
lattice points A and B, respectively. Translational periodicity is only maintained for 
a 0, 7r /3, 7r /2, 27r /3 and 7r. 

allowed rotations consistent with lattice periodicity are hence 27r/n, where n 1,2,3,4, 
6, i.e. not 5 and not> 6. Of course, five-fold rotational symmetry is not incompatible 
with being able to tile a plane in 2D, for example-see the Penrose tiling in Fig. 2.5-but 
such a structure is translation ally aperiodic. 

Thus, of the 32 crystallographic point groups (consistent with lattice periodicity) there 
are only 5 purely rotational point groups, given the Sch6nflies (International) symbols 
CI (1), Cz(2), C3(3), C4(4) and C6(6), where the group C6(6), for example, contains the 
set of symmetry elements {E(I), C6(6), C3(3), Cz(2), C5(3Z), C~(65)}. (Note that con
fusingly, but only in this case of pure rotational point groups, the symbol for the point 
group is the same as that of one of its elements.) 

Further point groups are generated by including symmetry operations other than 
rotations. Thus, addition of a O"h mirror plane to each of the above 5 rotational point 
groups generates another 5 groups, written as Cllh == CIl x {E,O"h}, which means the 
set of operations resulting from the multiplication of every operation in C

Il 
by E plus 

those obtained by multiplying by O"h. The new point groups thus include twice as 
many symmetry operations. They are Clh(m), CZh(2/m), C3h(6), C4h(4/m), C6h('6/m'); 
all, but the last, are crystallographic point groups. (The n/m symbol in the Inter
national notation means that the m-mirror plane is perpendicular to the n-fold rotation 
axis.) 

Inclusion of a vertical mirror plane equivalently generates another set of point
groups, CIlV == Cn x {E, O"v}. However, Clv Clh, and so only four new ones are created 
(Czv(2mm), C3v(3m), C4v(4mm) and C6v (6mm)). (The lack of a slash symbol between 
the n-fold axis and the mirror planes in the International notation means that the mirror 
plane contains the axis.) 

Improper rotation (rotoreflection) operations generate another three distinct point 
groups. S2 contains operations {E,i} and the group is conventionally denoted 
q(I). S3(6) is identical to the already mentioned C3h(6). Additional point groups are 
therefore S4(4) and S6(3). 

Adding a two-fold axis perpendicular to the principal axis of the five purely rotational 
point groups (CI (1) etc.) generates four new point groups (Dn) with, again, twice as 
many symmetry operations, viz. Dn == CIl x {E, q}, i.e. Dz(222), D3(32), D4(422) and 
D6(622). (Note that DI Cz, and so iSJ?ot included.) . 

Four additional point groups are created. by adding_a q axis to the Cllh pomt 
groups, viz. Dllh == Cllh x {E, q}, i.e. DZh(mmm), D3h(6m2), D4h(4/mmm) and D6h 
(6/mmm). . . 

Adding a C~ axis to the §Il point grou'ps generates two new pomt groups, VIZ. 
Dlld SIl x {E, Cn, i.e. DZd(42m) and D3d(3m). . .. 

There are, in addition, five cubic point groups that do not possess a umque aXIS lIke 
all the previously cited point groups, but instead are characterized by havi~g four 
three-fold axes (along the {111} directions of a cube). The point group wIth the 
smallest number of (purely rotational) symmetry elements is T = {E,4C3,4C5, 
3Cz}, where the Cz operations are along the a-, b-and c-axes. The point .groups 
Th and Td are obtained by including a horizontal mirror plane (O"h) and a dIagonal 
mirror plane (O"d), respectively, i.e. Th == T x {E,O"h} and Td == T x {E, O"d}. The po~nt 
group 0 has six four-fold axes and 24 symmetry elements, and the group WIth 
the highest number (48) of symmetry operations is Oh _ 0 x {E,O"h}. In sum
mary, the cubic point groups are thus T(23), Th(m3), Td(43m), 0 (432) and Oh 
(m3m). . . 

The 32 crystallographic point groups are important because macroscopIC phYSIcal 
properties of crystals have at least the symmetry of t~e point group. They are listed f?r 
convenience in Fig. 2.39, with their symmetry operations (and GEPs) represented m 
stereo grammatic form. They can be assigned to one of the seven different crystal 
systems (see Table 2.1) by ascertaining which symmetry operations maintain a lattice 
(devoid of a basis of atoms) within a given crystal system. !:'or example, for the case of a 
monoclinic lattice, the symmetry operations Cz(2) and 0"(2) are the only ones that keep 
the lattice as being monoclinic. The point groups Cz(2) {E, Cz} and Clh = {E,O"h} 
are thus consistent with the monoclinic system, as is Czh (2/m) = {E, Cz, i, O"h}. Assign
ment of the 32 crystallographic point groups to the seven crystal systems is given in 
Table 2.5. 

2.3.3 Space groups 

As mentioned previously, the space group of a crystal is determine~ both by the point 
group (relating to the lattice) and by translational symmetry operations (relating to. the 
decoration of the lattice by a basis of atoms to form the crystal). The latter operatIOns 
include the (infinite number of) lattice translations (eqn. (2.1», screw operations and 
glide planes. Screw operations and glide planes are composite operations: a ~crew 
operation is a rotation followed by a translation, T, which is a fraction of the ~mt-cell 
dimension, and a glide plane is a reflection across a plane followed by a translatIOn T. A 
screw operation can be written in the so-called Seitz notation (used by physicists) as 
{R/T}, where R is a rotational symmetry operation. Note that, in this case, the screw 
operation is applied to a single origin in a unit cell and, as a result, T ca~ have 
components perpendicular to the axis of rotation. (Crystallogra~h~rs, .conventl?nally 
and confusingly, apply screw-symmetry operations to different ongms m the umt cell, 
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Fig.2.39 (a) Stereograms of the 32 crystallographic poi.nt groups, arranged accordi?g to the 
seven different crystal systems. The left-hand stereograms illustrate the GEPs, and the n~ht-hand 
stereograms the symmetry elements, of each point group. (After Bums (1985). Repnnted by 
permission of Academic Press, Inc.) 
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Table 2.5 The ~2 crystallographic point groups assigned to the 7 crystal systems 

Schon flies International Symmetry Elements Generating Elements 

Triclinic 
CI I E E 
S2(Ci) I Ei 

Monoclinic 
C2 2 EC2 C2 
C1h(Cs ) 111 EUh Uh 
C2I1 21m EC2iuh iC2 

Orthorhombic 
D2(V) 222 ! EC2 qq c2 q 
C21' mm2 E C2 UV (jv C2U~ 
D2II(Vh) mm111 E C2 q C~ i Uh Uv Uv iu{:C2 

Tetragonal 
C4 4 E2C4 C2 C4 
S4 4 E2S4 C2 S3 4 
C4h 41m E2C4 C2 i2S4 Uh iC4 
D4 422 E 2C4 C2 2q 2Cf CfC4 
C4v 4mm E2C4 C2 2uv 2Ud U{;C4 
D2d(Vd) 42m E C2 2q 2Ud 2S4 c;sl 
D4h 41mmm E2C4 C22Cpq iCfC4 

i2S4 Uh 2uv 2Ud 

Trigonal (Rhombohedral) 
C3 3 E2C3 C3 
S6(C3i ) 3 E2C3 i2S6 iC3 
D3 32 E2C3 3q C;C3 
C3,. 3m E2C33uv U~C3 
D3d 3m E2C3 3q i2S6 3uv iCfC3· 

Hexagonal 
C6 6 E2C6 2C3 C2 C2C3 
C3h 6 E2C3 Uh 2S3 Uh C3 
C6h 61m E 2C6 2C3 C2 i 2S3 2S6 Uh iC2C3 
D6 622 E 2C6 2C3 C2 3q 3q C2qC3 
C61' 6mm E2C6 2C3 C2 3uv 3Ud CJ.U~C3 
D3h 6m2 E2C3 3C~ Uh 2S3 3uv C2Uh C3 
D6h 6/mmm E2C6 2C3 C2 3q 3Cf iqC2C3 

i2S3 2S6 Uh 3uv 3Ud 

Cubic 
T 23 E8C33C2 C2C3 [111] 
Th m3 E 8C3 3C2 i 8S6 3Uh iC2C3[1l1] 
0 432 E8C33C26C26C4 C4 C3[11l] 
Td 43in E 8C3 3C2 6Ud 6S4 sl C3 [11 1] 
Oh m3m E8C3 3C2 6C2 6C4 iC4 C3 [11 1] 

i 8S6 3Uh 6Ud 6S4 

and thereby ensure that the screw operation always has the translation T parallel to the 
rotation axis.) 

Of the 230 different space groups, two categories can be distinguished. Symmorphic 
space groups are specified completely by symmetry operations acting at a common 

point (but not necessarily involving a fractional unit-cell translation t) as well as the 
unit-cell displacements (eqn. (2.1» characteristic of translational periodicity. They are 
obtained by combining the 32 crystallographic point groups with the 14 Bravais lattices 
(see Table 2.1). Each lattice point of a Bravais lattice belonging to a particular crystal 
system is decorated with a basis of atoms arranged in such a way that it satisfies the 
symmetry of a point group belonging to the same crystal system. In this way, the 73 
symmorphic space groups can be generated. Non-symmorphic space groups, in con
trast, are those for which at least one symmetry operation involving a translation T (i.e. 
a glide plane or a screw operation) is required. Note that the 32 crystallographic point 
groups can thus be recovered from the 230 space groups by setting all translations equal 
to zero. 

As for the point groups, the space groups are denoted using two parallel systems, the 
Schonflies symbol and the International notation (given in parentheses, as before). The 
International notation is somewhat more informative. For example, one of the ortho
rhombic space groups is Civ(Pmm2); the International notation denotes that, in this 
case, a primitive P-Iattice has been used to derive the space group. 
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Reciprocal space 

2.4.1 Reciprocal lattice 

Thus far, the structures of solids have been discussed in relation to atomic positions, 
usually in three dimensions (although a 6D description is appropriate for quasi
crystals- see §2.1.1). That is to say, (3D) crystal structures, for example, can be 
characterized in terms of lattice-translation vectors Rul'l1' (cf. eqn. (2.1» of the Bravais 
lattice, i.e. 

RUlliI' = ua + vb + we (2.45) 

where u, v and ware positiv:e or negative integers and a, band c are, say, vectors defining 
the real-space unit cell. 

However, instead of describing the crystal structure conventionally in terms of atomic 
positions (associated with lattice points), a completely equivalent structural description 
is in terms of crystal planes. A set of planes, denoted as (hkl) in Miller indices, is 
completely specified by the direction vector normal to the planes, represented, say, by 
a unit vector iZhkt, and the interplanar spacing, dlllel. The overall structure of the crystal is 
then completely specified in terms of the set of values {nhkl,dhlct}. 

Although valid, this particular way of describing crystal structures in terms of 
{nhlet, d1tlcl } values is cumbersome and not particularly useful. However, a much more 
useful representation is to define the vector 

(2.46) 

(Note that it is conventional in crystallography to omit the factor of 21f.) These vectors, 
having the dimension of inverse length, then define the so-called reciprocal lattice. This 
plays a central role in enabling a simple understanding to be achieved of, for example, 
diffraction by crystals of waves (be they X-rays and neutrons incident externally, or 
electrons present within the crystal), as will be seen later. Thus, every crystal structure 
has both a real-space (Bravais) lattice and a reciprocal lattice associated with it. 

Each point in the reciprocal lattice corresponds to a family of planes in real (lattice) 
space. However, it should be emphasized that the crystal planes (hkl) corresponding to 
reciprocal-lattice vectors Ghlet do not necessarily coincide with real atomic planes (or 
planes through lattice points) in the real-space crystal structure. The Miller indices of a 
plane are defined (§2.1.3) as the smallest three integers corresponding to the reciprocals 
of the intersections of the plane with the axes (see Fig. 2.12). Thus, for a cubic real-space 
lattice, for instance, the (100) plane does indeed coincide with the atomic (lattice) planes 
of the crystal, but not all the planes denoted as (nOO) do so. For example, for the planes 
(200), having half the spacing of the (100) planes, only every other plane coincides with a 
real crystal atomic plane. Thus, most of the points in the reciprocal lattice do not 
correspond to real atomic planes of the crystal. Nevertheless, the concept of the 
reciprocal lattice is of great utility, as will become apparent. 

A reciprocal-lattice vector Ghlc/ can also be defined in terms of basis vectors a* , b* and 
c* of the reciprocal lattice, viz. 

Ghlet = ha* + kb* + Ie·. (2.47) 

where, for example, the vector a* is given in terms of the real-space lattice basis vectors 
as 

* 21f(b x e) 
a . = a . (b x e) , 

(2.48) 

and corresponding expressions for b* and e* are obtained by cyclic permutation. The 
quantity in the denominator is simply the volume of the real-space unit cell (eqn. (2.2». 

Thus, the following relationships between real-space and reciprocal-lattice basis 
vectors follow immediately: 

a . a* = 21f etc. (2.49a) 

and 

a . b* = 0 etc., (2.49b) 

and hence 

Gillet· Rul'l1' = 21f(hu + kv + lw). (2.50) 

Therefore, an alternative definition that a general vector k in reciprocal space (or 'k
space') 

k lqa* +k2b* +k3C* 

(for all values of coefficients ki) be a reciprocal-lattice vector is that the relation 

exp(ik . Rul'w) = exp(iG . R lIvw ) = I 

(2.51) 

(2.52) 

be satisfied, which is the case if the coefficients k i are all integers (cf. eqn. (2.50». 
One example of the use of reciprocal-lattice vectors is in the representation of, say, a 

periodic physical quantity of a crystal, such as the atomic density n(I'), as a Fourier 
series. It is well known that any periodic functionf(x) with period a can be expanded as 
an infinite Fourier series of sine and cosine functions: 

or more succinctly as 

00 

f(x) = I::[cpcos(21fpx/a) + spsin(21fpx/a)], 
p=o 

00 

f(x) = I:: npexp(21fipx/a) , 
p=o 

where now p can take both positive and negative integral values. 

(2.53) 

(2.54) 

Generalizing this for the 3D case, the atomic density, say, can then be written in terms 
of reciprocal-space vectors as; 

00 

n(l') = I:: nkexp(ik . 1'). (2.55) 
Ic=O 

For n(l') to be translationally periodic with respect to a real-space lattice vector R (eqn. 
(2.1», i.e. for the relation 

n(1' + R) = n(l') (2.56) 
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to hold, implies that the general reciprocal-space vector k is restricted to be a reciprocal
lattice vector G. This can be seen by substituting the expression for the real-space lattice 
translation vector R (eqn. (2.1» into eqn. (2.56) and expanding n(r + R) as a Fourier 
series (cf. eqn. (2.55», giving 

00 

l1(r + R) = .I>I,exp(ik. r)exp(ik· R). (2.57) 
Il=O 

The right-hand side of eqn. (2.57) becomes equal to n(I') (cf. eqn. (2.55» only if 
exp(ile· R) = 1, which is only satisfied if Ie == G (cf. eqn. (2.52». Thus, the Fourier 
components of a function having the periodicity of the real-space crystal lattice are 
the corresponding reciprocal-lattice vectors. Note that Fourier inversion of eqn. (2.55) 
(with Ie G) gives the Fourier coefficients 

. nG = v.I. 1 n(r)exp( -iG· r)d V, 
c cell 

(2.58) 

where Vc is the volume of a (real-space) unit cell of the crystal (eqn. (2.2». 
It is instructive to ascertain the reciprocal lattices of a number of simple real-space 

lattices. The easiest example is the case of the simple cubic lattice for which the primitive 
translation vectors in real space are 

a ax; b = ay; c = az, (2.59a) 

where X, Y and z are unit-length orthogonal vectors. The volume of the real-space unit 
cell is Vc = a· (b x c) a3• The reciprocal-lattice primitive vectors are (from eqn. 
(2.48» thus 

a* (21f/a)x; b* = (21f/a)y; c* = (21f/a)Z. (2.59b) 

Hence, the reciprocal lattice of the simple cubic lattice is also a single cubic lattice, with 
lattice constant 21f j a and cell volume V; 81f3 / a3. Note that it is true generally that the 
volume of the primitive cell in reciprocal space is simply given by (see Problem 2.16) 

(2.60) 

The reciprocal lattice of a real-space b.c.c. lattice can also be established in a similar 
manll{~r. The primitive real-space translation vectors of the b.c.c. lattice are (by inspec
tion of Fig. 2.40a) given by: 

(2.61a) 

where a is the cube length and X, y and z are orthogonal unit-cell vectors as before. The 
volume of the real-space unit cell is thus Vc = a3/2. The primitive reciprocal-lattice 
vectors are thus 

a* = (21f/a)(Y + z); b* = (21f/a)(x + z); c* = (21f/a)(x + y). (2.61b) 

Inspection of Fig. 2.40b shows that these are in fact the primitive vectors of an f.c.c. 
lattice: the reciprocal lattice of a real-space b.c.c. lattice is an f.c.c. lattice. It has a cell 
volume of V~ = a* . (b* x CO) = 2(21f/a)3. 

.. :::.,.-s'·-

I 

(a) (b) 

Fig.2AO Primitive translation vectors of: (a) the b.c.c. lattice; (b) the f.c.c. lattice. 

Likewise, the reciprocal lattice of an f.c.c. real-space lattice is a b.c.c. lattice. The 
primitive translation vectors of the f.c.c. lattice (Fig. 2.40b) are 

a 1 (~ ~) 2:a y+ z ; (2.62a) 

and the volume of the primitive cell is Vc = a3 /4. The primitive vectors of the reciprocal 
lattice are thus 

a*=(21f/a)(-x+y+z); b*=(21Fja)(.l:-y+z); c*=(21f/a)(x+y-z), (2.62b) 

i.e. those of a b.c.c. lattice. The volume of the reciprocal-space primitive cell is 
V; 4(21f/a)3. 

Note that Mermin (1992) has reformulated the derivation of space groups (§2.3.3) in 
Fourier, rather than real, space. In this way, crystals, quasicrystals and incommensu
rately modulated crystals can be treated in a unified way (since all such structures 
produce sharp diffraction peaks in reciprocal space-see §2.6.1). 

2.4.2 Brillouin zones 

A space-filling representation of a cell of a lattice, equivalent to that of the primitive cell, 
is the so-called Wigner-Seitz cell (see§2.2.2.3 for a discussion). This is as true for a 
reciprocal lattice as for a real-space lattice; the Wigner-Seitz cell of the reciprocal lattice 
is conventionally referred to as the Brillouin zone. 

As mentioned previously, the Wigner-Seitz construction (see Fig. 2.23) consists of 
drawing vectors between a given lattice point and all other lattice points. Lines in 2D 
(planes in 3D) are then drawn perpendicular to these vectors at the midpoints. The 
smallest area in 2D (volume in 3D) enclosed in this manner about a lattice point is 
called, for the case of the reciprocal lattice, the first Brillouin zone. This construction is 
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Fig.2.41 Construction of Brillouin zones (Wigner-Seitz cells of the reciprocal lattice) for a 2D 
square lattice. The different order zones are labelled (only parts of the fifth and sixth zones are 
shown). 

shown in Fig. 2.41 for the case of a 2D square reciprocal lattice (corresponding to a 2D 
square real-space lattice). The square cell denoted as 1 is the first Brillouin zone, and 
results from taking vectors between the central lattice point and the four nearest lattice 
points in the (10) directions. 

Vectors can also be taken between the central lattice point and the next-nearest lattice 
points, i.e. in the (11) directions, and the area so enclosed by the bisectors (minus the 
area of the first Brillouin zone) forms the second Brillouin zone, denoted as 2 in Fig. 
2.41. Higher-order Brillouin zones are generated in a similar fashion by taking vectors 
to ever more distant reciprocal-lattice points from the origin. Note that, by displacing a 
given higher-order Brillouin zone into the region of the first zone by means of recipro
cal-lattice-vector translations, the first zone is completely tiled: the area in 2D (volume 
in 3D) of all higher-order Brillouin zones is the same as that of the first zone (in turn, 
equal to that of the primitive cell of the reciprocal lattice, cf eqn. (2.60)). 

It is instructive to construct the first Brillouin zones of the b.c.c. and f.c.c. reciprocal 
lattices (these will prove useful later in a discussion of electronic properties-see 
Chapter 5). A real-space b.c.c. lattice has an fc.c. reciprocal lattice with primitive 
vectors given by eqn. (2.61b). The 12 shortest vectors for the fc.c. reciprocal lattice 
are thus 

(27f/a)(±y ± z); (27f/a)(±x ± z); (27f/a)(±x ±y). (2.63) 

Hence, the first Brillouin zone is bounded by planes normal to the midpoints of these 
vectors, i.e. the vectors from the central lattice point of the zone to the faces of the 
polyhedron so formed (a regular rhombic dodecahedron-see Fig. 2.42a) are given by 

(7f/ a) (±y"± z); (7f/ a)(±x ± z); (7f/ a)(±x ± y). (2.64) 

(a) 

Fig.2.42 First Brillouin zone for: (a) the b.c.c. real-space lattice (f.c.c. reciprocal lattice)-a 
rhombic dodecahedron. Special high-symmetry points in k-space are r(O, 0, 0); H(l, 0, 0); 
N(1,1,0); P(1, 1, 1) (b) the f.c.c. real-space lattice (b.c.c. reciprocal lattice)-a trun
cated octahedron. Special points are r(O, 0, 0); X(l, 0, 0); W(1, 1/2, 0); K(3/4, 3/4, 0); 
L(1/2, 1/2, 1/2). 

For the case of a real-space fc.c. lattice, with a b.c.c. reciprocal lattice, the shortest 
reciprocal-lattice vectors are now the eight vectors 

(27f/a)(±x ±y ± z), (2.65) 

but the octahedron formed by the eight planes perpendicular to these vectors at their 
midpoints is truncated at the apices by six other reciprocal lattice vectors 

(27f/a) (±2x); (27f/a) (±2y); (27f/a) (±2Z) (2.66) 

where (27f/a)(2x), for example, is a reciprocal lattice vector since it is equal to b* + c*
see eqn. (2.62b). The first Brillouin zone in this case is therefore a truncated octahedron 
(see Fig. 2.42b). 
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Computer simulation of materials 2.5 
As will be seen shortly (§2.6.1), the structure of a perfect single crystal may be deter
mined experimentally using diffraction methods. However, for materials containing 
structural disorder, experimental techniques often do not permit the structure to be 
determined completely (or sometimes at all). In such cases, computer simulation of tq.e 
structure, using as input an appropriate interatomic potential, may be the only way of 
acquiring detailed structural information about a material. In addition, computer
simulation techniques permit physical properties to be investigated that otherwise 
might be very difficult to study experimentally, e.g. atomic diffusion. Such simulations 
may also be used to predict' new structures of materials and properties thereof. For 
instance, various crystalline pha,ses of C3N4, with tetrahedral coordination of the (Sp3) 

carbon and trigonal planar coordination of the nitrogen, have been predicted to have 
hardnesses comparable to or even in excess of that of diamond. Thus, for the hexagonal 
,a-phase, the bulk modulus is predicted to be B = 427 GPa (Liu and Cohen (1989)), and 
for the cubic phase B = 496 GPa (Teter and Hemley (1996)), compared with B = 440 
GPa for diamond. However, reliable synthesis of these materials has not yet proved 
possible. A summary of computer-simulation techniques and the kinds of interatomic 
potentials used to model the structures of materials is given in the following: more detail 
is given, for example, in the book by Allen and Tildesley (1987), albeit for the simulation 
of liquids. 

2.5.1 Models and boundary conditions, 

The aim of a computer simulation is to produce a structural model that has the same 
structural arrangement, the same lattice energy and physical properties as the actual 
material under investigation. Ideally, the model should be as large as possible, but 
constraints associated with computer memory and, more importantly, execution speed 
of the computer program implementing the algorithm used in the simulation commonly 
limit the size of models to be a few thousand particles (atoms). However, developments 
in computing have recently been so rapid that the massively parallel architectures now 
available for some computers have allowed the simulation of very large (million-atom) 
systems to be performed (albeit with the use of empirical, phenomenological interatomic 
potentials). On the other hand, even with the most powerful computers available, 
simulations properly evaluating the quantum-mechanical interactions (see §2.5.3.4) 
between atoms are limited for the foreseeable future to the order of a ·hundred atoms. 

For a typical simulation involving, say, 1000 atoms arranged in a cubic box,approx
imately half of the atoms lie at the surface of the box. Atoms at a free surface will 
experience very different interatomic interactions from those deep in the box due to 
their different local environments. One way to obviate this difficulty is to impose 
periodic boundary (Born-von Karman) conditions on the simulation box. A 2D repres
entation of the application of periodic boundary conditions is shown in Fig. 2.43. The 
simulation box containing the particles under study is replicated periodically through 
space to give an infinite 'lattice'. As a particle moves in the simulation box during the 
simulation run under the action of the interatomic forces exerted by its neighbours, its 

I 

Fig.2.43 Illustration of periodic boundary conditions applied in 2D to ~ s9-uare simulat~on box 
containing five particles. As the particle labelled 1 leaves the central box, Its Image moves mto the 
box from a neighbouring replica box. 

image in all replica boxes moves in exactly the same way, even to the extent that should 
a particle (labelled 1 in Fig. 2.43) actually leave the simulation box, its image enters the 
box through the opposite face. There are thus no walls at the boundary of the central 
simulation box but the number of particles in the box is conserved. There are no 
'surface' particles either, since a given particle situated near the surface of the central 
box can interact with other image particles in neighbouring replica boxes. 

Although of great utility, periodic boundary conditions do have some drawbacks. If 
the interatomic potential, U, is sufficiently long-ranged, i.e. if U(r) ("V r-a., where a is less 
than the dimensionality of the system, a given particle will interact appreciably with its 
own images in neighbouring replica boxes. Hence, the periodicity of the Born-von 
Karman boundary conditions is imposed in such a case on what might otherwise be a 
spatially isotropic system (e.g. a liquid). Although cubic boxes, and their periodic 
replicas, are most commonly used in simulations because of the associated geometric 
simplicity, nevertheless other completely space-filling polyhedra can also be used as 
simulation boxes. Two such polyhedra are the rhombic dodecahedron and the truncated 
octahedron illustrated in Fig. 2.42; these have the advantage over the cubic box th~t 
they are more nearly spherical, and hence can be used to simulate structurally isotropic 
materials, such as liquids and glasses, more realistically. 

A final consideration concerning boundary conditions concerns the thermodynamic 
conditions under which a simulation is run. Normally, the number, N, of particles in the 
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simulation box is kept constant. It is also easiest to keep constant the volume, V, of the 
box. Thus, if the total energy ~ (kinetic plus potential) of the system is also leept 
constant, the system corresponds to the micro canonical ensemble in statistical thermo
dynamics (constant-NVE). Alternatively, the temperature T of the system may be kept 
constant; this corresponds to the canonical ensemble (constant-NV1). A scenario more 
closely mimicking physical reality is when the pressure of the system is constrained to be 
constant; correspondingly, the volume of the simulation box must vary. Such constant
NpT conditions correspond to the isothermal-isobaric ensemble. 

2.5.2 Simulation methods, 

There are basically two techniques for the computer simulation of structures that are in 
common use: the molecular-dynamics method and the Monte Carlo approach. These 
two methods will be discussed briefly in the following; for more detail, the reader is 
referred to Allen and Tildesley (1987). 

2.5.2.1 Molecular dynamics 

As the name implies, this simulation technique follows the time evolution of a system of 
N particles, mutually interacting via a potential U, by soiving the classical equations of 
motion to which they are subject. The equation of motion for the ith particle in the 
system is given by the expression relating force and acceleration: 

d2y. 

mi dt2
1 

=Ii, (2.67) 

where Yi is the coordinate, and 111i the mass, of the particle, and Ii is the total force 
exerted on it as a result of the interactions with all the other particles, and 

Ii = - \/"; U(r). (2.68) 

Differential equations, such as eqn. (2.67), can be solved by a finite-difference 
approach which is particularly suitable for implementation using a computer. Knowing 
the dynamical history of the system of particles at time t (particle positions, velocities, 
accelerations, etc.), the dynamical variables at a later time t + 6t are calculated using an 
appropriate approximation method to integrate eqn. (2.67). One of the most commonly 
used approximation schemes is the Verlet algorithm, which requires knowledge of the 
particle position ri(t) and the acceleration ai(t) at time t, as well as the position at the 
p:evious time step, l"i(t - Ot). Performing Taylor expansions for l"i(t ± Ot) about l"i(t) 
gIves 

and 

1 
ri(t + Ot) = l"i(t) + Vi(t)Ot + -ai(t)(Ot)2 + ... 

2 

l"i(t - Ot) = ri(t) - Vi(t)Ot + !ai(t)(Ot)2 - ... 
2 

Substituting eqn. (2.69b) into eqn (2.69a) gives the Verlet algorithm: 

(2.69a) 

(2.69b) 
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(2.70) 

Note that this expression does not explicitly involve the velocity, and is accurate to 
0(6t)4. The velocity can be computed from 

(2.71) 

which is accurate to 0(Ot)2. The Verlet expression (eqn. (2.70» is also time-reversible. 
The time step Ot ideally should be as long as possible, so that a simulation run can 

encompass as large an elapsed time as possible for a given number of time steps (usually 
set by limitations on computer time). However, although the optimum size of Ot is 
determined somewhat by the particular finite-difference method used, nevertheless it 
must be much smaller than, say, a characteristic vibrational period of the solid; typically 
Ot ~ 1O-15S. 

Molecular dynamics is a powerful simulation technique because the dynamical his
tory of the interacting system of particles is known for all times, t. Thus, not only can 
the static structure of the model be found by averaging over a sufficiently long time 
(once the system is in equilibrium), but dynamical quantities such as space-time corre
lation functions relating, for example, to atomic diffusion (§3.4.2.1) or vibrational 
behaviour (see Chapter 4), may be calculated. 

2.5.2.2 Monte Carlo simulations 

Another commonly used computer-simulation technique for modelling the structures of 
materials is the Monte Carlo approach, so called because it uses random numbers in the 
evaluation of the particle displacements during the course of a simulation run. 

One popular way of implementing a Monte Carlo simulation is to use the Metropolis 
method. Starting from an initial configuration, say a random distribution of particles 
(atoms), one atom i is picked randomly and displaced in a random direction by a 
random amount, from 1~11 to 1~1, subject t6 the maximum displacement being the 
adjustable parameter 6rmax . The change in potential energy of the system, 6 ~1111' result
ing from the movement of this atom is then calculated for an assumed form for the 
interatomic potential. If the atomic displacement is 'downhill' in energy terms 
(6~1l11 :::; 0), then the new position is accepted unconditionally. If, however, the move 
is 'uphill' in energy (6~7111 > 0), then the move is accepted only conditionally, subject to 
the Boltzmann probability factor, exp (-6Vmn /kBT). 

2.5.3 Interatomic potentials 

The success of any computer simulation of the structure of a material is ultimately 
governed by the accuracy of the interatomic potential used in the simulation, along 
the lines of the computing maxim: 'garbage in, garbage out'. Often in the past, em
pirical, phenomenological potentials have been used, and these are mostly chosen so 
that the interatomic forces resulting from them (eqn. (2.68» are easily and rapidly 
computable. However, there is an increasing trend for interatomic interactions to be 
calculated by ab initio quantum-mechanical methods, although this approach is very 



100 ATOMIC STRUCTURE AND BONDING ) 

costly in terms of computing time and, as yet, only very small models can be studied in 
this way. 

In the following, aspects of the interatomic potentials used in the simulation of 
various types of materials (ionic, covalent, metallic, etc.) will be discussed, starting 
with atomic systems. 

2.5.3.1 Van der Waals systems 

The interatomic potential between atoms may be written, generally, as the sum of terms 
involving interactions between pairs of atoms, triplets, quartets, etc., viz. 

U L L U2(ri, 'i) + L L L U3(1'i, /'j, I'k)+ 

LL L L U4(/'i,/'j,/,/c,/,,) + ... 
(2.72) 

i j>i i j>i k>j>i 

i j>i k>j>i I>k>j>i 

where no pairs, triplets, etc. are counted twice. Of these contributions, the pairwise 
interaction, U2, is the most important. Moreover, it depends only on the (scalar) 
separation between pairs of atoms rij = Iri - 'ii, and not on the vector positions of the 
atoms, i.e. U2 U2(rij), making it particularly easy to compute. The pairwise (non
metallic, non-covalent) interaction between uncharged atoms is well represented by the 
Lennard-Jones 12-6 potential (eqn. (2.9)). 

In general, the triplet contribution, U3, is not negligible (although the other higher
order terms effectively are): for the case of, say, f.c.c. crystalline Ar, the triplet term 
makes a contribution of roughly 10% to the overall potential energy. Triplet (and 
higher-order) terms are very costly in computer time to compute because of the required 
multiple summations over atoms. However, in certain cases, some averaged form of 
three-body (triplet) interactions can be incorporated into an effective pair potential, i.e. 

U(r) L L U~ff(rij), (2.73) 
i j>i 

where U2ff depend on external variables, such as density (pressure) or temperature, as a 
result of the artificiality of incorporating many-body effects in a pairwise representa
tion. (The pairwise or triplet contributions, U2 and U3 , etc., of course donol suffer from 
this unphysical feature.) However, this disadvantage is more than offset by the compu
tational advantages in dealing only with pairwise interactions for the case of U2ff . 

2.5.3.2 Covalent interactions 

The interatomic interaction associated with the build-up of electron charge density 
between atoms, in other words, the covalent bond, is modelled empirically in the case 
of diatomic molecules reasonably well by the anharmonic Morse potential 

U = Uo{1 - exp[-a(r - re)]}2, (2.74) 

where the three adjustable parameters are re, the equilibrium bond length, Uo, the depth 
of the potential energy minimum and a, which effectively determines the radius of 
curvature near the bottom of the well. 

However, for the case of polyatomic systems, notably solids, the dominant character
istic of the covalent interaction is that it is markedly non-centro symmetric, i.e. covalent 
bonds are strongly directed in space as a result of orbital hybridization effects. As a 
result, it is evident that three-body (triplet) interactions, reflecting the restoring forces 
associated with maintaining angles between cpvalent bonds at their equilibrium values, 
must be very important. (Higher-order interactions, e.g. the four-body interaction giving 
'rise to restoring forces maintaining torsion (or dihedral) angles for rotation about the 
common bond between two neighbouring pairs of atoms are weaker but non-negligible.) 

A simple form of phenomenological interatomic potential which has been widely used 
to simulate covalent interactions in, principally, tetrahedrally bonded materials, such as 
Si or Ge, is the Keating (1966) potential: 

U ~aK ~~[(Ili -Ilj)' rijf 
I h-I 

+ 3
6 

13K LL L[(lli -Ilj)' Y;/c + (IIi -Ilk)' rijf 
1 i Hi kf.i,j 

(2.75) 

where IIi and IIj are displacements of nearest-neighbour atoms i and j, respectively, and 
rij is the unit vector connecting i and j. The first term in eqn. (2.75) corresponds to 
bond stretching (i.e. a two-body interaction) and the second term to bond bending (a 
three-body interaction), having force constants aK and 13K, respectively. Note that the 
Keating potential is harmonic, since it only cont~ins terms that are quadratic in 
displacements (see §4.2.2 and eqn. (4.30)). 

* 2.5.3.3 Ionic interactions 

The Coulombic potential (eqn_ (2.25)) is extremely simple, yet very difficult to cope with 
computationally because of its long-ranged nature. (In contrast, the very short-ranged 
nature of the non-Coulombic repulsive term appearing in the total potential energy, 
whether of power-law form (eqn. (2.27)) or of exponential form (eqn. (2.29)), confines it 
to acting effectively between nearest-neighbour atoms only.) The problem in calculating 
the lattice sum for the Coulombic potential, i.e. evaluating the Madelung constant (eqn. 
(2.26)-see §2.2.4.4), is that the sum is conditionally convergent; that is, the result 
depends on the order in which terms are taken in the summation. 

One way of circumventing this problem of conditional convergence in the case of 
periodic systems (or where periodic boundary conditions are applied to the simulation 
box) is to use the trick inherent in the Ewald method. Namely, i broad, spherically 
symmetric charge distribution of equal magnitude but opposite sign is added to each 
point charge (ion) in the actual system (Fig. 2.44a), with the result that interionic 
interactions between neighbouring ions become screened and short-ranged; the total 
screened potential can then be readily summed over all ions in the unit cell (or simula
tion box) and all (image) ions in neighbouring, periodically repeated cells. A cancelling 
charge distribution, of the same shape as that of the first fictitious charge distribution 
but of opposite sign (i.e. the same as that of the actual ions) is also added (Fig. 2.44b). 
The potential energy of this second charge distribution is evaluated by first summing 
over charges in reciprocal space by expressing the translationally periodic functions, the 
electrostatic potential and the charge density of Fig. 2.44b, as Fourier series (eqn. (2.55)) 
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Fig.2.44 Fictitious charge distributions used in the Ewald method for evaluating the lattice sums 
of electrostatic interactions between ions in a periodic lattice: (a) the actual point charges 
(represented as delta functions) plus the fictitious screening charge distribution; (b) the fictitious 
cancelling charge distribution. 

in terms of reciprocal-lattice vectors G; the result is then Fourier transformed back to 
real space. (For details of the calculation, see for example Kittel (1996).) 

For the case of a Gaussian fictitious charge distribution, 

p(r) 
1>,- 1 2 ( 1) 3/2 

qi -; exp( -1>,7 ), (2.76) 

where qi is the charge of the ith ion and the adjustable parameter I>, determines the 
breadth of the charge distribution (and is used to control the rapidity of convergence of 
the summation), the result of the Ewald summation for the potential energy is (Allen 
and Tildesley (1987»: 

_ 1 ~ ~ [~ erfc(I>,lrij + Ill) 1 ~ (4~) (-G2
) 1 

U --8-LtLt Ltqiqj 1 .. + I +-L3Ltqiqj G2 exp -4 2 cos(G·rij) 
?TEO i=1 j=1 Inl=O 1'1) 1l ?T G;60 I>, 

1 (I>,) N 
- 4?TEO ?TI/2 ~ qr 

1=1 

(2.77) 

In the first term, the vector 11 = (nxL, nyL, nzL) defines the periodic array of unit cells (or 
replica cells) of a cube of side L. The complementary error function that appears in the 
expression is defined as 

2100 

erfc(x) = .Jii x exp( -i)dy. (2.78) 

Since erfc(x) decreases to zero with increasing x, the only term contributing to the real
space summation is that with 1l = 0, i.e. for the central cell, if the parameter I>, is large 
enough. . 

A large value of 1>" however, corresponds to a narrow distribution of fictitious charge 
(cf. eqn. (2.76», which needs many reciprocal-lattice vectors G to represent it, as in the 
second term in eqn. (2.77). This is computationally very expensive, so a compromise is 
sought: typically, k is set to the value 5/L, necessitating the use of a hundred or so 
wavevectors in the reciprocal-space summation. 

The final term in eqn. (2.77) is the self-energy due to the electrostatic potential of the 
cancelling fictitious charge distribution (Fig. 2.44b) at the site of ion i. 

**2.5.3.4 Quantum-mechanical methods 

The interatomic potentials discussed so far have all suffered fromthe fact that they are, 
to a greater or lesser extent, empirical and phenomenological; the parameters involved 
need to be found by fitting to experiment. This is obviously an unsatisfactory state of 
affairs and, in principle, it is far preferable to evaluate the potential ab initio by solving 
the Schrodinger equation for the electrons in the system. However, for interacting 
electrons, the wavefunction involved is a function of some 1023 variables, and thus the 
problem appears to be one of intractable difficulty. . 

Fortunately, the density functional theory (valid for all types of materials) proposes 
that in fact it is the electronic charge density, nCr), that completely determines all features 
of the electronic behaviour of a system of interacting electrons in the ground state: the 
ground-state energy of the interacting electron gas is a unique functional (function of a 
function) of the charge density (Hohenberg and Kohn (1964». Although the functional 
is not known, the Hohenberg-Kohn theorem allows a variational principle to be 
established to find' the ground-state energy: the energy functional takes its minimum 
value (i:e. the ground-state energy) when the charge density nCr) is the true ground-state 
charge density, p(r). . 

Kohn and Sham (1965) further showed that the ground-state energy functional could 
be written as: 

~G[p(r)] = T[p(I')] + J [p(r)]<pN(r)dr + 1 J p(r)<pH(r)dr + ~xc[p(r)], (2.79) 

where the first term represents the electronic kinetic energy. The second term is the 
electrostatic energy associated with the electronic charge and the potential due to the 
nuclei (ion cores), with 

~ q. 
<PN(r) Lr 4?TEOlrl- Ril (2.80) 

where qi and Ri are the charge and position, respectively, of the ith nucleus. The third 
term in eqn. (2.79) is the so-called Hartree term, and represents the electrostatic energy 
of an electron moving independently in the mean electrostatic field due to all the other 
electrons; the Hartree potential is given by 
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Exchange-correlation hole 

Fig.2.45 Representation of the exchange-correlation hole, the charge-density depletion sur
rounding each electron due tothe Pauli exclusion principle (see eqn. (7.212». 

J p(r') dr' 
4'ifcolr 1"1 . 

(2.81) 

The final term in eqn. (2.79) is the exchange-correlation energy (see §7.2.5.l) which 
corrects for the overestimation in the Hartree approximation of the Coulomb repulsion 
between electrons, both of an electron with itself, and also with all other electrons as a 
result of the neglect of the exchange-correlation hole. This is the depletion in the 
probability of finding an electron in the vicinity of another electron (Fig. 2.45) as a 
result of the exchange interaction (see eqn. (7.212»: electrons with parallel spins repel 
each other due to the Pauli exclusion principle. The exchange-correlation hole has a 
charge of exactly minus one electron, and so for distances beyond the radius of the 
electron and exchange-correlation hole pair given by the distance at which the ~harge 
density of the hole screens (§5.6.l) that of the electron (typically of order I A), the 
quasiparticle appears to be electrically neutral. Thus, the electrons behave as if they were 
independent, with no Coulomb interactions between them. 

Minimization of the Kohn-Sham ground-state energy functional (eqn. (2.79» subject 
to the constraint that the total number, N, of electrons be conserved, i.e. 

J p(r)dr = N, (2.82) 

leads to the set of Kohn-Sham equations for all electrons i, in the form of the time
independent Schrodinger equation, viz. 

-h
2 

2 ) KS () -8 2 \l Wi(r) + Veff(r)Wi(r = "gi Wi r 
'if me 

(2.83) 

where 

(2.84) 

and 

p(r) = L Wi(r)W;(r). (2.85) 
ioccupied 

The exchange-correlation potential, ¢xc(r), is equal to the derivative ~xc[p(r)l/8p(r). 
Thus, the interacting N-electron problem is transformed into N single-electron 

equations (eqn. (2.83», where each electron moves in the effective potential Veff due to 
all other electrons (and ions) (eqn. (2.84»). 

Although the Kohn-Sham equations (eqn. (2.83) are an exact solution of the many
body interacting-electron problem, the exchange-correlation energy functional, "gxc[p(r)], 
is not known generally in the case of a spatially varying charge density, as in a solid. In the 
local density approximation, "gxc for a non-unifonn charge distribution is approximated 
at a given position by the value of "gxc corresponding to a system of uniform charge 
density (whose value of "gxc is known) having the same charge density as at the site in 
question in the real charge distribution. This approximation is valid, in practice, even 
for rapidly varying charge-density fluctuations, since effectively all that is being done is 
approximating the shape of the exchange-correlation hole in the non-uniform electron 
distribution. Further details of the density-functional approach are given, for example, 
in the articles by Srivastava and Weaire (1987) and Remler and Madden (1990). 

Conventionally, the Kohn-Sham set of equations (eqn. (2.83» are solved byexpres
sing the wave function Wi(r) in terms of some basis set, often plane waves, and writte~ as 
a Fourier series in terms of reciprocal-lattice vectors (cf. eqn. (2.55», and solved usmg 
matrix diagonalization. This procedure is repeated until self-consistency is achieved 
(since Veff(r) depends on p(r), and hence on the occupied orbitals). . 

An example of the use of this ab initio simulation approach, in the local denSIty 
approximation, is given in Fig. 2.46, where the total energies of Si and Ge are given as a 
function of volume for a variety of possible crystal structures. The diamond cubic 
structure is correctly predicted to be the most stable structure under ambient conditions, 
and a phase transition to the .B-tin structure under pressure is also predicted, again in 
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Fig.2.46 Total energy (in units of rydberg per atom) as a function of volume (normalized to ~he 
experimental volume) in seven different crystal structures for (a) Si; (b) Ge. (Rep:oduced "':'Ith 
permission from Yin and Cohen (1982), Pllys. Rev. B26, 5668. © 1982. The Amencan PhYSIcal 
Society) 



106 ATOMIC STRUCTURE AND BONDING} 

agreement with experimental observation. The charge density between atoms in GaAs 
calculated in this way is shown in Plate II. 

A powerful alternative method to solving the optimization problem involving the 
Kohn-Sham equations (eqn. (2.83)) is the approach due to Car and Parrinello (1985). In 
this, the atomic configuration corresponding to the electronic ground state (calculated 
using density-functional theory), is found by a process of simulated annealing: variables 
characterizing electronic orbitals and ionic positions are both varied, subject to certain 
constraints, so that the total energy decreases until the ground-state configuration is 
found. In the Car-Parrinello approach, this procedure is implemented using molecular 
dynamics (see §2.5.2.1). 

An electronic state can be represented by a set of occupied orbitals CPi(i 1,··· ,n), 
each described by an expansion in terms of some basis XIe(k = 1,···, m), i.e. 

(2.86) 

The simulated-annealing electronic-structure calculation is just a search among the 
space C(f made up of all coefficients c£' on a hypersurface determined by the constraint 
that the orbitals are orthonormal, to find the optimum set C(f opt corresponding to the 
electronic ground state. This is done using constraint dynamics involving a classical 
Lagrangian 

L= T- V, (2.87) 

where T is the kinetic energy and V the potential energy. 
The kinetic energy is given by 

(2.88) 

where the first term represents the real ionic kinetic energy (r == dr / dt) and the second 
term is a fictitious kinetic energy associated with the electronic orbital coefficient 
'velocities' defined as 

(2.89) 

and where f.L is a fictitious inertial mass assigned to the 'motion' through coefficient 
space C(f. The potential energy includes both electronic-energy and purely ionic con
tributions and thus is a function of both the ion positions ri and the electronic orbital 
coefficient, V = V{rj,cD. The equation of motion associated with the Lagrangian is 

d 8L 8L 
dt 84 + 8c~ o. (2.90) 

The electronic orbitals must satisfy the constraint of orthonormality, i.e. 

O"ij = ~1 W~(r)Wj(r)dr bij = 0 

= ·L>t~c - bij = 0 (2.91) 
Ie 

where n is the volume and bij = 1 (i = j), = 0 otherwise. Such constraints lead to addi
tional constraint 'forces' of the form - .Aij80"ij / 8c}c = AycL where Aij is the appropriate 
Lagrange multiplier, and AU = Aij(i ¥ j) and AU = 2Aiili = j). Thus, two coupled equa
tions of motion can be derived, a fictitious one for the orbital coefficients 

(2.92) 

and another for the ions 

(2.93) 

The Car-Parrinello scheme solves these two equations of motion simultaneously in the 
same time step, i.e. the ions are moved and the electronic configuration adjusted to keep 
it on the orthonormal hypersurface until the ground-state energy configuration is 
found. 

The Car-Parinello method has the advantage that not only can (the energies of) static 
structures be found, but that the dynamics of the sy~tem can also be explored. For 
example, the diffusive behaviour of atoms in solids (e.g. H in crystalline Si) can be 
calculated ab initio. A disadvantage, if the electronic structure is treated using density
functional theory, is that ground-state properties only can be investigated: electronically 
excited states are not accessible. Moreover, only small systems (consisting of a few tens 
of atoms) can be simulated in this way at present, even using the most powerful super
computers, essentially because of limitations associated with computer memory and the 
need to store the many thousands of basis functions necessary to represent the highly 
curved wavefunctions of light elements, or of d- or f-electrons in metals. 
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Experimental structure determination 2 .. 6 
A knowledge of the atomic structure of a material is a prerequisite to an understanding 
of its physical behaviour. For the case of crystalline materials, diffraction methods allow 
the structure to be determined (see §2.6.1). However, for materials containing disorder, 
e.g. defective crystalline solids and amorphous materials, diffraction can, at best, only 
provide partial structural information. In such cases, other experimental techniques can 
provide complementary structural information. 

2.6.1 Diffraction 

Waves diffract when they meet an obstacle; the interference pattern appearing at a plane 
remote from the diffracting object, caused by the constructive and destructive inter
ference of wave fronts emanating from different parts of the obstacle, is characteristic of 
the diffracting obstacle. This principle is used to determine the structural arrangement 
of atoms in a material, where the diffracting object is now the collection of atoms 
themselves. Diffraction is most effective when the wavelength of the incident radiation is 
comparable to the size of the diffracting object. Interatomic distances in condensed 
phases are of the order of 2 A.. (0.2 nm), and three types of radiation having wavelengths 
of this order of magnitude are commonly used in diffraction experiments on materials, 
namely X-rays, neutrons and electrons. 

2.6.1.1 X-rays, neutronsand electrons as diffraction probes 

X-rays are electromagnetic waves having a wavelength of ::::= I A.., i.e. intermediate 
between the ultra-violet and ')'-ray regions of the electromagnetic spectrum. They are 
commonly generated in the laboratory by the bombardment of a metal target (the 
anode) by electrons accelerated from a cathode by a high voltage, V. Deceleration of 
the electron beam by collisions in the target metal causes bremsstrahlung (or braking) 
radiation to be emitted in the form of X-rays having a wide range of photon energies. 
The maximum photon energy (minimum wavelength) corresponds to the case when an 
electron is completely stopped in one collision; normally, however, many collisions take 
place during the deceleration process, and as a result there is a spectrum of photon 
energies below (wavelengths greater than) the maximum (minimum) value (see Fig. 
2.47), i.e. 

he 
hv = >: ~eV. (2.94) 

At sufficiently high acceleration voltages, the impinging electrons have enough energy 
to eject electrons from the core levels of the target metal atoms, whereupon higher-lying 
electrons drop down to fill the core holes, thereby emitting X-rays of well-defined 
energies characteristic of the target metal. If Is (K-shell) electrons are ionized by the 
impinging electron beam, the resulting holes can be filled with electrons from the L shell 
(2P3/2' 2Pl/2) or the M shell (3P3/2' 3Pl/2)' resulting in the KQ" KQ2 and K.B,' K.B2 X-ray 
lines, respectively (see Fig. 2.47). For the common target materials Cu and Mo, the 
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Fig.2.47 Intensity of X-rays emitted from an Ag target versus wavelength for the values of anode 
potential marked. At sufficiently high electron acceleration ,voltages, sharp peaks due to X-ray 
emission from intra-atomic electronic transitions are superimposed on the broad bremsstrahlung 
background. (After Burns (1985). Reproduced by permission of Academic Press, Inc.) 

average values of the X-ray wavelengths for the dominant lines are CuKa (1.5418 A..) 
and MoKa (0.7107 A..). 

The intense, almost monochromatic, Ka X-rays can be selected for use in diffraction 
experiments by using a suitable fllter (e.g. Ni for CuKa radiation), or by using as a 
monochromator a suitable single crystal (e.g. Si) oriented such that the Bragg diffrac
tion condition is obeyed ~or the wavelength of interest, i.e. 

2dsin8 = n).. (2.95) 

where d is the interplanar spacing, 8 is half the angle subtended by the incident and 
diffracted X-ray beams (see Fig. 2.48) and n is the order of the reflection. This equation 
can be derived by assuming that X-rays (or other waves) reflect speculady from lattice 
planes: constructive interference occurs when the path difference 2dsin8 is an integral 
number of wavelengths, n)... 

An alternative source of short-wavelength X-rays is the so-called synchrotron radia
tion emitted when high-energy (GeV) electrons are forced to move in a circular trajec
tory under the action of bending magnets. Relativistic effects cause the dipole 
electromagnetic radiation to be shifted upward iil energy from the radio frequency 
corresponding to the acceleration frequency of the electrons in the synchrotron ring 
up to the hard X-ray region (see Fig. 2.49). In addition, relativistic effects cause the 
normal 'dumb-bell' intensity distribution of dipole radiation to be concentrated into the 
(narrowed) forward lobe. The white synchrotron X-ray beam is monochromatized in 
the same way as for a conventional X-ray generator. 
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dsin e d sin e 

Fig.2.48 Bragg diffraction rreflection') from a set of lattice planes of spacing d. The Bragg angle 
is half that sub tended by the'incident and diffracted beams. The path differences between the two 
rays are indicated. 
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Fig.2.49 Spectral dependence of the photon flux emitted by the Dares bury 2 Ge V Synchrotron 
Radiation. Source at a bending-magnet or 'wiggler' output. (Figure courtesy of CLRC) 

Neutrons may also be used to perform diffraction experiments on materials. The de 
Broglie relation relating the momentum p of a free particle (e.g. a neutron) and the 
wavelength of the corresponding quantum-mechanical wave representation is 

A=~=~ h 
p mv (2mcg) 1/2 

(2.96) 

where m and cg are the mass and energy of the particle, respectively. High-energy 
('epithermal') neutrons are produced as a byproduct of nuclear reactions, either in a 
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reactor core or from the so-called spallation reaction when a high-energy proton beam 
from a synchrotron bombards a heavy metal target, typically uranium. Neutrons from a 
reactor source are produced effectively continuously in time, whereas those from a 
spallation source are pulsed and follow the bunches of protons impinging on the target. 
Passage of epithermal neutrons through a moderator causes a thermalization of their 
energy due to repeated collisions, and effective energy transfer, with the light atoms in 
the moderator (e.g. graphite). Thus, if the moderator is held at a temperature T, the 
average energy of the emerging 'thermal' neutrons is 3kB T /2. For a moderator operated 
at room temperature, eqn. (2.96) gives the wavelength of the thermal neutrons as 
A c:::: I.S A, i.e. comparable to interatomic spacings in solids. Neutrons have the advant
age of being very penetrating (several cm) in matter. 

Thermal neutrons emanating from a steady-state reactor source can be monochro
matized using a single-crystal monochromator, as for X-rays. In the case of a pulsed 
spallation source, neutrons with a specific wavelength can be selected or analyzed by 
time-of-flight means: neutrons traversing the distance L from source to sample to 
detector in a time t have a velocity Lit and hence momentum mllL/t. Thus the de Broglie 
relation (eqn. (2.96)) gives for the corresponding wavelength 

(2.97) 

Finally, electrons can be used for diffraction measurements also. Use of eqn. (2.96) 
with the electronic mass shows that ISO eV electrons have a wavelength of 1 A, suitable 
for diffraction from arrays of atoms. However, such .low-energy electrons are scattered 
very strongly by the electron clouds of atoms, with the result that their penetration 
depth is only a few angstroms, and so the use of such electrons is limited to surface 
studies. Electrons with energies of several keV (produced in an electron microscope) 
have a greater penetrating power (of several hundred A) but a correspondingly shorter 
wavelength, confining the diffracted beams to very small angles. 

2.6.1.2 The Laue formulation of diffraction 

Consider a collimated, monochromatic beam, say of X-rays, incident on a sample from 
which it diffracts (Fig. 2.S0a). Von Laue assumed that each site (set of atoms), say in the 
Bravais lattice of a crystal, would radiate the incident radiation in all directions at 
the same frequency. Constructive interference then gives rise to enhanced radiation 
intensity in certain directions. The incident beam, represented as a plane wave, can be 
written as eik-,. and the diffracted beam as eik"", where k and k'. are the respective 
wavevectors. The scattering vector [( is simply the vector difference between k and k' 
(Fig. 2.S0b), i.e. 

[( = k' - k. (2.98) 

In the case of elastic scattering where no energy, and hence momentum tzk, is exchanged 
between wave and scatterer, Ikl = Ik'i = 21f/A, where A is the wavelength of the wave. 
Thus, from geometrical considerations in Fig. 2.S0b, the magnitude of the scattering 
vector is given by 

1[(1 = 41fsine. (2.99) 
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Fig.2.50 (a) Path difference for waves diffracted from two arbitrary scattering centres i,j, related 
by a vector I"ij: the incident beam has wavevector k and the diffracted beam has wavevector k'. The 
scattering vector K is also shown. (b) Definition of the scattering vector K = /{' k.I( has the 
value (4n:/)...) sinO for elastic scattering (Ikl = ik'i = 2n:j)...). 

The maximum available value of IKI is thus equal to 4n:-j A for backscattering 
(20 = 180°). 

The path difference for the incident wave between points i andj in Fig. 2.50a is equal 
to - k· rij (where k = lellle!), ~nd likewise that for the scattered wave is k' . "ij' Thus the 
total path difference is (Ie' - Ie) . rij, or equivalently the total difference in phase angle is 
27rrij' (k' - k)1 A or (Ie' - Ie) - rij == K -"ij, giving a phase factor of exp[K . rij] for the 
wave scattered from i relative to that scattered from j. 

This result can be generalized for the case of a 3D Bravais lattice, where the vector rij 
now becomes the 3D translation vector R (eqn. (2.1». Thus, for constructive interfer
ence to take place for all the waves scattered from each of the lattice points, the overall 
phase factor must equal unity (equivalent to the path difference being an integral 
number of wavelengths), i.e. 

exp(iK . R) = 1. (2.100) 

From the previous discussion on the reciprocal lattice (§2.4.1), it is apparent that eqn. 
(2.100) is only satisfied when the scattering vector K is equal to a reciprocal-lattice 
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vector G (cf. eqn. (2.52». Thus, the Laue condition for diffraction from a 3D transla
tionally periodic object (a crystal) can thus be written succinctly as 

K G. (2.101) 

An alternative expression for the Laue diffraction condition can be derived in terms 
only of the incident wavevector, Ie, in the case of elastic diffraction. Equation (2.101) can 
be rewritten (from eqn. (2.98» as Ie + G Ie' or (Ie + G)2 k'2 = k2, or 

21e· G + G2 = O. (2.102) 

However, since G is a reciprocal-lattice vector, then so is -G, and thus eqn. (2.102) can 
be rewritten also as 

Ie·G G 
2' (2.103) 

Equation (2.103) has a very powerful geometrical representation since it describes the 
locus of all points, called the Bragg plane, which is the perpendicular bisector of a 
reciprocal-lattice vector G (Fig. 2.51). The Laue condition is thus only satisfied for those 
incident wavevectors whose tip lies on the Bragg plane in reciprocal space when the 
wavevector origin is tied to a reciprocal-lattice point. Note also that the construction 
shown in Fig. 2.51 based on eqn. (2.103) is exactly the same as that used to construct the 
first Brillouin zone (cf. Fig. 2.41): the Bragg planes are simply the faces of the first 
Brillouin zone. 

The Laue condition (eqn. (2.101» gives a more satisfactory derivation of the Bragg 
diffraction law (eqn. (2.95» than that given originally by Bragg in terms of the ad hoc 
assumption that planes of atoms specularly reflect X-rays, neutrons, etc., which sub
sequently constructively interfere (see Fig. 2.48). Substituting in eqn. (2.101) for the 
magnitude of the scattering' vector IKI = (47r I A)sin 0 using eqn. (2.99) and for the 
general reciprocal-lattice vector G, being an integral multiple (n) of the shortest vector 
Go parallel to G, where IGol = 27rld (eqn. (2.46» and d is the spacing of the Bravais 
lattice planes normal to G, i.e. 

~---""G 

Fig.2.51 Geometrical representation of the Laue condition for diffraction. Diffraction only 
occurs for an incident wavevector whose tip lies on the Bragg plane (or equivalently the face of 
the first Brillouin zone) if its origin is tied to a reciprocal-lattice point. 
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IGI 27rn/d, (2.104) 

which immediately gives the Bragg condition 2dsinB = n).. (eqn. (2.95». Thus, the order, 
n, of the Bragg reflection is simply the length of the reciprocal-lattice vector G 
characterizing the diffraction peak, normalized by the smallest parallel reciprocal-Ia~tic~ 
vector. 
Anot~er useful geometrical representation of the Laue condition for diffraction (eqn. 

(2.101~) I~ the so-called Ew~ld.cons~ruction (Fig. 2.52). The wavevector k corresponding 
to the mCldent beam ~f radiatIOn wIth wavelength)" is drawn with its origin placed such 
that the vector Ie ten:ll.nates at a re?iprocal-Iattice point. A sphere of radius Ikl = 27r /).. is 
drawn about the ongm of k. A dIffracted beam will exist if the surface of this Ewald 
sphere intersects any other point in the reciprocal lattice. If this occurs, then k' k + G, 
i.e. the Laue condition (eqn. (2.101» is satisfied. 
Th~ overall scattering amplitude of waves diffracted from planes (11k!) in a crystal can 

be wntten as a sum over all atoms i as 

Fhkl = ~fi exp[iG . Ri], 
i 

(2.105) 

wherefi is the atomic scattering (or form) factor (which depends on the type ofradiation 
used-see .§2.6.1.3) and t~e exponential term is the phase factor, eqn. (2.100). The 
argument m the eXp'onentIaI term can be expanded by rewriting Ri and G in terms of 
their respective basis vectors (eqns. (2.1) and (2.47), respectively), giving 

Fltkl = ~fi exp{27ri(hui + kVi + [Wi)}, (2.106) 
i 

where eqn. (2.49a) has been used. 

Fig.2.52 The Ewald constru.ction for ~he. Laue condition for elastic diffraction from a crystal. 
!he ~a.vevector k corresp~ndmg to the mCldent beam of radiation of wavelength ,\ is drawn with 
Its ongm such that .k .termmates at ~ reciprocal-Iattic~ po~nt,. O. A sphere of radius Ikl = 27r /,\ is 
drawn about .the. ongm of.'" and a dIffracted beam wIll eXIst If the surface of this sphere intersects 
any other pomt m the recIprocal lattice, i.e. when Ie' Ie + G. 

* 
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Depending on the particular type of Bravais lattice involved, eqn. (2.106) can be used 
to show that the scattering amplitude is identically zero, i.e. there are systematic 
absences in the expected number of Bragg diffraction peaks, for particular combina
tions of values of hIe! (known as extinction rules). Thus, for example, for a b.c.c. lattice 
(with identical atoms at the positions 000 and 112 112 1/2 in the unit cell), use of eqn. 
(2.1 06) shows that 

F _ {2/ (h + k + I = even), 
hld- 0 (h+k+l=odd). 

The extinction rules for a number of Bravais lattices are given in Table 2.6. Further 
systematic absences can arise if additional translational symmetry elements are present. 
For example, for a 2\ screw axis parallel to x, reflections for which h = 2n + 1 are also 
absent. Systematic absences for various glide planes are also given in Table 2.6. 

Thus far, the discussion has been devoted entirely to diffraction from perfectly 
crystalline materials. What of amorphous materials-do they diffract X-rays and neut
rons as well? They do, but the diffraction intensity is no longer confined only to those 
directions determined by the reciprocal-lattice vectors (cf. eqn. (2.101) since there is no 
reciprocal lattice for an amorphous material because of the lack of translational 
periodicity. Instead the diffraction intensity is diffusely spread out with respect to all 
scattering vectors K, although the scattering intensity at some values of K is still greater 
than at others. 

In order to calculate the diffuse scattering intensity from an amorphous solid, the 
(measurable) scattering intensity I is calculated as the product of the scattering ampli
tude Fi from one atom i (with respect to some arbitrary origin atom 0) and the complex 
conjugate of the amplitude for atomj, viz. 

(2.107) 

Generalizing eqn. (2.105) for the scattering amplitude for the case of an arbitrary 
scattering vector K, and general atomic positions Yi, Yj not necessarily related by 
symmetry, gives 

j = ~fi exp[iK . l'i] ~jj exp[-iK . l'j] (2.108) 
i 

Table 2.6 Extinction rules for diffraction for some lattice types and symmetry elements 

Symmetry element 

Centred cells 
Body-centred, I 
Face-centred, F 
Side-centred, C 

Screw axis 
21 along a 

Glide planes .l b 
Translation (aI2) (a-glide) 
Translation (al2 + el2) (n-glide) 
Translation '(a/4 + c/4) (d-glide) 

Reflection affected Systematic-absence condition 

hid h+k+I=2n+1 
hid h + k, h + I, k + I = 2n + I 
hid h+k=2n+l 

hOO 

hOI 
hOI 
hOI 

h = 2n+ 1 

h=2n+l 
h+12n+l 
h + I = 4n + 1,2,3 
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or 

J = L Lk/j exp[iK . rij], (2.109) 
i j 

where the interatomic vector I'ij = I'i -Ij has been used. A simplifying assumption 
generally valid for amorphous materials is that the material is isotropic, i.e. the vector 
rij may adopt all directions with equal probability (or equivalently the tip of the vector 
may take all positions on the surface of a sphere whose centre is the origin of the vector). 
The orientational average of the phase factor in eqn. (2.109) is thus given by 

< exp[iK i I'ij] > = 4 102 r exp[iKrij cos¢]21fr~d( cos¢) 
m ij J",=o 

sinKrij 
Krij , (2.110) 

where ¢ is the angle subtended by the vectors K and 10ij (see Fig. 2.50a), and K == IKI and 
rij Irijl. Substituting eqn. (2.110) into eqn. (2.109) yields the so-called Debye equation 
for the diffuse scattering from a random array of atoms, 

J(K) LLfijjsinKrij. (2.111) 
i j Krij 

Note that the diffuse scattering intensity is a function only of the magnitude of the 
scattering vector K; the scattering intensity is the same in all directions in K-space as a 
consequence of the real-space amorphous structure being spatially isotropic. * 

2.6.1.3 Atomic form factor 

The atomic scattering factor, or form factor,/, introduced in eqn. (2.105) describes the 
scattering amplitude for a wave scattered by an individual atom (i.e. without the 
interatomic interference effects associated with the phase factor). The atomic form 
factor has a different functional dependence on the magnitude of the scattering vector, 
K, depending on the type of radiation involved. 

For the case of X-ray diffraction, the X-rays (being electromagnetic waves) interact 
with the electrons in the atoms: the scattering process can be thought of as one involving 
absorption of the X-ray photon, accompanied by the excitation of the electronic system, 
immediately followed by de-excitation and re-radiation of an X-ray photon. Since the 
size of an atom is comparable to the X-ray wavelength, intra-atomic interference effects 
are important, and the X-ray atomic form factor is thus strongly dependent on K. 

It is reasonable to assume that the amplitude of an X-ray wave scattered from a 
particular volume element d V is proportional to n(r)dV (times a phase-factor term), 
where n(r) is the electronic charge density contained within the volume element at 
position r. For a whole sample, the scattering amplitude is 

F = J n(r) exp[iK . r]d V (2.112) 

for scattering with a general value of reciprocal-lattice vector, K. The total electron 
concentration of the sample can be written as the sum over the electl,"on concentrations 
ni of individual atoms i, i.e. 

I 

I 
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n(r) = L"i(1' -I'i). 
i 

Writing I' - ri = p, substitution of eqn. (2.113) into eqn. (2.112) gives 

F 4=exp[iK 'I'i] J ,ii(P) exp[iK· p]dV. 
I . 
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(2.113) 

(2.114) 

Comparison of eqn. (2.114) with the generalized form of eqn. (2.105), i.e. 
F = ~ifi exp[iK . ri], shows that the X-ray atomic form factor is given by the relation 

it = J ni(l') exp[iK . r]d V, (2.115) 

where the substitution I' = P has been made. The integral in eqn. (2.115) is over the 
volume of the charge distribution of the atom; the volume element is given by 
d V = 2m.2sin¢ d¢ dr, where ¢ is the angle that K makes with 1'. In the case of a 
spherically symmetric charge distribution, ni(l') = ni(r), the evaluation of the integral 
over ¢ is as for eqn. (2.110), and thus 

(2.116) 

For forward scattering, 28 = 0, and hence K = 0 (cf. eqri. (2.99». Thus, in this case, 

J;X(K = 0) = 41f J l1i(r)r2dr Z, (2.117) 

where Z is the atomic number of the element (i.e. the total number of electrons in the 
atom). Thus, X-ray scattering is very weak for very light atoms, such as H or Li. The X
ray atomic form factor decreases strongly with increasing K (eqn. (2.116», as can be 
seen in Fig. 2.53 for the case of Al (2 = 13). Thus, unavoidably, the intensity of an X
ray diffraction pattern decreases markedly with increasing scattering angle, making the 
measurement of high-order reflections difficult using X-ray diffraction. 

In the case of electron diffraction, the electrons are scattered both by the electron 
distribution in the atom and by the charged nucleus. The electron form factor is given by 
the expression 

(2.118) 

where me is the electronic mass. The electron scattering factor h~s an even stronger 
dependence on K than F' (K). . 

Neutrons, in contrast, interact only with atomic nuclei via the nuclear force. The 
scattering process can be regarded as the momentary capture of the incoming neutron 
by a nucleus, and then re-emission of the neutron. If a particular nucleus has no nuclear 
spin, then the scattering from all such nuclei in a solid will be the same (coherent), 
analogous to that of X-rays, and interatomic interference (diffraction) effects can occur. 
However, if an elemental constituent, A, of a sample consists of a number of different 
isotopes, i, each with a different neutron scattering factor, or scattering length bA,i, then 
the coherent neutron-scattering cross-section, L:c, is related to the mean scattering 
length bA ~iCibA,i' where Ci is the abundance of isotope i, via the equation 
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Fig.2.53 Absolute atomic scattering factors for metallic Al measured for the reflections labelled, 
compared with a theoretical Hartree-Fock calculation (solid line). (After Batterman et al. (1961). 
Reprinted with permission from Phys. Rev. 122,68. © 1961. APS) 

2:;c = 41fhiA. The mean-square deviation of scattering lengths from the mean gives rise to 
incoherent scattering, with a cross-section 2:;i = 41f((bi - hi)) that does not contain a 
phase factor and hence does not contain structural information through an interference 
term. In addition to this isotopic incoherence, nuclei with non-zero nuclear spins (I > 0) 
can also give rise to spin incoherence. This is because the (21 + 1) different nuclear-spin 
states all have different scattering lengths, bI. A nucleus exhibiting predominantly 
incoherent scattering is 51 V. 

The neutron scattering factor does not vary systematically with Z like the X-ray form 
factor (eqn. (2.117)). Instead, there is considerable variation in b from element to 
element (see Fig. 2.54). Thus, neutron diffraction can readily be performed for light
element-containing (e.g. hydrogenous) materials. For certain isotopes (e.g. 1 H, 7Li, 48Ti, 
62Ni) the neutron scattering length is even negative, associated with a phase change of 1f 

of the neutron on scattering. 
A feature of particular advantage is that the neutron-scattering length is independent 

of K; this is due to the fact that the size of the nucleus is very much smaller than the 
neutron wavelength, thereby precluding intra-atomic interference effects as found for 
X-ray scattering. This behaviour can be demonstrated by assuming that eqn. (2.116) is 
valid for neutron scattering as well; if the size of the nucleus is confined to the vicinity of 
r 0, then the factor (sin Kr)/Kr c::= 1, and hencer == b is independent of K. 

r I 

I 

2 

Atomic number 

-I 

Fig.2.54 Variation of the neutron scattering length b with atomic number. 

Finally, since the neutron has an intrinsic spin (I = 1/2), and hence a magnetic 
moment, it can interact with other unpaired spins, such as electrons in magnetic 
materials, for example. Thus, the magnetic structures of such materials may be probed 
using neutron diffraction (see §7.2.5.6). Spin polarization of neutrons allows 
nuclear and magnetic scattering to be separated when peaks overlap in the diffraction 
pattern. 

2.6.1.4 Experimental methods -

Diffraction experiments require a source ofradiation (X-rays, neutrons, or electrons), a 
monochromator if appropriate, a sample, and a detector for the scattered radiation. 
Such experiments can !,?ssentially be divided into two categories: single-crystal experi
ments and powder experiments. 

Single-crystal X-ray or neutron-diffraction measurements in general provide the most 
complete set of diffraction data for crystalline materials. Such experiments nowadays 
are performed using a four-circle diffractometer (see Fig. 2.55), in which each set of hId 
planes of the crystal is successively brought into the diffraction condition (eqn. (2.95)) 
by systematically varying the position of the crystal with respect to the incident beam 
direction using the angles of rotation (cp, x, w); the detector can then scan across the 
reflections using a 2e-scan. Older single-crystal methods used X-rays, in which the 
detector consisted of a sheet of photographic film wrapped cylindrically around the 
sample, and again the crystal was moved relative to the beam direction and film in 
certain ways. In precession photographs, in particular, the diffraction spots form a 
direct map of the reciprocal lattice. For example, Fig. 2.56 shows a schematic illustra
tion of two precession photographs (i.e. two 'slices' through the 3D reciprocal space) for 
a b.c.c. (I) crystal, with some of the reflections labelled according to the Miller indices of 
the real-space planes to which they correspond; the axes a*, b* of the reciprocal lattice 
are also indicated. Note that reflections such as 100, 300, 120, 140, etc. are absent in 
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Fig.2.SS Schematic illustration of a four-circle diffractometer used for single-crystal diffraction. 
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Fig.2.S6 Schematic illustration of precession photographs for a b.c.c. single crystal for (a) hkO 
reflections; (b) hkl reflections. 

Some of the diffraction spots are marked according to the hkl planes to which they correspond. 
The reciprocal-lattice axes are labelled a* and h*. 
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Fig. 2.56a, and 201, 401,021,041, etc. are missing in Fig. 2.56b. These are examples of 
the systematic-absence condition (11 + k + I) 2n + 1 characteristic of a b.c.c. crystal 
(Table 2.6). The f.c.c. nature of the reciprocal-space lattice of the real-space b.c.c. lattice 
(see §2.4.1) is also evident in Fig. 2.56. 

A four-circle diffraction measurement of a single crystal yields a set of diffraction 
intensities IFhkd 2

, from which the magnitude (modulus) of the scattering amplitude IFhktl 
may be found. Unfortunately, the structural information needed to solve the crystal 
structure, namely the atomic density n(r) for neutron diffraction (electron density for x
ray diffraction), is related via the Fourier series 

Fhkl = LLLn(r) exp[27ri(hx+ky+lz)] (2.119) 
h k I 

to the total amplitude Fhkl = IFhktlei<Phkl, where the phase factor <PMI is unknown. (Note 
that a summation over the discrete values of hId is taken, rather than the integral form 
of the Fourier transform of eqn. (2.112).) This phase problem is a major obstacle to the 
determination of crystal structures. 

One way of obviating the phase problem is to use the Patterson method. Although 
nCr) cannot be obtained from eqn. (2.119) directly by Fourier inversion (cf. eqn. (2.58» 
(since the Fhkl are not known), instead a Fourier inversion is effected using the measured 
intensities lFh/cd 2 as coefficients to produce a Patterson map, viz. 

PUVll' = + L L L IFhktl
2 exp[-27r~(hu + kv + lw)], (2.120) 

h k I 

where again a summation over the discrete set of hId values has been used. For X-ray 
diffraction, the resulting Patterson map looks somewhat like a 3D electron-density map 
of a solid, but whereas in an electron-density map the highest intensity contours corre
spond to the atomic positions; in a Patterson map, the peaks correspond instead to 
interatomic vectors between pairs of atoms. Since, for X-ray diffraction, the atomic 
scattering factors scale as the atomic number, Z (eqn. (2.117», the intensity of a peak 
in the Patterson map is proportional to the product ZiZj for a pair of atoms i and). Thus, 
this method provides a way of finding the positions of heavy atoms in the unit cell of a 
'crystal since the strongest peaks in the Patterson map correspond to these. An approxi
mate value of the atomic scattering amplitude, Fhkl, can then be calculated from eqn . 
(2.119) using only the atomic positions of the heavy atoms: although the magnitude of 
Fhkl will not necessarily be very accurate, the phase should be more-or-Iess correct. Inverse 
Fourier transformation of eqn. (2.119) to yield the electron-density map nCr), now using 
measured values of IFi'kd with the estimated phases, should lead to the lighter atoms also 
being located. The atomic positions in the unit cell are then optimized by a least-squares 
minimization, structure-refinement procedure (taking into account thermal displace
ments of the atoms) in terms of the quality-of-fit (or 'reliability') R factor, given by 

" IFobs 
F

eale I L..t hkl - hkl 
R(%) = _hl..;,;;.d-=::;-----:-__ 

LIF/~/~sl 
(2.121 ) 

hlel 

where R values of ;:S 5% are typical for a refined structure. For further details, see e.g. 
West (1987). 
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Fig.2.57 Schematic illustration of the formation of a cone of diffracted radiation from a given 
lattice plane in the powder-diffraction method. 

The other common type of X-ray or neutron diffraction measurement is powder 
diffraction, used for samples which cannot be produced in single-crystal form of 
sufficient size. Assuming that the crystallites are completely randomly oriented, a 
given real-space lattice plane making an angle of B to the incident beam of radiation 
will produce a cone of diffracted radiation (with included angle 4B) when all angular 
orientations about the incident-beam axis are taken into account (see Fig. 2.57): the 
individual Bragg diffraction spots characteristic of a single-crystal diffraction pattern, 
e.g. in a precession photograph (Fig. 2.56), become transformed into a series of con
centric arcs of scattered intensity about the incident-beam direction. As a result, the 
structural information available in 3D from a single-crystal experiment (i.e. the reci
procal lattice) is effectively reduced to a ID representation in the case of powder 
diffraction (i.e. the radii of the conical arcs). 

Interplanar spacings d, for a polycrystalline sample can be calculated using the Bragg 
law (eqn. (2.95» from the values of diffraction angle, 2B, corresponding to peaks in a 
powder pattern. Often, an unknown. structure can be identified by 'finger-print' means 
by comparing d-spacings, and the corresponding powder-diffraction peak intensities, 
with values tabulated for some 30000 known inorganic structures in the JCPDS (1984) 
powder-diffraction file. This approach is particularly suitable for relatively high-sym
metry crystals where the diffraction peaks are well separated in angle, but less so fOf 
low-symmetry materials where appreciable peak overlap occurs. ' 

A more modern approach uses Rietveld profile analysis of powder-diffraction pat
terns measured using neutrons or X-rays to refine structures. A least-squares optimiza
tion procedure is applied to the fitting of diffraction-peak profiles (i.e. intensity and 
width), taking into account peak overlap for low-symmetry structures (see Fig. 2.58 for 
an example). Very recently, however, the ab initio determination of crystal structures 
from high-resolution X-ray or neutron powder-diffraction patterns has been achieved, 
i.e. without the assumption of a trial structure as needed in the Rietveld method (see 
Cheetham (1987»; such a method has the advantage that single crystals are no longer 
needed for a complete structure determination. 
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Fig.2.58 Neutron powder-diffraction pattern ofpolycrystaIIine Fe2(S04h showing the results of 
a Rietveld refinement (fuJI line) to the measured data (dots). The reflection positions and the 
difference curve (measured minus calculated) are also shown (Cheetham (1987), in Solid-State 
Chemistry: Techniques, eds A. K. Cheetham and P. Day, 1987. Reproduced by permission of 
Oxford University Press) 

Electron-diffraction measurements are carried out in a transmission electron micro
scope (Fig. 2.59a), but this instrument has the added advantage that the diffracted beams 
can also be combined together again using electrostatic lenses to form a magnified image 
of the sample (Fig. 2.59b). An .example of a diffraction pattern and corresponding real
space image, for the case of a quasicrystalline (icosahedral) sample of an AlFeCu alloy, is 
shown in Fig. 2.60. Electron diffraction/imaging has the advantage that it may be carried 
out on very small areas (since the size of a focused electron beam is of the order of ~ few 
f.Lm in diameter), although the sample thickness must also be very small (a few 100 A) to 
avoid absorption problems. It should be noted that transmission electron microscope 
images are projections of the atomic structure along the beam direction. 

Thus far, the discussion has concentrated on crystalline materials. However, the 
diffuse scattering exhibited by amorphous materials, as exemplified by the Debye equa
tion (eqn. (2.111», also contains structural information. A diffraction measurement on 
iln amorphous material is equivalent to a powder-diffraction experiment for a poly
crystalline material: the diffracted intensity now consists of a pattern of concentric 
diffuse haloes, i.e. the diffracted intensity function is a one-dimensional function of the 
magnitude of the scattering vector, K = IKI (eqn. (2.99». 

The Debye expression (eqn. (2.111» for the diffuse scattering from an amorphous 
solid can be analysed most simply if the material is monatomic, with atomic scattering 
factor 1, in which case eqn. (2.111) becomes 

N N N . v 

I = Lf2 + :L :Lf2 sml~~'ij . 
i=l i=l Ni K11J 

(2.122) 
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(b) 

Fig.2.59 Schematic ray 9-iagrams for the formation of: (a) a diffraction pattern, and (b) an image 
in the transmission electron microscope. 

The summation over i simply yields the number of atoms, N, in the sample. The 
summation over j can be replaced by an integral involving the atomic-density function 
p(r) (averaged over all atoms) for each atomj taken in tum as origin, with r ~ rij, i.e. 

1= Nf2 + Nf2 J p(r) sinKr d V. (2.123) 
Kr 

Adding and subtracting a term in pO, the (macroscopic) average density, and assuming 
spherical symmetry gives: 

I Nf2+Nf2 4'1fr2[p(r)-pQ]--dr+Nf2 47r102 pO--dr. 100 sinKr 100 sinKr 

° Kr ° Kr 
(2.124) 

The third term in eqn. (2.124) represents small-angle scattering due to the finite sample 
size and is completely masked by the undiffracted transmitted beam and so may be 
neglected. Thus, eqn. (2.124) may be rewritten succinctly as 

K[S(K) -" 1] 100 

G(r)sinKr dr (2.125) 

Fig.2.60 High-resolution real-space image, and the corresponding diffraction pattern, of quasi
crystalline AlCuFe obtained using" an electron microscope. The diffraction pattern has pentagonal 
symmetry, and pentagonal orientational arrangements in the real-space image are also indicated. 
The lattice planes in the image, when viewed from a grazing angle, are not periodic: the spacings 
are related by the golden mean, r 2cos36° = (1 + VS)/2. (Courtesy of Dr. M. Audier) 

where the structure factor, S(K.), is defined as 

S(K) I(K)/Nf2, (2.126) 

which oscillates about unity, and the reduced radial distribution function, G(r), (so
called because it oscillates about zero) is given by 

(2.127) 

l(r) is the radial distribution function (RDF) (see §2.1.4, Fig. 2.16 and eqn. (2.4)). 
Thus, eqn. (2.125) is suggestive of the form of a Fourier transform, and so can be 

Fourier inverted to yield the reduced RDF in terms of the measured structure factor 
S(K), viz. 

2100 

G(r) = - K[S(K) - 1] sinKrdK. 
'If ° 

(2.128) 

Note that the inverse Fourier transform (eqn. (2.128)) requires diffraction data for 
an infinite range of scattering vectors. In practice, however, the maximum value is 
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Fig.2.61 Structural correlation functions as a function of distance and scattering vector obtained 
from X-ray diffraction from amorphous Ge (Temkin et al. (1973)): (a) RDF; (b) reduced RDF; (c) 
reduced structure factor; (d) measured X-ray scattering intensity. (Reprinted and permission of 
Taylor & Francis Group Ltd.) 

K = 41f/).. (for the case of back scattering, 2B = 180o-cf. eqn. (2.99)). The unavoidable I 
use of truncated diffraction data-sets in the Fourier transform of eqn. (2.128) produces 
spurious 'termination' oscillations in G(r), particularly at small r. * 

Examples of various real- and reciprocal-space pair-correlation functions obtained 
from diffraction measurements on amorphous Ge are shown in Fig. 2.61. Peak positions 
in the RDF, J(r), correspond to interatomic separations, and areas under peaks corre
spond to average atomic coordination numbers (although peak overlap is very pro
nounced and hence a severe problem for larger r). The approach outlined above is also 
valid for the case of (poly)crystalline materials. 

*2.6.2 X-ray absorption fine-structure spectroscopy 

The X-ray absorption coefficient of atoms, J-LxCfb), is generally a monotonically decreas
ing function of X-ray photon energy, '&, except when the photon energy becomes equal 
to an ionization energy for the atom, corresponding to the excitation of a bound 
electron to an energy above the vacuum level of the atom in the solid, whereupon the 
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Fig.2.62 Schematic illustration of the photo- excitation by an X-ray photon of an electron from 
a core level (e.g. a Is, K electron) with binding energy -%0 to beyond the vacuum level (% = 0) of 
the atom in the solid, thereby forming a free photoelectron. 

electron becomes free of the atom (see Fig. 2.62). The threshold photon energy required 
to create such a photoelectron is 

hv '&0, (2.129) 

where '&0 is the binding energy of the core electron. At the photon energy '&0, therefore, 
the X-ray absorption coefficient discontinuously increases in magnitude, producing an 
absorption edge (see Fig. 2.63). The positions of the X-ray absorption edges are different 
for each element. A photoelectron created by an X-ray photon with energy hv > '&0 will 
carry away the excess energy as translational kinetic energy, and thus the wavevector k 
of the associated propagating electron wave can be found using the de Broglie relation 
between wavelength and momentum (eqn. (2.96)), viz. 

k = 21f = (2me(hv - '(0)) 1/2 
tz2 ' (2.130) 

where me is the electron rest mass. (Note that this is half the maximum value 41f / ).. of the 
diffraction scattering vector K (cf. eqn. (2.99)).) 

An outgoing photoelectron freed from an atom in a solid can then undergo a process 
of internal diffraction, i.e. the electron wave can diffract from atoms neighbouring the 
atom that absorbed the X-ray, and interference can then occur between the backscat
tered electron waves and the outgoing electron wave (see Fig. 2.64). The final-state 
photoelectron wavefunction thus contains contributions from both outgoing and back
scattered wave components, and the interference between these' two waves therefore 
causes a modulation of the photon-energy dependence of the matrix element for the 
X-ray absorption process and hence of the absorption coefficient, J-Lx, itself. These 
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Fig.2.63 X-ray absorption spectra for amorphous AS2Se3 showing the absorption edges for 
excitation from the K(ls) core level of As and Se atoms, together with the fine structure at photon 
energies above the edges. (Data by R. Pettifer, in Elliott (1990).) 
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Fig.2.64 Schematic illustration of the internal-diffraction process leading to X-ray absorption 
fine structure. An atom (filled circle) on absorbing an X-ray photon with energy greater than the 
electron binding energy, creates an outgoing photoelectron wave (sol~d circular line) that can 
backscatter (dashed circular lines) from neighbouring atoms (hatched CIrcles). Interference ta~es 
place where outgoing and backscattered waves overlap, and this modulates the X-ray absorptlOn 
coefficient. 

oscillations in f.Lx are known as X-ray absorption fine structure (XAFS): see Fig. 2.63 for 
examples for the case of amorphous AS2S3. 

Two types of internal-diffraction events can be distinguished. In the first, for photon 
. energies much greater than the threshold energy (hv > ~o + 50 eV), the outgoing 
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electron wave scatters only once from a neighbouring atom; i.e. pairs of atoms are 
involved in the process (the atoms absorbing the X-rays and the back scattering atoms) 
and, in this regard, the resulting extended X-ray absorption fine structure (EXAFS) is 
similar in origin to a conventional diffraction pattern (§2.6.1) which is also due to a 
single-scattering process and hence also involves only pairwise structural correlations. 
In the second type of internal-diffraction process, operative at much lower photon 
energies ('jgo < hv < ~o + 50 eV), electron scattering from more than one back scattering 
atom takes place. In the simplest case of such multiple scattering, three atoms are 
involved (the atom absorbing the X-ray and two backscattering atoms), and thus the 
resulting X-ray absorption near-edge structure (XANES), or near-edge X-ray absorp
tion fine structure (NEXAFS), contains structural information about triplet, and 
higher, correlations. XANES oscillations can only be investigated theoretically by 
performing multiple-scattering calculations for electrons in an assumed structural 
model of the solid. 

On the other hand, the single-scattering process characteristic of EXAFS oscillations 
allows an analytic expression to be obtained for the normalized X-ray absorption fine
structure amplitude 

X(k) = (f.Lx(k) f.Lo(k))/ f.Lo(k) , (2.131) 

where f.Lo is the background X-ray absorption coefficient, i.e. 

X(k) ",Ni l/i(7l")1 ( I') ( ')1')) - ~ 2-k- exp -2Ri .Ae exp -2(1";1C" 
i Ri 

x sin[2kRi + 2t5(k) + 7]i(k)], (2.132) 

where the summation is over all ,shells of backscattering atoms, i, each containing Ni 
atoms at a distance Ri from the absorbing atom. The EXAFS amplitude depends on Ni 
and on the backscattering amplitude l/i(7l") I of atoms i, and is attenuated by a factor of 
1/ RT (since both outgoing and backscattered electron waves are assumed to be sphe
rical, each decreasing in amplitude as 1/ R), because of the finite mean-free path Ae of 
electrons in the materia.l, and by the Debye Waller factor (see §4.2.6) involving static and 
thermal r.m.s. displacements (Ji about the equilibrium bond length along the vector 
joining absorbing and backscattering atoms. Finally, the EXAFS amplitude is sinu
soidally modulated by an interference term involving the phase shift of the photoelect
ron; additional phase shifts t5(k) and7](k) arise because the photoelectron is emitted 
from, and backscattered by, atomic potentials, respectively. 

Structural information from EXAFS measurements can be extracted by fitting the 
experimental amplitude (eqn. (2.127)) to that calculated using eqn. (2.132) using the 
structural quantities (Ni, Ri and (Ji) as variable parameters, and taking values for phase 
shifts, backscattering amplitude and electron mean-free path from corresponding fits of 
EXAFS data for known crystalljne structures. Note that the single-scattering expression 
for X(k) given by eqn. (2.132) is a local function, and does not depend on translational 
periodicity; the technique is therefore equally applicable to crystalline and disordered 
materials. Furthermore, it is atom-specific since the X-ray absorption-edge energy is 
characteristic of a given element (see Fig. 2.63), and so the local structure around a 
particular type of element, acting as X-ray absorber, can be investigated in multi
element materials . 



Obviously, X-ray absorption fine-structure measurements require X-rays having 
photon energies spanning a wide range, both below and ab~ve an X-ray abso~pt~on 
edge. A convenient, high-brightness source of such X-rays IS synchrotron radiatIOn 
(Fig. 2.49). 

*2.6.3 Holography 

The ultimate goal in determining the structure of solids is to use so-called direct 
methods to produce a faithful, 3D real-space image of the atomic arrangement in the 
sample, without the use of assumed trial structures in the analysis of the data. Trans
mission electron microscopic images do not satisfy this criterion since essentially they 
are 2D projections of the 3D image along the electron-beam direction. Conventional 
diffraction experiments (§2.6.1) cannot be used for this purpose either, since what is 
measured is the diffracted intensity, and all phase information which encodes the 
relative positions of the atoms is lost. However, one technique, which can be viewed 
as being a variant of the diffraction method, and which does retain the phase informa
tion, is holography, first proposed by Gabor (1948). 

Holography involves the interference between two waves, one, the reference beam (R), 
which travels unimpeded from source (S) to detector (D), and the other, the object beam 
(0), which results from scattering of the wave emitted by the source by an intervening 
object P: the hologram is the interference pattern observed at D caused by the inter
ference between the Rand 0 waves (see Fig. 2.65a). If the wave amplitude at D is 
written as 

'ljJ=R+O, (2.133) 

then the intensity there is given by 

I = 'ljJ* 'ljJ = R* R + 0* 0 + R* 0 + 0* R. (2.134) 

The last two interference terms in eqn. (2.134) contain the holographic information. If, 
say, a photographic film recording the intensity variations at D were then placed at P, 
instead of the scattering object, and illuminated with a conjugate beam R* (e.g. a 
converging spherical wave, if R were a diverging spherical wave emanating from the 
point source S), a 3D image of the object can be reconstructed. The transmitted 
amplitude would be proportional to R*I, i.e. 

(2.135) 

The second term in eqn. (2.135) is negligible if IRI » 101, which is true if 0 is derived 
from R by scattering. The fourth term produces the holographic image of the object (the 
third term is associated with a ghost, or twin, image). 

The amplitude of the spherical waves Rand 0 can be written as 

and 

R = Fo(k) exp(ik . r) 

o = ~Fi(k) exp[ik· (r - ri)], 
if 0 

(2.136) 

(2.137) 
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Fig.2.65 (a) Schematic illustration of the experimental arrangement used in Gabor holography 
with an external source (S) of coherent radiation, providing both a direct reference beam R and an 
object beam 0 scattered by an object (P). Interference between beams Rand 0 in the detector 
plane (D) results in hologram formation. (b) Schematic illustration of the principle of an internal 
atomic X-ray source used in the holographic imaging of atoms. An incident X-ray creates a core
level hole in an atom; subsequent recombination of a higher-lying electron with the hole creates a 
fluorescent X-ray, which can travel to the detector directly (R beam), or be scattered by neigh
bouring atoms (0 beam). 

where Fi(k) represents the angular variation of the spherical waves, k their wave
vector and ri is the position of the ith scatterer. The reconstructed wave amplitude of 
the holographic interference terms, in analogy to eqn. (2.135), can thus be written 
mathematically using the Helmholtz-Kirchhoff formula, akin to a Fourier integral, 
as 

A(r) = J (R*O + 0* R)exp( -ik· r)dk (2.138) 

where k = kllkl. Peaks in A(r) occur whenever r = ±ri (the negative sign corresponding 
to twin images), i.e. when the phase factor in eqn. (2.137) equals unity. 
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In conventional optical holography, the wave source (a laser) provides a coherent 
beam that illuminates the object 0, as well as providing the reference beam (Fig. 2.65a). 
For the purpose offorming holographic images of atoms in solids, such an arrangement 
is not feasible, since no source is yet available of coherent X-rays (required so that the 
wavelength of the radiation is comparable to the interatomic spacing for optimum 
diffraction conditions). 

Instead, X-rays emitted from the atoms themselves in the solid may be used as internal 
point-like sources for holographic purposes. An X-ray emitted from an atom may 
proceed unimpeded direct to the detector D (R beam), or be scattered by a neighbouring 
atom, giving an 0 beam (see Fig. 2.65b). The atomic X-ray emission can be stimulated 
by illuminating the solid with high-energy X-rays, thereby creating holes in core-level 
states following the excitation of photoelectrons (see Fig. 2.62); the filling of such core 
holes by downward transitions of other higher-lying electrons results in fluorescent X
ray emission at well-defined energies, or wavelengths. 

Such an experiment has been performed by Tegze and Faigel (1996) on a sin¥le crystal 
of SrTi03, which has a perovskite structure, with lattice cpnstant a = 3.9 A. The Sr 
atoms were the internal sources of X-rays, following K-shell excitation, and they also 
acted as scatterers (the X-ray atomic scattering factors ofTi and ° being much smaller). 
The structural situation is thus rather simple, since the Sr atoms are arranged on a 
simple cubic lattice. The experimental configuration used to record the atomic holo
gram resembles a two-angle diffraction experiment (see fig 2.66), for which the compon
ents of ic are kx = sinBsin<j>, ky = sinBcos<j>, and the reconstructed image is then obtained 
using 

J J [ ~?~? 1/?] . ~ ~ ~ ~ 
A(r) = /(Ic)exp -ikz(l k; - ICy) - exp[-lk(xkx + yky)]dkxdky. (2.139) 

The resulting hologram (projected onto the kx - k)' plane) is shown in Plate I, 
together with the reconstructed image showing only the Sr atoms. The cubic array of 
atoms is clearly evident in the image, although there is some variation in intensity from 
site to site (a result of the real and twin holographic images coinciding and causing a 
partial cancellation of intensity). However, this holographic technique is not yet suffi
ciently developed to be widely applicable. 

X-ray 
source 

'-----::>1';::-----' Crystal 

Detector 

Fig.2.66 Schematic illustration of the two-angle diffraction experiment used to record an X-ray 
atomic hologram. 

Problems 

2.1 (a) Show that the angle ¢> between two planes in a cubic system with Miller indices (hlkl/I) 
and (h2k2h) is given by 

2.2 

2.3 

2.4 

2.5 

2.6 

2.7 

2.8 

2.9 

2.10 

2.11 

2.12 

2.13 

2.14 

2.15 

cos¢> = h;1z2 + Iqk2 + 11/2 
(hf + k? + !f)1/2(h~ + k~ + 15:)1/2' 

(b) Show that the interplanar spacing dhkl between planes hkl in a cubic crystal with lattice 
parameter a is given by (eqn. (2.3»: 

d",,, = a/(h2 + 1(2 + J2)I./2. 

The primitive translation vectors of a hexagonal lattice may be written as 

a = (V3a/2)x + (a/2)y; b = -(V3a/2)x + (a/2)y; c cz. 

Show that the ~ol~me of the p~imitive cel! is given by Vc (V3 /2)a2c. 
Show that gravitatIOnal attractIon makes a negligible contribution to the cohesive energy of 
solids. 
Show that. the. residual entropy of ice associated with the disorder of proton positions in the 
structure IS given by.R In(3/2). Use the Boltzmann equation for the entropy per atom, 
S. kB Inn, where n IS the number of possible available configurations. For 1 mole of ice 
With 2NA hydrogen ~toms, show t.hat there are a total of 22NA possible configurations but, 
of these, only a fractIOn of 3/8 satisfy the ice rule. 
Derive an expression for the bulk modulus of an f.c.c. Lennard-lanes solid at the equili
brium interatomic distance. 
Prove that the Wigner-Seitz cell for any 2D Bravais lattice (Fig. 2.10) is either a hexagon or 
a rectangle. . 
Show ~hat the bulk modulus of a free-electron gas is given by B 4¥. (Hint: take the 
potentIal energy to be the sum of eqns. (2.17) and (2.18).) 
Prove that the ratio of lattice parameters for an ideal h.c.p. structure is given by 
cia .j8f3. 
Show that the packing. fractions of the b.c.c., s.c. and diamond lattices are 
V37f/8 0.68,1f/6 = 0.52 and V31f/16 = 0.34, respectively (cf. the value of V21f/6 
0.74 for an f.c.c. / h.c.p. structure). 
Show that the Madelung constant for a ID ionic crystal of alternate positive and negative 
charges (of the same magnitude) is A 21n2. 
Generate the lattice for the anti fluorite (Na20) structure, and hence demonstrate that the 
cations are four-fold coordinated and the anions are eight-fold coordinated. How can the 
structure be described in terms of linked polyhedra? 
Show that 
(a) the h.c.p. st~ctur~ can b.e reg~r~e? as two interpenetrating simple hexagonal (trian

gular) BravaIS lattices (With pnmlbve vectors a b c), displaced by (1/3)a (1/3)b + 
(1/2)c ' , 

(b) the diamond structure can be regarded as two interpenetrating 'f.c.c. Bravais lattices 
displaced along the body diagonal of the cubic cell by (1/4) (a + b + c). 

The I?olecule H20 has.th~ four symme}ry operations E!, C~ and 2eT,,; the molecule NH3 ~as 
the SIX symme~ry operatIOn~ E, C3, q. and 3eT, •. Denve m each case the correspondmg 
stereogrammatIc representatIons. 
Show that the basis consisting of the four circles shown in the diagram has a point-group 
symmetry of C2,,(mm2). Combination of this basis with the P-lattice of the orthorhombic 
crystal system g~ne~ates the space group Civ(Pmm2). Generate the space group 
q~ (Cmm2) by usmg mstead a C-centred lattice. 
A plane with Miller indices (hId) perpendicular to the reciprocal-lattice vector 
G.= ha * +k~ * +Ic* is containe.d within the plane G· r = A. Show that the intercepts of 
~hls plane With t~e axes determmed by the real-space lattice primitive vectors a, b, care 
mversely proportIonal to the Miller indices. 



2.16 Prove that the volume of the primitive cell in reciprocal space V; is (21f)3 times the 
reciprocal of the volume of the real-space primitive cell, Ve , i.e. 

(21f)3 
a* . (b* x CO) 

(a·(bxc»). 

(Hint: use the vector identity (A x B) x (C x D) = B(A· (C x D» A(B· (C x D)).) 
2.17 Prove that the reciprocal lattice of a reciprocal lattice is the real-space lattice, i.e. 

21fb* x c* 
a* . (b* x co) 

a,etc. 

2.18 (a) Show that the primitive translations of the reciprocal lattice of the hexagonal real-space 
lattice described in ~roblem 2.2 are given by 

a* = (21f/.j3a)x + (21f/a)Yi b* = -(21f/V3a)x + (21f/a)Yi c· = (21f/c)z. 

(b) How are the two lattices related? 
(c) Describe and sketch the first Brillouin zone of the hexagonal space lattice. 

2.19 (a) Prove that the density of lattice points per unit area in a lattice plane is given by diVe, 
where d is the interplanar spacing and Vc is the primitive cell volume. 

(b) Prove that the lattice planes having the greatest area densities of lattice points are the 
{Ill} planes in an f.c.c. Bravais lattice and the {II O} planes in a b;c.c. lattice. (Hint: use 
the relation between families of lattice planes and reciprocal lattice vectors.) 

2.20 Use the Ewald construction to find the Bragg reflections allowed in a Laue experiment, 
where a 'white' incident X-ray beam is used, having a continuous range of wavelengths 
corresponding to wavevectors between leo and leJ• 

2.21 Obtain the allowed X-ray reflections for a crystal of KBr (isostructural with NaCl). How 
would this change in the case of isostructural crystalline KCI? (Hint: the numbers of 
electrons in the ions K+ and Cl- are the same.) 

2.22 Show that the extinction rules for diffraction by a crystal of diamohd are such that the 
allowed reflections satisfy the relation h + Ie + I = 4n for hId all even, or else hId are all odd. 

2.23 Prove that for the H atom in the Is state, for which the charge density is given by 
nCr) = (1fag)-J exp( -2r/ao) , ao being the Bohr radius, the X-ray form factor is given by 
F = 16/(4 + K2a5)2. 

2.24 Powder diffraction patterns of three different monatomic crystals, A, B, C, one being f.c.c., 
another b.c.c. and the other having the diamond structure, give the following values for the 
diffraction angle, 2e( 0). 
ABC 
42.2 28.8 42.8 
49.2 41.0 73.2 
72.0 50.8 89.0 
87.3 59.6 115.0 

(a) Ascertain the crystal structures of A, Band C;. 
(b) If the wavelength of the X-rays used is 1.54 A, what is the unit-cell parameter in each 

case? 
(c) If the diamond structure were replaced by a zincblende structure having a cubic unit cell 

with the same length, at what angles would the first four diffraction rings now occur? 
2.25 Deduce values for the average nearest-neighbour bond length and bond angle for amor

phous Ge from the reduced RDF given in Fig. 2.61. 
2.26 Essay: Discuss the problems involved in extracting structural information on non-crystal

line materials from diffraction data. 
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In the previous chapter, it was assumed implicitly that the structures of the solids 
considered have been ideal, i.e. devoid of defects. Real materiais, however, invari
ably contain structural defects which can dominate their physical and chemical 
behaviour. The concept of a structural defect can only be understood by reference to 
a standard, structurally perfect state of the material. Thus, for crystals, the reference 
state is the ideal single crystal, for which translational symmetry (eqn. (2.1)) holds 
everywhere throughout the structure. (Note that this statement implies that ideal 
crystals are of infinite extent; even the presence of surface boundaries in the case of 
finite-sized crystals is sufficient to destroy perfect translational order.) For the 
intermediate case of quasicrystals (§2.1.1), the reference state would be the ideal hyper
cubic crystal in 6D space from which the 3D quasicrystal structure is obtained by 
projection. 
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This concept can even be applied to the case of amorphous solids, even though they 
might naively be thought to be the most defective of all materials. For the case of 
covalently bonded amorphous materials, the reference state can be the continuous 
random network (§2.1.l), in which the nearest-neighbour coordination of atoms is in 
accord with the chemical valence at every site, even though structural disorder, in the 
form of fluctuations in dihedral (torsion) and bond angles and, to a lesser extent, bond 
lengths, ensures that translational periodicity is destroyed. For the case of amorphous 
metals, the reference state can be a dense random packing of spheres (§2.2.3.3); in this 
case, however, even the nearest-neighbour coordination is not completely defined, but is 
instead a statistical quantity determined by local constraints on atomic packing. On the 
other hand, the stereochemical (trigonal prismatic) model for the structure of transition 
metal-metalloid glasses (§2.2.3.3), like the corresponding continuous random network 
structure for covalent amorphous solids, makes it a particularly suitable reference 
structure. 

A structural defect is thus a configuration in which an atom, or group of atoms, does 
not satisfy the structural rules pertaining to the ideal reference state of the material. 
There are very many different types of structural defects, as will be discussed in the next 
section (§3.1), but all share the same characteristic, namely that the structural disturb
ance associated with the defects is spatially localized in some way, i.e. defects are 
structurally inhomogeneous. 

One form of structural disturbance that is structurally homogeneous, i.e. shared to a 
greater or lesser extent by all the atoms in the solid, but which is not normally regarded 
as a structural defect, is associated with vibrational excitations. Such small, time
varying displacements, present at all temperatures (even at absolute zero as zero-point 
motions), can be regarded as averaging essentially to zero, i.e. the reference structure 
can be recovered, in a time-averaged picture (particularly if the interatomic potential is 
harmonic) even though in an instantaneous picture atoms are displaced from their 
reference sites. Vibrational excitations in solids will be discussed in the next chapter. 
Useful surveys of defects and their related properties are given in Catlow (1994), Hayes 
and Stoneham (1985) and Henderson (1972). 
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~Iat~ I X~ra~ hologram of a 'single crystal of SrTi03 (top) with, below, the reconstructed 3D image of the crystal 
s ruc ure s owmg only the Sr atoms, (Figure courtesy of Dr, M. Tegze.) 

Plate IT Electronic charO'e density i GaA" I' . 
d . '. '" n s lor a s Ice through the crystal structure, calculated usinO' the CASTEP 

~~s:dl~n~e C~nu: sUl~e of programs fro~ ~olecular Simulations Inc. (This is a plane-wave pseud:potential code 
(on As ato~:~l~du;~tio.n~. theory and wIthm the lo~al density approximation.) Red indicates a high charge density 

ue m lcates a low charge denSIty (on Ga atoms). (Figure courtesy of C. J. Pickard.) 



(a) 

(b) 

(c) 

Plate VIII (a) Passively addressed dot-matrix display fabricated by Cambridge Display Technology using the 
light-emitting organic polymer, poly(p-phenylene vinylene). (Figure courtesy of Dr. A. B. Holmes.) (b) Blue light 
emission from an InGaN multiple-quantum-well laser. (Figure courtesy of Dr. S Nakamura.) (c) Traffic light 
utilizing inorganic-semiconductor light-emitting diodes (LEDs): red, AllnGaP LED; amber, AlInGaP single
quantum-well LED; green, InGaN single-quantum-well LED. (S. Nakamura, Solid State COlnl1lLllzications, 102, 237 
(1997).) 

Types of defects 

Structural defects, as defined above, can arise from a variety of causes: they may be 
(unavoidably) thermally generated, or'may arise in the course offabrication of the solid, 
incorporated either unintentionally or deliberately. 

As mentioned above, defects can be defined as being inhomogeneous structural 
disturbances of a reference structure. For ease of discussion, structural defects may be 
divided into three categories, depending on the spatial dimensionality associated with 
the defect. Thus, one can envisage defects of zero dimensionality, often called point 
defects, that are associated with a single atomic site or a (globular) cluster of sites. In 
addition, extended defects can occur, being aggregates of point defects, that are either 
one-dimensional in character (i.e. linear in extent) or else two-dimensional (sometimes 
called planar defects). In this classification scheme, a dimensionality of three cor
responds to the situation in which most, if not all, atoms in the solid do not correspond 
to the ideal sites of a reference structure. In the case of dynamic disorder, associated say 
with cooperative vibrational excitations (see Chapter 4), such time-varying deviations 
from the reference structure are not normally thought of as being defects in the normal 
sense. Static 3D variations in structure from the reference state are usually discussed in 
terms of phase transitions, e.g. the inclusion of a second phase (heterogeneous phase 
separation), or disordering transitions in which atomic sites of a reference structure are 
occupied statistically by, say, two types of atoms. 

Each of the above three categories of structural defect will now be discussed in turn, 
and examples given of each. 

3.1.1 Zero-dimensional (point) defects 

Unassociated point defects at the atomic scale in crystals are of three types. An atom 
may be missing from a lattice site, thereby forming an atomic vacancy. Alternatively, 
another type of atom may be present at a lattice site, forming a substitutional impurity 
defect. Finally, an atom may be situated, not at a normal lattice site, but at an 
interstitial site between lattice sites (see §3.4.2): the extra atom may be of the same 
type as in the rest of the crystal, in which case the defect is termed a self-interstitial; 
alternatively, the interstitial site may be occupied by a (small) impurity atom. These 
three basic types of point defect found in crystals are illustrated schematically in Fig. 
3.1. An atom that leaves a lattice site, thereby forming an atomic vaca,ncy, can end up in 
one of two positions: either on the surface, in which case the isolated vacancy is termed 
a Schottky defect, or as a self-interstitial. When an interstitial and a vacancy are 
sufficiently well separated that their opposing lattice strain fields do not overlap, 
hence stabilizing the defects against reconstructive recombination, the defect pair is 
known as a Frenkel defect. 

Defects occurring in ionic crystals are subject to the additional constraint that 
electro neutrality must be maintained overall. Thus, for example, intrinsic Schottky 
defects in stoichiometric ionic crystals occur in pairs, one vacancy on the cation sub
lattice and the other on the anion sub-lattice (see Fig. 3.2). An anion vacancy in e.g. 
NaCI has a charge associated with it of + e: since the lattice with a Cl- anion 
surrounded by 6Na+ cations is originally locally electroneutral, removal of the 
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Fig. 3.1 Schematic illustration of point defects occurring in crystalline monatomic solids. 
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Fig. 3.2 2D schematic illustration of Schottky defects in an ionic crystal, e.g. NaC!, showing one 
vacancy on the cation sub-lattice and another on the anion sub-lattice. 

negatively charged anion to create the vacancy must result in a remanent charge of +e; 
likewise, a cation vacancy has a charge of -e associated with it. Schottky defects are the 
dominant intrinsic defects in crystalline alkali halides and alkaline-earth oxides. 

Frenkel defect pairs can also occur in ionic crystals, and cation Frenkel defects are the 
predominant defects in silver halides, e.g. AgCl or AgBr, which have the rocksalt 
(NaCl) structure (Fig. 3.3a). The interstitial site in such a lattice has eight-fold coordina
tion, i.e. tetrahedral coordination by both Ag+ and halide ions (see Fig. 3.3b). Since the 
Ag+ ion is so polarizable, it is probable that there is also some covalent interaction 
between interstitial Ag+ ions and neighbouring halide ions which acts to stabilize the 
defect. For the case of ionic crystals having small anions and large cations and having 
the fluorite structure (e.g. alkaline-earth fluorides, Zr02 and Th02), anion Frenkel 
defects are favoured instead, with the anions occupying octahedral interstices in the 
structure. 

Thus far, the discussion has concentrated on intrinsic point defects that can occur in 
thermal equilibrium (see §3.2) in stoichiometric crystalline ionic salts. However, 

Ag CI Ag CI Ag CI Ag Ag--. C[ 

CI Ag CI Ag CI Ag CI CI/: Ag/I 
Ag CI DCI A(9CI Ag I IAgl 
CI Ag CI Ag CI Ag CI />-\-- -7 9 

Ag CI Ag CI Ag CI Ag Ag--CI 
(a) (b) 

Fig. 3.3 (a) 2D schematic illustration of a Frenkel defect in AgC!. (b) The interstitial site has 
tetrahedral coordination by both Ag+ and C!- ions. 

extrinsic defects can also be created in such materials by external agents. Thus, ionizing 
radiation (e.g. X-rays, ,-rays, neutrons and high-energy electrons) can create atomic 
vacancies in solids by knock-on collisions between atoms and the bombarding particle. 

Alternatively, extrinsic defects can be created chemically, e.g. by making the material 
non-stoichiometric. Thus, exposure of, for example, an NaCI crystal to Na vapour leads 
to in-diffusion and incorporation of Na atoms, resulting in an alkali concentration in 
excess of that set by stoichiometry. In this case, the extra Na atoms are not incorporated 
interstitially; the mass density of the non-stoichiometric crystal does not increase with 
increasing Na content as would be expected from interstitial involvement, but instead 
decreases, indicating the creation of an equal number of anion vacancies, with the excess 
Na atoms occupying normal cation sites. The excess Na atoms are ionized, and the freed 
electrons are bound to the positively charged anionic vacancy sites (see Fig. 3.4). Such 
localized electrons can undergo photo-induced transitions between discrete quantized 
energy levels, leading to optical absorption in the visible part of the spectrum; the 
otherwise colourless alkali halide crystals become coloured on becoming non-stoichio
metric (see §3.3.1). The fact that the colour, associated with the position of the absorp
tion band, is not materially affected if another type of alkali is incorporated (e.g. K in 
NaCl) indicates that it is the anion vacancy--electron complex (the so-called F-centre), 
and not the cation, that is the colour centre. The striking blue-purple colour of the rare 
'Blue lohn' mineral form of fluorite (CaF2) found only in Derbyshire, England, is due 
to naturally occurring F-centres. 

Etl Etl 
Etl 

Etl 

Ell =e 

+ - + 
+ <II + -

-+EII+-+-+ 
- + - + - + -
+ - + - + - + 

+ • + 
+-+ +8+ 
- + - + - + -

Fig. 3.4 Schematic illustration of the formation of colour centres in alkali-halide crystals by the 
incorporation of excess cations on exposure of the crystal to an alkali vapour. The ionized excess 
alkali atoms occupy normal cation positions, thereby creating anion vacancies; the ionized 
electrons bound to the positively charged anionic vacancy sites are the colour centres (known as 
F-centres). 
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Interesting variations arise when a particular ionic crystal is doped (e.g. during crystal 
growth) with aliovalent impurities (usually cations) having a different valency to that of 
the host ion for which it substitutes. Substitution by a higher-valence cation can create 
either cation vacancies (e.g. CaCh in NaCl) or interstitial anions (e.g. YF3 in CaF2) in 
order to compensate for the increased positive charge at the substituted cation site. In a 
similar manner, substitution by a lower-valence cation can create anion vacancies (e.g. 
CaO in Zr02, stabilizing the cubic form of zirconia) or interstitial cations (e.g. 'stuffed 
silicas', i.e. aluminosilicates, in which the substitution of an Si4+ ion by an A13+ at a 
tetrahedral site is electrically compensated by the occupation of an empty interstice in 
the open silica framework by an alkali-metal cation, e.g. Li+). 

Point defects in crystals are prone to form defect complexes through their mutual 
interaction via elastic-strain, electrostatic or electronic forces. A simple example is the 
divacancy, i.e. a pair of atomic vacancies occupying nearest-neighbour sites in the 
lattice. In metals, divacancy formation is energetically favourable essentially because 
of the associated decrease in elastic strain energy. In ionic crystals, pairing of cation and 
anion vacancies occurs because of the electrostatic Coulomb attraction between the 
oppositely charged defects (Fig. 3.Sa); similarly, pairing occurs between aliovalent 
impurities and cation vacancies (Fig. 3.Sb). In both the latter cases, the overall charge 
of the defect pair is zero, but nonetheless they form electrical dipoles, and hence such 
defect pairs can attract other defect pairs via dipolar interactions, thereby forming yet 
larger defect clusters. This is well known to occur in the anion-deficient material, 

Ce02-x' 

(a) 

(b) 

Fig.3.5 Illustration of defect pairing in ionic crystals: (a) a pair of Schottky defects (cation and 
anion vacancies); (b) an aliovalent impurity-cation vacancy pair (e.g. CaCh in KCI). 
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Fig.3.6 Examples of a split (or dumb-bell-shaped) interstitial in metallic crystals having: (a) an 
f.c.c. structure; (b) a b.c.c. structure. The normal interstitial sites are denoted as D, a normally 
occupied lattice site as .:;., and the atoms forming the split interstitial as •. 

Defect pairing of a different kind is found for interstitial atoms in metals. An 
interstitial atom placed at an ideal interstitial site in the structure interacts with a 
neighbouring atom on a normal lattice site (via elastic strain), displacing it from 'its 
site and producing a displacement of the interstitial atom as well. The result is a 
neighbouring pair of atoms displaced from their theoretical positions, called a split 
interstitial or a dumb-bell-shaped interstitial. An example is shown in Fig. 3.6a for the 
case of an f.c.c. crystal (e.g. a Pt interstitial in Pt). Instead of the interstitial atom 
occupying an octahedral interstice (on the cubic cell edge), both it and a neighbouring 
face-centred atom are displaced in the (100) direction to form a split interstitial. 
Another instance is given in Fig. 3.6b for the case o(a b.c.c. metal (interstitial carbon 
in b.c.c. a-Fe, forming steel, is the most important example). Again, the interstitial atom 
is displaced from its ideal interstitial position (centre of a cube face) together with a 
neighbouring atom; split interstitials in this case can form in the (110) direction, as in 
Fig. 3.6b, as well as the (100) and (111) directions. 

In the case of amorphous materials, where translational periodicity does not exist, it 
is sometimes no longer possible to define some of the point defects illustrated in Fig. 3.1; 
for example, the dense random-packing amorphous reference structure is sufficiently 
structurally flexible with regard to coordination numbers that interstitial sites and 
vacancies in amorphous ~etals essentially lose their identities. For the case of covalently 
bonded amorphous solids, where the local coordination is well defined and set by 
valency requirements, such distinctions are easier to make. However, the presence of 
structural disorder means that, for covalent amorphous materials, there can exist a new 
type of defect, the isolated dangling bond, which has no counterpart in the correspond-
ing crystalline solid. . 

As an example, consider the tetrahedrally bonded material, Si. For the crystalline 
form, removal of an atom to create a single vacancy defect V necessarily involves the 
simultaneous breaking of the four covalent bonds to the atom; as a result, four 
dangling-bond orbitals point towards the centre of the void from the atoms bordering 
it. The electrical charge state of the vacancy so created must be neutral, i.e. VO (an 
uncharged atom is removed from an originally charge-neutral crystalline configura
tion), and each orbital contains one electron. However, because of an electronic-degen
eracy-Iowering (lahn-Teller) instability, a vacancy having this charge state is unstable 
with respect to a structural distortion. The ideal tetrahedral arrangement of the mono
vacancy, having Td point-group symmetry, is adopted, in fact, by the charge state V2+, 



144 DEFECTS 

V 2+ 

/ t2 

~al 
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Fig.3.7 Atomic configurations and electronic level occupancies of the monovacancy in crystal
line Si in two charge states: (a) undistorted y2+ centre (Td symmetry); (b) tetragonally distorted 
yO centre (D2d symmetry). 

in which two electrons have been withdrawn from the orbitals bordering the vacancy by 
electrical doping of the crystal (see §6.S.2); the remaining two electrons occupy in a spin
paired fashion the lowest, singly degenerate symmetric ar electronic state (see Fig. 3.7a). 
The two extra electrons in the neutral vacancy, yO, occupy the higher-lying, triply
degenerate t2 state, which is susceptible to a lahn-Teller splitting upon occupation by 
electrons, associated with a structural distortion, resulting in a distorted vacancy with 
tetragonal D2d symmetry; the four electrons associated with the original dangling-bond 
orbitals have reconstructed to form two (bent) bonds (see Fig. 3.7b). 

Fig. 3.8 Schematic 2D illustration of an isolated dangling bond in amorphous Si. 

For the case of non-crystalline covalent materials, such as amorphous silicon, how
ever, isolated dangling bonds can be created during preparation and can survive because 
of the structural flexibility inherent in the amorphous structure (Fig. 3.8). Thus, elec
tronic rebonding such as occurs in themonovacancy in crystalline Si can no longer 
easily take place, and the electrons associated ,with the isolated dangling-bond orbitals 
can remain unpaired, i.e. in the DO configuration (where the supersclipt denotes the 
charge state of the defect). 

3.1.2 One-dimensional (line) defects 

Several extended defects can be distinguished in which the structural disturbance with 
respect to the reference structure is confined to one dimension. Two types c~n be 
distinguished: line defects associated with translational displacements of atoms (dIsloc
ations), and those associated with rotational displacements (disdinations). The former 
category of line defects is the more prevalent, and controls properties as varied as 
mechanical properties and crystal growth. 

Two extreme types of dislocations can be distinguished in turn, depending on the 
direction of the structural disturbance associated with the defect relative to its length. 
The easiest to visualize is the so-called edge dislocation (Fig. 3.9), which can be thought 
of as resulting from the insertion of an extra half-plane of atoms (in the upper half-plane 
in Fig. 3.9) or, equivalently, the removal of a half-plap.e, followed by rebonding of the 
atoms in the vicinity of the defect. The line of the defect is obviously determined by the 
edge of the inserted (removed) half-plane of atoms in the interior of the material; this 
comprises the core of the dislocation. 

Fig. 3.9 Representation of the structure near the core of an edge dislocation. The circuit of 
atoms (1'-5') used to determine the Burgers vector is indicated, as is a circuit (1-4) in the bulk of 
the material well away from the defect. 
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Fig. 3.10 Representation of the structure near the core of a screw dislocation. The circuit of 
atoms used to determine the Burgers vector is indicated. 

The character of the atomic disturbance associated with a dislocation can be quanti
fied, in terms of both magnitude and direction, by means of the so-called Burgers 
vector, h. The Burgers vector is found by performing a circuit from atom to atom, 
where each step corresponds to an interatomic spacing. If such a circuit does not enclose 
a dislocation, a closed path is achieved by traversing the same number of steps in each 
direction (e.g. the path 1-2-3-4-1 in Fig. 3.9). On the other hand, if the circuit does 
enclose the core of a dislocation, a closed path cannot be achieved (e.g. the path 1'-2'-
3'-4'-5'-1' in Fig. 3.9). The displacement vector (as a multiple of the interatomic 
spacing) needed to close the path is the Burgers vector, b (i.e. 1'-5' in Fig. 3.9). Thus, 
for an edge dislocation, h is perpendicular to the line of the defect. (Note, however, that a 
circuit enclosing a line of, say, vacancies will produce a zero Burgers vector-a disloca
tion is unique in being characterized by a finite value of h.) 

The other form of dislocation is termed a screw dislocation (see Fig. 3.10). The atomic 
disturbance in this case can be thought of as arising from making a (half-)cut into the 
solid and displacing the material on either side of the faces of the cut in a direction 
parallel to the line of the cut. Performing an atomic circuit as before to determine the 
Burgers vector (1-2-3-4-5-1 in Fig. 3.10) shows that b is parallel to the core for a screw 
dislocation. 

The Burgers vector h is constant throughout the length of a given dislocation, even 
though the direction of the dislocation may vary along its length. Since a dislocation 
cannot terminate in the middle of a crystal, if it does not end at a surface it must either 
form a dislocation loop or be part of a branched network of dislocations. Different 
parts of a dislocation loop must necessarily have different characters: screw-like when b 
is parallel to the core, edge-like when b is perpendicular to the core, and a complex 
mixed character otherwise. For a node of a dislocation network, the following con
servation law for the Burgers vectors must be obeyed: 

(3.1 ) 

For further information on dislocations, the reader is referred to Hull and Bacon (1984). 

One further distinct type of line defect in solids is the disclination that is assoc
iated with rotational displacements, rather than the translational displacements 
characteristic of dislocations. A disclination can be viewed as a defect that changes 
the local curvature of a structure. The, principle behind its operation may perhaps be 
seen most readily using a two-dimensional example. A disclination point in 2D is 
generated by making a half-cut in the plane (the limit of the cut marking the core of 
the disclination), and then either . adding or removing material in the form of a wedge, 
thereby creating negative or positive local curvature, respectively. In a 2D hexagonal 
lattice, for example, a five-fold ring is created at the site of a disclination 
causing positive local curvature, and a seven-fold ring is the site of one producing 
negative local curvature (see Fig. 3.lla,b). In 3D, the disclination is a line defect and, 
as with dislocations, there are two types: wedge and screw disclinations (see Fig. 
3.12a,b). 

Fig. 3.11 Types of discIination points for a 2D hexagonal lattice creating: (a) a five-fold ring, 
associated with positive local curvature; (b) a seven-fold ring, associated with negative local 
curvature. 

(a) 

Fig. 3.12 Types of discIination lines in 3D showing: (a) a wedge discIination; (b) a screw 
discIination. 
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3.1.3 Two-dimensional (planar) defects 

It has been mentioned previously that the external surfaces of a finite crystal can be 
regarded as defects, in the sense that they destroy the infinite translational periodicity 
characteristic of an ideal single crystal. However, there may also be internal surfaces in 
what appears to be, ostensibly, a single crystal. These are associated with the presence of 
a mosaic (or domain) texture to the crystal: the overall crystal in such a case actually 
consists of an aggregate of domains of perfect crystalline material (typically 10 000 A in 
size), there being a structural mismatch at the interface, the grain boundary, between 
domains. Typically, this mismatch is very small, amounting to an angular misorienta
tion between crystallites of fractions of a degree. 

Such low-angle grain boundaries can be regarded as comprising linear arrays of 
dislocations. An example, a low-angle tilt boundary, is shown in. Fig. 3.13; the mis
orientation in this case can be viewed as an angular rotation by the angle e about the 
common axis of one part of the crystal relative to the other (in the plane of the 
boundary). The tilt boundary can be represented as a line of edge dislocations with 
separation D; the tilt angle is thus given by 

e=bjD (3.2) 

where b is the magnitude of the Burgers vector of the dislocations. There exist also twist 
grain boundaries formed from an array of screw dislocations in which the rotation axis 
is perpendicular to the boundary plane. In general, however, grain boundaries are 
composed of a mixture of both tilt and twist components. 

Another type of grain boundary, but one which does not involve angular misorienta
tions, is the so-called antiphase boundary, illustrated in Fig. 3.14 for the case of a 2D 
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Fig. 3.13 Representation of a low-angle tilt grain boundary as a linear array of edge dis
locations. 
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Fig. 3.14 2D representation of an antiphase boundary for a crystal AB. 

crystal AB. At the antiphase boundary, like atoms face each other and the normal 
stacking sequence ABAB is reversed. Thus, the antiphase boundary is an example of a 
stacking fault, and can be regarded as arising when an entire plane of atoms is removed. 
Stacking faults are particularly prevalent in materials crystallizing in the c.c.p. structure 
characterized by the stacking sequence ABCABC .... It is obviously relatively easy for 
such a sequence to be interrupted. 

Finally, a type of planar defect found in crystals can be associated with non-stoichio
metry, particularly in transition-metal oxides such as Mo03- x, W03-x and Ti02_.\". In 
such cases, chemical reduction of the parent stoichiometric compound produces oxygen 
vacancies that are not distributed at random throughout the structure but, instead, are 
concentrated on certain planes in the crystal. Crystallographic shear planes arise when 
such planar arrays of vacancies are eliminated by a structural condensation, resulting in 
a local change in structure; they have well-defined non-stoichiometric compositions, e.g. 
MOn0 3n- 1 and Tin0 2n- 1 (known as Magneli phases). An example of a crystallographic 
shear plane in M003, having the composition MOs023, is shown in Fig. 3.15 (see 
Problem 3.3): the defect in this case consists of a plane containing groups of four 
edge-sharing Mo06 octahedra, which can be thought of as resulting from a shear of a 

CS plane 

Fig.3.15 A crystallographic shear (CS) plane in Mo03 having the composition MOg023. The 
squares containing crosses represent, in projection, chains of corner-sharing Mo03 octahedra. 
The CS plane corresponds to groups of four edge-sharing octahedra. 
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plane containing the corner-sharing linkages characteristic of the parent stoichiometric 
compound, Mo03 • In Ti02, crystallographic shear planes are associated with groups of 
face-sharing Ti06 octahedra, instead of the edge-sharing linkage found in the rutile 
form of Ti02. An arbitrary, non-stoichiometric reduced composition of these transi
tion-metal oxides is thus achieved by varying the spacing between crystallographic shear 
planes separating blocks of stoichiometric material. 
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Energetics and thermodynamics of defects 3.2 
Real crystals are often imperfect, i.e. defective, because the presence of structural defects 
up to a certain concentration can cause a lowering of the overall free energy: the 
creation of a defect in an otherwise perfect structure always costs energy, the enthalpy 
of formation b.H, which can be offset, however, by an increase in the entropy term 
- T AS, where AS is the entropy associated with the large number of positions that the 
defect may occupy. Thus, the Gibbs free energy, G = H - TS, can have a minimum at a 
finite defect concentration (see Fig. 3.16). Thus, in this case, thermodynamics determines 
the defect concentration. If, on the other hand, the energy of defect formation is very 
high, the minimum value of AG corresponds to the ideal, defect-free structure, and in 
this case (e.g. for the case of extended defects), the defects are present only as metastable 
configurations, for instance resulting from the method used to prepare the material. 

I 

I 

'6.H 
I 

Defect concentration 

Fig. 3.16 Schematic illustration ~f the energy changes associated with the incorporation of 
defects into a perfect crystal. The defect concentration corresponding to the minimum in the 
Gibbs free energy is thus determined thermodynamically. 

3.2.1 Point defects 

Point defects are usually intrinsic, that is their concentrations are normally determined 
by thermodynamic considerations, unless a greater concentration of extrinsic defects is 
introduced by outside means (e.g. irradiation, chemical doping, etc.) .. Thus, the equili
brium concentrations of intrinsic defects can be found by thermodynamic methods, by 
evaluating the entropy associated with the formation of the defects. 

Perhaps the easiest case to consider first is that of atomic vacancies. If Nv vacancies 
are created among NL lattice sites, the number of ways of permuting the vacancies over 
the sites is given by the combinatorial result: 

n NL! 
Nv!{NL Nv)! . (3.3) 

Thus, the configurational (mixing) entropy associated with these permutations is given 
by the Boltzmann expression AS = kB Inn, and the ensuing expression can be simplified 
by use of Stirling's approximation (valid for large numbers), i.e. In x! ~ xln x x, giving 



6.Sm ~ kB[NLlnNL - NvlnNv - (NL Nv)ln(NL - Nv)]. (3.4) 

The change in Gibbs free energy for the creation of Nv vacancies can thus be written as 

6.Gv ~ Nv(6.hv - T6svib) + kBT[(NL Nv)ln(NL ;;L
Nv

) + (~~}n(~~)], (3.5) 

where the lower case for the enthalpy h and entropy s indicates that the quantities are 
per atom, and where the last term corresponds to eqn. (3.4) in a rearranged form. (6.svib 
is a correction term due to the change in vibrational entropy that arises from a lowering 
of parts of the vibrational frequency spectrum for atoms bordering the vacancy due to 
structural relaxation.) The free energy may be minimized with respect to the vacancy 
concentration to give the equilibrium defect concentration (cf. Fig. 3.16), i.e. 

a6.Gv ( Nv ) -aN = 0 = 6hv - T6.svib +kBTIn N . 
v L -Nv 

(3.6) 

Since NL » Nv , eqn. (3.6) can thus be written approximately in terms of the atomic 
fraction of vacancies, Xv = Nv / NL, as the Boltzmann factor 

Xv ~ exp[-6.hv /kBTJ, (3.7) 

neglecting the small vibrational correction term (see Problem 3.4). 
The energetics involved in vacancy formation can be understood with reference to 

Fig. 3.17 showing the atomic processes involved in the creation of vacancies in the 
interior of a crystal. A vacancy is first created by the jump of an atom out of a surface 
layer onto the surface: the surface may be an external or an internal one (or a disloca
tion). The vacancy then progressively moves into the interior of the crystal via a series of 
outward atomic jumps. 

The vacancy-formation enthalpy must obviously be related to the cohesive energy of 
the solid, Uo, i.e. the energy required to separate the atoms in the solid to infinity. 
However, the final configuration after forming a vacancy (Fig. 3.17) is with the dis
placed atom on the surface of the solid and not at infinity; thus an energy associated 
with surface adsorption (equivalent to minus the sublimation enthalpy, hs) is recovered. 
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Fig.3.17 Mechanism of vacancy formation in a crystal. An atom (shaded) moves onto a surface 
and the resulting surface vacancy progressively moves into the interior of the crystal via a 
sequence of atomic jumps. 

If it is assumed that approximately one-half of the bonds broken in removing an atom 
from the interior of a solid are broken on removing it from a surface, then hs ~ Uo/2. 
Finally, the atoms surrounding a vacancy relax in order to lower the strain energy that 
they experience. Atoms around a vacancy in a metal or rare-gas solid move inward to 
relieve the compressive strain. Ions around a vacancy in an ionic crystal move outward 
because of the repulsive electrostatic forces between the like charges of the ions sur
rounding the vacancy and that associated with the vacancy itself (e.g. an Na+ -ion 
vacancy in NaCl, having a negative charge, is surrounded by negatively charged 
anions). Thus, the overall vacancy-formation energy can be written as 

1 
6hv ~"2 Uo - hr (3.8) 

where hr is the strain-relaxation enthalpy. 
In the case of ionic crystals, of course, vacancies cannot be generated on only one ion 

sub-lattice; in practice, cation and anion vacancies (Schottky defect pairs) are created 
simultaneously to maintain charge neutrality. In this case, the analysis leading to eqn. 
(3.7) for the equilibrium concentration of vacancies of a single type must be suitably 
modified. The number of ways of permuting Nt cation vacancies and N~ anion 
vacancies over NL lattice sites is 

NL! Nd 
n = Nt!(NL _ Nt)! X N~!(NL - N~)!' (3.9) 

where the number of Schottky pairs, Ns = Nt = N~.- The equilibrium fractional con
centration, xs, of Schottky pairs is then obtained by minimizing the expression for the 
free energy, as before, leading to the approximate expression 

Xs ~ exp[-6.hs/2kBT]' (3.10) 

where 6.hs is the formation en.thalpy of a Schottky defect pair, and the vibrational 
entropy corrections (one each for cation and anion vacancies) are neglected. Thus, the 
measured activation energy for vacancy formation in ionic crystals consists of a sum of 
two terms, one for cation vacancies and one for anion vacancies. 

Experimental values of Schottky-pair formation enthalpies are given in Table 3.1 for 
some representative ionic crystals. For comparison, 6hv for metals is of the order of 1 
eV (being higher, the more refractory the metal). Note that the formation energy per 
vacancy is thus rather similar between metals and ionic crystals. 

The equilibrium fractional concentration of isolated interstitial defects, Xi (i.e. not 
associated with a corresponding vacancy as in a Frenkel pair) can be calculated in 
exactly the same way as for isolated vacancies (cf. eqn. (3.7)), giving 

Xi ~ exp[-6.h i/kBTJ, (3.11) 

where 6.hi is the formation enthalpy of an isolated interstitial (see Problem 3.4). 
Isolated interstitial defects in, say, metals have a very small probability of forma

tion because of a correspondingly large enthalpy of formation, 6hi' associated with 
the large dilational strain produced by introducing an atom into an interstitial site. 
For Cu, 6.hi is estimated to be rv 3 eV, compared with 6.hv rv I eV for vacancy for
mation. 

Frenkel defects, i.e. interstitial-vacancy pairs, can be treated formally in a similar 
manner as for Schottky-vacancy pair defects (eqn. (3.10)). The number of permutations 



Table 3.1 Formation enthalpies and entropies of defects 

Material 6.hr (eV) 6.sJ /kn 

Vacancies 
Al 0.75 2.4 
Cu 1.18 1.6-3.0 
Ag 1.09 c::: 1.5 
Au 0.94 1.0 

Schottky defects 
NaCI 2.44 9.8 
NaI 2.00 7.6 
KCI 2.54 9.0 
KBr 2.53 10.3 

Frenkel defects 
AgCI , 1.45-1.55 5.4-12.2 
AgBr 1.13-1.28 6.6-12.2 

(After Allnatt and Lidiard (1993). Reproduced by permission of 
Cambridge University Press) 

of placing Ni interstitials on NI interstitial sites and Nv vacancies on NL lattice sites is 
given by 

(3.12) 

Minimizing the free energy in the usual way with respect to the number NF of Frenkel 
pairs to find the equilibrium concentration of defects, subject to NF = Nj = Nv, gives 

(3.13) 

where LlSF is the vibrational entropy change associated with the Frenkel defect. Neglect
ing this correction term, and assuming that Ni « NI, Nv « NL, gives 

(3.14) 

Note that in both eqns. (3.10) and (3.14), applicable to pairs of defects, a factor of 2 
appears in the denominator ofthe exponent. Experimental values of LlhF for crystalline 
silver halides are given in Table 3.1. 

3.2.2 Extended defects 

For the case of point defects, the formation energy, which is independent of N, the 
number of atoms in the sample, is more than offset by a gain in entropy (of order In N), 
as seen in §3.2.1, resulting in the defect concentration being determined by thermal
equilibrium considerations. 

This is not so for extended defects. For the case of line defects, e.g. dislocations, the 
formation energy must be proportional to the linear dimensions of the sample (cx:.N1/ 3), 

and for planar defects it must be proportional to the cross-sectional area (cx:.N2/ 3). 

Thus, entropy gains of order In N are insufficient in such cases to give rise to minima in 
the free energy at finite defect concentrations (cf. Fig. 3.16). Hence, line and planar 
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defects are likely to be metastable configurations rather than being subject to thermal
equilibrium constraints. As a result, thermal annealing can greatly alter the concentra
tion of such metastable defects. For example, the dislocation density in the most perfect 
Si or Ge crystals available can be as loW as 106 m-2 , whereas in heavily deformed metals 
it can be up to 1016 m-2. 

The (elastic) energy associated with dislocations may be calculated using simple 
continuum elasticity theory. The case of a screw dislocation (Fig. 3.10) is the most 
straightforward to consider. The region (far from the core) around a screw dislocation 
can be represented, as in Fig. 3.18, by a cylindrical shell of material of circumference 21fT 
sheared by an amount equal to the Burgers vector b of the dislocation; i.e. the shear strain 
is given byes = b/21f'r. For an elastic continuum, the associated shear stress is given by 

as = Gses = Gsb/21f'r, (3.15) 

where Gs is the shear modulus (eqn. (3.111». The elastic energy per unit length stored in 
the shell is thus 

(3.16) 

Integrating over the range from the radius of the dislocation core ro (comparable to b) 
to R (limited by the size of the crystal for an isolated dislocation, or half the separation 
between dislocations otherwise) gives for the elastic energy per unit length of a screw 
dislocation (see Problem 3.5): 

Gsb
2

ln (~). 
41f' 1'0 

(3.17) 

Evaluating the similar quantity for the case of an edge dislocation is rather more 
complicated because it involves both shear and normal stresses. The result is 

(3.18) 

where vp is the Poisson ratio (the ratio of the compressive strain, in an orthogonal 
direction to that of an applied uniaxial stress, to the dilational strain in that d.irection, 
eqn. (3.107». Note that both strain energies are proportional to the quantity Gsb2• For 
representative values of Gs ~ 4 X 1010 N m-2 and b ~ 2.5 A, the typical dislocation 
energy per length, Gsb

2, is about 2.5 x 10-9 J m- I , or about 4 eV for each atomic 
plane threaded by the dislocation. 

Fig. 3.18 Illustration of the F-centre in alkali-halide crystals: an electron bound to an anion 
vacancy. The charge distribution of the trapped electron is represented schematically, although 
the electron wavefunction does extend beyond the nearest-neighbour cation coordination shell. 
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Spectroscopy and microscopy of defects 

Defects in solids can be detected using a variety of spectroscopic probes. Thus, the 
electronic states associated with defects can be probed optically in terms of electronic 
transitions between the electronic energy levels. Unpaired electron spins associated with 
defects can be detected via their paramagnetism, e.g. using electron spin resonance. 
Finally, extended defects can often be imaged directly using electron microscopy. 

3.3.1 Optical spectroscopy 

The spatial localization of electrons trapped at point-defect sites causes a quantization 
of the related electronic energy levels, and light can be used to probe such quantized 
levels: absorption of incident photons causes transitions upward in energy and down
ward electronic transitions result in photon emission. 

One important example of the use of optical spectroscopy in probing defects is for the 
case of 'colour centres' in crystalline alkali halides (see §3.1.1). These materials are 
extremely ionic, with the result that the valence-electron charge density is strongly 
localized on the anions, requiring a great deal of energy to remove it (much greater 
than the photon energy for light in the visible part of the electromagnetic 
spectrum). These solids are therefore transparent (non-absorbing) for visible light 
when in a structurally defect-free state. (An alternative description of optical absorption 
in tenns of excitations between an occupied valence band and unoccupied 
conduction band of electrons separated by a very large (c::::l0 eV) forbidden energy 
gap is given in §5.8.2.) 

However, alkali-halide crystals, exposed to alkali-metal vapour or ionizing radiation 
(e.g. X-rays), can contain anion vacancies which, being effectively positively charged 
after removal of the negatively charged anion to satisfy charge neutrality, can sub
sequently trap an electron. The simplest example is the so-called F-centre (after Farbe, 
the German word for colour), which is a single anion vacancy containing the same 
number of electrons as the charge of the displaced anion: the electron density is mostly 
associated with the cations adjacent to the vacancy (Fig. 3.18). The electronic energy 
levels in the case of F-centres in alkali-halide crystals (containing a single electron) can 
be calculated approximately by regarding the system as being equivalent to the 3D 
partide-in-a-box quantum-mechanical problem, in which an electron is confined to a 
cubic box, of side length a, by infinitely high potential barriers at the cube faces. For the 
case where the potential energy within the box is constant (and equal to zero), the 
quantized electronic energy levels are given (see Problem 3.6) by: 

(3.19) 

where 111, 112 and 113 are the quantum numbers characterizing the number of nodes 
(l1i - 1) in the electronic wavefunction in each of the three orthogonal directions of the 
box and me is the electronic mass. The ground state corresponds to the set of quantum 
numbers (111 112113) = (111), and the first excited state to the (triply degenerate) state 
with quantum numbers of the fonn (211). Thus, the transition energy between ground 

and first excited states, corresponding to the photon absorption energy of this model of 
the F-centre, is given by 

3h2 

.6.)g = -8 2' (3.20) 
mea 

If KCI is used as an example, and the size of the box is taken to be the lattice constant 
a = 6.29 A (see Fig. (3.18», eqn. (3.20) predicts that the photon absorption energy 
should be 2.85 eV, compared with the experimental value of 2.3 eV. Considering the 
crudeness of the model, in particular that the excess electron is confined precisely to the 
region bounded by the nearest-neighbour anions (see Fig. 3.18) and that it moves in a 
constant (zero) potential instead of that (of the order of the Madelung energy) asso
ciated with the surrounding positively charged cations, the agreement is reasonable. The 
importance of eqn. (3.20), however, is that it predicts that the F-centre optical absorp
tion energy should depend on the lattice spacing. This fonn of relationship (the 
Mollwo-Ivey law) is exhibited, for example, by alkali halides (Fig. 3.19 and Plate III), 
where the empirical relationship .6.)g oc a-1.77 is found, rather than the exact inverse
square relation predicted by the simple square-well model (eqn. (3.20». 

Although the F-centre, say in alkali-halide crystals, is perhaps the simplest fonn of 
defect-related colour centre, other defect configurations can also act as colour centres, 
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Fig. ~.19. Dependence of the F-centre optical absorption energy on lattice parameter (a) for 
alkah halIde crystals. (After Dawson and Pooley (1969). Reproduced by permission of Akademie 
Verlag GmbH) 



but they have different optical-absorption characteristics and the simple particle-in-a
box model (eqn. (3.19)) can no longer be used to calculate these. Some colour-centre 
variants are shown schematically in Fig. 3.20. The FA -centre is the same as the simple F
centre, except that one of the cations surrounding the anion vacancy has been replaced 
by a monovalent impurity ion. An F'-centre is a simple F-centre, but containing an 
extra electron. Aggregates of F-centres may also occur, and one form of nomenclature 
is to denote by a subscript the number of anion vacancies comprising the defect 
complex. An F2-centre (sometimes called an M-centre) consists of two neighbouring 
F-centres lying in a (100) direction, and is shown in Fig. 3.20. An F3-centre (also termed 
an R-centre) is an aggregate of three F-centres in a triangular arrangement in the (111) 
plane (not shown). 

In principle, the antimorph of an F-centre, i.e. a positive charge (a missing electron, 
or 'hole'-see §6.2.2) trapped at a cation vacancy and denoted a V-centre, should also 
exist; although it appears to be unstable in alkali halides, it is found in oxides. A more 
common hole-related centre is the so-called 'molecular ion', [Xi], formed when a hole is 
trapped by a negatively charged anion, X-, having an originally filled p6 shell. The 

H-centre 

x; -centre 

Fig. 3.20 Schematic representations of different types of colour centres in alkali-halide crystals. 
A monovalent cation impurity is shown as a shaded circle. . 
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resulting p5 electronic configuration, being spatially asymmetric, is subject to a struc
tural distortion that acts to lower the electronic energy, in this case by the formation of 
effectively a covalent bond between the anion associated with the trapped hole and the 
nearest-neighbour anion in the (100) direction, resulting in the formation of an [Xi] 
entity (Fig. 3.20). (Somewhat confusingly, this defect configuration is also sometimes 
referred to as a VK-centre in the literature, even though it does not involve a cation 
vacancy.) The hole associated with the [Xi] (or VK) centre is referred to as being 'self
trapped'; its electronic wavefunction is localized (in the vicinity of the bond between the 
two anion species involved), and the total energy is lowered as a result of the structural 
distortion involved in forming the [Xi] entity. Consequently, the self-trapped hole is 
relatively immobile (certainly in comparison with a hole in an otherwise filled (valence) 
band of electrons in the case where lattice distortion effects are negligible-see §6.5.1.2); 
the self-trapped hole can move from site to site, but only by a thermally activated 
'hopping' process, where the activation energy for the hopping rate is related to the self
trapping distortion energy. The molecular-ion [Xi] centre in alkali-halide crystals is one 
example of a small polaron (§6.6), i.e. a charge carrier (in this case, a hole) associated 
with a structural distortion strong enough to cause the excess carrier to self-trap, the 
spatial extent of the distortion being comparable to that of the wavefunction of the 
carrier. 

A more complicated centre, somewhat related to the [Xi] (V K) centre, is the so-called 
H-centre, which comprises a neutral anion occupying an interstitial position between 
two neighbouring anions, in the (100) direction in the case of alkali halides (see Fig. 
3.20). A molecular-ion-like configuration can form by' means of structural distortion as 
in the [Xi] (VK) centre, but this is now located at a normal anion site, and this central 
molecular ion then interacts weakly with the two neighbouring anions in the same (100) 
direction. Such a defect configuration is an example of a crowd ion. Further details 
about colour centres and related defects can be found, for instance, in Henderson 
(1972), Townsend and Kelly (1973) and Stoneham (1975). 

*3.3.2 Electron spin resonance 

Many defect configurations, e.g. the F-centre and the [Xi] (VK) centre in alkali-halide 
crystals, the electrically neutral dangling bond, DO, in covalent amorphous materials 
and the singly charged state (V+) of the monovacancy in crystalline Si, etc. contain 
unpaired electrons. The magnetic moment associated with such unpaired electron spins 
can be detected using the technique of electron spin (sometimes also called paramag
netic) resonance, ESR (or EPR). (See §7.2 for a discussion of magnetic behaviour.) 

The value of the magnetic moment /-Lm of an electron can be expressed as 

/-Lm = -,mnS (3.21) 

where S is the value of the electron spin (112), and ,m is called the gyro magnetic ratio 
and can be written as 

,m = gee/2lne . (3.22) 

The quantity en/2lne that correspondingly occurs in eqn. (3.21) is termed the Bohr 
magneton (/-LB). The Lande g-factor in eqn. (3.22) for the case of a free electron spin is 
given by 
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ge ~ 2 (1 + /-t;;~2) 2.0023 (3.23) 

where /-to is the vacuum permittivity. However, the spin of the unpaired electron, when 
in condensed matter, may couple to angular momentum, either the intrinsic orbital 
angular momentum of the electron or, more interestingly from the present point of 
view, through overlap of the electron wavefunction with the electron orbitals of atoms 
neighbouring the spin. The latter situation is obviously dependent on the local atomic 
structural environment, and measurement of the g-factor can thus lead to a structural 
identification of the defect concerned. 

In the absence of an applied magnetic field, the energy levels of a spin-l/2 particle 
(e.g. an electron) are doubly degenerate (i.e. the energies of the two quantum states with 
magnetic quantum numbers 111s = ±1/2 are equal), with a value, say, of '&0. The 
application of an external magnetic field with constant value Bo lifts the spin degeneracy 
via the Zeeman interaction, and the energy levels split to become (see Fig. 3.21): 

(3.24) 

In a semi-classical sense, these two energy levels can be regarded as corresponding to the 
electron spin pointing parallel or antiparallel to the magnetic-field direction. 

The aim of the ESR technique is to detect the Zeeman-split energy levels by causing 
magnetic-dipole transitions to occur between them (equivalent to flipping the electron 
spin) by means of the application of an aiternatingmagnetic field B I , of frequency v, in a 
direction perpendicular to the steady field Bo. A photon of energy hv is resonantly absorbed 
(i.e. causes a transition) when this energy is equal to the energy separation between 
Zeeman-split levels (eqn. (3.24» and when the selection rule D..111s = ±1 is obeyed, i.e. 
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Fig. 3.21 Illustration of the energy levels and ESR transitions for a defect having: (a) an 
unpaired electron (S = 1/2) but no hyperfine interaction; (b) an unpaired electron having a 
hyperfine interaction with an atom with nuclear spin I = 1/2. 

For the case of a free spin (ge ~ 2), and an applied magne~ic field of Bo ~ 0.3T, tl:e 
resonant frequency is v ~ 9 GHz, i.e. in. the microwave reglOn of the electromagnetic 

spectrum .. 
The resonance condition can be detected m one of two ways: eIther the frequency v ~f 

the alternating magnetic field (associated with microwaves incident on the sample) IS 
kept constant and the Zeeman field Bo is varied and swept through the resonance 
condition (eqn. (3.25», or, conversely, the Zeeman magnetic field Bo is kept consta~t 
and the frequency of the alternating field is varied. The former procedure ,:as used m 
continuous-wave (c.w.) ESR spectrometers in the past; frequency modulatlOn ~~ 10.0 
kHz) of the alternating field B, in such instruments ensures that the reso~ance SIgnal IS 
measured as a derivative of the resonance peak. The latter way of detectmg resonan~e 
forms the basis of the latest generation of Fourier-transform (FT) ESR spectrometers m 
which an appropriately chosen pulse of microwave radiation is used to irradiate the 
sample. The pulse, in the simplest case having a square-wave shape, ~an be r~garded (cf. 
eqll. (2.54» as being comprised of a sum of Fourier components havmg a WIde range of 
frequencies, including the electron-spin resonant frequency, ~nd so will cause.a resonant 
spin-flip transition. The response of the sample to the mIcrowave pulse IS detect~d 
as a change of magnetization with time (the 'free-induction decay', FID); FOUrIer 
transformation of the FID yields the resonant absorption-peak spectrum as a function 
of frequency (equivalent to the integrated derivative ESR sig~al ob~ained from a. c.w. 
spectrometer). An example of a derivative ESR spectrum o~tamed. usmg a .conven~lOnal 
c.w. spectrometer for the case of a simple defect, the unpaired spm assocIated WIth an 
electrically neutral dangling bond (DO) in amorphous (hydrogenated) silicon is shown in 
Fig.3.22a. . . 

Considerably more information about the local structure around unpaired spms at 
point defects than that provided simply by the value of the g-factor can be obtaine?, in 
principle, from a measurement .of the so-called hyperfine interaction between the spm of 
the unpaired electron and the nuclear spin I of surrounding atoms. The hyper fine 
interaction between an unpaired electron spin (S = 1/2) and a single nucleus with 
nuclear spin I > 0 results in an extra term for the energy (cf. eqn. (3.24», viz. 

(3.26) 

where 111[ is the nuclear-spin quantum number. The hyperfine interaction energy con
sists of a so-called isotropic term (A), and an anisotropic term (A') which depends on the 
classical dipole-dipole interaction between electron and nuclear spins (and which is a 
function of the angle between Bo and the line connecting the nucleus and the electron 
spin. The isotropic term depends on the probability of the electron wavefunction being 
at the nucleus of the atom in question via the Fermi contact expression 

(3.27) 

where gN and /-tN are the nuclear g-factor and magneton, respectively, F is an amplifica
tion factor and X(O) is the electron wavefunction amplitude at the nucleus. 

The hyperfine interaction results in an extra splitting of the energy associated with the 
electron spin (see Fig. 3.21b) characterized by the additional quantum number 111/, and 
magnetic-dipole transitions can occur between such levels if the extra selection rule 
6.111/ = 0 is also satisfied. Thus, for an electron (S = 1/2) interacting with a nuclear spin 
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Fig. 3.22 Derivative ESR spectra measured using a c.w. spectrometer for the defects: (a) the 
electrically neutral dangling bond (Do) in amorphous (hydrogenated) silicon (Street (1991). 
Reproduced by permission of Cambridge University Press); (b) the F+ -centre in MgO, measured 
with Bo parallel to the (111) direction. The central intense part of the spectrum corresponds to the 
free-spin case of electrons in anion vacancies being surrounded only by Mg ions with zero nuclear 
spin. The six-fold hyperfine-split spectrum is characteristic of the interaction between an electron 
and a single 25Mg nucleus with spin I 5/2. (Henderson and Wertz (1968). Reproduced by 
permission of Taylor & Francis Group Ltd.) 

I> 0, there are (21 + 1) equally spaced lines in the hyperfine-split spectrum for a given 
magnetic field Bo, i.e. two lines in the simplest case of the S = I 1/2 system (Fig. 
3.2lb). 

A clear example of the ESR spectrum of an F-centre is that of the F+ -centre (i.e. 
containing a single electron) in crystalline MgO (which has the rocksalt structure). 
Each anion vacancy has six nearest-neighbour Mi+ ions, 90% of which have zero 
nuclear spin and hence give rise to a single (derivative) ESR line characterized by 
the free-spin g-value of 2.0023 (see Fig. 3.22b). The remaining 10% of Mg2+ ions 
consist of the 25Mg isotope (I 512), and for the case of a single 25Mg nucleus present 
in the nearest-neighbour shell of an anion vacancy a six-fold hyperfine-split 
spectrum results, as shown in Fig. 3.22b. A higher spectrometer gain reveals an 
additional ll-fold hyperfine-split set of lines characteristic of the interaction 
between the electron and a nearest-neighbour environment of two 25Mg nuclei 
(see Problem 3.7). In the alkali halide NaCI, for example, the situation is greatly 
complicated by the fact that the magnetic nucleus 23Na(I = 3/2) is 100% 
abundant, thereby appreciably increasing the number of hyperfine-split lines. The over
lap of the electron wavefunction with the nuclei of more distant shells (e.g. the nearest
neighbour CI nuclei (I 3/2)) increases the number yet further (see Problem 3.8), . 
often resulting in a broad, featureless ESR line being exhibited by F-centres in alkali 
halides. 

3.3.3 Electron microscopy 

Under certain conditions, extended (e.g. linear or planar) defects can be imaged using 
various microscopy techniques. For e:J(ample, the structural disruption around disloca
tions makes this region more susceptibl~ to chemical reaction, e.g. etching by liquid 
reagents. The resulting etch pits, much larger of course than the size of the dislocation 
cores, can be revealed using high-magnification optical microscopy. Imaging of defects 
at atomic-scale resolution, however, can be achieved, in principle, by using electron 
microscopy. 

The principles underlying the operation of the transmission electron microscope have 
been mentioned in §2.6.1.4 and the two modes of operation, viz. diffraction and 
imaging, are illustrated in Fig. 2.58. In the present context, however, it is the imaging 
of structural imperfections that is of primary interest. There are essentially three basic 
ways of performing imaging experiments in a transmission electron microscope, 
depending on which beams are used for imaging, as indicated in Fig. 3.23. In bright
field imaging, only the main transmitted (undiffracted) electron beam,is allowed to pass 
through the objective aperture: the corresponding image of an ideal, perfectly flat, 
defect-free crystal would be homogeneously bright. Any defects in a specimen will 
change the path of some diffraCted beams, causing some of them to pass through the 
aperture and interfere with the transmitted beam, thereby causing variations in the 

---\-t--\--+-- PrinCipal plane 

o 
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Fig. 3.23 Illustration of the bright-field imaging operation of a transmission electron micro
scope, in which only the main transmitted electron beam (T) is allowed to pass through the 
objective aperture. If, instead, a single diffracted beam (D) is allowed to pass through the 
aperture, a dark-field image is obtained. If the main beam and several diffracted beams are 
allowed to pass through the aperture, interference between these beams can give a high-resolution 
image under appropriate conditions. 



Fi . 3.24 High-resolutio.n latti.ce image (.along (110) of crys~alJine Si, obtained. by electron 
~ oscopy showing a dislocatIOn core with b = ! [110]. (Repnnted from UltramIcroscopy 15, 

~ICkutchis~n, © 1984 with kind pennission from Elsevier Science - NL, Sara Burgerhartstraat 
25: 1055 KV Amsterdam, The Netherlands 

. tensity of the image, termed diffraction contrast. The contrast may be reversed by 
~lowing instead just a single diff!'~cted beam to pass thro~gh t?e objecti~e apertu~e (e.g. 
by tilting the electron beam); this IS k~o,:n as.dark-field llnagm.g. More mformatlOn on 
these aspects of electron ~Icroscopy IS given m the book by Hirsch et at. (1965). If the 
main beam and several diffracted beaI~1s a~'e all owe? to pass ~hro.ugh the aperture, 
. terference between these beams can give rIse to a high-resolutIOn Image of a perfect 
~ystal and, of course, any structural imper~ection.~ th~rein, ~nder ~ppro~riate c~ndi
tions. Atomic resolu~ion (o~ the. or.der of an ang~trom). IS possIb~e usmg thIS ~ech~Ique, 
the resolution essentially bemg limited by unavoidable ImperfectIOns (aberratIOn) m the 
objective lens. An ex~mp~e of a high-resolution electron-microscope image of an edge 
dislocation is shown 10 FI~. 3.24; the extra half-plane of atoms .can b~ clearly seen. 

The mechanism by which structural defects, e.g. an edge dIslocatIOn, can produce 
d'ffraction contrast, and hence be visible in either a bright- or a dark-field image, is 
'l~ustrated schematically in Fig. 3.25. Atomic planes near a dislocation core, being 
~isplaced from the or~entat~on. of planes in an ideal cryst~l, can satisfy the condition 
for diffraction. Thus, mtenslty I.S rem~ved .froI? th~ transmitted electro~ beam (thereby 
leading to a dark image of the dislocatIOn lme m brIght-field mode) and IS transferred to 

diffracted beam which, if used for dark-field imaging, would give rise to a bright image. 
a The Burgers vector of a dislocation in a crystal can be detennined by ascertaining the 
onditions under which it can be imaged in a bright-or dark-field electron-microscope 
~mage. The scattering amplitud~ fOl: waves (e.g. electrons). diffracted by a s~t of atomic 
planes (hId) in a perfect crystal IS given by eqn. (2.105), VIZ. as the summatIOn over all 

atoms i: 
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Incident 

Transmitted Diffracted 

Fig. 3.25 Schematic illustration of the origin of diffraction contrast for an edge dislocation. 
Crystal-lattice planes near the dislocation core satisfy the diffraction condition, and intensity is 
thereby removed from the transmitted beam (giving a dark image in bright field) and transferred 
to a diffracted beam (giving a bright image in dark field). 

where G Ghkl is the reciprocal lattice vector corresponaing to the lattice planes. For 
the case of a crystal containing a defect, e.g. a dislocation, the interatomic vector Ri no 
longer satisfies the condition for perfect translational periodicity (eqn. (2.1», but 
instead can be written as 

R~ = Ri + lli (3.28) 

where lli is the displacement vector of an atom in the unit cell from its ideal position Ri . 

(In practice, lli need not be a constant, but could vary with the distance z away from an 
extended defect in a crysta.!.) Thus, an extra phase factor, exp(i G . ua, is introduced into 
the expression for the amplitude of the diffracted wave. The condition for invisibility of 
the defect is when this phase factor is unity, i.e. when 

G . II = O. (3.29) 

F or the case of screw dislocations, atomic planes parallel to the line'of the dislocation 
remain undisturbed, i.e. II oc b (see Fig. 3.10), and hence the invisibility criterion is thus 

G·b O. (3.30) 

!he case of edge dislocations is a little more complicated since the displacement vector u 
IS . no~-zero in all directions normal to the line of the dislocation. The invisibility 
cntenon G· II = 0 (eqn. (3.29» thus corresponds both to eqn. (3.30), as for screw 
dislocations, and also to 

G· (b x t) = 0 (3.31) 

where t is a vector along the dislocation line. In other words, only when G is parallel to 
the dislocation line is the edge dislocation invisible in the bright/dark-field image. 
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Fig. 3.26 Use of the invisibility criterion, G . h = 0, to ascertain the Burgers vector of screw 
dislocations in crystalline Si. The dislocations in the network lying in the (111) plane, marked A, 
are (a) visible; (b) absent when G = 311, consistent with the Burgers vector being h HOIl]. 
(Booker (1964). Reproduced by permission of The Royal Society of Chemistry) 

An example of this method of ascertaining the Burgers vector is illustrated in Fig. 3.26 
for the case of screw dislocations in crystalline silicon. 

Planar defects may also be imaged using an electron microscope under certain 
circumstances. For example, stacking faults (§3.1.3) can be imaged, subject to the 
invisibility criterion (eqn. (3.29)), as illustrated in Fig. 3.27. A stacking fault is char
acterized by a constant displacement vector u parallel to the fault plane. Thus, when the 
diffracting atomic planes are parallel to the fault plane, as in Fig. 3.27a, G· u = 0 and 

8 B 

~~~ []1ffi1 
A A 

(0) (b) 

Fig. 3.27 Illustration of the invisibility criterion for the imaging of a stacking fault AB: (a) the 
diffracting atomic planes are parallel to the fault plane and so G . u = 0 and the fault is invisible; 
(b) diffracting planes that are non-parallel to the fault plane allow it to be imaged. 
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the fault is invisible jn an electron-microscope image. For other atomic planes that are 
non-parallel to the fault plane (Fig. 3.27b), the quantity G . u is non-zero and hence the 
fault is visible (as a series of light and dark fringes parallel to the line of intersection of 
the fault plane with the sample surfacf'! for a fault inclined at an angle to the plane of a 
thin crystal specimen). .. 
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Defect-related behaviour 

Defects are a ubiquitous, and often unavoidable, feature of the structure of crystalline 
and non-crystalline materials. Thus, it is not too surprising that often the physical (and 
sometimes chemical) behaviour of materials is dominated by that of the structural 

. defects that they contain. Some examples have been mentioned previously, namely the 
optical and magnetic properties of unpaired electrons associated with 'colour-centre' 
point defects and dangling bonds (§§3.3.1, 3.3.2). Three other generic types of behaviour 
generally mediated by defects will be discussed in this section, namely crystal growth, 
atomic transport and mechanical properties. 

3.4.1 Crystal growth 

Crystals grow by the addition of atoms, from either the vapour or the liquid phase, onto 
growing crystal faces. A number of different types of surface sites can exist at which 
such atomic adsorption events can occur. Figure 3.28 shows some representative surface 
sites for the case of a simple cubic (s.c.) crystal. Three basic types of site can be 
distinguished: face (or terrace) sites (denoted 8 in Fig. 3.28), ledge (or edge) sites 
(labelled 6) and kink sites (denoted '112'). In the schematic diagram in Fig. 3.28, each 
cu.be represents an atom: a shared face indicates the formation of a bond between two 

Fig. 3.28 Schematic illustration of atomic and crystal-growth sites for a simple cubic crystal; the 
cubes represent atoms. The various sites are: (1) completed edge; (2) completed corner; (3) 
completed surface; (4) i~complete edge; (5) incomplete corner; (6) step edge or ledge site; (7) 
completed step; (8) face sIte; (9) edge vacancy; (10) face vacancy. The kink sites are denoted as 112 
because their atomic binding energy is half that of a bulk atom. 

nearest-neighbour atoms (of binding energy, or bond strength, CPl) and a common edge 
between two cubes represents the formation of a second (next-nearest) neighbour bond 
(of bond strength CP2 < cP l). Thus, in this scheme and for the {I OO} face of an s.c. crystal, 
a face site has a binding energy of (CPl + 4</>2)' a ledge site an energy of (2cpl + 6cp2) and a 
kink site an energy of (3cpl + 6cp2) - see Problem 3.9; i.e. atoms at kink sites are the most 
strongly bound. For comparison, a fully coordinated atom in the bulk of an s.c. crystal 
has a binding energy of (6cpl + 12cp2) or, since each bond in the bulk is shared between 
two atoms, the mean atomization energy of the crystal is (6cp1 + 12cp2)/2 = (3cp! + 6cp2), 
i.e. the same as the binding energy of a kink site. Thus, an atom adsorbed on a face site is 
not bound very strongly and can therefore easily subsequently desorb. On the other hand, 
an adsorbed atom that manages to diffuse over the surface to a ledge, or especially a kink, 
site will be strongly bound there and can thus contribute to the growth of the crystal face. 

Crystal growth only occurs under conditions of supersaturation, i.e. when the actual 
vapour pressure is greater than the equilibrium vapour pressure (equilibrium being 
when the chemical potentials of crystal and vapour are the same) in the case of 
vapour-phase growth, or when a melt is supercooled below the equilibrium melting 
temperature for crystal and melt, or when a solution has a higher solute concentration 
than the concentration at which crystal and solution are in equilibrium (Lewis (1980». 
In the case of very low degrees of supersaturation, crystal growth can be sustained only 
if an inexhaustible supply of kink or ledge sites is available at growing surfaces, since it 
is very difficult to nucleate a new monolayer on top of a perfect, complete layer. The 
types of kink and ledge sites shown in Fig. 3.28 do not ~atisfy this requirement since they 
are not regenerated once the crystal face is fully grown. 

~ig. 3.29 Scanning tunnelling microscope image of spiral growth (associated with a screw disloca
tIon) of crystalline GaSb (100), grown epitaxially on GaAs (100) at 475°C. The image size is 400 x 
400 nm (Brown et al. (1996». 
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However, the so-called Frank source, a screw dislocation (Fig. 3.10) emerging onto a 
growing crystal face, does provide an inexhaustible supply of high-binding-energy ledge 
sites. Adatoms occupying these ledge sites produce a spiral growth pattern, the centre 
being the dislocation core, with new adsorption sites being created continuously as the 
growth front rotates. When the growth rate is independent of the edge direction in 
the plane of the growing surface, the reSUlting growth pattern is in the form of an 
Archimedes spiral, with the radius r and rotation angle 0 being related via r = cO, c 
being a constant. An illustration of the spiral crystal-growth pattern associated with a 
screw dislocation is given in Fig. 3.29 for the case of GaSb. 

3.4.2 Atomic transport 

A solid can be distinguished from a liquid in terms of either macroscopic or microscopic 
criteria. On the macroscopic scale, a material can be said to behave in a solid-like manner 
if it has a shear viscosity greater than say 1015 poise (1014N s m-2

); this somewhat 
arbitrary condition is equivalent to the statement that a small shear stress applied to a 
sample for one day produces no discernible permanent deformation (see Problem 3.10). 

On the microscopic (atomic) scale, a material behaves in a liquid-like manner if an 
atom, on average, diffuses away from the site it occupied at time t 0 at later times t. In 
terms of the time-dependent density pair-correlation function p(r, t), a generalization of 
the time-independent function related to the RDF (eqn. (2.4)), a material behaves in a 
liquid-like manner if the configuration-and time-averaged auto-correlation function 

(p(r, t)p(I', 0))/1= (I 1 p(r, t)p(r, O)drdt) /I (3.32) 

tends to zero, where () /I denotes a configurational a~erage over all atoms. Otherwise, 
for non-zero values of this averaged function, atoms generally vibrate about their 
equilibrium positions and the material is solid-like. If the microscopic flow process in 
a material can be represented by a single (perhaps average) characteristic relaxation 
time T, then a solid may also be distinguished from a liquid in terms of relative time
scales by the Deborah number, Df, (so called after the prophetess who foretold that 
mountains would flow before the Lord (Judges 5:5)), defined as 

Dr Tit (3.33) 

where t is the measurement time. For very small values of Df(t» T) a material behaves 
as a liquid, whereas for very large values of Df(t « T) it behaves as a solid. 

An interesting situation intermediate between liquids and solids defined in this 
atomistic way is the case of plastic crystals. These materials consist of nearly spherical 
molecules (e.g. C60, P4Se3, adamantane, etc.)held together by van der Waals inter
actions (§2.2.2.1). Above the plastic-crystal transition temperature, the thermal energy is 
sufficiently great partially to overcome the intermolecular bonding and to allow the 
molecules to rotate freely about one or more axes, but with the molecular centres of 
mass remaining at the sites of the underlying (usually f.c.c.) crystal lattice. Such 
materials represent an example of dynamic orientational disorder. 

The atomistic criterion based on eqn. (3.32), distinguishing liquid-like and solid-like 
behaviour, does not imply, however, that individual atoms in, say, a crystalline solid do 

not make diffusive (!lon-vibrational) or other translational excursions away from their 
normal positions. Indeed, atoms can and do move in a lattice under the influence of 
suitable driving forces (e.g. concentration gradients) or external agencies (e.g. electric 
fields or mechanical stresses). However, almost invariably such atomic motion is 
mediated by structural defects; individual atomic transport generally involves point 
defects (e.g. vacancies and interstitials) and cooperative atomic motion is mediated by 
extended defects (e.g. dislocations). Since point defects are generally present in thermal 
equilibrium (§3.2.1), their concentration increases with increasing temperature and so, 
at elevated temperatures (say greater than half the melting temperature, Tm/2, meas
ured in kelvin) point-defect-mediated atomic diffusion can become appreciable. At low 
temperatures, when the concentration of point defects is small, atomic diffusion can 
only take place in association with metastable extended defects, such as along disloca
tion cores or at grain boundaries, etc. 

Perhaps the simplest (defect-free) mechanism of atomic transport is the direct
exchange mechanism, in which two atoms simply exchange places simultaneously in 
the lattice. If more than two atoms are involved in the exchange, it is known as a ring 
mechanism. However, in general, this mechanism is seldom found because of the high 
(strain) energetic cost involved in the exchange. 

The processes by which individual atoms may move in a crystalline lattice in associa
tion with point defects are represented schematically in Fig. 3.30. The commonest 
defect-related mechanism is the vacancy mechanism (Fig. 3.30), in which an atom 
moves into a neighbouring vacant site (or, equivalently, a vacancy moves in the opposite 
direction). There is also an interstitial mechanism (Fig. 3.30), in which an atom at an 
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Fig. 3.30 Schematic illustration of three mechanisms of atomic transport in solids: (a) direct
exchange (ring) mechanism; (b) vacancy mechanism; (c) interstitial mechanism. 
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Fig. 3.31 Schematic illustration of the interstitialcy mechanism of atomic transport in solids. 

interstitial site moves to a neighbouring interstitial site; the most important example of 
this is the case of the impurity carbon in a-(b.c.c.) iron. A related mechanism, found in 
materials containing cation Frenkel defects (e.g. silver halides) or anion Frenkel defects 
(e.g. some alkaline earth halides), is the interstitialcy mechanism (Fig. 3.31), in which an 
atom at an interstitial site moves to a lattice site, in turn displacing the atom originally 
there to an interstitial position. Of these four mechanisms, all but the interstitial 
mechanism involve substitutional exchange of atoms. 

Structural defects, notably dislocations, also greatly facilitate the motion of planes of 
atoms relative to other planes in crystals undergoing plastic deformation when sub
jected to applied shear stresses. The (ideal) critical yield stress required to cause the 
simultaneous slip of one layer of atoms over another layer is very high (a simple 
calculation gives ~ Os/6, where Gs is the shear, or rigidity, modulus-see Problem 
3.11). However, the yield stress is reduced by several orders of magnitude with the 
involvement of line defects, i.e. dislocations, for which atomic motion occurs consecut
ively, a line of atoms at a time. This slip process is illustrated schematically in Fig. 3.32. 
Note that the dislocation line marks the boundary between the slipped and unslipped 
material: an edge dislocation is perpendicular to the direction of slip, whereas a screw 
dislocation is parallel to the slip direction (see Fig. 3.32). If a dislocation moves right 
through the crystal, the entire slip plane in the crystal will have slipped by an amount 
equal to the Burgers vector b, i.e. one lattice spacing. The atomic motion in the region of 
the dislocation core associated with the motion ('glide') of an edge dislocation along the 
slip plane is illustrated in Fig. 3.33. 

3.4.2.1 Atomic diffusion 

Two variants of atomic diffusion may be distinguished: self-diffusion refers to the 
motion of an atom in a solid consisting of atoms of the same type; impurity diffusion, 
on the other hand, refers to the transport of a (dilute) solute atom in a host (solvent) 
structure consisting of atoms of a different type. Often, and particularly for self-diffu
sion, the diffusive transport of atoms in solids is measured by monitoring the evolution 
of a known spatial distribution of a radioactive isotope tracer as a function of time (or 
distance). 

A concentration gradient, of impurity atoms, vacancies or interstitials as the case may 
be, gives rise to atomic diffusion, and this is characterized by the quantity called the 
diffusion coefficient (or diffusivity), D i , which is simply the constant of proportionality 
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Fig.3.32 Slip in a crystal mediated by dislocations: (a) the unslipped crystal; (b) mediation by an 
edge dislocation moving from right to left; (c) mediation by a screw dislocation moving from front 
to back; (d) the fully slipped crystal. 
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Fig. 3,33 Motion of an edge dislocation in the slip plane caused by the breaking of the line of 
bonds CD (projected into the paper) and the making of the line of bonds AC. 

between the net flux, h of atoms of type i (the number crossing a unit area perpendi
cular to the flux direction in unit time) and the concentration gradient causing the 
diffusion. 

For the case of diffusion in one dimension (the x-direction), this relationship can be 
expressed as Fick's fIrst law: 
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generalized for three dimensions (3D) to 

J i = -1)iVni. 
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(3.34a) 

(3.34b) 

where the concentrations are conventionally taken to be negative so that there is a 
positive flux of atoms along the x-axis. Note that in eqn. (3.34b) the flux J i is a vector 
and the diffusion coefficient 1)i is a (symmetric) second-rank tensor. 

The diffusion process must also satisfy the continuity equation describing the con
servation of atoms of type i, namely that any variation of the concentration with time 
must produce a concomitant spatially varying flux. In one dimension (ID) this can be 
expressed as 

and in 3D as 

an· 
~ +V·J/, O. 
at 

(3.35a) 

(3.35b) 

Combination of eqns. (3.34) and (3.35) yields the diffusion equation, or Fick's second 
law, i.e. in ID 

(3.36a) 

and in 3D 

(3.36b) 

Note that the possibility of a spatial variation of the diffusion coefficient itself has not 
been excluded in these equations. If the material is sufficiently homogeneous that the 
diffusion coefficient is everywhere constant, then eqns. (3.36) reduce to 

ani _ D. a2ni 
at - 1 ax2 (ID) (3.37a) 

and 

ani = 1). V2n. 
at .1 1 

(3D). (3.37b) 

In general, coupled flows may also exist, where a concentration gradient in one atomic 
species j can cause a flux in another, i. Such a situation may be represented by a 
generalization of, say, eqn. (3.34b) as 

n 

J i = L1)ijVnj. 
j=1 

(3.38) 

The form of the diffusion equation (eqns. (3.36), (3.37» describes not only atomic 
transport but also the flow of heat in a temperature gradient. However, a temperature 
gradient can also give rise to an atomic flux, in the absence of a concentration gradient; 
this is known as the Soret effect. By analogy with eqn. (3 .34b), the flux may be written as 

J i = -$V T (3.39) 
where the Soret constant $ is, like the diffusion constant, a symmetric second-rank 
tensor but may have either sign (whereas the diffusion coefficient is always positive)
see Problem 3.12. 

The second-order differential equation that is the diffusion equation (say the ID 
form, eqn. (3.37a» can be solved to give the spatial and temporal variation ofthe atomic 
concentration, ni(x, t), given suitable boundary conditions, e.g. the starting profile, 
ni(x,O) (see Problem 3.13). Thus, for the case of Ni atoms initially located at the 
point x = Xo at t = 0, i.e. in the form of a Dirac delta function, the diffusion profile 
at a later time, t, is given by a Gaussian distribution (see Problem 3. 13(b», i.e. 

Ni 2 
ni(x, t) = 1/2 exp{ -(x - xo) /4Dit}. 

( 47fDit) 
(3.40) 

For the case of a semi-infinite constant (step-function) initial distribution, ni(x,O) = 
n7( -00 < x < 0), the diffusion profile is given instead (see Problem 3.13(c» by 

nO 
ni(x, t) = ferfc(x/(4Dit) 1/2), (3.41) 

where the complementary error function, erfc(y), is defined as: 

erfc(y) (2/7f)1/21°O e-1v2 dw. (3.42) 

The two diffusion profiles embodied in eqns. (3.40) and (3.41) are illustrated in Fig. 
* 3.34. Other solutions of the diffusion equation are detailed in Crank (1975). 

Diffusion is, by its very nature, an irreversible process: it is concerned with the 
transition of a system from a state of non-equilibrium to one of equilibrium (i.e. in 
general, to a state of compositional and thermal homogeneity). Thus, diffusion pro
cesses can also be discussed in the framework of the theory of non-equilibrium thermo
dynamics (or thermodynamics of irreversible processes). From this viewpoint, diffusion 
in general can be described in terms of a set of linear, phenomenological equations 
relating material fluxt:?s J i (of atoms, ions, electrons, etc.), and heat flow J Q if appro
priate, and the appropriate thermodynamic 'driving forces' Xj, i.e. 

J i = L LijXj (3.43) 
j 

where the Onsager coefficients Lij are each second-rank tensors, independent of the 
driving forces. 

The Onsager theorem states that in the absence of magnetic fields, and as a result 
of time-reversal symmetry, the off-diagonal elements of the Lij-coefficients are sym
metric, i.e. 

(3.44) 

for all chemical-species indices i,j and Cartesian components a, (3. Further, the diagonal 
L-coefficients must be semi-positive definite, 

Lii~O, (3.45a) 

with the off-diagonal coefficients obeying the inequality 
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Fig. 3.34 Illustration of the diffusion profile, obtained by solving the ID diffusion equation, 
resulting from an initial concentration distribution which is: (a) a delta function at x = Xo; (b) a 
semi-infinite constant concentration (x ~ 0). 

(3.45b) 

as a result of the second law of thermodynamics, which follows by substituting eqn. 
(3.43) into the expression for the rate of entropy production per unit volume, s, given by 
(Allnatt and Lidiard (1993» 

Ts= LJi·Xi+JQ ·XQ . 

i 

(3.46) 

The driving forces Xj may consist of mechanical forces Fj, such as electrostatic forces 
exerted on ions of charge qj by an electric field E,Fj = qjE, and/or driving 'forces' due 
to, say, compositional variations, related to the gradient of the chemical potential, /-tj, of 
component j; thus, in general: 

(3.47) 

* 

In the presence of a temperature gradient, the corresponding thermal driving 
force responsible for the heat flux JQ is the thermal 'force' XQ = -(VT)/T. For a 
system in mechanical equilibrium, there is a restriction on the driving forces 
as expressed by Prigogine's theorem (a generalized form of the Gibbs-Duhem rela
tion): 

(3.48) 

Consider now a diffusion couple, composed of, say, two dissimilar metals A and B 
(Fig. 3.35), for which there will be two Fickian first-law equations for the atomic fluxes 
(eqn. (3.34», characterized by the two intrinsic diffusion coefficients, DA and DB. 
Obviously overall there is only a single diffusional process, namely the interdiffusion 
of A and B, characterized by the chemical interdiffusion coefficient DAB. However, if 
DA =f DB (e.g. as a result of vacancy involvement), the diffusion zone, the region where 
the diffusive fluxes are the greatest, i.e. the effective interface between the two metals, 
itself moves with respect to the region of the couple where no diffusion is occurring (Fig. 
3.35). This behaviour is known as the Kirkendall effect. Both interdiffusion and the 
Kirkendall effect are determined by DA and DB. The 3D atomic fluxes relative to the 
fixed parts of the lattice are given by 

(3.49a) 

and 

(3.49b) 

since the velocity of the diffusion zone relative to the fixed lattice is V(J A + J B), where 
Vis the volume per site and CA and CB are site mole fractions, CA = l1A/n and CB = nB/n 

Time 0 Time t 

\. / 

fixed fixed 

Fig. 3.35 Schematic diagram of a diffusion couple comprising two dissimilar metals A and B. 
The circles at the original interface denote inert markers used to monitor the movement of the 
diffusion zone relative to the fixed ends of the couple, i.e. the Kirkendall effect. The superimposed 
graph represents the concentration of A atoms in the couple at a later time, t. The diffusion zone 
moves to the right because it has been assumed that DB > DA. 



with CA + CB = 1 (if the concentration of vacancies is negligible). Thus, from eqns. 
(3.34b) and (3.49a) 

J~ -(CB::DA + cA::DB)VnA 

-:DVnA 
(3.50) 

with a similar equation for B. Thus the chemical interdiffusion coefficient is given by the 
Darken equation: 

(3.51) 

The Kirkendall velocity of the diffusion zone relative to the fixed parts of the sample is 
given by 

VK = (::DA - ::DB)VCA. 

This situation can also be analysed in terms of the On sager L-coefficients (cf. eqn. 
(3.43)), viz. 

J A = LAAXA +LABXB, 

JB = LBAXA + LBBXB 

with the Prigogine relation (eqn. (3.48)) becoming in this case 

CAXA + CBXB = O. 

Combining eqns. (3.53) and (3.54) gives for the flux of A (and similarly for B): 

The chemical potential of component A can be written as 

J.lA J.l~(T,p) + kBTlnC'YAcA), 

(3.53a) 

(3.53b) 

(3.54) 

(3.55) 

(3.56) 

where "fA is the activity coefficient (a measure of non-ideality in terms of interactions 
between species), and the quantity aA "fACA is the activity of A. Thus, use of eqn. 
(3.47), with the assumption that only concentration gradients are important, gives 

(3.57) 

For the case of a dilute alloy (CA « CB), the activity coefficient "fA tends to unity as 
CA -t 0, and assuming further that the ratio LAB/ LAA becomes independent of CA in this 
limit, a simple relation between the diffusion coefficient and the Onsager coefficient is 
found, viz. 

~ kBTLAA kBTLAA 
~A=---=---' 

nCA nA 
(3.58) 

Instead of the macroscopic approach outlined above, at9mic diffusion can also be * 
treated from a microscopic point of view, in terms of a random-walk process of the 
diffusing atoms (like the Brownian motion of a suspended particle in a fluid). Consider 
a dilute concentration of a species (A) diffusing in ID in a host matrix (B) as a result of a 
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concentration gradient anA/aX. If an A atom jumps a distance a (of the order of the 
lattice spacing) b<'?tween two sites at every diffusion event, the concentrations of A at 
two adjacent planes, 1 and 2, separated by a distance a, are related by 

(3.59) 

If the average number of jumps per unit time made by a diffusing A atom is r A, half of 
which (in ID) are forwards and half are backwards (in the absence of external forces), 
then the number of atoms per unit area moving from plane I to plane 2 is r AanA,1 /2, 
and that from 2 to I is r Aa11A,2/2, and hence the overall flux is given by 

TA TA ? anA 
h T a (nA,1 - nA,2) = T a- ax' (3.60) 

Thus, by comparison with eqn. (3.34a), the diffusion coefficient is related to micro
scopic quantities characterizing individual atomic jumps via the Einstein relation, given 
(in ID) by . 

(3.61) 

For three-dimensional diffusion, if each of the principal axes along which diffusion takes 
place is equivalent (as in cubic crystals), the principal components of the diffusion
coefficient matrix are 

o TAa2 

::DA,ii = -6-' i = X,y or z. (3.62) 

The diffusion coefficients appearing in eqns. (3.61) and (3.62) have been given the 
superscript zero to denote that they refer to the case when there is no correlation 
between consecutive atomic jumps. 

The quantity r A, the average number of jumps of A atoms per second, is related to 
the atomic jump frequency "fA by 

(3.63) 

where p is a probability factor that depends on the jump mechanism and the local 
structure. For interstitial atoms, p = Z, the number of distinct sites that such atoms can 
reach in a single jump; for defect-related diffusion (e.g. involving vacancies), p is the 
probability that there is a neighbouring defect available to mediate the atomic jump. 

For the case of pure interstitial diffusion, every jump to a neighbouring site is 
uncorrelated with (i.e. statistically independent of) the preceding jump. This is not 
true for vacancy-mediated and i]1terstitialcy mechanisms, however. Following a jump 
of an atom into a neighbouring vacancy (Fig. 3.30), for example, the subsequent jump 
of the atom is likely simply to be back to its original position. Thus, in this case, 
subsequent atomic jumps are strongly correlated with each other. (Note, however, 
that the motions of the vacancies themselves are uncorrelated.) The effect of such 
correlation effects is to cause the observed diffusion coefficient to be less than the 
microscopic quantity given by the Einstein relation (eqn. (3.61)), i.e. 

(3.64) 

where the correlation factor !c ~ 1. 
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Fig. 3.36 Two-dimensional illustration of the path, after n jumps, of a particle performing a 
random walk, with equal-length jumps r, starting at the origin O. 

The correlation factor can be evaluated by considering a random walle of atomic 
jumps with equal length r (see Fig. 3.36). After n jumps, the vector Rn connecting the 
initial and final sites is given by 

it 

Rn=Lri. (3.65) 
i=1 

For a true random walk, the average of Rn , i.e. Rn, equals zero as n -+ 00, since there will 
be as many jumps in one direction as in the reverse direction. However, the mean-square 
displacement is not zero. Thus, taking the dot product of both sides of eqn. (3.65) gives 

n /I-I 11-2 

R;, = Lri· ri +2 Lri· ri+1 + 2 Lri· ri+2 +21'/1-1· I'll 
i=1 i=1 i=l 

/I /I-I/I-j. 

= L r7 + 2 L L ri ·I'i+j 
i=1 j=1 i=1 

( 

2/1-1 /I-j ) 

= n? 1 + -;;?= ?= COSei,i+j , 
1=1 1=1 

(3.66) 

where ei,i+j is the angle between the directions of the ith and the (i + j)th jump. The 
mean-square displacement is thus given by 

( 

2/1-1 /I-j ) 

R~ = nr2 1 +- LLCOSei,i+j . 
n j=1 i=l 

(3.67) 

For a true, uncorrelated random-walk process, such as involving the motion of inter
stitials, the double-summation term in eqn. (3.67) is zero as n -+ 00 (there are~ many 
jumps with a positive value of COSei,i+j as with equal and opposite values), and R~ = nr2. 
However, the effect of correlations between subsequent atomic jumps is to give a finite, 
negative value for the double-summation term. 

After n jumps or, equivalently, a time t given by 

t=n/TA , (3.68) 

the diffusion coefficient in 3D can be ,expressed in terms of macroscopic mean-square 
displacements by analogy with eqns. (3.61) anci (3.62), i.e. 

R~ 6t' i=x,yorz (3.69a) 

or, in ID, 

(3.69b) 

Substituting eqn. (3.67) for R~ in eqn. (3.69a) gives an expression for the effective 
diffusion coefficient in the form of eqn. (3.64), with '.Dl,ii = nr2/6t and the correlation 
factor given by 

This expression can be simplified (see Problem 3.14) to become 

Ic = 1 + cose;- , 
1 - cose l 

(3.70) 

(3.71) 

where e l is the angle between the directions of consecutive jumps. Thus, Ic is simply a 
geometric factor, determined both by the microscopic mechanism of diffusion and the 
structure of the material within which diffusion takes place. Some representative values 
oflc are given in Table 3.2. 

* Finally, we discuss the temperature dependence of the diffusion coefficient. In gen
eral, this temperature dependence arises from two distinct thermodynamic factors, a 
defect-creation term and an atomic-mobility term: it costs thermal energy to create the 
defects which mediate diffusion, and it also costs thermal energy to transfer an atom 
from one site to another. 

Table 3.2 Calculated tracer correlation factors,!c, for self-diffusion in the 
limit of infinitely low defect concentrations for different host structures and 
diffusion mechanisms 

Lattice 

Honeycomb (2D) 
Square (2D) 
Triangular (2D) 
Diamond 
s.c. 
b.c.c. 
f.c.c. 
NaCI 

Mechanism 

Vacancy 1/3 
Vacancy 1/(7T - 1) = 0.47 
Vacancy (7T + 6V3)/(1l7T - 6V3) = 0.56 
Vacancy 1/2 
Vacancy 0.65 
Vacancy 0.73 
Vacancy 0.78 
Collinear interstitialcy 2/3 

(After Allnatt and Lidiard (1993). Reproduced by pennission of Cambridge University 
Press) 



The thermal creation of defects is determined (under isobaric conditions) by the 
Gibbs free energy of formation of a single defect, related to the formation enthalpy 
and entropy by 

b.gr = b.hr - T b.sr, 

where the lower case has been used for the extensive thermodynamic quantities to 
denote that they refer to single defects. The fraction of, say, vacancies, Xv, existing in 
thermal equilibrium is thus given by 

Xv = exp( -b.gv/kBT), 

where gv gr (vacancy). Formation enthalpies and entropies for various defects are 
given in Table 3.1. 

The energetics involved in the motion of an atom between two sites can be under
stood by reference to Fig. 3.37. There is an energy barrier between initial (Fig. 3.37a) 
and final (Fig. 3.37c) configurations associated with the transition state or activated 
configuration (Fig. 3.37b) where the diffusing atom pushes aside the intervening atoms. 
The free-energy difference (associated with strain energy) between the activated and the 
initial configurations, b.gt, is thus equal to the activation free energy for atomic 
mobility, b.gm .6.gt, since local thermal fluctuations in energy giving an atom suffi
cient energy to surmount the barrier occur with a frequency proportional to the 
Boltzmann factor exp( -b.gm/kBT). The mobility free energy can be decomposed into 
enthalpy and entropy terms as for the formation free energy (eqn. (3.72)), i.e. 

b.gm = b.hm T b.sm. 

(a) 

d 
g 

(b) 

cgw a b c 

x 

(c) (d) 

Fig. 3.37 Schematic illustration of the vacancy-mediated motion of an atom, shown shaded, 
from one site (a) to another site (c) via the activated transition state (b). The free-energy profile 
corresponding to configurations (a)-(c) is shown in (d). For self-diffusion in a simple crystal, the 
free energies of the initial (a) and final (c) states are identical, and the activation free energy ~gl 
for the transport process is equal to the difference in free energy between the saddle-pomt 
configuration (b) and the initial state (a). 

For vacancy-mediated atomic motion, b.hm ~b.hr, but for interstitial motion 
.6.hm« b.hr (e.g. b.hm rv 0.1 eV for Cu). 

Thermally activated atomic transport thus proceeds via a series of discrete jumps, or 
hops, over activation barriers sepc:j.rating equilibrium lattice sites, the diffusing atom 
spending an appreciable time· (typically many vibrational periods) at each lattice site 
before acquiring sufficient energy. via a thermal fluctuation to enable it to hop to an 
adjacent site. 

Thus, in the expression for the mean jump rate r A of an atom A (eqn. (3.63)), the 
probability of finding a defect (e.g. a vacancy) adjacent to an atom is p = exp( -b.gr/ 
kBT) (cf. eqn. (3.73)), and the jump frequency fA is given by the product of the atomic 
vibrational frequency VA and the probability of executing a jump, i.e. 

fA = vAexp(-.6.gm/kBT). (3.75) 

Combining these relations with the Einstein relation (eqn. (3.62)), taking into account 
the correlation factor (eqn. (3.64)), yields an expression for the diffusion coefficient in 
the form of the Arrhenius relation 

(3.76) 

where the activation energy ego is given by a sum of defect-formation and mobility 
terms 

(3.77) 

and the prefactor of the exponential is 

(3.78) 

The Arrhenius temperature dependence embodied in eqn. (3.76) is illustrated in Fig. 
3.38 for the case of the interstitial diffusion of carbon in b.c.c. iron. Some values of 
formation and migration enthalpies, and the corresponding diffusion activation 
energies, for vacancy-mediated diffusion in some f.c.c. metals are given in Table 3.3. 
Representative values of pre-exponential factors and activation energies for diffusion of 
various atoms in a selection of crystalline materials are given in Table 3.4. (See also 
Problem 3.15.) 

Further details on atomic transport in solids are to be found in Borg and Dienes 
(1988) and Allnatt and Lidiard (1993). 

Table 3.3 Values of the v,iicancy formation enthalpy (D.hv) and atomic migration 
enthalpy (D.hm), and their sum, together with the activation energy for diffusion, in 
some f.c.c. metals 

D.hv{eV) 1.18 
D.hm{eV) 0.88 
D.hv + D.hm{eV) 2.06 
~D(eV) 2.04 

1.09 
0.83 
1.92 
1.91 

0.94 
0.78 
1.72 
1.82 

1.3 
1.21 
2.51 
2.51 

0.75 
0.56 
1.31 
1.39 

(Data from Myers (1990), Allnatt and Lidiard (1993) (Reprinted by permission of Cambridge 
University Press), and Kittel (1996)) 
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Fig. 3.38 Arrhenius plot of the diffusion coefficient for carbon diffusing interstitially in b.c.c. 
iron. 

Table 3.4 Pre-exponential factors and activation energies of diffusion 
for various diffusing species in a range of crystals 

Host crystal 

Cu 
Ag 
Ag 
Na 
Si 
Si 
Si 
Si 
Ge 
Fe 

Diffusing atom 

Cu 
Ag 
Cu 
Na 
AI 
Ga 
As 
Li 
Ge 
C 

2 X 10-5 

4 X 10-5 

1.2 X 10-4 

2.4 X 10-5 

8.0 X 10-4 

3.6 X 10-4 

3.2 X 10-5 

2 X 10-7 

1.0 X 10-3 

2.0 X 10-6 

'illD(eV) 

2.04 
1.91 
2.00 
0.45 
3.47 
3.51 
3.56 
0.66 
3.1 
0.87 

(After Kittel (1996). Reprinted by permission of John Wiley & Sons Inc.) 

3.4.2.2 Ionic conductivity 

Mobile atoms subject to an external driving force experience an overall drift in their 
average position with time. This is the case, for example, for charged mobile ions in a 
solid subject to an external electric field E. Although the ionic conductivity of a material 
might result from the same microscopic atomic-transport mechanism (e.g. a vacancy
mediated or interstitialcy mechanism) that controls normal atomic diffusion, the con
ductivity is characterized by the mean displacement (x) being non-zero, while diffusion 
is characterized by a non-zero value of the mean-square displacement (x2). 

In general, the overall atomic flux in a solid after a time t can be written, in terms of 
the atomic concentration, as the Einstein-Smoluchowski equation (see Problem 3.16) 
for motion in the x-direction 

J. = n(x) _ (x2) an _ n~ ((X2)) 
x t 2t ax ax 2t ' 

(3.79) 

where the first term represents the drift of atoms subject to an external force, the second 
term is the normal diffusion expression (cf. eqns. (3.34a) and (3.69b)) and the third term 
represents the case when the diffusion coefficient is spatially varying. 

The ionic mobility, 1-", is then defined as the mean drift velocity per unit electric field, 
viz. 

(x) ,-, 
1-"=-=-

Et - nE· (3.80) 

The electrical conductivity is defined as the constant of proportionality between the 
fluxj of charge, carried in this case by ions, and the electric field 

j = 00£. (3.81) 

It is evident that, in general, the conductivity will be a tensor, although for simplicity we 
consider it here to be a scalar quantity. Hence, combining eqns. (3.80) and (3.81), with 
j = qJ, q being the ionic charge, yields an expression relating conductivity, mobility and 
ion concentration, viz. 

(3.82) 

One might ask why the application of a steady electric field to a system containing 
mobile ions should not result in aninfinite ionic mobility or conductivity, since naively it 
might be thought that the fi~ld would cause the ions to accelerate without limit. 
However, the ionic motion is not unimpeded as this picture would imply. We have 
already seen that atoms spend a considerable time 'trapped' at normal lattice sites 
before jumping to another site in diffusive motion. It is only during the flight between 
sites that the electric field accelerates the ions, but this acquired velocity is reduced to 
zero every time that an ·ion comes to rest at a site. Thus, a finite drift velocity, or 
equivalently mobility, is established. 

A relation, the Einstein equation, between the ionic mobility and the diffusion 
coefficient can also be demonstrated. Consider a solid containing a uniform distribution 
of mobile cations A subject to an external electric field E. From eqn. (3.43) for the ionic 
flux written in terms of the Onsager L-coefficients and eqn. (3.80), the·ionic mobility can 
be written as 

I-"A = IqAILAA . (3.83) 
nA 

Taking the infinite-dilution-limit expression for the diffusion coefficient also expressed 
in terms of the L-coefficients (eqn. (3.58)), one thereby obtains the Einstein relation 

I-"A IqAI 
DA = kBT' 

(3.84a) 

or in terms of the ionic conductivity, using eqn. (3.82), the Nernst-Einstein relation: 



(3.84b) 

(An alternative derivation of the Einstein relation is given in Problem 3.17.) Thus, by 
measuring the ionic conductivity, a much simpler procedure than measuring the ionic 
mobility, the corresponding diffusion coefficient can be evaluated using eqn. (3.84b). 

The temperature dependence of the ionic conductivity can be obtained by substituting 
the temperature dependence of the diffusion coefficient (eqns. (3.76)-(3.78» into the 
Nernst-Einstein relation (eqn. (3.84b», giving 

fcnAQ2 a 2vA 
OAT = 6~B exp[(.6.s[ + .6.sm )jkB]exp[-(.6.h[ + .6.hm )jkBT]. (3.85) 

Thus,.a pl~t ofln (aT) versus inverse temperature should yield a straight line, the slope 
of whIch gIves the conductivity activation energy '"gO" (.6.h[ + .6.hm ). The temperature 
dependence of the ionic conductivity of a number of materials, both cationic and 
anionic conductors, is shown in Fig. 3.39. 

It can be seen that, in general, the magnitude of the conductivity is rather low and its 
activation energy is rather large. However, the ionic conductivity of certain materials, 
e.g. a-AgI, RbAg4Is and Na-,6-alumina, is very high and is comparable to that of liquid 
electrolytes, such as concentrated sulphuric acid. The conductivity activation energies 
are correspondingly rather small. Such materials are termed superionic or fast-ion 
conductors, or solid electrolytes (since they exhibit very high ionic conductivities but ar~ 
electronically insulating). Superionic materials can be distinguished from more poorly 
conducting ionic solids by having a high concentration of mobile ions, e.g. as a result of 
a defective structure, so that the defect-formation contribution .6.h[ to the activation 
energy (eqn. (3.77» is not significant. Moreover, superionic conductors are character
ized by having 'easy' pathways for ionic transport, so that the ionic-mobility contrib
ution to the activation energy (eqn. (3.77» is also small. 

10-3 
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Fig. 3.39 ~rrheniu~ p~ot of the ionic conductivity of some ionically conducting materials, 
co~pared with the lIqUId electrolyte H2S04 (West (1987). Reproduced by permission of John 
Wiley & Sons Inc.) 

Na-,6-alumina is one example of a solid electrolyte: its atomic structure consists of 
cubic close-packed layers of oxygen ions. stacked in 3D (blocks as in spinel, MgAh04), 
but every fifth layer has 75% of the oxygens missing, and the Na+ ions sit in these 
oxygen-deficient layers. Ionic conductivity is very easy within such planes (but not in the 
perpendicular direction, through the close-packed spinel blocks), with the result that 
Na-,6-alumina is a very good two-dimensional ionic conductor. 

AgI is an interesting example of an ionically conducting material. At temperatures 
below 146°C, the ,6-phase (an h.c.p. wurtzite-like structure of I-ions, with Ag+ ions in 
the tetrahedral interstices) is stable, and it is a relatively poor ionic conductor. However, 
a phase transition to the b.c.c. a-phase occurs at 146°C, and this structure is character
ized by I-ions occupying the corner and body-centre positions, with the two Ag+ ions 
per unit cell being distributed statistically over twelve tetrahedrally coordinated sites. 
The Ag+ ions can move (in an almost 'liquid-like' way) between tetrahedral sites via 24 
intermediate trigonal sites, the intermediate configurations being stabilized (i.e. the 
mobility enthalpy .6.hm being lowered) by an effective covalent interaction between 
the polarizing Ag+ cations and the strongly polarizable I- anions. As a result, the 
ionic conductivity of the a-phase of AgI is some four orders of magnitude higher 
than that of the ,6-phase. The abrupt decrease in the ionic conductivity at the 0' - ,6 
phase transition makes AgI unsuitable for applications. However, replacement of 20% 
of the Ag+ ions by Rb+ in RbAg4Is stabilizes a superionic structure (somewhat different 
from that of a-AgI) with the Ag+ ions again randomly distributed over a greater 
number of tetrahedral sites. 

Certain glasses also exhibit superionic behaviour, e.g. AgP03-AgI. However, these 
materials mostly have somewhat lower ionic conductivities and higher activation ener
gies than the best crystalline fast-ion conductors. Nevertheless, glasses have the advant
age of their ionic transport being spatially isotropic, rather than being confined to 
certain channels or planes, as is often the case for crystalline superionic materials. The 
reader is referred to, for example, West (1987) for more details on superionic materials. 

*3.4.3 Mechanical properties 

Materials deform when subject to an applied mechanical stress. For small deformations, 
all solids behave in an elastic manner: that is, the deformation only exists whilst the 
stress is applied. Furthennore, the strain (the proportional displacement of shape or 
volume) is proportional to the applied stress (Hooke's law) for small deformations. This 
linearity in elastic response is a direct consequence of a limiting harmonic form (poten
tial energy quadratic in the displacement) for the interatomic potential (§2.5) for small 
strains. For higher levels of strains, Hooke's law may break down, either because the 
potential is no longer harmonic (but the mechanical response is still elastic) or, more 
likely, structural defects (e.g. dislocations) facilitate plastic (i.e. permanent) deformation 
under an applied stress. A discussion of the static elastic properties of solids in the 
harmonic limit, unrelated to defects, will be given first, followed by a description of the 
influence of defects in causing plastic deformation. 

A solid is stressed by applying external forces such that both the net force and the net 
torque are zero. The first is achieved by exerting forces equal in magnitude, but in 
opposite directions, perpendicularly to opposite faces, tending to compress/elongate the 
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sample; the second is achieved by applying equal and opposite forces in a parallel 
fashion to opposite faces, tending to shear the sample (see Fig. 3.40). The value of the 
stress depends on both the magnitude and direction of the applied force and also the 
particular face on which it acts. A force Fx applied in, say, the x-direction to a plane 
with area Ax whose normal is also in the x-direction produces a stress component 

(3.86a) 

Likewise, the same force applied to a plane whose normal is in the y-direction produces 
the stress component 

(3.86b) 

Thus, stress in general is described by a second-rank tensor (J with nine components 
(Jij(i,j = x,y, z), conveniently written as a (3 x 3) matrix 

(3.87) 

However, only six of these stress components are independent because of the constraint 
of zero applied torque, which implies that 

(3.88) 

Special cases of stress have most of the six independent stress components equal to 
zero. For instance, for uniaxial stress in the x-direction, the only non-zero component is 
(Jxx = (J; for hydrostatic stress (pressure), the non-zero components are the diagonal 
components (Jxx (Jyy (J:::= = -p; and pure shear (in which the shape, but not the 
volume, of the solid is changed) is represented by, say, (Jxy = (Jyx = (J being the only 
non-zero components. 

A particular orientation of the spatial coordinates can always be found such that the 
general stress matrix (eqn. (3.87») has diagonal components only, i.e. 

(Jx 0 0 1 o (Jy 0 , 
o 0 (J= 

(3.89) 

the six independent variables defining the stress system now being the three principal 
stresses (Ji(i = x,y, z) acting along the principal axes, and the three variables needed to 
determine the orientation of the principal axes with respect to the original coordinate 

Fig.3.40 Illustration of the forces required to stress a sample: (a) uniaxially (F,); (b) in a purely 
shear-like fashion (F2). 
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Fig. 3.41 Representation of: (a) uniform compression resulting from a purely hydrostatic 
compressive stress; (b) pure shear deformation (at constant volume). 

system. A general stress matrix, transformed to the principal axis system (eqn. (3.89», 
can always be rewritten as 

((Jx - (Jo) 
o 

o 
o , [ ~ ~ ~l=[ ~ ~ ~l+[ o 0 (Jz 0 0 (Jo o 

((Jy - (Jo) 
o 

o 1 
((Jz - (Jo) 

(3.90) 

where the new stress component is given by 

(Jo = ((Jx + (Jy + (Jz)/3. (3.91) 

The first tenn of eqn. (3.90) thus represents a purely hydrostatic tenn, with 

(Jo -p = ((Jx + (Jy + (Jz)/3; (3.92) 

this causes a change in volume, but not of shape (Fig. 3.41), of an elastically isotropic 
solid. The second tenn in eqn. (3.90) represents a pure shear or deviatoric stress tenn, 
causing a change in shape, but not of volume, of a solid (Fig. 3.41), since the sum of the 
diagonal components equals zero, i.e. :Ex,y,Z (In = 0; this is the same as in the general 
representation of the pure shear-stress tensor: (Jij = (J (e.g. i = x,j = y), (Jij = 0 otherwise. 

The application of an external force to a solid causes a defonnation because different 
points in the material are displaced by different amounts. Consider a point P initially at 
r and a neighbouring point Q initially at r + ~r, displaced under the action of a stress to 
P' (at r + u) and Q' (at r + ~r + u + ~u) respectively-see Fig. 3.42. For small relative 
displacements (I~ul «I~rl), the components of the relative displacement ~u are 
given by 

~Ui = (audax)~x + (auday)~y + (audaz)~z (i = x,y, z). (3.93) 

The strain components eij are then defined in tenns of the dimensionless displacement 
gradients as 

(3.94a) 

and 

eij = eji (audaj + aUj/Oi) (i = x,y,z). (3.94b) 
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Fig. 3.42 Two-dimensional representation of infinitesimal homogeneous elastic strain. Two 
points, P and Q, are displaced to points pI and Q' under the action of an external stress. The strain 
components eij (i = x, y) are defined in terms of the differential displacement gradients, 8Ui/8j. 

Thus, the strain components can, like the stress components, be written as a (3 x 3) 
matrix, with again only six of the nine components being independent because of the 
requirement that the off-diagonal components obey the condition eij = eji in order to 
exclude rigid rotations. 

Special cases of strain include uniaxial strain in the x-direction with the only non-zero 
strain component being exx = e; uniform dilatation/compression, resulting from hydro
static stress, with eii = e(i x,y, z); and pure shear with eij = eji = e(i x,j = y, for 
example). 

As with a general stress (eqn. (3.90», a general strain can be separated into a 
dilatational-strain component and a pure shear or deviatoric-strain component; i.e. for 
a general component 

eij = eoflij/3 + (eij - eoflij/3) 

where the Kronecker delta symbol has the properties: 

(3.95) 

flij 1, i = j, (3.96a) 

flij = 0, i =/=j. (3.96b) 

Since there are only six independent stress or strain components, a convenient short
hand notation is to relabel the component indices as follows: 

xx yy zz yz zx xy 

1 1 1 1 1 1 
1 2 3 4 5 6 

Hooke's law states that the stress and strain are directly proportional to each other. 
Thus, in terms of elastic-stiffness coefficients, cij, a stress coefficient can be written as a 
function of strain as 

3.4 DEFECT-RELATED BEHAVIOUR 

6 

O'i = LCijej. 
j=l 
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(3.97) 

The relationship between stress and strain coefficients can also be written in matrix 
form as 

0'1 ClI Cl2 Cl3 C14 Cl5 Cl6 el 
0'2 C21 C22 C23 C24 C25 C26 e2 
0'3 C31 C32 C33 C34 C35 C36 e3 (3.98) 
0'4 C41 C42 C43 C44 C45 C46 e4 
0'5 C51 C52 C53 C54 C55 C56 e5 
0'6 C61 C62 C63 C64 C65 C66 e6 

Alternatively, a strain coefficient can be expressed in terms of the 'elastic-compliance 
coefficients, sij, as a function of stress: 

6 

ei = LSijO'j. 
j=l 

(3.99) 

Note that both elastic compliance and stiffness are quantities describing a material as an 
elastic continuum. 

Of the 36 elastic-stiffness (or compliance) coefficients (see eqn. (3.98», in the most 
general case (e.g. for triclinic crystals) 21 are independent and non-zero as a result of the 
general condition 

(3.100) 

The presence of higher symmetry reduces the number of non-zero, independent 
values of elastic-stiffness coefficients even further. Thus, for the case of cubic crystals, 
just three components are independent, viz. CII, Cl2 and C44, with 

CII = C22 C33, 

C12 = C13 C23, 

C44 = C55 = C66, 

(3.l01a) 

(3.l01b) 

(3.l01c) 

and all other coefficients, not related via eqn. (3.100), being zero. These elastic-stiffness 
constants are related to the corresponding elastic-compliance coefficients via the rela
tions 

(3.l02a) 

(3.l02b) 

(3.l02c) 

as obtained from inversion of the matrix in eqn. (3.98). 
In the case of elastically isotropic solids (e.g. polycrystalline materials with randomly 

oriented microcrystals, or amorphous solids), the number of independent elastic coeffi
cients, decreases to two since, in addition to the equalities applicable to cubic materials 
(eqn. (3.101», the coefficients are further linearly related to each other by the equation 
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Cll = c12 + 2C44. (3.103) 

For such isotropic materials, the two independent elastic-stiffness coefficients are con
ventionally referred to as the Lame constants: 

with Cll == (). + 2fl.). 

(3.l04a) 

(3.l04b) 

Certain special forms of elastic moduli result for particular patterns of the applied 
stress. In the case of uniaxial stress (with the faces of the solid not subject to the stress 
being unclamped), the appropriate elastic constant is Young's modulus, defined as 

and thus (see Problem 3.19): 

1 
Ey =

SII 

E = normal stress = 0" xx 

y normal strain e."(X 
(3.105) 

(3.106) 

for the case of isotropic media. Under such stress loading, the sample also deforms in 
directions perpendicular to the stress direction. This behaviour is quantified by Poisson's 
ratio, defined as: 

Itransverse strain I leyyl 

vp = normal strain exx 
(3.107) 

with (see Problem 3.20) 

-S12 Cl2 ). 
vp =--= =---

Sl1 (Cll + C12) 2(). + fl.) , (3.108) 

where O~vp < 0.5. 
In the case of hydrostatic stress (pressure), the bulk modulus B (equal to the inverse of 

the compressibility, /'i, = 1/ B)-see eqn. (2.32)-relates the pressure to the dilatation 
(fractional change in volume) eo, viz. 

(3.109) 

with (see Problem 3.19) 

B= 1 
3(sll + 2s12) 

(3.110) 

(The bulk modulus is connected to microscopic quantities relating to the interatomic 
potential in eqns. (2.36) and (2.37) and Problem 2.5.) 

Finally, for the case of pure shear stress, the shear (or rigidity) modulus is defined as: 

G
s 

= shear stress = O"xy 

shear strain exy 

with (see Problem 3.19) for isotropic solids: 

G
s 

= 1 (Cll C12) 

2(sll - S12) 2 

(3.111) 

(3.112) 

The various elastic moduli are inter-related, as can be seen by examining eqns. 
(3.106), (3.108), (3.110) and (3.12); for example: 

(3.113) 

and 
B= Ey 

3(1 - 2vp) 
(3.114) 

Table 3.5 lists various elastic constants for some representative elastically isotropic and 
cubic materials. (See Problem 3.21 for a discussion of the elastic properties of isotropic 
liquids.) 

Thus far, only the static elastic properties of solids in the linear stress-strain regime 
have been considered. What happens to a solid if the limit of proportionality (point A in 
Fig. 3.43) is exceeded? For brittle solids (e.g. silica glass or cast iron), the end of the 
elastic regime corresponds to bond breaking, resulting in catastrophic rupture of the 
material when subject to tensile stress (Fig. 3.43). Brittle (Griffiths-type) fracture is 
always associated with the existence or creation of cracks, either at the surface or in the 
bulk of the material. Such cracks may occur at inclusions (e.g. graphite flakes in cast 
iron) or at grain boundaries between microcrystallites. The stress at a crack tip is much 
higher than the average value of the stress in the bulk of the material, and this local 
stress magnification can cause the crack to open up and move rapidly through the 
sample, causing fracture. 

However, (pure) metals more commonly exhibit plastic deformation rather than 
brittle fracture. Plastic-deformation characteristics are also illustrated in Fig. 3.43. 
Beyond the elastic limit (point B in Fig. 3.43), permanent strain is produced by the 
stress, and beyond the yield stress (or strength) point (C), plastic deformation becomes 
increasingly easy. Removal of the stress at, say, point D in Fig. 3.43 results in a 
permanent strain ep remaining at zero stress; reapplication of the stress causes elastic 
deformation of the solid until the point D is very nearly reached, i.e. the stress to which 
the material was previously subjected. Thus, the material has become work-hardened by 

Table 3.5 Values of Young's modulus (Ey), shear modulus (Gs), Poisson's ratio (v) 
and elastic-stiffness coefficients for some elastically isotropic and cubic materials at 
ambient temperature and pressure 

Isotropic 
Silica glass 73.1 31.2 0.17 78.5 16.1 31.2 
Polyethylene 1.2 OA OA5 0.1 0.03 0.04 

Cubic 
AI 72.5 27.6 0.31 107.5 60.8 28.5 
Pb 26 8.5 OAI 47.7 40.3 14A 
Fe 215 77 0.29 228.1 133.5 110.9 
C(dia) 900 360 0.24 950 390 430 
Si 130 51 0.28 165.7 63.9 79.6 
NaCI 53.5 23.1 0.20 48.6 11.9 12.8 

(Elastic moduli in GPa) 
(After Barber and Loudon (1989). Reproduced by permission of Cambridge University Press) 
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Fig.3.43 Schematic illustrations of the stress-strain behaviour for materials stressed beyond the 
elastic limit in the vicinity of the onset of plastic deformation. Point A marks the limit of the 
Hooke's law regime; point B is the elastic limit, marking the onset of plastic deformation, with 
point C being the yield point at which plastic deformation occurs readily. Removal of the stress 
from a point (D) above the yield point results in the production of a permanent plastic deforma
tion ep at zero applied stress. Reapplication of stress to the plastically strained material results in 
elastic deformation until the point D is nearly reached. Point T gives the tensile strength (stress), 
and point F marks the position at which fracture occurs. 

the plastic deformation (the new yield stress is greater than the initial value at C). The 
tensile stress (strength) corresponds to the maximum in the stress-strain curve (point T 
in Fig. 3.43); this is the maximum stress that a sample can withstand. Applied stresses 
greater than this inevitably cause fracture (at point F in Fig. 3.43). Griffiths-type brittle 
fracture does not occur because the atomic motion at the tips of cracks associated with 
the deformation does not allow stress magnification to occur to such an extent. 

Plastic deformation must be associated with abnormally easy relative motion of 
atoms; such facile motion is mediated by dislocations causing slip (relative shear motion) 
of certain planes of atoms (Fig. 3.32). The critical stress needed to cause slip on a 
particular plane of atoms is given by Schmid's law. Application of a tensile force F to a 
cylindrical single crystal results in a shear stress CTs on a plane whose normal vector it 
makes an angle () with the cylinder axis (see Fig. 3.44). If the slip direction within the 
plane is given by OP, making an angle 'IjJ with the cylinder axis, then the component of 
the force acting in the slip direction is F cos'IjJ and this acts over a plane of area (A/cos(), 
where A is the cross-sectional area of the cylindrical crystal. Thus, the resolved shear 
stress is 
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F 

F 

Fig. 3.44 Derivation of the resolved shear stress in the slip direction and plane of a cylindrical 
single crystal undergoing plastic deformation by dislocation-mediated slip under the action of 
axial, tensile forces. 

CTs = (F / A )cos() cos'IjJ, (3.115) 

and Schmid's law states that slip occurs when CTs = CT~ , the critical resolved shear stress 
of the material. The applied stress, CTs = F / A, corresponding to this condition is known 
as the yield stress; in a stress-strain curve it corresponds to the stress where Hooke's law 
begins not to be obeyed. The critical resolved shear stress of most materials is consider
ably less than that predicted by assuming that simultaneous relative slip motion of whole 
planes of atoms occurs (Problem 3.11). The onset of glide of dislocations along the slip 
plane, caused by the consecutive m-otion of atoms (see Fig. 3.33), greatly reduces the 
value of CT~. • 

Plastic deformation of a solid by a slip mechanism is specified in terms of the slip 
system (12k!) [uvw], represented as the Miller indices of the slip plane (hk!) and the 
direction indices [uvw] of the slip direction within it. In general, the slip planes cor
respond to the close-packed planes and the slip directions to the close-packed 4!rections 
within such planes. Thus, for f.c.c. metals, there are 12 slip systems {Ill} (11 0) (four 
{111} planes each containing three independent slip directions), for b.c.c. metals 
there are 12 {110} (111) slip systems, 12 {211} (Ill) systems and ~4 {321} (111) 
systems, while for h.c.p. crystals there are just three principal {0001} (1120) slip systems 
associated with the basal plane, together with three subsidiary {loIO} (1120) systems 
and six {1O II} (1120) systems. The multiplicity of possible slip systems in f.c.c. 
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and b.c.c. metals makes them much more ductile (i.e. susceptible to plastic de
formation) than h.c.p. crystals which are relatively brittle (see Problem 3.21). In 
the case of ionic crystals, electrostatic considerations also playa role in determining 
the slip system since atomic slip motion leading to close like-ion neighbours is 
precluded on electrostatic energetic grounds. Thus, for NaCI, the slip system is {llO} 
(110), and the restricted number of slip systems for ionic solids accounts for their 
brittleness. 

The application of an external shear stress CTs to the crystal exerts a force on a 
dislocation and causes it to move. If a length I of the dislocation, with magnitude of 
the Burgers vector b, moves a distance ox along the slip plane, a proportionate amount 
of slip (lox/ A)b results. The external stress CTs applied to the area A of the crystal thus 
does work (force x distance) equal to CTsA(ll5x/ A)b and this work is equivalent to that 
resulting from the movement by a distance ox of the dislocation subject to an effective 
force F per unit length. Thus: 

Flox = CTs/bOx 

or 

(3.116) 

Plastic deformation is accompanied by a great increase in dislocation density. One 
mechanism for dislocation multiplication is the Frank-Read source (see Fig. 3.45), 
which consists of a dislocation pinned at each end by impurities or nodes in a disloca
tion network. The force per unit length F (eqn. (3.116» acting on this dislocation 
segment will cause it to bow outward increasingly until the two lobes in Fig. 3.45c 
just touch. These two parts of the same dislocation, moving in opposite directions, 
produce the same deformation and must therefore be of opposite signs and therefore 
mutually annihilate to form a region of perfect crystal, leaving behind a dislocation loop 
and the pinned dislocation segment able to repeat the process. 

A~B 
(a) 

(e) 

Fig. 3.45 The Frank-Read source for dislocation multiplication. A dislocation segment, pinned 
at A and B, is bowed out by an applied force (a, b). The lobes of the dislocation loop (c) eventually 
meet and recombine to give a perfect region of crystal (d) and a dislocation segment still pinned at 
A and B that is able to repeat the process indefinitely. 

Strain_ 

Fig.3.46 Schematic illustration of the stress-strain curve for f.c.c. metals showing, sequentially, 
stage 1,2 and 3 behaviour. 

D--

Fig. 3.47 Schematic illustration of the process of cross-slip responsible for stage-3 work-hard
ening in f.c.c. and b.c.c. metal crystals. A screw dislocation (D) can move along a slip plane 
intersecting the original slip plane at the point where a dislocation-pinning obstruction exists. 

Stress-strain curves for metal single crystals can exhibit several stages of plastic
deformation behaviour (see Fig. -3.46). Stage 1 is called the easy-glide region because the 
slope of the stress-strain curve is small (c::: 10-3 Gs) and there is little work-hardening. 
This is sometimes followed by a linear stage-2 region, characterized by a much greater 
slope (c::: 10-2 Gs) characteristic of a greater amount of work-hardening. Finally, a 
stage-3 region can be reac,hed where the work-hardening becomes smaller again. Stage 
1 is associated with the easy glide of dislocations in the slip plane, at first for the slip 
system having the lowest Schmid factor (eqn. (3.115», and then at higher stresses, slip 
can be initiated, in general, on other (non-parallel) slip planes. The intersection of 
dislocations on different slip planes stops the easy glide and this occurrence marks the 
end of stage-l behaviour. H.c.p. metals, with only one dominant slip plane (the basal 
plane), do not suffer as much from this dislocation locking, and henc'e (unlike f.c.c. or 
b.c.c. metals) such materials exhibit stage-l behaviour until fracture occurs. The 
increased work-hardening associated with stage 2 can arise from a number of reasons, 
such as the difficulty a dislocation has in moving through a region densely populated 
with other dislocations threading the slip plane, or the pinning of a dislocation by, for 
example, a precipitate inclusion. The decrease in rate of work-hardening characteristic 
of stage 3 results from cross-slip, i.e. the easy motion of a (screw) dislocation at high 
levels of stress away from a pinning obstruction along another intersecting slip plane 
onto a plane parallel to the original slip plane (Fig. 3.47). This process only occurs in 
f.c.c. and b.c.c. metals having a multiplicity of slip planes, but not in h.c.p. crystals 
where slip is generally restricted to a single (basal) plane. 



It has been assumed so far that the equilibrium strain is achieved instantaneously on 
the application of an external stress. However, sometimes (particularly at elevated 
temperatures), the strain becomes time-depe~dent, a~d t~e establishment of .t~e ma,x
imum strain lags behind that of the stress: thIS behavIOur IS known as anelastlclty. The 
phenomenon in which plastic deformation occurs with ti~e at constant applied stress at 
high temperatures (> O.4T melt) is known as creep (see FIg. 3.48), and can be caused by 
several microscopic mechanisms, including motion of dislocations, shearing motion of 
microcrystals at grain boundaries and diffusion of vacancies to grain boundaries. Creep 
is a serious problem in circumstances where materials are subjected to a tensile stress at 
high temperatures (e.g. turbine blades in jet engines). Ceramic materials (~ompounds of 
metals and non-metallic ;elements, e.g. oxides, nitrides and carbides), unlIke metals, are 
generally very resistant to creep up to very high temperatures (::::;2000 QC). Altern~
tively, a strategy for obviating vacancy-mediated creep is to ensure that no ?ram 
boundaries exist that ate perpendicular to the tensile-strain axis. This has been achieved 
in the case of turbine blades by directional solidification, in which the metal alloy is 
poured into a m<;mld and cooled at one end: columnar crystallit~s .then grow. from the 
root to the tip of the blade, and even single-crystal blades contammg no gram bound
aries at all can be fabricated in this way (see §1.2.1). Creep resistance can also be 
achieved by the incorporation of structural inhomogeneity, e.g. a dispersed phase as 
in the 'superalloys' (alloys of Co and Ni with refractory metals, such as Nb, Mo, W or 
Ta, or Ti) Solid-solution alloying also contributes to the reduction of ~reep .. 

Mechanical properties of materials are discussed in many matenals SCIence and 
engineering books; for further details see, for example, Barber and Loudon (1989), 
Callister (1997), Nabarro and de Villiers (1995) and Haasen (1996). 

Time, t 

Rupture 
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Fig. 3.48 Typical time dependence of the strain of a ma!eri~l undergoiD:g creep at constant stress 
and at an elevated temperature. The primary creep regIOn IS charactenzed by the Andrade law 
e(t) = eo + atl/3. The secondary (or steady-state) creep regio~ results from a balance ?etween the 
competing processes of strain-hardening and thermally actIvated recovery (ann~alm?). In .t.he 
tertiary creep regime, the creep rate accelerates due to the onset of some mechamcal mstablhty 
(e.g. a crack), leading to rupture. 

Applications 

Although the presence of structural defects in solids is very often an unwanted circum
stance, since their presence is frequently ,deleterious to the intrinsic behaviour of the 
materials, nevertheless a number of technological applications of materials do exploit 
defect-controlled behaviour. Examples discussed here include the photographic process 
and the use of solid electrolytes. 

3.5.1 The photographic process 

Photographic film consists of sub-micron-sized grains of iodine-containing crystalline 
AgBr dispersed in a binder (gelatin) and supported on paper or plastic film. The 
photographic process depends on the physical properties and behaviour of the point 
defects present in the AgBr:I grains: these are cation Frenkel defects (Ag+ interstitials 
and vacancies) - see §3.1.1. 

A latent image (which needs to be developed subsequently to be made visible) is 
formed by the production of clusters of just three to six silver atoms on the surface of 
the AgBr grains following the absorption of light photons. Latent-image formation 
involves two distinct processes: one is opto-electronic and the other is ionic in nature. 
The primary opto-electronic event is the absorption of a photon by a grain, causing the 
excitation of an electron (e-) from the filled electron states in the 'valence band', across 
the forbidden energy gap (bandgap) where no electron states are allowed, into a state in 
the empty 'conduction band' of AgBr. (See Chapter 5 for a full discussion of electron 
states in solids.) The electronic state in the valence band vacated by the optically excited 
electron is, perforce, positively charged and is called a hole (h+). Thus, the photon
absorption event can be written 'as 

(3.117) 

and the photo-created holes are mostly trapped by I-ions. However, the bandgap of 
AgBr is rather large (2.7 eV), and so only light with an energy greater than this, or a 
wavelength shorter than 460 nm, can be absorbed. In order to extend the spectral range, 
sensitizers (such as sulphur or organic dyes) are adsorbed onto the surface of the AgBr 
grains, and photo-created electrons in an excited energy level, say of a dye molecule, can 
subsequently transfer into the conduction band of the AgBr. 

Photo-created electrons, trapped at states at the grain surfaces, can then take part in a 
sequence of reactions involving mobile interstitial silver ions, Agt, diffusing to the 
surface, for example: 

Agt + e- -+ AgO, 

AgO + e- -+ Ag-, 

Ag- + Agt -+ Agg, 

Ag~ + e- -+ Ag;- , 

Ag;- + Agt -+ Agg etc. (3.118) 
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The film containing grains having a latent image (Ag~ clusters) is then developed by 
first treating it with a reducing agent (e.g. an alkaline solution of hydro quinone) which 
reduces to metallic silver only those AgBr grains containing a latent image since such 
metallic Ag~ clusters act as a catalyst for the reduction reaction. Finally, all remaining 
AgBr grains that have not been exposed to light and hence that have not been reduced, 
are dissolved by a solution of 'hypo' (Na2S203) which forms a water-soluble complex 
with Ag+ ions. 

It should be noted that, although only about 10 photons need to be absorbed to 
create a latent image in a grain of AgBr, the overall gain (number of silver atoms 
produced per incident absorbed photon) is of the order of c::= 108, since a typical grain of 
AgBr might contain c::= l09 Ag+ ions, all of which are converted to AgO neutral atoms on 
development. This enormous enhancement factor accounts for the high light sensitivity 
of photographic films. Note also that the AgBr-based photographic film produces a 
negative image, i.e. dark where illuminated. 

3.5.2 Solid electrolytes 

Materials exhibiting superionic conductivity, but which are electronically insulating, 
i.e. solid electrolytes (see §3.4.2.2), are used in a number of applications, e.g. in all
solid-state batteries and as ion sensors. 

A battery is an electrochemical cell that converts free energy, liberated in a chemical 
reaction or from a change in concentration of a species, into electrical energy. The 
reactants taking part in a reaction are either chemically reduced or oxidized at an 
electrode: oxidation occurs at the negatively charged anode, say made of metal A, 
where the following reaction occurs: 

(3.119a) 

and the electrons so released travel around an external electrical circuit to the positively 
charged cathode, say of metal B, where reduction occurs: 

(3.119b) 

The overall reaction is thus: 

A + BV+ + xv- r: A + xv- + B, (3.119c) 

where XV- is a common anionic species. 
The change in (molar) Gibbs free energy b.G for the reaction given in eqn. (3.119c) is 

related to the electromotive force (EMF), c, of the cell, which is the electrical potential 
difference between anode and cathode, via 

b.G = -vFc, (3.120) 

where F is the Faraday (the charge of a mole of electrons). Moreover, the Gibbs free 
energy, or equivalently the chemical potential, of each reacting species, i, is related to its 
activity, ai , by eqn. (3.56), and thus for the overall reaction (eqn. (3.119c», the free
energy change is also given by 

_ 8 [a(AV+)a(B)] 
6.G - 6.G + RTln a(A)a(Bv+) , (3.121) 

Lithium 

Cathode 
Lithium anode (iodine+P2VP) 

(b) VA-------'---,-r'-'-rr-------VA 

Fig. 3.49 Schematic illustrations of the construction of Li/LiI/I2 batteries for (a) heart pace
makers; (b) pocket calculators. 

where b.G8 is the standard free energy (the value when all species have unit activity). 
Combining eqns. (3.120) and (3.l21) yields the Nernst equation for the EMF 

c = c8 _ RT In [a(AV+)a(B)] (3.122) 
vF a(A)a(Bv+) ' 

where c8 is the standard EMF of the cell (for all species at unit activity). 
The purpose of the electrolyte is simply to allow free passage between the electrodes 

of the ions involved in the chemical reaction (eqn. (3.119c» but, at the same time, to 
prevent the electrons liberated at the anode from passing directly through the cell, 



thereby short-circuiting it. Solid electrolytes have a number of advantages over conven
tional liquid electrolytes: they can be used, in thin-film form, to produce integrated 
batteries for microelectronics applications and, moreover, they do not leak! 

One example of a primary battery (i.e. one that operates just once and cannot be 
recharged) employing a solid electrolyte is the LilLiIlIz cell used in heart-pacemaker 
(Fig. 3.49a) and pocket-calculator (Fig. 3.49b) applications. The standard EMF for this 
cell, and hence the open-circuit voltage, is E8 = 2.8 V, and the anode and cathode 
reactions are 2Li ........ 2Li+ + 2e-(anode) and Iz + 2e- ........ 21- (cathode), with the overall 
reaction being 2Li + Iz ........ 2LiI. The solid electrolyte in this case is crystalline LiI, 
through which Li+ ions migrate because of the presence of Schottky defects. This 
material can function ::j.S an electrolyte even though its room-temperature ionic con
ductivity is rather low (~ 10-4 S m- I ). The iodine cathode material by itself is insuffi
ciently electronically conducting to act as an electrode; thus, it is mixed with 5% of a 
conducting polymer (poly-2-vinylpyridine). This type of battery has a very long dis
charge lifetime (~ 10 years). 

The same solid electrolyte is used in another type of cell used as button batteries, viz. 
LilLiI-Ah03/PbIz, PbS. The addition of high-surface-area alumina causes a significant 
increase in the level of the ionic conductivity of the LiI by several orders of magnitude 
because of enhanced surface conduction at the alumina grains. The overall cell reactions 
in this case can be written as 2Li + PbIz ........ 2LiI + Pb and 2Li + PbS ........ Li2S + Pb. This 
cell has the advantage that the very small electronic conductivity of the electrolyte 
means that the level of self-discharge is very low, and hence its shelf-life before use is 
very long (> 2 years). 

Secondary or storage batteries are rechargeable: once the cell is discharged, the 
overall chemical reaction that has taken place can be reversed, and the reactant 

Os 

Fig. 3.50 Schematic representation of the intercalation of Li between the layers of crystalline 
TiS2 (having the CdI2-type structure). 

concentrations associated with the anode and cathode restored, by the application of a 
reverse electrical current. One way of making reversible cathodes is to use insertion or 
intercalation compounds, in which foreign atoms (e.g. Li) can be reversibly inserted into 
(and removed from) the structure of the host material (see §8.4.1). An example is 
intercalation of atoms into layer-like crystals (~.g. TiS2, with the CdIz-type structure), 
between those layers that are weakly bonded together by van der Waals interactions 
(Fig. 3.50), for which the cathode reaction can be written as 

(3.123) 

One interesting type. of secondary cell making use of such a reversible cathode 
material is the lithium battery employing a polymer-salt complex as electrolyte. A 
highly polarizable salt such as lithium perchlorate, LiCI04, or LiI, is dissolved into an 
amorphous polymer, e.g. polyethylene oxide (PEO), (-CH2-CH2-O-)m that acts as an 
aprotic solvent for the salt. The conductivity of the Li+ ions so liberated is rather high, 
but since the glass-transition ('softening') temperature, Tg, of the amorphous polymer
salt complex is generally lower than room temperature, the temperature dependence of 
the Li+ ionic conductivity is markedly non-Arrhenian, as a result of the motion of the 
ions being linked cooperatively with that of polymer chain segments. However, a 
battery made using such a polymer-salt electrolyte (see Fig. 3.51a) has one significant 
advantage: it is mechanically fleXible, and hence novel tape-based battery configurations 
can be fabricated with such materials (see Fig. 3.51 b). 

Secondary batteries, with high energy-to-mass ratios, are of great interest for use in 
powering electric automobiles. One that has been exiensively studied is the sodium-

Lithium sheet 

e Electrode 

Chains of 
graphite 
particles 

Active 
cathode 
material 

(V60 13 or TiS2) 

Fig. 3.51 (a) Schematic illustration of a secondary battery employing a polymer-salt electrolyte 
and a reversible cathode insertion material (e.g. TiS2). Graphite is mixed with the cathode 
particles to make electrical contact with the cathode. (b) Different configurations of batteries 
making use of the mechanical flexibility of polymer-salt electrolytes. 
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Fig. 3.52 Schematic illustration of the sodium-sulphur battery. 

DEFECTS 

Insulator 

sulphur battery (Fig. 3.52) which uses Na-,6-alumina as the solid-electrolyte material. 
This battery operates at 300°C, and the electrolyte separates molten sodium (the anode 

material) from molten SUlphur (the cathode material) dispersed in a graphite felt matrix 
to facilitate electrical contact. The overall cell reaction involves the formation of sodium 
polysulphides: 

(3.124) 

During the initial stage of discharge, the pentasulphide (x = 5) is formed, but as the 
discharge progresses lower polysulphides are formed; if the discharge is terminated 
when x ~ 2.7, complete recharging of the battery is possible. The theoretical energy 
density of this battery is rather high at ~ 1000 W h kg-I (as a result of the very 
exothermic nature of the reaction (eqn. (3.124)), but actual Na/S batteries only achieve 
~ 100 W h kg-I. (For comparison, the energy density of a conventional lead-acid 
automobile accumulator battery is only ~ 30 W h kg-I.) 

Solid electrolytes can also be used in chemical sensors for ions in solution or for trace 
gases, making use of the Nernst equation (eqn. (3.122» relating the (half-)cell EMF 
to the activity (or, approximately, the concentration) of the active species. One of the 
most widely used chemical sensors is the 'glass electrode' for measuring the pH 
(= -loglOaH

3
0+) of aqueous solutions. The surface of silica glass consists of 'non

bridging' oxygen sites == Si - 0-, i.e. oxygen atoms bonded only to a single Si atom. 
These then establish the following equilibrium with the protons in solution when the 
glass surface is immersed in the solution: 

(3.125) 

The Nernst equation (eqn. (3.122» shows that the electrode EMF is proportional to the 
pH. 

Problems 

3.1 Wustite (ferrous oxide) is always non-stoichiometric. For a particular crystal with an Fe:O 
ratio of 0.945:1, and a measured density of 5.728 x 103 kg m-3, deduce whether the non
stoichiometry is associated with iro:q vacancies or oxygen interstitials. (The unit-cell para
meter of the f.c.c. crystal is a = 4.3 A.) 

3.2 Show, by considering the shortest lattice-translation vectors in the structure, that the 
Burgers vector h and its magnitude (length) b are respectively: 
(a) (a/2)<111> and a..j3L2 for b.c.c. crystals and 
(b) (a/2) < II 0> and a/v'2 for f.c.c. crystals. 

3.3 Confirm that the composition of the structure of reduced Mo03 containing crystallographic 
shear planes shown in Fig. 3.15 corresponds to MosOn. 

3.4 Estimate the atomic fraction of atomic vacancies and intersititials in crystalline Cu at 
(a) 300 K; 
(b) 1000 K. 

3.5 For a Cu crystal containing a homogeneous dislocation density of 1010 m-2, estimate the 
elastic strain energy per length of a screw dislocation. (Gs = 4 x 1010 N m-2

; b = 2.6 A.) 
3.6 Obtain an expression (eqn. (3.19» for the energy levels of a quantum particle confined to a 

cubic box, of side length a, by infinitely high potential barriers at the cube faces, and subject 
to zero potential energy within the box. What is the energy of the ground-state configuration 
and why? 

3.7 (a) For the case of the F+ -centre in MgO (§3.3.2), show that 53% of such anion-vacancy sites 
have no magnetic nuclei as nearest neighbours, and 35% have a single magnetic nucleus 
(25Mg (J = 5/2; 10% abundance» as nearest neighbour. (Hint: use the binomial distribution.) 
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(b) Show that, for the case of two 25Mg isotopes in the nearest-neighbour cation shell of an 
F+ -centre, an II-fold hyperfine-split ESR spectrum results, with the intensities of the lines 
being in the ratio I :2:3:4:5:6:5, etc. 

3.8 Show that for the F-centre in NaCI, the hyperfine interaction between the unpaired electron 
and the nearest-neighbour 23Na nuclei (/ = 3/2; 100% abundance) results in a set of 19 
lines, each of which is further split into 37 lines due to the hyperfine interaction between 
the electron and the nearest-neighbour 35CI and 37CI nuclei (/ = 3/2, 100% total abun
dance). 

3.9 (a) Show that the atomic binding energies of the surface sites on a simple cubic crystal 
shown in Fig. 3.28 are, in terms of the nearest-neighbour (shared-face) bond strength CPI, and 
next-nearest-neighbour (shared-edge) bond strength CP2: (1)4cpI + 4CP2; (2)3cpl + 3CP2; 
(3)5cpI + 8CP2; (4)cpI + 3CP2; (5)cpI + 2CP2; (6)2cpI + 6CP2; (7)4cpI + 8CP2; (8)cpI + 4CP2; 
(9) - 4cpI - 6CP2; (lO) - 5cpI - 8CP2, with the kink ('112') site having the value 3cpI + 6cp2. 
(b) Show that the surface energies per atom of the crystal planes {hkl} for the simple cubic 
structure are alOO = CPI/2 + 2CP2, aiiO CPI + 4CP2 and alii = 3cpI /2 + 6cp2. 
(c) Hence show that the surface energies per unit area, (an)hkl' where nhkl is the atomic areal 
density (see Problem 2.19) are in the ratio (an)loo : (an) I 10 : (an)IIl I: Vi: v'3. (N.B. in 
general, closest-packed planes have the lowest surface energies.) 

3.10 Show that, if the application ofa for~e of 1?0 N for a day to a cubic s.ample of material with 
a volume of I cm produces no dlscermble permanent deformatIOn (~0.01 mm), this 
behaviour is equivalent to the criterion that solid-like behaviour is characteristic of mater
ials having a shear viscosity 1] = ax/(dvx/dz) greater than 1014 N s m-2 (ax is the shear 
stress in the x-direction causing a velocity gradient dvx/dz, where dz is the thickness of an 
element perpendicular to the applied stress. 

3.11 Derive an estimate for the critical shear (yield) stress, cT.., to displace simultaneously one 
layer of atoms in a crystal over another. S 

(a) First show that, for small elastic displacements, x, the shear stress as is related to the 
shear modulus Gs via as Gsx/d, where dis the interplanar spacing normal to x. 

(b) By assuming that the shear stress as can also be written as a sinusoidal function of x 
with the periodicity a of atoms lying in the slip plane, show that aC Gs/27f. (Mor; 
realistic calculations give a~ ~ Gs/30.) s 

3.12 Show that the Soret effect (eqn. (3.39» gives rise to a temperature-gradient-induced con
centration gradient (in ID) given by - ($d Di)(aT lax) in a closed system. 

3.13 (a) Show, for example by substitution into eqn. (3.37a), that 

ni(x, t) = n~exp( -~ Dit)exp(ikx) 

is a general solution to the ID diffusion equation, where k is a constant. Since the diffusion 
equation is a linear equation, a sum of terms each of which has the form of the general 
solution above, but with different values of k, is also a solution. 
(b) Hence show that the diffusion profile resulting from an atomic distribution initially in 

the form of a sheet, with Ni atoms positioned as a Dirac delta function at position 
x Xo, i.e. ni(x, 0) = Ni8(x - xo), is given by eqn. (3.40). (Hints: (i» the mathematical 
definition of the delta function is 

00 

8(x xo) = (1/27f) J exp[ik(x - xo)]dk; 

(ii) evaluation of the integral J~oo exp( -k2 Dt + ik(x xo) )dk can be achieved by using the 
answer for the integral of a gaussian function 

00 

J exp( ->.i)dy = (7f/>.)1/2, 

together with the changes of variable >. == Dit and y == (k - i(x - xo)/2Dt).) 

3.14 

3.15 

3.16 

3.17 

3.18 

3.19 
3.20 

3.21 

3.22 

3.23 

(c) Show that the diffusion profile resulting from a semi-infinite, constant-composition 
initial profile, ni(x,O) = n?( -00 < x < 0) is given by eqn. (3.41). (Hint: represent the 
constant-composition profIle as a sum of delta functions, or an integral in the limit, 
with Ni n?cL"C.) 

The expression for the diffusion-coeffi~ient correlation factor,Jc, given by eqn. (3.70), can 
be rewritten asJc = I + 2 'Lj~l(coseIY (see Borg and Dienes (1988». Show that this can be 
simplified, in turn, to give eqn. (3.71). 
The vacancy-mediated self~diffusion of Cu has an experimental activation energy 
'go = 2.04 eV and pre-factor Do = 2 x lO-5m2S-i. Obtain theoretical estimates for these 
two quantities, taking the vibrational frequency of \;u atoms to be VCu = 1013 Hz, and 
given that the unit-cell parameter of f.c.c. Cu is 3.61 A. 
Derive the Einstein-Smoluchowski relation (eqn. (3.79» using the conditional probability 
p(X, t : x) that, given an A atom on the plane at x at zero time, A is on the plane at x + X at 
time t. 
(a) Show that the flux of A atoms in the positive x-direction is given by 

1., ~ (I It) [J n(x)dx J p(X, t , x)dX - J n(x)dx T' p(X, t ")dX]. 
-00 xo-x xo-oo 

where the first term represents the number of atoms which, at t 0 were at x < Xo and 
which at t are at x > Xo, the second term represents the number of atoms which at t = 0 
were at x > Xo and which at t are at x < Xo, with n(x) being the concentration of A atoms at 
x at t = O. 
(b) By assuming that the spatial variation of n(x) is smaller than that of p(X, t : x) 
and expanding n(x) in a Taylor series about Xo and truncating the expansion at the 
first term, show, by integration by parts, that eqn. (3.79) results, with < X' >= 
J xnp(X, t : x)dX. . 
Derive the Einstein relation (eqn. (3.84a» from the Einstein-Smoluchowski equation (eqn. 
(3.79». 
Assume that an initially homogeneous ion-conducting material is subject to an electric field 
Ex in the positive x-direction, and that no ions are added or removed from the system. By 
integrating the expression qbtained from eqn. (3.79) describing the equilibrium condition, 
and comparing the result for n(x) with that resulting from Boltzmann statistics, derive the 
Einstein relation. 
Essay: Discuss, by reference to a-AgI and Na-j:J-alumina, the factors that make some 
materials exhibit superionic behaviour. How does the behaviour of superionic crystals 
differ from that of glasses? 
Write down the elastic-stiffness matrix for a cubic crystal. 
Derive expressions, valid for an elastically isotropic solid material for: 
(a) Young's modulus (eqn. (3.106»; 
(b) Poisson's ratio (eqn. (3.108»; 
(c) the bulk modulus (eqn. (3.110»; and 
(d) the shear modulus (eqn. (3.112». 
(Hint: express the strains in terms of the stresses using the elastic-co'mpliance coefficients 
and use eqn. (3.102) to express the answers in terms of elastic-stiffness coefficients.) 
Discuss the elastic properties of isotropic liquids. 
(a) What are the values of elastic-stiffness and compliance coefficients for a liquid? 
(b) What are the values of Young's modulus, Poisson's ratio, shear modulus and bulk 

modulus? 
Calculate the magnitude of the tensile stress, applied in the [OlO] direction to a single crystal 
of b.c.c. Fe, necessary to initiate slip on the slip system (110) [111], given that the critical 
resolved shear stress is ~ = 30 MPa. 
Essay: What factors influence the performance of solid-state batteries, e.g. the open-circuit 
voltage, energy density and self-discharge lifetime? 
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Introduction 

Thus far, we have discussed mainly static atomic properties of materials, e.g. structure 
and elastic properties (although atomic diffusion and ionic conductivity in crystals were 
covered in §3.4.2 because of their intimate connection to structural defects in such 
solids). In this chapter, the emphasis will be on aspects of atomic dynamics, mainly 
related to the vibrational behaviour of atoms in solid materials. Because vibrations are 
the principal type of excitation in many types of solids that can be activated thermally, 
for which the characteristic energy is kB T, many thermal properties of materials (e.g. the 
heat capacity and thermal conductivity in electrical insulators) are controlled by their 
atomic vibrational behaviour. 



210 ATOMIC DYNAMICS 

In certain special cases, the vibrational amplitude can be concentrated on just a few 
atoms, e.g. an impurity mode centred on a light impurity atom. However, in general, 
vibrational excitations in solids are collective modes: essentially all atoms in the material 
take part in the vibrational mode. The influence of translational periodicity character
istic of the structure of crystals has a profound influence on the vibrational behaviour 
when the wavelength of the vibrations becomes comparable to the size of the unit cell. 
On the other hand, when the vibrational wavelength is much larger than any structural 
variation in the material, the solid essentially behaves as an elastic continuum, and this 
chapter begins with a discussion of the dynamical properties of solids in this limit, 
following on naturally from the discussion of static elastic properties already given in 
§3.4.3. 

Dynamics of continuous media 

Although real materials are obviously composed of atoms, nevertheless, at length scales 
much greater than the interatomic spa.cing or the unit-cell parameter, solids behave 
essentially as continuous media. In such a limit, a material might still be anisotropic, as a 
result of its particular crystal symmetry, but the 'graininess' associated with variations in 
atomic density at shorter length scales is unimportant. We will first consider the propa
gation of sound waves in materials in this continuum approximation, and this will be 
followed by a discussion of the problem of counting the number of modes in such solids. 

4.1.1 Propagation of sound 

A sound (or acoustic) wave is simply an elastic wave travelling in a medium. For a 
material regarded as an elastic continuum, the sound velocity is then directly related to 
the elastic modulus of the material. This relationship can be demonstrated straightfor
wardly for the simple case of an isotropic elastic medium characterized by a single 
elastic constant, c, in other words a fluid for which c = B, the bulk modulus (see 
Problem 3.21). 

Consider a cube of material, of mass density p, subject to a spatially varying stress (J x 

in the x-direction (see Fig. 4.1), in turn causing an instantaneous displacement Ux ' The 
net force acting on the volume element is thus 

[(J x(x + .6.x) (JAx)].6.y.6.z 
O(Jx 
~ .6.x.6.y.6.z. 
uX 

(4.1) 

Hence, Newton's equation of motion, equating force to rate of change of linear 
momentum (or mass times acceleration), gives 

02ux o(Jx 
p ot2 = ox' (4.2) 

which determines the time -dependence of the response of the material in returning to the 
position of static equilibrium (when stresses on opposing faces of the sample are equal 

Fig. 4.1 Volume element of a uniform fluid subject to a differential strain in the x-direction. 
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and opposite). Since the stress ax is linearly proportional to the strain ex (cf. eqn. (3.97», 
viz. ax = cex , and the strain is related to the displacement via ex = aux / ax (cf. eqn. 
(3.94a», eqn. (4.2) becomes 

EPux c-ax2 . 
(4.3) 

Equation. (4.3) is in the form of the standard wave equation, for which (for this one
dimensional example) the solution is the plane wave 

u;Jx, t) = u~ exp{i(kxx - wt)}, (4.4) 

where kx is the x-component of the wavevector Ie, related to the wavelength A of the 
wave by 

2?T 
Ilel=T' (4.5) 

and where Ie is parallel to the propagation direction of the wave (perpendicular to the' 
wavefront) and w is the (radial) frequency of the wave. 

The wave (or phase) velocity, defined as 

v = w/k, (4.6) 

is thus 

v = (~y/2, (4.7) 

as found by substituting the trial solution (eqn. (4.4» into the wave equation (eqn. 
(4.3». In general, another velocity associated with a travelling wave can also be defined, 
and this is important for waves travelling in dispersive media where the linearity 
between wand Ie breaks down. The group velocity, defined as 

Vg = ow/ok, (4.8a) 

or, in general, 

Vg = 'hw(Ie), (4.8b) 

is a measure of the velocity of a wave packet, composed of a group of plane waves (cf. 
eqn. (4.4», and having a narrow spread of frequencies about some mean value, w. For 
acoustic waves with long wavelengths, i.e. in the elastic-continuum limit, the phase and 
group velocities are obviously equal. 

Note that the solution given by eqn. (4.4) represents a longitudinal vibrational wave, 
consisting of suc.cessive compressional and rarefactional displacements, with the dis
placement amplitude parallel to the propagation direction of the wave, and this is the 
only sort of acoustic wave that an isotropic fluid can support. The other type of 
vibrational wave, namely a transverse wave (with the displacement amplitude perpendic
ular to the propagation direction) cannot propagate in a fluid because it involves shear 
displacements and the shear modulus is identically zero in a fluid (see Problem 3.21). 

The situation is more complicated in solids, where more than one elastic modulus is 
non-zero: for example, even for an isotropic solid, there are two non-zero values (A, f.L), 

and for cubic materials, there are three (c]], CI2 and C44) (see §3.4.3). As a consequence, 
both longitudinal and transverse acoustic modes exist in isotropic solids, and have 
different sound velocities (see Problem 4.1). In fact, there are two independent transverse 
(shear) modes, with the polarization vectors uO perpendicular to each other and both 
perpendicular to the propagation direction vector k. However, longitudinal and trans
verse waves cannot be so easily distinguished in anisotropic crystals: for a general k 
direction, ltD is not necessarily parallel to Ie for a longitudinal-type mode. 

* The wave equation for an elastic wave travelling in a solid characterized by an elastic
stiffness tensor c can be obtained from the expression for the elastic-energy density 
(energy per unit volume): 

(4.9) 

where the full fourth-rank tensor nature of c (rather than the abbreviated form used in 
eqn. (3.97» has been employed, and the complex conjugate of the strain is included to 
ensure that U is a real quantity, because the displacement amplitude of the wave is 
complex (cf. eqn. (4.4», viz. 

u(r, t) = uO exp[i(1e wt)], (4.10) 

where Ie = (k], k2, k3). Thus, from the definition of strain (eqn. (3.94b» and eqn. (4.10), 
the time-dependent strain is: 

eij(t) = i[kjui(t) + kiuj(t)] 

= i(kj u7 + kiuJ) exp[i(k· r - wt)]. 

(4.11a) 

(4.11b) 

For a volume element d V of the material, Newton's equation of motion becomes 

a2Ui d V - a dCO 

Pfii2 - - aUi 0 ( 4.12a) 

where the right-hand side represents the force and d"g = Ud V. The left-hand side of 
eqn. (4.l2a) becomes 

a2Ui dV 
P at2 

using eqn. (4.10), and the right-hand side can be written as 

0
0 (d"g) = 
Ui 

Thus, eqn. (4.12) becomes 

(4.l2b) 

(4.13) 

(4.14) 



which may be written in matrix notation as 

pw2uO M· uO (4.15) 

where the components of the dynamical matrix Mare given by 

Mil = ~Cijklkjkk. (4.16) 

For the case of a cubic crystal, the symmetric dynamical matrix has the form (for the 
upper right-hand corner only-cf. Problem 3.19): 

M = cllk~ + C44(kr + kD 
[

CllkT + c44(k~ + kD (Cl2 + c44)k j k2 

( 4.17) 

The sound velocities for elastic waves propagating along different high-symmetry 
directions in a cubic material can be obtained by solving the matrix eqn. (4.15). The 
results are given in Table 4.1. Note that longitudinal-acoustic (LA) sound velocities are 
always greater than transverse-acoustic (TA) sound velocities. Fig 4.2 shows the dis
·placements associated with representative sound waves propagating along certain sym
metry directions and with particular displacement vectors uO. 

Finally, note that if Cll :::::; C12, a cubic crystal is unstable with respect to the atomic 
motions associated with the TA mode along [110] with the polarization vector along 

Table 4.1 Sound velocities of acoustic modes in cubic crystals propagating in high
symmetry directions 

Polarization k= k = [110] k = [Ill] 

L CII ([100]) ! (Cll + Cl2 + 2C44) . ([110]) ! (Cll + 2cl2 + 4C44) ([Ill]) 

T C44 ([010]) ! (Cll Cl2) ([1 TO]) HCll - C12 + C44) ([ITO]) 

T C44 ([001]) C44 ([001]) HCll - Cl2 + C44) ([112]) 

The values given in the table correspond to pV2, where p is the density, with the polarizations of 
the modes given in parentheses. 
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Fig. 4.2 Displacements of unit cells in cubic crystals associated with long-wavelength acoustic 
modes: (a) a longitudinal mode propagating along [100]; (b) a transverse .!Uode (polarized along 
[010]) propagating along [100]; (c) a transverse mode (polarized along [110]) propagating along 
[110]. (After Dove (1993). Reproduced by permission of Cambridge University Press) 

[110] (see Table 4.1): a ferroelastic phase transition (§7.1.5.4) then occurs as a result of 
this softening ofthe TA mode (see Dove (1993) and Salje (1990)) .. 

4.1.2 Counting vibrational states 

The plane-wave-like vibrational wave represented by eqn. (4.10) is characterized by the 
wavevector k (the frequency w being linearly related to Ikl through eqn. (4.6)). As a 
general solution of the wave equation, eqn. (4.10) can take all values of k: restrictions on 
the allowed values of k appear through the imposition of boundary conditions. Two 
types of boundary conditions can be envisaged, depending on whether standing waves 
or propagating waves (§4.2.1) are involved. 

For the case of standing (stationary) waves, resulting from the interference between 
waves propagating in a particular direction and waves reflected back in the opposite 
direction from the surface of a sample of material, assumed for simplicity to be a cube of 
side L, the appropriate boundary condition for vibrational waves reflecting from 
mechanically free surfaces is that an antinode of the vibrational amplitude should exist 
at each surface (see Fig. 4.3). This then corresponds to there being an integral number of 
half-wavelengths of the standing wave along the length of the cube, i.e. the allowed 
values of the standing-wave wavevectors are given by 

(i = x,y,z), (4.18) 

where the ni are non-zero positive integers (negative values do not give different standing 
waves). Thus, each allowed standing-wave solution ofthe wave equation (4.12) consist
ent with the boundary conditions is represented by a point in the reciprocal space 
containing the k-vectors (see Fig. 4.4 for a 2D illustration). The spacing between 

-----L---~ n = 0 

Fig. 4.3 Schematic 1D illustration of standing transverse elastic waves set up between the free 
surfaces of a cube of an elastic continuum with antinodes at the free surfaces. The boundary 
condition corresponds to there being an integral number of half-wavelengths along the length L of 
the cube. 
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Fig. 4.4 2D illustration of the allowed values in reciprocal (k-) space of the standing
wave solutions of the vibrational wave equation for a square of side L of a continuous elastic 
medium. 

allowed k-values is 6.k: = 7r / L from eqn. (4.18), and hence the volume of k-space 
corresponding to one k-value (standing-wave state) is 

(4.19) 

or, equivalently, the number of k-values (standing-wave states) contained in unit 
volume of k-space is 

s V 
Pk = 7r3 ' 

(4.20) 

where Vis the sample volume (= L3). For large samples, the spacing between the points 
in k-space is effectively infinitesimal, and k can be taken as a continuous variable rather 
than as a discrete quantity. 

Thus, for an isotropic solid, the number of distinct standing-wave states, for given 
polarization type i, having wavevectors between k and k + dk is equal to the volume of 
the positive octant (ki ~ 0, i = x, y, z) of a spherical shell of radius k and thickness dk, 
multiplied by the k-space density P~, i.e. 

1 V Vk2dk 
g;(k)dk = --3 47rJ2dk = . 

87r 
(4.21) 

The density of states for a mode i in terms of frequency, gi(W) (the number of allowed 
standing-wave states with frequencies between wand w + dw) is obtained from eqn. 
(4.21), since g;(w)dw = g;(k)dk, by making use of the linear dispersion relation (eqn. 
(4.6)) valid for long-wavelength acoustic modes, giving: 

Vw2 

gi(w)dw = -'73dw, 
27r-vi 

(4.22) 

where Vi is an appropriate sound velocity for mode i. However, three acoustic modes, 
one LA mode and two degenerate T A modes, can propagate in continuous elastic media 
(see Problem 4.1), and so the total vibrational density of states is thus given by 

Vw2 
.( 1 2) 3Vw2 

g(w)dw = -2 2 :\ +:\ dw == -2-3 dw, 
7r Vi Vt 27r Vo 

( 4.23) 

where Vo = (vI 3 + 2v~3r1/3 is an appropriate average of the LA-and TA-mode velo
cities. This quadratic frequency dependence is the so-called Debye density of vibrational 
states. 

Although the analysis so far has treated a solid as being an elastic continuum, 
nevertheless real solids are comprised of atoms. Each atom has three degrees of dyna
mical freedom, and so for a sample containing N atoms, there is a total of 3N degrees of 
freedom which are vibrational in character (except for the k = ° state which corre
sponds to uniform translational motion of the sample). This constraint on the number 
of degrees of freedom imposes a limit on the maximum frequency Wmax WD (or 
equivalently, the maximum wavevector, kD) that can exist; this can be evaluated by 
integrating over the vibrational density of states up to the limiting frequency and setting 
the total number of states equal to 3N, viz. 

( 4.24) 

with the Debye frequency given by 

WD = C~N) 1/3 vo. (4.25) 

The Debye density of states is illustrated in Fig. 4.5. 

g(c.o) 

Fig. 4.5 The Debye density of vibrational states. 
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Vibrations of periodic systems 4.2 
The presence of translational periodicity has a profound effect on the vibrational 
behaviour when the wavelength of the vibrational excitations becomes comparable to 
the periodic repeat distance, a. For A » a, however, the behaviour characteristic of an 
elastic continuum is recovered. 

4.2.1 Counting running-wave states 

The presence of structural periodicity in a solid imposes translational periodicity on the 
excitations (e.g. vibrational, electronic) that exist within it. Thus, for a running wave of 
the form of eqn. (4.l0) that is the solution of the vibrational equation of motion for a 
periodic array of atoms, with length L, periodic (or Born-von Karman) boundary 
conditions are appropriate, i.e. 

u(r) = u(r + L). (4.26) 

Such a boundary condition can be envisaged as follows. In the case of a linear chain of 
N particles, where nearest neighbours are connected by springs (representing bonds 
between atoms), with equilibrium spacing a, periodic boundary conditions are achieved 
by connecting one end of the chain to the other to form a ring of length L = Na (Fig. 
4.6a). Hence, an integral number of wavelengths must fit into the length L, resulting in 
the allowed k-values for 'running-wave states: 

(i = x,y,z). (4.27) 

An equivalent way of understanding periodic boundary conditions, which is more 
realistic for other than ID systems, involves the imposition of a mechanical constraint 
forcing atom N to interact with atom 1 via a massless, rigid rod and a spring (see Fig. 
4.6b). 

Note that, in contrast to the case for fixed boundary conditions leading to stationary 
waves (eqn. (4.18)), both positive and negative integers are allowed for running-wave 
solutions, and moreover the spacing between allowed k-values is flkr = 27r / L, twice that 
for standing-wave states. Thus, the number of k-values, corresponding to running-wave 
states, contained in unit volume of k-space is now 

r V 
Pk = 87r3 • 

( 4.28) 

Hence, the number of distinct states, for a given polarization type i, having wavevectors 
between k and k + dk is P~ multiplied by the volume of an entire spherical shell in k
space (since both positive and negative k-values are allowed), i.e. 

V 2 Vk2dk 
g;(k)dk = -8 3 47rk dk = --2-· 

7r 27r 

This is identical to eqn. (4.21). 

(a) (b) 

Fig. 4.6 Representation of periodic boundary conditions for eight particles interacting via 
springs. (a) A linear chain connected to form a ring of length L = 8a. For modes of the form 
Us ex: exp(iska), periodic boundary conditions lead to eight modes (one per atom) with k 0, 
±27r / L, ±47r / L, ±67r / L, 87r / L. (b) A mechanical constraint (a massless, rigid rod and a spring) 
connecting particle N = 8 with particle 1. 

4.2.2 One-dimensional monatomic chain 

The analysis of the vibrational behaviour of real 3D solids, even those with the 
simplifying feature of translational periodicity, is extremely complex and can only be 
achieved by numerical means ,using a computer. Nevertheless, certain simple models 
that can be treated analytically serve to illustrate many of the vibrational features 
exhibited by real materials. The simplest such model is the 1 D monatomic chain. 

(a) 

x~=na 

Fig.4.7 A periodic one-dimensional chain of identical masses M connected by springs: (a) at the 
equilibrium positions x~ na; (b) at displaced positions XII na + UII • 
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At equilibrium, a chain of N atoms, each of mass M, has an interatomic spacing equal 
to the unit-cell length a (Fig. 4.7a). If nearest-neighbour interactions are dominant, and 
the energy between two neighbours at a distance a is cjJ(a) , then the total potential 
energy of the chain at rest (subject to periodic boundary conditions-§4.2.l) is: 

U = NcjJ(a). (4.29) 

If now the nth atom is displaced by a distance UII , with all atoms being displaced by 
concomitant amounts (see Fig. 4.7b), the total potential energy of the chain can be 
calculated using a Taylor series expansion about a, and summing over all atoms, viz.: 

I 811l cjJ N 
U = NcjJ(a) + '" -,~ "'(u ll - Un+l)'l1. (4.30) : L...t m. uulll L...t 

Ill;;;' I n 

Since a is the equilibrium separation, the first derivative of cjJ(m = I) is identically zero 
(there is no net force on an atom at equilibrium) and the next, quadratic term (m = 2) 
will be the dominant term. Neglecting the anharmonic terms (m > 2) gives the harmonic 
approximation. Thus, the harmonic vibrational energy of the ID chain is, from eqn. 
(4.30): " 

Uharm 1 '" ( 2 =?K L...t Un - Un+l) 
- II 

(4.31) 

where the spring constant is given by 

(8
2U) K= ~ . 

uU u=o 
(4.32) 

The equation of motion for the nth atom with mass M can be written, using Newton's 
equation, as the harmonic expression involving coupled atomic displacements: 

M 8
2
un = 8 uharm 

8t2 -K(2ulI - llll+1 - Un-I), (4.33) 

where the force, represented by the right-hand side, is obtained by differentiation of the 
two terms involving Un in the series expansion of eqn. (4.31), namely (Un-I - u,i and 
(un - ull+J)2. A trial solution is a linear superposition of travelling waves having the 
form of eqn. (4.4), with the amplitude of displacement of the nth atom being: 

un(t) = L: u2exp{i(kx~ - W/c t)} , (4.34) 
k 

where the discrete values of k arising from the periodic boundary conditions (eqn. 
(4.27» are used as labels for the waves, and where x~ na. Substitution of eqn. (4.34) 
into eqn. (4.33) for one particular k-value gives 

- MWku2 exp{i(kna - wlct)} = 
- Ku2 exp( -iwkt) [2 exp(ikna) exp[ik(n - l)a]- exp[ik(n + l)a]] 

or, on cancelling the terms u2 and exp{i(kna Wkt)}, 

? 2K 
w"k = M (1 - coska) 

= ~ sin2(ka/2) 

(4.35) 

so that 

(K) 1/2 
Wk = 2 M Isin(lea/2)I· ( 4.36) 

The maximum (,cut-off) value of the vibrational frequency of the ID periodic chain is 
thus when sin(ka/2) = 1, i.e. 

Wmax = 2 {if 
k VA{ (4.37) 

for k-values such that 

k' = n7r ( 
a 

n = ± 1, ±2, etc.). (4.38) 

The vibrational frequency Wk is no longer proportional to the wavevector Ie for all Ie
values as is the case for continuous elastic media (eqn. (4.6»), but has a periodic 
(sinusoidal) behaviour (eqn. (4.36» with the periodicity (27r/a) ofthe reciprocal lattice 
(§2.4.1). The dispersion curve (variation of Wk with k) for the linear monatomic chain is 
shown in Fig. 4.8. 

Note that the dispersion relation (eqn. (4.36» does not depend on the index n for an 
individual atom in the chain: all atoms in the chain contribute equally to a collective 
vibrational mode, and each allowed Ie-state corresponds to a normal mode of the system 
that oscillates independently of all other normal modes (in the harmonic approximation). 

Inspection of the allowed k-states consistent with periodic boundary conditions (eqn. 
(4.27» shows that there are a total of N k-states (i.e. one per atom) in the range 
b.k = 27r/a, (more explicitly in the range -7r/a < k~7r/a) corresponding to the region 
between two maxima either side of the origin in the dispersion curve (eqn. (4.38». This 
region of k-space marks the extent of the first Brillouin zone (see §2.4.2) which is the 
primitive, lattice-point-centr"ed cell of the reciprocal lattice. Although allowed solutions 
of the wave equation do exist for k-values lying in higher Brillouin zones in the repeated 

-4~---Lo-----L----~2n-----L-k 

a 

Fig. 4.8 Dispersion relation for the normal-mode frequencies of a monatomic chain with 
periodicity a drawn in the repeated-zone scheme. It has been assumed that the allowed k-values 
are sufficiently closely spaced that the dispersion relation can be drawn as a continuous curve. 
Points A, B, C, having the same frequency, correspond to the same instantaneous displacements 
(see Fig. 4.9): point B represents a wave travelling to the right, whereas points A and C refer to a 
wave moving to the left. (After Hook and Hall (1991). Reproduced by permission of John Wiley & 
Sons Inc.) 
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(b) 

Fig. 4.9 Atomic displacements of the linear monatomic chain (shown as transverse rather than 
longitu?ina~, for clarity) for the wavevectors: (a) k = 7f/a (zone boundary); (b) k '87f/7a (sec
ond BnllouIn zone), full curve; and k = 67f/7a (first Brillouin zone), dashed curve. The atomic 
displacements in (b) are identical, and the two k-values correspond to points A and B in Fig. 4.8. 
(After Hook and Hall (1991). Reproduced by pennission of John Wiley & Sons Inc.) 

. zone scheme (see Fig. 4.8), such states do not represent physically distinct solutions: 
these are contained entirely within the first Brillouin zone. States separated by a 
reciprocal-lattice vector G = 2n/a (e.g. A and C in Fig. 4.8) are identical because 
Uk+G = Aexp{i(k + G)na} = Aexp(ikna)exp(iGna) Uk, since exp(iGna) = 1 (cf. eqn. 
(2.52». This behaviour is illustrated in Fig. 4.9. 

For very small values of wavevector, ka « 1, i.e. in the long-wavelength limit, the 
dispersion relation (eqn. (4.36» becomes . 

(
K)I/2 

Wk =a M k. (4.39) 

Thus, the phase velocity (eqn. (4.6» and group velocity (eqn. (4.8» are equal, i.e. the 
(sound) waves are dispersionless, with 

v = Vg = a (!) 1/2 (4.40) 

Since the mass per unit length of the ID chain is p = Mia, and the elastic modulus c, 
defined as force = elastic modulus times strain for a ID system (cf. eqn. (3.97», is 
c = Ka, then eqn. (4.40) can be rewritten as 

v = (~y/2, 
in agreement with the result obtained from elastic-continuum theory (eqn. (4.7)). 
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The group velocity (eqn. (4.8)) calculated for the dispersion relation of the linear 
monatomic chain (eqn. (4.36» is, in general: 

(
K)I/2 

Vg = a M cos(kaI2). (4.41) 

Thus, the group velocity goes to zero at the Brillouin zone boundaries, k ±n I a. 
Hence, the states corresponding to these k-values are not travelling waves, but instead 
are standing waves. Such behaviour can be understood as the result of interference 
between travelling waves moving in opposite directions as a consequence of Bragg 
reflection (§2.6.1.1) from the periodic array of atoms. The Bragg condition (eqn. 
(2.95» can be written as 

n).. n2n I k' 2a sine = 2a 

or 

k' = nnla, (4.42) 

where back-reflection along the chain corresponds to a Bragg scattering angle of 
2e = 180°. Thus, eqn. (4.42) corresponds to the Brillouin-zone boundaries (eqn. (4.38). 

4.2.3 One-dimensional chain with a basis 

Most crystalline solids contain more than one atom per unit cell, often as a result of the 
composition but sometimes as a consequence of the structure even for monatomic 
systems (e.g. the diamond-cubic structure, §2.2.5.2). Thus, it is of interest to examine 
the vibrational behaviour of a periodic, one-dimensional chain consisting of two types 
of atoms, as a model for real materials. Qualitatively different results are obtained from 
those characteristic of the monatomic chain discussed in the previous section. 

The model is illustrated in Fig. 4.10, and is a generalization of that in Fig. 4.7, with 
alternating unequal masses m and M > m connected by identical springs and separated 
by an equilibrium distan~e a/2; the unit-cell spacing is thus a. Two equations of motion 
can be formulated (cf. eqn. (4.33), one for the masses M, i.e. 

a2uM 

M at; . -K(2u:
1 

- u~~1 U::~I) (4.43a) 

and the other for the masses m, i.e. 

(4.43b) 

Assume that the displacements of the M atoms have a running-wave solution of the 
form of eqn. (4.34) for one k-vector, i.e. 

ut;( = A exp {i(kx~ - wkt)} (4.44a) 

where x~ = nal2, and a similar expression exists for the m masses, but multiplied by a 
complex factor a representing the relative amplitude and phase, i.e. 

(4.44b) 
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Fig.4.10 A periodic one-dimensional chain, with unit-cell dimension a, consisting of alternating 
unequal masses connected by identical springs: (a) at the equilibrium positions x?t = nal2; (b) at 
displaced positions XII = nal2 + lIlI' 

Substituting eqns. (4.44) into (4.43) gives 

-wJcM exp{i(kna/2 WIJ)} = - K[2 exp{i(kna/2 - wkt)} 

- a exp{i[k(n + l)a/2 - Wkt]} (4.45a) 

a exp{i[k(n - l)a/2 - Wktj}] 

and 

-awJcm exp{i[k(n - 1 )a/2 - wkt]} - K[2a exp{i[k(n - 1 )a/2 - wkt]} 

- exp{i(kna/2 - WIJ)} (4.45b) 

- exp{i[k(n 2)a/2 - Wktj}] 

or, simplifying: 

wJcM = 2K[1 - a cos(ka/2) ] ( 4.46a) 

and 

aWJcm = 2K[a - cos(ka/2)]. (4.46b) 

Solving for a, eqn. (4.46) may be rewritten as 

2K cos(ka/2) 2K - wkM 
a = = (4.47) 

2K - wJcm 2K cos(ka/2) 

which may be further rearranged in the form of a quadratic equation in wTc, i.e. 

mMwk - 2K(M + m)wJc + 4K2 sin2(ka/2) = O. (4.48) 

This has the solutions: 

[ 

') ]1/2 
w2 = K(M + 111) ± K (M + 111)--~sin2(ka/2) 

k MI11 Mm .Nlm 
(4.49) 

Thus, for any wavevector k, there are two frequencies corresponding to two branches 
(see Fig. 4.11), the upper branch corresponding to the positive sign in eqn. (4.49) and the 
lower branch to the negative sign. Each branch is periodic in reciprocal space, with a 
period equal to the reciprocal-lattice vector 21f / a. The lower branch is very similar to the 
dispersion curve characteristic of the monatomic chain. Figure 4.8 shows the dispersion 
curves in the repeated-zone scheme. 

It is instructive to investigate the behaviour of the dispersion curves of the two 
branches both near the zone centre (k ~ 0) and also near the zone boundary 
(k ~ ±1f/a) (see Problem 4.5). In the long-wavelength limit (k « l/a ~ 0), the lower 
branch has the behaviour: 

? Ka2k2 

(4.50a) w- rv 

k -2(M+m) 

with 

a=l. (4.50b) 

Thus, the two types of atom oscillate with the same amplitude and phase, and there is a 
linear dispersion of the frequency characterized by the sound velocity 

( 
K ) 1/2 

VI = a 2(M + 111) ) (4.51) 

consistent with the expression eqn. (4.7) for an elastic continuum, since p = (M + m)/a 
and c = Ka/2. Thus, this branch corresponds to a longitudinal acoustic (LA) mode. 
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Fig. 4.11 Dispersion curves for the normal-mode frequencies of a chain, with periodicity a, 
consisting of two types of atom with masses 111 and M, drawn in the repeated-zone scheme. The 
lower branch corresponds to the longitudinal acoustic (LA) modes, and the upper branch to the 
longitudinal optic (LO) modes at k = O. 
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At k ~ 0, the upper branch has the behaviour 

2 2K(M +m) 
Wk~ Mm (4.52a) 

with 

a~ I-M/m. (4.52b) 

Thus, this mode is independent of k in the vicinity of the zone centre. The value of a 
characterizing the mode at this k-value (eqn. (4.52b» indicates that the two types of 
atom move in antiphase with their centres of mass at rest. If the two types of atom carry 
opposite electrical charges, as say in an alkali halide, this type of motion may be excited 
by the electric field of Ii light wave, and so this branch is termed the longitudinal optic 
(LO) mode. 

At the zone boundary (k = ±7r / a), the maximum frequency of the lower (acoustical) 
branch is given by 

Wk = (~) 1/2 (4.53a) 

with 

a=O. (4.53b) 

Thus, the masses m are at rest and only the masses M oscillate. The corresponding 
frequency of the upper branch is 

Wk = C:) 1/2 (4.54a) 

with 

a=oo. (4.54b) 

Thus, in contrast, the M masses are at rest, and only the m masses vibrate. Figure 4.12 
gives a representation of the atomic displacements corresponding to the four cases. 
Although acoustic- and optic-mode behaviour can be distinguished at the zone centre, 
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Fig. 4.12 Illustration of longitudinal optic (LO) and longitudinal acoustic (LA) modes for a 
linear diatomic chain, with equal force constants, at the zone centre and zone boundary. (After 
Burns (1985). Reproduced by permission of Academic Press, Inc.) 
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Fig. 4.13 Dispersion curve for the normal-mode frequencies of a diatomic chain represented in 
the extended-zone scheme. Note the forbidden gap in allowed vibrational frequencies at the zone 
boundaries, Ie ±7r / a. 

this is not generally the case at other values of k. Nevertheless, the convention is to refer 
to the whole of the branch as being acoustic or optic, as the case may be. 

For the dispersion curve plotted in Fig. 4.11, in the first Brillouin zone, 
-7r / a < k ~ 1f / a, there are N modes associated with the lower branch and N modes 
for the upper branch if there are N masses in the chain. 

An alternative way of representing the dispersion of the vibrational modes of a 
diatomic chain is in terms of the extended-zone scheme (Fig. 4.13), where only one 
frequency Wk is associated with each k-value (optic modes in the first Brillouin zone 
(Fig. 4.11) are translated by a reciprocal-lattice vector to the second zone) and the 2N 
modes are now distributed in the range -21f / a < k ~ 27r / a.1t can be seen that a forbidden 
gap has been opened up at k = ±1f/a. Wave-like solutions to the equation of motion do 
not exist in the gap region (B-C in Fig. 4.13); solutions with real values of frequency 
correspond to complex values of k in this region and so the wave is spatially damped. If 
the masses 111 and M are allowed to become equal, the gaps in Fig. 4.13 disappear, and the 
dispersion curve reverts to that for tp.e monatomic chain (see Fig. 4.8, but recall that the 
value of a in Fig. 4.8 is half that in Fig. 4.13). In general, doubling the unit cell halves the 
Brillouin zone, and this causes folding of the dispersion relation into the reduced zone. 

4.2.4 Three-dimensional crystals 

The one-dimensional models discussed in the previous two sections provide a reason
able understanding for the behaviour of real, three-dimensional crystals. The principal 
difference is that in 3D solids transverse (shear) modes are allowed, as well as long
itudinal modes. Except for high-symmetry directions in the Brillouin zone, for say cubic 
crystals, the transverse acoustic (TA) modes are non-degenerate and have different 
frequencies from the LA mode as a result of their differing sound velocities (see e.g. 
Table 4.1). 
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If there are N primitive cells in the crystal, each containing p atoms, the crystal has a 
total of 3pN dynamical degrees of freedom (since each atom has 3 degrees of freedom). 
Thus, since each individual branch of the vibrational dispersion curve has N allowed k
values (in the first Brillouin zone), this implies that there must be 3p different branches. 
Of these, three are acoustic (LA and T A) modes, and the remaining 3 (p - 1) are optic 
modes (of which (p - I) are longitudinal optic (LO) modes and 2(p - 1) are transverse 
optic (TO) modes). 

For 3D solids, the dispersion relation w(k) is a surface infour-dimensional space and 
hence is impossible to display in its entirety. Instead, particular directions (usually 
associated with high symmetry) are chosen within the first Brillouin zone, and the 
dispersion relation can :be plotted as a 2D graph for such one-dimensional trajectories 
in k-space. 

-The calculation ofth,e vibrational behaviour of3D solids, starting say from an assumed 
interatomic potential, is in principle a straightforward procedure, along the lines used to 
analyse ID models (§4.2.2 and 4.2.3), but in practice is complicated by the need to use 
matrix notation and the necessity of solving such matrix equations numerically using a 
computer, although symmetry relations can simplify the problem. Details are given, for 
example, in Ashcroft and Mermin (1976), Srivastava (1990) and Dove (1993). 

An example of a vibrational dispersion curve for a crystalline solid having one atom 
as the basis of the unit cell, and hence which is a real 3D analogue of the linear 
monatomic chain model (§4.2.2), is for Ar, which crystallizes in the f.c.c. structure 
(§2.2.2.2); its dispersion curves are shown in Fig. 4.14. Qualitatively the same behaviour 
is exhibited as for the monatomic linear chain (Fig. 4.8) except that two additional TA 
modes are evident (non-degenerate along the (0, ~, 0 direction with respect to the 
Brillouin zone). Another example is for b.c.c. K (Fig. 4.15): see Problem 4.6 for a 
discussion of the behaviour of these dispersion curves. 
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Fig.4.14 Measured (dots) and calculated (lines) vibrational dispersion curves for crystalline Ar 
for three high-symmetry directions in reciprocal space with respect to the Brillouin zone. The 
reduced wavevector is normalized by the particular reciprocal-lattice vector (Reprinted with 
permission from Fujii et al. (1974), Phys. Rev. BI0, 3647. © 1974. The American Physical Society) 
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Fig.4.15 Vibrational dispersion curves for b.c.c. potassium for different directions in reciprocal 
space. The dashed line in (b) corresponds to the position of the first Brillouin zone boundary in 
the [Ill] direction in reciprocal space. See Problem 4.6 for a discussion of aspects relating to this 
figure. Reprinted with permission from Cowley et al. (1966), Phys. Rev. 150,487. © 1966. The 
American Physical Society. 

The alkali halides are examples of crystals having a basis of two (different) atoms in 
the unit cell. Since p = 2, three acoustic branches (w ~ 0 as k ~ 0) and three optic 
(w =1= 0 at k 0) are expected. This behaviour is shown for NaCI in Fig. 4.16. Note that 
the TO and LO modes at the zone centre are non-degenerate: this so-called LO-TO 
splitting is characteristic of most ionic crystals (where the atomic-vibrational mode is 
associated with an oscillating electrical dipole), and is due to the fact that for LO modes 
at long wavelengths there is an additional restoring force resulting from the electric 
polarization field set up by the oscillating dipoles that does not affect the TO modes 
(see §4.4). 

Another type of material that is analogous to the linear diatomic chain (§4.2.3) 
consists of monatomic crystals having structures with two atoms in the unit cell (e.g. the 

1 0 0.5 
Reduced wavevector coordinate, I; 

Fig. 4.16 Measured vibrational dispersion curves for NaC!. Transverse modes are shown as 
filled circles connected by continuous curves and longitudinal modes are denoted by open circles 
and dashed curves. Note the La-TO splitting at k 0, and the degeneracy of the transverse 
branches in high-symmetry directions. (Reprinted with permission from Raunio et al. (1969), 
Phys. Rev. 178, 1496. © 1969. The American Physical Society) 
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Fig.4.17 Vibrational dispersion curves for Ge: the points are experimental data and the lines are 
calculated curves.for the b?nd-charge model, where a covalent bond is modelled by positioning 
c~arg~s at the ll11d-bond sItes. Note the degeneracy of the transverse modes in high-symmetry 
dIrectIons «~, 0, 0) and (~,~,~)) and the absence of an LO-TO splitting at k 0 (Reprinted with 
permission from'Weber (1977), Phys. Rev. B15, 4789. © 1977. The American Physical Society). 
Also shown is the corresponding density of states. 

diamond-cubic structure (§2.2.5.2) and the h.c.p. structure (§2.2.3.2)). An example is 
germanium with the former structure, and its vibrational dispersion curves are shown in 
Fig. 4.17. Note that, because there is no electrical dipole associated with the two 
crystallographically distinct atoms, there is, concomitantly, no LO-TO splitting. Both 
transverse branches are doubly degenerate in the high-symmetry k (e, e, e) direction: 
the total number of branches is six since p = 2. 

Compilations of measured vibrational dispersion curves have been given for metals 
by Willis and Pryor (1975), and for insulators by Bilz and Kress (1979) with an update 
by Dove (1993). 

It was seen for the simple ID models (§§4.2.2 and 4.2.3) that, at the zone boundary, 
the dispersion curve becomes fiat, i.e. 8wl8k (and hence the group velocity) tends to 
zero. For the case of 3D crystals, which have 3D Brillouin zones, the component of \I kW 

perpendicular to the surface of the Brillouin zone boundary must vanish for there to be a 
flattening of the dispersion curve. This is exemplified by the dispersion curves of 
potassium shown in Fig. 4.15: the [111] direction in reciprocal space does not intersect 
at right angles the face of the rhombic dodecahedral Brillouin zone corresponding to the 
b.c.c. real-space lattice (see Fig. 2.41a), and so there is no flattening of the dispersion 
curve there. 

Any flattening of the dispersion curve in k-space can produce marked features in the 
corresponding vibrational density of states, g(w), since then very many modes can exist 
in a small range of frequencies corresponding to many different k-values. A general 
expression is required for the density of states in order to analyse this behaviour, and 
this can be obtained by generalizing the treatment given in §4.1.2. Since g(w) is the 
number of modes (states) with frequencies between wand w + dw, consider two con
stant-frequency surfaces in reciprocal space, one corresponding to the frequency wand 
the other to the frequency w + dw (see Fig. 4.18). The generalization of the expression 
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Fig. 4.18 Illustration of two constant-frequency surfaces in k-space showing a surface element 
dSw and the wavevector interval dk.l perpendicular to both su~faces at this point. 

for g(k)dk (eqn. (4.21)) valid jn ID (or effectively in one dimension for an isotropic 
solid) becomes for a general 3D solid: 

gj(w)dw ~ pic r dk = ~ r d3k, 
Jshell (211") Jshell 

( 4.55) 

where V is the volume of the crystal, and where the integral is taken over the volume of 
the shell in k-space between the two constant-frequency surfaces (Fig. 4.18). If dSw is an 
element of area on the surface w = constant corresponding to a particular k-vector and 
dk.l is the distance in k-space between the two surfaces at this point, normal to both 
surfaces (Fig. 4.18), then 

( 4.56) 

The vector gradient of the frequency, \I /cw, is also normal to the surface w = constant, 
by definition, and so the change in frequency from one surface to the other is 
simply 

(4.57) 

Thus, the density of states (eqn. (4.55)) is given by an expression involving a surface 
integral in k-space: 

() V 1 dSw 

gi W = (211")3 s I\llewl' (4.58) 
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where I'\hwi = Vg, the magnitude of the group velocity, and where the index i indicates 
that the expression is for a single branch i only. The total density of states is then given 
by a sum over all branches of expressions of the form of eqn. (4.58). The Debye 
expression (eqn. (4.22)), valid for an elastic continuum, is recovered by noting that 
l\7kwl = Vg = v (the phase velocity) and the surface integral in eqn. (4.58) just gives the 
quantity 4d;2 = 47rw2/ v2 . 

For the case of a two-dimensional system, by analogy with eqn. (4.58) the density of 
states is given by 

g(W) =~1 dlw 

(27r)2 ! l\7kwl 
(4.59) 

where the line integral is taken over a constant-frequency curve. In the case of a one
dimensional system (e.g. the monatomic chain, §4.2.2), the density of states is simply (see 
Problem 4.4): 

L 1 
g(w) = --I" I' 7r v kW 

(4.60) 

Thus, the vanishing of the group velocity (\7kw = 0) at the zone boundary of a ID 
crystal causes a van Hove singularity in the density of states itself (cf. eqn. (4.60)). For 
the case of 3D crystals, the infinities occur in the curvature of the dispersion curve, 
but not in the density of states. In the vicinity of a critical point at k = kc, since 
8w/8k = 0, the behaviour of the dispersion relation can be approximated using a Taylor 
expansion, i.e. 

3 

w(k) :::::: w(kc) + Laj(kcj kj )2, 
j=! 

(4.61) 

where kj is a component of k. This implies that the density of states for 3D solids 
behaves as (we - w)-1/2 in the vicinity of the van Hove singularities. Figure 4.17 shows 
the vibrational density of states for crystalline Ge: the origins of the van Hove critical 
points can be identified in the corresponding dispersion curves. 

4.2.5 Quantization of vibrational modes: phonons 

Thus far, the treatment of the vibrational behaviour of materials has been entirely 
classical. For a harmonic solid, the vibrational excitations are the collective, independ
ent normal modes, having frequencies Wk determined by the dispersion relation wlc(k) 
with the allowed values of k set by the boundary conditions. In a proper, quantum
mechanical treatment, the eigenvalues of the Hamiltonian, involving the kinetic and 
(harmonic) potential energies of the atoms in a solid, need to be obtained. This is a 
standard problem in quantum mechanics (see e.g. Ashcroft and Mermin (1976), Dove 
(1993) and Kittel (1996)) but, because the level of analysis required is somewhat beyond 
the level assumed in this book, we will simply quote the result here. 

In the classical limit, the energy of a given normal mode with frequency Wk, deter
mined by the wave amplitude, can take any value. By contrast, the quantum-mechanical 
result, treating each normal mode as an independent harmonic oscillator with frequency 

W/c. is that the energy is quantized and can only take the values characterized by the 
integers n(k,p): 

'fl,(k,p) = (n(k,p) + 1/2)tzwk(P) (4.62) 

for a particular branch, p. A vibrational state of the whole crystal is thus specified by 
giving the excitation numbers n(k,p) for each of the 3N normal modes, and the total 
vibrational energy is hence the s-qm of the energies 'Of each of the 3N normal modes 

'fl, = L'fl,(k,p). (4.63) 
k,p 

Instead of describing the vibrational state of a crystal in terms of the excitation 
number n(k,p) of the normal mode with wavevector k in branchp, it is more convenient 
and conventional to say, equivalently, that there are n(k,p) phonons (i.e. particle-like 
entities representing the quantized elastic waves). This is by direct analogy with the case 
of the quantized electromagnetic field, where the allowed energies of a normal mode of 
the radiation field in a cavity are given by (n + 1/2)tzw (cf. eqn. (4.62)), where W is the 
mode frequency, and 11 is taken to be the number of photons present with frequency w, 
rather than, equivalently, as the excitation quantum number of the cavity mode. Note 
that the quantum-mechanical expression for the energy (eqn. (4.62)) implies that the 
vibrational energy of a solid is non-zero even when there are no phonons present: the 
residual energy of a given mode, 'fl,o(k,p) = (1/2)tzwk(P), is the zero-point energy. 

The number ofphonons, with a particular wavevector or frequency, is determined by 
the temperature when a solid is in thermal equilibrium. The exact functional form for the 
dependence of n(k,p) on temperature can be obtained using the methods of statistical 
mechanics, namely by use of the partition function, Z, defined generally as 

CXJ 

Z = Lexp(-'fl,jkBT), (4.64) 
i=! 

where 'fl,i is the energy of the ith excited state. The partition function for the phonons 
associated with the normal modes of a crystal is thus, using eqn. (4.62) (but dropping 
the branch label for clarity) 

00 

Z = L exp[-(n + 1/2)tzwk/kBT] 
n=O 

= exp( -nwk/2kBT){1 + exp( -tzwk/kBT) + exp( -2tzwk/kBT) + ... } 
exp( -tzwk/2kBT) 

1 - exp( -tzwk/kBT) , 
(4.65) 

which has been evaluated by noting that the summation is simply a geometric progres
sion. The mean (thermal-equilibrium) energy is given by the standard statistical
mechanical result: 

( 4.66) 

whence, from eqn. (4.65), 

1 tzwk 
('fl,) = -2 tzwk + (tz /k T) 1 exp 1Wk'B -

(4.67) 



where the angular bracket here denotes a thermal average: 

(A) = LA exp(-'flon/kBT)/Lexp(-'floIl/kBT). 
II n 

Comparison of eqns. (4.62) and (4.67) shows that the mean, thermal-equilibrium 
phonon-occupation number is thus 

1 
n(k,p) == (n(wk(P), T)) = exp(liw/e(p)/kBT) _ 1 . (4.68) 

The Planck distribution law (eqn. (4.68)) (also valid for photons) is a special form of the 
Bose-Einstein distribution function, valid for bosons (particles with zero or integral 
spin) for which there is' no restriction on the occupancy of the various energy levels, but 
with the chemical potential, /-L, taken to be zero (the total number of phonons present in 
thermal equilibrium is not an independent variable, as it is, say, for a gas of 4He atoms, 
but is determined entirely by the temperature). Note that for bosons, e.g. phonons, 
satisfying Bose-Einstein statistics (eqn. (4.68)), the number of such particle-like entities 
in a given state is unlimited; this is in marked contrast to the case of fermions (particles 
with non-integral spin, e.g. electrons) obeying Fermi-Dirac statistics (see §5.1.2) where 
only one particle is allowed to occupy each state. 

* 4.2.6 Normal-mode amplitudes 

The quantum-mechanical result that the energies of the normal modes of a crystal are 
quantized (eqn. (4.62)) implies that, concomitantly, the mode amplitudes are also 
quantized in general. . 

The solution of the wave equation for a ID monatomic crystal (eqn. (4.34)) can be 
generalized for the case of a 3D crystal, namely the displacement amplitude of the ith 
atom in the lth unit cell is: 

lli/(t) Lll?(k,p) exp{i[k· Yi/ - w/e(P)t]}, (4.69) 
/e,p 

where, as before, p is the branch label. This expression can be rewritten as: 

lli/(t) = ~ Lei(k,p) exp(ik· YiI)Q(k,p), 
(Nmi) /e,p 

(4.70) 

where N is the number of unit cells in the crystal and the complex time-dependent scalar 
quantity Q(k,p) represents the wave amplitude which, because an atomic dIsplacement 
must be real, satisfies the relation 

Q( -k,p) = Q*(k,p). (4.71) 

The vector quantity ei(k,p), on the other hand, is the mode eigenvector (or displacement 
or polarization vector) and gives the direction of the atomic displacement. It is normal-
ized such that . 

L lei(k,p)1
2 = 1, (4.72) 

i 

and because the normal modes are mutually orthogonal (in the mathematical sense), for 
two modes labelled p and p' , 

Lei(k,p). ei(-k,p') = Op,p/, 
i 

where Op,pl, is the Kronecker delta function (eqn. (3.96)). 
The average vibrational kinetic energy T of a crystal is 

(T) = ~Lmi(luil(t)12). 
i,l 

(4.73) 

(4.74) 

Thus, from eqn. (4.70), it can be shown (see Problem 4.7(a)) that eqn. (4.74) becomes 

1", ? 2 
(T) 2: L.,Wk(P)(IQ(k,p)1 ). 

/e,p 
(4.75) 

Since, for a harmonic oscillator, the average kinetic energy equals the average potential 
energy, the total harmonic vibrational energy of a crystal is thus twice that given in eqn. , 
(4.75), i.e. 

('flo) = Lw~(P)(I(Q(k,p)12). (4.76) 
lc,p 

Hence for a single mode, the average energy is 

(4.77) 

and by comparison with eqns. (4.67) and (4.68), the mean normal-mode amplitude can 
therefore be written as: 

2 Ii 
(IQ(k,p)1 ) = -(P) (n(w/e, T) + 1/2). 

W/e ' 
(4.78) 

In the high-temperature limit, T» liWk/kB, the Bose-Einstein relation for the ther
mal-equilibrium phonon-occupation number (eqn. (4.68)) becomes 

kBT 
(n(~/e' T)), ':::!. IiWk » 1, (4.79) 

i.e. the number of phonons with a given frequency increases linearly with temperature. 
Thus, in this limit ' 

2 kBT 
(IQ(k,p)1 ) ':::!. Wk(P)' ( 4.80) 

i.e. all modes have the same total energy, ('flo) = kBT (from eqn. (4.77)), in agreement 
with the classical theory of equipartition of energy. 

The actual mean atomic displacement can be obtained (see Problem 4.7(b)) from eqn. 
(4.70) as 

(4.81) 
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In the high-temperature limit, eqn. (4.80) can be used to approximate the terms in the 
summation, and if, moreover, the Einstein model is assumed for the vibrational fre
quencies, namely that they are all identical, Wk = Wo (more valid for optic modes than for 
acoustic modes), eqn. (4.81) reduces to: 

(I '12) _ 3kBT 
III - ?' 

m;wo 
(4.82) 

where account has been taken of the fact that there are a total of 3N modes. For 
example, for Ge (mass 72.6 amu), for which the optic-mode frequency is Vo = 8 THz 
(Fig. 4.17), eqn. (4.82) predicts that the root-mean-square displacement in this case is ~ 
0.06 A at 300 K. . 

The above treatment of the vibrational displacements of atoms in crystalline solids 
has a bearing on the temperature dependence of the intensity of X-rays or neutrons 
scattered by such materials (§2.6.1). In the analysis of diffraction given in §2.6.1.2, it was 
implicitly assumed that the positions of the atoms were fixed. Naively, it might be 
thought that thermal fluctuations in atomic positions, associated with normal-mode 
vibrations, would lead to the Laue diffraction condition (eqn. (2.101) et seq.) not being 
satisfied and hence to a complete destruction of coherent Bragg-diffracted beams. In 
fact, this is not the case: thermal vibrations of atoms in a crystal cause a partial, but not 
complete, decrease in the scattering amplitude, but no change in the width of a diffrac
tion peak. 

The scattering amplitude (eqn. (2.105)) of waves (e.g. X-rays or neutrons) elastically 
diffracted from planes (hId) in a crystal containing oscillating atoms can be written as: 

F; =fi exp[i(G· R7)] (exp[i(G 'll;)]), (4.83) 

where the instantaneous position of atom i is displaced by a distance ll; from the 
equilibrium position R7, i.e. R;(t) = R7 + ll;(t), and where the () brackets denote a 
thermal avetage as before. The last term in eqn. (4.83) can be expanded as a series, i.e. 

(exp[i(G.ll;)]) ~ 1 + i(G· II;) - ~ ((G '11;)2) + .... (4.84) 

However, the term (G· II;) is zero, since ll;(t) represents a random thermal displacement 
presumably uncorrelated with G. Moreover, the last term in eqn. (4.84) can be expressed 
as 

~((G '11;)2) = !G2(uf) (cos2e) = iG2 (uf) , (4.85) 

where the spherical average of cos2e gives (cos2e) = 1/3. Now the factor 

( 4.86) 

is the same as eqn. (4.84) (in fact to all orders, for the case of a harmonic oscillator), and 
hence the scattered intensity (ex 1F;l2) is thus 

( 4.87) 

where 10 is the scattering intensity for a fixed array of atoms (eqn. (2.109)). The 
exponential factor in eqn. (4.87) is known as the Debye-Waller factor. In the high
temperature limit, and assuming that all atoms vibrate independently with the same 
frequency Wo (the Einstein approximation), eqn. (4.82) can be used as an approximation 
for the mean-square atomic displacement, with the result that (see also Problem 4.8): 

I ~ 10 exp{ -kBTG2 /m;w6}. (4.88) 

The scattering intensity that eqn. (4.87) or (4.88) predicts is lost from the elastically 
(Bragg-) diffracted beams is inelastically scattered and appears as a diffuse background: 
an incident X-ray or neutron can cause the excitation, or de-excitation, of a phonon, in 
a scattering event, causing a change in both the direction and energy of the scattered 
wave-like entity. 

4.2.7 Cryst~1 momentum 

The physical momentum of a free particle is given by the expression 

p=l1k (4.89) 

where k is the wavevector of the wave-like representation of the particle. This can be 
demonstrated by applying the momentum operator, -il1\7, to the plane-wave state (cf. 
eqn. (4.10)) that represents a free particle, viz. 

-iJi\7(A exp(ik· r)) = 11k (A exp(ik· r)) (4.90) 

An eigenstate of the mpmentum operator therefore has a momentum given by eqn. 
(4.89). 

Hence, it is natural to ascribe a momentum 11k to a phonon with an allowed 
wavevector k. Although this is formally possible, such a quantity does not represent a 
true, physical momentum of the phonon quasiparticle, but instead is termed crystal 
momentum. The reason why crystal momentum is not a true momentum can be seen 
from two viewpoints. Fir§t, unlike the case of a free particle, where the wavevector of 
the wave-like representation (eqn. (4.90)) can take any value, the physically distinct 
values of the wavevector of a phonon excited in a crystalline lattice are restricted by the 
periodic boundary conditions to take only discrete values (cf. eqn. (4.27)) lying within 
the first Brillouin zone. This has the result that the phonon wavevector, and hence its 
associated crystal momentum, is not single-valued, but is only kno\yn modulo a reci
procal-lattice vector (see §4.2.2), i.e. 

k~ = k; + G. (4.91) 

The second aspect is that a phonon involves the relative vibrational motion of atoms 
(relative to the centre of mass), and for all k-values (except k = 0) the centre of mass of a 
crystal does not move when a phonon is excited within it. A zone-centre, acoustic
branch phonon does correspond to a uniform motion of all atoms and hence, in 
principle, could carry true linear momentum but, since k 0, the magnitude of this 
true momentum is zero. 

However, for most purposes, crystal momentum does behave like a real momentum, 
e.g. in interactions of phonons with other particles, e.g. mobile electrons present in the 



crystal, or X-rays or neutrons incident externally upon it. The total wavevector of waves 
interacting in a crystal is conserved, modulo a reciprocal-lattice vector. Thus, for 
example, for the case of an inelastic scattering event involving an external particle 
(e.g. an X-ray photon), with initial wavevector K, in which energy is lost from the 
particle (creating a phonon) or gained by the particle (associated with the destruction of 
a phonon), the wavevector selection rule becomes 

K' K±k+G, (4.92) 

where K' is the final wavevector of the scattered particle, and the plus and minus signs of 
the phonon wavevector refer to phonon absorption and creation, respectively. A more 
detailed discussion of crystal momentum is given in Ashcroft and Mermin (1976). 
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Vibrations of disordered materials 4.3 
Thus far, the vibrational behaviour of two generic classes of materials has been ana
lysed, namely continuous elastic media (§4.1) and systems with perfect translational 
periodicity (§4.2). In the latter case, the presence of translational periodicity greatly 
simplified the solution of the relevant equations of motion by the use of appropriate 
symmetry relations, and the allowed solutions correspond to discrete values of the 
wavevector, k, set by the boundary conditions and hence the k-values can be used as 
labels for such normal-mode solutions. 

However, most real materials are not perfect single crystals, nor do they behave as 
elastic continua. As we have seen in Chapter 3, structural defects and disorder are 
ubiquitous in real materials, and the presence of disorder can have profound effects on 
the atomic-vibrational behaviour of solids (as also for other types of excitations). 

**4.3.1 Impurity modes 

The simplest form of disorder associated with defects is perhaps the substitutional 
defect, an atom having a different mass and/or force constant from the other atoms in 
an otherwise perfect crystal. This system exhibits behaviour, e.g. spatial localization of 
the wave amplitude, that is a characteristic feature of the behaviour of vibrations (and 
electrons) in completely disordered 3D materials, e.g.-amorphous solids. 

A system with substitutional disorder that can be treated analytically is the mon
atomic linear chain (§4.2.2) containing a single substitutional isotopic impurity (i.e. an 
atom with a different mass from, but subject to the same force constant as, the other 
atoms in the chain. Although this system containing a single defect is the simplest 
possible, nevertheless its solutIon requires a new mathematical approach, involving 
the Green's function. It is found that, if the mass f.L of the defect is less than that of 
all other atoms in the chain (M), then a single vibrational mode is split offfrom the band 
of allowed states for the monatomic chain and lies above that maximum frequency (eqn. 
(4.37)). Moreover, the mode amplitude of this split-off state is strongly spatially loca
lized in the vicinity of the defect, the more so the lighter the impurity atom. This 
problem will be analysed in some detail (Donovan and Angress (1971)) because it 
illustrates the usefulness of the Green's function approach. 

We begin the analysis by writing the trial solution of the id~allD chain containing N 
atoms (eqn. (4.34)) in the form of eqn. (4.70), i.e. as 

with 

XI(k) __ 1 __ e(k)eikR/ 

(NM) 1/2 

(4.93a) 

(4.93b) 

where Q(k) contains the time dependence of the wave amplitude, e(k) is the mode 
eigenvector and I is a label for the unit cells (one atom per cell). 

The equation of motion for the chain containing the isotopic defect of mass f.L1 at 
position I can be written as: 
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(4.94) 

where 

(4.95) 

with the mass defect given by 

~MI=M-f.LI (4.96) 

and it has been assumed that the defect is situated at I 0 for the sake of definiteness. 
The frequency W of the }lefect-containing chain appears in eqn. (4.94) as a result of the 
operation of the acceleration operator ((Plat2) on Q(k) ex: exp(iwt). The constant Kin 
eqn. (4.94) is the force constant (eqn. (4.32», assumed to be constant for all bonds 
between atoms in the chain. 

Equation (4.94) can be written in matrix notation as 

LX Cx (4.97) 

where the inverse matrix 

(4.98) 

is the Green's function. Multiplying both sides of eqn. (4.97) by the Green's function 
yields 

X=GCX (4.99) 

and the eigenvalues (i.e. the mode frequencies) are found by solving the determinantal 
equation 

IGC-EI =0, (4.100) 

where E is the unit matrix. From eqn. (4.94), the involvement of the Green's function 
can be written as 

MJGUII-KL GI'lIl=8ll", 
I' 

and multiplying through by XI and summing over I gives: 

MJLXIGUII -MLW7cXI'G{111I = XI" 
I I' 

where the equation for the defect-free chain has been substituted, viz. 

Mw7cXII = KLXI. 
I 

(4.l0l) 

(4.102) 

(4.l03) 

However, since I' in eqn. (4.l02) is simply a dummy index, this equation can be rewritten 
more compactly as: 

(4.104) 

Multiplying through by x'f and summing over k then yields (cf. eqn. (4.73): 

2 '" xi, XI" GlllI(W)=.i....J~ 
k w -w" 

__ l_Lexp[ik(RIII - RII)] 
- NM" (w2 wTc) . (4.105) 

From eqn. (4.99), 

XI = L Gll"(W2 )CtIlIIX{1 
/II (4.106) 

= G{w2~MXo, 

where use has been made of eqn. (4.95), and GI Gil' since it depends on I and I' only 
through the difference in lattice vectors (RI - RI'). 

The summation involved in the Green's function (eqn. (4.105» can be evaluated (see 
e.g. Maradudin (1964» as 

GI = _1_. _ [cot (NO) coslB + sinl/lO] , 
2KsmO 2 

( 4.107) 

where 0 = ka, a being the interatomic spacing in the chain, and with 

(4.108) 

where W max is the maximum cut-off frequency for the ID monatomic, defect-free 
chain (eqn. (4.37». For the case of the isotopic defect situated at 1=0, eqn. (4.106) 
gives 

( 4.109) 

where the mass-defect parameter is defined as 

t::,.Mo M-f.Lo 
c:=1Vf=~· (4.110) 

Substituting the expression for the Green's function (eqn. (4.107», with I = 0, into eqn. 
(4.109) gives: 

c: tan(OI2) = tan(NOI2), (4.111) 

the roots of which give the perturbed frequencies when the defect is present. The 
frequencies of a defect-containing chain containing a heavier impurity are lower, and 
those for a chain containing a lighter impurity are higher, than the frequencies char
acteristic of the monatomic chain. 

However, the mode, that in the perfect ID chain corresponds to k 1f I a (i.e. 0 1f) 
and wmax , is, for the case of a light-defect-containing chain (with c:)0, i.e. f.L(M), 
displaced to a frequency lying above wmax . Since this lies in a frequency range beyond 
that for which propagating waves can exist, it is a localized non-propagating wave, and 
hence the argument 0 is complex, viz. 

0= 1f+ i¢. ( 4.112) 
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Substitution of eqn. (4.112) as the argument in eqn. (4.111) gives 

-£ cot(ic/>/2) tan [~[1f + iC/>l] c:= i 

for large N, which can be rearranged in the form 

1+£ 
exp(c/» = . 

-£ 
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(4.113) 

(4.114) 

The frequency of this localized impurity mode is then, from eqn. (4.108) (see also 
Problem 4.10): 

or 

? 
Wffiax 
1 - £2' 

(4.115) 

The spatial variation of the wave amplitude for the localized impurity can be obtained 
from eqn. (4.1 06), using eqn. (4.107) with I = 0, i.e. 

XI = (cos(l8) + £ tan(8/2) sin(1118) )Xo 

= [(_1)/ cos (iIc/» +i(-I)1 sin(iI11c/»lxo 

using eqn. (4.112) and hence 

XI 
1(1 - £)1/1 (-1) - xo 

1+£ X-I· 

(4.116) 

(4.117) 

Since 0 < £ :::.; 1 for a light impurity atom, the amplitudes XI decrease according to a 
geometric progression as I increases, i.e. with increasing distance from the defect. This 
localized behaviour of the impurity mode is illustrated in Fig. 4.19. 

In a similar manner, isotopic substitutional defects in a line~r diatomic chain (§4.2.3) 
give rise to localized impurity vibrational modes in the forbidden frequency gap 

• A • .... A /\ /\ f ... It ••• 

" 'e'J V V ¥ fI • 
.. e 

(a) (b) 

Fig. 4.19 (a) A localized vibrational mode on a chain of atoms associated with a single sub
stitutional isotopic defect with a lighter mass than the other atoms (€ = 0.2-see eqn. (4.110»; 
(b) Atomic displacements for a chain with a heavier impurity atom (c: = -2.0) and k 7f/a 
(corresponding to the maximum frequency for the ideal monatomic periodic chain). 

(2K)I/2(m-I/2 M- 1/ 2) between the bands of allowed vibrational states (the acoustic 
and optic branches). This is a model for. the vibrational behaviour of substitutional 
impurities in, for example, alkali-halide crystals. 

The ID models give a reasonable picture of the behaviour associated with impurities in 
3D crystalline solids. Localized gap modes are found for light impurities (£)0), but for 
density-of-states distributions more realistic than the simple Debye form (eqn. (4.23», 
local modes appear only for £ greater than some critical value, £c (Dawber and Elliott 
(1963». (Localized electron states also occur as a consequence of disorder, and the 
existence of a critical degree of disorder is necessary for these as well (see §6.7).) 

Finally, for heavy impurities (£ < 0), a qualitatively different behaviour is exhibited by 
3D solids compared with the 1 D-chain models. Instead of the downward shift in frequen
cies caused by heavy impurities in ID chains (cf. eqns. (4.108) and (4.111», an enhance
ment ofthe mode amplitude occurs at a particular frequency (depending on the value of £) 
in the band of allowed frequencies of the monatomic chain, 0 < W < Wmax (eqn. (4.37». 
Such impurity-related modes are known as in-band resonances; the vibrational amplitude 
of such modes is not spatially localized in the vicinity of the impurity, as it is for local 
modes for light impurities (eqn. (4.117». Further details of impurity vibrational modes 
are given in Donovan and Angress (1971) and Stoneham (1975). 

4.3.2 Amorphous solids 

Amorphous solids have no real-space periodic lattice, by definition, and consequently 
no reciprocal lattice either (Elliott (1990». As a consequence, the wavevector k of 
vibrational modes excited in non-crystalline materials is no longer restricted to the 
discrete values (eqn. (4.27» related to reciprocal-lattice vectors (as imposed by periodic 
boundary conditions). Instead, the wavevector- becomes ill-defined, in the sense that 
several vibrational modes with the same frequency but different values of k can coexist 
in amorphous solids (see Fig. 4.20). Although k is relatively well defined at small values 
of wave vector (in the long-wavelength limit, materials behave like elastic continua (§4.1) 
and so the disordered nature of the structure is of no consequence), at larger values of k 
the uncertainty in k becomes very great indeed and can become comparable to the 
magnitude of k itself, tlk c:= k (the so-called Ioffe-Regellimit-see eqn. (4.235». Thus 
dispersion relations, w(k), are of little 'Use in describing vibrational states in disordered 
solids, and k cannot be used as an unambiguous label for the modes. 

k 

Fig.4.20 Schematic illustration of the dispersion relation w{k) of an acoustic branch for vibra
tional excitations in an amorphous solid. 



However, one quantity which is equally valid in describing vibrational excitations in 
crystalline and non-crystalline solids is the density of states, the number of vibrational 
states having frequencies between wand W + dw. For a crystal, this is defined by eqn. 
(4.58). For an amorphous solid, an alternative definition is simply in terms of a sum 
over delta functions corresponding to the allowed frequencies of modes, i.e. 

g(w) = L 8(w - Wle), 
Ie 

where k is simply a label for the modes and has no other physical significance. 

(4.118) 

Since dispersion relations for vibrational modes are so ill-defined (Fig. 4.20), 
obviously features in the density of states that are characteristic of crystals, such as 
van Hove singularities' (where "VieW = 0) do not appear in the density of states for 
the corresponding amorphous materials. Experimental and theoretical vibrational 
densities of states for amorphous Si are shown in Fig. 4.21, together with the corres
ponding calculated density of states for crystalline Si. It can be seen that, overall, the 
densities of states for the crystalline and amorphous phases are rather similar, which is 
not too surprisIng since the atomic masses are identical, and the force constants 
associated with nearest-neighbour covalent interactions are very similar in the two 
cases. The prominent peaks at the low-and high-frequency extremities in the crystalline 
density of states, associated with the TA and TO modes (see Fig. 4.17) also appear in the 
density of states for amorphous Si, although the van Hove singUlarities are absent. 

firo(meV) 

Fig. 4.21 (a) Experimental density of vibrational states for amorphous Si; (b) calculated density 
of states for crystalline Si (on a reduced vertical scale); (c) the same for amorphous Si. (Reprinted 
with permission from Kamitakahara et al. (1984), Phys. Rev. Lett. 52, 644. © 1984. The American 
Physical Society) 

One aspect of the behaviour of the excitations exhibited by amorphous solids is 
qualitatively different from that displayed by the corresponding crystals: vibrational 
states at the edges of bands of allowed states are spatially localized. This is true both for 
vibrational states and electronic states(§6.7). (Note that this behaviour is different from 
the localized nature of impurity gap states (see§4.3.1).) The existence of localized, non
propagating excitations in a range of frequencies, which in a crystalline solid would 
correspond to extended, propagating states (for the cases both of vibrations and 
electrons) is a special consequence of structural disorder. This behaviour is illustrated 
in Fig. 4.22 for the case of vitreous silica, showing the total vibrational density of states 
compared with the participation ratio, P(w), which is a measure of the number of atoms 
effectively contributing to a given mode, and defined as: 

M2 
P(w) = M

o
ivI

2
, (4.119) 

where Mr is the rth moment of the kinetic energy of a mode with frequency Wj, i.e. 

Mr(wj) = L luY)1 2r
. (4.120) 

i 

An extended mode, in which all.atoms participate equally, gives P = 1, and a localized 
mode, involving only a single atom, gives a value P = 1/ N, where N is the total number 
of atoms. It can be seen from Fig. 4.22b that the vibrational modes in silica glass are 
indeed localized at the band edges, particularly at high frequencies. 

*4.3.3 Fractons 

As mentioned in §2.1.1, fractals are materials (e.g. aerogels) exhibiting self-similarity in 
their structure over a certain length scale a < r < (, where the lower limit cannot be less 

0.04,----,----,-----,,---,----,----,---,-----, 

10 20 

ro/2n(THz) 

30 40 

Fig. 4.22 (a) Density of vibrational states calculated for a model of glassy silica; 



246 

1.0 r---...----r-----..-----.--~-._-~-__. 

0.8 

0.6 

0.2 

10 20 
w/21t(THz) 

30 

ATOMIC DYNAMICS 

Fig.4.22 (b) the corresponding participation ratio, P(w), for the modes, showing evidence for 
vibrational localization at the band edges (P -7 0). (Courtesy of Dr S. Taraskin) 

than the interatomic spacing, and the upper limit marks the onset of structural homo
geneity. Fractal-like structures exhibit a scaling of their mass with increasing distance as 

(4.121) 

where DH, the Hausdorff dimension, has the (not necessarily integer) value DH ::; d, 
where d is the normal Euclidean dimension (d = 3 for 3D structures). The behaviour of 
vibrational excitations of fractal structures (DH < d) is qualitatively different from that 
exhibited by homogeneous crystalline solids (d = 3), but it bears some resemblance to 
that characteristic of homogeneous amorphous solids (albeit with d = 3), namely that, 
above a certain frequency, We, vibrational modes are spatially localized; these excitations 
are termed fractons in the case of fractal structures. 

In the long-wavelength (k < C- l ), low-frequency (w < we) limit, even a fractal struc
ture will seem like an elastic continuum, and hence the Debye density of vibrational 
states gD(W) ex: wd- l (eqn. (4.23)) will describe the propagating (acoustic) phonon modes 
in this regime. However, when the vibrational wavelength is sufficiently short that it is 
comparable to the length scale where self-similarity holds (k)(-I), i.e. above a critical 
frequency (w)we), there is a cross-over from extended phonon-like behaviour to loca
lized fracton behaviour, for which the fracton density of states can be written as 

gf(W) ex: jl-l, (4.122) 

where d is the so-called fracton (or spectral) dimension, and d ::; DH ::; d. The cross
over frequency scales with distance as 

(4.123) 
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* LO-TO splitting in ionic solids: poiaritons 4.4 
In §4.2.4 it was noted that the LO and TO modes at the zone centre are non-degenerate 
for ionic crystals (see e.g. Fig. 4.16), whereas they are degenerate for non-ionic (homo
polar) crystals (see e.g. Fig. 4.17); This difference in behaviour must obviously derive 
from the electrically charged nature of the ions in ionic solids, resulting in an extra 
contribution to the force constants as a consequence of electrostatic interactions that do 
not occur in homopolar covalent solids. 

In the long-wavelength (Ie 0) limit of the optic branch, the basis atoms in individual 
Wigner-Seitz cells vibrate relative to each other: the two ion sub-lattices of an ionic 
crystal with two atoms as a basis vibrate in antiphase, as in the ID chain analogue 
(§ 4.2.3-see Fig. 4.12). 

Let u± and ±q be the displacements and charges of the ions, where the signs refer to 
the type of ion (cation or anion). The electrical polarization of a cell is thus proportional 
to the induced dipole momentp = q(u+ u_) == quo However, the charge displacements 
can produce internal electric fields that induce further dipole moments on the ions of the 
lattice, thereby contributing an extra polarization contribution CtpEloe, where 
Ctp(= Ct~ + Ct~) is the polarizability of the ions and Eloe is the effective (local) electric 
field at the ions (see §7.1 for a discussion of dielectric properties). This local field is 
related to the macroscopic field E within the sample by the Lorentz relation (see §7.1.2 
and eqn. (7.24»): 

P 
E+-

3co 
(4.124) 

where P is the electric polarization (the dipole moment per unit volume) and co is the 
permittivity offree space; eqn. (4.124) is valid for cubic Bravais lattices. Ifitis assumed 
that these two sources of polarization can simply be added, the total polarization for N 
Wigner-Seitz cells in a volume Vis therefore: 

N N . (qll+ CtpE) 
P = V (qll + CtpEloe) = V (1 NCt

p
/ 3co V) . (4.125) 

The equations of motion for the iOIis are given by 

(4.126a) 

and 

(4.126b) 

where k is the restoring force constant and M± are the ionic masses. Equations (4.126) 
can be reduced to a single equation by making use of the reduced mass J..lM = M+M_/ 
(M+ + M_) with II = "+ "_, i.e. 

J..lM;i = -kll + qEloc' (4.127) 

By writing the ionic displacement in the renormalized form, HI == (N J..lM / V) 1/211, eqns. 
(4.125) and (4.127) become: 

(4.128a) 
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P = b21 w + b22E, (4.128b) 

where the off-diagonal coefficients are symmetric, bl2 = b21 . 
The coefficients bij can be related to macroscopic, measurable quantities, namely the 

dielectric constant c(w) at low and high frequencies (see §7.1.1). In the static case, iv = 0 
and so from eqn. (4.128) 

( bI2) [ ] P(O) = b22 - ~ E == c(O) - 1 coE, (4.129) 

since E + P / cO = cEo The quantity c(O) is the static dielectric constant. For very-high
frequency fields E(w), the ions ultimately cannot respond to the rapidly changing forces 
due to their inertia and hence cannot contribute to the polarization. In this case, W = 0, 
and hence 

P(oo) = b22E == [c(oo) - l]coE, (4.130) 

where c( 00) is the high-frequency dielectric constant associated with the polarization of 
electrons in the atoms which, being much lighter than the ions, can still respond to 
electric fields having frequencies of the order of atomic vibrational frequencies. c( 00) is 
evidently only constant, i.e. independent of frequency, for frequencies (in the IR region) 
much less than that characterizing electronic motion. 

In principle, solving the two coupled equations (eqn. (4.128)), derived from simple 
electrostatics, produces longitudinal and transverse (optic phonon) wave solutions. In 
practice, the assumption, implicit in the electrostatic approximation, that the Coulom
bic forces act instantaneously is incorrect: account must be taken of the fact that there is 
a temporal retardation effect due to the finite velocity of light, and this affects the 
transverse phonons since light is a transverse wave. Hence Maxwell's equations must 
also be included in the problem: it will be seen later that the actual modes (called 
polaritons) at very low k-values (k -t 0) consist partly of mechanical waves (i.e. pho
nons) and partly of electromagnetic radiative waves. 

Maxwell's equations for this situation (no free charges) are: 

\1. D = 0, 

\1. B 0, 

\1 x E = -ii, 
1 ... 

- \1 x B = D = coE + P, 
f.Lo 

(4.131) 

(4.132) 

( 4.133) 

(4.134) 

where \1. and \1x are the div and curl operators, respectively, f.Lo is the vacuum 
permeability, and the electrical displacement D = coE + P = ccoE (eqn. (7.4)) It has 
been assumed that the ionic material is non-magnetic and so the magnetic permeability 
f.L=1. 

If it is assumed that X = XOexp[i(k· r - wt)], where X = w, E, B or P, is a trial 
solution, eqns. (4.128a) and (4.131-4) then yield: 

- w2w = bll W + b12E, 

k· (coE + P) = 0, 

( 4.135) 

(4.136) 

k·B=O, 

k x E ~wB, 

k x B = -wf.Lo(coE + P). 

Substituting eqn. (4.135) into eqn. (4.128b) and eliminating w gives 

P = {b22 - b bT2 2}E == [c(w) - l]coE. 
II+W 

Combining eqns. (4.136) and (4.140) then yields 

c(w)(k· E) = O. 

( 4.137) 

(4.138) 

(4.139) 

(4.140) 

(4.141) 

One solution of eqn. (4.141) is when c(w) = 0, which corresponds to a longitudinal wave. 
Thus P = -coE (from eqn. (4.140)) and hence (coE + P) = O. Consequently, from eqn. 
(4.139), k x B = 0 and B either vanishes or is parallel to Ie. On the other hand, eqn. 
(4.137) implies that B either vanishes or is perpendicular to k. Thus, B 0, and hence 
eqn. (4.138) indicates that E is parallel to k, i.e. constituting a longitudinal wave, since 
now k x E = O. Thus, the frequency of the longitudinal mode, WL, is found by solving 
for c(w) = 0, where 

( ) _ ( ) (c(0) - c(00))w6 
cW-cOO+ 22 

Wo -W· 
(4.142) 

from eqns. (4.129) and (4.130), and where the substitution 

2 1 [ Nq2 ] 
Wo = -b ll = f.LM k - 3co V(1 - NO'.p/3co V) ( 4.143) 

has been made. Hence, from eqn. (4.142), c(w) 0 when 

_ (c(O) ) 1/2 
WL -. c(oo) wo° (4.144) 

Note that this mode is dispersionless in this model. 
The other way of satisfying eqn. (4.141) is for k· E = 0, i.e. E and k are mutually 

perpendicular, thereby constituting a transverse wave. From eqn. (4.138), these are 
both also perpendicular to B, with their scalar magnitudes satisfying in this case the 
relation 

k=wB/E. (4.145) 

Equation (4.139), the last equation of the set, reduces to the scalar equation 

kB = wf.Lo(coE + P). (4.146) 

Eliminating Band P using eqns. (4.140) and (4.145), together with eqn. (4.142), gives 

(4.147) 
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where the speed of light is given by c = (cOJ.lO)-1/2. Since E is not zero, therefore (from 
eqn. (4.142» 

k2c2 _ ( ) (c(O) c(oo)) 2 
w2 - c 00 + (wij _ w2) Wo 

(4.l48a) 

or, in rewritten form: 

[ 
k2c2

] c2k2
w

2 

w
4 

- w
2 wL + c(oo) + c(oo)O = O. (4.148b) 

In the limit k --+ 00, eqn. (4.148a) predicts that W --+ Wo, which we identify with the 
TO-phonon frequency, lvr. Thus, eqn. (4.144) relates the longitudinal and transverse 
optic-phonon frequencies via the so-called Lyddane-Sachs-Teller (LST) relation (valid 
for cubic crystals) 

(~)1/2 c(oo) W[. 
(4.149) 

(See also Problem 4.11.) 
However, near the zone centre (specifically in the vicinity of the intersection of the 

dispersion curve for the photon, w = cle, and the TO-phonon dispersion curve), the 
transverse-mode dispersion curve becomes very complicated, as indicated by eqn. 
(4.148). In general, for a given Ie-value, there are two branches (each doubly degenerate), 
separated by a forbidden gap (see Fig. 4.23a). Note that this gap does not arise because 
of periodicity (as in the gap between acoustic and optic modes for ionic crystals-see 
Fig. 4.16), but because the dielectric constant c( w) is negative between the frequencies WL 
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Fig. 4.23 (a) Polariton (coupled transverse phonon-photon) dispersion curves for an ionic 
crystal. (b) Percentage mechanical (phonon-like) energy in the transverse modes. 
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and WT. From eqn. (4.147), this implies an imaginary value of wave vector /c, and hence a 
non-propagating (evanescent) wave solution. Note also that as k --+ 0, eqn. (4.l48b) 
predicts that 

(4.150) 

having solutions w = 0 (lower branch) or w ;, WL (upper branch). Thus, the transverse 
mode at the zone centre has a finite frequency equal to that of the longitudinal phonon. 

The transverse mode with the dispersion curve given by eqn. (4.148) is called a 
polariton: it is a coupled mode with both mechanical (phonon-like) character and 
electromagnetic-radiation (photon-like) character associated with the electric fields, 
the relative percentage of which changes with wavevector (Fig. 4.23b). Equation 
(4.148a) predicts for the photon-like parts that, for W « WT, 

cle 
W = (c(0))1/2 

(4.151) 

and, for W» WT, 

ck 
(4.152) 

W= (c(00))1/21 

characteristic of light propagating in media with refractive indices of c(O) 1/2 and 
c(00)1/2, respectively. Figure 4.24 shows experimental dispersion curves for the polar
itons and LO phonons in crystalline GaP. 

Finally, for a crystal composed of atoms without net electrical charges, e.g. homopolar 
systems (such as Si), there is obviously no ionic polarization and so c(O) = c(oo), and 
hence WL = WT at k = 0 from the LST relation: there is no LO-TO splitting (see Fig. 4.17). 
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Fig. 4.24 Dispersion curves for transverse polariton modes and LO phonons measured for 
crystalline GaP (symbols, experimental data; lines, theoretical curves). (After Kittel (1996). 
Reproduced by permission of John Wiley & Sons Inc.) 
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Experimental probes of vibrational states 4.5 
A number of experimental techniques can be used to investigate vibrational excitations 
in materials. These can be essentially divided into two categories, depending on whether 
the probe particle (a photon) is wholly absorbed (transferring all of its energy to the 
phonon system) or whether the particle (photon or neutron) is inelastically scattered 
(losing, or gaining, only part of its energy to, or from, the phonon system). The photon 
energy at which absorption takes place, or the change in energy of the scattered particle, 
therefore gives the frequency w of the vibration involved, since '"g nw. However, 
methods involving scattering processes have the advantage that, in principle, informa
tion about the (crystal) i momentum of the vibrational modes involved can also be 
obtained via the momentum-conservation law. 

4.5.1 Infrared absorption spectroscopy 

Optic modes near the zone centre typically have frequencies of the order of a few THz 
(see Fig. 4.16), corresponding to wavelengths oflight in the region 103 - 104 nm, i.e. in 
the infrared (IR) part of the electromagnetic spectrum. Thus, if a TO mode gives rise to 
a change in electrical dipole moment of the unit cell of a crystal (a prerequisite for a 
dipole-allowed optical transition), an IR photon of the appropriate frequency will be 
absorbed, and a phonon is correspondingly created. The magnitude of the wavevector 
of IR photons, related to the radial frequency by the speed of light, k = wi c, has a 
typical value of k = 105m- I , minuscule compared with the extent of the first Brillouin 
zone (k = 7fla ~ 109m- I ) see Problem 4.11 (d). Hence, only TO modes very near the 
zone centre of crystals can be probed by direct photon absorption if only a single 
phonon is involved, since, by the conservation law for crystal momentum 

k=k'+G, (4.153) 

where k is the wavevector of the absorbed photon and k' that of the phonon created in 
the crystal. However, phonons away from the zone centre can be probed if, say, two 
phonons are created simultaneously on the absorption of a single photon. For such two
phonon absorption, the conservation laws are for frequency (or energy) 

w=f'l'+f'l" (4.154a) 

and for wavevector (or momentum) 

k =k' +k" +G. (4.154b) 

where the single- and double-primed quantities refer to the two created phonons. Since 
the wavevector for light, k, is so very small relatively, k' and k" must be nearly equal and 
opposite, but may have an appreciable magnitude. In fact, two-phonon absorption is 
greatest for vibrational modes near the zone 'boundary where the density of modes is 
highest. 

IR absorption experiments traditionally have used a source of IR radiation (e.g. a 
resistively heated element), an IR detector (e.g. a thermocouple) and a dispersing 
element (e.g. an alkali halide, IR-transmitting, prism, or a diffraction grating) to vary 

o 500 1000 
Frequency (em-I) 

1500 

Fig.4.25 Infrared absorption spectrum for the cristobalite polymorph of crystalline Si02 . (After 
Dove (1993) Reproduced by permission of Cambridge University Press) 

the wavelength. More modern spectrometers utilize a Michelson interferometer instead 
of the dispersing element, by which an absorption spectrum is obtained as a function of 
time (for the motion of one of the mirrors in the interferometer), and Fourier transfor
mation converts the time-dependent data into a conventional spectrum as a function of 
frequency, as obtained directly from a grating spectrometer. Peaks in absorption spectra 
correspond to allowed vibrational transitions (near-zone-centre TO-mode frequencies) 
- see Fig. 4.25 for an example. 

The requirement that a photon-induced vibrational transition in a solid be associated 
with a change in electrical dipole moment means that either permanent dipoles need to 
be present (as in ionic solids) with particular vibrational (optic) modes causing a change 
in dipole moment, or else, e.g. in the case of covalent materials, a particular vibrational 
mode leads to a dynamic dipole moment associated with an instantaneous compression 
of some bonds and extension of othe.rs with corresponding changes in local electronic 
charge densities, even though there is no static dipole moment associated with the 
equilibrium configuration. Thus, for example, optic modes in crystalline Si or Ge are 
IR-inactive (the perfect tetrahedral local symmetry ensures that the overall dynamic 
dipole moment is zero). However, for the case of amorphous Si or Ge, where, although 
the local coordination is still four, the perfect tetrahedral symmetry characteristic of the 
crystal is lifted, and the vibrational modes become IR-active because dynamic dipole 
moments are created. 

There is another important difference in the behaviour of crystalline and amor
phous materials in this regard. Because of the lack of translational periodicity in 
amorphous solids, reciprocal space has no meaning and k is no longer a good 
quantum number for vibratiomil modes (§4.3.2). Consequently, the k-selection rule 
(eqn. (4.153)), restricting photon-induced one-phonon transitions to zone-centre 
modes in crystals, is relaxed in amorphous materials and in principle all modes can 
contribute to an IR absorption spectrum (although not necessarily with equal weight). 
This behaviour is illustrated in Fig. 4.26 for the case of a-Ge: comparison with the form 
of the density of vibrational states for the isostructural material a-Si (Fig. 4.21a) shows 
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Fig. 4.26 Comparison of experimental IR absorption and Raman scattering spectra of amor
phous Ge (Reprinted with permission from Alben et al. (1975), Phys. Rev. BU, 2271. © 1975. The 
American Physical Society). The frequency of the degenerate LO, TO zone-centre phonon in 
crystalline Ge is also shown, even though these modes are IR -inactive. 

that modes throughout the band of states contribute to the measured IR absorption 
spectrum. 

In addition to the position of a peak in an IR absorption spectrum giving the 
frequency of an IR-active vibrational mode, the intensity of an absorption peak is 
determined by a macroscopic quantity, the absorption coefficient, related to the dielect
ric constant of a non-metallic material. A monochromatic, plane electromagnetic wave 
propagating in a medium with refractive index nr has an electric vector given by 

E = Eo exp[i(k . r wt)], (4.155) 

with the magnitude of the wavevector given by (cf. eqn. (4.6)): 

k (4.156) 
c 

For the case of a lossy medium, within which absO/pdon of the electromagnetic wave 
takes place (e.g. by excitation ofphonons), the amplitude of the wave (i.e. the E-vector) 
propagating, say, in the z-direction, decays with z, implying that the refractive index is 
complex, i.e. 

(4.157) 

and 

E = Eo exp( -W/'i,jz/c) exp[i(wnrz/c - wt)]. (4.158) 

Since the (complex) refractive index and dielectric constant are related via the expres
sion 

where, in general, the complex dielectric constant is given by 

et .= el +ie2 

(4.159) 

(4.160) 

(sometimes also written as et = e' + ie"), the optical constants nr and /'i,j are related to 
the real and imaginary components of the dielectric constant by 

(4.161) 

and 

(4.162) 

Thus, for an optically thin material, in which the real part of the refractive index nr is 
close to unity (the vacuum value), the intensity of transmitted light (ex EE*) is governed 
(cf. eqns. (4.158) and (4.162)) by the quantity known as the absorption coefficient (see 
Problem 4.14), viz. 

or, from eqn. (4.162), 

K(w) = 2w/'i,j 
C 

(4.163a) 

(4.1 63b) 

The treatment given in §4.4, based on the harmonic approximation (cf. eqn. (4.127)), 
gave rise to an expression for the dielectric constant e(W) that was entirely real (eqn. 
(4.142)), and obviously this cannot describe optically absorbing materials which are 
characterized by complex values of the dielectric constant (eqn. (4.160)) or refractive 
index (eqn. (4.157)). This behaviour can be modelled, however, by assuming that instead 
a damped harmonic equation describes the motion of ions in a solid in the presence of a 
local electric field, viz. 

f./,MU + f./,M'Yil = -ku + qE1oc , (4.164) 

where the damping constant, "(00), accounts for the optical absorption (i.e. loss of 
electromagnetic energy) in the medium. This equation of motion, together with the 
expression for the polarization, P, (eqn. (4.125)), can be solved (see Problem 4.12) to 
give for the complex dielectric constant (cf. eqn. (4.142)): 

t( ) _ ( ) (e(O) - e(OO))W5 
ew-eOO+(2 2')' Wo - w -1"(W 

(4.165) 

The real and imaginary parts of et(W) - see Problem 4.12 are plotted against 
frequency in Fig. 4.27; the imaginary part, e2(W), has the (Lorentzian) form of a damped 
resonance curve, peaking near Wo and with "1 being the full width at half maximum. 

In fact, the real and imaginary parts of the complex dielectric constant are inter
related via the Kramers-Kronig relations (see e.g. Kittel (1996) for a derivation): 

el(W) 1 = 3.~ roo w'e2(w') dw' 
7r Jo w'2 w2 ' 

(4.1 66a) 
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Fig. 4.27 Frequency dependence of the real and imaginary parts of the complex dielectric 
constant €t(w) for the model of a damped dipolar oscillator. 

(4.166b) 

where ~ represents the Cauchy principal value of the integral (omitting the contribution 
to the integral of the singularity at w w'). Thus, if one function is known for all 
frequencies (in practice, it is sufficient to measure it only over a frequency range some
what larger than that in which it varies with frequency) then the conjugate function can be 
calculated at any frequency. If C2 is only measured to frequencies less than those char
acteristic of electronic excitations (w c::= 1016s-I), then the factor of unity on the left-hand 
side of eqn. (4.166a) should be replaced by the high-frequency dielectric constant, c( 00). 

The polariton (coupled phonon-electromagnetic wave) dispersion curve, character
istic of ionic crystals (Fig. 4.23a), has a profound effect on the optical behaviour of such 
materials in the IR region. In the frequency range between wr and wd= (c(O)/ 
c(00))1/2wr), eqn. (4.142) predicts that the real part of the dielectric constant is negative 
(see also Fig. 4.27) implying, from eqn. (4.159), that the refractive index is imaginary, 
and hence that no electromagnetic wave can propagate in the solid in this frequency 
band. Consequently, in the harmonic approximation, the IR reflectivity of ionic solids 
should be 100% in this restrahlen (residual wave) band. In practice, ionic damping 
causes the reflectivity to be somewhat less than total, since some of the light is absorbed 
in the solid rather than being reflected. The behaviour of the IR reflectivity of NaCl in 
the polariton region is shown in Fig. 4.28. 

4.5.2 Inelastic photon scattering 

Particles, such as photons (or neutrons, see §4.5.3), incident externally on a solid, can 
be scattered by the atoms within it and, if exchanging energy and momentum with 

Frequency,oo (10"S-1) 

Fig. 4.28 Reflectivity of crystalline NaCl in the IR region. The reflectivity is very high in the 
frequency range between WT = 3.1 X 1013 S-I and WL 5.0 x 1013 S-I, although not unity because 
of finite absorption. The dashed line shows the reflectivity for visible light. (Smith and Manogue 
(1981), J. Opt. Soc. Am., 71, 935. Reproduced by permission of Optical Society of America) 

excitations associated with the atoms (e.g. phonol).s), the scattered probe particles 
emerge with a different energy and direction from that of the incident particles. Thus, 
in principle, by analysing inelastically scattered particles for energy and momentum, 
information on the energy and momentum of the excitations can be gleaned. 

In the case of scattering of photons, the scattering process can be envisaged as 
the momentary absorption of-an incident photon accompanied by an excitation of the 
electronic distribution of an atom, followed by an electronic de-excitation and the 
emission of another photon. Inelastic photon scattering occurs only if there is a change 
in electronic polarizability associated with the excitations (e.g. phonons) with which 
energy is being exchanged. 

Normally, photons from the visible part of the electromagnetic spectrum are used in 
scattering experiments since lasers are readily available; high-intensity sources are 
necessary, since the probability of inelastic photon scattering is very low. Two types 
of phonon-related inelastic light-scattering experiments can be distinguished: light 
scattering from acoustic phonons is termed Brillouin scattering, ,,!-nd light scattering 
from optic phonons is referred to as Raman scattering. As was seen for the case of IR 
photon absorption (§4.5.1), the wavevector of light is very much smaller than phonon 
wavevectors corresponding to the Brillouin zone boundary, and hence, as will be seen 
shortly, one-phonon inelastic light scattering also only probes vibrational states near the 
zone centre. However, this is not the case for inelastic X-ray scattering, where the X-ray 
photons can have appreciable values of wavevector, comparable to zone-boundary 
phonon wavevectors, as seen already in the case of diffraction (see §2.6.1.2). However, 
X-rays (e.g. from a synchrotron-radiation source) need to be very highly monochrom
ated so that the very small inelastic energy transfers corresponding to vibrational (de-) 
excitations can be detected. 
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The selection rules associated with inelastic scattering can be found by generalizing 
the treatment given in §2.6.1.2 for the case of elastic scattering to that in which the 
atoms can undergo time-dependent displacements, as done in the discussion of the. 
Debye-Waller factor given in §4.2.6. The amplitude of a wave scattered by an assembly 
of atoms i, each undergoing time-dependent displacements Ui(t) about an equilibrium 
position R7, i.e. where . 

(4.167) 

can be written as (cf. eqn. (4.83»: 

,F ex exp( -iwot) L exp[iK . Ri(t)], (4.168) 
, i 

where the time dependence of the incident wave, with frequency wo, has now been 
explicitly included. Substitution of eqn. (4.167) into eqn. (4.168) yields 

F ex exp( -iwot) L exp[iK . R?J exp[iK ·Ui(t)] (4.169) 
i 

and for small displacements, the second exponential factor can be expanded to give 

F ex exp( -iwot) L[I + iK ·u;(t)] exp[iK . R?]. 
i 

(4.170) 

The phonon displacement U; can be written as an expansion in plane waves (denoting 
the phonon wavevector as q to distinguish it from k used for light-waves): 

Ui(t) = u? expI±(q· R? - wqt)]. (4.171) 

The scattered wave amplitude then can be separated into two terms, one being for elastic 
scattering, i.e. having the same frequency as the incident wave, viz. 

Fel ex exp( -iwot) L exp[iK . R?J, 
i 

. and the other representing inelastic scattering, viz . 

.Finel ex L(K . u? exp[i(K ± q) . R?J exp[-i(wo ± wq)tJ. 
i 

Thus, the conservation law for frequency (or energy) of the scattered waye is 

( 4.172) 

(4.173) 

w=wo±wq (4.174) 

and since the summation over i in eqn. (4.173) only yields non-zero contributions for 
crystals when K + q is equal to a reciprocal-lattice vector, the scattered wavevector is 
given by: 

k =ko =r=q+G, (4.175) 

where the scattering vector K is the difference between scattered and incident light 
wavevectors (eqn. (2.98», i.e. K = k - ko. For one-phonon light scattering, as above, 
since 1 k 1,1 ko 1«:1 q I, only zone-centre vibrational modes are involved. 

Photons emitted with a lower frequency than that of the incident light, w = Wo wq, 

corresponding to the creation of a phonon, form the Stokes line, and scattered photons 
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with a higher frequency, W = Wo + wq, corresponding to the destruction of a phonon, 
form the anti-Stokes line; the elastically 'scattered light (w = wo) is called the Rayleigh 
line. The formation of Stokes and anti-Stokes photons by one-phonon scattering 
processes is represented schematically in Fig. 4.29 and the actual Stokes Raman spect
rum of the cristobalite polymorph of Si02 is shown in Fig. 4.30. The intensity of the 
Stokes line depends on the matrix element for the creation of one phonon, which can be 
shown quantum-mechanically to be just that for the harmonic oscillator (see e.g. Dove 
(1993), Kittel (1996», i.e. 

J(Wo - wq) ex (n(wq, T) + 1), (4.176) 

where n(wq, T) is the Planck distribution function (eqn. (4.68». For the case of anti
Stokes scattering, the scattered intensity is proportional to the number of phonons with 
frequency Wq present in thermal equilibrium, 

(4.177) 

(a) Stokes 

Fig. 4.29 Schematic illustration of the inelastic scattering of photons by a single phonon for: 
(a) Stokes emission; (b) anti-Stokes emission. 

o 100 200 300 400 500 
Frequency (em- l

) 

Fig. 4.30 Stokes Raman scattering spectrum of the cristobalite polymorph of crystalline Si02. 
(Compare with the corresponding IR absorption spectrum, Fig. 4.25.) (After Dove (\993). 
Reproduced by permission of Cambridge University Press) 



260 ATOMIC DYNAMICS 

Thus, in thermal equilibrium, the ratio of anti-Stokes to Stokes light scattering is simply 

J(Wo + Wq) = n(wq, T) = exp( -hwq/kBT). 
J(wo - wq) (n(wq, T) + 1) 

(4.178) 

The anti-Stokes intensity vanishes as T -t 0 K. 
As mentioned above, light scattering is associated with a change in polarizability of 

the valence electrons. The electric field E of an incident light wave produces a polariza
tion P given by (see also eqn. (7.1)): 

P coXE, (4.179) 

where X is the dielectric susceptibility tensor. Any periodic modulation of P leads to the 
emission of an electromagnetic wave - the scattered wave. The electronic susceptibility 
is a function of the nuclear coordinates, and hence any modulation of these (e.g. via 
phonon excitation) will perturb X as well. The susceptibility may therefore be expanded 
as a Taylor series in terms of atomic displacements u, viz. 

o (&x) 1 (fi X) 2 X = X + au u + 2: au2 u + .... (4.180) 

The first term in eqn. (4.180) corresponds to Rayleigh scattering: the scattered wave 
frequency is the same as that of the incident light wave, E = Eo coswot, since XO is 
unperturbed. The second and third terms correspond to first-order and second-order 
light-scattering processes, involving one and two phonons, respectively. 

For first-order light scattering, where the atomic displacement can be written as 
u = Uo COSWqt, the polarization (eqn. (4.179)) becomes 

aX . 
P(t) = cO au uoEo COSWqt . coswot 

cO &x ) } =--uoEo{cos(wo+wq)t+cos(wo-wq t. 
2 au (4.181) 

Hence, the scattered radiation contains components with frequencies Wo + Wq (anti
Stokes) and Wo - Wq (Stokes). The scattered intensity is proportional to IP(t)12. It can 
be seen from eqn. (4.181) that, for first-order light scattering to be observed, the 
quantity &x/au must be non-zero (for the particular polarization of incident and 
scattered light used). This is the case for zone-centre TO phonons in crystalline Si or 
Ge, which can therefore be probed by first-order Raman scattering (se'e Fig. 4.31) even 
though such modes are unobservable by one-phonon IR absorption spectroscopy 
(§4.5.1). In fact, it is generally true that for crystals with centres of inversion (i (1) 
symmetry operations, e.g. alkali halides, the diamond cubic structure, but not ZnS), 
IR-active TO phonons are not Raman-active, and vice versa: this is the rule of mutual 
exclusion. 

Second-order Raman scattering involves two phonons, either the simultaneous crea
tion or destruction of two phonons, or the creation of one and the destruction of 
another. The frequencies of the phonons need not be the same; as for the case of two
phonon IR absorption (§4.5.1), phonons having wavevectors near that corresponding to 
the zone boundary can be involved, and the probability of this otherwise low-prob
ability process is enhanced because of the high density of vibrational modes associated 
generally with zone-boundary states. 
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Fig. 4.31 First-order Raman spectrum of the zone-centre TO mode in crystalline Si at three 
temperatures; both Stokes and anti-Stokes spectra are shown. (After Kittel (1996). Reproduced 
by permission of John Wiley & Sons Inc.) 

Brillouin scattering involves the scattering of light by acoustic phonons, for which the 
frequency w~ of branch i is related to the magnitude of the phonon wavevector q by the 
appropriate sound velocity Vi via 

W~ = qVj. (4.182) 

Since the incident and scattered light frequencies are much greater than the phonon 
frequency, (wo, w) » wq, the magnitudes of incident and scattered light wavevectors are 
nearly equal (Ikl c:= Ikol). From the conservation law for crystal momentum (eqn. (4.175) 
with G = 0), the magnitude of the phonon wavevector is given by the relation (cf. eqn. 
(2.99)): 

q c:= 2ko sin(¢/2), (4.183) 

where the arrangement of vectors is as· for elastic scattering (diffraction) with q taking 
the place of the scatteririg vector K (see Fig. 2.50b) and ¢ is the angle between k and ko. 
Since light propagating in a medium with refractive index given by nl' = V c:( (0) (cf. eqn. 
(4.159) has the frequency and wavevector oflight related by the phase velocity oflight in 
the solid, viz. 

c 
Wo = Vc(oo) ko, (4.184) 

the frequency of Brillouin-scattered photons is thus given by 

j - 2 . Wo fi(OO) . (¢/2) Wq - VI C SIn . (4.185) 

Hence, the positions of the Brillouin lines are determined by sound velocities, or 
equivalently the elastic constants (see e.g. Table 4.1), of the solid. A Brillouin spectrum 
of the quartz polymorph of crystalline Si02 is shown in Fig. 4.32: the single longitudinal 
and two transverse acoustic modes can be distinguished. Further details on light 
scattering are given, for example, in Cardona (1983). 
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Fig. 4.32 Brillouin spectrum of the quartz polymorph of crystalline Si02 showing the two 
transverse and longitudinal acoustic modes. (Shapiro et al. (1966)) 

4.5.3 Inelastic neutron scattering 

The advantages of using neutrons for the structural study of materials has been 
summarized in §§2.6.1.1 and 2.6.1.3. However, thermal neutrons are also particularly 
suited for the investigation of vibrational modes in solids because their energy (~ kB T) 
is comparable to that of the excitations, thereby ensuring that inelastic scattering is 
easily measurable. Moreover, the magnitude of the neutron wavevector, given by the 
expression (cf. eqn. (2.96»: 

(4.186) 

where 111n is the neutron mass and T is the temperature of the moderator producing the 
thermal neutrons, has a value (k ~ 4 x W10m-1 for T = 300 K) that is much greater 
than typical phonon wavevectors corresponding to the Brillouin zone boundary. Hence, 
unlike one-phonon light absorption or scattering, one-phonon inelastic neutron scatter
ing can probe vibrational excitations throughout the zone as a function of phonon 
wavevector. The phonon dispersion curves shown in Figs. 4.14-17 were obtained in this 
way. 

The neutron scattering function (or dynamical structure factor) S(K,w) is given by 
the time Fourier transform of the intermediate scattering function, F(K, t): 

S(K, w) = J F(K, t) exp( -iwt)dt, (4.187) 

with 

F(K, t) (p(K, t)p*(K, 0)), (4.188) 

where the angular brackets here denote a time average over all starting times. The 
density function p(K, t) is the sum of the scattering amplitudes (eqns. (2.105), (4.83» 
over all atoms, i, viz. -

p(K, t) = Lbi exp(iK . Ri). (4.189) 
i 

Thus, the neutron-scattering function from a time-varying structure with Ri(t) = 
R7 + Ui(t) is 

S(K,w) = L{bibj exp{(iJ(· (R7 - RJ)}x 
ij 

J (exp{iK . [Ui(t) - Uj(O)]}) exp( -iwt)dt}. 
(4.190) 

This expression describes diffraction of neutrons (with no phonon involvement), as well 
as inelastic neutron scattering involving the creation or destruction of one or more 
phonons. 

The selection rules for one-phonon inelastic neutron scattering are the same as those 
for inelastic light scattering (i.e. eqns. (4.174), (4.175». Further details on inelastic 
neutron scattering can be found in Willis (1973), Squires (1978) and Sk6ld and Price 
(1986). 
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Vibrationarelated properties 4Ji 

Many thermal properties of solids are determined by their vibrational behaviour, e.g. 
heat capacity (specific heat), thermal conductivity and thermal expansion. Although 
other types of excitations may also contribute to some of these quantities if present (e.g. 
electronic excitations in metals), all materials have atomic vibrational excitations and 
for electrical insulators (non-metals) these are dominant. 

4.6.1 Heat capacity 

The heat capacity, or specific heat, at constant volume (Cv) is defined as the change in 
internal energy U with temperature: 

(4.191) 

It will be assumed here that the only excitations that can be thermally excited and 
contribute to an increase in the internal energy are vibrational modes, e.g. phonons. 
Note also that, because the thern1al expansion of solids is very small (negligible com
pared with that of gases, although non-zero - see §4.6.2.1), the heat capacity at 
constant volume is practically identical to that at constant pressure, Cv ~ Cp 

(aH/aT)p) (see Problem 4.17); the equality is exact for a harmonic crystal. 
The vibrational contribution to the internal energy is given by the product of the 

energy of a given phonon, IiWk(P) for the branch p, the phonon occupation number, 
n(le,p) (eqn. (4.68)) and the density of modes in Ie-space (eqn. (4.28)), i.e. 

(4.192) 

where the integral is taken over allowed Ie-vectors in the first Brillouin zone or, in terms 
of the density of states as a function of frequency: 

-~ '" J V g(Wk (P))IiWk (P)dwk (P) 
CI' - aT L.. [exp(liwk(P)/kBT) - IJ . 

p 

(4.193) 

Although, in general, these expressions must be evaluated numerically, for actual 
density-of-states distributions, nevertheless certain simplifications can be made at high 
temperatures (irrespective of the precise form of the density of states) and at very low 
temperatures in the case of the Debye-like density of states (eqn. (4.23)). 

Using the general form for the vibrational density of states (eqn. (4.118)), eqn. (4.193) 
can be rewritten as 

a '" IiWk(P) 
CI' = aT f: [exp(liw/c(P)/kBT) - IJ . 

(4.194) 

At high temperatures, liw/c(p) « kBT, the summand in eqn. (4.194), expressed in terms 
of the variable x == IiWk(P)/kBT « 1, can be expanded as: 

(4.195) 

and if only the first term in the expansion of eqn. (4.195) is kept, the summation of the 
term nw/c (P) / X kB T over all Ie and p gives for the specific heat the constant value: 

Cv = 3NkB = 3R, (4.196) 

for one mole, which is the Dulong-Petit value in the classical limit. It should be noted 
that this result is valid only in the harmonic approximation. 

The other limit for which an analytic result can be obtained for the heat capacity is at 
low temperatures. At low temperatures, the phonon occupation number (eqn. (4.68)) 
has the form n(w/c(p) , T) ~ exp( -nw/c(p)/kBT) for optic modes which have a non-zero 
lower limit to their frequency (see Fig. 4.11), and thus vanishes as T -+ OK. Acoustic 
modes, on the other hand, continue to be excited even at very low temperatures, since 
for them w -+ 0 as k -+ O. Moreover, if it is assumed that the acoustic modes obey a 
linear dispersion law, i.e. w/c(p) = v(P)k (valid in reality at very low temperatures, where 
the frequencies of excited vibrational modes are correspondingly low), the Debye 
approximation (§4.1.2), valid for elastic continua, is recovered. 

Hence, using the Debye density of states (eqn. (4.23)), the heat capacity (eqn. (4.193)) 
can be written approximately as 

3 Vn a fWD w3dw 

CI' = 21f2V6 aT Jo exp(liw/kBT) - 1 (4.197a) 

_ 3 Vn
2 l wD w4exp(nw/kBT) d 

- ? 3 ? 2 w, 
21f-vokBT- 0 [exp(nw/kBT) - IJ 

(4.1 97b) 

where WD is the Debye frequency (eqn. (4.25)). Changing the integration variable to 
x = nw/kBT, and denoting the Debye temperature aD as 

a = IiWD = livo (6~N) 1/3 

D kp, kB V ' (4.198) 

eqn. (4.197) can be rewritten as: 

Cv = 9Nk
B 

(aT)3 r-¥;D x
4
e

x
dx 

D Jo (ex -
(4.199) 

where XD = IiWD/kBT = aD/T. This Debye form for the heat capacity is plotted in Fig. 
4.33: it approaches zero as T -+ 0 K, and tends to the Dulong-Petit limiting value (eqn. 
(4.196)) at high temperatures. Values of aD are typically in the range 50-1000 K (see 
Table 4.2). 

An analytic expression for the heat capacity, valid at low temperatures, can 
be obtained readily by changing the variable in the integral in eqn. (4.197a) to 
x = nw/kBT and extending the upper integration limit from XD to infinity. The resulting 
integral can be evaluated as 

(4.200) 
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The form of the heat capacity of a solid calculated in the Debye approximation plotted Fig. 4.33 
against temperature normalized by the Debye temperature eo. The temperature dependence 
follows the T3 law for T :=:; O.leo. 

Table 4.2 Debye temperatures for some elements and compounds 

Element eo (K) Element eo (K) Element eo (K) 

Ag 225 Fe 470 Rb 56 
Al 428 Ge 374 Se 90 
Au 165 Hg 71.9 Si 645 
B 1220 K 91 Sn (grey) 260 
Be 1440 Li 344 Sn (white) 170 
C (dia) 2230 Mo 450 Ti 420 
C (graphite) 760 Na 158 U 207 
Co 445 Ni 450 V 380 
Cs 38 Pb 105 W 400 
Cu 343 Pt 240 Zn 327 

eo (K) Compound eo (K) Compound eo (K) 

LiF 670 KF 335 CsF 245 
LiCI 420 KCl 240 CsCl 175 
LiBr 340 KBr 192 CsBr 125 
LiI 280 KI 173 CsI 102 
NaF 445 RbF 267 AgCl 180 
NaCl 297 RbCl 194 AgBr 140 
NaB~ 238 RbBr 149 BN 600 
NaI 197 RbI 122 Si02 (quartz) 255 

(After Kittel (1996) (Reproduced by permission of John Wiley & Sons Inc.) and 
Burns (1985) (Reproduced by permission of Academic Press, Inc.)) 

where the exponential factor (eX - 1) has been replaced by a geometric progression and 
the ensuing integral evaluated by parts. Thus, performing the differentiation with 
respect to temperature in eqn. (4.197) gives: 
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Fig. 4.34 Low-temperature heat capacity of solid Ar plott.ed versus T3 to reveal the agreement 
with the Debye law (eD 92 K). (Kittel (1996). Reproduced by permission of John Wiley & Sons 
Inc.) 

127f4 NkB (~) 3 

5 eD 
(4.201) 

The Debye model predicts that the limiting low-temperature behaviour of the vibra
tional contribution to the heat capacity has a Tn dependence for n-dimensional solids 
(see Problem 4.20). Figu~e 4.34 shows·an example of the Debye T3 law obeyed by solid 
Ar. This low-temperature behaviour is masked in the case of metals by an electronic 
contribution to the heat capacity which varies linearly with temperature (see §5.1.3.1). 

A qualitative illustration of the origin of the Debye T3 law can be gained by a 
geometric argument, assuming that only vibrational modes for which nw~kBT will be 
appreciably excited at a low temperature T, each of which may be taken to have an 
energy of approximately kB T. The maximum allowed magnitude of the (Debye) phonon 
wavevector is kD, related to the Debye frequency by 

kD = wDjvO, (4.202) 

and thus only the fraction of modes in k-space given approximately by (kr/ kD)3 
(WTjwD)3 (see Fig. 4.35J are thermally excited (where nw-r = nVOkT = kBT). Thus, there 
are of order 3N(T leD) modes that are thermally excited, and hence the corresponding 
energy is U ~ 3NkBT(T jeD)3. Hence, the heat capacity should be Cv ~ 12NkB(T jeD)3, 
the form of which agrees with eqn. (4.201), although the numerical factor is incorrect 
because of the assumption that each excited vibrational mode carries an energy of kB T 
(strictly valid only at high temperatures), and the uncertainty in defining k T . 



268 ATOMIC DYNAMICS 
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Fig. 4.35 Geometric illustration of the origin of the Debye T3 law for the low-temperature heat 
capacity. Of the allowed volume in k-space given by the radius kD, only modes in the volume 
with radius kT ~ kB T lf1vo are thermally excited. Thus, of the 3N possible modes, only a fraction 
(kT/kD)3 = (T IBD)3 are excited. The corresponding internal energy is U ex: T4 and hence 
C" ex: T3. 

Another model which can be used to obtain an analytic expression for the heat 
. capacity of solids uses the Einstein approximation, in which all atoms are assumed to 
vibrate independeilltly with the same frequency, woo Obviously this approximation is 
invalid for acoustic modes, but is reasonable for optic modes. The heat capacity 
calculated from this model (see Problem 4.21) reduces to the Dulong-Petit limit 
at high temperatures, in agreement with experiment, but has a much more rapid 
(approximately exponential) temperature dependence at low temperatures than is 
observed experimentally or predicted by the Debye model. The two different ways of 
approximating the phonon dispersion curves of crystals are illustrated in Fig. 4.36. 

It might be thought that the Debye model for the heat capacity, based on the 
assumption that vibrational modes excited at low temperatures are of sufficiently long 
wavelength (small wavevector) that the material behaves as an elastic continuum, would 
be valid for all types of solids. In fact, disordered materials (e.g. glasses) exhibit an extra 
contribution to the vibrational heat capacity at very low temperatures (T < 1K) in 
addition to the Debye term (eqn. (4.201)), as can be seen in Fig. 4.37. This additional 
contribution varies approximately linearly with temperature, and so the total heat 
capacity at low temperatures can be written as 

Cl' = aT+bT3
, (4.203) 

where a and b are temperature-independent constants. Thus, a plot of Cv/T versus T2 
reveals the extra contribution as a non-zero intercept (a) on the abscissa (see Fig. 4.38). 
The linear term in the heat capacity of disordered materials is not due to an electronic 
contribution (§5.1.3.1), since glassy silica, for example, is an extremely good electrical 
insulator with a negligible concentration of mobile electrons. Instead, the extra con
tribution to the heat capacity must come from additional low-frequency vibrational 
modes that are not included in the Debye model. 

T 
I 

* 
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(a) (b) 

Fig.4.36 Two ways of approximating the acoustic and optic branches of a diatomic crystal (for 
the case of two dimensions and along a high-symmetry direction for simplicity) for calculating the 
vibrational heat capacity. (a) The Debye approximation. The' first two Brillouin zones of the 
square lattice are replaced by a circle with the same total area and radius kD, and the actual 
phonon dispersion curve in the ext~nded-zone scheme is approximated by a single linear curve for 
k ::; kD. (b) The Debye approximation for the acoustic branch and the Einstein approximation 
for the optic branch. The first zone is replaced by a circle of radius kD with the same area, and the 
acoustic branch replaced by a linear curve for k ::; kD, and the optic branch is replaced by a 
constant-frequency line in the same region; 

A phenomenological model for the anomalous linear specific-heat term in disordered 
solids ascribes it to the excitations of two-level systems, i.e. configurations characterized 
by just two energy levels at ±~. The heat capacity of a single two-level system is (see 
Problem 4.21): 

(4.204) 

In the case of materials containing structural disorder, it is reasonable to assume a 
variety of atomic configurations giving two-level systems, characterized by a distribution 
of energy levels, n(~). Thus, the net heat capacity can be written in this case as 

C, = kB J n(~)(~/kBT)2 sech2(~/kBT)d~. (4.205) 

If it is assumed that in an amorphous solid the density of two-level systems is 
constant, n(~) 110, and changing the integration variable to x = ~/kBT, eqn. (4.205) 
becomes 
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Fig. 4.37 Heat capacity of glassy Si02 compared with that of the crystalline polymorph quartz. 
(The dashed line for the crystal corresponds to the Debye T3 law.) Note the excess (linear) 
contribution heat capacity in excess of the Debye T3 behaviour exhibited by the glass for 
temperatures less than 1 K. (Afer Zeller and Pohl (1971). Reprinted with permission from Phys. 
Rev. B4, 2029. © 1971. The American Physical Society) 

(4.206) 

where for very low temperatures (x» 1), the upper limit of the integral can be extended 
. to infinity. In this case, the integral yields a constant (~/6) and so the heat capacity due 
to a broad distribution of two-level systems is 

~ 
Cv = 6no~T. (4.207) 

The microscopic origin of the two-level systems in glasses is still uncertain. One 
possibility is that they are associated with highly anharmonic atomic configurations, 
characterized by double-well potentials (Fig. 4.39): atomic tunnelling at very low 
temperatures through the potential-energy barrier separating two configurations, cor
responding to the two wells, leads to pairs of tunnel-split energy levels, which could act 
as the two-level systems. 

xlO-l 

Fig.4.38 Heat capacity of glassy B20 3 plotted as Cv/T versus T2 to demonstrate the existence, 
via the non-zero intercept, of a linear term. (Reprinted with permission from Stephens (1976), 
Phys. Rev. B13, 852. © 1976. The American Physical Society) 

q 

Fig. 4.39 Double-well vibrational potential for which the tunnel-split allowed energy levels are a 
possible origin of two-level systems responsible for the linearly temperature-dependent term in the 
heat capacity of amorphous solids. 

4.6.2 Anharmonicity 

The theory of atomic dynamics developed so far has assumed that the harmonic 
approximation is appropriate; that is, the potential energy (eqn. (4.30)) has been 
expanded only to terms quadratic in the atomic displacement so that the potential
energy curve is parabolic. This approximation has a number of significant consequences 
which are summarized below. 
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1. For the case of crystalline materials, the allowed vibrational excitations are normal 
modes, i.e. independent vibrational waves (phonons) that do not mutually interact, 
or evolve with time. 

2. The harmonic approximation predicts that there is no thermal expansion of the 
lattice: the average interatomic spacing does not increase with increasing atomic 
displacement (temperature) for a harmonic oscillator. As a consequence, the heat 
capacities at constant volume and pressure are predicted to be identical, as are the 
adiabatic and isothermal elastic constants (which are, moreover, predicted to be 
independent of temperature and pressure). 

3. Finally, the harmonic approximation implies that the heat capacity reaches a 
constant (Dulong-Petit) limit, 3R, at high temperatures (T)eD ). 

In practice, real materials are characterized by non-parabolic dependences of potent
ial energy on displacement (see Figs. 2.19 and 5.9) and they exhibit clear signs of 
anharmonic behaviour. Two collinear phonons injected into a crystal can combine to 
give a third beam ofphonons with a frequency equal to the sum of the other two. Solids 
have non-zero values of the thermal-expansion coefficient (§4.6.2.l). The heat capacity 
increases steadily above the Dulong-Petit limit with increasing temperature for T)eD 
(Fig. 4.40). Peaks in one-phonon inelastic neutron-scattering experiments are not infin
itesimally narrow, but have finite widths as a result of the phonons having a finite, 
rather than infinite, lifetime and due to the Heisenberg uncertainty principle 
(llEllt ~ n/2). 

The cubic term in the Taylor expansion of the potential energy (eqn. (4.30» involves 
the mixing of three phonons, i.e. the coalescence of two phonons to give a third, or the 
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Fig. 4.40 Lattice heat capacity of Cu: points, experimental data; dashed line, theoretical calcula
tion based on the harmonic approximation; solid line, theoretical calculation taking account of 
anharmonicity. (Miiller and Brockhouse (1971). Reproduced by permission of NRC Research 
Press) 

(a) 

(b) 

(c) 

Fig. 4.41 Representation of the interactions between three phonons as a result of the cubic 
anharmonic term in the vibrational potential energy: (a) coalescence of two phonons to give a 
third; (b) decay of a phonon into two others; (c) 2D illustration of the conservation of crystal 
momentum in the first zone (G = 0) (normal, 'N', process). 

decay of a single phonon into two others (Fig. 4.41). The conservatidn laws for energy 
and crystal momentum dictate that in this case (cf. Fig. 4.41): 

(4.208a) 

and 

(4.208b) 

In the case where leI and le2, lying in the first Brillouin zone, are such that le3 also lies in 
the first zone, G = 0, and the process is called a normal (or N) process (Fig. 4.41c). The 
allowed solutions of the conservation equations (4.208) can be found by a geometric 
construction (Fig. 4.42): it can be seen that, in this case, a TA phonon (WI, lei) coalesces 
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Fig. 4.42 Geometric construction to find the allowed values of frequency W3 and wavevector k3 
of a phonon created, in an N-process, by the coalescence of two others with frequencies WI and W2 

and wavevectors kl and "2, satisfying the conservation laws of energy and crystal momentum. For 
simplicity, it is assumed that all three wavevectors are collinear. A replica of the dispersion curves 
(dashed curves) is constructed with its origin at the position (WI, k l ) of one of the phonons (in the 
T A branch). The intersections of the dispersion curves and their displaced replica give the allowed 
values of the other two phonons, in this case phonons in the LA branch with W2, k2 and w3, "3. 

with an LA phonon (W2' k2) to give another LA phonon (W3, k3) (see Problem 4.22). 
Likewise, the quartic term in the potential energy is associated with the mixing of four 
phonons. Thus, the finite lifetime of phonons is due to their decay into two or more 
different phonons. 

* 4.6.2.1 Thermal expansion 

Real materials, having anharmonic vibrational potentials, generally exhibit thermal 
expansion (see Fig. 4.43) because, unlike the case for harmonic potentials, the average 
interatomic spacing increases with increasing vibrational excitation, i.e. with increasing 
temperature. The volume coefficient of thermal expansion is defined as 

f3T 1 (8V) 
V 8T p' 

(4.209) 

and the linear coefficient is simply one-third this value, aT = f3T /3. Experimental values 
of f3T are typically of the order of 10-5 K-1 at room temperature. Equation (4.209) can 
be rewritten as 

f3T = - ~ (~;) T (:~ ) v= ~ (:~ ) v' (4.210) 

where Bis the bulk modulus (eqn. (2.32)). The pressure is given by the volume derivative 
of the Helmholtz free energy: 

(8FH) 
P = - 8V T' 

(4.211) 
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Fig. 4.43 Experimental (points) and calculated (curves) values of the volume coefficients of 
thermal expansion for crystalline diamond, Si and Ge. Both Si and Ge exhibit negative thermal
expansion coefficients at low temperatures arising from negative values of the average Griineisen 
parameter shown in the inset for Ge. (Dolling and Cowley (1966). Reproduced by permission of 
IOP Publishing Ltd.) 

with 

(4.2l2) 

Since the vibrational internal energy U of a solid depends on the frequencies of the 
modes, anharmonicity, leading to thermal-expansion effects, is thus associated with a 
dependence of the mode frequencies on the volume of the crystal (the frequencies are 
volume-independent in the harmonic approximation). 

The pressure may be expressed entirely in terms of the internal energy by making use 
of the second law of thermodynamics, written in the form 

(4.213) 

viz. 

(4.214) 



The internal energy is given by eqn. (4.67), plus a term ueq representing the energy of 
the solid with its atoms at their equilibrium positions; substituting this into eqn. (4.214) 
gives 

p - 88v [ueq + L~nwk(P)] 

+ ~ [- 88v (nwk(P))] eXp(nWk(P~/kBT) _ 1 

(4.215) 

The first term in eqn. (4.215) gives the pressure of the solid at T = OK in general, and at any 
temperature in the harrr,lOnic approximation, while the second term gives rise to a tem
perature-dependent contribution to the pressure (imd hence a finite value of the thermal
expansion coefficient-see eqn. (4.210» if the mode frequencies are volume-dependent. 

Substitution of eqn. (4.215) into eqn. (4.210) gives 

(4.216) 

where n(k,p) is the phonon-occupation number (eqn. (4.68». This may be compared 
with eqn. (4.194) for the heat capacity which can be written in similar form, i.e. 

( 4.217) 

where Cv(k,p) is the contribution of the phonon k in branch p to the overall heat 
capacity. 

The so-called Griineisen parameter for the normal mode characterized by (k,p) is 
defined as 

,k,p = 
8(lnwk(p)) 

8(ln V) , (4.218) 

and a mean Griineisen constant can be defined as the average of the contributions of the 
modes, weighted in terms of the mode specific heat, viz. 

L ,k,pCv(k,p) 
k,p 

,=........;=-----L Cv(k,p) . 
k,p 

Combining eqns. (4.216-219) gives the Griineisen law: 

,Cv 
(3T = BV . 

(4.219) 

(4.220) 

Values of the mean Griineisen constant, typically fall in the range 1-3 (and are in fact 
weakly temperature-dependent). Neglecting the weak temperature dependences of, and 
of the bulk modulus in eqn. (4.220), it can be seen from eqn. (4.220) that the tempera
ture dependence of the volume thermal-expansion coefficient should follow that of Cv 
(see §4.6.l), viz. (3T ex T3 at very low temperatures, tending to a constant value at high 
temperatures (T ~ BD). This general behaviour is evident in Fig. 4.43; the negative 

<l--k 0 k-
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Fig. 4.44 Calculated values of the mode Grilneisen parameter for Ge for k-vectors parallel to 
[100] and [111] directions. (Dolling and Cowley (1966). Reproduced by permission of IOP 
Publishing Ltd.) 

values of (3T for Si and Ge at low temperatures are due to negative values of the mode 
Griineisen parameters for the T A mode (see Fig. 4.44) which contributes significantly to 
the heat capacity at low temperatures. Negative thermal expansion is also found in certain 
crystalline oxide materials, e.g. eucryptite (Li2AhShOs), NaTi2P3012 and ZrW208, the 
last material exhibiting a negative value of (3T in the very wide temperature range 0.3-1050 
K(Mary et al. (1996». Negative thermal expansion in these materials is also believed to be 
due to peculiarities in the behaviour of the TA modes, in these cases associated with 
coupled rotational motion of coordinafion polyhedra (e.g. Si04 , P04 or W04). 

It should be noted that the above discussion is for the case of microscopic thermal 
expansion, associated with changes in the bond length with temperature, as might be 
monitored experimentally by measuring the temperature dependence of the crystal 
lattice parameter a(1) using, for example, diffraction techniques (§2.6.1). However, 
measurement of the macroscopic thermal-expansion coefficient (using a dilatometer), 
e.g. the linear expansion coefficient 6.//1, may yield a larger value than that (6.a/a) 
deduced from lattice-parameter measurements if vacancy formation (§3.1.2) is import
ant. In such a case, the macroscopic expansion coefficient is given by 

6.1 b.a Xv 
-=-+ I a 

where Xv is the fractional vacancy concentration (eqn. (3.7». 

*4.6.2.2 Thermal conductivity 

(4.221) 

In addition to having an effect on equilibrium properties of materials, e.g. heat capacity, 
thermal expansion, etc., anharmonicity in interatomic potentials can have a pronounced 
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influence on non-equilibrium (transport) processes, e.g. heat conduction. As mentioned· 
previously in §3.4.2.l, the heat flux or thermal current density, J Q, between two points 
(i.e. the energy transported per unit time through unit area normal to the vector 
connecting the two points) is proportional to the temperature gradient, i.e. 

(4.222) 

where the constant of proportionality, "'T, is the thermal conductivity. (For the case of 
non-cubic crystals, "'T is a tensor quantity.) 

In the absence of free, itinerant electrons (i.e. for the case of electrical insulators or 
non-metals), heat is carried through a solid by phonons. A temperature variation at one 
end of a crystal, localiz~d spatially within a region f:J.x, also produces a non-equilibrium 
distribution of phonons, and this wave packet consists of phonons having a distribution 
lilkl ~ 1/ f:J.x of wavevectors about the value k. This phonon wave packet can prop
agate through the solid with the group velocity vg(k) (eqn. (4.8)). For the case of an 
infinitely large, perfect single crystal for which the interatomic potential is harmonic, 
such a wave packet will propagate in a ballistic fashion, without any resIstance or 
impediment to its motion, since the phonons are the independent normal modes of 
the system. In such an idealized case, the thermal conductivity is infinite. In reality, 
structural defects (including surfaces of the crystal) can cause scattering of the phonons, 
and if such scattering events result in a net change in momentum of the phonon wave 
packet, there is a corresponding resistance to the thermal current, i.e. the thermal 
conductivity becomes finite. Anharmonicity-induced phonon-phonon scattering, in 
certain cases, can also contribute to the resistance to heat flow. 

A general expression for the thermal conductivity can be obtained as follows. The 
heat flux J Q is simply the sum of the energies carried by all the phonon modes, multi
plied by the velocity at which the heat is transported (the phonon group velocity) 
divided by the volume: 

1 . 
J Q = V ~n(k,p)nwkVg(k,p), 

k,p 
( 4.223) 

where n(k,p) is the phonon occupation number (eqn. (4.68)) and vg(k,p) is the group 
velocity of the mode (k,p) (eqn. (4.8b)). Under equilibrium conditions, for a uniform 
temperature (\IT = 0), J Q = 0 since the group velocities are distributed isotropically 
(~(k) = -v~( -k)) and the equilibrium phonon occupation numbers n(k,p) == nk,p = 
n2,p are equal for positive and negative k-values. 

Hence, a thermal current can occur only if the phonon occupation number differs 
from the equilibrium value, nk,p n2,p; therefore the heat flux can also be written in 
terms of this difference in phonon numbers: 

(4.224) 

The phonon number may change with time in a particular region of the crystal for 
two reasons: either because of a difference in the net diffusion of phonon wave packets 
into or out of the region, and/or because of anharmonic phonon decay into other 
phonons (see §4.6.2). Thus, the overall change in phonon number is given by the 
Boltzmann equation: 

. I 

I 

dn/c,p = an/c,p I + an/c,pl . (4.225) 
dt at diff at. decay 

In the case when the temperature gradient does not change in time, the phonon number 
is also time-independent, i.e. dn/c,p/dt = O. 

For phonon-decay processes, the time dependence can be expressed approximately in 
terms of a constant relaxation time Tk,p for a non-equilibrium phonon distribution to 
relax back to its equilibrium value, i.e. 

ank,pl 0 

a 
-(nk,p nk,p)/Tk,p' 

t decay 

(4.226) 

The time dependence of the phonon diffusion term is related to the phonon (not heat) 
flux h,p = nk,pvg(k,p) via the continuity equation (cf. eqn. (3.34b)), i.e. 

ank,pl -a = -\I. h,p = -vg(k,p)· \lnk,p' 
t diff 

(4.227) 

This expression can be rewritten as follows: 

ank,pl 
at diff (

an2,p) - aT Vg(k,p)· \IT, (4.228) 

where n/c,p has been replaced by n2,p because we are considering steady-state, local 
thermal-equilibrium conditions. From the Boltzmann equation (eqn. (4.225)) with 
dnk,p/dt = 0, we have therefore from eqns. (4.227) and (4.228) 

o (an2,p) [n n lk,p = -Tk,p aT Vg(k,p)· \IT, (4.229) 

and substituting eqn. (4.229) into eqn. (4.224), and comparing with eqn. (4.222), gives 
for the thermal conductivity (assumed to be scalar): 

. a 0 
. 1 "" 2 nk,p 

"'T = 3V L..Jnwk(p)vg(k,p)T(k,p) aT ' 
k,p 

(4.230) 

where the spherical average of v~, with Vg projected along a direction parallel to the 
temperature gradient \IT, involves the factor cos28 = 1/3 (see e.g. §4.2.6). Equation 
(4.230) can be simplified further by noting that the term nWk,pan2,p/.aT is simply the 
mode heat capacity Cv(k,p) (eqn. (4.217)), and defining the mode mean-free path Ak,p as 

Ak,p vg(k,p)Tk,p, (4.231) 

which is the mean distance travelled by a phonon between scattering events which 
change the net momentum, gives finally 

1 
"'T = 3 V ~ Cv(k,p)Ak,pVg(k,p). 

k,p 
(4.232) 

Note that eqn. (4.232) has the same form as the expression for the thermal conductivity 
of a gas, obtained from kinetic theory, i.e. "'T = CvAc/3 V, where c is the mean 
molecular speed. 
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A number of phonon-scattering mechanisms exist which can serve to limit the phonon 
mean-free path; these include phonon-phonon scattering, scattering by defects (point 
defects, different isotopes of atoms and dislocations) and also boundary (surface) 
scattering from the sample. Each will be associated with a characteristic mean-free 
path Ai and, if more than one scattering mechanism is present, the mean-free paths 
add reciprocally 

(4.233) 

because the corresponding relaxation times Ti add reciprocally. Thus, as for all types of 
conductivity which add in parallel, the thermal conductivity is determined by the sum of 
the reciprocals of individual constituents. The dominant contribution is that which has 
the shortest relaxation time or mean-free path. 

Normal (N)-type an4armonicity-induced three-phonon scattering events (Fig. 4.41c), 
in which all three wavevectors lie within the same zone, conserve the total momentum of 
the phonons; the momentum after the event (fik3) is equal to that before it (liIcl + fik2)' 
Thus, such three-phonon collisions cannot act as a mechanism for providing resistance 
to the heat flow. 

Phonon-phonon collisions which do cause a change in the phonon momentum, and 
hence which can limit the thermal conductivity, are those in which, say, the two 
wavevectors of the interacting phonons lie within the first Brillouin zone but that of 
the resultant phonon lies outside it (see Fig. 4.45a). This wavevector can be brought 
back into the first zone by the addition of an appropriate reciprocal-lattice vector G. It 
can be seen that, in this manner, the direction of k3 is opposite to that of kl and k2 and 
hence phonon momentum is not conserved and the energy flow is reversed. Such an 
event is called an umldapp (U) process (folding over). The geometric construction 
shown in Fig. 4.45b to find allowed solutions of the conservation laws of energy and 
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Fig. 4.45 Umklapp (U) phonon-phonon scattering process: (a) The wavevector k3 of the 
phonon resulting from the combination of two others (k l , le1 ) lies outside the first Brillouin 
zone, and is brought back into it by the addition of a suitable reciprocal-lattice vector, G 
(b) Geometric construction to find the allowed values of frequency (W3) and wavevector (k3) of 
a phonon created in a U-process from the coalescence of two other phonons (wlk l , W2k2). It is 
assumed for simplicity that all three wavevectors are collinear. See Fig. 4.42 for an explanation of 
the construction. 

momentum is for an umldapp process involving two TA phonons (WI, k l ; W2, k 2) 

transforming into an LA phonon (W3, k3). (An additional N-process involving 
TA + LA -7 LA is also evidently a solution in this case.) Obviously U-processes can 
only occur when ki and k2 are comparable to or greater than half the extent of the first 
Brillouin zone. 

At very high temperatures (T » eD ), U-processes will be highly probable, and since 
the total number of phonons in a crystal is proportional to T (the high-temperature limit 
for the phonon-occupation number, eqn. (4.79», it is expected therefore that the 
phonon mean-free path A (limited by phonon-phonon collisions) will be inversely 
proportional to the number of phonons present; hence !1,T ex: T- I in this region, since 
Cl' is constant. 

In the intermediate temperature regime (T ~ eD ), the number of umldapp events 
freezes out as the temperature is lowered. Umklapp processes can only occur for 
phonons with wavevectors Ie 2': 'if/a; such phonons therefore must have energies of 
order ~ leBeD/2. The probability of such phonons existing is thus (from eqn. (4.68» 
proportional to exp( -eD/2T), and the temperature dependence of the phonon mean
free path will be the inverse of this. Therefore, in this regime, the thermal conductivity 
should increase exponentially with decreasing temperature according to 
!1,T ex: exp(eD /2T) (neglecting the relatively weak temperature dependence of the heat 
capacity at such temperatures). 

At yet lower temperatures, the mean-free path increases exponentially with inverse 
temperature until it becomes comparable to either the average separation between 
structural defects in the material (which can scatter phonons and hence limit A) or, 
for a sufficiently perfect crystal, until it becomes comparable to the dimensions of the 
specimen, and where the mean-free path is limited by boundary scattering of phonons 
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Fig. 4.46 (a) Schematic illustration of the temperature dependence of the phonon mean-free 
path in non-metallic crystals showing three regimes: I, temperature-independent region limited by 
impurity or boundary scattering; II, exponential dependence due to freeze-out of umklapp 
processes; III, T-l dependence reflecting the temperature dependence of the number of phonons. 
(b) Schematic illustration of the temperature dependence of the thermal conductivity of crystals 
corresponding to the behaviour of the mean-free path shown in (a). 
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from the external surfaces of the crystal (the Casimir limit). At low temperatures, the 
dominant phonon wavelength, related to the unit-cell parameter via 

BD 
Ac::::-a, 

T 
(4.234) 

is much larger than the size of point defects; hence the scattering of phonons by defects 
is analogous to the Rayleigh scattering of long-wavelength light by small particles, for 
which the scattering probability is proportional to k4 (or w4) or, in the present case, to 
T4 using eqn. (4.234), implying that the mean-free path behaves as A ex: T-4. Thus, at 
low temperatures, where Cvex: T3,!1,T ex: T- I. In the case of boundary scattering, the 
mean-free path will becQme independent of temperature and hence the temperature 
dependence of the heat capacity will determine that of the thermal conductivity: at 
low temperatures, therefore, !1,T ex: T3 (cf. eqn. (4.201). The temperature dependence of 
the phonon mean-free path for crystals is illustrated schematically in Fig. 4.46a, and 
that for the corresponding thermal conductivity in Fig. 4.46b; note that a pronounced 
peak in !1,T(T) is evident. 

Experimental data for !1,T of highly perfect crystals of sapphire (crystalline Ah03) of 
different sizes are shown in Fig. 4.47: in the low-temperature Casimir regime, where 
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Fig. 4.47 Thermal conductivities of cylindrical specimens of sapphire (crystalline alumina) 
having diameters of 1.02 mm (.), 1.55 mm (0) and 2.8 mm (+). (Berman et al. (1955). Reproduced 
by permission of The Royal Society) 

!1,T ex: T 3, the phonon mean-free paths are determined by the diameters of the samples. 
Note that this size effect vanishes at high temperatures, where the mean-free path is 
determined by V-processes. 

Sapphire is a good conductor of heat, and diamond is even better; for the case of good 
quality diamonds !1,T(300 K) c:::: 2000 W m- I K-I, appreciably larger than the thermal 
conductivity of metallic Cu at the same temperature (c:::: 400 W m- I K-I) for which the 
heat is carried predominantly by electrons. The high phonon thermal conductivity for 
diamond is the result of the very high values of sound velocity and Debye temperature 
characteristic of this material. 

Even a structurally perfect crystal containing a negligible concentration of structural 
defects may not exhibit boundary scattering at low temperatures if the solid contains a 
mixture of isotopes of the atoms: the associated differences in isotopic mass ensure that 
appreciable phonon scattering takes place since normal vibrational modes are independ
ent even in the harmonic limit only when all the masses of the lattice bases are identical. 
This isotope effect is shown in Fig. 4.48: it can be seen that the isotopically purer sample 
exhibits a factor of three enhancement in !1,T at the peak maximum and has the T3 
temperature dependence at low temperatures characteristic of boundary scattering, i.e. 
where the mean-free path is comparable to the size of the specimen and not limited by 
defects, isotopic or otherwise. 

Non-metallic glasses exhibit a behaviour of the thermal conductivity which is quantit
atively and qualitatively different from that exhibited by crystals (Fig. 4.46b): the 
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Fig. 4.48 Thermal conductivity of crystalline Ge showing the reduction in K.T caused by phonon 
scattering from different isotopes in the natural abundance sample (20% Ge70

, 27% Ge72 , 8% 
Ge73, 37% Ge74 and 8% Ge76). (Reprinted with permission from Geballe and Hull (1958), Phys. 
Rev. 110, 773. © 1958. The American Physical Society) 
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Fig. 4.49 Thermal conductivity as a function of temperature for a number of non-metallic 
glasses. (Reprinted with permission from Zeller and Pohl (1971), Phys. Rev. B4, 2029. © 1971. 
The American Physical Society) 

overall level of "'T for glasses is smaller by several orders of magnitude than that of 
crystals (see Fig. 4.49) due to the strong scattering of phonons by the disordered atomic 
structure. Furthermore, no peak in "'T(T) like that found for crystals is exhibited: 
instead, a plateau in "'T is found at::::= 10K, with a T2 dependence at lower temperatures 

(Fig. 4.49). 
The low-temperature T2 behaviour of "'T can be explained by assuming that propag

ating phonons are scattered by an additional mechanism involving the two-level systems 
(TLS) that dominate the heat capacity at such temperatures (§4.6.1). A resonant 
scattering mechanism can take place, whereby a phonon with energy nw equal to the 
energy-level spacing of the TLS can be absorbed, resulting in an excitation of the TLS 
from its ground state; the excited TLS can subsequently decay, thereby emitting an 
incoherent phonon, but with the same frequency. The probability of such resonant 
scattering processes will be proportional to both the density ofTLS states n(cg) (taken to 
be constant, no-see §4.6.1) and to the square of the phonon field, i.e. to their energy nw. 
Such phonons are dominant at a temperature T ::::= nw/kB (see eqn. (4.234)), and hence 
the phonon mean-free path should vary as A ex T- i for this mechanism. Since the heat 
capacity due to phonons in this temperature regime is Cvex T3 (although the localized 
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TLS states contribute to the heat capacity, they do not help to carry the heat since they 
are non-propagating), eqn. (4.232) predicts that "'T ex T2, as observed. As the tempera
ture increases, the dominant phonon wavelength decreases, and the phonon mean-free 
path also decreases (due to elastic sGattering of phonons by spatial fluctuations in 
density or force constants in the disordered structure), until eventually the mean-free 
path becomes comparable to the dominant phonon wavelength A. This condition 

A::::= A, (4.235) 

is called the Ioffe-Regel limit and is indicative of the onset of diffusive, rather than 
propagating, excitations, in this case phonons. The minimum value of A ::::= a corre
sponds to spatial localization of the excitations. Although the picture is still not entirely 
clear, it appears that phonons are very strongly scattered in the vicinity of the plateau in 
the temperature dependence of the thermal conductivity. The upturn in "'T beyond the 
plateau may be due to the anharmonic mixing of diffusive and propagating phonons to 
give other propagating phonons able to carry the heat. 

Problems 

4.1 Show that for the case of an isotropic solid, the longitudinal sound velocity is VI = (CII / p) 1/2 

and the transverse sound velocity is Vt = [(CII CI2)/2pjl/2. 
4.2 Derive an expression for the density of vibrational states in two dimensions for an isotropic 

material (see Fig. 4.4). . 
4.3 Extend the harmonic vibrational analysis of the monatomic linear chain to include interac

tions between neighbouring atoms more distant than the nearest neighbours. Show that the 
dispersion relation obtained is of the same form as eqn. (4.36) with an appropriate sum over 
neighbours. 

4.4 Calculate the vibrational density of states, g(w), for the periodic one-dimensional, mon
atomic chain and compare, by means of a sketch, its behaviour with that of the Debye 
density of-states characteristic of an elastic continuum. How does the behaviour change for 
the linear diatomic chain model? 

4.5 (a) Investigate the zone-centre and :z;one-boundary behaviour of the dispersion curve for 
the vibrations of a diatomic linear chain with equal force constants (eqn. (4.49) and 
prove eqns. (4.50-4.54). 

(b) What will the behaviour be at the zone boundary for a chain with equal masses but 
unequal force constants K', K"? 

4.6 (a) Calculate the reciprocal-lattice vectors G IOO , G IIO and Gill, and hence deduce the 
positions of the first Brillouin zone boundaries in these directions for the case of 
b.c.c. potassium with a = 5.23 A. 

(b) Why are the T and L vibrational modes degenerate for k ~ G lOo/2.(see Fig. 4.l5)? 
(c) Why do the dispersion curves match at Ie = G lOo /2 and GIlI /2? 
(d) Why does the slope of the dispersion curves not vanish at the first Brillouin zone 

boundary in the [111] direction? 
4.7 Derive 

(a) eqn. (4.75) for the average vibrational kinetic energy of a crystal; 
(b) eqn. (4.81) for the mean atomic displacement. 

4.8 Obtain an expression for the Debye-Waller factor (eqn. (4.87» in the Einstein approxima
tion at 0 K. Estimate how much of an incident (X-ray or neutron) beam is scattered 
inelastically from a crystal of Ge at 0 K for the first allowed Bragg peak (unit-cell parameter 
a = 5.66 A). 

4.9 Essay: Discuss the validity of applying cyclic (Born-von Karman) boundary conditions to 
the discussion of vibrational excitations in crystalline solids. (See, for example, Appendix IV 
in Born and Huang (1954).) 



4.10 Show that the frequency of the localized vibrational mode associated with a light substitu
tional impurity atom (mass J.L) in an otherwise periodic, linear monatomic chain (with 
masses M) is given by wfoc = 2Kj J.L when J.L «M. Rationalize thi~ result in terms o.f the 
degree oflocalization of the mode. Comment on the fact that the ratIOs of the frequencIes of 
the localized modes of 6Li and 7Li in AgBr:Li and AgCI:Li are 1.08 and 1.04, respectively. 

4.11 (a) Derive the Lyddane-Sachs-Teller relation (eqn. (4.149» in the electrostatic approx
imation, i.e. using only eqns. (4.131) and (4.133) of the Maxwell equations. (Hint: 
make use of eqn. (4.142» for the dielectric constant e(w).) 

(b) In this picture, account for the fact that WL > W[. 

(c) Compare the condition that gives the TO mode in this model with that which appears 
in a proper treatment based on the full set of Maxwell's equations (see §4.4). 

(d) Estimate the wavevector where polariton effects are important, and compare this 
value with a typic;al phonon zone-boundary wavevector. 

4.12 Derive the expression (eqn. (4.165» for the complex dielectric constant et(w) for the model 
of a damped dipolar oscillator having the equation of motion given by eqn. (4.164». Obtain 
expressions for the r~al (el) and imaginary (e2) parts of et, and show that e2 peaks at a 
frequency Wo = W[, and el has zeros at frequencies Wo and WL (in the limit of small 
damping). 

4.13 (a) Derive the Fresnel relations for light waves passing from vacuum (nr 1) through a 
medium with complex refractive indexnt. (Hint: make use of the fact that the values of 
E and H of the electromagnetic wave parallel to the interface are continuous across the 
boundary.) Hence, show that for normal incidence, the amplitude transmission factor 
from vacuum into the medium is tl = 2j(nt + 1), and from the medium back into the 
vacuum is t2 2nt j(nt + 1), and the amplitude reflectivity factor for reflection within 
the medium at the medium-vacuum interface is r = (nt - l)j(nt + 1). Show that the 
reflectance for intensities is correspondingly R = (n,. - 1)2 + "'1 j((n, + 1)2 + ",n· 

(b) Show that the amplitude of a beam transmitted through the medium, of thickness d, is 
given by 

E Eotlt2 exp(intwdjc)j[I-l). exp(2intwdjc)]. 

Hence show that for an optically thin sample (nt rv 1), the transmitted intensity obeys the 
Beer-Lambert law 1=10 exp(-Kd), where the absorption coefficient is given by eqn. 
(4.163). 

4.14 The normal experimental arrangement for Raman scattering has right-angle geometry in 
which the incident and scattered beams are at 90°. What is the value of the phonon 
wavevector in such a case, if laser light of wavelength 6000 A is used? The polariton 
dispersion curves for GaP shown in Fig. 4.29 were measured using Raman scattering. 
What scattering geometry do you think was used in this case? 

4.15 (a) Show that, for example by considering the conservation laws for energy and momen
tum, multiphonon (e.g. two-phonon) scattering produces a broad, featureless back
ground inelastic scattering spectrum, with the only peaks being due to one-phonon 
scattering processes. 

(b) Show that for an incident neutron with zero energy, one-phonon Stokes scattering is 
not possible but one-phonon anti-Stokes scattering is allowed. Use a graphical 
method to find the allowed solutions. 

4.16 Show that multiphonon inelastic scattering, where n phonons of a single vibrational mode 
are created or destroyed, can be described equivalently as nth-order Bragg scattering from a 
grating moving in the solid with the phonon phase velocity, and where the grating itself 
comprises density fluctuations in an otherwise continuous elastic medium. (Hint: consider 
scattering from a frame in which the grating is at rest, and consider the Doppler shift in 
frequencies between the laboratory and moving frames.) 

4.17 Estimate how good is the approximation for a real solid at room temperature of equating 
the heat capacities at constant volume and pressure. (Hint: derive the equation Cp CI' = 
VTf3}j"'T.) 

4.18 Show that the zero-point energy in the Debye model is given by %0 ~N1iwD for a solid 
containing N atoms. 
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4.19 Obtain expressions for the heat capacity of two-and one-dimensional solids in the Debye 
approximation and show that the limiting low-temperature behaviour is Cv ex Til, where n 
is the dimensionality. (For the appropriate vibrational densities of states, see Problems 4.2 
and 4.4.) 

4.20 Calculate the vibrational heat capacity of a solid in the Einstein approximation, i.e. assume 
that all vibrational modes have the same frequency woo What is the limiting behaviour of C" 
at very high and very low temperatures in this model? 

4.21 Obtain an expression for the heat capacity C" associated with a single two-level system, 
having energy levels at ±%. Sketch the temperature dependence of Cv and account for the 
behaviour at high temperatures. The peaked nature of Cv(T) is termed a Schottky anomaly. 

4.22 Show that, for the case of three-phonon mixing events (with the wavevectors all collinear), 
there is no allowed process involving three phonons from the same branch. 

4.23 Estimate the volume thermal expansion coefficient of Ar at 77 K by making use of the 
Grtineisen law (eqn. (4.220». TJ:le coefficients in the Lennard-Jones potential for Ar are 
to =; 1.67 X 10-21 J and a = 3.4 A, and eD 92K (see Problem 2.5 for the isothermal bulk 
modulus). (Hint: show, by expanding the interatomic potential V in a Taylor's series, that 
the Griineisen constant can be written as 

,= _~ (a3~) j(a2~) . 
6 ar r=a ar- r=a 

4.24 Essay: Compare and contrast the processes underlying heat conduction in a solid (mediated 
by phonons) and in a gas. 

4.25 Calculate the thermal conductivity at 1 K of a rod of crystalline synthetic sapphire with a 
diameter of 3mm (the molecular weight of Ah03 is 102). The velocity of sound may be 
taken to be 5 x 103 m s-I, the density = 4 x 103 kg m-3 and eD = 103K. 
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Introduction 

Solids are composed of a mixture of atomic nuclei and electrons. Thus far, we have 
tended to concentrate more on the properties associated with atoms in materials, and 
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the behaviour of the electrons has in general only been alluded to in passing, for 
example in connection with the force constants between atoms determining their vibra
tional behaviour. In the remaining part of this book, however, we will be concerned 
with the properties of the electrons in solids, specifically here with the electronic 
structure, i.e. the distribution of electrons (either spatially or as a function of energy) 
and the behaviour of the electron sub-system itself. 

Two, complementary, ways of treating electrons in solids have evolved over the years, 
and it is unfortunate that different scientific disciplines have, until recently, generally 
adopted one of these approaches and neglected the other. Thus, it has been traditional 
for physicists to treat electrons (in ideal crystals) as delocalized waves extending through
out the solid. The allowecr wave-like solutions of the quantum-mechanical Schrodinger 
equation for electrons moving in an appropriate potential can be labelled according to 
the wavevectors of the waves, resulting in a concise description of the allowed electron 
states as bands of allowed energies in reciprocal space 'ft(k) (in exact analogy with the 
dispersion curves w(q) of phonons in crystals - see §4.2.2). In contrast, chemists have 
traditionally regarded electrons in molecules and, by extension, in solids in terms of 
atomic orbitals, i.e. as spatially localized bonds (e.g. pairs of electrons) between pairs of 
atoms; thus this is a local, real-space picture. 

These two approaches can be equivalent, but they stress different aspects of the 
problem. Moreover, they each have particular advantages and disadvantages in their 
description of electron states. It is obviously very helpful to be able to describe, and 
hence to visualize, electron states in a real-space description, and this is why the 
chemist's approach is so appealing. This local picture is especially useful for describing 
electrons in insulating (non-metallic) materials in general and in amorphous (non
crystalline) solids in particular. The reciprocal-space description conventionally used 
by physicists is a very powerful approach which allows electronic properties to be 
calculated relatively straightforwardly, employing the simplifying features of symmetry. 
However, it has the disadvantage that thinking in reciprocal-space terms is somewhat 
unnatural; moreover, this approach is only valid for perfectly crystalline systems and 
cannot be used if structural disorder is present. Furthermore;the neglect of electron
electron interactions inherent in the wave-like electron band theory means that many 
materials are wrongly predicted to be metallic conductors by this model and are, in fact, 
insulators. 

In this chapter we will discuss the electronic structure of materials, i.e. the spatial and 
energetic distribution of electrons in solids, together with their equilibrium and optical 
properties. In discussing electron states in solids, we commence with the physicist's view 
involving the description of free electrons in a wave-like way (band theory), followed by 
a real-space description more in accord with the chemist's bonding viewpoint, and an 
attempt will be made to reconcile these two apparently opposing points of view. Finally, 
a discussion of optical properties of materials, i.e. the interaction between photons and 
electrons in solids, will be given. Non-equilibrium (transport) electronic properties of 
solids form the subject of Chapter 6, while Chapter 7 is devoted to a discussion of the 
behaviour of spatially localized electrons (e.g. magnetic and dielectric properties). 

Electrons as a gas 5.1 

5.1.1 The free-electron gas 

The simplest model for describing electrons in solids is to assume that the valence 
electrons of an atom (that is, electrons from the outermost unfilled electron shells) 
are, in solids, free to move anywhere throughout the volume of the material; thus they 
behave as a delocalized 'gas' of free electrons. This is an appropriate model for metallic 
solids. For the case of alkali metals, for example Na, the neutral atom has the electronic 
configuration IS22s22p63s1, and the valence electron in this case is the single 3s electron. 
Ionization of the valence electron leaves behind the core electrons, having an inert-gas
like configuration, and they remain tightly bound to the nucleus (in the case ofNa+, the 
core electrons are the set Is22s22p6). In the case of transition-metal and rare-earth 
elements, the d- and f-electrons, even in part-filled shells, are sufficiently tightly 
bound to the nucleus that they do not contribute to the free-electron gas. The model 
assumes that the ion cores (the atomic nuclei plus core electrons) have a negligible size 
(i.e. the valence-electron gas is free to explore all points in the volume). This is not a bad 
approximation in practice, since the amount of free volume outside the ion cores }s 
appreciable in such materials (e.g. the internpclear separation in solid Na is 3.66 A, 
considerably larger than the distance of 1.94 A equal to twice the ionic radius of Na+). 

Another assumption underlying the free-electron-gas model is that the valence elec
trons experience everywhere in the solid a constant electrostatic potential. This is 
obviously untrue in practice, since the ion cores will actually be the sites of deep minima 
in the potential, but nevertheless it is often a reasonably good approximation that the 
potential associated with the ion cores is constant between ionic sites (see §5.2.3). In the 
simplest version ofthe free-electron-gas model, any 'graininess' associated with individual 
atoms is smoothed out. Hence it is assumed that the net charge associated with the ion 
cores (as well as the rest of the valence electrons) is uniformly distributed throughout the 
volume of the solid; this is known as the jellium model. A valence electron experiences a 
constant potential everywhere, except at the surfaces of the solid where there is a potential 
barrier preventing escape of electrons out of the solid. The potential model is therefore 
that of the 3D square-well, particle-in-a box problem (Fig. 5.1): an electron having a total 
energy 'ft will therefore have a work function (the extra energy needed for an electron 
escape from the solid) given by ¢ = W - 'ft, where Wis the well depth (see Fig. 5.1). 

w 
~-------

o L 

Fig. 5.1 Illustration of the square-well potential experienced by an electron in the free-electron
gas model. The potential due to the charged ion cores is assumed to be spatially uniform. A free 
valence electron, having a total energy eg, is therefore bound within a solid as long as eg < W (the 
well depth); the work-function energy is cp = W eg. 



The scenario whereby all free electrons have the same average kinetic energy 'ilS and 
the electrons are treated as classical distinguishable particles, as in a normal gas, is 
known as the Drude model. 

5.1.2 The Fermi electron gas 

Electrons are quantum, not classical, particles and so the allowed electronic states must 
be solutions of the Schrodinger equation which, in the general (non-relativistic) case 
where the potential energy V is a function of both space and time, is 

t/i ? • {) 

- -2 . \7-\lF(r, t) + V(r, t)\lF(r, t) = 111f:j [\IF(r, t)], (5.1) 
me ut 

where me is the electron mass and \IF(r, t) is the electron wavefunction, i.e. the wave-like 
solution of eqn. (5.1). For the case of a potential energy that is time-independent, 
V(r, t) = V(r), the wavefunction can be separated into the product of a spatially 
varying and a time-dependent part, viz. 

\IF(r, t) = 1/;(I')¢(t), (5.2) 

and the spatially varying wavefunction 1/;(1') is the stationary-state solution of the time
independent Schrodinger equation 

112 
--2 \721/;(1') + V1/;(I') = 'ilS1/;(I') , 

me 
(S.3a) 

or equivalently as the eigenvalue equation 

'y( 1/;(1') = 'ilS1/;(I'), (5.3ab) 

where J't is the Hamiltonian operator (= -(112/2me)\l2 + V). 
For the case where the potential energy is time-independent, the time-dependent 

Schrodinger equation (eqn. (5.1» becomes 

il1~ \IF(r, t) = 'ilS\lF(I', t) (S.4a) 

or, using eqn. (5.2), 

(S.4b) 

The solution of this is 

¢(t) = exp(-i'ilSt/l1) exp(-iwt) (5.5) 

where w is the radial frequency (= 'ilS/I1) and so 

\IF(r, t) = 1/;(r)exp( -iwt). (5.6) 

Allowed solutions of eqn. (5.3) depend on the appropriate boundary conditions to 
which the electrons are subject, and are quantized; that is, the energies of the allowed 
states are functions of discrete quantum numbers. 

There is obviously a formal equivalence between the quantum electron-gas model and 
the elastic-continuum model for vibrational excitations in solids described in §4.1: in 
both, the 'graininess' associated with the presence of atoms in real solids is averaged 

out. However, there is an important difference between electrons and phonons (or 
indeed the classical distinguishable particles of the Drude model, §5.1.1), namely that 
electrons are indistinguishable particles having a non-integral spin (s 1/2) and, as 
such, are fermions and obey the Pauli exclusion principle. The occupancy of allowed 
electron states is determined by the Fermi-Dirac distribution function (very different 
from the Planck distribution function characteristic of phonons (eqn. (4.68» or the 
Maxwell-Boltzmann distribution applicable to classical distinguishable particles, e.g. 
eqn. (3.7». The model of a quantum free-electron gas subject to Fermi-Dirac statistics 
is called the Sommerfeld model; this will be analysed in the rest of this section. 

In general, the solution of the Schrodinger equation (eqn. (5.3» is an almost impos
sible task because of the complications caused by electron-electron interactions. As a 
result, the Hamiltonian (through the potential-energy telm) is a function of the posi
tions of all the electrons, 'y( = ,Y((I'I' 1'2, .. . ), and hence the electron wavefunction is a 
many-body function, 1/;(1'1,1'2, ... ). The problem is greatly simplified, however, by 
invoking the independent-electron approximation, in which the electrons mutually 
interact only via an averaged potential energy (the Hartree approximation, but see 
eqn. (2.84». In this way, the Hamiltonian can be written as the sum of individual one
electron terms: 

,Y((I'I' 1'2,"') = ,Y((rr) + 'y((I'2) + ... , (5.7) 

and, as a result, the many-body wavefunction becomes the product of individual one
electron wavefunctions: 

1/;(1'1,1'2, ... ) = 1/;(rr) x 1/;(1'2) X ... (5.8) 

The independent-electron approximation works essentially because of the screening (i.e. 
decrease) by all other electrons of the interaction between any two electrons (see 
§§2.5.3.4 and 5.6.1 for further details). The free particles are in reality quasiparticles, 
comprising an electron and its associated 'orthogonality hole' (§2.5.3.4). 

For simplicity, assume that a solid can be represented as a cubical box, of side L, with 
a constant potential energy V (compli~ing the ~n-core and averaged electron-electron 
potential energies) in its interior (and taken to be V = 0 without any loss of generality), 
and with a potential barrier Wat the boundaries (Fig. 5.1). The general, one-electron 
wavefunction that is a solution to the Schrodinger equation (eqn. (5.3a» is 

1/;(1') = A exp(i Ie . 1') = A exp[i(kxx + k)'y + k=z)] (5.9) 

where A is a normalization constant set by the condition that there is one electron in the 
box, viz. 

1 = J 1/;*1/; dr. (5.10) 

The appropriate boundary conditions to take in the case of an electron trapped in a well 
and subject to a uniform potential, as in Fig. 5.1, is that the wavefunction1/;(r) goes to 
zero, i.e. has a node, at the boundaries of the box (strictly valid only for infinitely high 
barriers at the boundaries). Note that this is different in detail to the case of vibrations 
in an elastic continuum (§4.12), where an antinode of the vibrational amplitude at the 
mechanically free surfaces was taken as the boundary condition. However, the final 
result concerning the density of modes is the same. The use of these boundary condi
tions leads to the standing-wave solutions (see Problem 3.6): 
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Fig.5.2 The first three allowed wavefunctions for an electron trapped in a box oflength L (taken 
to be one-dimensional for ease of visualization), displaced according to the corresponding energy 
levels. 

1f;(x,y,z) = (;3) I/\in(nl ~)sin(n2 7)sin(n3 7), 
where (nl' n2, n3) are quantum numbers (which are non-zero positive integers, and the 
normalization constant is A (8/L3)1/2. The first three wavefunctions are illustrated 
(for the case of one dimension, 1f;(x) ex: sin (mrx/ L), for ease of visualization) in Fig. 5.2. 
As in §4.1.2, the allowed standing-wave solutions can be represented instead as points in 
reciprocal space, having the values k~ = ni(7C/ L)(i x,y, z) (eqn. (4.18», corresponding· 
to the wavevectors of the standing waves. However, because electrons are spin-1/2 
particles, each allowed k-state can contain two electrons (the spin degeneracy is two in 
the absence of a magnetic field). 

The energy levels of the 3D particle-in-a-box problem are given by eqn. (3.18) (see 
also Problem 3.6), obtained by substituting eqn. (5.11) into eqn. (5.3a) which, rewritten 
in terms of wavevectors, are given by 

tz2 ? tz2k2 
~(k) -2 (~+1S+1S) =-2-' 

n1e me 

where the superscript s has been omitted for clarity. ~(k) is a simple parabolic function 
ofk. 

From the previous discussion of vibrational modes of continuous media (§4.1.2), the 
allowed k-states corresponding to physically distinct standing-wave solutions of the 
Schrodinger equation occupy only the positive octant in k-space (since ni, and hence 
ki' > 0). Moreover, for macroscopic samples with large size L, the separation in k-space 
between points corresponding to allowed states becomes infinitesimal, and hence the 
number of allowed electron states with k-values between k and k + dk (eqn. (4.21» is 
simply the volume of the spherical shell with radius k and thickness dk in the positive 
octant (Fig. 5.3), multiplied by the k-space density of standing-wave points, (L/7C)3 
(eqn. (4.20», multiplied by the spin degeneracy gs = 2, i.e. 

Fermi surface 
~=~F 

Fig. 5.3 Representation of the Fermi sphere for a 3D free-electron gas in k-space. The Fermi 
surface, corresponding to electron states with the Fermi energy ';gF, is the surface of the sphere, 
and marks the demarcation at zero kelvin between occupied (shaded) and unoccupied k-states. 
For the case of boundary conditions leading to standing-wave electron states in a box, only the 
positive octant of this sphere contains physically distinct states. For the case of Born-von Karman 
periodic boundary conditions, leading to running-wave solutions, all states in the spherical 
volume correspond to physically distinct states. (The spaciI!gs between allowed k-states differ 
by a factor of two for these two situations, although the value of the Fermi wavevector, the radius 
of the Fermi sphere, is identical in both cases.) 

Vk;2 
g(k)dk = -2 dk, 

7C 
(5.13) 

where V = L3 is the volume of the box. (In fact, this result is independent of the type of 
boundary conditions chosen, whether leading to standing waves, as here, or running 
waves - ·see. §4.2.1). . 

The density of free-electron states as a function of energy, g(~), is given by 

g(~) 

and hence, using eqns. (5.12) and (5.13): 

dk 
g(k) d~' 

(~) _ ~ (2me) 3/2 ~1/2 
g - 27C2 tz2 . 

(5.14) 

(5.15) 

Each state can accommodate only one electron by the Pauli exclusion principle (recall 
that the spin degeneracy of two has already been included), and the ground-state 
configuration (at T 0 K) of the free-electron gas of N electrons corresponds to filling 
the N lowest states, up to an energy ~ = ~F (the Fermi energy), viz. 

fCf!,F V (2m )3/2 2 
N = Jo g(~)d~ = 37C2 -i~F = 3~Fg(~F)' (5.16) 

with the Fermi energy given by 



~F = t/ (31T2N) 2/3 (5.17) 2lne V 
The Fermi energy is determined by the electron density, N/V, or the atomic density if 
there is a contribution of just one valence electron per atom to the free-electron gas, as 
for alkali metals. A corresponding reference temperature, the Fermi temperature of the 
electron gas (which is not a true temperature), can be defined as 

(5.18) 

and the Fermi wavevector (the radius of the Fermi sphere - see Fig. 5.3) is, from eqn. 
(5.12), 

(5.19) 

Values of ~F arf< very high, of the order of several electron volts, corresponding to 
temperatures of ~ 20000 K (see Table 5.1 and Problem 5.1). The fact that there is a 
spread in electron energies from ~ = 0 to ~F' even for the ground-state configuration at 
T = 0 K, is a direct consequence of the quantum statistics (i.e. the Pauli exclusion 
principle) that govern the state occupancy of such p<;lrticles. This behaviour is in stark 
contrast with the behaviour of a gas of classical, distinguishable particles (as assumed 
for electrons in the Drude theory - §5.1.1), where the average kinetic energy of every 
particle is 'g 3kBT /2, and hence is zero at the absolute zero of temperature. For the 
case of a 3D gas of N electrons, the average kinetic energy at T 0 K can be calculated 
simply from the density of states (eqn. (5.15)), viz. 

Table 5.1 Values of Fermi energy, temperature and 
wavevector for some metallic elements 

Ag 
Al 
Au 
Ba 
Be 
Cs 
Cu 
Fe 
K 
Li 
Na 
Pb 
Rb 
Sn 
Zn 

5.49 
11.7 
5.53 
3.64 

14.3 
1.59 
7.0 

11.1 
2.12 
4.74 
3.24 
9.47 
1.85 

10.2 
9.47 

6.38 
13.6 
6.42 
4.23 

16.6 
1.84 
8.16 

13.0 
2.46 
5.51 
3.77 

11.0 
2.15 

11.8 
11.0 

1.20 
1.75 
1.21 
0.98 
1.94 
0.65 
1.36 
1.71 
0.75 
1.12 
0.92 
1.58 
0.70 
1.64 
1.58 

These values are calculated by assuming that the number of free 
electrons per atom contributing to the electron gas is equal to the 
conventional valence (i.e. including s- and p-electrons, but 
neglecting d-electrons). 

('g) = r'fl,F 'gg('g)d'g = ~ (2n~e) 3/2 r F 
'g3/2d'g 

io 21T- Ii- io 
3 

=5N~F. 

(5.20) 

This value is not simply N'gF /2 because the density of states is not constant, but 
increases with energy. 

At temperatures above absolute zero, electrons can be thermally excited from filled 
states below 'g F to empty states above it. The occupancy of electron states is governed 
by the Fermi-Dirac distribution function,f(~). This function can be derived by making 
use of the grand partition function (or grand sum) which is the normalizing factor for 
the occupation probabilities of energy levels when the number of particles N is not held 
constant (see e.g. Kittel and Kroemer (1980)), viz. 

00 

l= .L.Lexp[NIL-~I(N)l/kBT. (5.21) 
N=O 1 

This is a sum of Gibbs functions over all states 1 of the system and for all N; the quantity 
IL is the chemical potential. (Note that the partition function, used for discussing the 
statistics obeyed by phonons (eqn. (4.64)), is obtained from (eqn. (5.21) by simply 
setting IL = 0; in the case of vibrational excitations, only the energy levels of a single 
oscillator are considered.) For the case of an electron orbital (a solution of the Schro
dinger equation for a single electron), taken to be the system, in thermal contact and in 
equilibrium with all other orbitals, forming the reservoir and having an energy equal to 
the chemical potentiallL, evaluation of the grand sum (eqn. (5.21)) is simple, since an 
orbital can only be unoccupied or occupied by an single electron in accordance with 
Pauli's exclusion principle. Thus: 

(5.22) 

where the first term corresponds to the case of zero occupancy (N = 0; ~ = 0). The 
thermal average value of the occupancy of the orbital is therefore given by the Gibbs 
factor for the occupied orbital divided by the grand sum, viz. 

(5.23) 

It is conventional to denote the average occupancy (n('g)) by f(~). At T = 0 K, the 
Fermi-Dirac function is a step function, f(~) = 1 for'g < IL, and f('g) = 0 for ~ > IL, 
and the chemical potential at this temperature is called the Fermi energy, i.e. 

(5.24) 

In general, the chemical potential corresponds to the energy at whichf('g) = 0.5, as can 
be seen from eqn. (5.23). 

The Fermi-Dirac distribution function varies with temperature as shown in Fig. 5.4: 
at finite temperatures, electrons are thelmally excited from filled states lying below the 
chemical potential to empty states lying above it. For the case where the total number of 
electrons in a (3D) solid is constant, the chemical potential must decrease with increas
ing temperature in order to compensate for the broadening of the distribution to 
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Fig. 5.4 The Fenni-Dirac distribution function at various temperatures for the value of Fermi 
temperature TF = Cf!,F/kB = 50000K. The total number of particles is constant. The chemical 
potential J.L at each temperature is the energy at whichf(Cf!,) = 0.5. 

N('f,) 

Fig.5.5 Density of occupied electron states as a function of energy N(Cf!,) = f(Cf!" T)g(Cf!,) for a 3D 
free-electron gas at a finite temperature T « TF (solid curve). The shaded area represents the fIlled 
states at T 0 K. The dashed line is the density of states for a 3D free-electron gas. Electrons that 
are in states in region 1 at OK, of width of order kBT, are thermally excited to region 2 at a finite 
temperature, T. As a result, the average energy of the electron gas increases with temperature. 

maintain this constancy. The number of electrons is given by an integral over the free
electron density of states (eqn. (5.15» mUltiplied by the Fermi-Dirac function (eqn. 
(5.23», i.e. an integral over occupied orbitals (see Fig. 5.5), with the (energy) density of 
occupied orbitals at energy ~ being 

* 

* 
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N{~) = f{~, T)g{~); 
Hence, at a finite temperature (cf. eqn. (5.16»: 

N 100 

f{~, T)g(~)d~ 

1
00 ~1/2d~ 

-A 
- 0 exp[(~· - J.L)/kBT + 1] 

299 

(5.25) 

(5.26) 

where A and B are constants, and the changes of variables x = Cfb/kBT and 'TJ J.L/kBT 
have been made. The full temperature dependence of J.L( T) may be obtained from eqn. 
(5.26) by numerical integration (see e.g. Kittel and Kroemer (1980»; the result is shown 
graphically in Fig. 5.6. 

Alternatively, by considering the general integral 

1= l°Of(~){d~~)}d~, (5.27a) 

where r(Cfb) is any function that is zero at ~ 0, which can be evaluated approximately 
as (see Problem 5.3) 

1- r() (1fkBT)2 d
2
r(J.L) 

- J.L + 6 dCfb2' (5.27b) 

it can be demonstrated (see Problem 5.3) that the two leading terms in the expansion of 
the temperature of J.L for the 3D Fermi gas are given by: 

[ 
~ (kBT)2] J.L(T) ~CfbF 1 12 ~ . (5.28) 

Region of degenerate quantum gas 

+2r----f------------------------__________ ~ 

Region of classical gas 

-2 

-4 

Fig. 5.6 Temperature dependence of the chemical potential of a non-interacting 3D free-electron 
gas. The units of J.L and kBT have been chosen to be 0.763Cf!,F, corresponding to the value 
~F = (3/2)2/3. The shaded portion marks the region where the electrons behave as a degenerate 
quantum gas. (Mter Kittel (1996). Reproduced by permission of John Wiley & Sons Inc.) 
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Fig. 5.7 Plot of the temperature derivative of the Fermi-Dirac distribution function, 
8f("f/" T)/8T. Electrons that occupy states just below "f/,F can be excited into states just above "f/,F. 

Non-interacting fermions, for which T « TF, form what is called a degenerate Fermi 
gas. (Since TF is so high for metallic solids (see Table 5.1), this limit always applies for 
the case of conduction electrons in metals at temperatures below their melting points.) 
Note from Fig. 5.6 and eqn. (5.28) that, in the degenerate regime, the chemical potential 
is almost temperature-independent and close in value to that characteristic of zero 
kelvin, i.e. /-L(T) ~ ~F. Therefore, the temperature derivative of the Fermi-Dirac func
tion in the degenerate limit (taking /-L = ~F) can be written approximately as: 

df(~, T) rv (~ - ~F) exp[(~ - ~F)/kBTl . 

dT kBT2 {exp[(~ - ~F)/kBTl + 1}2' 
(5.29) 

it can be readily seen from Fig. 5.7 that this quantity is only significant for energies in 
the vicinity of~F. As a result, the Fermi surface is quite sharp, even at relatively high 
temperatures (which are, of course, still much smaller than TF)' 

5.1.3 Properties of the Fermi electron gas 

A number of equilibrium physical properties of metallic solids can be understood in 
terms of the free-electron Fermi-gas model. These include the electronic contributions 
to the bulk modulus, the heat capacity and thermal expansion. Non-equilibrium trans
port properties (e.g. electrical and thermal conductivities) associated with the free
electron gas are discussed in Chapter 6 and magnetic properties in Chapter 7. 

5.1.3.1 Electronic heat capacity 

The heat capacity at constant volume is the change in internal energy with temperature 
(eqn. (4.191». There will be an electronic contribution to the heat capacity, in addition 
to the vibrational term (eqn. (4.192», if free electrons are present in a solid since they 
too can be thermally excited to higher energies. If the free electrons are regarded as a 
classical gas of N particles (the Drude model), the thermal energy is entirely transla
tionally kinetic in nature, and in the Dulong-Petit limit, i.e. when kBT» b.~, where 

* 

b.~ is the energy spacing between translational energy levels, it is expected that the he~t 
capacity would be temperature-independent, i.e. CI' = 3NkB /2. In fact, the electrol1lC 
contribution to C" is found experimentally to be linearly dependent on temperature, and 
moreover much smaller in magnitude than the Dulong-Petit value. This behaviour can 
only be understood in terms of the Fermi-gas model. . ' 

For a Fermi gas, unlike a classical gas of distinguishable particles, the Paub exclusIOn 
principle restricts thermal excitations only to those ele~trons occ.upying states ,:ithi~ an 
energy range of approximately kB T below the FermI level WhIC~ can be excIted I~to 
empty states above ~F (see Fig. 5.5). Thus only a very small fractIOn ofthe conductIOn 
electrons can contribute to the heat capacity, namely those lying at the top of the energy 
distribution: lower-lying electrons cannot be thermally excited because this would lead 
to the double occupancy of states by electrons with the same spin, which is forbidden by 
the Pauli exclusion principle. 

An approximate expression for the electronic heat capacity can be obtain.ed from ~n 
examination of Fig. 5.5. If the shaded areas, representing electron states mvolved m 
thermal excitation at a temperature T compared with the zero-kelvin electron distribu
tion, are approximated as triangles of height (1 /2)g(~F) and base 2kB T, then Fig. 5 .. 5 
implies that an approximate number of electrons given by (I /2)g(~F )kB T have theIr 
energies increased on average by kBT. The internal energy then increases by the amount 

I ?? 
U(T) - U(O) ~ 2g(~F)kBT-, 

whence differentiation with respect to temperature gives for the heat capacity 

? 3N 3 T ) 
Cv ~ g(~F)kBT = 2eg-kiT = 2NkBT' (5.30 

. F F 

using eqn. (5.16). 
Although this approximate treatment produces a numerical factor that is too small by 

a factor of about three (see below), nevertheless the functional form is correct. It can be 
seen that eqn. (5.30) predicts that the electronic heat capacity is linearly dependent on 
temperature. Hence the total heat capacity (electronic and vibrational) at low temperat
ures can be written as (cf. eqn. (4.201»: 

(5.31 ) 

(Note that the linear term in this expression, due to t~e Fermi gas, s~ou!d not. be 
confused with that associated with two-level (vibratIOnal) systems m msulatmg 
glasses - see eqn. (4.207).) A plot of C,,/T versus T2 therefore all~ws the ele~tronic 
and lattice contributions to be separated, as the zero-temperature mtercept (I.e. the 
Sommerfeld parameter ,) and slope (a), respectively. This behaviour is shown in 
Fig. 5.8. 

A more exact calculation of the electronic heat capacity in the Fermi-gas approx
imation should take account of the fact that the chemical potential is temperature
dependent (albeit weakly - cf. eqn. (5.28» and should properly treat the thermal 
occupancy of the electron states. The internal energy of the electron gas at a temperature 
Tis given by 

U(T) = 100 

~f(~, T)g(~)d~. (5.32) 
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Fig.5.8 Plot of Cv/T versus T2 for potassium, revealing a linearly temperature-dependent term 
(as a finite intercept on the zero-temperature axis) due to the electronic contribution to the heat 
capacity. (Reprinted with permission from Lien and Phillips (1964), Phys. Rev. 133, A1370. © 
1964. The American Physical Society) 

Using the same approach as employed to evaluate the chemical potential using the 
general integral given by eqn. (5.27a), the function r(cg) is thus given by 
r = J; cg'g(cg')dcg'. Hence, using eqn. (5.27b), the internal energy can be rewritten as: 

U(T) = loJL cgg(cg)d'& + (llk:T)2 {d~ [cgg(cg)]} JL' (5.33) 

Making use of eqn. (5.15), i.e. g(cg) = A(cg) 1/2, the quantity {d[cgg(cg)]/dcg} equals 
(3/2)g(J.l) ~ (3/2)g(cgF). The integral in eqn. (5.33) can be evaluated as: JL 

by making use of eqn. (5.28). Expanding the term in square brackets gives 

I ~ 2Acg5/2 _ ~ AcgS/2{kBT}2 ~cg2 (cg) ~ (k T)2 (cg ) 
5 F 12 F cgF 5 Fg F 12 B g F· (5.34) 

Thus, from eqns. (5.33) and (5.34), the internal energy of the Fermi gas is given by: 

2 2 ~ 2 
U(T) ~5cgFg(cgF) +6" (kBT) g(cgF) (5.35a) 

or 

(5.35b) 

* 

from eqn. (5.16). Thus, differentiating eqn. (5.35) with respect to temperature gives the * 
he;:lt capacity (cf. eqn. (5.30)): 

(5.36a) 

This is a general expression valid for any density of states. For the specific case of a free
electron gas: 
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(5.36b) 

Although the functional form of eqn. (5.36) is well obeyed by simple metals (see Fig. 
5.8), there is usually a discrepancy in quantitative agreement (by a factor of two or 
three) between experimental values of Cv and those calculated on the basis of the Fermi
gas model using the free-electron mass, me, in the expression for cgF (eqn. (5.17)). This 
discrepancy can be rationalized by invoking an effective mass, m;, for the electron that 
is different from me. Such an effective mass arises because of the breakdown for real 
materials of two assumptions implicit in the Fermi-gas model: (i) a constant electrostatic 
potential experienced by the electrons (continuum approximation), and (ii) neglect of 
electron interactions. In reality, electrons move in the spatially varying potential asso
ciated with the ion cores, and this can have pronounced effects on the allowed energy 
states that an electron may have. Correspondingly the parabolic dispersion relation, 
cg(k) ex: k2 (eqn. (5.12)), characteristic of free particles is no longer valid, and the 
associated effective mass is no longer that of a free particle (see §6.2.1). Electron
electron interactions also contribute to departures of the effective electron mass from 
the free-electron value, due to an inertial reaction between electrons, as do electron
phonon interactions (the motion of an electron causes a concomitant change in the local 
atomic coordinates, i.e. it 'drags' the lattice with it). In certain cases, particularly for 
f-electron-containing metallic' alloys, e.g. UBe13, CeAI3, the effective electron mass 
inferred from heat-capacity measurements is some three orders of magnitude higher 
than me; such materials are termed, not surprisingly, .heavy-fermion compounds. 

*5.1.3.2 Cohesive energy 

The electronic energy considered so far, namely the kinetic energy of the Fermi gas (eqn. 
(5.20)), is entirely repulsive in 'character: it provides no attractive term to bind atoms 
together in a solid. A simple model for the cohesive energy was given in §2.2.3.1 in terms 
of the Coulomb attraction between the electrons and the ion cores. In reality, the'picture 
is a little more complicated, since even for the Fermi gas in the jellium model, where the 
positive ionic charges are assumed to be uniformly distributed, there is an effective 
attractive interaction between the free electrons and the positive background charge. 
This results from the exchange interaction which is a manifestation of the Pauli exclu
sion principle: the electron motion is correlated, with two parallel-spin electrons tending 
to avoid each other, thereby creating an exchange-correlation hole (Fig. 2.45). Since the 
hole is associated with the exclusion of exactly one electron, this therefore exposes one 
positive unit of background jellium charge, resulting· in an attractive interaction 
between an electron and this positive charge. 

This exchange interaction is somewhat complicated to evaluate (see e.g. Ashcroft and 
Mermin (1976) or Madelung (1978)); the result is that the free-electron eigenenergy of 
the Schrodinger equation (eqn. (5.12)) is modified to: 

cg = "Pk
2 

_ e
2
kF (2 + k~ k2lnlk + kFI), 

2me 87r2co kkF k - kF 
(5.37) 

where the Fermi wavevector is given by eqn. (5.19). Integrating this energy over the 
Fermi sphere gives for the average electron energy at zero kelvin: 
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(5.38) 

The exchange energy, the second term in eqn. (5.38), results from the solution of the 
Hartree-Fock equations, obtained by insisting that the one-electron wavefunctiorts 
characteristic of the Hartree equation (the Schr6dinger equation with the Hartree 
potential, eqn. (2.81), and no electron correlations) be antisymmetric (I.e. obeying 
Fermi-Dirac statistics). However, even this is an approximation, and the correction 
terms to the Hartree-Fock exchange energy (eqn. (5.38» are often referred to as the 
correlation energy, interpreted as resulting from the Coulombic repulsion between 
antiparallel-spin electrons, although strictly they are just a higher-order approximation 
to the exchange term. The electron energy is often written in terms of atomic units, i.e. 
with energies measured in Rydbergs (the ionization energy of the H atom, 13.6 eV) and 
distances measured in Bohr radii (ao = 0.529 A), with e2 = 2 and 41rco = 1. The total 
energy of the Fermi gas in these units is (Pettifor (1995»: 

2.21 0.916 
UFg? (0.115-0.0313lnrs). (5.39) rs rs 

The first two terms are just the Hartree-Fock terms (eqn. (5.38», and the third term in 
parentheses is the 'correlation' energy, rewritten in terms of the quantity rs , the radius of 
a sphere containing on average a single electron. For a gas of N electrons in a volume V, 
this is given by: 

/' = (_3 V )1/3 
s 41rN 

Z-I/3 rws , (5.40) 

where rws is the Wigner-Seitz radius (§2.2.2.3) and the charge on an ion is taken to be 
Ze. The energy of the Fermi gas (eqn. (5.39» is plotted in Fig. 5.9: it has a minimum at 
rs = 2.23 A (4.2 atomic units (au», with a well depth of 2.2 eV (0.16 Ryd). 

The assumption in the jellium model of a uniform positive charge density, represent
ing that of the ion cores, is obviously unrealistic. The interaction energy between Z 
electrons in a Wigner-Seitz cell (assumed for simplicity to be spherical) and a point ion 
of charge +Ze, taking into account also the inter-electron repulsion within the cell, is 
given by (see Problem 5.8 and eqn. (2.17»: 

Fig.5.9 The energy of the Fermi gas (eqn. (5.39)) plotted in electron volts and angstroms. (After 
Sutton (1993), Electronic Structure of Materials, by permission of Oxford University Press) 

Uws = Vei + Uee 
3Z2e2 3Z2e2 9Z2e2 

---+---=----. 
81rcor ws 201rcor ws 401rcor ws 

(5.41) 

However, this is an overestimate, since the repulsion between core and valence electrons 
is neglected. 

This effect can be taken into account by assuming that instead of experiencing the 
true attractive Coulomb potential of the ion, -Ze/41rcor, a valence electron experiences 
a much weaker potential in the vicinity I' < r c of the ion core; this is called a pseudo
potential. This behaviour is another consequence of the Pauli exclusion principle. 
Valence electrons are excluded from the core region if the core-electron orbitals are 
occupied. Since the valence-electron wavefunction is orthogonal to the core states, the 
resulting depletion in valence-electron charge density is termed the orthogonality hole 
(Fig. 5.10). Thus, the valence electrons experience an apparent repulsive component of 
the potential in the core region, which can almost cancel that of the attractive Cou
lombic term .. When this cancellation is complete, the potential is called the Ashcroft 
empty-core pseudopatential (Fig. 5.11), i.e. 

Vps(r) = 0, r < re , 

(5.42) 
r> re. 

This type of pseudopotential, which does not differen,tiate between electron states with 
different angular momenta, is said to be locaL The form of the Ashcroft pseudopotential 

'I' 

(Wave function) 8 
(~~~rg-e-d-en-si-ty-)----""'I :v: I 

Orthogonality 
hole 

Fig. 5.10 The wavefunction 'If; and charge density p of a valence electron in the vicinity of an ion 
core. The rapid oscillations in 'If; in the core region, required so that 'If; is orthogonal to the tightly 
bound core electrons, are associated with a depletion in the valence-electron charge density (the 
orthogonality hole). 

Fig.5.11 The Ashcroft empty-core pseudopotential: Vps = 0 for r < re· 
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causes a modification to the electron-ion attractive interaction (the first term in eqn. 
(S.41)), namely: 

Uci -8~~::: [1 -(:J]. 
The total expression for the cohesive energy is thus given by 

Ucoh = ZUFg + Uws . 

In atomic units, this is 

u. - Z{2.21 
coh - r~ 

0.916 -(O.l1S _ 0.0313lnrs)} _ 3Z
2 

[1 _ (~)2l + I.2Z2. 
rs rws rws rws 

*5.1.3.3 Bulk modulus 

{SA3) 

(S.44) 

(5.45) 

Since the conduction electrons in a solid are being treated as a gas of particles, albeit a 
quantum gas, they will exert a pressure given, at zero kelvin, by 

p - (~~) N' (S.46) 

where Uo is the internal energy at T = 0 K of the electron gas, i.e. the average kinetic 
energy (3/S)N'&F (eqn. (S.20)), since it has been assumed that the potential energy is 
zero. The origin of the pressure can be regarded as being due to the repulsion experi
enced by electrons, caused by the Pauli exclusion principle, when they are compressed 
and. tend to occupy the same region of space. Since cgF ex V-2/3 (eqn. (5.17)), it is 
straightforward to show from eqn. (S.46) that 

2Uo 
p = 3V' (S.47) 

(In fact, an expression of this form is valid for all temperatures - see Problem S.9.) 
The bulk modulus is defined as (see eqn. (2.32)): 

13 = - V(:~) , (S.48) 
T,N 

or, from eqn. (S.46): 

B= V(~~o). (S.49) 

Thus, considering only the kinetic energy of the free-electron gas, for which p ex V- 5/3 

from eqns. (S.17) and (S.47), the zero-kelvin electronic contribution to the bulk 
modulus is 

lOUD 2N 
BKE =--=--cgF 

9V 3V ' 
(5.S0a) 

or, in atomic units, 

BKE = 0.586/r;, (S.SOb) 
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Table 5.2 Bulk moduli and cohesive energies of simple metals 

Metal Z Ucoh/Z B/BKE B/BKE rs (au) Yc (au) 
(eV/electron) (calc) (expt) 

Li I 1.7 0.63 0.50 3.27 1.32 
Na 1 1.1 0.83 0.80 3.99 1.75 
K 1 0.9 1.03 1.10 4.86 2.22 
Be 2 1.7 0.45 0.27 1.87 0.76 
Mg 2 0.8 0.73 0.54 2.66 1.31 
Ca 2 0.9 0.95 0.66 3.27 1.73 
Zn 2 0.7 0.60 0.45 2.31 1.07 
Cd 2 0.6 0.71 0.63· 2.59 1.27 
Al 3 1.1 0.69 0.32 2.07 1.11 
Ga 3 0.9 0.74 0.33 2.19 1.20 
Cu 1 3.5 0.45 2.16 2.67 0.91 
Ag 1 3.0 0.71 2.94 3.02 1.37 
Au 1 3.8 0.69 4.96 3.01 1.35 

Z is the valence, Ucoh is the cohesive energy, B is the bulk modulus and BKE the bulk 
modulus resulting solely from the kinetic energy contribution of the free-electron gas, r. 
is the radius of a sphere containing a single valence electron and rc is the radius of the 
Ashcroft empty-core pseudopotential. 
(After Pettifor (1995), Bonding and Structure of Molecules alld Solids, by permission of 
Oxford University Press) 

where rs is the radius of a sphere containing a single valence electron (eqn. (S.40)). 
However, the attractive part of the electron energy associated with the ion cores (see 

§S.1.3.2) makes the solid more compressible (i.e. the bulk modulus is smaller) by a factor 
of five when the Wigner-Seitz attractive energy (eqn. (S.41)) is included (see Problem 
2.7). Neglecting the small contribution from correlation effects, but including the effect 
of the empty-core pseudopotential of radius r c, the bulk modulus can be written in 
atomic units as (Pettifor (1995)): 

B/ BKE = 0.2 + 0.81S~/rs. (5.51) 

Values of the bulk modulus calculated using eqn. (S.Sl) are compared with experimental 
values for some simple metals in Table S.2, together with values of the cohesive energy 
and rc and rs. It is seen that there is good agreement for B values in general, except for 
the noble metals where the discrepancy is due to the presence of core d-electrons. 

*5.1.3.4 Thermal expansion 

The delocalized free-electron gas of a metal also contributes to the thermal expansion of 
the material, in addition to the anharmonic atomic vibrational contribution (§4.6.2.l). 
The pressure of the Fermi gas is given by (Problem S.9): 

p 
2U(T, V) 

3V 
(5.52) 

where U(T, V) is given by eqn. (5.3S). Since the volume thermal-expansion coefficient is 
given by 
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(4.210) 

where B is the bulle modulus, there is a positive electronic contribution to the thermal 
expansion because U(T, V) is an increasing function of T. The thermal-expansion 
coefficient is therefore given by 

(5.53) 

since Cv (aU /aT)v' (See eqn. (4.220) for the corresponding expression for the anhar-
monic atomic vibrational term.) 

Equation (5.53) can be rewritten making use of the expressions derived previously for 
the heat capacity (eqn. (5'.36b)) and the bulk modulus (eqns. (5.50a) and (5.51)), giving 

-fflk2T 
(3T = 2A~2 ' (5.54) 

F 

where the ratio B/ BKE (eqn. (5.51)) has been replaced by the temperature-independent 
constant A. Thus,at low temperatures (T;:5 10 K), where the electronic heat capacity of 
metals is greater than that of the lattice-vibrational term, the thermal-expansion coeffi
cient of metals is predicted to be linearly dependent on temperature, in contrast to the 
T3 dependence exhibited by insulators (§4.6.3). 

T 

! 

Electrons in periodic solids 

Although the Fermi-gas model for valence electrons in solids has the virtues of being 
simple and being capable of accounting for some physical properties of metals, never
theless it has a number of severe limitations. First and foremost, it predicts that every 
solid containing elements with part-filled electron shells should exhibit metallic beha
viour associated with the free-electron gas (for a discussion of electronic transport 
properties, see Chapter 6). This prediction fails spectacularly in the case of elements 
such as, say, Si or Ge which have an incomplete p-shell (S2p2) but which are, never
theless, electrical insulators at the absolute zero of temperature (see Chapter 6): there are 
no mobile free electrons in this case. Moreover, certain electrical transport measure
ments, e.g. of the Hall effect (see §6.3.3.2), indicate that the electron mass is apparently 
negative: this behaviour is completely incomprehensible in the free-electron picture. We 
shall see that these inconsistencies with the free-electron model can be explained by 
taking into account the fact that the motion of the electrons is not free, but is con
strained by the spatial arrangement of the potentials associated with the ion cores. This 
effect is particularly marked in crystals having a periodic array of ion-core potentials. 

5.2.1 Bloch wavefunctions 

The spatial periodicity of the electrostatic potentials associated with the ion cores in 
a crystal (Fig. 5.12) imposes a concomitant constraint on the wavefunctions that are the 
solutions of the Schrodinger equation describing the motion of an electron in the 
periodic potential. The wavefunction for a periodic potential is the product of a plane 
wave and a function which has the periodicity of the crystal lattice: this is known as 
a Bloch function. 

Consider for simplicity a 3D lattice having translational periodicity, such that the 
position of atom n from the origin is given by Rn = ua + vb + we (eqn. (2.1)), where u, v, 
IV are integers. Ifit is assumed for the present that the wavefunctions are non-degenerate, 

Fig. 5.12 Representation of a periodic electrostatic potential associated with the ion cores in 
a crystal. The filled circles represent the ion positions. The solid curves represent the potential 
along a line of atoms, and the dashed curves are the potentials for isolated ions. The dotted curve 
is the potential along a line midway between planes of ions. 



and that the wavefunctions for neighbouring sites differ by a constant phase factor, A, B 
and C in the a, hand c directions, respectively, then imposition of periodic (Born-von 
Karman) boundary conditions for a parallelopiped of material of sides NI a, N2h and 
N3C gives 

Thus, for example, 

'1j;(r + N1a) = '1j;(r) = ANI'1j;(r), 

'1j;(r + N2h) = '1j;(r) = BN2'1j;(r), 

'1j;(r + N3C) = '1j;(r) CN3'1j;(r). 

ANI 1, 

with A being one of the N\ roots of unity, i.e. 

A = exp(27rinl/NJ), nl = 0, ±1, ±2, ... 

(S.SS) 

(S.S6a) 

(S.S6b) 

and there are similar equations for Band C in terms of n2 and N2 and n3 and N3, 
respectively. Equqtion (S.S6a) can be rewritten in the form: 

(S.S7) 

where k is given in terms of reciprocal-lattice vectors (eqn. (2.48)) by k = qla*+ 
q2h* +q3C* (eqn. (2.S1)), with ql = nI/NI, etc. 

Thus, by extension, one form of the Bloch function is 

(S.S8) 

An equivalent form for the Bloch function is that the wavefunction is the modulated 
plane wave 

'1j;k(r) eik.ruk(r), (S.S9) 

where uk(r) is a function with the same periodicity as that of the Bravais lattice: 

uk(r + Rn) = uk(r). (S.60) 

The validity of eqn. (S.S9) can be demonstrated by the substitution into it of eqn. (S.S8). 
A one-dimensional example of a Bloch wave is illustrated in Fig. S.13. 

A more general derivation of Bloch functions, free from the assumption about 
degeneracy, can be obtained from a consideration of the Schrodinger equation for 
a translation ally periodic potential energy V(r + Rn) V(r), expressed in terms of 
a Fourier expansion (eqn. (2.SS)) in terms of reciprocal-lattice vectors G, viz. 

V(r) L VGexp(iG.r). (S.61) 
G 

If the wavefunction is also expressed as a general Fourier series in terms of reciprocal
space vectors k (compatible with the boundary conditions), i.e. 

wk(r) = L Ck exp(ikr), (S.62) 
k 

the time-independent Schrodinger equation (eqn. (S.3a)) can be rewritten as 

(S.63) 

(Mx) A cos (kx+o) 

--- x -- ...... -.. ..... ---

~ /\ . 

Fig. 5.13 One-dimensional example of the construction of a Bloch wave from a periodic function 
Uk(X) with p-type bonding charact~r and a plane wave cos(kx + 8). Note that the Bloch wave
function itself is not periodic in real space. (After Ibach and Liith (1995), Solid State Physics, 
p. 132, Fig. 7.1, © Springer-Verlag Gmb & Co. KG) 

or, in rearranged form, and calling k' = k - G, 

~e;k'[{~~ -~ }Ck+ L; VGCk-G] O. (S.64) 

For eqn. (S.64) to be valid at every point r, the expression in square brackets must be 
identically zero for all k, i.e. 

{
n?k' } 2m~ ~ Ck + ;; VGCk-G 0. (S.6S) 

This set of algebraic equations is just a re-expression of the wave equation for a periodic 
lattice. Note that the k-values of the wavefunction expansion coefficients Ck differ only 
by reciprocal-lattice vectors G: thus, only a small sub-set of the many k-values allowed 
by the periodic boundary conditions are involved. 

Writing the expansion of the wavefunction as 

'1j;k(r) = L Ck' eik'.r = L Ck-G ei(k-G).r, (S.66) 
k! G 
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this may be rearranged as 

w.(r) ~ (~Ck-Ge-'G.')e'k., ~ uk(r)e"·', 

which has the form of the Bloch function (eqn. (5.59)), since 

() '" C -iGI' Uk l' = L...; k-G e . 
G 
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(5.67) 

(5.68) 

is a periodic function (eqn. (5.60)). This may be demonstrated by substituting l' = l' + RIl 
in eqn. (5.68) and recalling that exp(iG.Rn ) = 1 (eqn. (2.52)). 

The translational real-space periodicity of the lattice potential imposes periodicity on 
the electronic wavefunction and eigenenergy in reciprocal space. Thus, from eqn. (5.66), 
the wavefunction for a wavevector differing from Ie by a reciprocal-lattice vector G is 

nl. (10) - '" C ei(k+G-G').r 'f'k+G - L...; k+G-G' 
G' 

(5.69) 

where Gil = G' - G. Similar considerations hold for the electron energy obtained from 
the Schr6dinger equation (eqn. (5.3b)) 

:Yf~k = 'fb(Ie)~k' (5.70) 

For a wavevector differing by a reciprocal-lattice vector 

Jlt'~k+G = 'fb(1e + G)~k+G 
and, using eqn. (5.69), this becomes 

Jlt'~k = 'fb(1e + G)~k' 
Comparison with eqn. (5.70) shows that 

'fb(1e + G) = 'fb(Ie). 

(5.71) 

(5.72) 

(5.73) 

It should be stressed that, as for phonons, the wavevector Ie for (Bloch) electron 
wave functions in a periodic potential is not a measure of the true momentum: instead I1Ie 
is termed the crystal momentum (§4.2.7). 

5.2.2 Energy bands 

The function describing the dependence of the electron energy on wavevector, 'fb(Ie), is 
called the electronic band structure, and for a 3D solid it is a 4D quantity. In order to 
visualize it, the energy is plotted versus k for particular trajectories in Ie-space (usually 
between high-symmetry points in the Brillouin zone), thereby generating lines repres
enting the allowed energy states, called energy bands. The spacing of points in Ie-space, 
corresponding to allowed states, is so high that such lines of points appear like con
tinuous curves. 

All allowed Ie-values fall within the first Brillouin zone (see §2.4.2). In the case of a ID 
crystal with N atoms, for which periodic boundary conditions correspond to one of the 

I 
1-

equations of eqn. (5.55), the allowed k-values are given by k i ni21f / Na = 0, ... , 
±ni(fl), ... ,1f/a (where a is the periodic repeat distance); i.e. there are N allowed 
values. These correspond to the points in the first Brillouin zone, centred about k = O. 
Although this in fact contains (N + 1) points, two of these are degenerate since they are 
connected by a reciprocal-lattice vector; they lie on opposite zone boundaries (cf. eqn. 
(5.73)). The same considerations also hold in tlil'ee dimensions; the density Pk of allowed 
points in k-space is V /(21f)3 (eqn. (4.28)), where V is the volume of the real-space 
primitive unit cell. 

An idea of how electron energy bands arise can be gained by considering first the 
empty-lattice approximation, the hypothetical case where the ion-core potentials are 
infinitesimally small, i.e. essentially zero. For the case where all Fourier coefficients VG 
of the potential are identically zero, the algebraic form of the Schr6dinger equation (eqn. 
(5.65)) reduces simply to (112k2/2me 'fb)Ck = 0; i.e. all coefficients Ck-G are zero 
except for C/c. Thus Uk(l') is unity from eqn. (5.68) and ~k(l') = exp(ik.l'). Hence, the 
free-electron solution is recovered, and 'fb(Ie) consists just of a single paraboloid (eqn. 
(5.l2)). 

For the case of a vanishingly small periodic potential, the periodicity manifests itself 
through eqn. (5.73), and for an electron moving in a ID array of periodic potentials, the 
parabolic free-electron band is periodically continued in reciprocal space as in Fig. 5.14. 

-~ G 2n a =a 

2n 
a 

4n 
a 

k 

Fig. 5.14 Energy bands for an electron moving in a ID periodic array of potentials, with 
periodicity a, in the empty-lattice approximation, plotted in the repeated-zone scheme. The first 
Brillouin zone is marked. 

Fig. 5.15 Band structure in the reduced-zone scheme of a free-electron gas (in the empty-lattice 
approximation) for a simple cubic Bravais lattice plotted along a section in the kx direction. The 
labels of the bands are the band indices. 
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Such a representation is termed the repeated-zone scheme. In three dimensions, a choice 
must be made as to which section through reciprocal space is to be used, and it is also 
conventional to represent the electronic band structure in the reduced-zone scheme, i.e. 
by translating sections of bands lying in higher zones into the first Brillouin zone by the 
use of appropriate reciprocal-lattice vectors (cf. eqn. (5.73)). The results of this proce
dure for a free-electron gas in the empty-lattice approximation, for the case of a simple 
cubic Bravais lattice, are shown in Fig. 5.15 for a section along the kx direction in the 
reciprocal space. The various bands are denoted by a band index n according to 
a particular reciprocal-lattice vector that is needed to bring the band into the first 
Brillouin zone (see Problem 5.10). 

5.2.3 Nearly-free-electron model 

Consider now the case of small potentials in the core region, with an approximately 
constant potential in the volume between the cores, and the effects that this has on the 
band structure of the free-electron gas. Note that, in reality, the Coulombic potentials 
associated with the ion cores are anything but weak in the vicinity of the cores (see Fig. 
5.12), and it might therefore be thought that the nearly-free-electron (NFE) approx
imation could never be valid. However, as seen in §5.1.3.2, the requirements of ortho
gonality between the valence (nearly-free) electrons and the tightly bound core electrons 
ensures, in fact, that the effective potential, the pseudopotential, is very nearly zero in 
the core region (Fig. 5.11). In addition, the valence electrons very effectively screen 
the residual Coulombic potential of the pseudopotential in the region between the 
ion cores (see §5.6.1). Thus, in practice, the requirements of the NFE model are 
approximately met. 

A qualitative picture of the consequences of the NFE model can be gained from a 
consideration of a ID crystal with lattice repeat a. If the valence electrons are regarded 
as waves with wavevector k, they will diffract from the periodic ion array when the Laue 
condition (eqn. (2.101)) is satisfied. For the case of backscattering along the chain of 
atoms, the scattering vector is K = 2k (see eqn. (2.98)), and hence the diffraction 
condition K G is given by 

G ±n7r k=±-
2 a' 

(5.74) 

(where the negative sign arises because -G is also a reciprocal-lattice vector). Note that 
these values just correspond to the boundaries of the Brillouin zones (see eqn. (2.103)). 
At the zone boundaries, in the empty-lattice approximation, the electron energy is 
doubly degenerate (where two parabolas intersect - see Fig. 5.14), corresponding to 
the two free-electron wavefunctions exp(iGxj2) and exp( -iGxj2). These will have equal 
weights, and so two combinations of the wavefunctions may be written as: 

'lj;+ <X (eiGx/ 2 + e-iGx/ 2 ) <X cos(Gxj2), (5.75a) 

'lj;- <X (eiGx/ 2 - e-iGx/ 2) <X sin(Gxj2). (5.75b) 

These are not travelling (running) waves, but instead represent standing-wave solutions 
resulting from the combination of propagating and counterpropagating backscattered 
(Bragg-diffracted) electron waves. 
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The corresponding electron charge densities are proportional to 'lj;*'lj;, which are thus 
(writing G = 27rja): 

p+ <X cos2 (7rxja) , 

p- <X sin2(7rxja), 

(5.76a) 

(5.76b) 

and these functions are illustrated schematically in Fig. 5.16. It can be seen that for the 
solution 'lj;+, the charge density is piled up preferentially in the regions of the ion cores, 
and for 'lj;-, the charge density is instead concentrated in the region between the cores. In 
the empty-lattice approximation, where the potential is everywhere zero, these two 
solutions obviously have the same energy, i.e. they are degenerate (Fig. 5.14). 

However, when the ion-core potentials are non-zero (as in Fig. 5.16a), the solution 
given by 'lj;+ will have a lower energy c-g+ than that for 'lj;-(c-g-). Thus, an energy gap, or 
bandgap, is opened up at the zone boundaries in the NFE approximation. Such a gap is 
also termed a forbidden gap because there are no allowed wave-like solutions in the 
energy interval between c-g+ and c-g-. Note, however, that in general, band gaps need not 
open up at every zone boundary. For some crystal structures, particularly those with 
a basis, there are some reciprocal-lattice vectors G for which the extinction rules of 
diffraction (§2.6.1.2) are satisfied (in this case for the electron waves travelling inside the 
crystal). As a result, the corresponding Fourier components of the potential energy VG 
are identically zero, and consequently there is no bandgap at that particular zone 
boundary (see Problem 5.13). 

An alternative view of the bandgap is that it is the energy necessary to create an 
electron and hole (i.e the absenc6 of an electron in an otherwise filled band of states -
see §6.2.2) at rest with respect to the lattice and sufficiently far apart that their mutual 
Coulomb attraction is negligible (i.e. exciton formation is precluded - see §5.8.3). 

The energy bands for a ID crystal in the NFE picture are illustrated in Fig. 5.17 in three 
different representations, namely the extended-, reduced- and repeated-zone schemes. 
The NFE band structure in the repeated-zone scheme (Fig. 5.17c) should be compared 

Fig. 5.16 Schematic illustration of the relationship between electron charge density in the NFE 
model and the positions of the ion cores in a ID crystal. (a) A periodic array of potentials, with 
lattice constant a. (b) Charge density (proportional to 'ljJ*'ljJ) given by p+. (c) Charge density given 
by p-. 
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Fig.5.17 Electronic band structure for a ID crystal with periodicity a, in the nearly-free-electron 
approximation, represented in (a) the extended-zone scheme; (b) the reduced zone scheme; (c) the 
repeated-zone scheme. The magnitudes of the bandgaps at the zone boundaries are indicated in 
(a) in terms of the Fourier components of the periodic potential. The free-electron parabolas are 
shown in (c) by the dashed lines. 

with Fig. S.14, corresponding to the free-electron, empty-lattice model. The extended
zone representation has only a single band at any k-value (excepting the zone bound
aries), and thus consists of the free-electron parabola punctuated by gaps at the zone 
boundaries. (The generation of the bands in the reduced-zone scheme (Fig. S.17b) is 
particularly easy to understand in terms of translations by reciprocal-lattice vectors of 
the bands in the extended-zone scheme (Fig. S.17a).) Of course, exactly the same 
infOlmation is contained in all three representations, but since the physically distinct 
solutions are confined to the first Brillouin zone (i.e. in the reduced-zone scheme), the 
repeated-zone representation therefore contains redundant information. 

Analytic expressions for the behaviour of the bands in the vicinity of the bandgaps 
can be obtained by considering the algebraic form of the Schrodinger equation (eqn. 
(5.65». At the boundaries of the first Brillouin zone, k = ±G /2, eqn. (S.6S) becomes for 
k=G/2 

(S.77a) 

and for k -G /2 
(S.77b) 

where A = t/( G /2)2 /2J11e. Non-zero values for the coefficients C occur if the detelmin
ant is zero, i.e. 

whence 

or 

,&'F = A ± IVGI == 1i
2 

(G/2)2 ± I VGI. 
2me 

(S.78) 

(S.79) 

Thus, the energy of one standing-wave solution, 'ljJ+, is lower by I VGI, and that of the 
other solution, 'IfF, is higher by I V G I, than the free-electron value: the magnitude of the 
bandgap is therefore 

egg eg+ - eg+ = 21VGI· (5.80) 

The ratio of the wavefunction coefficients is obtained from eqns. (5.77), i.e. 

CG/2 VG 
C-G/ 2 (eg - A) 

= ±1 (5.81) 

from eqn. (S.79). This justifies the previous assumption in taking equal weightings of the 
propagating and backscattered electron waves (eqns. (S.7S». 

An approximate solution for electron wavevectors close to the zone boundaries can 
be found by assuming that just two wavefunction coefficients, Ck and Ck-G, are 
significant; this is approximately true if the potential energy VG is very small and 
much less than the kinetic energy eg. Then, from eqn. (S.62) 

'ljJk(r) = Ck eife.1' + Ck-G ei(k-G).,· 

and the algebraic form of the Schrodinger equation (eqn. (S.6S» becomes 

(Ak - eg)C" + VGCk-G = 0 

and 

(Ak-G - eg)Ck-G + V-GCIe = 0 

with Ak = t/k2/2me. Thus the secular determinant 

I 
(Ak-eg) VG [=0 

. V-G (Ak-G - eg) 

gives the quadratic equation 

,&2 _ '&(Alc + Ale-G) + AkAk-G -I VGI 2 = O. 

This has the roots 

(5.82) 

(5.83a) 

(S.83b) 

(5.84) 

( 5.8S) 

(S.86) 

Note that it is only close to the Brillouin-zone boundaries that the NFE solution differs 
appreciably from that for the simple free-electron model. 

5.2.4 Brillouin zones and energy bands 

It is instructive to examine the electronic structure generated by the NFE approach, not 
just in telms of the band structure, '&(k), but also in terms of constant-energy contours 
in k-space with respect to the Brillouin zone. This is of particular importance in 
discussing the differences between metals and insulators (§S.2.S). 

It is simplest at the outset to consider 2D lattices, and, again for simplicity, we 
consider the 2D square real-space lattice, the Brillouin-zone construction for which 
has already been given in Fig. 2.41. For the case of the free-electron model in the empty
lattice approximation, the contours of constant energy are just circles in k-space (see 
Fig. S.18). In the NFE approximation, the electron energy is lowered, below the free
electron value, for k-values just below the zone boundary (see Fig. S.17) and, as a result, 
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Fig.5.18 Circular constant-energy contours (at equal energy intervals) for a free-electron gas in 
the empty-lattice approximation superimposed on the boundaries of the first two Brillouin zones 
of the 2D square real-space lattice. 

the energy contours bend outwards from the free-electron circles towards the zone 
boundary. Likewise, the increase in energy for k-values just above the zone boundary 
causes the constant-energy contours to fall below the free-electron circular contours 
towards the zone boundary. The perturbed NFE contours meet the zone boundaries at 
right angles. Since the solutions of the Schrodinger equation at the zone boundaries are 
standing waves (eqn. (5.75)), the electron group velocity, Bw/8k = (1/11.)"'hcg, must 
vanish there. The gradient of cg in k-space must therefore be parallel to the zone 
boundary, and consequently the constant-energy contour is normal to the boundary. 

The NFE constant-energy contours for the 2D square lattice, superimposed on the 
boundaries of the first three, and part of the fourth, Brillouin zones (cf. Fig. 2.41) are 
shown in Fig. 5.19. The discontinuities in the energy contours at the zone boundaries 
correspond to the bandgaps in the band-structure (cg(k)) representation (Fig. 5.17). 
Figure 5.19 corresponds to the extended-zone scheme (cf. Fig. 5.l7a). The energy 
contours can also be represented in the reduced-zone scheme (cf. Fig. 5.17b) by trans
lating contours from zones higher than the first back into the first zone by means 
of appropriate reciprocal-lattice vectors. This is illustrated for the second zone in 
Fig. 5.20. Periodic continuation in k-space of these first and second zones (the 
contours already lying in the first zone in Fig. 5.19 and those translated into it from 
the second zone in Fig. 5.20, respectively) generates the repeated-zone representation 
(Fig. 5.21). 

In general, of course, the most important energy contour to consider is that corres
ponding to the Fermi energy, cgF, since it is electrons having this energy that control· 
most of the electronic behaviour. A 2D example, for a square lattice containing four 

I 
I 

i 
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~ig. 5.19 Constant-ener~y contours for the NFE model applied to a 2D square lattice, super
Imposed on the boundanes of the first three, and part of the fourth, Brillouin zones in the 
extended-zone scheme. The dashed curves show one of the undistorted circular contours of the 
free-electron case. 

Fig. 5.20 Constant-energy contours from the second Brillouin zone in the extended-zone scheme 
(Fig. 5.19) represented in the reduced-zone scheme. The reciprocal-lattice vectors necessary to 
translate the segments from the second zone are indicated. 

electrons per primitive unit cell in the free-electron approximation, is shown in Fig. 
5.22a; the Fermi circle intersects four zones in this case. Those parts of higher zones that 
are occupied by electrons can be folded back into the first zone and periodically 
continued to generate repeated-zone representations, as in Figs. 5.22b-d. Note that 
there are two topologically distinct contours represented in Figs. 5.22b-d. In one, 
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(b) 

Fig. 5.21 Repeated-zone representation of the constant-energ~ contours ~e!lerated fro~ the 
reduced-zone plots. The labels M and m refer to energy maXIma and mlll~ma, respectIvely. 
(a) The lowest energy band (central part of Fig. 5.19). (b) The second band (FIg. 5.20). 
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Fig. 5.22 Free-electron energy contour for the Fermi energy for a 2D squ~re lattice with four 
electrons per primitive cell. (a) Fermi circle superimposed on the bo~n~anes of th: ~rst four 
Brillouin zones. The parts of the various zones occupied by electrons (wIthm the FermI cIrcle) ~re 
indicated. (b) The occupied part of the second zone in the repeated-zone scheme. (c) The occupIed 
part of the third zone. (d) The occupied part of the fourth zone. 
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Fig. 5.23 The Harrison construction for generating the repeated-zone representation of the 
Fermi surface for a 2D square lattice containing four elect(ons per cell (see Fig. 5.22). 

regions of k-space devoid of electrons are entirely surrounded by regions filled with 
electrons (Fig. 5.22b): such empty regions are termed hole-like, for reasons that will 
become apparent later (see §6,2.2). In contrast, Figs. 5.22c and 5.22d exhibit regions 
filled with electrons entirely surrounded by regions devoid of electrons: these filled 
regions are called electron-like. 

A simple geometric construction can be used to generate the repeated-zone patterns 
for the higher ZOnes given in Figs. 5.22b-d. In the Harrison construction, circles in 2D 
(spheres in 3D) with radii equal to kF are drawn centred On each point in the reciprocal 
lattice (i.e. at the centres of the first Brillouin ZOnes in the repeated-zone scheme) as in 
Fig. 5.23. The various intersections of these circles (or spheres) generate the repeated
ZOne patterns according to the following rule: the Fermi surface in the nth Brillouin 
Zone is the boundary separating regions covered by 11 circles (spheres) from those 
covered by 11 - 1 circles (spheres). If the region covered by the llirge (n) number of 
circles (spheres) is outside this surface, it generates a hole-like surface, and if inside, an 
electron-like surface. 

The very sharp geometric shapes of the Fermi surface in different Zones shown in Fig. 
5.22 result from the free-electron (empty-lattice) approximation. In the NFE case, the 
Fermi surface is distorted near the zone boundaries, with the effect that the cusps 
disappear, and for a sufficiently strong ion-core potential (opening up large gaps at the 
zone boundaries), the Fermi surface can completely disappear from particular zones. 

A 3D analogue of the 2D case already considered is shown in Fig. 5.24 for the case of 
an f.c.c. crystal containing four electrons per primitive cell (e.g. Pb), for which the first 
Brillouin zone has the form of a truncated octahedron (§2.4.2). The Fermi surfaces in the 
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Fig. 5.~4 !he Fermi surface for an f.c.c. metal with four electrons per cell in the NFE 
approXImatIOn. (a) Second-zone hole-like surface. (b) Third-zone monster. (c) Four-zone 
electron-like surface. 

K 

(a) (b) 

Fig. 5.25 The Fermi surface of Cu. (a) A (110) section through the ~rst Brill0.uin zon~. The 
dashed line represents the free-electron Fermi sphere. (b) The 3D FermI surface illserted ill the 
truncated octahedral Brillouin zone. 

second and fourth zones are isolated and are hole-like and electron-like, respect
ively. However, the Fermi surface for the third zone is multiply connected in the 
repeated-zone scheme and cannot therefore be described as simply electr.on- or hole
like. Such topological forms for the Fermi surface are called, rather picturesquely, 
monsters. 

For the monovalent alkali metals (Na, etc.), the Fermi wavevector is appreciably less 
than the shortest distance in reciprocal space to the first Brillouin-zone boundary (see 
Problem 5.1). Thus, NFE effects are negligible, and consequently the .Fermi surfac~ is 
simply a sphere lying within the first zone. Thus, such metals essentlally behave lIke 
quantum free-electron systems. Cu also has one conduction electron per ato~, a?d so 
the first Brillouin zone is also half-filled. However, kF is rather close to the L-pomt m the 
first Brillouin zone (a truncated octahedron, since Cu has an f.c.c. structure), ~nd so the 
electron energies in the (111) directions in k-space are strongly perturbed, and 'necks' 
occur near the L-points (Fig. 5.25). 
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5.2.5 Metals versus insulators 

We have noted previously that the simple free-electron model predicts that all materials 
with part-filled electron shells should,be metals, since the resulting conduction-electron 
gas should be free to respond to an applied el~ctric field at all temperatures. However, 
this picture is contrary to experience, since many materials are known to be electrical 
insulators, i.e. they have a zero electrical conductivity at zero kelvin. Although elec
tronic transport properties will be discussed thoroughly in Chapter 6, it is useful, 
nonetheless, to mention briefly here how the NFE picture allows metals and insulators 
to be distinguished. 

It is instructive to consider at the outset a lD crystal, for which the band structure 
consists of a single band, with bandgaps at the zone boundaries, ±?r / a. Since, in general, 
the first Brillouin zone contains N states (where N is the number of atoms in the chain of 
length L), each of which can contain two electrons (because of the spin degeneracy), for 
the case of a monovalent chain (one conduction electron per atom) the zone is only half
filled with electrons, and c;gF lies in the middle of the band (Fig. 5.26a). The intersection 

(a) 

(b) 

Fig.5.26 (a) Band structure for a monovalent ID crystal with periodicity a. Occupied states are 
shown by the bold curve. The system is metallic because the Fermi level lies in the middle of the 
band. A possible electronic transition, involving a change in momentum, and hence contributing 
to the finite electrical resistance, is indicated. (b) Schematic representation of the allowed k-states 
for the ID monatomic chain in the NFE approximation. There is an energy gap at the zone 
boundaries, ±7r/a. If IkFI < ?r/a, the electron distribution (shown by the bold line) can be moved 
bodily in k-space under an applied electric field and so gives a finite conductivity at T 0 K; i.e. 
metallic behaviour is exhibited. 



of the Fermi energy with the energy band is at apoint in ID, i.e. ±kF . The application of 
an external electric field accelerates free electrons, causing them to increase their 
momentum (and hence k) in the direction of the field. This process is the basis of 
metallic conduction (§6.3.2.1). Thus, in principle, the entire electron distribution (the 
line between +kF and -kF in Fig. 5.26b) is moved bodily in k-space. However, this can 
only readily happen if there are vacant k-states immediately above kF available to be 
occupied. In the case of the half-filled zone (Fig. 5.26b), characteristic of the monatomic 
ID crystal, evidently there are such states, and so the system should be a metal. 

The situation is markedly different for a diatomic linear chain, however, since now the 
first zone is entirely filled with electrons (kF = ±1f/a) and the higher zones remain 
empty at T = 0 K. Because there is a bandgap at the zone boundaries, there are now no 
available k-states immediately above kF at the same en.ergy that can be occupied, and so 
(at T = 0 K) the application of an electric field can cause no shift in the k-distribution of 
the electrons: the system is an insulator. At finite temperatures, thermal excitation of 
electrons across the bandgap can occur, leading to a finite conductivity: this is the basis 
of semiconduction. 

This demarcation is clearest in the monovalent ID case, since then there is only 
a single band at any general k-value (excepting the zone boundaries): all states in one 
band are lower in energy than those in all other bands (Fig. 5.26a), and hence the 
lowest-energy band is filled preferentially at T = 0 K if, in a gedanken (thought) 
experiment, more electrons are progressively introduced into the system. However, 
this is not necessarily true for 2D or 3D crystals: a higher band may lie at a lower energy 
than a lower band, but at different places in k-space (see Fig. 5.27). Thus, even if there 
are sufficient valence electrons available completely to fill the first zone, hence giving an 
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Fig.5.27 Schematic illustration of the band overlap (at different points in k-space) resJ?onsible 
for divalent elements being metallic. Although, in principle, enough electrons are present m order 
completely to fill the lower band, in practice electrons that would otherwise occupy the topmost 
states in the lower band instead occupy the lowest-energy states in the upper band. Thus, even at 
T = 0 K, the Fermi level lies in part-filled bands, and hence the material is a metal. Occupied 
states are shown as bold curves. 
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Fig. 5.28 (a) Band overlap at T = 0 K for a divalent element with a 2D square-lattice structure. 
The occupied states are shaded: it can be seen that there is a spill-over of electrons into the second 
zone. The displacement of that part of the electron distribution able to move under the action of 
an applied electric field is indicated by the dashed lines. Those parts having an interface at the 
zone boundaries are characterized by having an energy gap and so cannot move. (b) Filled states 
in the first zone represented in the repeated- zone scheme, revealing hole-like pockets. (c) Filled 
states in the second zone in the repeated-zone scheme forming electron-like pockets. 

insulator in principle, nevertheless such materials, e.g. the divalent Group IIA elements, 
Ca, etc.) are metallic. Even at T = 0 K, the lowest ba.nd is not completely filled, but its 
top most states remain empty with the electrons populating the lowest-energy states in 
the upper band (Fig. 5.27). Such a material is termed a semi-metal. This behaviour is 
also indicated, for a 2D square-lattice example, in terms of the filling of Brillouin zones, 
in Fig. 5.28: it can be seen that electrons 'spill-over' from the first zone into the second 
(Fig. 5.28a), resulting in hole-like pockets in the first zone (Fig. 5.28b) and electron-like 
pockets in the second zone (Fig. 5.28c), when represented in the repeated-zone scheme. 
Similar considerations also hold for 3D crystals. 

Thus, a metal can be defmed succinctly as a material that has a Fermi surface 
(provided that the densjty of delocalized electron states is non-zero at ~F). In other 
words, if there are delocalized electron states at the Fermi energy (i.e. ~F lies in a part
filled band of delocalized states), the material will exhibit metallic behaviour. 

An insulator can be defined as a material for which an energy gap occurs between (at 
T = 0 K) a completely filled lower band, the valence band, and a higher, empty band, 
the conduction band, and where the lower band is lower in energy t~an the higher band 
for all k-values. 

A semiconductor is an insulator with a relatively small bandgap (say less than 3 eV), 
so that thermal excitation of electrons across the gap from the filled valence band to 
the empty conduction band can occur with a reasonable probability at fmite temper
atures. 

It should be noted that, in this picture, insulators are non-conducting, not because the 
electrons are spatially localized in bonds (the wavefunctions are still delocalized 
throughout the crystal), but because when a band is full there are no further 
states available at the same energy to which an electron can be accelerated by an electric 
field. 
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5.2.6 Pseudopotentials 

Although the nearly-free-electron model provides a correct qualitative explanation for 
the difference between metals and insulators, the underlying assumption that the ion
core potentials be very weak is rarely valid. It is certainly inappropriate for tightly 
bound electrons, e.g. d-electrons in transition metals. Two general approaches for 
calculating electronic structures are the pseudopotential and tight-binding methods. 
The pseudopotential approach, which can be regarded as a refinement of the NFE 
model, will be described briefly here. The tight-binding model, applicable to tightly 
bound electrons for example, will be discussed in §5.3.1. 

The pseudopotential is the effective potential associated with the ion cores that is 
experienced by the conduction electrons. It is different from the true Coulombic poten
tials of the ion cores for two reasons (see §5.1.3.2): (i) cancellation of the attractive part 
of the potential in the vicinity of the ion cores by an effectively repUlsive component, 
resulting from the requirement that the wavefunction of the conduction electrons be 
orthogonal to those of the core electrons, the basis of the orthogonal-plane-wave (OPW) 
approximation (the conduction electrons are essentially excluded from the core region 
by the Pauli exclusion principle); (ii) screening by the conduction-electron gas of 
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Fig. 5.29 Pseudopotentiais for Na in real space. The dashed curve is the unscreened Ashcroft 
empty-core pseudopotentiai, with rc = 1.66au (lau = ao, the Bohr radius), and the solid curve is 
the (Thomas-Fermi) screened pseudopotential with screening parameter aO/)..TF. The dotted 
curve is the true Coulombic potential of the ion core. (Kittel (1996). Reproduced by permission 
of John Wiley & Sons Inc.) 

the ionic charge in the region far from the ion cores. The Ashcroft empty-core pseudo
potential assumes complete cancellation of the potential in the core region (r < re) - see 
eqn. (5.42); this unscreened pseudopotential is shown is Fig. 5.29, together with the 
screened version. (For a fuller discussion. of screening, see §5.6.1.) It can be seen that 
both pseudopotentials are appreciably smaller in magnitude than the bare Coulombic 
potential in the region of the ion core. Note also that the screened pseudopotential is 
repulsive in the core region (r < rc). 

The general Fourier components of the Ashcroft pseudopotential (eqn. (5.42» can be 
found by using eqn. (2.58). The result is 

-Ze2 cosqre 
cOnq2 (5.87) 

where n is the volume per atom. This function has a first node given by cos qre = 0, i.e. at 
1f 

qo 2r
e

· (5.88) 

The reciprocal-space form of the pseudopotential is shown in Fig. 5.30 for the case of 
f.c.c. Al (Heine and Abarenkov (1964». In practice, values of the pseudopotential are 
needed only at reciprocal-lattice positions, i.e. q = G (cf. eqn. (5.61». Note that the 
pseudopotential is small but positive for such values for Al (Fig. 5.30). The q = 0 value 
of the pseudopotential tends to the screened-ion limit, Vo == -2'&F/3 (see Problem 5.24). 

In the empirical pseudopotential method (EPM), values of VG are estimated by fitting 
the results of calculated electronic band structures to -experimental data, for example 
optical data (§5.8.2). It is often reasonable to assume that such EPM values are simply 
additive for different types of atom making up a solid, and so the band structures for 
new materials can be predicted. A more reliable approach, however, is to use ab initio 
methods, e.g. based on the local-density approximation for dealing with correlation 
effects (§2.5.3.4), to obtain the pseudopotential. 
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Fig. 5.30 Pseudopotential for f.c.c. AI, (Heine and Abarenkov (1964)), plotted in reciprocal 
space and normalized by the Fermi energy. The first node occurs at qo. The values of the 
pseudopotential at the two reciprocal-lattice values used to calculate the electronic structure are 
marked with dots: they correspond to G (111) with magnitude ...j3(21r/a), and (200) 
with magnitude 2(21r/a), being the L- and X-points, respectively, in the truncated octahedral 
Brillouin zone. (After Petti for (1995), Bonding and Structure of Molecules and Solids. Reproduced 
by permission of Oxford University Press) 



The simple picture of a pseudopotential being very weak in the core region in real 
space (Fig. 5.29) or at reciprocal-lattice values in reciprocal space (Fig. 5.30) is only 
valid if there are electron states in the ion core available to be orthogonal to equivalent 
valence-electron states. Thus, for example Na, Mg, AI, Ga and In satisfy this condition 
(i.e. the NFE approximation is valid), and the electronic density of states is closely free
electron-like (g(%) ex: %1/2, cf. eqn. (5.15» - see Fig. 5.31. On the other hand, it can be 
seen that significant deviations from the NFE picture occur for Li and Be. Since they are 
first-row elements, they have no p-electrons in the core, and so valence-electron states 
that have p-like symmetry (i.e. with nodes at lattice sites, as for the charge distribution 
shown in Fig. 5.16crwiU suffer large shifts in energy from free-electron values. Indeed, 
a gap is nearly opened up at %F in the case of Be (Fig. 5.31). Third- and fourth-row 
elements in Groups lA, IIA and IIB also exhibit marked departures from free-electron
like behaviour arising, in this case, from the presence of d-electrons in the core. 

"&(2 eV interval scale) 

Fig. 5.31 Electronic densities of states of metals with s- and p-electron valence states. The shaded 
area corresponds to filled states at and below cgF at T = 0 K. (After Pettifor (1995) Bonding and 
Structure of Molecules and Solids, by permission of Oxford University Press) 
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Electrons in bonds 

In many cases, it is not helpful to regard electrons as forming a (nearly) free-electron 
gas. It is obviously inappropriate as a model to describe the energetically deep-lying and 
spatially localized core electrons that have filled electron shells, and it is also inapplic
able to electrons that might lie in energy close to the Fermi level but which, nevertheless, 
are tightly bound to the ion cores (e.g. d-electrons and f-electrons in transition metals 
and rare earths, respectively). The NFE model is also not appropriate for insulating 
materials where the terms in the pseudopotential are strong enough to give rise to 
sizeable band gaps and for which, therefore, the use of only a very few plane 
waves (e.g. just two, as in eqn. (5.82», forming the basis of the NFE approximation, 
is invalid. 

It is also not appropriate for those materials where hybridization of atomic orbitals 
takes place, to give spatially directed hybrid orbitals which can combine to form 
chemical (covalent) bonds (e.g. as in the Group IV elements). In these latter cases, an 
approach more akin to that used by chemists in describing bonding in molecules can be 
more fruitful (§5.3.2). However, this purely local picture of chemical bonds must be 
modified somewhat when considering the solid state, since for the case of crystals, for 
example, the presence of translational periodicity means that the electronic wavefunc
tions involved must satisfy Bloch's theorem (eqns. (5.58) and (5.59», and a particular 
electron has an equal probability of being found in any cell anywhere in the crystal. The 
chemical-bond picture is perhaps most closely realized in the case of amorphous 
insulators, where the structural disorder can cause the electron states to be spatially 
localized in hybrid orbitals (see §6.6). 

We begin this section by discussing the tight-binding approximation, which can be 
regarded as representing the extreme opposite case to the free-electron picture. 

5.3.1 Tight-binding (LCAO) approximation 

The tight-binding approximation (TBA) takes as its starting point the isolated atom, for 
which the electron eigenstates correspond to a series of discrete energy levels. If now 
a monatomic solid is considered to be progressively formed by the bringing together of 
a large number of identical atoms, the atomic-like energy levels will be split due to the 
interactions between atoms, as in molecular orbitals in molecules, corresponding to 
bonding and antibonding combinations of wave functions. However, because of the very 
large number of atoms present in a typical solid sample, the electron states will therefore 
form a quasi-continuous band of states with respect to energy (Fig. 5.32). The closer 
together the atoms are forced, the greater will be the strength of the interactions and 
hence the broader the bands will be. Thus, electron bands in solids can also result from 
the overlap with, and interactions between, atomic orbitals (the tight-binding (TB) 
limit) as well as from (nearly) free-electron-like behaviour. 

It is assumed at the outset that the electron wavefunction <Pi(r) corresponding to the 
ith discrete energy level, %i, is known from a solution of the Schrodinger equation for 
the isolated atom, viz. 

(5.89) 
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Fig.5.32 Schematic illustration of band formation in solids from discrete atomic electron energy 
levels as atoms are progressively forced closer together. 

where, for example, Rn is the translation vector for the nth site in a lattice (eqn. (2.1)). 
The basic assumption in the TBA is that the overlap between neighbouring atomic 
wavefunctions is very small, so that the extra potential experienced by an electron in a 
solid is only a small perturbation to the potential characteristic of isolated atoms. Thus, 
the Ham~ltonian in a solid can be written approximately as 

_1i2 2 
2If c:= 2If A + v -2 V + VA(r - Rn) + v(r Rn), (5.90) 

me 

where the perturbation v(r Rn) can be approximated as a sum over the atomic 
potentials for all sites i apart/rom that (n) at which the electron is localized, i.e. 

v(r Rn) c:= L VA(r Rj ). 

jim 

This is illustrated schematically in Fig. 5.33. 

(5.91) 

The eigenstates 'if;ki of the Hamiltonian (eqn. (5.90))for eigenvalues cgi must be Bloch 
states if the solid is translation ally periodic. A good approximation to the true 
wavefunction is to invoke the linear combination of atomic orbitals (LCAO) approx
imation, viz. 

(5.92) 

The expansion coefficients must comply with translational periodicity (i.e. generate 
Bloch functions) and contain the wavefunction normalization constant. In order to 
satisfy both these conditions, akn = exp(ik·Rn )/ N 1/ 2 , where N is the number of atoms in 
the crystal (see Problem 5.14). Thus, the wavefunction has the form: 
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Fig. 5.33 Schematic illustration of potentials experienced by an electron in a ID solid. 
(a) The lattice potential (solid line) obtained by summing the potentials VA of free atoms 
(~as~ed line). (b) The perturbation potential v(r Rn} = I::i~n VA(r - Ri } used in the tight
bmdmgmodel. 

<Pki = N- 1/ 2 L eik.R"¢i(r - Rn). (5.93) 
n 

In general, Bloch functions for any band can always be written in the form of eqn. 
(5.93), where the functions ¢(r Rn) are known as Wannier functions. These have the 
advantage, not shared ~y the atomic orbitals of the TBA, that they are mutually 
orthogonal. 

It is instructive to examine the form of the tight-binding wavefunction (eqn. 
(5.93)), for example for a particular atomic orbital, say i 3s, for several k-values. 
This is shown schematically in Fig. 5.34 for the case of a ID crystal for simplicity. 
For the state at the centre of the Brillouin zone, k = 0; the tight-binding wave
function <Pk=O,s corresponds to 3s atomic wavefunctions centred at each lattice site, 
all with the same amplitude and phase. (In other words, the wave corresponding to 
the state k = 0 has an infinite wavelength.) At the zone-boundary value, k 7f/a, 
on the other hand, the wavefunction amplitudes are still equal at each 
lattice point but the phases alternate since, from eqn. (5.93), exp(i7f) = -1. At an 
arbitrary k-value, the amplitudes and phases of the 3s-like wavefunctions at 
each site are such as to generate an electron wave with a wavelength lying between 2a 
and 00. 

An estimate for the electron energy (higher than the true energy cgi) can be found by 
using the trial wavefunction <Pki (eqn. (5.93)) to form the expectation value of the 
Hamiltonian, i.e. 
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Fig.5.34 Tight-binding wavefunction for a ID crystal for values of Ie including the zone-centre 
and Brillouin-zone-boundary values. The atomic orbital chosen is a 3s wavefunction. 

(5.94) 
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Here, it is assumed that, for the term involving %i, the overlap between nearest neigh
bours may be neglected (i.e. n 111), and for the term involving the perturbation 
v(r - Rn ), only nearest-neighbour interactions are included. Thus, the tight-binding 
expression for the electron energy may be written as 

(5.95) 
m 

where 111 and n are nearest neighbours, and where the coefficients ai and f3i are given by 

ai = - J <p;(r - Rn)v(r - Rn)<Pi(r - Rn)dr, 

f3i = - J <p;(r Rm)v(r - RII)<Pi(r - Rn)dr, 

(5.96a) 

(5.96b) 

for the simple case where the atomic wavefunction <Pi has spherical symmetry, i.e. is an s
state. The quantity ai is positive since v is negative. In this case, the overlap term is 
sometimes denoted as f3i = -ss(J(Rn) > 0, indicating that the overlap is in the form of 
a (J-bond between s-orbitals on neighbouring sites. It is also termed the hopping integral. 

For the example of a simple cubic lattice, for which the six nearest neighbours of 
a given atom are at distances 

Rn - RII1 = (±a, 0, 0); (0, ±a, 0); (0,0, ±a), 

eqn. (5.95) reduces to the expression: 

%(k) = %i - ai - 2f3i(coskxa + coskya + cosk=a). 

(5.97) 

(5.98) 

These energy bands are illustrated in Fig. (5.35). Note that the bandwidth in this case is 
12f3i: the minimum energy, -6f3i, occurs at the zone-centre point r(k = 0) and the 
maximum energy, +6f3i, at the Brillouin-zone-boundary point, M (/c = 1r/a, 1r/a, 1r/a). 
The states at the bottom of the band (r) are pure bonding states and those at the top 
(M) are pure antibonding states, as can be seen by examination of eqn. (5.93). This 
can also be seen pictorially in the case of the 2D analogue, the square lattice 
(Fig. 5.36). In general, the tight-binding band width f).%i depends on the nearest
neighbour coordination number z and the wavefunction-overlap term f3i (see also 
Problem 5.15) via 

f).%i 2zf3i. 

Note that such widths are much smaller than those ofNFE-like bands. 
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Fig. 5.35 Schematic illustration of the formation of tight-binding bands for an atomic energy 
level for a simple cubic lattice with lattice parameter G. (a) Free-atom potential energy with, 
superimposed, an electron energy level %i. (b) Representation of the dependence of the tight
binding bandwidth with inverse distance (or, equivalently, orbital overlap). (c) Tight-binding 
band structure for the /c-direction [Ill]. 
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Fig. 5.36 Relative phases of s-orbital coefficients akn of Bloch functions in a tight-binding 
treatment for a 2D square lattice for different k- values. Open circles represent positive values 
and shaded circles negative values (of the same magnitude) of orbital coefficients. The 
wavefronts of the corresponding electron waves are indicated. Note that for the f-point, 
nearest-neighbour combinations are all bonding, whereas they are all antibonding for M. 
(After Cox (1987), Electronic Structure and Chemistry of Solids, by permission of Oxford Uni
versity Press) 

For small k-values, the cosine terms in eqn. (5.98) may be expanded to second order, 
giving 

(5.100) 

where k2 k~ + k; + k;. Therefore, the 'g(k) surface is spherically symmetric near 
k = 0, and the parabolic dependence on k is the same as that for the NFE model (cf. 
eqn. (5.86». The TB s-band structure for a simple cubic lattice is shown in Fig. 5.37a for 
two directions in k-space. The corresponding electronic density of states is shown in Fig. 
5.37b: note the van Hove singularities, where 'h'g = 0, resulting from the flat bands at 
the Brillouin-zone boundaries in the (k, 0, 0) and (k, k, 0) directions. 
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Fig. 5.37 Tight-binding results for s-states on a simple cubic lattice: (a) Band structure in the 
[100] and [111] directions in k-space. (b) Density of states. 
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A TB treatment of other types of atomic orbitals, e.g. p- or d-states, is similar to * 
that described above for s-states, except that the orbital degeneracy inherent in such 

atomic states results in a 3 x 3 secular problem for p-states or a 5 x 5 secular problem 
for d-states. A qualitative understanding of the effect of including, say, p-orbitals in 
a TB analysis can be obtained from a generalization of Fig. 5.36, where now Px or Py 
orbitals are placed on sites in a 2D square lattice and the combinations of 
orbital coefficients can be examined for various k-values (Fig. 5.38). Now, both a and 
1f interactions between nearest neighbours need to be considered. Thus, at r, the two 
Bloch-wave states are degenerate, with all a-antibonding and 1f-bonding inter
actions occurring between nearest neighbours. Likewise, at the M-point, the two 
states are degenerate, but now the interactions are all a-bonding and 1f-antibonding 
between nearest neighbours. However, for the X-point, the two states split in 
energy, the lowest-energy configuration consisting of all a-bonding and 1f-bonding 
nearest-neighbour interactions, and the upper level corresponds to all a-antibonding 
and 1f-antibonding interactions. The corresponding band structure is shown in 
Fig. 5.39. 

The three degenerate atomic p-orbitals may be written as (Pi = x((r) ,y((r) and z((r) 
where ((r) is a spherically symmetric function. Thus, the tight-binding wavefunction 
(eqn. (5.93» now takes the form: 

q)k,p = N- 1/ 2 L Ca L eik.RII<pa(r - Rn)· (5.101) 
a=x,y,z 

Substitution of this into the Schrodinger equation leads to the 3 x 3 secular determinant 
for the TB energies, viz. . 

where OCta' is the Kronecker delta and the matrix elements are given by 

r:k = (0·,0) x: k = (7tla,Q) M: k = (1tla,rcla) 

CO 00 00 00 00 cO '00 CO 't~O 
Px 00 CO 00 dJ en cO. 00''(:1:) d3····. 

000000 oooocb·· ... ·.·OOOO·OO 
LA,=

2a
J " ....... ". '. 

~ 8 ~ ~ 8 "~ ... ~·····8 ......... · .. 8/A,=~a 
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(5.102) 

Fig. 5.38 Relative phases of p-orbital coefficients of Bloch functions in a tight-binding treatment 
for a 2D square lattice for different k-values. Open circles of lobes indicate positive values, and 
hatched circles negative values, of orbital coefficients. 
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Fig. 5.39 Band structure for a 2D square lattice with Px and PI' orbitals at each site for different 
directions in k-space. . 

Tacl = L ei/c.RII J ¢:(r)v(r)¢~(1' - RIl)dl'. 
Il 

(S.103) 

The overlap integrals now depend on the direction RIl = (/,111, n) (where I, m, n are 
direction cosines) as well as the distance RI/ ,and are given by (Slater and Koster (19S4)): 

J ¢;v¢xdr PPP(7+ (1 - p) pp7f, 

J ¢; v¢ydl' = 1m pp (7 - 1m pp 7f, 

J ¢:v¢=dl' = In pp (7 - In pp 7f, 

(S.104a) 

(S.104b) 

(S.104c) 

where pp (7 and pp 7f are the overlap (hopping) integrals for (7 and 7f bonding, respec
tively, between p-orbitals on nearest-neighbour sites (Fig. S.40). The ratios of the 
various overlap integrals for the case of materials (e.g. Si, Ge) with sand p valence 
electrons was found by Harrison (1980) to be 

PP(7: pP7f: SP(7: SS(7 = 2.31 : -0.S8: 1.31: -1.00. (S.10S) 

For a simple-cubic lattice, the diagonal matrix elements are given by 

T.'Cx = 2pp(7 coskxa + 2pp7f (coskya + cosk:a) , (S.106) 

with Tvv and T:= found by cyclic permutation; the off-diagonal matrix elements are 
identic~lly zero. Hence, say in the [100] direction in k-space: 

cg = cg + {2PP7fCOSka + 2(pp(7 + pp7f) 
k p 2pp(7coska + 4pp7f, (S.107) 

where the upper term of higher energy corresponds to a doubly degenerate state and 
therefore there is triple degeneracy at the r-point (k = 0). The behaviour of eqn. (S.107) 
is shown in Fig. S.39 for the case of a 2D square lattice. 
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Fig. 5.40 Schematic illustration of the geometric origins of the four non-zero overlap (hopping) 
integrals between s- and p-orbitals. (a) ssa: this is negative ifboth s-orbitals have the same sign. (b) 
spa: this is positive if the negative lobe of the p=-orbital is closest to a positive s-orbital. (c) ppa: 
this is positive, since it is dominated by the contributions between the positive orbital on one p=
orbital overlapping with the closest negative orbital on a neighbouring pz-orbital. (d) PP7f: this is 
negative because it is dominated by the overlap between two positive lobes and between two 
negative lobes on neighbouring Px- or py-orbitals. 

The Bloch-like functional form of the TB wavefunction (eqn. (S.93)) indicates that an 
electron in a TB band has an equal probability of being in any cell in the crystal. Thus, 
electrons in a part-filled TB band may contribute to the electrical conductivity and can 
be regarded as moving from site to site by means of quantum-mechanical tunnelling. It 
might be thought that, by progressively decreasing the separation between isolated o".e. 
electrically insulating) atoms, the electrical conductivity would continuously increase 
from zero as the tight-binding bandwidth increases (Fig. S.3Sb). However, this presup
poses that the independerzt-electron approximation, implicit in the TBA, is valid at all 
interatomic separations. This is not the case, and a discontinuous (Mott) transition 
from the conducting to the insulating state occurs on increasing the separation beyond a 
critical value (§S.6.3). This breakdown of the independent-electron approximation 
occurs because electron-electron repulsions at a particular site are not properly treated. 

Finally, it should be noted that, in principle, the tight-binding method does not 
depend on there being periodicity of the lattice: the method can equally well be used 
to describe electron states in disordered (e.g. amorphous) materials, although of course 
in such cases the TB wavefunction cannot be written in Bloch form (cf. eqn. (S.93)). 

5.3.2 Hybridization 

Thus far, we have described valence electrons in solids in terms of two limiting situa
tions: the NFE and TB models. In both cases, since the relevant Bloch wavefunctions 
extend over all cells in a crystal, part-filled bands (originating from unfilled atomic 
shells of electrons) are predicted to give metallic behaviour. While this picture is 
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successful in many cases, it breaks down for the case, for example, of the Group IV 
elements that have the tetrahedrally coordinated, diamond-cubic structure (§2.2.5), i.e. 
the diamond form of carbon, silicon, germanium and the a-phase of tin. For these, the 
atomic electronic configuration of the outer shells is S2p2, and if the p-states were to 
form a separate TB band, as in Fig. 5.41, then such materials would be expected to be 
metallic since such a p-band could contain six states per atom but actually would 
contain only two electrons per atom. In fact, they are semiconductors, with bandgaps 
decreasing in size as the group is descended. 

The reason for the apparent breakdown in this picture is that, in such materials, the 
s-states and p-states do not form separate bands, as on the left-hand side of Fig. 5.41, but 
instead the states hybridize to form new, spatially directed orbital combinations: in the 
case of the Group IV elements, and related materials like the binary III-V compounds 
(GaAs, etc.); the hybrid orbitals are termed sp3-hybrids for reasons that will become 
apparent shortly. Such sp3-hybrids can then form bonding and antibonding combina
tions, separated by a hybridization gap (as on the right-hand side of Fig. 5.41). The Sp3_ 
bonding (valence) band contains four states per atom, as does the sp3-antibonding 
(conduction) band. Thus, for the case of the Group IV elements, the sp3-bonding 
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Fig. 5.41 Schematic illustration of the origin of the hybridization gap between bonding and 
antibonding bands formed from sp3-hybrids for tetrahedrally coordinated Group IV elements. 
The dashed line marks the boundary between, on the left, the formation of tight-binding bands 
from atomic states and, on the right, sp3-hybrid bands. The hybridization bandgap increases with 
increasing bond integral (scaling inversely with interatomic separation). The positions of Sn, Ge, 
Si and C are indicated according to the relative values of the experimental bandgaps. For all of 
these elements, the atomic s-p splitting energy is approximately constant ~cgps = cgp - cgs 
= 7.5 ± leV. . 

valence band is completely full and the conduction band is completely empty at 
T 0 K: the materials are therefore predicted to be insulators/semiconductors, as 
observed experimentally. Band formation from hybridized states is favoured over that 
from atomic states if the cost in energy to hybridize atomic orbitals (the promotion 
energy, cgp - cgs in Fig. 5.41) is more than compensated by the extra bonding energy 
gained via more efficient overlap between spatially directed hybrid orbitals than 
between atomic orbitals. 

Hybrid orbitals are states constructed from linear combinations of atomic states on 
a given atom. For the example of Group IV elements, III-V compounds, etc., the 
atomic states involved are s- and p-states, although for different systems other orbitals 
(e.g. d-states) can also be involved. Two equivalent s-p hybrid orbitals on the same 
atom can thus be written as 

1/Jl =/(1/Js+)..1/JpI), 

1/J2 = 1(1/Js + )..1/Jp2), 

(5.108a) 

(5.108b) 

where 1 is a normalization constant, 1/Jpl and 1/Jp2 are normalized p-orbitals having 
arbitrary orientations and )..2 is termed the mixing ratio of p-states to s-states in the 
hybrids. The normalization constant is found from the relation 

1 = J 1/1i1/1ldr = /2(1 + )..2), 

1 (1 + )..2)-1/2. 

(5.109a) 

(5.109b) 

We also require the two hybrid states 1/11 and 1/12 on the same atom to be orthogonal, i.e. 

0= J 1/Ji1/12dr = 12 [1 +).. J 1/1;I1/1sdr +).. J 1/1;1/1p2dr +)..2 J 1/1;I1/1p2dr]. ( 5.l1O) 

The two overlap integrals between s- and p-states are zero by symmetry. In order to 
evaluate the overlap integral involving two p-states, it may be assumed without loss of 
generality that 1/1pl points along the x-axis, and the other orbita11/1p2 can be resolved into 
contributions that are parallel (1/1p2 cose) and perpendicular (1/1p2 sine) to the x-axis, 
where e is the angle between the two orbitals (Fig. 5.42). Thus 

(5.111) 

y 

Fig. 5.42 Two p-orbitals on an atom. One is placed arbitrarily along the x-axis, and the other lies 
at an angle 0 in the same plane and has a component 'if;p2 cosO parallel to the x-axis. 



and hence the orthogonality condition (eqn. (5.110)) reduces to the requirement that 

)..2 = -l/cosB. (5.112) 

Different hybrid-orbital combinations may be formed between s-orbitals and varyi~g 
numbers of p-orbitals on the same atom. Mixing of an s-orbital with a single p-orbital 
creates the sp-hybrids: 

(5.l13a) 

(5.113b) 

where 'l/Jx stands for the px";orbital. These combinations are illustrated in Fig. 5.43a. 
Mixing of an s-orbital with two p-orbitals creates three sp2-hybrids (Problem 5.18) 

that lie in the same (say x-y) plane (see Fig. 5.43b). The pz-orbital remains unchanged 
and points in the z-direction, perpendicular to the sp2-hybrids. 

If an s-orbital is mixed with all three p-orbitals, four sp3-hybrids are produced. This is 
the situation of interest for the diamond-cubic materials. The s-like content of the 
hybrids is 1/(1 + )..2) = 1/4, i.e. )..2 = 3. Thus, from eqn. (5.112), the sp3-hybrids are 
directed in a tetrahedral arrangement to the four corners of a cube (Fig. 5.43c), with an 
included angle B cos- I (-1/3) 109°28' subtended between them. The four sp3_ 
hybrids can be written as: 

1 
'l/JI = 2. ('l/Js + 'l/Jx + 'l/Jy + 'l/J=), (5.114a) 

1 
'l/J2 2. ('l/Js + 'l/Jx - 'l/Jy - 'l/JJ, (5.114b) 

1 
'l/J3 = 2. ('l/Js - 'l/Jx + 'l/Jy - 'l/Jz), (5.1 14c) 

1 
'l/J4 = 2. ('l/Js - 'l/Jx - 'l/Jy + 'l/J=). (5.114d) 

The energy of a hybrid orbital (eqn. (5.108)) is given by 

J *" cgs + )..2cgp 
cgh = 'l/Ji:Yf 'l/Jidr = (1 + )..2) . (5.115) 

x 

(a) (b) (c) 

Fig. 5.43 Illustration of the geometries of various s-p hybrid orbitals: (a) sp-hybrids, pointing 
linearly in opposite directions. (b) sp2-hybrids, lying in the same plane with a :mbtended angle of 
120°. (c) sp3-hybrids, in a tetrahedral arrangement with a sub tended angle of 109° 28'. 

1 

For the case of sp3-hybrids, the hybrid energy is therefore 

cgh = (cgs + 3cgp)/4, (5.116) 

since)..2 = 3. Thus, if the four sp3-hybrids on an atom contain one electron each, the on
site energy is (cgs + 3'&p), compared ~ith the corresponding energy (2,&s + 2,&p) for the 
un hybridized atom with an S2p2 electronic configuration. The difference between these 
is the promotion energy 

(5.117) 

required to promote an s-electron to a p-state energy so that it can mix. 
The origin of the bandgap between valence and conduction bands in hybridized 

systems, e.g. Si or Ge, can be seen clearly by reference to Fig. 5.44. Atomic s- and p
states are hybridized to form sp3-hybrids with an energy cgh, which can then form 
bonding and antibonding combinations between orbitals on neighbouring atoms point
ing along the common bond, resulting in bonding and antibonding energy levels 
separated by 21,611, where 1,611 is the magnitude of the hybrid bond integral. Such 
molecular orbitals become broadened into bands, the valence band being formed 
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Fig. 5.44 Illustration of bandgap formation in hybridized systems, e.g. for sp3-hybrids in Si. 
Atomic s- and p-states, with energy levels separated by ,0,.~ps, are hybridized to form sp3-hybrids 
with energy ~h' These form bonding and antibonding combinations, giving molecular-orbital 
levels separated by 21.811. Valence and conduction bands form from these levels as a result of an 
intra~ite hoppin¥ interaction between sp3-hybrids on the same atom; the bandwidth is ,0,.~ps. A 
gap IS formed If 21.811 > ,0,.~ps. (From: Electronic Structure and the Properties of Solids by 
Harrison © 1980 by W.H. Freeman and Company. Used with permission.) 
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Fig.5.45 Four types of hopping (overlap) integral between sp3-hybrids on neighbouring atoms. 
fJI is the largest and the only one retained in the Weaire-Thorpe model. 

from bonding orbitals and the conduction band from antibonding orbitals, by, in the 
simplest case (the Weaire-Thorpe (1971) model), interactions between hybrid orbitals 
on the same atom. Such on-site interactions thereby allow an electron to hop from bond 
to bond between different atoms in the structure: this delocalization is essentially the 
cause of the band formation. 

We shall show shortly that the width of each of the two bands is simply b"cgps, the 
atomic s-p splitting, and so from Fig. S.44 a simple criterion can be gleaned for the 
existence of a bandgap, namely that the magnitude of the bonding-antibonding separa
tion of the molecular orbitals should be greater than the bandwidth, i.e. 

21/311~b"cgps. (S.118) 

Note that this result is based solely on local interactions, both intersite and intrasite, 
and therefore does not invoke translational periodicity. Hence, this approach explains 
why, for example, both amorphous and crystalline forms of Si have gaps of comparable 
size between filled valence and empty conduction band states, since the average short
range order is identical (i.e. tetrahedral) in both phases. 

The simple Weaire-Thorpe model considers only two interactions: an intersite and an 
intrasite hopping integral. Of the possible intersite hopping integrals between hybrid 
orbitals on neighbouring sites (Fig. 5.4S), only the largest (/31) is retained, correspond
ing to overlap between orbitals pointing at each other along the line of the bond. This 
has the value 

/31 (sso- 2V3spo- - 3ppo-)/4, (S.119) 

and, from eqn. (S.IOS), is negative. 
The intrasite hopping integral is 

(S.120) 

for different hybrid orbitals on the same atom ex =1= /3, from eqns. (S.108) and (S.111). If 
now bonding and antibonding orbitals, </Jt and </Jif, between atoms i and j (see Fig. 
S.46a) are written as 

(S.121) 

(b) 

(c) 

Fig.5.46 (a) Formation of a bond orbital between atoms i andjwith hybrid orbitals 'Ij;~~) and 'Ij;~). 
(b) The most bonding configuration corresponding to the deepest state in the valci'nce bari'd. 
(c) The most antibonding configuration corresponding to the highest state in the valence 
band. 

h niP)' 3 h b 'd .,. I h b b were 'f'ij IS an sp - y n on atom l pomtmg a ong t e ond etween atoms i and j, 
then the interaction between pond orbitals on neighbouring atoms is (from eqn. 
(S.120) ): 

(S.122) 

Since the model only considers intersite overlap between hybrids along common bonds, 
the only term remaining from eqn. (S.122) is 

J </Jt* Yf </J~dr ~ J 1jJ~(i) Yf 1jJ~~ dr 

1 
'8 b"cgps. 

(S.123) 

from eqn. (S.120). 
The extremities of the valence and conduction bands can now be found. The bottom 

of, say, the valence band corresponds to the most bonding Gonfiguration of the hybrids 
(Fig. S.46b): its energy is 

cg~in = cgh - l/3d + 6( - ~ b" cgps) 

3 = cgh l/3d 4 b" cgps, 
(S.124) 



since the hopping integrals associated with the bond orbital and the six orbitals at either 
end of the ij bond have the same sign. The top of the valence band, on the other hand, 
corresponds to the most antibonding situation, shown in Fig. 5.46c: its energy is 
correspondingly 

cg~ax = cgh If3I! + (2 - 4)( -i6,cgps) 

= cgh - 113,1 + i 6,cgps 
(5.125) 

Thus, the width of the valence band is just ,6.cgps = cgp - cgs. Similar considerations for 
the conduction band give the same result (see Problem 5.19). 

Although the Weaire-Thorpe model provides a clear physical picture of the origin of 
the bandgap in solids like Si; the neglect of the other intersite interactions f3i(i 2 - 4), 
see Fig. 5.45, means that it gives a poor quantitative description of the band structure. 
However, rather than include ever higher terms f3i, it is simpler just to consider hopping 
interactions between s- or· p-states on one atom with s- or p-states on another atom 
without invoking complete hybridization; such a situation is referred to as a minimal 
atomic basis set. In. fact, it is found that, for crystalline Si, the s-p mixing ratio is 
actually 1.7, rather than the value of 3 expected for ideal sp3-hybridization (see Sutton 
(1993)). 
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Understanding band structures 

We are now in a position to interpret features in band structures (cg(k) diagrams) of 
crystalline materials from both physical and chemical points of view. It will be seen that 
the band structures for crystalline materials characterized by different forms of intera
tomic bonding are qualitatively different. Insulators can be distinguished from metals, if 
we know the extent of band filling for a particular material. Insulators (large bandgap) 
and semiconductors (small bandgap), defined as those materials for which the highest 
occupied (valence) bands are everywhere in k-space lower in energy than the lowest 
unoccupied (conduction) bands, can be subdivided into two categories for the case of 
crystals. Those in which the highest occupied valence state (HOMO in chemists' 
parlance) is at the same point in k-space (usually the r-point) as the lowest unoccupied 
conduction state (LUMO) are termed direct-gap materials; those crystalline solids for 
which the minimum bandgap occurs at a different k-value from the conduction-band 
minimum are called indirect-gap materials (see Fig. 5.47). 

At points of very high symmetry in the Brillouin zone, bands originating from a given set 
of atomic orbitals are very often degenerate. Some limited degree of degeneracy between 
such bands can also hold for trajectories in k-space between high-symmetry points. At 
a general k-point in the band structure, however, the full number of bands is revealed, 
equal to the number of atoms in the basis of the unit cell multiplied by the number of 
atomic orbitals involved. Each band can then accept two electrons per atom as a result of 
electron-spin degeneracy. A detailed discussion of symmetry aspects relating to band 
structures is given, for example, jn Burns (1985), Altmann (1991) and Nichols (1995). 

"& 
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(a) (b) k 

Valence 
band 

Fig.5.47 Types of bandgap in insulators/semiconductors: (a) direct gap; (b) indirect gap. 

5.4.1 Ionic crystals 

The calculated band structures. of two representative ionic crystals, KCl and AgCl, are 
given in Fig. 5.48. KCl is an archetypal highly ionic solid with near-complete charge 
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Fig. 5.48 Calculated band structures of two ionic crystals: (a) KCl (Cohen and Heine (1970). 
Reproduced by permission of Academic Press, Inc.); (b) AgCl (Wong et al. (1976). Reproduced by 
permission of Akademie Verlag GmbH). 

transfer from the more electropositive atom (K) to the more electronegative (Cl). Thus, 
the valence electrons are entirely associated with the tightly bound 3p-states on the 
anion (Cl); correspondingly, the 4s- and 3d-states of the cation (K) are empty. It can be 
seen from Fig. 5A8a that the Cl 3p-bands exhibit very little variation in energy with k: 
the width of the valence band is therefore extremely narrow, as expected from a tight
binding treatment (§5.3.1) of such tightly bound electrons. (The 3s-states of Cl, being 
core states, are yet more tightly bound, and form an even narrower band, essentially 
a discrete atomic level). In the case of complete charge transfer from K to Cl, all three Cl 
3p-bands (the valence band) will be completely filled with electrons and the K 4s- and 
3d-states will be completely empty. Since there is a gap of", 8 eV between these two 
bands, KCl is an extreme electrical insulator, with a direct gap (at r). Values of the 
bandgaps for alkali-halide crystals are given in Table 5.3. To ;:t first approximation, the 
bandgaps are approximately equal to the difference in energies of cation s- and anion 

I 
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Table 5.3 Experimental bandgaps for alkali halides 

Rb Cs 

F 13.6 11.6 10.7 10.3 9.9 
(17.1) (12.9) (9.7) (8.7) 
(11.5) (11.9) (12.8) (13.1) (13.4) 

Cl 9.4 8.5 8.4 8.2 8.3 
(10.5) (8.7) (7.0) (6.4) (5.4) 
(6.8) (7.2) (8.1) (8.4) (8.8) 

Br 7.6 7.5 7.4 7.4 7.3 
(9.2) (7.8) (6.4) (5.8) (5.0) 
(5.7) (6.1) (7.0) (7.3) (7.6) 

Bandgap values are in eV. Values in parentheses are values from the bond-length 
scaling formula (eqn. (5.126», above, and below, values of (eg~ - eg~), where egc 
and eg~ are the cation and anion s- and p-state atomic energy levels, respectiveiy. 
(From: Electronic Structure and the Properties of Solids by Harrison © 1980 by 
W.H. Freeman and Company. Used with permission.) 
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p-states, "g~ - "g~, although the variation of "gg with cation atomic number for a given 
anion is not reproduced. This behaviour is captured by use of the formula 

(5.126) 

linking the bandgap with the nearest-neighbour spacing, d; the value of the constant is 
A 18.2. The same formula also accounts for the variation of"gg for rare-gas solids and 
covalent solids, but with different values of the constant, A (Harrison (1980)). 

In the case of AgCl (Fig. 5ASb), the Ag 4d-orbitals (with a filled shell) are too far 
apart from each other to produce any significant width in a TB band. However, they lie 
in the same energy region as the CI 3p-states, and consequently there are appreciable 
covalent-like interactions between d- and p-states, leading to an increase in the width of 
the valence band. Nevertheless, the degree of mixing is not the same for all k-values. At 
k 0 (r), there is no interaction between p- and d-states because of their different 
symmetries. Fig 5049 shows that there is a net cancellation in overlaps between lobes 
on neighbouring orbitals, whereas the interaction (mixing) is maximal (i.e. the band
width is greater) at a non-zero value of k. As a result, AgCl is an indirect-gap semi
conductor (the gap between valence and conduction bands is much less than for KCI). 

Ag CI 

k=±rtfa 

Fig. 5.49 Schematic illustration showing the interactions between Ag 4d and Cl 3p orbitals for 
k = 0 (no mixing) and ±1r/a (maximal mixing). (After Cox (1987), Electronic Structure and 
Chemistry of Solids, by permission of Oxford University Press) 



5.4.2 Covalent crystals 

The very strong orbital mixing characteristic of covalent bonding results in electron 
states being delocalized through a crystalline solid and not spatially localized in the 
vicinity of ion cores as in completely ionic materials. As a result, the widths of electron 
bands for crystalline covalent materials are much greater than those of ionic crystals 
(Fig. 5.48). Stoichiometric covalent materials, like ionic solids, are insulators (or semi
conductors, depending on the magnitude of the bandgap): at T = 0 K, fully occupied 
(valence) bands are separated in energy from completely empty (conduction) bands. 
(Non-stoichiometry, however, may shift the Fermi level into one of the bands, making 
the material metallic.) . 

Energy bands for crystalli~e Ge are shown in Fig. 5.50, calculated in three ways: (a) in 
the LCAO approximation, (b) using a full pseudopotential calculation, and (c) in the 
empty-lattice approximation. It can be seen that the free-electron-like bands in Fig. 
5.50c are remarkably similar to those at the bottom of the valence band and the upper 
part of the conduction band of the 'true' band structure (Fig. 5.50b), except of course 
that bandgaps at certain points in the Brillouin zone (notably the f'- and L-points) do 
not occur in the free-electron band structure. There are only eight LCAO bands in Fig. 
5.50a (as can be seen at the low symmetry points K, U) because only one s- and three 
p-states per atom in the unit cell were considered: the conduction band in the pseudo
potential band structure is much more complicated because other states (e.g. 4d-states) 
were included. Nevertheless, for the valence band, the agreement between the LCAO 
and pseudopotential band structures is rather good. 

As for the case of p-d mixing in AgCl (§5.4.1), mixing between s- and p-states in 
tetrahedrally coordinated crystals, like Ge, is absent on symmetry grounds at the f'
point. Thus, at f', the states are purely s-like or p-like. The bottom of the valence band is 
therefore s-like, and the top is p-like and triply degenerate (in the absence of spin-orbit 
coupling - see later). Likewise, at f', the bottom of the conduction band is purely s-like. 

L A r 6. XK,U 
k 

(b) (e) 

12 

4 

Fig. 5.50 Calculated band structures for crystalline Ge (neglecting spin-orbit .coupling):. (a) 
LCAO approximation involving only s- and p-like valence states; (b) pseudopotentIal calculatlOn; 
(c) free-electron-like bands in the empty-lattice approximation. (From: Electronic Structure a!1d 
the Properties of Solids by Harrison © 1980 by W.H. Freeman and Company. Used WIth 
permission.) 

On moving along a given band away from the f'-point, the degree of s-p mixing 
increases and the bands move up (for the s-state) and down (for the p-states), as seen 
already in Figs. 5.37a and 5.39. Thus, the width of the valence band is given by the 
atomic s-p splitting energy, ,0,.~ps, as deduced previously from a bond-orbital picture 
(Fig. 5.44). 

As can be seen from Fig. 5.50b, Ge is an indirect-gap semiconductor, the maximum of 
the valence band being at f' and the minima in the conduction band being in the (111) 
directions at the L-point. Crystalline Si is also an indirect-gap material, but for it (and 
diamond and GaP) the conduction-band minima are in the (100) directions near the 
X-point. Constant-energy surfaces (,electron pockets') in k-space, referred to the first 
Brillouin zone, are shown in Fig. 5.51 for regions near the conduction-band minima for 
these two materials. In a principal-axis representation for say Si (the principal axes in k
space are (100), the energy relative to the conduction-band minimum at (0,0, ko) for an 
ellipsoid aligned along the z-direction in k-space, can be written approximately as 

(5.127) 

where m~ and mj are the so-called transverse and longitudinal components of the 
effective mass (§6.5.1.4). The constant-energy surfaces are therefore ellipsoids around 
the (100) directions in Si, and the (111) directions for Ge. 

It is instructive to examine the trends in the band structures of tetrahedrally bonded 
materials (with either the diamond-cubic or wurtzite structures) that are isoelectronic 
with the Group IV elements, i.e. the III-V and II-VI compounds exhibiting mixed iono
covalent bonding. Some of these band structures are shown in Fig. 5.52. On going from 
left to right in Fig. 5.52, there is an increase in ionicity (i.e. an increase of charge transfer 
from the more electropositive atom to the more electronegative); on progressing 
from top to bottom, there is an increase in metallicity (i.e. metallic tendency) .. These 

[001) [001) 

(010] 

(a) (b) 

Fig. 5.51 Constant-energy surfaces near the conduction-band minima for (a) Si; (b) Ge. 
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behaviours can be quantified in terms of three energies (Harrison (1980)): 
VI = ('jgp - 'jgs)/4, the intrasite hopping integral (eqn. (5.120)) between hybrid orbitals 
on the same atom and a measure of metallicity (the greater the bandwidth, the more 
likely is the material to be metallic); V2 = l,BtI, the intersite overlap integral (eqn. 
(5.119)) and a measure of covalency; and'V3 ('jg~ 'jg~)/2, half the difference between 
atomic s-levels for cation and anion, and a measure of the polarity. Thus, one definition 
for the ionicity of a bond between dissimilar atoms is (Harrison (1980)): 

(5.128) 

(Another definition, according to Phillips, is given by eqn. (2.8).) In a similar fashion, 
the metallicity, representing the relative dominance of the 'banding' interaction (VI) to 
the 'bonding' interaction (V2), can be defined as (Harrison (1980)): 

(5.129) 

Examination of Fig. 5.52 shows that, with increasing metallicity, the gap at r 
decreases, as expected. Indeed, the lowest conduction band drops more quickly at r 
than at say X or L with increasing metallicity, so that the compound materials become 
direct-gap semiconductors (except GaP and AISb). Representative values of bandgaps 
for tetrahedral materials are given in Table 5.4. With increasing ionicity, the gap at r 
increases; moreover, the degree of s-p mixing decreases so that the bands become 
narrower, as in ionic crystals (Fig. 5.48). The symmetry-required degeneracy at the 
X-point between s- and p-bands. for Si and Ge is lifted for the compound materials 
containing dissimilar atoms where the symmetry is broken. 

Finally, it should be noted that the degeneracy at the r point of the p-states forming 
the top of the valence band is increasingly lifted with increasing metallicity. This effect is 
due to spin-orbit coupling of the electron spin s to the orbital angular momentum I to 
give the total angular momentum j: 

j I +s. (5.130) 

For the p-states (l = 1), two spin-orbit-coupled levels result, with} . 3/2 and 1/2. The 
P3/2-derived band lies above the 'split-off' band derived from Pl/2 states by the spin
orbit splitting energy .6..so , This quantity increases with increasing atomic number (or, 
equivalently, metallicity), essentially because the orbiting electron experiences a greater 

Table 5.4 Bandgap for tetrahedrally coordinated semiconducting crystals 

Crystal Type of gap egg (eV) Crystal Type of gap egg (eV) 

C 5.4 InP d 1.42 
Si 1.17 lnAs d 0.43 
Ge i 0.74 InSb d 0.23 
a-Sn d 0.00 AlSb i 1.65 
GaP i 2.32 CdS d 2.58 
GaAs d 1.52 CdSe d 1.84 
GaSb d 0.81 CdTe d 1.61 

ZnSe d 2.82 

(Bandgap values refer to T = OK; i = indirect; d = direct.) 
(After Kittel (1996). Reproduced by permission of John Wiley & Sons Inc.) 
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Figure 5.53 Schematic illustration of the effects of spin-orbit coupling on the p-like bands at the 
top of the valence band (near f) for tetrahedral semiconductors. A split-offPl/2 band is separated 
by 6.so , the spin-orbit coupling energy, from a P3/2 band which is doubly degenerate (excluding 
spin degeneracy) at f. At other k-values, two bands with different curvatures result: the heavy
hole and light-hole bands. 

internal atomic magnetic field the greater is the nuclear charge . .t..so is very small for Si 
(0.04 eV), fairly large for Ge (0.29 eV) and GaAs (0.34 eV), and quite sizeable for InSb 
(0.82 eV). 

The 10CErI band structure in the vicinity of f is illustrated in Fig. 5.53 for the case of 
appreciable spin-orbit coupling. The higher-lying P3/2 band is quadrupally degenerate 
(including spin degeneracy) at f (mj = ±3/2, ±1/2), whereas the split-off PI/2 band is 
doubly degenerate (mj = ±1/2) there. However, away from the f-point, the degeneracy 
of the P3/2 band is partially lifted, and two bands with different radii of curvature in k
space result (in the absence of a magnetic field). Since the radius of curvature of a band 
is inversely proportional to the electron effective mass (see §6.2.1), the two higher bands 
are called the heavy-hole and light-hole bands. ('Holes', or an absence of electrons in an 
otherwise completely filled band, are the effective charge carriers in the valence band of 
semiconductors - see §6.2.2.) 

5.4.3 Metallic crystals 

Metallic crystals are characterized by the Fermi level lying within a band or bands of 
delocalized states. Band structures for two representative elemental metallic crystals, Al 
and Cu, are shown in Fig. 5.54. The energy bands of the s-p (3s23pl) metal, AI, are very 
nearly free-electron-like (the energy dependence of the corresponding density of states is 
also very close to the 'fl, 1/2 behaviour expected for a free-electron gas see Fig. 5.31). 
However, it can be seen from Fig. 5.54a that the Fermi level for Al intersects several 
bands, and so the Fermi surface is not a continuous spherical surface contained entirely 
within the first Brillouin zone, as for alkali metals, but, because the number of con
duction electrons (3) is greater than that (2) required exactly to fill the first zone, the free
electron Fermi surface intersects parts of the next three zones (somewhat as in Fig. 5.24). 

In contrast, the Fermi level for Cu (3d 10 4s I) intersects only a single s-band in the r-x 
and f-K directions (see Fig. 5.54b), and so the Fermi surface is approximately spherical 
within the first Brillouin zone. However, it can be seen that it fails to intersect the band 
in the f -L direction: there is therefore a gap at L, as seen from the 'necks' in the Fermi 
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Fig.5.54 Calculated band structures for elemental metallic crystals: (a) Al (the dashed curves are 
free-electron-like bands). (After Segal (1961»; (b) Cu (the points are experimental data). (Courths 
and Hi.ifner (1984), after Eckhardt et al. (1984) Reprinted from Pllys. Rep. 112, 53, Courths and 
Hiifner, © 1984 with kind permission.from Elsevier Science NL, Sara Burgerhartstraat 25, 1055 
KV Amsterdam, The Netherlands) 

Ti V Cr Mn Fe Co Ni 

Fig.5.55 Schematic illustration of the variation in energy of the d-band, and the position of%F 
within it, for transition metals. 

surface at such positions in the Brillouin zone (Fig. 5.25b). As for AI, the lowest bands 
are also free-electron-like, but in the middle of the energy range of the band structure 
are five rather flat bands corresponding to tightly-bound filled d-states (the Fermi level 
lies higher in energy than the d-bands in this case). It can be seen that s-d mixing causes 



the free-electron-like parabolic form of the lowest part of the s-band to be severely 
distorted in the region of the d-band: the two types of bands obey the no-crossing rule 
for bands of different symmetry (see Bums (1985) or Altmann (1991) for further 
details). 

For transition metals, with partly filled d-bands, the Fermi level lies in the d-band, 
but its absolute position and relative position (say with respect to the bottom of the 
band) do not vary smoothly with band-filling (see Fig. 5.55). The centre of the d-band 
falls in energy with increasing band-filling (in excess of the half-filled state) because of 
increasingly ineffective shielding of the nuclear charge for one d-electron by the other d
electrons. At the same time, the states become more tightly bound and hence the 
bandwidth decreases. 

Density of states 5.5 
The density of electron states (the number of states in unit energy interval) is obtained 
from the band structure ~(k) via an integration in k-space over the Brillouin zone of 
a constant-energy surface of the band structure, as for vibrational modes (eqn. (4.58», 
according to 

(5.131) 

where the electron-spin degeneracy has been explicitly included and D(~) has units per 
energy per volume. Thus, flat bands in k-space give rise to sharp features in the density 
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Fig. 5.56 Density of electron states for: (a) Cu, derived from the band structure given in Fig 
5.54b. The parts of the density of states originating from s- and d-states are marked. Occupied 
states at T = 0 K are shaded. (After Ibach and Liith (1995), Solid State Physics, p. 145, Fig. 
7.12(a), © Springer-Verlag GmbH & Co. KG); (b) Ge, derived from a band structure as in Fig. 
5.50b. The labelling of features corresponds to that of the band structure where 'h% O. 
Occupied states at T = 0 K are shaded. (After Herman et al. (1967). Reproduced by permission 
of Addison-Wesley-Longman) 



of states (called van Hove singularities when \l k Cfl, = 0). The density of states of eu (Fig. 
5.56a) shows this behaviour. Superimposed on a very broad (c::: 12 eV wide) density-of
states curve corresponding to the s-bands is a highly structured, intense and narrow 
series of peaks corresponding to the narrow d-bands in the band structure. It can be 
seen that the density of (s-)states at the Fermi level is finite, and so the material is 
a metal. 

It is instructive to compare Fig. 5.56a with Fig. 5.56b for the semiconductor crystal
line Ge. The density of states for Ge has a lower band of states (the valence band) 
completely separated by a forbidden energy gap from an upper band of states (the 
conduction band). At T = 0 K, the valence band is completely filled with electrons and 
the conduction band is completely empty: the Fermi level lies in the gap where there are 
no states (see §6.5.1.1), and so the material is insulating at zero kelvin. Note that the gap 
in the density of states of an insulator/semiconductor corresponds to the minimum, 
energy gap in the corresponding band structure (Fig. 5.50b); in the case of Ge, this is 
the indirect gap of Cfl,g = 0.74 eV between the valence band at r and the conduction 
band at L. 

For the case of disordered materials, e.g. amorphous solids, where there is no 
translational periodicity, electron states cannot be described in terms of a band struc
ture Cfl,(/c), since the electron wavevector is ill-defined. However, the density of states is 
still valid as a description of electron states in disordered materials, although evidently it 
cannot be evaluated using eqn. (5.131). Instead, as for vibrational states (§4.3.2), it can 
be calculated, for example, as a sum of delta functions at allowed electron energies (cf. 
eqn. (4.118». For the case of amorphous Si or Ge, for example, since the local atomic 
structure (short-range order) around a given atom is, on average, very similar to that in 
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Fig. 5.57 Density of states for amorphous and crystalline Si calculated using the tight
binding approximation. (After Street (1991). Reproduced by permission of Cambridge University 
Press) 
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the crystal (i.e. tetrahedral coordination), it would be expected from the Weaire-Thorpe 
picture of the origin of -the bands in terms of hybridized bond orbitals, presented in 
§5.3.2, that the overall density of states would be very similar for amorphous and 
crystalline modifications of the same· material. This is indeed observed (Fig. 5.57), 
although several qualitative differences exist. Obviously, van Hove singularities are 
smeared out in the amorphous case due to the absence of translational periodicity. 
Furthermore, band edges in the density of states are sharp in the case of crystalline 
materials, varying as (Cfl, - Cfl,c) 1/2 near the bottom of the conduction band at Cfl,c or as 

1/2 ' (Cfl,y - Cfl,) near the top of the valence band at Cfl,y (since Cfl,(/c) can be expanded 
quadratically in the vicinity of a critical point - see §4.2.4). However, the structural 
and, concomitantly, energetic disorder characteristic of amorphous solids results in a 
broadening of the bands at the extremities, thereby forming band tails. The origin of 
band tails can be understood by reference to Fig. 5.44. In the Weaire-Thorpe model, the 
bandwidth is governed by the on-site hopping integral between hybrid orbitals on the 
same atom; fluctuations in local structural order (e.g. bond-angle variations) in 
the amorphous phase result in fluctuations in this hopping integral, and hence lead to 
a broadening of the bands and the creation of band tails. The tail states deepest in the 
gap, furthest from the band edges, correspond to the most distorted sites. 

**5.5.1 Local density of states: the moments theorem 

The density of states defined by eqp. (5.131) is the total density of states for all (types of) 
atoms in a crystal. In certain cases, however, for example crystals with different types of 
atoms in the basis, or disordered materials such as those containing point defects, it is 
often informative to know also the local density of electron states, i.e. that associated 
with a particular single atom. As well as providing insight thereby into the origin of 
specific features in the total density of states, the local density of states is significant 
because information about its overall shape as a function of energy can be obtained very 
simply, as will be seen shortly, from a knowledge of the local topology of the atomic 
structure around the atomjn question. Thus, much information about the total density 
of states (which is just a sum of the local densiti.es of states) can be obtained from real
space considerations (See Sutton (1993), Pettifor (1995», rather than via detailed 
calculations in reciprocal space using eqn. (5.131). 

A general expression for the total density of states, valid for all types of materials, is 
as a sum of delta functions (cf. eqn. (4.118»: 

g(Cfl,) = L 8(Cfl, - Cfl,i)· (5.132) 
~I 

The local density of states, associated with a particular atom n, can be obtained by 
'projecting' the contributions to the total quantity onto the atom in question. This is 
achieved by weighting each contribution, at Cfl,i, by a coefficient, p~, that is the prob
ability of finding an electron in an atomic state cPn, localized on atom n. The eigenstate 
Wi associated with energy Cfl,i is expanded in an orthonormal basis set of such atomic 
states, i.e. 

(5.133) 



with the expansion coefficients being written as 

c~ = J ¢;widr 

== (¢aIWi) 

(5.134) 

in the so-called bra-ket notation. The probability coefficient a;l is thus given by 

(5.135) 

where (nl ¢~, and hence the local density of states on atom 11 is given by the 
expression 

dn(~) L P~8(~ - ~i)' (5.136) 
~I 

The total density of states is recovered by summing over all local contributions: 

g(~) L l(nlwi)12 L 8(~ - ~i) 
n ~i 

= L8(~ -~i)' 
(5.137) 

~i 

since the normalization condition for the orthonormal atomic basis set is 

I:n l(nlwi)1
2 

1. . . ., 
The moments theorem of Cyrot-Lackmann (1968) states that, m the tIght-bmdmg 

approximation, the mth moment of the local density of states on atom n is just related to 
the sum of all closed paths, consisting of m hops of an electron between nearest
neighbour atoms in the structure, starting and finishing at atom n. 

The mth moment of any distribution functionf(x) about the origin is defined as 

p,(m) (0) 1: ~1J(x)dx (5.138a) 

and the moment about, say, the mean x, is 

p,(I1l) = 1: (x - xtY(x)dx. (5.138b) 

For the case of the local density of states on atom n, the ~ppropriate expression for the 
mth moment is 

p,~n) = r (~ - .1t'nnyndn(~)d~, 
Jband 

(5.139) 

where the Hamiltonian matrix element .1t' IlIl is given by 

(5.140) 

this is equal to ~n - an, the tight-binding on-site energy (cf. eqn. (5.96a)). Substitution 
of eqn. (5.136) into eqn. (5.139) gives for the mth moment: 

p,~n) = r L(~ .1t'nnrz(nlwi)(wiln)8(~ - ~i)d~. 
Jband ~i 

(5.141) 

The operation of the delta function in eqn. (5.141) ensures that all terms in the integra
tion are zero except for ~ = ~i' and hence 

"'I 

p,~m) L(nIWi)(~i .1t'nnyll(w;ln) (5.142) 
~i 

Equation (5.142) can be regarded as simply the matrix element Onn of an operator 0, 
where 

0= L IWi(~i - .1t'nnt(wil (5.143) 
~i 

or, alternatively, 
0= (.1f - .1t'nnt\ (5.144) 

since .1t' I:~i IWi)~i(W;I. Thus, finally, the mth moment can be written as 

p,~m) (nl(.1t' - .1t'nntln) (5.145) 

The zeroth moment, p,~O), is unity, since (11111) 1. The first moment, p,~/) is zero, since 
(nl(.1t' - .1t'nn) In) = .1t'nn .1t'nn(nln) = O. Therefore, the first moment, which gives the 
relative position of the mean of a distribution, predicts, for the case of the local density 
of states, that the mean coincides with the matrix element .1t'nn. 

The second moment gives the variance of a distribution: the square root of p,(2) 
therefore gives the standard deviation with respect to the mean, and hence is a measure 
of the width of the distribution. For the local density of states, the second moment can 
be written as 

p,~2) = (nl(.1t' .1t'nn)(.1t' - .1t'nn) In) 

L(nl(.1t' .1t'nn)ln') (n'I(.1t'.- .1t'nn) In). (5.146) 

n' 

However, in the tight-binding approximation, where only interactions between nearest 
neighbours are significant, the only non-zero matrix elements are therefore 
.1t'nn' (nl.1t'ln') for nand n' being nearest neighbours. Thus, eqn. (5.146) reduces to 

11.(2) _ '\"' ./£) ~£) I"'"n - L-t Jl, nn'Jl, n'n, (5.147) 
n'i'n 

since (nl.1t' .1t'nnln) = 0 and (nl.1t' - .1fnnln') = .1fnn' for n i- n'. The interpretation of 
eqn. (5.147) is therefore that the second moment is the sum over all paths in which an 
electron starts at atom n, hops to neighbouring atom n' (with associated matrix element 
.1t'nn' = (3, the nearest-neighbour hopping integral, eqn. (5.96b)) and back again to n. 
For a structure with z nearest neighbours, the second moment is therefore given by 

p,~2) z(32; (5.148) 

the r.m.s. width (standard deviation) of the local density of states thUS' scales as zl/2. 
The expression for the third moment, p,~3), can be inferred from eqn. (5.147), viz. 

p,~3) = L L .1t'nn,.1t'n'lll/.1t'nl/n, (5.149) 
n'i'n nl/i'n,n' 

and involves closed paths of three hops. It determines the skewness of the distribution 
about the mean .1t' nn: a large negative value of p,~3), for example, corresponds to 
a distribution skewed to values less than the mean (as in Fig. 5.58a). 

The value of the fourth moment, p,~4), defined by analogy with eqns. (5.148) and 
(5.149), determines whether the distribution is unimodal or bimodal via the shape para
meter, defined as 



(b) (c) 

Fig. 5.58 (a) Illustration of a local density of states distrib"':ltion for which the third. mom~nt 
is negative, f-L~3) < o. (b) Bimodal local density of states, for w~lch the shape paraJ~eter S Involvmg 
the fourth moment is less than unity. (c) Unimodal local denSIty of states, for whIch s~ 1. 

s = (f.L(4) f.L(2) - [f.L(2)j3 - [f.L(3)j2)/[f.L(2)j3 

= (f.L(4) /[f.L(2)f) - 1 : f.L(3) = 0. 

(5.150a) 

(5.150b) 

The condition s < 1 corresponds to bimodal behaviour (Fig. 5.58b) and s'?:-l to uni-
modal behaviour (Fig. 5.58c). . 

An illustration of the use of the moments approach is for the case of a 3D ~Im~le-
cubic lattice with identical s-states at each site. The nearest-neighbour coordmatIOn 
number is z = 6 so, from eqn. (5.148), f.L~2) = 6{P. The third moment is zero. beca~se 
there are no closed three-membered paths between nearest neighbours for tf~s lattIce. 
The fourth moment may be computed for the paths shown in Fig. 5.59: f.Ln4 = :0/34. 
Thus, the shape parameter from eqn. (5.l50b) is s = 1.5, and so the l?cal densIt~ ~f 
states is predicted to be unskewed (symmetric about the mean) and ummodal. T~IS IS 
seen in Fig. 5.37b. Problem 5.22 uses the moments metho~ to ~iscu~s the l.ocal d~nsity of 
states for a disordered system, consisting of a single SubstItutIOnal Impunty (akm to the 
impurity vibrational mode discussed using a Green function method in §4.3.1). 

6x 

6x5 

2x12 

6x5 

Fig. 5.59 Illustration of four-fold paths contributing to f-L~4) in the simple cubic lattice. 

Breakdown of the independent-electron approximation 5Ji 

Much of the discussion so far of electron states in solids has assumed that the electrons 
behave effectively independently: e:g. electron-electron interactions have been 
neglected. At first sight, this behaviour appears very surprising. In Cu, for instance, 
the conduction-electron concentration is 8.45 x 1028 m-3, corresponding to an average 
inter-electron separation of r = 2.56 A. Thus, the Coulombic repUlsive potential energy 
between two such electrons is e2 /47ff::or ~ 5.6 eV, compared with the average kinetic 
energy per electron of the free-electron gas (eqn. (5.20)) 3'fl,F/5 ~ 4.2 eV. It seems 
remarkable that such large electron-electron interactions can be neglected and that, 
for example, band theory built on the concept of independent-electron Bloch wavefunc
tions (§S.2.l) should work so well. The resolution of this apparent paradox depends on 
a number of features. One aspect is that, as will be seen in the next section (§5.6.1), the 
electrostatic interaction between two electrons is, to a considerable extent, screened (i.e. 
decreased) by other mobile conduction electrons. Secondly, in fact, it is not the electrons 
themselves that behave independently, but quasi particles. comprising electrons and their 
conjugate 'exchange-correlation holes' (see §§2.5.3.4 and 5.1.3.2). Such an electron 
system, where interactions are explicitly considered, is termed a Landau Fenni liquid 
to distinguish it from the Fermi gas where such interactions are absent. Thirdly, 
the probability of electron-electron collisions is very greatly decreased by the influence 
of the Pauli exclusion principle (see §6.3.l). Finally, on close examination, the 
band theory of electrons is not so universally successful as it appears at first sight. For 
example, although band theory predicts that any material for which the Fermi level lies 
within a band of delocalized electron states should be metallic, in fact perhaps half of all 
such binary materials for which this prediction might expect to be satisfied are insulators! 
TIns discrepancy is a rather clear indication of the breakdown of the independent
electron approximation. Various aspects of this problem will be explored in the follow
ing sections. Superconductivity, which is a spectacular instance of the breakdown of the 
independent-electron approximation, is discussed in § 6.4. 

5.6.1 Screening 

If a positive charge, say Ze, is immersed in a distribution of electrons that are free to 
move (e.g. the free-electron gas in a metal), electrons are attracted towards the extra 
charge, thereby leading to a surplus of negative charge density in the vicinity of the 
positive charge; this space charge therefore shields, or screens, the electrostatic potential 
¢(r) associated with the extraneous charge at distances remote from the charge, the 
reduction factor being the dielectric constant c: 

¢(r) = ~ (5.151) 
41fccor· 

For the case of dielectric materials (see §7.l), where electrical charges are bound to ion 
cores, the screening is only partial, and c has a relatively small value. For metals with 
mobile electrons, the screening is total at large distances from the extraneous ion, and so 
c --+ 00. However, the screening is effectively complete at much shorter distances, of the 
order of I A, and this is one reason why electrons appear to behave independently at 
distances greater than this screening distance. 



An approximate treatment of electron screening can be made in the Thomas-Fermi 
approximation, where the spatial variation of the perturbation in electrostatic potential 
is assumed to be much more long-ranged than that associated with the electrons, e.g. the 
wavelength at the Fermi level AF(= 21f/kF). A local perturbation in the potential, 8¢(r), 
causing the free-electron density-of-states curve, D(cg) g(cg)/ Vex: cgl/2, (where Vis the 
volume) to be lowered locally by an energy lel8¢ is equivalent to the placing of a positive 
charge in the electron gas. Since the chemical potential must everywhere be constant in 
the solid in equilibrium, electrons must therefore flow towards the local perturbation. 
As long as the perturbation potential is not too large (leI8¢« cgF), the change in 
electron concentration, 811(r), is given by 

! 8n(r) = lelD(cgF )8¢(r). (5.152) 

Away from the immediate vicinity of the inserted point charge, Poisson's equation also 
relates 811 and 8¢ via 

e e2 
\j2(8¢) -811 = -D(cgF)8¢, (5.153) 

cO co 
where cO is the vacuum permittivity. This equation can be solved straightforwardly in 
real space if spherical symmetry of the perturbation potential is assumed, e.g. if a point 
charge is introduced into the electron gas. In this case, spherical polar coordinates can 
be used, for which 

\7
2 

== ~ %r (r2 %r), 

whence it can be shown that the solution is of the form (see also Problem 5.23): 

OI.e-r/ ATF 

8¢(r) =--, 
r 

(5.154) 

where ATF is the Thomas-Fermi screening length. The boundary condition is such that 
as ATF -t 00, the screening effect must vanish and the normal Coulomb electrostatic 
potential must be recovered, i.e. 01. = e/41fco. The Thomas-Fermi screening length ATF is 
obtained by solving the Poisson equation, substituting eqn. (5.154) into eqn. (5.153), 
giving 

(5.155a) 

for the case of the free-electron gas, where D(cgF) is given by combining eqns. (5.16) and 
(5.17), and so 

A 1ftz (CO) 1/2(3 2 )-1/6 _ (1faO) 1/2 (3 2 )-1/6 
TF = -; me 1f nO = --2- 1f no (5.155b) 

~ 0.5(~y/6, (5.155c) 

where ao is the Bohr radius (= 41ftz2co/mee2) and no is the average electron density. 
Thus, for Cu, for example, the Thomas-Fermi screening length is ATF = 0.55 A. 

The screened potential given by eqn. (5.154) is shown in Fig. 5.60, compared with the 
un screened Coulomb potential. It can be seen that for distances greater than about 3ATF 
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Fig.5.60 Thomas-Fermi screened electrostatic potential (solid curve) and unscreened Coulomb 
potential (dashed curve) plotted as a function of distance normalized by the Thomas-Fermi 
screening length ATF. 

from the origin of the perturbation, the screening is practically complete. Note also that 
the Thomas-Fermi form of the screened potential (eqn. (5.154» implies that the 
(spatially varying) dielectric function is given by c(r) = exp(r/ATF)' As r becomes 
greater than ATF, c increases strongly and tends to infinity as r -t 00. 

Unfortunately, the Thomas-Fermi model is a poor approximation for real metals 
since the length scale of the perturbing ionic potentiaf is set by the cut-off distance rc in 
the pseudopotential (eqn. (5.42)) which is comparable to ATF, and so the slowly varying 
condition necessary for the Thomas-Fermi approximation to be valid is not met. 

* A more exact treatment, taking into account the decrease of the screening efficiency 
with decreasing distance for r;$ATF, finds that the screening electron density 8n and the 
potential 8¢ are related via the Lindhard screening response function, X(q), 

8n(q) = X(q)8¢(q), (5.156) 

where (see Ashcroft and Mermin (1976) and Pettifor (1995»: 

X(q) -eD(cgF) [~+ 1 ~:2 lnl ~ ~ :1], (5.157) 

with x = q/2kF' Note that this expression exhibits a logarithmic singularity at x 1, 
manifest as a singularity (Kohn anomaly) in the phonon dispersion curves (§8.3.2), since 
the Lindhard term describes the electronic screening of ion-ion Coulombic interactions. 
(Compare this with eqn. (5.152) for the Thomas-Fermi approximation where 
X = eD(cgF) is independent of q.) Instead of the screening electron density falling off 
exponentially, as in the Thomas-Fermi model according to eqn. (5.152), rewritten 
making use of D(cgF) 3no/2cgF (eqn. 5.16», where no is the average electron density 
of the electron liquid, i.e. . 

3noe2 e-r/ ATF 

8n(r)=----
81fcOcgF r 
e-r / ATF 

= 41fA?Fr ' 

(5.158) 
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Fig. 5.61 Radial screening charge density of simple metals showing Friedel oscillations. The 
arrows mark the positions of nearest neighbours in h.c.p. Mg and f.c.c. AI, and nearest and next
nearest neighbours in b.c.c. Na and K. (After Pettifor (1995), Bonding and Structure of Molecules 
and Solids, by permission of Oxford University Press) 

an oscillatory algebraic spatial decay is predicted by the Lindhard model, viz. 

8 ( ) ro.J Ao cos2kFr 
nr - 1'3 ' 

(5.159) 

where kF is the Felmi wavevector. Such Friedel oscillations in charge density are shown 
in Fig. 5.61 and give rise to oscillatory interatomic pair potentials that determine the 
detailed atomic structure of simple metals (see Pettifor (1995)). 

5.6.2 Plasmons 

In metals, the electron concentration is so high that the charge redistribution associated 
with screening occurs on such very short distance and time scales that the equations of 
motion for the electron liquid do not involve electron scattering or collisions. Thus, the 
length scale of charge redistribution is shorter than the electron mean free path, and the 
characteristic time scale shorter than the times between collisions. At first sight, this 
circumstance seems unlikely: the electron-electron interactions in a dense electron 
distribution, producing Fermi-liquid rather than Fermi-gas behaviour, might be 
expected to result in very short times between collisions of quasiparticles. However, as 
will be seen in Chapter 6, the Pauli exclusion principle means that not all possible 
collisions between electrons are allowed, and the average time between collisions is 
correspondingly much longer. Hence, instead of having to use diffusion equations of 
motion based on scattering (see §3.4.2), as for electrons in semiconductors (§6.5), in 
metals Newton's laws of motion can be used directly for the electron motion. 
A collective vibrational mode, involving all electrons, is found to be possible - another 
example of the breakdown of the independent-electron approximation. 

* 
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In the case where electrons are subject to an electric field E and a concentration 
gradient \1n, or the associated driving 'force', the pressure gradient \1p, the equation of 
motion is given by 

(5.160) 

where v is the eiectron Velocity. The jellium model (uniform positive-ion charge density) 
is assumed for simplicity. Fluctuations of the electron density from the average value no 
generate an electric field that is given by Gauss's law: 

d
· CJ? -e(n - no) 
IV0 = . 

E:o 
(5.161) 

Taking the pressure to be that of a Fermi gas, given by p = 2 U /3 V (see Problem 5.9), 
where the internal energy is U ~ 3n'7/;F/5 (neglecting the small temperature-dependent 
term in eqn. (5.35)), therefore gives 

2 
\1p ~ -'7/;F\1n. 

3 

Hence, making use of the continuity equation 

an . 
at + dlv(nv) = 0, 

the equation of motion of the electron system (eqn. (5.l60)) becomes 

(5.162) 

(5.163) 

a2
n =.~ '7/;F \12n _ noe

2 
(n _ 110)' (5.164) 

at2 3 me meE:O 

The time-independent case (a2n/at2 = 0) simply gives the static screening described in 
§5.6.1. 

In the other limit of a slow spatial variation of n (i.e. \12n = 0), eqn. (5.164) reduces to 

a2n noe2 

-=--(n-no). (5.165) at2 meE:o 

This can be recognized as the simple harmonic oscillator equation, with the angular 
frequency given by 

(5.166) 

Note that damping effects, related to the electrical conductivity and 'electron-phonon 
interactions, are neglected. 

These long-wavelength collective oscillations are termed plasma oscillations, the 
quantized versions of which are called plasmons: wp is the plasma frequency. (A plasma 
is normally a gas of an equal number of negatively and positively charged particles that 
are free to move: in a metal, however, only the electrons are mobile.) Note that, in 
contrast to the vibrations of the ion cores, i.e. acoustic phonons (§4.1.1) where the 
dispersion curve is such that W -* 0 as k -* 0 (or the wavelength A -* 00), plasma 
oscillations have a finite frequency in the long-wavelength limit. This difference in 
behaviour is due to the interatomic interactions being short-ranged, in contrast to the 
long-ranged Coulomb interaction between electrons. 
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Fig. 5.62 Illustration of a longitudinal plasma oscillation (plasmon). The arrows indicate the 
displacement directions of the electrons. 

Plasma oscillations are collective vibrational modes of the entire electron liquid: these 
modes are longitudinal in polarization (see Fig. 5.62) since fluids cannot support shear, 
or transverse, vibrational modes (see Problem 3.21 and §4.1.1). By analogy with the 
treatment of polaritons given in §4.4, the longitudinal plasma-oscillation frequency, WL, 

is given by the condition when the dielectric constant of the electron liquid is zero, 
c:(w wd = O. The dielectric constant of a metal (in the absence of damping) is given by 
(see Problem 5.25): 

c(w) = I - (~r, (5.167) 

where wp is given by eqn. (5.166). Hence, the plasma frequency is WL = wp. A more 
complete expression for c:(w) is represented by eqn. (5.196). 

For the case of Cu, for example, for which no = 8.45 x 1028 m-3, eqn. (5.166) gives 
for the plasma frequency wp = 1.6 X 1016 S-I, or a plasmon energy of tzwp = 10.8 eV. 
Since this energy is so large, collective-mode plasmons are not thermally excited at 
normal temperatures: the electron liquid therefore remains in its ground state as far as 
such long-wavelength excitations are concerned, and this possible instance of the break
down of the independent-electron approximation is usually averted. 

Since plasmons are longitudinal waves, they do not couple to transverse electromag
netic waves, and hence cannot be probed directly (but see §5.8.l). However, external 
electrons can couple to the longitudinal electric field associated with the plasma oscilla
tions. This property forms the basis of the use of electron energy-loss spectroscopy 
(EELS) as a probe for plasmons: inelastic scattering of electrons incident on a film of 
a solid can occur by the creation of plasmons in the conduction band of metals, or the 
filled valence band of semiconductors. The plasma frequency corresponds to peaks in 
the energy-loss function, -Im{I/c:(w,k)} (see Problem 5.26), in other words, when 
c:(w) = O. 

5.6.3 Metal-insulator transitions 

One of the most spectacular manifestations of the breakdown of the independent
electron picture is the occurrence of discontinuous transitions between metallic and 
insulating states as the electron concentration in the system is changed in some way, e.g. 
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as a function of composition, and the corresponding occurrence of solids that are 
electrically insulating when band theory predicts metallic properties. The reason for 
this behaviour can be regarded as being due to a competition between kinetic and 
potential energies of the electrons: the kinetic energy of electrons is lowered by their 
delocalization (because of Heisenberg's uncertainty principle), i.e. favouring metallic 
behaviour; on the other hand, the potential energy of electrons (which can involve 
electron-electron interactions) is lowered by their localization, i.e. favouring insulating 
behaviour. 

The discontinuous nature of metal-insulator transitions in certain cases is also 
associated with electron-electron interactions, specifically screening (§5.6.1), as in the 
Mott model for the occurrence of metal-insulator transitions. An isolated charged ion 
core in a solid (e.g. a phosphorus 'donor' impurity atom (see § 6.5.2) in crystalline 
silicon) associated with a simple Coulombic potential has an infinite number of bound 
hydro genic-like electron energy levels associated with it. An electron with a total energy 
less than the ionization energy will always be bound by such a potential. However, in 
the presence of a sufficiently high concentration of mobile conduction electrons, the ion 
potential is screened to give a much weaker potential away from the ion core (see Fig. 
5.60). This screened potential only supports a bound state if 

ATF ;(; a(;, (5.168) 

where a(j is the effective Bohr radius of an electron in the solid, modified from the 
hydro genic value of the Bohr radius valid in vacuo by the inclusion of the dielectric 
constant (to account for screening) and the band-structure effective mass m; =F me 
(§6.2.1) arising from the fact tliat the electrons are not completely free to move in 
crystals but must move according to allowed energy bands '&(k); thus 

* c:c:oh2 

a =--
o 7!'m~e2' 

(5.169) 

Hence delocalized, metallic behaviour arises if the screening length is less than the 
effective Bohr radius, i.e. 

ATF ;:5 a(;. (5.170) 

or, in other words, when the screening is so strong that no electrons can be bound to ion 
cores. The Mott criterion can also be rewritten as 

(5.171) 

using eqn. (5.156) for ATF, where nc is the critical electron density for metallic behaviour. 
It is remarkable that several, apparently very different, models for the metal-insu

lator transition give very similar conditions for metallic behaviour to eqn. (5.171), and 
a comprehensive plot of nc versus a(j for many different systems showing metal-insu
lator transitions (Fig. 5.63) gives an empirical value for the constant C = n~/3 ao = 0.26. 

The breakdown of the conventional band picture can be illustrated by the following 
gedanken experiment involving alkali-metal atoms, e.g. Li. In the condensed crystalline 
phase, the electron states form nearIy-free-electron-like bands which, because they are 
half-fIlled, means that the material is metallic. If, now, the crystal is considered to be 
progressively uniformly dilated, band theory dictates that the system should remain 
metallic for all interatomic separations. Even in going from the NFE limit to the 
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Fig. 5.63 Logarithmic plot of the effective Bohr radius, an' versus critical electron concentration, 
nc, for the metal-insulator transition in a variety of doped (impurity-containing) semicond
uctors (.) and supercritical alkali metal vapours (0). The straight line corresponds to the criterion 
n~J3ao = 0.26. (After Edwards and Sienko (1981). Reprinted with permission from J. Am. Chern. 
Soc. 103,2967. © 1981 American Chemical Society) 

tight-binding limit with increasing separation, bands (albeit narrow) will still form in 
this picture and, because such bands are still half-filled with the Fermi level lying within 
the band, the metallic character will persist. However., it is obvious that, at some critical 
interatomic separation, this picture must break down for, in the other extreme limit, 
isolated alkali atoms are electrically insulating. 

In fact, the metal-insulator transition occurs near the thermodynamic critical point 
(i.e. at the extremity of the vapour-liquid tie-line in the phase diagram, where vapour 
and liquid become an indistinguishable fluid): for Li, for example, the critical liquid 
density where the metal-insulator transition occurs is (from Fig. S.63) about one-fifth of 
the normal crystal density. A somewhat related example is for solutions of alkali 
metals in liquid ammonia. At low alkali concentrations, the free electrons liberated 
by the alkali atoms are solvated by surrounding NH3 molecules and such metal
ammonia solutions are electrically insulating. However, above a critical metal con
centration (e.g. :::::: IS mole % for Na) such materials become metallic in appearance 
(e.g. high optical reflectivity see Plate IV) and behaviour (e.g. high electrical con
ductivity). 
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It is instructive to examine the situation regarding electronic excitations for the 
extreme limit where isolated alkali atoms occur. Instead of there being, as in the band 
case, vacant electron energy levels immediately above cgF, so that electronic excitation is 
not thermally activated (i.e. metallic behaviour), electron excitation between neutral 
isolated alkali atoms requires a large ertergy. In order to remove an electron from an 
atom, the ionization energy lei must be supplied and, although some energy is recovered 
as the electron affinity X when. this electron is added to another neutral atom to give 
a negatively charged ion, the difference between these two energies, the Hubbard (on
site) energy UH, the net energy to place two electrons in a given orbital, i.e. 

(S.172) 

is non-zero and large (typically several eV). In the condensed state, on-site electron
electron repulsion still occurs, and can be expressed as (Mott (1974»: 

]f 
? e- Z ? 

UH = -4--I¢(rl)II¢(r2)1-drldr2, 
1rcOr12 

(S.173) 

where rlZ is the inter-electron separation at a site, and ¢(r) is the electron wavefunction 
at the site. In other words, in this model, inter-electron repulsion is neglected except for 
two electrons at the same site. Conventional band theory, which neglects electron 
interactions, therefore does not take into account the effects of this Hubbard energy. 

Consideration of the Hubbard energy is particularly important for materials such as 
transition-metal oxides (see e.g. Cox (1992» that have narrow (d-)bands where, when 
the electron concentration is not very high and hence screening is ineffective, the 
correlation between electron motion is much more pronounced than is predicted within 
the conventional band picture (see §S.1.3.2) and the Hubbard model comes into play. 
For the case of NiO, for example, which conventional band theory predicts to be 
metallic, motion of an electron between Ni d-states (cgF lies within the d-manifold) 
can be represented as the disproportionation reaction: 

Ni2+ + Niz+ -l- Ni+ + NiH (S.174a) 

or equivalently as the d-electron 'reaction' 

d8 + d8 
-l- d9 + d7

. (S.174b) 

In the Hubbard picture, it costs an energy UH to place an extra electron on an Niz+ site 
to make an Ni+ ion; hence a gap must open up in the otherwise continuous band of 
d-states, making the material electrically insulating. In fact the gap is not generally 
equal to the Hubbard energy UH itself because the gap is decreased by bandwidth 
effects. In the limit of infinite separation between Ni+ and NiH ions, the gap is equal to 
UH , given by eqn. (S.172), and the two states on the right-hand side of eqns. (S.174) are 
atomic levels. As the interionic separation decreases, Hubbard bands (not the same as 
conventional bands) form, the lower Hubbard band corresponding to the motion of 
'holes' (i.e. an absence of electrons) among the ion sites: 

NiH + h+ -l- Ni3+, 

and the upper band to the motion of the extra electrons: 

Ni2+ + e- -l- Ni+, 

(S.17Sa) 

(S.17Sb) 



a 

The bandwidth, W, of these b~nds will increase with decreasing interatomic s~paration 
(Fig. 5.64) as it becomes eaSIer for electrons and holes to hop between SItes. The 
II bbard gap, <;gH = UH W, vanishes when the upper and lower Hubbard bands 

b u'n to overlap ind this situation then marks the Mott-Hubbard transition from the 
egI II' insulating to the meta IC s~ate. . . 
The condition for metallIc behavIOur, I.e. overlap of the Hubbard bands, occurs when 

W~ UH . (5.176) 

A estimate for the critical interatomic spacing R corresponding to this criterion can be 
:t ined if, for simplicity, it is assumed that the electronic wavefunctions at each site in 

o '~ple cubic lattice are hydrogenic Is-like. In this case, the Hubbard correlation energy 
~: (eqn. (5.173» is given by the expression (Schiff (1968»: 

5e2 

UH =--. (5.177) 
327rEoa(; 

If it is assumed that the Hub~ard bands can be described in tight-binding terms, the 
width is given by eqn. (5.99), I.e. 

W = 121,80Ie-R/ ao , (5.178) 

Insulator 

F' 564 Schematic illustration of the Hubbard bands in NiO as a function of band width W 
clg~er~eIY dependent on the interatomic separation). The lower band corresponds to motion of 
~~les (electrons missing from Ni d-states) and the upper band to electron motion. The insulator
metal transition occurs when the two bands overlap. 
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since the nearest-neighbour coordination number is z 6 for the simple cubic lattice. 
The pre-exponential part of the hopping integral for Is-orbitals is given by (Mott 
(1974»: 

1,801 (5.179) 

Use of eqns. (5.176) - (5.179) then gives for the criterion for the Mott-Hubbard metal
insulator transition 

Rc/ao = 5.7, (5.180a) 

or, since the electron concentration is given by ncR~ = 1 for the s.c. lattice, 

nY3ao = 0.18. (5.180b) 

Note that this crude estimate is rather close to that obtained from the very different 
physical model involving screening (eqn. (5.171» and that obtained empirically (Fig. 
5.63). 

Finally, note that a special type of metal-insulator transition, called the Peierls 
transition, occurs for one-dimensional metals (see §8.3.l), whose mechanism does not 
involve electron correlation effects (indeed electron-electron interactions can actually 
destroy the Peierls transition), but instead is associated with an opening up of a bandgap 
at the Fermi level in the metallic band, caused by a symmetry-lowering structural 
distortion (similar to a Jahn-Teller distortion). This phenomenon will be discussed in 
more detail in §8.3.2. 



Experimental probes of electronic structure 5.7 
A number of different experimental techniques can be used to obtain information about 
the electronic structure of solid materials, including the distribution of states as 
a function of energy (the density of states) and in reciprocal space (band structure). 
Many of these techniques are optical in nature, that is they rely on the interaction 
between photons and the electron system. Optical behaviour in general merits a separate 
section because of its importance and is discussed below (§5.8). Here, we discuss high
energy optical processes (involving UV and X-ray radiation) that can be used to explore 
the entire energy range of the density of states, rather than just the region in the vicinity 
of the forbidden gap. In addition, by measuring the electron current generated by the 
photoelectric effect (photoemission) as a function of emission angle, the electronic band 
structure, ~(k), can be traced out experimentally. 

5.7.1 X-ray spectroscopy 

Two types of X-ray spectroscopy can be distinguished, depending on whether the X-ray 
spectrum corresponds to emission or to absorption. These two possibilities are illus
trated in Fig. 5.65. In X-ray emission (or fluorescence) spectroscopy, a high-energy X
ray or electron, incident on the sample, excites an electron from a low-lying state. The 
resultant empty state can then be subsequently filled by an electron from a filled higher
lying (e.g. valence-band) state in a radiative transition: a soft X-ray is therefore emitted, 
and a measurement of the intensity of such emitted photons as a function of energy 
gives the spectrum. The converse process is when the X-ray spectrum corresponds to the 
measurement of the energies of photons that excite electrons from a low-lying filled 
state to a higher-lying empty state (e.g. in the conduction band). A variant of the latter 
absorption technique has already been discussed in §2.6.2, where the final electron state 
is free of the atom from which it was excited, and interference between such outgoing 
electron waves and waves back scattered from surrounding atoms results in a modula
tion of the X-ray absorption coefficient (extended X-ray absorption fine structure -
EXAFS) which contains atomic structural information. However, X-ray absorption 
spectroscopy can also be used to probe the electronic structure of unoccupied states. 

Note that, in both the processes indicated in Fig. 5.65, the electronic transitions are 
shown involving a deep core state. This is because such states have very little overlap 
with similar states on other atoms in the solid and, as a result, form bands having 
essentially an infinitesimal width (see Fig. 5.48a). Thus, transitions from filled valence
band states to, or to empty conduction-band states from, such energetically well-defined 
states allow the energy profiles of the higher-lying bands to be probed. Furthermore, 
because of the atomic-like nature of the core states involved in the transitions, the 
selection rule governing such electronic transitions is simply that there must be 
a change in orbital angular momentum 6..1 ±1 for dipole-allowed transitions (i.e. 
s +-+ p, p +-+ d, etc.). 

An example of the use of X-ray emission spectroscopy is shown in Fig. 5.66 for the 
case of crystalline Si, where two different core levels are utilized. In the K,6 spectrum, 
vacancies (holes) are created in the Is core level (K-shell) and the recombining electrons 
come from the valence-band electrons that are 3p-like (so as to satisfy the selection rule). 
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~~g. 5.65 Schem~tic illustration <;>ft~e pro.:~sses underlying '(i) X-ray emission (fluorescence) and 
(11) X-ray absorptIOn spectroscopIes, and (m) electron photoemission. 
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Fig. 5.66 X-ray emission (fluorescence) spectra resulting from electronic transitions from the 
valence band to core levels for crystalline Si: (a) K,6 spectrum (3p contributions in the valence 
band -+ ~s core level!; (b) ~2,~ spectrum (3s .contributions in the valence band -+ 2p core level). 
(¥ter WIech (~981~ 111 Emls~lO': and Scatterzng Techniques, ed. P. Day, NATO ASI C73, p. 103, 
FIg. 15(c, d) WIth kmd permISSIOn from Kluwer Academic Publishers) 
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For the LZ,3 spectrum, the holes are created in the 2p core states of the L-shell, and 
hence only valence-band 3s-like states can recombine with them so as to emit X
radiation. Note the very different X-ray photon energy scales in Figs. 5.66a and 5.66b 
corresponding to the different energy levels of the Is and 2p core states. More impor
tantly, the shapes of the two X-ray emission spectra are very different. If the 3s- and 
3p-states were hybridized uniformly through the valence band, as is implicit in the 
hybridized bond-orbital picture of Fig. 5.44, then it would be expected that the 
valence-band profiles of the K,B and L2,3 spectra would be identical. Instead, the spectra 
show that 3p-states occur preferentially at the top of the valence band (Fig. 5.66a) and 
3s-states contribute more at the bottom of the band (Fig. 5.66b). These findings are in 
accord with the predictions made on symmetry grounds in §5.4.2 that, at the r-point in 
the band structure of tetrahedral semiconductors, the top of the valence band is purely 
p-like and the bottom is purely s-like. 

5.7.2 Photoemission spectroscopy 

A technique, allied to X-ray absorption spectroscopy, is electron photoemission. This 
makes use of the photoelectric effect: an incident photon excites an electron from a filled 
state to beyond the vacuum level, and causes the electron to escape from the binding 
interaction of the solid. In this case, the distribution of kinetic energies of the emitted 
electrons is measured under monoenergetic photon excitation. The maximum kinetic 
energy, ~max, of the photoelectrons is given by the difference between the incident 
photon energy nWL and the electron binding energy (ionization energy) leI, i.e. 

(5.181) 

(Lower values of kinetic energy will also occur due to inelastic scattering of the electrons 
before emission.) The binding energy, leI, is the energy below the vacuum level from 
which electron photoemission occurs. The minimum value of binding energy, Idin, thus 
corresponds to excitation from the highest-lying occupied states. In semiconductors, 
these are at the top of the valence band at an energy ~v; in metals, the equivalent 
position is the Fermi energy, ~F, in the conduction band, and the binding energy in this 
case is also called the work function ¢ (see Fig. 5.67). The electron affinity X of 
a semiconductor, defined as the energy difference between conduction-band minimum 
and the vacuum level, is thus the difference between leI and the bandgap: 

(5.182) 

Different types of photon sources may be used in photoemission experiments. Mono
chromatic ultraviolet light can be obtained from the discrete lines emitted by rare-gas 
discharges, e.g. the He I line at 21.22 eV and the He II line at 40.82 eV: the use of such 
photons forms the basis of ultraviolet photoemission spectroscopy (UPS). Alternatively, 
soft X-ray lines emitted by metal anodes, e.g. the Ka line (2p -t Is transition) of Al at 
1486.6 eV, may be used in X-ray photoemission spectroscopy (XPS). However, the X
ray lines of such light elements are much broader (~leV) than the gas-discharge UV 
lines because the initial electron states form a broad band and not a discrete core level 
(see Fig. 5.54a). The best source of electromagnetic radiation is the broad-band intense 
synchrotron radiation emitted by a high-energy electron synchrotron (see Fig. 2.48). 
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Fig. 5.67 Illustration ~f the definitions of electron affinity x, work function ¢ and threshold 
photoelectron energy ~m for a semiconductor, referenced to the bottom of the conduction band 
'i8c, top of the valence band 'i8v and the Fermi energy 'i8F . The bandgap is 'i8g = 'i8c 'i8v • 
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Fig: 5.68 !he univers~l ~epe.ndence of electron escape depth, de, on electron kinetic energy 'i8e in 
van?us solIds. The vanatlOn In values of de for a given value of'i8e is shown 'by the shaded area: 
speCIfic values for some representative crystalline semiconductors are shown. (After Yu and 
Cardona (1996), Fundamentals of Semiconductors, p. 420, Fig. 8.5, © Springer-Verlag GmbH & 
Co. KG) 

Monochromatized photons, produced by single-crystal monochromators, and covering 
a wide range of energies, can be produced in this way. 

Although evidently the photon energy used must be greater than the maximum 
electronic binding energy of interest in the solid (cf. eqn. (5.181)), another important 
consideration regarding the choice of photon energy concerns the escape depth de of the 
photo emitted electrons. There is a universal dependence of de on electron kinetic energy 
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(related to photon energy via eqn. (5.181»), and this is shown in Fig. 5.68. It should be 
noted that values of de are typically in the range 5-50 A, and consequently photoelec
trons (particularly in UPS) emanate only from the surface region. This is obviously of 
paramount importance in surface science, but in the study of the properties of bulk 
materials care has to be taken that the surface region is not different from the bulk in 
terms of structure or composition. As a result, photoemission experiments must be 
performed in an ultra-high-vacuum (URV) environment to reduce unintentional sur
face contamination. The use of X-ray excitation, and the concomitantly larger values of 
escape depth (Fig. 5.68), helps to ensure that bulk characteristics of the electronic 
structure are probed in XPS. 

The geometry of a photoelectron experiment is shown in Fig. 5.69, where the possible 
experimental variables (e.g. angular, polarization, energy) are indicated. Often the 
photoelectron current is measured over a range of angles ee and <Pe, giving angle
integrated spectra, in which case essentially the electronic density of (occupied) states 
is probed. In the so-called three-step model, the photoemission process can be regarded 
as being separable into the following three events: (i) photo-induced excitation of an 
electron from a filled state to an empty conduction-band state; (ii) ballistic transport of 
the electron to the surface (without scattering); (iii) transmission of the electron through 
the surface, resulting in its emission from the solid. In this picture, the photocurrent, Iph, 

can be written approximately as 

(5.183) 

where PCf/,) is a transition probability relating to processes (ii) and (iii), and the photo
electron energy is measured with respect to some reference level (e.g. )gF, )gv or the 
vacuum level). Thus, if P()g) is only a slowly varying function of energy, the photocurrent 
signal should be a measure of the occupied (e.g. valence-band) density of states, g()g). 

An example of the application of this technique is shown in Fig. 5.70 for the case of Al 
metal. The spectrum is a measure of the density of occupied states (the free-electron-like 
density of states multiplied by the Fermi-Dirac function), with the zero of the binding 

Fig. 5.69 Schematic diagram of a photoelectron experiment indicating possible experimental 
variables relating to the incident light beam (L) or the emitted electron current (e). The unit vector 
e is a polarization vector. 
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Fig. 5.70 Experimental photoelectron spectrum of AI. The zero of the binding energy is taken at 
'&F. The dashed line represents a background signal. (After Steiner et al. (1979), in Photoemission in 
Solids, II, eds L. Ley and M. Cardona, p. 369, Fig. 7.9(a), © Springer-Verlag GmbH & Co. KG) 
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Fig. 5.71 Band structure of crystalline Ge obtained by angle-resolved UPS (valence band) and 
inverse photo emission (conduction band), compared with theoretical results (solid lines). (After 
Yu and Cardona (1996), Fundamentals of Semiconductors, p. 445, Fig. 8.23, © Springer-Verlag 
GmbH & Co. KG) 

energy being taken at )gF. Figure 5.70 should be compared with the theoretical curve 
given in Fig. 5.31. 

An alternative variant of the technique is not to integrate over the 
photoelectron angles ee and <Pe but to measure the photocurrent as a function of 



them, i.e. Iph(l'iwL, ~e, ee, cPe), reSUlting in angle-resolved photoelectron spectroscopy 
(ARPES). The significance of this approach is that information on the wavevector k of 
the initial electron state can be obtained thereby, and hence the band structure, ~(k), 
can be determined experimentally. It is assumed that k is conserved for processes (i) and 
(ii) of the three-step model, but, in the final transmission step by an electron through the 
surface, only the component of wavevector parallel to the surface, kll' is conserve~ 
(modulo a surface reciprocal-lattice vector, Gil); the perpendicular component, kJ.., IS 
not conserved because of the loss of translational periodicity at the surface in the 
direction normal to the surface. As a result, the band structure can be explored 
experimentally (see e.g. Yu and Cardona (1996) for details). An example of an ~xperi
mental determination of~(k) obtained in this way for the valence band of crystallme Ge 
is shown in Fig. 5.71. 

A normal photoemission experiment (photon in, electron out) probes filled electron 
states: however, empty conduction-band states cannot be accessed in this way. This 
restriction can be rectified by performing the experiment in reverse. An incident elec
tron, with well-defined energy ~e, is directed at the surface of a solid at an angle (ee, cPe), 
passes through the surface and occupies a high-lying conduction-band state ~a.ssumed, 
for simplicity, to be free-electron-like). The electron can then make a tranSItIon to a 
lower empty conduction-band state, thereby emitting a photon whose energy is meas
ured. This process is referred to as inverse photoemission. Angle-resolved (eel cPe) 
measurements can be performed, as for normal photoemission, resulting in the deter
mination of ~(k) for the unoccupied conduction-band states. An example of this 
approach for the case of crystalline Ge is shown in Fig. 5.71. 
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Optical properties of electrons in solids 5.8 
Electromagnetic radiation can interact with materials in a number of ways: e.g. in 
principle, it can be scattered, reflected qr absorbed by a solid medium. The mechanism 
by which the radiation interacts with solids can also vary. In §§. 4.4, 4.5.1 and 4.5.2, the 
interactions of photons with phonons (lattice vibrations) has already been discussed. 
Here, the interest is in the interaction of photons with the electrons in materials. In fact, 
two instances of such an interaction have already been mentioned, namely the (elastic) 
scattering of X-rays by the electron density associated with atoms, in other words X-ray 
diffraction (§2.6.1.3), and X-ray spectroscopy (§5.7.1). In this section, other interactions 
will be explored between electrons in metals and insulators (or semiconductors) and 
light (in the IR, visible and UV regions of the electromagnetic spectrum). 

The optical properties of solids are often expressed in terms either of the complex 
refractive index nt = nr + iK.j (eqn. (4.157)) or the complex dielectric constant 
et = el + ie2 (eqn. (4.160)), where nt = Jet (eqn. (4.159)). The measurable optical 
quantities, the reflectivity, transmissivity or absorption of a medium are related via 
the Fresnel relations to the (components of the) complex refractive index or dielectric 
constant (see Problem 4.14). The Kramers-Kronig relations (eqn. (4.166)) relate the real 
and imaginary parts, for example, of the dielectric constant. 

In general, the most pronounced optical processes are absorption and reflection, since 
these involve the lowest order of interaction between the electric vector ~ of the light 
and the excitations within the material (e.g. linear with ~ for absorption). Inelastic light 
scattering (Raman scattering) is much weaker since it involves higher-order interactions 
(e.g. the intensity of first-order Raman scattering, involving the creation/destruction of 
say a single phonon, depends on E2-see eqn. (4.181)). Equally, non-linear optical 
processes (e.g. sum-frequency generation) involving second- and third-order interac-
tions are also very weak (see §5.8.4). . 

In the following, the optical behaviour of materials has, for simplicity, been divided 
into three sections, dealing respectively with intraband optical properties, interband 
electronic transitions and non-linear optical behaviour. 

5.8.1 Intraband optical properties 

In this section, we will be concerned with the interactions of photons with electrons 
resulting in electronic excitations within a single band. (Electronic transitions between 
two bands forms the subject of the next section.) Two types of electronic intraband 
excitations can be envisaged. The first are transitions of electrons within part-filled 
bands, from filled states below ~F to empty states in the same conduction band above 
~F, e.g. in metals (or highly-doped 'degenerate' semiconductors-see §6.5.2): such 
processes give rise to free-carrier absorption of photons (see Fig. 5.72). Another related 
electronic excitation is the longitudinal vibrational motion of the entire free-electron gas 
of a metal (or equivalently of the completely filled valence-band states of a semicon
ductor), termed plasma oscillations or plasmons (see §5.6.2). 

The optical properties are related to the complex, frequency-dependent dielectric 
constant, et(W), and this can be calculated from the equation of motion offree electrons 
in the Drude approximation. Consider a gas of electrons with concentration n subject to 
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Fig.5.72 Illustration of free-carrier optical absorption in a metal or heavily doped semiconduc
tor. A photon is absorbed and causes a transition of an electron from a state (1) below %F to an 
empty state (2) in the same band above %F. Since the photon dispersion curve does not intersect 
the free-electron-like band at 2, a 'direct' transition is not possible by which the momenta of 
photon and electron alone are conserved in the transition. Instead, an 'indirect' transition 
involving a scattering event, e.g. with a phonon, is necessary to conserve momentum. 

an electric field % which causes a homogeneous displacement u, with velocity J', of the 
electron gas with respect to the ion cores. The equation of motion is thus: 

11m; ~; + ,v = -ne% (S.184) 

where, is a damping factor and 111; is the effective electron mass. Note that, unlike the 
corresponding case for ionic motion (eqn. (4.164», there is no mechanical restoring
force term (ex: w5u) for the electron gas. The damping term is related to energy losses 
sustained by the moving electron gas, i.e. due to inelastic electron-phonon scattering 
events. Such processes are the origin of the electrical resistivity p (see §6.1.1). For 
a constant electron flux (i.e. when dv/dt 0, the electron current density j is given by 

n2e2% 
j= -en J' =--, (S.18S) 

from eqn. (S.184), and hence the conductivity, defined as the constant of proportionality 
between current density and field 

0- = j/%, 

in the zero-frequency (d.c.) case is given by 

where T nm;;' is the scattering relaxation time. 

( S.186) 

(S.187) 

If the electric field is taken to be a transverse plane wave, as in light, i.e. 
%(t) = %0 exp[i(le· r wt)], then assuming that the electron velocity has the same time 
dependence, the equation of motion (eqn. (S.184» becomes 
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-iwnm;v + ,v = -neE (S.188a) 

or 
v = -neE/b - iwnm;). (S.188b) 

Using the definition (eqn. (S.186» for 0-, the frequency-dependent conductivity of the 
free-electron gas is thus given by 

0-0 
o-(w) = -1 -. -

-lWT 

0-0(1 + iWT) 

(1 + w2r2) . 
(S.189) 

An expression for the complex refractive index nt(w) can be obtained from Maxwell's 
equations for electromagnetic fields in a medium. These are: 

\l·D=p, \l·B 0, (S.190a,b) 

\l x E = _ 8B \l x B = c(oo) 8E + o-E
7

, (S.190c,d) 
8t ' c2 8t coc-

where c( 00.) is the effective frequency-independent dielectric constant resulting from 
processes occurring at higher frequencies than those of interest (in the present case, 
these would be electronic interband transitions from one conduction band to another
see §S.8.2) and co is the vacuum permittivity. Taking the curl of eqn. (S.190c) and 
making use of eqn. (S.190d) gives 

c(00)82E 0- 8E 
-\l x (V x E) =-7--82 +-7-8 ' (S.191) c- t. coc- t 

which, for the case of a plane wave (% = %0 exp[i(le· ,. - wt)]), gives 

{ w
2
c\00) + iW~}E = k2E 1e(1e. E), (S.192) 
c- coc-

where use has been made of the vector equality Ie x Ie x E = 1e(1e· E) - (Ie· Ie)E. Elec
tromagnetic waves are transverse (Ie perpendicular to E) and so from eqn. (S.192) 

12 _ w2c(oo) iwo
i( ---2-+--2. 

c coC 
(S.193) 

Since the complex refractive index nt = nr + il1:i is related to k and w by the dispersion 
relation 

then it follows that 

. )w k = (nr +ll1:i -
c 

(S.194) 

(S.19S) 

Thus, the real and imaginary parts of the dielectric constant, CI and C2, related to nr and 
l1:i by eqn. (4.161) and (4.162), are given by: 

1m (0-) TO-O 
CI = c(oo) - --= c(oo) - (1 7 2) 

cOW co +W-T 

=0(00)(1 (w6~W2)) 
(S.196a) 
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and 

Re(O") 0"0 
E2=--= 

WEO wEo(l + w2T2) 

Wo ~ 
E( 00) (') 7) , 

W wo +W-

(S.196b) 

where Wo l/T, and use has been made of eqns (S.187) and (S.189). The screened 
plasma frequency is given by (compare with eqn. (S.166»: 

7 
wp (S.197) 

m;E(OO)EO' 

It is instructive to examine the optical response of a free-electron gas in three 
frequency regimes, i.e. below, near and above the plasma frequency, wp. One optical 
property of particular interest is the reflectivity, R, which, at normal incidence for a 
weakly absorbing material, is given by (see Problem 4.14): 

R 
(nr -l)2+!1;f 

(nr + 1)2 + !1;f . 
(S.198) 

At very low frequencies W « Wo = liT « wp (see Problem S.29(b», the optical con
stants given by eqns. (S.196) and (S.198) reduce to: 

E(oo)~ 
EIC::::---7-, 

wij 

E(oo)W~ 
E2C::::--

WWo 
0"0 

EOW' 

nr C::::!1;j c:::: (E2/2)1/2, R c:::: 1 - ~ C:~w) 1/2, (S.199) 

with IEII « E2. This approximate expression for the reflectivity is called the Hagen
Rubens relation, and indicates that in this frequency regime, since E2, and hence nr, is 
very large, the reflectivity is nearly 100%. This is in accord with one's everyday 
experience of the optical reflectivity of metals. 

At intermediate frequencies, such that W < wp but W > Wo, the components of the 
dielectric constant are approximately: 

E(oo)W~ 
EIC::::---7-, 

wij 
(S.200) 

with !1;j ~ nr (since lEI I ~ E2) and R c:::: 1 as before. The optical absorption coefficient 
K(w) is given by eqn. (4.16): 

K(w) 

Thus, in this frequency regime, the free-carrier absorption should behave as K(w) ex w-2 

(or ex ,\2); experimental data for the n-doped semiconductor InAs (where the n-type 
impurities introduce extra free carriers into the conduction band - see §6.S.2) shown in 
Fig. S.73 do exhibit a power-law behaviour of K(w) ex N\ but a c:::: 3. This discrepancy 
with the simple prediction of the free-carrier absorption model outlined above can be 
explained by invoking a frequency dependence of the relaxation time, T. 
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Fig. 5.73 Free-carrier absorption ip n-doped lnAs at 300 K for six different free-carrier con
centrations (in units of 1023 m-3): A, 0.28; B, 0.85; C, 1.4; .0, 2.5; E, 7.8 and F, 39. The straight 
lines are K(w) ex ),3. (After Dixon (1961» 

The most interesting behaviour occurs, however, for frequencies in the vicinity of the 
plasma frequency, wp. At WI wp, EI changes in sign from negative to positive, being 
zero if Wo c:::: 0(<< wp). Thus, nr = 0, and if E2 c:::: 0, from eqn. (S.198) the reflectivity is 
unity. However, when Ell, at a frequency W2 = [E(oo)/(E(oo) 1)]1/2wp from eqn. 
(5.196a) (if Wo c:::: 0), then nr = 1 (for E2 c:::: 0) and from eqn. (5.198) the reflectivity 
becomes (nearly) zero, i.e. the material becomes highly transmitting. For large values 
of the high-frequency dielectric constant E( 00), such as occur in doped semiconductors, 
the frequencies WI and W2 lie very close together and an abrupt plasma reflection edge is 
observed. The plasma edge for the free-electron metal Al is in the UV as shown in Fig. 
5.74. There is an interband transition that is responsible for the dip in the reflectivity at 
1.5 e V and also for the appreciable damping that limits the reflectivity to c:::: 90% for 
frequencies less than the plasma edge. The plasma edges in the reflectivity. exhibited by 
an n-type doped semiconductor, InSb, with varying free-carrier (i.e. dopant) concentra
tions, are shown in Fig. 5.75. Note the sharpness of the plasma edges (due to large 
values of E( 00» and the fact that the edges appear in the infrared, not in the UV region 
as for metals, because of the much smaller free-carrier concentrations. This behaviour is 
put to good use in another doped semiconductor system, indium oxide doped with tin 
(ITO), In203 :Sn. The indium oxide becomes metallic when a few percent of the impurity 
is introduced, but the low concentration of free carriers means that the plasma edge is in 
the infrared and so the material is optically transparent in the visible part of the 
spectrum. Thus, ITO can be used as an optically transparent electrode material, and 
also as an IR-reflective coating. 
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Fig.5.74 Reflectivity of Al metal (dashed line), together with the theoretical curve for the free
electron gas model (with parameters wp = 2.3 X 1016 Hz, (T = 3.6 X 107 a-I m- I ). (After Ibach 
and Liith (1995), Solid State Physics, p. 306, Fig. 11.11, © Springer-Verlag GmbH & Co. KG) 
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Fig. 5.75 Plasma edges in the room-temperature reflectivity curves of n-type InSb with carrier 
concentrations (in units of 1024 m-3): A, 1.2; B, 2.8; C, 4.0. The solid curves are fits to the data 
using eqns. (5.196) and (5.198) with m: as the variable parameter. (After Spitzer and Fan (1957). 
Reprinted with permission from Phys. Rev. 106, 882. © 1957. The American Physical Society) 

We have remarked previously that, because the collective electron excitations known 
as plasmons (§5.6.2) are longitudinal in character, they do not couple directly to 
transverse electromagnetic waves. The plasmon frequency is revealed as peaks in the 
energy-loss function, -Im(c- l ) (Problem 5.26) and, although this cannot be measured 
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directly by optical means, nevertheless the function can be constructed from measured 
values of Ci and C2 obtained from optical reflectivity data and by making use of the 
Kramers-Kronig relations (eqn. (4.166)) between real and imaginary parts of the 
dielectric constant. An example is shown in Fig. 5.79 for the case of crystalline Ge. 

5.8.2 Interband optical behaviour 

In this section we consider optically induced electronic transitions between two energy 
bands. For the most part, the two bands involved will be the valence and conduction 
bands, separated by the forbidden bandgap, in semiconductors or insulators, although 
it should be remembered that interband transitions can also occur in metals between 
one conduction band and another higher-lying empty one. It is simplest to consider first 
electronic transitions caused by the absorption of photons having energies comparable 
to the bandgap, egg. This is because, for larger photon energies, a multiplicity of 
transitions between deep-lying valence-band states and high-lying conduction-band 
states are possible and these can confuse the picture. 

Optical processes in materials must satisfy a number of selection rules. The first is 
that, for electrical-dipole-allowed transitions, there must be a change in orbital angular 
momentum of the initial and final electron states of 6.1 = ± 1. Second, energy must be 
conserved in the transition, i.e. 

(5.201 ) 

where 'gr and 'gi are the final and initial electron energies respectively, and nw is the 
photon energy. Finally, for ideal crystalline materials, crystal momentum must also be 
conserved in the transition: 

kr = ki + kph' (5.202) 

where kr and ki are the final and initial (crystal) wavevectors of an electron in the final 
and initial states respectively, and kph is the photon wavevector. Since kph is negligible 
compared with typical electron wavevectors (see Problem 5.31), eqn. (5.202) implies that 
photo-induced electronic transitions can be regarded as being essentially vertical on the 
scale of electronic band structures as normally plotted. A diagrammatic representation 
of the origin of the vertical-transition selection rule is given in Fig. 5.76. For electron 
states (satisfying the 6.1 = ± 1 atomic selection rule) in different bands, but having the 
same value of electron (crystal) momentum (neglecting the photon contribution), the 
transition dipoles J.Li are in phase at each atomic site i and hence give a non-zero value 
when summed over the entire crystal. On the other hand, electron states having different 
values of crystal momentum in the two bands give rise to different, and out-of-phase, 
values of J.Li at each site, producing no net transition dipole moment when summed over 
the crystal: i.e. the transition is formally forbidden. 

The consequences of the 6.k 0 (vertical) selection rule on the optical-absorption 
spectra of crystalline semiconductors and insulators are appreciable; the spectra are 
significantly different, depending on whether the band structure is of the direct-gap or 
indirect-gap type (§5.4). 

In direct-gap materials (e.g. crystalline GaAs), where the minimum of the conduction 
band and the maximum of the valence band occur at the same value of k (usually at 
k = 0, the r-point), the 6.k = 0 selection rule ensures that electronic transitions occur 
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Fig.5.76 Diagrammatic illustration of the vertical-transition selection rule for optically induced 
electronic transitions in crystalline materials: Ilk = kr - ki ~ 0, where kr and ki are the final and 
initial (crystal) momenta of the electron states, respectively. Electronic transitions at atoms 
forming a ID crystalline array are considered for simplicity. (a) Transition between s- and p
states in two bands, each with k 0, with in-phase transition dipoles (M). (b) Transition from a 
k 0 s-state in a band to a p-state at a general k-value in a higher band, for which the transition 
dipoles are out of phase and sum to zero. (c) Transition from a zone-boundary s-state in one band 
to a zone-boundary p-state in another band, where the transition dipoles are in phase. (After Cox 
(1987), Electronic Structure and Chemistry of Solids by permission of Oxford University Press) 

for nw~'fl,g (neglecting the effect of the photon wavevector); hence, the optical absorp
tion spectrum of such materials increases discontinuously at nw = 'fl,g (Fig. 5.77), and an 
extrapolation of the absorption curve to zero absorption yields an estimate for 'fl,g. 

In indirect-gap materials (e.g. crystalline Si and Ge), on the other hand, the minimum 
gap occurs for electron states at different values of k (Fig. 5.78a). Thus a vertical 
electronic transition, involving only a photon, cannot directly connect the two electronic 
states defining the indirect gap, 'fl,~; a photon does not possess enough momentum to 
ensure conservation of momentum for such a transition. A number of possible addi
tional processes, however, can provide the necessary extra momentum to effect an 
indirect transition. The most general of these involves phonons. A photon with energy 
equal approximately to 'fl,~ causes a vertical transition of an electron in the valence band 
to a virtual state, which is allowed as long as the lifetime of this state is short enough to 
satisfy the Heisenberg uncertainty principle. A phonon can then be either emitted or 
absorbed with enough (but small) energy nwp to cause the electron transition to the 
conduction-band minimum, i.e. the conservation of energy now reads: 

(5.203) 
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Fig.5.77 Optical absorption in materials with a direct gap, ~g: (a) vertical, crystal-momentum
conserving direct transition occurring at the minimum bandgap, ~g; (b) the corresponding optical 
absorption spectrum, K(w). 

(b) 

Fig.5.78 Optical absorption in materials with an indirect gap, ~i : (a) Indirect transition between 
electron states at different points in k-space. Photon absorptio~ causes a vertical transition to 
a virtual state; subsequent phonon emission or absorption provides the necessary momentum 
to carry the electron to the final state. A higher-energy direct transition between valence 
and conduction bands at k = 0 is also ~hown. (b) The corresponding optical absorption spectrum, 
K(w). The lower-energy intercept at ~~ fzwp corresponds to absorption ofa phonon with energy 
fiwp, and the higher-energy intercept at ~~ + liwp corresponds to phonon emission. 

where the plus and minus s~gns refer to phonon absorption and emission, respectively, 
and the indirect gap is 'fl,~ = 'fl,f - 'fl,j. More importantly, the absorbed or emitted 
phonon has a sufficiently large momentum that the total (electron plus phonon) 
momentum can be conserved in the indirect transition between valence-band maximum 
and conduction-band minimum (Fig. 5.78a), i.e. 
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kr = ki + kph ± qp' (5.204) 

where kph is the (negligible) wavevector of the photon and qp that of .the phonon. 
Phonon emission is always possible, and in such a case the zero-absoll?tIOn Intercept 
is at eg~ + liwp • However, at high temperatures, the number of phonons mcre~ses (eqn. 
(4.68)) and hence the probability of phonon-absorption events .becomes appreciable, for 
which the intercept in the optical-absorption spectrum is at eg~ - ~wp (FIg. 5.78b). 

Processes other than those involving phonons can also contrIbute to momentum 
conservation in optical transitions, e.g. electron-electron scattering or ele~tron-im~urity 
scattering in heavily doped semiconductors. Impuritie~ are associated WIth a 
destruction of perfect translational symmetry and hence WIth. a breakdown of the k
selection rule. Indeed for amorphous semiconductors, WhICh have no real-s?ace 
periodicity and consequently no reciprocal lattice either, the distin~tion betw~~n dIrect. 
and indirect gaps becomes meaningless and essentially all optIcal tranSItIOns are 
allowed. 

At photon energies much higher than eg~, direct vertical transitions between vale~ce
and conduction-band states become possible (see Fig. 5.78a), and these two-partIcle 
(electron + photon) interactions then dominate the opti~~l-absorp~ion profile since t~ey 
have much stronger matrix elements than indirect tranSItIons that Involve three-partIcle 
(electron + photon + phonon) interactions. . . . 

The functional fonn for the energy dependence of the optIcal absorptIOn coeffiCIent 
can be found by calculating the imaginary part of the dielectric constant, c2(W) (cf. eqn. 
(4.163b)). This is done by starting from the expression given by the ~em:i Golden ~~le, 
obtained from time-dependent perturbation theory, for the electnc-dipole .tranSItI?n 
probability R for the rate of photon absorption (first assumed to be associated WIth 
direct processes): 

R = 2; L [J 'l/J~,k JIf'l/JY,kdr] 28(egc(kc) - egy(ky) -liw), 
kc,lev 

(5.205) 

where the subscripts c and v refer to conduction-band and valence-ban~ states, respec
tively. The Hamiltonian JIf describing the interaction between the electrIC fie~d ~ of the 
electromagnetic radiation and the electron wavefunction (e.g. a Bloch state) IS gIVen by 

JIf = -er' E, (5.206) 

which is valid for small wavevectors of the electroIIlagnetic wave (the electric-dipole 
approximation). (A more general expression is in tenns of the elect:on mon:entum 
operator p and the vector potential A, i.e. :Yt' = eA· p/(mec).) The mtegral In eqn. 
(5.205) can be rewritten as 

(5.207) 

where the momentum matrix element IPcy l2 is assumed not to be a function of k. 

The rate of energy lost per unit volume, W, by the electromagnetic field due to 
absorption is, in tenns of the transition probability, 

W R11w, (5.208) 

and this is also related to the absorpti~ncoefficient K or imaginary part of the dielectric 
constant C2 (cf. eqn. (4.163)) by 

W = _ dI = _(dI) (dx) = !:.-KI 
dt dx dt nr 

(5.209) 

where I = Ioexp( -Kx) is the transmitted intensity per unit volume of the incident light. 
Since I is equal to the energy density of the field 

? 

I n~o IE(w)12, (5.210) 

the final expression for the imaginary part of the dielectric constant is 
? 

c2(W) = ;e~ L IPcyI28(egc(k) - egy(k) -11w). 
mew-co Ie 

(5.211) 

The real part of the dielectric constant is related to eqn. (5.211) by the Kramers-Kronig 
transformation (eqn. (4.166)) - see eqn. (7.34). 

The summation of the delta functions over k can be replaced by an integration over 
energy (cf. eqn. (5.132)) of the joint density of states gj(eg), the density of pairs of states 
in two bands with energy separation egcy(k) = egc(k) - egy(k) at the same k-value. This is 
defined as (cf. eqn. (5.131)): 

. 2 J dScg 
gj(eg) = (211")3 I'h(egCY)I . (5.212) 

The difference in energy between pairs of conduction- and valence-band states with 
the same k-vector (i.e. for direct transitions) can be written in the vicinity of the direct 
gap egg as . 

(5.213) 

where it has been assumed that both bands are spherically symmetric for simplicity, and 
the reduced mass is given by fL- 1 = (111:)-1 + (m;;)-I, where m: and m;; are the effective 
masses of electrons and holes in the conduction and valence bands, respectively. Thus, 
from eqn. (5.212), the joint density of states becomes 

(2 )1/2 
gj(eg) = :2113 fL (egcY - egg)I/2 (egcv > egg), (5.214) 

and zero otherwise. Hence, the final expression for c2(W) for direct interband transi
tions is 

2(2 )3/2 
( ) _ e fL IP 12(* _ cg )1/2 C2 W - 3 cv rtW (Qg . 

211"com~w211 
(5.215) 
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Thus, for direct transitions, a plot of (w2c2)2, or (wK)2, versus photon energy should be 
linear for photon energies somewhat greater than the gap, with an intercept of~g on the 
abscissa. 

For higher photon energies, electronic transitions from states deeper in the valence 
band occur to states higher in the conduction band. For direct transitions in crystals, C2, 

given by eqn. (S.211) with eqn. (S.212), is not featureless but exhibits sharp features 
where there are van Hove singularities in the joint density of states, i.e. where 
\l k(~cv) = 0. This condition is satisfied for transitions between band extrema, and 
also for transitions between two states for which the local gradients are non-zero but 
equal, i.e. \lk~c(k) = \lk~v(k). Figure S.79a shows experimental reflectance data for 
crystalline Ge and the real and imaginary parts of the dielectric constant obtained from 
it by making use of the Kramers-Kronig relations (eqn. (4.166». The low-energy peak 
in C2 at about liw ~ 2 eV is due to transitions between upper-valence-band and lower
conduction-band states having equal, non-zero k-space gradients at a k-value (A) part
way to the L-point «7fja)(111» in the band structure (Fig. S.71). The high-energy peak 
in C2 at about liw ~ 4.S eV is due to transitions between upper-valence-band and lower
conduction-band states at the X-point «(27fja) (100». 

For indirect optical transitions, involving an intermediate virtual state and subse
quent emission/absorption of a phonon of energy liwp (Fig. S.78a), the Fermi Golden 
Rule expression (eqn. (S.20S» must be modified to take account of the intermediate 
state Ii > by making use of second-order perturbation theory, i.e. 

R- - 27f "I" (clJ'f'li) (ilJ'flv) 12 8(~ (Ii ) - (~ (J. ) -Ii ± Ii) (S.216) 
!Od - n L...J L...J (~. _ Ii ) c Cc v 'v lW wp , 

1 kc,kv i IV lW 

where :If' is the Hamiltonian representing the electron-phonon interaction in taking the 
electron from the intermediate state to the final conduction-band state Ic). Assuming 
that the matrix elements are constant for energies in the region of the indirect gap, ~~, 
the summations over kc and kv in eqn. (S.216) reduce to integrations of the separate (not 
joint) valence-band and conduction-band densities of states. Hence, the transition 
probability becomes 

(S.217) 

Assuming, as for the direct-transition case, that the bands in the vicinity of ~~ are 
parabolic and spherically symmetric, then 

gv <X (_~v)1/2, ~v < 0, (S.218a) 

and 

(S.218b) 

where the zero of energy has been taken to be at the top of the valence band. The 
imaginary part of the dielectric constant thus has the form for indirect transitions: 

1 . 2 . 
C2(W) <X 7. (liw =f liwp - ~~), liw~~~ ± nwp, (S.219) 

w 

which should be contrasted with the corresponding expression for direct transitions 
(eqn. (S.21S». 

5.8 OPTICAL PROPERTIES OF ELECTRONS IN SOLIDS 
391 

(a) 0 '----I...--.l..-_-L __ L-_..L...l 

1.2 

\ -Im(e-Il 
\ 
\ 0.8 

\ -I 
\ -Im{e } 

\ 
0.4 

20 25 
0 

Energy(eV) 

~ig. ?79 (a) Experimental reflectan~e cur~e for crystalline Ge at 300 K. (b) Real (c\) and 
Imagmary (c2) ~arts of the com~lex dlelectnc function, together with the energy-loss function 
-1m (l/c), o.btamed from ~a) USIIl:g. th~ K.rar.n~rs-K.ronig relation. The peaks in c\ and c? ar~ 
assocIated wIth van Hove smgulantI:s.m the ]omt density of states. The peak in - Im(I / c) i~ the 
plasmon. peak at w = wp. (After PhIllIp and Ehrenreich (1967). Reproduced by permission of 
AcademIc Press, Inc.) 

Figure S.80. shows. t?e. absorption coefficient of crystalline Ge measured at various 
temperatures m the VICInIty .of t~e indirect gap, which occurs between .the r -point in the 
valence band and the L-pomt m the conduction band (Fig. S.71). At the lowest tem
p~rature (4.2 K), two threshold energies are evident at ~i + nw' = ° 7S eV and 
~I + Ii /I ° 77 V . . . g p . 

g wp =. e, correspondmg to emISSIOn of two types of phonons. The two 
lowest-energy.phon~ns are the TA phonon with liw;, = 8 meV (at the L-point) and the 
LA phon?n WIt~ nw'p = 27 me V at L (see the phonon dispersion curves in Fig. 4.17); they 
ar~ ~ssocIa~ed WIth k-values corresponding to the L-point because the conduction-band 
~mmum m the electronic band structure of crystalline Ge occurs at that point. At 
hIgher temperatures, phonon absorption becomes important (e.g. at 77 K for the TA 
and LA phonons), ~nd at the highe~t temperatures, higher-energy phonons (i.e. TO(L) 
and Le>.(L) - s.ee FIg. 4.17) are also mvolved. Further details on interband transitions in 
crystallme semIconductors are given in Madelung (1978) and Yu and Cardona (1996). 
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Fig. 5.80 The absorption edge of crystalline Ge, in the vicinity of indirect transitions, measured 
at various temperatures as indicated. (After MacFarlane et al. (1957). Reprinted with permission 
from Phys. Rev. 108, l377. © 1957. The American Physical Society) 

For the case of non-crystalline materials, where the absence of translational periodi
city means that the k-selection rule for optical transitions is relaxed, the interband 
optical spectra are much simpler than for crystals: for example, there are no sharp 
features in £2(W) corresponding to van Hove singularities, and any peaks in such spectra 
arise from peaks in the electronic density of states. For interband transitions in amor
phous solids caused by photons with energy hw;::,egg, it makes no sense to discuss the 
optical properties in terms of a joint density of states (eqn. (5.212)), as in direct 
transitions in crystalline materials, because k is no longer a good quantum number. 
Instead, a modification of the approach used to calculate E:2(W) for indirect transitions 
may be adopted in the amorphous case; that is, £2 is taken to be proportional to an 
integral over the product of the valence- and conduction-band densities of states, i.e. 

(5.220) 

where again the zero of energy is taken to be at the top of the valence band. If it is 
assumed that, in the vicinity of the gap, the valence- and conduction-band profiles have 
a parabolic form (eqn. (5.218)), then the photon-energy dependence of the optical 
absorption of amorphous semiconductors becomes: 

(5.221) 

This behaviour is shown in Fig. 5.81 for a number of amorphous semiconductors. 
Amorphous semiconductors differ from their crystalline counterparts also in the fact 

that structural disorder causes a 'tailing' of states at the band edges into the otherwise 
forbidden energy gap. Such tail states give a contribution to the optical absorption at 
photon energies below the bandgap energy, egg; this is seen in Fig. 5.81 as the absorption 
tails below the extrapolated values of the bandgap. It is a remarkable fact that all 
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Fig. 5.81 Optical? absorption edges of amorphous semiconductors, showing the behaviour 
wK(w) ex: (liw - ';ggt, and the extrapolations made to obtain values of';gg. (After Elliott (1990)) 
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Fig.5.82 Urbach edges in the subgap region of the optical absorption profiles of a number of 
amorphous semiconductors. (After Elliott (1990» 

amorphous semiconductors and insulators appear to exhibit the same characteristic 
absorption behaviour in this subgap region, viz. the Urbach edge (also found in crystal
line alkali halides): 

K(w) = Ko exp[-r(ego - hw)], (5.222) 

where ego is an energy comparable to the optical gap egg, and r is a temperature
dependent constant (above ~ 77 K), typically having values in the range 10-25 ey-l. 
Represe~tati~e Urbach .edges for some amorphous semiconductors are shown in Fig. 
5.82. It IS stdl not entIrely clear what is the origin of the Urbach behaviour, but 
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structural disorder clearly plays a significant role: the greater the disorder, the less steep 
is the Urbach edge (smaller r). It appears that the exponential energy dependence of the 
Urbach edge (eqn. (5.222)) is due to exponential energy profiles of the band tails. 

5.8.3 Excitons 

Thus far, it has been assumed that photo-induced interband transitions lead to the 
excitation of an electron to the conduction band, leaving behind an empty electron 
state (i.e. a 'hole' - see §6.2.2) in the otherwise filled valence band, and that such photo
generated electrons ano holes behave independently in their separate bands. How
ever, such electron-hole pairs can mutually interact via the Coulombic attraction 
between negatively charged electron and positively charged hole, and if the binding 
energy is sufficiently large to bind pairs of electrons and holes, such pairs form 
new boson-like quasiparticles termed excitons. Exciton formation occurs preferentially 
at critical points in the joint density of states (eqn. (5.212)), i.e. where \7 k(':gc) = \7k (cg v ), 

since at such k-values the group velocities of the electron and hole are equal, facil
itating mutual binding to form an exciton. The existence of excitons is another example 
of the breakdown of the independent-electron approximation (for other examples, 
see §5.6). 

Exciton formation can have dramatic effects on the optical behaviour of semicon
ductors and insulators, particularly in the subgap region (nw;Scgg) where, for a perfect 
crystal in the absence of exciton formation, no optical absorption would otherwise be 
expected, since a bound exciton must have a lower energy than a free electron and hole. 
Excitons can move through a material via exciton bands but, since these quasiparticles 
are electrically neutral overalI, they are not charge carriers and hence do not contribute 
to the electrical response of solids. 

Two types of excitons can be distinguished, depending on their relative binding 
energies and, as a consequence, on their spatial extent. Very tightly bound excitons 
are termed Frenkel excitons, and their spatial extent is typically of the order of a single 
atom (Fig. 5.83a). Weakly-bound excitons, called Mott-Wannier excitons, on the other 
hand, are characterized by electron-hole separations large compared with interatomic 
spacings (Fig. 5.83b) and, as such, bear some resemblance to an 'atom' ofpositronium, 
consisting of a bound electron-positron pair. 

Frenkel excitons are found in materials such as rare-gas crystals and ionic solids, 
where the dielectric constant is sufficiently small that the Coulombic attraction between 
electron-hole pairs is not strongly screened (§5.6.l); and hence the exciton is strongly 
bound and of small extent. Alternatively, they are also commonly found in molecular 
(organic) crystals (e.g. anthracene, CI4HIO) where the intermolecular interactions are 
weak (van der Waals-like), and henceexcitons tend to be localized on single molecules. 
Frenkel excitons can hop from site to site within a narrow exciton band, whose origin 
can be understood in terms of the tight-binding approximation (§5.3.l). An example of 
the effect of Frenkel exciton formation on the optical absorption behaviour of materials 
is given in Fig. 5.84 for the case of solid Kr. It can be seen that the lowest exciton 
absorption bands correspond rather closely to the electronic transition energies found 
in the atomic state, implying that the excitons are highly localized in the vicinity of 
single atoms. 

iii 

iii 

(a) (b) 

Fig. 5.83 (a) Schematic illustration of a Frenkel exciton in an ionic crystal, e.g. an alkali 
halide, localized on one anion. (b) Schematic representation of a Mott-Wannier exciton in a 
crystal. 

Fig. 5.84 Optical absorption in solid Kr at 20 K showing exciton peaks below the bandgap 
energy, egg. The two arrows correspond to electronic transitions in atomic Kr, i.e. 4p6 -44p65s 
(split due to spin-orbit coupling). (After Baldini (1962). Reprinted with permission from Phys. 
Rev. 128, 1562. © 1962. The American Physical Society) . 

In the case of Mott-Wannier excitons, the Coulombic interaction is screened by the 
dielectric constant £ of the material as long as the electron-hole separation is very much 
larger than the interatomic spacing. For very large separations of electron and hole, the 
relative (rotational) motion of the two particles is sufficiently slow that the ions can 
respond, thereby producing a dominant lattice contribution to the polarization and thus 
£ ~ £(0), the 'static' dielectric constant. For higher frequencies of electron and hole 
motion (corresponding to smaller electron-hole separations) that are greater than the 
LO-phonon frequency, the lattice can no longer respond, and the exciton Coulomb 
interaction is then screened by the valence electrons, i.e. the effective dielectric constant 



396 ELECTRONS IN SOLIDS 

is then the high-frequency dielectric constant, r:; c:::: r:;(oo). The general motion of an 
exciton can be separated into two parts: (i) a translational motion of the centre of 
mass, and (ii) a relative motion with respect to the centre of mass. 

The relative motion of the electron-hole pair, interacting via a Coulomb potential, 
can be analysed in the same way as in the hydrogen-atom problem (electron plus 
proton). The quantized energy levels for the relative (rotational) motion therefore 
depend, in general, on three quantum numbers, the principal quantum number n, the 
orbital-angular momentum quantum number I and the magnetic q\lantum number 111. 
For spherical (isotropic) electron bands, only n is important and hence the energy levels 
form the infinite sequence 

R* 
~r(n) = ~r(oo) - 2' 

n 
where R *, the Rydberg constant for the exciton, is given by 

R* = J..le
4 

J..lRo 
321f2r:;2r:;ijll mer:;2 ' 

(5.223) 

(5.224) 

and where the reduced mass of the exciton is J..l = ((m;)-1 + (111h)-I)-1 and the Rydberg 
constant for the hydrogen atom is Ro = 13.6 eV. The energy corresponding to the 
continuum limit is simply the conduction-band edge, i.e. ~r( (0) = ~g. Exciton binding 
energies for Mott-Wannier and Frenkel-like excitons are given in Table 5.5. 

The centre-of-mass motion of the exciton is described by motion in an exciton band 
characterized by an exciton wavevector given by the sum of electron and hole (§6.2.2) 
wavevectors, K = ke -I- kh. The effective mass (see §6.2.1) of the exciton quasiparticle is 
given by M = m: + mh, and so the free-exciton kinetic energy associated with centre-of
mass motion is given by 

(5.225) 

The centre-of-mass exciton motion is translation ally invariant in a crystal, and so K 
(but not ke or kh separately) is conserved in interactions, e.g. with a photon. 

Since an exciton is a two-particle entity, it is not correct simply to superimpose the 
hydro genic energy levels (eqn. (5.223)) on the one-electron bands representing 
the translational motion of single electrons or holes; instead, reference should be 

Table 5.5 Exciton binding energies R* 

Mott-Wannier type Frenkel type 
Material R* (meV) Material R* CmeV) 

Si 14.7 BaO 56 
Ge 4.2 KI 480 
GaAs 4.9 KCl 400 
GaP 3.5 KBr 400 
InP 5.1 RbCI 440 
CdS 29 
CdSe 15 
CdTe 11 

(After Burns (1985). Reproduced by permission of Academic Press, Inc.) 

.r 

(a) One-electron picture (b) Two-particle picture 

'geh 

'g 

Ground 
state 

K 

Filled 
10> 

'geh 

'ge+'gh -OIl 

Excited k= ke+kh 
state k 

K 

10) 

'geh 

Exciton N/a OIl 

10) 

Optical n=1 
absorption 

I I Photon 

K 

10) 

Fig. 5.85 Energy levels of the ground state (filled valence band, empty conduction band) and 
excited state of a semiconductor, together with photon-absorption processes, in (a) a one-electron 
band picture (the excitation being an electron in the conduction band and a hole in the 
valence band); (b) a two-particle picture (the excitation being an exciton). (After Yu and 
Cardona (1996), Fundamentals of Semiconductors, p. 268, Fig. 6.20, © Springer-Verlag GmbH 
& Co. KG) 

made to the two-particle picture, for which the appropriate variable is the 
exciton wavevector, K, and this is done in Fig. 5.85. The series of parabolic 
energy bands of the exciton (a combination of eqns. (5.223) and (5.225)) can only be 
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represented in two-particle K -space, not in one-electron k-space. In the exciton 
picture, interaction with a photon occurs when the photon dispersion curve inter
sects the exciton bands. In fact, the exciton rotational motion and the electro
magnetic wave couple together to form a coupled exciton-polariton state (see Problem 
5.33(b)), similar to the coupling between ionic vibrations and light involved in 
polaritons (§4.4). Clear evidence for a Rydberg-like series of absorption peaks asso
ciated with exciton formation is shown in Fig. 5.86 for the case of crystalline CU20. 
In this material, direct transitions at the r-point are symmetry-forbidden (see Problem 
5.32), and only exciton p-like bound states (with I 1) are weakly electrical-dipole
active. The series of exciton absorption peaks satisfy eqn. (5.223) with ~r(oo) 2.166 
eV and R* = 97 meV for n~2 (the n = 1 peak is missing, of course, since there is no 
lp state). 

*5.8.4 Non-linear optical behaviour 

Thus far, the discussion of optical properties has assumed that a single photon is 
involved in the electronic excitations. In other words, it has been assumed that the 
optical response of a solid is linear in the electric field of the electromagnetic wave. This 
is a valid approximation at low light intensities, but for the case of high-power lasers 
strongly focused on a material (say with a power density of ~ 1018 W m-2), the field 
strengths of the light can reach levels of order E ~ 1010 V m- I

, i.e. comparable to 
internal fields in solids, and multi photon optical processes can occur as a result of the 
ensuing non-linear optical processes. One example of such behaviour which is relevant 
to the discussion given in the immediately preceding sections is two-photon absorption, 

Iiro(eV) 

-3 

1~L,-.IOO~--:-:17~.:!C::-::OO:---1;-:;7"*.300~-'-~1;-::7.~400~""" 
V (em-i) 

Fig. 5.86 Low-temperature optical absorptipn spectrum of CU20 showing the p-like Rydberg 
series of exciton peaks for photon energies less than the bandgap (2.166 eV). (After Baumeister 
(1961). Reprinted with permission from Phys. Rev. 121, 359. © 1961. The American Physical 
Society) 

Conduction band 

...... _ ... _ ........ -_ ............. -.. Virtual state 

Valence band 

Fig. 5.87 Schematic illustration of two-photon absorption via an intermediate, virtual state. 

whereby the absorption of one photon causes an electronic transition to an intermediate 
virtual state; the subsequent absorption of another photon then causes a further 
excitation of the electron to the final state (Fig. 5.87). In such a process, energy is 
conserved only overall, but (crystal) momentum is conserved in each one-photon 
transition. 

Non-linear optical behaviour can be characterized in terms of non-linear susceptibil
ities linking the induced polarization P;(w) (where the suffix refers to the polarization 
direction in Cartesian coordinates) and powers of the applied field associated with the 
incident high-power light, viz.: 

P;(w) = COX~) Ej(w) + coxbi EAwI )Ek(W2) + coxW,Ej(wl )Ek(W2)E,(W3) + ... 
(5.226) 

The first term in eqn. (5.226) is simply the normal linear term, and the first-order 
dielectric susceptibility X(I) is related to the dielectric constant (see eqn. (4.140) and 
§7.1.1) via 

(5.227) 

Note that all dielectric susceptibilities (and the dielectric constant) are tensor quantities, 
the rank of the tensor increasing with the order of the non-linear susceptibility. The 
non-linear terms that are the most important involve the second- and third-order 
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susceptibilities, X(2) and X(3). The second-order susceptibility (and all even-order sus
ceptibilities) is zero for crystals having a point group with a centre of symmetry, or for 
glasses which are structurally isotropic: since in these cases opposing directions are 
equivalent, the polarization P must change sign when the optical field cg is reversed, and 
hence the quadratic term X(2) must be zero. Of the 32 crystallographic point groups 
(§2.3.2), 21 do not have a centre of symmetry and hence have non-zero second-order 
susceptibilities (see Table 2.5 and §7.1.S.1). Symmetry relations further reduce the 
number of independent non-zero elements in X(2) and X(3) (see Butcher and Cotter 
(1990). 

The linearity of the first term involving X(I) in eqn. (5.226) implies that the response of 
the material to an external stimulus of frequency W is at the same frequency. However, 
this is not necessarily the case for the non-linear terms and therein lies the usefulness of 
the effect that has made the field of non-linear optics so active (see e.g. Shen (1984), 
Butcher and Cotter (1990) and Saleh and Teich (1991) for further details). Examples of 
the types of non-linear effects that can be observed are summarized in the following. 
Essentially, they can be regarded as wave 'mixing' phenomena, in which various input 
frequencies (E(Wi)) are mixed to give several different output frequencies (P(Wj)). 

For the case of the second-order susceptibility, for example, if the incident light 
consists of two frequencies, WI and W2, the electric field in the sample is thus 

E = EI sinwlt + E2 sinw2t, (5.228) 

and the second-order term in eqn. (5.226) involving X(2) produces three-wave mixing, 
giving terms in P(w) proportional to 

(5.229) 

For the case when the optical field contains just one frequency (WI = W2 = w), the result 
is an electrical polarization P(w) with a frequency of twice the input frequency; this 
oscillating polarization then leads to light emission with frequency 2w, i.e. second
harmonic generation (SHG). At the same time, a static polarization (w = 0) is produced, 
giving rise to a d.c. electrical field in the sample, i.e. optical rectification (by analogy with 
the electrical case, where an oscillating current is transformed into a d.c. one). 

In the general case where the two frequencies are different, WI =I- W2, sum-difference 
frequency generation takes place. Not all the five possible waves, with frequencies 
0, 2WI, 2W2,WI ± W2, are produced by sum-difference frequency generation in any given 
experimental arrangement. In addition to the frequency-matching condition, say 

W3 = WI + W2· (S.230a) 

the phase-matching condition (i.e. conservation of photon momentum) must also be 
satisfied, i.e. 

(S.230b) 

In general, for a dispersive medium, where the refractive index is frequency-dependent, 
llr n(w), the phase-matching condition, eqn. (S.230b), becomes 

(S.230c) 

Efficient sum-frequency generation, when eqns. (S.230a) and (S.230c) are simulta
neously satisfied, can be achieved, for example by using an optically anisotropic (e.g. 

uniaxial) crystal and an appropriate choice of angle of the incident light beam with 
respect to the optic axis of the crystal (see Problem 5.35). 

If one of the frequencies is zero, WI = 0, i.e. light with frequency W2 = W is incident on 
a sample subject to a d.c. electric fielci Eo, the net polarization is proportional to 
EoE(w). Hence, from eqn. (5.226), this behaviour is equivalent to the first-order dielec
tric susceptibility X(I), and thus the refractive index of the medium, becoming dependent 
on the applied d.c. electrical field: this is known as the linear electro-optic (or Pockels) 
effect. The magnitUde of second-order non-linear effects is obviously dependent on the 
magnitUde of X(2); experimental values of elements of X(2) for representative crystalline 
materials used in SHG applications are given in Table 5.6. 

In a similar manner, the third-order susceptibility, X(3), gives rise to four-wave 
mixing, third-harmonic generation and related phenomena. The simplest case is for 
a light wave incident on a sample subject to a d.c. (w = 0) electric field Eo; this leads to a 
change in the refractive index of the medium proportional to E5 and is known as the 
quadratic electro-optic (d.c. Kerr) effect. A related effect caused by third-order non
linearity produces a term in the refractive index, nr , of the medium proportional to the 
light intensity I, since the linear susceptibility term X(J) can be regarded as being 
replaced by the factor X(I) + X(3) E2, or equivalently: 

llr = 110 + 1121. (5.231) 

For silica glass, as used in optic fibres, the Kerr parameter is 112 ~ 6 X 10-23 m2 jV2. 
This effect is very important and is involved in a wide variety of non-linear optical 
processes, such as self-focusing of laser beams, 'solito"n' pulse propagation, etc. 

Two other effects involving third-order non-linearities occur when a pump light beam 
with frequency wp and a signal beam with frequency ws, chosen so that 

Wp ±ws =Wo, ( 5.232) 

where Wo is the frequency of a transition in the medium, are mixed by the X(3) term. If 
wp + Ws = wo, two-photon absorption producing signal attenuation occurs; the effect is 

Table 5.6 Values of elements of second-harmonic non-linear sus:ceI)tlblllItes 

Material Point group (ilk) 

Q-Si02 (quartz) 32 D3 0.8 xxx 
0.02 xyz 

LiNb03 3m-C3v 6.14 YYY 
-11.6 zxx 

81.4 zzz 
BaTi03 4mm-C4v -34.4 xzx 

-36 zxx 
-13.2 ZZZ 

KH2P04 (KDP) 42m-D2d 0.98 xyz 
0.94 zxy 

CdSe 6mm-C6v 62 zxz 
57 zxx 

109 zzz 
GaAs 43m-Td 377 xyz 
GaP 43m-Td 70 

(After Shen (1984). Reproduced by permission of John Wiley & Sons Inc.) 



proportional to the pump-beam intensity and signal field. The absorption coefficient is 
proportional to Im(x(3»), analogous to the linear case where K ex: Im(x(l»)· If 
Wp - Ws = wo, then emission of a signal photon occurs on absorption of a pump-beam 
photon: this is called a stimulated Raman process, resulting in amplification of the input 
signal beam, the energy coming from the medium, i.e. from the reservoir of energy 
contained in the transitions of frequency Wo that are coupled in. This process should be 
contrasted with the spontaneous Raman process previously discussed in §4.5.2. In 
general, third-order non-linear optical processes are very weak since X(3) is many orders 
of magnitude (typically ten) smaller than X(2). However, the magnitude of X(3) may be 
resonantly enhanced if one or more of the frequencies involved is equal to that of 
a transition in the medium in which wave mixing is taking place. 

Any substance, gas, liquid or solid, exhibits optical non-linearities at sufficiently high 
optical fields. In the case of solids, two sources of non-linearity are the polarization 
response of the bound electrons giving a dielectric contribution and of the free conduc
tion-band electrons in doped semiconductors. The latter are of interest because their 
electronic properties can be controllably varied by changing the dopant concentration 
(see §6.5.2). 

Applications 5.9 
There are very many applications of materials that exploit their electronic properties. 
Many of these, however, involve electrical transport phenomena (the subject of Chapter 
6) or dielectric or magnetic properties (the subject of Chapter 7). Yet others rely on 
devices in which the electronic behaviour at interfaces (or heterojunctions) is exploited, 
and these form part of the subject of Chapter 8. Here, we consider applications that 
make use of the bulk optical properties of solids. 

5.9.1 Optical communication 

The most widely used property of inorganic glasses, such as Si02 or AS2S3, is their 
optical transparency for photon energies below the bandgap (egg ~ 11 e V for vitreous 
silica and 2.4 eV for AS2S3). The fact that the physical behaviour of glasses is isotropic, 
that they can be readily processed into required shapes (e.g. plates, fibres) by mechan
ical extrusion or pulling at temperatures just above the glass-transition (or 'softening') 
temperature, Tg, and that they are cheap to produce, makes them very attractive for 
commercial exploitation. The most widely used application of silica glass (containing 
a few tens of mole percent of network modifiers, e.g. Na20 and CaO to lower the value 
of Tg and extend the region of workability in its vicinity) is, of course, as a window 
material in a wide variety of situations. 

A rather more 'hi-tech' application that exploits the optical transparency of silica 
glass is in optical fibres used for telecommunications applications. A light wave 
launched into the end of a fibre propagates down the core of the fibre by a process of 
total internal reflection at the surface of the fibre where, in the simplest step-index case, 
there is a discontinuity in the refractive index, ll r , between the glass core of the fibre 
(higher l1r) and a protective polymer cladding (lower llr)-see Fig. 5.88a. Alternatively, 
a graded-index fibre can be produced in which llr decreases steadily (typically para
bolically) from the centre of the fibre to the edge; this gradation is achieved by mixing 
a high-nr material (Ge02) to Si02 at the centre, and a low-index material (B20 3) at the 
edge, of the glass preform from which the fibre is pulled at temperatures above Tg• In 
this case, a light ray launched into the fibre is confined to the core region by a process of 
refraction (Fig. 5.88b). A single transverse, propagating cylindrical waveguide mode can 
be supported by very thin step-index fibres (typically with a core diameter of ~ lOj.lm) , 
while thicker step-index or graded-index fibres (~ 50-200j.lm diam.eter) can support 
many propagating modes simultaneously (multimode operation). 

Obviously, for long-distance telecommunication applications, optical-fibre wave
guides must be as transparent as possible: light-intensity losses due to optical absorption 
in, or scattering out of, the fibre must be minimized. Four loss or scattering mechanisms 
can be identified: absorption due to inter band electronic transitions at high (UV) 
photon energies (the Urbach edge-see §5.8.2); multiphonon absorption at low (IR) 
frequencies; absorption of light associated with electronic transitions between electronic 
states in the gap (due to impurities and defects) and the bands of the silica host material; 
and Rayleigh scattering of the light by density and compositional fluctuations in the 
glass. Impurities can be removed to a great extent by careful processing, but the 
three remaining processes are intrinsic and cannot be eliminated; together, they give 



Fig. 5.88 (a) Guiding of a light wave in a step- index glass fibre by total internal reflection at the 
interface between core and cladding. The step profile of the refractive index is indicated. (b) 
Guiding of a light wave in a graded-profile glass fibre by refraction. The profile of the refractive 
index is indicated. 
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Fig. 5.89 Optical absorption profile of vitreous Si02, showing the V -shaped profile formed by 
the cross-over between Urbach and multi phonon edges. The contribution from Rayleigh scatter
ing is also shown. (Griscom (1985) in Glass: Current Issues, ed. A. F. Wright and J. Dupuy, 
(Martinus Nijhoff), p. 362, Fig. 2 with kind permission from Kluwer Academic Publishers) 

r 

a V-shaped effective absorption profile as a function of wavelength (see Fig. 5.89) since 
K(>') can be written as 

K(>.) = Atexp(A~/>') + Btexp(-B2/>') + C/>.4, (5.233) 

where the first term refers to the Urbach absorption edge (eqn. (5.222», the second to 
the multiphonon edge and the last to Rayleigh scattering. Losses of 0.2 dB/km (at 
>. = 1.6 /-Lm) have been achieved in real silica-glass fibres, close to the theoretical min
imum loss of ~ 0.1 dB/km in Si02 (see Fig. 5.89). Rayleigh scattering can be minimized 
by operating with longer-wavelength light, in which case the multiphonon edge must be 
pushed to longer wavelengths. This can be achieved by using glasses containing ele
ments heavier than Si and 0, for example chalcogenides (e.g. AS2S3) or fluoride glasses 
(e.g. ZBLA compositions (ZrF4)57(BaF2h6(LaF3h(AIF3)4)' although these materials 
are harder to process and, in the latter case, more prone to crystallization (thereby 
causing additional light scattering). 

Silica-glass optical fibres are already very widely used in cables carrying telecommun
ications traffic both locally (in cities) and globally (between countries and continents). 
They have many advantages over conventional copper-wire cabling for such uses, 
including extremely large bandwidth (> 1 THz for semiconductor-laser sources), neglig
ible noise, cross-talk and susceptibility to electrical interference and high signal trans
mission rates (> 1 Gbitls over 200 km). Further details of fibre-optic applications can be 
found in Midwinter (1979) and Syms and Cozens (1992). 

*5.9.2 Non-linear optical devices 

Optical non-linearity of materials forms the basis of the technological revolution, based 
on the manipulation of light, that will follow the electronics era; by analogy, this new 
technology has been termed photonics. This is a very active field, and full co'verage of it 
cannot be given here (see e.g. Saleh and Teich (1991) for more details). Instead, mention 
will be made of a number of optical applications that make use of the novel behaviour 
imparted by optical non.-linearity in materials. 

Second-harmonic generation (SHG) is widely used to up-convert the limited frequen
cies of light emitted by conventional laser sources. Thus, crystals like KDP (see Table 
5.6) can be used to convert red ruby-laser light (694 nm) to UV radiation (347 nm). Even 
doped silica-glass optic fibres (see §5.9.l) can be used to convert, for example, the IR 
light emitted by a Nd3+: yttrium aluminium garnet (YAG) laser (1.06 mm) to green 
visible light (530 nm). (Although pure silica glass itself exhibits no second-order optical 
non-linearities (X(2) = 0) because of its structural isotropy, doping the central core 
region of a fibre with Ge02 produces locally anisotropic defect complexes that result 
in a finite X(2) for the material.) 

Three-wave mixing, originating from second-order optical non-linearity, can be used 
to produce parametric optical amplifiers. In an optical amplifier, two beams are passed 
through a non-linear medium: one is a high-power (pump) beam, with frequency wp , 

and provides the power for the amplification; the other is a small-intensity signal beam, 
with frequency ws, that is to be amplified. Difference-frequency mixing produces an 
auxiliary light field (the 'idler' beam), with frequency WI = wp - ws, that is proportional 
to X(2) EpEs. The idler beam then beats (mixes) with the pump beam to produce a term in 
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the electrical polarization, at the signal frequency Ws Wp WI, that is proportional to 
EsE~. Thus, amplification of the signal beam is achieved if the phase-matching condition 
(eqn. (S.230b)) is satisfied. 

Cubic optical non-linearity (due to X{3}) produces a wealth of interesting effects that 
may be exploited. One such application is the construction of an optical switch using 
a Fabry-Perot etalon containing an optical medium with refractive index nr (Fig. S.90a). 
A Fabry-Perot etalon is non-transmitting for an incident monochromatic light beam of 
wavelength A unless the expression 

2nrd rnA, (S.234) 

is satisfied, where d is the separation between the mirrors and m is an integer. This 
relation can be obtained as the condition for constructive interference: note the simi
larity between this expression and the Bragg equation for diffraction from lattice planes, 
eqn. (2.9S). If the material between the mirrors exhibits a sizeable light-intensity
dependent refractive index (the Kerr effect (eqn. (S.231)) and that, at low light inten
sities, the refractive index nr c:= no is such that eqn. (S.234) is not satisfied (i.e. the etalon 
is non-transmitting, i.e. optically 'off '), then at a critical light intensity 10, the con
structive interference condition, eqn. (S.234), will become satisfied and the etalon will 
suddenly become optically transparent, i.e. switch to being 'on' (Fig. S.90b). 

Four-wave mixing in a third-order non-linear material can produce a very novel 
effect, viz. optical phase conjugation, that can be used, for example, in the restoration 
of a distorted wavefront to its original undistorted form. Consider the mixing of three 
superposed optical waves, with frequencies WI, W2 and W3, with net field given by 

E(t) = Re{EI exp( -iwi t)} + Re{E2 exp( -iw2t)} + Re{E3 exp( -iw3t)} (S.23Sa) 

or, equivalently, rewritten as a sum of six terms: 

1 
E(t) ="2. L E(Wi) exp( -iwit), 

1=±1,±2,±3 

(S.23Sb) 

where W-i = -Wi and E(-Wi) E*(Wi)' Substitution of eqn. (S.23Sb) into the expres
sions for the corresponding induced third-order polarizability (cf. eqn. (S.226)) gives 
63 216 terms, i.e. 

on 

off 
(a) (b) 

Fig.5.90 (a) An optical switch based on a Fabry-Perot etalon comprising an optical medium 
with an intensity-dependent refractive index between two semi-transparent mirrors. (b) Switching 
behaviour of the transmitted light intensity It. 

p{3}(t) = Eox~h6 L Efj(Wi)E"!(wj)E6(Wk) exp[-i(wi + Wj + Wk)t]. 
iJ,k=±I,±2,±3 

(S.236) 

Thus, for example, the term p{3} (W2, = W3 + W4 wd involves six permutations in the 
sum of eqn. (S.236), i.e. " 

p(3) (W2). = 6EOX~~6E{3 (W3 )E,,!( W4 )E6 (wd. (S.237) 

Thus, the frequency-matching (or photon-energy-conservation) condition is 

W3 +W4 WI +W2, (S.238a) 

and the phase-matching (or momentum-conservation) condition is 

k3 + k4 = kl + k2. (S.238b) 

Degenerate four-wave mixing (WI W2 = W3 = W4 w) satisfies eqn. (S.238a), and if 
two of the beams, 3 and 4, taken as pump beams, propagate collinearly and in opposite 
directions (e.g. as achieved by use of a mirror placed behind the optically active medium 
to reflect a single incident pump beam-see Fig. S.91), then k3 = - k4. Hence from eqn. 
(S.238b), k2 -kl and the resultant beam 2 must propagate in the opposite direction to 
the signal beam 1 whatever its angle of incidence (Fig. 5.91). The field amplitude of the 
resultant beam is, from eqn. (S.237), thus given by 

E(r,w2) ex: Afj(W3)A"!(w4)E6(r,wd, (5.239) 

where E(r,wi) A(Wi) exp(iki · r) and A(Wi) = E? exp( -iwit). Therefore, the resulting 
wave 2 is the (complex) conjugate wave of beam 1. The great peculiarity of the resulting 
phase-conjugate mirror is that the reflected ray always coincides with the incident ray, 
unlike in normal mirrors. 

Non-linear 

material (X (3)) 

Normal 
mirror 

Fig. 5.91 Operation of a phase-conjugate mirror based on degenerate four-wave mixing. The 
counter-propagating beam 4 is produced by reflection of pump beam 3 by reflection from a 
normal mirror at the rear surface. An incident signal beam 1 then produces a counter-propagating 
phase-conjugate reflected beam 2. 
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Fig. 5.92 Schematic illustration of the comparison of reflection behaviour of a normal and a 
phase-conjugate mirror. Phase aberrations induced in a wavefront by passage through a distorting 
medium are magnified by the second passage through the medium following reflection from an 
ordinary mirror, but are removed following reflection from a phase-conjugate mirror since the 
reflected wave is simply the time-reversed form of the incident wave. 

The conjugate wave 2 (eqn. (5.239)), i.e. E2 ex exp[-i(k2 . r - WJ t)], is simply the time
reversed form (t -T -t) of the incident signal beam EJ ex exp[i(k l .,. - WI t)] == 
exp[i( -k2 .,. - WI (-t)], since k2 -kl from the phase-matching condition. This 
behaviour enables a phase-conjugate mirror to remove phase aberrations induced 
in a wavefront by a distorting medium (see Fig. 5.92) since the beam reflected by a 
phase-conjugate mirror must be a time-reversed replica of the original, undistorted 
wavefront. 

Problems 

5.1 For the case of metallic potassil!m, for which the atomic density is 104 x 1028 m-3 and the 
unit-cell parameter is a 5.23 A, calculate values for the Fermi energy, temperature and 
wavevector. Comment on the value of the Fermi wavevector compared with the value of k 
corresponding to the Brillouin-zone boundary. What is the value of the density of states at 
the Fermi level? 

5.2 Obtain expressions for the density of states of a free-electron gas in one and two dimensions. 
What are the Fermi energy and the average energy of the electron gas in each case? 

5.3 Obtain an expression for the leading two terms in an expansion of the temperature depend
ence of the chemical potential/AT) of a Fermi gas (eqn. (5.28)). 
(Hint: First demonstrate that eqn. (5.27a) can be rewritten as eqn. (5.27b) by integrating by 
parts and expressing r(cg) as a Taylor expansion about fL; make use of the standard integral 

JOG x2e-' _ 
---1 d;, 7r

113. 
-DO (1 + e-',)-

Then, take r(cg) == J; g(cg')dcg' and use eqn. (5.27a) together with eqn. (5.27b) to obtain 
eqn. (5.28), eliminating N by subtracting N = J'gF g(cg')dcg' from both sides of the equation 
derived from eqn. (5.27a).) . 

504 Estimate the temperature below which the electronic contribution to the heat capacity of 
potassium becomes greater than the lattice-vibrational contribution. (eD = 91 K; atomic 
density 104 x 1028 m-3.) 

5.5 Show that for a 2D Fermi gas, the chemical potential is independent of temperature. 
Obtain an expression for the corresponding heat capacity at constant volume. 

5.6 Obtain an expression for the heat capacity at constant pressure for the 3D Fermi gas. Is the 
difference between it and C,. significant at room temperature for the case, say, of potassium? 

5.7 Show, using the general expression for the density of states, 

g(w)=~l dSw 

(27r)3 s I'hwl 
(eqn. (4.58)), that eqn. (5.15) is recovered for the Fermi gas. 

5.S Show that the electrostatic energy of Ze valence electrons uniformly distributed in a sphere 
with a radius given by the Wigner-Seitz radius rws is given by eqn. (5041). (Hint: obtain an 
expression for the electrostatic potential ¢ due to the electrons at a distance r < rws and use 
it to calculate separately the attractive interaction between ion and electrons and the 
repulsive interaction between electrons in the sphere. See §2.2.3.1 for an alternative deriva
tion.) 

5.9 Show that, for all temperatures, the pressure of the Fermi gas is given by p = 2U 13 V, 
where the internal energy U is given by eqn. (5.35). (Hint: make use of eqn. (4.214).) 

5.10 Ascertain the reciprocal-lattice vectors needed to translate portions of the free-electron 
parabolic bands in higher zones to the reduced zone for the case of a cubic Bravais lattice in 
the empty-lattice approximation (Fig. 5.15). Give expressions for the energies at arbitrary 
values of kx for each of the bands. 

5.11 The Kronig-Penney potential consists of a I D array of potential barriers, of height Vo and 
thickness t, spaced periodically with a separation a: the potential is zero between the 
barriers. 
(a) Find, by solving the Schrodinger equation for an electron moving back and forth both 

in the region between the barriers (t < x < a) and within a barrier (0 < x < t), the 
energy of the electron in terms of the quantities K and n;, involved in the trial 
wavefunctions e±iKx, e±t.:.", respectively. 

(b) Obtain four equations linking the wavefunctions by matching the wavefunctions, and 
their first spatial derivative at the boundary x = t and at x = a. (Hint: make use of 
Bloch's theorem in the latter case.) There is a solution to these equations only if the 
determinant involving the wavefunction coefficients vanishes, resulting in 

[(n;2 - K2)/2n;K] sinhn;t sinK(a - t) + coshn;t cosK(a - t) = coska (1) 

where k is the Bloch wavevector. 
(c) Consider the case when the potential-barrier height becomes increasingly high 

(Vo -+ (0) but at the same time its width becomes infinitesimally narrow (t -+ 0) in 
such a way that 

Vot = constant = fL(1i2/mea) (2) 

where the parameter fL is a measure of the strength of the barrier between neighbouring 
wells. Show that, in this limit, n; -+ 00 but n;t -+ 0, and hence from eqn. (1) 

cosKa + (fLl Ka) sinKa = coska. (3) 

Indicate on a plot of the left-hand side of eqn. (3) versus Ka the regions where travelling, 
Bloch-like solutions are forbidden. At what values of Bloch wavevector k do the 
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corresponding energy gaps occur? Make a sketch of the resulting band structure in the 
reduced-zone scheme. 

(d) Comment on the behaviour exhibited by the Kronig-Penney system in the two limits 
J.L -+ 0 and J.L -+ 00. 

5.12 (a) Show that a Bloch wavefunction (eqn. (5.59» satisfies the following form of the 
Schr6dinger equation, where the operator p -i/i'v has been used: 

[(P + Iik)2/2me + V(r)]uk(r) = 'jg(k)uk(r). (1) 

In the k . p approximation, the cross term of (p + Iik)2 in eqn. (1) can be neglected and 
uk=o(r) is an approximate solution: near the ion cores, it is similar to the electron wave-. 
function for the free atom, and between the cores is almost constant. For finite k, the 
Wigner-Seitz wavefunction is approximately 1j;k = exp(ik· r)uo("). 
(b) The Schr6dinger boundary condition for the wave function in a free atom is 1j;(r) -+ 0 as 

r -+ 00. By considering the symmetry of the wavefunction £10(")' deduce the corre
sponding Wigner-Seitz boundary condition in a crystal. 

(c) For Na, the eigenenergy of the 3s conduction electrons is -5.15 eV, and the corre
sponding energy for £10(1') is -8.2 eV. By considering the average energy per electron of 
the conduction electrons, treated as making up a Fermi gas, obtain an estimate for the 
cohesive energy of Na metal. 

5.13 Consider the effect on the nearly-free-electron model of a crystal with more than one atom 
in its basis. 
(a) Show, by starting with an expression for the total periodic lattice potential energy V(r) 

written as a sum over atomic potentials if>(r) centred at the ion positions ~, that the 
Fourier components of the potential in terms of reciprocal-lattice vectors G, can be 
written as VG = eif>(G)S'G/1}" where if>(G) is the Fourier transform of the 
atomic potential, 1}, is the volume of the primitive unit cell and Sa is the complex 
conjugate of the geometrical scattering amplitude (cf. eqn. (2.102», i.e. 
SG = I:j exp(iG . dj ). . 

(b) Hence, show that for an h.c.p. structure there is no energy gap at the top and bottom 
basal faces of the hexagonal first Brillouin zone. 

(c) Show that for the diamond structure (e.g. Ge or Si), there is no energy gap at the x
point in the first Brillouin zone. 

5.14 Show that the tight-binding (LCAO) wavefunction, eqn. (5.93), satisfies Bloch's theorem, 
and that the normalization constant is N- 1/ 2, where N is the number of atoms in the crystal. 

5.15 Apply the tight-binding approximation to the following lattices containing s-states, and 
show in each case that the energies of the bands are as given: 
(a) 2D square lattice: 'jg(k) 'jgi - ai - 2,8i[cos(kxa) + cos(kya)]. Compare the density of 

states in this case with that for a 3D simple cubic lattice (Fig. 5.37b). 
(b) f.c.c. lattice: 

'jg(k) ='jgj aj - 4,8j[(cos(kya/2) cos(k:a/2)) + (cos(k:a/2) cos(kxa/2)) 

+ (cos(kxa/2)cos(kya/2))]. 

(c) b.c.c. lattice: 

'jg(k) = 'jgj - aj - 8f3j[cos(kxa/2) cos(kya/2)(cos(k:a/2)]. 

Find the bandwidths in each case, and show that they are in accord with eqn. (5.99). 
5.16 What is the value of the overlap (hopping) integral Sp7r? Deduce a rule for ascertaining 

which particular combinations of atomic orbitals forming putative bonds give non-zero 
overlap integrals. 

5.17 Essay: Compare and contrast the nearly-free-electron and tight-binding approaches to 
describing electron states in solids, making particular reference to situations in which 
such models break down or are inappropriate. 

5.18 Obtain expressions for the three sp2-hybrids resulting from the combination of an s-orbital 
with a Px and a Pv orbital. Show that the hybrids lie in the x-y plane, with a sub tended 
angle of 120°. . 

5.19 

5.20 
5.21 
5.22 

5.23 

5.24 

5.25 

5.26 

5.27 
5.28 

5.29 

5.31 

Show that the width of the conduction band in the Weaire-Thorpe hybrid-orbital model 
(Fig. 5.44) is Cl'jgps = 'jgp 'jgs. What will be the effect of inclusion of interactions between 
bonding and antibonding bond-orbital combinations? 
Why are Cu and Au, in contrast to many other metals, coloured? 
How would you expect the bandgap9f semiconductors to vary with temperature? 
Use the moments approach to investigate the effect on the local density of states of incorpor
ating a substitutional impurity in a simple cubic lattice, containing s-states, at site i. Call the 
on-site matrix element for the impurity c: = .Ytii , which is different from that for all other 
atoms a = .Ytllll • Assume that the hopping integral between the impurity and nearest-neigh
bour host atoms is the same as that between host atoms, Jlt'in = .Ytnll, = ,8. By considering 
closed paths for electrons hopping between the ihnpu1ity (i) an~ its neighbours, show that: 
(a) The zeroth, first and second moments, J.L) ) J.L) ) and J.L)-) , are the same as for the 

perfect crystal. 
(b) Show that the third moment is now non-zero and given by J.L)3) = 6,82(a c:). 
(c) Show that, in addition to the four types of four-hop paths shown in Fig. 5.59 for the 

perfect crystal, there is now an additional tenn contributing to J.L)4), viz. 6,82 (a - c:)2. 
(d) Sketch the distribution for the two cases (a c:) > 0 and (a - c:) < O. (These circum

stances are equivalent to the in-band resonance vibrational states of heavy impurities in 
crystals (§4.3.1).) What will happen for a c:« O? 

Obtain the Thomas-Fermi screening function if>(q) Ze/[47rc:o(q2 + I/Ah)] as a function 
of wavevector q for a point charge Ze immersed in a free-electron gas by solving Poisson's 
equation (including the effect of the point charge) in reciprocal space. Prove that this result 
is equivalent to eqn. (5.154). Show that the dependence of the dielectric function on 
wavevector q in the Thomas-Fermi approximation is given by c:(q) = 1+ (ATFq)-2, 
where ATF is the Thomas-Fermi screening length. Prove that the total charge of the electron 
liquid excluded by the screening interaction from a region of radius of order ATF around a 
point charge Ze at the origin is equal to that of the point charge. 
Use the expression for the screened potential if>(q) derived in Problem 5.23 to show that the 
q -+ 0 'screened-ion' limit of the pseudopotential is V(O) = -2/3'jgF (see Fig. 5.30). 
Derive eqn. (5.167) for the dielectric constant c:(w) of an electron gas in the absence of 
damping, given that c:(w) = D(w)/c:o E(w) 1 + P(w)/c:o E(w), where D, E and P are the 
electric displacement, field and polarization, respectively. (Hint: from the equation of 
motion of a free electron subject to an electric field, obtain an expression for P, the dipole 
moment per unit volume.) 
Show that the time-averaged power dissipation for a charged particle (e.g. a high-energy 
electron) traversing a solid and undergoing inelastic losses (e.g. associated with plasmon 
creation) is determined by the energy-loss function, -Im{l/c:(w,k)}. Show also that the 
corresponding quantity involved in inelastic losses of photons is, instead, Im{c:(w,k)}. 
(Hint: the power dissipation per unit volume is given by W = E· (aD/at), with 
D = C:C:oE. For the case of electromagnetic waves, the electric-field vector is the dominant 
quantity, whereas for the case of a charged particle entering a solid, the important quantity 
is the electric displacement, since div D = p, where p is the charge density.) 
Essay: Discuss various scenarios for a metal-insulator transition in solids. 
Show how, for a two-dimensional crystal, the band structure 'jg(kll ) may be obtained from 
photoemission experiments. (kll is the electron wavevector parallel to the basal plane.) 
(a) Calculate the plasma frequency wp for (i) Al metal (atomic density 6.02 x 1028 m-3) 

and (ii) n-type InSb (with carrier concentration = 1.2 x 1024 m-3 , effective mass 
111; 0.02me and high-frequency dielectric constant ':(00) = 15.68). 

(b) Show that for very low frequencies, w « Wo, wp, the free-carrier reflectivity is given by 
the Hagen-Rubens relation R ~ 1 - (2c:ow/ero)1/2. 

Obtain an expression for the skin depth, the depth at which an electromagnetic wave is 
attenuated in a metal to 1/ e of its value. What is the skin depth for microwaves 
(v ~ 2 GHz) in Cu (ero = 5.9 x 107 n-1m- I )? To what use can this effect be put? 
How much of an approximation is it to assume that photon-induced electronic transitions 
are vertical? (Hint: compare the magnitudes of a typical photon wavevector and an electron 
wavevector corresponding to the Brillouin-zone boundary.) 
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5.32 Calculate the energy dependence of a direct optical transltlOn that is forbidden by a 
selection rule, and show that c2(W) ex w-2(liw %g)3/2. (Hint: expand the momentum 
matrix element in a Taylor series about a critical point in the joint density of states.) 

5.33 (a) Calculate the exciton binding energy for crystalline GaAs, given that c ~ 13.13, 
111; = 0.067me and 111J; = 0.53111e. 

(b) Sketch the likely appearance of the exciton-polariton dispersion curve by analogy with 
that for ordinary polaritons (coupled phonon-photon excitations-see Fig. 4.23a). 

5.34 Show that the damped anharmonic oscillator is a model for understanding optical non
linear behaviour. For simplicity, consider only the first (quadratic) anharmonic term ax2, 
i.e. the expression x + fi + W5X + ax2 = -eE(t)/l11e may be taken to describe the motion 
of an electron bound to an ion and subject to a driving force due to the electric field E( t) of 
an incident light wave. Obtain expressions for the first- and second-order dielectric suscept
ibilities, X(l) and X(2) respectively. (Hint: look for solutions x Xl + X2, where Xl is the 
solution for the harmonic case, and for small anharmonicity, take ax2 ~ axT-> 

5.35 Find, by a suitable geometric construction, the angle of propagation, 0, of light with the 
optic axis of a uniaxial crystal that satisfies the phase-matching condition (eqn. (5.230c» 
for second-hannonic generation. The normal modes for a light wave in a uniaxial 
crystal, with refractive indices no and l1e, are an 'ordinary' wave characterized by an 
angle-independent refractive index no, and an 'extraordinary' wave for which the refractive 
index is n(O), with l/n2(0) = cos20/n5 + sin20/n~. 
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Introduction 

In the previous chapter, the nature of electron states in solids, i.e. the electronic 
structure, together with some equilibrium electronic and optical properties, was dis
cussed. In this chapter, the emphasis is on the dynamical properties of electrons, i.e. 
electronic-transport properties. This subject is obviously of great importance, not just 
from a scientific point of view, but because the entire electronics industry exploits the 
electronic-transport behaviour exhibited by semiconductors and metals. 

After a general introduction to the dynamical behaviour of the free-electron gas and 
of electrons in periodic solids, the electron-transport behaviour of normal metals, 
superconductors and semiconductors will be discussed in some detail. These three 
types of materials will be considered separately because each exhibits very different 
electronic behaviour. 

Dynamics of the free-electron gas 

We begin with a discussion of the transport properties associated with the free-electron 
gas, since this model serves as a basis for understanding the electronic-transport 
behaviour of normal metals. Two transport properties will be discussed: electrical 
conductivity and electronic thermal conductivity. 

6.1.1 Electrical conductivity 

The electrical-transport characteristics of solids can be represented by the quantities 
the electrical conductivity, 0' (or its inverse, the electrical resistivity, p), defined as 
the constant of proportionality between the electrical current density j and el(/£lric 
field E: 

j = O'E. (6.1) 

Note that, for real anisotropic materials, the direction of the current flow need not be in 
the same direction as the applied field. In this case, the conductivity is a second-rank 
tensor and not a scalar as is assumed in eqn. (6.1). Ohm's law states that the electrical 
current I is proportional to the applied potential difference V, i.e. 

V=IR, (6.2) 

where R is the electrical resistance (= 1jGo, where Go is the conductance) of the sample. 
Equations (6.1) and (6.2) are equivalent formulations. Since the current density flowing 
through a sample of cross-sectional area A is j = I j A, an.d the potential difference 
dropped along the length I of the sample is V = EI, a comparison of eqns. (6.1) and 
(6.2) shows that the conductivity and resistivity (assumed to be scalars) are related to the 
sample resistance via 

0'= Ijp=ljRA. (6.3) 

Hence the units of conductivity are (ohms metre)-I or (n m)-I, or equivalently Siemens 
per metre (S m-I). 

The equation of motion experienced by' a free electron subject to applied electric and 
magnetic fields is 

dv 
F = me dt = -e(E + V X B). (6.4) 

The above form of Newton's second law, applicable to particles, can also be used to 
describe the motion of electrons described in terms of plane-wave states (cf. eqn. (5.9» if 
the particle is regarded as being equivalent to a superposition of plane-wave states to 
give a wave packet (Fig. 6.1), where the velocity in eqn. (6.4) is identified with the group 
velocity (eqn. (4.8) of the wave packet, given in ID by 

8w(k) 1 fffb(k) 
Vg = ----ak 1i ak (6.5a) 
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Fig. 6.1 Illustration in real space of a wave packet representing an electron, and its behaviour at 
three different times: to, t1 and t2, with t2 > t1 > to. Note the spreading of the wave packet with 
increasing time due to dispersion in the phase velocity (i.e. ,"&(k) ¢. k, even for a free electron): the 
wavelength of oscillations ofRe('ljJ) becomes larger at the rear, and smaller at the front, of the wave 
packet. The motion of the centre of the wave packet represents that of the electron. (Aftex: Ibach 
and Uith (1995), Solid State Physics, p. 192, Fig. 9.1, © Springer-Verlag GmbH & Co. KG). 

where cg(k) is the electron energy, or from eqn. (5.12), 

lik p 
vg =-=-, 

me me 

where p is the particle momentum. In 3D, 

Vg = '\hw(k) = (1/1i)\lkcg(k). 

(6.5b) 

(6.6) 

In order for the wave packet to mimic a particle, and for eqn. (6.4) still to be valid, its 
spatial extent should be smaller than the spatial variation of E and B (i.e. the wave
length of the electromagnetic field, if the fields are not uniform) and also smaller than 
the mean free path associated with electron collisions (see §6.3.1). 

In considering the electrical conductivity, the magnetic field is assumed to be zero (the 
effects of a magnetic field on electron dynamics will be considered in §6.3.3). In such a 
case, eqn. (6.4) implies that an applied electric field should accelerate free electrons 
without limit. Evidently, this is unphysical, and this is a failing of the simple free
electron picture. In real metals, the electrons scatter from imperfections in a lattice, 
e.g. thermal lattice vibrations, defects or impurities and, to a much lesser extent, from 
other electrons. (Scattering processes will be discussed in more detail in §6.3.1.) These 
scattering events cause a reversal in the electron momentum and hence act like a 
damping force in the equation of motion (eqn. (6.4». If it is assumed that, at every 
scattering event, the extra drift velocity Vd(= (v Vth), where Vth is the equilibrium 
thermal velocity) imparted by the electric field, is removed on average, with T being 
the average time between electron collisions, then eqn. (6.4) can be modified by the 
addition of a damping term, mevdlT, i.e. 

(
dV Vd) 

me dt +-; . -e(E + v X B). (6.7) 

The quantity T is also known as the. electron relaxation time, since it is the time 
constant characterizing the exponential decay of the drift velocity on removal of the 
applied fields. In zero field, the mean thermal electron velocity v associated with 
the equilibrium Fermi-Dirac distribution must be zero (as many electrons move in 
one direction as move in the opposite direction). However, when an electric field is 
applied, there is a finite drift velocity Vd given by eqn. (6.7) (with B = 0) corresponding 
to the steady-state solution (when dvldt 0, and E"# E(t»: 

(6.8) 

The electrical current density is j = -env, where n is the electron density, and hence 
from eqns. (6.1) and (6.8), the d.c. conductivity 0"0 can be written as the Drude formula: 

(6.9) 

Note that this derivation assumes that all conduction electrons contribute to the 
current, and hence the conductivity. However, although this is incompatible with the 
Pauli exclusion principle, we shall see (§6.3.2.1) that a proper calculation gives the same 
result. . 

The constant of proportionality between Ivi and lEI is termed the mobility. Hence the 
electron mobility is given from eqn. (6.8) by 

eT 
(6.10) 

It can be seen from a comparison of eqns. (6.9) and (6.10) that the electrical 
conductivity can also be written as 

(6.11) 

Note that the form of eqn·. (6.11) is universal, and is the same for ionic conductivity (eqn. 
(3.81». The a.c. (frequency- dependent) conductivity of the free-electron gas has already 
been discussed (§5.8.1) and is related to the d.c. value by 

0"0 
O"(w) = -1-'-' 

IWT 
(5.189) 

The mean free path A of a conduction electron between collisions is the distance that 
an electron with the Fermi speed VF travels in time T, i.e. 

(6.12) 

Here, the Fermi speed 

(6.13) 

is taken as a measure of the mean electron speed, since it is those electrons at the Fermi 
surface, i.e. at the top of the Fermi-Dirac electron distribution, that are able to take part 
in the transport process. 
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6.1.2 Thermal conductivity 

We have already considered the thermal conductivity i1:T of non-metals, in which the 
heat flux is carried by phonons (§4.6.2.2). For the case of metals containing free 
electrons, the electrons can also transport heat. In fact, this is the dominant contribution 
to the thermal conductivity of metals, since the phonons are now scattered by the 
conduction electrons as well as by umklapp phonon-scattering (§4.6.4), with the result 
that the phonon mean free path is much smaller than in non-metals, and hence, from 
eqn. (4.232), the'phonon contribution to i1:T is reduced. 

The electronic contribution to the thermal conductivity can be calculated within the 
Fermi-gas (Sommerfeld) model. In a material subject to a temperature gradient VT, 
electrons whose last collision was in a hotter region will, on average, carry a greater 
thermal energy than those electrons emanating from a cooler region. The net heat flux 
or thermal current density, J Q, can then be evaluated in a similar manner to that used 
for phonons (§4.6.2.2) (see also Ashcroft and Mermin (1976)), with the result that 

JQ = -i1:TVT 

= -cvTV~ VT /3, 

where Cv is the electronic heat capacity per unit volume. 

(6.14a) 

(6.14b) 

Hence, the free-electron contribution to the thermal conductivity is given by the gas
kinetic formula 

1 
i1:T = '3 AVFCv (6.15) 

or 

1 2 
i1:T = '3vFTCv. (6.16) 

Making use of eqn. (6.13) for VF and eqn. (5.36b) for Cv leads to the expression (see also 
Problem 6.1): 

i2nk~TT 
i1:T = 3m

e 
' (6.17) 

where n is the electron density. 
The factor nT/me appears both in the expression for 0'0 (eqn. (6.9)) and in that for i1:T 

(eqn. (6.17)). Thus, dividing these two quantities eliminates the parameters relating to a 
particular electron gas, thereby producing a universal value for the ratio L of thermal 
and electrical conductivities, 

L ( 6.18) 

known as the Wiedemann-Franz law. The Lorentz number L has the theoretical value 
2.45 x 1O-8W n K-2• 

Dynamics of electrons in periodic solids 6.2 
The motion of electrons in crystalline materials is not free, as assumed in the previous 
section, but is strongly constrained by the effects of translational periodicity of the 
lattice. Thus, as seen in §5.2, electrons are forced to occupy states that have 
energies given by the allowed band structure and which are often markedly non
free-electron-like. This can lead to dynamical behaviour that is often very different 
from that predicted by the free-electron model and even, sometimes, is physically 
counter-intuitive. This is particularly so for the case of the effective (dynamical) mass 
of electrons in periodic solids. 

6.2.1 Effective mass 

The inertial mass of a particle is defined as the constant of proportionality between a 
force F applied to it and the acceleration a imparted thereby: F = mao Normally this 
mass is identical to the 'true' mass of the particle. However, it is possible to envisage 
situations in which the effective inertial mass is not the same as the true mass. One 
example is the case of a ball immersed in a viscous fluid. The value of inertial mass of the 
ball deduced from a knowledge of an applied force and the resulting acceleration of the 
ball would differ from the true mass because, in its motion, the ball must push the fluid 
in front of it out of the way, and the ensuing acceleration of the fluid is ignored if 
attention is paid solely to the motion of the ball. So it is with electrons in periodic 
structures: because an electron in a crystal cannot strictly be treated in isolation (it 
forms a system jointly with the lattice), the momentum of such an electron is not a true 
momentum, but a crystal momentum (§4.2.7) and, as such, momentum may be trans
ferred freely between electron and lattice. As a result, it is not expected that the effective 
inertial mass m: of an electron in a translationally periodic solid should be the same as 
the 'bare' electron mass, me: indeed, in general it is not, and often startlingly not (e.g. 
sometimes even being negative). We shall see, in fact, that the effective mass depends on 
the geometry of the electronic band structure, being related to the curvature of the bands 
in reciprocal space. 

Consider an external d.c. electric field E applied for a time Dt to a solid (with B = 0). 
This field will do work on an electron, causing its energy to increase by the amount 

{ffb = -eE . VgDt, (6.19) 

where Vg is the group velocity of the wave packet. This expression can be rewritten as 

(ffb = Vk'fb(k) . Dk = hVg . Dk ( 6.20) 

using eqn. (6.6), or 

Mk = -eE{;t (6.21) 

from eqn. (6.19). Hence, the equation of motion in terms of the wave packet can be 
written as 

hi, = -eE. ( 6.22) 
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The acceleration of the wave packet is given in terms of the temporal rate of change of 
the component Vi of the group velocity: 

. 1 d 1 82'f,. 
Vi = lidi (\1/c'f,(k))j = li 2( 8kj8kj k

j {i,l} {x,y,z} (6.23a) 

or, from eqn. (6.21), 

1 82'f, 
Vj = 2" L8k.8k. (-eEj). 

Ii j I J 
(6.23b) 

Comparing this equation with the classical equation of motion of an electron in an 
electric field E, 

. 1 
v = -(-eE), 

me 
(6.24) 

shows that the scalar mass in eqn. (6.24) can be formally replaced by an effective-mass 
tensor m;, with component 

* n2 n 
(me)ij = 82'f,(k)j8kj8kj = 8Vij8kj . (6.25) 
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Table 6.1 Effective masses Of electrons and holes in some direct-gap semiconductors 

Material egg (eV) Electron Electron Heavy hole Light hole Split-offhole 
m;/me m;/meegg(eV- I ) mhh/me mih/me m;o/me 

GaAs 1.52 0.067 0.043 0.53 0.08 0.15 
GaSb 0.81 0.047 0.058 0.8 0.05 (0.15) 
InP 1.42 0.073 0.055 0.58 0.12 0.12 
InAs 0.43 0.026 0.058 0.4 0.026 0.14 
InSb 0.23 0.015 0.063 0.42 0.016 (0.12) 

Bandgap values correspond to zero kelvin. Values in parentheses are theoretical estimates. Data from Kittel 
(1996) (Reproduced by permission of John Wiley & Sons Inc. and Yu and Cardona (1996) Fundamentals of 
Semiconductors, p. 70, Table 2.24, © Springer-Verlag GmbH & Co. KG. ' 

'&(k) 

For a solid having an effective-mass tensor, in general the directions of electron accel
eration and applied electric field do not coincide: the electron accelerates along the 
direction corresponding to least inertia unless the field is directed along that direction . m: 
(or the direction of greatest inertia) in which case a and E are parallel. Note that the 
effective mass is inversely proportional to the curvature of the band at the point k; m; is 
correspondingly a function of k in general (but see Problem 6.2). In the case of a ID 
band, or spherical symmetry (parabolic bands) in 3D, eqn. (6.25) simplifies to give a 
scalar value of the effective mass: 

n2 

m: = 82'f,j8k2' (6.26) 

Therefore, charge carriers inflat bands (in k-space) (or narrow band distributions in the 
density of states) have high effective masses. 

In general, second-order perturbation theory predicts that the electron effective mass, 
m;, at the conduction-band edge in semiconductors is proportional to the width of the 
(direct) bandgap (see, e.g., Kittel (1996); Yu and Cardona (1996». Values of effective 
masses for electrons and holes (for light-hole, heavy-hole and split-off bands split by 
spin-orbit coupling - see §5.4.2) are given in Table 6.1 for some tetrahedrally coordi
nated direct-gap semiconductors, from which it can be seen that this prediction is 
approximately satisfied. 

Figure 6.2 shows the k-dependence of the effective mass for a one-dimensional NFE 
band for simplicity. Note that near the bottom of the band, where the curvature is 
parabolic, the effective mass has a constant positive value (see Problem 6.2), but at the 
point of inflection in the band, approximately half-way to the zone boundary, the 
effective mass in this case becomes infinite (since at that point the curvature is zero). 
Most intriguing of all is the fact that near the zone boundaries, the effective mass tends 

o -k 

F~g. 6.2 Schematic behaviour of the effective electron mass m; for a ID band. The effective mass 
dIverges wh:re the curvature of the energ~ band. is zero (point of inflection), at which point the 
group velocity of the electron wave packet IS maxImal. Note that a negative value of effective mass 
Occurs r:ear the zone boundary .due to Bragg reflection of electrons from lattice planes and 
concomItant transfer of momentum from electrons to the lattice. 

~o a. ~onstant negative value. This latter behaviour seems, at first sight, to be counter
mtUItIve: a. negativ~ ine.rtial mass implies that an applied force causes a particle to 
accelerate III the dIrectIOn opposite to the force. This behaviour would indeed be 
~nph~sical for an isolated particle, but an electron in a solid is not isolated; its motion 
IS IlltImately linked with the lattice. 
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The origin of the negative effective electron mass can be understood as follows. 
Consider an electron moving (for simplicity) in a ID band in the +x-direction with a 
k-vector close to that corresponding to the zone-boundary value. An increase in the 
wavevector of the electron wave packet caused by the application of an external electric 
field (eqn. (6.21» therefore takes the electron state closer to the condition for Bragg 
reflection (i.e. backscattering) by the lattice planes. (Recall from §S.2.3 that the zone 
boundaries correspond to perfect Bragg reflection of electron waves.) Thus, instead of 
the force resulting from the applied electric field steadily increasing the momentum (or 
k) of the electron, as happens for isolated particles, instead the momentum transfer from 
the electron to the lattice following elastic back scattering of the electron is greater than 
the transfer of momentum from the field to the electron. Thus the group velocity of the 
wave packet will increase with increasing k from zero at k = 0, reaching a maximum 
where the energy band has a point of inflection, and then decrease to zero at the zone 
boundary where Bragg reflection is complete and only standing-wave solutions are 
allowed (§5.2.3). 

It is apparent from Fig. 6.2 that negative effective-mass effects will only be significant 
for nearly full bands. Hence, for most metals with part (half-filled) bands, the effect is 
not present. However, for semi-metals (§S.2.S), where band overlap at different points in 
k-space causes the lower band to be slightly depleted of electrons (Figs. S.27, S.28), or 
doped semiconductors, where certain dopant impurities can also cause a depletion of 
electrons from the otherwise full valence band (see §6.S.2), negative effective masses are 
very important in determining the electron dynamical behaviour. Although the 
negative-effective-mass characteristics of electrons in a nearly full band are an inesca
pable consequence of lattice periodicity, nevertheless the concept of negative mass is so 
alien that normally the dynamical behaviour in such situations is discussed instead in 
terms of an equivalent fictitious quasiparticle having a positive effective mass. Such 
quasiparticles are associated with the unoccupied states and are termed holes; they are 
discussed in the next section (§6.2.2). 

Finally, mention should be made of the effective electron mass that appears in the 
expression for the electronic heat capacity (§S.1.3.l), e.g. the equation valid for a free
electron-like gas: 

(S.36a) 

whereg('"g) is given by eqn. (S.131). Since the density of states at the Fermi level must be a 
positive quantity, so must the heat-capacity effective mass m;,.: thus, it is a different 
quantity from the inertial effective mass discussed above. In fact, m;,. = Im*II/3, where 
Im* I is the determinant ofthe band-structure effective mass (Ashcroft and Mermin (1976». 

6.2.2 Holes 

In analysing the dynamical behaviour of electrons in a nearly filled band, such as occurs 
in semi-metals resulting from band overlap in different parts of k-space (see Figs. S.27 

Fig .. 6.3 ~eneratio~?f a. hole ~n a one-di~eI?-sional band, otherwise filled with electrons, by a 
vertIcal optical. tranSItIOn mv?lvl11g the eXCItatIOn of an electron with wavevector ke (at A) to an 
empty state B III the conductIOn band. The wavevector of the hole state is kh = -ke, i.e. at C. 

~nd S.28 and §S:2.S), or in se~iconductors doped with electron 'acceptors' (see §6.S.2), it 
IS often much sImpler to conSIder the effective dynamical behaviour associated with the 
few empty states, in terms of fictitious quasiparticles called holes, than consider the 
behaviour of the many elec~rons in the band. This approach also has the advantage, as 
we shall see, that the effectIve mass of the hole quasiparticles is positive and hence in 
accord with common experiene<e, whereas that for electrons near the top of a band is 
negative (§6.2.l). The charge of the hole is also positive. 

~onside~ th~ simp~est case of a hole created in an otherwise full band of electrons by 
optical excItatIOn (FIg. 6.3). An electron with wavevector ke is excited from state A in 
the valence band to state B in the conduction band in a vertical transition (§S.8.2). 
However, the wavevector"ofthe hole quasiparticle state is not ke, as might be thought at 
first, but the negative of this: 

(6.27) 

In a completely filled band, the total electron wavevector is zero, i.~. I:i k i O. This 
results from the fact that if a lattice has inversion symmetry in real space, the Brillouin 
zone ~us~ also have inversion symmetry, i.e. pairs of electron states with ±ki are 
occupIed In the filled state. If one electron with wave vector k· is removed from the 
band, as in Fig. 6.3, the net resulting wavevector of the band of ~lectrons "'. . Jc. must b . . 'LI/h /, 
e -kj and thIS IS therefore the value of wavevector ascribed to the hole (i.e. the 

absel~ce of an. electron in a filled band). Thus, the wavevector of the hole, kh' corres
pondIng to POInt C in Fig. 6.3, is the same as the wavevector of the electron that remains 
at C. 

The energy of the hole is opposite in sign to that of the missing electron, i.e. 
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Fig.6.4 Construction of a one-dimensio~al hole band (d~shed curve) from the. c~rresponding 
electron band (solid line). The case of a smgle electron, wIth wavev~ctor Ice, m~ssmg from ~he 
electron band, and the corresponding case of the hole band occupIed by a smgle hole wIth 
wavevector "h, is shown. 

In conventional representations of band structures, "g(k) is plotted such that electron 
energies increase in an upward vertical direction. Thus, it costs more energy to r~move 
electrons that lie deeper (lower) in a band than those that are less deep (hIgher): 
consequently, the corresponding hole energies must increase with increasing depth 
into the valence band. For symmetric bands resulting from inversion symmetry,t 
"g(k) "g( -k), and hence, from eqn. (6.27), "ge(ke) ="ge( -ke) -"gh( -ke) -~h(kh)' 
demonstrating eqn. (6.28). Cons~quently, a hole band can be constructed to descnbe the 
dynamics of holes (Fig. 6.4): it is, by eqn. (6.28), simply an inversion of the corresp?nd
ing electron (valence) band, where now hole energies "gh are also measured posItlvely 
upwards. . . 

The velocity of the hole (i.e. the group velocity of the wave packet compnsmg Bloc? 
waves for the whole band in which the missing one electron is in a different k-state) IS 
the same as that of the missing electron, i.e. 

(6.29) 

The group velocity of a wave packet is given by Vg ~ (ljli)\lk"g~k! (eqn. (6.6)), and so 
inspection of Fig. 6.4 shows that \l"gh (kh) = \l"ge(ke), thereby glVlng eqn. (6.29). 

The hole effective mass is the negative of the corresponding missing-electron mass, 

mh = -m:: (6.30) 

the curvatures in reciprocal space of the hole-like and electron- like bands, giving 
the respective effective masses (eqn. (6.26)), are obviously equal and opposite (cf. 
Fig.6.4). 

t In general, from the time invariance of the Schrodinger equation when electron spin is taken into account, 
,&(kd '&( -kt), where the two spin states of an electron are denoted by the arrows. 

* 
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Finally, the hole quasiparticle has a positive charge, +e. This can be demonstrated in 
two ways. The equation of motion of an electron subject to electric and magnetic fields 
is, from eqns. (6.4) and (6.5b): 

dke ' 

lid[ = -e(E + Ve x B). (6.31) 

Making the substitutions kh ~ -ke (eqn. (6.27)) and Vh Ve (eqn. (6.29)) leads to 

dkh 
lid{ = +e(E + Vh x B). (6.32) 

Thus, eqn. (6.32) is applicable for a quasiparticle with a positive charge, +e. 
Alternatively, the electric charge characterizing holes can be deduced from a 

consideration of the electrical' current carried by a band. A band completely full of 
electrons makes a zero contribution to the electrical current. An applied electric field 
causes the k-vectors of each electron in a band to be uniformly displaced in k-space with 
time according to eqn. (6.22). If the k-vector of an electron increases so that it crosses a 
Brillouin-zone boundary at ko, this is equivalent to a k-vector at k = ko - G (cf. eqn. 
(5.73)) on the other side of the zone with a negative k-vector; i.e. an electron state 
appears to re-enter the reduced zone on the other side. Thus, the zone always remains 
full of electrons and does not contribute to the electrical current in an electric field. This 
conclusion can be demonstrated by calculating the current carried by electrons in a 
band, with different k-vectors, and the approach can be used to show that the effective 
electrical charge carried by holes is positive. 

The element of the particle flux of electrons, J(k), contributed by a volume element 
dk at a point k in k-space is given by 

. dk 
dJ(k) = v(k) 47r3 (6.33a) 

\l k("g(k) )dk 
(6.33b) 

where the density of elec'tron states in k-space is 2Vj(27r)3 (cf. eqn. (4.28)), and the 
electron-spin degeneracy of two has been taken into account, V is the volume of the 
crystal, and v(k) is the (group) velocity of the electron state at k. The electrical current 
density j due to a completely full band is then given by an integral of eqn. (6.33) over the 
first Brillouin zone: 

j - 4 e3T. r \lk("g(k))dk. 
7r /1 JlstB.Z 

(6.34) 

For each contribution associated with velocity v(k) in eqn. (6.34), there is a 
contribution from v( -k) given by v( -k) = (1 jli)\l_k"g ( -k) (ljli)\l-k"g(k) = 
(-ljli)\lk"g(k) = -v(k), making use of the symmetry relationship of "g(k) mentioned 
before. Hence, for a filled band,j = 0 from eqn. (6.34). 

For the case of a part-filled band, j =1= 0, since an applied electric field leads to an 
asymmetric distribution of k-states about k 0 resulting from the dynamical evolution 
k given by eqn. (6.22). The equivalent integral to eqn. (6.34) now extends only over 
occupied states, and not the entire Brillouin zone, and this can be written equivalently as 
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an integral over the Brillouin zone less the contribution from the unoccupied (i.e. hole) 
states: 

j = ;; r v(k)dk 
Jkac<: 

= -~ r v(k)dk - (-~) r v(k)dk 
47r JIstB.Z. 47r Jkemp,y 

=0 + 4:3 r v(k)dk. 
J"emPIY 

Thus, holes behave as positively charged carriers. 

( 6.35a) 

(6.35b) 

(6.35c) 

The motion of a single hole in an otherwise filled electron band under the action of an 
electric field is represe~ted schematically in Fig. 6.5; because of the translational 
symmetry mentioned above, an electron state passing out of the first Brillouin zone 
(at A) is exactly equivalent to an electron state entering the zone from the opposite side 
(B), and only the vacant electron state effectively moves. Its motion can be regarded as 
due to the successive filling of the empty electron state in k-space by electrons moving 
uniformly in response to the electrical field (eqn. (6.22». Thus, the empty electron state 
is dragged along with the motion of the filled states: the motion of the hole in the hole 
band is in the opposite direction (Fig. 6.5), in accord with its opposite charge. 

Finally, it should be stressed that the hole and electron descriptions of a particular 
part-filled band cannot be mixed. If the current is regarded as being carried, for example, 
by positive holes, the electrons make no contribution; the filled electron states merely act 
as potential unfilled hole states. Alternatively, if electrons are considered to be the 
charge carriers, then the unoccupied states in turn make no contribution to the current. 
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Fig.6.5 Illustration of the motion ofa single hole at two times to and tl > to in a band, otherwise 
filled with electrons, subject to a uniform d.p. electrical field, E. The field causes the electron states 
to move uniformly in k-space according to k -eE Iii. Whenever a k-state (a) close to a Brillouin
zone boundary (A) passes out of the first zone, it is replaced by an equivalent state (a/) entering 
through the opposite boundary. The motion of the hole in the hole band (dashed curve) is also 
shown. 

Normal metals 6.3 
In this section, we will discuss the electronic transport properties of 'real' metals in the 
absence of external magnetic fields. The effects of magnetic fields on the transport 
behaviour of electrons in metals is the subject of §6.3.3. In fact, it is convenient to 
separate the discussion of electron dynamics in metals into two parts. This section deals 
with 'normal' metals, as distinguished from 'superconductors' (metals which can exhibit 
zero resistance below a certain critical temperature) which are the subject of §6.4. Such a 
division makes sense since the transport behaviour of these two types of metals is 
qualitatively different, as a result of the quasi particles responsible for the electron 
transport being different in each case. 

6.3.1 Electron scattering 

It was seen in §6.1.1 that, even for a free-electron gas, some sort of electron-scattering 
mechanism had to be invoked that gave a relaxation time T, resulting in a finite drift 
velocity in an electric field and hence a finite value of the d.c. electrical conductivity. The 
type of scattering processes that are effective in limiting the mean-free path, and hence 
the conductivity, are those that act to restore a non-equilibrium electron distribution 
(e.g. resulting from the application of an electric field) to its equilibrium condition given 
by the Fermi-Dirac distribution function (see Fig. 6.6). As can be seen from the figure, 
the most effective electron-scattering events are those in which an electron is scattered 
from one side of the Fermi sphere (e.g. in the free-electron gas approximation) to the 

(a) (b) 

Fig.6.6 (a) Electron-scattering event in k-space that acts to restore a non-equilibrium electron 
distribution, displaced by ok due to the application of a d.c. electric field E, to the equilibrium 
situation (in this case a Fermi sphere at T = 0 K (dashed line» when the field is removed. 
Occupied electron states are denoted as • and empty states as o. The electron-scattering event 
A -+ B is inelastic. (b) Elastic electron-scattering event (A -+ B) causes an expansion of the 
electron distribution (dashed--dotted line), not a relaxation to the equilibrium state (dashed line). 
The equilibrium state can only be achieved by a subsequent inelastic scattering event (B -+ C). 



other side, i.e. the electron undergoes a change in wavevector of order 2kF . Note that 
the relaxational scattering events must be inelastic (since the electron states A and B in 
Fig.6.6a are at different distances from the origin in k-space, and hence have different 
energies). Elastic scattering events (such as A -7 B in fig. 6.6b) merely lead to an 
expansion of the electron distribution in k-space and do not by themselves restore the 
distribution to its equilibrium state. 

6.3.1.1 Electron-electron scattering 

An obvious potential source of scattering is between electrons themselves since the 
electron density in metals is very high. Note, however, that in the independent-electron 
approximation, such electron-electron interactions do not exist. The occurrence of 
electron-electron collisions is another instance of the breakdown of the one-electron 
approximation (see also §5.6). However, it is found that electron-electron scattering is in 
general negligible because of the influence of the Pauli exclusion principle, as can be seen 
by a phase-space argument. 

Consider the case of two electrons scattering off each other, going from states 1 and 2 
to 3 and 4 (see Fig. 6.7). Energy conservation dictates that 

c:gl +c:g2 =c:g3 +c:g4, 

and conservation of crystal momentum stipulates that 

kl + k2 = k3 + k4 + G. 

( 6.36) 

(6.37) 

If it is assumed for the moment that the temperature is just above 0 K, the Fermi 
sphere, of radius kF in k-space, is nearly entirely filled with electrons. If one electron 
involved in the scattering has an energy c:gl > f.L = c:gF, i.e. just above the Fe:mi level, and 

Fig.6.7 Illustration of electron-electron scattering events in metals satisfying the Pauli exclusion 
principle. An electron (1), at an energy Cl above the Fermi level and outside the Fermi sphere 
(solid line), can only scatter from another electron (2) lying at an energy < Cl below the Fermi 
level, resulting in the electrons occupying states 3 and 4 outside the Fermi surface. Momentum 
conservation is assured if states 3 and 4 lie on the surface and on the diameter of a sphere in k
space (dashed line), constructed so that the centre is at the 'centre of momentum' of states 1 and 2. 

the other electron is initially in a state with an energy c:g2 such that ~2 < c:gF, then the 
Pauli exclusion principle dictates that states 3 and 4 must both be unoccupied. Thus, 
quantum statistics require that ~3 > f.L and ~4 > f.L. From eqn. (6.36), this implies that 

~I + ~2 = ~3 + c:g4 > 2f.L (6.38a) 

and 

(6.38b) 

If state 1 is at an energy 101 (~I f.L)« f.L above the Fermi level, then eqn. (6.38b) 
implies that Ic:g I - f.L1 hi < 101, i.e. state 2 must lie in a shell of thickness 10 I below the 
Fermi surface (Fig. 6.7a), from energy considerations. As a consequence, only a fraction 
/ ~ Ed f.L of all electrons (2) may scatter with the electron 1. 

However, this is not the only factor decreasing the probability of electron-electron 
collisions that is associated with the Pauli exclusion principle: there is an equivalent 
factor resulting from momentum conservation. For convenience, assume that G 0 in 
eqn. (6.37). Momentum conservation in the scattering process holds if the scattered 
electron wavevectors, k3 and k4, lie on the surface and at either end of a diameter of a 
sphere, whose centre is at the wavevector corresponding to the 'centre of momentum' of 
electron states 1 and 2 (Fig. 6.7b). The Pauli exclusion principle ensures that states 3 and 
4 must lie outside the Fermi sphere, and hence only a fraction / ~ 101 I f.L of pairs of 
electron states 3 and 4 can satisfy this and also the momentum condition that the k
vectors lie on the surface of the constructed sphere. Thus, the overall reduction factor 
for the probability of electron-electron scattering is /2 ~ (101/ f.L)2. For a thermal dis
tribution of electrons such that T« TF, 101 ~ kBT, and thus the electron-electron 
scattering cross-section :E is therefore 

(6.39) 

where :Eo is the scattering cross-section for a classical gas (i.e. without consideration 
of quantum statistics). The reduction factor /2 is very large: since 
f.LlkB ~ ~FlkB ~ 5 X 104 K, at a temperature of 1 K, /2 ~ (kBTlf.L)2 ~ 4 X 10-10 , and 
even at room temperature the factor is ~ 4 x 10-5• 

The quantity :Eo is itself reduced from the value it would have for classical scattering 
between two charged particles interacting via un screened Coulomb potentials, i.e. the 
Rutherford law for the differential cross-section: 

(6.40) 

where 2() is the scattering angle (cf. Fig. 6.8), and dO. = 27f sin(2()) d(2()) is the element of 
solid angle corresponding to scattering angles between 2() and 20 + d(2()), and v is the 
velocity of the scattering particle. This decrease arises because of electron screening 
(§5.6.1); the Coulomb potential is screened (eqn. (5.154)) so that it is negligible beyond 
distances comparable to the Thomas-Fermi screening length, ATE (eqn. (5.155)). 
Typically, in metals, ~he screened cross-section has a value :Eo ~ 10 A2 = 10-19 m2, so 
that the actual scattering cross-section (eqn. (6.39)) has a value at 1 K of 
:E ~ 4 X 10-29 m2, and at 300 K :E ~ 4 X 10-24 m2. 
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Fig. 6.8 Coulomb scattering of an electron by a positively charged defect with charge Ze. The 
impact parameter b = K cote, where the characteristic length K = Ze2 /4nc0111e vI:. The scattering 
angle is 2e. 

The mean-free path is related to the collision cross-section by the kinetic formula: 

J 
Ac:::. 2:' (6.41) 

where n is the electron concentration and the V2 factor takes into account that all 
electrons are moving. For n c:::. 5 x 1028 m-3, the mean-free path due to electron-elec
tron scattering is predicted to be 4 x 10-6 m at 300 K and 0.35 m at 1 K! Mean-free 
paths of this order of magnitude are indeed observed in very pure metals at very low 
temperatures. From eqns (6.12), (6.39) and (6.41), the temperature dependence of the 
electron-electron relaxation time is 

(6.42) 

Finally, it should be noted that the elastic scattering processes shown in Fig. 6.7 with 
G = 0, i.e. N-type processes (see §4.6.2.2), even if they were to occur, are not efficient at 
restoring a non-equilibrium electron distribution to its equilibrium state. For this to 
occur, inelastic scattering events must occur. This can happen for umklapp (U) pro
cesses (see §4.6.2.2), where the wavevector of a scattered electron lying outside the first 
Brillouin zone is brought back into the reduced zone by a reciprocal-lattice vector, G, 
i.e. the lattice provides the required momentum. However, such umklapp electron
electron collisions are very improbable, for the reasons outlined above. 

Nevertheless, electron-electron scattering is important in controlling the electrical
transport behaviour of one category of metals, namely transition metals containing a 
part-filled d-band (§5.4.3). Although it might be thought that the electrical conductivity 
of transition metals should be high, due to the large effective density of states when the 
chemical potential lies in the band of d-states (Fig. 5.55), in fact this is not so: the 
electrical resistivities of the transition metals Ni, Pd, Pt, for example, are about a factor 
of five larger than those of the noble metals Cu, Ag, Au that immediately follow them in 
the periodic table. The reason for this behaviour is two-fold: d-electrons have higher 
effective masses (§6.2.1) associated with the narrow width of the d-band and hence 
correspondingly a smaller conductivity (eqn. (6.9)); moreover, the strong" scattering of 
s-electrons by the d-electrons in a part-filled d-band significantly increases the contri
bution to the resistivity of the s-electron channel. 

6.3.1.2 Electron-defect scattering 

Other electron-scattering processes in crystals involve impeljections in the lattice, i.e. 
fluctuations from translational periodicity. Such fluctuations may be static in time (e.g. 
structural defects, impurities in the lattice) or time-varying (e.g. phonons). From Pro
blem 4.17, it can be inferred that electron scattering from moving fluctuations can give 
rise to inelastic scattering, whereas scattering from fixed fluctuations can only result in 
elastic scattering. It is reasonable to assume that the scattering behaviour of, say, 
defects and phonons is independent, so that the respective collision rates are simply 
additive, i.e. 

1 I 1 
-=-+-. 
T Td Tph 

(6.43) 

The scattering of electrons by ionized impurities can be analysed using the Rutherford 
law, eqn. (6.40). The scattering rate Rd = I/Td of electrons by a concentration Nd of 
defects is related to the cross-section I;d by 

(6.44) 

from eqns (6.12) and (6.41) (the factor of V2 is omitted since the impurities do not 
move), and where the electron velocity is taken to be the Fermi velocity VF. Thus: 

1 r dI;d . :;:;;- = NdVF Jo dD (1 - cos(2e))21f.sm(2e)d(2e), (6.45) 

where dI;d/dD is given by eqn. (6.40) (mUltiplied by a factor of Z2 if the charge of the 
impurity is Ze), and the quantity (1 - cos(2e)) is a weighting factor to take account of 
the angular efficiency of electron momentum transfer in the scattering process (the 
factor is zero for forward scattering, 2e = O-see Ashcroft and Mermin (1976)). 
Hence, from eqn. (6.44), it can be seen that Td is temperature-independent and propor
tional to v}. 

Since Td is independent of temperature for metals, this process will be the dominant 
scattering mechanism in metals at very low temperatures since, as will be seen below, the 
electron-phonon scattering rate decreases strongly with temperature at low tempera
tures. For very pure and small samples, electron scattering by the boundaries of the 
sample may become dominant if electron-electron scattering is negligible; this gives rise 
to a size effect in electronic-transport properties, as in phonon-transport behaviour 
(§ 4.6.2.2). 

6.3.1.3 Electron-phonon scattering 

At temperatures well above absolute zero, the dominant cause of electron scattering is 
due to phonons: a phonon can always be emitted by an electron, thereby scattering the 
electron to another state (Fig. 6.9a) or at elevated temperatures, when the number of 
excited phonons is large, a phonon can be absorbed (Fig. 6.9b). Conservation of crystal 
momentum dictates that 

kr k j ±q+G (6.46) 
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(a) (b) 

Fig. 6.9 Scattering of an electron by: (a) phonon emission; (b) phonon absorption. The 
straight lines indicate electrons and the wavy lines denote phonons. The relevant wavevectors 
are shown. 

where kc and ki are the final and initial electron wavevectors, respectively, q is that for 
the phonon, and the plus and minus signs refer to phonon absorption and emission 
processes, respectively. Conservation of energy imposes the condition 

(6.47) 

Since phonons have large values of momentum, these processes are effective in relaxing 
a non-equilibrium electron distribution (Fig. 6.6), and are usually the dominant cause of 
electrical resistivity in normal metals at not-too-Iow temperatures. 

The electron-ion Hamiltonian can be written as: 

Jlfe-ion = L Ve-ion(rl Ri ), 

I,i 

(6.48) 

where rl is the position of an electron and Ri that of an ion. The static part of this 
Hamiltonian gives the electronic band structures discussed in the previous chapter; the 
time-dependent part, relating to vibrations of the lattice, gives the electron-phonon 
interaction. If the ion position is written in terms of the' time-dependent displacement 
from an equilibrium position, Ri(t) = R7 + Ili(t), the potential in eqn. (6.48) can then be 
expanded in powers of the displacement which, including the first-order term, is 

Ve-ion = V(rl R7) - "i· \7V(rl - R7)· (6.49) 

Thus the second term in this equation refers to the electron-phonon interaction. If the 
potential V is expanded as a Fourier series V = 2:::1\; Vl\;exp(il(' (r - R i )), where 
1(= q + G, then the operation of the grad operator in eqn. (6.49) produces a term linear 
in q, i.e. Ve-ph <X IIi . q. Thus, only longitudinal phonons (for which IIi is parallel to q) 
couple to electrons. In addition, only LA phonons tend to be important for several 
reasons. For lattices without a basis, there are no optic phonons (§5.2.2); moreover, 
because LA phonons have lower energies than LO phonons, they are more easily excited 
at a given temperature and hence dominate phonon-absorption processes. 

The temperature dependence of the electron-phonon scattering relaxation time Tph 
appearing in eqn. (6.42) is different in different temperature regimes. At high tempera
tures, greater than the Debye temperature, T» aD liWD/kB, the number ofphonons 
in a normal mode is proportional to the ~emperature (eqn. (4.79», and hence: 

Tph <X T- 1, T» aD. (6.50) 

At low temperatures (T ~ aD), the situation is a little more complex. Only phonons for 
which liw(q) ::; kBT can be absorbed or emitted by electrons. At low temperatures such 
phonons are only involved in absorption processes. For phonon emission, an electron 
must initially be at a level above J.l ~ ~F such that the final state is unoccupied (i.e. 
within ~ kBT of~F), and so can only emit a phonon with this energy. Furthermore, at 
low temperatures, q ~ kD, the Debye wavevector (eqn. (4.202», and so for LA 
phonons with the dispersion relation W vLq, the wavevectors are such that 
q ::; kBT /liVL. The energy-conservation condition, eqn. (6.47), can be written, together 
with eqn. (6.46), as 

W(q) = ±(~(k + q) - ~(k))/Ii, (6.51) 

for G = 0, i.e. 'normal' scattering processes. This describes a 2D surface of allowed 
wavevectors in the 3D phonon- wavevector space, of area proportional to q2 and hence 
to T2 . In addition, the scattering rate, being proportional to the electron-phonon 
Hamiltonian (eqn. (6.49», is also proportional to q (see above), and this brings in 
another factor of T, and so 

Tph <X T-3 T ~ aD. (6.52) 

The above considerations are for electron-phonon scattering processes in which 
G = 0, i.e. 'normal' processes (cf. §4.6.2.2): for these, the change in electron momentum 
is rather small, particularly at the temperatures T ~ aD (see Fig. 6.10). However, 
'umklapp' (U) electron-phonon processes (cf. §4.6.2.2) can provide large changes in 
the electron wavevector with the assistance of a reciprocal-lattice vector, G. If an initial 
electron state (/{i) at point A on the Fermi surface (Fig. 6.10) is scattered by a phonon 
with wavevector q to point B lying on the Fermi surface in a neighbouring zone, this is 
equivalent to the state being scattered to point B' with wavevector kc on the other side of 

G 

Fig.6.10 Normal (C ~ D) and umklapp (A ~ B ~ B') electron-phonon scattering processes. 
The two circles represent Fermi spheres in adjacent zones in the extended-zone scheme. 
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the same Fermi surface. The minimum phonon wavevector capable of effecting umk
lapp scattering is qo (see Fig. 6.10). The number of phonons available for umklapp 
scattering is proportional to exp( -eu/T) (cf. §4.6.2.2), where eu is a characteristic 
temperature determined by the geometry of the Fermi surface; hence umklapp elec
tron-phonon scattering is frozen out at very low temperatures, leaving only inefficient 
small-angle electron-phonon scattering as the equilibrium-restoring mechanism for the 
electron distribution. Note that TA phonons can take part in umklapp processes, unlike 
the case for normal processes. 

6.3.2 Electron dyna~ics in the presence of electric fields and temperature 
gradients . 

In this section, we will discuss the behaviour of electrons in metals subject to an applied 
electric field (giving rise to electrical conductivity or resistivity), or to a temperature 
gradient (giving rise to electronic thermal conductivity), or to a combination of both 
(resulting in thermoelectric effects). The effects of magnetic fields on electronic trans
port in metals will be discussed in §6.3.3. 

6.3.2.1 Electrical conductivity 

The treatment of the electrical conductivity in terms of the Drude model of a free
electron gas given in §6.1.1 is deficient in many respects for real metals. The Fermi
Dirac statistics governing the electron distribution are not incorporated; no physical 
mechanism for the electron relaxation time is considered; and details of the precise 
geometry of the Fermi surface associated with the particular crystal structure cannot be 
included. These deficiencies will now be addressed. 

The electrical current density,j, was written in eqn. (6.35a) as an integral of electron 
velocities over occupied k-states, viz.: 

j = - 4:31 v(k)dk. 
kocc 

This can be rewritten in terms of the occupation probability for states labelled by k as an 
integral over the whole of the Brillouin zone, i.e. 

j = 4
e 

3 r v(k)J(k)dk. 
7f JlstB.Z. 

(6.53) 

The distribution function J(k) is, in general, not equal to the Fermi-Dirac function 
given by eqn. (5.23), i.e. 

1 
Jo{'"g(k)} = exp['"g(k) - IL] + 1 (6.54) 

since this distribution function is valid only for the equilibrium case, i.e. where the 
electron distribution is spatially homogeneous, in the absence of temperature gradients 
and with no external fields. However, as will be seen below,J(k) can be shown to be a 
function ofJo(k). 

The distribution function J is a function of real-space, as well as reciprocal-space (i.e. 
crystal-momentum) vectors, andJ(r, k)drdk is simply the number of electrons in the 6D 
volume element drdk. Liouville's theorem in classical mechanics states that the distribu
tion is conserved as the system evolves i.n time (the number of electrons and the 6D 
volume is preserved - see Ashcroft and Mermin (1976»: after a time interval, dt, 
therefore, 

J(t + dt, r + dr, k + dk) = J(t, r, k), (6.55) 

in the absence of collisions. However, scattering events can also cause electrons to be 
transferred to states k + dk and positions r + dr, and so in general 

J(t+dt,r+dr,k+dk) -J(t,r,k)= (%)sdt, (6.56) 

where the term (oJ / ot)s refers to the temporal change in J due to scattering. Since 
j. = v(k), and from eqn. (6.4), Iii, = -e(E + v x B) = F(r, k), where F is the force on 
the electron, eqn. (6.56) can be rewritten in the form of the Boltzmann transport 
equation: 

oj I (oJ) at + V· V,! + F· -{'ilkf = at s' (6.57) 

In the present case, where we are considering the electrical conductivity in the absence of 
magnetic fields, F = -eE, and eqn. (6.57) becomes 

oj 
-+v·V.[ at I. 

e (oJ) -E· V,J= - . 
Ii at 5 

(6.58) 

In general, the Boltzmann equation is a non-linear integrodifferential equation 
(because the scattering term is an integral over k of the transition rates between 
k-states-see Ashcroft and Mermin (1976». 

However, a very great simplification can be made by invoking the relaxation-time 
approximation, i.e. by assuming that the collision term can be represented by 

[[(k) - fo(k)] 
T(k) 

(6.59) 

whereJo(k) is given by eqn. (6.54). This approximation underlies much of the discussion 
on scattering mechanisms given in §6.3.1. In steady state, wheri oJ/at :;= 0, and if Jis not 
a function of position (i.e. V,j = 0), then eqn. (6.58) reduces to 

or 

e 
--E· Vkf(k) 

Ii 
[[(k) - Jo(k)] 

T(k) 

e 
J(k) = Jo(k) + TiT(k)E . V,J(k). 

(6.60) 

(6.61) 

The linearized version of this form of the Boltzmann equation is obtained by 
approximatingJ(k) by Jo(k) in the second term on the right-hand side of eqn. (6.61), 
giving 
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e 
f(k) ':::!-1o(k) +1iT(k)E. \lJo(k). (6.62) 

This approximate form of the distribution function may now be used to calculate the 
current density (eqn. (6.53)), and thereby obtain the conductivity. Thus, 

j':::!- - 4:3 J v(k) [ro(k) + ~T(k)E . \l ifo(k)] die. (6.63) 

For spatially isotropic materials and cubic lattices, the conductivity (J is no longer a 
tensor quantity, but becomes a scalar. Thus, for an electric field, E (Ex, 0, 0) applied 
in the x-direction,j = (ix, 0, 0) and so eqn. (6.63) reduces to 

jx - ;;3 J vx(k) Vo(k) + ~T(k)Ex ~] die. (6.64) 

The integral over vx(k)fo(k) vanishes because of inversion symmetry about k = 0 for the 
Brillouin zone. Moreover, since 

010 ofo 
okx = livx {fg , (6.65) 

eqn. (6.64) becomes 

(6.66) 

( 6.67) 

The energy derivative of the Fermi-Dirac function can be approximated as a Dirac 
delta function: 

(6.68) 

Furthermore, the relation obtained using the construction given in Fig. 4.18 (cf. eqn. 
(4.57)), viz. 

d~ d~ 
dk = dS,&dk-L = dS,& l\lk~1 = dS,& liv(k) , (6.69) 

where dS,& is a surface element in k-space at constant energy ~, transforms eqn. (6.67) 
into 

'" e
2 J v~(k) 

(J - 41f31i v(k) T(k)8(~ (6.70) 

or, with operation of the delta function 8(~ - ~F), 

e
2 1 v

2
(k) 

(J ':::!- 4 31;; X(k) T(k)dS,&. 
1f 11 '&='&p V 

(6.71) 

Hence, the electrical conductivity of a metal can be expressed as a surface integral 
over the Fermi surface in k-space. Equation (6.71) implies that the d.c. conductivity of a 
metal is essentially proportional to the area of the Fermi surface available to conduction 
electrons (see Problem (6.5b)). Thus, :tp.at~rials (for example, alkali metals) for which the 
Fermi surface is maximal (i.e. a complete spherical surface) have higher conductivities 
than do metals in which the Fermi surface is greatly reduced. Examples of the latter are 
semi-metals, such as Mg or Ca, in which the first Brillouin zone is very nearly filled with 
electrons but band-overlap effects cause a spill-over of electrons into higher zones (see 
Fig. 5.28); the area of the Fermi surface is rather small in such cases. It can be shown 
(see Problem 6.5a) that eqn. (6.71) reduces to the Drude expression (eqn. (6.9)) in the 
case of a free-electron gas, with T = T(~F)' 

In the relaxation-time approximation, the resistivity (inverse of the conductivity) of a 
metal can be written as the sumt of contributions for various scattering mechanisms, e.g. 
defect (d) and phonon (ph), as follows from eqn. (6.43), i.e. Matthiesen's rule: 

P = Pd + pph· (6.72) 

The temperature dependence of the resistivity can be obtained by examination of the 
temperature dependence of the corresponding relaxation times: that for electron-defect 
scattering is temperature-independent (§6.3.1.2) and for electron-phonon scattering at 
high temperatures (T» aD), I/Tph ex T, i.e. Pph ex T (§6.3.1.3). Hence, in this tempera
ture domain, 

p(T) = Pd + aT, T» aD, (6.73) 

where Pd and a are constants. At very low temperatures, where the electron-phonon 
scattering is frozen out, P becomes temperature-independent, p(T) = Pd, the so-called 
residual resistivity due to defects. 

Between these two limits, the low-temperature behaviour of the electron-phonon 
scattering (§6.3.1.3) takes over. Although the temperature dependence of the relaxation 
time in this regime is I/Tph ex T3 (eqn. (6.52)), this does not give the temperature 
dependence of the resistivity directly in this case. At such low temperatures, the phonon 
wavevector has a magnitude I q I ~kBT /liVL' which is very small. The scattering geo
metry for an N-type process (see Fig. 6.10), which is very nearly elastic in this case since 
kr Iq + q ':::!- ki (the value of the Fermi wavevector), gives 

(6.74) 

where ¢ is the angle between kf and k i (see Fig. 6.10). Thus, the proc~ss is one of small
angle scattering, and in such a situation there is an additional weighting factor of (1-
cos¢) (cf. eqn. (6.45)) to take account of the efficiency of such scattering processes in 
causing electrical resistivity. Since (I cos¢) = 2sin2(¢/2) ':::!- 1/2(q/kF)2 from eqn. 
(6.74), this introduces an additional factor of T2(q ex T) into the expression for the 
resistivity, giving finally the Blocl1.-Griineisen T 5 law: 

T« aD. (6.75) 

t In fact, Matthiessen's, rule, that the scattering rates, and hence the inverse relaxation times in the relaxa
tion-time approximation, are simply additive for different processes, is only true if the various 7 are not 
dependent on k, i.e. the scattering is isotropic. For a deeper discussion on the Boltzmann transport equation 
and the relaxation-time approximation, see, e.g. Ashcroft and Mermin (1976) and Madelung (1978). 
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ELECTRON DYNAMICS 

Fig. 6.11 Temperature dependence of the electrical resistance of Na, normalized to the room
temperature value for three samples with different defect concentrations (after McDonald and 
Mendelssohn (1950); Reproduced by permission of The Royal Society). 

The experimental temperature dependence of the electrical resistance of Na is shown 
in Fig. 6.11: the three regimes of behaviour can easily be discerned. Note the differences 
in residual (defect-related) resistivity for the three samples with different impurity 
contents. 

*6.3.2.2 Thermal conductivity 

The electronic thermal conductivity, i.e. the heat carried by electrons, can be calculated 
using the same Boltzmann transport formulation as was used to discuss the electrical 
conductivity, except that now the quantity of interest is the heat flux, J Q. A change in 
heat dQ can be associated with a change in entropy dS of the electrons in a region in a 
material via 

dQ TdS. (6.76) 

Since a change in entropy is related to changes in internal energy dU and in the number 
of electrons dN via the thermodynamic relation 

TdS = dU - p,dN, (6.77) 

where p, is the chemical potential of the electrons (~F at absolute zero - see eqn. (5.28)), 
the heat flux can therefore be written as 

(6.78) 

where the subscripts S, U and N refer to fluxes in entropy, energy and number of 
electrons, respectively. By analogy with the expression (eqn. (6.53)) for the electrical 
current flux j( = -eJ N), the energy and number fluxes can be written as: 

J u = 4~3.J ~(k)v(k)f(k)dk, 

J N ='4;3 J 1 . v(k)f(k)dk 

(6.79a) 

(6.79b) 

for a single band (a summation over contributions from different bands is necessary if 
more than one band is involved in the transport). Thus, the heat flux is given by 

J Q = 4~3 J (~(k) - p,)J'(k)f(k)dk. (6.80) 

The distribution function f(k), given by eqn. (6.58), can be approximated by a 
linearized form, in the relaxation-time approximation, in a similar manner to eqn. (6.61): 

f(k) r::::.fo(k) - T(k)v· \lJo(k) (6.81 ) 

in the absence of an electric field. Here, the spatial variation is associated with the 
temperature gradient, i.e. \lJo = VrTDfo/DT, and so the heat flux in, say, the x
direction can be written as 

(6.82) 

Since the thermal conductivity is given by J Q = -:-K,T\lrT (eqn. (6.14)), K,T can be 
obtained in general from the above equation. The integral in eqn. (6.82) can be rewritten 
in terms of the density of electron states per unit volume, D(~) = (1/4-i3) J dS'f,/\lk~ 
(eqn. (5.131)). Thus, for example 

(6.83) 

where an average of v~"( (v~) = t v2) has been taken over the Fermi surface (assumed to 
be spherical). Since the derivative (D/o/DT) is only appreciable in the vicinity of~F (cf. 
eqn. (5.29) and Fig. 5.7), T(~).= T(~F) can be taken out of the integral if it is assumed 
that it is only a function of energy. Thus, the energy-dependent terms in eqn. (6.83) can 
be written as 

(6.84) 

where CI' is the electronic heat capacity per unit volume (= CI'/ V - cf. eqn. (5.36)). 
Therefore, eqn. (6.82) for the heat flux can be evaluated (by use of eqn. (5.27)) to give 

finally the expression for the electronic thermal conductivity for a free-electron gas: 

1 ') 
K,T = 3VFT(~F )c l •. (6.85) 

The temperature dependence of K,T can be understood from eqn. (6.85) in terms of the 
temperature dependence of Cl'(ex T, cf. eqn. (5.36)) and of T (which is different for 
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different electron-scattering mechanisms - see §6.3.l), i.e. "'T <X TT(T) (eqn. (6.17». At 
very low temperatures where impurity or defect scattering is dominant (§6.3.1.2), Td is 
independent of T and hence "'T(T) <X T. 

At higher temperatures, phonon scattering (§6.3.l) becomes dominant. For 
T < aD, Tph(T) <X T-3 (eqn. (6.52» and hence "'T <X T-2; for T> aD, Tph <X T-i (eqn. 
(6.50» and hence "'T is temperature-independent. The temperature-dependent beha
viour of the electronic contribution to the thermal conductivity of metals is shown 
schematically in Fig. 6.12. 

T 

Fig. 6.12 Schematic illustration of the temperature dependence of the electronic contribution to 
the thermal conductivity of metals, "'T, showing the limiting forms at various temperatures. 
Impurity (defect) scattering is dominant at temperatures below the peak and phonon scattering 
above it. 

O~---------5LO--------~1~OO 

T(K) 

Fig. 6.13 The ratio /'i,T / aT( = L, the Lorentz number) for Na as a function of temperature (after 
Berman and McDonald (1951); Reproduced by permission of The Royal Society). 

The Wiedemann-Franz law (eqn. (6.18» states that the ratio of thermal and electrical 
conductivities is simply equal to a universal constant multiplied by the temperature. This 
relation is also found using the Boltzmann-transport-equation method subject to the 
approximations used to obtain expression,s for a and "'T. In fact, the ratio "'T/aT = L, 
the Lorentz number, is not generally constant at all temperatures see Fig. 6.13. This is 
because the Wiedemann-Franz law is only valid if, in the relaxation-time approxima
tion, a particular electron-scattering mechanism causes a degradation of an electrical 
current in exactly the same way and at the same rate as for a thermal current. This is the 
case for elastic scattering (or more generally for inelastic scattering processes where the 
change in electron energy is much smaller than kBT). Thus the Wiedemann-Franz law 
should be obeyed at very low temperatures where impurity scattering is dominant, and at 
high temperatures (T » aD) in the phonon-scattering regime. However, in the inter
mediate temperature range (T < aD), inelastic phonon-scattering events can cause a 
greater degradation of thermal currents than of electrical currents because the electron 
energy as well as the velocity can be changed (recall that J Q is proportional to (cg - J.L)
see eqn. (6.82)). Thus, the ratio L = "'T/aT is less than the universal value 
2.45 x 10-8 W n K-2 in this temperature range (see Fig. 6.13). 

*6.3.2.3 Thermoelectric effects 

The analysis of the thermal conductivity given in the previous section considered only the 
heat flux and ignored the possible effects of any electric ~harge flux resulting from electric 
fields: thermal-conductivity measurements are, in fact, performed under open-circuit 
conditions to ensure that no electrical current flows at the same time as the heat transport 
takes place. However, in general, heat and current flows can occur simultaneously and 
this gives rise to a variety of thermoelectric effects. In fact, in the above-mentioned 
thermal-conductivity experiment, in the presence of a temperature gradient "VT, an 
eleCtrical current will flow until sufficient charge has built up at the sample surface to 
give a retarding electric field that exactly cancels the driving force of the temperature 
gradient on the current flow: under steady-state conditions, therefore, there is no net 
current. Thus, in general, a temperature gradient in an electrically conducting sample 
generates an electric field in the opposite direction; this is known as the Seebeck effect. 

Thermoelectric behaviour can be discussed in terms of Boltzmann transport theory in 
the same way as for electrical conductivity (electric current and no thermal flux) and 
thermal conductivity (thermal flux and no electrical current). Thus, if the electrochem
ical potential TJ is defined as 

TJ=J.L ecjJ, (6.86) 

where J.L and cjJ are the chemical and electrostatic potentials, respectively, then the 
electrical current density j and heat flux J Q can be written in terms of the appropriate 
'driving forces', and the Onsager coefficients, Lij (see §3.4.2.1), as 

. (-"VT) 
] = Lil\l(TJ/e) +LI2-

T
-, 

(-"VT) 
JQ = L2i "V(TJ/e) + L22-

T
-' 

(6.87a) 

(6.87b) 
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The Onsager coefficients, which are tensor quantItIes in general, should not be 
confused with the Lorentz number (eqn. (6.18». (Note also that in eqn. (3.42), Lij refers 
to particle fluxes and not electrical current density.) They can be evaluated by expressing 
the charge and heat fluxes via the Boltzmann formulation, as above. One then finds (see 
Ashcroft and Mermin (1976), Madelung (1978»: 

ao, 

-~ ? 2' 
L12 = L21 =~'4T a, 

? 
7r ? ') 

L22 = -3 ? ksT-a, 
e-

(6.88a) 

(6.88b) 

(6.88c) 

where a' is the energy derivative -of the conductivity evaluated at the Fermi level: 

a' (6.89) 

A general expression for the thermal conductivity, without the assumption of degen
erate Fermi statistics restricting the validity to metals as in §6.3.3, can be obtained from 
the set of equations (6.87) by stipulating that the heat flux J 0 arises from the tempera
ture gradient \IT in the absence of an electrical current. Thus, from eqn. (6.87a), for 
j=O, 

(6.90) 

and hence, on substituting this into eqn. (6.87b), 

J Q (-L21 (LI J)-I L12 + L22) (-~T). (6.91 ) 

Therefore, the thermal-conductivity tensor is given in general by 

/'i,T = (L22 (Lz1(L11)-ILn)/T. (6.92) 

This expression is valid for both semiconductors (non-degenerate statistics) and metals 
(degenerate statistics), although in the latter case, since a' ~ a /'fl, F, the first term in 
parentheses in eqn. (6.92) is much larger than the other, and /'i,T ~ L22/T 

~k~Ta/3e2, i.e. the Wiedemann-Franz law is recovered. 
The flux equations (6.87) can be rewritten, in terms of quantities related to the 

Onsager coefficients, and assumed for simplicity to be scalars, so that they can be 
compared with quantities measured experimentally under either isothermal or open
circuit conditions, i.e. 

(6.93a) 

JQ ITj-/'i,T\lT, (6.93b) 

where the thermopower (or thermoelectric power) is given by 

ST = L12/ TL II (6.94) 

A 

Fig. 6.14 Illustration of the generation of a thermoelectric voltage, measurable by voltmeter 
V, across a break i-j in a wire (of a metal of type B) when two junctions, 1, 2, between it 
and another metal A are held at different temperatures, T2 =I- T\_ 

and the Peltier coefficient is given by 

IT=L21 /L 11 . (6.95) 

Thus, from the Onsager relation (eqn. (3.43» between the Onsager coefficients 
(LI2 = L21), the Peltier coefficient and the thermopower are related by the Kelvin relation: 

IT = TST. ( 6.96) 

What are the physical manifestations of the thermo electrical quantities IT and ST? 
Consider first the Seebeck effect involving the thermopower ST, which is the constant of 
proportionality between the temperature gradient and the corresponding electrochem
ical potential gradient in the absence of electrical current flow (cf. eqn. (6.93a». For the 
arrangement shown in Fig. 6.14, wires of two dissimilar metals, A and B, are joined 
together at two junctions 1 and 2, and one of the wires, say B, is cut between the two 
junctions. A thermoelectric voltage will be developed across this break in the circuit if 
the two heterojunctions, 1 and 2, are held at different temperatures, TJ and T2. The 
electrochemical potential' difference can be obtained by integrating around the circuit 
shown in Fig. 6.14, i.e. under open-circuit conditions: 

f \I(rJle) . dl = ory/e f ST\lT· dl == f STdT 

1 T~ A 1 T~ B 1 T~ A B = STdT + STdT = (ST ST)dT.· 
~ ~ ~ 

(6.97) 

Now, Dry = Of.L - eo¢ -eo¢, since the chemical potential at points i and j in the circuit 
of Fig. 6.14 is the same (identical material, B) and hence 

(6.98) 

The electrostatic potential difference generated between points i and j is thus propor
tional to the difference of the absolute thermopowers of materials A and B, S~ and S~, 
respectively, and the temperature difference oT Tz - TJ. The Seebeck effect can also 
occur as a volume effect in inhomogeneous conducting materials. 
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The circuit shown in Fig. 6.14 can be used as a way of measuring temperatures (or, 
more exactly, the temperature difference of one junction with respect to another at a 
reference temperature). Absolute values of thermo powers for metals are typically a few 
microvolts per kelvin (J.t VK -1). They can be measured by making the wire A in Fig. 6.14 
out of a superconducting material (§6.4); superconductors are characterized by having 
zero values of absolute thermopower (§6.4.2.2). 

From eqns. (6.88) and (6.94), the thermopower can be expressed in terms of the 
electrical conductivity as: 

(6.99a) 

(6.99b) 

since a' ~ O/Cf,F. The exact derivative of the electrical conductivity, 0', can be obtained 
by differentiating eqn. (6.67) assuming that r(k) == r(Cf,), i.e. 

(J'(Cf,) = ~~? (J(Cf,) + e
2

;;;) J 8'(Cf, - Cf,(k))v(k)v(k)dk. (6.100) 

The product of electron velocity and energy derivative of the Dirac delta function can be 
recast in the form (Ashcroft and Mermin (1976)): 

I a 
v(k)8'(Cf, -Cf,(k)) = -rzak8(Cf, -Cf,(k)), (6.101) 

and hence an integration by parts gives: 

(6.102) 

where m* is the effective-mass tensor (eqn. (6.25)). Thus, the sign of the thermopower is 
opposite to that of the effective mass, i.e. negative for electrons and positive for holes. 

Another thermoelectric phenomenon of interest is the Peltier effect: an electrical 
current driven around a circuit consisting of two dissimilar metals, kept at constant 
temperature, causes heat to be given out at one junction and absorbed at the other 
(Fig. 6.15). From eqn. (6.93b), under isothermal conditions, the heat current is propor
tional to the electrical current: 

J Q ITj. (6.103) 

Since changes in the heat dQ and entropy dS are related via dQ = TdS, the corres
ponding fluxes of these quantities are related by JQ = T J s. Hence from.eqn. (6.103), the 
quantity ITIT = ST (cf. eqn. (6.96)) is simply the constant of proportionality between an 
electric current flux and a concomitant entropy flux in a conductor under isothermal 
conditions. If ITA and ITB are the Peltier coefficients of metals A and B respectively, a net 
heat of (ITA - ITB)j is absorbed at junction I and the same heat is given out at junction 2 
for the current flow shown in Fig. 6.15 and if ITA > ITB. Thus, the Peltier effect can be 
utilized in solid-state cooling devices. 

Finally, another thermoelectric phenomenon, the Thomson effect, concerns the heat 
generated in a material when both electrical currents and tp.ermal gradients are present. 

Fig. 6.15 Illustration of the Peltier effect. An electrical current of density j, passing round a 
bimetallic circuit, held at a uniform temperature, will cause heat equal to (ITA - ITB)j to be 
absorbed at junction 1 and given out at junction 2 if ITA > ITB. 

The Thomson energy coefficient, J.tE, must clearly therefore be related to both the 
thermopower and the Peltier coefficient. The conservation of energy with time can be 
written as 

au + '\1. J u =]'. E 
at ' 

(6.104) 

where the two terms on the left-hand side refer to the rate of change of internal energy 
per unit volume, u, associated with the electrons and the spatial variation of the energy 
flux, J u, respectively, and these equal the rate of work done on the electron currentj by 
an external electric field E. Equation (6.104) can "be rewritten using J u = J Q + J.tJ N 

(eqn. (6.78)), together with the -expression for the electrochemical potential rJ J.t - e¢ 
(eqn. (6.86)), as . 

au . 
at = -'\1 . J Q '\1. (J.tJ N) +] . E 

(6.105) 
=j' '\1(rJle) - '\1. JQ. 

From eqns. (6.93), this expression becomes: 

au l. . - = - + ST] . '\1T - '\1(IT]) + '\1. (K,T'\1T) 
at (J - (6.106) 

(J + '\1. (K,T'\1T) - J.tri· '\1T, 

where it has been assumed that the Peltier coefficient is only a function of temperature 
(i.e. the material is homogeneous) and the Thomson heat J.tT is defined as 

aIT 
J.tT = aT ST' (6.107) 

The first term in eqn. (6.106) is the Joule heating term, the second refers to the heat 
entering a region by heat conduction, and the last term describes heat production when 
both electric currents and temperature gradients are present simultaneously (the Thom
son effect). 
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From eqn. (6.96), the Thomson heat can also be rewritten as 

aST 
/-IT fiT· 
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(6.108) 

Thus, the Thomson effect enables values of the thermopower to be obtained at tem
peratures other than that at which it is known. By measuring the change in heat of a 
sample as the electrical current direction is reversed for a constant temperature 
gradient, the Thomson heat is obtained from eqn. (6.106); hence, eqn. (6.108) can be 
used to calculate ST at any temperature, knowing its value at some reference 
temperature. 

6.3.3 Electron dynamics in the presence of magnetic fields 

In the discussion of electron dynamics in metals given in §6.3.2, the effect of an applied 
magnetic field B was neglected; only electric fields and temperature gradients were 
considered. However, in general, a magnetic field strongly perturbs the electron motion 
in solids. As a result, many new phenomena can be distinguished, which can be divided 
into galvanomagnetic effects (where the primary field is E, in addition to B) and 
thermomagnetic effects (where the primary 'field' is \IT, in addition to B). Moreover, 
the action of a magnetic field by itself causes electron motion due to the Lorentz force 
(cf. eqn. (6.4». We will discuss the latter topic first: this will be followed by a discussion 
of galvanomagnetic and thermomagnetic effects. 

6.3.3.1 Cyclotron resonance 

The application of a constant magnetic field B to an electrical conductor causes the 
mobile electr:ons to be deflected from their original direction of motion by the Lorentz 
force, producing a rate of change of momentum given by 

dv 
me dt = -e(v X B). (6.109) 

Writing the electron momentum as meV hk, and noting that the group velocity of a 
Bloch wave packet is given by v = h-I\l,,'fb(k), the semi-classical equation of motion of 
an electron in a magnetic field (i.e. neglecting quantization effects) becomes 

dk -e . 
-d = z(\lk'fb(k) x B). 

t h 
(6.110) 

In this semi-classical picture, the electron motion can be represented as the motion, in 
reciprocal space, of allowed k-states in a plane perpendicular to the magnetic field and 
tangential to constant-energy surfaces (Fig. 6.16): the component of k parallel to the 
magnetic field, and the electron energy 'fb(k), remain constants of the motion. The time 
taken for an electron to move from state kl to state k2 is given by 

(6.111) 

A 

Fig. 6.16 Electron motion in a metal in a constant magnetic field B represented as orbits in 
k-space in planes perpendicular to B cutting a constant-energy surface (i.e. the Fermi surface). 
Orbit A is known as an extremal orbit. 

where ic is given by eqn. (6.110). Thus, eqn. (6.111) can be rewritten as 

(6.112) 

where I (\lk'fb (k))J..1 is the component of the energy gradient perpendicular to B, i.e. in 
the plane of the orbit. 

This quantity can be related to the area S enclosed by the orbit in k-space as follows. 
Consider two adjacent constant-energy surfaces 'fb(k) = 'fb and 'fb(k) = 'fb + {ffl" with 
electron orbits on these surfa.ces lying in the same plane perpendicular to B (Fig. 
6.17). The energy difference is given by 

(a) 

1 
~ 
1. 

(b) 

Fig.6.17 Two constant-energy surfaces in k-space, differing in energy by {M" with two cyclotron 
orbits in the same plane normal to the applied magnetic field, B. The inset shows a detail of the 
orbits between states kl and k2 : 6.(k) is the vector joining one orbit at k to the other, and OSk is 
the area in k-space between the two orbits and kl and k2. 
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(6.113) 

where b.(k) is the magnitude of the vector in k-space connecting a point on one orbit at 
k with the other orbit (Fig. 6.17). Hence, eqn. (6.112) now becomes 

/i
2 lie, 

t2 tJ = B= b.(k)dk 
e UfOk, 

(6.114) 

and the integral in eqn. (6.114) is simply the area 8Sk in k-space of the plane between the 
two orbits and between kl and k2 (Fig. 6.17). Therefore, the time interval becomes, in 
the limit as {fft -t 0, 

(6.115) 

For complicated Fermi surfaces, such as occur for real metals, e.g. eu (Fig. 6.18), 
many different orbits are possible, some of which are 'open' and some of which are 
closed. The period T of a closed orbit is given by the line integral in eqn. (6.114) having 
limits kl = k 1. For afree-electron gas, the orbital period can be calculated (see Problem 
6.8) to be 

'T' _.2n"111e 
.10 ---;B' 

from which the cyclotron frequency, We 2n/To, is 

eB 

a 

(6.116) 

(6.117) 

Fig. 6.18 Various cyclotron orbits for electron motion in a magnetic field in Cu. The Fermi 
surface is shown in the repeated-zone representation. Three types of closed orbit are indicated: 
electron-like 'belly' (a) and 'neck' (b) orbits and hole-like 'dog-bone' orbit (c). In addition, an 
open orbit is also indicated (d). 

For a real metal, with non-free-electron bands, the cyclotron effective mass m~ is 
defined as 

* /i
2 

aSk 
me:;= 211" fffl, (6.118) 

by comparison of eqns. (6.115) and (6.116). Orbits which enclose states for which the 
energy is lower than for states outside the orbit are electron-like (as in Fig. 6.16); orbits 
for which the converse is true (e.g. the 'dog-bone' orbit in eu - see Fig. 6.18) are hole
like (i.e. with effective masses of the opposite sign (§6.2.1): 

In real space, as opposed to reciprocal space, the electron motion in the presence of a 
magnetic field is a little more complicated. If the magnetic field B is directed along the z
axis, electron motion along this axis is unaffected by the field (cf. eqn. (6.109». In the 
plane normal to B, an orbit in this plane in k-space is equivalent to an orbit in the 
equivalent plane in real space, but rotated by 90° (Problem 6.9). Thus, in general an 
electron follows a helical path in real space (Fig. 6.19). 

The above semi-classical picture neglects orbital quantization, however, and repre
sents a gross simplification of the behaviour. In reality, the whole band picture of 
crystalline solids developed so far, which is based on discrete k-values, corresponding 
to allowed electron states that can be used as good quantum numbers, breaks down in 
the presence of a magnetic field. This is because the usefulness of k- vectors in describing' 
electron states (in the absence of a magnetic field) stems from the 3D translational 
invariance (periodicity) characterizing a crystal lattice: in a magnetic field, the Schro
dinger equation is no longer translationally invariant in directions normal to B. The 

x 

(a) (b) 

z,B 

~c : I : 
I 
I 

, I 
, I 
, I 
, I 

. Projection 

y 

Fig. 6.19 (a) Cyclotron orbit in reciprocal space in a plane perpendicular to the magnetic field 
B. (b) Electron motion in real space with a helical orbit, the projection of which onto the plane 
normal to B is obtained from the orbit shown in (a), but is rotated by 90° and multiplied by the 
factor iii eB. 
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momentum p in the Schrodinger equation must be replaced by the term p + eA, where A 
is the vector potential and B curU (see §7.2). 

As a result, the imposition of a magnetic field in the z-direction causes the energy of a 
free electron, confined to say a cubical box of side L oriented parallel to the x, y and 
z-axes, to be quantized for orbital motion in the x-y plane according to the simple
harmonic oscillator expression (see Problem 6.10), i.e. 

2 (??) 1 11. IS: + Icy /2me -+ (n + "2)11.we 

or 

(6.119) 

where We is the cyclotron frequency (eqn. (6.117». Motion parallel to B is unaffected by 
the magnetic field, i.e. it is still free-electron-like. Thus, the dense 3D array of allowed 
points in k-space collapses onto a set of concentric Landau tubes lying parallel to the 
z-direction (see Fig. 6.20). From eqn. (6.115), writing the derivative fJS/{ff!, as the differ
ence quotient (S/l+1 - SII)/('76/7+1 - '76/7) implies (from eqn. (6.119» that the (!rea in 
k-space between successive Landau tubes is quantized, i.e. . 

27reB 
-11.-, (6.120) 

where t2 - tl = T = 27r/we• Since the number of2D k-states per unit area of k-space is 
N(k) A/2~ (see Problem 5.2), where A is the real-space cross-sectional area of the 
sample normal to B, the degeneracy of each Landau tube per unit area of sample for a 
given value of k;; is given by 

eB 
g/7 = 7r11.' (6.121) 

A field of 1 T corresponds to a degeneracy of 4.8 x 1014 /m2. This quantity is so large 
because, in the semi-classical picture, the motion of an electron in a magnetic field is a 
helical orbit directed along the z-direction and parallel to B (Fig. 6.19b), with arbitrary 
x- and y-coordinates. 

The occupied electron levels in the presence of a magnetic field lie on the Landau 
tubes falling inside the Fermi surface in k-space (see Fig. 6.20b for an illustration of the 
free-electron case). In the case of real metals, the Landau tubes are not uniform circular 
cylinders, as in the free-electron case, but concentric cylinders having shapes determined 
by the shape of the constant-energy contours in k-space of the metal in a plane normal 
to B. However, the quantization of the area in k-space between adjacent Landau tubes 
(eqn. (6.120» is maintained. 

The density of states for a (free-electron) metal in the presence of a magnetic field is 
very different from the behaviour characteristic of a 3D free-electron gas, viz. 
g('76) ex '76 1/2 (eqn. (5.15», because of the formation of the Landau levels. Since each 
Landau level is associated with one-dimensional free-electron-like behaviour along the 
z-direction, parallel to B (Fig. 6.20a), the corresponding behaviour of the density of 
states is now g('76) ex ('76rl/2 (see Problem 5.2); that is, a singularity in the density of 
states is exhibited at the bottom of each sub-band corresponding to a given Landau level 
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Fig. 6.20 Landau levels for the quantized orbital motion of free electrons in a conductor in a 
magnetic field B along the z-direction. (a) Free-electron behaviour along the z-direction for 
different Landau levels with quantum numbers, n. (b) Landau tubes for a free-electron gas. 
Occupied states are those on the tubes lying within the Fermi sphere in k-space. (c) Landau levels 
in the presence of a magnetic field, B, showing the relationship to the band of occupied states below 
the Fermi level for a metal in the absence of a magnetic field. The transition corresponding to 
cyclotron resonance is indicated. (d) Density of states for the Landau levels (solid lines), com
pared with that for a free-electron gas in the absence of a magnetic field (dotted curve). 

(Fig. 6.20d). Of course, the total number of states must be the same with and without the 
magnetic field; they are just redistributed. 
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Orbital motion of electrons in a magnetic field can be probed by a cyclotron reson
ance experiment, in which an oscillating electromagnetic field with frequency w, incident 
on a conductor that is subject to a static magnetic field, is resonantly absorbed when 
W = Wc. In terms of the quantized Landau levels shown in Fig. 6.20c, the perturbing 
electromagnetic field causes a transition between adjacent Landau levels at the Fermi 
level, electrons being excited from a filled level to an empty level with change in 
quantum number tln = + 1. Cyclotron resonance is a probe of the shape of the Fermi 
surface in metals (or constant-energy surfaces in k-space near the bottom of the con
duction band/top of the valence band for semiconductors see e.g. Fig. 5.51), in 
particular permitting values of the (cyclotron) effective mass (eqn. (6.118» to be 
measured. The technique is particularly useful for semiconductors where the electro
magnetic waves (typically microwaves) are not unduly absorbed by the material. 

However, absorption is a problem in the case of metals, where the electromagnetic field 
will only penetrate to a distance corresponding to the skin depth (Problem 5.30). In this 
case, the Azbel'-Kaner geometry can be used, in which the static magnetic field is oriented 
parallel to the surface of the metal: the electromagnetic field that does penetrate the 
metal to within the skin depth can resonantly interact with the electron motion when
ever the helical electron orbit passes within the skin depth (Fig. 6.21). Thus, resonance 
can occur whenever the frequency of the electromagnetic field W satisfies the condition 

(6.122) 

where p is an integer. Usually, the cyclotron resonance condition is found by varying 
the frequency of the electromagnetic radiation (microwaves) whilst the B-field is 
varied, in which case peaks in the resonant absorption response of the metal occur 
with a uniform spacing of the inverse field since, from eqns. (6.116), (6.118) and (6.122), 

ep 

Bres wm~ 
(6.123) 

An example of a cyclotron resonance curve for AI is shown in Fig. 6.22. 
Note that cyclotron resonance can only be detected if the electrons complete many 

cyclotron orbits before a scattering event occurs, i.e. the condition WcT » 1 must be 
satisfied, where T is a characteristic scattering relaxation time (§6.3.1). Moreover, 
although in principle there are many possible electron cyclotron orbits for a particular 
constant-energy surface in k-space and a given magnetic-field direction (see Fig. 6.16), 

~B .E 

Fig. 6.21 Azbel'-Kaner geometry for observing 'cyclotron resonance in metals where the pene
tration of the probing electromagnetic field is confined to the skin depth {y. The application of a 
static field parallel to the crystal surface causes the helical electron orbit to pass through the skin 
depth region once per period. Resonance is observed whenever a probe electromagnetic field, 
applied normal to B, has a frequency such that w = pWC. 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9, 1.0 
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Fig.6.22 Experimental cyclotron resonance curve for AI. The letters A, Band E refer to different 
extremal orbits, while the suffixes denote resonant absorption peaks associated with the same 
extremal orbit; such peaks are evenly spaced when plotted as 1/ B. (After Moore and Spong 
(l962). Reprinted with permission from Phys. Rev. 125, 846. © 1962. The American Physical 
Society). 

the only important ones in practice are the extremal orbits enclosing the maximum (or 
minimum) area S of k-space and for which 8Sj8k=_= o. For these, there are many 
different neighbouring orbits with approximately the same cyclotron frequency due to 
the relative constancy of the energy surface with k= in the vicinity of the plane of 
extremal orbits. 

6.3.3.2 Galvanomagnetic and thermomagnetic effects 

Electron transport in the presence of a magnetic field, as well as an electric field or 
a temperature gradient, can be described in terms of galvanomagnetic or 
thermomagnetic behaviour, respectively, in a similar manner to thermoelectric 
effects (§6.3.2.3). However, a difference is that, because the magnetic field 
imposes a preferred direction on a sl:!-mple even if the material itself is isotropic, 
the Onsager coefficients in the transport equations (cf. eqns. (6.87» are always 
tensors. 

Perhaps one of the simplest galvanomagnetic phenomena to understand is the Hall 
effect in which orthogonal electric and magnetic fields generate in a conductor a 
secondary electric field, the Hall field, that is normal to both primary fields. Consider 
the experimental geometry illustrated in Fig. 6.23, in which a constant magnetic field B 
is applied in the z-direction and an electric field Ejs applied along the x-direction so that 
a current density j flows in the same direction. The Lorentz force (eqn. (6.109» causes a 
deflection of the trajectory of the electrons (moving in the -x-direction in the absence of 
a magnetic field) in the y-direction, generating negative and positive space charges on 
the -y and +y faces of the sample, respectively. This charge build-up causes an electric 
field, the Hall field EH, to be established in the -y direction, the associated force -eEH 
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Fig. 6.23 Experimental geometry of the Hall effect. The Hall field EH is established due to 
charge build-up on opposing faces in the direction normal to the applied magnetic and electric 
fields, resulting from the Lorentz force acting on the moving electrons. In steady state, the force 
-eEH balances the Lorentz force. 

opposing the Lorentz force. In steady state, there is therefore no net force on the 
electrons in the y-direction, and hence no drift-velocity component Vy in that direction; 
the current flow is thus only in the x-direction. 

In steady state, the y-component of the equation of motion given by eqn. (6.7) 
reduces to 

since Vy = O. Thus, 

o -e(E)' - vxB) 

ixB 
E.v = vxB = - --;;i. 

The transverse component of the resistivity tensor p in E = p . j, given by 

Pyx = -Pxy 
_Ey = B, 

ix ne 

is called the Hall resistivity. 
The Hall coefficient, RH is defined by the relation 

EH = RHB xj, 

and so, from eqn. (6.125), 

(6.124) 

(6.125) 

(6.126) 

(6.127) 

(6.128) 

Therefore, if electrons moving in a single band make up the current, the Hall coefficient 
is negative, reflecting the sign of the charge carried by the electrons, and RH is inversely 
proportional to the electron concentration n. If, on the other hand, holes carry the 
current, the velocity direction of the holes is in the opposite direction to that of the 

electrons, i.e. the same as that of the current, and consequently the Lorentz force is 
unchanged. Consequently, the Hall field for holes is in the opposite direction to that for 
electrons, and hence the Hall coefficient is correspondingly positive, i.e. the same sign as 
the charge carried by the holes (§6.2.2). Hence, Hall-effect measurements can be used to 
determine the sign of the charge carriers in conductors, as well as the carrier con
centration. Note that the Hall coefficient will be larger for semiconductors than for 
metals because the carrier concentration in semiconductors (§6.5.1.1) is much smaller 
than the conduction-electron density in metals. 

By analogy with the expression for the d.c. electrical conductivity written (eqn. (6.11)) 
as eTo = neJ.Le for electrons (or a corresponding relation for holes), where J.L is the 
mobility, the Hall mobility can be defined in terms of eTo and RH via the expression 
(cf. eqn. (6.128)): 

(6.129) 

Unless the electron-scattering relaxation time T is constant for all electrons (i.e. inde
pendent of k or energy), the Hall and conductivity mobilities are not the same numeri
cally, but are in a ratio rH=< -,-2 > / < T >2 of order unity: J.LH = rHJ.Le. 

The behaviour of the Hall effect in real metals is often more complex than the 
previous simple analysis would predict. For instance, although eqn. (6.128) implies 
that the Hall coefficient should be independent of the applied magnetic field, in reality 
RH can depend markedly on B (see Fig. 6.24), e.g. if more than one band contributes to 
the current (see Problem 6.12). However, at sufficiently high values of magnetic field, in 
practice such that WeT ~ 1 (where We is the cyclotron frequency, proportional to B
see eqn. (6.117)), the Hall coefficient reaches a saturation limit; high-field values of the 
Hall coefficient for a number of metals are given in Table 6.2. It can be seen from the 
table that the alkali metals behave much as expected: the charge carriers are electrons, 
with one conduction electron per atom. This is because such metals have a single, free
electron-like conduction band, with a spherical Fermi surface. The Group IB noble 
metals also behave more-or-Iess as expected, although the carrier concentration per 
atom, n/ N, is not exactly unity as a result of the distortions of the Fermi surface from 
sphericity (see Fig. 5.25b). 

0.01 0.1 1.0 10 100 1000 

-1.0 -----------------------------

Fig. 6.24 Magnetic-field dependence of the Hall coefficient for AI. The quantity 
n/ N -1/ RHNe, where N is the atomic concentration, gives the effective number of conduction 
electrons per atom. The quantity WeT eBT/me is a measure of the magnetic field. (After Luck 
(1966). Reproduced by permission of Akademie Verlag GmbH.) 
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Table 6.2 Hall coefficient, RH, for various metals 

Metal Group Ij(RHNe) 

Li IA -0.78 
Na -1.00 
K -1.00 
eu IB -1.37 
Ag -1.l9 
Au -1.47 
Be IIA +0.21 
Al IIIB +1.01 
In +1.02 

The quantity I/(RHNe), where N is the atomic density, gives the carrier concentration 
per atom, niN. A negative value of I/(RHNe) indicates that the charge carriers are 
electrons, and a positive value indicates that holes are the dominant carriers. Data after 
Kittel (1996). Reproduced by permission of John Wiley & Sons Inc. 

The positive values of l/(RHNe) for the Group IIA and IIIB metals cannot be under
stood at all within the context of the simple Drude free-electron picture (§6.1); instead, . 
they are indicative that holes (§6.2.2) are the dominant carriers. In the case of the Group 
IIA metals, e.g. Be and Mg, band overlap results in semi-metallic behaviour, in which 
the first Brillouin zone is not completely filled by the two electrons per atom available, 
but instead some spill-over of electrons into a higher band (second zone) occurs, leaving 
some holes in the first zone (§5.2.5). A related effect occurs in AI: two of the three 
available valence electrons per atom completely fill the first zone, but the third electron 
can occupy hole-like states in the second zone and electron-like states in the third zone 
(see Fig. 5.24). Thus, if a concentration n of electrons, equivalent to one per atom, is 
available to fill states in the second (II) and third (III) zones, then 

(6.130) 

However, the second zone can hold two electrons per atom, i.e. the total density of 
electron and hole states must satisfy the relation 

n!I + n~I = 2n, 

and hence from eqns. (6.130) and (6.131): 

(6.131) 

n!II - n~I -no (6.132) 

The negative sign on the right-hand side indicates that the net effect of the band filling is 
equivalent to one hole per atom. 

For a material in which two bands together contribute to the current, say one 
electron-like and the other hole-like, the high-field Hall coefficient can be written as 
(see Problem 6.12): 

(6.133) 

Thus, from eqn. (6.132), the high-field Hall coefficient of Al is predicted to behave as if 
one free hole, rather than three free valence electrons, per atom, is the current charge 
carrier, in agreement with experiment (Fig. 6.24). 

In 2D conducting systems, the behaviour of the Hall effect is very different from 
that described above for the case of 3D systems; the 2D Hall conductivity exhibits a 
series of steps with increasing magnetic field. This quantum Hall effect is discussed in 

§8~~~ transverse magnetoresistivity ~ith'B perpendicular to the current flow (as distinct 
from the longitudinal magneto resistivity for which B is parallel to the current) is given 
by the expression 

p;,;c{ B) = ~x . 
Jx 

(6.134) 

For the simple case of a free-electron gas, the steady-state equation of motion given by 
eqn. (6.8) predicts a resistivity (inverse conductivity, cf. eqn. (6;9) that is independent of 
magnetic field. For real metals, on the other hand, a field':'dependent magneto resistivity 
is often found because of an anisotropic Fermi surface (the cause of a finite longitudinal 
magnetoresistance) or a non-constancy (energy dependence) of the relaxation time T. 

A field dependence is also exhibited if more than a single band contributes to the current 
(see Problem 6.12); the (positive) magneto resistivity increases quadratically with 
magnetic field, and reaches a saturation value at sufficiently high magnetic fields, 
unless the material is compensated (equal number of electrons and holes in two 
bands), in which case the magnetoresistivity increases without limit with increasing 
field. In the case of open electron orbits on the Fermi surface (see Fig. 6.18), the 
magnetoresistivity also increases without limit (see Ashcroft and Mermin (1976) for 
further details). . 

Extremely large, negative magneto resistance behaviour, called colossal magnetoresist
ance (CMR) has been discovered in certain mixed-valence manganite compounds, 
Lnl-;.:AxMn03(Ln = La3+,Pr3+, etc.; A = Ca2+,Si+, etc.) for 0.15 < x < 0.45; 
these materials contain both Mn3+(d4

) and Mn4+(d3) ions, with the average number 
of d-electrons per Mn atom equal to 4 x. At elevated temperatures, these materials are 
metallic and magnetically ordered, i.e. ferromagnetic (§7.2.5); below the Curie-Weiss 
temperature, Bcw (§7.2.5.2), the materials are electrically insulating and magnetically 
disordered. Therefore, they undergo a metal-insulator transition (§5.6.3) at Bcw with a 
peak in the temperature dependence of the electrical resistivity (Fig. 6.25a). The mixed
valence state of the Mn ions is responsible both for the ferromagnetism (via 'double 
exchange' - see §7.2.5.1) and also for the metallic behaviour above Bcw. Three of the 
four d-electrons in the Mn3+ ions occupy the tightly bound set of orbitals dxy , dx.:;, dyz 

(t2g states - see §7.2.5.l) and the remaining, electronically active ele~tron resides in the 
set of orbitals dx2_y2, d3zLr2 (eg states) which are doubly degenerate (neglecting spin). 
This degeneracy leads to a lahn-Teller structural distortion, resulting in unequal Mn-O 
nearest-neighbour distances, driven by a lowering of the electronic energy associated 
with the lifting of this degeneracy; strong polaronic effects (a coupling of electronic and 
ionic motions-see §6.6) causes localization (§6.7) of the electrons and hence the 
electrically insulating behaviour below Bcw. 

Application of an external magnetic field to the mixed-valence manganites at a 
temperature close to, but slightly below, the peal5: in the p(T) curve causes a very 
large drop in electrical resistance, i.e. a negative magnetoresistance ratio 
fiR/ RB = (RB - RB=o)/ RB, where RB is the resistance at a magnetic flux density, B. 
Values of fiR/RB ~ -127000% (a factor of more than a thousand) can be attained for 
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Fig.6.25 (a) Temperature dependence of the electrical resistivity peT), and the magnetization, 
M(T), for LaO.67CaO.33MnOx. The negative magnetoresistance ratio, D.R/Ra = (Ra - RB=o)/RB 
is also shown. (b) The magneto resistance, pCB), for an La-Ca-Mn-O film at 77 K. The magne
toresistance ratio in this case is - 127 000%. (a), (b) Reprinted with permission from Jin et aI., 
Science 264,413. © 1994 American Association for the Advancement of Science. 

heat-treated films of Lao.67Cao.33MnOx (Fig. 6.25b), grown epitaxially on LaAI03 
substrates by laser ablation (§1.1.1) (Jin et al. (1994». This colossal magneto resistance 
is isotropic, unlike conventional magnetoresistance; that is, it does not depend on the 
relative orientations of the applied magnetic field and electrical current flow. 

In general, galvano- and thermomagnetic properties can be described in terms of 
transport equations for the electrical current and heat fluxes written in an analogous 
form to eqns. (6.87) for the case of thermoelectric effects, but expressed as functions of 
electric and magnetic fields, E, B, and temperature gradient '\IT, viz. 

j=O'.IIE + /311B x E + 'YllB(B· E) + 0'.12 '\IT + /312B x '\IT + 'Y12B(B· '\IT), (6. 135a) 

J Q = a21E + /321 B x E + 'Y2IB(B . E) + 0'.22 '\IT + /322B x '\IT + 'Y22B(B· '\IT). (6.l35b) 

In the simple case where B = Bz is perpendicular t9 an applied electrical field E = Ex 
and a temperature gradient '\IT = aT I ax, eqn. (6. i35a) for the electrical current flux 
reduces to 

(6.136a) 

(6. 136b) 

(6. 136c) 

with corresponding equations for the heat flux, J Q. Secondary electric fields and 
thermal gradients in the y-direction appear as a result of galvano-and thermomagnetic 

effects. The coefficients all and /311, for example, are given approximately (Madelung 
(1978» by 

(6.137) 

where nand /-le are the electron concentration and mobility, respectively. 
A number of different magnetic-field-induced phenomena can be distinguished. The 

appearance of an electric field normal to both temperature gradient and magnetic field is 
termed the Nernst effect, with coefficient 

(6.138) 

The creation of a temperature gradient perpendicular to a magnetic field and a primary 
temperature gradient is known as the Righi-Leduc effect, with coefficient 

(aT lay) 
SRL = Bz(aTlax)' ( 6.139) 

The Ettingshausen effect is the appearance of a temperature gradient normal to a 
magnetic field and an electric field, for which the coefficient is 

(6.140) 



Superconductors 6.4 
One of the most startling of all phenomena exhibited by solids is superconductivity, 
which is the sudden loss of all electrical resistance by certain metals when cooled below a 
certain superconducting critical temperature, Te. This behaviour is illustrated schemat
ically in Fig. 6.26, together with the temperature dependence of the resistivity of normal 
(i.e. non-superconducting) metals (§6.3.2.l) for comparison. In addition to this extra
ordinary behaviour, superconducting metals also exhibit a number of remarkable 
magnetic properties in the superconducting state, notably the complete exclusion of 
magnetic flux (the Meissner effect), at least for certain sample geometries: these proper
ties will be discussed in' §7.2.3.3. Superconductors merit a separate section from normal 
metals, not just because of the spectacular changes in properties that are exhibited at Te , 

but because of the very different state adopted by the electrons in the superconducting 
phase, which is essentially a macroscopic quantum state. 

Nearly 30 metallic elements become superconducting at atmospheric pressure (Table 
6.3); yet others become superconductors at high pressures when transformed to a crystal 
structure that is not stable under ambient pressures, or sometimes when prepared in 
thin-film form (e.g. As, Ba, Bi, Cs, Ge, Se, Si, Te). Very many metallic alloys are 
superconductors, too (Table 6.3); in some cases (e.g. CeCu2Siz or UPt3), alloys. can be 
superconducting even if the constituent elements are not. Moreover, superconducting 
behaviour is not restricted to crystalline materials exhibiting translational periodicity in 
their structure; amorphous metals, such as Zr7oPd3o, can also exhibit superconductivity. 
Finally, superconductors need not be composed of metallic elements at all. Certain 
inorganic solids, such as the polymeric material (SN)x are superconducting. Even some 
low-dimensional (e.g. 1D) materials (see §8.3.1) formed by a stacking of organic mole
cules, such as tetramethyltetraselenofulvalene (TMTSF - see Fig. 8.17 for the structure 
of a related sulphur-analogue molecule, TTF (tetrathiafulvalene)), in which one-dimen
sional bands form by overlap of 7r-orbitals between adjacent molecules, and for which 

Temperature 

Fig. 6.26 Schematic temperature dependence, p(T), of the electrical resistivity at low tempera
tures for: (a) a normal metal, with p(T) Pd + cT5; (b) a superconductor, with a supercon
ducting-transition temperature at Tc (in the absence of a magnetic field). 

Table 6.3 Superconducting elements and non-oxide compounds, and their 
superconducting transition temperatures 

Element Tc (K) Element Tc (K) Compound Tc (K) 

AI 1.14 Pa 1.4 AuBe 2.64 
Am 0.85 Pb 7.193 CeCu2Si; 0.65 
Be 0.026 Re 1.4 CuS 1.62 
Cd 0.56 Rh 0.0003 ErRh4B4 8.7 
Ga 1.091 Ru 0.51 HoMo6Sg 1.8 
Hf 0.12 Sn 3.722 La3In 10 
a-Hg 4.153 Ta 4.483 Nb3Al 18.6 
fi-Hg 3.95 Tc 7.77 Nb3Ga 20.3 
In 3.404 Th 1.368 Nb3Ge 23.2 
Ir 0.14 Ti 0.39 Nb3Sn 18 
a-La 4.88 Tl 2.39 NbTi 10 
fi-La 6.00 V 5.38 (SN)x 0.26 
Mo 0.915 W 0.012 UPt~ 0.54 
Nb 9.50 Zn 0.875 V3Ga 16.5 
Os 0.655 Zr 0.546 V3Si 17.1 

All materials are 'conventional' (BCS-type) superconductors, except those marked with", which 
are 'heavy-fermion' superconductors. Data after Burns (1992) (Reproduced by permission of 
Academic Press, Inc.) and Kittel (1996) (Reproduced by permission of John Wiley & Son Inc.) 

metallic behaviour is induced by the inclusion of stroIlgly electron-withdrawing 'accep
tor' groups such as the perchlorate ion (CIO;), are also superconductors, albeit gen
erally with rather low values of Te(~ lK). However, the charge-transfer salt 
(EThCu[N(CNhlBr (where ET refers to the molecule bis(ethylenedithia)tetrathiaful
valene, related to the molecule TTF) has a Te of 11.6 K. 

It is to be noticed from Table 6.3 that the values of Te for these materials range up to 
a maximum temperature of23.2 K for Nb3Ge. This value appeared to be the maximum 
attainable until the discovery in 1986 of the 'high-Te' oxide (cuprate) superconductors 
with values of Te ~ 100 K. These materials are discussed separately in §6.4.3, since it 
appears that the mechaIl:tsm underlying their superconducting behaviour may be very 
different from that responsible for the behaviour of (most of) the superconductors listed 
in Table 6.3. 

It is instructive also to examine the possible reasons for the non-appearance of 
superconductivity in elements other than those given in Table 6.3. Superconductivity 
is a phenomenon in which the conduction electrons in the vicinity oft,he Fermi level in a 
metal can attain a lower energy state by forming paired-electron states that give rise to 
zero electrical resistivity (infinite conductivity) below Te. Thus, a prerequisite is that the 
material above Te be a metal and not an insulator/semiconductor (although elements 
such as Si or Ge can be transformed into high-density crystalline phases that are metallic 
by the application of pressure). Paradoxically, it is observed that the normal (non
superconducting) state should not be too good a metal: metallic elements, such as the 
alkali metals, Cu, Ag and Au, which have very high electronic conductivities, are not 
observed to become superconducting, although they may possibly do so at temperatures 
much below those that are presently easily attainable (in the mK range). 
. It appears that magnetism and superconductivity are generally mutually incompat
Ible. It is noteworthy that those transition-metal and rare-earth elements that possess 
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Fig. 6.27 Experimental curves of the critical magnetic flux density, Be, as a function of tempera
ture for a number of type-I superconducting elements. Materials are superconducting for 
B < Be(T), i.e. below the curves, and normal metals above the curves. Note that Be goes to 
zero at the (zero-field) superconducting temperature, Te. (After Burns (1992). Reproduced by 
permission of Academic Press, Inc.) 

magnetic moments by virtue of their electron-spin configurations (see §7.2.4.5) are not 
superconductors. Moreover, the application of an external magnetic field can destroy 
the superconducting state. There is a critical value of magnetic flux densityt, Be, above 
which the superconducting state reverts to the normal metallic state; there is a 
corresponding critical current density, je, that generates Be and which destroys the 
superconductivity. Be itself is a function of temperature, vanishing at Tc (Fig. 6.27). 
The temperature dependence of Be(T) is given approximately by the empirical 
expression 

(6.141) 

It should be remarked that the behaviour represented by eqn. (6.141) and 
illustrated in Fig. 6.27 is the simplest possible; materials exhibiting such behaviour are 
termed type-I superconductors. There are also materials called type-II, notably Nb, 
intermetallic alloys and the oxide high-Te superconductors, that exhibit two critical 
magnetic flux densities Be(T). Above the upper value, Be2(T), the material is in the 
normal state, and below the lower value, Bel (T), the material is completely super
conducting; in between these two values, the material is in a mixed (or vortex) state, 
in which normal and superconducting domains coexist. Type-I and type-II materials are 
differentiated by their magnetic behaviour; the Meissner effect is complete in type-I 
superconductors and type-II superconductors at B < Bel (all magnetic flux is expelled), 

t It should be noted that very often in the literature the critical magnetic flux density Be is re-expressed in 
terms of the magnetic field strength He Be //-Lo ,where /-Lo is the vacuum permeability. This relationship is 
valid for the geometry of a long cylinder parallel to the field. 

whereas it can be incomplete in type-II superconductors in the mixed or vortex state 
where domains of normal material, through which vortices of magnetic flux can pass: 
from within the flux-free superconducting matrix. Further details about type-II beha
viour are to be found in §7.2.3.3. 

Another manifestation of the dest~~ctive influence of a magnetic field on the 
superconducting state is exhibited by re-entrant superconductors in which, at a 
temperature Te2 below that at which the material transforms from the normal to the 
superconducting state (Ted, the material reverts to the normal state as a result of the 
formation of a state that is magnetically ordered (e.g. ferromagnetic - see §7.2.5). This 
behaviour is exhibited by the Chevrel phases REM06Xs (where RE = rare earth; X S 
or Se), e.g. HoM06Ss for which the superconducting transition is at Tel ~ 1.8 K and 
the re-entrant transition is at Te2 ~ 0.7 K, and by compounds with the formula MRh4B4 

(M = y, Th or RE), e.g. ErRh4B4, with Tel ~ 8.7 K and Te2 ~ 1 K. 

6.4.1 The superconducting state 

The phenomenon of superconductivity is perhaps the most remadcable instance of the 
breakdown of the independent-electron approximation (§5.6), for it is believed that the 
superconducting phase consists of a macroscopic coherent quantum state consisting of 
mutually interacting pairs of electron states. This viewpoint will be explored more 
thoroughly in §6.4.1.2. 

*6.4.1.1 Thermodynamic aspects 

The transition from the normal metallic state to the superconducting state at Te, in zero 
magnetic field, is a second-order thermodynamic phase transition involving 
the electron system: there is no change in the atomic structure, for example, at the 
transition. This thermodynamic change of state is evident, for instance, in the 
temperature dependence of the heat capacity Cp (Fig. 6.28): there is a discontinuity in 
Cp at Te between the pormal and superconducting states, but no change in the 
sample volume at Te that would be indicative of a first-order phase transition. This 
behaviour can be understood from the following thermodynamic argument which 
shows that, in the superconducting state, the entropy of the (electron) system is lower 
than in the normal state, i.e. the electrons are more ordered in the superconducting 
phase. 

The Gibbs free energy per unit volume, g, is related to the intern"al energy per unit 
volume, u, and entropy per unit volume, s, via 

g u - Ts, (6.142) 

where the p V term has been neglected. If, in the presence of an applied magnetic field of 
flux density Ba, the associated magnetic energy is taken to be -M· dBa, where M, the 
magnetization of a material, is the magnetic dipole moment per unit volume, a change in 
the free energy is given by 

dg= -M ·dBa -sdT. (6.143) 

Integration of this relation gives the magnetic-field dependence of the free energy: 
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Fig. 6.28 Heat capacity of normal (N) and superconducting (S) AI. The measurements for the N
state below Te were made by applying an external magnetic field greater than the critical field, Be. 
The electronic contribution to the heat capacity is dominant in this temperature regime, because 
the phonon contribution is small due to the large value of the Debye temperature, BD. Note the 
discontinuity in heat capacity at Te, indicative of a second-order phase transition and the very 
different temperature dependence of Cs (exponential) and CN (linear). (After Phillips (1959). 
Reprinted with permission from Phys. Rev. 114, 676. © 1959. The American Physical Society) 

g(Ba, T) g(O, T) - lB .. M . dBa. (6.144) 

The macroscopic magnetic flux density B and field H in, and magnetization M of, a 
sample are related via 

B = /Jo(H + M); (6.145) 

see §7.2.2 for a discussion of internal magnetic fields in solids. For the sample geometry 
of a long cylinder, Ba = /JoH, where H is the macroscopic field inside the sample (see 
§ 7.2.2). For a type-I superconductor, due to the Meissner effect (see §7.2.3.3), the flux 
density inside the material is zero, B 0, in the superconducting state, and hence, from 
eqn. (6.145), M = -H. Thus, eqn. (6.144) can be rewritten for the superconducting 
state as 

l BaB dB 
gs(Ba, T) = gs(O, T) + _a_a 

o /Jo 
B2 

= gs (0, T) + -2 a . 
/Jo 

(6.146) 

The quantity B;/2/Jo is the extra magnetic energy stored in the field as a result of the 
exclusion of the flux from the superconductor because of the Meissner effect. 

At the transition between superconducting and normal states, occurring at a tem
perature T and critical magnetic field Bc (T), the Gibbs free energies of the two phases 
must be identical, i.e. 

gs(B~, T) = gN(Bc, T) 

gN(O, T), 
(6.147) 

where the last relation holds if any magnetic behaviour of the normal state is neglected. 
Thus, from eqn. (6.146), 

(6.148) 

The superconducting state is therefore thermodynamically more stable than the normal 
state in zero field at temperatures below Tc. 

The difference in entropy per unit volume, D.s, between superconducting and normal 
states can be obtained from eqn. (6.148) using the relation s = -(ag/aT) valid at 
constant (e.g. zero) applied field (cf. eqn. (6.143)): 

I d(B~) 
SS-SN=---

2/Jo dT 
(6.149) 

At the superconducting transition temperature, Tc, D.s is zero since Be(Te) = 0 (see 
Fig. 6.27). Since an extensive thermodynamical variable (entropy) is continuous at 
the superconducting transition, it is a second-order phase transition. For T < Te, the 
gradient dBe/ dT is negative (Fig. 6.27) and hence the superconducting state has a lower 
entropy than the normal state, i.e. D.s < O-see Fig. 6.29. 

The heat capacity per unit volume is given by c = Tas/aT, and so from eqn. (6.149): 

. T d2(B2) 
D.c = Cs - CN = ___ c_ 

2/Jo dT2 

~ [B d
2 
Bc (dBe) 2] 

/Jo e dT2 + dT . 

(6.150) 

At Te, even for Bc = 0, there is therefore a discontinuous jump in D. c because 
(dBcldT)2 > O. These conclusions also hold for type-II superconductors but, because 
they show an incomplete Meissner effect, the above analysis is no longer valid. 

6.4.1.2 Electron pairing: the BCS model 

It is evident from the preceding thermodynamic discussion that the superconducting 
state of the electron sub-system is more ordered (i.e. has a lower entropy) than the 
normal metallic state at the same temperature. In other words, the free-electron gas is 
not the state with the lowest free energy below Tc (cf. eqn. (6.148)). This implies that 
there must exist an additional attractive interaction between electrons that can over
come the residual screened inter-electron repulsive interaction, in order for the super
conducting state of the electrons to become more ordered than a free-electron gas. One 
candidate for such an attractive inter-electron interaction is the electron-phonon (Froh
lich) interaction. 
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Fig. 6.29 Temperature dependence of the entropy of Al in the normal (N) and superconducting 
(S) states. Note that the entropies of both states are equal at Te, and the energy of the super
conducting state is the lower for T < Te. (After Kittel (1996). Reproduced by permission of John 
Wiley & Sons Inc.) 
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Fig. 6.30 The origin of the attractive electron-phonon interaction in solids. (a) Real-space 
picture, in which an electron causes a local polarization of the structure by attracting positive ions 
in its vicinity. A second electron is attracted to this region of higher ionic charge density which 
persists after the first electron has moved away. (b) Scattering picture, in which a virtual phonon 
is exchanged between two electrons, causing them to be scattered from states kl to Ie~, and k2 to 
Ie;, respectively. 

The physical origin of the attractive electron-phonon interaction can be understood 
by reference to Fig. 6.30. An electron will cause a local polarization of a material by 
attracting positive ions in its vicinity, and consequently will leave a trail of such a lattice 
distortion behind it as the electron moves through the material. The associated local 
increase in positive-ion density will have an attractive influence for another electron 
moving in the vicinity, resulting in an effective weak attractive interaction between the 
two electrons. This interaction· is retarded because of the very different time-scales 
associated with electronic and ionic motion: the lattice deformation correspondingly 
reaches a maximum at a distance behind the first electron of 

27f 
d~vF-, 

WD 
(6.151) 

where VF is the velocity of electrons at the Fermi energy cgF and the Debye frequency WD 

(eqn. (4.25» is a measure of the time response of the ionic sub-system. Since 
VF ~ 2 X 106 m s-' (for cgF ~ 10 eV - see Table 5.1) and WD ~ 5 X 1013 s-' (values 
appropriate for AI), eqn. (6.151) implies that the average separation of electron pairs 
mutually attracted by the electron-phonon interaction is d ~ 2.5 x 1O-7m 2500 A. At 
such large separations, the Coulomb repulsion between the electrons is completely 
screened (§5.6.1). 

This electron-phonon interaction can also be viewed from the standpoint of electron 
scattering. An electron in a crystal scatters from a state with wavevector k, to another 
with wavevector k~ by emitting a phonon with wavevector q (§6.3.1.3). A second 
electron can absorb this phonon and correspondingly be scattered from state k2 to k~. 
Thus, by conservation of crystal momentum: 

kl = k'l +q, 

k2+q=k~, 
and hence, by eliminating q between these two equations, 

k, + k2 = k', + k~ == ko. 

(6.152a) 

(6.152b) 

(6.153) 

Note that, although crystal momentum is conserved for the individual phonon emission! 
absorption processes (eqns. (6.152», energy need not be conserved (although it must be 
conserved for the overall scattering process, eqn. (6.153»: a virtual phonon can be 
emitted and absorbed within a very short time that complies with the Heisenberg 
energy-time uncertainty relation. 

The restriction set by eqn. (6.153) on possible scattering events between two electrons 
added to a Fermi gas of electrons and which, therefore, occupy states with energy cg > cgF 

at T = 0 K, is illustrated graphically in Fig. 6.31a. States in k-space that can interact are 
restricted by the Pauli exclusion principle to a shell of width ok corresponding to electron 
energies between cgF and cgF + liWD, and eqn. (6.153) is satisfied for two overlapping 
Fermi spheres whose centres are separated by ko, with the intersections between the 
spherical shells giving the allowed k-states involved in the electron-scattering events. 
The number of such allowed states is maximized, as is correspondingly the strength of the 
virtual-phon on-mediated attractive electron-electron interaction, when ko = 0 or 
kl = -k2 (Fig. 6.31 b). Such pairs of electron states with kl = -k2 are called Cooper 
pairs. Cooper first showed that two electrons, interacting via any attractive potential, 
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(a) (b) 

Fig. 6.31 (a) Geometric illustration in reciprocal space of the condition for virtual-phonon 
exchange between two electrons satisfying the condition kl + k2 = ~ + 14 = ko. Two spherical 
shells, of radius kF and thickness ok, and whose centres are separated by ko, intersect where the 
crystal-momentum conservation law is satisfied, The number of pairs of electrons with kl' k2 is 
proportional to the volume of intersection between the two spheres. (b) The condition for the 
maximum number of pairs of electrons, kl' k2' and hence the maximum phonon-mediated 
attractive electron-electron interaction, is when the· two spheres in (a) coincide, i.e. when 
ko = 0, or kl = k 2. The interaction potential is assumed, in the BCS model, to be constant 
(= -~o) in the shaded region of reciprocal space, i.e. between shells with energies 'jgF ±liwo. 
For the case of only a single electron pair added to an electron distribution (Cooper pairing), only 
the states with 'jg > 'jgF are considered. 

when added to a sea of electrons have a binding energy that is less than 2cgF; i.e. the 
ground state of the non-interacting Fermi gas is unstable to attractive electron-electron 
interactions (see Problem 6.15). This situation is markedly different from that for two 
isolated particles (e.g. in vacuo), where a minimum attractive potential is necessary to 
bind the pair. 

The two-electron wavefunction corresponding to a stationary Cooper pair can be 
written as the product of two plane-wave states: 

¢(Yl Y2) = {_l_ eikl'rl } {_l_ eikr1'2} = ~ eik.(rl-r2) 
, Vl/2 Vl/2 V ' (6.154) 

where V is the normalization volume for the wavefunction and k = kl = -k2' A general 
expression for the two-particle wavefunction can be written as 

¢(Yl - Y2) = ~ 2:p(k)eik.(rl -r2 ), 

V k 
(6.155) 

where lP(k) 12 is the probability of there being one electron in state k and another in state 
. -k. If the wavefunction is spherically symmetric, i.e. ¢(Yl, Y2) = ¢(IYl Y21), so that the 
Cooper pair has no orbital angular momentum (or equivalently p(k) = p(k)) , as is the 
case for 'conventional' superconductors (but probably not for high-Tc and heavy
fermion (4f- or 5f-containing) superconductors), it is correspondingly symmetric 

nder interchange of rl and 1"2. A total wavefunction that is antisymmetric 
~nder interchange of the two electrons (as required for fermions) can be generated 
by combining the symmetric spatial part with a spin w~vefunction X(SI, S2) 
having an antisymmetric combinati~n of the electron SpInS Sl and S2, i.e. 

) s=o 
X(SI, S2 = Xodd' or 

1>(1,2) = ¢(Irl - r21)(a(I),6(2) - ,6(1)a(2))jh. (6.156) 

Thus, the Cooper pair in this model is a spin-singlet state (S = 0), viz. (kr, -k1), with 
spherically symmetric (i.e. s-state) orbital angular momentum; it exhibits s-state pairing. 

Other combinations are also possible in non-conventional superconductors. For the 
spin-singlet case, d-state pairing is also compatib~e, for ~h~ch ¢even (~I' r2) . ¢ev~n (r2.' rl) 
too; in this case, the spatial part of the wavefunctlOn exhIbIts nodes In certaIn dlrectlOns 
in real or reciprocal space. In principle, spin-triplet states (S 1) are also permissible, 
for which the spin part of the wave function X(SI, S2) now has the form 
a(1)a(2),,6(1),6(2), or [a(1),6(2) +a(2),6(I)]/V2, and ¢(rl,r2) must be antisymmetric, 
i.e. ¢odd(rl,r2) = -¢odd(r2,rJ); thus, one has p-state (or f-state) pairing. It appears that 
d-state pairing might be prevalent in high-Tc materials (§6.4.3). 

Although the virtual-phon on-mediated attractive electron-electron interaction, and 
the consequent formation of isolated Cooper pairs, is central to an understanding of the 
behaviour of conventional (s-state) superconductors, this does not represent the 
complete picture. A quantitative theory for the mechanism of superconductivity was 
provided in 1957 by Bardeen, Cooper and Schrieffer (BCS). The mathematical 
development of this theory is beyond the level of this book (see e.g. Tinkham (1996) 
for more detail), but the qualitative results of the theory are relatively easy to under
stand. The BCS theory asserts that, at T < Tc , many electrons form Cooper pairs, 
thereby lowering the electron energy below that of the non-interacting Fermi-gas 
ground state: at T = 0 K, all electrons form Cooper pairs. The superconducting state 
is a many- body state, in which cooperativity plays an essential role. The wavefunction 
of this BCS state for n electrons can be written in analogy to the single-pair Cooper state 
(eqn. (6.156)) as 

q':>TOT=P{1>(1,2)1>(3,4) ... 1>(n l,n)}, (6.157) 

where P is an antisymmetrization operator for interchange of any two electrons. 
It might appear that the BCS superconducting state could equally well be regarded as 

a Bose-Einstein condensation of Cooper pairs (each of which, because it consists of two 
spin- ~ fermions, behaves as an integral-spin boson). However, .this picture is not 
strictly accurate since the phenomenon of a Bose-Einstein condensation of bosons 
into a single ground state is only valid for non-interacting :rarticles. As we have seen, 
since the size of the Cooper pairs is so very large (c:= 1000 A - see eqn. (6.151)), and 
consequently the centres of about 106 other pairs are to be found in the volume of a 
single Cooper pair, there is a very strong overlap between different Cooper pairs in the 
superconducting condensate. Even though all Cooper pairs reside in the same quantum 
state, with the same energy, at T 0 K, the situation is a dynamical one: individual 
electrons in the pairs are continuously scattered between single-electron states with 
crystal momenta in the range (see Fig. 6.31b and Problem 6.16): 

(6.158) 
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Fig.6.32 Isotope effect for the superconducting transition temperature in Sn. (After Ibach and 
Liith (1995), Solid State Physics, p. 245, Fig. 10.15, © Springer-Verlag GmbH & Co. KG) 

The BCS model predicts (see e.g. Ibach and Liith (1995) for a relatively simple 
derivation) that the superconducting transition temperature, Te, should have the fol
lowing form: 

kBTe = 1. 14nwDe-I/flog('0F) , (6.159) 

where l'o is the electron-phonon interaction strength (Problem 6.15). The linear pro
portionality between Te and WD in this expression, resulting from the proposed phonon
mediated mechanism for superconductivity, implies that an isotope effect for Te should 
be observed: the transition temperature should scale with isotopic mass M of the 
superconductor as Te ex: M-I/2. This predicted behaviour is borne out in the results 
for Hg and for Sn (Fig. 6.32), although the exact inverse square-root dependence is not 
found for other materials (e.g. Mg or Nb3Sn), where the exponent is 0.1-0.3, rather than 
0.5. These discrepancies are not too surprising in view of the gross simplifications made 
in the BCS theory (e.g. constant matrix element l'kk" spherical Fermi surface etc.). 

6.4.1.3 The superconducting gap 

The BCS ground state at T = 0 K, consisting of Cooper pairs in the same quantum 
state, marks a complete breakdown of the independent, one-electron picture. In order to 
access the first excited state above the ground state, involving 'normal' unpaired 
electrons, a Cooper pair must be broken up by some external means (e.g. thermal or 
optical). Since the binding energy must be provided, a minimum energy of 2.6. must be 
supplied to split up a Cooper pair: there is, therefore, an energy gap of .6. between the 
BCS ground state at T = 0 K (all Cooper pairs in the same quantum level) and the first 
allowed one-electron state (Fig. 6.33a). Alternatively, there is an excitation gap of2.6. in 
the electronic density of states, centred at '"(gF: electron states that, in the normal metallic 
state, would reside in the energy range '"(gF ± .6. are pushed out in the superconducting 
state, as shown in Fig. 6.33b. The superconducting density of states, in the vicinity of the 
gap, is given by 

BCS Ground 
state 

(a) (b) 

L--r 
I 
I 

~(O) 

Fig.6.33 (a) Illustration of the energy gap ~(O) in the excitation spectrum at T = 0 K between 
the BCS ground state and the one-electron states of excited free electrons. (b) The density of 
states in the superconducting state showing the energy gap 2~(O) necessary to break up a Cooper 
at T = 0 K. (Note the exaggerated energy scale: ~ is of the order of a few meV, but 'if5 F is of the 
order of several eV.) 

gs('"(g) = g('"(gF) ('"(g2 _ .6.2~I/2 . (6.160) 

This function is singular at '"(g = ±6., but reverts to the normal one-electron form at 
energies well away from the gap. 

The BCS expression for the gap energy at T 0 K is 

. nWD 
.6.(0) = sinh[1 /~og('"(gF)] (6.161) 

~ 2nwDe-I/flOg('0F), 

where the approximate expression is valid for weak coupling, i.e. l'og('"(gF) « 1. For 
weakly coupled superconductors, typically l'Og('"(gF) ~ 0.2. Strongly coupled supercon
ductors (e.g. Pb, Hg, Nb), on the other hand, are those materials in which the ratio of 
the superconducting p?-iring energy to the phonon energy, 2.6./nwD, is larger (see Table 
6.4). Values of .6.(0) for conventional superconductors are in the range 0.2-3 meV, very 
much smaller than '"(gF (typically several eV), i.e. 6.(0) ~ W-4'"(gF. (Note the similarity 
between eqn. (6.161) and the expression for the binding energy of a 'single Cooper pair 
- eqn. (6) of Problem 6.15.) The functional form of the expression for the super
conducting gap .6.(0) (eqn. (6.161)) is identical to that for the superconducting transition 
temperature, Te (eqn. (6.159)): thus, in the BCS theory 6.(0) and Te are related in a 
parameter-free way: 

(6.162) 

This relation is satisfied for many elemental and alloy conventional superconductors 
(see Table 6.4). 

As the temperature is increased above zero, an increasing number of Cooper pairs 
are broken up until, at Te, no Cooper pairs remain and all electrons are in the 
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Table 6.4 Parameters for some elemental superconductors 

Metals !:.l.(O)lkBTc l10g("gF) BD(K) 

AI 1.7 0.18 375 
Cd 1.6 0.18 164 
Hg 2.3 0.35 70 
In 1.8 0.29 109 
Pb 2.15 0.39 96 
Sn 1.75 0.25 195 
TI 1.8 0.27 100 
Zn 1.6 0.18 235 

60(0) is the superconducting energy gap at T = 0 K; Tc is the . 
superconducting transition temperature; fJo is the strength of the attractIve 
electron-phonon interaction; g('&r) is the density of states at the Fermi 
level; BD is the Debye temperature. (After Ibach and Lilth (1995), Solid 
State Physics, p. 245, Table 10.1, © Springer-Verlag GmbH & Co. KG) 

normal, unpaired state. Correspondingly, the supercoriducting energy gap b",(T) 
decreases to zero at T = Tc: just below Tc, the temperature dependence can be approx
imated as 

(6.163) 

where A is a constant. The experimental results for b",(T) for three elemental super
conductors (obtained from tunnelling experiments - see §6.4.2.3) are shown in 
Fig. 6.34; the agreement with the BCS prediction is very impressive. 
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Fig. 6.34 Experimentally measured data for the temperature dependence of the superconducting 
gap !:.l.(T) (from tunnelling experiments) for three elemental superconductors (0, In; 6., Sn;., Pb), 
normalized to the zero-kelvin value, !:.l.(0), plotted against reduced temperature, T ITc. The dashed 
curve is the BCS prediction. (After Giaever and Megerle (1961). Reprinted with permission from 
Phys. Rev. 122, 1101. © 1961. The American Physical Society) 

It should be noted that the energy gap in superconductors is of a completely different 
nature and origin than that in semiconductors or insulators (§5.2.5). In the latter case, 

the gap is between allowed one-electron states and is due to the electron-lattice inter
action. In the former case, the gap is between paired (superconducting) states and one
electron (normal) states, and the interaction is between the electrons themselves. 
Moreover, the gap in superconductors is very strongly temperature-dependent, 
decreasing to zero as the critical temperature is approached from below, whereas the 
gap for an insulator never vanishes although it does decrease slightly with increasing 
temperature. 

The superconducting gap can be probed optically. Photons with energies less than the 
gap, i.e. liw < 2b"" are not absorbed by a superconductor and are reflected from its 
surface, whereas photons with energy liw 2: 2b", can break up Cooper pairs and are 
consequently absorbed. Since the superconducting gaps are of the order of a few meV, 
far-IR or microwave radiation can be used as a probe. The differences in IR reflectivity 
of three elements between superconducting and normal states (the latter achieved by 
applying a magnetic field greater than Be) are shown in Fig. 6.35: a sharp change in 
reflectivity occurs at liw 2b", when the photons are absorbed by the materials in the 
superconducting state. 

The superconducting gap is also responsible for the non-linear temperature depend
ence of the heat capacity, cs, of the superconducting state evident in Fig. 6.28: the fact 
that the excited levels are separated by an energy gap b", (Fig. 6.33a) means that Cs 
depends ~ffectively exponentially on temperature via 

(6.164) 

where 'Y is the coefficient of the linearly temperature-dependent electronic heat capacity 
per unit volume in the normal state (eqn. (5.36». (The quantity b"" rather than the gap 
energy 2b"" appears in eqn. (6.164) because the heat capacity is related to single-particle 
excitations.) At the critical temperature Tc, the discontinuity in heat capacities between 
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Fig. 6.35 Reflectivity difference between superconducting (S) and normal (N) states at 1.4 K of 
three elemental superconductors, where [S,N is the intensity of radiation multiply reflected in a 
cavity of the material in Sand N states. (After Richards and Tinkham (1960). Reprinted with 
permission from Phys. Rev. 119, 575. © 1960. The American Physical Society) 



normal and superconducting states (Fig. 6.28) can be expressed in parameter-free form 
in the BCS model as 

(6.165) 

6.4.2 Electron dynamics 

One of the main distinguishing features of a superconductor. is. the zero d.c .. re~is~ivity 
(infinite conductivity) at temp~ratures belo~ Te. (The other dIst~nc~ characterIstIc IS the 
Meissner effect, i.e. tht< expulsIOn of magnetIc flux from a materIal m the.s~pe~co~duct
ing state - see §7.2.3.3.) The existence of Coo~er p~irs .of electrons, partIcipatmg m the 
many-body BCS ground state, naturally expl~ms thIS hIg~ly unusual electron~transport 
behaviour. In addition, the quantum- mechamcal tunnellIng of electrons, part~cularly ~s 
Cooper pairs, between two superconductors is qualitatively completely .dlfferent m 
behaviour from that found for normal metals because of t.he macroscopIC extent of 
the coherence of the superconducting (BCS)-state wave functIOn (§6.4.2.3). 

6.4.2.1 Supercurrents 

An electrical current induced in a ring of superconducting ma~erial, e.g. b~ magnetic 
. d tI'on decays immeasurably slowly; estimates for the decay tIme made usmg nuclear m uc , 5 d' 
magnetic resonance experiments are of the order of at least 10 years, correspon mg to 
the resistivity of the superconducting state being less than p rv 10-25nm (cf. the room
temperature resistivity of pure metallic Cu of p rv lO-8nm). Such currents are termed 
persistent currents or supercurrents. 

The reason for the existence of supercurrents can be understood as follows. One 
proach is in terms of the Cooper pairs of electrons that carry the supercurrent and the 

~acroscopic coherent quantum state that such pairs OCCU?y. Since the BCS groun.d 
tate consists of Cooper pairs all having the same wavefunctIOn (eqn. (6.157)), each paIr 
~f which requires an energy equal to 2L). to un pair the two. electrons and he~ce cause ~ 
change in electron state, it is evident that elastic scatterIng of Cooper paIrs .by, fOI 

pIe defects (§6.3.1.2) will not perturb the condensate, and hence not contrIbute to exam , d" fi . 
the electrical resistivity. In principle, inelastic scattering ~ve.nts coul gl.ve rIse to a Imte 
resistivity. Examples of such events involve. phonon. emISSIon/absorptIOn and the ~on
comitant creation/destruction of Cooper pairs from/mto. normal electrons, ~espectIvely 
(Fig. 6.36); such creation and destructio? of ~~op.er paIr.s takes place contmuously.at 
finite temperatures « Te) since a dynamIC eqUIlIbrIum eXIsts between the ~oo~er pairs 
and normal electrons. However, Cooper pairs created by processes such as m FIg. 6.36b 
have the same wave function as the pre-existing pairs: unless they have the. same centre
of-mass momentum, their binding energy is zero. Thus, under n~rmal cI~cums~ances, 
even inelastic scattering processes such as in Fig. 6.36b do not pr~vlde a fimte reSIstance 
to the Cooper-pair supercurrent. Only processes that affect all paIrs equally (such as ~he 
application of an electric field), i.e. that change the coherent many-body wa~efunctIOn 
of the condensate, can alter the current. In this sense the overal~ wavefu~ctIOn of the 
condensate behaves as if it were 'rigid'; that is, it cannot vary spatIally and IS unaffected 
by a (weak) magnetic field. 

Cooper 
pair 

(a) 

Two normal 
electrons 

(b) 

FiO'. 6.36 Illustration of inelastic scattering processes involving Cooper pairs in a supercurrent: 
(a) phonon absorption, leading to the destruction of a Cooper pair and the creation of two 
normal electrons; (b) phonon emission, leading to the creation of a Cooper pair from two 
normal electrons. 

An alternative viewpoint on the reason for persistent currents is in terms of the 
magnetic flux generated by the supercurrent carried by say a superconducting ring. 
Such flux is quantized in units of the quantity (the flux quantum) 
h/2e = 2.07 x lO-15T m2 (see §7.2.3.3), and hence the generating supercurrent can 
only decay by discontinuous amounts corresponding to a change of magnetic flux of 
at least one flux quantum. Th~ energy barrier to a thermal fluctuation that causes the 
superconducting material to become momentarily normal, and hence able to allow the 
escape of a flux quantum, is prohibitively high since it involves the destruction of the 
Cooper pairs involving the pair-breaking energy 2L}.. 

At temperatures in the range 0 < T < Te, where thermally generated normal elec
trons coexist with supe'rconducting electrons (Cooper pairs), although the normal
electron current is resisted by the electron-scattering mechanisms operative in metals 
(§6.3.l), the supercurrent associated with the motion of the Cooper pairs shorts out the 
normal current flowing in parallel, and hence the superconductor as a whole retains its 
zero-resistance state until Te. 

Cooper pairs in the BCS condensate all have the same wavefundion (eqn. (6.154», 
and hence the entire superconducting condensate is described by this wavefunction. In a 
current-carrying state, the wavefunction is a function of only two spatial variables 
involving the individual electrons of a pair, rl and 1'2, namely the separation, 
r = 1'1 - 1'2 (as in eqn. (6.155) for the stationary Cooper pair) and the centre-of-mass 
position R = (1'1 + 1'2)/2. Neglecting details of the relative motion of the Cooper pairs, 
the condensate can therefore be characterized by the Ginzberg-Landau order parameter 
'lj;(R) , which is related to the wave function of the Cooper pairs at rest, ¢(r) (eqn. 
(6.155»), via 

(6.166) 



where K is the net wavevector of a Cooper pair having charge -2e and mass 2me (see 
Problem 6.17). 

The current density in the presence of a magnetic field B associated with this order-
parameter wavefunction for Cooper pairs is given by the expression (see Problem6.18): 

j(R) = ine ('l/J*\l'l/J 'l/J\1'l/J*) - 2t?- 'l/J*'l/JA, (6.167) 
2me me 

where A is the magnetic vector potential and B = curl A. Insertion of the wavefunction 
of eqn. (6.166), generalized to 

(6.l68) 

where 1¢(r)12 = I1s/2, the concentration of Cooper pairs, into eqn. (6.167) gives for the 

current density 

j= (6.169) 

In the gauge A = 0 (valid deep inside a type-I superconductor wher~ the Meissner effect 
is complete, i.e. B = 0), and with the phase factor f) K· R as m eqn. (6.166), the 
current density is given by 

j = _ I1sen K. (6.170) 
2me 

Taking the curl of both sides of eqn. (6.167), with eqn. (6.168) substituted, gives the 
London equation (see also Problem 6.19): 

curlj (6.171) 

assuming that the Cooper-pair concentr.ation is spatially homogen~ous (i.e. that t~e 
wavefunction is rigid) and because o'f the identity \1 x \1f) O. Takmg the curl agam 
of both sides of eqn. (6.171), and utilizing the fact that curl curl 
j == \1 x \1 x j \1 (div j) - \12} and div j = 0, together with the Maxwell relation 

j = curl B/ J.Lo (6.172) 

gives an expression for determining the spatial variation of the supercurrent: 

I1se2
• \l2j J.Lo-j. (6.173) 

me 

In the case of a semi-infinite geometry for the superconductor (Fig. 6.37) where 
j = j(x)z, the one-dimensional form of eqn. (6.l73) becomes 

(6.174) 

with solution 

(6.175) 

j=j:c-----

Vacuum 

Fig.6.37 The exponential decrease of the supercurrent into the bulk of a superconductor away 
from the surface predicted by the London equation. The direction of the current density is in the 
direction normal to the page (i). 

where the London penetration depth is given by 

AL= (~)1/2 (6.176) 
J.L011se2 

Thus, the supercurrent is confined to the free surface and decays exponentially into 
the bulk of the superconductor. Note that the magnetic flux density also decays into a 
superconductor from the surface in exactly the same manner (§7.2.3.3); thus, the 
Meissner effect is complete in.a (type-I) superconductor only at depths much greater 
than AL. At T = 0 K, when all electrons are superconducting, i.e. ns = 12, the conduc
tion-electron density of the metal, eqn. (6.176) gives a value for the London penetration 
depth of AL ~ 170 A for I1s = 1029 m-3. Note that eqn. (6.176) implies that the London 
penetration depth should diverge as T approaches Te from below, since ns --t O. This is 
in accord with experience: at Te , the Meissner effect vanishes (i.e. an applied magnetic 
field uniformly penetrates the material) and the electrical current also be.comes uniform 
throughout the material in the normal state. 

The London penetration depth is one spatial quantity that is characteristic of a 
superconductor. Another such quantity is the coherence ·length ,(0, which can be 
regarded as a measure of the extent of the Cooper-pair wavefunction, or alternatively 
as the distance over which the wavefunction can vary without incurring an appreciable 
increase in energy. This can be estimated by an argument based on Heisenberg'S 
uncertainty principle. The one-particle electron wavefunctions that constitute the 
Cooper pairs originate only from a region in energy of approximately ±.6.. around the 
Fermi level 'ifS F, where the one-particle occupancy in the superconducting state is 
appreciably different from that of a metal in the normal state (Fig. 6.38). Thus, from 
this energy uncertainty, one can calculate the corresponding uncertainty in momentum: 

(6.177) 
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Fig. 6.38 The BCS occupation probability at T = 0 K for Cooper pairs in the region of the 
Fermi energy 'gF, taken to be zero on the energy scale (solid line). Note that this is very similar to 
the Fermi-Dirac distribution function for normal electrons, but at a temperature T = Tc (dashed 
line). 

where PF is the value of the electron momentum at the Fermi level. Using the Heisen
berg uncertainty relation, Ox ~ Ii/op, gives 

IivF cgF 
(0 = ox ~ 2.6. == kF.6. . 

A similar result emerges from the BCS theory: 

IivF 
(BCS = 7r.6. . 

(6.178) 

(6.179) 

Typical values of the coherence depth are of the order of 103 104 A, consistent with 
the previous estimation of the size of a Cooper pair using eqn. (6.151). 

In practice, particularly for alloys, the measured (magnetic) penetration depth Am is 
often much larger than AL (eqn. (6.176» and dependent on impurity content. This 
behaviour can be understood in terms of a non-local picture of the electrodynamics 
where, instead of the electric current density j at a point r depending on the vector 
potential A at that point (cf. eqn. (6.169)), instead it depends on the vector potential 
averaged over a volume determined by the effective coherence length (eff. For a pure 
material, this is given by (BCS (eqn. (6.179», but for impure materials, with a corres
pondingly high degree of impurity scattering of electrons leading to a short normal
electron mean-free path A, it is A that determines the length scale for the variation of A, 
and in such a case the effective coherence length is given by a relation of the form 

1/(eff = 1/(BCS + 1/ A. (6.180) 

In the so-called dirty limit, where the behaviour is controlled by impurities, 
(eff ~ A « (BCS. Only for the case where (BCS « AL is the magnetic penetration depth 
Am equal to the London penetration depth AL; otherwise, e.g. for dirty superconductors, 
Am ~ AL. 

The ·Ginzberg-Landau parameter, which is the ratio of the penetration depth to the 
coherence length, i.e. 

(6.181) 

is important since it allows a numerical distinction to be drawn between type-I and type
II superconductors (see §§. 6.4 and 7.2.3.3). Type-I superconductors are characterized 
by fi:GL « 1 (e.g. for elemental superconductors, A ~ 500 A and (~ 5000 A), whereas 
type-II superconductors (e.g. alloys;md high-Te (oxide) superconductors) have 
/1;GL ~ 1. 

6.4.2.2 Thermal behaviour 

In normal metals, heat transport is carried predominantly by the electrons (§6.3.2.2). 
However, at T = OK, in a superconductor all electrons form Cooper pairs which are in 
the same quantum state. As a consequence, the entropy associated with such a con
densate is zero (Fig. 6.29). Since the Cooper pairs can carry no entropy, they cannot 
contribute to the electronic thermal conductivity fi:T which therefore goes to zero as 
T -t 0 K (Fig. 6.39). Superconductors can therefore be used as a thermal switch: 
operated at a temperature well below Te, a superconductor acts as a thermal insulator, 
but conducts heat well if driven into the normal state by the application of a magnetic 
field in excess of the critical field, Be. 

Since electrons in Cooper pairs carry no entropy (or heat), the Peltier coefficient II 
(eqn. (6.103» associated with a supercurrent must be zero, as must the thermopower ST 
(eqn. (6.96», At temperatures below Te, any thermal effects in superconductors are 
therefore only associated with the normal electrons present or the phonons. 

6.4.2.3 Electron tunnelling 

Quantum particles can pass from one classically allowed region (a potential well) to 
another through a classically forbidden region (a potential barrier), as long as the 
barrier is low and narrow enough. This process is known as quantum-mechanical 
tunnelling, and depends on there being an appreciable overlap of the particle wavefunc
tion between the two wells in the classically forbidden region. 

0.8 
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Fig. 6.39 Ratio of the electronic contribution to the thermal conductivity of Al in the super
conducting state (4) to the normal state (n;~) as a function of reduced temperature, T /Tc. The 
prediction from the BCS theory is given by the solid curve. (After Satterthwaite (1962). Reprinted 
with permission from Phys. Rev. 125,873. © 1962. The American Physical Society) 
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Fig. 6.40 Schematic illustrations of the density of states (occupied states being shown hatched) 
for two metals separated by a thin electrically insulating layer with zero and a finite applied 
voltage, V. Also shown is the corresponding tunnelling-current I-V characteristic. (a) Two 
normal metals, exhibiting an Ohmic tunnelling current-voltage characteristic. (b) A normal 
metal (2) and a superconducting metal (1) in a tunnel junction. The I-V characteristic is non
Ohmic at low voltages, exhibiting a threshold at V 6./ e. 

An example of this phenomenon is the tunnelling of electrons between two metals 
separated by a thin electrically insulating layer, made by oxidizing a thin (10-20 A) layer 
on one metal before depositing another on top in thin-film form. In the case of 
dissimilar metals, a tunnelling current of electrons will flow from the metal with the 
lower work function (i.e. higher initial absolute chemical potential or Fermi energy 
relative to the vacuum level) to the other until the Fermi levels in the two materials 
equalize. For the case of two identical normal metals, there is no net current in the 
absence of an applied electric field (Fig. 6.40a). If an electrostatic potential difference V 
is applied across the metal-insulator-metal system (where the metals are identical), then 
the Fermi energy of one metal (2) is raised above that of the other (1); in such a case, it is 
the electrochemical potential rJ (eqn. (6.86)) that is constant throughout the system. As a 
result, a tunnelling current will flow from metal 2 to metal I, and the magnitude of this 
current will increase linearly with the relative displacement of the two Fermi levels (since 
this is proportional to the number of available empty states in metal 1 to which electrons 
from metal 2 may tunnel); hence Ohm's law is satisfied, I <X V (Fig. 6.40a). 

However, the situation for single-electron tunnelling is very different if one of the 
metals involved in the junction is. a superconductor at a temperature below Tc (Fig. 
6.40b). As seen before (Fig. 6.33b), in the superconducting state there is a gap of 2.6., 
centred at the Fermi energy, separating occupied, paired electron states and single-

particle excitations. Thus, with zero applied potential difference, there is no single
electron tunnelling: electrons in the normal metal at '"&F have no states in the super
conducting gap of the superconductor to which they can tunnel and, at T = 0 K, there 
are no unpaired electrons in the superyonductor able to tunnel to the normal metal. If a 
voltage is applied which raises the Fermi level of the normal metal relative to that of the 
superconductor, Giaever tunnelling of single electrons can occur when the Felmi level 
of the normal metal lies above the gap in the superconductor (Fig. 6.40b). As a result, 
there is a sharp threshold in the current-voltage characteristic at a voltage V = .6./ e 
(Fig. 6.40b), and this experiment provides an accurate method of obtaining values for 
superconducting energy gaps. At temperatures between zero and Te, an increasing 
number of unpaired normal electrons occupy states above the gap in the superconduct
ing density of states; these can tunnel into empty states above '"&F in the normal metal 
and this causes the tail in the tunnelling current below the threshold voltage at finite 
temperatures below Te (see also Problem 6.21). 

Very different behaviour is observed for the tunnelling of superconducting 
electron (Cooper) pairs between two superconductors, separated by a very thin insulat
ing layer (a Josephson junction), as a result of the macroscopic coherence of the 
condensate quantum state. This behaviour is referred to as Josephson tunnelling. Two 
types of phenomena can be distinguished. The d.c. Josephson effect is the occurrence of 
a d.c. tunnelling current between two superconductors across a tunnel junction in the 
absence of an external electric or magnetic field. The a.c. Josephson effect is the 
production of high-frequency (radio-frequency, r.f.) oscillations in the pair tunnelling 
current when a d.c. voltage is applied to the Josephson junction. Alternatively, an r.f. 
voltage applied together with the d.c. voltage causes a d.c. current to flow across the 
junction. 

Consider two isolated identical superconductors 1, 2 at the same tem.p~rature. 
The Ginzberg-Landau order .parameters (eqn. (6.168)) are 'l/JI = (115/2)1/-e1B1 and 
'l/J2 (115/2) 1/2eifh , and these are assumed to be spatially uniform in each material. 
Although the magnitude of the wavefunction is the same (115/2) in each case because 
the temperatures are identical, the phases need not be the same. If the two super
conductors are weakly coupled, e.g. via tunnelling through a thin intervening barrier 
(or simply a constriction' between the two superconductors), it is possible to sustain a 
phase difference between the superconductors by the passage of a current through the 
junction or the application of an external voltage - such a situation is termed a weak 
link. (In the case of strong coupling, the phases of the two condensates becoqle 
irretrievably locked, 81 = 82, and cannot be perturbed.) 

The behaviour of the superconducting order parameter in the vidnity of a tunnel 
junction is shown schematically in Fig. 6.41: each order parameter decays exponentially, 
with decay constant n, into the insulating layer. For a barrier of thickness I with edges at 
x = ±1/2, the order parameter at a position x within the barrier can be simply written as 
the sum of the two tunnelling contributions at that point, i.e. 

(6.182) 

The supercurrent density across the junction can be evaluated using eqn. (6.167) in the 
absence of a magnetic field (A = 0), i.e. 
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Fig. 6.41 Schematic illustration of the variation of the superconducting order parameter 'IjJ in the 
vicinity of a Josephson junction, formed from two identical superconductors at the same tem
perature separated by a thin insulating barrier layer. The exponential decay of'IjJ in the barrier is 
due to tunnelling of Cooper pairs. 

j 

where the maximum electron-pair current density is given by 

. liens -at }o = --ae 
me 

(6.183) 

(6.184) 

and 5 = B2 - BI is the phase difference between the two components of the Josephson 
junction. The d.c. Josephson current is maximized, j = jo, when the phase1:lifference is 
5 = 7r/2. 

o 0 2 
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Fig.6.42 Current-voltage curve for a Pb-PbO-Pb Josephson junction at 1.2 K showing the d.c. 
Josephson effect (the current spike at zero voltage). The threshold in the current at a finite voltage 
Vc is due to the onset of tunnelling of normal electrons when Vc = 2tije. (After Langenburg et al. 
(1966), Proc. IEEE 54,560. © 1966 IEEE) . 

This behaviour is shown in Fig. 6.42 for a Josephson junction made of super conduct
ing Pb: the current spike at zero voltage is the d.c. Josephson current. The threshold in 
the d.c. current occurring at a finite voltage Vc in Fig. 6.41 is due to the tunnelling of 
normal electrons, and occurs when th~ electrons tunnelling through the barrier acquire 
enough energy from the potential drop to overcome the pair-binding energy of 26., i.e. 
when Vc = 26./ e. 

What is not evident in the d.c. response shown in Fig. 6.42 is the a.c. Josephson effect 
observed when a d.c. voltage is applied to the Josephson junction. The time evolution of 
a quantum state, e.g. as given by the superconducting order parameter '1/;, has the form 
'I/; ex exp(-icgt/li) (eqn. (5.55» where the energy cg here is the chemical potential jk of a 
Cooper pair. If jk = jk(t), the phase of the order parameter is correspondingly time-
dependent, B B(t), and hence 

oB 
Ii- = -jk. at ( 6.l85) 

The chemical potential in two superconductors separated by a weak link can be made 
different by the application of a d.c. voltage V across a Josephson junction, and hence 
from eqn. (6.185) 

(
oBI OB?) Ii ----=- =-jkl+jk2=2eV at at 

or 

05 
Ii at = -2eV. ( 6.186) 

Integrating this equation for constant V gives 

o = _ 2e Vt + 50, ( 6.187) 

where 00 == 5(t 0). Thus, the phase difference 5 B2 - BI varies linearly with time, 
and hence the current density (eqn. (6.183» becomes alternating in time: 

j = josin [00 - 2e;t] (6.l88) 

with a frequency 1/ = 2eV/h (e.g. 483.6 MHz for V 10jkV). Thus, the ratio of the 
applied d.c. voltage and the measured frequency is the flux quantum h/2e, and the a.c. 
Josephson effect can be used to measure this quantity very accurately. 

6.4.3 High-Tc superconductors 

Perhaps almost as surprising as the initial discovery of superconductivity (in Hg) by 
Kammerlingh Onnes in 1911 was the finding in 1986 by Bednorz and Muller that certain 
metallic oxide compounds became superconducting at critical temperatures well above 
the maximum value of Tc then believed to be possible (Tc = 23.2 K for Nb3Ge found in 
1972). The first high-Tc material discovered by Bednorz and Muller, namely 
(La2-xBax)Cu04 had Tc ~ 35 K for x ~ 0.l5, but in the intervening period different 



families of oxide compounds have been found that have even higher values of Tc: e.g. 
YBa2Cu30 7-0 (yBCO) with Tc = 92 K, BhSr2Ca2Cu301O (BSCCO) with Tc 110 K 
and ThBa2Ca2Cu301O (TBCCO) with Tc = 125 K. The record currently stands at 
Tc = 135 K for a member of yet another family, HgBa2Ca2CU30S+6 (HBCCO). Note 
that superconducting transition temperatures of these materials are considerably higher 
than the boiling temperature of liquid nitrogen (77 K), and hence do not require 
expensive liquid He as a refrigerant to transform them into the superconducting state. 
It is noteworthy also that these high-Tc materials are mostly all cuprates, whose 
structures comprise sheets with the chemical formula CU02; the exceptions are the 
bismuthate compounds BaPbo.75BiQ.2503 (Tc = 12 K) and (Bao.6Ko.4)Bi03(BKBO) 
with Tc = 30 K. Reviews of the properties of high-Tc superconductors can be found 
for instance in Burns (1992) and Tinkham (1996). 

Table 6.S Superconducting oxides and their superconducting transition 
temperatures 

Formula Te(K) n Notations 

(La2-xBax )CU04 35 1 La (11 = 1) 214 
(La2-xSrx )CU04 38 1 La (n = 1) 214 
(La2_xSrx)CaCu206 60 2 La (n 2) 

YBa2Cu30 7 92 2 Y123 YBCO 
YBa2CU40 g 80 2 Y124 
YBa4Cu70 14 40 2 Y247 

BhSr2Cu06 0-20 1 2-Bi (n = 1) Bi 2201 (BSCO) 
BhSr2CaCu20g 85 2 2-Bi (n = 2) Bi 2212 
Bi2Sr2Ca2Cu301O 110 3 2-Bi (Il = 3) Bi 2223 (BSCCO) 
TIBa2CuOs 0-50 1 I-TI (n = 1) TI1201 
TIBa2CaCu207 80 2 I-TI (n = 2) Tl1212 
TIBa2Ca2Cu30 9 110 3 I-TI (n = 3) TI 1223 
TIBa2Ca3Cu40 11 122 4 I-TI (n = 4) TI 1234 

ThBa2Cu06 0-80 1 2-TI (n = 1) TI2201 
T{zBa2CaCU20g 108 2 2-TI (/1 2) Tl2212 
ThBa2Ca2Cu301O 125 3 2-TI (n = 3) TI 2223 (TBCCO) 
HgBa2Cu04 94 1 I-Hg (n = 1) Hg (1201) 
HgBa2Ca2CU30g 135 3 I-Hg (n 3) Hg (1223) (HBCCO) 

BaPbo.7s Bio.2s0 3 12 BPBO 
(Bao.6 KoA)Bi03 30 BKBO 

(/1 is the number of immediately adjacent CU02 planes in the unit cell or the number of CU02 
planes in the unit cell.) Partly after Burns (1992). Reproduced by permission of Academic Press, 
Inc. 

A list of some high-Tc oxide materials with their corresponding transition tempera
tures is given in Table 6.5. It can be seen immediately that most of these materials are 
chemically (and hence structurally) very complex; matters are complicated even more by 
the fact that, in many cases, optimum superconducting behaviour is achieved for slightly 
non-stoichiometric oxygen compositions (e.g. as for YBCO and HBCCO). 

In certain cases, the atomic structure and, concomitantly, the electronic properties, 
depend crucially on the oxygen stoichiometry. An example is the much-studied YBCO 
system, YBa2Cu307-o, which is metallic and superconducting for 0 < ti ::; 0.7, and an 
insulator with antiferromagnetic ordering of the Cu electron spins (alternatively 
arranged in an antiparallel fashion - see §7.2.5.6) for ti > 0.7 (Fig. 6.43). 
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Fig. 6.43 Electronic 'phase diagram' for YBa2Cu307-6 (YBCO). For values of oxygen non
stoichiometry 8<0.7, the material has an orthorhombic structure and is a superconducting (S) 
metal; the variation of Tc with 8 is shown. For values of 8-;:::0.7, the material transforms into an 
electrical insulator with a tetragonal structure and antiferromagnetic (AF) ordering of the Cu 
spins; the variation of the Neel temperature, TN, below which the antiferromagnetic ordering 
takes place, as a function of 8 is also shown. (After Burns (1992). Reproduced by permission of 
Academic Press, Inc.) 
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Fig. 6.44 (a) Unit cell of YBa2Cu307-6. For the orthorhombic superconducting material 
(8 ~ 0),04 sites are occupied and 05 sites are unoccupied. For the tetragonal insulating com
pound (8 = 1) the 04 sites are also unoccupied. The Cu02-containing layers in the a - b plane are 
marked, as are the chains of linked CU02 square-planar units for 8 = O. (b) Unit cell of the cubic 
perovskite structure for a compound AB03 (e.g. CaTi03) for comparison. 
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Fig. 6.45 Representation of the antiferromagnetic ordering of the electron spins on the Cu
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ions in the CU02 layers in the insulating state ofYBa2Cu307-o(5;::O.7) 

The structure of YBa2CU307-t5 can be understood as an oxygen-deficient modifica
tion of the cubic perovskite (CaTi03) structure (see Fig. 6.44b), with about one-third of 
the oxygen sites missing and the unit cell tripled in the c-direction. The structural 
changes that occur for YBa2CU307-t5 as 0 is varied between 0 and 1 can be understood 
by reference to Fig. 6.44a. The composition YBa2Cu306(0 = 1) has the oxygen
atom sites 0 4 and 05 unfilled, and hence the structure is tetragonal 
(a = b =1= c; a = f3 = I = 90°-cf. Table 2.1). The square-planar Cu02layers are clearly 
evident in Fig. 6.44. In YBCO, the two CU02 layers per unit cell (n = 2) lying in the a- b 
plane are separated by y3+ ions. The formula YBa2Cu306 can be written in terms of 
formal charges on the ions as y3+ (Ba2+)z(Cu2+)zCu+ (02-)6: the two Cu2+ ions occupy 
the CU02 layers in the a-b plane and the Cu+ ion is two-fold coordinated along the c
direction in accordal!icewith the usual coordination for Cu+. Since Cu has the electronic 
configuration [Ar]3d104sl, Cu2+ ions (but not Cu+) have an unpaired electron spin 
(S = t); these spins order antiferromagnetically in the insulating state (0;::: 0.7)-see 
Fig. 6.45. 

As excess oxygen is added to YBa2Cu306 to form YBa2CU307-t5, the extra 0 atoms 
at first randomly occupy the sites 0 4 and 05 in Fig. 6.44, and hence the material retains 
its tetragonal symmetry. The additional electronegative 0 atoms act somewhat like 
acceptors in covalent semiconductors (see §6.5.2) and 'dope' the crystals by injecting 
excess holes (§6.2.2). These extra holes reside in states associated with the CU02 layers, 
but for 0> 0.7 the material remains an electrical insulator: both electron-electron 
interactions (§5.6.3) and electron-localization effects (§6.7) associated with the structural 
disorder of the oxygen sub-lattice may contribute to the insulating behaviour. At 
{; ~ 0.7, there is an insulator-metal transition associated with a change in crystal 
symmetry to an orthorhombic structure (a =1= b =1= c; a = f3 = I 90°): the excess 0 
atoms preferentially occupy the 04 sites, leading to Cu-O chains (or linked square
planar CU02 units) in the b-direction (see Fig. 6.44a). At the composition 0 = 0, the 
formula YBaZCu307 can be written in terms of formal ionic charges as either 
y3+(Ba2+h(Cuz+hCu3+(02-h or y3+(Ba2+h(Cuz+h(OZ-)60-, d~pending. on 
whether the extra holes are taken to be associated with the Cu atoms (m the chams) 

or, more likely, the oxygen atoms in the CuOz sheets. The metallic, orthorhombic 
structure is superconducting for 0:::; 0.4: the excess holes form the Cooper pairs respon
sible for the superconductivity. Holes are the charge carriers in all the cuprate high-Tc 
superconductors listed in Table 6.5. I;:lec!ron doping, giving electrons as the majority 
supercurrent charge carriers, is much less prevalent; it occurs e.g. in (Ln2_xCex)(Cu04), 
where the lanthanide ion Ln = Nd3+ (or Sm3+ or p?+) is replaced by Ce4+ ions 
(Tc = 24 K for x ~ 0.15). 

The Cu02layers are common to all the cuprate superconductors, and as the electrical 
conductivity is higher in the plane of these layers than normal to them, the electrical 
properties (in both the superconducting and normal states) of these materials are highly 
anisotropic. It is an empirical observation, and one that has been used systematically 
and successfully to create the highest-Tcsllperconductors, that Tc increases with an 
increasing number n of adjacent CuOz planes in the unit cell: the present record-holder, 
HBCCO or Hg(1223) with Tc = 135 K has n = 3 (Table 6.5). 

The field of high-Tc superconductivity based on cuprate materials is under intense 
research and, at the time of writing, the pairing mechanism underlying superconductiv
ity in these materials is still not fully understood. It appears that a conventional BCS 
mechanism based on electron-phonon interactions (§6.4.1.2), even with strong coupling, 
is insufficient to explain many features of these cuprate materials (although it is 
probably operative for the bismuthate materials (BKBO and BPBO-see Table 6.5), 
having a simple perovskite-like structure (Fig. 6.44b), which appear to be characterized 
by isotropic s-state pairing). Cuprate superconductors are differentiated from conven
tional superconductors by being characterized by apparent d-state pairing, as indicated, 
for example, by the temperature dependence of the penetration depth, ).,(T). An s-state 
pairing mechanism, which gives rise to a superconducting energy gap which is every
where finite (no nodes) over the Fermi surface, is predicted to have an exponential 
temperature dependence, ).,(T) ex: exp( -b./kBT), whereas if there are nodes (i.e. states 
in the overall gap) as would result from d-state pairing, the temperature dependence is 
expected instead to be a power law, )"(T) ex: (kBT / b.maxr, with n = 1 for line nodes; 
data for cuprate superconductors appear to fit better to the latter behaviour. Although 
an electron-phonon interaction, as in conventional superconductors, is probably not 
operative in the cuprate materials, electron-electron interactions may be important, as 
is the case in the antiferromagnetic ordering in the normal state. 

In fact, high-Tc cuprate mateiials are anomalous also in many respects in their 
normal-state behaviour: for example, the low-T temperature dependence of the electrical 
resistivity in the easy-conduction plane of the CU02 layers is p ~ C + DT, compared 
with the usual Bloch-Griineisen behaviour p ~ A + BTs (eqn. (6.75)' and Fig. 6.25a). 
The electron mean-free path in the a-b plane in YBCO is A ~ 100 - 200 A at 100 K. 

High-Tc cuprate superconductors are also extreme type-II superconductors, with 
values of the Ginzburg-Landau parameter (eqn. (6.181» !1;GL ~ 100, corresponding to 
extremely small values of the superconducting coherence length, (' ~ 10 - 30 A in the 
a-b (CuOz-layer) plane and ~ 2-5 A in the c-direction (cf. (' ~ 103 -104 A for conven
tional superconductors; since (' « A, the cup rate materials lie in the 'clean limit'. High
Tc superconductors have correspondingly extremely high upper critical magnetic fields, 
i.e. Be2 ~ 100 T. 
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Semiconductors 6.5 
Semiconductors can be defined as being those electrical insulators having a forbidden 
gap of less than, say, 3 eV between the filled valence and empty conduction bands of 
one-electron states (§5.2.5). (The essential difference in character between the energy gap 
in a semiconductor/insulator and that in a superconductor (§6.4.1.3) should be noted.) 
Semiconductors are of interest since their electrical properties can be altered in a 
controllable way by doping, i.e. by the incorporation of electrically active impurities, 
thereby producing an extrinsic semiconductor, with concomitant changes in the charge
carrier concentration with respect to the impurity-free intrinsic material. This behaviour 
is at the heart of the use of semiconductors, particularly crystalline silicon, in electronic 
devices, and is therefore ultimately responsible for the electronics revolution that society 
is currently experiencing. In the following, intrinsic semiconductors will be examined 
first, and this will be followed by a discussion of extrinsic (doped) semiconductors. 
Excellent reviews of the properties of semiconductors are given by Smith (1978) and Yu 
and Cardona (1996). 

6.5.1 Intrinsic semiconductors 

In this section, intrinsic is taken to mean undoped, i.e. free of electrically active 
impurities. We shall see in §6.5.2.3 that under certain circumstances (i.e. at high 
temperatures or when 'compensated' with impurities that generate the conjugate type 
of charge carrier) even extrinsic semiconductors can behave in an effectively intrinsic 
manner. 

6.5.1.1 Intrinsic carrier statistics 

In semiconductors, the quantity that essentially controls the electronic behaviour, in the 
sense that it can be readily varied in extrinsic materials, is the charge-carrier concentra
tion; this is conventionally denoted n == ne for electrons and p == nh for holes (§6.2.2). At 
T 0 K, the valence band is completely filled with electrons (or, equivalently, comple
tely empty of holes) and the conduction band is completely empty of electrons. At finite 
temperatures, thermal excitation (a multiphonon process) of charge carriers across the 
forbidden gap can take place, increasingly so w!th increasing temperature. Every 
electron excited from the valence band into an empty state in the conduction 
band leaves behind an empty electron state in the valence band that can be regarded 
as being equivalent to a single hole state (Fig. 6.46). Thus, intrinsic behaviour is 
characterised by there being an equal concentration of thermally generated electrons 
and holes: 

n=p==l1j. (6.189) 

The concentration of electrons in the conduction band, and of holes in the valence 
band, is determined by the position with respect to the band edges of the chemical 
potential, f-L, or the Fermi level cgF, since electrons are fermions and obey Fermi-Dirac 

Fig. 6.46 Representation of the thermal generation of an electron-hole pair in a semiconductor 
with an energy gap ~g between the valence- and conduction-band minima. The dispersion curves 
for electrons are the solid curves; the dashed line is the corresponding hole band for the valence 
band. Note the difference in curvatures of the bands due to the differences in the electron and hole 
effective masses, m: and mi; respectively. The position of the Fermi level is at mid-gap at zero 
kelvin. 

statistics; i.e. the occupation of states is governed by the Fermi-Dirac distribution 
function (eqn. (5.23)). (Strictly speaking, the Fermi energy cgF = cg~ corresponds to 
the chemical potential at zero kelvin, but the common usage in semiconductor science 
is to use the expression Fermi level for the chemical potential at finite temperature, 
p,( T).) In the simplest case of symmetric valence and conduction bands, i.e. having equal 
(and opposite) curvatures of the band structure cg(k) in the vicinity of the gap, or 
generally at zero kelvin for any shape of the bands, the chemical potential lies at midgap 
for a semiconductor. Note that it lies, therefore, in an energy region devoid of electron 
states, in contrast to the case of a metal, where f-L lies in a band of delocalized states and 
hence marks the demarcation between fIlled and vacant states (HOMO in chemical 
parlance). The situation in semiconductors is different because an excitation always 
involves the creation of an electron-hole pair whose states are separated in energy by 
the bandgap: for symmetry reasons, therefore, f-L must lie part-way between filled and 
empty electron states (Fig. 6.47). 
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Fig.6.47 The Fermi-Dirac distribution function for an intrinsic semiconductor at: (a) T = 0 K; 
(b) T> 0 K. 

A quantitative discussion of carrier concentrations and the position of the 
chemical potential can be achieved by evaluating the occupancy of states in a 
particular band, which is the product of the volume density of states D(,&) (eqn. 
(5.131)) and the Fermi-Dirac function f('&) (eqn. (5.25)). For the case of say, the 
conduction band, the electron concentration is given as an integral of the occupancy 
over the band: 

(6.190) 

where '&C is the energy corresponding to the bottom of the conduction band. Two 
approximations may now be invoked in order to simplify the evaluation of the integral 
in eqn. (6.190). The first is to assume that the chemical potential (Fermi level) for an 
intrinsic material is far removed in energy from the band edge, i.e. ('& f.L)>> kBT, 
where '& is the energy of an electron in the conduction band; the material is said to be 
non-degenerate. This is a very good approximation in general for intrinsic semiconduct
ors (see Fig. 6.47). In this case, the Fermi-Dirac distribution function for electrons (eqn. 
(5.23)) reduces to the Boltzmann function: 

1 
Ie('&) = exp[('& _ f.L)/kBT] + 1 ~ exp[-('& - f.L)/kBT]. (6.191) 

The other assumption is that the band (at least in the vicinity of the band edge) can be 
treated as being free-electron-like. Thus, the dispersion relation for electrons in the 
conduction band can be written as 

(6.192) 

where m; is the electron effective mass (assumed, for simplicity, to be a scalar 
quantity). The corresponding density of electron states can be written as (cf. eqn. 
(5.15)): 

D ('&) = _1_· (2m:) 3/2(,& _ '& )1/2 
e 21f2 tz2 c· (6.193) 

Hence, eqn. (6.190) for the electron concentration in the conduction band becomes: 

or 

11 = 2 C1fl1~:CB T) 3/2 e[-('.gc-/-<)/koTl. (6.194) 

The pre-exponential term in eqn. (6.194) can be regarded as being the effective concen
tration Nc of all·electron levels in the conduction band if located at the band edge, '&c: 

N. = (27r1n~kB T) 3/2 
c 2 h2 (6.195) 

Nc has the value of ~ 2.5 x 1025m-3 at 300 K for m: me. 
The concentration of holes (i.e. missing electrons) in !he valence band can be obtained 

in a similar manner. The Fermi-Dirac function for holes is related to that for electrons 
(eqn. (6.191)) by 

1 
fh = 1 - Ie = 1 - --:---------

. exp[('& - f.L)/kBT] + 1 
1 

(6.196) 

exp[-('& f.L)/kBT] + 1 . 

For the chemical potential near midgap for an intrinsic semiconductor, (f.L - '&) » kBT, 
and hence 

fh ~ exp[('& - f.L)kBT] 

= exp[-('&h + f.L)/kBT] 
(6.197) 

since '&h = -'& (eqn. (6.28)). The dispersion relation for the free-hole-like valence band 
~~~~~ . 

tz2k2 

'&h ='&Y+-2 *' mh 
(6.198) 

where ,&y is the energy of the valence-band maximum and mi; = -m: is the (scalar) hole 
effective mass. The corresponding density of states is 

D ('& ) = _1_ (21ni;) 3/2(,& '& )1/2 
h h 21f2 tz2 y + h , (6.199) 

and hence the hole concentration is given by 



or 

p N ye[(,f.v-J1.)/kB Tj, (6.200) 

where Ny is the concentration of levels at the valence-band edge, 

N = 2 (2mn"hkB T) 3/2 
y h2 

(6.201) 

Note that the concentrations of electrons and holes in conduction and valence bands, 
respectively, given by the general equations (6.194) and (6.200), are determined by the 
separation in energy between the chemical potential and the respective band edges and 
depend exponentially on this quantity. An expression independent of fL, and therefore 
valid for any doping condition (not just intrinsic materials), can be obtained from eqns. 
(6.194) and (6.200) by multiplying the expressions together, i.e. 

(6.202a) 

(6.202b) 

where the gap energy egg = egc - egy. Since np nf for an intrinsic semiconductor, eqn. 
(6.202a) implies that 

l1i = (NcNy)I/2e-,&g/2kBT. (6.203) 

For crystalline Si and Ge with bandgaps of 1.1 eV and 0.67 eV respectively, l1i is 
1.5 x 1016m-3 and 2.4 x 1019m-3 respectively at 300 K. 

Equation (6.202) has the form of the law of mass action applicable to chemical 
equilibria. Indeed, this expression can also be obtained by statistical-mechanical 
means by considering the thermal generation of electrons and holes as an equilibrium 
process 

(6.204) 

where the symbol. denotes the ground-state configuration (filled valence band, empty 
conduction band). Treating the electrons and holes as free particles, for which the 
volume-independent partition function q Z/V (see eqn. (4.64) for a definition of Z) 
can be written as the product of an electron-spin degeneracy term (gs = 2) and a 
translational partition function: 

q
e,h qe,h (2mn;,hkB T) 3/2 

= gs t = 112 ! 
(6.205) 

the equilibrium constant for the excitation 'reaction' of eqn. (6.204) is 

K=np (6.206) 

or, in terms of the partition functions, 

(6.207) 

where b,.eg = egg is the activation energy for the excitation, and the ground-state config
uration is taken to be immobile (i.e. gO 1). It can be seen that eqns. (6.205-6.207) 
reduce to eqn. (6.202). 

An explicit expression for the position of the chemical potential can be obtained from 
eqns. (6.194) and (6.200) for an intrinsic semiconductor by invoking eqn. (6.189), i.e. 

n = p Nce[-('&c~J1.)/kBTj = N ye[('&v-J1.)/kBTj 

giving 

or 

egg + ~kBTln(m"h), 
24m: ( 6.208) 

taking the energy scale to be zero at the valence-band maximum, egy == 0, egc egg. Thus, 
it is seen from eqn. (6.208) that the chemical potential lies exactly at midgap for intrinsic 
semiconductors in two circumstances: in the case of symmetric bands (i.e. m; m"h) at 
any temperature, and at zero kelvin for any shape of the bands (see Problem 6.23). 

6.5.1.2 Electrical conductivity 

In semiconductors, electrons and holes can contribute simultaneously to the electrical 
current, and hence the expression (eqn. (6.11» relating the d.c. conductivity, 0"0, the 
concentration and the mobility fLa of carriers of type a( = e, h) must be generalized to: 

(6.209) 

The mobility of charge carriers of type a is related to the scattering relaxation time 'fa 

and the effective mass m: by eqn. (6.10): 

fLa = 
m* a 

a=e,h. (6.210) 

Since the carrier mobility is only a weak (power-law) function of temperature, as will be 
seen below, the temperature dependence of the d.c. electrical conductivity of intrinsic 
semiconductors is governed by that of the carrier concentration, ni, i.e·. the conductivity 
is thermally activated, with an activation energy equal to half the bandgap, egO' = egg/2 
(neglecting the weak power-law temperature dependence of Nc and Ny .. --cf. eqns. 
(6.195), (6.201»: 

(6.211 ) 

The conductivity of a semiconductor increases with increasing temperature (unlike the 
case of metals). 

For pure intrinsic semiconductors, in the absence of charged impurities, electron
phonon scattering (§6.3.1.3) will be the dominant mechanism responsible for limiting the 
carrier mobility. The temperature dependence of the mobility in this case can be 
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evaluated as follows. The mobility, eqn. (6.210), can be rewritten, in terms of the mean
free path Aa and the velocity Va of a carrier of type a, as 

(6.212) 

The velocity of electrons or holes in a semiconductor, treated as free particles, is 
temperature-dependent, Va ex (kBT /m~)1/2. (Compare with the case' for metals 
(§6.3.1), where the appropriate velocity, the Fermi velocity, is temperature-independent.) 
The mean-free path is inversely proportional to the number of scattering events, i.e. to 
the number of phonons, nph. At relatively high temperatures (T > eD ), nph ex T (eqn. 
(4.79)), and hence Aa ex l/T in this classical limit. Thus, the temperature dependence of 
the electron or hole mobility due to electron-phonon scattering is 

j.L~-ph(T) ex T-3/ 2 . (6.213) 

Hence, in this limit, the temperature dependences of j.L~-ph(T) and of Nc or Nv cancel 
when combined according to eqn. (6.209). 

Two types of electron-phonon scattering processes can be distinguished for both 
acoustic and optic phonons: in all cases, it is longitudinal phonons that tend to couple to 
the electrons (§6.3.1.3). For the acoustic case, LA phonons modulate the crystal unit cell 
and hence the lattice potential, resulting in deformation-potential scattering. For cryst
als with no inversion symmetry, the time-varying strain associated with the LA phonons 
produces time-varying internal electric fields due to the piezoelectric effect (§7.1.5.1), 
resulting in additional piezoelectric scattering. LO phonons can give rise to deforma
tion-potential scattering, as for LA phonons. However, in addition, LO phonons 
produce a time-varying electrical polarization in the unit cell, and this gives rise to 
polar-mode scattering. 

In §6.2.1 it was seen that the electron effective mass scales with the (direct) bandgap 
and hence, from eqn. (6.210), the highest electron mobilities should be found in those 
semiconductors having the smallest gaps; in general, this behaviour is observed (Table 
6.6). The situation for hole mobilities is complicated by the presence oflight .... and heavy
hole bands at the valence-band maximum for tetrahedral semiconductors (§5.4.2) and, 
as a consequence of the possibility of holes being scattered between different bands, the 
mobility of holes is usually smaller than for electrons (see Table 6.6). 

One way of increasing the electrical conductivity of a semiconductor is to shine light 
on it: photoconductivity arises principally because of the increase in the free-carrier 
concentration in the valence and/or conduction bands due to optical excitation, either of 
electron-hole pairs if the light has a photon energy greater than or equal to the bandgap 
(or of holes or of electrons separately iflonger-wavelength light is used directly to excite 
filled acceptor or donor states, re~pectively, at low temperatures in extrinsic semicon
ductors - see §6.5.2). Considering the case of one carrier .(say, electron) transport for 
simplicity, the dark d.c. conductivity is given by 170 = nej.Le, and the conductivity under 
light excitation, I7L, is the sum of 170 and the photoconductivity, flO', viz. 

I7L 170 + 6.17 

= (n + 6.n)e(j.Le + 6.j.Le), (6.214) 

Table 6.6 Carrier mobilities at 300 K for some semiconductors 

Material J-Le(m2 V"':I s-I) J-Lh(m2 V-I 

C (diamond) 0.18 0.12 
Si 0.135 0.048 
Ge 0.36 0.18 
InSb 0.08 0.045 
InAs 3.0 0.045 
InP 0.45 0.01 
GaAs 0.8 0.03 
GaSb 0.5 0.1 

Data after Kittel (1996). Reproduced by permission of John Wiley & Sons Inc. 

where, in general, the light can cause a change in both the carrier concentration, fln, and 
in the mobility, 6.j.Le. The increase in carrier concentration is usually proportional to the 
photogeneration rate Gph (the concentration of carrier (pairs) generated per unit time 
and per unit volume) and the carrier lifetime, Tn: 

(6.215) 

The lifetime, itself, may also be a function of the photogeneration rate, Tn = Tn(Gph): 

factors determining the free-carrier lifetime are recombination of electron-hole pairs, 
e.g. radiative or non-radiative (multi phonon emission or Auger excitation of another 
electron or hole) or trapping of excess carriers by traps (e.g. defect states in the gap). A 
photo-induced change in carrier mobility, 6.j.Le, could arise for a number of reasons: 
excitation of a carrier between bands characterized by different mobilities, photo
induced change in the concentration or scattering cross-section of charged impurities, 
or a light-induced lowering of interfacial barriers between grain boundaries. For the 
case of one-carrier transport at high photogeneration rates such that 6.n» n (but 
b..j.L c:= 0), a figure of merit for the photo conduction can be defined from eqn. (6.214) 
in terms of the 'j.LT-product', viz. 

(6.216) 

The actual functional form of the photo-carrier concentration, or photoconductivity, 
on the carrier photogeneration rate, Gph, depends on whether recombination or trap
ping effects are dominant. Consider an intrinsic semiconductor or insulator in which 
carriers are created by thermal or optical excitation across the gap, with generation rates 
of gth and Gph, respectively, and this is balanced by recombination of electron-hole pairs 
also across the gap. In the dark, the thermal generation rate is equal to the recombina
tion rate R in dynamic equilibrium: 

(6.217) 

since n = p and where L: is the recombination cross-section and V the average electron 
(hole) velocity. The dark carrier lifetime is therefore given by 

Td=l/nvI:. (6.218) 

Under optical excitation, the total carrier generation rate is 
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gth + Gph (n + .6.n)v ~(p + .6.p) = (n + .6.n)2v ~. (6.219) 

For the case of an insulator, gth « Gph and n « .6.n, and hence the photocarriers can 
only recombine with each other to give bimolecular recombination in which Gph ex: .6.n2. 
From eqns. (6.217) and (6.219), under these conditions: 

(6.220) 

Hence, the photoconductivity behaves as .6.(J ex: G1/ 2• 

For the case of a semiconductor, .6.n « n, and hence eqns. (6.217) and (6.219) give 

Gph ~ 2n.6.nv ~ . (6.221) 

This situation is termed monomolecular recombination: a photo-carrier recombines 
with a conjugate thermally generated carrier, and .6.(J ex: Gph. The lifetime in this case 
is controlled by the dark behaviour of the semiconductor, with Tn Td/2. 

Very often, trapping of excess carriers by electron or hole traps (typically defect states 
lying deep in the bandgap) competes with recombination in balancing the carrier 
generation rate. Consider an insulator containing a total concentration Nt of traps 
(for, say, electrons), nt being the density of occupied traps, with the trapping cross
section given by ~t. In dynamic equilibrium (neglecting thermal generation) 

Gph = (n + .6.n)v ~t(Nt nt) + (n + .6.n)v ~(p + .6.p), 

(6.222) 

where now .6.n and .6.p are no longer equal. If all traps are filled, nt = Nt, after a period 
of illumination, the fir3t term in eqn. (6.222) vanishes, and since .6.p = .6.12 + Nt ~ Nt, 
therefore 

(6.223) 

The behaviour is now monomolecular, in contrast to the trap-free case (eqn. (6.220». 
Further details on photo conduction can be found in Bube (1992). 

*6.5.1.3 Thermoelectric effects 

The sign of the thermopower, ST, is the same as that of the charge carrier involved in the 
thermal and electrical current (§6.3.2.3). For intrinsic semiconductors, where electrons 
and holes both contribute to the current, the overall thermopower is given by the 
conductivity-weighted sum of the individual thermopowers: 

ese + hSh 
ST = (Jo T (Jo T 

(Jo + (J8 
(6.224) 

The thermopower of a semiconductor (non-degenerate conductor) associated with a 
carrier of a single type can be obtained as follows (Mott (1993». The element of 
electrical current density dj due to, say, electrons with energies between ~and ~ + d~ 
in the conduction band subject to an electric field E is given by (cf. eqn. (6.67»: 

dj 
8f 

-(J(~)-Ed~ . ~ , (6.225) 

where (J(~) is the contribution to the d.c. electrical conductivity at energy ~ (§6.3.2.3) 
and 8f /~ is the energy derivative' or the Fermi-Dirac distribution function. The 
corresponding heat flux is (eqn. (6.78»: 

dJQ = (~- J.l) dj 
e 

= (J~~) ~ (~ _ J.l)Ed~. (6.226) 

Integration of this expression gives the Peltier heat II multiplied by the electrical current 
flux under isothermal conditions (eqn. (6.93b», i.e. 

E roo 8f 
II) = e }'f>c (J(~) ~(~ - J.l)d~, 

or, since II/T = ST (eqn. (6.96», 

Integration of eqn. (6.228) (see e.g. Smith (1978» gives finally 

ST = - kB [(~e - J.l) +~+s] 
e kBT 2 ' 

or, from eqns. (6.194) and (6.195) 

S T - k: [In (~e) + ~ + s] , 

(6.227) 

(6.228) 

(6.229a) 

(6.229b) 

and c01,Tesponding equations (with opposite sign) involving ~y, Ny and p for holes. The 
factor s = 8lnT(~)/~ is of order unity, and T is the relaxation time. Thus, from eqn. 
(6.219), the thermopower for semiconductors is found to be typically of the order of a 
few millivolts per kelvin (m V K -1), i.e. approximately a thousand times larger than the 
thermopower of metals at the same temperature. Hence, since the Peltier heat has the 
relationship II ex: ST, semiconductors are used in solid-state Peltier heating or cooling 
devices (see §6.3.2.3). 

6.5.1.4 Cyclotron resonance 

As seen previously for the case of metals in §6.3.3.1, cyclotron resonance probes 
constant-energy surfaces of the electron band structure in reciprocal space: such experi
ments can provide estimates for the (cyclotron) effective mass and hence some informa
tion on the shape of the band structure in k-space. The condition for cyclotron 
resonance to be observed is that many cyclotron orbits be completed before an electron
scattering event takes place, i.e. WeT» 1, where T is the scattering relaxation time and We 

is the cyclotron-resonance frequency (cf. eqn. (6.115» 
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Fig. 6.48 Cyclotron-resonance absorption curves for the crystalline semiconductors: (a) Si; 
(b) Ge. In both cases, the applied magnetic field is in the (110) plane,. at angl~s of e . 3~0 (a) and 
600 (b) to the [001] direction (After Dresselhaus et al. (1955). Repnnted wIth permIssIOn from 
Phys. Rev. 98, 368. © 1955. The American Physical Society) 

_ 27reB (aSk)-1 
We - /i2 {f{l, (6.230) 

with oS" being the element of area in k-space in the plane of the cyclotron orbit between 
two constant-energy surfaces separated by an energy {ff/; (Fig. 6.17). In semiconductors, 
such experiments need to be performed on very pure and perfect crystals (to obviate 
electron~defect scattering) and at very low temperatures (to reduce electron-phonon 
scattering). Furthermore, since the carrier densities in the conduction and valence bands 
of intrinsic semiconductors are very small at low temperatures, excess electron-hole 
pairs are created by optical excitation (§5.8.2) in order that there are sufficient carriers 
for cyclotron resonance to be detected. 

Electron-like and hole-like constant-energy surfaces (§6.3.3.1) can be distinguished 
experimentally by using circularly polarized electromagnetic radiation as the probe field 
because of the associated different directions of orbital motion of electrons and holes in 
a given magnetic field: electrons resonantly absorb right-circularly polarized, and holes 
left-circularly polarized, radiation. If plane-polarized radiation (consisting of equal 
contributions from both polarizations) is used, both electron-like and hole-like reson
ances can be detected. 

Examples of experimental cyclotron-resonance curves for two semiconductors, cryst
alline Si and Ge, are shown in Fig. 6.48. The electron resonances correspond to 
cyclotron orbits on the ellipsoidal constant-energy 'pockets' near the minima of the 
conduction band, lying in the (100) directions in k-space for Si and the (111) directions 
for Ge (Fig. 5.51). These ellipsoidal energy surfaces are characterized by two different 
values of the effective electron mass, the longitudinal and transverse components mj 
and m:(mj > mn with respect to the main axis of the ellipsoids (cf. eqn. (5.127»; 
cyclotron-resonance· data can be used to provide estimates for mi and m~ (see Problem 

6.25). For a general direction of the applied static magnetic field B with respect to the 
Brillouin-zone axis, there will be three electron cyclotron resonances in Si (correspond
ing to the three (100) axes) and four resonances in Ge (corresponding to the four (111) 
axes). For the particular magnetic-field girection used to generate Fig. 6.48, symmetry 
causes the number of resonances to be reduced to two (Problem 6.25) and three, 
respectively. 

Two hole-like cyclotron-resonance peaks are also observed in the curves of Fig. 6.48. 
The reason for this is the presence of the light-and heavy-hole bands in the vicinity of 
the valence-band maximum for Si and Ge (Fig. 5.53). 

6.5.2 Extrinsic semiconductors 

Extrinsic semiconductors are those in which the carrier concentration is controlled by 
the presence of electrically active impurities, or dopants, in the host material. This 
ability to vary the carrier concentration, and hence the electrical conductivity, of 
semiconductors by simply changing the impurity content is the basis for the use of 
such materials in technological applications and underpins the entire electronics indus
try. However, in most cases, electronic devices consist of semiconductors doped hetero
geneously with impurities. The behaviour in such circumstances is discussed in §8.4.2.2; 
here the emphasis is on homogeneous doping. 

Impurities that can donate extra electrons to the empty conduction band of the 
semiconductors are termed donors; impurities that can accept electrons from the filled 
valence band of the semiconductor (or equivalently inject extra holes into the valence 
band) are called acceptors (Fig. 6.49). Extrinsic semiconductors in which holes are the 
majority carriers are said to be p-type, and those in which electrons are the majority 
carriers are termed n-type. Electrical doping of semiconductors, i.e. the release of extra 
charge carriers into the bands of the host material, occurs because of the thermal 
excitation of electrons or holes from shallow dopants, i.e. those for which the electron 
energy levels associated with the impurity are very close to one or other of the bands, at 
a level ~d below the conduction-band edge for donors or at ~a above the valence-band 
edge for acceptors (Fig. 6.49). The presence of such energy levels near one or other of 
the band edges means that the chemical potential is very close to the conduction-band 
edge for an n-type material, and very near the valence-band edge for a p-type material, 
as will be seen in §6.5.2.2. 

The dopants used in 'conventional' semiconductors such as Si, Ge or GaAs (as 
compared to, say, polymeric conductors - see §8.3.3) are usually substitutional impu
rities, in which the impurity atom has a different valence from that of atoms in the host 
matrix. Thus for the case of tetrahedrally coordinated Group IV monovalent semicon
ductors Si and Ge, for example, Gp. V elements (e.g. P, As, Sb) having one extra 
electron compared with the host atoms, behave as donors when substituted for the Gp. 
IV atoms (Fig. 6.50a). Similarly Gp. III elements (e.g. B, AI, Ga, In), having one less 
electron than Gp. IV atoms, are acceptors when incorporated substitutionally (Fig. 
6.50b). Gp. VI elements (e.g. S, Se) have the potential to be double donors, and Gp. 
III elements (e.g. Be and Zn) can act as double acceptors when incorporated substitu
tionally into Si or Ge. 
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Fig. 6.49 Schematic illustration of the origin of electrical doping in an extrinsic semiconductor: 
(a) n-type, containing. donors that donate extra electrons into the conduction band; (b) p-type, 
containing acceptors that accept electrons from the valence band; (c) another representation of 
the action of acceptors, i.e. injecting holes into the valence band. 
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Fig. 6.50 Illustration of substitutional doping in tetrahedrally coordinated Group IV semicon
ductors: (a) Pin Si (donor); (b) B in Si (acceptor). The orbit of the extra electronlhole is shown 
bound to the positively charged/negatively charged p+ jB-ion core. The extra electron/hole 
becomes free of the dopant if thermally excited into a conduction/ valence band of the Si. Note 
that the scale of the orbit in the figure is reduced by a factor of approximately 10 compared with 
reality. 

The case of doping of compound semiconductors, e.g. AB, is a little more complicated 
since a given impurity atom C could, in principle, substitute for either the cations A or 
the anions B: such substitutional defects are termed CA, and CB, respectively. Depend
ing on the site of substitution, a Gp. IV impurity in say a III-V semiconductor can 
therefore behave as a donor or an acceptor. Thus SiGa and GeGa are donors, whereas 
SiAs and GeAs are acceptors. Gp. VI elements substituted for As, e.g. SAs, SeAs, act as 
donors, whereas ZnGa and CdGa are acceptors. 

Isovalent (or isoelectronic) defects are those in which the substitutional impurity 
atom has the same valence as the atom for which it substitutes. However, 

electro negativity differences between the impurity atom and the other atoms mean 
that it can become electrically active. For example, the Np centre in GaP can attract 
an electron to it, thereby becoming negatively charged, because of the large 
electronegativity difference between ,N,and P. The resultant Np - centre can subse
quently attract a hole to itself, behaving as an isovalent acceptor. The electron and 
hole associated with the neutral Np centre can also be viewed as a bound exciton (§5.8.3). 

Doping of semiconductors can also be achieved by the incorporation of electrically 
active impurities in the host material in a non-substitutional manner. For example, 
impurity atoms that are smaller than the host atoms can occupy interstitial sites and, if 
electropositive, can donate electrons to the conduction band of the semiconductor: Li in 
Si is an example. 

6.5.2.1 Hydrogenic dopants 

Shallow substitutional dopants can be reasonably described by a hydro genic model, in 
which the extra electron bound (at low temperatures) to a positively charged donor ion 
core can be treated in the same way as an electron bound to a proton in the hydrogen 
atom. Holes bound to negatively charged acceptors are correspondingly analogous to a 
positron bound to a negatively charged muon ('muonium'). 

The dynamics of an electron bound to a donor (a hole bound to an acceptor can be 
treated in the same way) can be described by the Schrodinger equation for a particle 
moving in a Coulombic potential, as long as the radius of the electron orbit is large 
compared with the interatomic spacing of the host semiconductor so that anisotropy 
associated with the local atomic configuration is essentially averaged out. There are two 
important differences between a hydrogen atom and, say, a hydrogenic donor: in the 
former, the mass of the electron is the free mass me and the orbit is in vacuo; in the latter; 
the effective mass of the electron, m;, is determined by the shape in k-space of the 
conduction-band states used to construct the defect-related wavefunction, and the 
electron orbit, if large enough, takes place essentially in the bulk semiconductor, and 
hence the electrical charge on the ionized donor is screened from the electron by the bulk 
dielectric constant, c. 

As a result, the energy levels of the bound states of a shallow donor (or 
acceptor) can be written as a Rydberg series in analogy to the solution of the H-atom 
problem, i.e. 

Rd 
~ = ~c - ? , n = 1,2,3, ... 

n-
(6.231) 

where the dopant Rydberg constant, Rd, is related to that for the hydrogen atom, Ro, by 

(6.232) 

or 

(6.233) 
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The donor-electron energy levels given by the Rydberg series (eqn. (6.231)) tend to a 
continuum limit-the ionization limit - when n = 00 and the electron is no longer 
bound to the positively charged core. For the case of a donor in a semiconductor, this 
ionization level corresponds to the conduction-band edge, ~c, of the semiconductor for, 
once the donor electron is in the conduction band of the material, it is free to travel 
anywhere in the solid. The lowest (deepest) bound energy level below ~c, corresponding 
to n = 1, is conventionally termed the donor level, i.e. 

(6.234) 

Although Ro 13.6 eV for the H atom, the corresponding value for a donor electron is 
greatly reduced from this figure by the combined effects of the inclusion of 111; and c: 
(eqn. (6.232)): typical values of 111; c::: O.lme and c: c::: 10 give a maximum binding energy 
of ~d c::: 13.6 meV. Note that ~d depends on quantities pertaining only to the host 
semiconductor and not the dopant itself. The dopant-related Rydberg series of levels 
can be probed by optical absorption (Fig. 6.51). 

The radius of the Bohr orbit of the donor electron, I'd (i.e. the spatial extent of the 
corresponding Is-like wavefunction for n = 1) is related to the Bohr radius of the H 
atom, ao( = 0.63 A), viz. 

I'd = (me) ---:- c:ao 
m~ 

( 6.235) 
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Fig. 6.51 Optical absorption spectrum of bound-electron Rydberg-like levels associated with Sb 
donors in Ge, measured at 9 K. (After Reuszer and Fischer (1964). Reprinted with permission 
from Phys. Rev. 135, Al125. © 1964. The American Physical Society) 

or 

Table 6.7 Theoretical (hydrogenic) and experimental donor binding 
energies %d [or shallow donors ~n III-V and II-VI semiconductors 

Semiconductor 

GaAs 

InSb 
CdTe 
ZnSe 

%~h (meV) 

5.72 

0.6 
11.6 
25.7 

(meV) 

5.84 (SiGa); 5.8~ (GeGa); 
5.87 (SAs); 5.79 (SeAs) 
0.6 (Tesb) 
14 (lncd); 14 (Alcd) 
26.3 (Alzn); 27.9 (Gazn ); 

29.3 (Fse); 26.9 (Clse) 

After Yu and Cardona (1996), Fundamentals of Semiconductors, p. 159, Table 4.1, 
© Springer-Verlag GmbH & Co. KG. 

Table 6.8 Experimental donor and acceptor binding energies, %d and %a, 
respectively, [or substitutional dopants in Si and Ge 

%d(meV)P As Sb B Al Ga In/%a (meV) 

Si 45 49 39 45 57 65 16 
Ge 12 12.7 9.6 10.4 10.2 10.8 11.2 

47rc:c:on2 

rd=---· (6.236) 
m~e2 

Inserting the same values of 111; and c: as used above into eqn. (6.236) gives rd 53 A, 
thereby justifying the approximation used to derive eqns. (6.231) and (6.236) that the 
orbital radius of an electron bound to a donor be much larger than the interatomic 
spacing. 

This approach gives predicted values in remarkable agreement with experimental 
values of donor binding energies in direct-gap compound semiconductors, where the 
conduction-band minimum is at the f-point and the effective conduction-band effective 
mass, m;, is approximately isotropic (see Table 6.7). It is not as accurate for dopants in 
Si or Ge (see Table 6.8) which have conduction-band minima at points in k-space far 
removed from the f-point, and hence which have very anisotropic conduction-band 
electron masses. The problem is also complicated for acceptor binding energies because 
of the complex valence-band structure near the f-point (§5.4.2). Hydrogenic estimates 
for ~d in Si (c: = 11.7, m; = 0.3me) and Ge (c: = 15.8, m; O.l2me) are 29.8 meV and 
6.5 meV, respectively. 

Because the donor wavefunction for shallow, hydro genic donors is spread over a 
large distance, corresponding to very many unit cells in real space (cf. eqn. (6.236)), 
consequently the conduction-band states of the semiconductor used to construct the 
shallow-donor wavefunctions originate from a very small region in k-space in the 
vicinity of the conduction-band minimum at the f -point. The donor-electron wavefunc
tion can be written, analogously to a Bloch wavefunction (eqn. (5.59)), approximately as 
the product of a function with the periodicity of the lattice, but independent of k and 
equal to the function at k = 0, i.e. uk=o(r), and an envelope function ¢(r) (rather than a 
plane wave as for a Bloch function) which is localized around the donor site and which 
is the solution of the Schrodinger equation for the orbital motion of the electron bound 
to the donor: 
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Fig. 6.52 Schematic iliustration of a shallow hydro genic donor-electron w~vefunction i~ real 
space, being the product of a periodic function. uoCr) a.nd an envelope functIOn ¢Cr) that IS the 
solution of the Schr6dinger equation for the orbItal motion of an electron, bound to a donor. The 
lattice separation is a. 

1jJ(r) ~ uo(r)<jJ(r). (6.237) 

Such a donor wavefunction is shown schematically in Fig. 6.52. 
In certain circumstances, the wavefunction 1jJ(r) can be spatially localized, in which 

case it can be regarded as being made up from Bloch functions from a number of ban~s 
and with a wide range of k-values, in contrast to the shallow levels. Such electron~c 
configurations are termed deep centres (since the correspondin~ energy lev~ls usually l:e 
deep within the gap), and they may arise for dopants haVIng large differences In 
electronegativity or core potential compared with the host atoms, or fO.r structural 
defects in semiconductors such as dangling bonds (§3.1.1). The occupatIOn of deep 
levels by electrons is also often accompanied by a lattice distortion. 

6.5.2.2 Dopant carrier statistics 

The carrier concentration in either the valence or conduction band of a semiconductor is 
determined by the position of the chemical potential in the gap (eqns. (6 .. 194), (6.2?0)!. 
In general, both acceptor-like and donor-like impurities can be present In an extr~nslc 
semiconductor (then said to be compensated) and these centres may both be partl~lly 
ionized at a given temperature so that the total donor (d) or acceptor (a) concentratIOn 
is the sum of the un-ionized (neutral) and ionized dopant concentrations: 

Nd = N~ + Nt, (6.238a) 

Na = N2 +N;;. (6.238b) 

For the case of homogeneous doping, the position of the chemical potential is deter
mined by the constraint of overall charge neutrality: 

n + N;; = p + Nt (6.239) 

where nand p are the total (extrinsic plus intrinsic) carrier concentrations in the 
conduction and valence bands, respectively. Unfortunately, the carrier statistics for 
this general case can only be treated numerically. 

For simplicity, and to obtain an analytic expression, it will be assumed henceforth 
that only a single type of dopant, e.g. donors, is present in the gemiconductor. It is found 
that, in such a case, at very low temperatures, the chemical potential is very close to the 
conduction band edge 'igc (between it and 'igd), whereas at very high temperatures, f.L falls 
to midgap (if the conduction and valence bands are symmetric in shape). The same 
behaviour for acceptors is found relative to the valence-band edge. Three temperature 
regimes can be distinguished for the carrier statistics of extrinsic semiconductors: the 
freeze-out regime at the very lowest temperatures (kBT «'igd) where most of the donors 
are un-ionized; the saturation or exhaustion regime at higher temperatures (kB T > 'igd) 

where all donors are ionized; and, at the highest temperatures, intrinsic-like behaviour is 
recovered when the concentration of intrinsic carriers thermally excited across the gap 
becomes greater than the concentration of donor electrons (ni » Nd). 

The freeze-out regime at very low temperatures (kB T «'igd) can be analysed by 
assuming that Nd » ni, which will be satisfied at such temperatures. The equilibrium 
concentration of conduction electrons (in this approximation, exclusively from donors) 
can be calculated via a statistical-mechanics approach similar to that used to analyse the 
ionization of say alkali atoms; here the equilibrium involving the ionization of donors, 
d, can be written as 

(6.240) 

Thus, the conduction-electron concentration is equal to that of the ionized donors, 
n = [d+], but at very low temperatures most of the donors, are in fact, un-ionized, i.e. 
[d] ~ Nd. The equilibrium constant for the reaction given by eqn. (2.40) is 

K = [d+][e-l/[d] 

~n2/Nd. (6.241) 

Using the statistical-mechanical relation for the equilibrium constant expressed in 
terms of partition functions (cf. eqn. (6.207)), and noting that since the dopants are 
immobile, qd+ = q?+ = 1, whereas qd = gsq? = 2 taking into account the fact that a 
donor state may be occupied by a spin-up or spin-down electron, gives 

K 

(6.242) 

where the activation energy for the equilibrium (eqn. (6.240)) is taken to be the 
donor binding energy. Thus, combining eqns. (6.241) and (6.242) gives (see als0 Pro
blem 6.26): 

(6.243) 

Hence, the carrier concentration is thermally activated, with activation energy 'igd/2. 
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Fig. 6.53 Schematic illustration of the temperature dependence, showing the freeze-out, satura
tion and intrinsic regimes, in an extrinsic n-type semiconductor, of: (a) the carrier concentration; 
(b) the chemical potential. 

Use of the general expression for n in terms of f.L (eqn. (6.194» with eqn. (6.243) gives 
for the position of the chemical potential in the freeze-out limit: 

I/. =cg _ cgd _ kBT In ( 2Nc) 
,.... c 2 2 Nd' (6.244) 

At zero kelvin, the chemical potential lies midway between the completely filled donor 
levels and the conduction-band edge (Fig. 6.S3b). As the temperature increases, the 
chemical potential moves downwards towards midgap (since Nc > Nd in general). 

In the saturation regime (kB T > cgd), all the donors are ionized, and so 

(6.245) 

the carrier concentration is therefore independent of temperature (Fig. 6.S3a). Equating 
Nd to eqn. (6.194) for 11 gives for the temperature dependence of the chemical potential 
(see also Problem 6.26): 

f.L = cgc - kBTln (Z:); (6.246) 
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Fig. 6.54 The concent~ation of electrons in the conduction band measured by the Hall effect, for 
samples of n-type <?e wlth donor concentrations as marked. The dashed line at high temperatures 
represents the activated temperature dependence of the carrier concentration in the intrinsic 
regime. (After Conwell (1952), Proc. IRE 40, 1327. © 1952 IEEE) . 

(see Fig. 6.S3b). If Nd is comparable to Nc, Fermi-Dirac statistics must be used instead 
of the approximate Boltzmann expression. 

At yet higher temperatures, the thermally generated intrinsic carrier concentration 
becomes greater than the donor-electron concentration, ni » Nd, and the behaviour of 
the extrinsic semiconductor reverts to being intrinsic-like (Fig. 6.S3): the temperature 
dependence of the carrier concentration is thermally activated, with an activation energy 
of half the gap (eqn. (6.203» and the chemical potential lies at mid gap if the conduction 
and valence bands are symmetric in shape (eqn. (6.208». 
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For n-type Si, with a phosphorus donor concentration of Nd = 3 x 102om-3, the 
saturation regime extends between 50 and 500 K since the intrinsic carrier concentration 
is so low at these temperatures (§6.5. 1. 1). For doped Ge, on the other hand, the intrinsic 
regime starts at T ~ 300K (Fig. 6.54). 

In compensated semiconductors, in which both donors and acceptors are present 
simultaneously, the electronic energy of the system is lowered by electrons from the 
filled donor levels falling down in energy and occupying vacant acceptor centres. In a 
perfectly compensated extrinsic material, in which Nd = Na, the chemical potential will 
therefore remain at the position in the gap characteristic of the intrinsic material as long 
as egd = ega. 

6.5.2.3 Electrical conductivity 

Since 0"0 = nef.Le (eqn. (6.209)) for an n-type semiconductor, in the freeze-out and 
intrinsic temperature regimes for an extrinsic semiconductor where the temperature 
dependence of the carrier concentration, being thermally activated (Fig. 6.54), is greater 
than that of the mobility, f.Le (T), the temperature dependence of the conductivity is also 
thermally activated with the same activation energies as for n(T). In the saturation 
regime, where n(T) Nd is constant, the temperature dependence of the conductivity 
will be controlled by that of the mobility, f.Le. 

At higher temperatures in the saturation regime, phonon scattering (§6.3.1.3) will be 
the dominant mechanism limiting the mobility, for which f.Le(T) ex T-3/2 in 
semiconductors (eqn. (6.213)). At lower temperatures, where the number of phonons 
decreases, electron scattering will be predominantly by the ionized dopants (§6.3.1.2), 
for which the scattering relaxation time depends on electron velocity vas Td ex v3 (eqns 
(6.40) and (6.45), where v in a semiconductor, being controlled effectively by (classical) 
Boltzmann statistics, has the temperature dependence vex TI/2.Thus, since f.Le ex Td 

(eqn. (6.210)), the temperature dependence of the electron mobility due to ionized
impurity scattering in semiconductors is 

f.L~mp(T) ex T3/2. (6.247) 

Hence the overall temperature dependence of the total mobility f.Le, where 

I 1 1 
-;: = e-ph + iiTiP' (6.248) 
r e f.Le f.Le 

should exhibit a maximum (Fig. 6.55). This behaviour is evident in the experimental 
curves for f.L(T) for n-type Ge shown in Fig. 6.56. 

In the saturation regime for n-Ge, extending between T ~ 30K and 300 K for the 
sample with the lowest donor concentration (Nd ~ 1019m-3) in Fig. 6.54, the decrease in 
conductivity with increasing temperature, due to the decrease in f.L( T) because of 
electron-phonon scattering, is clearly evident (Fig. 6.57). 

logT 

Fig.6.55 Schematic illustration of the temperature dependence of the carrier mobility, f.1-(T), in 
an extrinsic semiconductor associated with charged-dopant scattering at low temperatures and 
electron-phonon scattering at high temperatures. 

(1)Nd= 10 24m-3 

101~~~~~ __ ~~~~=X-L-L~ ________ L-__ ~ 
10 20 30 1.0 50 60 80 100 200 300 
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Fig. 6.56 Experimental temperature dependence of the electron mobility in n-type Ge (same 
samples as in Fig. 6.54). The dashed line shows the T-3/2 temperature dependence characteristic 
of electron-phonon scattering. (After Conwell (1952), Proc. IRE 40, 1327. © 1952 IEEE) 



:~Il 

T(K) 

o 0.04 0.06 
-1 -1 

T (K ) 

24 -3 
Nd -10 m 

0.08 

10 

0.1 

Fig. 6.57 Experimental temperature dependence of the electronic con?uctivity of .n-ty~e Ge 
(same samples as in Fig. 6.54). The dashed line shows the thermally actIvated behavIOur In the 
intrinsic regime. (After Conwell (1952), Proc. IRE 40, 1327. © 1952 IEEE). 

*Polarons 6.6 
In the discussion of electron states in solids given in the previous chapter, and of the 
dynamical behaviour associated with'such states presented in this chapter, it has been 
assumed generally that the rigid-band approximation is valid;·that is, the occupation of 
a state by an electron does not affect the energy of that state. However, there are a 
number of exceptions to this simple picture when the coupling between an electron and 
the lattice, i.e. the electron-phonon interaction (§6.3.1.3), is appreciable. 

An important example of this behaviour is the case of an electron in a polar lattice, 
i.e. a lattice having a basis of say two types of atoms with differing charges, e.g. an ionic 
crystal. An electron in such a material will polarize its immediate surroundings (see Fig. 
6.58), and the electron together with the polarization cloud forms a quasiparticle termed 
a polaron. As the electron moves through the crystal, it will drag the polarization cloud 
with it and, as a consequence, will behave as if it has a higher inertial mass /11**, and 
hence a lower mobility (eqn. (6.210», than a free electron. Although in the case of non
polar solids, the dominant interaction of electrons is with LA phonons (§6.3.1.3), in the 
case of polar materials it is the LO-phonons that are strongly coupled to 
the electrons because of the large changes in dipole moment associated with the 
atomic displacements of LO modes (§4.4). Thus, the distortion of the lattice 
associated with the polarization cloud shown in Fig. 6.58 can be regarded equivalently 
as being a cloud of excited virtual optic phonons associated with the electron. Virtual 
phonons are emitted and absorbed with a time interval 8t that is in accord with 
Heisenberg'S energy-time uncertainty principle so that energy, on average, is conserved 
even though an electron might not have enough energy to emit a long-lived LO phonon 
(cf. eqn. (6.51». 

Fig. 6.58 Schematic illustration of a large polaron in a crystal. The electron polarizes its 
surroundings, and the carrier plus the associated lattice distortion make up the polaron. 
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Two types of polaron may be distinguished, depending on the spatial extent of the 
lattice distortion associated with the quasiparticle: small polarons are those for which 
the distortion is restricted to the immediate vicinity of the electron, and large polarons 
are those in which the distortion extends over a distance corresponding to many lattice 
constants (see Fig. 6.58). A review ofpolarons is given by Alexandrov and Mott (1995). 

The strength of the electron-phonon interaction can be described by a dimensionless 
polaron coupling constant O!p defined as 

O!p '"gD 
- (6.249) 

2 IiWL' 

where '"gD is the distortiqn energy associated with the lattice polarization (Fig. 6.58) and 
WL is the k = 0 value of the LO-phonon frequency. The quantity O!pj2 can also be 
regarded as the average number of excited virtual phonons around an electron in a polar 
crystal. Values of O!p range from 0.015 and 0.08 for the III-V materials InSb and InP, 
through 1.69 and 2.0 for the silver halides AgBr and AgCl, to values of 2.4, 3.97 and 6.6 
for the alkali halides LiI, KCI and RbBr, respectively. 

A large polaron is characterized by a small value of the coupling constant, a p < 1, 
and a large spatial extent, rip = (lij2m*wd l

/
2 » a where a is the lattice constant. Its 

energy is reduced by O!pliWL with respect to a bare Bloch state. In such a case, the 
effective mass enhancement is given by (see e.g. Alexandrov and Mott (1995)): 

-~ 1 +2. . m** ( O! ) 
m* 6 

(6.250) 

Large polarons move in a band, as for Bloch electrons, but with a correspondingly 
smaller mobility limited by LO-phonon scattering. 

With increased polaron coupling constant O!p, the lowering of the polaron energy 
increases and, particularly for the case of narrow bands (such as occur for the d-bands in 
semiconducting transition-metal oxides), eventually the electron-delocalization tend
ency associated with band formation is no longer able to resist the localizing tendency 
associated with the polaron formation, and the carrier becomes self-trapped and forms 
a small polaron whose spatial extent is comparable to the lattice spacing. Different types 
of small polaron can be distinguished: dielectric small polarons are those in which 
electrical polarization of a polar lattice (as in Fig. 6.58) is responsible for the carrier 
localization; molecular small polarons are those in which covalent interactions are 
primarily involved in the lattice distortion, as in the self-trapped-hole V K-centre (mole
cular ion) in alkali halides (§3.3.1 and Fig. 3.20). 

The binding energy of a dielectric small polaron can be estimated as follows. For a 
rigid polar lattice, the electrostatic potential of an electron in it is given by an expression 
involving the static dielectric constant, if> = -ej47rc(0)cor, whereas if the lattice is 
allowed to distort because of polarization (Fig. 6.58), the corresponding potential is 
determined by the high-frequency dielectric constant (i.e. if> = -ej47rc(oo)cor. The 
difference between these two quantities is the self-induced potential well for r> rsp 
(the small-polaron radius). If the potential for r < rsp is assumed to be constant, the 
potential well looks as in Fig. 6.59, and the depth of the well is given by 
if>sp = -ej47rcorsp[c(oo)-1 c(O)-I] == (-ej47rcocprsp) , where cpl = [c(oo)-I c(O)-I]. 
Taking also into account the potential energy associated with the polarization of the 
surroundings of the polaron, together with the kinetic energy of the electron arising 

~(r) 

Fig. 6.59 Electrostatic potential well for a dielectric small polaron of radius rsp. 

from its confinement to a volume of radius rsp , gives as the dielectric small-polaron 
binding energy (see Problem 6.28): . 

(6.251a) 

(6.251b) 

A small polaron in an ionic lattice can also be regarded in chemical terms as a valence 
alternation of a cation, caused by a trapped electron or hole, together with the asso
ciated lattice distortion surrounding the trapped carrier. An example is afforded by the 
non-stoichiometric semiconducting oxide Mnl_xO, in which a hole trapped on an Mn2+ 
ion, thereby becoming an Mn3+ centre, is the site of a small polaron. The hole can then 
move between Mn2+ sites .. In certain cases, adjacent small polarons can become 
stabilized energetically, and form bipolarons (Alexandrov and Mott (1995». Reduced 
(non-stoichiometric) W03 is believed to contain such bipolarons, in this case consisting 
of pairs of W5+ ions, perhaps stabilized via some degree of metal-metal bonding 
between edge-shared octahedra, and in T407, neighbouring Ti3+ - Ti3+ ions can be 
regarded as comprising an electron bipolaron trapped on Ti4+ ions. (See Cox (1992) 
and Mott (1993) for further details on polarons in semiconducting transition-metal 
oxides.) 

The self-trapping of electrons (or holes) in small-polaron states can be described in a 
general fashion in terms of a configurational-coordinate mqdel, in which the generalized 
configurational coordinate q is a measure of the lattice distortion associated with the 
polaron: q can represent the displacement of an atom neighbouring the site of a trapped 
hole, thereby forming a bond (as in the VK-centre in alkali halides, or in rare-gas solids); 
in polar materials, q will be a measure of the polarization caused by the trapped carrier 
(e.g. the polarization potential energy can be written as qe2 j47rcocpr for r > rsp (see also 
Problem 6.28)). In these cases, the lattice deformation depends quadratically on q, i.e. 
'"gdef = Aq2, and the energy of the electron (or hole) in the trap is taken to be linearly 
proportional to q, i.e. '"gel = -Bq. Thus, the total energy is given by 

(6.252) 

which has a minimum at 
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qo = BI2A, (6.253) 

so that eqn. (6.252) can be rewritten as 

(6~254) 

Figure 6.60 shows that for this choice of q-dependence of 'gel, a localized self-trapped 
small polaron is always formed since 'gmin < 0 (see Problem 6.29). The binding energy at 
q = qo is given by 

(6.255) 

Values of Wsp are typically several tenths of an electron-volt. 
The transport of electrons or holes in localized small-polaron states can be very 

different from the band-like motion characteristic of large polarons. At low tempera
tures, the small polarons can tunnel between sites in the lattice, resulting in a very 
narrow small-polaron band (and a correspondingly high effective mass). At higher 
temperatures (kBT?;; !nwD), multiphonon-assisted hopping of small polarons occurs 

(a) ~'IL 
q 

(b) ~ 
q 

"&sp = '&def +'&el 

(c) 

q 

Fig. 6.60 Illustration of small-polaron self-trapping of a carrier in terms of a configurational
coordinate diagram, with configuration coordinate q: (a) the lattice-deformation energy; 
(b) the electron energy in the trap; (c) the total energy of the small polaron, showing the 
small-polaron binding energy ~sp and the configuration coordinate qo associated with the mini
mum-energy configuration. 
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Fig. 6.61 Representation of small-polaron hopping, showing (i) a polaron originally at site I; (ii) 
the activated configuration, and (iii) the polaron [mally at site 2, for: (a) a valence-alternation 
ionic system; (b) a molecular-ion system. 

between sites; this is a thermally activated process, with a hopping activation energy 
WH = Wsp/2 (i.e. semiconducting-like rather than metallic-like). 

This can be seen as follows. Consider a small polaron self-trapped and localized at site 
1. In order for the charge carrier to move to site 2, and form a small-polaron centre 
there, both sites must distort by means of thermal fluctuations (a process involving 
many phonons, since the strain energies involved are so high) so that the electron energy 
at each site is equal (or in other words, the bottoms of the polaron wells must be at the 
same energy-see Fig. 6.61). The requirement that the electron energies be equal, i.e. 

(6.256) 

where ql and q2 are the configuration coordinates describing the lattice deformation at 
sites 1 and 2, respectively, means that an electron can readily move (by tunnelling) 
between the two sites. If the electron moves back and forth between the two sites a 
number of times during the time that the sites are in the activated state, the polaron 
motion is said to be adiabatic, and the chance of making the hop between the sites is 
high. The deformation energy required simultaneously to distort the equilibrium con
figuration of well 1 to ql and to create a distortion q2 at site 2 (which has no electron at 
it), where the distortions are equal, q! = q2 (see eqn. (6.256», is given by 

(6.257) 

Minimization of this expression with respect to q! shows that the least strain energy is 
achieved when iii = q2 = qo/2 (see Fig. 6.62). Substitution of this value into eqn. (6.257) 



q 
(a) (b) 

Fig. 6.62 Illustration of the origin of the polaron-hopping energy WH, involved in the hopping 
motion of small pol arons, in terms of a configurational-coordinate model. (a) Two potential 
wells representing a lattice distortion at two sites, 1 and 2, site 1 containing an electron. (b) The 
activated configuration, in which the two wells have minima at the same level, and ih = 7i2 = qo/2. 
The electron energy is then the same for each, and the electron on site 1 can readily tunnel to site 2. 

gives as the minimum strain energy required to produce traps with equal well depths on 
each site, )gdef = Aq~; since this quantity is simply the hopping activation energy WH for 
polaron mobility, WH = Wsp /2 (cf. eqn. (6.255)). 

The d.c. electrical conductivity associated with small-polaron hopping motion in 
valence-alternation systems can be written, from eqn. (3.84b) linking the conductivity 
and the diffusion coefficient, and eqn. (3.62) for the diffusion coefficient in terms of the 
jump rate, as 

(6.258) 

where c and (1 - c) are the relative proportions of the two types of ions, M n+ and 
M(n+l)+, of total concentration N, between which electrons (holes) move. The quantity 
c(l - c) is simply the probability p of finding Mn+ and M(n+I)+ ions on adjacent sites if 
they are distributed randomly, and hence the average jump rate r = P'Y, where 'Y is the 
atomic jump frequency (eqn. (3.63)). It should be noted that the conductivity activation 
energy, the polaron hopping energy, appearing in eqn. (6.258) is for the mobility; to this 
should be added any extra activation energy, )go; required to create charge carriers ()go is 
zero for valence-alternation systems). 

The thermopower for small-polaron motion in valence-alternation systems can be 
written as the temperature-independent Heikes eqmition: 

(6.259) 

where A is a constant of order unity. For those systems where the conductivity activa
tion energy contains a carrier-creation term, i.e. )go- = )go + WH, the energy )gs for the 
temperature dependence of the thermopower (cf. eqn. (6.229a)) does not contain the 
polaron-hopping energy WH, and so)gs = )go. 

**localization 

In many cases, electrons in solids are not characterized by delocalized wavefunctions, as 
in Bloch functions in ideal crystals (§5.2.l), but instead are spatially localized. Several 
instances of such behaviour have already been touched upon: electrons and holes bound 
to donors or acceptors, respectively, in semiconductors, and self-trapped small polar-
011S. In most cases, however, as for localization of vibrational excitations (§4.3.l), 
localization of electrons is associated with the presence of disorder: dopant impurities 
are point defects in an otherwise perfect crystal; valence-alternation small polarons are 
associated with ions having a different charge state from the majority due to non
stoichiometry; and the gross structural disorder characteristic of amorphous semicon
ductors can cause localization of electron states in a range of energies, as will be seen. 

It is a peculiarity of disordered systems that the existence of structural disorder, giving 
rise to energetic disorder of electrons, can completely localize all electron states under 
certain circumstances. For one-and two-dimensional systems, any amount of disorder, 
no matter how small, is sufficient to localize all the states, whereas a critical amount of 
disorder is necessary to localize completely all electron states in 3D; there is the 
possibIlity, therefore, of effecting an 'Anderson transition' between delocalized 
(extended) and localized states in 3D materials as the degree of disorder is increased. 
Since localized electron states, by definition, cannot contribute to metallic-like conduc
tion, the Anderson transition is another example of a metal-insulator transition in 
solids (see §5.6.3). 

How can a localized state be differentiated from an extended state? Several criteria 
have been proposed in order to achieve this differentiation. One criterion concerns 
electron diffusion (or equivalently electrical conductivity): an electron is localized at a 
site if the electron wavefunction has the form 'ljJ ex exp( -aLr), where aLI is the localiza
tion length and if, at T = 0 K, the electron does not diffuse away from the site as t ~ CX) 

or, equivalently, states of energy )g are localized if the ensemble average of the d.c. 
conductivity is zero at T = 0 K. (Recall that delocalized states give a finite metallic 
conductivity at T = 0 K-see §6.3.2.1.) Another criterion asserts that localized states in 
a particular region of a· volume of material should be insensitive to the boundary 
conditions operative at the surface of the box, and hence the linear size L of the sample 
becomes important: if aL I ~ L, it is not possible to establish whether an electron state 
is truly delocalized or whether it would appear to be localized in a yet larger box. A final 
criterion is the participation ratio 

(6.260) 

which is a measure of the number of sites over which a wavefunction has significant 
amplitude: for a system containing N sites, a wavefunction that is strongly localized on 
just one site has P = 1/ N ~ 0, whereas an extended state is characterized by P = I. 

Disorder-induced localization of electron states was first studied by Anderson (1958) 
in terms of a tight-binding Hamiltonian (§5.3.l) applied to a periodic lattice but with 
disorder present in the form of random site energies )gi (or diagonal elements of the 
Hamiltonian)-see Fig. 6.63; such a situation is characterized by what is termed 
diagonal disorder. The Hamiltonian can be written in bra-ket notation as 



Fig.6.63 The Anderson model for electron localization: potential wells with random depths on a 
crystalline lattice. 

Sj = I:egi\i)(il- VI: li)(jl, (6.261) 
i i,j 

where the overlap energy (cf. eqn. (5.96b)) is taken to be constant, -v, between nearest
neighbour sites i,j (and zero otherwise), and the site energies egi (cf. eqn. (5.96a)) are 
taken to be randomly distributed with a uniform distribution function: 

P(eg) = l1W, -WI2~eg~ W12, 

=0, otherwise. ( 6.262) 

Hence, the only parameter of the model is the dimensionless degree of disorder W I v and 
the lattice geometry. Consequently there are two competing influences in the Hamilto
nian: the overlap term between nearest-neighbour sites tends to cause electrons to be 
delocalized, whereas deep potential wells in the random distribution of well depths tend 
to cause electrons to be localized. For sufficiently large values of W Iv> (W Iv)c' 
therefore, all the states in a 3D lattice are localized: for a simple-cubic lattice, 
(Wlv)c 16.5 (see Fig. 6.64). For values of Wlv < (Wlv)c' only states in the tails of 
the band near the band edge are localized, and states in the middle of the band are 
extended: the energy ego marking the transition from extended to localized states is called 

Fig. 6.64 Locus of the position of the mobility edge for a 3D simple-cubic lattice as a functi.on of 
the normalized diagonal (energetic) disorder, W lv, and the electron energy "&/v, where v IS the 
tight-binding overlap energy. The shaded area represents the region in which localized states exist 
(Kamimura and Aoki (1989), after Zdetsis et al. (1985)). 

the mobility edge (because the electron conductivity decreases rapidly at this energy). 
Off-diagonal disorder, associated with fluctuations in the overlap energy v in eqn. 
(6.261), in turn arising from fluctuations in the atomic structure (i.e. nearest-neighbour 
distances), is found to be much less effective in inducing electron localization than is 
diagonal disorder. As a result, off-diagonal disorder (as is pre.dominant in real amor
phous solids) only causes localization in the band tails. 

Delocalized electrons will scatter from the fluctuations in site potentials indicated in 
Fig. 6.63 and this will limit the mean-free path, A; the mean-free path will decrease with 
increasing disorder, until a minimum value is reached, A ~ a, where a is the interatomic 
spacing. Under such conditions of strong scattering, where an electron essentially 
scatters off every atom, the electron wavevector Ie is no longer well-defined and 
b..klk ~ 1; this corresponds to the Ioffe-Regellimit (eqn. (4.235)), A ~ A, and marles 
the onset of localization. Light can also be localized in a strongly scattering medium, a 
fine powder of a high-refractive-index material, e.g. GaAs (Wiersma et al. 1997). 

The wavefunctions corresponding to extended and strongly localized states are repre
sented schematically in Fig. 6.65: a wavefunction localized at a site fO is ch~racterized by 
having an exponentially decaying envelope: 

w = exp[-adll' - 1'01)] I: Cll exp(icPll)'ljJ(lr - 1'01), (6.263) 

where 'ljJ is an atomic wavefunction and the phase cPll varies randomly between sites, n. 
The localization length, aLl, is a function of the eigenenergy of the state: at the mobility 
edge, ego, aLl = 00, and it decreases with increasing eriergies deeper into the localized 
regime, i.e. the degree of localization is stronger for such deep states. The energy 
dependence of the localization length can be written as 

(6.264) 

Fig. 6.65 Schematic illustration of the wavefunctions of an electron for: (a) an extended state; 
(b) a strongly localized state. 
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where ~o is the electron energy corresponding to the mobility edge, and the exponent 
IJ c:= 1.5 (Mott (1993)). 

As mentioned previously, electrons in localized states do not diffuse (or contribute to 
metallic conductivity) at T = 0 K. At finite temperatures, a localized electron can only 
move from one localized site to another by phonon-assisted hopping, a combined 
thermally activated quantum-tunnelling process. Hence, if the chemical potential lies 
in a band of localized states, the conduction is not metallic-like (as would be the case if 
extended states were involved), but instead the material is an electrical insulator, and is 
termed a Fermi glass. The electronic transport between localized states (e.g. between 
localized dangling-bond defect states (§3 .1.1) deep within the bandgap of amorphous 
semiconductors) can be viewed as an optimization process: an electron will tunnel to a 
more distant centre if the thermal activation energy needed for the hop is thereby 
reduced. This Mott variable-range hopping mechanism produces a characteristic tem
perature dependence for the d.c. conductivity (Problem 6.31(a)): 

eTo = eT(0)exp[-A/Tl/4], (6.265) 

where the factor A depends on the localization length aLl and the density of states at the 
Fermi level, D(~F), as 

(6.266) 

For very thin films, where the conduction is constrained to be in two dimensions, the 
exponent of the temperature dependence for the variable-range hopping conductivity 
changes from 114 to 113 (Problem 6.31(b,c)), and this behaviour is shown for films of 
a-Ge in Fig. 6.66. 
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Fig. 6.66 Variable-range hopping conduction in films of a-Ge, showing the transition from 3D 
(TI/4) to 2D (TI/3) behaviour. ~a) Plot of the logarithm of current/thickness (/ /d) versus T-I/3. 
(b) Plot ofln(l/d) versus T-II . (c) Plot of the thickness dependence of the slopes of (a) and (b) 
showing the transition between 2D and 3D behaviour occurring at a thickness of!:::: 500 A. «a), (b) 
after Knotek et al.; (c) after Knotek (1974) Reproduced by permission of Taylor & Francis Group 
Ltd (1974». 

Applications 6.8 

Metals are widely used to conduct e,lectricity, or heat; such everyday applications 
utilize the electron-dynamical properties'discussed in §6.3. Semiconductors are also 
very widely used in electronic (low-power) (in contrast to electrical, i.e. high- power) 
applications. The most commonly used material for microelectronic applications is 
crystalline Si, although to a lesser extent III-V compound semiconductors (e.g. GaAs) 
are also used in applications that exploit their optical characteristics (direct gap) or 
electrical properties (higher mobility). However, almost invariably, electronic devices 
comprise extrinsic semiconductors in which the electrical dopants are incorporated in a 
very inhomogeneous spatial arrangement typically with a step-like profile. In such 
configurations, essentially all the useful electronic activity takes place in the vicinity of 
the interfaces ('junctions') between regions of differently doped semiconductor, and 
hence a discussion of semiconductor-based electronic devices is deferred until §§8.4.2.2 
and 8.5 where the electronic behaviour of 2D systems is discussed. In this section, 
therefore, we discuss some applications of superconductors that utilize their bulk elec
tron-dynamical properties. 

6.8.1 Electrical applications of superconductors 

Superconductors are potentially of considerable significance as loss-less carriers of very 
large electrical currents. An obvious possible application exploiting the lack of electrical 
resistance exhibited by materials in the superconducting state is in electrical power 
transmission systems: large currents can be carried in a loss-free manner without 
Joule heating as long as the temperature of the superconductor cable is kept below 
Te, and also if the current density in the cable is less than the critical value je that drives 
the material into the normal state (see Problem 6.20). The critical current for type-I 
superconductors is reached when the energy of moving Cooper pairs, due to the super
current, becomes comparable to the pair-breaking energy, 2.6. (or equivalently when the 
magnetic field at the surface of the wire, generated by the current, becomes equal to the 
critical field, Be). 

In the mixed, vortex state of type-II superconductors (§6.4), such that Bel < B < Be2, 

an electrical current causes a Lorentz force (cf. eqn. (6.7)) to act on the magnetic
flux-containing vortices. If the vortices move as a result, this creates a potential 
gradient parallel to the current, i.e. it is equivalent to an electrical 'resistance of the 
material. Only if the vortices are pinned, by structural defects (e.g. radiation-induced 
vacancies), or by impurities, is the current loss-less in a type-II superconductor in the 
vortex regime. 

For possible electrical-transmission applications, the savings in costs associated with 
loss-less transmission with no Jouie heating have got to be greater than the costs of 
cooling the superconductor to below Te over its entire length. For conventional (non
oxide) superconductors, for which Te < 25 K (Table 6.3), liquid He must be used as the 
refrigerant, and superconducting operation is not cost-effective. For the high-Te mate
rials, on the other hand, with values of Te in excess of the boiling temperature of liquid 
N2 (Table 6.5), the costs of refrigeration are correspondingly greatly reduced, but there 



are considerable technical problems in fabricating these structurally anisotropic, brittle 
ceramic oxide materials in wire form. Nevertheless, progress in wire fabrication has been 
made with the micaceous high-Tc material BSeeO (see Table 6.5), in which a silver tube 
filled with the oxide is drawn and rolled (to a spatial dimension of ~ 0.1 x 2 mm). The 
rolling process causes grain alignment in the superconducting material, allowing the 
current to flow mainly within the a- b planes. 

One of the most widespread uses of superconducting materials is as the windings in 
high-field (1-20 T) magnets, for example used in nuclear magnetic resonance spectro
meters and whole-body scanners for magnetic-resonance imaging. An evident require
ment for such applications is the capability for the wire in the windings to carry very 
large currents in order to, generate high magnetic fields. Superconducting windings have 
the advantage that no dynamic cooling is necessary if the current does not produce 
louIe heating, and hence the current densities can be very high (e.g. the upper limit of 
ie ~ 101lA m-2 for Nb-Ti). Existing superconducting magnets are wound using wires 
fabricated from conventional Nb-alloy superconductors, commonly NbTi, and are 
operated at the boiling temperature of liquid He, 4.2 K. The superconducting wires 
are in fact extended multifilament wires of about 0.5 mm diameter, comprising 
fila~ents of the superconductor embedded in a matrix of a normal metal, e.g. eu 
(Fig. 6.67): most of the current is carried by the superconducting filaments. Wires 
made ofhigh-Tc materials (e.g. silver-sheathed BSeeO), have the potentially significant 
advantage that, because the upper critical magnetic fields, Bc2, are so high for these 
materials (typically ten to one hundred times that of conventional superconductors), the 
critical current, ie, is not affected by the magnetic field as it is for conventional super
conductors like Nb alloys (see Fig. 6.68). As a result, very high magnetic fields should be 
achievable using high-Te materials. 

(a) (b) 

Fig. 6.67 Two cross-sectional configurations of filamentary superco~ducting wires. The shaded 
regions correspond to superconducting filaments, and the light regions correspond to a normal
metal matrix (e.g. Cu). (a) Homogeneous distribution of superconducting filaments. (b) Super
conducting filaments arranged around a central core of normal metal. 
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Fig. 6.68 The dependence of the critical current, jc, on magnetic field for conventional Nb-alloy 
superconductors and a high-Tc superconductor, BSCCO. (After Sato et al. (1991), IEEE Trans. 
Mag. 27, 1231. © 1991 IEEE) 

Other potential applications of superconducting wires in magnetic applications are as 
windings in electrical motors or electrical transformers. Here, the attraction of the 
superconducting material is the dissipationless operation, thereby saving the few percent 
of energy lost as louIe heating when normal-metal windings are used. Again, high-Tc
based wires would be a very attractive proposition in this regard because of the low cost 
and ease of liquid-nitrogen refrigeration. 

One remarkable aspect of the behaviour of superconductors is that, due to the 
exclusion of magnetic flux from the material in the superconducting state (the 
Meissner effect), a superconductor will levitate in a spatially inhomogeneous magnetic 
field above a magnet (see Plate V). A simple analysis of this problem can be made by 
assuming that the magnetic-flux density varies inversely with distance z above the 
surface of a magnet, i.e. B(z) == B(a)a/z, where a is the thickness of the magnet in 
the z-direction with the origin taken to be at the bottom surface (Fig. 6.69). Since the 
magnetic-energy density of a field is u = B2/2f.LO (cf. eqn. (6.146)), the increase in 
magnetic energy of the field associated with the complete exclusion of flux from the 
material of volume V (i.e .. a type-I superconductor or a type-II material with B < Bel) is 
given by 

(6.267) 

Fig. 6.69 Illustration of the type of magnetic-flux pattern necessary to levitate a superconductor. 
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The gravitational potential energy of the superconducting object, of density p, at a 
height z above the reference plane is given by 

Ugrav pVgz, (6.268) 

and hence the total potential energy of the system is U Urnag + Ugrav . The net force 
acting on the particle is F = -oU joz: in dynamic equilibrium, the net force must be 
zero, and hence the equilibrium levitation height is given by 

(6.269) 

Lateral stability is achieved (for a type-II material in the vortex regime) by pinning of 
flux lines (vortices). 

Magnetic levitation involving superconducting materials has been considered for use 
in ground-transportation systems, so-called 'maglev' trains. The levitation configura
tion involving superconductor and magnet shown in Fig. 6.69 is not feasible for large
scale applications. Instead, it is more likely that levitation could be achieved by utilizing 
the repUlsion between a superconducting magnet in a train and either conventional 
solenoids on the track or an electrically conducting metallic guide on which it rides: the 
repulsive force in the latter case is due to the interaction between the magnetic field of 
the magnet and the eddy currents induced in the guide by the field. Obviously, frictional 
dissipation of energy between train and rail is greatly reduced in a levitating system, and 
high speeds of transport are possible (500 km h-1); nevertheless, there is some residual 
frictional effect, e.g. due to eddy-current damping in the guide rail. 

6.8.2 Electronic applications of superconductors 

Apart from their use in high-current-carrying superconducting windings in high-field 
magnets, present applications of superconductors tend to be in low-power devices, e.g. 
for electronic applications. Perhaps the most widely used such device is the SQUID 
(superconducting quantum interference device) which makes use of the coherent quan
tum tunnelling of Cooper pairs of electrons that occurs in Josephson junctions (§6.4.2.3) 
to measure very small magnetic fields. 

The general configuration of a SQUID is shown in Fig. 6.70: a supercurrent is 
diverted along two paths of a superconductor, each branch containing a weak link 
(Josephson junction), e.g. a tunnelling barrier. The supercurrents in region I of the 
device, before division, and in region II, after recombination, are the same except for 
phase differences Da and Db which occur at the two junctions a and b, respectively (cf. 
eqn. (6.183) ). The presence of a magnetic field threading the area enclosed by the device 
causes further shifts in phase, resulting in a periodic modulation of the supercurrent 
with varying magnetic field. The fact that the operation of a SQUID is unaffected even 
if the spatial separation of the two tunnel junctions is of the order of a few centimetres 
means that the coherence of the superconducting order parameter of the condensate is 
maintained over such distances: this is an example of macroscopic quantum coherence. 
The SQUID has some similarity to an optical interferometer, wherein changes in the 
path-length difference introduced into one arm of the interferometer cause interference 
to take place between the two combining light beams, resulting in a periodic modulation 

T 
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Fig.6.70 Schematic illustration of a SQUID, consisting of two Josephson junctions, a and b, in 
two arms of a loop of superconducting material. The current I through the device is modulated by 
the (quantized) magnetic flux threading the area of the loop. Paths C1 and C2 are those along 
which line integrations are performed to relate phase shifts of the superconducting order para
meter across the junctions to the magnetic flux (see text). 

of the light intensity. An analogy for a SQUID with very small junction areas is with the 
Young's (two-slit) arrangement in optics. 

The phase shift !:1() of the superconducting order parameter associated with a mag
netic field can be obtained from the expression eqn. (6.169) relating electrical-current, 
density to () and the vector potential A by performing a line integration along a path 
deep inside the superconductor,where, in the Meissner state, the current is zero, and for 
which (from eqn. (6.169» 

'f'V() = -2eA. (6.270) 

Performing such a line integration between any two points i and j on the path gives: 

j j 2ejj
· 

'V(). dl = -- A· d/. 
i Ii i 

(6.271) 

If the supercurrents across the tunnel junctions a and b shown in Fig. 6.70 are written 
as (cf. eqn. (6.183»: 

Ia,b = Ajo sinDa,b (6.272) 

where A is the junction area (assumed to be the same in both cases), then the phase shifts 
from region I to II via paths a or b in Fig. 6.70 are, from eqn. (6.271), given by 

I
II 

!:1() I = Da 

I
II 

!:1() 
I 

2elA ·dl 
Ii ' a 

(6.273a) 

(6.273b) 
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However, the phase shift between regions I and II must be invariant (modulo 27f) of the 
path chosen between them, and so by subtraction of eqns. (6.273) 

2ef oa - Ob = Ii A· dl, (6.274) 

where the two line integrals of eqns. (2.273), being in opposite directions, combine to 
give an integral over a closed loop. Stokes's theorem relates a closed-path line integral to 
an integral over a surface S bounded by the line: 

fA. dl = 1 (curlA) . dS 

= 1 B·dS 

( 6.275) 

The quantity Is B . dS is simply the magnetic flux <I> threading the superconducting loop, 
i.e. 

(6.276) 

Introducing a constant, arbitrary phase factor 00 (dependent on the nature of the 
tunnel junctions, assumed to be identical), the individual junction phase shifts can be 
written as 

(6.277a) 

(6.277b) 

The total supercurrent flowing in regions I and II is given by the sum of the currents 
flowing through the junctions (eqns. (2.272»: 

f = fa +h 
= 2Ajo cos[(Oa ob)/2] sin[(oa + ob)/2]. 

Substituting the phase shifts oa and Ob into this expression gives 

f = 2Ajo cos[e<I> Iii] sinoo. 

(6.278) 

(6.279) 

Hence, the supercurrent flowing through a SQUID is determined by the extent of the 
magnetic flux threading the device: the maximum supercurrent is given by (Problem 
6.32): 

(6.280) 

where <I>o = hl2e is the flux quantum. Equation (6.280) shows that maxima in the 
SQUID current occur whenever an integral number of flux quanta <I> = n<I>o thread 
the device. The maximum current passed by a SQUID as a function of applied magnetic 
field is shown in Fig. 6.71: the effect of the quantization is clearly evident. 

SQUIDs can be used as extremely sensitive magnetometers, capable of detecting very 
small magnetic fields, such as those generated within the living body. They can also be 
used as very sensitive voltmeters: the voltage source to be measured is connected to the 
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Fig. 6.71 Maximum current passed by a SQUID as a function of applied magnetic field. The 
short-period oscillations correspond to solutions of eqn. (6.270); the longer-period variation is due 
to a 'diffraction' effect associated with magnetic flux threading extended Josephson junctions 
(After laklevic et al. (1965) Reprinted with permission from Phys. Rev. 140, A1628. © 1965. The 
American Physical Society) 

SQUID through a known resistor R, and the current f = V I R produces a magnetic flux 
in the SQUID which is measured. High-Tc materials are being developed for SQUID 
applications operating at T > 77 K, although the technical problems involved are 
challenging. For Josephson junctions to work, the superconducting order parameter 
must retain its bulk value to within a distance equaJ to the coherence length of the 
junction. The very sho~t coherence lengths characteristic of high-Tc cuprate materials 
(§6.4.3), i.e. <: ~ 10-30 A in the a h plane, means that control over material processing 
must be very good. However, grain boundaries in films of say YBCO act as weak-link 
Josephson junctions and so suitable configurations of single-crystal grains could be used 
to fabricate SQUID devices. 

A number of other applications have been proposed that utilize Josephson junctions, 
including radiation detectors and very fast switching elements (cf. Fig. 6.42) for com
puter elements. For further details see e.g. Ruggiero and Rudman (1990), Tinkham 
(1996). 

Problems 

6.1 Calculate an expression for the thermal conductivity "'T of a classical electron gas (Drude 
model). Comment on the relative order of magnitude of this estimate with that calculated for 
the Fermi gas (eqn. (6.16». (Hint: start from the gas-kinetic expression ",T = Avcv /3, where 
v is an appropriate mean velocity.) 

6.2 (a) Show that the expression for the effective electron mass (eqn. (6.26» reduces to the bare 
mass me for the free-electron gas. 

(b) Calculate a general expression for the effective mass, m;(lc), for a ID tight-binding band 
(cf. eqn. (?98», and evaluate it at the zone boundary (lc = -rr/a). How does m; depend 
on the wIdth of the band? Account for the behaviour of the electron velocity near 
lc = -rr /2a. Why can a d.c. electric field not induce an alternating current (Bloch oscilla
tions) in a metal? 

6.3 Essay: Compare and contrast the behaviour of electrons and holes in part-filled bands (e.g. 
in semi-metals or p-type semiconductors). 
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6.12 
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Show, for the case of metallic potassium, that the magnitude of the minimum phonon 
wavevector capable of effecting electron phonon umldapp scattering is qo = 0.278kF. (Hint: 
see Problem 5.1.) 
Show that eqn. (6.71), for the electrical conductivity of a metal, reduces to (a) eqn. (6.9) for 
the case of a free-electron gas; (b) (J = e2 ASr / 12illi, where A is a mean-free path averaged 
over the Fenni surface and SF is the total free area of Fenni surface. 
Show that the change in momentum of an electron, along its original direction of motion, 
when scattered from one point on the Fenni surface to another via a collision such as in 
Fig. 6.9, is given by ok ~ liq2 /2kF. 
Obtain an expression for the local entropy production in a metal resulting from electrical 
current flow in the presence of a temperature gradient. 
Show that the cyclotron frequency of a free-electron gas is given by eqn. (6.117). (Hint: use 
eqn. (6.115).) 
(a) Show that the real-space cyclotron orbit of an electron in a magnetic field B is such that 

the projection of the orbit on a plane perpendicular to B is the orbit in k-space rotated 
by 90° and multiplied by the scaling factor n/eB (see Fig. 6.19). (Hint: fonn the vector 
product of both sides of eqn. (6.109), written as M, -e(v x B), with a unit vector iJ 
parallel to the B-field and integrate the ensuing equation.) 

(b) Obtain the expression for the cyclotron frequency of a free-electron gas by considering 
the forces acting on an electron in a real-space orbit. 

Derive the expression for the quantized Landau levels for electron motion in a magnetic 
field (eqn. (6.119». 
(a) Show that the Schr6dinger equation for a free electron in a constant magnetic field B 

aligned along the z-direction (represented by the vector potential B = curl A, where 
A (0, Bx, 0)) can be written as 

_~ [&'if; + (~+ ieBx) 2'if;+ f)2'if;] ="g'if;. (1) 
2rne ox2 oy n oz2 

(b) Demonstrate that this equation has a solution of the form 
'l/J(x,y, z) = f(x)exp[i(>.y + kzz)], where the functionf(x) satisfies the equation 

li
2 

02f(x) e
2 
B2 ( Ii>')f() CO of ( ) ----+-- x+- x = (!) x 

2me ox2 2rne eB 
(2) 

with eg ego + li2k~/2me. 
(c) Show that eqn. (2) IS the Schr6dinger equation for a simple hannonic oscillator, centred 

at the point x = -li>./ eB, and hence obtain an expression for the oscillator frequency 
and the energy eigenvalue "g. 

Consider the effect of electron spin on the Landau levels, and obtain an expression for the 
energy levels (cf. eqn. (6.119» taking spin into account. What is the level spacing for: (a) 
free electrons, and (b) electrons (say at the conduction-band minimum in a semiconductor) 
with an effective mass m; = 0.5me? 
Obtain expressions for the Hall coefficient and transverse magneto resistivity for a two
band conductor. 

(a) In general, the currentj caused by an electric field E normal to a magnetic field can be 

written as E = pj, where the resistivity tensor has the fonn P = (R~B -~HB), and 

where RH is the Hall coefficient and P is the magnetoresistivity. For a metal with several 

part-filled bands, each band i produces a relation Ei = pJi' where Pi = (~~ - ~iB) . 
Show that the effective resistivity tensor is given by p = [2:: pi I r I. 

(b) Show that, for the case where there are only two bands, I and 2, the Hall coefficient and 
magneto resistivity are given by: 

R _ RIP~ + R2Pi + RIR2(RI + R2)B2 
H - (PI + P2)2 + (RI + R2)2 B2 ' 

(I) 

PIP2(PI + P2) + (pIR~ + P2Ri)B2 
P (PI + P2)2+ (RI + R2)2 B2 

(2) 

(c) Hence obtain eqn. (6.133) for the Hall coefficient in the high-field limit for an electron 
and a hole band with closed orbits. Derive the corresponding equation in the low- field 
limit, viz. . 

(3) 

What is the behaviour in the compensated limit (ne nh) in both cases? 
6.13 Essay: Compare and contrast the behaviour of electrons in the superconducting and 

normal states of a metal. 
6.14 Use the approximate relation for the temperature dependence of the critical field, Bc(T) 

(eqn. (6.141» to obtain expressions for the temperature dependences of the differences in 
the Gibbs free energy, entropy and heat capacity between superconducting and normal 
states. Show that the heat-capacity discontinuity per unit volume at Tc (in zero applied 
magnetic field) is!:lc 4B~(0)/J.LoTc. 

6.15 Show that an attractive interaction, causing an electron (Cooper) pair to scatter from a 
state (kT, -k!) to (k'T' -k'!), leads to an energy for the pair less than that of the non
interacting ground state. 
(a) The Schr6dinger equation for an electron pair can be written as 

li
2 

2 2 
- 2m

e 
(VI + V2)'if;(rl,r2) + l'(rt,r2)'if;(rt,r2) (c + '2"gF)'if;(rt,r2) (1) 

where c is the energy of the pair relative to the non-interacting state (l' = 0) for which each 
electron at the Fenni level would have an energy "gF. By inserting the pair wavefunction 
(eqn. (6.155» into (1), show that 

n2~ 1 
- -p(k) + - LP(k')l'kk' = (c + 2"gF )p(k) , (2) 

me . V k' 

where the interaction matrix element is l'kk' = fl'(r)e-i(k-k').r dr, and describes the scatter
ing of the Cooper pair from (kT,-k!) to (k'!,-k'T)' (Hint: multiply by exp(-ik'.r) and 
integrate over the nonnalization volume.) 
(b) By assuming that l'kk' is independent of k and is also attractive, i.e. l'kk' = -l'o for 

0< c < liWD (see Fig. 6.3lb), show that 

l'o" 2.2 -I V L--(-c +Ii ~/me - 2"gF) . 
k 

(3) 

(Hint: write (2) with A = (l'/V) 2::k'P(k'), and sum the fonner expression over k.) 
(c) Replace the sum in (3) by an integral: V-I 2::k -+ (21f)-3 f dk and obtain the expression 

1-~JJ dS,(; d"g (4) 
- (21f)3 IVk"g(k)1 (2"g c - 2"gF) , 

where"g = li2~/2me. Hence show that 
1 

1 = 2l'Og("gF)ln[(c 2liwD)/c], (5) 

where g(c:gF) is the density of states at the Fenni level for electrons of one spin orientation 
(cf. eqn. (5.131» and, in the case of a weak interaction, l'og(c:gF) « 1, that this reduces to 

c ~ -2liwD exp(-2/l'Og(c:gF)). (6) 

6.16 Derive eqn. (6.158) for the range of crystal momenta liD.k involved in the scattering of 
electrons in Cooper pairs in the BCS condensate (see Fig. 6.31 b). What is a typical value for 
!:lk? 
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6.17 Derive eqn. (6.166) for the Ginzberg-Landau order parameter of a superconductor con
densate, 'ljJ(R) = eiK.Rq;(r). By writing down an expression for the supercurrent density js 
carried by Cooper pairs, show that each Cooper pair experiences a total change in 
wavevector K = -2mejslnseli, where ns is the concentration of superconducting electrons 
(i.e. ns/2 Cooper pairs). Hence obtain the expression for 'ljJ(R). 

6.18 Show that the expression for the electrical current density 

j = ilie ('ljJ*"hjJ _ 'ljJ\!'ljJ*) _ e
2 

'ljJ*'ljJA 
2111e l11e 

in the presence of a magnetic field B = curl A is obtained as the expectation value of the 
quantity -ev where, for an electron, the momentum is given by p = mev - eA, and where A 
is the magnetic vector potential, with the momentum being replaced by the operator -iii\!. 
Confirm that for a Cooper pair, eqn. (6.167) is obtained. 

6.19 Derive the London equation (eqn. (6.171» by assuming that a superconductor can be 
described as being an ideal conductor of infinite conductivity. (Hint: make use of the 
Maxwell equation curl E = -S, and invoke the Meissner effect exhibited by superconduc
tors.) 

6.20 Obtain an expression for the upper critical current density je for the existence of the 
superconducting state. 
(a) Write down an expression for the energy of an electron in a Cooper pair in a current

carrying state in terms of the net wavevector K of the Cooper pair (see Problem 6.17), 
and hence obtain an estimate for the increase in energy 6% of such an electron when 
current-carrying compared to the current-free case. 

(b) By assuming that the condition for the destruction of the superconducting state is when 
the increase in energy 26% of a pair becomes comparable to 2.6, obtain an expression 
for the corresponding critical current density. Ifje = 2 X 1011 Am -2 for Sn at T :::::: 0 K, 
calculate the concentration of superconducting electrons (VF = 1.88 x 106 m s-I ; 
2.6(0) = 3.67 x 10-4 eV). 

6.21 Sketch the Giaever tunnelling current-voltage characteristic of a tunnel junction comprising 
two superconductors at temperatures (a) T = 0 K; (b) 0 < T < Te. 

6.22 Essay: Review the latest theories for the mechanism of superconductivity in the high-Te 
cuprate materials. 

6.23 Explain why the position of the chemical potential (Fermi level) for an intrinsic semicon
ductor should depend on the curvature in k-space of the valence and conduction bands in 
the vicinity of the gap (cf. eqn. (6.207». For intrinsic crystalline InSb (%g = 0.23 eV, 
111; 0.015111e, 1111; 0.42lne - see Table 6.1), calculate the position of the Fermi level 
and the carrier concentrations in the conduction and valence bands at (a) T = 0 K, and (b) 
T 300 K. 

6.24 Estimate the temperature at which the intrinsic carrier concentration in diamond (%g = 5.4 
eV) would be equal to that in Ge (%g = 0.74 eV) at 100 K. 

6.25 (a) Obtain an expression for the cyclotron-resonance frequency, We, for the direction of a 
magnetic field B with direction cosines (h, 12, 13) with respect to the principal axes of an 
ellipsoidal constant-energy surface (having longitudinal and transverse values of the 
effective mass, In) and 111t), for example near the conduction-band minima in crystalline 
Si (see eqn. (5.127». (Hint: solve the equations of motion 1111' ~ = -ev x B with 
oscillating solutions vx , v", V; oc exp (iwt).) 

(b) For the cyclotron-resonance data for c-Si shown in Fig. 6.48a, for which the cyclotron 
frequency is v = 2.4 X 1010 Hz, obtain values for ml and 111(. 

6.26 (a) Show that the concentration of un-ionized donors N~ in an n-type extrinsic semicon
ductor containing a total concenfration Nd of donors is given by 
N~ Nd[l +!exp[(%e %d -11)/kBTlr . (Hint: assume that each donor level can 
be occupied by an electron with spin up or down and use the grand sum to obtain an 
expression for the electron occupancy.) 

(b) Hence obtain an approximate general expression for the electron concentration in the 
conduction band if the hole concentration is neglected. Show that this expression 
reduces to eqns. (6.244) and (6.246) for the position of the chemical potential in the 

6.27 

6.28 

6.29 

6.30 

6.31 

6.32 

6.33 

freeze-out and saturation regimes, respectively. How is the general expression altered if 
the holes in the valence band are taken into account? 

(c) Obtain an expression for the concentration of ionized acceptors in a p-type doped 
tetrahedral semiconductor. 

What concentration of donors Nd is neyessary to make the high-temperature limit of the 
saturation region lie at 300 K for an n-type doped semicond,!lctor with %g = 1 eV and 
111; = 111;; = 0.5111e? Where does the chemical potential lie at this temperature? What is the 
corresponding hole concentration in the valence band? 
(a) Obtain an expression for the energy of an electron in a dielectric-polaron state as the 

sum of three terms: (i) kinetic (associated with confinement of the electron to a volume 
of radius rsp; (ii) electrostatic potential of the electron; (iii) electrostatic potential 
associated with polarization of the surrounding lattice. (Hint: for (iii) take the polar
ization energy to be the volume integral - ~.r: P.Ed V, where P is the polarization 
(eqn. (4.140».) - Isp 

(b) By minimizing the expression for the energy, obtain equations for the equilibrium 
small-polaron radius rsp and the overall binding energy (eqn. (6.251a». (N.B., for 
comparison, an exact treatment gives rsp = 5li2E;p/m*e2 if rsp » a.) 

Discuss the likelihood of self-trapping in small-polaron formation if there is a minimul11 
value of configuration coordinate, q = qe, below which polaron formation does not occur. 
(Hint: construct configuration-coordinate diagrams, with the electron-energy term given by 
%el -B(q - qe), for various values of qe.) 
Show that an estimate for the maximum resistance for metallic behaviour exhibited by a 
thin wire is Re :::::: li2/e = 4.1 kD. (Hint: use the uncertainty principle to estimate the shift in 
electron energy levels 6% corresponding to the uncertainty in time of an electron diffusing 
the length of the wire. Use the Nernst-Einstein equation (3.84b), relating conductivity to 
diffusion coefficient to relate the resistance of the wire to 6% and .6%, the average spacing 
between energy levels. Couple two such wires together, and consider the condition neces
sary that the resistance scales normally with size.) 
(a) Derive the Mott TI/4 law (eqn. (6.265» for the d.c. conductivity of an electron 

performing variable-ninge hopping between localized states. (Hint: Consider the elect
ron hopping transition rate between two localized states separated in distance by rand 
energy by .6 to be given by I = v exp( -2av - .6/kBT), where aLI is the electron 
localization length and v is an attempt frequency of the order of a phonon frequency. 
Use the Nernst-Einstein relation (eqn. (3.84b» to obtain an expression for the con
ductivity expressed in terms of the variables rand .6. Optimize this expression, subject 
to the constraint that there be at least one state neighbouring another at a distance r 
and energy separation .6.) 

(b) Show that if, for a 'very thin film of thickness d, conduction is effectively constrained to 
two dimensions, the exponent in the temperature dependence of variable-range hopping 
conduction changes from 1/4 to 1/3. For an amorphous semiconductor with an 
electronic density of states at the Fermi energy of D(%F) = 1025 m-3 eV- 1 and a 
localization length of aLI 10 A, estimate the thickness at which the transition from 
2D to 3D behaviour is expected. 

Show that eqn. (6.280) must be satisfied for the maxima in the current passed by a SQUID. 
(Hint: find the conditions for both the individual Josephson tunnel currents (eqn. (6.272» 
and the interference term involving the magnetic flux in eqn. (6.279) to be satisfied 
simultaneously. ) 
Essay: Discuss the application of Josephson junctions in electronic devices, e.g. SQUIDs, 
electrical switches and radiation detectors. 
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Introduction 

Dielectric properties of solids are determined by localized electrons (bound charges) 
forming electrostatic dipole moments; magnetic properties, on the other hand, involve 
intrinsic electron spins having an associated magnetic dipole moment. Although these 
two types of behaviour have different origins, there is some logic in discussing them 
together in a single chapter since both types of dipole moment can order structurally in 
very similar manners resulting, in these cases, in the same temperature dependence of a 
macroscopic dielectric or magnetic property. 

Dielectric properties 

7.1.1 Dielectric functions 

Materials can be classified into one of two categories depending on their electrical 
response to a d.c. (or very low-frequency) electric field, E. Solids in which a constant 
electric field produces an electric current, consisting of ions in the case of ionic con
ductors (§3.4.2.2) and/or electrons in the case of electronic conductors (§§6.3.2.1 and 
6.5.1.2), are termed electrical conductors. In contrast, electrical insulators, in which no 
d.c. ionic or electronic current can flow, are dielectrics in which the only response of the 
bound charges (ions or electrons) to a d.c. electric field is a static spatial displacement 
causing a local change in a dipole moment associated, say, with the orientation of a 
permanent dipole, or an induced dipole moment in the case of electrons displaced with 
respect to the ion cores (Fig. 7.1). The overall polarization P (net dipole moment per 
volume) is related to the electric field (strictly, the macroscopic field inside the solid
see §7.1.2) by 

P = EOXE, (7.1 ) 

where EO is the permittivity of free space, and X is the first-order dielectric susceptibil
ity, being generally a tensor in other than cubic or isotropic materials. Higher-order 
terms in the dielectric susceptibility (eqn. (5.226» are responsible for non-linear 
optical behaviour (§5.8.4). The polarization can also b~ expressed as a function of the 
electric field in terms of the dielectric constant, E, also a tensor quantity in general 
(cf. eqn. (4.140»: 

/ 
/ 

/ 

8+ 
(a) 

+-p 

P = (E - I)EoE; 

(8) 
(b) 

+-
p 

(7.2) 

Fig. 7.1 Illustration of the origin of (a) a change in dipole moment for a bound ion-pair dipole; 
(b) an individual dipole moment for a bound electron distribution. The configuration before the 
application of a d.c. electric field is shown by the solid lines and that existing under the application 
of the field is represented by the dashed lines. The (change in) dipole moment is the vector p. 
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hence the dielectric susceptibility and constant are inter-related via 

x-=€-l.. (7.3) 

The dielectric displacement, D, is defined (again in terms of macroscopic internal fields 
-see §7.1.2) as 

D = €oE + P == €o€E. (7.4) 

In time-varying tields, a displacement current density, aD/at, associated with the 
bound charges can flow in addition to the electric current flux, j, due to free charge 
carriers. These quantities are connected via one of the Maxwell equations: 

l H 
. aD 

cur =J+ 8t . (7.5) 

The time-dependent fields are related, via Fourier transforms, to the corresponding 
frequency-dependent quantities which determine the spectral behaviour of the dielectric 
response: 

E(t) 1: E(w)e- iW1 dw, (7.6a) 

D(t) = 1: D(w)e-iW1 dw (7.6b) 

and, because the fields are real quantities, E(w) = E*( -w) and likewise for D(w); the 
star denotes the complex conjugate. Since the electrical current density j is related to 
the electric field via the conductivity (J (eqn. (6.1)), the Maxwell equation (7.5) can be 
rewritten in frequency-dependent form as 

curl H(w) (Jt (w)E(w) iw€o€t (w)E(w) 

if(w)E(w) , 
(7.7a) 

(7.7b) 

where the second term in eqn. (7.7a) arises from eqn. (7.6b), and (Jt(w) and €t(w) are 
complex quantities. 

A generalized expression for the conductivity that includes dielectric contributions 
can be defined as in eqn. (7.7), treating the response entirely in conductivity terms, 
with 

(7.8) 

Alternatively, by regarding the contribution to curl H as being due entirely to the 
displacement-current density D, an equivalent generalized dielectric constant can be 
defined that includes the a.c. conductivity response: 

E(W) 
i(Jt 

€t(w) +-. 
€OW 

(7.9) 

Equations (7.8) and (7.9) arise because it is only for static fields that a true distinction 
between bound and free charge carriers can be made: for alternating fields, alternating 

T 

motion of bound charges contributes to the a.c. conductivity, and the oscillating motion 
of free charges contributes to the frequency-dependent dielectric constant. 

The real and imaginary parts of the complex dielectric constant 

(7.10) 

are inter-related via the Kramers-Kronig relations (eqns. (4.166)). The imaginary 
component, €2(W), is associated with energy dissipation or loss in the dielectric material. 
Substitution of eqn. (7.10) into the time-derivative form of eqn. (7.4) (assuming for 
simplicity that €t(w) is a scalar) gives the displacement-current density: 

D = €t€oE = €O(€l + i€2)E 

= -iW€O€IE + W€O€2E, 
(7.11a) 

(7.l1b) 

where a periodic variation of electric field, E ex Eoexp( -iwt), has been assumed for eqn. 
(7 .11 b). The average dissipation per volume in one cycle resulting from the resistive (in
phase) component (the second term of eqn. (7.11 b)) is 

(7.12) 

This depends only on the imaginary component of the dielectric constant, €2, and not 
the real component, €l, that appears in the reactive (in-quadrature) component (the first 
term of eqn. (7.11 b)). Equation (7.11b) can be represented in vector form in a complex
plane diagram (Fig. 7.2). Since a perfect dielectric is characterized by being completely 
reactive, with no resistive lossy component, the quality of a dielectric can be assessed in 
terms of the loss tangent, i.e. the tangent of the loss angle 8 between resistive and 
reactive vectors in Fig. 7.2, given by 

tan8 €2/€I. (7.13) 

A perfect dielectric has 8 = tan8 = O. 

Imag. 

Real 

Fig. 7.2 Complex-plane representation ?f resistive (wcoc2E) and reactive (-iwcoct E) compon
ents of the displacement current density D. The loss angle {j is indicated. 
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The complex dielectric constant Gt(w) also controls optical properties since it is 
related to the complex refractive index nt(w) via the relation 

n t (w) == nr + if\;j J 10 t (w). (4.159) 

The imaginary part of the dielectric constant, 102, also determines the energy loss of an 
electromagnetic wave, e.g. light, propagating through a material. The absorption co
efficient K(w) is given by 

(4.163) 

7.1.2 Internal electric fields 

In general, the electric field inside a polarizable medium is not the same as the applied 
external field, Eex(, because the electric dipoles in the material also produce an electric 
field. Moreover, the macroscopic internal field, Emac , is not the same as the local field, 
Eloc , at a particular atom, and both these quantities depend on the particular sample 
geometry. Similar considerations apply also to magnetic fields (§7.2.2). 

At the atomic level, the electric charge density, p(r), of, say, an ionic insulator is a 
very rapidly varying function of j' on the length scale of atomic spacings, a. Con
sequently, the microscopic electric field, Emic(r), related to the charge density by the 
Maxwell equation 

div Emic(r) = Pmic(r)/Go, (7.14) 

is also a very rapidly varying quantity. The macroscopic electric field, Emac(r), is then an 
average of Emic(r) taken over a volume of spatial dimension ro ~ a (but appreciably 
smaller than the sample volume) so that the very rapid spatial fluctuations in field are 
averaged out, but any slow spatial variations of the field on a length scale somewhat 
greater than ro are retained in Emac(r). 

Application of a uniform external electric field Eext to a polarizable body produces a 
polarization P within it that henceforth will be assumed to be uniform throughout the 
sample. (This is true, for example, for ellipsoidal geometries, including spheres, discs 
and cylinders as limiting forms.) A uniform polarization P produces an electric field El 
that is exactly equivalent (see Problem 7.1) to the field in vacuo resulting from a fictitious 
surface charge density (Te iz. P on the surface of the sample, where iz is the outward 
unit vector normal to the surface. Note that it is the component of P normal to the 
surface that determines (Tc. The field El is called the depolarization field, for it opposes 
the external field (see Fig. 7.3). The depolarization field for a particular symmetry axis 
of an ellipsoidal geometry sample is given by (see Problem 7.1): 

Ni 
El = --Po 

GO 
(7.15) 

Values of the depolarization factors Ni(i = x,y, z) for various axes of simple-geometry 
ellipsoidal samples are given in Table 7.1 (see also Problem 7.1); the sum rule 
N" + Ny + N= = 1 holds. The internal macroscopic field is given by the sum of the 
externai and depolarization fields: 

Fig.7.3 Internal electric fields in a dielectric subject to a uniform external electric field, Eext . For 
a uniform polarization P induced within the material, the associated depolarization field E[ can 
be regarded as arising from fictitious charges induced on the surface, with a surface charge density 
given by the component of the polarization normal to the surface, i.e. (J'c = p. n. The local field at 
a particular point r within the sample can be calculated as E[oc E ext + E\ + E2 + E 3, where the 
Lorentz cavity field E2 is the field from polarization charges on the surface of an imaginary sphere 
inscribed within the sample, and centred on 1', and E3 is the field from dipoles within the 
imaginary sphere. 

Emac = Eext + E l. (7.16) 

Hence, for a thin disc perpendicular to the applied-field: 

El = -P/co; Emac = Eext - P/Go; Dmac GOEexh (7.17) 

while for a long cylinder parallel to the field: 

Dmac = GoEext + P, (7.18) 

and for a sphere: 

El = -P/3co; Emac = Eext - P/3Go; Dmac = coEext + 2P /3. (7.19) 

In general, the local field, Eloc , at an atomic site is not the same as Emac. The local, or 
effective, field can be calculated by a trick. An imaginary surface is inscribed within the 
sample about the point r at which Eloc is required; for simplicity, this surface is taken to 
be spherical and centred on r, with radius R much greater than the distance ro used to 
evaluate Emac (Fig. 7.3). The local field can then be expressed as the sum of five terms: 

(7.20) 

Table 7.1 Values of depolarization factors for ellipsoidal-geometry samples 

Shape Axis Ni 

Sphere any 1/3 
Thin disc longitudinal I 
Thin disc transverse 0 
Long circular cylinder longitudinal 0 
Long circular cylinder transverse 112 
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where the Lorentz cavity field, E2, is the field due to dipoles in the 'far' region outside 
the fictitious spherical shell, effectively due to polarization charges on the surface of this 
shell, E3(r) is the field due to atoms in the 'near' region, i.e. within the imaginary sphere, 
and E4(r) is the contribution from the atom at the origin (which is henceforth 
neglected). The contribution E3(r) can be taken for simplicity to be that at the origin 
of the atom, E3(0): it is the only term that is dependent on the particular atomic 
structure of the material. 

The Lorentz cavity field can be calculated in the same way as for the depolarization 
field of a sphere (problem 7.1b). If B is the angle with respect to P, the surface charge 
density is given by -PcosB (see Fig. 7.4). The element of charge on a circular ring of 
radius RsinB on the surface of the cavity is dQ -PcosB.2nR2sinB dB, and hence the 
field resolved along the direction of P is 

r 2n R2 P cos2B sinB dB = ~ , 
Jo 3£0 

(7.21) 

ie the negative of the depolarization field. 
The contribution to the local field can only be evaluated knowing the atomic struc

ture of the material. If the atoms are replaced by dipoles giving a moment Pi per cell, all 
assumed to be parallel to the z-axis (and P), the z-component of the field at the centre of 
the imaginary sphere is 

E3 = L 3 (Pi . ri):i rTPi (7.22) 
i ri 

For a cubic lattice (or a random distribution as in a liquid or gas and possibly an 
amorphous solid), the X-, y-and z-directions are all equivalent, and if there is only one 
type of dipole (Pi p) eqn. (7.22) simplifies to 

Fig.7.4 Illustration of the geometry used to calculate the Lorentz cavity field E2• 

372 _ r2 2.,.2 _ x2 _ y2 
E - ""' -i i _ ,,","'i - i i 3 -P ~--5-·--P ~ 5 

i ri j ri 
(7.23a) 

=0, (7 .23b) 

since L-zT/r; = L-YT/r; = I:.xT;rJ. Hence it can be seen froin eqns. (7.20), (7.21), and 
(7 .23b) that the local field for a cubic or isotropic material is given by the Lorentz 
relation: 

P 
Emac +-

3 
. 

£0 
(7.24) 

For the particular case of a cubic (or isotropic) material in the shape of a sphere, 
Eloc = Emax (cf. eqn. (7.19», but this relation is not generally true. 

7.1.3 Polarization and the dielectric constant 

For an isolated atom, the electric dipole moment P induced by an external electric field is 
proportional to the field: 

(7.25) 

where Cip is the polarizability; it is a tensor for a non-spherical atom. For an assembly of 
ni atoms of type i in unit volume, the polarization (dipole moment per unit volume) can 
·be obtained by assuming that it is equal to a sum oVt:<r the individual dipole moments: 

P = LniPi = LniCiP,iEloc,;, (7.26) 
i i 

where the local electric field (eqn. (7.24» at each atom must now be used. The Lorentz 
relation for Eloc, valid for cubic lattices or isotropic media, is the same for all atoms in 
such an assembly because the structure-dependent term E3 of the local field is identically 
zero for a cubic or random array of dipoles. In such a case, the polarization becomes 

P ~ n;Cip,i { Emac + :o} (7.27) 

and since the dielectric susceptibility (assumed to be a scalar) is given by X = P/£oEmac 
(eqn. (7.1», then 

x= 1 • 
CO - "3 L- niCip,i 

(7.28) 

i 

Making use of the relation X = £ 1 (eqn. (7.3» gives the Clausius-Mossotti relations 

£ ~3=-31 LniCiP,i, 
£+ X+ £0 i 

or equivalently after rearrangement: 

2L-niCip,i + 3£0 
; 

£ = ---=:=----
3£0 - L-niCip,i . 

i 

(7.29) 

(7.30) 



It should be stressed that eqns. (7.28-7.30) are only valid for cubic lattices or isotropic 
media. 

The polarizability a p that appears in eqns. (7.29) and (7.30) determining the dielectric 
constant can have several physical origins. One mechanism is the atomic polarizability 
associated with the distortion of the electronic charge distribution in an atom relative to 
the ion core. Another electronic mechanism operative in covalent solids is the bond 
polarizability resulting from the distortion of the electronic charge density in covalent 
bonds. Another type of mechanism is the ionic-displacement polarizability that is 
associated with the relative displacement of oppositely charged ions in a polar solid 
(see §4.4 for a discussion of this mechanism). Finally, a material containing permanent 
dipoles (e.g. OH groups in hydrous silicas or polar side-groups in polymers) exhibits a 
dipole-orientational polarizability. Not all of these mechanisms may be operative 
simultaneously: it will be seen later that particular polarizability mechanisms may be 
dominant in certain frequency ranges of the spectral dielectric response of a solid. 

The atomic polarizability can be estimated by making use of the model for an atom 
sketched in Fig. 7.5: the Z electrons in the atom are assumed to be distributed homo
geneously in a sphere of radius R. If the nucleus is displaced by distance x from the centre 
o of the spherical charge distribution, itself assumed to behave rigidly, it experiences a 
restoring electric field due to the electrons in the sphere of radius x centred on 0; 
electrons outside this inner sphere do not contribute because the electric field inside a 
uniformly charged spherical shell is zero (Gauss's theorem). The electron charge con
tained within the inner sphere is -Ze(x3 / R3), and the associated field at the nucleus is 

E = -Ze(x/R)3j: = -Zex . (7.31) 
41fEoX2 41fEoR3 

A local applied field Eloc acting on an atom will cause a displacement of the electron 
cloud and nucleus until the restoring field becomes equal and opposite, i.e. E = Eloc . 

The corresponding dipole moment induced in the atom is, from eqn. (7.31), 

(7.32) 

R 

+Ze 

Fig.7.5 Model for the calculation of the atomic polarizability. The Z electrons are assumed to 
be distributed homogeneously and are uniformly displaced by x relative to the nucleus by an 
applied static electric field. The restoring field (equal and opposite to Bloc at equilibrium) is caused 
by the electrons inside the sphere of radius x centred at 0, the centre of the electron distribution. 

I 
! 

1 

Table 7.2 Atomic polarizabilities for alkali cations and halide anions 

Cation~ Anions 

Li+ Be 1-

0.029 00408 1.334 1.979 3.335 0.0644 2.960 4.158 6.431 

Values of Q~t have been chosen to give the best fit between experimental values of the dielectric constant of 
alkali halide crystals (measured at the D-line frequency of the Na spectrum) and values calculated using the 
Clausius-Mossotti relation. (After Tessmann et al. (1953» 

Table 7.3 Dielectric constants of alkali halide crystals 

E:(O)(e:(oo)) Li Na K Rb Cs 

F 9.04 (1.92) 5.07 (1.74) 6.05 (1.85) 5.91 (1.93) 8.08 (2.2) 
CI 11.86 (2.79) 5.89 (2.35) 4.81 (2.20) 4.92 (2.91) 6.95 (2.67) 
Br 13.33 (3.22) 6040 (2.64) 4.90 (2.39) 5.0 (2.33) 6.66 (2.83) 
I 11.0 (3.80) 7.28 (3.08) 5.09 (2.68) 4.94 (2.61) 6.59 (3.09) 

The quantity not in parentheses is the static dielectric constant, £(0), and that in parentheses is the high
frequency value, £(00). (Data after Burns (1985). Reproduced by permission of Academic Press, Inc.) 

Hence, the atomic polarizability is given by 

a~t = 41fEoR3. (7.33) 

Typical values of a~t /41fEo are ~ 10-30 m3 for an atomic radius of R ~ 1 A (see Table 
7.2 and Problem 7.2). The electronic polarizability associated with atoms (or bonds) will 
provide the dominant contribution to the dielectric constant, E( CXl ), at high frequencies 
where the contributions of ions or permanent dipoles are frozen out (see Table 7.3). 

The behaviour of the electronic dielectric constant in metals and semiconductors has 
been discussed previously in §5.8.1 in connection with intraband plasma oscillations (see 
eqn. (5.196». The electronic contribution to the dielectric constant of semiconductors or 
insulators at higher frequencies is associated with interband transitions (see §5.8.2): the 
imaginary part of the dielectric constant, E2, is related to energy loss or, in this case, 
optical absorption involving electron excitation across the bandgap. A general expres
sion for E2(W) in terms of the momentum matrix element is given by eqn. (5.211). Use of 
the Kramers-Kronig relation (eqns. (4.166» transforms eqn. (5.211) into the real part 
(Yu and Cardona (1996»: . 

Ej (w) = 1 + --==--L (2 IPcy12) (7.34) 
m~Eo k menwcy (w~y - w2 . 

The oscillator strength (so called because it represents the equivalent number of oscilla
tors (see eqn. (7.43» of the transition between valence (v) and conduction (c) bands is 
given by the quantity 

2 ') 
fey = -'I: - IPcyl-· (7.35) 

lnerZWcy 

The real part of the static dielectric constant, EI (0), can be rewritten from eqn. (7.34) 
in terms of the Penn model, in which the electronic structure of a semiconductor or 
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insulator can be represented as a free-electron gas with a single, average energy gap, the 
Penn gap, 'gp. This energy gap can be thought of as representing, say, the energy 
separation between band centres. Experimentally, an estimate for cgp can be obtained 
from c2(w) spectra obtained from reflectance measurements. For example cgp can be 
taken as the energy of the high-energy (so-called E2-transition) peak in C2 (see Fig. 
5.79b) resulting from the van Hove singularity in the joint density of states at the X
point for tetrahedral semiconductors (§5.8.2). The Penn gap is related to covalent and 
ionic energies, 'gcov and 'gi respectively, for heteropolar materials by eqn. (2.7b): 

cgp = ('g~ov + cgf) 1/2. 

For the case of covalent Ge, for example, 'gp = cgcov 4.3 eV('gi = 0), whereas for the 
II-VI compound ZnSe with an ionicity (eqn. (2.8» of Ii = 0.64, cgp = 7.0 eV, with 
'gcov = 4.3 eV and 'gi = 5.6 eV. The static dielectric constant can then be written, 
following eqn. (7.34), as 

(7.36) 

where wp is the plasma frequency given by ~ ne2/me (eqn. (5.166». 'Static' in this 
context means frequencies much less than those corresponding to inter band transitions, 
but higher than phonon frequencies. Some values of the static dielectric constant, and 
the corresponding Penn gaps, are given in Table 7.4 

Permanent dipoles within a material can be oriented by an external electric field and 
so can also contribute to the net polarization. The interaction energy of such a dipole of 
moment p with a local field Eloc is 

'g = -p. Eloc' (7.37) 

The probability of a dipole being at an angle f) to Eloc is give~ by the Boltzmann factor 

(7.38) 

if the dipoles behave independently and if they are in thermal equilibrium with the 
surroundings. This is a reasonable assumption for liquids and gases, but less so for 
solids where the interactions between dipoles may be so strong that they order structur
ally (see §7.1.5). Neglecting for the moment this effect and assuming that all orientations 
of the dipoles are equally probable (dielectric gas model), the average component of the 
dipole moment parallel to the field is 

Ppar (pcosf)) , (7.39) 

where the angular brackets denote an averaging using the Boltzmann probability as the 
weighting factor. The result is (Problem 7.3): 

Table 7.4 Static dielectric constants and the Penn gap for tetrahedral semiconductors 

C (dia) 

5.66 
13.5 

Si 

12.0 
4.8 

Ge 

16.0 
4.3 

GaAs 

10.9 
5.2 

InP 

9.6 
5.2 

GaP 

9.1 
5.75 

(Data after Yu and Cardona (1996), Fundamentals of Semiconductors, p. 326, Table 6.9, © Springer-Verlag 
GmbH & Co. KG) 

T 
! 

Ppar p(cothx l/x) == pJ[(x) , (7.40) 

where x = pEloc/kBT and J[(x) is known' as the Langevin function. The small-x limit of 
eqn. (7.40) is normally valid in s9lids (see Problem 7.3), in which case cothx 
c:= l/x + x/3 +., giving , 

p2Eloc 
Ppar c:= 3k

B
T' 

Hence, the dipolar polarizability is approximately given by 

(7.41 ) 

(7.42) 

This l/T temperature dependence is the dielectric equivalent of the Curie law for 
p~ramagnetism (§7.2.4.1). If the restriction is made that, in a solid (e.g. NaN02), the 
dIpole (NOl ) has only two allowed states, parallel and antiparallel to the electric field 
the same form for the polarizability is found as in eqn. (7.42), but without the factor of 
three in the denominator (see Problem 7.3). 

7 .1.4 Di~tectric spectroscopy 

The different sources of dielectric polarization described in the previous section con
tribute to the dielectric constant in different frequency regimes, depending on whether 
electrons or ions are responsible: the small inertial mass of electrons means that 
electronic mechanisms for the polarizability (i.e. atomic or bond polarizabilities) domin
ate at high frequencies, whereas polarizability mechanisms involving the motion of ions 
(i.e. ionic-displacement or dipole-orientational polarizabilities) contribute only at lower 
frequencies (see Fig. 7.6) . 
. The frequen~y de?ende?ce of the.polarizability (or dielectric constant) for any par

ticular mechamsm m whIch there IS an equilibrium configuration of the polarizable 
s~ecies, ap~licable to ~~l ~echanisms exc~pt that of dipole orientation (a freely rotating 
dIpole havI~g no eqUlI~bnum configuratIOn has the dynamics of orientation governed 
by a.relaxatIOnal equ~tIOn-see eqn. (7.46», can be described in a semi-classical sense by 
a dnven damped-oscIllator equation (the Lorentz equation): 

mr+m"(r+kr = qE, (7.43) 

w.here m is the (reduced) mass of the oscillating species of charge 'q, r is the spatial 
dIsplacement associated with the polarization, "( is a damping constant (e.g. arising from 
a.nharmonic coupling. to oth~r excitations, or alternatively representing optical absorp
~IOn processes) and k ~s a ~pnng.c?nstant characterizing the restoring force of the system 
m res?on~~ to an oscIllatmg dnvm.g field, E Eoexp( -iwt). The frequency-dependent 
polanzabIhty, ap(w), ca~ be obtaI~ed from the solution of eqn. (7.43), viz. r(w). A 
proper quantum-mechamcal analysIs treats the polarizability in terms of transitions 
between allowed states of the electronic or ionic system involved. 

This driven, damped-oscillator equation has been used previously in a discussion of 
ionic-displacement'pol~rizabilit~ and its relation to IR absorption (§4.5.1, eqn. (4.164», 
and for plasma oscIllatIOns and mtraband absorption (§5.8.1, eqn. (5.184»; see Problem 



UHFto 
microwaves 

Infrared 

Fig.7.6 Illustration of the frequency dependence of the real part of the dielectric polarizability 
(or dielectric constant), showing the relative contributions of different mechanisms. The imagin
ary part, corresponding to dielectric loss, exhibits Lorentzian peaks at frequencies corresponding 
to each discontinuity in the real part, and is zero otherwise. 

7.4 for the case of atomic polarizability. The imaginary part of the polarizability, 
corresponding to the dielectric loss, C2, has a Lorentzian peak at a frequency close to 
the resonant frequency Wo, corresponding to the resonant absorption of energy, the 

2 
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o 

Fig.7.7 Frequency dependence of the real (c:d and imaginary (C:2) parts of the cOlTIplex dielectric 
constant for atomic polarizability calculated using the driven damped oscillator model and the 
Clausius-Mossotti relation. 

width of the peak increasing with the damping coefficient, ry. The real part, C] (w), 
exhibits a characteristic discontinuity in the vicinity of Wo (Fig. 7.7). Neglecting local
field effects, the real and imaginary parts of the dielectric constant are simply propor
tional to the corresponding polarizabilitie,s (cf. eqn. (7.2)): 

( ) 
'" l1iq2 (w6i - w

2
) , 

C] =c 00 + ~ , , 
i come ((w5,i - w2)2 + ')'fW2) 

(7.44) 

? L l1iq- ')'iW 

C2 = i COme ((w2 . _ w2)2 + ')'~w2) , (7.45) 
0,1 1 

where the summations are over different mechanisms, i. This behaviour of the real part 
of the polarization is clearly evident in Fig. 7.6. 

In experimental data of C] (w) obtained, say, from capacitance experiments, there is 
often an extraneous contribution at very low frequencies due to space-charge polariza
tion, arising for example from interfacial polarization at interfaces between sample and 
electrical contact, or between microcrystallite grains in the bulk of the sample. 

The dielectric susceptibility and dielectric constant for the dipole-orientational 
mechanism can be calculated in terms of the ansatz of the Debye dipolar-relaxation 
model (Fig. 7.8). The sudden application of an electric field causes a polarization 
P(oo) = co (c(oo) - l)E that is instantaneous on the time scale of the dipolar rotation. 
Dipolar relaxation then causes the polarization to increase further, with a time-depend
ent component P'(t) until the static value Ps = co'(c(O) - I)E is attained, where 
Ps P oo + PI(t = 00). The Debye relaxation equation is then 

dP' Ps-P 
dt TD 

(7.46) 

p 

--------- P 5 

(~ 
----------- ----- -------------------- p = 

t=o 

Fig.7.8 Time dependence of the polarization p(t) after the sudden application of an electric field 
to a dielectric at time t = O. The instantaneous increase to the level P 00 is associated with 
electronic and ionic polarizations. Dipolar orientation then causes a slow increase in polarization 
to the static value, Ps. 
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where the total polarization at time t is given by 

P(t) P oo + P'(t), (7.47) 

and ro is the Debye dipolar relaxation time, assumed to be time-independent, which is 
determined by the particular mechanism by which the dipole interacts with its surround
ings during the relaxational motion. The time dependence of the polarization is found 
by integrating eqn. (7.46), making use of eqn. (7.47), viz.: 

(7.48) 

Alternatively, the polarization decays exponentially with time after the electric field is 
removed. 

For an applied (macroscopic) field E, Ps = X(O)coE = co(c(O) - 1 )E, P 00 = 
co (c(oo) I)E and P'(t), = X(t)coE X(t)coEoexp( -iwt) for an assumed sinusoidal 
variation of the field. Using these relations, eqn. (7.46) can be transformed into a 
frequency-dependent form: 

x(w) = (c(O) c(oo)) 
(1 - iWTo) 

(7.49) 

Taking into account the instantaneous response at t 0 in producing P 00, the complex 
dielectric constant is therefore given by (see also Problem 7.6): 

t( ) _ ( ) (c(O) - c(oo)) 
c W - C 00 + (1 . )' 1WTO 

(7.50) 

with real and imaginary parts given separately by 

c} (w) c(oo) + (c((~) - ~(~)) , 
+W TO 

(7.51a) 

( ) _ (e(O) - e(oo))Wro 
e2 W - (1 +W2Tf,) . (7.51b) 

The frequency behaviour of the terms c} and e2 in the Debye model is shown in Fig. 7.9: 
note the difference in behaviour of e} (w) from the result for the driven damped
oscillator model shown in Fig. 7.7. 

Often, dielectric data are plotted as e2 versus e} in the complex plane as an implicit * 
function of frequency (a so-called Cole-Cole plot). For the case of the Debye model, 
the resulting Cole-Cole plot is simply a semicircle (Fig. 7.10). (Complex-plane 
(Nyquist) plots are employed also for displaying complex-impedance data for electric
ally conducting materials, particularly ionic conductors.) Very often, particularly for 
disordered dielectric materials, the Debye model is not obeyed: either the width of the 
peak in c2(w) is wider than predicted theoretically, or the complex-plane plot of e2(W) 
versus e1 (w) is not semicircular. Such non-Debye-like behaviour in the complex plane is 
often represented, for fitting purposes, by the purely empirical Havriliak-Negami 
expression 

(7.52) 

,~:: ~4,,----:--e1 
~~---Ji 

<O'to=1 

Fig.7.9 Real and imaginary parts of the complex dielectric constant resulting from the Debye 
model for dipolar orientational polarization. 
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Fig.7.10 Complex-plane, Cole-Cole plot of E:2 versus E:I as an implicit function of w for the 
Debye model of dipolar relaxation. ' 

This has, as special cases, the Cole-Cole equation (13 1) which gives a semicircular arc 
in the complex plane with the centre depressed below the real axis (Fig. 7.lla), and the' 
Cole-Davidson expression (a 0) which gives a skewed arc (Fig. 7.llb); the Debye 
equation (7.50) is recovered for a 0,13 = 1. 

Non-Debye-like behaviour can also be simulated in terms of a distribution of relaxa
tion times, G(ro) (cf. eqn. (7.50): 

t() () 17ma
• (e(O) - c:(oo))G(ro)dro eW=C:oo+ . , 

7min 1 -lWro 
(7.53) 
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Fig. 7.11 Complex-plane. plots of c2(w) versus 61 (w) for (a) the Cole-Cole expression for 
different values of the parameter a (Debye-like behaviour is recovered for a = 0); (b) the Cole
Davidson expression for different values of the parameter (3 (Debye-like behaviour is recovered 
for (3 1). 

with rn~ux G( TD )drD = 1. Thus, the overall dielectric response is regarded as a sum 
of Debye-like processes with different relaxation times, each contributing in parallel 
(see Problem 7.7). 

Finally, yet another approach to fitting, if not interpreting, non-Debye-like dielectric 
relaxation spectra is in terms of the temporal response. A stretched exponential (or 
Kohlrausch-Williams-Watts) form for the decay of the polarization after the removal 
of a constant field has been suggested: 

~ 
Ps - Poo 

¢(t) (7.54) 

if'Y = 1, the Debye-like form (eqn. (7.48)) is recovered. This empirical relationship has 
been found to fit reasonably satisfactorily many sets of dielectric data for amorphous 
polymers or ionic glasses, for example. Further details of dielectric (and impedance) 
spectroscopy can be found in MacDonald (1987). 

7.1.5 Spontaneous polarization 

Certain dielectrics generate an electrical polarization when subjected to an external 
mechanical stress that causes an internal strain; conversely, such materials develop a 
mechanical stress in an applied electric field. These materials are termed piezoelectric. 
A subset of piezoelectric solids are those in which a spontaneous electrical polariza
tion in a crystal is caused by an intrinsic internal strain accompanying a change of 
crystal structure to one of lower symmetry. Such materials are termed pyroelectric 
because the natural spontaneous electrical polarization is usually masked by neutraliz
ing counter-ions adsorbed onto the free surface; it can thus only be revealed by heating 
the sample, which removes some of the neutralizing counter-ions. A further subset of 
pyroelectric materials comprises those in which the electrical polarization can be 
reversed by the application of an external electric field. These materials are termed 
ferroelectric (by analogy with the ferromagnetic state - see §7.2.5); the net dipole 

* 

moment in a unit cell is parallel to that in adjacent cells. Ferroelectric materials, together 
with ferromagnetic and ferroelastic solids, form a general class of materials known as 
ferroics, in which orientational states or domains can be switched from one configura
tion to another by the application of"anappropriate driving 'force'. For ferroelectric, 
ferromagnetic and ferroelastic materials: the corresponding orientational states are, 
cOlTespondingly, the spontaneous electrical polarization, rhagnetization and elastic 
strain; the driving forces are, respectively, electric and magnetic fields and mechanical 
stress. . 

7.1.5.1 Piezoelectricity 

Crystals that are piezoelectric, i.e. where electrical polarization is generated by a 
mechanical stress (or vice versa), are, in general, non-centrosymmetric (without a centre 
of symmetry). From Table 2.5, it can be seen that of the 32 crystallographic point 
groups, 21 do not possess inversion (i(I)) symmetry elements; in addition the non
centro symmetric cubic point group D( 432) has a combination of symmetry elements 
that precludes piezoelectric behaviour. Thus, only crystal structures with space groups 
that contain as a point group one of these 20 groups can be piezoelectric. Many crystals 
containing tetrahedral structural units (e.g. quartz (Si02), ZnO and ZnS) are piezo
electric since a shearing stress causes a distortional strain of the tetrahedra. Perhaps the 
most important piezoelectric material is PZT, an equimolar solid solution of lead 
zirconate and titanate: PbZr03-PbTi03. 

The induced polarization P is related to the applied stress (J' by the piezoelectric 
constant d, which is a third-rank tensor, since polarization is a vector and stress is a 
second-rank tensor (§3.4.3): 

P; = L dij/cCTj/c. 

j,k 

(7.55) 

Alternatively, d relates the induced strain e (also a second-rank tensor) and an applied 
electric field E: 

ejk = L dijkE;. 
; 

(7.56) 

The units of dare CIN or roN. Of the possible 27 components of d, only 18 are in 
principle independent because dijk = d;kj as a result, for example, of a strain being a 
symmetric tensor, ejk ekj' However, many of these 18 components are, in fact, zero. 
For the cubic point group Td (43m), for example, there is only one independent non-zero 
component, d123 (= d213 = d312)-see Table 7.5; for the D2 (222) orthorhombic point 
group, these three components are unequal (Problem 7.8). 

Table 7.5 Values of the piezoelectric constant d123 for crystals having the zinc-blende structure 
with point-group symmetry Td(43m) 

Crystal CuCI CuBr CuI GaAs GaSb InAs InSb 

27.2 16.0 7.0 -2.7 -2.9 -1.1 2.4 

(Data after Burns (1985). Reproduced by permission of Academic Press, Inc.) 
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7.1.5.2 Pyroelectricity 

Pyroelectric crystals are those having a permanent net electric dipole in each primitive 
unit cell. For example, ZnO is pyroelectric because the Zn04 tetrahedra (each posses
sing a net dipole moment) all point in the same direction. Although the term pyro
electric is general, it tends to be reserved for those non-ferroelectric materials whose net 
spontaneous polarization cannot be reversed by an external electric field. In this 
category fall, for example, lithium niobate (LiNb03) and lithium tantalate (LiTa03) 
for which the energy barrier between the two opposite spontaneous polarizations ±Ps 
corresponds to an electric field greater than the breakdown field of the material. An 
operational pyroelectric coefficient TIp can be defined as the constant of proportionality 
between the observed change in polarization D.Ps and the temperature change D.T 
responsible for it: 

(7.57) 

The coefficient TIp is determined by the thermal- expansion characteristics of the crystal 
(thereby affecting the magnitude of Ps) and also by changes in the adsorbed neutralizing 
charge on the surface of the polarized crystal. 

All pyroelectric crystals are piezoelectric (but the converse is not true). Of the 20 point 
groups associated with piezoelectricity (§7.1.5.l), only 10 can give rise to pyroelectricity, 
namely the Cn, Cnv and Clh point groups. The reason for this is that the existence of a 
net polarization vector along a particular direction must be consistent with the sym
metry elements operating along that axis; this is a consequence of Neumann's principle 
that a macroscopic physical property must have, at least, the point-group symmetry of 
the space group. Thus, for example, a two-fold rotation symmetry operation, C2 (2), 
perpendicular to any component of P will transform it into the negative of itself; hence 
there can be no component along that axis. Similarly, there can be no component of a 
polarization vector perpendicular to a symmetry plane. A centre of inversion, i(I), or 
the four C3(3) axes characteristic of cubic symmetry also cause P to be zero. For most of 
the Cn, Cnv and C1h point groups, only vectors with components along the z-direction 
(the many symmetry axis) transform into themselves under all symmetry operations, 
and hence can be non-zero. For the triclinic point group, C2(1),P can point in any 
direction, and for the monoclinic point groups C1h(m), x-and y-components separately 
transform into themselves under the symmetry operations, and P can therefore point 
anywhere in the x-y plane. 

An order-of-magnitude estimate of the electrical polarization per unit cell can be ob- . 
tained by assuming that the maximum static dipole mpment is equivalent to two charges 
q+~- = ±e separated by say 1 A; i.e. p 1.6 x 10-29 em. For a unit cell assumed to be 
4 A on a side (as in BaTi03), the polarization (dipole moment per unit volume) is 

Table 7.6 Values of the electrical polarization P along the unique crystal axis 

Pyroelectric Ferroelectric 

Crystal ZnS(C6v) ZnO(C6v) CdS(C6v) BaTi03(C4v) PbTi03(C4v) LiNb03(C3v) LiTa03(C3v) 
P(Cm-2

) 0.02 0.06 0.G3 0.26 0.81 0.71 0.50 

(Data after Burns (1985). Reproduced by pennission of Academic Press, Inc.) 

of the ord~r of P ~ .0.25 C m-2
• Some rep~esentative values are given for pyro- and 

ferroelectnc crystals In Table 7.6. . 
Th~ material barium titanate, BaTi03 , is a representative pyroelectric (and ferro

electnc) compound. It exhibits a series of phase transitions between different crystal 
structures as the temperature is varied: at temperatures above about 134°C the material 
has a cubi.c perovskite structure and hence this phase is non~pyroelectric and is termed 
paraelectnc. At lower temperatures, sequential transitions to three other crystal struc
tures occur, all of which exhibit pyroelectricity (see Fig. 7.12). The structural distortion 
in BaTi03 associated with the displacive phase transition (in which the atomic displace
ments are small :o~pared w.ith i~teratomic separations) from the cubic to othe tetragonal 
s~ructure at 134 C IS shown In FIg. 7.13. The atoms displace by about 0.1 A as shown, to 
~ve ~ tetragonal structure that has Ps in the [001] (or equivalently [100] or [010]) 
dIre~tIOn. In. a r~al crystal, domains, each of which has unit cells with Ps ordered in a 
partIcular dIrectIOn, will tend to form in the pyroelectric phase. The orthorhombic 
phase stable below -5°C has Ps in the (110) directions of the original cube, and the 
l?w-temperature rhombohedral phase has Ps parallel to the original cubic (111) direc
tIons. 

7.1.5.3 Ferroelectricity 

A ferroelectric material is a pyroelectric solid in which the spontaneous electrical 
polarizatio~ in a unit cell can be reversibly changed. between ±Ps by the application 
of.an elect.ncal field. of su~table polarity. In this way, the polarization can be aligned in 
neIghbourIng d.omaIns (FIg. ?.14a); it is this similarity to the corresponding behaviour 
of the m~~et~c moments In ferromagnets (§7.2.5) that gives the phenomenon of 
ferroe~ectnclty ItS name. An intermediate type of polarization ordering is in ferrielectric 
matenals, where the polarization vectors are, for example, canted in different directions 

20 

Rhombohedral Orthorhombic Tetragonal 

Temperature ('0 C) 

Fig. 7.12 . The temperature dependence of the spontaneous electrical polarization P for the 
pyroelectnc (and

o 
ferroelectric). compound BaTi03, corresponding to the three cryst~l phases 

stable .below 134 <:. Above thIS temperature, the material has a cubic perovskite structllre and 
hence IS paraelectnc. (Burns (1985). Reproduced by permission of Academic Press, Inc.) 
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Fig.7.13 The cubic perovskite (non-pyroelectric) structure of BaTi03 stable above 134°C. The 
arrows show the relative magnitude and direction of the atomic displacements in the transition to 
the pyroelectric tetragonal phase stable between -5 and 134°C. The oxygen atoms have been taken 
to be flxed (see also Fig. 7.l9a). 

in neighbouring domains (Fig. 7.14b), with the result that there is no net polarization in 
one direction but a net polarization in an orthogonal direction. Finally, antiferroelectric 
ordering (Fig. 7.14c) is that in which the polarization vectors are oriented in an anti
parallel fashion in neighbouring domains or unit cells. These latter two types of ordering 
also have magnetic equivalents (§7.2.5.6). 

(.) I I I I I I I I 

(b) I "I / I" I / I "I / I " 
(c) 

Fig.7.14 Various types of ordering of polarization vectors between neighbouring domains: (a) 
ferroelectric; (b) ferrielectric; (c) antiferroelectric. 

£(0) 

T~ T 
(a) 

Fig.7.15 First- and second-order ferroelectric transitions in the vicinity of the Curie temperature 
Tcr: (a) temperature dependence of Ps; (b) temperature dependence of c(O). 

The temperature at which the transition takes place between the randomized 
paraelectric and the ordered ferroelectric crystal phases is termed the ferroelectric 
Curie temperature, Tef , by analogy with the corresponding temperature for ferromag
netic ordering (§7.2.S.2). In common with other types of phase transition, ferro
electric transitions can be divided into two categories: first-order and second-order 
transitions. First-order transitions are those in which there is a discontinuity in the 
first derivative of the free energy with respect to T or P, e.g. in the volume, 
V = (8Gj8ph, and there is an associated latent heat (the melting transition ofa crystal 
or the boiling transition of a liquid are examples). A first-order ferroelectric transition is 
characterized also by a discontinuity in P s at Tef (see Fig. 7.15a): an example is the 
cubic-tetragonal transition in BaTi03 (cf. Fig. 7.12). The associated behaviour of the 
dielectric constant, taken to be the clampecf static value, £1 (0), is shown in Fig. 7.l5b. 
Second-order transitions, in contrast, are those in which there is a discontinuity in 
second derivatives of the free energy: there is no change in volume (or P s) at Tef, but 
dPsjdT is discontinuous (as is the specific heat): the dielectric behaviour shows singular 
behaviour at Tef (Fig. 7.15). LiTa03 is an example of a material that exhibits a second
order ferroelectric transition. 

The temperature dependence of £1 (0) in the para electric phase just above Tef has the 
Curie-Weiss form in which £1 (0) exhibits a singularity at a temperature (Jew: 

C 
£l(T) = (T - (Jew)' (7.58) 

t 'Clamped' indicates the value of dielectric constant excluding the contribution from mechanical resonances 
at ~ 105 Hz due to the piezoelectric effect. 
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where Cis the Curie constant and the Curie-Weiss temperature ()cw = TCf for a second
order transition, but ()cw~Tcf for a first-order transition (see Fig. 7.15b). Thus, very 
large values indeed of dielectric constant, e.g. Cl (0) ::= 104

, are reached at the ferro
electric transition. Ferroelectric materials can be classified on the basis of the magnitude 
of the Curie constant, C. Very large values of C( rv 105 K) are found in oxide materials 
containing e.g. Ti4+, Nb5+ and W6+ ions, or the 'lone-pair' ions Pb2+, Bi3+ and Sb3+; a 
large-scale displacive phase transition to the ferroelectric state is exhibited by such 
materials. Smaller values of C( rv 103K) are characteristic of order-disorder transitions 
associated with the (small-scale) rotational ordering of dipolar ions (e.g. NO; in 
NaN02) or the (small-scale) positional ordering of H atoms in hydrogen-bo~ded 
materials (e.g. KH2P04) •. 

Although for normal dielectrics the electric polarization P is proportional to the 
electric field E (eqn. (7.1)), this behaviour does not hold for ferroelectric materials 
even though reversal of an electric field can (eventually) reverse the saturation polariza
tion Ps. Instead, hysteresis is observed in the behaviour: the curve for the polarization 
for increasing E is different from that for decreasing E, and a hysteresis loop is obtained 
between the two saturation values, ±Ps (Fig. 7.16). The induced polarization is not 
destroyed at zero field, but instead at a negative field - Ee, the coercive field. As a 
corollary, the polarization remaining at zero field is termed the remanent polarization, 

p 

p ._-----------------
s 

E 

Fig. 7.16 Hysteresis loop for the P-E behaviour of a ferroelectric. The polarizations Ps and Pr 
are the saturation and remanent (zero-field) values, respectively; the coercive field - Ee is neces
sary to reduce the polarization to zero. 

Fig.7.17 Schematic illustration of ferroelectric domains having a 1800 wall. 

Pro (Similar hysteretic behaviour is also exhibited by ferromagnetic materials
§7.2.5.5.) The area inside the hysteresis loop gives the loss in energy density per cycle, 
jEdP. 

The origin of hysteresis lies in the energy needed to move domain walls between 
domains having electric polarizations in different directions so that the net polariza
tion of a sample can be changed, e.g. reversed, by altering the relative size of 
various domains. In the case of, say, tetragonal BaTi03, where the polarization is 
constrained by the crystallographic anisotropy to lie along one of the (100) direc
tions, the domain boundaries are termed 180° or 900 walls, depending on whether 
the polarization directions in adjacent domains are antiparallel or orthogonal 
(Fig. 7.17). In the case of the low-temperature rhombohedral ferroelectric phase of 
BaTi03, in which P s lies in the (111) directions, the domain walls can be 180°, 71 0 or 
109°. Although it is relatively easy to move a 1800 domain wall in the case of tetragonal 
BaTi03 since the structure is contiguous across the interface, this is not the case for a 
90° wall; movement of it 900 wall therefore involves substantial deformation of the 
structure, and. such strains can even be large enough to cause plastic deformation. 

Although antiferroelectric materials exhIbit spontaneous polarization in unit cells or 
domains below the antiferroelectric Curie temperature, TCaf (above which they are 
paraelectric), there is no net polarization in this state because dipole moments are 
antiparallel in adjacent domains (Fig. 7.l4c). However, at· sufficiently high 
electric fields, polarization reversal is possible through domain-wall motion, and an 
antiferroelectric crystalline material can be driven into the ferroelectric state under 
the action of the field (Fig. 7.l8a). In such a case, the P-E curve is linear and non
hysteretic through the origin when the material is in the antiferroelectric state, 
but hysteresis curves appear at field strengths high enough to cause ferroelectricity 
(Fig. 7.18b). Further information on ferroelectric materials is given in Rao and Rao 
(1992). 

In the following two sections, ideas that can be used to explore the behaviour and 
origin of ferroelectric phase transitions will be discussed. Because these have, in fact, a 
more general applicability, they are afforded separate sections. 
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Fig. 7.18 (a) Phase diagram for PbZr03, showing the possibility of an antiferroelectric-ferro
electric transition at high electric fields. (b) Polarization-electric field curves for PbZr03. The 
linear portion corresponds to t):J.e antiferroelectric state and the hysteresis curves appear when the 
material is driven into the ferroelectric state at high fields. (After West (1987). Reproduced by 
permission of John Wiley & Sons inc.) 

*7.1.5.4 Soft modes 

One way of regarding the transition from the paraelectric to the ferroelectric state (or 
indeed other types of displacive phase transitions) is in terms of a softening of a 
particular vibrational mode of the solid with decreasing temperature (Fig. 7.19); the 
restoring force associated with this motion becomes very small and hence the crystal can 
become mechanically unstable with respect to such atomic displacements. It can there
fore transform to a lower symmetry structure in which the atomic displacements from 
the high-temperature phase can be regarded as those of the soft mode, but now they are 
static or 'frozen-in'. If the space group of the low-temperature phase is a sub-group Of 
that of the high-temperature phase (certain symmetry elements being lost when atoms 
are displaced statically according to the soft mode), then the transition has the possibil
ity of being second-order, but not otherwise. 

The reason why a soft vibrational mode might be involved in displacive ferroelectric 
phase transitions can be gleaned from inspection of the Lyddane-Sachs-Teller (LST) 
equation (4.149) relating the (clamped) static and high-frequency dielectric constants to 
the longitudinal-optic (LO) and transverse-optic (TO) r;node frequencies (at zero pho
non wavevector, k = 0): 

(7.59) 

For ionic crystals with more than two atoms per unit cell, there can be more than one set 
of LO and TO modes. If there are p modes, the generalization of the LST relation is 

10 1 (0) _ rrP wt,i 
101(00) - i=1 W},i' 

(7.60) 
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Fig. 7.19 (a) Schematic illustration of the softening of a TO phonon branch at Ie = 0 with 
decreasing temperature. This soft-mode mechanism can be responsible for the transition from a 
paraelectric to a ferroelectric phase at TeL (b) Soft-mode behaviour associated with a displacive 
phase transition in SrTi03. The phonon energies were obtained from inelastic neutron-scattering 
data. (Reprinted with permission from Feder and Pytte (1970), Phys. Rev. Bl, 4803. © 1970. The 
American Physical Society) 

We have previously seen (Fig. 7.15b) that the transition to the ferroelectric state is 
accompanied by a large enhancement of the static dielectric constant, 101 (0). Inspection 
of eqn. (7.59) or (7.60) shows that this can occur if there is a softening of one of the TO 
modes of a crystal. 

The four optic modes of the paraelectric cubic perovskite phase of BaTi03 are 
shown in Fig. 7.20; of the three IR-active modes with dynamically induced dipoles 
(a, b, c in Fig. 7.20), the one with the lowest frequency isthe mode shown in Fig. 
7.20a, and this is the one that undergoes softening at k ~ 0 and is involved in the 
transition to the ferroelectric tetragonal phase at Tef ~ 134°C. The fact that the soft
ening in this case occurs at k ~ 0 means that the static 'frozen-in' atomic displace
ments (and hence dipole moment) in the tetragonal phase, characteristic of this 
TO mode, are repeated in every unit cell (in a given domain), i.e. the material is 
ferroelectric. Softening of optic modes can also occur at non-zero values of phonon 
wavevector. For example, a mode softening at the zone boundary at the X-point 
kx = ±7f/a (the face centre of the cubic Brillouin zone for a simple cubic crystal), 
means that the atomic displacements, and hence dipole moments, must be oriented in 
an antiparallel fashion in neighbouring cells; i.e. such a state of the material would be 
antiferroelectric. 
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Sa 

Sa 

(c) (d) 

Fig.7.20 The four vibrational optic modes for BaTi03 in the cubic perovskite (paraelectric) 
phase. All except (d) are IR-active with dynamically induced dipole moments. The lowest 
frequency mode (a) is the TO mode that undergoes a softening at Ie = 0 in the transition to the 
tetragonal ferroelectric state. Note that all four modes are triply degenerate: the displacements can 
also occur along the two other orthogonal axes. 

If the displacements of the soft TO mode in Fig. 7.20a are taken to be in the z
direction, giving rise to a transition to a tetragonal crystal with an unequal c-axis, in the 
conventional description, the TO modes with displaceinent directions in the two ortho
gonal directions can still be soft at Ie ~ O. In this way, the transition at _5°C in BaTi03 

between the ferroelectric tetragonal and orthorhombic crystal phases (Fig. 7.12) can be 
understood. If the mode softening for this transition is nOw for displacements along say 
the y-direction, the net static polarization Ps in the orthorhombic phase will be along the 
(011) directions. At yet lower temperatures (-90°C), softening of the TO mode for 
displacements in the x-direction can cause a further transition (to a rhombohedral 
structure-Fig. 7.12), for which now Ps will be along the (111) directions, as 

observed. 
The Curie-Weiss behaviour (eqn. (7.58)) found for the static dielectric constant just 

above TCf in the paraelectric phase implies, via the LST relation (eqn. (7.59)) and the 

'I 

i 

I 
! 

.J. 

idea of mode softening, that the temperature dependence of the TO-mode frequency 
should follow the relation . 

w} a(T-Bcw), (7.61) 

where a is a constant. This behaviour ~an be obtained from a modification of the 
harmonic analysis used in §4.4 to obtain vibrational-mode frequencies for a polarizable 
ionic crystal. The equation of motion, for the case of a crystal containing just a cation 
and anion, is (eqn. (4.127)): 

J-LMii = -kit + qEloc, 

where J-LM is the reduced mass, k the force constant, q the charge on each ion, It = It+
It-: is the difference between the displacements of cation (+) and anion (-) and Eloc is 
gIVen by eqn. (7.24). The polarization for N cells in a volume Vis (eqn. (4.125)): 

P N (qll+ apE) 
V (1 NO'.p/3eo V) , 

where O'.p o'.~ + 0'.; is the sum of the polarizabilities of the ions and E is the macro-
scopic field. The equation of motion can be rewritten correspondingly as 

.. [ Nq2] [ q ] J-LMIt= -k+ 11+ E 
3eoV(1 NO'.p/3eoV) (1-NO'.p/3eoV)· 

(7.62) 

In this harmonic approximation, the TO frequency is given by eqn. (4.143): 

(7.63) 

where bs and h are short-and long-range (Coulombic) contributions. The frequency is 
temperature-independent. 

A temperature dependence can be produced by considering anharmonicity (§4.6.2): 
this will introduce a damping term ,iL into the equation of motion, but will also 
introduce a leading term linear in T into eqn. (7.63). (For example, anharmonicity 
causes thermal expansiori, with the volume being approximately linearly temperature
dependent, V = Vo(l + (3rT) in an intermediate temperature regime-see §4.6.2.1) 
Hence, the TO-mode frequency becomes: 

w} = bs hL + cT, (7.64) 

where c is a constant. This is of the form expected from the Curie-Weiss law (eqn. 
(7.61)), and hence Bcw (hL bs)/c in this picture. 

*7.1.5.5 The Landau free-energy model 

The Landau model of phase transitions relates macroscopic property changes at a 
transition in terms of thermodynamics, specifically using the free energy: it says nothing, 
however, about the microscopic origin underlying the transition, as discussed, for 
ex~mpl~, in the previous section. The theory is based on the idea of an order parameter, 
whIch IS a measure of the departure of, say, the atomic configuration of the low
temperature, lower-symmetry phase from that of the high-temperature symmetric 
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phase. In the case of the ferroelectric phase transition, the spontaneous polarization, Ps, 

can be used as the order parameter. 
The (generalized Helmholtz) free-energy density can be written as the Landau power

law expansion as powers of the order parameter, in this case the polarization, P: 

F(T, P) = -EP + Fo + ap2 + (3r + ,p6 + ... , (7.65) 

where the additional term - EP represents the energy density of an already polarized 
system in an electric field, E, and the coefficients Fo == F(P = 0), a, (3 and, are (in 
principle) temperature-dependent. Only even powers of P are included if the high
temperature, high-symmetry structure is centro symmetric since the change P -t - P 
leaves F unchanged. The equilibrium state at a particular temperature is determined 
by the minima of the free-energy density F(T, P). In the paraelectric phase above Tef, 
in the absence of an electric field, P = ° and so F must have a minimum at this value. 
The ferroelectric state is associated with a minimum in F at a finite polarization value 
P = Ps for T < Tcr. Two types of behaviour of the free-energy minimum can be 
distinguished (Fig. 7.21): in the first (Fig. 7.21a), there is a single (broad) minimum in 
F at T = TCf and so P increases continuously from zero in the ferroelectric state, as . 
characteristic of a second-order transition; in contrast, in the second (Fig. 7 .21 b), at 
T = Tcr there are two minima of equal depth, and correspondingly the polarization 
increases discontinuously at the transition, as characteristic of a first-order transition. 

The behaviour shown in Fig. 7.21a can be reprod~ced by the abbreviated form ,of eqn. 
(7.65), F = Fo + ap2: for a > 0, the minimum of F is at P = 0, but for a < 0, F has a 
minimum at a non-zero value of P. Thus, a must go through zero at the transition, and 
so, making a Taylor series expansion about T = TCf, the temperature dependence of a 
can be represented as 

a = a(T Tcd (7.66a) 
with 

(3 = b, (7.66b) 

where a > ° and b are temperature-independent parameters. 

(a) (b) 

Fig. 7.21 Schematic illustration of the dependence of the zero-field Landau .free-er:ergy density F 
on polarization P at temperatures above, equal to and below the ferroelectnc Cune temperature, 
Tcr: (a) second-order phase transition; (b) first-order phase transition. 

For the case of a second-order phase transition (Fig. 7.2Ia), only terms up to and 
including the quartic term in the zero-field free-energy expansion need be retained: 

F = Fo + a.(T - TCf)p2 + br. (7.67) 
Minimization of eqn. (7.67) gives 

dF . 
dP = ° = 2a(T - TCf)P+ 4bp3 

or, since the minimum-energy state corresponds to the ferroelectric phase with sponta
neous polarization Ps 

(7.68) 

where b is a positive quantity. Thus, Ps is predicted to increase continuously below the 
second-order ferroelectric transi tion temperature (cf. Fig. 7 .15a). The dielectric constant 
at temperatures just above Tcr in the paraelectric phase can be evaluated from eqn. 
(7.65), neglecting the terms in p4 and p6 since P is so small there. The new equilibrium 
condition for a non-zero electric field is given by 

dF 
dP = ° = -E + 2a(T - Tcr)P 

or 

P 

E 2a(T Tce) = COXI (7.69) 

using eqn. (7.1), where Xl is the real part of the dielectric susceptibility. From eqn. (7.3), 
Xl = CI - 1, but since very close to TCf the dielectric constant diverges, Cl ~ Xl and 
hence 

(7.70) 

i.e. Curie-Weiss behaviou1;' (eqn. (7.58» is predicted. 
For a first-order transition (Fig. 7.21b), all terms in the field-free Landau expansion 

of eqn. (7.65) need to be retained. However, in contrast to the second-order analysis, the 
coefficient (3 (eqn. (7.66b» must be negative, (3 = -b, with a and, both positive. 
Minimization of the free-energy density as before gives 

dF 
dP = ° = 2aP + 4(3P3 + 6,p5 

(7.71) 

or, since this equilibrium state corresponds to P Ps, solving the resulting quadratic 
equation in P; gives 

(7.72) 

However, a relationship between the three coefficients a, (3 and" viz. 4a, = 1(31 2, can be 
obtained (Problem 7.10) by noting that, at the transition temperature T = TCf , the two 
minima in the fre~energy hav~ the same value of F (see Fig. 7.21b). As a result, 
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(7.73a) 

or 

(2a) 1/2 "r/2 ( 73b) Ps = b (TCf - T) . 7. 

Thus, the same behaviour of Ps(T) is found as for second-order transitions (eqn. (7.68». 

Magnetic properties 7.2 
Magnetic properties of solids c~m be divided into two categories: the first is the response 
of a material to an external applied" magnetic field, due either to intrinsic magnetic 
dipole moments existing in the material or to the creation of an electrical current 
associated with free electronic charge carriers in response to the field; the second is 
the generation of a spontaneous magnetization as a result of the presence of intrinsic 
magnetic moments in a solid. For the most part (and exclusively in this chapter) 
magnetic effects in solids are associated with electrons. Although certain atomic nuclei 
also have intrinsic magnetic dipole moments (a feature exploited in nuclear magnetic 
resonance, NMR, the nuclear analogue of the technique of electron spin resonance, 
ESR - §3.3.2), nevertheless for most purposes nuclear-magnetic effects can be 
neglected since their magnitude is smaller than electron-magnetic effects by a factor 
me/mp c::= 1/1830. 

Magnetism is inherently a quantum phenomenon: the Bohr-van Leeuwen theorem 
states that there can be no net magnetization for a collection of electrons, treated 
classically, in a state of thermal equilibrium and in the presence of applied magnetic 
or electric fields. Thus, magnetism is perhaps the oldest known quantum effect, the 
ancient Greeks having discovered the magnetic properties of 'lodestone' (magnetite, 
Fe304). The Bohr-van Leeuwen theorem can be demonstrated as follows. The magnet
ization M, the net magnetic dipole moment per unit volume, is given by the thermo
dynamic relation relating the change in Helmholtz free energy per volume, /H, with a 
change in magnetic flux density B (cf. eqn. (6.143»): 

(7.74) 

In classical statistical mechanics, the free energy is related to the partition function 
which, for a continuous distribution of energies, can be written in the integral form: 

(7.75) 

where :Yf(p, r) is the Hamiltonian describing the energy of an electron as a function of 
momentum p and spatial coordinates Y. In a magnetic field, the quantity me V for the 
momentum is replaced by the quantity involving the magnetic vector potential 
A(B = curl A): 

p = meV - eA, (7.76) 

where the electronic charge is taken to be -e, and hence the Hamiltonian becomes 

1 
:Yf(p,") = -2 (p + eA)2 + V(r). 

me 
(7.77) 

If the integration variable II = (p + eA) is used instead of p, integration of eqn. (7.75) 
shows that/H is independent of A and hence B. Thus, from eqn. (7.74), there can be no 
magnetization. 



7.2.1 Magnetic quantities 

The microscopic magnetic behaviour of a solid can be represented in terms of the 
magnetic dipole moment, /L

11
1' defined in terms of a current loop (Fig. 7.22) written in 

the Sommerfeld convention as: 

/Lm = Jail, (7.78) 

where J is the current circulating around the loop (either resulting from an intrinsic 
angular motion of the electron or in response to an external magnetic field), a is the area 
of the loop and Ii is a unit vector normal to the plane of the loop, directed according to 
the right-hand corkscrew rule depending on the sense of the current flow. Thus, J.Lm is 
the magnetic analogue of the electrostatic dipole moment, p; the units of J.Lm are A m

2
• 

The magnetization, M, is the net magnetic dipole moment per unit volume (the 
analogue of the electrical polarization P (eqn. (7.26»: 

(7.79) 

where nj is the concentration of magnetic moments of type i. The unit of M is A/m. 
The magnetic flux density (or induction) B is defined in terms of the torque T exerted 

on a magnetic dipole by a magnetic field: 

T = /L
m 

x B; (7.80) 

the unit for B is therefore N/(Am) or, equivalently, V s/m2
• The volt-second is also known 

as the weber (Wb), and the unit of induction is therefore the Wb/m
2

, also called the tesla 
(T). The magnetic flux density and magnetization are related to the magnetic field 
intensity, H, (unit, Aim) by the defining equation (cf. the dielectric analogue eqn. (7.4»: 

B = J.Lo(H +M), (7.81 ) 

where J.Lo is the vacuum permeability. Note that, as for the dielectric case, the field 
quantities in eqn. (7.81) relate to macroscopic quantities inside the material (§7.2.2). The 
magnetic flux density and field intensity are also related in general via an expression 
involving the relative permeability J.Lr of a magnetic medium (which is not to be confused 

with J.Lm): 
(7.82) 

Fig. 7.22 Illustration of the magnetic dipole moment /-Lm associated with a loop of area a 
carrying an electrical current i. (Note the direction of i is conventionally opposite to that of the 
electron floW.) Note the right-hand convention used to relate the direction of /-Lm to the sense of 
the current. 

T.hus, JJ:r play~ a similar role in magnetic media to that the dielectric constant € does in 
dlelectnc media (cf. eqn. (7.4». In free space (vacuum), J.Lr = 1. 

The ~agn~tizat~on is often linearly related to the field strength, the constant of 
proportIOnalIty bemg the magnetic susceptibility, Xm: 

M = XmH, (7.83) 

w~ere a~ain th~ field str~n~~h is <!- macroscopic quantity. As in the analogous expression 
f01 the dlelec.tnc suscept1bIlI~y,.X (eqn. (7.1», the magnetic susceptibility is, in general, a 
tens.or quantIty. Moreover, If It represents temporal and spatial variations of M, then 
Xm IS both frequency-~nd wave~e?t?r-dependent, X = X(w, q). From eqns. (7.81), (7.82) 
an~ (7.83), the mag.netlc.susce~tlblhty and relative permeability are related (cf. eqn. (7.3) 
for the correspondmg dIelectrIC expression), via 

J.Lr = (1 +Xm). (7.84) 

Hence, Xm is zero in vacuo . 
. . The quantit~ defi~ed in eqn. (7.83) is known as the volume susceptibility, even though 
It I.S actually dimensI~nle~s, because the magnetization has been defined (eqn. (7.79) ) as 
?eI~g t~e net mag~et1c dIpole mom.ent per unit volume. In some instances, the magnet
Iza~IOn. IS defined mstead as per umt mass .01: per mole: in such cases, the susceptibility 
per umt .mass ( = Xml p). or molar susceptIbIlIty (= Xm VM), respectively, are involved, 
where p IS the mass densIty and VM the molar volume. . 

.The ma~~etic susceptibility can be either positive or negative. Magnetic materials 
:'Ith a ,?osltlve :alue of Xm are termed paramagnetic: the magnetization increases with 
I~creasmg .applIed magnetic field. Materials with a negative value of Xm are termed 
?Iamagnetrc. As for the cor:espon~ing ~ielectric quantity, the magnetic susceptibility is, 
m genera.l, ~ cOI.nplex quantIty: the Imagmary part of the susceptibility is associated with 
energy-dIssipatrve processes when the magnetization is varied by a change in the 
external magneticfreld. 

7.2.2 Internal magnetic fields 

~s for the cor:e~pon?ing case of electric fields inside dielectric media (§7.1.2), It IS 
Imp~rtant to dIstmgUIsh b~tween various forms of the magnetic field inside magnetic 
m~dIa. An external magnetIc field, of flux density Bext , applied to a magnetic material 
WIll produc~ a .macroscopic. internal. field, of flux density Bmae , that is an average ove~ 
m~ny ato~llc sItes of a rapIdly spatially fluctuating microscopic flux.density Bmie. The 
mIcroscopIC .a~d ~acroscopic flux densities are related to the corresponding electric 
current denSIties Via the Maxwell equation 

curl Bmie/mae = J.LOjmie/mae 1 (7.85) 

together with 

div Bmie/mac =0. (7.86) 

The local flux d~nsi~y, Bloc, different from all the above quantities, determines the 
energy of a magnetrc dIpole at the atomic level: 

(7.87) 
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The local magnetic field can be obtained in an analogous manner to that used to 
calculate the local electric field (§7.1.2 and Problem 7.1) by assuming that a demagnetiz
ing field is set up in the material as a result of fictitious magnetic poles (the analogue of 
the surface charge density - see Problem 7.1) residing on the surface of the sample and 
reproducing the discontinuous change in the component of the magnetization normal to 
the surface, Mn. Hence, the relevant formulae for the internal magnetic fields can be 
obtained from the expressions for the corresponding electric fields by making the 
substitutions: P ~ fLoM, E ~ H, D ~ B, cO ~ fLo. 

Alternatively, the internal magnetic fields can be evaluated by considering the asso
ciated surface electrical currents. If it is assumed that the magnetization M is uniform 
throughout the volume of a sample, the averaged macroscopic curre~t density jrnac in t~e 
sample must everywhere vanish except at the surface, where there IS a current per umt 
length equal to the discontinuity in M parallel to the surface, i Mil' Thus, t.he 
macroscopic flux density inside a sample is given by the sum of the external flux densIty 
and that, BI, generated by this surface current: 

Brnac Bext + B 1. (7.88) 

Moreover, rewntmg eqn. (7.81) explicitly in terms of macroscopic quantities gives 
another expression for Brnac: 

Brnac = fLO(Hrnac + M). (7.89) 

In order to calculate the local flux density at an atom, the same trick is employed as for 
dielectrics (§7.1.2): an imaginary spherical surface is inscribed within the sample, centred 
at the point where Bloc is required. The contribution, B2, to the local flux density from the 
magnetization in the 'far' region, outside the volume of the fictitious sphere, is ~epre
sen ted by a magnetization current flowing on the internal surface of thIS sphere m the 
opposite sense to that on the surface of the sample giving rise to B J (Fig. 7.23). In addition, 
there is a contribution, B3, due to magnetic dipoles within the fictitious sphere, i.e. 

Fig. 7.23 Surface currents equivalent to a uniform magnetization M in s~mp~es of vari?us 
shapes for an external magnetic field Bext in the direction shown. The small mscrIbed spherIcal 
surfaces are used to calculate the local field Bloc: the current flowing on the interior of such 
surfaces, equivalent to the magnetization in the region far from the spherical volume, is also 
shown. 

Bloc = Bext +BJ +B2 +B3 

= Brnac + B2 + B3. (7.90) 

As for the case of electrostatic dipoles (§7,.1.2), in the special cases of either a cubic array 
or a random arrangement of magnetic dipoles, B3 = O. It remains, therefore, to calcu
late Bl and B2 for various sample geometries, for example a ~phere, a long cylinder and 
a thin disc. 

Consider first the case of a spherical geometry, with M along the z-direction as in Fig. 
7.24. The magnetic flux intensity at the centre of the -sphere of radius R is calculated 
from the Biot-Savart law, considering the current flowing in a surface element subtend
ing an angle dO at the centre of the sphere at a polar angle 0 from the z-direction. The 
discontinuity in Mil, and hence the current element per length, is therefore di = MsinO, 
and hence the current element is dI = MR sinO dO. Therefore, for a length element dl 
along the circular strip, the contribution to the induction is 

dB = fLo M R sinO dOdl 
47T (7.91) 

in the direction indicated in Fig. 7.24. Summing the contributions from all the elements, 
with I: dl = 27TR sinO, leads to a cancellation of components normal to Z, leaving only 
the component 

(7.92) 

z 

Fig.7.24 Geometry used in the calculation, using the Biot-Savart law, of the magnetic field at 
the centre of a spherical current distribution. 



Integrating this over the sphere gives the total field 

M r 2 
Bz = f.l°

2 
Jo sin

3
e de = "3 f.loM , (7.93) 

on making the substitution x = cose. If the sphere in Fig. 7.24 is regarded as the sample 
itself, the contribution to the macroscopic or local induction is 

(7.94) 

On the other hand, if the spherical surface represents the fictitious sphere inserted within 
the sample, the contribution to the induction magnetization in the far region is 

2 
B? = --110M (7.95) - 3 t-"' , 

since the current flows are in the opposite directions in the two cases (Fig. 7.23b). Hence, 
for a spherical geometry of a sample 

2 
Bmac = B ext + "3 f.loM (7.96) 

or (from eqn. (7.89)): 

H mac = (Bext / f.lo) - M /3. (7.97) 

For the case of cubic (or isotropic) symmetry, the local flux density is therefore from 
eqn. (7.90): 

(7.98) 

For the case of a long cylinder (Fig. 7.23a), the flux density Bl is that for a solenoid 
carrying a current per unit length i = lvI, and hence 

Consequently, 

Bmac = Bext + f.loM 

with 

Hmac = Bextlf.lo. 

For cubic (or isotropic) symmetry, the local flux densityis 

1 
Bloc Bext +"3 f.loM . 

(7.99) 

(7.100) 

(7.101) 

(7.102) 

Finally, for the case of a very thin disc, perpendicular to the field, the flux-density 
contribution to the current id = lvId flowing around the edge is approximately zero, i.e. 

Bl :::::0, 

since the thickness d of the disc is very small. Hence 

Bmac = Bext 

(7.103) 

(7.104) 

7.2 MAGNETIC PROPERTIES 

with 

Hmac = (Bext / f.lo) - M. 

The local flux density for this geometry is therefore 

7.2.3 Diamagnetism 

2 
"3f.lOM . 
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(7.105) 

(7.106) 

Diamagnetism is the most general of all magnetic properties, being exhibited by all 
atoms and even by the conduction electrons in metals. It can be regarded as being a 
variant of Lenz's law: a changing magnetic field produces an induced EMF (Faraday's 
law), thereby causing a motion of the electrons in the material that produces a magnetic 
field opposing-or 'screening' -the external field. Thus, the diamagnetic magnetic 
susceptibility, X~a, is negative and is small in magnitude. In contrast, however, to the 
case of Lenz's law in electromagnetism, where the induced EMF is only produced by a 
changing magnetic flux, the diamagnetic screening currents in atoms or metals persist as 
long as the (steady) external magnetic field is applied. This is a quantum effect; in a 
classical system in thermal equilibrium, the screening currents would be reduced to zero, 
e.g. by collisions in a free-electron gas of conduction electrons, and therefore there 
would be no diamagnetism (the Born-van Leeuwen·theorem). 

For the case of atoms (§7.2.3.1), or of metals in the superconducting state (§7.2.3.3), 
the occurrence of diamagnetism can be associated with a 'rigidity' of the electron 
wavefunction with respect to magnetic fields; the wavefunction is perturbed only a little 
by a weak magnetic field. In the case of atoms, the wavefunction rigidity arises because 
different, orthogonal wavefunctions for the electrons correspond to states separated 
typically by large energies, of the order of electron volts, and consequently the wave
functions cannot readily be perturbed. 

In quantum systems, the momentum p is replaced by the quantum-mechanical 
operator -ilf\1, and so "eqn. (7.76) becomes 

-iliV = meV - eA (7.l07) 

for the case of an electron. From the argument above concerning wavefunction rigidity, 
it is expected, therefore, that the momentum p == -iliV would remain invariant in a 
magnetic field and, as a consequence, the electron velocity v m"ust change when a 
magnetic field is applied. From eqn. (7.107), the induced velocity is therefore 
v = eA/me, and hence the corresponding induced screening-current density is 

ne2 

j = -nev= --A 
me 

(7.108) 

for a concentration n of electrons. For a constant magnetic field, and hence vector 
potential, if n does not vary with time then divj 0 (no sources of current). Hence, eqn. 
(7.108) is only satisfied for the particular gauge of the field 

div A = O. (7.109) 
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Taking the curl of both sides of the Maxwell equation 

curl B ~ /-Lo curl H /-Loj (7.110) 

(valid for small values of magnetization and for time-invariant fields), and using the 

vector identity 

curlcurlB = V'(div B) V'2B, 

together with the Maxwell relation 

div B = 0, 

gives 

? /-Lo ne2
B 1 B V'-B=-- = \2 . 

me A 

(7.111) 

(7.112) 

(7.113) 

The solution of eqn. (7.113) is a magnetic field B that exponentially decreases into the 
material from the surface, say in the x-direction: 

B(x) = Boexp(-xIA), (7.114) 

where the screening length A = (mel/-Lone2)1/2 is of the order of a few hundred ang
stroms; A = 170 A for n = 1029m-3• Since A is much greater than atomic dimensions, the 
screening effect for atoms is very weak and hence the associated diamagnetism is very 

weak. 

7.2.3.1 Atomic diamagnetism 

For atoms or ions with closed shells of electrons (e.g. rare-gas atoms, positively charged 
alkali ions M+ or negatively charged halogen ions X-), there is no net unpaired spin or 
angular momentum associated with the electrons, and as a result such species cannot 
exhibit paramagnetism (see §7.2.4); the only magnetic response is therefore diamagnet
ism. The applied magnetic field with a flux density Bex.t causes a screening current to 
flow within the electron distribution of the atom, thereby generating an opposing 
magnetic field at the centre of the atom. 

A uniform magnetic field can be r.epresented by the choice of vector potential 

(7.115) 

which satisfies the gauge divA = 0, eqn. (7.109) (see Problem 7.11). For the cylindrically 
symmetric geometry shown in Fig. 7.25, where a ring of charge of radius R normal to 
the direction of Bex.t is considered, A = R Bex.tUI2, where U is a unit vector tangential to 
the ring and normal to Bex.t. From eqn. (7.108), the induced current density is 

• -ne2 -ne2 R , 
J = --A = --Bex.tll , 

me 2me 
(7.116) 

and this forms a current loop as in Fig. 7.22 with current dI = jdRdz -ne2 
REex.tu 

dRdzl2me and area ofloop a = 7rR2, ifn is assumed to be uniform thr.oughout the rin? 
Thus, from eqn. (7.78), the contribution of this current loop to the mduced magnetlc 
dipole moment is 

B t z 

Fig. 7.25 Current loop within the electron distribution of an atom used for calculating the 
atomic diamagnetic susceptibility. 

d/-Lm = - IdII7rR2z 
-7rne2 3 

=-2--ReX.tR dRdz. 
me 

Hence the total moment induced in the atom is 

/-Lm - 4
e2 

Rext Jf nR227r R dR dz 
me 

e
2 J = --4 Bext nR2dV, 

me 

(7.117) 

(7.118) 

where d V = 27rRdRdz is the volume of the ring. If the number of electrons in the atom is 
Z = J nd V (equal to the atomic number if the atom is un-ionized), the quantity 
J nR2d V = Z < R2 > is the mean-square distance of the electron distribution from 
the z-axis. For a spherically symmetric charge distribution, < R2 >= ~ < ,2 >, and 
hence from eqn. (7.118) the atomic dipole moment becomes' 

_ Ze2 2 
f.Lm - - -6 <, > Bext . (7.119) 

me 

The above calculation for an isolated atom can be extended to a solid consisting of nat 
identical atoms per unit volume by assuming that the field at a given atom is given by 
Bext' i.e. by ignoring the effects of the magnetization of the neighbouring atoms 
(approximately valid because diamagnetic effects are so weak). Hence, the overall 
induced magnetization is 

natZe2 2 
M = nat/-Lm = --6-- <, > Rext . 

me 
(7.120) 



In this approximation, where M is small, Bext ~ Bmac , and Hmac ~ Bext//-Lo (true, 
though, for long cylindrical geometry-see eqn. (7.101», and so from eqn. (7.83), the 
Larmor atomic diamagnetic susceptibility is 

at Ze
2

/-Lo ( 2) Xmd ~ -nat-6-- r . 
, n1e 

(7.l21) 

Typical values of the volume atomic diamagnetic susceptibility are x~,d ~ 10-
5

, or 
~ 10-10 m3 mol- l for the corresponding molar quantity. 

The atomic diamagnetism can also be obtained as one of the terms resulting when the 
kinetic part of the Hamiltonian in the presence of a magnetic field (eqn. (7.77» is 
considered with the particular choice of vector potential of eqn. (7.11S). Thus: 

1 "" 2 1 "" e ))2 ;;Jrkin= -L-(Pi + eA) = -2 L-(Pi -"?(ri x Bext 
2me i me i -

1 2 e e
2

2""22 = -LPi + -L(ri x Pi)zBext,z + -8 -Bext,z L-(xi + Yi)' (7.122) 
2lne i 2lne i me i 

where it is assumed, as before, that the external magnetic field is along the z-direction, 
and the summation is over all electrons i in the atom. By analogy with eqn. (7.74), the 
expectation value of the atomic magnetic moment in a state I¢) is therefore 

/-Lm 
8 

--((¢I;;JfI¢)) = 
8Bext,z 

where the electronic orbital angular momentum is given by 

tiL L"iXPi' 
i 

(7.123) 

(7.l24) 

The first term in eqn. (7.l23) yields a contribution to the paramagnetism by the orbital 
motion of the electrons (see §7.2.4.4). The second term is the diamagnetic response. For 
a spherically symmetric electron distribution, 

(7.12S) 

and hence for a solid containing nat atoms per volume, the susceptibility is (cf. eqn. 

(7.l21»: 

(7.126) 

In the summation, electrons in the outer shells make the dominant contribution since 
they are farthest from the nucleus. 

7.2.3.2 Diamagnetism of normal metals 

* 

Conduction electrons in a normal (i.e. non-superconducting) metal (or a highly doped, 
degenerate semiconductor) are generally strongly perturbed by an applied magnetic 

* 

field; the change in momentum p is of order -eA (eqn. (7.76» and hence the induced 
electron velocity, and the magnitude .of the screening current itself, is very small. 
Nevertheless, there is a non-zero contribution .to the diamagnetic susceptibility from 
the conduction electrons, first calculated, for the case of the free-electron gas, by 
Landau. . 

The effect of an applied magnetic field on the conduction-' electron states is to cause a 
collapse of the allowed states in k-space onto Landau tubes lying parallel to the field 
direction (say i)-see §6.3.3.1. The nth allowed energy levels for, say, a 3D free-electron 
gas are then given by (eqn. (6.l19»: 

tz2k: 1 
'tgll = -2 ~ + (n + -2)tzwe , 

me 
(7.127) 

where the cyclotron frequency, We is given by (eqn. (6.117»: 

We = eB/me. (7.128) 

The modified density of states g('tg) for a 3D quantum free-electron gas is then as in Fig. 
7.26: there are discontinuities in g('tg) at odd multiples of the energy tiwcl2 resulting 
from the 1D free motion remaining in the z-direction (see Problem S.2), that become 
rounded off in practice because of electron scattering. The average energy ('tg) of the 
electron gas in the presence of an applied magnetic field is higher than that 
(= 3N'tgF/S-eqn. (S.3Sb» for the field-free case because there are no allowed states 
for electron energies below 'tg = tiwe/2 for the magnetic case (see Fig. 7.26). This increase 
in energy in the presence of a magnetic field means that the material will be subject to a 
force, so that in an inhomogeneous magnetic field it moves from a region of higher field 
intensity to one of lower intensity, a characteristic of diamagnetism. 

g('(g) 

I 
/ 

I 
I 

I 
I 

o 

Fig.7.26 The density of electron states of a free-electron gas in the presence of a magnetic field 
(solid line) compared with the parabolic dependence on energy in the field-free case (dashed line). 
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The expression for the diamagnetic susceptibility of a quan~um free-electron gas (at 
zero wavevector, i.e. in the long-wavelength limit) was first gIven by Landau (see e.g. 
Peierls (1955) for a derivation), and is 

fe nJ.loJ.l~ _ nJ.loe
2 

(7.129) 
Xm,d = - 2'&F = - 4mek} 1 

where n is the conduction-electron concentration, '&F and kF are the Fermi energy .and 
wavevector respectively, and J.lB is the Bohr magneton of the electron, the natural umt of 
magnetic moment, defined as 

en 
J.lB=-· 

2me 

(7.130) 

The value of J.lB is 9.27 x 10-24 J T- 1 . A typical value of X~,d ,is ~ -10-
6

, th~ sam~ order 
of magnitude as the atomic diamagnetic. su~ceptibili~y. For a real crystal m WhICh the 
conduction electrons are subject to a penodic potentlal, eqn. (7.129) becomes scaled by 
the inverse of the electron effective mass m: (§6.2.1), i.e. 

er = _ nJ.loJ.l~ (me). (7.131) 
Xm,d 2'&F m~ 

Thus, metals with very small values of m:, like Bi (with m: ~ 0.01me), have much 
enhanced diamagnetic susceptibilities. . . * 

The above results are for the zero-wavevector llIDlt, q = o. The full q-dependent 
expression (for a quantum free-electron gas) is (see e.g. White (1983»: 

X~,d(q)=X~'d(O)~~[l+!} k;(l 4~)'lnl~:=!ll (7.\32) 

The q-dependence represented by eqn. (7.132) is shown in Fig. 7:27. * 
The discussion of the effects of a magnetic field on the ma~etic res~onse of c.onduc

tion electrons so far has been for a constant field. Very interestmg non-Imear, oscIllatory 

4 

Fig.7.27 The wavevector dependence of the diamagnetic Landau (L) and par~ma~netic Pa~li 
(P) susceptibilities of a free-electron gas. The sol~d line is the su:n of the two contnbutIOns. (White 
(1983), Quantum Theory of Magnetism, p. 81, Flg. 3.3, © Spnnger-Verlag GmbH & Co. KG) 

8=0 8=0 

(a) (b) 

Fig.7.28 Illustration of the origin of the de Haas-van Alphen oscillations for a free-electron gas: 
(a) the minimum-energy condition, when the Fermi level lies midway between two Landau levels 
for a magnetic flux density BI; (b) the maximum-energy condition when the Fermi level coincides 
with a Landau level for a flux density B2 > BI. 

behaviour occurs in the properties of the conduction electrons as the magnetic field 
is varied. For example, non-linear fluctuations occur in the magnetization as a function 
of B, known as the de Haas-van Alphen (dHvA) effect. These oscillations occur 
because, as the magnetic flux density B increases, the radius or area (see eqn. (6.120» 
of the Landau tubes also increases, and as a result the Landau tubes pass through the 
Fermi surface (see Fig. 6.20b). When the flux density is such that the Fermi energy lies 
exactly midway between two Landau tubes (see Fig. 7.28a), the total energy '&T of the 
free-electron gas is less than that ('&~ = 3N'&F/5) in the absence of a magnetic field and 
has a minimum value: the Landau level below '&F is filled and that above '&F is 
unoccupied, and half the electrons in the lower level have been shifted down in energy 
(on average by nWe/4, where We is the cyclotron frequency - eqn. (6.117»). As B increases" 
the separation between the Landau levels increases (since We ex: B) and eventually the 
highest occupied level coincides with '&F, i.e. when the Landau tube is just about to leave 
the Fermi surface (see Fig. 7.28b). Near this point, the total electron energy reaches a 
maximum. A further increase in B raises this level above '&F and the electrons in it 
therefore empty into the Landau levels lower in energy (below '&F), a circumstance 
made possible by the fact that the degeneracy of each level also increases with B (eqn. 
(6.121». 

Hence, oscillations in the electron energy with increasing magnetic flux density are 
expected and consequently, from eqn. (7.74), oscillations occur also in the magnetiza
tion M (as well as in other properties of the electron gas, e.g. the electrical conductivity 
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which is known as the Shubnikov-de Haas effect). As can be seen from Fig. 7.28b, the 
oscillations in M or energy occur whenever there are an integral number of Landau 
levels at and below ~F, i.e.: 

~F/liwc = n 

where n is an integer, or from eqn. (6.117) 

l/B = nlie/m~F 

or equivalently 

(7.133) 

(7.1 34a) 

(7. 134b) 

where SF = 7rk2k~ is the cross-sectional area of the Fermi surface in the plane of the 
cyclotron orbit (normal to B). Equation (7.134b) shows that the de Haas-van Alphen 
effect is periodic in the quantity 1/ B; the period of the oscillations is therefore 

8(1/ B) = 27re/liSF. (7.135) 

Equation (7.135) can also be obtained by equating the quantized area between Landau 
tubes (eqn. (6.120)) and SF. . 

The de Haas-van Alphen effect for electrons in real metals, as opposed to the ldeal 
free-electron gas, is used to probe extremal closed cyclotron orbits associated with the 
Fermi surface (see e.g. Fig. 6.18 for the case of eu); open circuits do not contribute to 
the dHvA effect. The effect can therefore be used to interpret complexities of the Fermi 
surface in favourable cases where the electrons can complete many cyclotron orbits 
between collisions, a situation achievable at low temperatures in very pure samples (see 
Problem 7.12). The dHvA oscillations for gold with B in the [110] direction are shown in 
Fig. 7.29 (see Problem 7.13). 

4.5 4.55 4.56 
B(T) __ 

Fig.7.29 De Haas-van Alphen oscillations for gold with B in the [110] direction. (After :Kittel 
(1996). Reproduced by permission of John Wiley & Sons Inc.) 

7.2.3.3 Diamagnetism of superconductors 

One of the most remarkable effects exhibited by superconductors is the Meissner effect 
(sometimes also called the Meissner-Ochsenfeld effect) in which, for certain sample 
geometries, materials and strengths ot magnetic field (see later), all magnetic flux is 
expelled from the interior of the superconductor (Fig. 7.30a). {See §6.4 for a discussion 
of the electronic properties of superconductors.) The simplest sample geometry to 
consider is that of a long cylinder, with the principal axis parallel to an external applied 
field, Bext . The complete Meissner effect can be written as 

Bmac = 0, (7.136) 

and since Bmac = f.Lo(Hmac+M), eqn. (7.136) implies (together with eqn. (7.101)) that 

M = -Hmac = -Bext/f.Lo. (7.137) 

Ideal conductor Superconductor 
(p=O) 

8,,,=0' T= 300K Bext 8",,=0' T= 300K t~1 Bext 

(i) (i) 

cooling t COOling, (v) 

8,,,=0' l cooling 8~t=0 , ~ COOling 

(ii) (ii) 

Bext t~ T < Tc ~~8'" Bext K'~ T< To 

f 
f 8,,, 

(iii) (vi) (iii) (vi) 

8",=0' , I Bext= 0 Bext= 0 , 008,,,=0 

(iv) 
(a) 

(vii) (iv) 
(b) 

(vii) 

Fig. 7.30 Magnetic behaviour of: (a) a superconductor exhibiting the Meissner effect; (b) a 
perfect conductor with electrical resistivity p = O. A series of steps are shown, beginning with 
the materials in the normal state (T > Te), either without or with an applied external magnetic 
field, B ext . On cooling below Te, and then applying a magnetic field, Bexb in the case of the 
originally field-free state, removal of B ext causes the same state to be recovered for the super
conductor, irrespective of path, whereas different states are found for the perfect conductor not 
exhibiting the Meissner effect. 
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Equation (7.137) further implies, from eqn. (7.83), that 

Xm = -1; (7.138) 

i.e. a superconducting material exhibiting the complete Meissner effect (exclusion of 
flux) is a perfect diamagnet, as well as being an ideal electrical conductor. 

The magnetization that opposes the external field, making the internal macroscopic 
flux density equal to zero (Bmae = B ext + /-LoM (eqn. (7.100)) with Hmae = -M = 
Bext! /-LO (eqn. (7.101))) is induced by screening currents throughout the material that, 
because they cancel within the bulle of the superconductor, effectively flow just at the 
surface of the superconductor within the London penetration depth, .AL (eqn. (6.176)). 

The superconducting state is distinct from that of an ideal conductor (with p 0) 
because of the Meissner effect. For a superconductor, the final state of the material in 
zero magnetic field is the same whether or not a magnetic field initially permeated the 
material in the normal state at a temperature above Te (Fig. 7.30a): on cooling below Te, 
any flux in the material is expelled in the superconducting state, because of the Meissner 
effect, so that when the external field is removed once more, the material is in the same 
state, irrespective of the path taken. In this sense, the superconducting phase can be 
treated as a thermodynamic state (see §6.4.1.1). 

An ideal conductor, however, behaves in a very different way (Fig. 7.30b). Starting 
from the magnetic field-free state for the normal material at a temperature above the 
transition to the zero-resistance state, application of an external magnetic field whilst in 
the zero-resistance state will lead to exclusion of the flux because of the screening 
currents induced. Subsequent removal of the field will leave the ideal conductor in a 
field-free state. However, if a magnetic field is first applied to the conductor in its 
normal state, so that the flux threads the material, on cooling down through the 
transition to the perfect-conductor state the magnetic flux remains trapped within the 
material: it is not expelled. The reason for this can be understood from the Maxwell 

equation 

aB 
curl E = -Ft· (7.139) 

Inside a conductor with zero resistance, E = 0, otherwise electrons will be accelerated 
without limit; thus, from eqn. (7.139), this implies that Bmae must remain constant with 
time in the interior. Hence, even after removal of the external field, magnetic flux will 
remain within the material, and hence the final state of the perfect conductor depends 

on the path taken. 
In fact, the Meissner effect is rarely complete. First, only type-I superconductors in 

fields below the critical flux density Be, or type-II superconductors below the lower 
critical flux density Bel (see §6.4), can potentially exhibit complete exclusion of magnetic 
flux. Even for these, the Meissner effect may be incomplete. Materials that are not 
properly annealed can be inhomogeneous, and magnetic flux can get trapped in meta
stable regions that remain in the normal, non-superconducting state when the magnetic 
field is decreased below Be. 

The geometry of the sample can also influence the extent to which the Meissner effect 
is complete for certain magnetic fields below Be. For example, a spherical superconduct
ing sample exhibiting flux expulsion will have a flux-line pattern in its vicinity as shown 
in Fig. 7.31 a; the flux density at the equatorial plane will be 50% larger than the uniform 

Fig. 7.31 Illustration of the o~igin of the intermediate Meissner state for a spherical sample of a 
supercon?uctor. The flux dens~ty at the equatorial plane is Beq = ~ Bext due to the excluded flux. 
For .applied fields. c~rrespondmg to flux densities ~ Be < B ext < Be, the sample is in the inter
m~dIate state consIstmg of nor:mal (s?ade~) reg~ons, within which the flux permeates, coexisting 
wIth (unshaded) superconductmg regIOns m whIch flux expulsion is complete. 

flux density of the applied field, Beq = ~ B ext . As long as B < B or B < l B ror a I d 2 - eq e, ext 3 e, l' 

type- supercon uctor (or 3Bel for a type-II superconductor) the Meissner effect will be 
complete .. However, i~ ~he ra~ge of fl~x densities ~ Be <" B ext < Be for a type-I material, 
the sphencal samp!e IS m an .mtermedlate state, in which alternating regions of normal 
an~ superc~nductmg matenal coexist (Fig. 7.31 b); the flux permeates the normal 
regIOns but IS completely excluded from the superconducting regions. This is because 
on the equatorial plane the critic~l flux density is reached, but the whole sample cannot 
revert to the normal state because otherwise the flux density inside the material would 
everywhere. be equa~ to ~Be, at which the normal state cannot exist. The system then 
adopts the ~ntermedIate configuration. (Note that this intermediate state should not be 
conf~~ed wIth the 'mixed' Shubnikov vortex phase of type-II superconductors for flux 
denSItIes greater than BCI-=--see later). 

Even in the cases wh~re complete flux expUlsion is expected, nevertheless the magnetic 
~eld .penetrates some dIstance, the London penetration depth.AL (eqn. (6.176)), into the 
mtenor. of the superconductor. This is because the screening supercurrents that are 
responsIble for the flux expUlsion and the resulting diamagnetism themselves decay into 
the ~ul~ of the material away from the surface (eqn. (6.175)). The decay of the flux 
denSIty I~tO a ~upercon.d~c~or in the Meissner state can be calculated using the same 
meth?d, mvolvmg the ngidity of a wavefunction in the presence of a magnetic field as 
used m §7.2.3, bu~ now the wavef~nction is the macroscopic wavefunction represen;ing 
the superconductmg condensate, m other words the Ginzberg-Landau order parameter 
\J!(R) (eqn. (~.166)). Thus, eqn. (7.113) for the spatial variation of B becomes for the 
superconductmg case 

\72B = /-Lon
s
e2 

B = ~B me .At' (7.140) 

with the solution for the decay of B in say the x-direction normal to a free surface: 
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Fig. 7.32 Magnetization curves versus flux density of an applied external field, Bext : A is the 
curve for pure Pb (a type-I superconductor); B is the curve for Pb alloyed with 8.23 wt. % In (a 
type-II superconductor). (After Livingston (1963). Reprinted with permission from Phys. Rev. 
129, 1943. © 1963. The American Physical Society) 

B(x) = Boexp(-x/Ad, (7.141) 

where ns/2 is the concentration of Cooper pairs and AL is the London penetration 
depth. (Note the exact equivalence of eqns. (6.175) and (7.141) for the decay of the 
screening currents and of the magnetic flux density, respectively, into the bulk of a 
superconductor.) Thus, the Meissner effect is only complete for distances d away from 
the surface into the bulk of a superconductor greater than a few times AL, say d ~ 1000 
A. Hence, thin-film superconductors, with thicknesses less than this order of magnitude, 
can never be completely diamagnetic. 

For a type-I superconductor exhibiting complete flux exclusion, eqn. (7.137) shows 
that the magnetization M should vary linearly with the external flux density Bext until 
the critical flux density Be is reached, at which point the material reverts to the normal 
state and the magnetic susceptibility changes from the very large negative value 
(xm -1) characteristic of perfect diamagnetism to the very small value, Xm ~ 10-5, 

being the sum of paramagnetic (§7.2.4.5) and diamagnetic (§7.2.3.2) susceptibilities 
characteristic of normal metals. Curve A in Fig. 7.32 shows the magnetization beha
viour of pure lead (a type-I superconductor - see Tables 6.3 and 6.4); the (reversible) 
linear behaviour of M versus Bext for flux densities below Be is clearly evident. 

In §6.4.2.1, it was stated that whether a superconductor is type-I or type-II depends 
on the numerical value of the Ginzberg-Landau parameter K:GL = Am/(eff (eqn. 
(6.181)), where Am is the magnetic penetration depth (which can be much larger than 
AL, e.g. in the 'dirty' limit), and (eff is the effective superconducting coherence length 
given by eqn. (6.180): (cit (i3ts + A-I, where (BCS is the BCS coherence length (eqn. 
(6.179)) and A is the (normal) electron-scattering mean-free path. Pure type-I materials 
are characterized by values of K;GL « 1 since (erf » Am. Type-II materials, on the other 
hand, are characterized by the opposite limit, K;GL » 1, and this arises when the electron 
mean-free path A is reduced (e.g. by alloying of another metal with the superconductor) 
so that (erf ~ A « (BCS, Am. In fact, the demarcation value can be regarded as 
K:GL = 1/-12; the cross-over in the surface energy, Inls' between normal and super-

* 
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Fi~. 7.~3 Schemati~ illustration of the mixed, Shubnikov phase of a type-II superconductor that 
eXIsts III the magnetIc-flux range BcI < B < Bc2 • Tubes of quantized magnetic flux or vortices 
pass through the normal-state material surrounded by a superconducting phase.' , 

conduct~ng domains chan~es from positive to negative values for K:~ 1/-12. Super
conductm~ and normal regIOns are 'immiscible' when In/s < 0 and so the mixed vortex 
(or ~~ub~Ikov) phase can form in type-II superconductors for values of magnetic flux 
den.sItleS m the range Bel < B <. Be2 : regions of supercQnducting material (exhibiting the 
!"'1eIssner ~ffect and flux. expulsIOn) coexist with regions of normal, non-superconduct
mg matenal called vortIces, parallel to the magnetic-field direction within which the 
flux penetrates (see Fig. 7.33). ' 

The surface energy associated with the normal-state-superconductor interface can be 
und~rst~od ~s follows. Consider ~uch an interface in the x-y plane, with a magnetic field 
applIed I.n thIS plane that deca.ys mto the superconductor with a characteristic magnetic 
penetra.tlOn length ~m ~ AL (FIg. 7.34a). The expulsion of magnetic flux associated with 
the MeIssner effect IS associated with the magnetic-energy density 

'&m (7.142) 

for a critical external flux density Be. The other relevant contribution to the 
overall ~ne:gy density is that associated with the Cooper-pair condensation, -'&eond: 

de~p wIthI~ the supercon?ucting. :e~on, these two contributions are equal, 
-~eond B~/2f-lo. However, In the VICInIty of the interface, both contributions to the 
energy ?ensIty decay ~o ~ero, but with different characteristic decay lengths: that for the 
magnetIc-energy denSIty IS A:u, and that for the condensate-energy density is the effective 
c~herence ~ength, (eff (see FIg. 7.34b). Thus, the spatial variation of the energy-density 
dIfference IS 

(7.143) 

Integrating this expression across the interface gives the surface energy In/s needed to 
create the boundary between normal and superconducting states: 
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Fig. 7.34 Spatial variation, near an interface betwee':1 a nonnal-~tate region .(sh~ded) and a 
superconducting region (unshaded), of (a) the magnetIc fl~x densIty.B(z) (sohd line) and the 
Cooper-pair density ~s(z) (dashed line); (b) the correspondmg m~gnetlc and condensate ene.rgy 
densities, ~m(z) apd ~cond(Z), respectively, with their difference ~~(z) shown by the dashed line. 
Integration of A~(z) gives the surface energy In/s for the creatIon of a nonnal-state/supercon
ducting interface. 

1
00 B2 

lnjs = .6.~(z)dz = ((efT - Am)-2 e . 
o ~o 

(7.144) 

Thus, if (efT < Am (or K,GL > 1), as in Fig. 7.34, lnjs < 0, and the mixed vortex state is 
stabilized. * 

From the above discussion it is clear that the magnetization behaviour of a type-II 
superconductor must be rather different from that of a type-I superconductor (curve 
A in Fig. 7.32). Above the upper critical flux density, Be2 (which may be very high, 
of order 50 T), a type-II material is in the normal state and hence the magnetization 
is effectively zero. Between this value and the lower critical flux density, Bet. a type-II 
superconductor is in the Shubnikov vortex state, i.e. partially superconducting, 
and hence the magnetization must increase continuously (in a negative sense-see 
eqn. (7.137)) with decreasing flux density as the proporti~n of supercondu~t~g 
material increases. At the lower critical value of the flux densIty, Bel, the matenaiis 
entirely in the superconducting state, and hence the. Meissner effect is complete. For 
yet lower flux densities, the linear behaviour of M characteristic of type-I super
conductors is recovered (see Fig. 7.35 for a schematic illustration and curve B in Fig. 
7.32 for an actual example, viz. Pb alloyed with In to transform it into a type-II 
superconductor). . 

Finally, we will discuss the characteristics and behaviour of the vortex 'lattice' in type
II superconductors in the mixed Shubnikov state. There is a ma~n.etic repulsive. ~terac
tion between the flux tubes (Fig. 7.33), at least for small separatIOns, so the mimmum
energy configuration will be that in which the average distance between v0rt;ices is 
maximized: this requirement is achieved by an ordered hexagonal array (the Abnkoso~ 
lattice) in two dimensions. Figure 7.36 shows such a hexagonal flux lattice for the case 
of Nb in the vortex state. 

::;z: 
:! 
I 

Fig.7.35 Schematic illustration of the magnetization curves for a type-II superconductor (solid 
line) and a type-I superconductor (dashed line). 

The presence of flux vortices in the mixed phase means that type-II superconductors 
can be electrically dissipative, i.e. they can exhibit a finite electrical resistance under 
certain circumstances. For a (super)current j flowing normal to B in a type-II super
conductor in the vortex state, the Lorentz force (eqn. (6.109)) causes the flux vortices to 
move in the direction perpendicular to bothj and B. This flux motion induces an electric 
field parallel to j, which is equivalent to an electric ppwer loss, or resistance, in the 

Fig.7.36 The hexagonal flux lattice associated with the vortex (Shubnikov) phase present in Nb 
at 4.2 K in a magnetic field of flux density B 0.079 T (BC2 = 0.314 T). The average nearest
neighbour separation of flux tubes is 177 nm. The results of a neutron-scattering study were used 
to ascertain the magnetic-field variation and the vortices shown here. (After Schelten et al. (1972). 
Reproduced by pennission of Plenum Publishing Corp.) 
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Fig.7.37 Illustration of a superconducting ring (shaded). threaded by magnetic flux. Th~ persis
tent supercurrents are associated with the flux flow on the mner and ~uter surfa~es of the nng, but 
deep inside the superconductor (at distances greater than ~he magnetIc penetratIOn ~epth, Am) the 
current density is zero. Integration of the superconductmg-condens~te ¥:,a~efunCh?n alo~g .the 
contour C shows that only an integral number of flux quanta can eXIst ~Ithm.the nng. ThIS IS a 
model for a flux vortex in the mixed state of a type-II supercond~ctor, ~n whIch a normal-state 
core, threaded by magnetic flux, is surrounded by a superconductmg regIOn. 

sample. This dissipative loss can be prevented by flux pinning, i.e. the s~atial.trap~ing of 
the flux vortices by structural defects; this is particularly prevalent m oXIde hlgh-Te 
materials, where the pinning defects can be oxygen vacancies or. similar at0r.nic. defects 
associated with non-stoichiometry. Flux pinning can also be mduced artIficially by 
means of radiation damage: electron or ion bombardment of a superconducting mate
rial results in tracks of radiation-damaged material which efficiently trap the flux 
vortices. If flux pinning is dominant, then the flux-vortex arrange~ent will not be the 
ordered Abrikosov lattice, but instead a more-or-Iess random spatIal arrangement of 
flux tubes, a vortex glass. . .. 

Lastly we consider the magnitude of the magnetic flux entramed ~IthI? the n~rmal 
regions containing the vortices. This flux can be evaluated by consIdenng a nng of 
superconducting material threaded by magnetic flux, in. the c~se of a type-II v~rtex, 
passing through normal-state material lying within the nng (FIg. 7.37): The perSIstent 
supercurrent associated with the flux flo:vs on t?e inner su~face of ~he rmg, but along a 
circuit C deeper within the superconductmg regIOn oftb.e nng (at ~Istances greater than 
the magnetic or London penetration depth, Am or AL), the current. IS zero (eqn. (6.175/)2 
In terms of the Ginzberg-Landau order-parameter wavefunctlOn, 'ljJ(R) = (ns/2) 
exp(iB) (eqn. (6.168)), the current density is (eqn. (6.169)): 

Thus, the conditionj = 0 corresponds to 

n:ve -:-2eA. (7.145) 

Integration of both sides of this equation around the closed circuit C yields 

Ii i V. dl = li6.e = -2e i A. d/. (7.146) 

The right-hand side of this equation s:anbe rewritten using Stokes's theorem: 

i A . dl = i (curl A) . dS = 1 B . dS ~ <P, (7.147) 

where <l? is the magnetic flux threading a surface bounded by the contour C, on which 
dS is an element of area. Since the condensate wavefunction 'ljJ(R) must be single
valued, the change in phase going round the circuit C must be an integral number p 
of 27f radians, i.e. 6.e = ±2p7f. Hence, eqn. (7.146) becomes 

2p7f1i ph 
<P = ±--= ±-= ±p<Po, 

2e 2e 
(7.148) 

where <Po = 2.07 x 1O-15Tm2 is the flux quantum or fluxoid. A vortex containingp flux 
quanta has an energy proportional to (p<Po)2: hence, it is energetically favourable to 
have p individual vortices, each containing just a single flux quantum, rather than one 
larger vortex containing p fluxoids. 

The critical flux density, Bel, necessary to nucleate a single fluxoid in a vortex can be 
estimated as follows. The magnetic field will extend a distance Am into the supercon
ducting region around the normal core of a vortex. The flux associated with the core will 
be of the order of 7fA~Bel, but this must equal the flux quantum <Po from eqn. (7.148), 
and so 

(7.149) 

At the upper limit, Be2 , of the range of flux densities corresponding to the Shubnikov 
vortex state, the flux vortices will be packed as densely as possible, consistent with the 
superconducting phase remaining. In practice, this means that the closest distance of 
approach of two fluxoids will be of the order of the effective superconducting coherence 
length, (err (eqn. (6.180)). Thus, the area of a vortex in this case will be of the order of 
7f(;rr, containing flux equal to 7f(;rrBe2; this too must equal the flux quantum, and so 

Be2 ~ <Po/7f(;rf' (7.150) 

7.2.4 Paramagnetism 

Unpaired electrons possess an intrinsic spin angular momentum and, consequently, an 
intrinsic permanent magnetic dipole moment. In addition, electrons in part-filled (not 
half-filled or filled) shells in atoms have a net orbital angular momentum, and a 
magnetic dipole moment is associated with this motion too. As a result, atoms with 
incomplete shells, and even the conduction electrons in a metal, can exhibit permanent 
magnetic dipole moments. Hence, the application of an external magnetic field can 
cause alignment of these dipoles (in competition, in general, with the randomizing 
influence of temperature). 

Therefore, the magnetization of a material containing such permanent dipoles will 
increase with increasing H, and the paramagnetic susceptibility Xm,p is positive; the 
material is said to be paramagnetic. For the case of atomic paramagnetism, as we will 



see, the magnitude of the susceptibility is much larger than the corresponding value of 
diamagnetic susceptibility (eqn. (7.121», x~.P » IX~.dl. On the other hand, the p~ra
magnetic susceptibility and the diamagnetic susceptibility (eqn. (7.129» for conductIon 
electrons (e.g. in a free-electron gas) are of the same order of magnitude (in fact, 
Xfe = 31xfe dl). It was shown in §7.2.3.1 (eqns. (7.122) and (7.123» that the magnetic 
m~inent a:'ociated with the orbital motion of electrons in atoms and the resulting 
orbital angular momentum of electron i, Iil;, is given by 

-e '" -en '" f-L;l=-D Y;XP;=--D I ; 
2me ; 2me ; (7.151) 

=-f-LBL, 

where the orbital angular-momentum eigenstate operator L is given by eqn. (7.124) and 
f-LB is the Bohr magneton (eqn. (7.130». 

The intrinsic spin S of an electron has an associated magnetic moment given by 

f-L:n = -gef-LBS, (7.152) 

where the electronic g-factor (or spectroscopic splitting factor) has the value 

ge c:= 2(1 + oIrr + .. ) = 2.0023, (7.153) 

where O! is the fine structure constant (= f-Loce2/2h c:= 1/137). This value is different from 
that, ge = 2, predicted by Dirac's theory of the electron because of quantum electro
dynamic corrections. However, for simplicity in the following, we will assume hence
forth that ge = 2. The net electronic spin of an atom, and hence its net spin magnetic 
moment, is obtained by summing over all electrons: 

f-L! = -gef-LB LSi = -gef-LBS, 
i 

(7.154) 

Hence, it can be seen from eqns. (7.151) and (7.154) that permanent magnetic dipoles 
only exist where there IS a net orbital or spin angular momentum, tzL or tzS, respectively. 
For the case of atoms, this is only true for electronic shells that are part-filled (but not 
half-filled for the case of L). 

Comparison of eqns. (7.151) and (7.152) shows that electronic spin angular momen
tum is twice as effective in giving rise to a magnetic moment as is orbital angular 
momentum. Thus, the total magnetic moment of an atom can be represented as 

(7.155) 

Note, as will be seen later, that this is not, in general, the value of the dipole moment 
that appears in the expression for the magnetic energy when an atom is placed in an 
external magnetic field. 

7.2.4.1 Paramagnetism of isolated atoms 

For an isolated atom containing a single part-filled shell, with orbital angular momen
tum quantum number I, there are (21 + 1) associated energy levels which, together with 
the spin degeneracy gs 2, implies that the overall electronic degeneracy in principle 
should be 2(21 + 1). However, this neglects the intraionic interactions, such as electron-

electron Coulomb repulsion and the coupling between the spin of an electron and its 
orbital motion, i.e. the spin-orbit interaction. These interactions lift the level degener
acy and, except for the very heaviest atoms where the spin-orbit coupling is strongest 
and hence no longer a small perturbatio~ to the Coulomb interactions, the Russell
Saunders (or LS) coupling scheme is operative, wherein the orbital and spin angular 
momenta separately couple (as assumed already for eqns. (7.151) and (7.154»; 
L = 2::; Ii and S = 2::i Si, rather than the individual I; and S; angular momenta coupling 
preferentially (so-called jj coupling). The net orbital and spin angular momenta, Land 
S, then couple via the spin-orbit interaction 

Vso AsoL.S, (7.156) 

where Aso is the spin-orbit coupling constant. For a one-electron atom, the spin-orbit 
contribution to the Hamiltonian is 

I IdV 
----Is 
2m~c2 r dr . (7.157a) 

and for a many-electron atom containing Z electrons it is (see e.g. Mandl (1992»: 

1 ~ 1 dVi{ri) 
Vso =-2 ? 2D--d-- li ' s;, mec i=1 ri ri 

(7.157b) 

where Vi(ri) is the potential experienced by electron i due to all other electrons. 
For a many-electron atom, the matrix element can b~ written as 

(7.158) 

where Aso <X (r- 3
), the expectation value of r-3 over the particular wavefunction. 

As a result of spin-orbit coupling in the Russell-Saunders approximation, Land S 
couple to give the total angular momentum quantum number (see Fig. 7.38a): 

(7.159) 

where J can take all values, between (L + S) and IL - SI .. This group of levels is called a 
multiplet, and the multiplicity of the system is defined as (2S + 1). (In fact, if L~S there 
are (2S + 1) multiplets, but there are only (2L + 1) if L~S.) The energy of the Jth state 
is given by (see Problem 7.18): 

~J ~o [J(J + 1) - L{L + 1) - S(S + 1)]. (7.160) 

The magnetic moment of an atom with total angular momentum tzJ is given by 

(7.161) 

where 1m is called the gyromagnetic (or magnetogyric) ratio andgJ is the Lande g-factor. 
Unlike ]2, {f-L~t)2 (cf. eqn. (7.155» is not a good quantum number, so that only the 
component of f-L~t along the J-direction, f-L~, contributes to the magnetic properties (e.g. 
in the presence of an applied magnetic field, whose direction will fix that of J). The total 
moment f-L~t can be thought of classically as precessing rapidly around the J-axis (Fig. 
7 .38b), and hence the time-averaged component of f-L~t perpendicular to J will be 



B 

(a) (b) 

Fig. 7.38 (a) Russell-Saunders coupling of two electrons; (b) Vector diagram to aid in the 
calculation of the Lande g-factor, g}. 

zero. From Fig. 7.38b, the effective moment acting along the J -direction (note in 
antiparallel with J) can be written as 

J 
f.L~ = - Til f.LB(ILlcose + 2ISlcos</». (7.162) 

Application of the cosine rule to the triangle formed by the vectors J, Land S gives 

cose = (IJI2 + ILI2 

cos</> = (IJI2 + ISI
2 

ISI2)/2IJ IILI, 

ILI
2
)/2IJ IISI· 

Substitution of these expressions into eqn. (7.162), and replacing IJI
2 

by the eigenvalue 
J(J + 1) etc., gives for the Lande g-factor (assuming that ge = 2): 

J(J + 1) + 8(8 + 1) - L(L + 1) 
1+ 2J(J + 1) . 

(7.163) 

The ground-state configuration [JLS] of an isolated atom can be found by the 
application of Hund's rules. The three rules, in the order that they must be obeyed, are: 

1) 8 has the maximum value consistent with the Pauli exclusion principle (i.e. as many 
of the electrons as possible should have parallel spins) .. 

2) L takes the maximum value consistent both with the value of 8 found from rule 1 
and the exclusion principle. 

3) The value of J in the ground state depends on the extent of the filling of the 
electron shell: J = IL - 81 when the shell is less than half-full, J = (L + 8) when more 
than half-full, and J = 8 for a half-filled shell (since L = 0). 

Rules 1 and 2 arise because of Coulomb interactions between electrons, together with 
the exclusion principle that prevents two electrons with the same spin being simultan
eously at the same place (see §7.2.5.1). Concerning rule 1, the Coulombic repulsion 
energy is lowered if electrons are not in the same orbital, but are in different orbitals, 
where they may adopt parallel or antiparallel spin configurations. However, the 

exchange interaction for two orthogonal orbitals is positive (§7.2.5.1) and hence the 
parallel-spin configuration is favoured. The second rule is more difficult to rationalize, 
but has been confirmed by detailed calculations. The third rule is less robust than the 
other two: since it is determined by spin-orbit coupling, i.e. associated with internal 
magnetic fields (~ 10 T) within the atom caused by the orbital motion of the electrons, 
application of external fields of this order of magnitude can vitiate the rule. Other 
effects, too (e.g. crystal fields), can interfere with the operation of this rule, as will be 
seen later (§7.2.4.3). 

It would be logical to denote the electronic configuration of the Hund-rule ground 
state of an atom simply by the set of quantum numbers [J L S]. However, it is 
conventional, instead, to denote it by the spectroscopic term symbol, 2S+1 LJ, where, 
even more confusingly, the orbital angular momentum quantum number is denoted by a 
letter according to the prescription 

L = 0, 1, 2, 3, 4, 5 ... 

1 1 1 1 1 (7.164) 

S, P, D, F, G, H ... 

The operation of Hund's rules can be understood by reference to two examples, the 
two-f-electron rare-earth ion, Pr3+ and the six-d-electron transition-metal ion, Fe2+. 
For Pr3+, the two electrons will occupy in a spin-parallel fashion the two highest
lying orbital angular momentum levels corresponding to 1=3 and I 2 (Fig. 7.39a). 
Thus, 8 = 1 and L = 5, and since the shell is less than half-full, J = IL - SI = 4. Hence, 
the ground-state configuration of Pr3+ is [J L S] = [4 5 1] with term symbol 3H4. For 
the Fe2+ ion, five of the six electrons will singly occupy in a spin-parallel fashion each 
of the five d-Ievels, and the sixth electron will therefore occupy the highest I-state 
(l 2) in a spin-paired relationship to the other electron in the level (Fig. 7.39b). 
Thus, S = 2 and L = 2, and since the shell is more than half-filled, J (L + 8) 4. 
Therefore, the ground-state configuration of Fe2+ is [4 2 2] with term symbol 5D4. 
See Problem 7.19 and Tables 7.7 and 7.8 for the ground-state configurations of other 
transition-metal and rare-earth ions. 

7.2.4.2 Paramagnetism of a magnetic gas 

The magnetization of a collection of paramagnetic atoms or ions in a solid can be 
calculated readily assuming that there are no interactions between the magnetic 
moments, i.e. the material behaves as a magnetic gas. In fact, the magnetic dipole 
interaction between magnetic moments can generally be neglected in comparison with 
the much stronger exchange interactions resulting from Coulomb effects (§7.2.5.1), but 
for very dilute concentrations of magnetic species, the atomic magnetic moments can be 
assumed to act independently of each other. 

An external magnetic field, applied to a paramagnetic solid in the z-direction, lifts the 
(2J + I)-degeneracy of the J-states and introduces an equal splitting oflevels, in place of 
the energy level 'fI,J (eqn. (7.160)), given by (cf. the corresponding equation for electric 
dipoles, eqn. (7.37)): 

(7.165) 
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Electronic 
configuration 

3+ 2 
Pr 14f 

2+ 6 
Fe 13d 

Hund's rule S = 1/2 + 1/2 = 1 S = 1/2 + 1/2 + 1/2 + 1/2 + 1/2 -1/2 = 2 
1 

Hund's rule L = 3+2 = 5 
2 

Hund's rule J = IL - SI= 4 
3 

Ground - state [451], 3H4 
configuration 

(a) 

L=2+1 +0-1-2+2=2 

J=L+S=4 

5 
[422], D4 

(b) 

Fig.7.39 Illustration of the operation of Hund's rules for: (a) Pr3+; (b) Fe2+. 

with Jz = -J, ... ,0, ... J (see Fig. 7.40), and Bloc is the Jocal flux density at the magnetic 
moment (§7.2.2). If the atomic magnetic moments are in thermal equilibrium with the 
host lattice, the relative occupation of the energy levels given by eqn. (7.165) (cf. Fig. 
7.40) is determined by the Boltzmann factor exp( -gJ/-LBJzBloc/kBT). Therefore, the net 
magnetization for a concentration n of independent atomic moments is given by 

J 

I: -gJ/-LBJzexp( -gJ/-LBJzBloc/kBT) 

M J:=-J 
=n~---J--------------------- (7.166) 

I: exp(-gJ/-LBJzBloc/kBT) 
J:=-J 

Energy 
Jz shift 

4 --- 611B8 

3 --- 911B812 

1 --- 311B812 S = 2 
L=2 

o --- 0 Fe 2+ 9 = 3/2 

-1 --- -311B812 

-3 --- -911B812 

Fig. 7.40 Splitting of the ground-state degeneracy ofF e2+ ion~ by a magnetic field of flux density B. 

This expression can be rewritten in terms of the partition function Z for an atomic 
moment, 

J 

Z = L exp( -gJ/-LBJ=Bloc/kBT), 
J:=-J 

as 

M = _ nkBT2 (81nz) 
Bloc aT B' 

The partition function can be evaluated, since it is a geometric progression, as 

Z = eX (1 - e-(2J+I)x/l) sinh[(2J + 1)x/2J] 
(1 - e-x/J) sinh(x/2J) , 

where 

x = gJ/-LBJBloc/kBT. 

Hence, eqn. (7.168) can be rewritten as 

M = nkBT2 (81nz) (ax) 
Bloc ax aT B 

where the Brillouin function BJ(x) is given by 

(2J + 1) 
BJ(x) = -U-coth[(2J + 1)x/2J] 

1 
2J coth(x/2J). 

(7.167) 

(7.168) 

(7.169) 

(7.170) 

(7.171) 

(7.172) 



596 DIELECTRIC AND MAGNETIC PROPERTIES 

The Brillouin function increases linearly with x for s~all x, BJ(x).c:::. (J + l)xI3~, and 
hence the magnetization increases linearly with magnetIc flux densIty for small B. 

ng}J.L~J(J + l)Bloc (7.173) 
M= 3k

B
T . 

For small values of magnetic susceptibility, Xm, J.LoM.« B ~~d henc~ the d~ffe~ence 
between local and external flux densities, Bloc and Bex!' IS neghglble, as IS the dlffele~ce 

B B B and I/. H (cf eqn (781)) In any case, for the case of a sphencal between = ext c:::. loc ,...0 . ... . d' I B B (eqn 
sam Ie eometry and a cubic, or random, array of magnehc IpO es, !oc = ext.... 

(7 .9~) ). ~ence, from eqns. (7.83) and (7.173), the weak-field.paramagnetl~ susce~hbIhty 
of an assembly of independent atomic magnetic moments (l.e. a magnetlc gas) IS 

2 ? 
mg _ namJ.LOJ.LB 

Xm,p - 3k
B

T ' (7.174) 

where am is the magnetic moment expressed as the number of Bohr magnetons: 

am = J.Le:! IJ.LB = gJ[J(J + 1)]1/2. (7.175) 

This is the Curie law of paramagnetism, X~~p = CIT, with Curie constant 

? ') 

C = lW~J.LOJ.LB. 
3kB 

(7.176) 

Values of the parameter am for rare-earth ions, deduced from measu;ed values of 
the Curie constant and compared with the value expected from Bund s rules (eqn. 
(7.175» are given in Table 7.7, where good agreement is seen in general. The marked 

Table 7.7 Values of am = f-L~~ I f-LB for rare-earth ions de~uced from measured values of the Curie 
constant C (eqn. (7.176)) and compared with the theoretIcal value (eqn. (7.l75)) expected for the 
Hund's rule ground state 

Number 0/4/ Ground-state configuration a~eas acalc Ion m 
electrons [JLS] 2S+1 L; 

La3+ 0 [0 00] ISO 0 0 
[% 3 Ifl] 2Fs/2 2.4 2.54 Ce3+ 1 

3.5 3.58 Pr3+ 2 [4 5 1] 3H4 
[% 6 %] 41

9/2 3.5 3.62 Nd3+ 3 
2.68 Pm3+ 4 [4 62] sI4 

[% 5 %) 6Hs/2 1.5 0.84 Sm3+ 5 
3.4 0 Eu3+ 6 [0 3 3] 7Fo 

[7/2 0 7/2] SS7/2 8.0 7.94 Gd3+ 7 
9.5 9.72 Tb3+ 8 [6 3 3) 7F6 

[ IS/2 5 S/2] 6H IS/2 10.6 10.63 Dy3+ 9 
10.4 10.6 H03+ 10 [8 6 2] SIs 

[1%6 %] 4I IS/2 9.5 9.59 Er3+ 11 
7.3 7.57 Tm3+ 12 [6 5 1] 3H6 

[7/2 312] 2F7/2 4.5 4.54 Yb3+ 13 
0 0 La3+ 14 [ 0 00] ISO 

(After Kubo and Nagamiya (1968), Solid State Physics. Reproduced by permission of The McGraw-Hill 
Companies) 

Gd3+ 

A 2.00K 
x 3.00K 
III 4.21 K 

- Brillouin 
function 

Fig. 7.41 Magnetization data for Gd
3
+ ions in gadolinium sulphate octahydrate, Fe3+ ions in iron 

ammonium alum and Cr
3
+ ions in potassium chromium alum as a function of the quantity BIT. The 

solid curves are plots of the magnetization as a function of the Brillouin function B;(x) (eqn. 
(7.172)1 for ge = 2 and Jvalues oq (Gd

3
+), ~ (Fe3+), andi (Cr3+). The orbital angular momentum 

for Cr + is quenched by crystal-field effects so that J c:::. S with L c:::. O. (After Henry (1952). 
Reprinted with permission from Phys. Rev. 88, 559. © 1952. The American Physical Society) 

discrepancies between the experimental and theoretical values for Sm3+ and Eu3+ 
(J = 0 for the latter ion) can be understood in terms of low-lying levels characterized 
by different J-values within an energy c:::. kB T of the ground state. 

At large values of x or,' equivalently, of the ratio BIT (eqn. (7.170», the Brillouin 
function saturates at the value of unity. Thus, the paramagnetic magnetization also 
saturates, at the value 

(7.177) 
corresponding to all the ions being in the same Jz = -J state. Figure 7.41 shows 
magnetization data for one rare-earth and two transition-metal ions. It can be seen 
that the Brillouin function gives a good fit to the data. Note, however, that the value of 
am needed to fit the data for Cr3+ is not given by eqn. (7.175) in terms of J, but instead S 
must be used. Thus, L appears to be zero, or 'quenched'; this is a consequence of crystal
field effects (see the next section). 

7.2.4.3 Crystal-field effects 

It might be thought that the paramagnetic behaviour of transition-metal ions in solids 
would also be well described by the Brillouin function (eqns. (7.171), (7.172), as 



Table 7.8 Values of am J.L';!; / J.LB for transition-metal ions deduced from measured values of the 
Curie constant C (eqn. (7.176» and compared with the theoretical value (eqn. (7.175» expected 
for the Hund's rule ground state or if angular momentum is quenched 

Ion Number o/3d Ground-state configuration ameas aca1c 
m 

g;[J(J + 1)]1/2 electrons [JLS) 2S+1 L1 

I [%2 1/2 ] 203/2 1.8 1.55 1.73 
2 [2 3 1] 3F? 2.8 1.63 2.83 
3 [% 3 3;2] 4F;/z 3.8 0.77 3.87 

Cr3+ 3 [%3 %] 4F3/2 3.7 0.77 3.87 
cr2+ 4 [0 22] 500 4.8 0 4.90 
Mn4+ 3 C%3 %] 4F3/2 4.0 0.77 3.87 
Mn3+ 4 [() 2 2] 500 5.0 0 4.90 
Mn2+ 5 [% 0 5/2 ] 6S5/ 2 5.9 5.92 5.92 
Fe3+ 5 [%0 %] 6S5/2 5.9 5.92 5.92 
Fe2+ 6 [4 22] 504 5.4 6.70 4.90 
Co2+ 7 [%3 %] 4F9/2 4.8 6.54 3.87 
Ni2+ 8 [4 3 1] 3F4 3.2 5.59 2.83 
Cu2+ 9 [%2 'Iz ] 205/ 2 1.9 3.55 1.73 

(After Kubo and Nagamiya (1968), Solid State Physics. Reproduced by permission of The McGraw-Hill 
Companies) 

discussed in the previous section. However, this is found not to be the case: values of the 
parameter am = P,':!t / /lB found from experimentally measured values of the Curie c~n
stant (eqn. (7.176)) for transition-metal ion-containing materials disagree markedly with 
the values expected on the basis expected from the third of Hund's rules (Table 7.8). 
Instead of am being determined by J as in eqn. (7.175), much better agreement. is 
achieved if alternatively the net spin S is used (Table 7.8); it appears that L ~ 0, l.e. 
the angular momentum seems to be quenched. This is true for all the transit~on-metal 
ions; for the case of the 3d5 ions, Fe3+ and Mn2+, the net angular momentum IS already 
zero of course, because of Hund's first rule. 

This behaviour is the result of perturbations of the electronic wavefunction on a given 
ion by the electric fields (strictly, the electric-field gradients) due to the charges on 
surrounding ions. These inhomogeneous electric fields are known as crystal fields; 
they are not centro symmetric, but have only the symmetry of the site at which the ion 
is based. The crystal fields do not affect Hund's first two rules, but crystal-field effects 
can be comparable to the spin-orbit interaction, and so Hund's third rule is affected. If 
the crystal-field interaction is much larger than the spin-orbit coupling (as in tra~siti~n
metal ions), the latter interaction may be neglected, and so crystal-field effects gIVe nse 
to what becomes a new third rule. Of the (2S + 1)(2L + I)-degenerate set of levels 
resulting from the application of the first two Hund's rules, the crystal field will not 
affect the spin degeneracy, since this depends only on spatial variables and hence 
commutes with S. However, in a non-central field, the orbital angular momentum 
precesses, in a classical picture, and its component Lz can average to zero even though 
the magnitude (L(L + 1)) remains unchanged. Thus, when Lz averages to zero, the 
angular momentum, and hence also the magnetic moment /l~ (eqn. (7.151)), is 
quenched. . 

Alternatively, the influence of crystal fields can be understood ill terms of a Stark 
(electric-field-induced) splitting of the otherwise (2L + 1 )-degenerate levels (see 

EB EB EB r------ Px.Py 

xiy x*y *: 
Fig. 7.42 Illustration of the quenching of orbital angular momentum by crystal fields. In an 
isolated atom, the three p-orbitals (l = 1) characterized by m, = 0, ±1, are degenerate in energy. 
In a crystal field, here represented by a uniaxial electric field caused by two neighbouring ions in 
the z-direction, the pz orbital has a lower energy than the Px' Py orbitals (which remain degen
erate). 

Fig. 7.42). For strong crystal fields, the energy difference between such Stark-split states 
will be larger than gJ/lBB, the Zeeman magnetic-field-induced splitting; hence the states 
will be unaffected by the external magnetic field, and cannot contribute to the magnetic 
susceptibility. 

Why transition-metal, rather than rare-earth, ions should be particularly susceptible 
to crystal-field effects can be seen from the following argument. Consider a cubic crystal 
(e.g. with the NaCI structure), in which six charges surround a central ion, at a distance 
d, with Oh(m3m) point symmetry. For one of the charges, say at x = -d, Y Z = 0, the 
electrostatic potential near the origin is V = q / 41fEo [( d + x) 2 + y2 + z2]1 /2, which can be 
expanded as V ~ q[l (x/d) +" .. . J/47rcod. The leading term is thus V = 6q/47rcod, but 
this is centro symmetric and hence will not contribute to the crystal field. The first non
centrosymrnetric, crystal-field contribution is 

35q [4 4 4 
. Vcr = 161fEod5 x + y + Z 

3 4 Sr ] . 

Hence, the contribution of this to the crystal-field splitting will be 

(7.178) 

(7.179) 

The essential differences of relevance here between rare-earth and transltlon
metal ions are in the overall ion size (d) and in the spatial extent of the 4f-and 
3d-electron shells: thus, d4f > d3d , and the expectation value (r4) over the respective 
wavefunctions gives (rlr) < (rjd)' since the 4f-electrons lie deep within the rare-earth 
ion (beneath filled 5s and 5p shells) but the 3d-electrons form the outermost 
electron shell of transition-metal ions. Consequently, the effect of crystal fields, i.e. 
angular-momentum quenching, is expected to be much greater for transition-metal 
ions than for rare-earth ions. Furthermore, spin-orbit coupling is expected to be 
weaker for 3d-electrons than for 4f-electrons because >'50 ex: (r- 3) (§7.2.4.1), making 
the relative influence of crystal-field effects over spin-orbit coupling even larger for 
3d-electrons. 



*7.2.4.4 Van Vleck paramagnetism 

Ions that have one electron less than is necessary to half-fill a shell have J = 0 (e.g. Cr
2
+, 

Mn3+ -see Table 7.8, or Eu3+ -see Table 7.7) and hence it would be expected that 
consequently they would have no magnetic moment (cf. egn. (7.161». Although this is 
true for the ground state, 10 >, mixing with a low-lying excited state 11 >, at an energy 
b. = ~I - ~o above the ground state, can produce a moment. This is known as Van 
Vleck paramagnetism. 

The susceptibility can be calculated by considering the kinetic part of the electron 
Hamiltonian in the presence of a magnetic field (egn. (7.122», but including also the 
contribution of the total intrinsic electron spin of the ion, S. Thus, retaining only the 
field-dependent terms: 

(7.180) 

In order to calculate the magnetic susceptibility, the energy ~ in the magnetic field must 
be evaluated keeping terms quadratic in the field (since Xm = 8M/8H (egn. (7.83» and 
M = -8(~/V)/8B (egn. (7.74))). Thus, the effect of the field on the energy must be 
calculated by second-order perturbation theory, giving a shift b.~o in the position of the 
energy level from ~o to ~o + b.~o, where 

(7.181) 

The second term should really be a summation over all excited states, but for simplicity 
we consider here only a single level above the ground state. Thus, the perturbation in 
energy can be written, on substituting eqn. (7.180) into (7.181), as 

b.~ - B (OIL+uSIO) + I(OI/-LBBext . (L+geS)11)1
2 

o - /-LB ext· oe ~o - ~ I 
., (7.182) 

e- 2 ( "'(., 2) I ) +-8 -Bext 01 L.,. XI + Yi O. 
me i 

The last term in egn. (7.182) is just the diamagnetic contribution (§7 .2.3.1) and will be 
neglected henceforth. The paramagnetic susceptibility for a collection of n ions per unit 
volume is 

82~ 
Xm,p = -n/-Lo 8B2 . (7.183) 

The first term in eqn. (7.182) (cf. the first tenn in egn. (7.123» is only a linear function of 
B, and hence does not contribute to the susceptibility; only the second term in eqn. 
(7.182) gives the Van Vleck paramagnetic susceptibility: 

vv _ 2 2 I(OIL= + geS=11)1
2 

Xm,p - /-Lo/-LB ~I - ~o 
(7.184) 

Note that, in contrast to the Curie paramagnetic susceptibility for a set of ions (eqn. 
(7.174», the Van Vleck susceptibility is temperature-independent. 
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7.2.4.5 Paramagnetism of normal metals 

Thus far, we have discussed atomic paramagnetic behaviour ansmg mostly from 
unpaired electrons in ions. However, because of their intrinsic spin, unpaired conduc
tion electrons in a (normal) metal can also contribute to the paramagnetic response of a 
material. If the electrons were distinguishable particles, governed by (classical) Boltz
mann statistics, use of the Curie expression (egn. (7.174) ) for the paramagnetic suscept
ibility, with J = S 1/2 and gJ = ge ~ 2, would predict that for a concentration, n, of 
free electrons: 

., 
n/-Lo/-Lp, 

Xm,p = kBT . (7.185) 

However, this Curie-law behaviour of conduction electrons is not observed· the 
observed paramagnetic susceptibility of conduction electrons is temperature-inde~end
ent. The reason, of course, is that electrons are indistinguishable particles and obey 
Fermi-Dirac statistics (egn. (5.23». In particular, the Pauli exclusion principle is 
obeyed, which greatly reduces the number of electrons able to reverse their spin in 
response to an external magnetic field, since most orbitals will already be occupied by 
electrons having the same spin orientation. Thus, as for the case of the electronic heat 
capacity (§5.1.3.1), for example, it is only those electrons within an energy range of the 
order of kB T of the Fermi level that are able to be excited and can reverse their spin in 
an external magnetic field, and hence can contribute to .the paramagnetic susceptibility. 
Therefore, it is expected that the Curie susceptibility, egn. (7.185), will be reduced by a 
factor of (T /TF), making it much smaller than the classical prediction, and also 
temperature-independent, as observed. 

An expression for the paramagnetism of conduction electrons can be calculated by 
reference to electron occupations relating to the density of states shown in Fig. 7.43 
(assumed there to be parabolic, i.e. free-electron-like, for simplicity). The density of 
states for electrons in an external magnetic field B can be viewed as being split into two 
parts: one part is for electrons that have their spin parallel to B, and consequently that 
have their energies lowered by an amount ~B = -gJ/-LBJ=Bloc (egn, (7.165», or 
~B -/-LBB, taking gJ = ge = 2 and J = S = 1/2 for electrons, and assuming that 
B ext = Bloc = B. Likewise, electrons with their spins antiparallel to B have their energies 
raised by ~B /-LBB. Figure 7.43 shows the two density-of-states distributions 'back-to
back', with their zeros shifted relatively in energy by 2/-LBB. The Fermi level in the two 
distributions must be the same, and is unaffected by the magnetic field; it is only the 
relative number of electron spins with orientations parallel and antipa·rallel to B that is 
different in the two cases. 

Neglecting thermal-excitation effects, i.e. at T = 0 K where the Fermi-Dirac function 
f(~) is unity for ~ :S ~F, the concentration 11+ of electrons with their spins parallel to B 
is given by an integral over the appropriate energy-shifted density of states: 

(7.186) 

where it has been assumed that /-LBB < ~F. Similarly, the concentration n_ of electrons 
with spins antiparallel to B is given by 
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t 

1/2 D('~) 

Antiparallel 
toB 

1/2 D(cg) 

Fig. 7.43 Illustration of the origin of Pauli paramagnetism of conduction el~ctrons regarded, for 
simplicity, as a free-electron gas. The parabolic density of electron states In the presence of a 
magnetic field, B, splits into two, and is shifted in energy by ±/kBB with ~espect t? the field-free 
curve. Here the split distributions are placed back-to-back for purposes oflllustratlOn. The excess 
moments parallel to B correspond to the shaded area, corresponding to an average density-of
states value ~ ~ D(<gF) and energy interval ~/kBB. 

11'£F 11'£F 1 
11- = - D(~ - j.tBB)d~ ~ - D(~)d~ - -2j.tBBD(~F). 

2 J.LsB 2 0 

(7.187) 

The net magnetization of the electron gas is given by M = j.tB (n+ - n_) and so 

(7.188) 

For a free-electron gas, D(~F) =3n/2~F = 3n/2kBTF (cf. eqn. (5.16» and hence the 
Pauli paramagnetic susceptibility for free electrons is given by 

fe 3nj.toj.t~ 
Xm,p = 2kBTF ' 

(7.189) 

where it has been assumed that B ext ~ Bmac j.toH mac since the susceptibility is so small. 
Comparison of eqn. (7.189) with the expression (eqn. (7.185» resulting from the 
application of classical statistics shows that indeed the latter is multiplied by a factor 
of order (T /TF). Note also that the magnitude of the Pauli paramagnetic susceptibility 
is exactly three times that of the Landau diamagnetic susceptibility (eqn. (7.129». 

For a real crystal containing unpaired conduction electrons, e.g. a normal metal or a 
highly doped extrinsic semiconductor, the electron mass me that appears in the numera
tor of the expression for the free-electron density of states (eqn. (5.15» must be replaced 
by the effective mass m; arising from band-structure effects (§6.2.1). Thus, the Pauli 
susceptibility for a crystal becomes 
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xcr = 3nj.toj.t~ (m;) (7.190) 
m,p 2kBTF me . 

Hence, the total (paramagnetic plus dia,.magnetic) susceptibility of conduction electrons 
in a crystal is given by the sum of eqns. (7:131) and (7.190) (making use of the relation 
D(~F) = 3n/2~F (eqn. (5.16»): 

X~ "O,,~D(~F) [1 - H:;)'J (7.191) 

For those semiconductors and metals (notably Bi) for which m; ~ me, the diamagnetic 
contribution can dominate the paramagnetic term. 

7.2.5 Spontaneous magnetization 

For diamagnetic and paramagnetic materials, a net magnetization in a sample only 
occurs on the application of an external magnetic field. The permanent magnetic dipole 
moments that exist in paramagnetic materials were assumed in §7.2.4.2 not to interact 
with one another, e.g. as a result of dilution (ideal magnetic gas). In any case, if the 
temperature is such that the thermal energy kB T is greater than any interaction energy 
between magnetic moments, the paramagnetic state will be favoured as a result of the 
randomizing influence of thermal fluctuations. . 

At low temperatures (compared to that corresponding to the interaction energy), 
however, a cooperative ordering of magnetic moments in a solid is expected, as for 
electrical dipoles (§7.1.5). Thus, ferromagnetic ordering occurs when the inter-moment 
interaction is such as to ensure that all magnetic moments are parallel to one another; 
hence, they all. contribute equally to the overall spontaneous magnetization present even 
in zero field (cf. ferroelectric ordering-§7.1.5.3). Also, by analogy with the correspond
ing electrical case, antiferromagnetic order occurs when the interaction produces an 
antiparallel arrangement or the moments and gives zero net magnetization. Ferrimag
netic ordering falls in between the above two categories: antiparallel moments do not 
cancel entirely, resulting in a (small) spontaneous magnetization. 

It might be thought at first that magnetic dipolar interactions between magnetic 
moments might be responsible for magnetic ordering (ferromagnetism, antiferromag
netism, etc.). However, this interaction is far too weak at any but very low temperatures 
to overcome thermal-disordering effects and hence is unable to caus~ an ordering of 
magnetic moments (see Problem 7.23). The interaction that is responsible instead is the 
exchange interaction which is effectively a spin-dependent Coulombic interaction. 

7.2.5.1 The exchange interaction 

The Pauli exclusion principle exerts a powerful influence on the energetics of a collection 
of electrons through their relative intrinsic spin orientations. Two electrons with parallel 
spins are not permitted to occupy the same region of space, and thus tend to keep apart. 
As a result, the Coulombic repUlsion energy between pairs of electrons with a parallel 
spin configuration is lower than for pairs of electrons with antiparalle1 spins: in this 



case, ferromagnetic (parallel) spin ordering is favoured. This difference in Coulombic 
energies for different spin configurations is the exchange-interaction en~rgy. . 

Fermions, such as electrons, are indistinguishable particles charactenzed by FermI
Dirac statistics, underlying which is the assertion that the wavefunction of two electro?s 
must be antisymmetric under interchange of the particles, i.e. interchange of both spatIal 
(I') and spin (a) coordinates. Thus, for two electrons with coordinates rl, al; 1'2, a2: 

w(rl,al;r2,a2) = -w(r2,a2;YJ,al)' (7.192) 

This is simply a mathematical restatement of the Pauli exclusion principle since the 
wavefunction vanishes, and hence there is zero probability of finding two electrons at 
the same place with the same spins, when '"J = r2 and al = a2· 

The two-electron wavefunctions (w) for a system of two electrons (e.g. in a hydrogen 
molecule)'can be written as the product of orbital wavefunctions ¢(r) and spin functions 
(spinors) 'T](a). Assuming that electron 1 can occupy a (non-degenerate) orbital a with 
wavefunction ¢a and electron 2 can occupy an orbital b with wavefunction cPb, then a 
particular symmetric combination of the spatial variables alone is 

(7.193) 

This combination represents the Heitler-London approximation for the H2 molecule 
(see Problem 7.24(a)). A corresponding antisymmetric spatial combination is 

(7.194) 

However these two functions do not include the spin variables. If there is an up-spin at 
a site, 'T](~) = a, and if the spin is down, 'T](a) = (3. Hence there are also antisymmetric 
and symmetric combinations of the spin variables: 

Bas = a(1)(3(2) - a(2)(3(I) (7.195) 

and 
BS = a(l)a(2) (7.196a) 

or 
= (3( 1 )(3(2) (7.196b) 

or 

= a(I)(3(2) + a(2)(3(1). (7.l96c) 

The antisymmetric combination (eqn. (7.195)) corresponds to a spin-paired state, i.e. a 
singlet state; the symmetric combinations (eqns. (7.196» refer to parallel-spin states, i.e. 
a triplet state (triply degenerate in the absence of spin-orbit coupling). . 

For the overall wavefunction W to be antisymmetric under interchange of partIcles (or 
{r,a}), a symmetric spatial combination (eqn. (7.193» must be coupled with an anti
symmetric (singlet) spin combination (eqn. (7.195», or vice versa. For example, for an 
up-spin at both sites (a triplet configuration), the total two-electron wavefunction is 

(neglecting normalization constants): 

WI = <pasBs 

= [¢a(l)¢b(2) - ¢(/(2)¢b(I)]a(1)a(2). (7.197) 

I 
I 
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This can be written more succinctly as a Slater determinant: 

WI = I ¢a(1),a(l) ¢a(2)a(2) I 
¢LJ(l)~(1) ¢b(2)a(2)' 

In general, for N electrons at N positions, rl, ... rN, the Slat~r determinant is 
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(7.198) 

(7.199) 

wh~re ¢i(qi) is the (orthogonal) wavefunction for the ith electron with spatial and spin 
van abies qi {ri; ai}. The Slater determinant satisfies the conditions of the Pauli 
exclusion p~inciple: exchange of any two electrons is equivalent to the exchange of the 
correspondmg columns of the determinant and hence gives, by the property of determin
ants, ~ change in sign of w; if any two electrons i and j have the same spatial and spin 
coordmates, qi qj' two columns of the determinant are identical and W is zero. 

Equations (7.197) and (7.198) represent one wavefunction of the triplet state. Another 
~'ep~esentation, W2, is for there instead to be a down-spin at both sites, in which case BS 

IS gIven by eqn. (7.l96b) and aU) is replaced by (3U) in the Slater determinant (eqn. 
(7.l98». !he other two wavefunctions, one for the singlet state and the remaining one 
for the tnplet state, can be constructed from product wavefunctions in which there is an 
up-spin on site 1 and a down-spin on site 2, and vice .versa. Thus, in the former case: 

(7.200) 

and <P2 for the latter case is obtained by exchanging a and (3 in eqn. (7.200). Then, 
orthogonal (unnormalized) wavefunctions can be obtained from <PI and <P2 as the triplet 
wavefunction: 

(7.201) 

and the singlet wavefunction: 

(7.202) 

I~ can be verified that eqns. (7.201) and (7.202) correspond to the spin combinations B 
gIven by eqns. (7.196c) and (7.195), respectively. 

Returning now to t~e pr?blem of the H2 molecule with protons a and b at Ra and Rb, 
the two-electron Hamlltoman for electrons 1 and 2 can be written as 

(7.203a) 

(7.203b) 

where the first two terms are those for isolated hydrogen atoms with electron 1 
associated with proton a and electron 2 with proton b, and the quantities in the third 
term respectively refer to inter-proton repulsion (Rab = IRa - Rbj), inter-electron 
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repulsion (1'12 = 11'1 - 1'21) and the other two terms are attractive interactions between an 
electron and the other proton from that considered in the first two terms. (It is assumed 
that the proton mass is infinite so that proton motion is non-existent, and hence there is 
no corresponding kinetic-energy term.) The one-particle contributions, .1t'1 and .1t'2, to 
the Hamiltonian have eigenfunctions <Pa(1) and <Pb(2) respectively, with eigenenergy ~o: 

(7 .. 204) 

The overall Hamiltonian can be diagonalized by using the symmetric and antisym
metric real-space functions given by eqns. (7.193) and (7.194). A variational calculation 
(see Problem 7.24(b» gives for the two eigenvalues 

C±A 
~± = 2~o + 1 ± B2 

(7.205) 

where the positive sign refers to the spatially symmetric (i.e. spin-singlet) solution and 
the negative sign gives the spatially antisymmetric (spin-triplet) solution. The quantities 
C, B and A are given respectively by the Coulomb integral 

(7.206) 

which is the net normal Coulomb energy between charge densities -el<pa(1)1
2 

and 
-el<pb(2)12 separated by various distances, the overlap integrals between orbitals on 

different sites are 

(7.207) 

and finally the exchange integral is 

A = ~J (_1 + ~ - ~ - ~)<p~(I)<pa(2)<Pb(I)<Pb(2)dl·ldI'2. 
47f1::o Rab r12 ral rb2 

(7.208) 

The exchange term is a purely quantum-mechanical effect and has no classical counter
part. The reason for its name can be understood by comparing eqns. (7.206) and (7.208). 
The triplet-singlet energy splitting is therefore from eqn. (7.205) 

(7.209) 

where ~t == ~- and ~s == <g+. 
Considering for the moment the case of different orbitals in the same atom, eqn. 

(7.209) can be used, but with the overlap term B taken to be.zero (the atomic orbitals are 
orthogonal to each other), in which case 

(7.210) 

where Jf is the exchange constant (or parameter). Since, in this case, A is simply the self
energy of the charge distribution -e<p~<Pb, the exchange constant is a positive quantity, 
and the triplet configuration has the lower energy. This is the origin of Hund's first rule 

(§7.2.4.1). 

* 

Returning to the case of the H2 molecule, it can be seen from eqn. (7.209) that 
whether th~ tri?let or the singlet spin configurati~n ~as the lower energy depends on 
whether A IS bIgger or smaller than the term CB-, smce now the overlap is non-zero 
(eqn. (7.2~7». In fact, it is found thc:j.t t~e singlet configuration has the lower energy. 
Th~ effectlve ex~han~e constant Jf 2(A - CB2)/(1 -]34) is negative in this case; i.e. 
antlferromagnetlc spm ordering is favoured. ' 

Thus far, we have considered the exchange interaction between electrons localized on 
atoms (as in ions) or in bonds (as in molecules). The exchange interaction between free 
electrons, as a model for a metal, can also be evaluated; it is positive, and therefore there 
is a cor~elation b~tween like electron spins. Consider two electrons, i and j, with the 
same spm, for WhICh the anti symmetrized real-space two-electron wavefunction can be 
written as 

(7.211a) 

(7.21lb) 

The probability of finding electron i in volume element drj and electronj in dl'j is 

2 1 IWijl dl'jdrj = V 2 [1 - cos(k; - kj ). (1'; - I'j)]dl';drj. (7.212) 

Note that this probability is zero for two electrons with the same spin when 1'; = rj for all 
k j and kj . As a consequence, electrons with the same spin as a particular electron cannot 
effectively screen it locally from the positive charges of the ion cores; as a result, the 
en~rgy of electrons wit~ parall~l spins is lowered. The probability of finding a second 
spm-up electron at a dIstance I' = 1'; - rj from a given spin-up electron in a volume 
element dr is 

(7.213) 

where nr = n12, i.e. half-the total electron concentration n, and the angular brackets 
denote an averaging process to be made over the Fermi surface. The quantity pex(r), the 
exchange (or Hartree-Fock) electron density, can be written as 

lX(r) =~{1 1 Jdk.Jdk-(ei(k'-kj).r +e-i(ki-kj).r)/2} 
2 (47fk~/3)2 I J 

en {I - 1 J eik/. r dk· J eikj'l'dk-} (7.214) 
2 (47fk~/3)2 I :J , 

and evaluation of the integral over the Fermi sphere gives (see e.g. Madelung (1978»: 

lX(r) = en {I 9 (sinkFr kFrCOSkFr)2}. (7.215) 
(kFr)6 

The total charge density experienced by a given electron is given by the sum of the 
exchange charge density given by eqn. (2.115) for electrons of the same spin and 



the (homogeneous) charge density en/2 for electrons of the opposite spin (for which the 
Pauli exclusion principle is not applicable, and hence exchange is not appropriate), i.e. 

t t {9(SinkF r - kFrCOSkFr)2} (7.216) 
pO (r) = en 1 - 6 . 

2(kFr) 

This distribution has been plotted in Fig. 2.45 and represents the exchange hole (see 
§§2.5.3.4 and 5.1.3.2). The corresponding exchange (Hartree-Fock) energy is given by 
eqns. (5.37) and (5.38) (see e.g. Madelung (1978) for a derivation). . * 

Although exchange is a well-defined concept in the case of two electrons, as dIscussed 
above, its extension to many-electron systems can be somewhat problematic. The use of 
non-orthogonal orbitals leads to divergences in the solution of the Schrodinger equa
tion, a circumstance that can be avoided by using orthogonalized tight-binding orbitals, 
e.g. Wannier wavefunctions (eqn. (5.93». 

Normally, the exchange interaction is very short-ranged, essentially confined to 
electrons in orbitals either on the same atom or on nearest-neighbour atoms where 
there is appreciable overlap (in the case of a non-orthogonal wavefunction representa
tion). This is known as direct exchange. In this case, the exchange interaction can be 
expressed in terms of the spins S I and S 2 of two electrons on neighbouring atoms as the 
Heisenberg exchange Hamiltonian: 

(7.217a) 

(7.217b) 

where in the latter equation use has been made of the fact that the eigenvalue of the 
operator S2 is S(S + 1) and it has been assumed that SI = S2 = t· (Note, however, that 
the accepted convention in ferromagnetism is to use S in general to represent the total 
angular momentum of an electron in an atom, even though this quantity is usually 
denoted elsewhere by J (see e.g. §7.2.4.l).) Note also that in many texts the Heisenberg 
exchange energy is written with a factor of two multiplying the exchange constant in 
eqn. (7.217a). For the Heitler-London model of the H2 molecule, the singlet state 
(S 1 = t, S2 = - t) has an energy + i 112 from eqn. (~.217b), :v~ile ~he triplet state, e.g. 
SI = ~, S2 = t) has the energy - i112; the singlet-trIplet sphttmg IS therefore 112 and 
hence: from egn. (7.209),112 = -2( eB2 A)/(1 -]34) in this case. 

Exchange interactions can be effective over larger distances than those for which 
direct exchange is operative, however. One mechanism that produces such an effect is 
superexchange, the effective exchange coupling of magnetic cations in an insulating 
solid via an intervening non-magnetic anion when there is extensive orbital overlap 
(mixing) between cations and anions. An excited state can be produced wherein an 
electron from an anion orbital 'hops' to a non-orthogonal cation orbital (satisfying 
Hund's rules in so doing) and the other anion electron can couple ferromagnetic ally to 
another cation if the two orbitals involved are orthogonal, and antiferromagnetically 
otherwise. A perturbation calculation of the total energy, involving such excited states 
and the ground state, allows the effective exchange interaction to be obtained. An 
example is the case of MnF2, in which Mn2+ ions effectively couple antiferromagnet-

I 
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Fig.7.44 (a) Energy levels and wavefunctions of d-electrons in a cubic crystal field, e.g. for Mn4+ 
in CaMn03. The three d-electrons in Mn4+ occupy the three tZg states in a spin-parallel fashion 
because of Hund's first rule. (b) Illustration of the superexchange interaction between Mn4+ d
orbitals and an OZ-Pu orbital. Hopping of an up-srin electron from 0 2- can only occur to a non
o~thogonal dx2_y l o.rbital in the eg stat.es on an Mn + ion having up-spin electrons in the t2g states; 
dIrect ferromagnetIc exchange couplmg then occurs between the remaining down-spin 02-Pa 
electron and the three tZg electrons m orthogonal d.\-y, dy:, d:x orbitals on another Mn4+ ion. 

ically through intervening collinear F- ions; other transition~metal fluorides, such as 
FeF2 and CoF2, behave in the same way. 

Oxide materials containing magnetic ions can also exhibit superexchange (see Cox 
1992). An example is CaMn03 which is antiferromagnetic because of superexchange 
between Mn4+ ions via collinear oxygen ions. The large cubic crystal field experienced 
by Mn4+ ions causes the five-fold degenerate d-states to split into a three-fold degen
erate state (t2g) and a two-fold degenerate state (eg); see Fig. 7.44a. The three d
electrons in an Mn4+ ion then occupy each of the three t2g states in a spin-pm'allel 

Iconfiguration as a result of residual intraionic Coulomb interactions causing Hund's 
first rule to be obeyed. Superexchange involves the Pa(P . .,J orbitals of intervening 0 2-
ions which are orthogonal to all but the dx~_y~ orbitals of the eg set on the Mn4+ ions. 
Thus, an up-spin electron in a Pa02- orbital can transfer to a neighbouring Mn4+ ion 
also having up-spin electrons in the t2g states by hopping to a dxLy2 orbital in the eg 
states, thereby satisfying Hund's first rule. The remaining down-spin electron on the 
02-p=-orbital must couple ferromagnetically to the three electrons in t2g states on an 
Mn4+ ion on the other side of the 0 2- ion because such orbitals are mutually orthogo
nal. The result is an overall antiferromagnetic coupling between Mn4+ ions (Fig. 7.44b). 

Although superexchange interactions result in an overall effective antiferromagnetic 
coupling in the case of collinear arrangements of magnetic and non-magnetic ions (Fig. 
7 .44b), ferromagnetic coupling can result for linkages in which tile intervening non
magnetic anion sub tends an angle of 90°, and where an electron on one magnetic cation 
interacts with a different orbital on the anion than does an electron on the other cation. 
Such structural configurations are more commonly found in layer-like halide crystals 
than in oxides. The origin of this ferromagnetic coupling is illustrated pictorially in Fig. 
7.45. The ground-state configuration (Fig. 7.45a) mixes with the excited-state config
uration shown in Fig. 7.45b. This particular configuration, with parallel electron spins 
in different orbitals on the anion, has a lower energy than that with antiparallel spins on 

___ the anion (Fig. 7.45c), which would result from an antiferromagnetic ground-state 
arrangement of spins on the magnetic ions, because the exchange interaction is ferro
magnetic for orbitals that are orthogonal (as are the two orbitals on the same anion). 
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Fig.7.45 Illustration of the origin offerromagnetic ~o:xpling between ~wo m~gnet.ic ions, M, via 
superexchange involving an intervening non-magnetic IOn (e.g. the oXIde amon) m a s~ructural 
configuration where the angle subtended at the anion is 90~. (~) Ground-s~ate configuratIOn, v.:ith 
ferromagnetic ordering of the electron spins on ~he magn~tlc IOns. (b) Excl~ed-state con~guratIOn 
resulting from (a). (c) Excited-state configuratIOn resultmg from an anbferromagnetlc ground 
state (not shown); this excited state has a higher energy than (b). 

Exchange interactions can also effectively exist between magnetic atoms at distances 
greater than that at which direct exchange becomes inoperative by the mediation of 
conduction electrons; this, then, is the metallic equivalent of the superexchange mechan
ism operative in magnetic insulators, and is responsible for the magnetic behaviour of 
rare-earth metals where the 4f ion cores are too spatially localized to participate in 
direct-exchange interactions. This mechanism is termed indirect exchange, or the 
RKKY (Ruderman-Kittel-Kasuya-Yosida) interaction. -

An electron spin Sj on a magnetic atom polarizes the conduction electrons in its 
vicinity. The response of the electron gas is determined by the susceptibility X~,d(q) 
(7.132), and the spatial variation of the conduction-electron spin density, s(r) (that 
appears in the Heisenberg exchange Hamiltonian, eqn. (7.217a» is given by the Fo~rier 
transform of the susceptibility. This has the same functional form as the Fnedel 
oscillations (eqn. (5.159) and Fig. 5.61) resulting from the Lindhard screening of a 
test charge by an electron gas. A second, distant magnetic atom,j, will then interact with 
the spin Sj indirectly via the polarized electron gas, and the sign of this exchange 
interaction will depend on whether the position of atom j coincides with a peak or a 
trough in s(r). 

7.2.5.2 Ferromagnetism due to localized moments 

Ferromagnetism in materials where spatially localized, rather than delocalized, elec
trons are responsible for the magnetic moments to be coupled can be understood via the 
Heisenberg Hamiltonian (eqn. (7.217a» if it is assumed that the couplings between an 
assembly of spins in a solid can be treated in a pairwise manner: 

(7.218) 

In general, this expression is very difficult to analyse because of the product of the spin 
operators. 

. Prog~ess can be made, h.owever, in a mean-field approximation where the exchange 
mteractlOn between one spm Sj and another spin Sj can be approximated by replacing 
Sj by the average value (Sj). Thus, substituting 

(7.219) 

into eqn. (7.218) gives 

J't'Heis = ~'2:2:3fij(Sj) 'Sj 
1 } 

'" ;;=( ~31ij )s;. (S), (7.220) 

where the .factor of t introduced to correct for double counting is omitted if j runs over 
nearest neIgh?ours of i. For an assembly of spins, with a concentration n, each of which 
has a magnetlc moment (cf. eqn. (7.161» 

J.Lm,i = -gJJ.LBSj (7.221) 

(recall that, in the present context, S is being used for the total angular momentum 
rather than J), the magnetization is given by 

M = -ngJJ.LB(S), . (7.222) 

where gJ is t~e Lande g-factor (eqn. (7.163» and J.Ls is the Bohr magnet on (eqn. 
(7.130». Defimng the dimensionless Weiss constant AII'(» 1) as 

A _ ~Hj3fij 
w - nJ.Log3J.L~' 

means that eqn. (7.220) for the Heisenberg Hamiltonian can be rewritten as: 

Jf"Heis ~ - L AwJ.LOJ.Lm,i' M. 
i 

(7.223) 

(7.224) 

This mean-field approximation is the origin of the fictitious internal or Weiss mole
cul~r field BII' ~ AII'J.LoM o:iginally p!-,oposed by Weiss to explain ferromagnetism, in 
whIch th~ effective magnetlc field actmg on a magnetic moment was taken to have the 
flux denSIty 

Beff = Bloc + AwJ.LoM. (7.225) 

Sinc~ the ~amiltonian for a magnetic moment J.Lm experiencing a magnetic field of flux 
~ensity B IS Jf" = -J.Lm· B (cf. eqn. (7.165», use of eqn. (7.225) for the flux density gives 
nse to the molecular-field term of the same form as in eqn. (7.224). 

The ~ean-~eld approxi~ation, leading to the effective field given by eqn. (7.225), 
greatly SImplIfies the solutlOn of the problem. The eigenvalues are given by (cf eqn 
(7.165» . . 

/ 

(7.226) 



for spins taken to be S = J = ~ (i.e. L = 0) and with gJ = ge :::= 2. The net magnetization 
is proportional to the difference in the spin densities parallel (n1) and antiparallel (nl) to 

the effective field, i.e. 

1 
M = i ge /LB(n1 - 111) 

:::= n/LBtanh(ge/LBBefr/2kBT), (7.227) 

where, in thermal equilibrium, 

1111n1 = exp(-ge/LBBefr/kBT). (7.228) 

Equation (7.227) can also be obtained from the Brillouin function (eqn. (7.172)) for 

J-l 
E~~ation (7.227) has non-zero solutions for the magnetization even in the absence of 

an external magnetic field, i.e. it predicts a spontaneous magnetization at temperatures 
lower than a critical temperature, the Curie-Weiss temperature, (Jew, given by 

(Jew = (~3Tij)/4kB' 
Hi 

(7.229) 

Unfortunately, except near T = 0 K, eqn. (7.227) for the magnetization, with the 
effective flux density given by eqn. (7.225), cannot be solved analytically, although a 
graphical solution is possible. These expressions can be rewritten respectively in dimen-

sionless form as 

y = tanhx (7.230a) 

and 
(Jew x = T Y (7.230b) 

using the dimensionless quantities y = Mln/LB and x = /LBBerrlkBT. It has been 
assumed in obtaining eqn. (7.230b) that the external magnetic flux density, Bex(, is 
zero and that the remaining contribution to Bloc of order /LoM (eqns. (7.102), (7.106)) 
is negligible compared with the quantity Aw/LoM (A is typically of order 10

3
), so that 

Berr:::= Aw/LoM . A simultaneous solution of eqns. (7.230) can be obtained by plotting 
both functions on the same graph and looking for intersections between the two curves. 
As seen from Fig. 7.46, a non-zero spontaneous magnetization, characteristic of ferro
magnetic ordering, appears in zero applied magnetic field only for T < (Jew (see 
Problem 7.25). Near T = 0 K, x is large and' y = tanhx:::= 1 2exp(-2x) = 
1 - 2exp(-2y(JcwIT). Thus: 

M:::= n/LB[I- 2exp(-2(JewIT}], (7.231) 

where the approximation y = 1 has been used in the exponent. However, this exponen
tial temperature dependence is not observed experimentally (see §7.2.5.4). For tempera
tures just below (Jew, x is small and y = tanhx:::= x - x3/3. Hence, solving for 

y = Tx 1 (Jew gives 

T ( T ) 1/2 
M:::=V3n/LB- 1--

(Jew (Jew 
(7.232) 
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o 

Fig. 7.46 Graphical solution of eqns. (7.230) for the existence of spontaneous ferromagnetism in 
the mean-field (Weiss) model. 

Note that this parabolic temperature dependence is the same as that predicted by the 
Landau free-energy model for the second-order transition inferroelectrics (eqn. (7.68)). 
T?e temperature dependence of the spontaneous magnetization of a ferromagnet pre
dIcted by mean-field theory is shown in Fig. 7.47, compared with experimental data for Ni. 

As seen from Fig. 7.46, there is no spontaneous magnetization above the Curie-Weiss 
temperature, (J~w; thermal fluctuations destroy the cooperative ferromagnetic ordering, 
~n~ the materIal reverts to the paramagnetic state (§7.2.4.2). In the high-temperature 
hmIt, /LBBerr/kBT« 1, tanh x:::= x, and the expression for the magnetization (eqn. 
(7.227)) becomes 

M(T) 
M(O) 

°O~----~O~.5~-----1~.O~--T-le-
" ON 

Fig. 7.47 Tempe~atur~ depen.de~ce of the spontaneous magnetization of a ferromagnet in the 
mean-field apprOXImatIOn (sohd hne) compared with experimental data for Ni. (Hook and Hall 
(1991). Reproduced by permission of John Wiley & Sons Inc.) 



(7.233) 

Neglecting, as before, the contribution of order /-LoM to the local magnetic field (cf. 
eqns. (7.102), (7.106») relative to the Weiss term Aw/-LoM, i.e. Bloc ~ /-LOHmac, the mag
netic susceptibility (eqn. (7.83») becomes 

M n/-LoJ.L~/kB 
Xm = Hmac ~ T-Ocw ' 

(7.234) 

where Ocw is given by eqn. (7.229). This, the Curie-Weiss law, is found also for ferro
electrics (§7.1.5.3). 

However, in the vicinity of the critical temperature, Ocw, mean-field theory breaks 
down because of the presence of large thermal fluctuations of the magnetic moments 
around the mean value. As a result, the experimental critical behaviour of the magnetic 
susceptibility 

Xm ex (T - Ocwf' (7.235) 

and of the magnetization 

M ex (T - Ocw)f3 (7.236) 

in the ferromagnetic regime for T ::; Ocw do not have the critical exponents I 1 (eqn. 
(7.234» and (3 = 0.5 (eqn. (7.232» predicted by mean-field theory. Instead, values of 
I ~ 1.35 and (3 ~ 0.35 are generally found. Examples of simple ferromagnetic insulators 
are EuO and EuS. 

7.2.5.3 Ferromagnetism due to itinerant electrons 

The treatment of ferromagnetism in terms of exchange interactions between localized 
magnetic moments given in the previous section is not suitable for ferromagnetic metals, 
such as the 3d transition metals Fe, Co and Ni, where the electrons responsible for the 
magnetism are itinerant and form a band, albeit narrow, of delocalized states (§5.4.3). 
Ferromagnetism in this case can be understood in terms of the following picture. 

The exchange energy (eqn. (7.208» can be assumed simply to add to the energy of 
Bloch states (§5.2.1), thereby causing a displacement in energy of electron states having 
a given spin direction from those with the opposite spin direction: the exchange inter
action acts as an internal magnetic field (cf. eqn. (7.225) ), causing a displacement of the 
densities of states of electrons (in this case, d-electrons) with different spin directions, in 
an analogous fashion to the displacement caused by an external field in the case of 
paramagnetism of conduction electrons (see Fig. 7.43). As a result, the numbers of spin
up and spin-down 3d-electrons are different, and hence a spontaneous magnetic 
moment appears in the absence of an applied magnetic field. 

This exchange splitting is particularly pronounced for 3d-electrons, for which the 
density of states is high (due to narrow bands). The transition metals Fe, Co and Ni, 
with free-atom electronic configurations 3d64s2, 3d74s2 and 3d84s2 respectively, have the 
Fermi level lying in the d-band (Fig. 5.55), in contrast to the case of non-magnetic Cu 
(3dI04sl) where cgF lies midway in the s-band above the, now-fi~led, d-band (Fig. 5.56a). 
For the case ofNi, for example (see Fig. 7.48), of the ten conduction electrons per atom, 
five completely fill the lower 3dr sub-band, but only 4.46 electrons occupy the upper 3d1 
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Fig. 7.48 Schematic illustration of the Stoner model for ferromagnetism in metals due to 
itinerant 3d electrons, e.g. in Ni. The exchange interaction causes a displacement in energy of 
the 3d density of states according to the electron-spin direction (i or !), but a negligible displace
ment of the 4s states spin states. The Stoner gap, b., is the energy separation between the Fermi 
level and the upper edge of the majority-spin band. Of the 10 electrons per atom, 5 completely fill 
the lo~e~ 3dr band and 4.46 occupy ~e upper 3dl band; the remaining 0.54 of an electron per 
atom IS m the 4s band. Thus, there IS a net magnetic moment of 0.54/-LB per atom due to the 
imbalance in the 3d spin populations. 

band; the remaining 0.54 of an electron is distributed (approximately equally) between 
the 4s1 and 4sr bands (for which the exchange splitting is negligible). Thus, there is a net 
magnetic moment of 0.54 J.LB per atom (pointing in the [111] direction), resulting from 
th,e difference in the populations of spin-up and spin-down 3d-electrons (or equivalently 
the presence of the 0.54 of a hole in the 3d! band). This value is close "to the absolute
zero value of atomic magnetic moment for Ni of 0.6 J.LB, the small difference being due 
to orbital angular momentum contributions. For the case of Fe, the eight conduction 
electrons per atom are partitioned such that 4.8 occupy the 3dT band and 2.6 occupy the 
3d! band; the remaining 0.6 of an electron is partitioned approximately equally between 
the 4sj and 4s! sub-bands. Hence, the magnetic moment is 2.2 J.LB per atom in this case 
and points along the [100] direction. Note that this, the Stoner model, naturally permits 
non-integral values of magnetic moment per atom, a circumstance not understandable 
from the localized-electron picture of ferromagnetism (§7.2.5.2). 

The criterion for the existence of itinerant ferromagnetism in the Stoner model can be 
evaluated as follows. Assume that the effect of the exchange interaction is simply to shift 
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the energy of the one-electron Bloch states ~o(k) for spin-up (j) or spin-down (1) 
electrons: 

(7.237) 

where Is is the Stoner parameter reflecting the strength of the exchange interaction 
(assumed to be k-independent) and nr(111) is the number of spin-up (spin-down) elec
trons per atom. If the excess population of spin-up over spin-down electrons is 

D-n = nr - n1, (7.238) 

a symmetric pair of equations for the energies of the two spin sub-bands can be obtained 
from eqn. (7.237) by subtracting the quantity ls(nr + n1)/2 from the one-electron 
energies ~(k) to give 

with 

~r(le) = ~(k) Is/::::"n/2, 

~l (Ie) = ~(k) + IsD-n/2, 

(7.239a) 

(7.239b) 

(7.240) 

The value of this splitting (illustrated schematically for the 3d-band in Ni in Fig. 7.48) 
depends on D-n, which in turn is determined by Fenni statistics: 

/::::"n = I::(fr(k) - f1(k)) 
Ie 

= I:: {exp[~(k) - IsD-n/2 ILl + I} -1 - {exp[~(k) + IsD-n/2 - ILl + I} -1. (7.241) 
Ie 

A Taylor series expansion of the function, i.e. 

of 2 03f (D-X) 3 
f(x D-x/2) - f(x + D-x/2) ~ - AX D-x - 3! ox3 T ' (7.242) 

gives 

/::::"n= ~ o~(k) J. /::::"n _ ~ ~ o'!(k) (J. /::::"11)3. Y o~(k) s 24Y ~(k)3 s 
(7.243) 

The first derivative of the Fermi function is negative but the third derivative is positive, 
so that the condition for the existence of a spontaneous magnetic moment, D-n > 0, is 

Is ~ o~(k) > 1. 
Ie ~(k) 

(7.244) 

The first derivative of the Fenni function is greatest at T = OK when f(~) is a step 
function and of/~ -8(~ -~F) (eqn. (6.48)). Hence 

- I::0~ -;J(- o~)dk =-;J8(~ -~F)dk 
Ie ~ (21f) o~ (21f) 

=g(~F)' (7.245) 
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Fig. 7.49 Calculated parameters for the Stoner model for ferromagnetism for elements in the 
first half of the pe.riodic table: (a) the Stoner exchange parameter Is; (b) the density of states per 
atom. at the ~ermi le~e~, g("gF); (c) the Stoner criterion, Isg("gF) > 1. «a), (b) after Janak (1977) 
Repnnted with pe.:IIllsslOn from !hys. Rev. B16, 255. © 1977. The American Physical Society; (c) 
after Ibach and Luth (1995), SolId State Physics, p. 168, Fig. 8.5(c), © Springer-Verlag GmbH & 
Co. KG) . 

where g(~F) is the density of states (per energy per atom) at the Fenni level for electrons 
of a particular spin type (i.e. g(~) is half the normal density of states, eqn. (5.132)). Thus, 
from eqn. (7.244), the Stoner criterion for ferromagnetism in a band model is simply 

Isg(~F) > 1. (7.246) 

Figure 7.49 shows calculated values of the Stoner parameter Is, the density of states at 
the Fermi level g(~F), and their product, for the elements composing the first half of the 
periodic table. It can be seen that only Fe, Co and Ni are predicted (correctly) to be 
ferromagnetic, principally because of the high values of g(~F) associated with the 
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3d-states characteristic of these metals. However, Ca, Sc and Pd come close to satisfying 
the Stoner criterion and, although these elements are not ferromagnetic, the exchange 
interactions lead to a strong enhancement of the Pauli paramagnetic susceptibility given 
by (see Problem 7.26): 

(7.247) 

where Xo i$ given, for example, by eqn. (7.190). 
Altho~~h vanadium (Z = 23) is not ferromagnetic, nor is predicted to be by the 

simple Stoner criterion as a result of a low value of ?ensity of states (Fig .• 7.49), alloying 
it with gold increases the V-:-V distance from 2.49 A in b.c.c. V to 3.78 A in A14 V and 
decreases the width of the d-band, and as a consequence g(''gF) increases sufficiently to 
make the alloy ferromagnetic with a magnetic moment of ~ IJLB per vanadium atom. 
The effect of alloying two different transition metals, with part-filled 3d-bands, is shown 
in Fig. 7.50: the effective magnetic moment (am Bohr magnetons) per atom depends on 
the average number of conduction electrons per atom, which can be understood in terms 
of the Stoner model if the 3d-bands are assumed to be unaffected on alloying. Ferro
magnetism is generally favoured for almost full (or empty) d-bands: half-filled bands 
tend to favour antiferromagnetism (§7.2.5.6). 

Note also that, although the discussion so far has implicitly concerned crystalline 
materials, the existence of spatial periodicity is not a prerequisite for the occurrence of 
ferromagnetism. Since the exchange interaction between spins is essentially a short
range effect, the existence of ferromagnetism in amorphous metals is not precluded. 
Glassy metal alloys, such as Fe8oB2o, are indeed ferromagnetic. 

The temperature dependence of the magnetization, M = JLBD..n/V, predicted by the 
Stoner model can be analysed simply by treating the d-electron density of states as a 
delta function lying at the upper edge of the actual distribution: 
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Fig.7.50 Effective magnetic moment per atom, given as am Bo?r magnetons, for binary transi
tion-metal alloys as a function of the average number of conductIOn electrons per atom. (Crangle 
and Hallam (1963). Reproduced by permission of The Royal Society) 

(7.248) 

In this case, eqn. (7.241) for the differ~nce in spin popUlations, in the absence of an 
external field, becomes . 

JLerr ' 
JL: ([exp( -ls6.n/2kBT)J + 1]-1 - [exp( +ls6.n/2kBT) + Itl]. 6.n 

(7.249) 

De~ning ~he dimensionless quantities p = 6.nJLBIJLrlf and x = PBewIT, where the 
Cune-Weiss temperature, Bew, in this case is given by (cf. eqn. (7.229»: 

Bew JL~f lsi 4JLBkB, (7.250) 

the spin~popu!at~on difference, and hence the magnetization, from eqn. (7.249) obeys 
the relat~onsh~p y ~ tan~x, exactly as for the Heisenberg model (eqn. (7.230a». Thus, 
all the dIscussIOn gIven III the previous section for the behaviour of M is valid also in 
this approxi~ati?n, for t~e. Stoner model. The temperature dependence of the spont~n
e?u~ magnetIzatIOn of NI IS shown in Fig. 7.47 compared with the experimental pre
dIctIOn. The temperature dependence of the magnetic susceptibility of, e.g., Fe, above 
Bew does n~t exhibit a. critical exponent of I = 1 as predicted theoretically (cf. eqn. 
(7.234» but mstead a hIgher value of 1.33 (Fig. 7.51). 

Of course, the Stoner model is highly simplified, and as a result does not give 
very good agreement with experimental values of magnetic moments, e.g. of the 3d 
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Fi~. 7.51 Experim~ntal ~ata for the temperature dependence of the magnetic susceptibility of Fe 
(WIth 0.16 at. % W Impunty), showing a critical exponent I 1.33. (Noakes et al. (1966» 
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transition-metal ferromagnets. For materials with narrow bands, intraionic (Hubbard) 
correlation effects (§5.6.3) are also important (see e.g. White (1983) and Mattis (1988». 

*7.2.5.4 Spin waves: magnons 

The mean-field theory of ferromagnetism predicts an exponential temperature depend
ence of the magnetization at very low temperatures (eqn. (7.231» in disagreement with 
the T 3/ 2 power-law behaviour observed experimentally. This discrepancy arises because 
mean-field theory does not properly take account of low-energy spin excitations. For 
example, in the simple band model of ferromagnetism described in §7.2.5.3, a spin flip 
can only be accomplished by means of an interband transition of an electron from one 
exchange-shifted band to another (Stoner excitation); the minimum energy required is 
the energy separation, the Stoner gap, between the Fermi level and the upper edge of the 
majority-spin band (Fig. 7.48). It is not surprising, therefore, that the temperature 
dependence of M should be thermally activated in this model, the exponential beha
viour reflecting this energy gap. The above process describes a spin flip in the one
particle (band) approximation: one spin is inverted independently of all the others, 
which remain in a ferromagnetically ordered state (Fig. 7.52b). However, a lower-energy 
spin excitation can be achieved by means of a collective excitation of all the spins 
accompanying the inversion of a particular spin. A chain of spins, for example, can 
adopt a helical arrangement of orientations, with neighbouring spins being canted by a 
small angle (Fig. 7.52c); in this way, the cost in exchange energy is minimized. However, 
the energy of a spin configuration as in Fig. 7.52c is very large in the mean-field model 
since the mean magnetization, and thus the internal field, vanishes in such a case. 

iiiil·····i iiiij. .. · .. ·~ it!!/. .. ~ 
(a) (b) (c) 

Fig.7.52 Spin configurations in a ferromagnetic ID chain: (a) the ground state; (b) an excited 
state, with one spin inverted (Stoner excitation); (c) a low-energy collective spin excitation. 

The collective dynamical behaviour of spins can be analysed analytically for the case 
of a ID ferromagnet, i.e. a chain of spins as in Fig. 7.52, in an analogous fashion to the 
treatment given for atomic vibrations of a ID chain (§4.2.2). If it is assumed that only 
exchange interactions between nearest neighbours are important, with constant 
exchange parameter 3J, the exchange energy of the jth spin in an insulating ferromag
netic chain is, from eqn. (7.217a) 

(7.251) 

This energy can be re-expressed as Cfl,j -f.L~. Bj , where the magnetic moment of spinj 
is f.L~ = -gJ/-LBSj (eqn. (7.161» and the effective magnetic flux density Bj acting on this 
spin due to the exchange interaction with its neighbouring spins is given by 

T 
7.2 

(7.252) 

The resulting torque on the spin, Tj = f.L~ x Bj (eqn. (7.80», causes a change in angular 
momentum of . 

(7.253) 

T~is non-linear equa~ion can be linear~zed by assuming that displacements Sj of the jth 
S~Ill ~nly take place III the x-y plane If the overall magnetization is oriented in the z
d~rect~on (and hence the spin in the ground-state configuration is aligned in the -z
dIrectIOn-see eqn. (7.161», i.e. 

Sj = -Si + Sj. (7.254) 

Note .tha.t i need have no special orientational relationship with the chain direction. 
SUbStItUtIO~ of e~n. (7.254) into eqn. (7.253), and retaining only those terms that are 
first-order m Sj, gIves 

ds· 
11. d: = -3JSi x (Sj_1 2sj + Sj+I). (7.255) 

The x-and y-components of eqn. (7.255) are 

(7.256) 

wher~ the positive sign corresponds to the y-component of the right-hand side of the 
equatIOn. In terms of the complex spin variable 

SJ = Sjx is1v , (7.257) 
eqns. (7.256) can be written in compact form as 

dQ"T 
"ili-J = -3JS(s! - ?sT + st ) dt J-I -J j+l· (7.258) 

No~e th~ for:mal.simila.tity between this equation and eqn. (4.33) describing atomic 
lattIce VIbratIOns If use IS made of the wave-like solution 

sJ = L C/cexp[i(kja w/ct)], 
k 

(7.259) 

where a i.s the lattice spacing ?f the chain. Substitution of eqn. (7.259) for one particular 
k-va~ll:e mto eqn. (7.258) YIelds, after cancellation of the common terms c" and 
exp[i(leja - wkt)]: C 

liw/c -3JS{e-ika - 2 + eika ) 

= 23JS[1 - coska]. (7.260) 

F~om eqns. (7.257) and (7.259), the components of the spin displacement for a 
partIc~lar k-vector behave ~s Sjx ex: ~os{kja - w/ct) and Sjy ex -sin{kja - w/ct), and thus 
the spms (regarded as claSSIcal entItIes) precess about the -i-direction (see Fig. 7.53); 
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Fig. 7.53 Schematic illustration of a spin wave (or magnon) in an insulating crystalline ferro
magnet. In a classical sense, the spins localized at ea~h latti~e site ?reces~ about the. net magne
tization direction z, with the relative phases of neIghbounng spms bemg determmed by the 
wavevector Ie in the direction of the spin wave: (a) spin wave propagating parallel to z; (b) spin 
wave propagating perpendicular to Z. 

such a collective excitation is termed a spin wave. Its dispersion relation is given by eqn. 
(7.260); this is a periodic function of wavevector k, with period 2rr/a, as for lattice 
vibrations (§4.2.2), but for k ~ 0, the spin-wave dispersion relation (eqn. (7.260)) 
depends quadratically on wavevector: 

liWk ~ '3fSa2k?, (7.261) 

in contrast to the linear dispersion relation exhibited by acoustic phonons (eqns. (4.39), 
(4.50a)). Note that eqn. (7.261) implies that the energy to displace a spin in a chain tends 
to zero in the infinite-wavelength limit, in marked contrast to one-electron Stoner 
excitations involving a single spin flip (Fig. 7.52b). In fact, the spin-wave frequency is 
small but finite at k = 0 because of magnetocrystalline anisotropy (see §7.2.5.5): a finite 
energy is required to rotate a spatially uniform magnetization, corresponding to an 
infinite-wavelength spin wave, if there exists an easy direction for the magnetization. 
Spin-wave dispersion curves can be measured by magnetic neutron scattering (see Fig. 

7.54). 
A proper quantum-mechanical treatment of the spin-wave problem leads to the same 

dispersion relation (eqn. (7.260)) as obtained from the above semi-classical analysis, but 
with the difference that the energies of the spin waves are quantized and obey the 
harmonic-oscillator relation, as for other bosons such as photons and phonons (§4.2.5): 

~k (n+~)liWk; (7.262) 

such quantized spin-wave excitations are called magnons. Excitation of one magnon 
corresponds to the inversion of one spin, i.e. a reduction in the magnetization by an 
amount of gJ J.LB per unit volume. The magnetization at temperature T is therefore given 

by 
(7.263) 

where Ms(O) = nOgJJ.LBS is the saturation magnetization at absolute zero. The density of 
thermally excited magnons is 

150 

so 
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Fig. 7.5.4 ~xperimental dispersion curve for the spin waves (magnons) propagating in Ni in the 
[111] dIrectIOn at 295 K, measured by inelastic magnetic neutron scattering (Reprinted with 
perI?ission from Mook.and Paul (1985), Pllys. Rev. Lett. 54, 227. © 1985. The American Physical 
SOCIety). The dashed lme shows the theoretical quadratic limiting behaviour of the dispersion 
relation. At high energies, Stoner excitations are also produced, which cause a reduction in the 
spin-wave lifetimes and a concomitant lifetime broadening of the spectra (hatched region) 

. 1 (Xl 
nmag = V Jo n(w)g(w) dw, (7.264) 

where the average number of magnons in thermal equilibrium, n(w, T), is given by the 
Planck distribution law (~qn. (4.68)), n(w, T) = [exp(liwk/kBT) lrl. The density of 
magnon modes, g(w), is given by 

g(w) dw = g(k)dk 

v ( Ii )3/2 
= 4rr2 '3fSa2 w

l/2 
dw, 

(7.265) 

where use has been made of eqn. (4.21) for g(k), and of the approximate form of the 
magnon dispersion relation (eqn. (7.261)) appropriate at very low temperatures where 
only low-energy, small-k magnons are excited. Thus, the magnetization in the vicinity of 
absolute zero can be written as 

M(T) = Ms(O) { 1 __ 1_ (kBT)3/2 {eo x
l/2

dx } 
4rr2noS '3fSa2 Jo (eX - 1) , 

(7.266) 

where x = liWk/kBT This is the limiting Bloch T3/2 law for the low-temperature beha
viour of the magnetization of ferromagnets that is observed experimentally (Fig. 7.55), 
in marked contrast to the exponential temperature dependence predicted by mean-field 
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Fig.7.55 Temperature dependence of the magnetization ofE.uO (data points after Low (1963». 
The solid curve includes dynamical interactions between paIrs of magnons; the ~ashed cu~e 
corresponds to non-interacting spin waves; and the dotted curve correspon~s to a senes ~xpanslOn 
with T 3/ 2 and T 5/ 2 terms. (After White (1983), Quantum Theory of Magnetism, p. 198, FIg. 6.7, © 
Springer-Verlag GmbH & Co. KG) 

4 6 . d· h theory (eqn. (7.231». If higher-order terms proportional to k ,k etc. ar.e retame !n t e 
Taylor expansion of the dispersion relation (eqn. (7.260», correspondmg terms m t~e 
magnetization varying as T 5/ 2, T7/2 etc. are included. See Problem 7.27 for an analysIs 
of the heat capacity associated with magnon excitations. 

7.2.5.5 Ferromagnetic domains 

Although ferromagnetic materials exhibit a spontaneous magnetization on the micro
scopic length scale below the Curie-Weiss temperature Be,,":, this does not I?~an that a 
macroscopic sample, in the absence of an external magnetIc field, also exhIbIt~ ~ large 
net magnetic moment. In fact, ferromagnetically ordered samples ~enerally exhIbIt ver: 
small moments in zero field. This behaviour is due to the formatIOn of ferromagnetlc 
domains, i.e. small regions of material within each of which the individual spins 
are ferromagnetically ordered; the different domains have the magnetization 
pointing in different directions, so that the net magnetization is zero in ~he abse~ce 
of an external field. Similar behaviour is also exhibited by ferroelectrzc matenals 

(§7.1.5.3). . . 
The reason that domain formation is favoured is that the magnetlc-energy denSIty, 

UM = B2/2fJo, associated with the magnetic-flux density !3 exerted o~tside a .samp.le, 
assumed for example to be a single domain (Fig. 7.56a), IS decreased If domams WIth 
opposing magnetizations are created that reduce B. The additional creation of small 
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(b) (c) 

Fig.7.56 Domain formation in a ferromagnet below the Curie-Weiss temperature. (a) A sample 
consisting of a single domain producing flux density B outside the material with associated energy 
density UM = B2/2f.Lo. (b) The fonnation of closure domains results in a negligible external flux 
density B, and concomitant reduction in UM. (c) A domain configuration in which UM is also zero 
but which has a higher magneto-elastic energy. 

closure domains, with magnetization directions normal to that of the principal domains 
(Fig. 7.56b), can reduce B almost to zero. Although UM is decreased by domain 
formation, there is a cost in energy involved in forming the transition region between 
domains, the Bloch wall, where the magnetization changes continuously from the value 
characteristic of one domain to the different value characteristic of another domain. 
However, overall, the net energy is lowered in going from a single-domain to a closed
domain configuration. Since it costs energy to create a Bloch wall, it might be thought 
that a domain configuration where the Bloch wall area is minimized, such as that shown 
in Fig. 7.56c, would have a lower net energy than that involving closure domains (Fig. 
7.56b). However, such a consideration neglects magnetostriction effects, whereby a 
magnetically aligned crystal expands or contracts along the magnetization direction. 
The incompatibility of such strains for a domain configuration such as that shown in 
Fig. 7.56c results in a large elastic stress energy; this positive magneto-elastic energy is 
reduced by forming smalier closure domains, as in Fig. 7.56b. 

The spin configuration of a 1800 Bloch wall separating two domains, in which the 
directions of the spontaneous magnetization are antiparallel, is shown schematically in 
Fig. 7.57. The gradual canting of spins in the wall region minimizes the cost in exchange 
energy in inverting the spins; indeed, if exchange interactions were the only energetic 
consideration, the domain-wall width would increase without limit to reduce the 
increase in exchange energy to zero. However, there is another effect operative which 
acts to minimize the wall width; this is magnetocrystalline anisotropy. 

In crystals, there are directions of easy magnetization along which it is energetically 
favourable for the magnetization to point, e.g. the (100) directions in b.c.c. Fe, the 
(0001) directions along the hexagonal axis ofh.c.p. Co, and the (111) directions in f.c.c. 
Ni; other directions in each case are termed hard magnetization directions. The 
energy of a spin configuration polarized along a hard direction is greater than that 
directed along an easy direction by the magnetocrystalline or anisotropy energy. 
Asymmetry of overlap of non-spherical electron distributions (e.g. resulting from 
spin-orbit interactions) on adjacent ions is one cause of magnetocrystalline anisotropy. 



Fig. 7.57 Schematic illustration of a 1800 Bloch wall, of th~ck~ess d, ~o~pri~ing N s:pins .at a 
spacing a, between two domains having ~pontaneous magnetizatIOns POIntIng In Opposlte dlrec-

tions. 

The expression for the anisotropy energy density UK is particularly ~imple for ~he case 
of uniaxial anisotropy, e.g. for Co where there is just a single easy aXIS, the c-aXIS ofthe 

unit cell: 

(7.267) 

where 8 is the angle between the magnetization direc~ion and the c-a~is; 
KI = 4.1 x 105Jm-3 and K2 = I x 105Jm-3 for Co. Thus, the amsotropy energy-denSIty 
difference for the magnetization direction lying in the basal plane (8 = 90°) and along 
the c-axis (8 = 0°) is b.U/c = KI + K2 == K ~ 5 x 105Jm-

3
. . 

Magnetocrystalline anisotropy restricts the width of BI?ch wall~ bec.a~se the amso
tropy energy increases with increasing wall width. Assummg f?r SImpliCIty that, fo~ a 
wall of width d = Na, comprising N spins each separated by a dIst~nce a (e.g .. t~e la:tIce 
constant in a crystal)-see Fig. 7.57-approximately half the spms are pomtmg m a 
hard direction, the anisotropy energy per unit area of the wall, given ~y half the energy 
density multiplied by the wall width, is then approximately proportIOnal to the wall 

width: 

O"aniso ~ ~KNa. (7.268) 

In the direction normal to the interface (1800 Bloch wall) between the two domains, 
i.e. along the canted chain of spins, a given spin has two neighbo~rs at an avera~e 
relative angle of 1f/ N, and hence the associated exchange energy expenenced by the spm 
is, from eqn. (7.217a), 

(7.269) 

on expanding the cosine term for small angles. Hence, the contributi~n to the exchange 
energy per unit area of wall that depends on the thickness of the wallIS the first t~rm on 
the extreme right-hand side of eqn. (7.269) multiplied by N / a2

, the number of spms per 
unit area, i.~. 

(7.270) 

An estimate for the equilibrium wall thickness can then be obtained by minimizing 
with respect to N the expression for the total areal energy density of the Bloch wall: 

7.2 MAGNETIC PROPERTIES 

1 ??? 
O"B ~ 2KNa 7- 71j/S-/Ncr, 

giving the optimum number of spins making up the wall thickness as 

N = (2i13JS2 jKa3 )1/2, 

with a total energy per unit area of the Bloch wall given by 

O"B (2~ K3JS2 j a) 1/2. 
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(7.271) 

(7.272) 

(7.273) 

Taking typical values of 3J ~ 0.06eV, K ~ 5 X 105J m-3 and a ~ 2.5 A means that the 
width of a Bloch wall involves of the order of 100 atoms. 

The presence of magnetic domains also explains the behaviour of the magnetization 
curves of ferromagnetic materials below the Curie-Weiss temperature. A representative 
initial magnetization curve is shown in Fig. 7.58: the net magnetization of a ferromag
netic sample increases from zero, rapidly increases, and then saturates at the saturation 
value of magnetization, Ms, with increasing magnetic field intensity, H. The zero
magnetization initial state results from the overall cancellation of the magnetic moments 
of individual domains arranged in a closure configuration (Fig. 7.59a). The appearance 
of a net magnetization at finite applied magnetic fields is due to the movement of Bloch 
walls through the material under the action of an applied field, thereby causing the 
growth of those domains with dominant components of magnetization parallel to H at 
the expense of those for which the dominant component of Mis antiparallel to H. At 
very low applied fields (region I), this domain-wall movement is reversible (figs. 7.59b, 
c), but at higher fields (region II) the process is irreversible due to the complete 

III 

M 

H 

Fig.7.58 Schematic illustration of the initial magnetization curve of a ferromagnet in a magnetic 
field of intensity H. The behaviour associated with the magnetic domains at each stage of the 
curve is indicated. Magnification of the curve in region II shows a step-like profile, i.e. Barkhau
sen jumps. 
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. Re resentation of the movement of domain walls in a ferromagnet in causing a .net 
Fig. 7.5? . ~ 11· d magnetl·c field H (a) Zero net magnetization due to closure domams. magnetlzatlOn m an app e , . . . h f f 

c Reversible domain-wall movement causing enlargeme~t of d0.mmns WIt . magne lza lOn ~~ra?lel to H for small fields. (d) Irreversible domain-:v~ll motlOn le.admg to the. dlsapp;aran~: of 
domains at higher fields. Domain walls can be made vlSlble by the !ltter ~agnet~-pov~31 e~~aw~r~ 
techni ue, whereby small magnetic particles a~e attracted. to ~ e .reglOns were 0 
interse~t an external surface because the magnetic-field gradIent IS gIeatest there. 

. f d . (F· 7 59d) and effects due to magnetic inhomogeneities. At dIsappearance 0 omams Ig. . . . . h. d b 
yet higher fields (region III), the saturation magnetizatIOn of t~e sample IS ac Ieve y 
gradual rotation of the magnetization direction of t~e d~mams away from the easy 
direction towards the field direction; this last process IS resIsted by the magnetocrystal-
line anisotropy. . thl 

Although the magnetization curve shown in Fig. 7.58 appears to.mcrease s~o? y 
·th H in fact in the irreversible region II the curve actually conSIsts of a dIsJomted 

:ries ;f discontinuous jumps in M with increasing values of H. These Barkhausen 

jumps are due to sudden movements of domain walls and arise because sample inho
mogeneities such as defects, compositional variations etc., mean that the Bloch wall 
surface energy (eqn. (7.273)) depends on its position in a sample. For a uniaxial crystal 
of width D, containing a single 1800 Bloch wall of unit area at distance x from one edge 
separating two domains with the saturation magnetization Ms lying respectively parallel 
and antiparallel to the easy axis, the total energy density can be written as: 

(7.274) 
in the presence of an external field H directed along the easy axis. A stable, equilibrium 
position of the wall is determined by the conditions dU/dx = 0 and d2 U/dx2 > 0, 
corresponding to a field intensity 

H = _1_dO"B(x). 
2J-.loMs dx (7.275) 

Consider the representative spatial profile of the derivative dO"B(x)/dx shown in Fig. 
7.60a, where point A corresponds to a saturation of the magnetization for a magnetic 
field applied along the easy direction. On decreasing H, the wall moves such that the 
curve in Fig. 7.60a is followed to point C where H = 0 (i.e. dO"B/dx = 0). Reversal of the 
field (i.e. giving dO"B/dx < 0) causes a further shift of the wall such that the curve in Fig. 
7.60a is followed to point D where dO"B/dx is a minimum, i.e. where d20"B/dx2 = O. 
However, at this position, the wall is in an unstable position and hence makes a 
discontinuous (Barkhausen) jump, corresponding in Fig. 7.60a to the transition from 
D to E where d

2
0"B/dx

2 
is positive and the wall is energetically stable (minimum wall 

energy, O"B). 

The irreversibility of the magnetization curve, M(H), in region II, shown in Fig. 7.58 
implies that, on reducing the magnetic field from the value required to induce the 

M 
A 

H 

H 
(a) 

(b) 

Fig. 7.60 (a) Dependence of the spatial rate of change of Bloch-wall energy density, dO"B/dx, 
with the position x of a single 180

0 

wall separating two magnetic domains in an inhomogeneous 
ferromagnet. (b) Major and minor hysteresis loops in the magnetization curve corresponding to 
the behaviour of dO"B/dx shown in (a). (After McCurrie (1994) Ferromagnetic Materials: Structure 
and Properties, © 1994, by permission of the publisher Academic Press Ltd., London) 
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(a) (b) 

Fig. 7.61 Hysteresis curves for a ferromagnetic material, showing the intrinsic coercivity, Hei> the 
flux coercivity He, the flux remanence Br, the remanent magnetization Mr and the saturation 
magnetization Ms in: (a) magnetization, M(H); (b) magnetic flux density, B(H). 

saturation magnetization, the initial magnetization curve is not retraced, but instead 
another curve is followed (Fig. 7.61a): M(H) curves of ferromagnets exhibit hysteresis 
in exactly the same way, and for the same reason, as do electrical polarization curves, 
P(E), of ferroelectrics (see §7.1.5.3 and Fig. 7.16). The hysteresis curve of B(R) (Fig. 
7.'61b) is very similar to that of M(R), except that saturation of B(R) is not reached at 
very high field intensities, corresponding to the saturation magnetization Ms since, from 
eqn. (7.81), B = J.to(H + Ms). 

Hysteresis curves can be characterized by a number of parameters. For M(R) curves, 
the remanent magnetization, Mr , is the value remaining at zero field, H = 0, and the 
intrinsic coercivity, Hei. is the (reverse) magnetic field intensity required to reduce the 
magnetization to zero. For B(R) curves, the remanence, Bn is the flux intensity at 
H = O,and the flux coercivity He is the field intensity required to reduce the magnetic 
induction to zero. These quantities are defined for the situation where the applied 
magnetic field is reduced from the value at which the saturation magnetization is 
achieved. . 

The spatial profile of the variation of the spatial derivative of the energy density of a 
single Bloch wall, dO"B/dx, shown in Fig. 7.60a can be used to obtain the corresponding 
magnetization hysteresis curve (Fig. 7.60b). Note the similarity between this curve and 
that shown in Fig. 7.61a: however, the M(R) curve for real polycrystalline samples is the 
superposition of many slightly different hysteresis curves for different domains, result
ing in a smoothing of the abrupt variations shown in Fig. 7.60b. In this picture, the 
coercivity is related to the rate of variation of O"B with position, i.e. d20"B/<:tx2, since 
dO"B/dx is a measure of the energy barrier that must be overcome in the motion of a 
domain wall. Thus, the coercivity is the magnetic field intensity corresponding to the 
point D in Fig. 7.60a at which the quantity dO"B/dx is a (local) miIiimum, i.e. 

Hci = _1_. [dO"B(X)] 
27rMs dx ' . (7.276) 

Soft ferromagnetic mate . I th . mm . , . 
d h d . . na s are ose,WIth low coerClVlt1es (say less than 103 Aim) 

an ~r magnetIc matenals are those with high values of R > 104 AI Th [' 
matenals must be spatially homo ene' c m. us, so t 
spatially invariant; this is aChieve~ byOh~' .smce dO"B/dxllmu~t be as small ~s possible and 
(7.273» In c t t h d . vmg very sma amsotropy energies, K (cf. eqn. 

. on ras, ar matenals must have ve' 1 1 f 
spatial variations of this quantity; this can be aChli~v:~g~ va u~~ 0 dO"B/dx a.nd .large 
mogeneous (e.g. two-phase). y rna mg the matenal mho-

Permanent magnet materials must be . II '. 

:::t~~ :~a~~~Yb~~~~~';~ ma~::~~:~~~i~ ~:;!t:;~n!:r~g~h~~:~;::~~ 
~~~:n;n~f::::~~:S:~~:a~~_0:;~7,;~~:~:~y~;~t~~:~~R~~~t~~~i~~~c~~ ~: 
materials must have a hi h . ,'. mcreasmg c· In addItIon, the 
tion As a result the ~,r(gR) shaytutratr~n ImagneftrzatlOn, and a high remanent magnetiza-

• ,1V.I.' S ereSIS oop 0 a per t h 
largest possible area An id I manen magnet s ould enclose the 
hysteresis loop (Fig 7 62a) e~th p~rman:t magnet ,:ould have a rectangular M(R) 
The d,'" WI r = 5 and a vertIcal demagnetization line at R ' correspon mg B(R) hyst . I . Cl' ereSlS oop IS a parallelogram (Fig 762b) C' h' h h energy product (BH) . b " ,lor w IC t e 
h h 

max' gIVen y the shaded area in Fig 7 62b is maxI'mal It b sown t at H - M /2 t th h '. ", . can e 
- s a e t eoretrcal maXImum valu~ of BH, given by (Problem 7.28): 

(BH)theor = J.toM; _ B; 
max 4 - 4f..lo . (7.277) 
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Fig. 7.62 (a) Rectangular M(H) h t 'I ' 
material. (b) Ideal B(H) hy t ,lys ereSIS oop ch,aractenstic of an ideal permanent-magnet 

, , s ereSIS oop correspondIng to (). . h' h h fl . 
coerclVlties are identical The shaded 'h a , In W IC t e ux and Intrinsic 
h . . ' area gIves t e energy product (BH) ( ) C . 

t e demagnettzIng quadrants of the B(H) h t' f; mal{' C ompanson of 
permanent-magnet material with the same vYf eresr Curve or an Alni~o magnet and an ideal 
Materials: Structure and Properties © 1994 ba ue 0 .M.s, (After MCC,ume (1994) Ferromagnetic 
London) " Y permrSSlOn of the publIshers Academic Press Ltd., 
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This value can only be attained if He ;:: Ms/2. 
Most permanent-magnet materials exhibit a non-linear demagnetizing B(H) curve, 

with Br < fLoMs and He < Ms/2, and as a result the maximum energy product is 
considerably less than the theoretical value (see Fig. 7.62c). However, the sintered 
intermetallic material SmCos has a (BH)max value (180 kJ m-3) that is about 80% of 
the theoretical maximum. This material is also characterized by a very high value of flux 
coercivity (He = 700 kA m- I

), due to an exceptionally large value of uniaxial magne
tocrystalline energy coefficient, KI = 1.3 X 107 J m-3 (the crystal structure of SmCos is 
hexagonal) and a remanence of 0.95 T. The recently developed tetragonal material 
Nd2Fel4B has even higher values of coercivity and (BH)max product, namely 
1.1 MA m- I and 350 leJ m-3

, respectively, although the Curie-Weiss temperature is 
rather low, viz. Bcw ~ 400°C (cf. 720°C for SmCOs). By contrast, the widely used 
Alnico alloys (of Fe, AI, Ni, Co and perhaps Cu and Ti) have typical values of 
(BH)max ~ 10 kJ m-3

, He ~ 50 kA m- I and Br ~ 0.7 T, and the electrically insulating 
magnetic materials, sintered barium or strontium ferrite (Ba/Sr)Fe12019), have at best 
values of (BH)max ~ 30 kJ m-3

, He ~ 300 kA m- I and Br ~ 0.4 T. Further details of 
permanent-magnet materials can be found in McCurrie (1994). 

Another major use of ferromagnetic materials is as cores in transformers. However, 
here the need is for materials that are magnetically soft (ideally with zero remanence and 
coercivity), and with high magnetic permeabilities (to increase the flux density in the 
core). A high permeability is associated with a high saturation magnetization. Since the 
direction of magnetization in a mains transformer changes at a frequency of say 50 Hz, it 
is necessary that domain-wall motion is unimpeded (i.e. a very low coercivity is 
required). This requirement can be achieved by ensuring that the material is homoge
neous, with no defects that can act as pinning centres for domain walls, and that it has a 
very small magnetocrystalline anisotropy energy KI, ideally with many easy directions of 
magnetization. As a result of the small value of He, the hysteresis curves of soft magnetic 
materials are very narrow, and hence hysteretic energy-density losses (equal to the area 
of the hysteresis loop, J H dB = fLo J H dM) are minimized. Eddy-current losses can be 
reduced by using a material with a high electrical resistivity, p. The material most 
commonly used in transformer cores is Fe alloyed with about 3 at. % Si (which reduces 
KI and increases p) with a (110) [001] grain-oriented texture; the crystallite grains 
(optimally a few millimetres in diameter to reduce losses to a minimum) have the (110) 
plane parallel to the [001] easy direction, itself parallel to the rolling direction used in 
producing the laminar foils that are stacked together to form the cores. This material has 
a coercive field of He = 12 A m -I and a relative pemlabili~y fLr = 4 x 104. Glassy metal
lic alloys, e.g. Fe80B20 or more complex alloys involving Ni or P, are very soft magneti
cally. Evidently, there is no magneto crystalline anisotropy energy in such materials, but 
nevertheless there is a very small residual uniaxial magnetic anisotropy associated with 
mechanical strains introduced in producing the material in thin-ribbon form by 'melt 
spinning' (the very rapid cooling of a jet of molten material directed onto the edge of a 
rapidly spinning Cu disc-see §1.2.2). Glassy Fe80B20 has a flux coercivity of 3 Am-i. 

7.2.5.6 Ferrimagnetism and antiferromagnetism 

Thus far, in this section on spontaneous magnetization, it has generally been assumed 
that the exchange parameter j{if between nearest-neighbour spins is positive, favouring a 

·1· 

I 
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Fig. 7.63 P~.ssibl~ ordere~ spin ~rrangements. resulting from. a negative value of exchange 
par~meter, jIy ~ O. (a) femI?agnetlc c0ll:figuratlOn (unequal spms on neighbouring sites); (b) 
antlferromagnetIc configuratIOn (equal spms on neighbouring sites). 

parallel, i.e. ferromagn~tic, ordering of the spins. However, for example, many com
pounds of Fe, Co or NI are cha~acterized by negative values of j{if (e.g. as a result of 
s~perexc?ange-see §7:2.5.1) whIch favours antiparallel ordering of the spins (asso
cIate? Wlt~ the transltlOn-met~1 3d-electrons). A ferrimagnetic spin configuration is 
one. In whIch unequal mag~etIc moments on neighbouring sites are arranged in an 
antJpar~llel arrange~en~ (FIg. 7.63a) resulting in a net magnetization. An antiferro
magnet~c configuratIOn IS a special case of a ferrimagnetic arrangement, in which the 
~agnetJc moments. on.neighbo~rii1g sites are equal in magnitude (Fig. 7.63b), reSUlting 
III zero net magnetIzatIOn even III this spin-ordered state. 

F.errim~gnetism is exhibited by a class of magnetic metal oxides known as 
ferntes wIth the general chemical formula MO. FeZ0 3, where M is a divalent cation 
(e.g. Cd, ~o, C:u, Fe, Mg, Ni. or Zn), and which have the cubic spinel (MgAI?04) 
structure III wluc? th~re are e~ght occupied tetrahedral (A) sites and twice as ~any 
octahedral (B) SIt~S III ~ umt cube (see also Table 2.2): in the normal spinel 
arrangen:ent, t~e divale~t IOns occupy all the A sites and the trivalent ions the B sites, 
w?ereas III the 111v~rse sp111el.structur~, the A sites are occupied instead by trivalent ions, 
w~th hal~ the B SItes occupIed by dIvalent ions and the other half by the remaining 
trIvalent IOns. 

~he most fa.miliar ex~mple of a ferrite is magnetite (or lodestone) with M = Fez+ and 
whIch.has the 111ve~se ~p111el.structure. From Table 7.8, it can be seen that Fe3+ ions have 
the SpIn state S =:2 wIth quenched angular momentum L = 0 and Fe2+ ions have a spin 
~f 2~ =:= 2; thus each Fe

3
+ ion should ~ontribute ~ mag.netic moment of 5fLB and each 

. e IOn a moment of 4fLB. If all the SpillS were alIgned 111 aferromagnetic arrangement, 
It would be expect~d therefore that the magnetic moment per Fe304 formula unit would 
be 14fLB; ~he expenme~tal val~leof 4.lfLB can be explained if the Fe3+ spin sub-lattices 
or1~r a~tIferr~magnetJcally wIth ~!s~ect to eac~ other, leaving a net moment due to the 
Fe SpillS (FIg. 7.64a). The Fe IOns on neIghbouring A and B sites are strongly 
couple? antif~rr?magn~tica.lIy due to superexchange (§7.2.5.1) via the intervening oxy
~en am~ns; thIS 111terac~lOn IS stronger than the weaker A-A and B-B antiferromagnetic 
111ti!actIOns: The e~fectl\.'e fe~romagnetic coupling between the spins on Fez+ ions and 
Fe on neIghbourIng SItes m the B sub-lattice can also be understood pictorially in 
terms o.f a double-exch~nge mechanism (Fig. 7.64b): an inter-ion electron transfer 
resp~nsIble. for the electrIcal conductivity in this material, simultaneously maintainin~ 
the hlgh-spm state required by Hund's first rule (§7.2.4.1) on the two ions (hence 'double 
exchan~e') can only i~volve the minority spin on an Fez+ ion moving to an Fe3+ ion that 
has a spm configuratIOn parallel to that of the Fe2+ ion; otherwise, the transfer would be 
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Fig.7.64 (a) Spin arrangements on Fe ions in magnetite, Fe30.4(FeO . Fe203) having the in:verse 
spinel structure. The Fe2+ and Fe3+ ions on the octahedral B sItes are coupled ferromagnetlcally 
via a double-exchange mechanism associated with inter-ion electron transfer (see (b». The Fe3+ 
ions on tetrahedral A and B sites are coupled antiferromagnetically via supere~change.thr~:)Ugh ~he 
oxygen anIons. (b) Illustration of the mechanism of double exchange a~soc~ated wIth mter-l.on 
electron transfer in mixed-valency compounds, e.g. Fe304. A ferromagn~tlc ahgnment of the spms 
on neighbouring sites is necessary to maintain the high-spin configuratIOn on both the electron
donating and -accepting ions. 

inhibited by the Paull exclusion principle. This double-e~change. ~~chanism is particu
larly appropriate in describing the behaviour of mangamtes exhlbltmg colossal magne-
to resistance (§6.3.3.2). . . 

Another common class of ferrimagnetic insulators comprises the CUbIC Iron garnets 
with the general formula M3Fes012 (where M is a trivalent ion, e.g. y3+ or rare-earth 
ions). The garnet (Ca3AhSh012) structure of e.g. yttrium iron g~rne~ (YIG) has, per 
formula unit two Fe3+ ions in tetrahedral (a) sites and three Fe3+ IOns m octahedral (d) 
sites. The- s~ins on the a and d sites are each aligned ferromagnetically, but in an 
antiparallel configuration between sites: as a result, there is a net moment of 
(3 x 5 - 2 X 5)/-£B = 5/-£B per formula unit. ..... 

Antiferromagnetic spin ordering is a special case of fernmagnetlc ahgnment, m whIch 
the net moments of different sub-lattices are equal and opposite. A particularly simple 
example is given by the transition-metal monoxides, Mn~, FeO, CoO .and NiO, which 
have the rocksalt structure, comprising two interpenetratmg f.c.c. lattIces, one for the 
transition-metal ions and the other for the oxygen ions. At low temperatures, in the 
antiferromagnetically ordered state, the spins, e.g. of the Mn2+ ions, within a particular 
(111) plane are all aligned ferromagnetically, but they are aligned ant.iparallel to the 
spins lying on adjacent planes (Fig. 7.65). This spin arra~gement. anses bec.ause of 
superexchange interactions in (100) directions between .nelghbou:mg Mn2+ IOns on 
adjacent (111) planes via the intervening, collinear 0 amon (cf. FIg. 7.44). As a c?n
sequence of this type of spin ordering, the magnetic unit cell ~n the ordered ~tate (t.akmg 
into account the spin orientations of the cations) is twice the SIze of the chemIcal umt cell. 

This structural distinction can be detected using diffraction (§2.6.l), either of neu
trons (making use of the intrinsic spin of the neutron as a magne~ic probe) o~. of 
circularly polarized X-rays from a synchrotron radiation source (whIch are senSItive 

Fig. 7.65 Antiferromagnetic ordering of spins of Mn2+ ions in MnO. The 0 2- ions are not 
s~own, b~t l!e midway between the ~n2+ ions in (100) directions. Spins are ferromagnetically 
alIgned wlthm p 11}. plan~s, a~d antIf~rromagnetically aligned between adjacent planes. Note 
that the magnetic umt cell IS tWIce the SIze of the chemical unit cell. 

to the spin and orbital angular momentum of a scattering atom). In the case of magnetic 
neutron scattering, the magnetic neutron-scattering length is given by 

bm = bo ±psina, (7.278) 

where ~o is the normal scattering length (§2.6.1.3), p is a coefficient proportional to the 
:nagn~tl~ moments of the. neutron and of the atom (decreasing with scattering vector K 
m a SImIlar manner to the X-ray atomic scattering factor-see Problem 7.29), a is the 
angle ~etwe~n K and the net atomic magnetic moment /-£m, and the + / - signs depend on 
the onentatIOn of the neutron spin to the direction perpendicUlar to both K and /-£m. 
Thus,. up-and down-spin atoms, as in the magnetic structure of Fig. 7.65, scatter spin
polanzed neutron~ differently. Figure 7.66 shows neutron powder-d~ffraction patterns 
for MnO at 80 K m the antiferromagnetic state, below the Neel ordering temperature 
(see below) of TN = 120 K, and in the magnetically disordered, paramagnetic state 
above TN. Note the appearance of the extra peak at small scattering angle in the low
temperature pattern, resulting from diffraction from {Ill} planes in the larger magnetic 
unit cell. 

. A si~ple model fo~ antiferromagnetism can be developed in which the exchange 
mteractIOn between spms on neighbouring atoms is given by the Heisenberg Hamilton
ian (eqn. (7.2~7a)), b~t with a negative value for the exchange constant 1ij. In the ideal 
case, such an mteractIOn ensures that the spin on an atom is antiparallel to the spins on 
the nearest-neighbour atoms. Such a configuration can be achieved for all atoms if 
the crystal structure of the magnetic ions can be separated into two interpenetrating 
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Fig. 7.66 Neutron powder-diffraction patterns of MnO at a temperature (a) below the Neel 
temperature, eN; (b) above eN. The unit-cell parameters, a, differ by a factor of two. (After Shull 
and Smart (1949). Reprinted with permission from Phys. Rev. 76, 1256. © 1949. The American 

Physical Society) 

sub-lattices, so that one sub-lattice is decorated by spins of one orientation and the 
other is decorated by spins with the opposite orientation. Examples of such structural 
decompositions are a monatomic simple cubic structure, which can be separated into 
two interpenetrating fc.c. lattices, and the monatomic b.c.c. structure (§2.2.3.2) in 
which body-centred sites form one sub-lattice and the corner sites form the other. 
(Note that the simple cubic structure of MnO shown in Fig. 7.65 does not satisfy this 
criterion since the two interpenetrating fc.c. lattices are decorated respectively in this 
case by Mn and 0 atoms; the fc.c. lattice itself cannot be further divided into two sub
lattices and so complete antiferromagnetic ordering is not possible in this structure (see 

Problem 7.30), as seen in Fig. 7.65.) 
The Neel model of anti ferromagnetism generalizes the Weiss mean-field theory for 

ferromagnetism (§7.2.5.2) by assuming that magnetic atoms on one sub-lattice (A) 
experience a molecular field proportional, and opposite in direction, to the magnetiza
tion MB of the other sub-lattice (B), and vice versa. Thus, neglecting local-field correc-

tions: 
(7.279) 
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By an~logy with the Weiss constant, AW for ferroma etism ? 
spondmg expression for the Neel constan~ in eqn. (7.27~ is (eqn. (7._23)), a corre-

A -'- -2 LHi'jfij 
N ? ? , 

l1J.LogjJ.Lp, 
(7.280) 

withh Li'fi.'jfij = z~, where z is the nearest-neighbour coordination number and tl 
exc ange mteractlon has been take t b . . . le Equation (7280) d'f:tI b f n 0 e constant for all pairs of mteractmg spins. 

. 1. ers y a actor of 2 from eqn. (7.223) because there are onl 11/? 

a.tom~ per volume m each sub-lattice in the antiferromagnetic case Assumin~ ~ sIn:phc~ty, as ~or the ferromagnetic case (§7.2.5.2) that J = S -1 '. I _ I:> fOl 
BrIlloum functIOn (e (7 172)) d '. - 2' Wit 1 gJ - 2, the 
th bItt' q~ .. ' re uces to a tanh functIOn as in eqn. (7.227)' thus 

e su - a Ice magnetIzatIOns are given by , , 

M _ 11 [AB . A,B - 2:J.LBtanh f.LBBeff /kBTJ. (7.281) 

In the high-temperature limit tanhx rv x and eqn (7281) b . , _ . , .. can e reWrItten as 

ANC CH 
MA,B + 2T MB,A = 2T ' (7.282) 

~:e~:~o~e l1f.LOJ.LVkB is the Curie constant (cf eqn. (7.234». The net magnetization is 

M MA + MB = __ C~H_'_ 
T+ 

(7.283) 

and hence the magnetic susceptibility is 

C 
(7.284) Xm = 

where 

1 
TN = 2:ANC. (7.285) 

Tht~~expression (7.284) for the high-temperature behaviour of the susceptibility of an 
an llerromagnet should be comp . d 'tl h .. I h me WIlt at lor a ferromagnet (eqn. (7.234)) 
in :s \:e at~sence ~f an ~xternal magnetic field (H = 0), antiferromagnetic orderina sets 

. mpera ure ecomes less than the Neel temperature e det . d bl:> 
determmant of the coefficients of the pair of equations (7.282) 'berdg ~e;~~mne y the 

1

1 ¥ I )..2C2 
)'C -IT = 1 - -- = 0 
IT 4T2 

or 

1 
T = eN = 2:AC == TN· (7.286) 

~~e~~~::;lbhyO;eve~., it1is found that the ratio TN/eN is greater than the value of unity 
. . e SImp e mean-field model; e.g. for MnO T /e - ' 

transItion, and with H = 0 eqn. (7283) sho th t M ~ N N - 5.3. At the Neel , . ws a A - -MB, as expected for an 
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t T < e again with H = 0, the magnet-
antiferromagnetic stat~. ~t lower temperba ~res: N(' 7 279) into eqn. (7.281) to give 
ization of one sub-lattIce IS found by su stltutmg eqn. . 

nllB (()N 2MA) (7.287) 
MA = -MB = T tanh T nllB . 

For temperatures below the Neel temperature, the ma~neti~ suscepti~ility :epe:lds ~n 
the relative direction of H and the spin axis. For a field directlOn norma to t e spm aXIS, 

. '1 d f m the field-free axis so as to create a compo-

:;:t' :; ::~~~:~j~~~;::t to a;a~~ '::~:,~~b~~~~~~e:p;.~t~~ g;~e~ef;;~~lO~:;!;~ 
independent of temp<:rature, a mean- Ie 

tures: 
.L C (7.288) 

Xm = 2TN' 

f (7285» For the case of H parallel to the 
i e the value at the Neel temperature (c . eqn..· . d h r d fi Id 
. : t T = OK where both spin sub-lattices are perfectl~ ahgn~ , t e app Ie Ie 

spms, a h t' t' and so xII (0) = O. With mcreasmg temperature, the 
cannot change t e magne Iza lOn m II (T) . 
effect of the molecular field diminishes prog~essively. ~nd hAence Xmfi Id ~nc~;::~~ 
b 

. al to X (TN) = Cj2TN at the Neel transItIOn. mean- Ie re ecommg equ m 

(Problem 7.31) gives 

with 

0.015 

0.010 

0.005 

II _ aC 
Xm(T) - (1 + a) TN ' 

a = ANC sech2 (1l0ANMo). 
2T kBT 

120 160 200 240 280 320 
r(K) 

(7.289) 

(7.290) 

. T f th t'D rromagnetic material MnF2· The 
Fig. 7.67 Experimental magnetic su~cept1bllty 0 e a~ 1 e K for fields arallel or perpendi-
susceptibility is .diff~rent. below

f 
th~ Ne~ :e~i~~~at~~~, i~;e~de~t of spin ~irection above this 

cular to the s(PHm dklrecdtlOHnaSllo(19t9~) s~e-p~oduc~d by permission of John Wiley & Sons Inc.) 
temperature. 00 an . 

* 

* 

The experimental temperature dependence of the susceptibility of the antiferromagnetic 
material MnF2 (Fig. 7.67) approximately follows these predictions. 

Finally, it should be mentioned that antiferromagnets belQw the Neel temperature can 
support spin waves (magnons), as for ferromagnets (§7.2.5.4). However, instead of the 
dispersion law having ,the limiting (low~k) quadratic behaviour characteristic of ferro
magnets (eqn. (7.261», that for antiferromagnets has a linear dependence, W/c ex: k (see, 
e.g. Kittel (1996». 

7.2.6 Applications 

The magnetic properties of materials are widely exploited in very many different areas 
of application. Some magnetic applications have already been touched upon in §7.2.5.5: 
for example, permanent magnets are fabricated from hard magnetic materials, and soft 
magnetic materials are used in electrical-power applications, e.g. as cores in transform
ers. Another very important application of magnetic materials is in information tech
nology, namely in magnetic data recording, whereby information is stored magnetically 
as a preferred spin orientation in the material. 

7.2.6.1 Magnetic data recording 

Information can be stored in materials in a form suitable for electronic (or optical) 
processing in several ways. For example, it may be stored as electrical charge, e.g. in 
semiconductor-based memories, as variations in optical reflectivity or refractive index 
for optical processing, or as variations in electron-spin alignment in magnetic memories. 
This latter format is the most widespread method of digital and analogue data recording 
used at present. 

Magnetic recording makes use of the hysteresis in the variation of magnetization with 
applied magnetic field intensity that is characteristic of ferro- and ferrimagnetic materi
als (§7.2.5.5). That is, the remanent magnetization is a record of the last maximum field 
intensity experienced by' the magnetic solid, in terms of both magnitude and direction of 
the field. The electrical signal to be recorded is converted, by passing an electrical 
current through a recording head, into a time-varying, spatially confined magnetic 
field. The magnetic recording medium, for example in the form of ferro/ferrimag
netic particles bonded to the surface of a flexible tape or of a disc or a thin film of 
magnetic material deposited on a disc substrate, is then moved mechanically relative to 
the recording head so that electrical signals varying in time are transformed into 
spatially varying magnetization regions in the recording medium. Alternatively, data 
may be stored in a ferrimagnetic film by thermomagnetic means. A highly focused laser 
beam heats a small region of a magnetized material to above its Curie temperature, and 
the material is allowed to cool from the paramagnetic state in a reverse magnetic field 
which induces a reverse magnetization in the previously irradiated spot. Thus, digital 
data can be stored, e.g. the bit '0' corresponding to the original magnetization direction 
and '1' to the reversed direction. Once the data are written magnetically, for long-term 
storage the magnetization should not be easily altered by stray magnetic fields: this 
requires the magnetic material to have a high coercivity. However, the coercivity 
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should not be too large if the medium is to be reusable, since the magnetic fields 
produced by the recording head should be capable of re-magnetizing the material in 
order to record new data; typical values of coercivity for this purpose are in the range 
20-100 kAim. 

For the recording medium to be at all useful, the data stored as spatial variations of 
magnetization must be able to be 'read', but in such a manner that the reading operation 
does not perturb the stored information. In order that the output signal during the 
reading process is as large as possible, the magnetic material should have a high value of 
saturation magnetization. Two methods of reading magnetically stored data can be 
envisaged. The simplest method is to move the magnetic storage medium (tape or disc) 
past a coil of metallic wire (having a soft magnetic core): the motion of the spatially 
varying magnetization in the medium produces a time-varying magnetic flux density 
passing through the coil which, due to Lenz's law, produces a time-varying output 
voltage signal. 

Alternatively, signals recorded magnetically can be read by making use of a magneto
resistive sensor (§6.3.3.2), made either of a metallic material like permalloy (Ni81FeI9) 
with ~R/ R ~ 2.5%, or one using the larger effect, termed 'giant magnetoresistance' 
(GMR), where tlR/ R;$ 200%, which is observed in multilayers of thin ferromagnetic 
metal films (e.g. Fe/Cr) with antiferromagnetic coupling between the layers (Baibich et 
al. (1988». (Note that this effect should not be confused with the much larger (negative) 
'colossal' magnetoresistance observed in manganites (§6.3.3.2). The GMR effect occurs 
because of spin-dependent electron scattering at the interfaces in the multilayer stacIe. 

A more sophisticated method of reading magnetically stored data employs magneto
optical effects, such as the Faraday and the Kerr effects, in which the polarization 
direction of a linearly polalized light beam is rotated by the interaction of the light with 
a magnetic field: the Kerr effect is when this phenomenon occurs for light reflected from 
the surface of a magnetic material; the Faraday effect occurs for light transmitted 
through a (semi-)transparent magnetic material (e.g. a magnetic insulator or a very 
thin magnetic metal) and is correspondingly less useful in this regard. The process based 
on the Kerr effect is particularly suited to the reading of digital data stored magnetically, 
since the presence or absence of reversely magnetized domains created thermomagne
tically can readily be detected by measuring the associated change in polarization 
direction of the reflected light; analogue signals, where the variation of magnetization 
can be much less pronounced, are more difficult to read because the corresponding 
angular changes e of the polarization direction given by 

(7.291) 

where Kr is a constant, are so small (typical rotations are 9 arc minutes for saturated Ni 
and 20 arc minutes for saturated Fe or Co). 

Oxide materials suitable for magnetic recording are the ferrimagnetic iron oxides 
magnetite, Fe304, and maghemite, 1 - Fe203, and the ferromagnetic material Cr02. 
Perhaps the most widely used material for magnetic-tape applications is maghemite, 
which has a defect inverse-spinel structure, with some of the octahedral B sites vacant, 
so that, in contrast to the magnetite structure (Fig. 7. 64a), the Fe3+ ions are divided 
unequally between the A and B sites, this imbalance giving rise to a net magnetic 
moment. The chemical formula for maghemite can be written as 1 [Fe203] == 
FeFes/304 to make the discussion in terms of the spinel structure more transparent. 

Since there are twice as many B sit (16) A' . 
implies that there is one vacancy for :~er . a\ sites (8) m the spinel structure, this 
chemical composition in the spinel repre~e~:;a::o~ i~n the B sub-lattice; i.e. the spin and 

[Fe3+].~ [0 1/3Fe~t3 ] B 0 4, 
i . 

where the symbol 0 denotes a va Th . 
thus m = (2: _ 1) x _ can~y. e magnetl~ moment per spinel formula unit is 

f..L h ~ 5f..LB - ~.33f..LB (smce each Fe3+ IOn contributes 511 -see §7 2 5 6) 
or per c emlcal formula Ul1lt f..L = 1 x 3 33 _ . . ,...,B • " , 
of R "-' 3 X 104 A -I A .' m 4 . f..LB - 2.5f..LB. ThiS matenal has a coercivity 

c - m . n Improved material is Co- d'f d F . 
greater value of He = 5 X 104 A m-I . . m~ lIe 1- e20 3 which has a 
line anisotropy) the Co is incorporai:~s~~l;~ed WI;'h an I;c~ease in the ~agne.tocrystal
also has a reasonabl lar e sur ace 0 t e maghemIte grams. Cr07 
the coercivity, but inYall t~:s:a~~t~~:::sa~~e~ocr~stalline anisotropy that.c?ntributes t~ 
intrinsic magnetic characteristic but t: ommant cause of the coerclVIty is not this 
m.icrostructure of the magnetic grains nraa ell' alhl extra~eous effect depending on the 
S. , me y s ape al1lsotropy 

hape al1lsotropy energy is a measure f th d'ffi .. 
magnetization parallel or perpendicular to ~he l~ngl e~enc; m m~gnetic. energies for 

:::=~i~o s~:~~i:S.t~h~:~:e~~i~ae:~eg~ f~r A[ p;~aIIe~~~ ~e a:Xrsnil:~~r:~:Ct~7n s~;~ 
field, H

d
, given by n ers 00 m terms of an mternal demagnetizing 

. '. Hd = -NjM, (7.292) 
where Nj IS a dImenSIOnless (positive) dema " f: 

~:~~ ~; :ome representative ellipsoidal sampI;::~:~~e:~~O;~~:I~.~~ ~~~ ~~~~:e~~'~~l~s 
t' xactly analogous to the depolarization field for dielectrics (eqn (7 15) Th g 

:~~e~c energy of a sample can therefore be written as the integral ov~r the s~mpI: 

~m = -~J f..LoHd .MdV. (7.293) 

:~~)a :~:p~~t~n ~e ~~:F:r~ an ~l1di~soid dof revolution (with the long axis along the z-
A • an lrecte at an angle e to the 7-axis (F' 7 68) 

M = xM sme + 2M cose and from eqn (7 292) th d .. -. 19.., , '. e emagnebzmg field IS 

Hd = -.};N.,Msine - 2N-Mcose 

which is also uniform. Thus, the magnetic energy d~nsity i~ 
1 1 

Um = - 2" f..LoHd . M = 2" f..LoM2(N.,cos2e + Nysin2e) 

1 7 

= 2" f..LoM-(N., - NJsin2e + const. 

(7.294) 

. (7.295) 

Equating this expression to the leadin t . . 2 . 
(eqn (7267»' .. h' g erm m sm e for the amsotropy energy density 

'. gIves lor t e amsotropy constant 

(7.296) 
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z 
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F
. 7 68 An ellipsoidal sample with a uniform magnetization lying in the x-z plane at an angle () 
Ig. . . h . t 

to the z-axis as a model for calculatI~g s ape am so ropy. 

0.5 

0.4 

10 

. 'd fit' howing the variation with axial 
Fig.7.69 Shape anisotro~y fo~ a I?rolate elhpsOl .. 0 revo u lOn, S _ N. 
ratio c / a of the difference m pnnclpal demagnetIzmg factors, (Nx· J. 

Inserting this equation into the expression for the anisotropy field (see Problem 7.32): 

HA = 2Kl (7.297) 
J.loMs 

gives the shape anisotropy field: 
(7.298) 

which is simply the intrinsic coercivity Hei when shape-anisotr~py ~ffects areldo:ninant. 
. h h . t' of (N - N-) for a prolate ellIpsOid of revo utlOn as a FIgure 7.69 sows t e vana Ion x -

function of the axial ratio cia. Single-domain, acicular particles of ,-Fe203 and Cr02 
can be grown relatively readily with axial ratios of 5: 1 or higher, for which shape 
anisotropy is therefore the dominant contribution to the coercivity. 

For the case of magnetic thin films used as. magnetic data-storage media, two modes of 
operation are possible. In-plane magnetic recording utilizes variations in magnetization 
that lies in the plane of the film: electroplated Co-Ni alloy films dm be used in this regard, 
and these have a high in-plane magneto crystalline anisotropy. Alternatively, perpendi
cular magnetic recording has the magnetization normal to the film surface: sputtered Co
Cr films having a columnar microstructure normal to the surface are used for this 
purpose. For further details on magnetic-recording materials, see e.g. McCurrie (1994). 

Problems 

7.1 (a) Show that, if the electrostatic potential of a dipole p is given by 
¢(r) = (1/41l'Co)p . \7(l/r), the electric field due to a uniform polarization P in a sample 
is equal to the field in vacuo of a fictitious surface charge density, O'c = iz· P, where iz is 
the outward unit vector normal to the surface. (Hint: use a vector identity for \7 . (P /r).) 

(b) Hence obtain expressions for the depolarizing field (and the depolarization factors Ni) 

for samples with geometries of 
(i) a thin disc; 

(ii) a long cylinder; 
(iii) a sphere. 

7.2 Calculate the atomic polarizability, and hence the dielectric constant, ofliquid Ar, for which 
the atomic number density is 2.128 x I028m-3 and the atomic radius is R = 1.18 A. (The 
experimental value is c = 1.538.) 

7.3 (a) Show that the average component of a dipole moment p parallel to a local electric field 
Eloc, when independent, and able to adopt any orientation, in thermal equilibrium is 
given by Ppar = p1!.(x) , where 1!.(x) is the Langevin function (eqn. (7.40» and 
x = pEloc/kBT. Show that: under normal circumstances, x« 1, and hence that 
har ~ p2 Eloc/3kB T .. 

(b) Prove that for an orientable dipole with only two allowed orientations, i.e. parallel and 
antiparallel to the electric field, Ppar ~ p2 Eloc/kB T. 

7.4 Obtain an expression for the frequency dependence of the atomic polarizability based on the 
driven damped-oscillatonnodel (eqn. (7.43». Show that for the model of atomic polariz
ability illustrated in Fig. 7.5, the corresponding resonant frequency is given by 
wo (Ze2/41l'COR3me ) 1/2. 

7.5 Show that if the Debye relaxation time is thermally activated, TO = Toexp( W / kB T), with 
activation energy W, an Arrhenius plot of c2(T) at a fixed frequency exhibits a peak at a 
temperature To = W/kBln(I/WTo). 

7.6 Show that an equivalent parallel electrical circuit, consisting of a capacitance C1 in one arm 
and a series combination of a resistor R and capacitance C2 in the other, gives the Debye 
expression for the dielectric constant (eqn. (7.50» if the following identities hold: 
Cl == -coc(OO), C2 == co(c(O) - c(oo))/ R = To/C2• (Hint: obtain an expression for the com
plex admittance yt = iwcoct (zt)-, where zt is the complex impedance.) 

7.7 Assume that the microscopic mechanism for dielectric relaxation in an amorphous solid (e.g. 
an ionic conductor) can be described by the Debye dipolar-orientational model, with a 
distribution G( To) of relaxation times. If the relaxation time is taken to be thermally 
activated, with a random distribution of activation energies, show that the overall real part 
of the a.c. conductivity has a linear frequency dependence, O'I(W) ex: w. 

7.8 Show that for the orthorhombic point group D2(222), with symmetry operations 
{E, C2, Cr, Cn, the only non-zero components of the piezoelectric constant tensor dare 
d123 , d213 and d312 • 



. . I re ferroelectric e.g. Rochelle salt, NaK 
7.9 Many hydrogen-contammg. cryst~ s a h hate' (KDP), KH2P04, and its iso-

(C4H406) ·4H20, and potassIUm dihydrogen ~~s~ PO 'replaced by AS04)' The orthor
morphic compounds (K replac~d by Rb, Cs o~hedr~ arr:nged in a staggered fashion such 
hombic structure of KDP conSIstS o~ P0

4 tetr. t ly at the same height along the c-axis as 
that the top edge of one tet:-ahedron IS ~Pdrox~~he PO tetrahedron forms four hydrogen 
the lower edges of two adjacent tetra era. a. 4. account for 
bonds with adjacent tetrahedra. In terms. of motIOn of H at~ms 
(a) the paraelectric phase above the Cune temperature, TCf, 

(b) the ferroelectric phase below T Cf· . d with a given P04 tetrahedron be easily 
(c) How can the dipole moment aSSOCIate 

reversed? b" f D for H? . t to be the effect on TCf of su stitutIOn 0 . 
(d) What do you expec . f the Landau free-energy expression (eqn. (7.65», 

7.10 By analysing the field-free expr~s~IOn or . olarization is given by eqns. (7.73). 
show that for a first-order tranSItIOn the satura~~of ~ven by eqn (7 115) is equivalent to a 

7.11 Show that the particular choice of vector poten ~a gl 0 .' 
uniform magnetic field and satis~es t~e ga~gt~~~: ~ti~ation in Cu, corresponding to the 

7.12 De Haas-:-van Alphen .( dH.v A) /01C)lll~t;08;s ~ 1O-5T-~ Obtain a value for the cross-sectional 
belly orbIt, have a penod m (1. 0 . our answer with the value for the free
area of Fermi surface responsI~le, an~ com~ar~ Y845 x 1028m-3) Estimate the maximum 
electron Fermi sphere (the. atomI~ dens~ty~! s~ IS at which the dH~A effect will be observ
temperature, and the ~aXIm?m lmpunty nt arion n' and scattering time T are related via 
able in a field of 10 T, If the Impunty concen r 1 

1014 -3 ] d' . 
niT = m s. Al h . ds are found for B in the [111 IrectIOn, 

7 13 I ld two de Haas-van P en peno I f the . n go , -5 -I d 6 X 1O-4T-I. Calculate values for the e?ttrema areas 0 
li(1/B) =2.05 x 10 ~ ~n. d account for these results mterms of the shape 
Fermi surface probed m thIS ~xpenment, an F 618) Analyse the dHvA oscillations 
of the Fermi surface of Au (I.lke that[IolfOC] u

d
:- s~e 1;'0' which orbit do these oscillations 

shown in Fig. 7.29 for B m the lrec IOn. 

correspond? . d't in a thin film of a superconductor of 
7.14 Obtain an expression .for the magn~~l~ ~u~d e~~Jx density Bo on both sides of the film. 

thickness d < AL, sU?Ject to ahn app Ie . Ie f 
0 

the spatial variation of B given by eqn. 
(Hint: use the solutlons of t e expression or 

(7.140).) . . was measured for a sample consisting of a 
7.15 Flux quantization in a superconductmg nng I d non-superconducting Cu core 

hollow cylinder of the superconductor;.n ~ell~c~~Eu~~e~~t~ B to the sample in the normal 
of radius 6.6 /-Lm) by applying ~ m~gne IC Ie f the field which was then removed, thereby 
state, and coolin~ throug~ Te m t e presednce/ linder What would you expect the plot 
trapping magnetIc flux.q, m the supercon? uc mg cy . 
of q, versus B to look lIke for B ~ 50 mT. . su erconducting ring, of thickness 

7.l6 Estimate the duration of persistent cu~~~t~r:~c~ fiefct Be = O.IT and superconducting 
R ~ l/-Lm, for a type-I supercobndfiucdt?r ~~ time taken for one flux quantum to leak out of 
coherence length (eff = l/-Lm, y m mg e 

the ring. . h b h . ur of flux vortices in both"conventional' and high-Tc type-II 
7.17 Essay: DISCUSS tee avIO 

superconductors. f th Jth level in a Russell-Saunders-coup1ed atom. 
7.18 Prove eqn .. (7.160) for the energy 0 e erator Xis X. X X(X + 1)).) 

(Hint: the eigenvalue for an angula~-momentum.op hence ive the corresponding 
Obtain the ground-state electrol11C c?nfigur.~~on'3+anCd 2+ d gc 3+ Mn2+ Mn3+ and 

7.19 't' t I IOns Tl V r an r, , term symbol, for the tranSl IOn-me a , , 'h . L 3+ C 3+ Nd3+ Pm3+ 
M 4+ F 3+ C 2+ NiH and Cu2+ and for the rare-eart IOns ~ , e, ' , 

n3+ ' e3+, 03+, Tb3+ D 3+ Ho3+, Er3+, Tm3+, Yb3+ and Lu +. . . 
Sm , Eu , Gd .' . ' y. ' B( ) ( (7172» reverts to the Langevm functIOn (eqn. 

7.20 Show that the BnIloum functIOn x eqn. . . 
(7.40» in the classical limit. f m of co er sulphate is associated with the 

7.21 The d?mina?t component of the pa~ama[X~ll~ ~O!l :~ 2). Show that the magnetization 
Cu2+ IOns WIth quenched con?gur~tIOn .2 fl 'td f flux density B is given by 
for a concentration of n IOns m a magnetIc Ie 0 

M = nJ.tBtanh(/-LBB/kBT). Calculate an expression for the magnetic contribution to the heat 
capacity per unit volume, CB, at constant flux density B. (Hint: calculate first the internal 
energy associated with the ions.) See also eqn. (4.204) and Problem 4.21 for another 
instance of a two-level system. 

7.22 Essay: Discuss adiabatic (isentropic) ,demagnetization of a paramagnetic sample as a 
method for producing ultra-low temperatures. 

7.23 Show that the magnetic dipolar interaction between two magnetic moments, of magnitude 
/-LB, at a separation of 3 A, is only important at temperatures below 0.02 K. 

7.24 (a) In the limit of zero electron-electron interactions, the two-electron wave function for 
say the H2 molecule with nuclei a and b, can be written as the product of one-electron 
wavefunctions for electrons 1 and 2: q, = [¢a(1) + ¢b(1)][¢a(2) + ¢b(2)]. Give a physi
cal interpretation of all the product terms in this expression, and show why the Heitler
London approximation (eqn. (7.193» is appropriate when electron-electron interac
tions are not negligible. 

(b) Obtain the eigenenergies given by eqn. (7.205) for the case of the H2 molecule by a 
variational method, taking the wavefunction to be \Ii = cI'l/J1 + c2'l/J2, where'l/JI = ¢a(I) 
¢b(2) and 'l/J2 = ¢a(2)¢b(I), where ¢i(n) are one-electron wavefunctions as in (a). 

7.25 By considering a fluctuation in magnetization, demonstrate that the intersection at the 
origin of the curves in Fig. 7.46 corresponding to eqns. (7.230) represents an unstable 
solution to the magnetization of a ferromagnet. 

7.26 By generalizing eqn. (7.241) for the spin-population difference in the Stoner model to 
include the effects of an external magnetic field of flux density Bo, obtain an expression 
for the net magnetization, and hence show that the exchange enhancement of the Pauli 
paramagnetic susceptibility is given by eqn. (7.247). 

7.27 Obtain an expression for the heat capacity, valid at low temperatures, associated with the 
excitation of spin waves in a ferromagnet, and show that this contribution behaves as 
C,. <X T3/2. Compare this expression with that predicted by mean-field theory for low 
temperatures. A plot of Cv/T3/2 versus T3/2 for a ferromagnet gives a straight line. What 
physical properties of the material can be deduced from the slope and intercept? 

7.28 Show that the theoretical maximum energy product (BH)max' for an ideal permanent 
magnet material is given by eqn. (7.277). (Hint: consider only the demagnetizing quadrant 
of the hysteresis curve (Fig. 7.62b).) 

7.29 (a) Calculate the angular dependence of magnetic scattering of polarized neutrons from an 
atomic magnetic moment /-Lm. (Hint: assume that the contribution to the scattering 
from a point anywhere within the atom is proportional to the local magnetic-moment 
density, and that this is uniformly distributed over a spherical surface of radius R and is 
zero elsewhere.) 

(b) Describe qualitatively the difference in magnetic neutron scattering from an anti ferro
magnetic crystal above and below the Neel temperature. 

7.30 Extend the Neel theory of antiferromagnetism to the case of a ferrimagnet. 
(a) Show that, even if the exchange parameters 3J AA,3J AB and 3JBB for interactions between 

nearest-neighbour spins on the A and B sub-lattices are all antiferromagnetic, i.e. 
3Jij < 0, nevertheless separate ferromagnetic ordering on the A. and B sub-lattices 
occurs, with ferrimagnetic alignment overall, as long as the AB interaction is the 
strongest. (Hint: consider the interaction energy density, U = -!(BA · MA+ 
BB . MB), and take B~r'rB = Bloc - AIMB,A - A2MA,B') 

(b) If a spin has Za antiparallel and zp parallel nearest-neighbour spins, show that 
Ad A2 za/ zp. Show also that the high-temperature magnetic susceptibility has the 
Neel form Xm = C/(T + B), where B is related to the Neel temperature BN by 
B/BN = (AI + A2)/(AI - A2) = (za + zp)/za - zp). 

(c) For spins arranged on an f.c.c. lattice, it is impossible to find a truly antiferromagnetic 
ordering of nearest-neighbour spins. Consider the case where the spins in alternate 
(200) planes are arranged ferromagnetically either up or down: evaluate the ratio B/BN • 

7.31 Obtain the expressions (7.288) and (7.289) for the perpendicular and parallel components 
of the magnetic susceptibility of an antiferromagnet below the Neel temperature in the Neel 
model. 
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7.32 By considering a spherical single-domain sample of a magnetically uniaxial material, and its 
magnetic energy density, show that the magnetic susceptibility is Xm = MoM; 12K and, 
hence, that the anisotropy field is HA = 2KI I MoMs (eqn. (7.297)). 
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(Problem 5.2)). In other cases, phenomena on.1y °2cDcur 
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a~ity (e:g. the Illt~ger h' \ e k e~ Is with buik properties of materials, i.e. involving 
dIscussIOn so fa: I~ tIS. 00 ea . . discussion of the effect of reduced 
3D pr~perti~s, It IS of Illterest to fimsh Wl~ :e will discuss 2D systems in §8.4, for 
dimensIOnality. Note, however, that al~ho~g f 2D behaviour namely 'surface 

f d b I ce one major Illstance 0 , . . 

:~~:~::" ~.e.s~:~~n::racti~~:f surfaces of materials with :~:t~u;:ls ::C~~:t~~~~~~~~:1J 
phase and the behaviour of the surfaces themselves (~.g. z'11 (1988) and 
be omitted. Such a broad subject merits a book to Itself-see e.g. angwi 

Liith (1995). 

) Definitions 8.1 

Several ways of defining the dimensionality of a system can be envisaged, depending on 
the behaviour of interest. Here, we will concentrate on two approaches, one being based 
on the structure and bonding of a material and the other based on its behaviour (e.g. 
electronic). 

The first, structure-based, microscopic classification scheme (I) defines dimensional
ity in terms of percolation along, say, the covalent bonds of a structure: the space so 
traced out corresponds to the dimensionality of the system. Thus, if the process of bond 
percolation inevitably ends up with the starting point being revisited, the structure can 
be said to be zero-dimensional (OD): examples are discrete rings or molecular clusters of 
atoms. Alternatively, if bond percolation traces out a linear topology, which may be 
kinked or linear in shape, the structure is ID-like. Finally if bond percolation traces 
out the topology of a surface, which may be buckled as well as planar, the structure is 
2D-like. 

Figure 8.1 shows four examples of materials in which the (iono-)covalent bonding is 
restricted to OD (molecular P4Se3), ID (crystalline SiS2) and 2D (crystalline GeSe2), 
compared with the 3D (giant molecular) structure of amorphous SiOz. Note that in the 
last three cases, all the structures are based on AX4 tetrahedra (A = Si, Ge; X = 0, S, Se) 
in which the relative degree of corner-sharing and edge-sharing of neighbouring tetra
hedra varies: a ID structure results from complete edge-sharing of tetrahedra, while the 
3D structure involves a completely corner-sharing mode of connection; mixed edge-and 
corner-sharing of tetrahedra produces a 2D structure. Of course, very many different 
other types of structural unit, and different modes of connection between them, can 
produce structures of reduced dimensionality: however, in all cases, from this structural 
viewpoint, a distinction is made between the strong (covalent) bonds within regions of 
the structure that define the dimensionality and the weak (e.g. van der Waals) bonds 
between such structural regions that bind the regions together to form a structure that is 
three-dimensional overall. Where such a distinction between intra- and inter-region 
bonding cannot be sustained, this microscopic scheme for determining reduced 
dimensionality breaks down and the structure is inherently three-dimensional from 
this viewpoint. 

The other classification scheme (II) for defining the dimensionality of a system is a 
more macroscopic approach, based on the size dependence of some physical behaviour 
of the system. This could involve, for example, transport, usually of electrons (but in 
principle also of other excitations, such as phonons), in which case an important length 
scale is the mean-free path, A (§§4.6.2.2 and 6.3.1.1). In this scheme, a system is said to 
be of reduced dimensionality if the size, L;, of a macroscopic sample of material is 
reduced sufficiently in one or more orthogonal directions, i = {x,y, z}, so that in those 
directions the mean-free path (m.f.p.) is determined by boundary scattering and not by 
some other intrinsic mechanism (e.g. see §6.3.1 for scattering mechanisms for electrons, 
or §4.6.2.2 for phonons). Thus, reduced dimensionality occurs in this picture if Aint > L; 
so that A tot ~ L; for transport in the ith direction, since the total m.f.p. is given by a 
reciprocal sum of intrinsic and extrinsic (boundary-scattering) mechanisms, 
At;l = Ai;;: + A;i (cf. eqn. (4.233». Alternatively, the important length scale can be 
related to the 'size', Lo, of the electron wavefunction, such as the Fermi wavelength, 
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(a) (b) 
One:c-SiSe2 

., Se 

• Ge 

"Si 0 Se 

(d) Three: v-Si02 

• Si 

Fi . 8.1 Examples of reduced-dimensional materials de~n~d ~y a bond-perc.olati~n c~tegoriza
ti;n: (a) zero-dimensional (molecular P48e3); (b) 0!1e-dlme!1slOnal (crystallme 8182), (c) two
dimensional (crystalline Ge8e2); (d) a three-dimenslOnal (giant-molecular) structure of amor-
phous 8i02, for comparison. 

AF = 2n/kF, or the effective Bohr radius, Q(j, of an exciton (§?8.3): In this case: size
quantization sets in if Li < Lo. Hence, in this scheme, a zero-dImensIOnal system IS one 
in which all three orthogonal lengths of a sample are less than Aint and a qua~tum d~t 
results when the lengths are such that Lx,y,z < Lo. A one-dimensional system IS .one In 

which two spatial dimensions are'smaller than Aint; transport (e.g. of electrons! IS th~n 
allowed along the remaining one dimension unencumbere~ by ~oundary ~cat~en~g (FIg. 
8.2b). A quantum wire is a ID conducting sample wIth SIze quantIzatIOn In two 

dimensions (Ly,z < Lo). Finally, a two-dimensional system is that in which only one 
spatial dimension is less than Aint and hence transport is allowed in two dimensions 
limited only by intrinsic scattering mechanisms (Fig. 8.2c). A quantum well is a 2D 
conducting sample with size quantiza,tion in the third dimension (Lz < Lo). 

It should be noted that these two classification schemes are not necessarily mutually 
inclusive: a 3D material (from a bond-percolation point of view), e.g. GaAs, can be 
readily fabricated in a low-dimensional sample form (quantum dot, wire or well) by 
means of modern lithographic and etching techniques; conversely, for example, a 2D 
(layer) crystal (e.g. graphite-see §8.4.1) can, if in polycrystalline form with no prefer
ential orientational ordering of the crystallites, exhibit 3D (isotropic) transport beha
viour in a macroscopic sample with a size in all directions of Li > Aint. 
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Fig. 8.2 Examples of reduced-dimensional samples defined with respect to a characteristic 
length, Lo = AF, the electron Fermi wavelength: (a) quantum dot ({Lx, L)., LJ < Lo); 
(b) quantum wire ({Lx, Ly} < Lo); (c) quantum well (Lx < Lo) . 
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Zero-dimensional systems 8 .. 2 

8.2.1 Fullerenes 

Perhaps the most interesting of OD materials as classified by scheme I are the fullerenes, 
the newly discovered cage-like polymorphs of carbon with general formula C20+2n , 
consisting of hollow closed nets with 12 pentagonal faces (rings) and n hexagonal 
faces (rings), and formed from three-coordinated carbon atoms. The first such cluster 
found was C60 which has been named 'buckminsterfullerene', after Buckminster Fuller 
who designed the geodesic dome that has an identical geometry (as has a soccer ball). 
Since the initial discovery of C60, other related structures of carbon have been found, 
called generically fullerenes or, more colloquially, 'buckyballs'; some examples are 
illustrated in Fig. 8.3. The structures with lowest energies have isolated pentagonal 
rings: the smallest cluster satisfying such a rule is C60 itself (Fig. 8.3a), followed by 
C70 (Fig. 8.3b), the two most stable and prevalent forms found in carbon-arc soot. In 
addition species consisting of concentric shells of fullerene structures, known colloqui
ally as onions, have also been found. 

Although fullerenes are zero-dimensional according to classification scheme I when 
embedded in normal, Euclidean space, one could alternatively regard them as planar, 
2D structures, but in a curved space. The carbon allotrope that is planar in Euclidean 
space is, of course, graphite (§8.4.1), each layer of which consists only of three-coordi
nated sp2-hybridized carbon atoms forming hexagonal rings. Curvature can then be 
induced in such a planar layer by the introduction of disclination lines (§3.1.2), in this 
case associated with the centres of pentagonal rings replacing the hexagonal rings. In 
this sense, fullerenes (and also carbon tubes-see §8.3.4) and graphite can be regarded as 
being structurally related, rather than being separate allotropes. 

The C60 cluster has icosahedral (h) point-group symmetry, associated with its inher
ent five-fold rotational axes (see Fig. 8.3). However, sublimed crystalline films of C60 

(a) (c) 

(b) (d) 

Fig.8.3 Fullerene clusters: (a) C60; (b) C70; (c) C78 (C2v); (d) C78 (D). This cluster is chiral. 

consist of an f.c.c. packing of such almost spherical units, the clusters being held 
together. ~y wea~ van der Waals interactions, w~th an inter-centre spacing of ~ 10 A 
and a mIll1m~m mter-cag~ separation of about 3 A. The intramolecular bonding, on the 
other hand, IS covalent wIth some contribution from 7T-bonding. 

Part of the electronic band structure of fc.c. C60 , in t?e vicinity of the top of the 
valence band a~d the bo.ttom of the conduction band, is shown in Fig. 8.4, together with 
the correspondmg densIty of states. The uppermost states in the valence band derive 
from the 30 7T-orbit~ls for an isolated C60 cluster, grouped into seven variously degen
erate molecular-orbItal energy levels, and are occupied by 60 electrons (one from each 
carbon atom). The HOMO is five-fold degenerate for the isolated cluster: it can be seen 
that the highest groups of bands of states in the valence band of the solid derive from 
these molecular levels. The widths of all bands in the valence and conduction bands are 
ver~ narrow, ~ 0.5 eV, because of weak 7T-7T interactions between C60 clusters in the 
solId state. Pure crystalline C60 is expected from the band structure therefore to be a 
semiconductor, with a gap of 'igg ~ 1.5 e V. " 

. Sinc.e. the. spacing between C60 molecules in condensed films is so large, the three 
mterstItIal SItes (two tetrahedral, one octahedral) per cluster in the fc.c. packing (cf. 
§2.2.4.2) are large enough to accept extraneous atoms, e.g. alkali atoms. The insertion 
(e.g. by in~diffusion) of such foreign atoms, a process termed intercalation (§1.2.5), is 
acco~pall1ed by char~e transfer betwee~ the alkali atoms M and the C60 host, forming a 
fullende: an electron IS donated by each mtercalated alkali atom and occupies the lowest 
group ~f. (three) bands forming the bottom of the conduction band. Thus, at the 
compoSItIOn M3C60, all interstitial sites of the fc.c. lattice are filled with alkali atoms 
a~d if ionization of the alkali atoms is complete, the lowest band of conduction states 
wIll be half-filled with electrons; since the chemical potential therefore lies in the middle 
of a band of delocalized states, this intercalated compound will behave electrically as a 
metal (Fig. 8.4(b)). . 

-0.5 L--L.-L--L--L_-l 
r A xw L r LX 

C60 molecule C60 solid 

(a) (b) 

-2.0 -1.0 0.0 1.0 2.0 
~eV) 

Fig.8.4 Electronic structure of C60 and alkali fullerides. (a) Band structure of solid C
60 

, showing 
the ~op of the valence band and the bottom of the conduction bands, together with the molecular
orbItal energy levels (an~ .occupancies) obtained from a Hi.ickel calculation for molecular C60. 

(After ~~aver and Po mer .(1994). Reproduced by permission of Academic Press, Inc.) 
(b) ~enSItIes o.f states for solId C60 and some potassium fullerides. The position of the Fermi 
level IS ~hown III each case by a dashed line. (After Erwin (1993). Reproduced by permission of 
John WIley & Sonc Inc.) 



Although the f.c.c. structure can only accept a maximum of three intercalant atoms 
per C60 cluster, expansion of the structure of the C60 packing to b.c.c. allows a further 
three foreign atoms to be intercalated, to give a limiting composition of M6C60. For this 
composition, the group of bands at the bottom of the conduction band have a different 
detailed shape from those for the f.c.c. structure (see Fig. 8Ab) but nonetheless 
are still narrow and well separated from the other conduction bands); for M6C60, 
they are completely filled and hence the material reverts to being a semiconductor 

(Fig. 8Ab). 
Perhaps the most interesting behaviour exhibited by the solid form of C60 is that 

metallic intercalated compounds, M3C60, become superconducting at quite elevated 
transition temperatures, higher than 'conventional' intermetallic alloy superconducting 
materials (e.g. Nb3Ge) but lower than the cuprate high-Te materials (§6A.3); M3C60 
materials are type-II superconductors. The very interesting feature is that the super
conducting-transition temperature, Te, increases with the type (i.e. size) of the inter
calant cation or, alternatively, with the size of the expanded lattice constant, a, of the 
intercalated compound (see Fig. 8.5). The highest transition temperature is found for 
the compound (ThRb) C60, with Te = 45 K. This correlation between Te and a can be 
understood, for example, in terms of the BCS expression for the superconducting 
transition temperature (eqn. (6.159», namely Te (1.141iwD/kB)exp(-I/~og('gF))' If 
the electron-lattice interaction ~o is assumed to be independent of a, that is if intramo
lecular vibrational modes are responsible for the Cooper pairing, then as a increases, the 
electronic overlap between orbitals on adjacent C60 clusters will decrease, resulting in a 
reduced bandwidth and a corresponding increase in g('gF) and hence of Te. A review of 
the superconducting properties of fullerides has been given by Gunnarsson (1997), and a 
general survey of fullerenes and their compounds is given in the volume edited by 
Ehrenreich and Spaepen (1994). 
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Fig. 8.5 Variation of the superconducting-transition temperature, Tc , with the latti~e. constant, 
a, for intercalated C60 films with general composition M3C60. (After Weaver and Po mer (1994). 
Reproduced by permission of Academic Press, Inc.) 

8.2.2 Quantum dots 

Material systems exhibiting size-quantization in three orthogonal directions, i.e. quan
tum dots, can be fabricated in a number of ways. Nanocrystals of a material (crystallites 
having spatial dimensions of the order ofnanometres) can be grown with a well-defined 
size distribution in one of two ways: either as colloids, resulting from liquid-phase 
homogeneous precipitation or by the controlled growth of crystallites, e.g. of II-VI 
materials (e.g. CdS or CdSe) or IB-VII materials (e.g. CuCl) in either a glassy matrix 
(e.g. a borosilicate glass) or, in the latter case, in NaCI crystals as well. Alternatively, 
clusters of atoms can be grown (e.g. by vapour-phase condensation) to a limited size on 
the nanoscale. Finally, instead of the size of crystallites being restricted during their 
growth, the reverse procedure is possible, namely removal of material (e.g. in a film) by 
lithographic etching, resulting in a protuberance of nanoscaled dimensions (called a 
mesa) standing proud of the substrate. The optical and electronic behaviour character
istic of nanoscale samples will be discussed in the next two sections. 

8.2.2.1 Quantum dots: optical properties 

For nanocrystals (assumed to be spherical) of radius R, the restricted size can have a 
marked influence on their optical properties. This is because the electronic wavefunction 
for a nanocrystal is strongly confined within its volume: there is a very high potential 
barrier at the interface between the semiconductor nanocrystal and the insulating glass 
matrix. Two spatial regimes can be distinguished, depending on the relative values of R 
and t.he Bohr radius, ao, of the Mott-Wannier exciton (§5.8.3), with ao for the Cou
lomblcally--coupled electron-hole pair being given by (cf. eqn. (6.235»: 

(8.1) 

where j.l is the reduced mass (j.l-I = m;-I + mh-I ) for the relative (rotational) motion of 
electron and hole of effective masses 111; and mh, respectively, and £ is the dielectric 
constant of the material containing the exciton. 

The weak-confinement regime (Kayanuma (1988) is for R/ ao ~ 4: in this case, the 
kinetic energy associated' with the centre-of-mass motion of the exciton (§5.8.3) is 
increased because of quantum-confinement effects (essentially because of the Heisenberg 
uncertainty principle) so that the exciton binding energy is decreased from the value it has 
for an infinite-sized system in terms of the Rydberg energy R* (eqn. (5.223», i.e. 

'g = _ R* +£(!!:.)2 
n2 2M R (8.2) 

where M is the exciton mass (M = 111; + 111h). The exciton can still be regarded as a 
quasiparticle, but its translational motion is quantized (see Fig. 8.6a). 

The other limit is the strong-confinement regime (Kayanuma (1988), where R/ao;$2 
and the confinement kinetic energy is greater than the Coulomb-attraction interaction: 
for such small sizes of confinement box, the relative motion of the exciton can be 
regarded as being so strongly hindered that the spatial correlation between electron 
and hole is lost to a considerable extent, and the electron and hole occupy quantized 
energy levels corresponding to the particle-in-a-box problem. The wave function '1f;n(r) 
with s-like symmetry for a particle of mass 111 confined in a spherical box of radius R is 



Conduction 
band 

(a) 

Valence 
band 

Conduction 
band 

f------I n = 2 

1------1 n = 1 
1 1 I _____________ J 

1-------------, 
lin = 1 

(b) 

Valence 
band 

n=2 

Fig. 8.6 Effects of quantum confinement on the electronic energy levels associated with optical 
absorption for semiconductor nanocrystals in: (a) the weak-confinement regime. The exciton 
binding energy ~ is reduced from the value it has for an infinite crystal (dashed line). (b) the 
strong-confinement regime. The valence and conduction bands split into a series of sub-bands 
corresponding to the energy levels of a particle-in-a-box. 

WI1 (r) = Cil sin (mrr/ R), 
r 

(8.3) 

where CII is a constant and n are integers (n = 1,2, ... ), and the corresponding energy 
levels are given by 

(8.4) 

so that the energy of the electron-hole pair in the n 1 (1s) state is given by (Brus 
(1986), Katayuma (1988»: 

(8.5) 

where the second term is the remnant of the exciton interaction. Thus, in both cases, a 
blue-shift in optical absorption is expected because of quantum-confinement effects
see Fig. 8.7. Since the (1s) exciton Bohr radius a(j in CuCl is 7 A and in CdS is 29 A, for 
likely sizes of nanocrystals (R c:::: 30 A), CuCl will therefore be in the weak-confinement 
regime and CdS in the strong-confinement regime. The effect of quantum confmement 
on the optical-absorption spectrum of CdS nanocrystals in a borosilicate glass matrix is 
illustrated in Fig. 8.8: as the radius of the nanocrystals decreases from c:::: 50 A to 17 A, 
the optical-absorption edge shifts to higher energies. See also plate VI. 

Quantum confinement also has an important effect on the oscillator strength! of the 
optical absorption involving excitons in nanocrystallites. The oscillator strength,!I, of 
the optical transition to the first excited Is exciton state can be written as (Kayanuma 
(1988»: 
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Fig. 8.7 Calculated blue-shift (as a ratio of the infinite-crystal exciton Rydberg ener .) of th 
ground state of an electron-hole system in a spherical quantum dot ~or m*/ * 10 gyr . e 
of the d' fth fi . - h me as a unctIOn 
C CI ra lUS 0 e c.on mement box (as a ratIO of the exciton Bohr radius). Experimental data for 

u n~nocrystal~ m N~Cl (0) ~n? CdS nanocrystals in a silicate glass (..6.) are shown for 
companso~ (Repnn,ted WIt~ penmssIOn from Kayanuma (1988), Phys. Rev. B38 9797 © 1988 
The Amencan PhysIcal SOCIety) ,. . 
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~ig. 8.8 ~oo~-ten:perature optical-absorption spectra for CdS nanocrystals in a borosilicate 
g a.~s m~t?X With dIfferent ~rystallite radii: R = 1.7 nm (dotted line) and ~ 5 nm (solid line 
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from ElseVler SCIence - NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands) 
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J 7r~3IJ WI(re,rh,reh 0)dr I
2

, (8.6) 

where i is the Is-exciton oscillator strength per unit volume in a bulk crystal, W is the 
exciton wavefunction (reh = re - rh being the difference between electron and hole 
spatial coordinates), and V is the volume of the ~anocrystal. Thus, from e~n. (8.6), 
the overall oscillator strength of the nanocrystal IS Vii, and so scales as R . In the 
strong-confinement regime, moreover, the oscillator strength is concentrated into t~e 
lowest-energy transitions; as a result, excitonic effects (i.e. peaks near the gap energy) III 
the optical-absorption spectra are accentuated for nanocrystals (see Fig. 8.8). 

This size-enhancement of the oscillator strength of nanocrystals also produces an 
enhancement of the non~linear optical response of the material (see §5.8.4), specifically 
of the third-order susceptibility X(3), the real part of which is related to the non-linear 
refractive index, n2 (eqn. (5.231)) and the imaginary part of which is related to the change 
in the optical-absorption coefficient, b.K. The value of n2 for bulk CuCI is 
7.5 x 10-13 m2 W- I

, but a glass matrix containing just 0.5 vol. % of nanocrystallites 
of CuCI of radius 34 A has an effective n2 = 3 x 10-11 m2 W- I (Justus et al. (1990)): 
taking into account the small overall volume of the nanocrystallites, the actual value of 
n2 for CuCI in nanocrystalline form must be about three orders of magnitude higher still. * 

Finally, quantum confinement has an effect on the rate of radiative interband transi
tions in semiconductors that, as bulk materials, have indirect gaps between states at the 
top of the valence band and those at the bottom of the conduction band .. Normally, the 
rate of indirect optical transitions is very low because of the necessIty of phonon 
involvement in the electronic transition in order to conserve momentum (§5.8.2). How
ever, the lack of translational symmetry resulting from the restricted size ofnanocrystals 
means that the electron wavevector k is no longer a good quantum number, and hence 
optical transitions are allowed between any states and phonons need not be involved. As 
a result the radiative transition rate increases. This behaviour is found for porous 
silicon; 'bulk c-Si is, of course, an indirect-gap semiconductor (§5.4.2). Porous Si is 
made by electro lysing doped c-Si wafers in an aqueous HF solution; most of the 
material is etched away, leaving isolated columns of large aspect ratio (with diameters 
of the order of a few nanometres) standing normal to the substrate. The cores of such 
columns comprise nanocrystals of c-Si embedded in a disordered matrix of oxidized 
silicon. As a result of the loss of translational invariance, the Si nanocrystals in porous 
silicon can exhibit efficient photoluminescence (Canham (1990)), or even electrolumi
nescence, which is the emission of light following the absorption of other light or the 
application of an external electric field (§8.5.2.3). Hence the optical behaviour o~ porous 
Si, in contrast to its bulk counterpart, is effectively that of a 'direct-gap' mater~al. 

Thus far, it has been assumed that the separation between quantum dots IS suffi
ciently great that they do not interact electronically. However, it is possible to envisage 
controlling the distance separating quantum dots during the fabrication process, so that 
inter-dot interactions can be changed in a controllable way. Such a procedure can be 
achieved by a colloidal aggregation of nanocrystallites (whose surfaces are passivated 
with organic ligands) from a dispersion in a liquid, following evaporation of the liquid. 
Colloidal crystals, i.e. 3D quantum-dot superlattices, several tens of microns in size can 
be made in this way by self-organization of CdSe nanocrystals each with diameters of a 
few tens of nanometres (Murray et al. (1995))-see Fig. 8.9. (Opal is a naturally 
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Fig. 8.? Hi~h-resolution transmission electron micrograph and, inset, the corresponding elec
tron dIffractIOn pattern of a (10)) projection of an f.c.c. superlattice array of quantum dots of 
nanocrystals of CdSe, each 48 A in diameter. (Reprinted with permission from Murray et al., 
Science 270, 1335. © 1995 American Association for the Advancement of Science) 

occurring colloidal crystal, consisting of ordered 3D arrays of monodisperse, micron
sized silica particles; its iridescence results from Bragg diffraction (§2.6.1.1) oflight from 
planes of particles.) The electronic interaction between CdSe quantum dots in such a 
superlattice causes a small red-shift of the optical absorption spectrum with respect to 
that of an isolated nanocrystal. . 

8.2.2.2 Quantum dots: electronic properties 

Size can have dramatic effects on the electronic properties of samples in the nanoscale 
range. Electrons confined within a small-radius spherical potential well will occupy 
discrete energy levels given by the particle-in-a-box solution (see Fig. 8.10) rather 
than, for example, the Bloch functions (§5.2.I) characteristic of systems with (infinite) 
translational periodicity. It can be seen from Fig. 8.10 that a closed-shell electronic 
structure, as in atoms, is .evident: clusters of metal atoms containing a total number of 
valence electrons sufficient completely to fill a number of shells will be particularly 
stable energetically. This picture explains the so-called 'magic numbers' of the sizes of 
clusters of, say, Na atoms preferentially found in supersonic beams, produced by mixing 
the metal vapour with an inert carrier gas and ejecting the mixture through a nozzle 
(see e.g. de Heer (1993)). Figure 8.11 shows that magic clusters, with numbers of Na 
atoms N = 8, 20, 40, 58, 92, 138, etc., are found experimentally: examination of 
the energy-level diagrams shown in Fig. 8.10 shows that such numbers correspond to 
the occupancy of closed shells of electrons in a spherical square-well (or similar) 
potential. In fact, preferred sizes are found even for clusters of Na atoms containing 
up to N = 25000 atoms. The spherical shell-closure series of numbers continues only 
up to N = 1430. After that, preferred cluster sizes seem to be determined more by 
structural-packing than by electronic shell-filling considerations: the resulting set of 
other magic numbers 1980,2820 ... 21300 correspond to complete Mackay icosahedra 
(§2.2.2.4) of different sizes. Thus, it is only for clusters of metal atoms containing several 
tens of thousands of atoms that behaviour characteristic of the bulk material is 
recovered. 
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Fig. 8.10 Energy levels for an electron in spherical 3D harmonic, intermediate and square-well 
potentials (Reprinted with permission from de Heer (1993), Re~'. Mod. P'hys. 65, 61.1. © 1993. The 
American Physical Society). The levels for the square-well and mtermedI.ate potentIals are labelled 
according to the nuclear (not atomic) convention where?y, for a gIven angul~r mom~ntum 
quantum number I, the lowest radial quantum numb~r 1~ v = 1. The cumu~atIv~ ~axImum 
occupation numbers are shown for each level, from WhICh It can be seen that magIc numbers 
(8,20,40, 58, 92, etc.) correspond to filled shells of electrons. 

Perhaps the most remarkable effect exhibited by quantum dots is that the capacitance 
of, or the electrical current passing through, a dot can be changed drastically simply by 
the addition of a single extra electron as a result of one-electron tunnelling. In order to 
observe this phenomenon, it is necessary to confine a few electrons in a region of 
meso scopic (i.e. sub-micron) dimensions, insulated from the surroundings, and to 
measure the electrical current passing through this region via source and drain electro
des; the charge carriers pass between the quantum dot and the electrodes by quantum
mechanical tunnelling through the intervening (thin) insulating barrier. A number of 
configurations can be envisaged by which electron confinement can be achieved. Per
haps the simplest configuration has a quantum dot formed from a metallic film of 
mesoscopic dimensions, separated by narrow insulating regions from source a~d drain 
electrodes in a coplanar arrangement, with a 'gate' electrode underneath the deVIce, also 
separated by an insulating layer (Fig. 8.12a). A related configuration is that of an etched 
mesa, in which a quantum dot (e.g. of the semiconductor GaAs) is sandwiched between 
thin semi-insulating layers of AlxGal-xAs alloy (with a bandgap larger by ~ 0.5 eV than 
that of pure GaAs for x = 0.4); source and drain elel,;trodes contact the top and 
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~ig. ~.~1 Abundances of sizes of sodium clusters produced in a supersonic beam, showing the 
.magI~ numbers marked (8, 20, 4~ ... ~54~ (after Bj0rnholm et al. (1991». The data are plotted as 
mtenslty (a, b), and also as loganthmic dIfferences (c, d) to accentuate the peaks in (b). 

bottom su:f~ces of the insulator-semiconductor-insulator sandwich (Fig. 8.12b). A 
more sophIstIcated way to confine electrons is to use electric-field gradients. A device 
geometry that can .be us~d to achieve this is shown in Fig. 8.12c. A semi-insulating 
Alx?a1-xAs layer msulates a gate electrode from a semiconducting layer of GaAs; a 
POSItIve voltage Vg applied to the gate causes a 2D electron gas to accumulate at the 
AlGaAs/GaAs interface (see §8.4.2.2). However, additional shaped electrodes placed on 
the top surface of the GaAs, biased negatively with respect to the source and drain 
electrodes, repel electrons in the region under the shaped electrodes, with the result that 
the electrons are confined by electrostatic potential barriers (Fig 8. f2d) to the meso
scopic region between constricting protuberances of the shaped electrodes. In this case 
electrons can only join, or leave, the pool of confmed electrons by tunnelling from th~ 
sou~ce, or to the drain, electrode through the potential barriers, whose height can be 
vaned by changing the voltage applied to the confining electrodes. 

In such configurations of quantum dots, the conductance Go of the device (equal to 
the .s~urce-d~ain current divided by the voltage dropped between source and drain) 
exhibIts a senes of sharp peaks that are almost periodic as a function of the gate voltage 
at very low temperatures (Fig. 8.13). Each peak in Go corresponds to the addition of a 
single electron to the confined electron pool: hence, such devices have been termed 
single-electron transistors (Kastner 1992, 1993). 
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(a) Gate (b) 

(c) (d) 

Fig. 8.12 Configurations of quantum dots that act as one-electron transistors. (a). Metal qu~n
tum dot in a coplanar configuration. (b) Semiconductor (GaAs) quantum-dot mesa In a sandwIch 
configuration. (c) Semiconductor (GaAs) quantum dot defined by the el~ctric-field gradients 
associated with the constrictions in shaped electrodes on top of the semIconductor. (d) The 
electrostatic potential surface associated with the shaped-electrode configuration in (c). The 
pool of confined electrons occupies the central potential well. 

The extraordinary pseudo-periodic behaviour evident in Fig. 8.13 can be explained by 
the Coulomb-blockade model. Suppose that a quantum dot is initially electrically 
neutral; addition of an electron to it requires an energy e2/2C, where C is the total 
capacitance between the dot and its surroundings. Thus, in order for a current to flow, 
an energy barrier (the Coulomb blockade) of e2/2C must be surmounted: for an 
electron to tunnel onto the dot (or Coulomb island), its energy must be greater than 
the Fermi energy of the contact by e2/2C, and for a hole to tunnel, likewise its energy 
must be below the contact Fermi energy also by e2/2C. Thus, there is a total gap of 
width e2/ C in the tunnelling density of states of the quantum dot. If the temperature is 
sufficiently low that kBT < e2/2C, neither electrons nor holes can flow from source to 
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10-1r-------------------~----------------________ ~ 

Gate voltage Vg (millivolts) 

Fig. 8.13 . Cond~ctan~e, in terms of the quantity e2 / h, of a one-electron transistor with a 
configuratIOn as In FIg. 8.l2c, measured at 60 mK as a function of gate voltage (Kastner 
(199~). Reprinted with permission from Phys. Today 46, 1, 24. © 1993 American Institute of 
PhYSICS) 

drain via the ~uantum dot. Since the capacitance of such quantum dots is typically 
C ~ 1O-16F, thiS means that Coulomb-blockade effects will only be evident at very low 
temperatures, T ~ 1 K. 

Howeve~, a tunnelling cu~rent can be made to flow by varying the gate voltage for the 
configuratIOns (a) and (c) m Fig. 8.12, since this changes the energy needed to add 
charge to t.he quantum dot-. The electrostatic energy of a quantum dot having a charge 
Q and subject to a gate voltage, Vg, is 

(8.7) 

F or ~egative Q, ~nd .with. a .positive Vg, eqn. (8.7) shows that the energy is a parabolic 
functIOn of Q, With ItS rrullimum at Qo = -CVg (Fig. 8.14). However, since electrical 
charge is quanti~ed in units of the electronic charge e, the energy given by eqn. (8.7) also 
can only take dlsc:-ete values. When Vg is such that the minimum energy is determined 
by Qo -Ne, an lI:,tegral number of electrons, there is a Coulomb blockade of ±e2/2C 
as before for changmg Nby ±l. For other values of Qo, that are not integral numbers of 
ele~trons (or holes), and except also for the case Qo = -(N + 1/2)e, there is a small but 
fillite energy gap between ~F and the nearest available quantum-dot state and so no 
electrical current will flow at low T (Fig. 8.14). However, for the special case 
Qo = -(N + 1/2)e, the two charge states of the Coulomb island with Q = -Ne and 
-(N + l)e are energetically degenerate and, as a consequence, there is a fluctuation in 
charge between these two values even at zero kelvin. At this charge-degeneracy point, 



the gap in tunnelling energies disappears and current can flo.w via the quantum dot (Fig. 
8.14c). Thus, as Vg is increased continuously, ~he tu~nelll11g states for :he Coul.om.b 
island are pulled down with respect to the FermI level 111 the contacts unt.II, at penodIc 
values of Vg with period e / C, and corresponding to the transfer of.a sl11gle electro~l 
(hole), the charge-degeneracy condition is achieved and the sour~e-dral11 conductanc~ IS 
high: otherwise, there is a gap in tunnelling states at the FermI energy and the deVIce 

switches off. . 
This Coulomb-blockade picture is valid for metallic quantum dots (FIg. 8.12a) where, 

due to screening effects (§5.6.1) associated with the very la~ge n~mber N ::::::: 10
7

) of free 
electrons, extra charges reside on the surface of the metalhc ~egIOn a~d the Coulomb
blockade energy is given:'accurately by ±e2/2C. For the semlcon~uctl11g quantum-dot 
structure shown in Fig. 8.12c, the number of trapped electrons IS very. much smaller 
(N ::::::: 50) and so the abo.ve expression for the Coulom?-bloc~cade energy IS only ~ppro~
imate. Moreover, energy quantization due to the restrIcted SIze of the C?ulon:b Island ~s 
also important for the semiconductor case, as indicate~ in Fig. 8.1~. Sl11ce slze-quan~l
zation leads to energy levels whose spacing decreases 111 general Wlt~ energy (see FIg. 
8.10), this discreteness will be more evident for lower electron-occupatIOn numbers than 

for very high occupation numbers. 

Qo= -Ne 

-(N + 1)e 
-Ne 

-Ne 

Q 

Qo= -(N + 'A)e 

_(NU \'"4N+~ 

_(N~N' 

(a) (b) (c) (d) .. 

Fig. 8.14 Illustration of the origin of the pseudo-periodic variati?n in source-drain conductance 
of one-electron transistors as a function of the gate voltage, Vg• It IS only at the charge-degeneracy 
point (c), where two charge states (-Ne and - (N + l)e) ?f a quantum dot have the ~ame ener~y, 
that an electron state for the dot coincides with the FermI energy of the contacts, thereby allowmg 
a tunnelling source-drain current to flow via the dot. (After Kastner (1993)) 
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One-dimensional systems 

8.3.1 One-dimensional metals 

How can one produce a one-dimensional metal? What is reguired from a microscopic 
structural point of view (i.e. in terms of classification scheme I (§8.1» is a very strong 
overlap between orbitals on neighbouring atoms along a chain of atoms or within a 
stack of molecules, with negligible electronic interactions between chains or stacks; the 
resulting lD band must also be part-filled. One type of structure that satisfies these 
criteria is the platinocyanate chain compound K2Pt(CN)4Bro.33H20, known as KCP. 
In this, square-planar Pt(CN)~- molecular units form lD stacks as in Fig. 8.15, with 
direct metal-metal bonding involvil'!g overlap of the Pt 5dz2 orbitals; the average Pt-Pt 
soeparation w~thin the chain is 2.88 A, not much larger than in elemental Pt metal (2.78 
A). The cyanide ligands, together with the other ions and molecules (K+, Be, H20) 
situated between the chains ensure that the interchain Pt-Pt separation is large (9.9 A) 
and hence that the electronic coupling between chains is very small. The presence of the 
non-stoichiometric amount of Br- ions ensures that 0.3 holes per Pt atom are intro
duced into the otherwise fIlled ID 5dz2 band, ensuring metallic behaviour (at least at 
not-too-Iow temperatures - see §8.3.2). 

(a) (b) 

Pt HeN K 0 Br 

.e • = 0 e 

= 1/4 

= 1/2\1) 

= 3/4 

e.0)})O 
o 

Fig. 8.15 Structure of the ID metal, KCP (K2Pt(CN)4Bro.3.3H20), consisting of a stack of 
square-planar Pt(CN)~- clusters with Pt-Pt bonding, via overlap of 5dz2 orbitals, along the chain. 
(a) side view; (b) projection. 

As expected, the electrical and optical behaviour of KCP are very anisotropic. The 
electrical conductivity along the chains is 104 - 105 times larger than that perpendicular 
to the chains; above 200 K, the conductivity parallel to the chains, 0'11 is only weakly 
temperature-dependent and has a value characteristic of a metal (Fig. 8.l6a). (The 
strongly thermally activated temperature dependence of 0'11 below 200 K evident in 
Fig. 8.16a is evidence of a breakdown in metallic behaviour characteristic of lD metals 
associated with a (Peierls) structural transition of the conducting chains of atoms - se~ 
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Fig. 8.16 Anisotropic electronic behaviour of K<?P (a ID ~etal abov.e .200 K):. (a) elect~ical 
conductivity parallel and perpendicular to the chams; (b) optIcal reflectlVlty for light polanzed 
parallel and perpendicular to the chains. 

§8.3.2.) The lD metallic character of KCP (above 200 19 is evident also in the o~tic~l 
reflectivity (Fig. 8.l6b): light with the E-vector polan zed parallel to the. chams IS 
strongly reflected for wavelengths longer than that (~ 600 nm) cor:espondmg to the 
plasma edge (§5.8.l), whereas the reflectivity of KCP for light polanzed orthogonal to 
the chain direction is very small, characteristic of insulating materials (see Plate VII). A 
general discussion of the behaviour of KCP is given in Keller (1975). 

Another class of materials that are lD metals (at least at not-too-Iow temperatures) 
are the so-called molecular metals which consist of stacks of organic molecules where 
the electronic (11"-) interactions between molecules within a stack are much stronger than 
those between stacks. The canonical example of such a material is the charge-transfer 
organic compound TTF:TCNQ (TTF = tetrathiafulvalene; TCNQ = t~t~acyan~quino
dimethane). The crystal structure consists of alternate lD stacks Co~slstmg entirely. of 
one or the other type of molecule (Fig. 8.17). The TTF molecule IS a donor, losmg 
charge relatively readily; in contrast, TCNQ is an acceptor molecule. In TTF:TCNQ, 
there is a partial charge transfer of 0.69 electron per molecule between donor and 
acceptor molecules, and so the ID bands for both the TTF and TCNQ stacks are 
part-filled and hence both contribute to the meta1li~ behavio~r .. Indeed, T;F:.TCNQ 
is a ID metal above 60 K with a maximum metalhc conductiVIty some 10- times as 

, 4 1 1 Ad' . 
large as that of KCP, and a room-temperature value of <111 ~ 10 n- m- . ISCUSSlon 
of TTF:TCNQ and similar materials is given in Keller (1977). 

C.>=<:J nF 

-x 

Fig.8.17 Crystal structure of the II? metal, charge-transfer organic compound, TTF: TCNQ 
(the component molecules are shown m the inset) for two projections of the structure. 

8.3.2 Peierls distortion 

We have seen in the previous section that certain materials behave as ID metals at 
elevated temperatures; however, as the temperature is lowered, metallic behaviour is not 
maintained as in normal 3D metals (§6.3.2.1), but instead semiconducting behaviour 
occurs (see Fig. 8.16a). A gap must therefore open up in the electron states at the Fermi 
energy at low temperatures. This opening up of a gap at '"gF is due to a static structural 
distortion termed the Peierls distortion, and it occurs because of a strong coupling 
between electrons and phonons of particular wavevectors. 

The Peierls distortion"can most easily be understood for the simple case of a half
fill~d I.~ band," corresponding to a linear chain of atoms with (undistorted) real-space 
penodicity a, where the Fermi level is at the Fermi points kF = ±11" /2a. If, in a gedanken 
exp~ri~~nt,. a II? chain ~f. atoms is assumed to distort so that the new real-space 
perIOdICIty IS tWlce the ongmal value, then new bandgaps -will open up at values of 
electron wavevector equal to half the original zone-boundary values; i.e. k = ±11"/2a, in 
other words at the Fermi 'points' where the Fermi level intersects the ID bands (Fig. 
8.18). Thus, the electronic energy is lowered, since filled electron states (lkl::::;lkFI) are 
pulle? down in e~ergy whil~ the state~ that are pushed up (Ikl > IkFI) are empty; as long 
as thIS decrease m electrOnIc energy IS greater than the increase in elastic strain energy 
associated with the atomic distortion of the chain the reconstruction will be favoured 
energetically. 

By analogy with the results for the NFE model (§5.2.3), the new reciprocal-lattice 
vector Gf for the Peierls-distorted state is simply given in general by the minimum 
spanning vector (i.e. 2kF) linking the parts of the band structure where the new 
bandgaps occur (Fig. 8.18), and it is also related to the new spatial period, D, via 
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Fig.8.18 Illustration of the origin of the Peierls distortion in a ID chain of atoms r~sulting in the 
opening of a bandgap at 'i8F in a partially filled ID. band .. F<:r.the case of h~lf-fillmg, as shown 
here (a) a distortion giving a doubling of the spatIal penodlclty of the ch~m lead.s t~ (b~ gaps 
ope~ing up in the band structure at k = ±n-j2a = ±kF. (c) The correspondmg redlstnbutlOn of 

the density of states. 
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Hence, from eqn. (8.8), the value of the spatial period of the PeierIs distortion. is set by 
the value of kF (i.e. simply by the electron occupancy of the ID band) accordmg to 

D 7f/kF. (8.9) 

(Note that eqns. (8.8b) and (8.9) are valid only for less than, or exactly, half-filling of the 
band, kF~7f/2a-see Problem 8.2.) For the case of the half-?lled band: kF = 7f/2a and, 
from eqn. (8.9), D = 2a, as postulated. When kF is a rat:onal.frac~IOn of t~e zo~e
boundary wavevector kF ~ (7f / a), the period D of ~he dIstortIOn m the PeIeris-dIs
torted state is an integral number of fundamental lattIce constant~, D = ~1G, from eqn. 
(8.9): such a distortion is said to be cornrnensu~ate w~th the underIymg lattIce .. Howe.ver, 
kF need not be a rational fraction of 7f / a, m whIch case the corresp?ndm~ PeI~rls 
distortion is incommensurate. For example, for the case of KCP, the PeIerIs-dlstortIOn 

periodicity is D = 6.67a (Problem 8.2). . ..' 
The PeierIs distortion is a solid-state verSIOn of the Jahn-Teller dIstortIOn that IS 

found for molecules: a coupling of degenerate electron states to a vibrational nOrJ.?al 
mode of the chain of atoms causes a structural distortion to a structural configuratIOn 
of lower symmetry. The involvement of the phonon mode i.n the Peierls distortion 
can be demonstrated pictorially for the simple case of a cham of atoms, each atom 
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a q = 1[/a 

o TWa 

Fig.8.19 Pictorial illustration of the electron-phonon interaction between electrons at Ie = 0 and 
kF (= 'Tr/2a for a half-filled ID band) and a phonon mode with q = 'Tr/a. In the Peierls-distorted 
state, the periodicity in this case is twice that of the undistorted chain; hence the Brillouin zone for 
electron states is halved in extent, and the band is folded back. The two configurations of the 
s:orbital coef~cients of the Bloch electronic wavefunctions (open circles = positive value; hatched 
Circle = negative value of same magnitude) that are degenerate for the undistorted chain become 
non-degenerate when subject to a static distortion with wavevector q = 2kF = 'Tr/a. 

contributing one s-electron to the conduction band, which is therefore half-filled. In the 
Peierls-distorted case, with D = 2a, the new Brillouin zone is half that of the undistorted 
case, resulting in a folding of the original band for k > 7f /2a in the reduced-zone scheme 
(§5.2.2). The phonon mode that drives the reconstruction of the regular chain into the 
~eierls state in this case is shown in Fig. 8.19: this symmetric pairing mode is, in fact, 
SImply a zone-bound~ry LA phonon (for the undistorted chain), with wavevector 
q = 7f/a (cf. Fig. 4.12). If the phases of the s-orbital coefficients akn of the Bloch 
electronic wavefunctions are represented as open circles (positive values) and hatched 
circles (negative values of the same magnitude), the bonding and antibonding combina
tions at k = 0 (infinite electron wavelength) are as shown in Fig. 8.19. The q = 7f/a LA 
phonon mode causes the two orbital combinations having an electron wavevector 
k = 7f/2a, which are degenerate in the case of the original undistorted chain, to have 
different energies; the lower state has more bonding character and the upper has more 
antibonding character after the static displacement occurs. 

At elevated temperatures, the vibrational amplitude of the atoms increases (§4.2.6) 
and the static displacement characteristic of the Peierls distortion is washed out· the 
material then reverts to the metallic state. ' 

The electron-phonon coupling is apparent also in the dynamical behaviour of the 
material above the Peierls transition temperature in the phonon spectra, as revealed by 
inelastic neutron scattering. This occurs because the Lindhard expression (eqn. (5.157» 
for the electronic screening of the ion-ion Coulombic interaction exhibits a logarithmic 
singularity when q = 2kF, translating into singularities (Kohn anomalies) in the phonon 
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Fig. 8.20 Acoustic-phonon branches in d~uterated KCP at room tempe~atur~ measured by 
inelastic neutron scattering (Renker and Comes (1975». A Ko~ aI!-omaly IS eVIdent along the 
line q = 2kF = O.37r/c. Reproduced by permission of Plenum PublIshing Corp. 

dispersion curves, w(q). Such Kohn anomalies are evident in the. acoustic
phonon branches of (deuterated) KCP in the metallic state ab~ve the Pe~~rls trans
ition temperature (Fig. 8.20). It appears, therefore, that the Pelerls tran~ItiOn could 
be viewed as arising from ~ soft-mode mechanism (§7.1.5.4) .for a phonon wIth q =. ~kF. 
However, fluctuations also play an important role in the act~al transItion. 
Further discussion of the Peierls transition can be found, for example, m Keller (1975, 

1977). 

8.3.3 Conjugated polymers 

Another important class of one-dimensional conductors comprises ~rganic pol~~rs in 
which the carbon atoms exhibit sp2 -+ pz hybridization and there IS t?e po~slbihty of 
intramolecular 7r-bond formation along the chains involving the pz orbItals (m contrast 
to the intermolecular 7r-interactions present in TTF:TCNQ, for example). Extende~ 
bonding of the 7r-electrons along the polymer chain is possible when the pol~er IS 
conjugated, i.e. when single (0') and double (0- + 71') bonds alternate. The sImplest 
conjugated polymer is the polymerized form of acetylene, (CH)x, kno~n a~ polyacety
lene (PA); two conformational isomers of this polymer are shown .m FIg. 8.21. I.n 
general, the polymers do not consist only of aliphatic chains ?ut also mc1ude a~omatlc 
groups: Table 8.1 shows some representative monomer umts that form conjugated 

polymers. 

(a) 

cis 

(b) ~ ~ ~ ~ ~ ~ 
trans 

Fig. 8.21 Conformational isomers of polyacetylene (PA): (a) cis-PA; (b) trans-PA (thermody
namically stable at room temperature). (N.B. for simplicity neither the single hydrogen atom 
bonded to each carbon atom, nor the carbon atoms themselves positioned at the intersections of 
the bonds, are shown.) 

Table 8.1 Some representative conjugated polymers 

Polymer Chemical name Monomer 7T-7T* energy 

t-PA trans-polyacetylene N 1.5 

PPP poly (p-phenylene) t-O-1 3.0 
. n 

PPV poly (p-phenylenevinylene) to-4 2.5 
n 

PPy polypyrrole +v+ 3.1 
N n 

(After Greenham and Friend (1995). Reproduced by permission of Academic Press, Inc.) 

The electronic structure of conjugated polymers is dominated by the 71' electrons. In 
the 'classical' chemist's ~epresentation of the bonding in a conjugated system, e.g. trans
PA, single bonds resulting from overlap between sp2-hybrids alternate with double 
bonds that comprise an Sp2 a-bond and a 7r-bond, resulting from the overlap of pz 
electrons on neighbouring atoms pointing in the direction normal to the x-y plane in 
which the zigzag polymer chain lies (Fig. 8.22a). Alternatively, the Pz electrons could be 
regarded as being delocalized along the chain, in which' case aU intrachain bonds 
would be equivalent (Fig. 8.22b). The electrical behaviour of these two electronic 
configurations is very different: the conjugated state is electrically insulating, since 
the pz electrons completely fill a 7r-bonding band separated by an energy gap from 
an empty 7r*-antibonding band (Fig. 8.22a). In contrast, the delocalized config
uration is metallic (along the chain) since now the pz electrons half-fill a 7r-band (Fig. 
8.22b). 

At first sight, it appears that the two bonding configurations of the polyene chain 
shown in Fig. 8.22 are connected by a Peierls distortion, as found for ID conductors 
(§8.3.2). However, the situation for trans-PA is a little more complicated than for, say, 
KCP, since the zigzag polyene chain is not truly one-dimensional, but only quasi-ID. 
Note also that the period a of the chain (the next-nearest C-C distance) is not different 
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D 

(a) (b) 

Fig. 8.22 Two configurations of the bonding in trans-polyacetylene: (a) conjugated system in 
which the p=-electrons are localized in 'if-bonds and (J- and 'if-bonds alternate; (b) delocalized 
configuration in which the p=-electrons are delocalized along the polymer chain and all bonds are 
equivalent. A block representation of the bands, and their occupancy by p=- electrons, is also 
shown for each case. 

for the unreconstructed and reconstructed configurations if the average length of the 
single and double bonds of the conjugated configuration (Fig. 8.22a) is the same as the 
bond length in the unreconstructed, delocalized configuration (Fig. 8.22b). If the simple 
Peierls mechanism outlined in §8.3.2 were operative, it would be expected that the 
conjugated configuration would have twice the period of the unreconstructed config
uration since, in this case, the 1T-band is half-filled (one pz electron per C atom)-see 
eqn. (8.9). The symmetry-lowering involved in the transition from the unreconstructed 
to the reconstructed configuration of trans-PA therefore does not involve the periodicity 
of the chain but, instead, involves the loss of a glide-plane symmetry operation (§2.3.3). 

The particular glide-plane operation can be written as 

, {(JI~a}; (8.10) 

the unreconstructed structure of an infinite chain with equal C-C bond lengths can be 
generated by reflecting half of the chain through the mirror plane (J and translating it by 
a vector!a along the chain direction (Fig. 8.23). Both structural configurations in Figs 
8.22 and 8.23 have a basis of two C atoms per primit~ve cell and, since both have the 
same real-space period a, both also have first Brillouin zones in reciprocal space 
extending between -1T / a and 1T / a that are completely filled. 

This circumstance might be expected to produce an electrically insulating state 
(§5.2.5) in both cases, a prediction at variance with the expectation that the unrecon
structed structure with delocalized 1T-electrons should be metallic. However, the glide
plane symmetry characteristic of the unreconstructed configuration means that, in fact, 
there is no gap at the first Brillouin-zone boundary in this case (cf. Problem 5.13); the 
two Bloch states 'l/Jk and ~c' related by 

'l/J~( = ,Qf'l/Jk = {(JI~a } Qf 'l/Jk, (8.11) 

* 

(a) 

-.1a 
2 

--'a 

(b) 

Fig. 8.~3 A pol'yene chain, e.g. trans-PA, with circles representing C atoms in (a) the unrecon 
structe state, With equal C-C ~ond lengths; (b) the conjugated state, with ;horter 'if-bonds and 
lonl~der (J-Ibonds. Both configur~tlOns have the same period a along the chain, but only (a) contains 
a g I e-p ane symmetry operatIOn. 

are degenerate at k = ±1T / a, and so there is no gap there (Fig. 8.24a); Qf is the conjugator 
operator that causes the complex conjugation of the operand: 

QfJ(x) =Jt(xt). (8.12) 

A~mann (1991) g.ives a ~roof of this statement. There is a gap at the second boundary at 
k - =!=2:r / a, but smce thIS Jones zone can contain a total of four electrons per primitive 
~ell,. I.t IS half-filled an~ hence the unreconstructed structure is metallic, as expected 
I~tU1tI~ely. Reco~structIOn of the polymer structure to give the conjugated configura
tIOn lIfts the ghde-plane symmetry and, with it, the wavefunction degeneracy at 
k = ±1T/a. Thus, a ga~ opens.up at the first Brillouin-zone boundary, and hence the 
pure fo~ of trans-PA IS a semi~onductor (the 1T - 1T* energy gap is ~ 1.5 eV-see Table 

* 8.1). ThIS structural c?nfiguratIOn is energetically f~voured at room temperature. 
Alth~ugh pure conJugat~d trans~PA is non-metallic, its electrical conductivity can be 

greatly mcr~ased by chemical.dopll~g with electron donors (e.g. Na) or acceptors (e.g. 
AsFs or 12)' such dopant~pecles (WIth molar fractions of up to 20% per C atom) reside 
between the polymer chams: an.d c~arge transfer occurs between dopants and 1T or 1T* 
bands of the polymer, resultmg m hIgh, almost metallic-like, values of d.c. conductivity 
(e.g. (JQ ~ 105 S m- I at 300 K). 

~lthough it might b~ thought that the extra electrons or holes introduced into 
conjugated polymer chams by chemical doping, or by optical excitation or electrical 

Fig.8.24 The two dif~erent senses of bond alternation in frans-PA. For an infinite chain, this 
means that the electro me ground state is doubly degenerate. 
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Conduction band 

Valence band 

Fig. 8.25 Schematic illustration of the formation of a negatively charged soliton state, S-, on a 
chain of trans-PA following the introduction of an excess electron into the 7f* conduction band. 
The soliton is associated with the change in phase of bond conjugation (and actually extends over 
10-15 C atoms, rather than being localized at one as shown here). The soliton electronic energy 
level lies at midgap between the 7f- and 7[*- bands and is doubly occupied; the state is negatively 
charged. Midgap optical absorption involving occupied soliton states is possible in addition to the 
normal 7f-7f* transitions. 

injection, would enter the (7f*) conduction band or the (7f) valence band respectively, as 
in conventional 3D inorganic semiconductors (§6.5.2), in fact this is not the most stable 
electronic state for conjugated-polymer semiconductors. For the simple case of an 
infinite chain of trans-PA, because the electronic ground state is doubly degenerate 
(there are two different senses of bond alternation-see Fig. 8.24), the lowest-energy 
electronically excited states consist instead of phase kinks in the conjugation sequence 
(see Fig. 8.25). Such bond-alternation defects are known as solitons because of the 
similarity in their behaviour to the solitary waves that are the solution of the non-linear 
Schrodinger wave equation; they propagate without change of shape. A soliton On 
a trans-P A chain actually extends over 10-15 carbon atoms, rather than being 
localized at a single carbon site as shown schematically in Fig. 8.25, but can occur 
anywhere along the chain and is. therefore mobile along the chain direction. The 
electronic energy level of a soliton lies midway between 1r-and 1r* -band edges since 
the state has pz non-bonding character. An excess electron On a trans-PA chain results 
in a doubly occupied, negatively charged soliton state, S-; likewise, an excess hole 
results in an empty, positively charged state, S+. Note that the presence of S- states 
leads to the possibility of additional optical transitions between their levels and the 7f* 

band, giving midgap optical absorption in addition to normal 1r 1r* inter band 
transitions. 

For conjugated polymers that do not have the special characteristic of a doubly 
degenerate electronic ground state, solitons do not occur. Excess electronic charge 
also causes a change in the bond-alternation sequence, but now it is strongly localized 
at a particular point on the polymer chain in order to minimize the cost in energy of 
introducing the higher energy excited state (see Fig. 8.26). Such excited states are called 
polarons (§6.6), since they are associated with a local distortion of the chain (Fig. 8.27). 
A polaron on a conjugated chain can be regarded as being equivalent to a localized 

(a) 

(b) 

Fi~. 8:26 .Two different, non-degenerate senses of bond alternation in PPV: (a) benzenoid; (b) 
qumold (hIgher energy). 

Fig. 8.27 Excess negative charge on a PPV chain, represented as a region of local quinoid 
character. 

pair of solitons, the interaction of which causes two mid gap soliton states to form 
bonding and antibonding com~inations with energy levels symmetrically situated about 
mid.g~p (F~g. 8.28). Such-polaron s.t~tes can accommodate up to four electrons, giving a 
pOSItI~e bIpolaron, bp (0), pOSItive polaron, p+ (1), negative polaron, p-(3), and 
negatIve bIpolaron, bp-(4), where the numbers in parentheses denote the numbers of 
electro~s involved. A full discussion of conjugated polymers and their applications has 
been gIven by Greenham and Friend (1995). 

2+ 
bp p p 

2-
bp 

Fig. 8.28 Polaron and bipolaron energy levels in a non-degenerate ground-state conjugated 
polymer (e.g. PPV). 



8.3.4 Nanotubules 

h b f the carbon fullerene family of materials, intermediate in 
Ad.not e.r ml~tmy beertwOeen the zero-dimensional buckyballs and onions (§8.2.l) and the 

ImenSlOna I . 84 1) . a otu-
two-dimensional hexagonal-net layer structure of graphIte (§ ., compnses n~ n d 

hese are one-dimensional tubes with diameters of a few na~ometres, orme 
~r~:' ~lled graphitic sheets, and capped with he~ispherical sec~lO.ns off full~re~e 

A pIe of Such a structure a chlral fibre conslstmg 0 a smg e 
structures n exam ' . h . F 8 29 
sheet with end-caps based on an icosahedral C l40 fullere~e, IS sown m .Ig. . . 
Actu~l carbon nanotubules produced in a d.c. arc struck m a. low-pressu~e mert-gas 
atmosphere between grap:Q.ite electrodes (Iijima (1991)~ ~onslst of a

l 
se~ltehs of c~.~-

. b n that shown in Fig 8.29. Since BN IS Isostructura WI grap Ie 
centnc tu e~ Ice y" ng the tw~ crystallographically distinct sites in the honey
(each typ: 0 aftom °hi~tCUP /841) mixed B.C N_ nanotubules can also be made in the 
comb lattIce 0 grap e--::i" , x y -

same way. 

. . b I· f diameter d = 10.36 A based 
Fig. 8.29 Illustration of a chiraI, sm~le-shell ca~?~nf~:o:~e ~:~ °end_caps. The chiral v~ctor is 
on an icosahe~ral CI~4~ fullere\ nee, sectl109nlsl~f(~f;~r Saito et at (1992). Reprinted with permission 
c - (15 5) WIth he lCIty ang e = - . . '. 
f:o~ Ap~l. Phys. Lett. 60, 2204. © 1992 American Institute of PhYSICS) 

Since these nanotubules can be thought of as being made from rolled-up sections of 
graphitic-like layers, the characteristics of such tubes, e.g. diameter and degree of 
helicity, can be defmed uniquely in terms of a helical, or chiral, vector 

(8.13) 

linking two lattice sites in the planar graphitic layer from which the tubule is 
constructed. The vectors al and a2 are the unit vectors of the honeycomb lattice, 
defmed as in Fig. 8.30a, and nl and n2 are positive or negative integers (or zero). 
The coordinates (nh n2) of some lattice points are shown in Fig. 8.30b. A 
tubule corresponding to the vector Ch is constructed by rolling up the section cut out 
of the graphitic layer along lines perpendicular to the ends of the vector Ch (Fig. 8.30a), 
and joining up the cylinder along these lines. If either of the coordinates nj or n2 = 0, 
the resulting tubule is non-chiral; the structure is the same whether the sheet is 
rolled up in one sense or the other. However, for non-zero values of nj and n2, a 
chiral tubular structure results; left-hand and right-hand helicities (chiralities) are 
produced by rolling up the graphitic sheet in one sense or the reverse. The helical, or 
chiral, angle, Oh, defined as the angle between Ch and the 'zigzag' direction tll (Fig. 
8.30a), determines the degree of helicity. The diameter of the tubule is given by 
d = IChI/n. 

The most extraordinary feature of carbon nanotubules is that their electrical char
acteristics, whether they are metallic or semiconducting along the tubular axis, are 
predicted to depend on the helicity parameter, Ch (Hamada et al. (1992), Mintmire et 
al. (1992), Saito et al. (1992)). For example, if the zigzag axis (ad of the honeycomb net 

(a) (b) 

Fig.8.30 (a) Defmition of the characteristic parameters describing graphitic-like nanotubules in 
terms ofthe planar honeycomb graphite lattice from which the tubule is constructed. The helicity, 
or chiral, vector CiJ = nl al + n2a2 connects two lattice sites A and A' in the net (al and a2 are the 
unit vectors of the primitive cell); the helicity angle eh is the angle between the vectors CiJ and al. 
The dotted lines, drawn perpendiCUlar to CiJ at A and A' show the extent of the graphitic layer 
which is used to construct the tubule, by rolling along an axis perpendicular to CiJ and joining to 
make a cylinder along the lines. (b) Labelling oflattice sites (nl , n2) connected to the origin (0) by 
the helicity vector Clz. 
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is normal to the tubular axis, eh = (n, 0), semiconducting behaviour is predicted, with a 
narrow gap (almost semi-metallic) if n is a multiple of three, and a wider gap otherwise. 
Figure 8.31a shows band structures calculated by a tight-binding method for two values 
of n (12 and 13) for (n, 0) tubules that exhibit this behaviour. The reason why tubules 
with n = 3p, where p is an integer, have very small gaps is that for them, the periodic 
boundary conditions around the circumference of the tubule mean that only n wave
vectors are allowed in the corresponding reciprocal-space direction. In the tubular-axis 
direction, the allowed wavevectors are essentially continuous if the tubule is very long. 
For the Brillouin zone shown in Fig. 8.31a, n = 6, and in this case, and for n = 3p in 
general, the allowed wavevectors intersect (in zeroth order) the K-point where, for a 
graphite layer, the bonding and antibonding combinations of p-states are degenerate 
(§8.4.l) and semi-metallic behaviour would be expected, as for graphite. However, the 
degeneracy point for a tubule is not exactly at the equivalent of the K-point because the 
Pz orbitals involved on neighbouring C atoms are not parallel to each other, but make a 
small non-zero angle to each other since they point radially away from the tubular axis 
(parallel to eh). As a result, electron overlap is enhanced in the circumferential direction 
because of the consequent involvement also of a~orbital contributions. 

However, one carbon tubule configuration is predicted to be metallic (Mintmire et af. 
(1992), Hamada et al. (1992)) and this is for eh = (n, m) = (2, l)m, where m is a common 
factor (i.e. n = 2m). For this structure, the zigzag axis of the honeycomb lattice is 
parallel to the tubular axis (Fig. 8.31b). In this case, no matter what the value of In, 

an allowed wavevector will always pass through the K-point of the graphitic layer (from 
f), and hence the tubule should be metallic. The tight-binding band structure shown in 
Fig. 8.31b for a (2, 1)6 tubule shows two bands crossing at the Fermi level very near the 

1 Tu.bule (i) (ii) 1 Tu.bule 
axiS axiS 

~, ~ :> --.. -'&F •• OO :> 
~ 0 

rrm]} 
CD 

\lJ1'It> 
&9 -1 i)9 -1 

-2 -2 

-3 -3 
-4 . .1. -5 

r k x k x k x 

(a) (b) 

Fig. 8.31 Electronic band structures calculated by tight-binding methods for carbon nanotu
buies (Reprinted with permission from Hamada et al. (1992), Phys. Rev. Lett. 68, 1579. © 1992. 
The American Physical Society): (a) (n, 0) tubules for (i) n = 12 and (ii) n 13. The X-point is 
near 7f' / a. Also shown is the relationship between this tubular configuration and the honeycomb 
lattice from which it is derived, and the hexagonal first Brillouin zone of the honeycomb lattice 
with the allowed ranges of k-vectors (shown as solid vertical lines) for n = 6. (b) The (2, 1)6 tubule. 
The X-point is near V?J7f'/a, and the arrow marks the position of the wavevector corresponding to 
the K-point in the Brillouin zone of graphite. Also shown is the relationship between this tubule 
and the graphite lattice. The allowed ranges of k-vectors for n = 4 are shown superposed on the 
Brillouin zone of graphite. 

K-point, confirming the metallic character of this class of tubule In 1 b 
t b 1 'th h l' . . genera a car on 
u ueWI eicItyvector(n,m)(n~2I1i~0)ismetallicifn 2, -0' ' 

semiconductor if n 2m 3 (p _ 1 2) . n. - ,IS a narrow-gap 
. :P - , , ... , and a WIder-gap semIconductor otherwise 

I~tra~~ce, however, rea~ carbon nanotubules tend to be semiconducting only for th~ 
s~a es~ Iameters: otherwIse, th~ semi-metallic behaviour of graphite is recovered at 
la;:e~ d~meters. Howev~r: BN-containing nanotubules are semiconducting irrespective 
o u e Iamet~r and hehcIty: tubules made only from BN have a bandgap of about 5 5 
eVand those WIth overall composition C2BN have a gap around 2 eY. These lar e valu~s 
~re.d~e to the. fact that, b~cause of the large ionicity difference between B and N~and C) 
IOmc mteractIOns determme the magnitude of the b d . th d ' t t h K '. an gap, e egeneracy of electron 
sa es at t e -pomt, charactenstic of graphite, is lifted as a consequence (see §8.4.l). 

B.3.5 Quantum wires 

The finallD systems that we will discuss fall into classification scheme II (§8 1) i e th 
are manufactured so that they exhibit ID behaviour, rather than having an int;i~sical~y 
ID structure at the atomic level as in §§8 3 1-4 Th b h' fl' . Y b . . . '" e e aVIOur 0 e ectrons m a solId can 
~ made t~ ~e on~-dI~ensIO~al m one of two ways: either by restricting the dimensions 

o a sam? e ~ se ective etchmg to the form of a very thin wire of material (so that the 
late~al dimens~ons are m~soscopic in size), or alternatively by means of electrostatic 
~on me~ent ~ electrons m an otherwise two-dimensional gas at the interface between 
wo sem~c~n uctors (§8.4.2.2). The latter method is achieved by means of electrodes 

separate y a very narrow (sub-micron) gap and placed over the 2D electron gas: 

~ ............. .. 
~AIGaAS 

Quantum wire 'G~As 

~:~~:~~~:AS 
QUan~mwire 

GaAs 

(a) (b) (c) 

Fig. 8.32 Methods of confining a 2D I t ~ . 
a 2D electron gas at the interface betw;e~c ar~~~~~;~d C;!;~a ~D quan~um wire. (a) Formation of 

~a::Jin~S~}ft~~ ~~~::~! ;~~~ a metal gate electr~de whe;e : ~~~~~t~y j~nn;tt:e ~°fo~~~~~~~! 
the modulation-do ed s (at one r~presentatlV.e k-pomt) as a function of distance, z, through 
the ionized donors1n t:~~~!r;:c~ure Is(s~own; thIS results from the electrostatic potential due to 

well in the conduction band resu~ti~~7rosm °t~~ ~!n~\~h~.2D dfetgheneGratAe electron ~as forms in a 
the (rep I' ) 03 . V d . n mg 0 e a s conductIOn band and 
Restricti~~1~~ th~ 2~ g~~~O ~c~l~n-~and ~~continuity at the i~terface with the AIGaAs. (b) 
to form a linear mesa (extendi . c anne y means of the etchmg of the n-type AIGaAs layer 
thick black line. (c n~ mto th~ page). Th~ confined 1D electron gas is shown by the 
means. In both (b / a~~e( ~f ~h~P~t ¥ate, b~ased neg~t.lvely, to confi.ne ~he ID gas by electrostatic 
layer and the hatched I '. sl~ns re er to posIttvely charged 101llzed donors in the AIGaAs 
by the ionized donors. ayer IS an un oped AIGaAs spacer layer to reduce scattering of the 1D gas 



which serve to confine the electrons, in the layer underneath, in the gap region between 
the 'split-gate' electrodes as a result of the shape of the associated electrostatic potential 
(as for quantum dots-see §8.2.2.2). Figures 8.32b-c show schematic representations of 
these two approaches of confining a 2D electron gas lying at the interface between a 
(doped) AIGaAs and an undoped GaAs layer in a modulation-doped heterostructure 
(Fig. 8.32a). A heterostructure is the name given to a sample consisting of layers of at 
least two different materials, often semiconductors, grown one on top of the other in a 
sandwich configuration (see §8.4.2); modulation doping refers to the selective electrical 
doping (§6.5.2), for example, of only one of the materials making up the layers in a 

heterostructure (see §8.5.1.3). 
Two limiting types of behaviour for electron transport through narrow wires can 

be envisaged. The first is the diffusive-transport regime (Fig. 8.33a), for which 
A « w, L, with the (elastic) electron mean-free path (resulting from elastic scatter
ing from impurities - §6.3.1.2) given by A = VFT (eqn. (6.12)), where VF is the 
Fermi velocity and T is the scattering relaxation time, and wand L are the width 
and the length of the wire, respectively. The opposite limiting behaviour is the ballis
tic-transport regime, in which A» w, L (Fig. 8.33b): in this case elastic 
(specular) boundary scattering is dominant (as in the Casimir limit for phonon con
duction-§4.6.2.2). Although it might be thought that ballistic transport would be 
resistance-free, in fact a non-zero electrical resistance can result from backscattering 
of electrons at the connection between the narrow wire and the wide 2D-electron-gas 
reservoirs, as shown schematically in Fig. 8.33b. An intermediate regime can also be 
distinguished, the quasi-ballistic regime, in which w < A < L and impurity scattering 
and boundary scattering in the narrow wire are of comparable importance. 

Elastic collisions (with defects and impurities or boundary walls) do not destroy the 
phase information encoded in the electron wavefunction but merely shift the phase by 
an additive amount. Inelastic scattering events (e.g. involving phonons-§6.3.1.3), on 
the other hand, do completely destroy the phase memory of the electrons. If electron 
phase coherence is taken into account, then the minimal length scale determining 
electron transport is not the elastic mean-free path A, but instead the phase-coherence 
length, lq" the distance over which electron phas~ coherence is maintained, given by the 
length an electron diffuses between inelastic-scattering events: 

lq, = (DT,p) 1/2, (8.14) 

where D is the electron diffusion coefficient and Tq, is the time between inelastic colli
sions. Since the number ofphonons decreases with decreasing temperature (eqn. (4.68», 
lq, can be correspondingly rather large at cryogenic temperatures (T < IK), e.g. several 
microns for metals, or several tenths of a micron in the case of semiconductor 2D 
electron gases. Modern lithographic etching technique allow sub-micron features to be 
fabricated, and samples having such very small dimensions can therefore exhibit elect
ron phase coherence extending over rather large parts of the sample. In such cases, even 
if in the diffusive-transport regime (for elastic impurity scattering), the electrical con
ductance Go of the sample does not depend on the conductivity, scaling with sample size 
according to Ohm's law which, for a 2D electron gas, is written as (cf. eqn. (6.3) for the 

corresponding 3D case): 
Go = (w/L)(To, (8.15) 

\.. Diffusive ~ 

~; twt A, 

( ~ 7$ L ~ 
(a) (b) 

~i~t~'~ an~C7::~~i~Il~strat~n of electron trajectories in a narrow conducting region (,wire') of 
transport regime (ela~ti;:eea~_::;~ fr~~ ~ 2~ l~,le~ron gas in t:vo limiting cases: (~) diffus(ve
events of electrons with impurities' (~ ballistic-tr' ). ~h~ ~sten(~(s represent elastIc-scattenng 
scattering is dominant within the conducting a~~~~l re~m~ . »HI, 9· Spec~lar bound.ary 
from backscattering of electrons at the junction betw

ne
. tl ll1?te eledctlhlcal resl~tance ans~s 

connected to it. een Ie WIre an t e electncal reserVOIr 

where (To. is. the 2D conductivity. (~n 2D, (To and Go have the same units, viz. n- I or S 
Instead, It IS ~he conductance that IS the fundamental quantity. .) 
~he same IS true also for ballistic transport along a narrow channel (Fig 833b) 

whIch ~an be ~egarded as equivalent to the propagation of guided modes . al~n ~ 
,:avegUlde (as ~n electromagnetism). In this picture, the conductance of the wir! is 
SImply proportI~n~1 to the transmission probability T for current injected from an 
electron reserVOIr In contact with one end of the channel' b h 
formula (see Problem 8.4): ,gIven y t e Landauer 

Go = (e2/h)T, 

(neglecting electron-spin degeneracy). 

(8.16) 

of s~ze;6anti:ation (s~t)s in, ~'le;'2 the electronic density of states becomes characteristic 
sys em, g ex: cg (Problem 5.2), when the width of the conductin 

2
cha/nnk elF' w, becomes less t~an the Fermi wavelength of the electrons 111 < AF ! 

1f F. or metals AF rv 5 A (see Tabl 5 1) d h ., . ' b h dR' - . e , ,an ence thIS regime cannot readily 
e reac e. o:,eve:, for channels made from 2D electron gases at semi

conductor heterO]UnctlOns, AF can be much larger (typically ;:SO,I,um), essentiall 
because of the much smaller electron densities therein (which are ,y 
troll able via ch f b' ,moreovel con-, . anges 0 las on the gate electrode) compared with the ver' hi h 
(and InvarIant) electron densities characteristic of metals' Thus patt d

Y 
g. 

conducto d' f .. . , erne semI
+: 'bl r eVIces 0 mesoscopiC dImensions exhibiting size-quanti~ation effects are 
leaSI e, 

The study of ~l~ctron transport in metallic and semiconductor nanostructures is one 
of t?e most eXCItIng and actIve fields in solid-state physics today and in this short 
~~ctIon we cannot hope to. do full justice to the many and varied' phenomena bein 
Iscovere~. Instead, we WIll concentrate on just three aspects of the behav' gf 

electrons In confined 1 D ' lOur 0 . " geometrIes, namely universal conductance fluctuations and 
;~a~ 10c~I1Z;~1O: :~ t?e diffusive-t:a?sport regime, and quantized point-contact con
(l9c9~~c~ In e a IS~Ic-tra~sport regime, Beenakker and van Routen (1991) and Kelly 

b 
gIdv,e an extenSIve reView of t~ese and other related phenomena, especially those 

o serve In the presence of magnetic fields, 
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**8.3.5.1 Universal conductance fluctuations 

Normally, for large samples at not-tao-low temperatures, that is, in the 'classical' 
regime where the sample size L is much bigger than the elastic mean-free path L » A, 
fluctuations in the electrical conductance Go, say from sample to sample, are completely 
negligible. Assuming that a wire of length L is divided into L/ A independently fluctuat
ing segments connected in series, the r.m.s. deviation of conductance is 
8Go (L/ A)1/2(GO), where (Go) is the average conductance, and hence 8Go is negligible. 
This is not the case, however, in the phase-coherent transport regime where the phase
coherence length, lcp, is comparable to the sample size, lcp ::= L. In this case, the AI'tshu
ler-Lee-Stone theory (AI'tshuler (1985), Lee and Stone (1985» predicts that, at 
T 0 K, the conductance fluctuations have the universal value 

8Go ::= e2 /11, (8.17) 

where the conductance quantity e2 /11 ::= 4 x 10-50-1 appears also in many other related 
phenomena such as quantized point-contact conductance (§8.3.5.3), weak-localization 
corrections to the Drude conductivity (§8.3.5.2), and the quantized Hall effect in 2D 
(§8.4.5). 

The origin of these universal conductance fluctuations can be understood in terms of 
the Landauer expression (eqn. (8.16» relating the conductance to the transmission 
probability of propagation of a mode through a waveguide. This equation can be 
generalized to the case where N modes, termed quantum channels, propagate simultan
eously, to give 

e2 N 

Go = h L Ita {31
2

, 
a,{3=l 

(8.18) 

where ta{3 is the quantum-mechanical transmission probability amplitude in going from 
an incident channel a from a source reservoir to an outgoing channel j3. This process 
can be envisaged as in Fig. 8.34. A conducting wire, in the phase-coherent regime 
(lcp > L, w), is connected to source and drain electron reservoi~s in thermal eq~ilib.rium, 
in which it is assumed that inelastic scattering takes place, leadmg to a randomlzatIOn of 
electron-wavefunction phases and lack of phase coherence of the incoming modes, a. 
These modes interact with an intervening disordered region in the wire (containing, for 
example, impurities), where only elastic scattering takes place, and transform into the 
outgoing (transmitted and backscattered) channels, j3. 

The Drude conductance for a 2D electron gas can be written, from eqn. (6.9), as 

w e2r 
Go =-ns -

L me 
w e2 kFA 
Lh2 
e2 1rA 

=h2L N, 

(8.19a) 

(8.19b) 

(8.19c) 

where ns is the areal electron density, and N is the number of transverse waveguide 
modes (or ID sub-bands) that are occupied at energy '"gF in a wire of width w, given by 

N = kFW/1rj (8.20) 

Source Drain 

~~r---------------L.----------------~~ 

r 
1 

Fig. 8.34 Schematic representation of a conducting wire in the phase-coherent regIme 
(/rI> > L, w), connected to source and drain electron reservoirs, containing a disordered region 
(hatched) in which only elastic collisions take place. Incoming quantum channels (corresponding 
to transverse waveguide modes) are denoted by el, and outgoing (transmitted and back scattered) 
channels by {3. 

eqn. (8.19c) is written in this way to correspond with the Landauer relation. Equation 
(8.19b) is obtained from eqn. (8.19a) by substituting r = A/VF (eqn. (6.12» and 
ns = D('"g)~F = me'"gF/1rn2 (where D(O is the 2D areal density of states-Problem 
5.2), and using '"gF = mev'f;/2 = n2k~/2me. 

The ensemble-averaged transmission probability is independent of a and j3 and is 
given by 

(8.21) 

on comparing eqns. (8.18) and (8.l9c). Current conservation means that the probabil
ities of transmission Itaf312 and reflection Ira.812 are related via 

N N 

L Ita{31
2 + L Ira.812 = N (8.22) 

a,.8=1 0:,.8=1 

and hence the average reflection probability, also independent of a and j3, is given by 

2 1 ') 
(Ira.81 ) = N (1 (I ta .8I-)) (8.23a) 

= ~ (1 ;~). (8.23b) 

It can be shown that the reflection probabilities Ira.812 for different pairs a, j3 and d, 
j3' of incident and reflected channels are uncorrelated, since reflection back into the 
source reservoir is controlled by only a few scattering events. On the other hand, it 
cannot be assumed that the transmission probabilities Ita{312 are similarly uncorrelated: 
transmission between source and drain involves multiple scattering events, and hence 
correlations between different channels are unavoidable. Thus, using the Landauer 
multiple-channel expression with the transmission probabilities (eqn. (8.18» cannot be 
used directly to calculate the conductance fluctuation, 8Go; instead, the averaging must 
be done using the reflection probability, Ira{312 (Lee (1986». 



We require the variance of the conductance, defined as 

Var(Go) == (L\GO)2 = (G6) - (GO)2. (8.24) 

From the current-conservation relation (eqn. (8.22)) and the ~andau.er formula (e~n. 
(8.18)), the conductance variance can be related to the vanance III the reflectIOn 

probabilities, 

Var(G) = (~) 2 var(t Ira/312) 
a,/3 

(8.25) 

where Var(lra/312) (Ira/314) - (Ira/312)2. A given refl~ction p~obability. amplitude, ra/3, is 
determined by a number, M, of scattering events WIth amplItude Ai(Z = 1 - M), where 
the Ai can be taken to be uncorrelated. Thus, 

M 

(I ra/314) = L (A;AjAicA /) 
ij,k,l=i 

(8.26) 

Hence 
Var(lra/31 2) (I ra/3f)2; (8.27) 

the Lm.s. variation of Ira/312 is simply equal to the ensemble avera~e of Ira/312. Substitut
ing eqn. (8.27) into eqn. (8.25), and making use of eqn. (8.23b), gIves 

oGo = (Var(Go))1/2 = ~ (1 c- ~ %). (8.28) 

Since we are considering the diffusive-transport limit (L ~ A), eqn. (8.28) shows that 
universal fluctuations in conductance of oGo ~ t? / h should be observed as, say, the 
chemical potential (or the magnetic field) is varied.. ., 

An example of these fluctuations in conductance IS shown III FIg. 8.35 for the ca~e of a 
very small wire of Sb (L = 0.6j.Lm, w = O.lj.Lm), measured at T = O.OlK (and WIth an 
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Fig.8.35 Universal conductance fluctuations in a small Sb wire, oflength 0.6 f.Lm and w~dth 0.1 
f.Lm, measured at 0.01 K (and with an applied magneti~ field ?f 3 T). Note that the magmt~de of 
the fluctuations is of the order of e2 / h, and that Ohm s law IS n.ot obe~ed (G(l). =1=. G( -/) m the 
phase-coherent transport regime. (After Webb et at. (1988). Repnnted WIth permIssIOn from Phys. 
Rev. B37, 8455. © 1988. The American Physical Society) 

applied magnetic field of 3 T). It can be seen that the conductance fluctuations are indeed 
of order e2 / h in magnitude; changes in voltage dropped along the wire lead to random 
fluctuations in the quantum interference of the electrons. Note also that the conductance 
is not symmetric upon reversal of the cu.rrent direction; Ohm's law breaks down. This 
breakdown is also expected in the coherent-phase transport regime; for the sample 
relating to Fig. 8.35, the phase-coherence length I", at T < 0.2 K is l.2j.Lm, i.e. Iq; > L, w. 

**8.3.5.2 Weak localization 

The quantum interference that electrons experience in the phase-coherent regime (where 
the phase-coherence length is comparable to or greater than the sample size, I", > L, w) 
has other effects on the electrical-transport properties that are broadly referred to as 
being due to weak localization. The quantum interference causes a marked enhance
ment of the probability for an electron being backscattered by potential fluctuations in a 
disordered system in the metallic regime: this behaviour thus reduces the electron 
diffusion coefficient, and hence the electrical conductivity. It is termed weak localization 
because it can be thought of as a precursor to the regime of proper localization found in 
strongly disordered systems (§6.7). An instance of this weak-localization effect has 
already been touched on in Problem 6.30 dealing with the minimum conductance Gmin 
for which metallic behaviour is exhibited by a thin wire in the phase-coherent regime. 
This turns out to have a value of the order of magnitude of the ubiquitous quantity e2/11. 
However, this startling prediction that a wire of sufficient length that its conductance is 
less than Gmin would be insulating is only strictly valid at T = 0 K where there is no 
inelastic scattering due to phonons; at higher temperatures, the inelastic scattering will 
cause a loss in phase coherence of the electrons and cause I", to decrease. However, a 
vestige of this behaviour can be seen in the upturn in electrical resistivity observed at the 
very lowest temperature for very thin wires, as shown in Fig. 8.36 for the case of narrow 
ID channels in a 2D electron gas in a GaAs-AIGaAs heterostructure (cf. Fig. 8.32). 
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Fig. 8.36 Temperature dependence of the electrical resistance of narrow ID channels in a 2D 
electron gas in a GaAs-AlGaAs heterostructure, of length L = 10 f.Lm and widths IV = 1.5f.Lm(.) 
and 0.5 f.Lm (A), compared with that of a wide 2D electron gas (e). (After Beenakker and van 
Houten (1991). Reproduced by permission of Academic Press, Inc.) 
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(a) 

~ 

Fig. 8.37 Illustration of two types of electron propagation ~aths in solids in the phase-coher~nt 
regime: (a) two paths i andj between points rand r' for whIch the phases o~ the correspond~ng 
probability amplitudes Ai, Aj are uncorrelated; (b) time~reversed backscattenng paths for .~hlch 
the two probability amplitudes are equal, A+ A_, causmg an enhancement of the probablhty?f 
return of an electron to the origin. The region indicated in black is given by AF VFdt swept out In 

time dt. 

The process of coherent backscattering of electrons at the heart of weak localization 
can be understood by reference to Fig. 8.37. The propagation of an electron between 
two sites r, ,.' in a solid along two different trajectories i, j have probability 
amplitUdes Ai, Aj that have uncorrelated phases in general (Fig. 8.37a). Howe~e.r, 
for a backscattering trajectory that involves a return of the electron to the ongm 
(Fig. 8.37b), the amplitudes A+ for propagation in one sense along the trajectory and 
A_ for the time-reversed trajectory along the same path are identical. In a Feynman 
path description, the probability P(,', ,/, t) for diffusion between,. and r' in time is 
given by 

P(r,'/t) = I~Ail'= L:IAil' + 2;: AiAJ. 
1 1 '-1"1 

(8.29) 

Classical diffusion corresponds to the first term on the right-hand side of this expres
sion; quantum interference is accounted for by the second term, which averages out to 
zero for trajectories in which the propagation amplitudes have uncorrelated phases (as 
in Fig. 8.37a). However, the special time-reversed backscattering paths shown in Fig. 
8.37b produce a finite quantum-interference contribution, so that the coherent back
scattering probability is twice the classical (incoherent) result. This two-fold augmenta
tion of backscattering probability has been demonstrated in an optical experiment for 
laser light backscattered from a colloidal suspension (Fig. 8.38). 

The weak-localization correction to the Drude free-electron-gas expression (eqn. 
(6.9)) for the d.c. electrical conductivity is proportional to the probability that an 
electron returns to the origin of a trajectory (Chakravarty and Schmid (1986)). If 
W(t) is the probability that an electron returns to within a: distance dr of the original 
starting point in time t, the correction to the conductivity is given by (Chakravarty and 
Schmid (1986)): 
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Fig. 8.38 Backscattered intensity of laser light incident on a colloidal dispersion of latex micro
spheres. ~ote the almos~ two-fold enhancement in the 1800 backscattering direction due to 
c.oherent lI~terference, as m the quantum interference of electrons responsible for weak-localiza
tIon behaVIOur. (After Akkermans et af. (1986). Reprinted with pennission from Phys. Rev. Lett. 
56, 1471. © 1986. The American Physical Society) 

DeJo 21i 100 
. - = - - W(t)e-t/r"dt, 

eJo me 0 (8.30) 

where the factor exp( -t/T¢) accounts for the time-dependent loss of phase coherence 
wi.th a characteristic rate T;;;l, due to inelastic scattering. The quantity Ii/me <X AFV; 
~nses becau~e of the flux tube of width AF and length vFdt swept out along a propaga
tIon path (FIg. 8.37b). For ID diffusion in a channel of width w (in, say, a 2D electron 
gas), W(t) is given by (cf. eqn. (3.40)): 

W(t) = w- l (47rDt)-1/2. (8.31) 

In this case, the weak-localization correction (neglecting spin degeneracy) to the con
ductivity can be evaluated from eqn. (8.30) to be 

e2 l¢ DeJo rv __ _ 

- 7rn w' (8.32) 

where eJo = e2g(~F )D, and the 2D density of electron states has been used. Since in the 
p~ase-coherent regime, l¢ ~ W, this correction is appreciable in the case of ID wires (see 
FIg. ~.36): In the c~se of 2? c?nduction, the effect is smaller (Problem 8.6) with only 
10ganthmIc correctIOns bemg mvolved. Nevertheless, the associated InT temperature 
dependence of the surface conductance predicted by the weak-localization approach has 
been observed in thin metal films. 

Weak-localization effects are suppressed by the application of a magnetic field, since 
t?e prese.nce of a r,nagn.etic field breaks time-reversal invariance; a negative magnetore
sIstance IS found m thm metal films and 2D electron gases in semiconductor hetero
structures. Note that this behaviour is opposite to that found in bulk metals in the 
Boltzmann transport regime (§6.3.3.2). 



** 8.3.5.3 Quantized point-contact conductance 

As the size of a conducting sample is reduced, ultimately boundary scattering dominates 
and the ballistic-transport regime is reached (Fig. 8.33b). An interesting effect asso
ciated' with this regime is the observation of steps in the electrical conductance of a 
narrow channel of a 2D electron gas, defined by two point contacts formed in a split
gate electrode (see inset to Fig. 8.39), as the gate voltage is varied (Fig. 8.39); the value 
of the conductance is quantized in units of 2e2 / h ~ (13kO) -\ . The sample configuration 
shown in Fig. 8.39 can be regarded as a quasi-ID ideal conducting channel in a two
terminal contact arrangement, as in Fig. 8.34, and as such, the Landauer expression 
(eqn. (8.18)) can be used, multiplied by a factor gs = 2 to take account of the spin 
degeneracy in GaAs. If scattering between the quantum channels (i.e. the sub-bands of 
the ID system) is neglected, then the transmission probability in eqn. (8.18) is given by 

Ito<,612 = 00:,,6, and hence 

2e2 N 2 2e2 

Go =-, 2:: 1 to<,6 1 =TN , 
1 0:,,6 1 

(8.33) 

where N = Int(k
F

w/1f) (eqn. (8.20)) is the number of occupied sub-bands in a wire of 
width w. Thus, a contact conductance, quantized in units of 2e

2 
/ h is predicted by eqn. 

(8.33), each step occurring when b..N changes by unity as a result of a change in the gate 

voltage, as observed in Fig. 8.39. 
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Fig. 8.39 Quantized point-contact conductance (in ~nits of 2e
2 

/ Iz) meas~red at 0.6 K as a 
function of gate voltage, for a narrow channel formed III a 2D electron gas III a GaAs-AIGaAs 
heterostructure underneath a split gate whose shape is shown. in the inset. The width of the 
constriction decreases as the negative gate voltage is increased. (After van Wees et al. (1988). 
Reprinted with permission from Phys. Rev. Lett. 60,848. © 1988. The American Physical Society) 
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Two-dimensional systems 8.4 
Two-~imensional systems are of much .interest from a scientific point of view, and are of 
great Importance technologically: the' entire microelectronics industry is based on the 
behaviour of electrons moving at interfaces between a semiconductor and another 
semiconductor, insulator or metal. As for the other instances of reduced dimensionality 
discu~se~ previously, ~D sys:ems can occur naturally as layered crystals (category I) or 
as artlfi.cml s.tructu~es mvolvmg one or more interfaces (category II). Examples in both 
categones wIll be dIscussed in the following sections. 

8.4.1 Layered crystals 

~erhaps the can?nical 2D layered crystal is the graphite allotrope of carbon, which is 
SImple because It only contains one type of atom. The crystal structure consists of 
parallel sheets .of at?ms, wit~ an ABAB ... stacking sequence, the interplanar spacing 
(along the c-axIs) bemg 3.35 A. Each sheet has a honeycomb structure, as shown in Fig. 
8.40: the rhombus-shaped primitive unit cell (of cell parameter a) contains a basis of two 
atom.s. The intralayer bonding is due partly to overlap between sp2-hybridized orbitals 
form;ng O"-~onds between nea~est-neighbour C atoms: the planar trigonal arrangement 
of sp -hybnds (Problem 5.18) IS responsible for the formation of the three-coordinated 
honeycomb lattice. In addition, 1f-bonding takes place' between the remaining P7-orbi
t~ls on eaGh atom that point perpendicularly to the layer; such 1f-electrons are deloca
lIzed throughout the layer so that individual single and double carbon bonds cannot be 
recognized. ~h~ intralayer nearest-neighbour C-C distance in graphite is 1.415 A. (cf. 
r~-c = 1.39 A m the molecule benzene, C6H6), intermediate in length between that of a 
smgle carbon bond (as in ~p3-hybridized diamond, rc-c = 1.54 A.) and of a double 
carbon bond (rc-c = 1.33 A). Individual graphitic layers are held together by van der 
Waals interactions. 
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~ig. 8.40 Structure of graphite in real and reciprocal space: (a) real-space honeycomb lattice of a 
sIllgle layer, showing the prim.itive.unit cell containing a basis of two atoms; (b) ABAB stacking 
sequence of layers; (c) first BnllouIll zone with high-symmetry positions as marked. 



Aspects of the electronic structure of , ideal' graphite, i.e. of a single graphiticlayer, have 
been touched on previously in §8.3.4 in a discussion of graphitic nanotubules (i.e. cylinders 
formed from rolled-up graphitic sheets). The electronic band structure consists of a deep
lying Sp2-0- bonding band followed by a Pz-7r bonding band at the top of the valence band, 
then a 7r* -band at the bottom of the conduction band and a 0-* -band at the highest electron 
energy: the 0-- and 7r-bands are completely filled, and the 7r* - and 0-* -bands are completely 
empty, as we shall see. The states that are of most interest are the adjacent 7r-and 7r*-bands, 
for which a tight-binding treatment (§5.3.l) gives as the dispersion relation: 

]

1/2 

'I:(k) ~ ±(Jp, [1+ 4co, { v'3:xa }co,e;a} +4eo,2 { k;a } , (8.34) 

where {3p: is the overlap term for pz-states. . 
The first Brillouin zone corresponding to the real-space hexagonal honeycomb lattIce 

is also a hexagon, rotated by 60° with respect to the real-space lattice (Problem 2.l8), 
with high-symmetry points at the corner between two faces (K-point) and at the mid
face position (M) (Fig. 8.40c). The corresponding 3D surface representing the electron 
energy dispersion, c:g(k), is shown in Fig. 8.4la for a segment of k-space defined by the 
vectors r, K and M (one-twelfth of the area of the Brillouin zone), together with ID cuts 
through the energy surface for specific directions in k-space (Fig. 8.4lb). It can be seen 
that there is a large gap (of width 6{3pJ between 7r-bonding and 7r* -antibonding states at 
the r-point (k = (0, 0)). There is a- smaller gap also at the M-point (27r/-I3a,0) of 
magnitude 2{3p:' However, the interesting feature is that at the K-point (27r/-13~, 2~/3~) 
the two states are degenerate: the gap vanishes there. (This feature plays a cruCIal role m 
determining whether a particular carbon nanotubule is metallic or not-see §8.3.4.) The 
corresponding 2D electronic density of states (cf. eqn. (4.59») is as shown in Fig. 8.4lc. 
The lower 7r-bonding band is completely filled and the upper 7r* -antibonding band is 
completely empty, with the Fermi level c:gF lying midway between the bands: 'ideal' 
graphite (i.e. a single layer) is a 2D semi-metal (§5.2.5). In practice, residual interlayer 
interactions cause the density of states at the Fermi level to be small but finite. Note also 

K 
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Fig. 8.41 The electronic structure of a single graphitic layer: (al energ~ sur~aces !or the triangular 
section of the Brillouin zone, rMK; (b) energy bands for particular directlOns m k-space (K-f
M); (c) density of states. The lower 7r-bonding band is full and the upper 7l"*-antibonding band is 
empty. 

the van Hove singularities in the density of states at the band edges and at the energies 
±{3p: where \l k c:g = 0, resulting from the flat dispersion of the bands in the vicinity of the 
K-and M-points. 

The pz-orbital contributions to the .·Blgch electron 7r-states at the high-symmetry 
points r, M and K in the Brillouin zone are shown in Fig. 8.42. For the r-point, 
a given atom is seen to have either completely bonding or completely antibonding inter
actions with its nearest neighbours (Fig. 8.42a), and this accounts for the fact that the 
largest bandgap occurs at r. At the M-point (Fig. 8.42b), a given atom is seen to have 
either one bonding and two antibonding interactions, or vice versa, with nearest 
neighbours, thereby producing a gap one-third the width of that at r. However, at 

r:k= (0,0) 

(a) 

M:k = (2rr;/"3a,0) 

(b) K:k = (2rc'-'3a,2rr;/3a) 

\ 

k 

(c) 

Fig. 8.42 Pictorial illustration of the origin of electron states for a graphitic layer at high
symmetry points in the Brillouin zone, showing Bloch sums of p_-orbitals contributing to the 7l"
bands for the Ie-values: (a) r (Ie (0,0»; (b) M (Ie = (27l"jv'3a, 0);- (c) K (Ie (27l"jv'3a, 27l"j3a). In 
(a) and (b), the open and hatched circles denote orbital coefficients with values of plus and minus 
one, respectively, whereas in (c) the non-zero coefficients have values of +1 (large open circles) 
and -!. (small hatched circles). The wavelengths and directions of the associated Bloch waves are 
indicated in each case. 
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the K-point, the three nearest neighbours of a non-zero orbital atom have coefficients 
with values +1 and -~ (twice), leading to a doubly degenerate non-bonding state. 

Boron nitride (BN) -is isostructural with graphite, with Band N atoms occupying, 
respectively, one or other of the two crystallographically distinct sites in the unit cell. 
However, the electronic character of BN is very different from that of graphite: instead 
of being a semi-metal, BN is an insulator with a (minimum) gap of ~ 5.5 eV. The reason 
for this is that, because the orbital combinations for the K-point shown in Fig. 8.42c are 
all either on the B atoms or on the N atoms (having different energies because of the 
large electronegativity difference between the two types of atoms), the degeneracy 
characteristic of graphite is lifted. 

One interesting property exhibited by graphite (and some other layered crystals, such 
as the transition-metal dichalcogenides), but not BN (Problem 8.7), is that foreign 
atoms or molecules can easily be inserted or intercalated (§1.2.5) between the layers to 
form compounds, often with a well-defined stoichiometry. The intercalation reaction is 
one of charge transfer: electropositive intercalants (e.g. alkali atoms) donate electron 
charge to the graphite 7r* -bands, thereby causing the Fermi level to be raised into the 7r.
band, whereas electronegative intercalants (e.g. Br, AsFs, PtF6) accept charge taken 
from the graphite 7r-band, thereby causing 'jgF to fall into the 7r-band (Fig. 8.43). In both 
cases, the Fermi level for the intercalated compounds lies in a band of delocalized states 
and hence the materials become metallic. 

Intercalation invariably causes an expansion of the interlayer spacing: for example, 
for the intercalation compound CsK, the interlayer spacing where the intercalants lie is 
5.41 A, compared with the value of 3.35 A for pure graphite. Moreover, the intercalants 

-----------·~F 

(a) g(~) (b) g(~) 

Fig. 8.43 Illustration of the effect of intercalation of electron-donating or -accepting species 
between the layers of graphite on the filling of the 1r-1r* band system: (a) donors (e.g. Li); 
(b) acceptors (e.g. Br). 
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(a) Third stage Second stage First stage 

(b) 

Fig. 8.44 (a) Schematic illustration of staging in graphite (or other) intercalation compounds. 
The solid lines denote the graphite layers; the dashed lines the intercalant layers. The stage 
number is the number of intervening graphite layers between intercalant layers. (b) A model for 
domain formation in a third-stage intercalation compound. 

are not distributed homogeneously among the graphite-layers at low concentrations: the 
strain energy is minimized if the intercalant atoms instead are situated only in equally 
spaced layers, the intervening layers being devoid of foreign atoms. The stage of the 
extent of intercalation is the number of graphite layers between layers of intercalants 
(Fig. 8.44a). Staging may, in fact, occur inhomogeneously, in the form of domains, each 
domain having the same stage but with a different relative stacking sequence of inter
cal ant layers with respect to other domains (Fig. 8.44b). The relative positions of the 
graphite layers may also be different in the intercalated compound from pure graphite. 
In the case of CsK, for example, the graphitic-layer stacking sequence is ... A A A A ... ; 
K+ ions are sandwiched between pairs of stacked hexagonal carbon rings, and therefore 
are 12-fold coordinated by C atoms (Fig. 8.45). If all such sites were occupied in a stage-
1 compound, the composition would be CzK; the stoichiometry CsK is achieved if only 
one-quarter of the sites are occupied in an ordered way (Fig. 8.45). 

Fig.8.45 Illustration of the structural arrangement of K+ ions relative to the graphite lattice in 
the intercalation compound KsC. Note that the graphite layers are stacked in a direct ... 
A A A A ... sequence. . 



As mentioned previously (§1.2.5), many other types of layered crystals, in addition 
to graphite, can form intercalation compounds (Jacobson (1992». Perhaps the most 
well-known hosts are the transition-metal dichalcogenides, MX2 (M Group 
IVA, VA, VIA transition metals, e.g. Ti, Nb, Mo, etc.; X = S, Se). In these, the transition 
metal occupies either octahedral (trigonal antiprismatic) or trigonal prismatic sites 
between close-packed layers of chalcogen atoms: the X-M-X sandwich layers are 
then stacked together with a large van der Waals gap between chalcogen layers of 
adjacent sandwiches. One of the simplest of such intercalation sy'stems is Lix TiS2 
(0 < X < 1) which forms a single phase over the entire composition range: as a result, 
the c-axis lattice parameter increases smoothly from 5.7 to 6.2 A between x = 0 and 1 as 
Li is intercalated between the layers (see Fig. 3.50). In the charge-transfer process 
accompanying the intercalation of lithium, reduction of Ti4+ to Ti3+ occurs: in other 
words, electrons from the Li atoms enter the Ti 3d band. This system is of interest as 
a cathode material for battery applications (see §3.5.2). Other alkalis intercalated 
into TiS2 form staged compounds (n 2 for all alkalis except Li; n 4 for K, Rb 
and Cs). 

8.4.2 Heteroj unctions 

In the remainder of this section, we will consider the behaviour of 'artificial' or 
'engineered' materials with 2D character, i.e. those consisting of one or more hetero-
junctions between layers of different materials, or homojunctions between differently 
doped regions of the same semiconductor, grown one on top of the other. We will 
consider heterojunctions between metal and metal, metal and semiconductor, semicon-
ductor and semiconductor, and semiconductor and insulator. Size-quantization, result-
ing in 2D transport behaviour, occurs when the spacing d between two heterojunctions 
is very small (d < AF); this is known as a quantum well. Furthermore, new properties 
can arise when an ord~red array of many heterojunctions, i.e. a superlattice, is fabric-
ated. Much of the exciting new science, and technological application, of solid-state 
physics is emerging from this area. 

8.4.2.1 Metal-semiconductor heterojunctions 

Metal-semiconductor heterojunctions are unavoidable when electrical contacts are 
made to a semiconducting material in order to measure its electrical properties. In 
order to probe the behaviour of the sample alone, it is essential that the electrical 
contacts themselves do not perturb the measurement, for example by altering the 
current extracted from the sample when it is subjected to a voltage difference. One 
contact must replenish the electrical charge that is being extracted from the material by 
the other contact. Hence, for this purpose, the metal-semiconductor contact must be 
ohmic, i.e. the current drawn is linearly proportional to the applied voltage (Fig. 8.46a). 
However, ohmic behaviour of contacts is the exception rather the rule. Often, blocking 
behaviour is observed instead (Fig. 8.46b), in which the contact is unable fully to 
replenish the charge being extracted from the sample by the electric field, or injecting 
behaviour is found (Fig. 8.46c), in which extra charge is injected into the material from a 
contact (generally at high applied fields). 

(a) (b) v (c) 

Fig. 8.46 Behaviour of different types of electrical contact in terms of current-voltage (I-V) 
characteristics: (a) ohmic; (b) blocking; (c) injecting. 
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Fig. 8.47 Illustration of band bending in an n-type semiconductor at a heterojunction with a 
metal (the energy of the bands at a representative k-point is plotted as a function of distance z in a 
direction normal to the interface): (a) ohmic contact (cps> CPM); (b) blocking contact (Schottky 
barrier: CPs < CPM). . 

The criterion that determines whether a particular metal-semiconductor heterojunc
tion forms. an ohmic or blocking contact concerns the relative magnitUdes of the work 
functions of the metal and of the semiconductor. The work function cP of a material is 
the difference in energy between the Fermi level and the vacuum level (see §5.7.2). If the 
work function of an n-type semiconductor CPs is greater than that of the metal, CPM, i.e. 
CPs > CPM, then the heterojunction forms an ohmic contact (Fig. 8.47a); if the relative 
magnitudes are reversed, i.e. CPs < CPM, then the heterojunction between a metal and an 

v 
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n-type semiconductor forms a blocking contact or Schottky barrier (Fig. 8.47b). For the 
case of heterojunctions between a metal and a p-type semiconductor, the above criteria 
are simply reversed. 

The bands bend in the semiconductor in the vicinity of the heterojunction because, in 
order to equalize the chemical potentials in both metal and semiconductor when in 
contact (in the absence of an external electric field), electrical charge must flow from one 
material to the other. In the case, for example, of the metal-n-type semiconductor 
Schottky barrier shown in Fig. 8.48a, electrons flow from the semiconductor to the 
metal, leaving the semiconductor positively charged within a depletion region of width d 
(the positive charge residing on the ionized donor atoms) and the metal becomes 
negatively charged; the band bending is a response to the internal electrical field that 
results from the charge separation at the junction. Note that in the region deep wit~in 
the semiconductor, far away from the heterojunction, the band bending is zero and the 
position of the chemical potential relative to the band edges of the semiconductor is the 
same as in the bulk material. For the case of an ohmic contact with an n-type semi
conductor (Fig. 8.47a), the charge flow at the junction needed to equalize the chemical 
potentials is in the opposite direction to that of the Schottky barrier, and an electron 
accumulation layer forms in the semiconductor near the junction; the semiconductor 
bands bend in the opposite sense in the two cases. Note that in the accumulation region, 
the semiconductor is degenerate: the chemical potential lies in the conduction band for 
an n-type semiconductor (valence band for a p-type semiconductor). This is the reason 
why charge flow between metal and semiconductor is so facile in this case, i.e. why the 
contact is ohmic. 

For the ideal case of a Schottky barrier to an n-type semiconductor having no inter
face states (Fig. 8.47b), however, there is an energy barrier of height ~B,n = ¢M - Xs 
(where xs is the electron affinity of the semiconductor-see §5.7.2) for transfer of 
electrons from the level of the chemical potential of the metal into the conduction 
band of the semiconductor: the barrier height can also be expressed as the sum of 
the diffusion potential energy ¢D = ¢M - ¢s, the difference of the work functions of 
metal and semiconductor, and the difference in energy between the conduction-band 
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Fig. 8.48 Illustration of the band bending that occurs at a metal-semiconductor heterojunction 
(with zero applied bias) in the case of Schottky-barrier formation involving: (a) an n-type 
semiconductor; (b) a p-type semiconductor. In both cases the left-hand diagram illustrates the 
relative chemical-potential and band positions when metal and semiconductor are separated, and 
the right-hand diagram illustrates the situation after contact. The region of band bending (the 
depletion region for a Schottky barrier) has a width, d. 
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Fig .. 8.48 (contd.) The effect of an external voltage V on the band bending of an n-type 
semiconductor-metal Schottky barrier: (c) forward bias; (d) ·reverse bias. 

edge and the chemical potential, ~c - f-L == ~c - ~F, in a region of the semiconductor far 
from the junction, i.e. 

(8.35) 

Equation (8.35) im~lies that the barrier height for a given (n-type) semiconductor (with 
fixed electron affimty, Xs) should be different for different contact metals and should 
scale line~rly with the. m~gnitude of the metal work function, ¢M. However, invariably 
the expenment.al vanatIOn of ~B,n with ¢M is weaker than this prediction, being 
strong~st for WIde-gap compound semiconductors (e.g. ZnS), but very weak or almost 
~on-exIstent for small-gap, more covalent semiconductors (e.g. Si or GaAs). Thus, 
mstead of the vacuum levels of metal and semiconductor being coincident at the inter
~ace (as assumed in Fig. 8.47 and the text leading to eqn. (8.35)), the observed near
~n?epe~dence of ~B,n on <PM can be. understood if, alternatively, the Fermi level is 
pmned at a partIcular energy level m a band of interface states; these states derive 

from the bulk states of the semiconductor and lie in the otherwise forbidden gap 
?etween valence and conduction bands (Fig. 8.49a). If the density of interface states 
m n:uch larger tha~ the. areal density (in a layer) of bulle donor states for, say, an n-type 
semIconductor (as m FIg. 8.49a), electrons flowing from the bulk of the semiconductor 
to the interface, prior to their equilibration and establishment of a constant Fermi level 
~ill enter the band .of interf~ce states but, because its density of states is so relativel; 
hIgh, the demarcatIOn l~vel m. th~ band between filled and empty states will hardly 
~hange. Thus, the. FermI level IS pmned at this position. Note that the filling of some 
mterface states wIll create electrical dipoles at the interface, resulting in the vacuum 
levels o.f metal and semiconductor being displaced by an energy 8M (Fig. 8.49a) . 
. The mterface ~tates must be induced by the presence of the metal overlayer itself, 

SInce clean semIconductor surfaces, containing surface dangling bonds, invariably 
re~onstruct s~ as to remove the dangling bonds by fonning bonds between them, the 
rrudgap danglmg-bond s~ates being removed and converted to bonding states lying in 
the valence band (Zangwill (1988) ). One picture of the origin of metal-induced gap states 
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Fig. 8.49 Schottky-barrier formation involving interface states .. (a) ~and .diagram. showing 
a Schottky barrier on an n-type semiconductor, the Fermi level bemg P!nned m the. nuddle of a 
band of mid gap interface states. (b) Schematic illustration of the origm of m~tal-mduced gap 
states, namely the decay of a Bloch-like wavefunction in the metal into the forbIdden gap of the 

semiconductor. . 

(MIGS) is given in Fig. 8.49b: electron density, associated with Bloch-like wavefunc
tions deep inside the metal, tails exponentially into the forbidden-gap region of the 
semiconductor in the energy range where the conduction band of the metal overlaps the 
bandgap of the semiconductor. The interface states, into which this charge density 
'leaks', are distributed more-or-Iess uniformly throughout the gap region and are 
derived from valence- and conduction-band states of the bulk semiconductor. These 
states are donor- (acceptor-) like in the lower (upper) part ofthe gap: ifegF is near the 
valence (conduction) band, some of the donor (acceptor) MIGS are ionized and empty 
(full), resulting in a positive (negative) interfacial charge. !here is, therefore, a. charg~
neutrality level, egn, separating donor-like from acceptor-lIke MIGS; the FermI level IS 

pinned near to this energy. 
Tersoff (1985) has proposed that the neutrality level lies approximately in the middle 

of the indirect gap of the semiconductor "(whether or not it has a direct or indirect 
minimum gap), and that the Fermi level is shifted from this position by OM, i.e. 

(8.36a) 

where egi is the indirect conduction-band minimum energy and ~v is the valence-band 
maximu~ energy (at the r-point for tetrahedral semiconductors-see Fig. 5.52) in the 
absence of spin-orbit splitting (§5.4.2); i.e. ~v = egv - b.so/3, where egv is the actual 
valence-band energy maximum and b.so/3 is the energy by which the P3/2 states are 
pushed up in energy relative to the valence band as a whole (the Pl/2 states are pushed 
down by 2b.so/3). The indirect-gap conduction-band minima are considered because 
states in their vicinity are more representative of the conduction band as a whole than 
those in the vicinity of the direct-gap minimum at r, and also because states that are 
spatially localized (e.g. the interface states) can only be constructed from components 

1 
I 

Table.8.2 .Indirect bandgaI? energies and, for direct-gap materials, direct bandgap 
ener¥Ies (~~ and 'igg, respectIvely), spin-orbit ~plitting~ (.6.so) and n-type Schottky
barn~r heIghts, 'igB,n, for g~ld contacts to vanous semIconductors, obtained both 
expenmentally and theoretIcally from eqn. (8.36c) (with 8M = -0.2 eV) 

Semiconductor 'ig~(eV) 'igg(eV) .6.so(eV) 'ig~~(e,V) 'ig ~,~lO(eV) 

Si 1.11 0.04 0.80 0.76 
Ge 0.66 0.29 0.59 0.58 
Gap 2.64 2.27 0.08 1.30 1.16 
GaAs 1.81 1.43 0.34 0.90 0.78 
GaSb 0.82 0.75 0.75 0.60 0.67 
AlAs 2.15 0.28 1.20 1.32 
AISb 1.62 0.70 1.08 1.13 
InP 1.84 1.34 0.l1 0.52 0.64 

(Experimental data of'jg~, 'jgg and 6.so from Madelung (1996) and of'jg~~~ from Sze (1981)) 

having a wide range of k-values. Thus, the pinned Fermi-level position is from eqn 
(8.36a), given approximately by (Tersoff (1985»: ,. 

1 . 
egF ~ 2:(eg~ + 2egy - b.so /3) + OM, (8.36b) 

~here the indirect gap is given ~y eg~ = eg~ - egy. The p-tJ.'pe Schottky-barrier height is 
gIve~ by ~B,p . egF. egv (see FIg. 8.48b), i.e. egB,p ~ Heg~ - 6..so/3) + OM. The n-type 
b~r~ler heIght IS ?Iven by egB,n = egc egF, where egc is the actual conduction-band 
mllllmum energy, I.e. 

eg 1 . 
B,n ~ egc - ~v - 2: (eg~ - b.so/3) - OM 

1 . 
= egg - 2:(~~ - 6..so/3) - OM, 

(8.36c) 

w~ere egg is the actual minimum gap energy (direct or indirect). Values ofeg calculated 
usmg eqn. \8.3?c) are in very good agreement with experimental values (se~Table 8.2). 

The apphca~IOn of an ex~ernal electric field to a heterojunction changes the extent of 
the band bendm~ that oc.curs in the absence of the field. In the presence of the external 
field, t.he quantIty that IS constant through the junction region is not the chemical 
potentIal but the electrochemical potential rJ (eqn. 6.86): . 

rJ=J-l eV, 

where V is the applied electrostatic potential. Figures 8.48(c, d) show 'the effect of an 
exte~al voltage Von the band bending of an n-type Schottky barrier: forward bias (the 
semIconductor. biased positively with r~spect to the metal) reduces the barrier egB,n by an 
amo~nt e V (FIg. 8.48c): and reverse bIas increases it by e V (Fig. 8.48d). 

It IS apparent from FIgS 8.48(c, d) that a Schottky barrier is a rectifying contact: it is 
markedly.non-ohmic i? allowing a large current to flow (electrons from semiconductor 
to metal) ~n forward biaS when the barrier to electron transfer is reduced by an amount 
eV (see FIgS. ~.4~a an? ~.48c), but only a very small current (-jo) flows in reverse bias 
(~ue to thermIOlllc emISSIOn over the barrier egB, the height of which is unaffected by the 
bIas fi~ld) .. As .a result, the net current density flowing across the Schottky-barrier 
heterOjUnctIOn.m forward bias can be written as 
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t v 

Reverse bias Forward bias 

Fig. 8.50 Variation of curr~nt d.ensity j with applied voltage V for a rectifying junction, e.g. 
a Schottky barrier, or a p-n JunctIOn. 

j =jo[exp(eV/kBT) -1], (8.37a) 

with the sign of V reversed in the case of reverse bias. !he thermionic-emission current 
density jo is given by the Richardson-Dushman equatIOn: 

jo = A T2exp(-'7bB,n/kBT), (8.37b) 

where A is a constant. Neglecting diffusion processes in the depletion layer of the 
Semiconductor A = 47rem* k 2 /h3 (Liith (1995». Figure 8.50 shows the current-voltage , e B . 
characteristics of a rectifying junction, such as a Schottky barner. . 

Low-resistance, quasi-ohmic contacts to a semiconductor that would otherWIse fo~ 
a rectifying Schottky baiTier can be made by heavily doping t~e surface of the ser~l1-
conductor in contact with the metal to form a so-called n+ (or p ) layer. The ~onstr~mt 
of charge neutrality in the junction region causes the n+ layer to have a ~epletIOn regIOn 
of reduced width; this allows electron tunnelling through the barr~er, rather than 
thelTnal activation over it, resulting in approximately the same magnItude .of c~rrent 
for both polarities of applied field. Further details on Schottky barriers are gIven m Sze 
(1981).) 

8.4.2.2 Semiconductor-semiconductor heterojunctions and homojunctions 

Two different types of semiconductor-semiconductor j~nctio~s ca~ be envisaged: either 
heterojunctions between different semiconducting matenals (WIth d~fferent b~ndgaps),. or 
homojunctions between differently doped regions o~ the same semIc~nductmg mat~na1. 
In both cases, if the work functions of the two semIconductors for~l1ng the heteroJunc
tion are different, band bending in the vicinity of the interface WIll take place, as for 
metal-semiconductor heterojunctions (§8.4.2.1). 

Heterojunctions between different semiconducting materials have already been men
tioned in §8.3.5, namely the junction in the modulation-doped heterostructure betwe~n 
n-type AlGaAs and intrinsic GaAs, in connection with the ~D electron gas formed m 
the inversion layer at the surface of the GaAs layer at the mterface; the electrons ~re 
confined in the potential well in the GaAs conduction band formed by the band bendmg 

on one side due to the junction field and the conduction-band-edge discontinuity 
between AIGaAs and GaAs on the other (Fig.8.32a). AIGaAs-GaAs heterojunctions 
feature also in quantum wells (tri-Iayer heterostructures, with two heterojunctions and 
an intervening layer of the lower-gap m.aterial, GaAs-see §8.4.3) and in semiconductor 
superlattices (§8.4.4). . 

Semiconductor homojunctions, involving differently dop~d regions of the same semi
conductor material, are known as p-n junctions. These structures, almost invariably 
made using crystalline Si as the host semiconductor, are very important technologically 
and are used in many electronic applications. The origin of the band bending at a p-n 
junction can be seen by reference to Fig. 8.5 I. The majority carriers in the n-type 
material are electrons in the conduction band and are holes in the valence band of the 
p-type material (Fig. 8.51a): when placed in contact, the concentration gradients of 
electrons and holes cause a net diffusion of electrons into the p-type material, and of 
holes into the n-type material, until the chemical potentials are equalized (Fig. 8.51 b). 
(It is assumed that the temperature is sufficiently low that the dopant atoms themselves 
cannot diffuse.) As a result of this electron and hole diffusion, the n-type layer within a 
distance dn of the junction becomes depleted of electrons and positively charged (with 
the charge located on ionized donors) and the p-type material within a distance d of the 
junction becomes negatively charged (with the charge located on ionized acceptd;.s); the 
total width of the depletion region is thus d = d

n 
+ d

p
• 

The electrostatic potential associated with the charged double layer is responsible for 
the band bending in the depletion region. This contac.t potential (or diffusion potential), 
¢c, ca~ be calculated by equating expressions (e.g. eqn. (6.246» for the position of the 
chemical potential (relative to the respective band edges) for n-type and p-type materials 
(valid far from the junction), to give (see Problem 8.10): 

(8.38a) 

(8.38b) 

I-----~F 
--------~F 

p 

(a) (b) (c) 

Fig. 8.51 Illustration of the origin of band bending at a p-n junction. (a) Two separated p-type 
and n-type samples of the same semiconducting material. The directions of the diffusion of the 
majority carriers, which occurs to equalize the chemical potentials when the heterojunction is 
formed, are shown. (b) Band bending at the p-n junction, showing the contact potential energy 
ecPc and the junction double layer of space charge responsible for the potential and band bending. 
(c) Spatial profile of the contact potential, cPc(z). Note that it is the mirror image of the profile of 
the electron energy bands in (b). 
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making use of eqn. (6.203), and where Nd and Na are the donor and acceptor concen
trations in the n-type and p-type materials, respectively, Nc and Nv are the effective 
concentration of states at the conduction- and valence-band edges, respectively, and nj 

is the intrinsic carrier (electron or hole) concentration of the semiconductor. A typical 
room-temperature value of <Pc ~ 0.7V is found for c-Si, doped such that 
Nd = Na = 1022 m-3(nj ~ lOl6 m-3 at this temperature-see §6.S.1.1); this value corres
ponds to a sizeable fraction of the bandgap (~ 1.1 eV). By solving Poisson's equation 
for the homojunction, another expression for the contact potential can be found in 
terms of the depletion lengths dn and dp (Problem 8.10): 

(8.39) 

where E.:r is the dielectric constant of the semiconductor. Charge neutrality of the 
homojunction in dynamic equilibrium requires that 

Ndedn = Naedp , (8.40) 

whence expressions for the individual depletion widths can be found: 

(8.41) 

Note that the spatial profile for the contact potential, <Pc(z), in the direction (z) normal 
to the junction (see Problem 8.10) is simply the mirror image of the profile of the 
electron energy bands (Fig. 8.S1c), since electrostatic potential is conventionally defined 
with respect to a positive test charge whereas energy bands are plots of the energy of 
electrons (negatively charged particles). 

The p-n junction exhibits rectifying behaviour in the current-voltage characteristic 
depending on the polarity of the applied bias, similar to that exhibited by the Schottky 
barrier (§8.4.2.1) and for the same reason: forward bias (a positive potential applied to 
the p-type layer of the junction) reduces the contact-potential barrier and hence pro
duces a large increase in the current; negative bias (a positive potential applied to the 
n-type layer) increases the contact-potential barrier and hence greatly decreases the 
current. In the presence of an applied electrostatic potential ± V, it is the electrochemical 
potential 'T/ = f..L ± e V that is constant through the junction, rather than the chemical 
potential f..L being constant as in the equilibrium case. 

In order to calculate the current passed by a p-n junction as a function of bias, consider 
first the equilibrium case for zero bias (Fig. 8.S2a). In dynamic equilibrium, the electron 
flow from the p-Iayer to the n-Iayer through the conduction bands is equal to the reverse 
flow (and the same is true for the hole currents through the valence bands). Consider the 
case of the electron current I~ in the p -+ n direction. This originates from the very small 
concentration np of electrons thermally generated in the conduction band in the p-type 
material. If the extrinsic semiconductor is in the saturation regime (§6.S.2.2), i.e. all 
acceptors in the p-Iayer are ionized, then the concentration of holes in the valence band 
of this layer is Pp ~ Na, and hence from the law of mass action (eqn. (6.202)): 

nh = nf/ Na, (8.42) 

where nj is the intrinsic carrier concentration of electrons or holes. If the lifetime of the 
electrons in the p-Iayer before they recombine with holes is Tp , the recombination rate is 
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Fig. 8.52 Electron and hole currents ac " 
(c) reverse bias. The junction barrier e¢OS}:r~nJunctI~~ under: ~a) zero bias; (b) forward bias; 
forward bias, and increased to e( c e ze~o- laS case ~s decreased to e( <Pc - V) for 
and holes in the conduction bant~dd ~~l~~ re~er~ b:a~ The relative concentrations of electrons 
empty circles, respectively. ce an 0 ten-and p-Iayers are shown by filled and 

eq;al;~ nr:/Tp , and in dynamic equilibrium this must also be equal to the generation 

~~e~~ron ~if~~~~:~el!ha!ha;e:lY generpted electron. moves before it recombines is the 
ng e - (DeTp) ,where De IS the electron diffusion coefficient. 



Electrons generated in the conduction band of the p-layer within a distance Le of the 
interface with the n-layer are likely to be able to diffuse across the boundary before 
recombination, and hence contribute to the current. Thus, the p -+ n current can be 
expressed approximately as the product of the electron generation rate per unit volume 
and the volume LeA within the p-type depletion layer (where A is the area of the 
heterojunction); there is no potential barrier to electron motion in this direction unlike 
the reverse case, n -+ p (see Fig. 8.52a). Hence the current is 

I~ ~ e(~)LeA 
eDen[A 

= LeNa' 

(8.43a) 

(8.43b) 

Electrons moving in the n -+ p direction have to surmount the contact-potential 
barrier ¢c, and so the current in this direction can be written as 

I~ = cexp( -e¢c/ks T ), (8.44) 

where c is a constant. 
With the application of an external voltage V, the p -+ n current is unchanged: 

Ie = 10 However the reverse (n -+ p) current is greatly altered since the bias either 
p--tn e' , . . 

decreases the band offset (contact potential) to e(¢c - V) (for forward bIas-see FIg. 
8.52b), or increases it to e(¢c + V) (for reverse bias-see Fig. 8.52c). Thus, the n-+p 
electron current is given by 

I~--tp = cexp[-e(¢c V)/ksT] 

= I~exp(eV /ksT) (8.45) 

from eqn. (8.44). In eqn. (8.45), V is positive for forward bias and negative for negative 
bias. Therefore, the net electron current is 

(8.46) 

Similar considerations can be applied to the case of the hole currents, giving by analogy 

with eqn. (8.43): 

I~ ~ e(~:)LhA 
eDhn[A 

= LhNd 

Thus, the total current is the sum of electron and hole currents: 

1= Io[exp(eV/ksT) 1], 

where 

? [De Dh ] 
10 = eni A LeNa + LhNd . 

(8.47a) 

(8.47b) 

(8.48) 

(8.49) 

Note that the rectifying characteristic of the p-n junction has the same functional form 
as that of the Schottky barrier (eqn. (8.37a», and so the shape of the I-V curve is as 
shown in Fig. 8.50. 

Departures in the rectifying behaviour of a p-n junction from that described above 
occu~ if the bias vo~tage is large and if the level of doping in the p- and n-layers is high. 
In thIS case, tunnellzng of electrons and holes through the contact-potential barrier at the 
homojunction can take place, since a high dopant concentration leads to a reduction in 
the width of the depletion layer (eqn. (8.41». The tunn~lling results in a marked 
enhancement of the junction current at particular values of bias. 

An ins.tance of this behaviour is the reverse breakdown of a p.,-n junction. A large 
reverse bIas (say 2-3 V) causes the conduction-band minimum of the n-type material to 
become lower than the valence-band maximum of the p-Iayer (Fig. 8.53a). For a heavily 
doped structure, in which the depletion region is very narrow, quantum-mechanical 
tunnelling of electrons in the valence band of the p-Iayer can occur into vacant conduc
tion-band states in the n-Iayer causing Zener breakdown-see Problem 8.l2(b). Hence, 
at a certain critical negative breakdown voltage - Vc, a large (negative) tunnelling 
current begins to flow (Fig. 8.53b). Reverse breakdown can also occur in lightly 
doped p-n junctions, but at higher values of negative voltage than is characteristic of 
Zener breakdown. In this case, impact ionization of electrons from valence-band states 
to conduction-band states occurs, due to collisions with high-energy mobile electrons 
accelerated by the large electric field. This process can lead to avalanche breakdown 
since electron hole pairs created by impact ionization are in turn accelerated by the field 
and can thus lead to subsequent impact-ionization events (see Problem 8.l2(c». 

In very heavily doped p-n junctions, the semiconductor becomes degenerate: the 
chemical potential lies in one or other of the bands outside the depletion region (Fig. 
8.54a),. As a result, even with zero applied bias, the conduction-band minimum of the 
n-layer can lie below the valence-band maximum of the p-Iayer. Since the width of the 
depletion layer in the case of high dopant concentrations is very small (see eqn. (8.41», 
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F~g. 8.53 Zener breakdown in a heavily doped p-n junction in reverse bias. (a) A large reverse 
?IaS causes the conduction-band minimum of the n-Iayer to drop below the valence-band max
Imum of the p-l.ayer. Electron tunnelling can take place from the p-Iayer valence band into the 
n-Iayer conductron band. (b) The I-V characteristic showing the Zener tunnelling current at a 
reverse bias of - Vc. 
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Fig. 8.54 Esaki tunnelling in a heavily doped (degeI:erate) p-n junction in forward ~ias. (a) In zero 
bias, the conduction-band minimum of the n-layer bes below the valence-band maxII~um of th.e p
layer. For small values of forward bias, electrons can t~nnel from the n-layer conductIOn band I~to 
ezmpty states in the p-layer valence band. The tunnelling .current ceases at ~ ~alue of forwa.rd bIas, 
V

o
, when the band overlap vanishes. (b) The forwar~-bIas I:V ~haract:nstIc of an ~saki tunnel 

diode. The peak in the current is due to tunnelling: thIS contnbu~IOn ~alllshe~ at a I?omt (P) where 
the band overlap in (a) vanishes. The region Q-P is one of negative differential resistance. 

tunnelling of electrons from the conduction band of the n-Iayer into empty states in the 
valence band of the p-Iayer can occur at small values of forward bias, leading to a large 
current. However, as the forward bias is increased, the overlap of the bands decreases 
until it ceases at a particular voltage, Yo; at this point (P in Fig. 8.S4b) the excess 
tunnelling current also vanishes. At higher values of forward bi~s, the n?r.n:al forward
bias behaviour of the simple p-n junction is recovered. DevIces exhibItmg the J-V 
characteristics shown in Fig. 8.S4b are known as Esaki tunnel diodes;. t~ey ~re of 
interest because of the negative differential resistance (d V / dJ < 0) exhIbIted m the 
region Q-P of the J-V characteristic. 

8.4.2.3 Insulator-semiconductor heterojunctions 

A technologically important heterojunction is that between a semic~nduc~or and .an 
insulator, specifically between crystal.line Si ~nd its (arr;orphous) o~Ide, SI02, whIch 
forms the basis of so-called 'metal-oxIde-semIconductor (MOS) devIces. A metal gate 
electrode is deposited on top of a thin (c:= SO nm) insulating oxide layer formed on the 
(100) face of p-type Si (Fig. 8.SSa). Application of a. positive bias ~o the gate ~lectrode 
causes the semiconductor bands to bend down at the msuiator-semiconductor mterface. 
The majority hole carriers are repelled away from this interface into the b~lk of the 
semiconductor, leaving a ~ole-depletion layer in the semicon~uctor, startmg at th.e 
interface, of width c:= 1000 A. As the gate voltage is progressively mcreased, eventually It 
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Fig.8.55 Band bending in an MOS device consisting of: (a) a metallic gate electrode on a thin 
insulating layer (Si02) on a semiconductor (c-Si); (b) formation of an inversion layer in the bent
down conduction band of the semiconductor at the interface with the insulator for a threshold 
gate voltage Vg = Vt; (c) formation of a degenerate 2D gas in the inversion layer for Vg > Vt. 

reaches a threshold value Vt at which the semiconductor conduction band is bent down 
below the level of the chemical potential (Fig. 8.SSb). At this point, an inversion layer is 
formed: electrons (normally the minority carriers) congregate in the approximately 
triangular-shaped potential well (of width c:= 10-100 A.) in the semiconductor near the 
interface with the insulator to form a 2D electron gas. The higher the gate voltage Vg , 

the greater is the areal (sheet) density na of electrons in the inversion layer: 

na = Ca (Vg - Vt) 
e 
Cox ) =-d (Vg- Vt ) 
e ox 

(8.S0a) 

(8.S0b) 

where Ca is the capacitance per unit area of the gate electrode relative to the electron 
gas, and cox 3.9) is the dielectric constant of the a-Si02 layer of thickness dox . The 
sheet electron density can be varied by a couple of orders of magnitude simply by 
varying Vg; the upper limit is set by the dielectric-breakdown field of the insulator 
(c:= 109 Vim for a-Si02-see Problem 8.13). 

The degree of perfection required of the insulator- semiconductor heterojunction is 
high in order to be able to produce and make use of the electron inversion layer. The 
surface charge density ps in the oxide at the interface, due to imperfections (impurities, 
dangling bonds) must be kept very low (Ps < 1017 m-2) in or.der that band bending in 
the Si can be controlled by the gate voltage, and also to reduce scattering of electrons in 
the inversion layer, which otherwise would limit the mobility and conductivity. Present 
oxide-growth technology can produce oxide films with Ps ;:51014 m-2 (cf. the surface 
density of atoms on a (100) face of c-Si is c:= 6.7 X 1018 m-2!). Furthermore, the interface 
must be atomically smooth (with a rugosity much less than the width of the inversion 
layer) in order to reduce surface (boundary) scattering to a minimum. 

8.4.3 Quantum wells 

A quantum well is a 2D conducting system (in the x-y plane), with size-quantization 
occurring in the third (z) dimension due to the width, d, of the well being less than the 
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Fermi wavelength, d < AF. This condition is almost impossible to achieve for metals, 
for which AF c:::: 5 A (see Table 5.1). However, with modern thin-film-deposition technol
ogy (e.g. molecular-beam epitaxy-see §1.1.1) it is possible to produce quantum wells, 
with widths of a few tens of angstroms, using semiconductors such as c-Si or GaAs, since 
for them the Fermi wavelength is much larger than in metals. The Fermi wavelength of a 
2D electron gas, e.g. in an inversion layer at an Si-Si02 interface in an MOS device 
(§8.4.2.3) or at the GaAs-n-type AIGaAs interface in a modulation-doped heterostruc
ture (§8.4.2.2), can be calculated by analysing the behaviour of electrons assumed to be 
moving freely in 2D in the x-y plane. In this case, the kinetic energy for this 2D motion is 

li2 112 
~(X'Y)=-2 *1S+-2 Js,; 

111.... my 
(8.51) 

the energy associated with,motion in the third confined, dimension (z) will be consid
ered later. In eqn. (8.51), m~,y are the effective masses for electrons mo~ing in t?e x,y 
directions. The corresponding 2D electron density of states (per umt area) IS (see 
Problem 5.2): 

(8.52) 

which is independent of energy. The factor gs relates to electron-spin degeneracy; for 
both Si and GaAs, gs = 2. The factor gv is the valley degeneracy, reflecting the degen
eracy of the states at the bottom of the conduction band. The case of the direct-gap 
semiconductor GaAs is particularly simple since there is only a single conduction-band 
minimum at r = 0 in the Brillouin zone, and hence gv = 1. In addition, m~ = m; = 111; 

0.067me for GaAs-Table 6.1). 
The case of the Si{100} interface generally used in MOS devices is a little more 

complicated since Si is an indirect-gap semiconductor with conduction-band minima, 
or conduction-band valleys, lying at non-zero k-values in the Brillouin zone. These 
minima for Si occur in the (100) directions in reciprocal space; the constant-energy 
surfaces near the bottom of the conduction band are ellipsoidal (eqn. (5.127)), with the 
major axes of the ellipsoids pointing along the (100) directions (Fig. 5.51a). These 
ellipsoidal energy surfaces are characterized by so-called longitudinal and transverse 
effective masses (eqn. (5.127) and §6.5.1.4), with mj c:::: O.92lne and m; c:::: 0.19me (Pro
blem 6.25). For a quantum well (inversion layer) oriented such that the 2D electron gas 
is in the x-y plane, the valley degeneracy, and hence the density of states, depends on 
which of the six conduction-band states (valleys) shown if). Fig. 5.51a are involved in the 
motion; there are two choices for the Si{ 100} surface. One possibility is for the two 
valleys in the kz-direction to be involved, in which case the valley degeneracy is gv = 2 
and the effective masses appearing in the expression for the density of states (eqn. 
(8.52)) are m~ = m; = m;. The other possibility involves the other four valleys in the 
kx - ky plane, in which case gv = 4 and the product m;m; = mtmj. 

The Fermi energy ~F and the areal (sheet) electron density na are linearly related 
because the 2D electron-gas density of states (eqn. (8.52)) is energy-independent: 

(8.53) 

The Fermi wavevector kF, and hence the wavelength AF = 27f/kF, can be obtained from 
eqn. (8.53) by substituting into it eqn. (8.51) evaluated at the Fermi level. In the case of a 
single conduction-band valley (GaAs), or the simpler case for Si{100} of the two valleys 
in the k,Z'-direction, a simple expression forJ(F is obtained since the single effective mass 
involved in eqns. (8.51) and (8.53) (m; for GaAs and 111; for S~) cancels out, leaving: 

kF = 27f/AF (47f11a /gsgv)i/2. (8.54) 

For the case of GaAs{IOO} AF = 400 A, and for Si{lOO} AF = 350-1100 A, depending 
on na. 

The simplest case of a quantum well is when the electrons are confined in the z
direction by a square-well potential with infinitely high potential barriers, V 00, at the 
two interfaces at z = 0 and d, and V = 0 for 0 < z < d (Fig. 8.56); this is just the ID 
particle-in-a-box problem. The solutions are sinusoidal standing waves that satisfy the 
boundary conditions ('ljJz(O) = 'ljJ:;(d) = O)-see Problem 3.6, i.e. 

'ljJz = A sink;;z, 

where A is a normalization constant, with 
(8.55) 

(8.56) 

and n is a non-zero integer. The associated energy levels are quantized according to: 

li2~ 
~Il(z) = -2 d?n2 111; - (n = 1,2,J, ... ), (8.57) 

where 111; is the effective mass for motion in the z-direction. For a 10 nm thick layer of 
GaAs, ~i (z) c:::: 50 meV. Note that the energies of successive levels increase quadratically 
with quantum number, n. 

z=d 

Fig. 8.56 Wavef~nctions and energy levels of the three lowest-bound states (n = I, 2, 3) for an 
electron confined In a ID square potential well, of width d, with infinitely high potential barriers. 



Fig. 8.57 Density of states for electron motion in a quantum well. The steps correspond to ~he 
population of successively higher sub-bands labelled by the quantum number, 11. The dashed lme 
is the free-electron density of states for 3D motion. 

The total energy of the 2D electron gas in an infinitely high square quantum well is 
thus given by the sum of eqns. (8.51) and (8.57): 

/i
2i1 2 /i

2 (k~ k;) 
'"g '"gn(Z) + '"g(x,y) = 2 *d? n + -2 -; + -; . 

Inz - Inx my 

(8.58) 

Each energy '"gn(z) for a particular value of 11 marles the bottom of a continuous sub
band of states for 2D motion. The overall density of states for a quantum well is a 
stepwise function of energy (Fig. 8.57). Starting from zero energy, there are no allowed 
states until '"g = '"g1(Z): the zero-point energy of the particle-in-a-box is non-zero. The 
energy'"g = '"gl (z) corresponds to '"g(x,y) = 0; an increase in total energy of an electron 
in the quantum well is achieved by progressively increasing the kinetic energy in the x, y 
directions by increasing kx and kyo Since the 2D free-electron density of states is 
independent of energy (eqn. (8.52)), the total density of states above the step corres
ponding to n = 1 remains constant until the total energy reaches '"g = '"g2(Z), at which 
point the next highest sub-band corresponding to n = 2 can start to be populated, and 
another step occurs in the density of states (of magnitude given by eqn. (8.52)). Note 
from Fig. 8.57 that the envelope of the 2D stepwise density of states is given by the 
parabolic '"g1/2-dependence of the free-electron density of states for 3D motion (eqn. 
(5.15)): the reason for this is that each step in the 2D density of states is of equal height 
but the energies at which the steps occur increase quadratically. 

The above model of a quantum well involving infinitely high potential barriers at the 
interfaces cannot, however, be realized in practice. 9ne way of fabricating a square 
quantum well is by sandwiching a thin layer (d ~ 50 A) of a low-bandgap semiconduc
tor (e.g. GaAs, '"gg ~ 1.5 eV) between thick layers of a high-bandgap material (e.g. 
AlxGal-xAs, '"gg ~ 1.42 + 1.26x eV;$2 eV for x;$0.45). The GaAs-AlGaAs heterojunc
tion is of particular interest beca~se the unit-cell parameters of the two materials are so 
similar that epitaxial growth of one on the other is possible, without interfacial strain or 
defects. The energy-band line-up for this heterojunction is a straddled configuration, in 
which the bandgap of the large-gap material (AIGaAs) straddles that of the other 
(GaAs)-see Fig. 8.58. Note that the conduction-band and valence-band discontinuities 
are generally not equal: in the case of GaAs-AIGaAs, b,.'"gc > b,.'"gy. Thus, electrons in 
the conduction band of the GaAs layer (and holes in the valence band) are confined in 

ege 

,,0 GaAs 

-sin (kz) 
-kz 

-9 

L~egC ,-~ __ ~ ____ ~ ___ -_C_OS_(k_Z_)~ -kz 
-9 
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Fig. 8.58. Schematic illustration of a quantum well formed by'a thin layer of GaAs, of thickness 
d, sandWIched ~etwee.n t:v? semi-infinitely thick layers of AlxGal_xAs. The conduction-band and 
valence-band dIscontInUitIes, b,.'f!,c and b,.'f!,y, are indicated; because b,.'f!,c > b,.'f!,y for this hetero
struct~re system, more electron states can be bound in the conduction band of GaAs than hole 
sta~es m the ~alence bands. The wavefunctions of the quantized states are shown superimposed on 
theIr respective energy levels: note that the wavefunction amplitude is not zero in the gap region of 
the AIGaAs. 

the z-direction (normal to the x-y plane of the heterojunctions) by the existence of the 
forbidden energy gap of the. AIGaAs on either side of the GaAs layer for energies below 
the onset of the AlGa As conduction band for electrons, or above the onset of the 
AIGaAs valence band for holes. 

Since the confining potential in real quantum wells is not infinitely large, only afinite 
number of electron or hole states can be bound. The maximum number of bound states 
is related to the well depth Vo and width d via 

nmax = 1 + Int[(2m;lVold2//i2i1)1/2]; (8.59) 

at least one level is bound for a non-zero-depth potential well. This relation can be 
confirmed by reference to Fig. 8.59, showing the variation of (normalized) energy of the 
levels versus the (normalized) well depth. 

For the triangular potential well characterizing the quantum well (or inversion layer) 
f?rmed at the Si-Si02 junction in MOS devices, or at the GaAs-n-AIGaAs heterojunc
tron, and due to the linear variation in the confining electrostatic potential Ez (see Figs. 
8.32a and 8.55), quantized energy levels are found as for the square-well potential (eqn. 
(8.57)), but the functional form is slightly different (see Problem 8.14): 

1 
.. ~ 
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Fig. 8.59 Normalized energies of levels of a particle in a fInite square w.ell as a fu~cti.on of 
normalized well depth Va. The levels for an infInitely deep square-well potential are also mdlcated 
for comparison. 

(
3 )Z/3 (EZ ) 1/3 ( 3)2/3 

'& (z) ~ -rrne - v + -
v 2 2m~ 4 

(v = 0, 1,2, ... ). (8.60) 

(The exact eigenvalues are 0.7587, 1.7540,2.7575, ... instead of (v + 3/4) for v = 0, 1,2, 
etc.) . . 

Perhaps the most striking physical property of quantum wells concer~s theIr optI~al
absorption behaviour: simply by varying the well thickness, d, the optIcal-absorptIon 
edge of the semiconductor involved can be moved in energy by up to several hundred 
meY. The reason for this behaviour is that, in the quantum-confined state, the threshold 
energy for optical absorption does not involve electron states at the conduction-band 
minimum and valence-band maximum of the bulk semiconductor composing the well, 
since these states do not exist for the quantum well. The lowest allowed state in the 
conduction band, and highest allowed state in the valence band, is instead the first 
quantized level (n = 1 for a square well, v = 0 for a triangular well) for the quantum 
well. Since the energy of this level scales inversely with the width, d, of the well (as d-z 
for the square-well potential (eqn. (8.57», and as E2/3 for the triaj1gular well, the width 
of an inversion layer decreasing with increasing ~eld), large shifts in the energies of the 
levels of the bound states relative to the band edges are possible. Hence, the threshold 
energy for optical absorption is increased with respect to the bulk-semiconductor 
behaviour for very thin quantum wells. . 

This 'engineering' of the bandgap by tailoring the width of a quantum well IS 
illustrated in Fig. 8.60 for the case of a GaAs-in-(Alo.zGao.s)As well. It can be seen 
that the absorption edge shifts to higher energies with decreasing well width for the t~o 
thinnest films, as expected. For GaAs thicknesses significantly greater than AF = 400 A, 
size-quantization effects are absent, as seen for the optical-absorption profile of 
the d = 4000 A film in Fig. 8.60. This spectrum is the same as that for bulk GaAs, 

T 
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Fi~. 8.60 Experime?tal optical-abso::ption spectra taken at 2 K for fIlms of GaAs of various 
t~ICknesses d, sand~lched ?~tween thick layers of (Ala.2Gao.8)As. The two thinner GaAs films 
yv'lth d < Ay = 400 A,. exhibit quantum-well behaviour: the threshold energy for absorptio~ 
~ncreases With .decreasmg .well thICk?ess, and evidence is seen for a fInite number of bound states 
ill th~ well at. hIgher e.ne~gles. The thIckest fIlm behaves like bulk GaAs. (After Dingle et al (1974) 
Repnnted WIth permiSSIOn from Phys. Rev. Lett. 33, 827. © 1974. The American Physical Society) 

exhibiti~g. a sharp. exciton peak (§5.8.3) at the absorption threshold, followed by a 
parabohc mcrease m absorpti~n mi:roring the 3D free-electron density of states (eqn. 
(5.15»: The quantum wells WIt~ thmner layers of GaAs can bind a finite number of 
levels, I.e. nmax = 4 for d ~ 21.0 .t: and nmax = 3 for d = 140 A. The optical-absorption 
profile for these samples IS SImIlar to the stepped density of states characteristic of 
a quantum well (Fig. 8.57), with exciton peaks occllfring at each discontinuity in D('&) 
(see also Problem 8.15). 

.The threshold exciton peak in the spectrum for the thinnest quantum well shown in 
FIg. 8.60 shows some. evidence of structure; This splitting is fully resolved in the 
sp~ctrum for a very thm Ga~s well (~ = ~O A), capable of binding only a single level 
(FIg. 8.61). The re~son for thIS behaVIOur IS that the uniaxial potential associated with 
the quant~m well hfts the degen~racy of the otherwise quadrupally degenerate} = 3/2 
p-states (jz = ±~ /2, ± 1 /2) formmg the top of the valence band at Ie = 0 in covalent 
tet:a~ed~al semI~onductors such as GaAs (§5.4.2). (It is assumed that the spin orbit 
splIttmg IS ~ufficiently large that the split-off) = 1/2 band need not be considered.) The 
well potentIal causes t~e};; = ±1/2 (normally light-hole) states to be pushed down in 
energy more t.han thelz ~ ±3/2 (normally heavy-hole) states because the confinement 
energy scales mversely WIth n:ass (eqn. (8.58». Hence the n = 1 quantum-well state in 
~he valence .band, correspondI~g to el~~tron motion in the confined z-direction, is split 
mto two (FIg. 8.62a). ElectrollIc tranSItIOns between these two quantized valence-band 
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Fig. 8.61 Optical absorption spectrum (a) of a very thin (d 50.A) quantum well of GaAs, (b) 
sandwiched between thick layers of (AlO.25 GaO.75) As, which can support only a single bound state 
in valence and conduction bands. The splitting in the exciton peak is caused by the quantum-well
induced splitting of the n 1 level in the valence band: transitions from the upper heavy-hole 
band, consisting of P3/2 UZ = 3/2) states, are responsible for the lower-energy peak; transitions 
from the lower light-hole band, consisting ofP3t2(jz = 1/2) states, contribute to the higher-energy 
peak. (After Dingle et aT. (1975). Reprinted wlth permission from Phys. Rev. Lett. 34, 1327. © 
1975, The American Physical Society) 
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Fig. 8.62 Evolution of hole dispersion in the valence band of a quantum well of GaAs associated 
with the P3/2UZ = ±3/2, ±1/2) states. (a) Energy levels for electron motion in the confmed z
direction: the n 1 level is split into two levels corresponding to jz = ±3/2 (heavy holes, h.h.) and 
± 112 (light holes, l.h. ). (b) Band dispersion in the ky-direction for the P3/2 states at the top of the 
lalence band for bulk GaAs. (c) Band dispersion in the ky-direction for the quantum well. The 
band dispersions for the bulk case are shown by the dashed Hnes: mixing of the states and the no
crossing rule produces the fmal band dispersions shown by the solid lines. 

levels and the single n = 1 level in the conduction band give rise to the split exciton peak 
evident in Fig. 8.61. 

The upper (jz == ±3/2) states in Fig. 8.61a are referred to as heavy-hole states because 
the energy band corresponding to electron motion in the x-y plane, e.g. ~(ky), is flatter 
than that corresponding to the lower (jz = ±1/2) states, which are therefore denoted as 
light-hole states. The evolution of the heavy-and light-hole bands in going from the bulk 
to the quantum well is illustrated in Fig. 8.62b, c: note that in the quantum-well case, the 
upper band Uz = ±3/2) that is the !ight-hole band in the bulk material is transformed 

into t?e heavy-hole ?and for the quantum well by mixing with the states of the other 
band In order to satIsfy the no-crossing rule. 

8.4.4 Artificial structures 

Using molecu~ar-beam-epit.axy~eposition techniques (§1.1.1), it is entirely feasible to 
produ.ce a .senes of hetero~unctlOns (between different semiconductors or metals) or 
homoJun~bons (between dIfferently doped regions of a semiconductor) in a stacked 
sequence In the grow~h (z~ dire~tion. ~t is possible, therefore, to fabricate ordered arrays 
of hetero- ?r homoJunctlOns In WhICh layers of one material (1) with thickness d 
alternate wIth layers of ano~her (2) with thickness d2 (Fig. 8.63a); thus, an artificia~ 
structure can be produced wIth a new period 

d = d1 + d2• (8.61) 

(Note, also, that periodic stacks of different amorphous materials can be fabricated so 
that for them an artifi~ial ?eriodicity can be introduced where none existed previously.) 

.In the case of a p~nodlc array of semiconductor quantum wells (§8.4.3), where the 
thIckness of the W~lliS d1 and of the barrier layer is d2, two scenarios may be envisaged. 
In one, the SP~CIng. of the barrier layer is much greater than the well spacing 
(d2 » dl ~ ).~), In w~lch case the quantum wells are isolated (no tunnelling of electrons 
through the Inte~venIn~ barrier layers): such structl.J.res are called multiple quantum 
wells. However, If t?e Inter-well spacing is comparable to the individual well width 
(dl ;£;d2 ), then there IS a very considerable electronic interaction between neighbouring 
quantu~ ~ells (see Problem 8.14), and this superlattice has very different electronic 
properties In the growth direction from those of the bulk constituent materials. (In the 
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Fi~. 8.63 (a) An artificial structure consisting of a stack of layers of two materials 1 and 2 of 
th~c~nesses d1 and d2, with a periodicity d = d1 + d2• (b) Spatial profile of the conduction-b~nd 
m;mmum and valence-band maximum, i.e. the energy gap, through a semiconductor superlattice 
wlth d1 ~ d2• 
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Fig. 8.64 Electron states in a semiconductor superlattice. (a) Representation of the wavefunc
tion, 'I/J(z) , centred on a particular conduction-band well, for the ground-state level of the 
quantum well. (b) Dispersion of the corresponding superlattice miniband. 

x-y plane, normal to the growth direction of the superlattice, the behaviour of the layers 
is controlled by the microscopic structure of the materials involved, modified, if appro
priate, by the 2D nature of the layers-see §8.4.3.) 

The effect of the artificial periodicity d in a superlattice on the electronic structure can 
be understood from a tight-binding model (§5.3.l) for electrons moving in periodic wells 
in the conduction band (Fig. 8.63b). If the envelope function for the nth well, centred at 
z = nd and denoted 'l/J1l(Z - nd), overlaps sufficiently with the two neighbouring wells in 
the growth (z) direction (Fig. 8.64a), then the overall Bloch function for an array of N 
quantum wells subject to periodic boundary conditions can be written as (cf. eqn. 
(5.93) ): 

(8.62) 

The envelope function for a well in eqn. (8.62) is the equivalent of the atomic orbital or 
Wannier function used in the tight-binding treatment of normal crystals made from 
arrays of atoms. By analogy with eqn. (5.95), the tight-binding expression for the 
electron energy associated with electron motion through the superlattice (in the z
direction) is 

cg(k) cgi - ai - 2(3i cos kd, (8.63) 

where cgi is the quantized energy of the ith level of a quantum well (i = 1,2,3, ... ), ai is 
the self-energy integral (cf. eqn. (5.96a)) and is a positive quantity, and (3i is the overlap 
integral (cf. eqn. (5.96b)) and is also positive; the potential appearing in such integrals 
is, in this case, the well potential (e.g. a square well-Fig. 8.63b). Thus, the energy 
dispersion in the z-direction has a cosinusoidal dependence, as shown in Fig. 8.64b; such 
a band of'superlattice states' is known as a miniband, and it has an energy width of 
41(3i\· 

The corresponding density of states for a superlattice is shown in Fig. 8.65. It can be 
seen that the step-like profile of a single quantum well has the discontinuities in the 
density of states, corresponding to different energy levels i in the well, smeared out: the 
energy width of this smearing in the density of states corresponds to the bandwidth 
shown in Fig. 8.64b, and the density of states in this region is given by 

Fig. 8.65 Density of states of a semiconductor su erlattice Th . 
mark the energy ranges of the minibands such Ph" .e regIOns a-b, c-d and e-f, etc. 
electron states for a single quantum well (Q' W) adS Sf tOhwnbInlkFlg. 8.?4b. The densities of free-

an 0 e u matenal are also shown. 

(8.64) 

Ther~ are fo~bidde? gaps for 'superlattice' states between minibands each ba db' 
assoclal~~dtlth a dIfferent quantum-well state; the gaps occur at wave~ector va~es ~~:~ 
are mu :p es of 7r / d (Fig. 8.64b) and hence considerably smaller than the B'll . 
b~~ndanes of the underlying crystal (mUltiples of 7r / a) since d »a where ~ i~~~~-zo~e 
~:t partametter. For electron energies within such gaps, the electro~ic behaviour o~~~~ 

ero~ r.uc ure array reverts to that of a 2D quantum well for which the de 't f 
states IS mdependent of ener ( (8 52) . . ' nSI y 0 
th I tf . h . g~ eqn. . , smce no penodic extended state through 

e su~er a Ice m t e z-dlr~ctlOn can then exist. This behaviour is evident in Fi 
~~lm:.conduct~r superlattlces were originally fabricated in order to see whethe:'B~~~h 

OSCI a I?nS co~ d be observed. This is the prediction that a d.c. electric field a . 
a ~a~ena~ havmg a periodic potential for electrons should induce an oscillator:~~I~~~O 
ve OClty: I.e. an. a.c. current, as a result of the motion of the' electro " n 
conc.omlbtantdPenodicalIy varying band of states in k-space. Consider the ::Si:~~~~:~ye 
varymg an structure shown in Fig 866 cg(k) - C(J C(J 7 d S' 

I . . " - 00 0ICOSt(. mce the real-s 
group ve OCIty (of a wave packet) of an electron is given b the reci roc ~ace 
~i~ t~e e!~ct~on ~nergy, ~g(k). = (l/11)8cg(k)/8k = (dcgl /11)sinkd (~n. ~!~~~~~et~:a~~~:~ 
th y o~ t e t~ flsh~wn m FIg. 8.66 mcreases with increasing k, reaching a maximum at 

e pom 0 m ectlOn ~f the band, and thereafter decreasing to zero at the z 
boundary, Ikl = 'if/d. ThIS beh~vi~ur can be ascribed to Bragg scattering at k = ~n:; 
(?6.2). Th.us, the ~lectron velOCIty IS a periodic function of k and hence also of' / 
smce, on mtegratmg the equation of motion 11k = -eE (eqn. 6.22) tIme t 

k = ko - eEt/li. (8.65) 
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, d'ng to three quantum-well 
F' 8 66 Minibands for a semiconductor superlattIce corre~pon 1 ') 

le1;;ls,' together with the Ie-variation of the electron group velocity (dashed hne , 

Thus, the period for the motion in reciprocal space of an electron between k = ±1f / d, 

the Bloch oscillation, is given by 

T = 21f ~. (8.66) 
d eE 

. ., I b b d 'f the period is shorter than the 
Bloch oscillations can m pnnciple on yeo s,e~e . I . fi d ~ b lk crystals 
scatterin relaxation time T, T < T. This condItIOn IS not satis Ie or u , 
where th~ spatial period in eqn, (8.66) is the unit-cell parameter, a (pr:b~em ~.2(bi~· 
Nevertheless, for a superlattice with d ~ lO-lOOa, there is a prospect 0 0 servmg e 

Bloch oscillations (see also Problem 8.16). . f h 
However the above picture is rather too simple in its neglect of certam a~pects o. t e 

effect of a~ applied electric field on the superlattice miniband~. In partIcular, If an 
applied electric field E acts uniformly on all wells in the s,:perlattIce, overlaP

f 
of ~h~b we~ 

wavefunctions between neighbouring wells will cease; I.e. the con.cept 0 m~m t~ 
formation will become meaningless, once the field-~nduce~ energy displacemen 0 e 
quantum-well levels is greater than the miniband WIdth, VIZ. 

eEd ~ 41f3d- (8.67) 

The arrangement of energy levels in a superlattice when the ap~lied electric field is 
sufficient to prevent miniband formation is called a Stark ladder (FIg: 8.67). ~s a. resul~, 
unambiguous experimental evidence for Bloch oscillations, even m super attlces, IS 

sc~~~ 'periodicity of a superlattice can also have profound effects on phon don: prolPatgat-
. I ner to those foun lor e ec ron ing in such structures m a somewhat ana ogous man 
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Fig. 8.67 Formation of a Stark ladder in a superlattice subject to an applied electric field E 
strong enough to prevent overlap of well wavefunctions and the formation of minibands. 

states (see Problem 8.17). Thus, acoustic phonons (§4.2.3) are folded back in the new 
Brillouin zone with boundaries at k = ±1f / d, where d is the superlattice periodicity: this 
is analogous to the formation of electron minibands. In contrast, the atomic displace
ments associated with optic phonons (§4.2.3) in a superlattice tend to be confined to one 
or other of the different layers of materials, and are known as confined modes: this is 
somewhat analogous to the 2D motion of electrons within the narrow-gap semiconduc
tor layers (but not the large-gap layers) for electron energies in the gaps between the 
minibands. Further details on phonon behaviour in superlattices are given in Yu and 
Cardona (1996). 

Thus far, it has been assumed that a semiconductor superlattice is fabricated as 
a periodic array of compositional heterojunctions (Fig. 8.63). However, an artificial 
structure can also be produced as a periodic array of homo junctions or p-n junctions 
(§8.4.2.2), in which case it is called a doping superlattice. An alternative name is a nipi 
structure, since there is an-effectively intrinsic layer (or even a deliberate extra intrinsic 
layer) between p- and n-type doped regions of the same semiconductor. Modulation of 
the conduction-and valence-band edges in real space, along the growth direction, occurs 
in the case of doping superlattices because of the presence of a spatially periodic space 
charge, resulting from ionized donors or acceptors in the n-type or p-type layers, 
respectively (Fig. 8.68), rather than being due to band offsets as for compositional 
superlattices. For nipi structures, the magnitude of the band-edge modulations is 
determined by the doping level: the higher the dopant concentration, the larger the 
modulation energy ego. The symmetric real-space modulation of the band edges in 
the growth (z) direction characteristic of a doping superlattice, where at any point z 
in the superlattice the energy gap between valence and conduction bands is egg, means 
that an 'indirect' minimum gap exists in real space (rather than reciprocal space) of size 

eg~ff = egg ego. (8.68) 

An estimate for ego can be obtained by assuming that a given homojunction can be 
treated as a capacitor, with a capacitance per unit area of 

J 
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Fig. 8.68 Illustration of doping superlattice (nipi) artificial structures. (a) Spatial variation of n
type and p-type doping of a semiconductor with an intrinsic bandgap egg. It has been assumed, 
unphysically, that the dopants are un-ionized and so no band bending occurs. (b) Spatial variation 
of the conduction- and valence-band edges in the growth direction, z. The modulation ego of the 
bands is due to the spatially varying space charge associated with the ionized donors and 
acceptors in the n- and p-layers, respectively. Note that the 'direct' gap in real space is everywhere 
equal to egg, but the mini;rnum 'indirect' gap is equal to egg ego. (c) A semi-metallic nipi structure 
with a very high doping level. 

(8.69) 

where I:: is the dielectric constant of the semiconductor. If it is assumed that the space 
charge per unit area in the n-type and p-type regions of widths dn and dp, respectively, 
are the same, i.e. . 

then, since C = Q/V, where V is the electrostatic potential difference (= '7/,o/e): 

'7/,0 ~ e2
N ddnd 
21::1::0 

e2Ndd2 

41::1::0 

(8.70) 

(8.71a) 

(8.71 b) 

for dn = dp d/2. Note that '7/,0 scales with the dopant concentration. For very high 
dopant levels, the modulation of the band edges can become so pronounced that the 

.l[ig.8.69 Photoluminescence (PL) spectra at 2 K of a GaAs nipi superlattice with period d ~ 800 
A (CAs and SiGa dopants) for different light excitation powers as shown (hv = 1.92 eV). (Rep
rinted from J.Cryst. Growth 81, 270, Heinecke et al., © 1987 with kind permission from Elsevier 
Science - NL, Sara Burgerhartstraat 25, 1055 KV Amsterdam, The Netherlands) 

conduction-band minimum in the n-layers is lowered in energy below that of the 
valence-band maximum in the p-layers: the artificial material is then a real-space nipi 
semi-metal (Fig. 8.68c). 

Doping superlattices are interesting because the band modulation, and hence the 
effective bandgap, eg~ff, can be controlled simply by varying the space-charge densities in 
the n- and p-Iayers. This can be achieved by injecting excess electrons and holes (with 
respect to the thermal-equilibrium concentrations) into the structure, and these then 
neutralize some of the charged donors and acceptors, respectively, thereby reducing ego 
(eqn. (8.7)) and increasing eg~ff. Excess carriers can be injected electrically from injecting 
contacts, or optically as. electron-hole pairs following the absorption of photons: the 
higher the light intensity in the latter case, the higher the excess electron-hole density 
and consequently the larger the effective gap energy, egeff. An experimental demonstra
tion of this effect is shown in Fig. 8.69, where photolum1nescence spectra of a GaAs nipi 
structure are shown as a function of light-excitation power: a progressive shift of egeff 
towards the bandgap value for bulk GaAs (egg ~ 1.5 eV) with increa.sing power is see~. 
Photoluminescence is the light emitted due to radiative recombination of excess, optic
ally generated electron-hole pairs: the luminescence energy will correspond to the value 
of eg~ff pertaining to the particular excitation power. 

Extensive discussion of the behaviour of semiconductor superlattices is given in 
Capasso (1990) and Kelly (1995). 

**8.4.5 Quantum Hall effect 

It might be thought naively that the behaviour of the Hall effect and related galvano
magnetic properties (§6.3.3.2) for a 2D electron gas should be qualitatively the same as 



in 3D, namely a Hall (transverse) resistivity Pxy that is proportional to the magnetic field 

B = Bf. (cf. eqn. (6.126)) 
B 

Pxy= -
nae 

and a field-independent magnetoresistivity (cf. eqn. (6.9)) 
me 

pxx =-2-' nae T 

(8.72) 

(8.73) 

where na is the areal electron density of the 2D electron gas. The 2D resistivities for 
current flow in an arbitrary direction in the x-y plane are defined by the set of equations: 

Ex = Pxx I" + Pxyjy, (8.74a) 

Ex = Pyx I" + Pyyjy, (8.74b) 

where Pxx = Pyy and Pxy = -Pyx' (Note that the 2D electrical resistivity has the unit of 
ohms (cf. 0 m in 3D) and the 2D current density, e.g.jx Ix/w, the current per unit width 
of a film of width w, has the units of A m- 1.) Equations (8.74) can also be inverted to give 

I, axxEx + axyEy (8.75a) 

jy = ayxEx + ayyEy , (8.75b) 

where a
xx 

= a yy and a xy = -ayx , and where the components of the conductivities and 

resistivities are related via 
P= ( ) a xx = 2 2' 8.76a 

Pxx + Pxy 

axy = 2 Pxy 2 ' (8.76b) 
Pxx + Pxy 

with similar expressions relating resistivities to conductivities, obtained by substituting 

Pij for aij, and vice versa. 
However, the actual galvanomagnetic behaviour of a 2D electron gas, e.g. that 

confined at the interface of a modulation-doped AIGaAs/GaAs heterostructure (Fig. 
8.32a) is startlingly different at high magnetic field (WeT» 1, nwc » kB T) from the 
simple predictions of eqns. (8.72) and (8.73) (see Fig. 8.70a). The Hall resistivity exhibits 
a series of plateaux: values of the Hall resistivity are quantized in units of 
h/ e2(= 25812.8070) divided by consecutive integers 

h 
Pxy = --2' P = 1,2,3,.... (8.77) 

pe ' 

This is the integral quantum Hall effect first discovered by von Klitzing et al. (1980) for 
an inversion layer in an Si MOSFET. Furthermore, at the values of magnetic fields 
corresponding to the sharp rises in transverse resistivity between quantized Hall pla
teaux, there are sharp peaks in the longitudinal magnetoresistivity Pxx(B), an instance of 
the Shubnikov-de Haas effect (§7.2.3.2). 

For the ranges of magnetic fields corresponding to a particular Hall plateau, the 
longitudinal magnetoresistivity is zero (see Fig. 8.70b). However, this does not mean 
that the system becomes a perfect conductor, with an infinite conductivity, because the 
transverse resistivity (and conductivity) remains finite (Fig. 8.70a). Instead, the set of 
equations (8.76) have the curious property that, if Pxy =f 0, Pxx -+ 0 simultaneously as 
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Fig.8.70 Quantum Hall effect for the 2D electron gas confined in a modulation-doped AlGaAsl 
GaAs heterostructure, measured at 4 K. (After Paalonen et al. (1982). Reprinted with permission 
fro~. P'hys. Rev. B2?, 5566. © 1~82. The A~erican Physical Society) (a) Hall (transverse) 
resls~lV1ty as a .fu~~tlon of magnetic flux density. (b) Shubnikov-de Haas oscillations in the 
longltudmal resistivity. 

a.'(X -+. 0, ~nd vice v~rsa .. In other words, electrons move longitudinally along a bar of 
mat~nal. (m th~ x-dIrectiOn) under the action of a transverse electric field, with zero 
~on~tu~mal.resistance, as seen from eqns. (8.74) and (8.75). The trajectories of electrons 
m thIS sItuatiOn are as shown in Fig. 8.71a: electron cyclotron orbits are confined to the 
edf!es .of the s~mple, and are known as skipping orbits associated with edge states. Such 
skI?pmg orbIts do not permit ba~k scattering, and hence edge-channel transport is 
r~sIst~nceless. The net ele~t~on motiOns along the long edges of the sample are in opposite 
?Ire~tiOns. !~e .f?ur~termmal.sam.ple configuration used to measure the Hall and long
Itudmal resIstlVltles IS shown m FIg. 8.71b. From this, it is evident that the relationship 
betwe~n the ~dge states and the contacts is analogous to the situation encountered in 
quantlzed pomt-contact conductance (§8.3.5.3); the origin of the quantum Hall effect can 
therefore. be .understood in terms of the Landauer formalism (eqn. (8.18». 

Qua.ntlzatl?n of the Hall resistivity in a 2D electron gas can also be understood 
very SImply m te.rms ~f the 2D behaviour of the Landau levels (§6.3.3.1). For the 
case of a three-dImensiOnal system, the density of states for the Landau levels is a 
continuous (albeit spiky) function of electron energy (Fig. 6.20d) in that there are no 
energy .gaps: t~e <tg-l/.2 behaviour of g(<tg) for the residual motion parallel to the 
magnetIc field IS supenmposed on the discrete Landau levels. However, if the motion 
of the electron gas is co.nfi~ed to two dimensions by a potential well (as in a quantum 
well),. the electron energIes m the presence of an external magnetic field of flux density B 
are gIven by 

(8.78) 

8 

J 
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(a) 

Fig.8.71 (a) Skipping cyclotron orbits (edge states) in a bar ofmat~rial cont,aining a 7D electron 
gas exhibiting the quantum Hall effect. (b) Measurement configuratIOn for a Hall bar. A current 
is passed down the length of the bar between source and drain current electrodes 1 and 2, and 
electrodes 3-6 are voltage contacts; the chemical potentials of all con~acts a~e show~. Th.e edge 
states and localized cyclotron orbits are shown by the continuous thin hnes, wIth the dIrectIOns of 
electron motion marked by the arrows. The four-terminal Hall resist~nce, R:~y (for current and 
voltage contacts alternating at the sample boundary), and the two-termmal reslsta?Ce, R2(, are the 
same (= h/e2p): the four-terminal longitudinal resistance, Rxx (for non-alternatmg cur~e~t and 
voltage contacts) is zero. (After Beenakker and van Houten (1991). Reproduced by permlssIOn of 
Academic Press, Inc.) 

where cgl is the ground-state level for the well. The second term is the quantized energy 
of the nth Landau level (cf. eqn. (6.119)), where We = eB / In~ is the cyclotron frequency 
(eqn. (6.117)); this replaces the free-electron term (eqn. (8.58)) in the ~resenc~ of a 
magnetic field. The last term is the Zeeman energy (eqn. (7.222)) for the 111teractlOn of 
an electron spin with a magnetic field and J..LB = etz/2lne is the BO.hr magneton. (e~n. 
(7.130)); the positive/negative signs refer to the electron-spin magnetlc moment ~0111t111g 
parallel/antiparallel to B, or spin-down/up, respectively. T~us, the cor~espond111g. den
sity of states of a 2D system (without disorder) in a magnetlc field con~Ists of a senes of 
delta fl.ll1ctions (Fig. 8.72), with a spin doublet for every Landau level, 111 contrast to the 
constant density of states for a 2D system without a magnetic field. For the case when 
the cyclotron effective mass, m~ (eqn. (6.118)) equals the free-electron mass me, the 
Zeeman (spin-) and cyclotron splittings are equal, i.e. tzwe = 2J..LBB (cf. eqns. (6.117) and 
(7.130)). As the magnetic field increases, the degeneracy per unit area of each Landau 
level (for a particular spin direction) increases (cf. eqn. (6.121)): 

eB 
gll=T' 

(8.79) 

and the levels also move upwards in energy since the Landau-level spacing, tzwc, is 

proportional to B. 
A quantum Hall effect can then be understood from the ma~etic-field dependence of 

the chemical potential, J..L(B), for such a density of states. ConSIder the case when, for a 
particular areal density of electrons, na , of a 2D electron gas in a given magnetic field B, 
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Fig.8.72 Density of Landau levels in a 2D electron gas, drawn for the case when m~ < me. The 
density of states consists of a series of delta functions (in the absence of disorder), each doublet for 
the nth Landau level corresponding to spin-up and spin-down configurations of the electron spin 
with respect to the magnetic-field direction being labelled as such. The constant 2D density of 
states in the absence of a magnetic field is also shown. 
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Fig. 8.73 Landau-level occupancy P('~) in a 2D electron gas at two magnetic fields, (a) Bl; 
(b) B2 > Bl. The delta functions characteristic of the density of states for an ideal system have 
been broadened for ease of illustration to show the occupancy. The chemical potential is pinned to 
the position of the part-filled Landau level, and oscillates about the value /-10 for the field-free 
system. 

one particular Landau level (n := 2 i in Fig. 8.73a) is partly occupied: all Landau levels 
below or above this level are fully occupied or cqmpletely empty, respectively. In this 
case, the chemical potential is pinned to the Landau-level position. As B increases, the 
level will move up in energy and with it, J..L. However, the degeneracy of the lower-lying 
Landau levels also increases with B (eqn. (8.79)), and therefore for these levels to remain 
completely filled the part-filled level must be increasingly depleted of electrons. The 
point will come when all electrons are drained from this Landau level and hence the 
chemical potential will decrease discontinuously to the position of the next lowest 
Landau level (11 in Fig. 8.73b) which will then start to be depleted of electrons; the 
position of the chemical potential will now be pinned to this level as long as it is part
filled. The discontinuous jumps in J..L(B) occur, therefore, whenever an integral number 
of Landau levels are completely occupied; the condition for this is that na/ gil = p, where 
p is an integer, or from eqn. (8.79) 
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hgn = hna 
e pe 

(8.80) 

Substitution of this value of magnetic field, at which discontinuous jumps in J.L(B) occur, 
into the semi-classical expression for the transverse resistivity (eqn. (8.72» shows that 
the Hall resistivity is expected to be quantized (cf. eqn. (8.77»: 

Bp h 
Pxy = - nae - pe2 ' 

The vanishing of the longitudinal conductivity, CTxx (and hence, from eqn. (8.76a), Pxx) is 
also understandable from this picture since, at the point when all Landau levels are 
either completely full or empty, the density of states at the Fermi level is zero. 

However, although this simple picture predicts a quantization of Pxy, it cannot 
account for the ranges· of magnetic fields, corresponding to the Hall plateaux, for 
which CTxx = Pxx = 0; the model predicts this behaviour only at the discrete fields, Bp 
(eqn. (8.80». A modification of this model that goes some way towards explaining the 
experimental data (Fig. 8.70) invokes the presence of disorder in the 2D system, due 
perhaps to structural defects at the heterojunction. Disorder can have two effects on 
electron states: bands of states in the density of states can become broadened (§5.5), and, 
if the disorder is sufficiently great, electron states can become spatially localized (§6.7). 
The effect of disorder on the Landau-level density of states of 2D electron gas is shown 
schematically in Fig. 8.74: the delta functions of the ideal system (Fig. 8.72) are 
broadened, with delocalized (extended) states existing only for energies close to the 
peak maxima and intervening states being localized. The variation of J.L(B) is still 
oscillatory but is now a smoothly varying function, increasing when near one of the 
peaks in the density of states, and decreasing when near a minimum between two peaks. 
When J.L(B) lies in such a band oflocalized states, the system is a Fermi glass (§7.7) and 

Extended 

Fig. 8.74 Illustration of the density of states for a disorder~d 2D electron-gas system i;:t. a 
magnetic field. The delta-function peaks are broaden~d by dlso:de~, a;nd the~e are mob~hty 
edges between extended and localized states. If the chemlcal potential hes m a reglOn of localized 
states, CTxx 0 at T = 0 K. 

CTxx will be zero (at T = 0 K, where hopping conduction cannot occur). Hence, the 
reason for CTxx being zero for a range of magnetic fields can be understood in this way. 

It might be thought that at sufficiently high magnetic fields, where only the lowest 
Landau level is occupied, the quantu:gt Hall effect should disappear. Indeed, the integral 
quantum Hall effect, as discussed above; does vanish in this regime. However, the Hall 
resistivity is found still to be quantized (Fig. 8.75), but now the quantization factor is 
not integral but non-integral, p = n/m, where n( < m) and m are integers. This is the 
fractional (or non-integral) quantum Hall effect. Although the behaviour is superficially 
similar to that of the integral quantum Hall effect, the underlying mechanism is very 
different and is believed to result from electron-electron interactions. However, the 
theory for this is beyond the level of this text (see, for example, Prange and Girvin 
(1990) ). 

Laughlin (1982) has formulated a theory for the fractional quantum Hall effect 
wherein, because of electron-electron interactions, the 2D electron gas becomes an 
incompressible quantum fluid in which, for a fractional Landau-level filling factor, 
say p = l/m, the quasiparticle excitations have a charge Q that is a fraction of the 
electronic charge, i.e. Q = elm. This extraordinary prediction of fractional charge has 
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Fig.8.75 The fractional quantum Hall effect in a 2D electron gas at a GaAs/AlGaAs interface, 
measured at 150 mK (except for the highest-field Hall data, measured at 85 mK). (After Willett et 
al. (1987). Reprinted with permission from Phys. Rev. Lett. 59, 1776. © 1987. The American 
Physical Society) 
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now been confirmed experimentally (de-Picciotto et al. 1997, Saminadayar et al. 1997) 
by measurements of the noise in the current passing through a constriction in the 2D 
electron gas subject to a very large magnetic field (in the fractional quantum-HaIl-effect 
regime), i.e. between quantum point contacts (cf. §8.3.5.3) formed by the electrostatic 
repulsion of electrons underneath two shaped, negatively charged split-gate electrodes 
placed above the electron gas (see inset to Fig. 8.39). 

Any electrical current is not, in fact, a uniform flow of charge carriers but, if the 
particles flow independently (characterized by an uncorrelated Poisson distribution), 
there will be fluctuations in the number of carriers passing a particular point in a given 
time interval; these current fluctuations are known as shot noise (by analogy with the 
random patter of lead shot on a target). This is a classical phenomenon, and it allows 
the determination of the charge Q of the carriers since, in the simplest case, Q is 
proportional to the mean-square fluctuation in the current, 6.(fi) and the average 
current, 10 (see e.g. Bleaney and Bleaney (1976»: 

6.(fi) = 2Qlo6.f, (8.81a) 

where b..f is a frequency interval. The current is a 2D electron gas in a strong magnetic 
field is carried by edge states (Fig. 8.7Ia); this is true in both the integral and fractional 
quantum-HaIl-effect regimes (although in the latter case the electrons do not form 
a Fermi liquid). A more general expression for the noise associated with the current 
passing through a quantum point contact connecting such ID conducting channels, 
valid at finite temperatures, is given by (de-Picciotto et al. (1997»: 

b..([2) = 2Got(1 - t)6.f[QV coth(QV /2kBT) 2kBT] + 4kBTGotb..f, (8.81b) 

where Go is the quantized conductance (Go = Qe/h), t is the transmission coefficient for 
transport between the point contacts and V is the applied voltage. The second term in 
eqn. (8.81b) is the thermal (Johnson) noise generated in any resistor by spontaneous 
thermal fluctuations in voltage (Nyquist theorem)-see e.g. Kittel (1969). At zero kelvin 
and for very weak transmission, eqn. (8.81b) reduces to eqn. (8.81a), since 
VGot(1 - t) ~ VGot = lot ~ 10 . 

The split-gate electrode geometry leading to 1 D confinement of the 2D electron gas 
(quantum point contacts) allows two regime to be explored, depending on the magni
tude of the applied (negative) gate voltage, Vg: for relatively low values of Vg ('weak 
pinch-off'), the 2D electron gas is restricted in the region between the gate electrodes 
but is still continuous (Fig. 8.76a); at higher values of Vg ('strong pinch-off'), the 2D 
electron gas is completely separated into two parts (Fig .. 8.76b). In the strong pinch-off 
limit, electrons can quantum-mechanically tunnel from one branch of the edge states 
(say in the left-hand region of the electron gas) to the other branch (in the right-hand 
region) through the gap separating the two regions where the electron gas has been 
repelled electrostatically (Fig. 8.76b); even in the fractional quantum-HaIl-effect regime, 
charge can be added to, or subtracted from, the incompressible electron fluid only in 
multiples of whole electrons. However, in the weak pinch-off limit, where the 2D 
electron fluid is continuous in the region of the split gate, quasiparticles can tunnel 
through the fluid from one edge channel (say the top) flowing in one direction to the 
other (the bottom) flowing in the opposite direction; as a result, the quasiparticle is 
effectively backscattered at the point contacts (Fig. 8.76a). Measurements of the shot 
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Fig. 8.76 Quantum P?int contacts in a two-dimensional electron liquid, showing the conducting 
edge ~hannels (bold hnes! an~ the direction of current flow: (a) The weak pinch-off limit. 
FractIOnally ~ha.rged quasI partIcles can tunnel between edge channels (i.e. backscatter) through 
the electron II.qUId. (b) The stron.g pinch-off limit. Electrons can tunnel between edge channels in 
separated regI~ns of electr~n flUId. (c) Measured shot noise in the backscattered current (circles) 
at qua~tum pomt contacts m a?D electron fluid at an AlGaAs/GaAs interface for a transmission 
coefficl~nt t = 0.82, together. wIth. the be.haviour predicted by eqn. (8.81 b) for the current carried 
by ~ractlOnally ~harged q~as~partJcles WIth charge Q. = e/3 (solid line) and electrons with charge 
Q - e (dashed lme). (de-PIcclOtto et aI. (1997). ReprInted with permission from Nature 389 167 
© 1997 Macmillan Magazines Ltd.), , _. 

noise in ~ 2D electr~n fluid at an AIGaAs/GaAs interface in the weak pinch-off limit, at 
a very hIgh magnetic field.where the Landau-level filling factor was p = 1/3, could be 
fitted to eqn. (8.81.b) .only by assuming that the charge of the tunnelling quasiparticle 
was Q = e/3 (de-PlcclOtto et al. 1997, Saminadayar et al. 1997)-see Fig. 8.76c. 
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Applications 8.5 

There are very many applications of some of the topics that have been discussed in this 
chapter. However, the majority of these applications relate to semiconductor homo- and 
heterojunctions, and so here we will concentrate on some electronic and opto-electronic 
applications of devices that incorporate such heterostructures. However, even this field 
is so vast that entire books have been devoted to its description, and hence in this short 
section we can do no more than give a flavour of the subject, stressing the physical 
operation of the devices involved. The interested reader is referred, for example, to Sze 
(1981) for further details on semiconductor devices. 

8.5.1 Semiconductor transistors 

The writing of this book has coincided with the fiftieth anniversary of the development 
of the semiconduGtor transistor (transfer resistor) in 1947 by Bardeen, Brattain and 
Shockley at Bell Laboratories (and simultaneously also with the centenary of the 
discovery by J. J. Thomson of the electron!). The invention of the transistor has been 
responsible for the unprecedented information-technology revolution that the world has 
recently been experiencing. Although the functional operation of a transistor is the same 
as that of a vacuum triode, the extreme miniaturization made po.ssible with the use of 
solid-state devices has meant that new applications (e.g. high-density computer mem
ories) or more powerful variants (e.g. ultra-fast electronic computers) have been devel
oped that could never have been feasible using vacuum tubes. 

Essentially, two types of transistor action can be distinguished on the basis of the 
direction of current flow with respect to the homo/heterojunctions: the bipolar transis
tor involves current flowing normal to the homo/heterojunctions, and a field-effect 
transistor (FET) has the current flow parallel to the plane of the heterojunction. We 
will briefly describe both types of device in the following two sections .. 

8.5.1.1 Bipolar transistors 

Bipolar transistors comprise a trilayer of doped semiconductor (usually c-Si), with a 
thin « IJ.1m) layer of one doping type sandwiched between more heavily doped layers 
of the other type, e.g. p-n-p or n-p-n. The intermediate layer is called the base, and 
the other two layers are termed the emitter and collector (Fig. 8.77a). In the case of the 
p-n-p bipolar transistor, holes (the minority carriers in 'the base region) are injected into 
the base by the emitter (which is forward-biased) and collected by the reverse-biased 
collector (Fig. 8.77b). For the n-p-n device, since the roles of holes and electrons are 
interchanged, all polarities are reversed. It can be seen from Fig. 8.77a that the bipolar 
transistor can be regarded as simply two p-n junctions placed back-to-back. Thus, the 
operation of this device can be understood in terms of the behaviour of the p-njunction 
(§8.4.2.2). 

The bias arrangement of the bipolar transistor indicated in Fig. 8.77b leads to the 
band-bending spatial profile through the device shown in Fig. 8.77c; in this configura
tion, the device operates as a current-controlled amplifier. The emitter current, Ie, is that 
of a forward-biased p-n junction (cf. eqn. (8.45)): 
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Fig .. 8.77 T?e p-n-p bipolar transistor. (a) Schematic representation of the structure of the 
deVIce. (b) BI~S arrangement of the bipolar transistor: forward bias of the emitter-base junction 
and reverse biaS of the .collector-base junction. The emitter, base and collector currents are 
labelled Ie; h, Ie, respectively. (c) Spatial profi~e of the conduction-band minimum and valence
band maXImum through a p-n-p bIpolar tranSIstor when biased as in (b). 

Ie ~ 10 exp(eVeb/kBT), (8.82) 

where V:b is the emi~ter-?ase bias voltage. The constant 10 is given by eqn. (8.47b), 
exce~t ~~th the hole dIffUSIOn length, Lh, replaced by the thickness db( < Lh) of the base 
layer, I?Jec~ed holes therefore reach the base collector interface in general before 
recomb~natI~n takes ~lace, and they are thereupon accelerated into Hie collector region 
by the JunctIon electnc field. Hence, Ie ~ Ie, and the difference of the two is the base 
current: 

(8.83) 

The current Ib provides the electrons for the electron component of the emitter 
current (neglected above) and to replace those lost through recombination with the 
very few holes that fail to diffuse across the base region. Thus, the base current is some 
(very. sm~ll) fraction f of the emitter current and hence the current gain of the 
amplIfier IS 



(8.84) 

Typically, II has a value of order 100, and bipolar transistors are commonly used as 
power amplifiers. Further details can be found in Sze (1981). 

8.5.1.2 Field-effect transistors 

As the name implies, a field-effect transistor (FET) is a voltage-controlled resistor, in 
contrast to the current-controlled bipolar transistor discussed in the previous section. 
The most common FET configuration is that involving a metal-insulator-semiconduc
tor capacitor structure. Usually, the semiconductor is crystalline Si and the insulator is 
its oxide, Si02, in which case the device is known as a metal-oxide- semiconductor FET 
(MOSFET). A section through such a device is shown in Fig. 8.78. The general 
behaviour of the semiconductor bands in the vicinity of the interface with the insulator 
has already been discussed in §8.4.2.3. For a sufficiently large positive (negative) bias on 
the gate electrode, an inversion layer is formed in the p-type (n-type) semiconductor at 
this interface (Fig. 8.55) in which the charge carriers in the resulting 2D electron gas are 
of the opposite type to the majority carriers of the semiconductor substrate. Thus, an 
n-channel of enhanced electrical conductivity is created in the inversion layer of a p-type 
semiconductor (as in Fig. 8.55) and a p-channel in an n-type semiconductor. Thus, it is a 

truly 2D device. 
The voltage-controlled MOSFET can work in two ways, either as a switch or as an 

amplifier. In digital circuits, a MOSFET functions as an on-off switch (corresponding 
to the bits 1,0) by operating with two gate voltages, Vg, greater than, or less than, the 
threshold voltage Vt required to form the inversion layer, corresponding to the creation, 
or not, of a conducting n-channel (for a p-type semiconductor). For Vg < Vt , no current 
flows between source and drain electrodes (consisting of n+ regions) since one of the 
associated p-n junctions must be reverse-biased. 

In analogue circuits, the FET can work as a voltage amplifier as a result of the 
source-drain resistance in the conducting (n-channel) state being larger than the gate 
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Fig.8.78 Metal-insulator-semiconductor FET, e.g. involving p-type Si (MOSFET). 
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resistance, .so that small changes in gate voltage (current) produce larger changes in 
source-dram voltage (current). The ·gate voltage controls the areal density of carriers in 
the inversion layer (cf. eqn. (8.50a)): 

(8.85) 

where A is the surface area of the FET. The source-drain current depends on n and the 
drift velocity Vd: a 

fSD = naeWVd, (8.86) 

whe:e.w is the width of the device (normal to the section shown in Fig. 8.78). A figure of 
ment IS the transconductance, Gb which is the derivative of the output current ISD with 
respect to the input gate voltage, Vg, i.e. 

(8.87) 

where L is the distance between source and drain electrodes. The time tSD = L/Vd taken 
for electrons (or holes) to transit between the electrodes determines the maximum rate at 
which the device can respond to a time-varying input gate signal. 

. ~he ability to place very many lYlOSFETs (and bipolar transistors) on a single slice of 
C-SI has led -to the development of integrated circuits in which such devices intercom
muni~ate, and miniaturization leading to sub-micron feature sizes (e.g. the length of a 
gate m an FET or the base width in a bipolar transistor) has led to an extraordinary 
in~r~ase in device ?ensity and speed. Over the last 30 years, every three years the 
~llmmum feature SIze has decreased by 30%, the number of transistors per chip has 
mcreased four-fold and the chip speed has increased by a factor of 1.5: now chips each 
contain four million transistors with a clock frequency of 200 MHz. For further details, 
see, for example, Sze (1981), and Weisbuch and Vinter (1991). In many respects, GaAs is 
~ better material t~an Si for this purpose since it has a higher electron mobility, resulting 
m even faster deVIces. However, diamond appears potentially to be the best material of 
all, based on the Johnson criterion linking the maximum gate voltage, vmax and the 
minimum transit time, lSD, viz. g , 

V;ax/ISD = EbVd, (8.88) 

where the max~mum gate voltage is determined by the breakdown electric-field strength, 
Eb, of the senuconductor. The figure of merit, EbVd = 6 X lO12Vs-l for GaAs is three 
times that for Si, but the figure for diamond is 16 times larger than for GaAs. Diamond 
also has the distinct advantage that it has an extremely high (phonon) thermal con
d~ctivity (§4.6.~.2), meaning that diamond-based devices could in principle operate at 
~I?her p~wers. smce the extra heat generated thereby can be readily dissipated. However, 
It IS provmg dIfficult to introduce shallow dopants into diamond films in order to create 
the doped regions required in device manufacture, and so the general use of this material 
remains a distant prospect. . 

8.5.1.3 Modulation-doped devices 

~ ~odulation-doped heterostructure is one in which the doping level of one type oflayer 
IS dIfferent from that of another type of layer. An example is the n-AIGaAs/i-GaAs 



heterostructure mentioned in §8.3.5 which can support a 2D electron gas in the intrinsic 
layer near the interface (Fig. 8.32a). An interesting feature is that the extra carriers 
originating from the ionized donors in the high-bandgap material (AIGaAs) transfer to, 
and reside in, the smaller-gap intrinsic material. As a result, the low-temperature mob
ility of these charge carriers is increased by several orders of magnitude with respect to 
the mobility that would be found if the heterostructure were uniformly doped. 

The reason for this enhancement is that, for a uniformly doped bulk material or 
heterostructure, the dominant cause of scattering of electrons that limits the mobility at 
low temperatures is ionized-impurity scattering (§6.5.2.3)-see Fig. 8.79a. However, in a 
modulation-doped heterostructure (or artificial structure), the conduction electrons in 
the intrinsic layer are physically separated from the ionized donors whence they ori
ginated and, as a result, ionized-impurity scattering is obviated and the mobility is 
increased. Thus, at low temperatures, the only scattering mechanisms remaining are 
those involving extrinsic effects (neutral defects) and intrinsic effects (piezoelectric 
electron-acoustic-phonon scattering). Fig. 8.79b shows the steady increase over the 
years in the low-temperature mobility in modulation-doped AlGaAs/GaAs devices, as 
improvements in fabrication techniques have led to the gradual elimination of neutral 
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Fig. 8.79 (a) Temperature dependence of the electron mobility in bulk GaAs. The points are 
experimental data and the solid curves are the theoretical temperature dependences of various 
electron-scattering mechanisms as marked. (After Stillman and Wolfe (1976). Reprinted from 
Thin Solid Films 31,69, Stillman and Wolfe, © 1976 with kind permission from Elsevier Science 
Ltd, The Boulevard, Langford Lane, Kidlington OX 1GBS, UK) (b) Evolution with time of the 
electron mobility (as a function of temperature) in GaAs in modulation-doped n-AIGaAs/GaAs 
HEMTs. The residual scattering mechanism at low temperatures is neutral-defect scattering 
(After Pfeiffer et al. (1989). Reprinted with permission from Appl. Phys. Lett. 55, 1888. © 1989 
American Institute of Physics) 

8.5 APPLICATIONS 735 

impurities in the intrinsic GaAs material. Mobilities in excess of 103 m2 V-I s-1 are now 
achievable. Field-effect transistors that incorporate modulation doping are referred to 
as high electron mobility transistors (HEMTs) or modulation-doped field-effect tran
sistors (MODFETs). These devices a~e used to make the lowest-noise solid-state ampli-
fiers available. .. 

8.5.2 Opto-electronic devices 

Opto-electronic devices can essentially be divided into two categories, the functions of 
which may be summarized as either photons in, electrons out, or electrons in, photons 
out (where 'electrons' should be read as electrons and holes). Examples of the former 
category of devices incorporating heterojunctions are solar cells and photon detectors. 
Examples of the latter category include semiconductor light-emitting diodes and lasers. 
These applications will be discussed in the following sections. 

8.5.2.1 Solar cells 

The conversion of solar light to electrical power using solar cells is one of the few 
available renewable sources of energy. Solar cells with efficiencies up to 30% can be 
made using semiconductor hetero- or homo-(p-n) junctions. The basic physical princi
ple involved is the absorption of photons in the semiconductor, resulting in the creation 
of electron-hole pairs; the excess electrons in the c6nduction band, and holes in the 
valence band, generated in the depletion region of a hetero- or homojunction, are then 
separated by the internal junction field before recombination can take place and hence 
produce an open-circuit voltage, Voc , or a short-circuit current density,jsc. 

The intensity of solar radiation in space, just above the earth's atmosphere, is termed 
the solar constant and has a value of 1353 W m-2• This situation is referred to as AM 0 
(air mass zero) since there is zero attenuation of the light by the atmosphere. The solar 
spectral irradiance under these conditions can be approximated by a black body of 
temperature 5800 K (Fig. 8.80). At the earth's surface, with the sun at its zenith (AM 1 
condition), the solar intensity is reduced to 925 W/m2 as a result of absorption of the 
light by water vapour (responsible for dips in the solar spectrum) and scattering by dust 
and aerosols. For the sun at 45° to the horizon (AM 1.5), the solar irradiance spectrum 
is as shown in Fig. 8.80. It can be seen from this figure that the maximum in the solar 
spectrum corresponds to a photon energy of the order of 1 e V. Hence, it is expected that 
semiconductors with bandgaps of this magnitude (e.g., Si, InP, GaAs) will be most 
efficient at solar conversion. 

The equivalent circuit of a p-n junction solar cell connected to a load resistor RL can 
be represented as in Fig. 8.81, i.e. a constant-current source Is (resulting from the 
excitation of excess electrons and holes by solar radiation) in parallel with the diode 
current,Id Io[exp(eV/kBT) -1] (eqn. (8.48)). Thus, the I-V characteristics of the 
cell can be written as 

1= 10 [exp(eV /kBT) - 1] Is. (8.89) 

The open-circuit voltage ofthe solar cell (corresponding to I = 0) is therefore, from the· 
above equation 
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Fig. 8.80 Solar power spectrum as a function of photon ene~gy for AM 0 and AM 1.5. condi
tions. The emission spectrum of a black body at 5800 K IS shown by the dashed lme for 
comparison. (After Henry (1980). Reprinted with permission from 1. Appl. Phys. 51, 4494. 
© 1980 American Institute of Physics) 

kBT (Is ) kBT (Is) Voe = -e-In To + 1 c:= -e- ln To . (8.90) 

Since Is « 10 « lA, Voe is dominated by the behaviour ~f 10: from eqn. 8.49, 10 ex: n[, 
the square of the intrinsic carrier concentration and, since from eqn. (6.202), 
10 ex: exp( - cg / kB T), Voe is essentially determined by the bandgap of the semiconductor 
used in maki~g the solar cell. The short-circuit current, Ise, is simply the solar-generated 
current, Is( V = 0 in eqn. (8.89)). . . 

The theoretical maximum power that can be extracted from the deVIce IS 
P~ax = Voe/se but, because the diode I-V characteristic is nev~r p~rfectly L-shaped, 
the actual maximum power achievable is P max V max/max WhICh IS the area of the 
largest-area rectangle that can be inscribed within the I-V characteristic (see Fig. 
8.82). The solar-cell efficiency is thus defined as 
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! 
Fig. 8.81 Equivalent electrical circuit of a p-n junction solar cell. 

Fig. 8.82 Current-voltage characteristic of an Si solar cell under illumination. The diode 
characteristic has been displaced down in current by I sc , the short-circuit cell current (eqn. 
(8.89». The maximum-power rectangle is indicated. 

Pmax 
'T}=-

Pine' 
(8.91) 

where Pine is the solar power incident on the device. The fill factor, FF :::; 1, defined as 

FF _ Pmax _ Vmax/max 
- P~ax - Voe/sc 

(8.92) 

is a measure of how square is the diode I-V characteristic. Typical values for solar cells 
made from crystalline Si or GaAs have FF c:= 0.8 and efficiencies in the range 20-30%. 
The efficiency is optimized by appropriate device engineering, for example, utilizing 



anti-reflection coatings on the top surface, stacked multilayers of various materials with 
differing bandgaps t9absorb solar radiation with a range of wavelengths, etc. For 
further details, see e.g. Sze (1981), Kelly (1995). 

Single-crystal solar cells, although having the highest efficiencies, are nonetheless very 
expensive. Although this economic drawback is of little account for space applications 
where efficiency, size and weight are at a premium and cost is generally not a problem, 
nevertheless it has precluded the widespread terrestrial use of such solar cells. In this 
connection, amorphous hydrogenated silicon, a-Si:H, is a material of considerable 
promise. Although the efficiency of solar cells fabricated using a-Si:H is no more than 
about half that achievable using single-crystal Si (the defect states in the bandgap of the 
amorphous material act as recombination centres that reduce the numbers of l.igh~
induced electrons and holes, and so reduce Isc) nevertheless, because the matenal IS 

made by vapour deposition (e.g. 'glow-discharge decomposition' or plasma-enhanced 
chemical vapour deposition - §1.1.2), it can be made relatively cheaply in large areas. 
This capability and economic benefit makes it attractive for use in large-area solar 
arrays for electrical-power generation as well as in inexpensive consumer products (e.g. 
solar cells in pocket calculators). 

8.5.2.2 Photodetectors 

Photodetectors work by measuring the photocurrent resulting from the excess charge 
carriers induced in a semiconductor by the absorption of photons and swept out by an 
applied electric field (§6.5.l.2). In the simplest case, a photo detector merely consists of a 
bulk semiconductor to which are bonded ohmic contacts in a two-terminal configura
tion. Three distinct mechanisms of photocarrier creation can be envisaged in general: 
intrinsic absorption of photons with fiw ~ '&g in which an electron is excited into the 
conduction band from the valence band (see §5.8.2); extrinsic absorption of photons with 
fiw ~ '&d (or '&a) in which an electron (or hole) is excited into the conduction band (or 
valence band) from a donor level at '&d below the conduction-band edge (or an acceptor 
level at '&a above the valence-band edge); or free-carrier (intraband) absorption in which 
an electron in a conduction band is excited into a higher-lying empty conduction band 
(§5.8.1). 

Infrared detectors, used for thermal-imaging and night-vision applications, are one 
example of the use of photodetectors. Such IR detectors have to work in the wavelength 
band 8-14 /-lm in order to avoid the absorption bands due to atmospheric water vapour. 
Of the intrinsic photodetectors, the alloy HgxCd1- x Te is the most widely used; it has a 
bandgap '&g c:::: O.leV (corresponding to a photon wavelength of c:::: lO/-lm) for x = 0.18. 
Although this alloy material has the advantages that it can be grown epitaxially on 
CdTe or GaAs substrates and it has long photocarrier lifetimes (several microseconds at 
77 K), it is mechanically very soft and prone to defect formation during high-tempera
ture processing. 

An alternative method of detecting IR photons is by creating photocarriers using 
inter-sub-band absorption in semiconductor quantum wells (§8.4.3). The sample config
uration for quantum-well photoelectron detection is shown in Fig. 8.83. A modulation
doped, multiple-quantum-well (MQW) array, of n-type GaAs wells sandwiched 
between intrinsic AlxGal-xAs barrier layers, is connected to n+ -type contacts in a 
two-terminal configuration. The n-doping of the GaAs layers ensures that the n = 1 

ground state of the conduction-band well is occupied, and the well width, d, is chosen so 
that the energy separation between the n = 1 and n = 2 sub-bands of the well (cf. eqn. 
(8.57)) matches the energy of the photons to be detected (d c:::: 7 nm for A c:::: 10 /-lm). The
conduction-band offset between well and barrier layer, determined by the composition x 
of the AlxGal_xAs layer, is chosen so that'the n 2 well level is close to the top of the 
well when a small bias electric field is applied to the electrodes' (Fig. 8.83). In this case, 
the excited electrons can tumid through the small remnant barrier in the up-field 
direction into continuum states of the conduction band, and hence be swept out by 
the applied field and collected at the electrode. There is an optical problem, however, 
associated with the use of MQW arrays as photon detectors: the envelope function 
associated with each quantum well (Fig. 8.64a) means that only the component of the 
polarization vector of the light that is normal to the quantum-well direction (parallel to 
the barrier-well-barrier axis) can cause inter-sub-band transitions. Thus, light that is 
incident normal to the MQW stack (i.e. through one of the (semi-transparent) electro
des) is not absorbed. In order to circumvent this difficulty, the back face of the substrate 
supporting the MQW stack can be bevelled at 45° in order to allow some light with the 
correct polarization to reach the stack (see inset to Fig. 8.83). 

Diodes, such as p-n and p-i-n junctions (§8.4.2.2) and metal-semiconductor 
Schottky barriers may be used as intrinsic-absorption photodetectors, the spectral 
sensitivity depending on the bandgap of the semiconductor. The principle of operation 
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AIGaAs 

n-type contact 

hv 

••••• n-type contact 

~~~~~ AIGaAs f2 GaAs 

Fig. 8.83 Schematic illustration of the use of a modulation-doped, multiple-quantum-well 
(MQw) array as an IR detector, utilizing inter-sub-band (n = 1 --+ 2) optical transitions and 
subsequent charge collection in a bias electric field. Shown in the inset is the bevelled shape of 
the substrate necessary to allow incident light to be absorbed in the MQW stack. 
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Fig. 8.84 Spectral dependence of the quantum efficiency of some semiconductors used in diode 
photo detectors. (After Sze (1981). Reproduced by permission of John Wiley & Sons Inc.) 

is somewhat similar to that of a diode solar cell: photons absorbed in the depletion 
region of the junction generate electron-hole pairs that can be separated and swept out 
by the junction electric field. The measured photo current or photovoltage is thus a 
measure of the photon flux. For photodiodes, two characteristics are important for 
device performance. The quantum efficiency (the number of electron-hole pairs gener
ated per incident photon) determines the sensitivity of the detector; the greater the 
thickness of the depletion layer (or equivalently the intrinsic-layer thickness in a p-i-n 
diode), the larger the fraction of the incident light that is usefully absorbed and hence 
the greater is the quantum efficiency. On the other hand, for high-speed operation, the 
carrier transit time through the device must be kept to a minimum and this can be 
achieved by reducing the depletion-layer thickness, D. Hence, for optimized overall 
performance, there must be a compromise in the value of D. The spectral dependence of 
the quantum efficiency, 7]q(A), of a photodiode is a peaked function (Fig. 8.84). The 
long-wavelength cut-off is associated with the bandgap of the semiconductor; for 
photon wavelengths longer than Ac = he/egg, corresponding to the gap energy, few 
photons are absorbed. The short-wavelength limit is determined by surface recombina
tion. At very small photon wavelengths, A < Ac , the absorption coefficient K(A) of the 
semiconductor is very large and so the absorption region where the light is preferentially 
absorbed is very close to the surface, where the recombination time is very short because 
of defects in the surface region. Further details about photo detectors can be found, for 
example, in Sze (1981). 

8.5.2.3 Light-emitting diodes 

In the opto-electronic applications considered in the previous two sections (involving 
photon -+ electron-hole pair processes), strenuous efforts were made to reduce elec
tron-hole recombination to a minimum in order to extract the maximum photocurrent. 
In the applications discussed in this section on light-emitting diodes (LEDs) and the 

next section on semiconductor lasers (both involving electron-hole pair -+ photon 
processes), the converse is true: radiative recombination of excess electron-hole pairs 
is encouraged. All such light-emitting devices based on semiconductors utilize homo- or 
heterojunctions, into the depletion region of which excess electrons and holes can be 
electrically injected under forward bia; (see §8.4.2.2). If such excess carriers are not 
quickly separated by the junction field, they can recombine radiatively, thereby emitting 
photons with energy comparable to the bandgap of the semiconductor. This process is 
termed electro luminescence. Radiative recombination in crystalline semiconductors is a 
first-order process (i.e. no phonon involvement) in the case of direct-gap materials 
(§5.8.2); as a result, the quantum efficiency of the process is much higher than for an 
indirect-gap material. Thus, in general, direct-gap semiconductors are used in electro
luminescent applications. 

Injection electroluminescent devices rely on the injection of minority carriers (elec
trons into the p-Iayer, holes into the n-Iayer) in a p-n junction subject to forward 
bias: these injected minority carriers then recombine radiatively with the majority 
carriers already present in the layers (Fig. 8.85). Although the internal (microscopic) 
quantum efficiency for electroluminescent radiative recombination in a direct-gap p-n 
diode may be very high, nevertheless the light output can be severely attenuated by 
internal reflection of the emitted light at surfaces and subsequent absorption of the light 
by the semiconductor making up the junction or the substrate. The light output is 
enhanced by making the light-emitting top surface of the semiconductor curved (e.g. 
hemispherical), rather than planar, in order to de~rease the level of total internal 
reflection. 

p(+ve) n( ve) 

Fig. 8.85 Schematic representation of injection electroluminescence in a forward-biased p-n 
junction light-emitting diode (LED). The injected minority carriers recombine radiatively with 
the majority carriers in each layer making up the junction. 
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Recombination of excess carriers is a competition between processes that are radiat
ive and those that are non-radiative, in which the excess (electronic) energy is carried 
away by emission of photons or phonons, respectively. A particular recombination rate 
R j can be written as a first-order kinetic equation involving the excess concentration of 
electrons, 6.n, injected into the p-Iayer with an equivalent equation for excess holes in 
the n-Iayer), i.e. 

d 6.n n - no 
Ri = --(6.n) =-=--

dt Tj Tj 
(8.93) 

where n is the total (injected plus thermi:!-l-equilibrium) concentration of electrons and no 
is the thermal-equilibrium concentration. Radiative and non-radiative recombination 
processes will have their own particular lifetimes Tj(i = r, nr respectively), and the total 
recombination rate (i = tot) is simply 

Rtot 

with 

n -no 
Rr+Rnr=--, 

Ttot 
(8.94) 

(8.95) 

The quantum efficiency 'T/q for radiative recombination is the fraction of excited carriers 
that recombine radiatively to the total recombination, i.e. 

(8.96) 

Thus, a high quantum efficiency is associated with a small radiative lifetime, Tr; for a 
direct-gap LED material, 'T/q ~ 0.5. 

The radiative recombination rate can also be written as (see Problem 8.18): 

(8.97) 

where Aem is the Einstein coefficient of spontaneous emission. The optical power 
generated by an LED per unit volume can therefore be written as 

(8.98) 

where hi] is the average photon energy emitted. 
The wavelength of the emitted light is governed by the bandgap of the semiconductor. 

The visible region of the electromagnetic spectrum (violet -t red, >. = 0.45-0.7 /-Lm) can 
be mostly covered by inorganic crystalline semiconductors with bandgaps in the range 
1.8-2.8 eV, such as GaAs1-xPx, SiC, ZnSe and GaN (Fig:8.86). The GaAs1-xPx system 
is of particular importance since light emission in th~ IR by pure GaAs LEDs can be 
used as light sources for fibre-optic communication applications (§5.9.l), and the alloy 
system GaAs1-xPx(0 < x < 1) produces light emission in the visible range (red to green, 
with increasing x). Red LEDs are made from the alloy GaAsO.6POA which, like GaAs, is 
a direct-gap semiconductor. However, for x> 0.45, the GaAsl-xPx system is an indirect 
semiconductor and hence has a low quantum efficiency for electroluminescence. 
This drawback is circumvented by doping the material with the isovalent impurity, 
nitrogen, substituting for phosphorus (§6.5.2); the resulting Np defects act as efficient 
recombination centres since for them the k-selection rule for optical transitions, oper
ative in translationally periodic materials, does not apply. Crystalline Si is another 
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Fig. 8.86 Relative spectral emission of some representative LED materials. The dashed curve 
shows the spectral response of the human eye. (After Sze (1981). Reproduced by permission of 
John Wiley & Sons Inc.) 

indirect-gap material which, because of its widespread use in microelectronic applica
tions, would be very valuable if it could be made to electroluminesce efficiently, since 
then combined opto-electronic processing on the same chip would be possible. Porous Si 
can be made to electroluminesce quite efficiently, probably as a result of quantum
confinement effects (§8.2.2.1), but device stability and lifetime are problematic. 

For a long time, it wa~ difficult to make LEDs that produced blue light. Recent 
research on II-VI se~conductors has shown some promise, e.g. the production of (Zn, 
Cd)Se/Zn(S, Se) multiple-quantum-well LEDs, in which the ZnSe-based layers are the 
active regions. However, there are many materials-processing problems associated with 
the use of such materials, notably the high concentration of structural defects that act as 
non-radiative centres, thereby limiting the quantum efficiency. See Nurmikko and 
Gunshor (1995) for further details on II-VI LEDs and lasers. H~wever, the most 
promising technology seems to be based on nitride semiconductors, e.g. GaN and 
InGaN; c.w. LEDs based on these materials emitting in the spectral range yellow-to
purple are now commercially available-see Plate VIII (see Nakamura and Fasol (1997) 
for a review). 

Although LE~s based on inorganic crystalline semiconductors are very widely used, 
they have the dIsadvantage that they cannot easily be made into large-area light
emitting displays. An emerging technology that might answer this need is based on 
the use of conjugated polymers (§8.3.3), rather than inorganic crystalline semiconduc
tors, as the light-emitting materials (see Plate VIII and Greenham and Friend (1995) 
for a review). The conjugated polymer poly (p-phenylenevinylene), or PPV, emits 
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electro luminescence (EL) when electrons are injected into the material from a negatively 
biased metal electrode (e.g. Ca or AI) and holes are injected from a semi-transparent 
electrode (such as indium tin oxide, ITO) in a sandwich configuration. The electrons 
and holes form singlet excitons which then recombine radiatively. This system has the 
processing advantage that a thin PPV film can be deposited onto a large-area substrate 
by spin-coating: a solution of a precursor polymer in a suitable solvent is dropped onto 
the rapidly spinning substrate and forms a thin (~ 100 nm) layer, which is subsequently 
converted to the polymer PPV by heat treatment. The peak EL emission for PPV is at a 
wavelength of 565 nm, but this can be shifted towards the blue region by introducing 
non-conjugated units into the PPV to reduce the average conjugation length, or by using 
poly (p-phenylene), PPP (~ 465 nm). However, lifetimes of these polymer LEDs are 
currently problematic. 

8.5.2.4 Semiconductor lasers 

The acronym LASER stands for 'light amplification by the stimulated emission of 
radiation', thereby highlighting two of the special features that characterize lasers as 
light sources. Two other particular features of the light emitted by lasers are that it is 
phase-coherent and is generally monochromatic (see, e.g. Davis (1996) for more details). 
The aspect which sets a laser apart from other (incoherent) light sources is that the light 
emission resulting from a radiative transition is triggered or stimulated by the presence 
of a pre-existing photon having the same energy as that for the transition. Thus, this 
optical process is to be distinguished from the related process, namely spontaneous 
emission (luminescence), in which the relevant optical transition occurs spontaneously 
without the triggering effect of another photon (Fig. 8.87). We have already briefly 
mentioned other stimulated optical processes, namely stimulated optical absorption 
(§5.8.2) and stimulated Raman emission which is an example of a third-order non-linear 
optical effect (§5.8.4). 

Semiconductor lasers, which comprise the majority of all lasers in use today (e.g. in 
CD players) are essentially light-emitting diodes (§8.5.2.3) having a configuration which 
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Fig. 8.87 Spontaneous and stimulated optical processes: (a) stimulated absorption; (b) sponta
neous emission (luminescence); (c) stimulated (laser) emission. 

favours stimulated emission. The optical process responsible for the laser emission in 
the case of semiconductor lasers can be termed stimulated electroluminescence (since 
popUlation of the excited, lasing state occurs by electrical injection of electrons), to 
distinguish it from the process in othe,r types of solid-state lasers, namely stimulated 
photoluminescence, involving optical pumping of the lasing state, e.g. an electronic level 
of an ion, e.g. of Cr3+ in the ruby laser (ruby is sapphire, i.e.' alumina, doped with ~ 0.05 
wt % Cr

3
+). Lasing action, i.e. light amplification or gain, occurs when the rate of 

stimulated emission of many photons caused by a single photon is greater than the rate 
of stimulated absorption of the photon. This can be achieved by 'trapping' the light 
emitted by normal spontaneous emission, as in normal LED operation, so that the 
radiation density eventually builds up to the point at which stimulated emission 
becomes favourable. Such light trapping can be achieved by polishing and mirroring 
two opposing faces, of the four faces of a semiconductor-junction laser normal to the 
light-emitting plane (i.e. the junction), leaving the other two opposing faces rough (so 
that they scatter radiation); one of the mirrored faces is made semi-transparent 
(Fig. 8.88). In this manner, spontaneous light radiation emitted from the junction 
under forward bias is reflected back and forth between the two mirrored surfaces 
making up the optical cavity, until stimulated laser emission occurs, whereupon th; 
output light emerges from the device through the semi-transparent mirrored face. 

The condition for optical gain, or amplification, can be obtained from the expressions 
for the photon-induced transition rates for absorption (valence -t conduction band) and 
emission (conduction -t valence band), involving states at cg in the conduction band and 
(cg - hv) in the valence band, with densities of states gc(cg) and gv(cg), respectively, i.e. 

R~1~n\hv) = Babs J gv(cg - hv)gc(cg)!v(cg - hv)[l - fc(cg)]lMI 2dcg, 

R;~nt(hv) = Bern J gc(cg)gv(cg - hv)fc(cg) [1 - fv(cg - hv)]lMI2dcg, 

Contact 

Roughened 
surface 
(rear also) 

Current 
flow 

(8.99a) 

(8.99b) 

Fig: 8.88 .Sc~ematic illustration of a semiconductor laser based on a single p-n junction. The 
optIcal ca:'ltY.IS f0fl:TIed by two plane-parallel mirrored surfaces on opposite sides of the device, 
one of WhICh IS semI-transparent to allow the coherent laser light to emerge. 
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where the Einstein coefficients for stimulated emission, Bern, and absorption, Babs, are 
equal from the principle of detailed balance (Problem 8.19), i.e. Bern = Babs = B. There 
is optical gain if 

(8.l00) 

or, from eqns. (8.99), if 

!c('f,) - /v('f, - hv) > o. (8.l01) 

In the case when the concentration of electrons injected (e.g. electrically in the case of 
semiconductor lasers) into the conduction band (and of holes into the valence band) is 
in excess of the thermally generated concentration no (or po), obviously thermal equili
brium cannot exist overall. Nevertheless, there is a vestige of thermal equilibrium 
remaining, in that quasi-Fermi levels can be defined separately for electron and hole 
distributions in conduction and valence bands, i.e. 'f,F,n and 'f,F,p, respectively: for 
energies 'f, - 'f,F,n > 0 (or 'f, 'f,F,p < 0), the electrons (or holes) are in thermal equili
brium with each other, but this is not the case for energies 'f,F,p < 'f, < 'f,F,n. The quasi
Fermi level position is defined in terms of the total carrier concentration in a band, e.g. 
n = no + D..n, where no is the thermal-equilibrium (intrinsic or extrinsic) electron con
centration and D..n is the excess steady-state density, via the relation (cf. eqns. (6.l94) 
and (6.l95): 

'f,c - 'f,F,n = kBTln(Ncln) 

and the corresponding relation for holes (cf. eqn. (6.200)): 

'f,F,p - 'f,v = kBTln(Nv/p). 

(8.l02a) 

(8.l02b) 

For the case of a direct-gap semiconductor used as a lasing material, it is assumed that 
there are no (defect) states in the gap between the conduction- and valence-band edges 
('f,c > 'f, > 'f,v), in which case the quasi-Fermi levels reside in the respective bands (see 
Fig. 8.89). (However, for the case of, say, photoconductivity of a semiconductor with 
trap states in the gap (see §6.5.1.2), the quasi-Fermi levels can lie in the gap, near the 
respective band edges.) 

Since thermal equilibrium can be defined for energies above the electron quasi-Fermi 
level 'f,F,n (or below'f,F,p), the occupation probability of such states is given by the Fermi
Dirac distribution function (eqn. (5.23)), modified so that the thermal-equilibrium 
chemical potential (Fermi energy) is replaced by the steady-state quasi-Fermi levels, i.e. 

1 
(8.l03a) 

h('f,) = exp[('f, (8.l03b) 

Thus, from the inequality (8.l01), the condition for optical gain can also be written as 

'f,F,n 'f,F,p > hv. (8.l04) 

This condition is illustrated graphically in Fig. 8.89. The condition that !c('f,) -
/v('f, hv) > 0 implies a population inversion with respect to the thermal-equilibrium 
occupations of the bands. 

hv 

(a) (b) 

Fig.8.89 Occupancy of electron states in the valence and conduction bands showing the positions 
of the r~spe~tive CJ.uasi-Fer:ni levels, ~F,p and ~F,n, for (a) T= 0 K; (b) T> OK. The condition for a 
populatIOn mverSIOn, leadmg to optical gain, is that ~F,n -. ~F,p. > hv, as shown. 

The simple p-n junction device shown in Fig. 8.88, e.g. based on GaAs, does indeed 
lase, but population inversion can only be achieved by the use of very high injection 
currents, necessitating pulsed ,operation. The threshold injection current density can be 
reduced by two orders of magnitude, making continuous (c.w.) operation feasible, by 
fabricating double-heterojunction devices, in which a doped lasing layer, e.g. heavily 
doped p-GaAs, is sandwiched between two doped layers of a material with a larger 
?an?gap, e.g .. ~-and n-~xGal-xAs, i.e. a P-p-N structure (Fig. 8.90). When the P-Iayer 
IS biased pOSItively and the N-Iayer biased negatively, electrons are injected from the 
N-Iayer into the conduction band of the p-Iayer (and similarly holes are injected into the 
valence ?and of the p~layer from the P-Iayer), and there they are confined by the large 
conductIOn-band bamer at the p-P heterojunction and the valence-band barrier at the 
N-p heterojunction (Fig. 8.90). Thus, a popUlation inversion can be created with a 
lower injection current compared with the simple p-n-junction laser'diode. There is also 
an additional advantage conferred by the double-heterojunction configuration concern
ing optical confmement of the emitted light. Since the larger-gap AlGaAs layers have a 
lower refractive index than that of the lasing GaAs layer, the double-heterojunction 
structure acts as a planar waveguide: the emitted light travelling parallel to the hetero
junctions is confined to the GaAs layer by total internal reflection, thereby increasing 
the stimulated emission in the active layer. 

The width d of the active GaAs layer in double-heterojunction lasers is typically 
d ~ 0.5 pm, i.e. much larger than the Fermi wavelength of electrons in GaAs (AF ~ 
40nm). However, single (and multiple) quantum-well semiconductor lasers can also be 
fabricated, for which d < AF; such lasers have the advantage that the lasing transition 
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Fig. 8.90 Schematic illustration of the spatial profiles of the bands for a P-p-N double-hetero
junction semiconductor laser, consisting of an active heavily d~ped p-type layer of GaAs sand
wiched between barrier layers of p- and n-type AlxGal-xAs havmg a larger bandgap and smaller 
refractive index: (a) zero applied bias; (b) positive bias applied to the P-layer. 

(between sub-bands) can be tuned by varying the well width. Optical confinement 
within the lasing-layer waveguide is ineffective for thicknesses of the layer d;:S 100 run; 
thus, quantum-well lasers suffer because the emitted light is no longer confmed to the 

(8) (b) (c) 

Fig. 8.91 Schematic illustration of the confinement of an optical guided wave for: (a) a quantum 
well; (b) a graded-index (GRIN) profile; (c) a separate confinement by heterojunctions (SCH) 
configuration. 

active layer (Fig. 8.91a). In order to circumvent this problem, confinement of the optical 
field is achieved by having a graded-index (GRIN) configuration, in which the refractive 
index of the AlxGal-xAs barrier layers is varied continuously outside the well region by 
varying x (see Fig. 8.91b) and/or separate confinement by heterojunctions (SCH), in 
which additional heterojunctions (having refractive-index discontinuities) are grown on 
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p-AIGaAs - GaAs 
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GalnAs quantum wells 
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GaAs substrate 

BOITOM MIRROR 

Fig. 8.92 Device structure with multilayer (Bragg-reflector) mirrors used for a surface-emitting 
semiconductor laser: (a) schematic illustration showing the various regions; (b) actual device. 
(After Scherer et al. (1989). Reprinted with permission from Appl. Phys. Lett. 55, 2724. © 1989 
American Institute of Physics) 



750 REDUCED DIMENSIONALITY 

either side of the quantum well at a separation for which optical confinement is efficient 
(Fig. 8.91c). 

All the above planar device configurations produce laser radiation from one of the 
edges, parallel to the plane of the active layer (as for LEDs - §8.5.2.3). This arrange., 
ment is rather limiting, and a surface-emitting semiconductor-laser configuration, in 
which laser radiation emerges normal to the active layer(s), would be much more useful 
in many applications. One way of realizing this objective is to fabricate a multilayer 
device in which the active region consists of a stack of quantum wells (say of GaInAs); 
this is sandwiched between additional multilayers of AIGaAs/GaAs, each layer of which 
has a thickness of ~ A14, where A is the wavelength of the laser light, and which 
therefore acts as a multilayer mirror ('Bragg reflector') with nearly 100% reflectivity 
(Fig. 8.92). This high reflectivity allows the laser cavity length to be reduced to just a few 
rcicrons in length; the lateral dimensions of the device can be restricted by etching 
through the layers to the substrate leaving a mesa-like structure (Fig. 8.92). Two
dimensional arrays of such devices can thus be fabricated. 

And on this luminous note that, for the time being, is that. 

Problems 

8.1 Can long-range ferromagnetic order exist at a finite temperature in a 1D material having 
only nearest-neighbour magnetic interactions? (Hint: consider spin fluctuations and the 
influence of entropy.) 

8.2 (a) Show that, for the case of KCP (K2Pt(CN)4Bro.3 ·3H20), the spatia! period of the 
Peierls-distorted state of the Pt chain is D = 6.67c, where c 2.88 A is the lattice 
parameter (Pt-Pt distance) in the undistorted state. 

(b) Explain why, whereas TIF:TCNQ exhibits metallic behaviour only at elevated tem
peratures, Na is a metal at all temperatures. 

8.3 Explain how the concept of a Peierls distortion can be used to relate the crystalline structures 
of elemental As and black P (which are both layer-like structures, with trigonal coordination 
of the pnictogen atoms) to that of a simple cubic lattice. What influence does the distortion 
have on the electronic structure? 

8.4 Obtain the Landauer formula (eqns. (8.16) and (8.18» relating the electrical conductance Go 
and the transmission probability T for electrical current to propagate along a narrow 
conducting channel in a 2D electron gas with spin degeneracy gs, between two wide electron 
reservoirs, with chemical potentials, p, and J.L + 8J.L, respectively. 
(a) Show that the current density can be written as: 

j 
r'{,+OJ1. (2 d<g(k))-Id<g(k) d = gs8J.L 

e }'{,F gs 1l' dk tzdk J.L. h 

(Note the cancellation of terms for the group velocity and density of states.) 
(b) Obtain an expression for the Einstein relation valid in the degenerate limit (cf. eqn. 

(3.84a) for the non-degenerate case), and hence show that for 2D conduction 
Go = e2g2D(<gF )D, where D is the diffusion coefficient. 

(c) Hence obtain the Landauer formula Go = (2e2Ih)T for gs = 2. 
8.5 The Aharonov-Bohm effect in quantum mechanics states that the phase if> of an electron 

wavefunction is changed by an amount f::1if> = -(eltz) J A.ds where A is the magnetic vector 
potential and ds is an element of the path traversed by an electron, even when the electron 
trajectory is restricted to regions where the magnetic-field intensity is zero. Consider a 
sample geometry (in cross-section) consisting of a conducting ring, enclosing an area S, 
with source and drain electrodes attached to opposite sides and a magnetic field normal to 

and threading the ring. By considering trajectories that involve phase-coherent interference 
of electrons after either a half or one revolution, show that Aharonov-Bohm oscillations as 
a function of magnetic field in the magneto-conductance have periods of (hie) S-I and 
(hI2e) S-I for a sample in the form of a 2D ring, but only (hI2e) S-I for a long hollow 
metal cylinder. . 

8.6 Show that weak localization leads to a correction to the Drude expression for the electrical 
conductivity in \WO dimensions that depends logarithmically on temperature. (Hint: take 
Wet) = (41l'Dt)- in eqn. (8.30),) 

8.7 Explain why intercalation of guest species into crystalline BN is extremely difficult (the 
acceptor molecule S03F is the only known intercalant). 

8.8 By solving Poisson's equation for the depletion region (width d) of a Schottky barrier 
involving an n-type semiconductor, show that a plot involving the capacitance of the 
junction versus applied voltage gives the diffusion potential if>o and the ionized donor 
concentration Nd+. 

8.9 Show that the space-charge-limited (SCL) current density, jsCL, arising from single injec
tion of carriers into an n-type semiconductor in a metal-semiconductor-metal heterostruc
ture from the negatively-biased ohmic contact ('virtual cathode'), separated by a thickness 
d of semiconductor from a positively biased ohmic contact, is proportional to V2 I d3, where 
V is the applied voltage. (Hint: consider the transit time, ttr, through the semiconductor.) 
Show that the critical voltage onset for SCL currents is Vc = ad2/E:rE:oJ.Le, where 0', J.Le and Cr 

are the conductivity, electron mobility and dielectric constant, respectively, of the semi
conductor. 

8.10 (a) Obtain eqn. (8.38a) for the contact potential of a p-n junction formed from an n-type 
region of a semiconductor with donor concentration Nd and from a p-type region of 
the same semiconductor material with acceptor concentration Na (where the intrinsic 
electron (or hole) concentration is ni), starting from expressions for the chemical
potential position in an n-type semiconductor (eqn. (6.246» and a similar expression 
for a p-type material. 

(b) By solving Poisson's equation for a p-n junction at z = 0, show that the spatial;,rofile 
of the contact potential has the quadratic behaviour: if>c(z) eNa(z + dp ) 12crco 
for -dp < Z < 0, and if>c(z) = if>c eNd(Z - dn)2/2c/,co for 0 < Z < dn. Hence prove 
e9n. (8.39) fO.r the contact potential in terms of the depletion widths du and dp• 

(c) Fmd the spatIal profile if>c(z) for the contact potential, and the depletion-layer width, 
for a graded p-n junction in which the doping level varies linearly with position 
throughout the depletion layer: Nd - Na = kz. 

8.11 (a) Calculate the capacitance of a p-n junction, subject to an applied voltage V, for a 
junction with contact potential if>c formed from p-type and n-type semiconducting 
layers with a concentration Na of acceptors and Nd of donors, respectively. 

(b) A p-n junction is used with a 50 J.LH inductance to produce a resonant electrical 
circuit. Calculate the change in resonant frequency when the bias applied to the 
room-temperature junction is changed from - 1 to - 5 V. (Assume that 
Nd = Na = 1022m-3, the semiconductor is c-Si and that the area of the junction is 
1O-6m2 .) 

8.12 (a) Obtain an expression for the maximum electric-field strength, Ema~, in the depletion 
region of a p-n junction subject to a non-zero bias voltage I V I. 

(b) Hence estimate the width D of the potential barrier through which electrons must 
tunnel in Zener breakdown, and show that the associated current-voltage character
istic is I ex: exp( -a I V 1-1/ 2) for I V I> > if>c, where a is a constant. 

(c) Obtain an expression for the critical electric field for avalanche breakdown of a p-n 
junction. (Hint: consider the maximum velocity of an electron achieved in a time r 
between collisions.) Hence estimate the breakdown voltage for a p-n junction formed 
from c-Si (with egg = 1.1 eV, c = 11.7, r 1O- 12s and m; = O.lme) with a doping level 
Nd = Na 1019m-3. 

8.13 Estimate the maximum electric-field strength that can be exerted in the Si layer of an MOS 
device if the dielectric-breakdown field of a-Si02 is Eb = 109 V m-I (c(Si02)= 3.9; 
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c(Si) = 11.7). Hence obtain an estimate for the ground-state energy of the quantized 2D 
electron gas confined to the inversion layer at the Si/Si02 interface. 

8.14 Obtain an expression of the form of eqn. (8.60) for the ground-state energy level of an 
electron in a triangular quantum well in an MOS device, formed by an infinitely high 
barrier at the insulator-semiconductor interface (z =I- 0) with a potential increasing linearly 
with depth z into the semiconductor as Ez, where E is the surface electric field. (Hint: use 
the Heisenberg uncertainty relation.) 

8.15 Compare the optical-absorption spectrum of a single GaAs-AIGaAs quantum well 
(Fig. 8.61) with that expected for two such quantum wells separated by a very thin layer 
of AIGaAs (d(AIGaAs) ~ d(GaAs». What would be the effect on the optical properties of 
forming a superlattice of a very large number of such coupled quantum wells? 

8.16 Show that when the effect of scattering on electron motion in a semiconductor superlattice 
is considered, the electron drift velocity (and hence mobility or conductivity) exhibits a 
negative differential region at high electric fields. (Hint: the drift velocity can be written as 
Vd = J exp( -t/T)dvg, where T is the scattering relaxation time and Vg is the group velocity 
for motion in the growth (z) direction of the superlattice.) Obtain an expression for the 
superlattice effective mass, mSL. 

8.17 The Raman sp~ctrum of a superlattice co.nsisting of alternating layers of GaAs (of thick
ness d l = 13.6 A) and of AlAs (dl = 11.4 A) exhibits peaks at ~ 65, ~ 280 and ~ 380 cm- I, 
whereas the Raman spectra of bulk GaAs and AlAs exhibit peaks at ~ 280 and 300 cm- l , 

and ~ 360 and 400 cm- l . Account for these observations. The peak at ~ 65 cm-I for the 
superlattice is actually a doublet. Why should this be? (CII (GaAs) = 11.9 X 1010 N m -2, 

cII(AIAs) = 12.02 x 1010 Nm-2
, p(GaAs) = 5.32 x 103 kg m-3

, p(AlAs) = 3.76x 
103 kgm-3) 

8.18 Using eqn. (8.97) for the spontaneous radiative-recombination rate, Rr Aem l1P, where 
Aem is the Einstein coefficient for spontaneous emission, and nand p are electron and hole 
densities in the conduction and valence band of an LED, show that the light-emission 
spectrum has the lineshape I(v) <X (hv - %g)exp[-(hv - %g)/kBT], if it is assumed that 
nand p decay exponentially away from the band edges. 

8.19 (a) Show that, for an empty cavity containing black-body radiation, the radiation energy 
density is p(v) = (8rrhv3/c3)(exp(hv/kBT) _1)-1. 

(b) By considering radiative processes between two energy levels 1 and 2, with energies ~ I 
and ~2 (~2 - ~I = hv), show that the two Einstein B coefficients for stimulated 
transitions are equal, BI2 = B21 , and that Aem/ B = 8rrhv3 / c3, where Aem is the Ein
stein coefficient for spontaneous emission. 

(c) In a dispersive medium, where the refractive index varies with wavelength, nr = I1r(')'), 
the group refractive index can be defined as ng I1r - A~. Show that ng = nr + v~. 

(d) Hence show that, for a cavity filled with a dispersive medium, the radiation mode 
density isp(v) = 8rrv2n;ng/c3. 

8.20 Estimate the laser gain at hv = 1.48 eV of an n-doped GaAs-based double-heterojunction 
laser, for the case when there are Nd = 1024m-3 donors in the active GaAs layer, 
Aem = 10-16 m3 S-I, nr = 3.6, ng = 4, m; = 0.067I11e ,l11i, = 0.48I11e , and the laser device, 
with an internal quantum efficiency of TJq = 0.6, is operated with a current of 10 rnA 
entering an active region IV = 100 J.Lm wide and L = 1O.J.Lm high with a thickness between 
heterojunctions d = 0.5 J.Lm. 
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hemical Formula Index 

AgBr 140, 199 
AgCI 140, 345 
AgI 186 
Al 327,352,376,383,458 
AICuFe 45 
Al6CuLi3 45 
Ah03 19, 25, 282 
Ar 228,267 
AS2S3 5, 23, 128, 403 
Au 580 
A14V 618 

BN 676,679,692 
BaFe12019 632 
BaTi03 555, 559, 561 
Bi 578,603 
Bi2Sr2Ca2Cu301O 524 

C 4,11,32,37,78,283,676,689,733 
C60 61,652 
C70 652 
C I 40 676 
C2BN 679 
(CH)x 670 
C14H lO 394 
CsK 32,692 
C3N4 96 
C0 2 24 
CaC03 36 
CaF2 74,141 
CaMn03 609 
CdS 38,655 
CdSe 655, 658 
CeAh 303 
Ce02_x 142 
Co 625,640 

CoO 634 
CrI2 12 
Cr02 640 
CsCI 74 
Cu 153,322,353,366,450 
CuCI 655 
CU20 398 

ErRh4B4 465 
EuO 614 
EuS 614 

Fe 143, 614, 619 
FesoB20 618, 632 
FeO 634 
Fe203 640 
Fe304 567,633,640 
Fe97Sh 632 

Gal_xAlxAs 6, 18,661,680,700,710, 729, 733, 
738, 747 

GaAs 7, 12, 79, 106,660,680,688, 700, 708, 
710, 721, 729, 733, 737, 747 

GaAsl_xPx 742 
GaN 743 
GaP 251 
GaSb 170 
Ge 15, 126, 230, 236, 253, 277, 283, 348, 356, 

378,385,390,500,510,522 
GeSe2 649 

H20 56 
HgxCdl- x Te 738 
HoMo6Ss 465 

InAs 382 



InGaN 743 
In203 383 
luSb 383 

KCl 38,345 
KH2P04 558 
K2Pt(CN)4Bro.3 ·3H20 665 

Lal_xCaxMn03 459 
Li 202, 368, 694 
LhAbShOs 39, 277 
Li2AlzSi4012 39 
Lix TiS2 202, 694 
LiNb03 554 
LiTa03 554 

MgAlz04 34 
Mg2Al4Si50ls 39 
MgO 162 
MnAl645 
MnF2 608,639 
MnO 634 
M003 149 

NH3: Na 368 
Na 291,322,439,659 
NaCI 70, 72, 139, 196,229,256 
NaN02 547, 558 
Nb 586 
Nb3Ge 463,485 
Nd2_xCexCu04 489 
Nd2Fel4B 632 
Ni 614,619 
NiAlz04 36 
NiAs 72 
NisoB2o 68 
NislFel9 640 
NiO 369,634 

P4Se3 649 
Pb 321,485,584,586 
PdsoGe2o 21 
PdsoSi2o 68 
Pt 143 
Pt02 12 

Sb 684 
Si 8, 11, 15, 78, 143,244,253,277,372,500, 

658, 701, 706, 708, 722, 730, 733, 737, 
742 

SiC 79,742 
Si02 8, 24, 28, 38,43, 245, 261, 401, 403, 649, 

706 
SiS2 649 
SmCo5 632 
SrFe12019 632 
SrTi03 132 

Ti02 32, 75, 150 
Ti40 7 515 
TiS2 32,202 

V 618 

WOz 13 
W03 32,515 

YBaZCu307 3, 486 
Y3Fe5012 634 

ZnO 554 
ZnS 12, 72, 79 
Zr02 142 
Zr7oPd3o 462 
ZrW20s 277 

a.c. conductivity 538 
Abrikosov flux lattice 586 
absorption coefficient, 

free-carrier 379 
interband 388 
IR 255 

acceptors 501 
activity 178 
aerogel 30,43 
alcogel 30 
aliovalent impurity 142 
amorphous metals 67 
amorphous solids 44, 243, 283 
Anderson localization 519 
anelasticity 198 
anharmonicity 271 
anode 200 
anti-Stokes line 259 
antiferroelectrics 556, 559 
antiferromagnetism 603, 632 
anti fluorite structure 74 
antiphase boundary 149 
aperiodic structure 45 
artificial structures 715 
atomic clusters 659 
atomic diffusion, 172 

activation energy 183 
energetics 182 

atomic form factor, 114, 116 
electron 117 
neutron 117 
X-ray 116 

atomic scattering factor 114 
atomic transport, 

direct-exchange 171 
interstitial mechanism 171 

interstitialcy mechanism 172 
ring mechanism 171 
vacancy mechanism 171 

atomic units 304 
atomic vacancy, 139 

energetics 151 
Avrami-Erofeevequation 37 

.B-alumina 186 

.B-eucryptite 39 

.B-spodumene 39 
ballistic transport, 680 

phonons 278 
band structure, 312,345 

aluminium 352 
copper 352 
covalent crystals 348 
germanium 348 
ionic crystals 345 
potassium chloride 345 
silver chloride 345 

band tails 357 
bandgap 315,341,422 
Bardeen-Coope'r-Schrieffer model 467,489 
Barkhausen jumps 628 
base 730 
basis 47 
battery, 200 

lithium 202 
primary 202 
secondary 202 
sodium-sulphur 203 
storage 202 

bipolar transistors 730 
bipolarons 515, 675 
Bloch function 309,331 
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Bloch law 623 
Bloch oscillations 717 
Bloch wall 625 
Bloch-Griineisen law 439,489 
blocking contacts 696 
Blue John 141 
body-centred cell 48 
body-centred cubic structure 67,92 
Bohr magneton 159,578 
Bohr-van Leeuwen theorem 567,573 
Boltzmann transport equation, 

electrons 437 
linearized 437,441 
phonons 278 

Born-Lande potential 69 
Born-Mayer potential 69 
Born-von Karman boundary conditions 96, 

218,310 
Bose-Einstein condensation 471 
Bose-Einstein distribution law 234 
bosons 234 
bra-ket notation 358 
Bragg diffraction 109, 114 
Bragg plane 113 
Bragg reflection 109,223, 314,424, 750 
Bremsstrahlung radiation 108 
Bridgman method 16 
Brillouin function 595, 637 
Brillouin scattering 257, 261 
Brillouin zone, 93, 317 

body-centred cubic lattice 94 
face-centred cubic lattice 95 
first 221,427 

brittle solids 193 
buckminsterfullerene 61, 652 
bulk modulus, 70, 192,274 

carbon nitride 96 
diamond 96 
free-electron 306 

Burgers vector 146, 164, 172 

caesium chloride structure 74 
Car-Parrinello simulations 106 
Casimir limit 282 
cathode 200 
ceramic 38, 198 
chain with basis 223 
chemical beam epitaxy 10 
chemical interdiffusion 177 
chemical potential, 297 

. extrinsic semiconductors 508 
intrinsic semiconductors 495 
temperature dependence 299 

chemical precipitation 23, 28 
chemical sensors 205 
chemical vapour deposition, 7 

metal organic 8 
photo- 11 
plasma-enhanced 11 

Chevrel phase 465 
chimie douce 22 
chiral vector 677 
Clausius-Mossotti relation 543 
close-packed structure 60, 66 
closure domains 625 
clusters 64 
coercive field, 

electric 558 
magnetic 630 

coherent neutron scattering 117 
cohesive energy, 

Fermi gas 303 
ionic crystals 70 
metals 66, 303 
rare-gas crystals 60 

Cole-Cole equation 551 
Cole-Cole plot 550 
Cole-Davidson equation 551 
collector 730 
colloidal crystals 659 
colloids 28, 655 
colossal magneto resistance 459 
colour centres 156 
combinatorial library 14 
commensurate distortion 668 
compensation 506, 510 
compressibility 70, 192 
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computer simulation of materials 96 
conductance, 

2D 681 
conduction band, 325 

valleys 708 
configurational-coordinate model 515 
confined phonon modes 719 
congruent melting 5 
conjugated polymers, 670 

light-emitting diodes 743 
constant-energy electron surfaces 349 
contact potential 701 
contact, 

blocking 694 
injecting 694 
ohmic 694 
rectifying 699, 702 

continuous random network 44, 138 
Cooper pair 469, 472, 476, 489 

cordierite 39 
correlation energy 304 
Coulomb integral 606 
Coulomb-blockade model 662 
coupled diffusional flow 174 
covalent interaction 56, 100 
creep 198 
cross slip 197 
crowdion 159 
crystal directions 50 
crystal fields 597 
crystal growth, 20, 39, 168 

Bridgman method 16 
Czochralski method 15 
floating-zone method 17 
hydrothermal method 24 
Stockbarger method 16 
Verneuil method 19 

crystal momentum 237,252,312,421 
crystal nucleation, 20, 34, 39 

epitaxial 35 
heterogeneous 20 
homogeneous 20 
topotactic 35 

crystal planes 50, 90 
crystal systems 48, 85 
crystallographic point group 82 
crystallographic shear plane 149 
cubic close-packed structure 60 
Curie constant 558, 596 
Curie law 596 
Curie temperature, 

ferroelectric 557 
Curie-Weiss law 557, 562, 565, 614 
Curie-Weiss temperature 558, 612, 619 
current gain 731 . 
current-controlled amplifier 730 
cyclotron effective mass 451 
cyclotron frequency 450,499, 577 
cyclotron orbit, 449 

electron-like 451 
extremal 455 
hole-like 451 

cyclotron resonance, 448, 454, 499 
Azbel' -Kaner geometry 454 

Czochralski method, 15 
liquid-encapsulated 16 

d-state pairing 471,489 
d.c. Kerr effect 401, 406 
dangling bond 143, 159, 161 
Darken equation 178 
de Haas-van Alphen effect 579 

Deborah number 170 
Debye density of states 217, 265 
Debye frequency 217,265 
Debye model 217 
Debye relaxation equation 549 
Debye relaxation,time 550 
Debye scattering equation 116, 123 
Debye temperature 265 
Debye-Waller factor 237 
deep centres 506 
deformation-potential scattering 496 
degenerate Fermi gas 300 
demagnetizing field 570,641 
dense random packing 68, 138 
density of electron states, 294, 355 

amorphous solids 356 
copper 356 
germanium 356 
joint 389 

density of states, 231,355 
Debye 217,265 
electrons 294, 355 
local 357 
vibrational modes 217,231,244 

density-functional theory 103 
depletion ~egion 696, 701 
depolarization electric field 540 
depolarization factors 540 
deviatoric stress 189 
diagonal disorder 519 
diamagnetic susceptibility, 

Larmor atomic 576 
quantum free-electron 578 
superconductors 582 

diamagnetism 569,573 
atomic 574 
normal metals 576 
superconductors 581 

diamond 11,37,283, 733 
structure 78 

dielectric constant; 248,25.5, 361, 379, 514, 
537 

complex 255 
high-frequency 248 
imaginary part 389,549 
real part 545, 549 
static 248 

dielectric displacement 538 
dielectric susceptibility 260, 399, 537 
dielectrics 537 
diffraction, 108 

amorphous materials 115, 123 
Bragg 109, 114 
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diffraction (contd.) 
contrast 164 
electron 111 
Laue formulation 111 
neutron 110 
powder 122 
X-ray 108 

diffusion coefficient 172 
diffusion correlation factor 179 
diffusion couple 177 
diffusion potential 696, 701 
diffusion profiles 175 
diffusive transport 680 
dilatational strain 190 
direct exchange (magnetic) 608 
direct gap 345, 351, 385 
direct transition 385, 389 
direct-exchange atomic transport 171 
directional solidification 16, 198 
dirty limit 480 
disclinations 145, 147, 652 
dislocations, 145 

core 145 
edge 145,155,164,172 
screw 146, 155, 165, 169, 172 

dispersion curve, 
vibrational 221, 230 

displacive phase transition 555 
divacancy 142 
domain walls, 

Bloch 625 
ferroelectric 559 
ferromagnetic 625 

domains, 
ferromagnetic 624 
pyroelectric 555 

donors, 501 
wavefunction 505 

dopants, 501 
Rydberg constant 503 

doping superlattice 719 
double acceptors 501 
double donors 501 
double exchange 459,633 
double-heterojunction lasers 747 
double-well potential 270 
drift velocity 418 
Drude formula 419,439 
Drude model 292, 379 
Dulong-Petit limit 265, 272 
dumb-bell-shaped interstitial 143 . 
dynamic dipole moment 253 
dynamical matrix 214 
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easy glide 197 
easy-magnetization directions 625 
edge dislocation, 145, 155, 164, 172 

elastic energy 155 
effective electron mass, 303,421 

cyclotron 451 
heat-capacity 303, 424 
holes 426 
longitudinal 349 
negative 423 
polaron 514 
tensor 422 
transverse 349 

Einstein coefficients 742, 746 
Einstein equation 185 
Einstein model 236, 268 
Einstein relation 179 
Einstein-Smoluchowski equation 185 
elastic continuum 191, 210,246 
elastic-compliance coefficient 191 
elastic-energy density 213 
elastic-stiffness coefficient 190 
electric dipole moment 543 
electric field, 

depolarization 540 
local 540 
Lorentz 542 
macroscopic 540 

electric-dipole approximation 388 
electrical conductivity, 380, 417, 436, 510 

Dmde formula 419 
electrical polarization 537 
electrical resistivity 417,439 
electrochemical cell 33, 200 
electrochemical potential 443, 699 
electrochromism 33 
electro luminescence 741 
electromotive force 200 
electron accumulation region 696 
electron affinity 374 
electron bands 312 
electron energy-loss function 366, 384 
electron imaging, 123, 163 

bright-field 163 
dark-field 164 
high-resolution 164 

electron magnetic moment 590 
electron momentum 573 
electron scattering 429 
electron spin resonance 159 
electron tunnelling 481 
electron-defect scattering 433, 510 
electron-electron scattering, 430 

nomlal 432 
umklapp 432 

electron-phonon interaction 434,467,513 
electron-phonon scattering, 433,495,510 

normal 435, 439 
umklapp 435 

electronic g-factor 590 
electronic heat capacity 300, 424 
electrostatic bond strength 71 
emitter 730 
empirical pseudopotential method 327 
empty-lattice approximation 313, 348 
entropy, 446 

superconductors 467 
epitaxy, 7, 35 

liquid-phase 17 
molecular-beam 6 
metal-organic molecular-beam 10 

epithermal neutrons 11 0 
Esaki tunnel diodes 706 
escape depth 375 
etch pits 163 
Ettingshausen effect 461 
eutactic structures 73 
eutectic 5,23 
Ewald constmction 114 
Ewald summation 101 
exchange constant 606, 635 
exchange integral 606 
exchange interaction, 303, 603 

bonds 607 
direct 608 
free electrons 303, 607 

exchange splitting 614 
exchange, 

double 633 
indirect 610 

exchange-correlation, 
energy 104 
hole 104, 303, 608 

exciton, 394 
effective mass 396 
Frenkel 394 
Mott-Wannier 394 
reduced mass 396 
wavevector 396 

exciton-polariton state 398 
exhaustion regime 507 
extended defects 139, 145 
extended X-ray absorption fine structure 129 
extended-zone scheme 227,315,318 
extinction rules 115 
extremal orbit 455 

extrinsic semiconductors, 501 
electrical conductivity 510 
freeze-out regime 507 
intrinsic regime 507 
mobility 510 
saturation regime 507 

F-centre 141, 156, 159, 162 
F' -centre 158 
F2-centre 158 
F3-centre 158 
face-centred cell 48 
face-centred cubic structure 61,66,93 
Faraday effect 640 
fast-ion conductors 186,200 
Fermi electron gas 292 
Fermi energy 295,491 
Fermi glass 522, 726 
Fermi golden rule 388, 390 
Fermi monsters 322 
Fermi surface, 322, 439 

aluminium 352 
copper 322, 352 
lead 321 
sodium 322 

Fermi te;nperature 296 
Fermi wavevector 296, 709 
Fermi-Dirac distribution function, 297 

energy derivative 438 
temperature derivative 300 

Fermi-Dirac statistics 604 
Fermi-level pinning 697 
fermions 293 
ferrielectrics 555 
ferrimagnetism 603, 632 
ferrites 633 
ferro elastic phase transition 215 
ferroelectiicity 552, 555 
ferroelectrics 552, 555 
ferroics 553 
ferromagnetic domains 6,24 
ferromagnetism, 603 

itinerant electrons 614 
localized moments 610 
Stoner model 615 

Fick's first law 173 
Fick's second law 174 
field-effect transistors 730, 732 
fill factor 737 
flash evaporation 6 
flocculation 28 
fluorite structure 74 
flux coercivity 630 
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flux growth 22 
flux pinning 588 
flux quantum 477,485, 589 
flux vortex, 465, 585 

glass 588 
lattice 586 

fluxoid 477,485, 589 
forbidden gap, 

electronic states 315 
vibrational states 227 

four-circle diffractometer 119 
four-wave mixing 401,407 
fractal 43, 245 
fractional quantum Hall effect 727 
fractionally charged quasiparticles 727 
fracton, 245 

dimension 246 
Frank source 170 
Frank-Read dislocation source 196 
free-carrier absorption 379 
free-electron gas, 291 

a.c. conductivity 381 
d.c. conductivity 380 
dynamics 417 
optical absorption coefficient 382 

free-induction decay 161 
freeze-out regime 507 
Frenkel defect, 139, 199 

energetics 153 
Friedel oscillations 364 
Frohlich interaction 467 
fullerenes 652, 676 
fullerides 653 

galvanomagnetic effects 460 
gap mode 243 
gel 26 
general equivalent position 81 
Giaever tunnelling 483 
giant magneto resistance 640 
Ginzberg-Landau parameter 480, 584 
Ginzberg-Landau order parameter 477,483 
glass 19 
glass electrode 205 
glass-ceramic 38 
glass-transition temperature 19 
glassy metals 67 
glide plane 85 
glow-discharge decomposition 11 
graded-index fibre 403 
grain boundary 148 
grand partitiqn function 297 
graphite 31,37,689 

Green's function 240 
Griffiths fracture 193 
group 80 
group velocity, 212 

electron 421 
Griineisen law 276 
Griineisen parameter 276 
gyromagnetic ratio 159, 591 

H-centre 159 
Hagen-Rubens relation 382 
Hall coefficient, 456 

semi-metals 458 
Hall effect, 455 

fractional quantum 727 
integral quantum 722 
quantum 721 

Hall field 455 
Hall mobility 457 
Hall resistivity 456, 722 
hard magnetic materials 631 

SUBJECT INDEX 

harmonic approximation 220, 255, 271 
Harrison construction 321 
Hartree approximation 293 
Hartree-Fock equations 304 
Hausdorff dimension 246 
Havriliak-Negami equation 550 
heat capacity, 264 

electronic 300 
glasses 268,301 
superconductors 467,475 
vibrational 264, 301 

heat flux 278 
heavy holes 352, 714 
heavy-fermion alloys 303 
Heikes equation 518 
Heisenberg exchange Hamiltonian 608,610 
Heitler-London approximation 604 
heteroepitaxy 11 
heterojunctions, 694 

insulator-semiconductor 706 
metal-semiconductor 694 
semiconductor-semiconductor 700 

hexagonal close-packed structure 66 
high electron mobility transistors 735 
high-resolution electron imaging 164 
high- Tc superconductivity 485 
hole band 426 
hole, 424 

charge 427 
effective mass 426 
energy 425 
velocity 426 

wavevector 425 
holography 130 
homojunctions, 694 

semiconductor-semiconductor 700 
Hooke's law 187 
hopping integral 333 
Hubbard energy 369 
Hund's rules 592, 606 
hybrid orbitals, 339 

sp 340 
Sp2 340 
Sp3 340 

hybridization, 337 
gap 338, 342 

hydrogel 30 
hydrogen bond 56 
hydrogen molecule 604 
hydro genic dopants 503 
hydrostatic stress 188 
hydrothermal growth 24 
hydrothermal synthesis 24 
hypercritical drying 30 
hyperfine interaction 161 
hysteresis, 

ferroelectric 558 
ferromagnetism 630 
loop 558 

ice 56 
ice rule 56 
ideal conductor 582 
identity operator 80 
improper rotation operator 81 
impurity diffusion 172 
impurity mode 210,239 
in-band resonance 243 
incoherent neutron scattering 118 
incommensurate distortion 668 
incongruent melting 4,23 
independent-electron approximation 293,337, 

361 
indirect exchange 610 
indirect gap 345, 349, 386 
indirect transition 387, 390 
indium-tin oxide 383 
inelastic neutron scattering 262 
inelastic photon scattering 256 
inertial mass 421 
infrared absorption 252 
infrared detectors 738 
injecting contacts 694 
insertion compounds 203 
insulator 325 

integral quantum Hall effect 722 
inter band optical absorption, 385 

amorphous materials 392 
intercalant 3 
intercalation 31, 692 
intercalation compounds 203 
interface states 696 
interstitial defect, 139 

energetics 153 
interstitial donors 503 
interstitial voids 72 
intraband optical absorption 379 
intrinsic carrier concentration 490, 494 
intrinsic coercivity 630 
inverse spinel structure 633, 640 
inversion layer 707, 732 
inversion operator 81 
roffe-Regel limit 243,285,521 
ion exchange 31 
ionic conductivity 184 
ionic interaction 55, 69, 101 
ionic mobility 185 
ionicity 57, 76, 349 
isoelectronic defects 502 
isotopic defect 239,242 
isovalenf defects 502 

Jahn-Teller distortion 143, 371,459 
jellium model 291, 304, 365 
Johnson criterion 733 
Johnson noise 728 
joint density of states 389 
Jones zone 673 
Josephson effect, 

a.c. 483, 485 
d.c. 483 

Josephson junction 483 
Josephson tunnelling 483, 526 

k-selection rule 252, 385 
Keating potential 101 
Kelvin relation 445 
Kerr effect 640 
Kirkendall effect 35, 177 
Knudsen cell 6 
Kohlrausch-WiIliams-Watts relaxation 

law 552 
Kohn anomaly 363, 669 
Kohn-Sham equations 104 
Kohn-Sham functional 103 
Kramers-Kronig relations 255 

Lame constants 192 



Landau Fermi liquid 361 
Landau free energy 563 
Landau levels 452,577,580, 723 
Landau tubes 452, 577 
Landauer formula 681,688, 723 
Lande g-factor 159, 591 
Langevin function 547 
Laplace equation 29 
large polarons 514 
Larmor atomic magnetic susceptibility 576 
laser ablation 4 
latent image 199 
lattice, 47 

Bravais 48 
reciprocal 90 

Laue diffraction Ill, 236 
layered crystals 689 
Lennard-Jones potential 59, 100 
light holes 352, 714 
light-emitting diodes 740 
Lindhard screening 363, 669 
line defects 139, 145 
linear combination of atomic orbitals 

approximation 330, 348 
linear electro-optic effect .401 
Liouville's theorem 437 
liquid-phase epitaxy 17 
LO-TO splitting 229,247 
local density of states 357 
local electric field 540 
local-density approximation 105 
localization, 519, 726 

electronic 519 
length 519 
optical 521 
vibrational 239,241,245,285 

localized wavefunction 521 
London equation 478 
London interaction 55 
London penetration depth 479,584 
longitudinal acoustic mode 225 
longitudinal optic mode 226, 250 
longitudinal wave 212 
longitudinal-acoustic phonons 434 
longitudinal-optic phonons 513 
Lorentz cavity field 542 
Lorentz equation 547 
Lorentz force 417,448 
Lorentz number 420, 443 
Lorentz relation 543 
loss tangent 539 
lossy medium 254 
Lyddane-Sachs-Teller equation 250, 560 

M-centre 158 
Mackay icosahedra 64,659 
macroscopic electric field 540 
macroscopic magnetic field 569 
Madelung constant 69, 76, 101 
maglev trains 526 
Magneli phase 149 
magnetic data recording 639 
magnetic dipole moment 568 
magnetic field intensity 568 
magnetic field, 

demagnetizing 570,641 
local 569 
macroscopic 569 
microscopic 569 

magnetic flux density 568 
magnetic gas 593 
magnetic levitation 525 
magnetic moment, 568 

electron 590 
magnetic neutron scattering 634 
magnetic susceptibility, 569 

mass 569 
molar 569 
volume 569 

magnetic unit cell 634 
magnetic vector potential 567, 574 
magnetization 568 
magneto crystalline anisotropy 625 
magnetocrystalline energy 625, 632 
magnetogyric ratio 159, 591 
magneto resistivity , 

colossal 459 
giant 640 
longitudinal 459 
transverse 459, 722 

magnetostriction 625 
magnons 620 
mass defect 240 
mass-action law 494 
Matthiesen's rule 439 
Maxwell's equations 248, 381 
mean-field approximation 611 
mean-free path, 521 

electron 419 
electron-electron scattering 432 
phonon 280 

mechanical properties 187 
Meissner effect 462,464,479, 581, 584 
melt spinning 21,68 
mesas 655 
mesoporous material 27 
metal-induced gap states 697 

metal-insulator transition, 366,459,519 
critical point 368 
Mott criterion 367 
Mott-Hubbard 370 

metal-oxide-semiconductor devices 706, 722, 
732 

metallic bonding 64, 303 
metallic glasses 67 
metallicity 349 
metals, 55, 64, 325, 352 

cyclotron resonance 448 
electrical conductivity 436 
galvanomagnetic effects 455 
Hall effect 455 
magnetoresistance 459 
resistivity 439 
thermal conductivity 440 
thermoelectric effects 443 
thermomagnetic effects 455 

Metropolis method 99 
micelle 27 
microscopic electric field 540 
microscopic magnetic field 569 
Miller indices 51,90 
mineralizer 24 
mini band 716 
minimal atomic basis set 344 
mixed superconducting state 464, 523 
mixed valence 459,515 
mobility 185,419,495 

edge 521 
modulation-doped field-effect transistors 735 
modulation-doped heterostructures 680, 733 
molecular dynamics 98 
molecular metals 666 
molecular sieve 31 
molecular-beam epitaxy, 6 

metal-organic 10 
Mollwo-Ivey law 157 
moment of distribution function 358 
moments theorem 358 
monatomic chain 219 
Monte Carlo simulations 99 
Morse potential 100 
mosaic texture 148 
Mott transition 367 
Mott-Hubbard transition 370 
Mott-Wannier exciton 394, 655 
multiphonon absorption 405 
multiple quantum wells 715, 738 
multiplet 591 
multiplicity 591 
mutual-exclusion rule 260 

nanocrystals 655 
nanotubules 676 
near-edge X-ray absorption fine structure 129 
nearly-free electron model 314, 328 
Neel constant 637 
Neel model 636 
Neel temperatU1:e 637 
negative differential resistance 706 
negative thermal expansion 277 
Nernst effect 461 
Nernst equation 201 
Nernst-Einstein relation 185 
Neumann's principle 554 
neutron diffraction 110 
neutron scattering length 117 
neutrons, 

epithermal 110 
thermal III 

nickel arsenide structure 72 
nipi semi-metal 721 
nipi structure 719 
nitriding 3 
no-crossing rule 353 
non-crystalline structure 52 
non-degenerate statistics 492 
non-linear optics 398, 405, 658 
non-linear susceptibility 399 
non-radiative recombination 742 
non-stoichiometric defects 141 
normal mode 221 
normal spinel structure 633 
normal-type electron scattering 432 
normal-type phonon scattering 273, 280 

off-diagonal disorder 521 
Ohm's law 417,482 
ohmic cont~cts 695 
one-dimensional materials 649 
one-dimensional metals 665 
Onsager coefficients, 

diffusion 175; 185 
thermoelectric 443 

opal 658 
optical absorption coefficient 255, 382, 389 
optical confinement, 749 

graded index 749 
separate confinement by 

heterojunctions 749 
bptical constants 255 
optical fibres, 

graded-index 403 
step-index 403 

optical gain 745 
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optical phase conjugation 406 
optical rectification 400 
optical switch 406 
order parameter 563 
order 

icosahedral 45 
orientational 45 
short-range 44 
translational 43 

order-disorder transitions 558 
orthogonal-plane-wave approximation 326 
orthogonality hole 305 
oscillator strength, 545 

quantum confinement 656 
overlap integral 606 

p-n junction, 701, 735, 739 
avalanche breakdown 705 
impact ionization 705 
lasers 744 
light-emitting diodes 740 
photo detectors 739 
reverse breakdown 705 
solar cells 735 
Zener breakdown 705 -

packing fraction, 61 
body-centred cubic 67 
close-packed 62 
dense random packing 68 
diamond 78 
hexagonal close-packed 62 

paraelectrics 555 
paramagnetism, 569,576,589 

isolated atoms 590 
magnetic gas 593 
normal metals 601 
Pauli 602 
Van Vleck 600 

parametric optical amplifiers 405 
participation ratio 245, 519 
particle-in-a-box model 156,293 
partition function, 233, 494 

magnetic moment 595 
Patterson map 121 
Pauli exclusion principle 59, 104,297,301, 

430,469 
Pauli paramagnetic susceptibility 602 
Pauli paramagnetism 602 
Peierls distortion 667 
Peierls transition 371 
Peltier coefficient 445 
Peltier effect 446, 481 
Penn gap 58, 546 

Penn model 545 
Penrose tiling 45, 84 

SUBJECT INDEX 

periodic boundary conditions 96, 218, 310 
permanent magnet materials 631 
persistent currents 476 
pH sensor 205 
phase kinks 674 
phase transitions, 

first order 557, 565 
second order 557, 565 

phase velocity 212 
phase-coherence length 680 
phase-conjugate mirror 408 
phase-matching condition 400, 407 
phonon scattering, 

normal 273, 280 
umklapp 280 
virtual 469 

phonon-assisted hopping 522 
phonons 232 
photoconductivity 496 
photodectors 738 
photoelectric effect 374 
photoemission spectroscopy, 374 

angle-resolved 378 
inverse 378 
ultraviolet 374 
X-ray 374 

photoemission, 374 
three-step model 376 

photographic process 199 
photographic sensitizers 199 
photoluminescence 721 
photonics 405 
piezoelectric scattering 496 
piezoelectricity 553 
piezoelectrics 553 
planar defects 139, 148 
planar-flow casting 22 
Planck distribution law 234 
plane wave 212 
plasma frequency 365 

screened 382 
plasma oscillations 365, 392 
plasma reflection edge 383 
plasmons 365, 382 
plastic crystals 170 
plastic deformation 187, 193 
Pockels effect 401 
point defects, 139 

energetics 151 
point group 80 
point-symmetry operation 80 

SUBJECT INDEX 

Poisson's equation 362 
Poisson's ratio 192 
polar-mode scattering 496 
polariton 251 
polarizability, 247, 543 

atomic 544 
bond 544 
dipole-orientational 544, 547 
ionic-displacement 247, 544 

polarization, 
electrical 247 

polarons, 513, 674 
coupling constant 514 
effective mass 514 
large 514 
small 159, 514 

polymers, 
conjugated 670 
light-emitting 743 

polymer-salt electrolyte 203 
polymorphism 67 
polytypism 79 
population inversion 746 
porous silicon 658 
powder diffraction 122 
precession photographs 119 
preparation 2 
pressure quenching 37 
primitive cell 48 
principal stress 188 
promotion energy 341 
pseudopotential, 305, 326, 348 

Al 327 
Ashcroft 305, 327 
local 305 
screened 327 

pyroelectricity 554 
pyroelectrics 552 

quadratic electro-optic effect 401 
quantized point-contact conductance 

688 
quantum channels 682 
quantum confinement 650, 655 
quantum dot 650, 655 
quantum efficiency 740, 742 
quantum Hall effect 721 
quantum well, 651, 707 

optical absorption 712 
quantum wire 650, 679 
quantum-mechanical tunnelling 481 
quartz 24 
quasi-ballistic transport 680 

quasi-Fermi level 746 
quasicrystals 45, 123 
quasiparticle, 293, 361 

fractionally charged 727 
quenched angular momentum 597 

R-centre 158 
radial distribution function 53, 125 
radiative recombination 741 
radius ratio 75 
Raman scattering, 257 

first order 260 
second order 260 
stimulated 402 

Rayleigh line 259 
reciprocal lattice, 90 

body-centred cubic lattice 92 
face-centred cubic lattice 93 
simple-cubic lattice 92 

reciprocal-lattice vector 90 
recombination, 497 

bimolecular 498 
monomolecular 498 

rectifying contact 699, 702 
reduced-zone scheme 314,318 
reflection operator 81 
reflectivity, 382 

free-electron gas 382 
IR 256 

refractive index 254, 379, 540 
relative permeability 568 
relaxation-time approximation 437 
remanence 630 
remanent magnetization 630 
remanent polarization 558 
repeated-zone scheme 221,314,318 
residual resistivity 439 
Restrahlen band 256 
retardation effect 248 
Richardson-Dushman equation 700 
Rietveld profile analysis 122 
Righi-Leduc effect 461 
rigid-band approximation 513 
ring mechanism for atomic transport 171 
RKKY interaction 610 
rocksalt structure 72, 74 
rotation operator 81 
rotoreflection operator 81 
running-wave states 218 
Russell-Saunders coupling 591 
Rutherford scattering law 431,433 
rutile structure 75 
Rydberg series 503 
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s-state pairing 471,489 
sapphire 25, 282 
saturation regime 507 
scattering amplitude 114 
scattering vector III 
Schmid's law 194 
Schottky barrier 696 
Schottky defect 139, 153 
Schottky defect pairs 

energetics 153 
Schr6dinger equation 292 

time-dependent 292 
time-independent 292,310,316 

screened potential 362, 367 
screening currents 573, 582 
screening, 361 

Lindhard 363 
Thomas-Fermi 361 

screw dislocation, 146, 165, 170, 172 
elastic energy 155 

screw operation 85 
second-harmonic generation 400, 405 
Seebeck effect 443, 445 
self-diffusion 172 
self-interstitial defect 139 
self-similarity 43 
self-trapping 159, 514 
semi-metal 325, 424, 439, 458 
semiconductors, 325, 490 

chemical potential 495,508 
doped 490, 501 
electrical conductivity 495, 510 
extrinsic 490, 501 
intrinsic 490 
lasers 744 
photoconductivity 496 
thermopower 498 

sensors, 
chemical 205 
pH 205 

shallow dopants 501 
shape anisotropy, 641 

energy 641 
shear modulus 192 
shear strain 190 
shear stress 188 
short-range order 44 
shot noise 728 
Shubnikov vortex phase 585 
Shubnikov-de Haas effect 580, 722 
Sierpinski gasket 43 
simple cubic structure 92, 333 
single-electron transistors 661 

singlet spin state 604 
size-quantization 650,681,694, 709 
skin depth 454 
skipping orbits 723 
Slater determinant 605 
slip, 172, 194 

system 195 
small polaron 159,514 
small-polaron hopping, 516 

electrical conductivity 518 
sodalite cage 26 
sodium-sulphur battery 203 
sodium-tungsten bronze 32 
soft magnetic materials 631 
soft mode 215,560 
sol 28,30 
sol-gel method 28 
solar cells, 735 

fill factor 737 
open circuit voltage 735 
short-circuit current 735 

solar constant 735 
solid electrolytes 186, 200 
solid-state reaction 34 
solitons 674 
solution growth 22 
Sommerfeld model 293 
sonogel 30 
Soret effect 174 
sound propagation 211 
space group, 80, 85, 93 

non-symmorphic 89 
symmorphic 88 

spallation neutron source 111 
spectral dimension 246 
spectroscopic term symbol 593 
sphalerite structure 79 
spin waves, 620 

dispersion relation 621 
spin-orbit coupling 351, 599 
spin-orbit interaction 351, 591, 713 
spinel 34 
spinors 604 
split interstitial 143 
spontaneous magnetization 603 
sputtering, 13 

chemical 13 
magnetron 14 
physical 13 

SQUIDS, 526 
high-Tc 529 

stacking fault 149, 166 
staging 693 

r 

__ L 

standing waves 215, 318 
standing-wave solutions 314 
Stark ladder 
stationary waves 215 
step-index fibre 403 
stimulated Raman process 402 
stishovite 38 
Stockbarger method 16 
Stokes line 258 
Stoner criterion 617 
Stoner gap 620 
Stoner model 615 
Stoner parameter 617 
strain, 

component 189 
deviatoric 189 
dilatational 190 
shear 190 
uniaxial 190 

stress, 
component 188 
deviatoric 189 
hydrostatic 189 
principal 188 
shear 188 
uniaxial 188 

stretched-exponential decay 552 
structure factor 125 
sub bands 710 
substitutional defect 139, 239 
substitutional impurities 139, 501 
sum-difference frequency generation 400, 

405 
superalloys 198 
superconducting coherence length 479, 

585 
superconducting gap 472 
superconducting magnets 524 
superconducting transition temperature 462, 

472 
superconducting wires 523 
superconductors, 462 

amorphous metals 462 
coherence length 479, 585 
critical current density 464, 523 
critical magnetic field 467,489,523,584, 

589 
critical temperature 462, 472 
fullerides 654 
heat capacity 467, 475 
high-Tc 463,485, 529 
organic metals 462 
reentrant 465 

strong-coupling 473 
type-I 464,466,481,582 
type-II 464,481,489,523,582 

supercritical drying 30 
supercritical solvent 24 
supercurrents 476, ,478, 483 
superexchange 608 
superionic conductors, 186, 200 

glasses 187 
superJattice, 694, 715 

doping 719 
nipi 719 

symmetry operation 80 
synchrotron radiation 109 
synthesis 2 
systematic absences 115,121 

tarl1i~hing 3, 35 
tensile stress 194 
thermal conductivity, 277 

diamond 283 
electronic 420,440,444,481 
germanium 283 
glasses 283 
sapphire 282 

thermal curi-ent density 278 
thermal decomposition 36 
thermal expansion, 274 

coefficient 274 
Fermi gas 307 
negative 277 

thermal neutrons 111 
thermal switch 481 
thermionic emission 700 
thermoelectric effects 443 
thermoelectric power 444,481,498,518 
thermomagnetic effects 460 
thermopower, 444,481,498,518 

absolute 445 
semiconductors 449 
small-polaron 518 
superconductors 445, 48 r 

third-harmonic generation 401 
Thomas-Fermi approximation 362 
Thomas-Fermi screening length 362, 431 
Thomson effect 446 
Thomson heat 447 
three-wave mixing 400,405 
tight-binding approximation 329 
tight-binding bands 333, 348, 690 
tilt boundary 148 
topotactic nucleation 35 
transformer cores 632 
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transistors 730 
bipolar 730 
field-effect 730, 732 
high electron mobility 735 
modulation-doped field-effect 735 

transition metals 353, 432 
translational periodicity 43 
transparent electrode 383 
transverse acoustic mode 227 
transverse optic mode 228,251, 562 
transverse wave 212 
transverse-optic phonon 228, 251, 562 
trapping 497 
triplet spin state 604 
tunnelling 

electron 481 
Giaever 483 
Josephson 483, 526 

twist grain boundary 148 
two-level systems 269,284 
two-photon absorption 398, 401 

umklapp-type electron scat.tering 432 
umklapp-type phonon scattering 280 
uniaxial strain 190 
uniaxial stress 188 
unit cell, 43, 48 

body-centred 48 
face-centred 48 
primitive 48 

universal conductance fluctuations 682 
Urbach edge 393, 403 

V-centre 158 
Vk-centre 159, 514 
valence alternation 515 
valence band -325 
valley degeneracy 708 
Van Vleck paramagnetism 600 
van Arkel process 12 
van der Waals interaction 55, 58, 100 
van Hove singularity 390 
vapour deposition 3 
vapour-phase hydrolysis 8 
vapour-phase transport 11 
variable-range hopping 522 
Verlet algorithm 98 
vertical transition 385 
vibrational density of states, 216,231,244 

Debye 217 
one-dimensional 232 
two-dimensional 232 

vibrational modes, 
amplitude 234 
collective 210, 221 
density of states 216, 231, 244 
eigenvector 234 
impurity 210, 239 
thermal occupation 234 

virtual phonon 469 
vitrification 19 
vortex pinning 523 
vortex state 465, 523, 585 

Wagner reaction mechanism 35 
Wannier functions 331 
wave packet 212,278,417 
wave velocity 212 
wavefunction rigidity 573, 583 
wavevector 212 
Weaire-Thorpe model 342,357 
weak link 483 . 
weak localization 685 
Weiss constant 611 

SUBJECT INDEX 

Weiss molecular field 611 
Wiedemann-Franz law 420, 443 
Wigner-Seitz cell 62, 93 
Wigner-Seitz cohesive energy 304 
work function 291, 374, 695 
work hardening 193 
wurtzite structure 72 

X-ray absorption edge 127 
X-ray absorption near-edge structure 

129 
X-ray absorption spectroscopy 126 
X-ray diffraction 108 
X-ray emission spectroscopy 372 
X-ray holography 130 
X-ray spectroscopy 126, 372 
xerogel 28 

yield stress 193 
Young's modulus 192 

Zeeman interaction 160 
zeolite, 25 

A 26 
X, Y 26 
ZK-4 27 
ZSM-5 27 

zero-dimensional materials 649, 652 
zero-point energy 233 
zone refinement 17 



Vector Relationships 

A, B, C and D are vectors; a and bare scala:s. Ca~esian components are denoted by the 
subscripts x, y and z. X, Y and z are Cartesian umt vectors. 

Cartesian Relationships 
A Axx+Ayy+Azz 
A B AxBx + AyBy + AzBz h 

A' x B (AyBz - AzBy)x + (AzBx - AxBz)Y + (AxBy - AyBx)z 

8A 8Ax h 8Ay h + 8Az h • 

-x+-y -8 Z 
8x 8x 8x x 

8u 8u h 8u h 

grad(u) - \.lu = 8x x + 8yY + 8z Z 

8Ax 8Ay 8Az 
div(A) - \.l.A = ax + ay + 8z 

_ [8Az _ 8Ay} x + [8Ax _ 8Az} y + [8Ay _ 8Ax} z 
curl(A) - \.l x A - 8y 8z l 8z 8x l8x 8y 

82u 82u 82u 
\.l.\.l(u) - \.l2u = 8x2 + 8y2 + 8z2 

82A &A 82A 
\.l2 A 8x2 + 8y2 + 8z2 

General vector relationships 

A.B x C = B.C x A = C.A x B 
A x (B x C) = (A.C)B - (A.B)C 
\.l(u + v) = \.lu + \.lv 
\.l(uv) = u\.lv + v\.lu 
\.l.(A + B) = \.l.A + \.l.B 
\.l x (A + B) = \.l x A + \.l x B 
\.l.(uA) = A.\.lu + u\.l.A 
\.l x (uA) = \.lu x A + u\.l x A 
\.l(A.B) = (A.\.l)B + (B.\.l)A + A x (\.l x B) + B x (\.l x A) 
\.l x (A x B) = A(\.l.B) - (Ai \.l)B + (B.\.l)A - B(Y·A) 
\.l x \.l x A = \.l(\.l.A) - \.l A 
\.l.(\.l x A) = 0 
\.l x (\.lu) = 0 

Physical constants 

Quantity 

Speed of light in vacuo 
Vacuum permittivity 
Vacuum permeability 
Proton charge 
Electron rest mass 
Proton rest mass 
Neutron rest mass 
Atomic mass unit 
Planck's constant 
Planck's constant 
Avogadro number 
Faraday constant 
Boltzmann constant 
Gas constant 
Gravitational constant 

Unit conversion 
1 A = IO-I0m 
leV = 1.6022 x 1O-19J 

Prefixes 
Symbol f p n 
Name femto pico nano 
Factor 10-15 10-12 10-9 

Symbol Value Units 

c= 2.9979 x 108 m/s 
co 8.8542 x 10-12 Flm 
fLo 47r x 10-7 Him 
e 1.6022 x 10-19 C 
me 9.1095 x 10-31 kg 
mp 1.6726 x 10-27 kg 
mn 1.6750 x 10-27 kg 
amu 1.6605 x 10-27 kg 
h 6.6262 x 10-34 Js 
Ii h/27r 1.0546 X 10-34 Js 
NA 6.0221 x 1023 Imol 
F=NAe 9.6485 X 104 C/mol 
kB 1.3807 x 10-23 JIK 
R=NAkB 8.3145 JIKmol 
G 6.6720 x 10-11 Nm2/kg2 

lcm- l = 2.9979 x 1010Hz 
p8 = 1 atm. = 1.0133 x 105 Paj 1 bar 105Pa 

fL m c d k M G T 
micro milli centi deci kilo mega giga tera 
10-6 10-3 10-2 -10-1 103 106 109 1012 




